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Preface

In the past few years there have been some significant changes in metrology brought about by miniaturiza-
tion on the one hand, and the increasing use of simulations and packages which allow easy visualization but
divorce from practice on the other.

The effect of miniaturization has been to make the engineer jump down many scales of size from auto-
motive type components to those of mm or even much less. Pushing up from even smaller scales are the
physicist anxious to build practical working devices. These roles are almost the exact opposite of the tradi-
tional positions. Where these disciplines meet is at the ‘nano’ level taken to be 100 nm down to about 0.1nm.
So at the nano level there is an uncomfortable confrontation between two disciplines both in unfamiliar
guises: often having different word meanings and certainly different strategies.

The objective of this Handbook is to bring the two metrologies together in this nano range. Because most
of the new technology is surface oriented, the vehicle for bringing the engineering and physics together is sur-
face metrology. It plays a significant role in conventional engineering as well as at the semiconductor level. It is
the natural bridge. The title of the book ‘Handbook of Surface and nanometrology’ mirrors this contact.

One side defect of this somewhat incompatible stand-off is a dearth of proven and tested facts; The
Handbook is therefore not strictly an ordinary Handbook. It has been written with factual information as
expected but in addition there has been an attempt to surround the metrology with suggestions, with new
ideas and proceedings to help gel the new discipline. Each chapter has this format.

It will be noticed that much of current practice in surface and nanometrology will be questioned, hope-
fully constructively, throughout the book. It is vital that new researchers and practitioners approach surface
nanometrology or nano surface metrology with open minds. Emphasis is placed on systems wherever possi-
ble to avoid the ‘parameter rash’ which seems to accompany computer packages wherever they are used.
Understanding the boundary conditions is essential for physicists as well as engineers. It is hoped that this
book will be stimulating as well as interesting and useful.

David Whitehouse
Emeritus Professor, School of Engineering
University of Warwick
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Chapter 1
General philosophy of measurement

1.1 Where does surface metrology fit in general metrology, and what about nanometrology?

Before this question can be answered it would be a good idea to define the word metrology. This is the sci-
ence of measurement.

Surface metrology is the measurement of the deviations of a workpiece from its intended shape, that is
from the shape specified on the drawing. It is taken to include such features as deviations from roundness,
straightness, flatness, cylindricity and so on. It also includes the measurement of surface texture. This book
is devoted to this subject which represents a very important sector of engineering metrology. Also the role of
surface metrology on a broader front is explored. In particular, where surface metrology fits into
nanometrology will be a theme of the book.

Perhaps the best way to place the role of surface metrology is to consider just what needs to be meas-
ured in order to enable a workpiece to work according to the designer’s aim — one has to measure in order
to be able to control.

Assuming that the material has been specified correctly and that the workpiece has been made from it,
the first thing to be done is to measure the dimensions. These will have been specified on the drawing to a
tolerance. Under this heading is included the measurement of length, area, position, radius and so on.

So, dimensional metrology is a first aim because it ensures that the size of the workpiece conforms to
the designer’s wish. This in turn ensures that the workpiece will assemble into an engine, gearbox, gyro-
scope or whatever; the static characteristics have therefore been satisfied.

This by itself is not sufficient to ensure that the workpiece will satisfy its function; it may not be able to
turn or move, for example. This is where surface metrology becomes important.

Surface metrology ensures that all aspects of the surface geometry are known and preferably controlled.
If the shape and texture of the workpiece are correct then it will be able to move at the speeds, loads and
temperatures specified in the design; the dynamic characteristics have therefore been satisfied.

The final group of measurements concerns the physical and chemical condition of the workpiece. This
will be called here physical metrology. It includes the hardness of the materials, both in the bulk and in the
surface layers, and the residual stress of the surface, both in compression or in tension, left in the material by
the machining process or the heat treatment. It also includes measurement of the metallurgical structure of
the material, and its chemical construction. All these and more contribute to the durability of the component,
for example its resistance to corrosion or fatigue.

Physical metrology therefore is the third major sector of engineering metrology: the long-term
characteristics.

As a general rule, all three types of measurement must take place in order to ensure that the workpiece
will do its assigned job for the time specified; to guarantee its quality.

This book, as mentioned earlier, is concerned specifically with surface metrology but this does not nec-
essarily exclude the other two. In fact it is impossible to divorce any of these disciplines completely from the
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others. After all, there is only one component and these measurements are all taken on it. Physical and chem-
ical features of importance will be covered in some detail as and when they are necessary in the text.

1.2 Importance of surface metrology

Figure 1.1 shows where the block representing surface metrology can be placed relative to blocks representing
manufacture and function. In the block ‘manufacture’ is included all aspects of the manufacturing process such as
machine performance, tool wear and chatter, whereas in the block marked ‘function’ is included all functional
properties of the surfaces of components such as the tribological regimes of friction, wear and lubrication. The
measurement block includes the measurement of roughness, roundness and all other aspects of surface metrology.

Production ([i)e\(elopm@nt
engimneer Control Optimize csign engmeer
————— -t Measurement = — —
Manufacture Function
Quality
\/ control A
engineer

Satisfactory performance

Figure 1.1

The figure shows that the texture and geometry of a workpiece can be important in two quite different appli-
cations: one is concerned with controlling the manufacture (this is examined in detail in chapter 6) and the
other is concerned with the way in which the surface can influence how well a workpiece will function. Many
of these uses fall under the title of tribology — the science of rubbing parts — but others include the effect of
light on surfaces and also static contact.

In fact the two blocks ‘manufacture’ and ‘function’ are not completely independent of each other, as
illustrated by the line in the figure joining the two. Historically the correct function of the workpiece was
guaranteed by controlling the manufacture. In practice what happened was that a workpiece was made and
tried out. If it functioned satisfactorily the same manufacturing conditions were used to make the next work-
piece and so on for all subsequent workpieces. It soon became apparent that the control of the surface was
being used as an effective go-gauge for the process and hence the function. Obviously what is required is a
much more flexible and less remote way of guaranteeing functional performance; it should be possible, by
measuring parameters of the surface geometry itself, to predict the function. The conventional method is very
much a balancing act and unfortunately the delicate equilibrium can be broken by changing the measurement
parameters or the production process or even the function. This may seem an obvious statement but within it
lies one of the main causes for everyday problems in engineering.
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The block diagram of figure 1.1 will keep showing up in the text and in particular in chapter 9 where it
will be updated by taking into account what has been revealed in previous chapters of the book.

It will soon be made clear that surface metrology cannot simply be regarded as an irritant to be added to
the general size measurement of a component. The smallness of its magnitude does not infer the smallness of
its importance. It will be shown that the surface geometry is absolutely critical in many applications and that
it contains masses of information that can be invaluable to a manufacturer if extracted correctly from the
mass of data making up the surface. In almost every example of its use the criticism can be raised that it is not
well understood and, even where it is, it is not properly specified especially on drawings.

From figure 1.1 it can be seen that the importance of surface geometry should be recognized not just by
the quality control engineer or inspector but also, more importantly, by the designer. It is he or she who
should understand the influence that the surface has on behaviour and specify it accordingly. It is astonishing
just how ill-informed most designers are where surface metrology is concerned. Many of them in fact con-
sider that a ‘good’ surface is necessarily a smooth one, the smoother the better. This is not only untrue, in
many cases, it can be disastrous.

Surface metrology has the ingredients of a number of widely dissimilar disciplines. Since the introduc-
tion of scanning probe microscopes (SPM) it has broadened even more. The first part of the book is con-
cerned with the subject itself, that is its theory in chapters 2 and 3, and the instrumentation in chapters 4 and 5.
The uses of surface metrology are contained in chapters 6 and 7. chapter 8 is concerned with the relatively
new aspect of surface metrology, namely nanometrology. This is slightly misleading because the measure-
ment of surfaces has been in the nanometre range 100 — 0.1nm for many years; it simply has not been called
by the name. Although chapter 8 has been called nanometrology, aspects of the impact of the new generation
of instruments have permeated every chapter.

To guide the reader through the subject in more detail, the content of each chapter will be outlined in
what follows.

Chapter 2 starts with a broad classification of characteristics which is followed by a discussion of refer-
ence lines. These are an integral part of surface characterization because all metrology is a comparison
between two things: a test or workpiece and a reference or standard. Some early bases such as the M and E
systems are considered together with some recent variants. Justification for waviness separation is also
inserted for those researchers who think that the geometry should all be lumped together.

Random process analysis is described and how it can be used in surface metrology. In particular, how
correlation methods and spectral analysis can be best used in controlling manufacturing processes is dis-
cussed. It is demonstrated how some parameters relevant to tribological applications can be deduced from
general surface statistics and multinormal distributions. One treatment due to Nayak (Longuett-Higgins), and
a different approach using discrete analysis given by Whitehouse, are compared. Additionally, some new
ways of utilizing peak definitions are examined. It is remarkable how some of the older work pre-empts
recent developments such as fractal analysis.

The vexed problem of areal analysis is dealt with in some detail. It is still sometimes called 3D analysis
despite there being only two independent variables. However, this does not have to be a problem as long as
researchers and users agree to differ. What does emerge is that describing even some of the simpler manu-
facturing processes is difficult. Stout drops some of the analytical methods in favour of ‘functional parame-
ters,” which is an insurance against making no progress. As in profile assessment, random processes and
some of the more complicated yet useful techniques to extend the analysis to include spatial terms as well as
frequency are described. Wigner distributions, ambiguity functions and wavelets come into this category.

Surfaces whose geometry is a mixture of processes, such as plateau honing, are described as well as some
of the parameters derived from them. Mixed process surfaces are growing in application because of the
increasing demands being made.

Often, surface metrology is considered to be just surface texture but, in fact, form and deviations from all
sorts of geometrical shapes have to be included, of which out-of-roundness is prominent. Deviations from
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straightness, flatness and methods of assessing cylinders, tapers, cones and such shapes as epitrochoids are
also included in this chapter. Finally, singular defects sometimes found on the surface are classified.

Chapter 3 is particularly concerned with methods of carrying out some of the operations used in the
characterization of chapter 2.

Digital methods and sources of error are considered early in the chapter. Digital methods are applied to
random process analysis dealing with surface parameters such as summits. The numerical model is consid-
ered in some detail, especially in dealing with areal analysis. Comparison with digital profile analysis is made
with some surprising results. Three, four, five and seven point models for summits and their characteristics
are compared.

Digital analysis using DFFT is considered, with particular reference to space frequency functions.
Graphical methods and analogue methods of processing are removed from this version of the Handbook
because of the dominance of digital methods.

Chapter 4 is concerned with aspects of instrumentation from design principles to performance tables.
The chapter starts with static and dynamic considerations of instrument systems as well as the nature of the
interactions between mechanical force and metrology loops.

Because of the pre-eminence of stylus methods in engineering they are dealt with in some detail. The
behaviour of stylus systems to the input of random and sinusoidal signals is investigated. It is shown how the
effective bandwidth can be increased. The scanning probe instruments are described here as an adjunct to
conventional methods. Scanning tunnelling microscopes (STM) and atomic force microscopes (AFM) are
discussed in some detail. In many ways the usual planar form of small objects makes their design and use
simpler than the engineering of surface instruments.

Optical methods are then explored together with an additional comparison between stylus and optical
methods. Optical followers which imitate the stylus instruments are examined. This is followed by other
optical methods using phase detection systems and interference. Heterodyne methods with different polar-
izations and frequencies are compared.

White light interferometry and absolute measurement are discussed with ‘stitching’ followed by Moiré
methods and holographic methods. Speckle and other diffraction methods are investigated. This shows some
interesting advantages over conventional optics in machine tool monitoring and defect detection.

Other traditional methods such as inductance capacitance and pneumatic are considered and also the
other main contender for surface measurement, i.e. ultrasonics.

Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) are described with
the less well known photon tunnelling microscope (PTM). The latter could have been included earlier but is
inserted here because of the electromagnetic connection.

Because the pick-up system comprising the stylus and transducing system is so important, some empha-
sis has been put on it. Considerations include types of conversion, noise levels and limitations. Optical induc-
tive and capacitance methods are compared with stylus methods. It is ironic that the stylus technique has had
a new lease of life since the introduction of the scanning microscopes. Concepts like contact, friction and
stiffness all have now to be queried as the scale of size reduces to the nanometre and even atomic levels.

One of the major problems with the STMs and AFMs is their calibration. Conventional methods do not
satisfy the necessary requirements because the unit of scale — the wavelength of light — is three decades too
large. This is a very relevant problem, considered in chapter 5 along with the usual problems in error propa-
gation traceability etc.

The chapter begins by defining the various errors and then describes some statistical tests useful in sur-
face metrology. Such tests involve variance and mean value tests such as the F test and T test. Some consid-
eration is given to the design of experiments — all with the aim of improving or better understanding the
input data.

Calibration takes up a large part of the chapter. In surface metrology it is not only lateral x, y, scales and
the normal z axis but also the dynamics of filters that have to be included. The separation of errors between
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the test piece and the instrument reference is examined with the idea of improving the capability of the
instrument. Some alternatives in roundness are described. In response to the need to calibrate SPMs, tech-
niques using the lattice spacing of silicon using x-rays together with a cleavage method on topaz are
described. Some remnant problems with SPM calibration are pointed out: in particular, the problems with
“metrological” instruments.

The geometric product specification (GPS) of many geometrical factors such as texture is investigated
with a view to developing a chain of standards to ensure traceability. The linking of the geometrical features
to their appropriate international standard is given, along with some international standards.

Drawing symbols for the surface texture process marks are the final subjects for the chapter.

Chapter 6 is concerned with the way in which the manufacturing process affects the surface and, conversely,
how problems in the process or machine tool can be identified and monitored by measuring the surface. The fact
is that the surface generated by the process is very sensitive to changes so process control is easily possible.

In the first part of the chapter some traditional processes are examined. These include turning, milling,
broaching etc. Some factors which affect the surface such as tool wear and chip formation mechanisms are
examined. Also, recent trends in dry cutting are reported. This is an important development because optical
in-process surface measurement becomes viable due to the absence of coolant mists.

Abrasive processes such as grinding and polishing are included in the chapter. Nanogrinding and ductile
machining in such materials have different properties at the molecular scale of size. Roundness errors due to
chatter and elastic effects of the machine tool are part of this section. It also includes the various different
types of grinding, including centreless grinding and creep grinding.

Non-conventional machining is considered. These include physical and chemical machining e.g. ECM
and EDM.

Large scale fabrication and forging are included, together with near atomic machining, e.g. ion beam
milling. Under this part of the chapter, designer (structured) surfaces are illustrated with comments on future
applications. Some chip formations and plastic flow constitute one aspect of nanotechnology of manufacture.

How to make use of some of the newer analytical methods for machine tool performance is briefly
discussed.

Chapter 7 is concerned with the influence of the surface on performance. It is particularly difficult
because of the scarcity of substantiated information. Targeting a surface to satisfy a particular function is the
job of the designer, yet the texture aspect is often lost or neglected in the totality of the design. One reason is
the complexity of the function. There is a macro view of function which the designer does see and this is
whether the surface is important or not; surfaces are obviously important in bearing. How to quantify per-
formance is the problem. This is the micro or nano issue. The fundamental problems are not seen at the
macro level which is why, in this chapter, some time is spent trying to clarify the situation with the concept
of function maps. These are used for the first time to link the manufacture to function via the metrology. As
this permeates the whole of the chapter because of its usefulness it will be referred to often in the text.

The chapter starts with some examples of the macroscopic behaviour of simple geometries in contact
which is followed by microscopic contact issues including some mechanisms of contact. The relevance of
fractals and the way in which waviness affects the actual contact between bodies is included in this section.

Various models of elastic and plastic behaviour are discussed and compared. The areal (3D) model is
also discussed. How the models help in understanding fundamental effects of contact comes next.

Stiffness, mechanical seals, adhesion, thermal and electrical contact come under this heading of what is
basically static contact in the ‘normal’ direction. This is followed by those applications involving lateral rela-
tive movement. These include friction wear and lubrication; in effect all aspects of tribology and shakedown.

Surface influence when normal loading is severe as in elasto- and plasto-hydrodynamic lubrication
regimes, as well as boundary lubrication, are investigated and the associated scuffing failure considered.
Fatigue and its variants that have cyclic or random loadings is investigated. These include rolling fatigue,
fretting and some effects of squeeze films.
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Areal effects of surfaces such as the lay and how it affects lubrication are difficult to model, especially
when macro as well as micro geometry have to be considered. Models for this are referred to in some detail
with interesting conclusions about mixing transverse and longitudinal surface patterns.

The possibility of using Wiebull distribution in characterizing wear is introduced as is the possible
application of space frequency functions.

The importance of single body application cannot be overestimated. One aspect where the surface is
important is in the triggering of fatigue failure as well as in initiating corrosion. Optical performance such as
gloss is greatly influenced by the surface.

Scatter from deterministic and random surfaces are discussed with sections on shadowing and caustics.
Fractal models and their implication are included. Extra consideration is given to the generation of aspheric
surfaces and how the wavefront is modified by roughness.

Scattering of other waves such as acoustic, ultrasonic waves, elastic and non elastic, Bragg, Rayleigh,
Raman scattering and surface influence are compared.

Finally in the general text tolerances and fits are considered.

In the discussion some ways of trying to quantify surface performance, and in particular areal (3D)
parameters, are reported and some extensions are made to the function map in which more than one surface
is within the surface characterization. A new aspect, considered in chapters 2 and 7 is that of the surface sys-
tem in which not just one surface is considered, but two. Novel methods of system characterization are
described and discussed. These include the use of cross convolution.

Nanotechnology is considered to be one of the most important developments since the computer which
‘enables’ progress to be made in many disciplines such as biology, MEMS, cluster theory and so on. It is not
usually realized that detection of surface texture has long been within the range of size usually ascribed to
nanotechnology (i.e. 100nm to 0.1 nm).

Chapter 8 discusses some of the implications of the nanotechnology of surfaces, called here nano sur-
face metrology rather than nanometrology. Aspects of nanometrology, in engineering and instrumentation
are discussed; some examples are taken from the main body of the text.

Comments are made on how quantum effects are now being felt in engineering as well as in physics and
chemistry. It is shown how the very nature of traditional components of surface metrology — texture and
form — is changing. Disciplines which were thought to be straightforward are no longer so at the small nan-
otechnology scale.

Chapter 9 attempts to draw conclusions from the other chapters. It shows how the book has extended the
traditional role of metrology to encompass integrated measurement, the changing role of surfaces, the char-
acterization of striated surfaces and the system of surfaces. Function maps and their role in the future are dis-
cussed as well as some problems encountered in making progress.
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Chapter 2
Surface characterization

The nature of surfaces

Surface characterization, the nature of surfaces and the measurement of surfaces cannot be separated from
each other. A deeper understanding of the surface geometry produced by better instrumentation often pro-
duces a new approach to characterization.

Surface characterization is taken to mean the breakdown of the surface geometry into basic components
based usually on some functional requirement. These components can have various shapes, scales of size,
distribution in space and can be constrained by a multiplicity of boundaries in height and position. Issues like
the establishment of reference lines can be viewed from their ability to separate geometrical features or
merely as a statement of the limit of instrument capability. Often one consideration determines the other!
Ease of measurement can influence the perceived importance of a parameter or feature. It is difficult to
ascribe meaningful significance to something which has not been or cannot be measured. One dilemma is
always whether a feature of the surface is fundamental or simply a number which has been ascribed to the
surface by an instrument. This is an uncertainty which runs right through surface metrology and is becoming
even more obvious now that atomic scales of size are being explored. Surface, interface and nanometrology
are merging.

For this reason what follows necessarily reflects the somewhat disjointed jumps in understanding
brought on by improvements in measurement techniques. There are no correct answers. There is only a pro-
gressively better understanding of surfaces brought about usually by an improvement in measurement tech-
nique. This extra understanding enables more knowledge to be built up about how surfaces are produced and
how they perform.

This chapter therefore is concerned with the nature of the geometric features, the signal which results
from the measuring instrument, the characterization of this signal and its assessment. The nature of the sig-
nal obtained from the surface by an instrument is also considered in this chapter. How the measured signal
differs from the properties of the surface itself will be investigated. Details of the methods used to assess the
signal will also be considered but not the actual data processing. This is examined in chapter 3. There is,
however, a certain amount of overlap which is inevitable. Also, there is some attention paid to the theory
behind the instrument used to measure the surface. This provides the link with chapter 4.

What is set down here follows what actually happened in practice. This approach has merit because it
underlies the problems which first came to the attention of engineers in the early 1940s and 1950s. That it
was subsequently modified to reflect more sophisticated requirements does not make it wrong; it simply
allows a more complete picture to be drawn up. It also shows how characterization and measurement are
inextricably entwined, as are surface metrology and nanometrology, as seen in chapter 8.

It is tempting to start a description of practical surfaces by expressing all of the surface geometry in
terms of departures from the desired three-dimensional shape, for example departures from an ideal cylinder
or sphere. However, this presents problems, so rather than do this it is more convenient and simpler to start
off by describing some of the types of geometric deviation which do occur. It is then appropriate to show how
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these deviations are assessed relative to some of the elemental shapes found in engineering such as the line or
circle. Then, from these basic units, a complete picture can be subsequently built up. This approach has two
advantages. First, some of the analytical tools required will be explained in a simple context and, second, this
train of events actually happened historically in engineering.

Three widely recognized causes of deviation can be identified:

1. The irregularities known as roughness that often result from the manufacturing process. Examples
are (a) the tool mark left on the surface as a result of turning and (b) the impression left by grinding
or polishing. Machining at the nanoscale still has process marks.

2. Irregularities, called waviness, of a longer wavelength caused by improper manufacture.
An example of this might be the effects caused by a vibration between the workpiece and a grinding
wheel.

3. Very long waves referred to as errors of form caused by errors in slideways, in rotating members
of the machine, or in thermal distortion.

Often the first two are lumped together under the general expression of surface texture, and some defi-

nitions incorporate all three! Some surfaces have one, two or all of these irregularities [1]. Figure 2.1 shows
roughness and waviness superimposed on the nominal shape of a surface.
A question often asked is whether these three geometrical features should be assessed together or separately.
This is a complicated question with a complicated answer. One thing is clear; it is not just a question of
geometry. The manufacturing factors which result in waviness, for instance, are different from those that pro-
duce roughness or form error. The effect of these factors is not restricted to producing an identifiable geo-
metrical feature, it is much more subtle: it affects the subsurface layers of the material.

Furthermore, the physical properties induced by chatter, for example, are different from those which
produce roughness. The temperatures and stresses introduced by general machining are different from those
generated by chatter. The geometrical size of the deviation is obviously not proportional to its effect under-
neath the surface but it is at least some measure of it. On top of this is the effect of the feature of geometry on
function in its own right. It will be clear from the section on function how it is possible that a long-wave-
length component on the surface can affect performance differently from that of a shorter wavelength of the
same amplitude. There are, of course, many examples where the total geometry is important in the function
of the workpiece and under these circumstances it is nonsense to separate out all the geometrical con-
stituents. The same is true from the manufacturing signature point of view.

From what has been said it might be thought that the concept of ‘sampling length’ is confined to rough-
ness measurement in the presence of waviness. Historically this is so. Recent thoughts have suggested that in
order to rationalize the measurement procedure the same ‘sampling length’ procedure can be adopted to
measure ‘waviness’ in the presence of form error, and so on to include the whole of the primary profile.
Hence 1,, the sampling length for roughness, is joined by 1. For simplicity roughness is usually the surface
feature considered in the text.

It is most convenient to describe the nature and assessment of surface roughness with the assump-
tion that no other type of deviation is present. Then waviness will be brought into the picture and finally
errors for form. From a formal point of view it would be advantageous to include them all at the same
time but this implies that they are all able to be measured at the same time, which is only possible in
some isolated cases.

2.1 Surface roughness characterization

Surface roughness is that part of the irregularities on a surface left after manufacture which are held to be
inherent in the material removal process itself as opposed to waviness which may be due to the poor per-
formance of an individual machine. (BS 1134 1973) mentions this in passing.
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In general, the roughness includes the tool traverse feed marks such as are found in turning and grinding
and the irregularities within them produced by microfracture, built-up edge on the tool, etc.

The word ‘lay’ is used to describe the direction of the predominant surface pattern. In practice it is con-
sidered to be most economical in effort to measure across the lay rather than along it, although there are
exceptions to this rule, particularly in frictional problems or sealing (see chapter 7).

Surface roughness is generally examined in plan view with the aid of optical and electron microscopes,
in cross-sections normal to the surface with stylus instruments and, in oblique cross-sections, by optical
interference methods. These will be discussed separately in a later section (4.3.2). First it is useful to discuss
the scales of size involved and to dispel some common misconceptions.

Surface roughness covers a wide dimensional range, extending from that produced in the largest planing
machines having a traverse step of 20mm or so, down to the finest lapping where the scratch marks may be
spaced by a few tenths of a micrometre. These scales of size refer to conventional processes. They have to be
extended even lower with non-conventional and energy beam machining where the machining element can
be as small as an ion or electron, in which case the scale goes down to the atomic in height and spacing. The
peak-to-valley height of surface roughness is usually found to be small compared with the spacing of the
crests; it runs from about 50 pm down to less than a few thousandths of a micrometre for molecular removal
processes. The relative proportions of height and length lead to the use of compressed profile graphs, the
nature of which must be understood from the outset. As an example figure 2.2 shows a very short length of
the profile of a cross-section of a ground surface, magnified 5000 x.
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Figure 2.2 Distortion caused by making usable chart length.

The representation of the surface by means of a profile graph will be used extensively in this book because it
is a very convenient way to portray many of the geometrical features of the surface. Also it is practical in size
and reflects the conventional way of representing surfaces in the past. That it does not show the ‘areal’ charac-
teristics of the surface is understood. The mapping methods described later will go into this other aspect of sur-
face characterization. However, it is vital to understand what is in effect a shorthand way of showing up the
surface features. Even this method has proved to be misleading in some ways, as will be seen.
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The length of the section in figure 2.2 from A to D embraces only 0.1mm of the surface, and this is not
enough to be representative. To cover a sufficient length of surface profile without unduly increasing the
length of the chart, it is customary to use a much lower horizontal than vertical magnification. The result may
then look like figure 2.2(b). All the information contained in the length AD is now compressed into the por-
tion A'D’, with the advantage that much more information can be contained in the length of the chart, but
with the attendant disadvantage that the slopes of the flanks are enormously exaggerated, in the ratio of the
vertical to horizontal magnifications. Thus it is essential, when looking at a profile graph, to note both mag-
nifications and to remember that what may appear to be fragile peaks and narrow valleys may represent quite
gentle undulations on the actual surface. Compression ratios up to 100:1 are often used. Many models of sur-
faces used in tribology have been misused simply because of this elementary misunderstanding of the true
dimensions of the surface. Examination of an uncompressed cross-section immediately highlights the error
in the philosophy of ‘knocking off of the peaks during wear’!

The photomicrographs and cross-sections of some typical surfaces can be examined in figure 2.3. The
photomicrographs (plan or so-called areal views) give an excellent idea of the lay and often of the distance
(or spacing) between successive crests, but they give no idea of the dimensions of the irregularities measured
normal to the surface.

The profile graph shown beneath each of the photomicrographs is an end view of approximately the
same part of the surface, equally magnified horizontally, but more highly magnified vertically. The amount of
distortion is indicated by the ratio of the two values given for the magnification, for example 15000/ 150, of
which the first is the vertical and the second the horizontal magnification.

In principle, at least two cross-sections at right angles are needed to establish the topography of the sur-
face, and it has been shown that five sections in arbitrary directions should be used in practice; when the
irregularities to be portrayed are seen to have a marked sense of direction and are sufficiently uniform, a sin-
gle cross-section approximately at right angles to their length will often suffice. Each cross-section must be
long enough to provide a representative sample of the roughness to be measured; the degree of uniformity, if
in doubt, should be checked by taking a sufficient number of cross-sections distributed over the surface.

When the directions of the constituent patterns are inclined to each other, the presence of each is gener-
ally obvious from the appearance of the surface, but when a profile graph alone is available, it may be neces-
sary to know something of the process used before being able to decide whether or not the profile shows
waviness. This dilemma will be examined in the next section.

Examination of the typical waveforms in figure 2.3 shows that there is a very wide range of amplitudes
and crest spacings found in machining processes, up to about five orders of magnitude in height and three in
spacing. Furthermore, the geometric nature of the surfaces is different. This means, for example, that in the
cross-sections shown many different shapes of profile are encountered, some engrailed in nature and some
invected and yet others more or less random. Basically the nature of the signals that have to be dealt with in
surface roughness is more complex than those obtained from practically any sort of physical phenomena.
This is not only due to the complex nature of some of the processes and their effect on the surface skin, but
also due to the fact that the final geometrical nature of the surface is often a culmination of more than one
process, and that the characteristics of any process are not necessarily eradicated completely by the follow-
ing one. This is certainly true from the point of view of the thermal history of the surface skin, as will be dis-
cussed later.

It is because of these and other complexities that many of the methods of surface measurement are to
some extent complementary.

Some methods of assessment are more suitable to describe surface behaviour than others. Ideally, to get
a complete picture of the surface, many techniques need to be used; no single method can be expected to give
the whole story. This will be seen in chapter 4 on instrumentation.

The problem instrumentally is therefore the extent of the compromise between the specific fidelity of
the technique on the one hand and its usefulness in as many applications as possible on the other.
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Figure 2.3 Photomicrographs showing plan view, and graphs showing cross-section (with exaggerated scale of height)
of typical machined surfaces.

The same is true of surface characterization: for many purposes it is not necessary to specify the whole sur-
face but just a part of it. In what follows the general problem will be stated. This will be followed by a break-
down of the constituent assessment issues. However, it must never be forgotten that the surface is three
dimensional and, in most functional applications, it is the properties of the three-dimensional gap between
two surfaces which are of importance. Any rigorous method of assessing surface geometry should be capable
of being extended to cover this complex situation. An attempt has been made in chapter 7.
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The three-dimensional surface z = f(x, y) has properties of height and length in two dimensions. To avoid
confusion between what is a three-dimensional or a two-dimensional surface, the term ‘areal’ is used to indi-
cate the whole surface. This is because the terms 2D and 3D have both been used in the literature to mean the
complete surface. There are a number of ways of tackling the problem of characterization; which is used is
dependent on the type of surface, whether or not form error is present and so on. The overall picture of char-
acterization will be built up historically as it occurred. As usual, assessment was dominated by the available
means of measuring the surface in the first place. So because the stylus method of measurement has proved
to be the most useful owing to its convenient output, ease of use and robustness, and because the stylus
instrument usually measures one sample of the whole surface, the evaluation of a single cross-section (or
profile) will be considered first. In many cases this single-profile evaluation is sufficient to give an adequate
idea of the surface; in some cases it is not. Whether or not the profile is a sufficient representation is irrele-
vant; it is the cornerstone upon which surface metrology has been built. In subsequent sections of this chap-
ter the examination of the surface will be extended to cover the whole geometry. In the next section it will be
assumed that the cross-section does not suffer from any distortions which may be introduced by the instru-
ment, such as the finite stylus tip or limited resolution of the optical device. Such problems will be examined
in detail in section 4.3.1.

Problems of the length of profile and the reliability of the parameters will be deferred until chapter 5.

2.1.1 Profile parameters

The profile graph shown in figure 2.4 and represented by z = f(x) could have been obtained by a number of dif-
ferent methods but it is basically a waveform which could appear on any chart expressing voltage, tempera-
ture, flow or whatever. It could therefore be argued that it should be representable in the same sort of way as
for these physical quantities. To some extent this is true but there is a limit to how far the analogy can be taken.
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Figure 2.4 Typical profile graph.

The simplest way of looking at this is to regard the waveform as being made up of amplitude (height) fea-
tures and wavelength (spacing) features, both independent of each other. The next step is to specify a mini-
mum set of numbers to characterize both types of dimension adequately. There is a definite need to constrain
the number of parameters to be specified even if it means dropping a certain amount of information, because
in practice these numbers will have to be communicated from the designer to the production engineer using
the technical drawing or its equivalent. More than two numbers often cause problems of comprehension. Too
many numbers in a specification can result in all being left off, which leaves a worse situation than if only
one had been used. Of the height information and the spacing information it has been conventional to regard
the height information as the more important simply because it seems to relate more readily to functional
importance. For this reason most early surface finish parameters relate only to the height information in the
profile and not to the spacing. The historical evolution of the parameters will be described in the introduction
to chapter 4. The definitive books prior to 1970 are contained in references [1-7].

However, there has been a general tendency to approach the problem of amplitude characterization in two
ways, one attempting in a crude way to characterize functions by measuring peaks, and the other to control the
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process by measuring average values. The argument for using peaks seems sensible and useful because it is
quite easy to relate peak-to-valley measurements of a profile to variations in the straightness of interferometer
fringes, so there was, in essence, the possibility of a traceable link between contact methods and optical ones.
This is the approach used by the USSR and Germany in the 1940s and until recently. The UK and USA, on the
other hand, realized at the outset that the measurement of peak parameters is more difficult than measuring
averages, and concentrated therefore on the latter which, because of their statistical stability, became more
suitable for quality control of the manufacturing process. Peak measurements are essentially divergent rather
than convergent in stability; the bigger the length of profile or length of assessment the larger the value
becomes. This is not true for averages; the sampled average tends to converge on the true value the larger the
number of values taken.

The formal approach to statistical reliability will be left to chapter 5. However, in order to bring out
the nature of the characterization used in the past it is necessary to point out some of the standard terms
governing the actual length of profile used. The basic unit is the sampling length. This is the length of
assessment over which the surface roughness can be considered to be representative. Obviously the appli-
cation of such a definition is fraught with difficulty because it depends on the parameter and the degree of
confidence required. For the purpose of this subsection the length will be assumed to be adequate—whatever
that means.

The value of the sampling length is a compromise. On the one hand, it should be long enough to get
a statistically good representation of the surface. On the other, if it is made too big longer components of
the geometry, such as waviness, will be drawn in if present. The concept of sampling length therefore has
two jobs, not one. For this reason its use has often been misunderstood. It has consequently been drawn
inextricably into many arguments on reference lines, filtering and reliability. It is brought in at this stage
to reflect its use in defining parameters. Sometimes the instrument takes more than one sampling length in
its assessment and sometimes some of the total length traversed by the instrument is not assessed for
mechanical or filtering reasons, as will be described in chapter 4. However, the usual sampling length of
value 0.03 in (0.8 mm) was chosen empirically in the early 1940s in the UK by Rank Taylor Hobson from
the examination of hundreds of typical surfaces [2]. Also, an evaluation length of nominally five sampling
lengths was chosen by the same empirical method. In those days the term ‘sampling length’ did not exist;
it was referred to as the meter cut-off length. The reason for this was that it also referred to the cut-off of
the filter used to smooth the meter reading. Some typical sampling lengths for different types of surface
are given in tables 2.1 to 2.4.

Table 2.1 Gaussian filter 1995
Sampling lengths for R,, R, & R, of periodic profiles

S, mm
Over Up to (inclusive) Sampling length mm Evaluation length mm
(0.013) 0.04 0.08 0.4
0.04 0.13 0.25 1.25
0.13 04 0.8 4.0
0.4 1.3 2.5 12.5
1.3 4.0 8.0 40.0

In tables 2.2, 2.3, and 2.4 some notation will be used which is explained fully later. See glossary for details.
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Table 2.2 Roughness sampling lengths for the measurement of R, , Ry , Ry , Riu , RAg and curves and related parameters
for non-periodic profiles (for example ground profiles).

Roughness sampling length

Roughness evaluation length

R, Ir In

um mm mm
(0.006) < R, < 0.02 0.08 0.4
0.02<R,=<0.1 0.25 1.25
0.I<R, <2 0.8 4
2<R, =10 2.5 12.5
10 <R, <280 8 40

Table 2.3 Roughness sampling lengths for the measurement of R., R,, R,, R, and R, of non-periodic profiles (for exam-

ple ground profiles).
RV
R.1 max.? Roughness sampling length Roughness evaluation length
Ir In
um mm mm
(0.025) < R., R.l max. < 0.1 0.08 0.4
0.1 <R., R.l1 max.=<0.5 0.25 1.25
0.5 <R.,R.1 max. < 10 0.8 4
10 < R., R.1 max. =< 50 2.5 12.5
50 < R., R.1 max. < 200 8 40

1) R. is used when measuring R., R,, R,, R.and R,.

2) R.1 max. is used only when measuring R.1 max., R,1 max., R,1 max., R.1 max. and R,1 max.

Table 2.4 Roughness sampling lengths for the measurement of R-parameters of periodic profiles, and RSm of periodic

and non-periodic profiles.

Roughness sampling length

Roughness evaluation length

RS, Ir In

um mm mm
0.013 < RS, <0.04 0.08 0.4
0.04 <RS,,<0.13 0.25 1.25
0.13<RS, <04 0.8 4
04 <RS,<13 2.5 12.5
1.3<RS,<4 8 40

The usual spatial situation is shown in figure 2.5.
Most amplitude parameters are referred to one sampling length in the standards although, in practice,

more than one is used. Some specific typical parameters will now be given in more detail.

Attempts to quantify the roughness height have historically been broken into two camps: one measuring
peak-to-valley heights, the other average heights. Peak measurement was advocated by the Germans, French
and other Europeans in an effort to link surface measurements obtained from stylus instruments to fringe
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deviations obtained using interferometers [3,5]. Although a very laudable concept, it ran into difficulties
because of the difficulty of measuring or even finding the highest peak-to-valley height on the surface. The
British and Americans adopted an average height measurement philosophy in order to get a workable param-
eter. It should also be realized that from the outset, many firms developed their very own surface parameters
which sometimes bore little resemblance to those suggested as preferred parameters by the ISO and national
institutions. These individual parameters were devised to satisfy an in-house need and as such were accept-
able. The problem arose when subcontractors were expected to buy equipment to measure the same parame-
ters. This situation was an instrument-maker’s nightmare until the more versatile computer systems emerged.
In fact, it was one of the reasons for developing computer systems along with the need to measure more com-
plicated parameters for investigating functional behaviour.

I Sampling length

= a

/ Evaluation length

|
|
| Traverse length

>
~ o

Figure 2.5 Length measures on a profile.

2.1.1.1 Amplitude parameters

Figure 2.2(b) shows a typical profile trace condensed in the horizontal direction for convenience of display
[4]. Perhaps the most obvious way of putting a numerical value to its magnitude is to measure the heights of
the peaks and valleys. The level from which to measure is taken here to be the bottom of the chart. However,
this assumes that the profile is reasonably level relative to the bottom of the chart. One such parameter is
shown as R, in figure 2.6. Incidentally, none of the definitions are sacrosanct—they keep changing.

S WAL

Figure 2.6 Amplitude parameters—peaks R,.

This parameter is simply the difference in level between the highest peak and the lowest valley in the length
of profile usually called the sampling length. A similar parameter called R, is shown in figure 2.7.

Evaluation length

Figure 2.7 Peak parameters—R,.
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The formula for R, is

(R+PR+P+P+P)-(Vi+Va+ Vs +V,+ V)
- 5

_ YL P-YLV, .1
5

R, is, in effect, the average of the height difference between the five highest peaks and the five lowest valleys.
The reason for taking an average value of peaks is to minimize the effect of unrepresentative peaks or valleys
which occasionally occur and can give an erroneous value if taken singly. R, is used often without reference
to a mean line. It has also been used to get some idea of the surface roughness on very short lengths of sur-
face such as might be found on a lip or shoulder where not even one sampling length of surface is available.
R, is an insurance against freaks. There is another way of insuring against the freak occurrence. This is given
the name Rautiefe. It was originally proposed by Swedish engineers. Its derivation is shown in figure 2.8. It
is the separation of two parallel lines cutting through the profile such that the upper one is in metal for 5% of
its path and the lower one is in metal for 95% (or 90%) of its path. This parameter not only attempts to relate
the profile to some semblance of mechanical function, but also contains the germ of the more advanced sta-
tistical methods described in section 2.1.2. It suffers from the drawback that it cannot be measured from the
chart of the profile as easily as R or R,.

F\'\/X/\/\/\/\/\A«m/\/‘/\\/’\/ \ 05%

Evaluation length

Rautlefe

Figure 2.8 Peak parameter — Rautiefe.

Levelling depth R,

- — —

Figure 2.9 Peak parameter — levelling depth R,,.

A slightly different peak measure is R, the levelling depth (figure 2.9). This is the average depth of the pro-
file below a reference line drawn through the highest peaks taken through the profile.

How this reference line is formally positioned relative to the profile will become clear later on. Other
definitions of R, exist. These depend on the precise form of definition of the reference line.

Another definition of R, can be given simply as the maximum peak height from a mean line positioned
in the middle of the profile such that the area above the line is equal to that below the line. A corresponding
maximum valley parameter R, can also be defined from this line.

Sometimes the peak-to-valley measurement has been limited to a single sample length, such as R, but
another assessment has been used, called R, in which some averaging of peaks is achieved by taking the R,
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values from a succession of adjacent (contiguous) sampling lengths and averaging them. Typically, five sam-
pling lengths are used for the reasons given earlier (figure 2.10). Thus

2R

5

R

tm

(2.2)

This method, although different from R,, illustrates the quandary faced by metrologists determined to use
peak-to-valley or extrema criteria for the evaluation of surface features. Some degree of averaging has to be
incorporated in order to make the method workable and capable of being calibrated. Many other methods
have been tried, such as Rj,, the difference in height between the third highest peak and the third lowest valley
within a sampling length. This has been used quite extensively in Japan.

-«—» Sampling length

Evaluation length

Figure 2.10 Ten-point height R,.

Basically, at this level of technology, from a functional point of view, it does not really matter which peak or
average peak parameter is used as long as it is consistently used and the definition agreed between the vari-
ous people using the technique. Many problems arise because definitions that are assumed to be fixed are
found to be different at a later date, due, perhaps, to a change in a standard.

Other attempts to bridge the gap between peak, average peak and average values will be discussed after
a brief description of the average parameter.

The most obvious method of increasing the reliability of the amplitude measure involves using all of the
profile signal rather than just the maximum and minimum values. The best known and most often used today
is R,, defined relative to a mean reference line. It is the mean departure of the profile from the reference line.
This is shown in figure 2.11.

R, line R Valleys inverted

Mean line .
Sampling length

Figure 2.11 Average parameters—R, and R,,.

Thus, if z = f(x) is the profile measured from the reference mean line and L is the length of the profile being
assessed (this can be the sampling length), then R, is defined by

1 L
R, =EL |Z] dx (2.3)

Copyright © 2003 IOP Publishing Ltd.



Another parameter shown in figure 2.11 is Ry, the RMS deviation defined again relative to a mean line as

““‘1 Lo
Ro= f 2dx. (2.4)

0

Although R, is more statistical in nature it is difficult to measure from a chart. Early measurement in the
USA was in fact an RMS value. The AA (arithmetic average) on drawings invariably implied measurement
of an RMS value and dividing by a fixed constant of 1.11. This gave the true AA value for a sine wave but no
other waveform.

Other names have been given to the R, value, namely the CLA (centre line average) value in the UK.
Because of its wide acceptance and its usefulness it seems likely that the R, value will continue to hold its
place as the foremost amplitude measurement. However, this does not imply that other mean value parameters
are not forthcoming. One measure is called the R value, which is derived by drawing two lines through the
peaks and valleys respectively. This method is also called the ‘motif” method and is interesting in that there are
certain allowances in the rules for constructing both the superior envelope through the peaks and the inferior
envelope through the valleys to preclude certain values, as shown in figure 2.12.

Superior envelope

Inferior envelope

Figure 2.12 Motif method—R and W.

R is taken to be the mean of several values of the separation of the envelopes. Mention of these envelopes will
also be made in the next section on waviness. Also, the use of envelopes to provide boundaries from which
height measurements can be made will be discussed in chapter 5. Parameters such as R have only been in
vogue since the advent of digital methods for the simple reason that exclusion conditions for some of the
peaks and valleys are difficult to implement accurately with analogue devices.

The final conventional parameter to be discussed in this section is, by its nature, statistical. However,
because it was introduced rather early in the natural evolution of the subject [8], it will be included in this
section. This curve is fundamental to surface metrology and will keep arising in the text. This curve is the
material ratio curve.

In figure 2.8 the Rautiefe [3] is shown defined relative to the air/metal ratio. A plot of the ratio of air to
metal starting at the highest peak is referred to as the bearing ratio, material ratio or Abbott—Firestone curve
(figure 2.13). In this book the term material ratio will be used as the preferred term.

The material ratio at height z MR(z) is given by 2#,(2) / L = MR(z), where 2t,(z) is the sum of the mate-
rial 7 found at level z over a length L.

The height distribution function and the amplitude probability density function can be derived from this
curve. Such transpositions and measurements taken from them have been proposed by Pesante [9] and
Ehrenreich [10]. A great deal of additional interest in this parameter has been generated with the emergence of
multiprocesses (or stratified processes). Note that at any one level the value of the material ratio curve (bear-
ing ratio) is a ratio and not a length. It would give the same shaped curve if the horizontal scale of the profile
were shrunk or expanded. Indeed it would give the same curve if the order of the #, values were exchanged or
even pushed up against each other; the actual horizontal scale or order of the peaks horizontally is not relevant.
A more detailed discussion of this method of assessing the material ratio curve is given in section 2.1.7.5.
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Figure 2.13 (a) Material ratio curve; (b) Ry, Ry, Ry

It can be seen from this introduction that there is an additional criterion to be used for parameters. This con-
cerns the ease of graphical measurement. It seems that any parameter which can be easily measured is not
very reliable and vice versa. This is shown in table 2.5.

Table 2.5

Parameter Ease of measurement Reliability
Ry Very difficult Very high

R, Difficult High

Rin Moderate Moderate

R, Easy Low

Roax Very easy Very Low

Most of the parameters considered so far are very much a result of historical development and not very
significant in themselves. For example, from the point of view of statistical importance, R, is much more
valid than R, but in the early days it could not readily be measured. Today this is not true, but still the old
parameter exists. The real exception to this rule is the material (bearing ratio) curve which existed almost
at the start of roughness characterization and in fact contained many of the best features of any parameter;
it is functional and reliable. It also has a reasonable theoretical basis. The parameters described in this
book are nothing like exhaustive, neither should they be. In a healthy subject the parameters need to
change to reflect circumstances.

As if this is not confusing enough some countries try to classify the parameters in terms of size. One
typical classification is shown in Figure 2.14. This is called the N system. Another system uses a set of del
symbols VVV etc. The problem here is that standard documents can become cluttered up with what are in
effect ‘in-house’ characterization methods used by large companies. Table 2.6 shows the hopeless confusion
for some countries. High N means rough for some countries yet for others it means smooth. Unfortunately
the N numbers are still used! Great care has to be taken to make sure which N scale is being used! Also
remember that the letter N is used for sampling lengths in the assessment length.
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Table 2.6 N values

CLASS UK USA GERMANY USSR JAPAN ISO
1 1 0.25 400/630 200 200/280 200 (R)
0.5
1.0
2 2 2 1607250 125 100/140 125
3 4 4 63/100 63 50/70 63
4 8 8 25/40 40 25/35 40
5 16 16 16 6.3 18 6.3
6 32 32 6.3 32 12 32 (R,
7 63 63 4.0 1.6 6 1.6
8 125 125 2.5 8 3 8
9 250 250 1.6 4 1.5 4
10 500 500 1 2 .8 2
11 1000 1000 .63 1 4 1
12 - - 4725 .05 2 .05
13 - - 16/ .1 12 1 .025
14 - - .06/ .04 .06 - .012
Unit
Standard BS1134 B46 4763 DIN GOST2780 JIS
1950 1955 1954 1951 1955 1953
Table 2.7
Turning T Boring B
Diamond Turning DT Reaming R
Grinding G Milling M
Honing H Planing P
Lapping L Scraping S
Polishing Po Broaching Br

Obviously this shorthand is different in different languages.

In some documents the finish is referred to by process. Table 2.7 gives a few typical examples.

2.1.1.2 Spacing parameters

The height parameters, such as R, and R,, have usually been specified on the drawing in an attempt to
control the manufacturing process. To a large extent this in turn has been successful in controlling the
performance of the part. Nowadays, however, with increasing efforts to optimize the function, the func-
tional performance of a workpiece as a requirement has been growing. One way of supplementing the
height information is to provide some index of crest spacings on the surface. As in the case of the height
parameters many propositions have been made. One of the simplest, called the high spot count, is a
measure of the number of crossings of the profile through the mean line z = 0. Various alternatives to the
mean line crossings have been suggested. For instance, an index can be taken to be the number of cross-
ings of the profile by a line parallel to the mean line but displaced vertically by one R, value. Much use
has been made of this concept in the statistical methods described in the section 2.1.3 on statistical
parameters.
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Roughness grade number
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Figure 2.14 Roughness grades.

Whereas the high spot count is referred to at a given height from the reference line within the profile,
the peak count is not. It is just a measure of maxima irrespective of height. This count is very easy to
measure from the record of the profile and hence it has had widespread use, especially in the sheet steel
industry.

The big disadvantage of this method is that it is very dependent on the frequency response of the record-
ing apparatus, a point which will be expanded upon later. The effect of this is to make comparisons between
peak counts very difficult.

One technique which has been used in the past to minimize this effect is to have some form of amplitude
discrimination. For instance, a peak is not registered unless the previous valley lies 50 microinches below it.
This approach has also been used in the steel industry in the USA (figure 2.15). Various other methods of dis-
crimination have been tried but they do and should relate to the particular function.

The peak density, the zero-crossing density and the peak count, in which an amplitude discriminating
band is used, are shown in figures 2.15-2.17.

Later on it will be demonstrated that the apparently simplistic methods of assessing surfaces shown here
should not be treated with contempt. Many current theories make use of a number of these concepts; for
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Figure 2.15 Other peak parameters—amplitude discrimination.

Figure 2.16 Length parameters—peak density.
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Figure 2.17 Length parameters — zero crossings.
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Figure 2.18 Length parameter—peak count (amplitude discriminator).

example, the ratio of the high spot count to the peak count can be used as a measure of the process. This con-
cept is used extensively in mathematical modelling to which a lot of importance will be attached.

Other names for peak spacing parameters have been advocated in international and national standards
and, in particular, VNIIMS Moscow. [11]. One is the S value which is the average distance between local
(small) peaks (figure 2.16) and S,, the average distance between positive crossings of the profile with the
mean line (figure 2.17). The ratio of S / S has been used in the former USSR for characterizing surfaces. For
a very random surface this ratio is low, yet for a deterministic one it can approach unity. Both S and S, are
meant to be related to one sampling length. Other peak counts incorporate an amplitude discriminating fac-
tor (figure 2.18). The value of this factor depends on the application.

There is yet another wavelength parameter [12] which is almost the average distance between peaks—
but not quite! This is the average wavelength of the surface. It takes into account the size of the peaks and the
basic sinusoidal wavelengths making up the waveform. It will only be mentioned here but will be considered
in more detail in a later section, 2.1.3.4. However, it is useful to introduce it because it indicates that some
parameters are best expressed as a mixture of the height and wavelength dimensions; these are called hybrid
parameters and some will be described here.
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2.1.1.3 Hybrid parameters

Other suggested parameters have incorporated both height and spacing information. These parameters have
usually been derived from the differentials of the waveform. A number of investigators have found this type
of parameter useful, particularly in friction wear and optical behaviour.

Spacing and hybrid parameters were initially introduced because of the inability to specify the texture
effectively by means only of height parameters. Their widespread use, however, was severely curtailed
because of the inability to measure them properly. There were many attempts to use the hybrid parameters to
characterize surfaces, notably by Myers [13]. The difficulty arose in measuring differentials by analogue
means. By their very nature differentials are noisy. This meant that many early attempts were unreliable and
s0, instead of clarifying the characterization, they often clouded it. This situation has largely been overcome
by the use of digital methods but it should be emphasized that great care still has to be taken.

Some examples are the average (A,) or RMS (A,) slope, the curvature (p), peak curvature, etc.

Thus the average slope (A,) is given by

A =1 f '
LJo

where dz/ dx is the instantaneous slope of the profile. These parameters are fundamental in function and
should be remembered here for reference in chapter 7 on function. The RMS slope (A) is defined as

2 1/2
IJL(dzj
A== [ ] dx
q L e ) (2.6)

Note that A, and A are the same to slope measurement as R, and R, are to amplitude and A, and A, to spacing.
The average curvature of the profile p is given in equation (2.7). Signs are ignored.

1 fL d’z/dx?

T L)o [+ (dz/dr)? T

dx 2.5)

dz
dx

2.7

This formula can be simplified if account is taken of the fact that dz/ dx is usually small on a surface.
(This is a result which is true in certain cases only, particularly rough surfaces.)

Thus
1 J'L
sz 0

Curvature is the reciprocal of the radius of the profile at any point. Other variations of this definition have
been proposed. For instance, the average peak curvature (p,), the average valley curvature (py), etc. As for peaks
and valleys these definitions have to be qualified somewhat to minimize the errors due to variations in resolution,
frequency response, etc. These curvature formulae are considered to be especially important in contact theory.

Another parameter sometimes used is the profile length /, (figure 2.19). This is given by

d?z
d?dx' (2.8)

ISZ
W

Profile length Xs

Evaluation length

Figure 2.19 Profile length.
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2
1 (" dz
[, =~ f (J +1 dx (2.9)
which for small dz/ dx reduces to

L 2
=1 1+1(de dr
I 2\dx

mean square slope (2.10)
5 .

=1+

The directionality D of the profile can also be defined using the differential parameters. Thus

.11

where L, is the length of profile along the horizontal scale having positive slope and L, is the length having a
negative slope.

Interest has been shown in this directionality parameter in the context of journal bearings. Considerable
differences in wear properties have been encountered depending upon how the directionality of the round-
ness profile of the shaft compares with the direction of rotation of the bearing. In this case the directionality
of the circumferential surface roughness is the important factor.

The next section is concerned with methods of separating waviness from roughness. Part of the section
is devoted to the theory of linear filtering, which can be omitted on a first reading. However, it is necessary to
introduce the concepts here because so much of what follows is dependent upon them. Filtering is a form of
spatial characterization. The filtering concepts discussed in this section should be linked with section 2.2 on
waviness for completeness.

It should not be thought that the establishment of reference lines and the definition of so-called sam-
pling lengths are purely instrumental considerations. They are not. These issues constitute a very important
aspect of characterization of the surface into its most significant components. Often they provide the means
whereby specific features can be highlighted in space. This is why they are included here; the reference helps
to characterize the roughness. However, there are many occasions when the reference itself needs to be clas-
sified. This is when the reference line is considered to contain the waviness. In these cases the reference line
has to be classified in much the same way as the roughness has been considered.

Waviness characterization is considered in section 2.2. Both roughness and waviness characterization
appear in chapter 3 on processing and chapter 4 on instrumentation.

Reference lines therefore seem to occur all over the place! This is inevitable because the numerical
values of many of the parameters depend on which one, if any, is used. The problem is this: surface
roughness is a deviation—it needs a reference from which to quantify it. Ideally the external mechani-
cal reference provided within the instrument should be positioned within the roughness marks. This is
obviously impossible. All it can do is to enable, by means of the pick-up and transducer, the generation
of the surface data, that is the profile. It is then necessary to use some mathematical procedure to position
the reference within the profile from where the roughness can be measured. Because the problems asso-
ciated with reference lines occurred historically before even areal considerations or random processes
became important, they have to be considered here. Their involvement is deeply entwined with the devel-
opment of the subject as a whole and is just as important today as it was when surface metrology was in
its infancy.
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2.1.2 Reference lines

Many of the parameters described above depend on the definition of some reference line from which to
measure. This reference line has to have a fixed known height relative to the roughness, it has to have a pre-
determined shape and its length must be known. As for the determination of the sampling length, this is a
basic device for limiting the length of surface over which an individual measurement of roughness is made,
as shown in figure 2.5.

If the roughness marks, that is the process marks, are repetitive, then the sampling length should include
about 10 whole marks within it. This criterion was originally established empirically but it has stood the test of
time and is still used. The early investigations led to the standard sampling length of 0.8 mm (0.03 in) being
adopted as standard, this being about 10 times larger than the typical feed rate of turning in the 1940s [2].

For random marks such as found in grinding, the determination of the sampling length is more difficult
because of the lack of obvious cycles of repetition. However, a rule of thumb can be given here and verified
later, which is that if a line is drawn by eye through the profile to include the roughness marks only then the
sample length should include between 20 and 30 crossings of the profile with the line. Small deviations of the
reference line from being straight or misplaced vertically are not important. This corresponds to having a
high spot count of about 10. Formally, the determination depends upon a knowledge of the statistics of the
surface, which will be considered in the next section. The term sampling length used to be called the ‘cut-off
length’ or sometimes the ‘meter cut-off’.

In the past, by convention, there was a selection of sampling lengths available for use to suit whichever
process was being measured.

For convenience and to provide a basis for instrumentation a series (originally) based on V10 differences
has been standardized in the British Standard BS 1134, the US Standard B46 and ISO Recommendation
R468. The accepted values with the Imperial equivalent are as follows:

0.08 0.25 0.8 2.5 8.0mm
0.003 0.01 0.03 0.1 0.3 in
(0.03 in = 0.762 mm rounded to 0.8mm).

It should be said here that the specific values were chosen for convenience and are by no means sacrosanct.
For many of the new machining processes it could be argued that any suitable sampling length could be chosen.

When the sampling length has been determined the reference has to be positioned in the profile in such
a way that departures from it represent the roughness. For many parameters five sampling lengths are used
(figure 2.20).

Mean line

B ) Evaluation length

{Sampling length

Figure 2.20 Sampling length.

Four main types of line have been investigated in the past all over the world and each incorporates some
wavelength discrimination such as the sampling length limitation. These methods have been achieved in a
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number of different ways ranging from graphical, electrical, mechanical and now computing. Nowadays the
graphical methods are rarely used but are held in reserve.
The four methods most used are straight lines, polynomials, low-pass filters and envelopes (or motifs).

2.1.2.1 Straight lines

Perhaps the simplest form of reference line that can be put onto a chart is a straight line extending over the
sampling length. It can be positioned so that it touches the two highest crests within the sampling length as
for measuring R, the levelling depth in figure 2.9, or derived similarly from the deepest valleys or it may be
a mean line, in which case the profile area enclosed above the line is equal to that below it. Note that the
mean line is often referred to as the centre line.

The problem is how to determine the most meaningful angle and position at which to draw the line rel-
ative to the profile; a number of lines having the equal-area criterion are possible. One traditional method is
to qualify the definition of equal area with a statement that the line must follow the general direction of the
surface. This rather subjective method has the effect of tending to minimize the modulus of the area enclosed
between the profile and the line therefore minimizing the R, value. Another method which is not the same is
that of applying a constraint to the slope and position by specifying a ‘best-fit’ least-squares straight line
through the data. In this case the line will be unique, free from subjective positioning. From the point of view
of simply fitting a best line this method is very good but it has two problems associated with it. One is that it
is difficult to determine from a graph and the second is that it sometimes produces unrealistic results.

Whereas the former method of fitting a straight line is difficult to quantify theoretically the latter is not.

If the measured values of z as a function of x on the chart are compared with the values expected from a
best-fit line z' at the same x then the problem is to minimize the sum S, where

S, = L(Z— Z’)zdx. (2.12)

0

Strictly the deviations should be in a direction normal to the best-fit line itself, that is z cos a—z'cos «, as
shown on the graph in figure 2.21. Thus S}, is minimized where

L 2
S! =f (Z— Z’) cos a?dx (2.13)
0
S = ! zlx)—(mx +c 2cos2 o dx
.= (2.14)
0
Minimum relative I Minimum relative

to base

\ / to line

Best-fit line

I
I
]
o |
c
Baseline of measurement

Figure 2.21 Best-fit least-squares lines.
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which, given that m = tane, is that

2

L
f [z(x)cos a—xsina —ccos a| dx (2.15)
0

is minimum, where m is the tangent and c is the intercept of the line on the z axis, from which « is
obtained as

( )

2ot -t 2L - 200xdx = (1/ L) [F xdx [ 2(x)dx J o6
i dx = (1 L) xdx)? = [ 2007 dx+ (1 ([ 2 x)dx))
which is in effect
tan 2a :2( covariance of Xand Z j . 2.17)
variance of X — variance of Z

(Both « and ¢ or m and c are obtained by setting 85",/ da, 88",/ c = 0 or 8S,/dm, 8S,/6c = 0 and solving.)

This formula should be used if the horizontal and vertical magnifications are equal, as they often are in
flatness measurements. In the case of roughness the vertical magnification is often 50 times bigger than the
horizontal so that the direction of the deviation is distorted from the normal to the line and towards the nor-
mal to the base line. Under these circumstances equation (2.16) should be used to give

[, x2(x)dx — (/L) [, xdx [y 2(x)dx
m= .

(2.18)
% dx— (1 L(]* xdx)?

Digital equivalents of equations (2.17) and (2.18) will be given in section 3.6.14.

The advantage of using a linear mean line as opposed to a linear crest or valley line is that poor posi-
tioning of these latter lines can easily result if freak asperities are present in the profile.

Despite the undoubted advantages of the best-fit line approach it does run into difficulty when periodic
waveforms are being measured, for instance a sine wave. The question arises as to what constitutes a realis-
tic mechanical direction of the line.

In the case of the centre line, the difficulty arises only when the sample contains a single cycle of the
waveform, for when there are two or more cycles, the crest line at once determines the inclination which
leads to minimum values.

In the case of the least-squares mean line, however, the inclination is determined both by the starting
point and by the number of cycles included in the sample.

Consider figure 2.22 where the full curve represents a single sample of a sinusoidal profile.

The best-fit least-squares line has a different slope depending upon its starting point in the cycle. The
intercept of the line with the starting ordinate axis may easily be shown to be a function of the number of
cycles within the sample.

For n samples in the cycle the intercept ¢ as a function of the amplitude of the wave itself A is given by

:i.
7n

(2.19)

> o
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Figure 2.22 Least-squares line: n is number of cycles in sampling length.

Obviously for n = 1 this angle is enormous and unrealistic; the mean line has to be parallel with the crests or
valleys of the sine wave. This would have been the case if a cosine rather than a sine had been selected. So
the least-squares line for a periodic wave has a slope dependent upon the starting point! This is nonsense, so
in order to make the definitions (2.17) and (2.19) usable n has to be large. For n = 10, C/A<10%, which is
deemed reasonable and constitutes one reason why the 10 cycles of a periodic function are used as some
basis for the determination of the sampling length in terms of machine tool feed.

The use of the straight reference line fitted within each of the individual sample lengths making up the
evaluation length, whether by least squares or otherwise, has the advantage of simplicity but suffers from
the fact that, at the end of each sampling length, the end of one line inevitably does not contact the start of
the next. This means that a discontinuity is introduced into the waviness shape, both in level and in slope at
each sampling length. This can cause problems in measuring the parameters considered in section 2.1. The
errors are more severe for the peak parameters than for the average ones.

It has been known for a best-fit least-squares line to be used over the whole evaluation length and not be
used for each individual sampling length making up the whole assessment. When this method is used obvi-
ously only the tilt of the instrument datum relative to the workpiece can be removed. Errors of form or cur-
vature of the part cannot be removed at the same time. If, at the same time as removing tilt it is considered
advantageous to remove the form, another method has to be used.

2.1.2.2 Polynomial fitting

It may be that the form can be adequately represented over the evaluation length by a cubic or quadratic
equation. This would give a better reference than a straight line (figure 2.23). Then a best-fit polynomial
could be used of the form z = a;+ a, x + a3 x>+ . . . where a;, a,, as are the least-squares coefficients as m and ¢
were for the least-squares line.

Best-fit straight line
A /\ /\/\/\ﬁ ik
Wp—w‘-\/

Best-fit polyomial

Figure 2.23 Best-fit limitation.
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In this case they can be extracted from the equations

L L L
a1L+a2J xdx+a3f x?2 =f z(x)dx
0 0

0

0 0 0

L L L L
alf xdu+a2J’ xzdx—i-a;f x3dx :J’ xz(x)dx
0

L L
alf x"'dx +azfx”dx +a3J'x”*1 +... =f x"'z(x)dx (2.20)
0

0

where 7 is the order of the polynomial.

The big advantage of this polynomial approach is that all the data in the evaluation length can be used.
There are no end effects! In other words one of the great advantages of the use of polynomials to represent
tilt, waviness and form error through the roughness data is that all the data is utilized. The penalty for this,
however, is that to get the most realistic reference line the order of the polynomial should be made to ‘match’
the geometry of the profile itself. For example, if the surface is aspheric. As an example of mismatching, con-
sider a workpiece which is perfectly smooth and has a form error of three-quarters of a sine wave. If a sinu-
soidal waveform is fitted to the form error without knowing that only three-quarters of the full sine wave are
present then considerable errors can result.

The imposition of an arbitrary period to the workpiece based only upon its length can actually introduce
harmonic distortion as is shown in figure 2.24. It is only acceptable to make an error of judgement like this
when there are considerably more than one cycle of the natural wave within the length of the profile. Under
these conditions the errors are reduced to an acceptable level.

A
Fundamental
1/L
Fundamental
I
I
2/L'
v - : ! /"'
it P =
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|

ﬁ

/L' Harmonics

Figure 2.24 Distortion-mismatched length.

There is an alternative to the least-squares or best-fit approach and this is that of minimum divergence of the ref-
erence curve from the test piece—given that the order (e.g. quadratic or cubic) is known. The obvious example of
this sort of approach is to use the Chebychev polynomials; these, however, could generate a reference curve which,
unless care is taken, will suffer from the same freak behaviour as is possible with crest or valley lines.

One very interesting feature of this method, however, is that some attempt can be made by using the
Chebychev series to characterize fully the whole profile, that is roughness, waviness, errors of form and
set-up errors, using just one type of function. This assumes that the idea of looking at the whole evaluation
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length in one go, rather than breaking it down into sampling lengths, has been abandoned—which it does
not necessarily have to be. What can be done to remove the discontinuities that occur between straight
lines from each sampling length? A number of attempts have been made. The first is due to Reason [6]
who postulated that instead of using a succession of adjacent sampling lengths with lines through each, a
multiplicity of sampling lengths of the profile, staggered with respect to each other and consequently over-
lapping, should be used. The reference line should then be made up from the locus of the mean profile
within each sampling length and plotted at the mid-point. This method has therefore been referred to as
the ‘mid-point locus’ reference line. It has the considerable advantage that it is unique and gives the same
answer as if the centre points on centre lines or least-squares lines within the samples had been connected
up as shown in figure 2.25.
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Figure 2.25 Mid-point locus line.

Another advantage of this method is that the centre point within each sampling length can easily be
obtained from a graph simply by measuring the area between the profile and the bottom of the chart, divid-
ing by the sampling length, and plotting the value in the middle of the sample. The accuracy of the locus
is dependent on the extent to which sampling lengths of the profile are allowed to overlap, so obviously
there must be a compromise between the amount of labour involved and the accuracy. Five shifts of the
averaging box within a sampling length have proved to be reasonable. The shifts are not necessarily
equally spaced.

The only disadvantage of this method is in its transmission characteristics: they are worst for periodic
signals as seen in figure 2.26. For example, if the locus is plotted on the sine wave then it will undulate unre-
alistically if the sampling length is not an integral number of wavelengths [15].
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Figure 2.26 Mid-point locus characteristics.

It can be shown that if the amplitude of undulation of the locus is taken as a measure of performance and if it
is plotted against the wavenumber (not wavelengths) of different sine waves, the resulting curve is that of the
sine function S(v) where v is the ratio of the wavelength to sampling length:
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sin[27r(1/ v)]
2m(1/v)

which for 1 / v having a value of 0.66, for instance, gives an undulation amplitude of —19% (see figure 2.26).
Usually the errors are much smaller, especially for random waves. This undulation in the mean line for waves
shorter than the sample length looks mechanically unrealistic. In any technique to determine a mean line it is
preferable that waves shorter than the sampling length are not distorted.

S(1/v) = 2.21)

2.1.2.3 Spline functions

Another possible way has been suggested which could reduce the shortcomings of the standard graphical
method. In effect what this method does is to apply constraints to the behaviour of the reference line at the
boundary of each sampling length. Discontinuities of neither position nor slope are allowed between succes-
sive samples, which means that parameters should suffer less distortion. The method makes use of a variation
of a technique used in shipbuilding for many years in the construction of ship outline drawings. A piece of
flexible wood called a spline was used to fill in the curved line between the ribs. It has the property that the
curve which it takes up between the ends is that of minimum potential energy and whose least-squares cur-
vature is a minimum. Hence there is the possibility of replacing the succession of discontinuous lines from
each sampling length by a ‘spline function’ having well-defined properties. This spline function could even
be made physically for use on graphs if necessary [14].
If the spline function between M ordinates is ¢;, and the profile is z; then the summation S, defined as

M M
Sy =20 + 2 (9 — z,) (2.22)
i=1

i=1

is a minimum, where A is a constant which has to be fixed. If A is very large compared with unity then the
spline function is nearly a least-squares line. A has to be chosen to give the correct balance between smooth-
ness and closeness of fit. A corresponds roughly to the elastic modulus of the piece of wood.

Much recent work has been done in using spline functions, particularly in numerical interpolation prob-
lems involving the generation of continuous surfaces from point-to-point numerical data points, a situation
occurring in CAD. Essentially the use of splines is beneficial because of the good behaviour of the curve at
the sample junctions. In common with filtering and envelope methods there are conditions at the beginning
and end of the evaluation which need to be considered when choosing the spline value A [14].

2.1.2.4 Filtering methods

Perhaps the easiest way to separate the components of a signal on a frequency basis is by the use of filters. They
have one big advantage over polynomial-type curve fitting: within generous limits little prior knowledge of the
input waveform is required. The filter takes the waveform ‘as received’ and then operates on it. What happens in
order to pay for this apparent freedom is that a certain amount of the input information has to be used up by the
filter before it can give useful outputs; it needs time (or data) to get the feel of the input signal. Therefore the
amount of usable data is reduced at the expense of versatility of operation. Filters have been used since the ear-
liest days of surface metrology as a prerequisite to making meaningful measurements of any parameter.

The first sort of filter network used in this respect was a single CR network. Later this was changed to a
2CR network buffered in the middle. The characteristics of this filter are such that if z is an input profile sinu-
soidal signal of wavelength A and if A. is the cut-off wavelength taken to be at 75% transmission (figure
2.27) then the transmission is given by
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transmission (%) = ——— (2.23)
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75%
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Figure 2.27 Transmission characteristics.

The 2CR characteristic was chosen for convenience and simplicity and to allow measurement with a skid.
The value of 75% adopted for the cut-off itself is a compromise value. In the earliest instruments the British
chose 80%, the Americans 70.7%. In the end, to make the instruments compatible, 75% was used. This is
purely arbitrary but it turned out to be reasonably practical. The earliest filters used electrical components
such as resistors and capacitors to produce the desired effect. Later instruments used digital methods. This
type of transmission curve and the 75% cut-off was referred to as the ‘standard filter’ and was the preferred
filter for many years as set down in international and national standards. Other filters and cut-off percentage
transmission values are recommended today but this does not detract from the usefulness and practicality of
the original standard filter which is still in use in many instruments.

Because the filter has been designed to simulate the graphical method, A, is taken to be equal to the sam-
pling length mentioned in section 2.1.1.2. The three different cut-off wavelengths recognized have been 2.5
mm, 0.8 mm and 0.25 mm, these roughly representing the boundaries of waviness found by experience for
manufactured surfaces.

In what follows the 75% transmission characteristic will be used initially because this characteristic is
in most existing instruments. The new recognized transmission at the cut-off is 50%. This will be introduced
later. (See for example figure 2.33.)

Comparison of many R, values worked out graphically and those obtained by filtering shows that the
decision to make the cut-off wavelength equivalent to the sampling length was justified. Differences of more
than 5% are rare. Such correspondence is not of the same order if other parameters such as R, or R, for exam-
ple, are being measured. The filter characteristics given by equation (2.23) are meant to be those of the instru-
ment as a whole and not of any constituent part. The characteristics constitute therefore an instrument
transmission curve, and so for a stylus instrument the characteristic should be taken as the way in which sinu-
soidal displacements at the stylus are revealed at the output. All frequency cut-offs, for example in amplifiers,
recorders, etc, should be taken into account.

For most modern instruments these all tend to fall well outside the range of wavelengths under considera-
tion and as a result negligible error is introduced by incorporating the simple two-stage filter having the desired
characteristic. The way in which filters work on the surface profile waveform has to be understood, especially
for the earlier type of filter. This is because not only are amplitudes modified but a certain distortion of the wave
occurs due to phase shift. This is not a problem in the later digital filters but nevertheless it has to be demon-
strated so that discrepancies between old and new instruments can be understood and taken into account.

How such a filter produces a mean line can be seen in figure 2.28.

In this figure the upper graph shows the input signal and the bottom shows the output. Between these is
the profile signal but this time it has had the difference between the other two graphs plotted as a broken line.
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Figure 2.28 Relation of mean line to profile.

This line represents the low-frequency signal being blocked by the filter; this blocked signal is the reference
line from which the surface parameters can be measured.

There is a difference between filter techniques and other methods, which is that in its simplest analogue
form the filtering technique is time dependent. The behaviour of the filter is determined by the time depend-
ence of the signals passing through it. The wavelength on the surface of these signals has to be related to time
by the scan rate of the instrument. Thus the frequency resulting from a wavelength A, is given by f = s/ As
where s is the speed of traverse. This time dependence used to be a serious problem but it is not so today
because the behaviour of the filter can be exactly reproduced by a mathematical technique which, like all the
previous reference lines, can be purely spatial. Ideally all procedures in surface metrology should be spatial
and not temporal.

The benefit of using filters, apart from their impartiality in dealing with all incoming signals, is their
ease of use and cheapness. The standard 2CR filter does, however, suffer from some disadvantages over other
methods. An example of this is shown in figure 2.29

When a profile signal has significant components with a wavelength near to that of the cut-off of the fil-
ter a certain amount of distortion can arise. The output signal no longer closely resembles the input wave-
form. This is due to phase shift. What happens is that some components of the profile get shifted relative to
each other in their passage through the filter [15, 16]. At the same time some get attenuated according to
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Figure 2.29 Effect of filtering on periodic shapes.
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where their wavelengths fall on the transmission curve of figure 2.27. Some results on typical waveforms are
shown in figures 2.29 and 2.30.
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MA Transmission R/R,
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Figure 2.30 Effect of phase correction on standard shapes: (a) standard filter, sine wave profile; (b) standard filter, tri-
angular profile; (c¢) and (d) phase-corrected standard filter; (e) and (f) phase-corrected linear profile.

Apart from the visual distortion of the profile which can sometimes result from this effect, parameters meas-
ured from the output waveform can also be in error. Fortunately this effect is not serious in the case of an R,
measurement but it is, or can be, important in the case of R;, or R, for example. It is fundamental when peak
curvature or similar parameters are being measured for tribological experiments. This is why phase distortion
of surface data occupies such an important position in surface metrology.

Another problem associated with the standard filter emerges in the problem of calibration. Because the
standard filter has a rather gradual transition from the nominal ‘pass’ band to the nominal rejection region
and because of the phase distortion the calibration of instruments can be difficult.
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In order to elucidate the nature of subsequent improvements to the assessment of parameters, the man-
ner in which the standard filter responds to some idealized repetitive waveforms will be considered. This is
because the standard wave filter is generally satisfactory for random roughness waveforms. Repetitive wave-
forms tend to accentuate any shortcomings.

Look first at figure 2.30(a) which shows how the standard filter responds to sine waves. The figure
shows sine waves of different wavelengths. The full line shows the original wave and the dotted line is the mean
line found by the wave filter, this being the line that accounts for the output behaviour. The difference at any
instant between the two lines is the filtered profile value. The top four graphs show sine waves within the pass
band; notice that the mean line is displaced to the right relative to the original sine wave in all cases, which
means that it is delayed in time relative to the profile, and further that the mean line has a large amplitude of
undulation even for wavelengths much smaller than the cut-off, for example for one-third of the cut-off (the
top graph). Another point is that the amplitudes of the mean line can be of the same order as the original sine
wave, even just outside the pass band. Despite these points the filtered profile, which is the difference at any
position between the mean line and the profile, obeys exactly the specified amplitude transmission character-
istic mentioned previously. As an example, at the cut-off the mean line has an amplitude of just over 90% of
the original sine wave profile, but the filtered profile has the correct amplitude of 75% of the amplitude of
the profile. The amount by which the mean line is shifted relative to the profile depends on the wavelength
of the sine wave profile.

For most commonly used filters, specifying the amplitude transmission characteristics automatically
fixes the phase characteristics. This class is known as minimum phase [16], of which the standard filter of
2CR networks is a typical member [15]. Specifying the transmission characteristics for the standard wave fil-
ter automatically implies a phase-shifted mean line.

Suppose that a filter is available which has the same transmission characteristic as the standard filter, but
at the same time has a mean line which is not shifted in phase relative to the profile. How is the mean line
amplitude affected?

This situation is shown in figure 2.30(b) for the same sine waves as in figure 2.30(a), and for triangular
waves in (d) corresponding to (). It can be seen that the mean line is nearly straight at one-third of the cut-
off. Compare this with the same profile for the standard wave filter. There is a dramatic reduction in the
amplitude of the mean line, and this is true for all the cases shown. At the cut-off, the filtered profile for this
new filter has the required amplitude of 75% of the profile—the 25% attenuation is accounted for entirely by
the amplitude of the mean line. In other words, if the mean line is kept in phase with the sine wave profile,
then, for the value of wavelength, the maximum amplitudes of the filtered profile and the mean line add up to
unity, a criterion which does not hold in the case of the phase-shifted mean line. A direct result of this is that
the mean line in phase with the profile undulates less. Summarizing, it may be said that the mean line
becomes straight much nearer to the cut-off in the filter whose mean line is in phase than it does in the stan-
dard wave filter, although the filters have precisely the same amplitude transmission characteristics. This fact
is of fundamental importance. It means that the shape of the roughness can be preserved even in the presence
of considerable waviness and form error. Hence the roughness parameters retain their credibility throughout
the filtering process.

For a sine wave profile the phase distortion simply takes the form of a phase shift of the filtered profile
relative to the original profile, but for any other profile that can be considered to be made up of a number of
such sine wave components, the distortion is more complicated.

Consider now triangular waveform profiles of differing wavelengths. Remembering that the filtered pro-
file is the difference at any point between the mean line and the profile waveform, it can be seen that the fil-
tered profile for the zero phase-shifted mean line bears a much closer resemblance to the original waveform
than it does for the standard wave filter [16].

The zero-phase filter has a more realistic mean line because the sine wave components making up the tri-
angular waveform are not shifted relative to each other in the filter. Consequently, the components have the

Copyright © 2003 IOP Publishing Ltd.



same relative positions upon emerging from it. Hence, even taking account of those components that have been
attenuated in the filter, the output still resembles the input. This is not so true in the case of the standard wave fil-
ter. Distortion of the filtered profile can make it difficult to assess numerically. This is the problem that can be
encountered in practice when highly repetitive profiles just within the pass band are put into the standard wave
filter. As an example, the triangular waveforms shown in figure 2.30(c) are a close enough approximation to a
practical waveform to illustrate how the problem arises. Consider the filtered profile in figure 2.30(a); the con-
cept of a peak output at the cut-off, say, is difficult to imagine—the peak shape has virtually disappeared. Now
look at figures 2.30(b) and 2.30(c) where the peak is noticeable and unambiguous to measure.

So far only the phase characteristics have been considered. There remains the problem of deciding on
a suitable transmission characteristic. This is not easy, for it has to be remembered that a good reference
(or mean) line has to be realistic for waviness as well as for roughness. Another point is that transmission
characteristics for surface filters are plotted as transmission percentage as a function of spatial wave-
length, not frequency as is conventional. This adds some complications. Take as a start an ideal roughness
filter, that is one where waviness is not considered except to be excluded. The original ideal for this type
of filter, known as the Whitehouse filter, is outlined below. The mean line is straight for all wavelengths
within the pass band of the filter, that is up to the cut-off. This would mean that the profile would suffer no
attenuation for wavelengths up to the cut-off. From the point of view of surface roughness measurement
this seems sensible, because it is natural to suppose that if a cut-off has been chosen for the filter of a value
larger than the longest roughness wavelength on the surface, then all the roughness will be passed unat-
tenuated. Another point about the transmission characteristics which can be mentioned concerns the
behaviour outside the cut-off. Although the behaviour outside the cut-off is not as important as that within
the cut-off, it still has some relevance to the measurement of the roughness. The standard wave filter tends
to fall off too gradually for wavelengths longer than the cut-off, with the result that waviness components
can be included in the roughness assessment.

From these factors it appears that an amplitude transmission characteristic which is unity up to the cut-
off wavelength and which falls rapidly after the cut-off would be more suitable for roughness measurement.
Excessively high rates of attenuation, however, could be unrealistic mechanically because a considerable
variation is not expected in the functional behaviour of, say, two surfaces having a roughness of equal ampli-
tude but slightly different wavelength. One such characteristic that has seemed practical is one having unity
transmission up to the cut-off which then falls off to zero at three times the cut-off, the rate of attenuation
being linear with equivalent frequency. This has the merit of being compatible with the long-established
sequence of sampling length cut-off values.

Figure 2.30(e) and (f) shows how a filter having an in-phase mean line similar to the one mentioned
previously, but having the new transmission characteristics, behaves with the sine and triangular waveforms.
The figures show a straight mean line right up to the cut-off and no distortion of the filtered profile. This is
what could justifiably be called a filter with a well-behaved mean line. This filter will be referred to as the
Whitehouse phase-corrected filter [16].

So far only idealized waveforms have been shown. In fact these accentuate the difficulties encountered
in practice. Mean lines, as a rule, do not oscillate with such a large amplitude for practical waveforms within
the cut-off even for periodic profiles, because a random component is always present. In the case of profiles
which are random, the undulation of the mean line and the distortion of the filtered profile from the standard
wave filter are not so obvious. The majority of profiles of this type have realistic mean lines, providing that
the longest spacings are short compared with the cut-off length. However, for the standard wave filter the dis-
tortion of the filtered repetitive profile and the undulation of the mean line have presented a serious enough
problem in some instances to warrant correction.

Some practical profiles are shown in figure 2.31, together with a comparison of the mean line found by
the standard wave filter and the phase-corrected wave filter. They show that the phase-corrected filter has
advantages over the standard wave filter in a number of ways. The gain is usually greatest when other factors
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apart from roughness measurement have to be considered, such as only a small amount of available traverse
or waviness components lying near to the dominant tool marks on the surface. In fact, the advantage is usu-
ally greatest in cases where it is impossible, for one reason or another, to choose a cut-off for the standard fil-
ter long enough to make phase distortion negligible. Many of the parameters used to measure roughness,
such as the peak value, the derivatives or the bearing ratio curve, are affected by phase distortion. Centre-line
average R, is affected to a lesser extent, while RMS R, and some related parameters are not affected at all.

Ground

Figure 2.31 Comparison between standard and phase-corrected filters.

The roughness which is transmitted by the phase-corrected filter actually looks like the roughness on the
original profile and it is a sensible precaution to measure any desired parameter, even for waveforms con-
taining components near to the cut-off. Another point is that the mean line for components within the cut-off
is straight, with the result that all roughness within the cut-off is assessed. Yet another possibility offered by
this filter is that the mean line of the roughness found by its use could properly be regarded as the waviness.
The characterization of the surface geometry taken as a whole therefore becomes a realistic possibility.
Having the capability just to measure the roughness alone does not allow this vital possibility. This is because
the shape of the mean line is only affected by components outside the cut-off (which are usually due to wavi-
ness) and also because the mean line will be in phase with these components. The mean lines for the repeti-
tive waveforms outside the cut-off can be seen in figure 2.30(c).

Figure 2.31 shows how the mean lines for practical profiles look convincing for the waviness.

From what has been said it is possible to set down some characteristics that would be suitable for a fil-
ter having these properties. It would have the transmission characteristic F(4) given by

1 A <A,
F(A)=4P(A) A<A<KA. (2.24)
0 KA <A,.

In the case shown above F(A) is usually expressed in terms of frequency for reasons which will become
obvious.
Thus, if frequency f; corresponds to 1 / Ao, F(f) corresponds to F (1) and K, corresponds to 1 / K:

_Kf-f
F(f)= T (2.25a)
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In the filter example chosen as suitable, K, = 3. Over the range ﬁ/ K.<f <f. the characteristic is linear with
change in frequency, or F(A4) = (AK — /16)/ A1 — K) over the range A,<A<KA,, i.e. P(L).

The phase shift is ideally zero as is seen from figure 2.31. This implies that the imaginary part of the fil-
ter characteristic should be zero, that is phase @(f) = X(f) / R(f) for a general filter; this is only zero if X(f) is
zero. What this means and how it is achieved will be seen in the next few pages.

The Whitehouse phase-corrected filter has characteristics which are virtually ideal for roughness but not
for waviness. In many instances this does not matter. However, in order to make the roughness and waviness
filters complementary (i.e. always add up to unity) the cut-off has been repositioned to be 50% rather than
75% and the transmission characteristic gradual rather than sharp as advocated by Whitehouse. This means
that, at the cut-off, both waviness and roughness will be transmitted. The new preferred filter has nominally
Gaussian characteristics rather than the standard phase-corrected filter or Whitehouse phase-corrected filter.
In order to understand the implications of this some idea of how filters work will be considered. The concepts
here will be referred to many times in the text because the decomposition of the surface geometry into com-
ponents is functionally important and filtering is a preferred way of doing it.

(a) Filter theory
The frequency characteristic (or Fourier transform) H(w) of a filter can be expressed in terms of the angular
frequency ‘@’ as

H(w) = k(w)exp(jp(®)) (2.25b)

where k(w) is the amplitude transmission characteristic and ¢(w) is the phase. The problem in surface
metrology is to get a useful form for k(@) whilst maintaining a form for ¢(®) which eliminates phase distor-
tion. This is true for roundness, roughness and all other metrology issues.

The impulse and step responses of a filter are a means of explaining how the filter behaves when it is sub-
jected to a signal. The output of a filter in general terms is given by the superposition integral which, in effect, says
that the output at any time is given by the convolution of the input signal with the impulse response of the filter.

Thus

o(t) = f F(Oh(t - 7)dt (2.25¢)
or
g(t) = f(r)*h(r)

where f{¢) is the input signal, g(7) is the output and A(?) is the impulse response.

In equation 2.25(c), h(t —7), the reversed impulse response, is sometimes called the weighting function
of the filter.

If H(®), G(®) and F(w) are the Fourier transforms of A(f), g(r) and f(r) respectively

H(w) = f w h(t)exp(— jor)dt (2.25d)

and
G(w) = F(o)H(w). (2.26)

The idea of the weighting function is very important in the application of filters to surface metrology
problems because it enables the behaviour of a filter in time to be visualized as if the filter was acting on the
profile on the chart. It will be shown next that the time variable ¢ can equally be replaced by a spatial variable
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(as indeed it can be replaced by a numerical variable in a computer) without loss of generality. The effect of
different filters can therefore be visualized for the metrologist. It also relates more nearly to the concept of
functional filtering in tribology where the weighting function can be a contact pressure distribution.

Equation (2.26) is very important because it shows that the frequency characteristics of a filter (i.e. its
response to sinusoidal signals) are tied down to the shape of its impulse response. Altering the impulse
response alters the frequency characteristics.

The impulse response can alternatively be expressed in terms of a fraction of the time constant of the fil-
ter which, in turn, can be expressed in terms of a fraction of the sampling length when referred to the profile.
This has the advantage of making not only the weighting function but also the variable in the superposition
integral non-dimensional as well as relating more directly to the surface.

(b) Different impulse responses and weighting functions
Consider the low-pass filter in figure 2.32(a). It attenuates high frequencies. When referred to the time
domain it means that the impulse response actually spreads in time. Because of this the impulse response
tends to average out the high frequencies in the input waveform during the convolution process.

For the high-pass filters in figure 2.32(b) the situation is different because an impulse is present in the
impulse response, which is opposed by a low-pass component. If the transfer function of an ordinary high-
pass filter is H(p) it can be written in the form

H(p)=1-H(p) (2.27)

where H(p) is for a low-pass filter and p is the Laplace operator.
Equation (2.27) inverse-transforms into an impulse response A(f), where

h(t) =6 —h(1) (2.28)

h(t) is the impulse response of the low-pass component and 6 is an impulse at the origin of unit weight.

Low pass
(®)
| Origin
Axis of
i symmetry
aa
© 1.0 2.00 1.0 2.0
Unit impulse High pass (d) 4_ Unit impulse
le—oa
o o
1.0 2.0] 1.0 2.0

Figure 2.32 Impulse response of linear phase and standard filter. Standard filter in (c) has phase distortion; linear phase
equivalent in (d) has no phase distortion.
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A signal f{(¢) put into a high-pass filter gives an output
o0 = he-)fes

- f C St -1 f()dr - f " -1 f(o)de (2.29)

but f t_w o(t —7)f(7)d7 = f{(t) because of the sampling property of impulses. Hence equation (2.29) becomes

ot) = £(t) - f h(t —7) f(t)dT = f(t)— m(?). (2.30)

In practice the lower limit of the integral can be taken to be zero.

Electrically m(z) is the signal blocked by the filter. In surface metrology m(#), when referred to the pro-
file graph, is the mean line. The removal of m(f) from the input profile constitutes the high-pass filtering
action; h(t — 1) is the weighting function of the mean line.

Equation (2.30) can be expressed in a form more suitable for surface metrology by changing the time
axis to a non-dimensional fraction of the sampling length a:

g(a) :f05’(a —-a)f(a)da' —Joh(a —-a)f(a)da' = f(a)—m(a). (2.31)

In equation (2.31) ¢ is a variable similar to 7 in equation (2.30), that is 4(a) = 6'—h(a) where &' and h(«)
have unit weight when integrated with respect to c.
For the standard wave filter

h(t)=6 — 1(2 - tj exp(— ’j 2.32)
rRC\” RC RC

or
h(a)=06"— A2 - Aa) exp(—Aa) (2.33)

where A = ),/ s RC (A is the sampling length and s is the tracking speed) and « = x/ A, where x is the distance
along the surface. In equation (2.32) both parts have the dimensions of reciprocal time whereas they are
dimensionless in (2.33), which means that the ordinate scale does not change with the cut-off. The factor
1 / T. is taken into the variable da' of equation (2.31) where T is the equivalent time of the sampling length.

(c) Linear phase filters (figure 2.32(b))
The phase characteristics of a filter effectively show how sinusoidal signals get shifted in time in their pas-
sage through the filter. The real criterion for the filtered profile to be undistorted is that the constituent sinu-
soidal components making up the profile are not shifted relative to each other during the passage of the
profile through the filter. One method of doing this would be to ensure that none of the components got
shifted at all. This would mean that the phase shift is zero for all frequencies.

Now

H(w) = k(0) exp(ip(@)) = R(®) + jX(o) (2.34)
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where ¢, the phase angle, is given by
tan™' X (w)/R(w) (2.35)
So X(w), the imaginary component, would have to be zero in equation (2.35) to make the phase zero, leaving
H(w) =k(w) = R(o) (2.36)

But, for the transmission characteristic of the filter to be real, the impulse response must be an even function
(i.e. symmetrical about the time origin axis), which is impossible in practice because the impulse response or
the weighting function of the filter cannot extend into the future as well as into the past. Hence, the only pos-
sibility of getting no distortion of the filtered profile is to arrange that the wavelength components of the pro-
file are all shifted by the same amount in time by the filter. Suppose that this meant delaying all components
by #,. One component at angular frequency @, say, would have to be shifted in phase by —; #, rad to get this
delay. A component of angular frequency @, would have to be shifted by —w, t,, and similarly for any com-
ponent. In fact, to satisfy this delay of #, in general ¢(w) = —wty; the phase has to have a linear relationship
with frequency. Therefore, the transmission characteristic for a filter having no phase distortion but a delay is
of the form

H(o) = k(w)exp(—jot,) (2.37)

Such a filter is called a linear phase filter. It took a long time in surface metrology to realize the potential of
such filters!

How do the impulse responses of the zero-delay and linear phase filters compare? It is easy to show that
if hy(?) is the impulse response of the zero-delay filter, then the impulse response of the linear phase filter
having the same amplitude transmission is %y(t — #;). This means that they have the same shape, but the linear
phase impulse response is shifted by 7, along the positive time axis — they both have a symmetrical weight-
ing function but the zero-delay impulse response has its axis of symmetry on the time origin, whereas the lin-
ear phase impulse response has the axis of symmetry at ¢ = #,. Shifting the axis of symmetry to t, makes the
impulse response practically realizable. Summarizing, it may be said that it is possible practically to make a
filter giving no phase distortion only by allowing a uniform delay of all components passing through it. This
is achieved by a filter having linear phase characteristics, which implies that it has an impulse response which
is symmetrical about an axis of ¢ = #, on the realizable side of the time axis. In the non-dimensional form #,
becomes a (figure 2.30(d)).

If

hy(t) < Ho(o) (2.38)

then
hy(t—t,) < Hy(o) exp(—jot,). (2.39)
For the zero-delay case the high-pass impulse response /g (Iz) can be expressed as 6 — Ay (I7l), where
ho(It]) is the low-pass impulse response and 6 is an impulse at the origin. The corresponding linear phase

high-pass impulse response A, (¢) is therefore given by

h(t) = 8(t—ty)—hy(|t—1, ). (2.40)
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Equation (2.30) becomes for a linear phase filter
t
o) = £ =1) = ule =1 =) () @41
0

Equation (2.40) shows that the impulse component lies at the axis of symmetry of the low-pass impulse com-
ponent, which means that in terms of equation (2.40) the signal itself has to be delayed by ¢, before taking it
from the low-pass component. This has the effect of producing, at time ¢, the filtered output—without distor-
tion corresponding to the profile at 7 — # .

Two points are worth noting concerning symmetrical impulse responses: one is that the step response
has an axis of odd symmetry about ¢ = #;, and the other is that the operations of correlation and convolution
become the same except for an averaging term.

(d) Different linear phase filters
The conditions for a symmetrical weighting function to be suitable are the following:

1. It has an axis of symmetry later than # = 0 to an extent such that no considerable part of the func-
tion crosses the 7 = 0 axis.

2. Itis concentrated in a central lobe and dies away quickly on either side of the axis of symmetry.
3. Any negative portions should be small.

4. It must have an amplitude transmission characteristic suitable for use in surface metrology.

A number of different linear phase filters have been investigated, including those which have Gaussian
and raised cosine impulse responses. Perhaps one of the most obvious is the linear phase filter having the
same amplitude transmission as the standard filter. It has an impulse response

h(t)=8(t—1t,) - “’f3 exp[— “’f3 ¢ —toj (2.42a)

N Ty

or alternatively

}7(01):5’((1—&)—23 exp(—zzm—aJ (2.42b)

Ay AY

where the latter expression puts the impulse response in non-dimensional form. @, is the angular frequency
equivalent of the sampling length, and a is the position of the axis of symmetry—equivalent to .
Another alternative is the ideal linear phase high-pass filter where

sin o (t — t,)

h(t) = 8(t—1t,)— =)

(2.43a)

or

_sin 27(a — @)

h(a)=6"(a—-a) (2.43b)

(o —a)
These, however, did not seem to be as suitable a starting point as the Whitehouse filter, which has unity

transmission for wavelengths up to the cut-off and zero transmission at three times the cut-off. The attenua-
tion rate is proportional to the equivalent frequency.

Copyright © 2003 IOP Publishing Ltd.



The expression ‘phase-corrected filter’ has a slightly different connotation in communication theory, but
it is useful in this context. The general equation for impulse responses having this linear amplitude form is

2 y sin [@,(1+ B)(t —t,)/2] sin [w.(1— B)(t — t,)/2]
nw.(1- B) (t—1)’

h(t)=6(t—1t,)— (2.44a)

or

1 y sin [7(1+ B)(a — )] sin [7(1 — B)(a — @)]

h(o) = 6 —a)—
(@) =0%a -a) 7*(1- B) (a-a)

(2.44b)

where B is the ratio of wavelengths having unity to zero transmission, being equal to 1 / 3 in this case.

Other possible filters have been examined such as those in which the attenuation characteristic is linear
in wavelength rather than frequency as it is in equation (2.25a).

In these filters the formulae for the weighting functions and the transmission characteristics are very dif-
ferent. It seems plausible to consider a filter system which has virtually the same form of equation in both
time and frequency. This is in fact easily done by making the shape of the weighting function Gaussian. The
frequency characteristics of this in terms of amplitude are also Gaussian because the Gaussian shape is its
own Fourier transform. Unfortunately surface metrologists work in wavelengths, so the transmission charac-
teristic (in wavelength terms) of a Gaussian weighting function is not itself Gaussian. It is, however, recog-
nizable as being derived from a Gaussian weighting function and has been selected as the new preferred
filter. Also, in order to match the waviness and roughness roles the cut-off is at 50%.

Thus the weighting function is

2
ha) = i exp —n(aj (2.44c¢)
oA, o,
(see figure 2.33). Putting the transmission characteristics in terms of a gives H(1 / ):
H(1/a) = exp[-n(a,/a)*]. (2.44d)

The transmission of the roughness profile is complementary to that of the transmission of the mean line
because the roughness profile is the difference between the actual profile and the mean line. Thus

Hy(l/a) = exp[-7(a,/a)*]. (2.44e)
Waviness ~ Weighting function Waviness ~ Roughness
= |
1 50%
- 5 ) o A

Figure 2.33 Gaussian filter with attenuation curves.
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This gives the amplitude of the sinusoidal signal of wavelength @ where

a = M2 _ 04697,

\E:

Having examined the behaviour of filters it is possible to compute them using methods other than the
obvious convolution method described above. Many variants on the standard filter and phase-corrected filter
are possible. One of the major variables is the point on the characteristic at which the cut-off attenuation is
assumed to occur. It could be unity, 75% or 50% but current thinking is based on 50%. Another factor is con-
cerned with the problem of realizability. Can the weighting function be adequately represented in a com-
puter? These factors will be considered in chapter 3. Robust filters will be in chapter 5.

Filtering using a phase-corrected method has its problems if characteristics such as those outlined in
equation (2.25a) are to be used. This is because of the sharp attenuation drop-off. As this is faster than the
Gaussian characteristic the impulse response tends to be slowly decaying, with the result that some degree of
truncation of the weighting function has to be allowed for in the computer. This produces problems in stan-
dardization for instrumentation. The alternative is to limit the weighting function arbitrarily to a known
extent, for example to use a box function (as in the mid-point locus method) or a triangle. The other problem
is that such amplitude characteristics do not lend themselves well to recursive filtering techniques.

So far the methods considered have been confined to linear techniques in which the method of separat-
ing the roughness from the rest of the signal could be judged using Fourier analysis. This idea is fine for con-
ventional wave filters and any technique that can be reduced to the basic convolution. However, there are
alternative methods which depend on discrimination in domains other than spacing, such as in height, slope
and curvature. Also multiprocesses such as plateau honing require special treatment.

2.1.2.5 Envelope methods

In the methods considered above all the whole-profile trace has been used in the positioning of the reference
line. There are other methods, however, in which only selected parts of the profile like the extreme peaks or
valleys contribute to the positioning of the reference, such reference lines highlighting the importance of the
peaks and valleys. A simple straight line grazing the deepest valleys was originally proposed by Schmaltz
whilst Nicolau decided on using the highest peaks [17], the roughness value being taken as the average or
maximum profile distance from the line. Neither of these methods has been extensively adopted. Two differ-
ent envelope methods have since been proposed, the first, the rolling circle envelope, by Professor von
Weingraber and the other by M Scheffer and Professor Bielle. These will be considered in turn.

(a) Rolling circle envelope (E system)
In 1957, von Weingraber [18, 19] proposed a system in which a circle was imagined to be rolling over the
crests of the profile graph. He advocated such a system because he believed that it mimicked very largely
the vertical position on the surface that the anvil of a micrometer or similar gauge would take if the size of
the component were being measured. The E system was a metrological attempt to link surface and dimen-
sional metrologies as seen diagrammatically in figure 2.34.

o Rolling circle

Locus of bottom of
rolling circle

N

R, Rp Dropped
envelope

Figure 2.34
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During its path the circle would obviously not follow a straight course; sometimes it would drop into valleys,
sometimes it straddled the peaks. It all depended on the radius of the circle relative to the average separation
of the peaks. The reference line was taken to be the locus of the lowest point on the circle (figure 2.34).

The advantage of this system was that, with a suitable radius, the waviness and roughness could be sep-
arated out to some extent, the radius acting as an equivalent of the sampling length in the mean line methods
(M system). It represented an ambitious attempt to provide a basis for a large number of geometrical features.
Where it failed was its difficulty in instrumentation. This method has an advantage, at least in this form, of
being quite simple to construct graphically and it does not suffer from the choice of origin, as does the least-
squares method described earlier. Suggested radii for the assessment of roughness have ranged from 3.2mm
to 50mm, the earliest being 25mm. It seems obvious that, in order to get the same degree of versatility as the
choice of sampling length allows, it is necessary to provide the same sort of choice for the radius. In a rela-
tively recent paper Radhakrishnan [20], examining the effect of the radius size on the measured roughness,
showed that the rate of change tended to be greatest for 3.2 mm and concluded that this value would be best
for distinguishing between roughness and waviness. This philosophy is questionable because it implies that
some of the roughness is being attenuated. Perhaps a better criterion is to choose a radius corresponding to
the minimum rate of change, which was the criterion adopted in deciding on the meter cut-offs in the M sys-
tem. Using this criterion has led to the conclusion that the original 25 mm radius would be a better choice for
general use, compared with the 0.8 mm cut-off in the M system.

One of the big problems with this method, apart from the instrumental ones, is that the technique,
although being an effective filter, has transmission characteristics which depend on amplitude. For different
amplitudes of waveform the transmission characteristic changes.

That the choice of a set of radii is not simple may be judged from the point that for a random surface the
R, value has an approximate relationship to R given by

R, o \/lnR (2.45)

which will be shown in the chapter on instrumentation. In equation 2.45 R is the ball radius.

It has been suggested that any system which is primarily concerned with a reference based on peaks
rather than the profile as a whole must be functionally more significant in rubbing or contact processes.

Recently, Radhakrishnan [21] has been investigating the three-dimensional characteristics of the enve-
lope system using a computer. What he has shown is that there are considerable divergences between results
obtained from a circle on the profile graph and the three-dimensional results nominally obtained with a ball on
a real surface. The E system was originally dropped because of instrumental and computational difficulties.
However, it is now proving to be more useful in both function and process control. This resurgence has been a
direct result of improvements in measurement techniques and data processing. However, the original concept
— that of using the ball directly on the surface—has not been pursued. Now it is simply simulated in a com-
puter once the original data has been obtained—by means of the conventional sharp stylus or optical probe!

(b) Peak and valley envelopes—R & W
A system of measurement being advocated in some countries, R & W, involves a peak and valley envelope line.
In its original form the method was based on a subjective assessment of the profile. The graph is taken with a
horizontal magnification of about X 20 and then a skilled operator traces two undulating lines more or less fol-
lowing the peaks and valleys but ignoring minor features separated by less than about 0.5 mm. The roughness
value R is then taken to be the average of 10 measurements of height between the two envelope lines.

Waviness can also be measured in this system by a system of tangents drawn between the uppermost
points on the peak envelope.

Certain restrictions have to be placed on the drawing of these tangents. If the depression of the envelope
between any two contacts A and B shown in figure 2.35(a) is only 10% of the roughness value, then the tangent
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has to be redrawn ignoring the secondary tangent contact B and proceeding to the next contact C. How this
technique is instrumented is described later in the chapter on instrumentation.

(c) Motif methods [6]

The motif method is an envelope technique. It was suggested in France in the early 1970s; see Standard
P.R.E.05-015 (1981).

The ‘motif” method in principle is rather simple. The unfiltered profile is divided into useful geometri-
cal characteristics in accordance with an empirically found algorithm which should be determined by the
combined experience of people dealing with profile analysis. In one form the motif itself is two profile peaks
with a valley in between them.

The motif is characterized by the two heights H, and H,. The characteristic depth T of the motif has a
special significance in the evaluation: it is the smaller of H; and H,. The mean depth is (H; + Hz)/ 2 and AR, is
the distance between the peaks. Application of the motif method involves checking whether two adjacent
motifs can be treated separately or whether one of the motifs can be regarded as insignificant and absorbed
into the other one to make one large motif. Two motifs cannot be merged if any of the four conditions apply.

1. Envelope condition (figure 2.35(b) (ii)). Two adjacent motifs cannot be combined if their common
middle peak is higher than the two outer peaks.

2. Width condition (figure 2.35(d) (iii)). Adjacent motifs can only be combined if the result is less
than or equal to 500 um. This is a very weak condition indicating that motifs up to 500 um are to be
included as roughness. It corresponds in effect to a cut-off. The width limit for evaluating waviness
is 2500 pum. These arbitrary rules have been proposed with the car industry in mind.

3. The magnification condition (figure 2.35(b) (iv)). Adjacent motifs may not be joined if the charac-
teristic depth of each of the adjacent depths T3 of the result is less than the largest characteristic depth
of each of the adjacent motifs. This condition is most important. It means that in each case an
unequivocal evaluation can be reached independent of the tracing direction.

4. The relationship condition (figure 2.35(b) (v)). Adjacent motifs may be considered if at least one
has a characteristic depth less than 60% of the local reference depth 7. Thus, adjacent motifs of
approximately the same size cannot be combined to form one single overall motif.

The reference depth 7x may appear in two forms. It may be the largest depth found in any one suitable pro-
file section approximately 500 um wide; it is then called the local depth reference. Alternatively it may be the
characteristic depth 75 which a combined motif would have.

The basic principle to follow when deciding on an evaluation is to find the largest motif in the measured
profile which fulfils all conditions, that is the profile should be described with the least number of the largest
possible motifs.

(d) Motif procedure (according to Fahl [22], figure 2.35(b))

First, the local reference depth over the relevant sections in the profile is found. Then within each individual
section every single motif is checked against its neighbour using the four conditions above and whenever
necessary combined with a new motif.

Every new motif must be compared with its neighbour until no further combination of two motifs is pos-
sible within that section. This is carried out for each section of the profile. When completed, all motifs that lie
outside the limits of the section must be checked with each other until no further mergers are possible.

In theory this is the end result. In practice, however, there are other considerations. Examples of this
include the presence of single isolated peaks or valleys. These have to be smoothed to a ‘reasonable’ level.
After this the ‘corrected’ profile results. Then, R,, the average motif depth, Ag the average width and p(R.,),
P(Ag) the distributions of R, and Ag are found. After these calculations a near profile comprising the peaks
just found is made. The whole procedure is repeated, except that, instead of 500 pm, 2500 pm is used. This
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corresponds to the envelope above the corrected profile. This time W, A, and p(W,,), p(Ay,) are found and
taken as the waviness parameters.

(®
P P
» 2 Py 1 Py
1 P2
(i)
PpPP, Py<P.pP,
“ w "
—_— —_—
500 um 500 pm
AR >500 pm AR <500 pm
(iv) T T
: T
2
Ty Ty Ty
T,<T, T=T,.T>T, T>T,.T,

MV

T,.T,>0.6 Ty T,,<0.6 Ty, T,.7,<0.6 T

Figure 2.35 (a) Motif method — R and W. (b) The motif and the four conditions for motif combination: (i) defini-
tion of motif; (ii) envelope condition; (iii) width condition; (iv) magnification condition; (v) relationship condition.
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The whole procedure can be repeated to give the form profile.
This represents the complete breakdown of the profile into roughness, waviness and form.

(e) Intrinsic filtering
The representation of the original profile in blocks is reminiscent of the methods of filtering using the sam-
pling length described earlier. In this case, however, the blocks are determined from the surface itself and
could therefore better be described as ‘intrinsic filtering’. Any local effects on the surface which are not
characteristic will automatically be taken into account. The sampling ‘matches’ itself to the local properties
of the surface.

In this motif method R, is approximately Ry or R, qualified by a varied sampling length. Ag is the aver-
age width between significant peaks. This corresponds to S,,, the average distance between zero crossings of
the profile with the mean line.

The advantage of the motif method is that it ‘reacts’ to the surface uniquely according to a set of rules.
The disadvantage is that the rules are arbitrary. They could, in principle, be modified to suit any given func-
tion. Another disadvantage is that the motifs are peak oriented; quite major peaks near to a valley are ignored,
yet small peaks near to a major peak are not. A different set of rules would be needed to make the algorithm
symmetrical. The arbitrary selection of 500 um and 2500 pum is a disadvantage but no more than the 0.8 mm
cut-off selected for the filters.

It seems that the motif method is another way of looking at profiles, perhaps complementing the filtering
methods or perhaps best suited for dealing with multiprocess surfaces where no standard characteristics occur.

Another possible use is in plotting the distribution of given sizes of motifs. This is almost the metrology
equivalent of a Pareto curve. Using this curve motif size against frequency of occurrence can be plotted for
roughness and waviness and can represent some interesting information. Exactly how it can be used is not
obvious but it is a different type of breakdown which does not rely on a reference line but on adequate defi-
nitions of peaks.

2.1.2.6  Summary

In the foregoing the development of characterization methods for a profile graph has been described. These
have been somewhat piecemeal in the sense that height and spacing parameters have been described. At the
same time considerations of reference lines and sampling lengths or equivalent cut-off lengths have been
given. This is all part of the attempt to classify the surface into its significant components and as such is per-
tinent to the chapter on the characterization of surfaces. The classification has been involved with many fac-
tors including dimensional metrology, functional and manufacturing considerations as well as height and
spacing parameters. A rather more coherent, yet not necessarily more relevant, classification is based upon
random process analysis of the surface. It may appear that random process analysis occurs just about every-
where in classification in different guises. This observation is true. Such is the potential of random process
analysis that inklings of it have occurred over many years and for different purposes. This chapter reflects
this situation. It would not be correct to isolate the subject of random process analysis from its various func-
tional usages, for they add to its credibility. Hence vestiges appear in many places in this and other chapters.

2.1.3  Statistical parameters of surface roughness

The theory of random process analysis is now well established in the field of metrology research but has yet
to make an impact in industry. This difficulty in penetration has been partly due to the expense of measuring
the various parameters and partly due to their interpretation. The former disadvantage is rapidly disappearing
with the advent of cheap computers. The latter problem still remains.

Many investigators have tried to formulate statistical rules with which to describe the geometric prop-
erties of surfaces. Basically the problem is that surfaces can be random, deterministic or usually a complex
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mixture of both. High-order probability density functions are needed to specify the general surface statis-
tics completely at one end of the scale of complexity, yet only a simple formula involving a few parame-
ters is needed at the other end to determine the complete profile. Somewhere in between these extremes
lies the practical characterization of surfaces. Such a compromise may exist by considering the autocorre-
lation function of the surface and the amplitude probability density function respectively. Taken together
they provide a reasonable basis for the topographic analysis of surfaces, especially if only a profile is
being considered, but they are by no means the only functions that can be and have been used as will be
seen later in this section.

2.1.3.1 Amplitude probability density function (APDF') or p(z)

It is possible for any continuous waveform, whether it is a profile signal or not, to be drawn as a graph as
shown in figure 2.36.
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Figure 2.36 Statistical breakdown of profile.

The two axes of the graph are height z and p(z), the probability density that any measurement has the value
of z. Some of the properties of the APDF are that it has unit area, it extends over the range z, to zy,;, and it
may take on a variety of shapes depending on the profile. In metrology it is a useful convention to plot the z
axis to the APDF in the same direction as the z direction of the profile. This arrangement makes visualization
easier. It is perpendicular to the method of display usually used in statistical textbooks.

Also used to describe amplitude information is the cumulative distribution function (CDF) which is per-
haps more useful. This represents at any level z the probability that a measurement of the waveform will be
less than z. To find the probability of a measurement of the surface lying between levels z; and z,, it is nec-
essary to integrate the APDF between these two values.

Thus, if p(z) is the APDF, then the CDF is given by P(z) where

P(z’) - f 700 p(2)dz (2.46)

and the probability of a measurement lying between z, and z; is

| e
Similarly p(z) = limit », _, ¢ (probability of measurement between z and z + Az) (figure 2.36).

2.1.3.2 Material ratio

Related to the CDF is the Abbott—Firestone (material ratio) curve which has been mentioned earlier [8]. (This
is 1 — P(z) or the probability that a measurement is higher than a given level z.) In mechanical terms it gives

Copyright © 2003 IOP Publishing Ltd.



the percentage of material to air of the surface profile at any level. For this reason it is sometimes referred to
as the ‘bearing ratio’, as mentioned in section 2.1.1.1, or material ratio which is the current terminology.

These curves only give height information. That is, they only give the frequency of occurrence with
which measurements lie between certain limits. They do not give any information about the spacing between
such measurements or the order in which they occur.

Ways of disseminating the height information of a profile based upon these techniques have been attempted
for a number of years. The earliest seems to have been by Pesante [9], who advocated the use of APDF curves to
control the different manufacturing processes. Ehrenreich [10] and Reason [23] have proposed different features
of the material ratio curve. Ehrenreich suggested measuring the slope between the air/metal ratios of 1 / 3 and
1/2. This value can be determined also from the APDF because it is a form for the differential of the bearing ratio
curve. Reason used a model of the surface comprising what he called a consolidated profile made up of a
sequence of mirror-imaged bearing curves. He also incorporated the scale of size of the graph in both directions.

In formal terms the APDF is more of a tool for specifying the characteristics of unknown waveform sta-
tistics. It is not necessary to specify it in the case of deterministic waveforms such as a square wave, saw-
tooth, etc, simply because the curve can be worked out from a knowledge of the formula for the waveform.

This can easily be verified with reference to a sine wave. Thus z = A sin x where the angle x takes values
from O to 27— in other words x is uniformly distributed within the interval 0 — 2x. The probability function
for x treats it as a random function because it does not matter (from the point of view of height distribution)
in which order the x values are taken.

The probability density function is

p(x) = € 0<x<L2r (2.47)
2r
=0 otherwise.

If p(x) and z = g(x) are known—a deterministic function for all z, zy = g(xo)—the probability that z lies
between z, and z, + dz must equal the probability that x lies in the range x, to xo+ dx. Hence

p(x)dx =p(z,)dz o p(z)=di(/’;l. (2.48)

If each value of z has n values of x then x = g7'(z) is multivalued and p(z) = np(x) /(dz/dx). This is the deter-
mining relationship for the APDF in terms of the deterministic relationship between z and x.
For a sine wave

dz _ Acosx:\‘/A2 —z?
dx
SO X = cos"(z/A) which is double valued and

p(z)=2p(x)= 31 for—-A<z <A
Acosx n-\;‘Az_Zz

(2.49)

The corresponding distribution function is P(z):

P(z) = f ' pla)z = ;B +sin” (/ZJ } (2.50)
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The material ratio curve is unity minus the distribution function, so for a sine wave it is

MR(z) = ;B - sinl(ZH.

Because many surface waveforms are neither truly deterministic nor random, the material ratio curve
does have some use in describing the surface; the shape can give some idea of the nature of the surface rela-
tive to the purely random wave given by the Gaussian or normal distribution p(z) (figure 2.37)

p(z) = é exp(-2%/20) 2.51)
T

where o is the RMS value of the profile R,. The reason for this will be given later.
(@) 1 ®

z
p(2) T @)

A
[

Figure 2.37 (a) Gaussian amplitude distribution; (b) sinusoidal amplitude distribution.

Rather than specify the whole shape of the amplitude probability density function it is often more convenient
to break it down using the moments of the curve. Thus if the kth moment of the curve is m;

my = f : 2 p(2)dz 2.52)
and if the mean value of z is
z= f (o) (2.53)
then the central moments are given by p:
k= f (-2 e (2.54)

It is these central moments that give useful parameters about the shape. Because the mean level Z' is
arbitrary, it represents the mean distance of the surface from the reference level in the instrument measuring
the surface. As such it therefore contains no useful information. The information is contained in the relative
values of the central moments and in particular the skew S; and kurtosis Sy,

Copyright © 2003 IOP Publishing Ltd.



The skew is defined as
S, =$ f -2y 2.55)
and the kurtosis as
Si = é f; (z - 2) p(z)dz - 3. 2.56)

where Z is the mean height of z. Both are normalized with respect to the RMS value of the profile waveform
o= \f/,LtQ (where o is the standard deviation of the surface and is equivalent to R).

Essentially the skew shows the degree of symmetry of the profile while the kurtosis shows the degree of
pointedness or bluntness of the waveform (figure 2.38).

Skew Kurtosis

Figure 2.38 Examples of skew and kurtosis in surfaces.

How these can be used will be seen in the subsection on characterization. Al-Salihi [24] first proposed the
moments in the form of a Gram—Charlier series. However, it is only recently that they have started to be used
seriously. The skew in particular has been used as a control parameter to judge the value of the conventional
R,, R, values etc. This control property is based upon experience of the typical shapes of profiles, the manu-
facturing processes and the functional effects of such waveforms. Take, for example, the profiles shown in
figure 2.38. These are taken from surfaces produced by different methods.

The formulae expressed above are not the only ones for the central moments. They can all be expressed
in terms of baseline moments. Remember also they can be defined along the x axis.

For example, letting

z =ﬁm zp(z)dz v, =J:°O 22p(z)dz v, =J'jO 2°p(z)dz (2.57)

where z, v, and v; are respectively the first, second and third moments about the arbitrary baseline from
which the z values are measured, the skew S is

S = %(v3 —-3zv, +22°) (2.58)
(e}

where 62 =v2-Z22,

Judging from these it seems reasonable to propose that, if the skew value is bigger in value than *2, then
a straightforward measure of R, etc will be questionable; it will not be quantifying the feature of the profile
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considered to be functionally most important. This value of 2 is rather fortuitous because it can be shown that
the skew of a random wave truncated at the mean level z gives a skew of 2.1 which is very close to 2. For con-
trol purposes, therefore, a value of skew greater than 2 would indicate that care must be exercised when tak-
ing simple measurements.

(a) Other properties of the APDF
If, as is usually the case, a workpiece is made using more than one process the profile often shows evidence
of it. The profile may comprise more than one identifiable characteristic, each one given by one or other of
the processes. This produces what is called a stratified surface. If the processes are additive in nature so that
z at any x can be written z = z| + z,, then the APDF p(z) is given by the convolution integral

p(z) = f (@) (2= 21)dz, (259)

where p(z) and p,(z) are the individual APDFs for z; and z,. In many cases in manufacturing this additive
effect is present: one set of geometries is superimposed on another and in other cases it is not. Consequently
the convolution does not hold. In the former case deconvolution enables the variables z; and z, to be identi-
fied statistically by their APDF providing one of the two is known.

If many interdependent variables are responsible for producing the final profile the resultant APDF p(z)
will usually have a form that is Gaussian in shape. This is because of the central limit theorem which can be
stated as follows: The resultant effect of repeated convolutions will produce a Gaussian output irrespective of
the shapes of the signals being convoluted. In practice any more than four or five convolutions will give this
effect. This explains why many finished processes, such as grinding, have an APDF which is Gaussian.
Because of this fortuitous phenomenon much analytical work has been made possible on models of surfaces
for use in contact theory and optics as will be seen in chapter 7.

2.1.3.3 Autocorrelation function (ACF) and power spectral density (PSD)

A major breakthrough in recent years in the characterization of surfaces has been the use of some of the
mathematical tools used in communication theory. Those used in random process analysis have been most
prominent. In particular, the autocorrelation function has been especially important. First used in 1946 in sur-
face roughness [25], the idea of correlation itself is well known in statistics and stems from the need to pre-
dict the influence that one set of numbers has on another set. One set comes perhaps from the input to an
experiment and the other from the output. Dealing with one profile signal alone is hardly what is meant by a
random process. What is usually implied is that many sets of information are being considered and the aver-
age relationships determined. In the case of surface metrology the many sets of data correspond to the whole
surface including texture. One profile represents merely a very small subset of the total data. However, such
is the nature of correlation functions that by investigating the statistical properties of one or at most a few
profiles, valid information is obtained about the whole surface. This is not necessarily the case when using
the deterministic parameters. Many of them give information which is dominated by the idiosyncrasies of the
individual profile and hence is unsatisfactory. Because of this property the use of correlation methods is on
the increase; the correlation function is bringing more predictability to the measurement of the random fea-
tures of surfaces. Why this is so will be seen presently.

The property of relating to the whole surface rather than individual profiles makes the autocorrelation
function (and its equivalent, the power spectral density) very attractive for use as a basis for characterization.

In fact random process analysis, which comprises the amplitude distribution and the autocorrelation func-
tion and power spectrum, has been the source of much research into characterization. The idea is to estimate
many parameters of significance in the function of the surface from a few random process parameters, thereby
making savings on the amount of measurement required as well as increasing the reliability of measurement.
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Consider now characterization using random process analysis. This has followed two distinct paths: one
uses the power spectral density and its moments, and the other uses discrete values taken from the autocorre-
lation function.

Both methods were initially devised to help to predict the many functional requirements to which sur-
faces are subjected.

The former approach originated from the work of Rice [26] in communication theory. This was
expanded to cover other areas by Longuett—Higgins [27], in particular the sea. Nayak [28] then used his
results to relate the moments directly to parameters of contact such as the mean peak height and the curvature
of peaks. Nayak also coined the terms ‘summit’ for a three-dimensional (or areal) maximum as opposed to a
profile ‘peak’.

The other approach, the discrete technique, was originated by Whitehouse [29]. In its original form the
autocorrelation function was constrained to be exponential. The characterization then became simply the
RMS o value of the surface and the correlation length—that length over which the autocorrelation length
falls to a small value t". Later this discrete characterization was extended to an arbitary autocorrelation func-
tion and three points A(0), A(h) and A(2h) for a profile where & was an arbitrary distance. Finally, four or
more points were used for the areal characterization of the surface. From these the same functional parame-
ters were derived.

The basic difference between these two approaches is that the Nayak model is worked from a continu-
ous signal and hence can be regarded as exact. On the other hand the Whitehouse model, because it is dis-
crete, can only be approximate yet it does mimic exactly what is measured. It is nevertheless a form of
surface characterization in its own right. The Whitehouse model appears here in its role as a method of char-
acterizing the surface. It also appears in chapter 3 in its role as a means of explaining the range of values
which measured surface parameters can take, it being assumed that all calculations are nowadays carried out
digitally. It may seem confusing to have two different methods of evaluating the same thing (namely, the
functional parameters). Greenwood [30], who input much of the information on which the functionally
important parameters were based, provides a critical view of both methods and sets them in perspective.

Before dealing with this some properties of the random process signals will be demonstrated. Later, in sec-
tion 2.1.7, some other methods of characterization largely based on random process theory will be described.

The definition of the autocorrelation function is as follows. If z; and z, are two measurements taken on
the surface a distance t apart then the ACF is given by A(t) where A(t)= El[z, z,], where E[ ]| denotes the
expected value of the product of these measurements taken over the entire surface:

Elz, Zz]:fin;o 2,2,p(2,2,)dz,dz,. (2.60)

Providing that two conditions are complied with, the formula E[z;, z,] can be modified to a more useful
form, that is, one incorporating a profile. The conditions to be satisfied are, first, that the random nature of the
surface is uniform in distribution and, second, that the ergodic theorem holds. The first of these conditions is
self-explanatory but the second is not. It must suffice here to comment that the real surfaces are close enough
to uniformity and ergodicity to justify the use of the ACF. Some examples of processes not satisfying these
conditions can be found in communications textbooks.

Under these circumstances the formula may be rewritten as

L/2
A(T) = Elz,, 2,] = lim% f 22+ 1)y 2.61)

For 7= 0, E[z}, z,] = A(0) = 62, the variance of the signal, or R% in surface terminology. Because E[z,
zp]= El[z,,z,] it follows that the function has even symmetry about 7= 0 (figure 2.39).
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Figure 2.39 (a) Typical profile; (b) autocorrelation function.

Basically, ergodicity means that averages of many surface profiles taken at the same time or x value are the
same as averages taken of one record over all time. This in turn means that all phase is lost in the signal. It
will be shown in section 7.10 that the phase can be retained to advantage in a systems approach. The phase
angle ¢ is
b= tanl(X(function)) 2.62)
R(function)
but the function is real because the ACF is even. Hence X(function) = 0 and thus the phase is zero.

It is because of this that the ACF has the useful property of being more reliable than deterministic
parameters. It is the phase effects and particularly the random phase effects which influence the individual
characteristics of a profile such as the highest peak etc. The random amplitudes contain the essential infor-
mation, the energy information. Consequently, removing, not measuring, the delinquent random element (the
phase) improves the stability.

One property of the autocorrelation function not often realized is that it can reveal the ‘average machin-
ing unit event’. To see how this happens consider shotblasting. The unit event here is the crater left on the sur-
face after the bead has impinged on it. Such a crater is shown in figure 2.40. Alongside it is its ACF. The
profile in the figure is a typical profile of a shotblast surface together with its ACF. Notice how little has been
changed. The reason for this is that it is by the random positioning in space of the unit event that the profile
is built up. This means that the beads hitting the surface are uniformly distributed in space. Heuristically it
can be argued that the only difference between them (apart from some degree of geometric interaction) is
spatial. This constitutes only phase information and, because the ACF is not responsive to phase, this is
ignored. Hence the autocorrelation function itself is merely showing the ACF of the average unit event. The
degree to which this is true can be seen from the figure. The only proviso is that the statistics of the manu-
facturing process have to be Poissonian, that is uniformly distributed in space, which is true for many finish-
ing processes. More of this will appear in chapter 6. The first use of correlation in surface metrology was

1.0

Unit machining
event

Profile

Figure 2.40
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suggested by Wormersley and Hopkins in 1946 [28], who advocated the use of methods previously used for
examining turbulent air flow for looking at surfaces. (They were associates of R E Reason at Taylor Hobson.
Hopkins joined with Reason in producing the first definitive book on surface metrology in 1944 [2].)

Linnik and Khusu [31] and Nakamura [32] looked at correlation later. However, it was Peklenik [33]
who proposed the use of the ACF in terms of a typology for surfaces and, since this time, it has become
acceptable to specify surfaces in terms of the statistical properties of surface height rather than the distribu-
tion of peaks and valleys, at least for certain applications.

(a) Parameters of the ACF
Parameters taken from the single-profile graph will be examined first. This in itself will consist of two sets of
measurements, one direct from the ACF and the other indirect via power spectra etc. The areal assessment of
surfaces using statistical methods will be described.

(i) Direct parameters

Two parameters emerge directly from the signal-discriminating property of the ACF. First is the measure of
how quickly the random element decays and second is the wavelength of the periodicity of the more deter-
ministic component if any. Also, there is the possibility of classifying the type of process by examining the
shape of the function. These possibilities have been explored by Peklenik [27] and others. Another function,
the structure function S(7) = E(z(x) — z(x+1)?) = 206%(1 — A(7)) is also used. It does not need a reference line.
Its use is described in section 7.7.4.

The parameters themselves relate to the scale of size of the abscissa of the correlation function. The cor-
relation length, that is the length over which the correlation function drops to a small fraction of its height at
the origin, has been defined as that length of surface over which the ACF drops to between 10% and 50% of
its original value (see figure 2.41).

That this value appears to be somewhat arbitrary is merely a reflection of the fact that the definition of the
value of correlation required for independence depends largely on the proposed function of the workpiece.

1.0
A
© 1/e
0 T
P
50% 10%
Correlation ~—+———
length

Figure 2.41 Autocorrelation function.
One definition that has been used is
correlation distance = L f ‘A(r)‘dr (2.63a)
A(0)’°

which, for A(7) = exp(—t / "), gives the correlation length to be t° which corresponds to a correlation value of
1/e, that is 37%.
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Although this definition is easy to carry out for a simple exponential function it is not so easy for more
complex functions. For example, a typical second-order correlation function is

cosat
A(T) = ﬁ
1+y°t

This has a correlation length which is obtained from

1 f"o ‘cosar‘

0 1+y2¢2

- (2.63)
4(0)

which results in an expression

( )
1[cosh aj tan™! k*} (2.64a)
y y sinh a/y

This is not a simple expression. It could also be argued that the real criterion for independence is where the
envelope of the correlation function falls to a lower level than 1 /e rather than the function.

For a purely random surface such as is often found in grinding and similar processes, use can be made
of the correlation length to define the number of degrees of freedom contained within a given length of pro-
file. Once this is known it is then possible to determine the average behaviour of the surface. An example of
this is given in the chapter on instrumentation, where the degree of stylus integration is worked out using
independent elements of the surface. The effect of the skid is also tackled this way. The degrees of freedom
so obtained can also be used to estimate the variability of a parameter measured from the profile.

Using the autocorrelation function or power spectral density as part of the basis for a typology is useful.
It is relevant to determine the type or family to which the generated surface belongs. Peklenik made the
premise that every surface can be described by a basic autocorrelation function. Owing to the ability of the
correlation method to separate the random from the periodic components of the surface he proposed a typol-
ogy system which, by means of the basic autocorrelation functions and/or a combination of them, could meet
the requirements. Any typology of the correlation functions or spectral densities has to address the size as
well as the shape of the curve. Peklenik proposed five shapes, as shown in figure 2.42.

To augment this classification in terms of size he advocated the correlation length and also the correlation
wavelength which relate to the unit of size for the dominant random component and any dominant periodicity
respectively. The definition of the correlation wavelength is obvious; that of the correlation length is given in
equation (2.63a) and tends to be more important because most finishing processes are random. The problem
with such a typology is that to use it functionally requires a deep understanding of the way in which the sur-
face configuration affects the function. This is not straightforward as will be seen in chapter 7. The typology as
proposed, however, is more likely to be useful in a manufacturing context because it is much easier to relate
periodic elements to machine tool problems of long wavelength and the process in single point cutting for
short wavelength and the random element to the process. In any case the two types of shape can be readily tied
in with the method of production of the surface. That this typology has not been taken up in practice is due in
part to the fact that manufacturers are still reluctant to depart from the idea of a ‘one number’ surface, mainly
because of cost and the practical difficulty of getting personnel to deal with any sort of statistical concept.

Returning to the determination of the ‘size’ element of the correlation function naturally brings in the
concept of the correlation length.

From the previous section it is clear that the autocorrelation and the power spectrum are powerful tools
of characterization. Methods based on them which are more speculative will be given later on in section
2.1.7.5. However, there is a word of caution. Under some circumstances (2.33) more than one type of surface
can produce the same correlation function.
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(a)

Formula Autocorrelation Group
A(7)
A(t)=const. I
A(t)=cos ot
A(t)y=exp ““+cos ® .
(t)=exp o \
\ . I

y I
A(t)=exp “*+cos o1
SN~
A(I):Z(exp+ v
sin+cos)

A(t)=exp ™ v
]
(b
Random profile Random telegraphic signal Exponential
Amplitude modulated Narrow-band frequency Modulated

or phase modulation

Figure 2.42 (a) Peklenik classification; (b) example of ambiguity.

This example shows a frequency-modulated waveform
Zgm= €08 Wt — Dysinwgt sinw.t (2.64b)
which could well be generated by a tool which has yawing vibration.
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Compare this with a surface exhibiting amplitude modulation of the form
Z am= €08 @t + M cos @st cos @t (2.64¢)

where Dy, = Af/ 'f. is the modulation index for the case of frequency modulation (assumed to be small) and M
is the depth of modulation for the amplitude modulation signal.

Comparison of these two surface profiles shows that they could both have the same sidebands but dif-
ferent phase! They would give the same power spectrum yet they are produced by a different mode of vibra-
tion of the tool.

This ambiguous situation changes if D is increased to greater than three because extra sidebands show
up with the extra series of the Bessel function describing the mode of modulation.

To separate these two surfaces a classification of the amplitude density curve would have to be added to
resolve the confusion. This is shown in the different shapes of APDF shown in figures 2.42(b) and 2.43.
Kurtosis would make an ideal differentiator in these cases.

Other ambiguities can arise because of the phase insensitivity. A classic example is that of a genuine
random surface having an exponential autocorrelation, function and the random telegraphic signal. Both sig-
nals in fact have Poissonian statistics but produce different waveforms. This is seen clearly in figure 2.42(b).

(ii) Indirect parameters
One mathematical tool often used in the derivation of indirect statistical parameters is the joint probability
density function (JPDF) and, in particular, the multidimensional normal distribution (MND).

The JPDF between variables Y, Y5, Y3, etc can be written as p(Yi, Y,,. . ., Yn,) and is taken to be the
probability density that Y, takes the value Y; when variable Y, takes the value Y, and so on. Y, and Y, need
not be the same type of variable, neither should they necessarily have the same dimensions. For instance, Y,
can be a length and Y, an angle.

It is often the case that Y|, Y5, etc, are themselves the result of a large number of random variables and
under these conditions the central limit theorem holds, that is, the variables can be considered to be Gaussian
variates and, furthermore, over a wide range of conditions the joint probability density function will be

Gaussian. Assuming each variate has zero mean value the JPDF will have the form p(yy, 2, y3, . . . , yn) where
1 (_ i,j= M,yy \
PV, Y2y Vi) = o l,f:}(pk 2 My, (2.65)
2m)" =N MY 2|M|

where IMI is the determinant of M, the square matrix

(dy dy dy)

M = (2.66)

dy,  dy, dNNJ

and dj; is the second moment of the variables y; y;; M;; is the cofactor of d;; in M. This multinormal distribu-
tion for random variables is absolutely crucial in the surface properties field and is used in many places in
typology and in chapter 7 on function.

Thus, the point probability density function of two height variables z,, z, that are correlated by p is given

by p(z1, 22):

N[ A (_ B 2)
_ # _i 1 (ZZ le) 2.67
=) [Nnje){p( 2JL\2n(1—p2)Jexp 2(1-p?) een
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Figure 2.43 Modulated signals showing how ambiguity arises.

which is written in the form of a conditional probability density and an elementary probability density

p(z1,25) = p(2)p(22 | 22) - (2.68)

That is p(z,lz,) is the probability density that z, takes the value z, given that z; has the value z;.
In the unconditional form equation (2.67) is

((z2-2 2
1 exp _L(Zl 0212, + 25 2.69)

L
p(Z|,Zz)— 2(1—p2)

2 (1 _ p2 )l,"2

(b) Parameters involving crossings of the profile
Some investigators have derived statistical information from the number of crossings that occur at any level.
Much of the original theory is derived from the work of Rice in communication theory [25] and relates to
random or pseudo-random waveforms. Longuet—Higgins [26] has expanded the work into two dimensions.

Some typical parameters that have been derived are as follows.

Consider the profile shown in figure 2.44. It has been shown in terms of stationary random process the-
ory by Peklenik [33] that the average number of crossings for unit length of profile is 1 / A, where 4, here is
not the average wavelength as such but related to crossings at ‘a’

1//Z'a :JA0 z’p(a,z’)dz' (2.70)
and
,_dz
g1 =
dx

and the average thickness of the profile at height a, is given by v,

= e PRI I peyz . @2.71)
I z2pta, 21z

l/ A4 corresponds to the high-spot count sometimes used as a parameter of the surface. Notice that the term
for y, is normalized with respect to a unit length.
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Figure 2.44 Profile-crossing parameters.

For the case when the profile is Gaussian in form and of zero mean

1 z2 1 z3
p(z),2,)=——¢€xp| -| —— —exp| —| ——
oN2m 20%/ Jox2n 20° 2.72)

where z; and z, are considered to be independent and hence p = 0.
From this Gaussian form ¢’ is the standard deviation of the slope and & is the standard deviation of the

profile:
=0 exp | & 2.73)
Fem o\2n ST ‘
, 2
Vo= ﬂﬁexp{_(;zj }{1 —q{aj } 2.74)
o 15} o
From these
o' =c,0l,
ya = Ctll'l')"a (2‘75)

where ¢, and ¢}, are constants for any given level at which the crossings have been counted and v, is the aver-
age number of crossings per unit length at level a.

Information about the correlation function is inherent in ¢’because it is well known that the variance
of z'is related to the correlation function by the formula.

o2 = _d24(0)
dr?

For a equal to the mean of the surface, ¢, = 2w and ¢, = 1 / 7. For a equal to the o level above the mean
line, ¢, = 10.3 and c;, = 0.16. For instrumental reasons some sort of offset from the mean line is usually made.
This is in case electrical noise is present which can happen at high magnifications.

The advantage of such an approach is that deterministic surfaces can be treated in a similar way.

A similar approach has been used by Sankar and Osman [17] who proposed a parameter called the
MCE, the mean crest excursion. In addition they proposed the RMSCE, the root mean square crest excursion.
Both of these are derived from p(A,), the probability density that the profile has a crest (or high-spot) width
less than or equal to the specified value of A, about z. Thus

MCE = E2,| = f (M)A,

Aa

) U2 (2.76)
RMSCE = U (A, ~MCEy’p(2, )d/l,,) .

Copyright © 2003 IOP Publishing Ltd.



Similar expressions have been developed for the valleys but only give the same information for a ran-
dom wave. (Note that A, is not the average wavelength as defined earlier and described below.)

As in the previous example they proposed counting profile crossings at a height above the mean line.
This time, however, they chose a height of the R, value rather than the RMS R, value above the mean line.

2. 1. 3.4 Power spectrum

Continuing the theme of a wavelength-conscious parameter naturally leads to methods which do not attempt

to characterize the autocorrelation function but to condense the information in the power spectral density.
One method due to Spragg and Whitehouse [13] involves the estimation of the moment of gyration of the

power spectrum (the RMS frequency) by a direct measurement of the RMS slope and the profile RMS value.
It has been shown that if gy is the RMS angular frequency

. I:sz(w)dw

2 =200 (2.77)
Jo P@)do
Similarly, it can be shown that
E(z'*)=0c"? (2.78)
=(R))? = LJ o’P(w)do. (2.79)
2! =

The power spectral density is related to the autocorrelation function by means of Fourier transforms.
Thus the well-known relationship is

P(w) :J: A(t)cos(wt)dr (2.80)
A(r) = Lf P(w)cos(ot)dw. (2.81)
21’ ™
The power spectrum P(w) is related to the Fourier spectrum of the surface by

2
A(r) = lim%‘F(a))‘ . 2.82)
The value of A(7) at the origin is the zero moment ¢, the variance of the surface equal to R?.
Equations (2.80) and (2.81) are cosine transforms because both P(®) and A(t) are even—the phase has
been destroyed. This is one of the advantages of using random processes—one less random variable is present.
Consequently, P(w) the power spectral density is stable.

Hence
1w (2.83)
WORrMs 2r
and
Aq = Arus = ZnR—‘j (2.84)

where Ry = o, Ry=0o".
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This technique, as in the level-crossing methods for autocorrelation, is completely general, providing
that the characteristics are stationary over the evaluation length. For convenience the A4 value is often
replaced by the A, value, the average wavelength alternative.

Some examples of the parameter A, value are shown in figure 2.45. The essential practical detail that
needs to be taken into consideration in autocorrelation as well as PSD measurement is the high-frequency
content of the signal allowed through by the instrument. The change in parameter value as function of fre-
quency cut is profound. As an example the way in which @grys changes with high cut ¢ is given by [12]:

d—(a)z) = P(c)f (c? —w*)P(w)dw/(SP(0)(dw)*. (2.84b)
c
POV
lpmt //
0.1lmm —fle 2

P(M) | Average

wavelength
 WWWAM /(\

0.1lmm ___.1 I..__ 0y A
e \/\/\/\/\
0.1 —_— ]
mm Average M
wavelength

Figure 2.45 Average wavelength and power spectrum.

It will be demonstrated in a later section (2.4) how it is possible to build up a comprehensive measuring phi-
losophy in roundness based upon such a system.

2.1.3.5 Peak and valley definitions and characteristics

Some characteristics of interest to the metrologist have already been studied in different disciplines, for
example, the distribution of maximum values in statistics as in communication theory (Rice [12]).

Surface 1

7

Can be
reduced to

-

Surface 2

Figure 2.46 Surface contact.
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The conventional way to calculate average peak height from a surface profile is to split the profile verti-
cally into equal height intervals and then to count the number of peaks within each interval over the profile
length. These peak counts, sometimes called peak frequencies, are plotted as a function of height; the result-
ing graph is called the peak distribution histogram. If these counts at each level are divided by the total num-
ber of peaks within the profile length assessed the plot becomes a peak probability density. This is possible
because the area of the plot is unity. The average peak height is obtained from this by working out the height
of the centre of gravity of the graph from the height datum.

In the above approach the count of peaks within each height interval can be regarded as an attribute.
Each peak is only registered by its presence. In what follows it is suggested that there is another way to arrive
at an estimate of peak probability. This method does not derive the peak probability curve using the peak count.
Instead the ‘extent’ of profile surrounding each peak which satisfies certain discrete peak criteria is measured
and summed for each height. These sums of ‘extents’ are normalized within each interval for all heights by
the total length of assessed profile. In this way another way of generating a peak probability curve is realized
in which the attribute of peak presence has been replaced by the measurement of a peak property (i.e. the
extent). It turns out that this ‘extent’ of peak-like property is related very strongly to peak curvature (i.e. each
peak is *weighted’ by its curvature). It has to be pointed out that, in the direct probability approach, neither
the actual ‘extent’ of peaks or their curvature are measured. These peak properties are intrinsically contained
within the definition of probability (see for example equation 2.85 below) and the limits of the integration.
The fact that there is no need to measure curvature of the peaks and yet still include the effect of curvature
(i.e. the extent along the profile describing the ‘thickness’ of the peak) is very attractive (see equation 2.88).
In the following sections it will be shown that the values of average peak heights (and RMS heights) are dif-
ferent using this measure of probability. It is suggested in this paper that the two methods are complementary.
The peak count method may be more useful in electrical and thermal contacts because the actual numbers of
contacts are involved whereas the latter could be useful in loaded contacts (figure 2.46) [1].

The starting point is the joint probability density of the surface height, the slope and the second differ-
ential z”, (here approximated as the local curvature). This is represented as p(z, z', z"). At this stage the joint
probability density function is quite general.

The probability of peaks occurring between zs and z; + oz having a curvature of between z” and z" + 6z"
and a slope between o and & is therefore

zg+6z [Oz [(zg+8zn
P(2) :J. J; J’O p(z,z',z")dz"dz'dz (2.85)
=0z'p'(0).p(z,,2")0z" Oz (2.86)

In equation (2.85) &z is small when compared with z and &z” is small when compared with z” (i.e. much more than
an order of magnitude smaller) and p’(0) is the probability density of the slope term at between zero and 6z’

The local length of surface over which this peak condition holds is given by &z/z". The term 52/2” is in
effect the ‘thickness’ of a peak of curvature z” between height z and z + &z. and having a slope of between o
and 6z z' (figure 2.47).

Given the probability of a peak, the number of peaks per unit length, N(z,), is obtained by dividing equa-
tion (2.86) by &z’ /z" in the same way as Bendat [34]. Thus

N(z,) = &'p'(o)p(z, z”)5z”5z/52/z"
=p'(o)p(z, 2")"&" 6z (2.87)

The peak count is basically the number of times that the profile height falls between z; and z; + oz when the slope
of the profile is between 0 and &z and the curvature is between z” and z"+ 6z"per unit length. The distance
information is not omitted. For a given z and slope range (i.e. &z’ the count for unit distance) is determined for
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Figure 2.47 Peak weighting.

a given " by the extent of x in which z” is in the o to 8z’ range (figure 2.47). The count is remembered but the x
values are not. So for the peak probability the x values are remembered and the peak count is not and for peak
count equation (2.87) the count is remembered but the x values are not. The two parameters are not the same:
they are absolutely complementary. It may be that a parameter derived from both approaches is possible.

It is useful to compare equation (2.87) with equation (2.86). At first glance this is a comparison of a
count of peaks with a probability of peaks. There is, however, a completely different interpretation of the
probability equation (2.86); it can be construed as the sum of the count of peaks each weighted by their
‘thickness.’ Take for example (2.88) for the probability of a peak at a height between z and z + 9z,

0z'p'(o)p(z, z")0 z".0z = (p'(0).p(z, z")z"6z" 6 z.(5 z’/z”)
%r_/

probability count thickness (2 88)

In words, the probability of a peak £(2) does not only depend on the number of peaks but it also automati-
cally takes into account their physical dimension as revealed by the radius of curvature 1 / 7". The total peak
probability between z and z +0z is given by P(Z) where

zg+8z ()

P(Zs)=52'p'(0)f fp(z,Z”)dZ"dz (2.89)

s

which represents what is in effect the count of all peaks at z each weighted according to their radius of cur-
vature 1 / 7. This is a measure of the total length over which the profile at height between z and z + Oz satis-
fies the peak criterion. When divided by the profile assessment length, this equation (2.89) represents the
peak probability.

For any height between z and z + 6z there will be a family of probabilities each made up of counts of
peaks, and each family having associated with it a different radius of curvature. Exactly how large the

Copyright © 2003 IOP Publishing Ltd.



probability is depends on the form of p(z, z"). No assumptions about the nature of p(z), p(z, z")or p(z, z' z")
are needed.

A point to be aware of is that the mechanism of contact is made up of two elements, the behaviour at a
‘typical’ contact and the distribution of such contacts in space. The probability of peaks at z gives in effect the
total length of ‘peak-like’ surface at z which has the capability of supporting normal loads. It does this
because the definition has first isolated the peaks and then lumps them together after multiplying by 1 / 7"
This weights them in importance according to 1 / 7". The peak count by contrast is an estimate of the distri-
bution of peaks (i.e. how the number of peaks per unit length varies with height). The total length of x; val-
ues mentioned above is expressed as a fraction of the whole length of profile.

So the peak probability and peak count taken together can satisfy a functional requirement for surface
parameters, (i.e. represent both the unit functional event (contact points) and their distribution in space).

Consider now the peak count. The total number of peaks per unit distance at height z is given by
N(z;)where

zg+dz 0
N(z)=p'(0) [ [ p(z,z")z"dz"dyz (2.90)

and is a simple count of all peaks at z irrespective of their curvature divided by the total profile length.
Equation (2.90) should be compared with equation (2.89). It is evident that probability and frequency of
occurrence are not the same. This can be seen in equation (2.88).

The standard way of evaluating the average peak height is via the count (or frequency of occurrence).

Thus the average peak height obtained conventionally, Z, is given by

o 0 o 0
Z, =5zp'(0)f fz.p(z,z")z"dz"dz/5z’p'(o)><f jp(z,z”)z”dz”dz (2.91)

—00 —00 —00 —00

An alternative way using probabilities of peak rather than the frequency of occurrence of peaks is suggested
here. This gives Z, where

© 0 © 0
2, = 5z'p'(0) | | zp(z,z”)dz”dz/6 z' f'(0) x f f p(z,z")dz"dz (2.92)

—0 —00 —00 —o0

Only if the value of curvature z” is fixed or its range severely restricted or if z” is independent of height z can equa-
tion (2.91) be equal to equation (2.92). As none of these are probable in practice, zrp # 2. which is a gen-
eral result and not dependent on the form of p(z, z"). ZT,, could be used as an alternative measure of average
peak height rather than 2, and peak probability as explained above could perhaps be more meaningful than
peak count in contact situations. The fact is that for any given z there are a number of peaks with curvature
z"|, say ny, a number with curvature z",, say n,, and so on which are taken into account with peak probability
but not peak count. The number of peaks atzisn; +ny+.. ... This is just the number of peaks at z. Nothing
else is recorded.
If the waveform is z and its derivatives are z' and z”

Z!=—  Zzl'=—, (2.93)
The probability for a peak occurring at a height between z; and z; +dz is dz;

0
dz, :f, p(z,,0,z")z" dz". (2.94)
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This equation shows the restraints for a maximum, namely that z’ = 0 and z” < 0. Similar equations hold for
the valleys. Note that all curvatures are lumped together!

In the case of random waveforms this distribution approaches a Gaussian form due to the central limit
theorem.

Notice the similarity between this formula and the one for the average number of crossings per unit
length of the profile.

The coefficients in the correlation matrix M of the multinormal distribution of equation (2.65)
become

Ez)=c®  E(z') =(‘ddzA2(T)j 52 = A4(0) E(z,21)=0
T
E(z',27) =0 E(z,z”):(d;A(zr)) S A0)  E(z7)= (d A(T)j A°(0). (2.95)
T

For simplicity the notation below is used:

™A@ _ o) (2.96)
dTn =0
Then the multivariable matrix M becomes
c 0 A"(0)
0 -A"(0) 0 (2.97)
A"(0) 0 AY(0)

which yields cofactors
my, =—A"(0)A"(0) my;=(A"(0))* my; == A"(0)c* (2.98)

from which the probability density becomes

( )
llwzexpL—(mnzzl +myyz0% + 2m13zlz")J. (2.99)
27‘[3“’2‘M‘ Z‘M‘

The expected number of peaks per unit length at a height in between z; and z, + dz is given by p,(z).dz

( 2\ i 2 [ | l
2= M exp| 2 [+ m (”] exp(zj Prerf| - Msf |l (2100)
b o 32M ‘ ‘ L IIZ‘M 1341 2}1133 262 Z‘M‘L;Zmu J

p(2,,0,2") =

where

erf(x)—\/f exp(—t*)dt. (2.101)
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For large z it can be shown that the expected number of peaks per unit distance lying above the height a,
Py(a), is given by

12

Pp(a)zlt_d j | exp[_aj (o' = E(z'?)). (2.102)
2

o’ 20?2

This corresponds to the number of positive crossings at height a. The total number of peaks per unit dis-
tance of any height is obtained from equation (2.94) by integrating with respect to z and z”, yielding

(0 |1 fotrere) 1)

1 _ 0 - (2.103)
2m| —A"(0) 2 UO a)zP(co)dcoJ 2\ m,
Furthermore it can also be shown that the number of zero crossings of the profile N is given by
( © 5 \1,»2 o 1/2 1/2
Nl fog’ P(“’)d“’J _1f=a"©0) | _1f m (2.104)
7\ [o P(w)dw n\ A(0) 7\ m,
and in general the average number of zero crossings of the kth derivative of the profile is given by
- 1/2 /
1 (J'O a)2k+2P(0))da)\ 1 _A2k+2(0) 12
Ne=—"Z"F7 | ="\~ (2.105)
n( Jo @ P(w)dw J x\ A4%(0)
from which, by using Maclaurin’s series,
7? i
A(r):A(0)+EA”(0)+;A” 0)+---. (2.106)
In principle, by measuring N, i = 1, 2, . . ., k, the autocorrelation function can be found from this equation.

This assumes that the profile is Gaussian and that the autocorrelation is differentiable at T = 0, which is
not the case for exponential correlation functions, nor for fractal surfaces where all the derivatives at the ori-
gin are undefined.

Other peak characteristics of particular significance in surface topography can be found in terms of the
ratio of maxima to crossings on the profile.

(a) Peak density above mean line
For example, the peak density above the mean line is given by fg Dp(2z) dz where p,(z) is as given in equation

(2.100). Here the peak density as defined by [35] simply counting peaks.
After some manipulation, the peak probability density p, above the mean line [24] is

1/2 1/2 . 1/2 1/2
p=L ('m} N (mz} _ L ( Ay (0)j N (A (O)) (2.107)
4| \m, m, 4| \—A"(0) o,
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where my, m,, my are the fourth, second and zeroth moments of the power spectrum, as in equation (2.104),

which gives the result that p, = density of maxima over mean line = ] total maxima density +  density of

crossings. Also, density of maxima below mean line =] total maxima density —J density of crossings.
A corollary of this is that

Dy —D,- =35 density of crossings (2.108)
-p,. =1/4,. (2.109)

This definition of RMS wavelength shows how it may be obtained without having recourse to high-spot
counting which may not be as accurate as peak counting on a profile obtained from a real surface.

(b) Mean peak height z,

_ I~ zp,(z)dz

- . 2.110
I% py(2)dz 10

p

This can be evaluated using equation (2.100) to give

Gkrc

(2.111)
2 \2

p

where k is the ratio of density of zero crossings to maxima in unit length.
The mean peak height above the mean line can be similarly found. Thus

o Loz
T py(z)dz

—G\Z/H{ Jl—(k/2)+ +sin- {kﬂ. (2.113)
2+k 2

(2.112)

Also

z, =—o\2/n2’_‘k{i\1—(k/z)—7zr+sinI@H. (2.114)

Figure 2.48 shows how the respective peak height properties change with k. The physical interpretation
of k is that of a bandwidth parameter. It tells the shape of the spectrum. When k = 2 it corresponds to a very
narrow bandwidth surface; when k = 0 a wideband spectrum occurs as seen in figure 2.49.

By changing k many surfaces can be simulated. Therefore the tribological behaviour of many types of
surface varying from the purely random & ~ O to nearly deterministic k ~ 2 can be investigated. The k value is
a characterization of the surface and is especially useful in contact problems involving peak and valley
behaviour. This is in effect a typology based upon random process theory. This concept of taking the ratio of
the zero crossings to the peak count was used extensively in the USSR [36] by Lukyanov.

As can be seen with reference to the definitions given so far the value k can be related to S and S,

k=2S/Sp.

This k is not to be mistaken for the k surfaces of sea reflection discussed later in the context of optical scat-
ter in chapter 7.
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The use of k (or a described in areal parameters) is a means of making a typology from the shape of the
power spectral density rather than using the Peklenik typology based on the correlation function. They are,
however, both doing the same thing only in a slightly different way. In the foregoing analysis the importance
of the zero-crossing approach should be noted. The reason for this is the ease with which crossings (and peak
counts) can be measured from a chart. The count does not have to be very accurate in order to get some idea
of the density of crossings.

To pursue this crossing initiative further, consider the possibility of estimating the correlation function
itself from crossing theory. It can be done quite easily as will be seen. Apart from being useful as an estimate
such techniques can be useful as checks on computed results.

2.1.3.6 Cumulative distributions and peaks counts

The well known curve describing the way in which the material to air ratio changes with height has many
names. It started as the Abbott—Firestone curve and now is called the material ratio curve MR(z). It is defined as

MR(=)=] p(z)d= 2.115)
0

where p(z) is the probability density of the profile taking the value z. This parameter is one of the most used
of all parameters and is the basis for many modern parameters namely Ry Ry [37].
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The problem with the material ratio curve is that it relates to the whole profile and does not consider
peaks as such. What is proposed here is a variant of MR based on peak probability rather than the whole pro-
file probability.

Thus the peak probability ratio PPR(z) is given by

PPR(z)=p'(0)%" [ p(y) [ p(z"/z)dz"dz (2.116)
0 0

by expressing p(z, z") in the conditional form p(z).p(z”/z).
Normalizing equation (2.116) gives equation (2.117) in which it is seen that MR information is not lost.
It is in effect modulated by the peak information.

© Q
PPR(z) = [ p(z) [p(z)dz"dz @.117)

MR(z) peak factor

Obviously, the mechanism of measuring PPR(z) from a profile would be slightly more complicated than that
of MR but not prohibitively so. As each peak between z and z + 6z is recognized and counted it is weighted
(i.e. multiplied by the measured value of the radius of curvature for that peak) before being added to the accu-
mulator representing the probability value at that level. In practice this weighting is not usually necessary. It
is taken account of automatically, as will be seen later.

It is suggested here that this curve of PPR(z), could possibly be more meaningful than the MR curve in
some contact situations and possibly in wear and friction because it is highlighting exactly that part of the
waveform which is capable of supporting normal load. PPR(z), in effect pools the advantages of a peak
(which is the latter part of (2.117)) with that of the material ratio (which is the first part of the same equation).

Y Tt AR T Flat surface
< T.' "--"\ «— Surface profile
This appears to be This peak has been loaded
loaded

Figure 2.50 Apparent peak loading.

The corresponding cumulative peak count ratio PCR(z) gives only the number of peaks down to level (£) as a
fraction of the total number of peaks i.e.

PCR(2) = [ p(z) j p(z"/z)zdz"dz (2.118)
0 0

Figure 2.50 shows the mechanism of the loading of a peak on the surface. It is seen that the effect on the
larger peaks is straightforward. An elastic compliance is shown. what is also shown is a sympathetic compli-
ance with peaks not being contacted. This possibility is discussed later when considering the Gaussian case.
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Figure 2.51 Discrete model of profile.

Figure 2.51 shows that if the quantization interval is oz then the probability of peaks at z is obtained by
adding the width of peaks between the interval z and z + &z rather than the width of the profile at z as in the
material ratio evaluation. The PCR(z) is therefore easy to measure.

In order to get some feel for the proposal it is useful to consider the case when the probability densities
can be considered to be Gaussian. This is not a bad assumption in practice because many finishing processes
have this property and, in any case, the gap between contacting surfaces is more than likely to have a
Gaussian characteristic than either individual surface.

Gaussian statistics (for profile)

The multi-normal distribution is used to calculate the relevant statistics (after Rice) [26]. Thus

1 1 1
p(z,0,z")= exp( (mymyz® +2m3zz" + mom,z"?))
et M|

(2.119)
where IM| = m, (mgmy — my?), my, m, and my are the variances of z, z', and z” respectively.

Average peak heights (Gaussian Analysis)

Using equation (2.119) in equations (2.91) and (2.92) and noting that p’(0) is removed from the distribution
by normalization the well known result for the average peak height is found. Thus Z. is given by

5 = /” "y (2.120)

Z. = N
V2 m,

This result has been well documented for many years. See for example Bendat [34]. If, however, the average
is found by probability of peaks and not frequency of peaks Z, results.
Where

= 2 m
Z, = ==

" Vam,

2.121)

Notice that zrp is much lower than 2. in the profile waveform illustrating that more emphasis has been
given to the ‘wider’ peaks found lower in the profile than Z, which assumes all peaks are of equal weight (i.e.
each peak has the value unity).

The ratio of equation (2.120) to equation (2.121) is the considerable value of 5! This represents a very
considerable difference in height. It could be interpreted, therefore, that the average height of peaks weighted
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by their radius of curvature is a factor of © / 2 lower than the average height of all peaks. However there is
another interpretation.

My

Letting b=— (2.122)
\ mgmy
where b is a measure of the bandwidth of the surface spectrum gives the value of Z, as
5 = \/ngmo (2.123)

and Z, = \/zb\/;()
s

If b =1 which corresponds to a narrow spectral band surface such as might be found in general turning or dia-
mond turning.

Jm,. (2.124)

\

Under these circumstances when b = 1, (i.e. nominally a sine wave surface) the average height of the ‘sig-
nificant or weighted’ peak is equal to the R, value of the surface—the arithmetic average for the profile above
the mean line. In this interpretation obviously the symmetrical R, level below the mean line is invalid. In

N|

then

2
/a

equation (2.124) the value of \/;0 is R, the root mean square deviation of the profile about the mean line.

Using the same example, Z,, the ‘all peak’ average height, can be interpreted as the amplitude of the
dominant waveform in the narrow band spectrum (i.e. the amplitude of the feed mark) because it is n/ 2
larger than the average (R,) of such a waveform,; it corresponds in fact to R,

The interpretations of Z, »and %, can in this specific case of b = 1 be identified with the traditional surface
parameters R, R, and R,,. It is interesting to note that for this type of surface the well known and often used
R, value has a peak interpretation as well as the traditional profile representation [1, 2].

One question that has not been answered in the above section is how the cumulative distributions of
peak probability and peak count compare with the material ratio curve for the Gaussian case. This will be
addressed in the next section.

Cumulative distributions (Gaussian analysis)

The material ratio curve is well known and often used. It has the form given in equation (2.125) and equation
(2.93). Thus

MR(=)= |- p(z)dz (2.125)

which, for a Gaussian distribution, becomes

) 2
MR(z)= | b % exp(— Zj dz (2.126)
N 27~ My 2my,
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-1 [1 - erf{ ﬂ 2.127)
2 2m,

This distribution is obtained from all of the profile signal and does not separate peaks.
The comparable cumulative peak probability for a Gaussian distribution of the profile is PPR(z)

where PPR(=) = T P(2)dz

where the probability of a peak within the interval z and z +8z is

S exp(— ;Zj (1 +erf (HKz))az (2.128)

47r\/m0m2 m

The cumulative version of equation (2.128) appears not to have a closed solution. However, some idea of its
form can be obtained by taking just the first term of the series for the error function.
This gives the cumulative peak distribution PPR

o2
PPR(z) ~ MR(=)+ Jg’”—ML 2exp(—P2K=?) (2.129)
T mym,
where
H = \/’"2 P = \/’”4 K=-"2_ and MR(-) is the material ratio.
my M |

Equation (2.129) clearly shows the two components making up the PPR; the material ratio term plus a
term involving peaks only. (P is a measure of closely correlated peaks above =.)

The equation therefore shows in figure 2.52 that any load could be resisted at a higher level using the
peak probability than it would for the material ratio curve. It is the contention in this paper that the PPR
approach could be more likely to satisfy the practical situation of contact and wear than MR(-)! The impor-
tant point is that there is more information in the statistics of the surface profile and no doubt also the areal
geometry than has hitherto been extracted.

The value of the peak count between z and z+0z is well known [34] but it can be expressed in a slightly
different form.

Thus if M is the determinant of p(z, z', Z”) then,

wh

N.(2) = exp(—P?K?z?) + —= exp(—)(l +erf (HKz)) (2.130)
(2ﬂ)/ IR 47r my m,
In equation (2.130) P = \/% and H = @ as in equation (2.129)
m, Fm
The count ratio down to = is given by fj:Nc(z)dz = PCR(=) (2.131)
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PCR(=) = 4i P(1 - erf (PK=)) + 4iH exp(— ;—2)(1 + erf (HK=)) 2.132)
T T my

Equation (2.132) breaks down in a simple way. The components A and B are shown in figure 2.54 and are
clearly higher than the PPR.

Cumulative probability peak

Material ratio

Figure 2.52 Cumulative peaks.

Two features of the cumulative peak count given in equation (2.132) stand out. First is the fact that there is no
identifiable MR(-) term within it, which is not surprising considering the way in which PCR is constructed
from the profile; spacing information in the form of the P and H multipliers is preserved. The second feature
is that the equation clearly splits into two components: the A part in which P occurs and the B part in which
the parameter H occurs. In random theory P is a measure of peak spacing and H is a measure of zero cross-
ing spacing. It can be shown that the A term is a measure of the count of peaks above =. These peaks must have
valleys also higher than £, and the B term is a measure of those peaks above = which have valleys below =.
These two components of peaks can roughly be identified in Figure 2.53. The H terms in B in equation
(2.132) can be thought of as the large peaks which directly deform and the P terms in A those peaks which
indirectly deform. The situation is more complicated than this but the foregoing description is a possibility.

L P,

Figure 2.53 Types of peak.

The two different types of peak relative to = (i.e. the Ps and Hs) must have different functional proper-
ties. This suggests that the cumulative peak count PCR should be split into two component curves
(instead of just one as in figure 2.52) and that both of these curves should be used. A typical case is
shown in figure 2.54.
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Cumulative peak count

A-term (in Ps)

B-term (in Hs)

Figure 2.54 Breakdown of cumulative peak count.

A physical interpretation of these components is that for any given = the A curve (in terms of P) represents
peaks which are highly correlated with each other whereas the B curve represents a count of peaks which are
independent [125].

Discussion

The section above indicates that obtaining peak parameters by using the peak ‘count’ distribution used exten-
sively in communication theory may be somewhat misleading to tribologists. Using the peak count implies
that every peak in the count is the same. This is not true for surfaces. It is only by resorting to the probability
of peaks that some measure of the different peak properties is possible. In this case the peaks are effectively
weighted by their radius of curvature. This reflects to what extent the surface surrounding the actual maxima
lies within the boundaries set by 6z’ and 6z” which are arbitrarily small and only need to be applied consis-
tently throughout the waveform to be entirely valid.

It is shown how large differences between estimated parameters can result depending on whether peak
‘count’ probability or just the peak ‘probability’ is used. A displacement of n/ 2. Ry downward when assess-
ing the average peak height would probably be significant in contact situations such as mechanical seals for
example.

Another observation is that the peak probability distribution could be more realistic than the mate-
rial ratio curves used extensively in industry which completely ignore the influence of peaks when carry-
ing load. R, the highest parameter of the material ratio curve, is loosely described as a ‘peak-like’
parameter, which is a highly optimistic description. The cumulative peak probability curve could well be
a better indication of the load carrying capability and wear properties of a surface than the material ratio
curve or the cumulative peak count. However, the latter is useful for a different reason; it not only pro-
vides spatial information in the form of peak separation, it can also give an insight into spatial correlation
between peaks. This aspect of possible contact behaviour is not reported in this paper. It is explained
elsewhere [127].

In practice not all peaks make contact; it is far better to consider contact as a ‘gap’ property between two
rough surfaces rather than a rough surface touching a smooth as in this paper. Nevertheless the argument
remains valid.

As a next step some practical experiments need to be carried out to see if direct probability meas-
ures, as recommended for tribologists in this paper, can be carried out. Finally, areal measures rather
than profiles should be investigated. However, it seems obvious that equal if not greater divergence will
occur in parameters obtained by the two paths, that is peak probability versus peak frequency (count) of
occurrence. Ideally, it should be possible to contrive a metrology scheme which uses the benefits of
both methods.
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2.1.4  Areal texture parameters, isotropy and lay (continuous signal)

Methods of measuring and specifying the surface over an area are now often investigated. Areal information
from a surface falls into a number of categories: one is statistical average values, another is the structure and
a third is defects or flaws. The last two can be found from purely qualitative information, that is a visualiza-
tion of the surface. The former is concerned with quantifying the information in the z direction primarily but
increasingly in the x and y directions also.

The structural problem will become more and more important in non-engineering fields as will be seen,
for instance, in biological applications. The form of areal investigation has of two types: the first has been to
measure deterministic parameters in a large number of places and then specify a spread which the parameter
might take, and the second has been to try somehow to predict from a few profiles or a single profile what the
areal properties really are without measuring the whole surface. It is the areal characteristics which are
important in function. The biggest problem is that if the area is completely measured the amount of data
needed may be too large to handle. Because of the amount of data the most obvious way of attempting to
specify areal characteristics is to use the statistical methods described above. This is precisely what has hap-
pened. Because the work done in these areas is as yet relatively small, emphasis is given to short-term work
which will be likely to be of practical use. However, some consideration of new tools in the analysis is rele-
vant which, although restricted to random surfaces, does enable some light to be thrown onto those parame-
ters having tribological significance. Later, some practical cases of techniques, rather than analysis, will be
discussed which may ultimately provide a more general basis for future work. In particular the Wigner dis-
tribution methods will be considered.

Ultimately, the worth of either theoretical or practical methods will be judged by their use in the field.
This has yet to be demonstrated fully where random processes are concerned.

2.1.4.1 Direct methods of statistical assessment over an area

One way of doing this has been suggested by Peklenik and Kubo [35]. They have proposed a two-dimen-
sional mapping of correlation functions split broadly into two fields; one where the surface is basically
anisotropic and the other where it has only small variations from isotropic symmetry. Peklenik tackled the
first and Kubo [36] the second. Fundamentally the distinction between the two approaches is the coordinate
system used; Peklenik uses Cartesian coordinates (figure 2.55) and Kubo uses polar (figure 2.56). Neither of
these methods has attracted much attention.

Other practical methods of determining areal properties will be dealt with in section 3.7 for the digital
implications and in chapter 4 on instrumentation.

The Peklenik and Kubo methods are just techniques for extending the use of autocorrelation to
areas, not for determining new parameters for three dimensions. This was achieved principally by
Longuett—Higgins and later Nayak.

The advantage of the Peklenik—Kubo method is that it provides some tools for the description of sur-
faces which are not necessarily random in nature. Other techniques have been advocated which consider only
random and similar surfaces.

Such a piece of work has been illustrated by Nayak [30], who transposed some of the work of
Longuet-Higgins to manufactured surfaces rather than sea waves.

The importance of this original work was that it shows the errors which can result when extrapolat-
ing the peak and valley heights obtained from a profile to that of the whole surface. Longuet—Higgins
quantifies the errors, pointing out that by using a simple profile the higher crests and troughs will some-
times be missed.

The analysis hinges again on the multivariate distribution and is similar to the Rice technique except
that it is now in two independent dimensions rather than one. (This is defined as the areal case.) Once the
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Figure 2.56 Correlation length map (polar).

areal case is considered the formulae become correspondingly more complicated. For example, the two-
dimensional autocorrelation function becomes A(, i) where

L/2 (L2
A(z,i) = lim Lf f z(x,y),z(x+71,y+i)dx dy (2.133)
L]Lz~>ocL1L7 —L/2d-1,/2

y being used as the other independent variable and z the variable in the plane out of the surface. Similarly the
spectrum becomes

P(u,v):ﬁ f f A(r, i)expl[—j(mu + ivldz di. (2.134)
71' —00vY —00
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These formulae are used extensively in the optical work on Fourier analysis in chapter 4. Another use-
ful formula is the moments of the spectrum, m,q. Thus

My :f:f P(u,v)u?vidu,dv (2.135)
from which o =my,. (2.136)
It is possible to extract the information about a single profile from these formulae by noting that
P(w)= f " Pluvydl 2.137)
where
I=@?+v—0?). (2.138)
Some features of importance in tribology can be estimated analytically by using the MND and the parameters

2 2 2
o442 02 0z g O (2.139)
dx dy ox* oxy oy*

Using these the summit curvature, slopes, etc, can be found for the surface, at least on a microscopic scale.
For example, the distribution of summit heights can be found by imposing the constraints that

2
P 2 2 2 2
dz dz d’z d’z d’zd’z (dz] > 0. (2.140)

—=0, —=0, —<0, —<0 and ——-
dx dy dx? dy? dx*dy* \dxdy

Then the probability of finding a summit at a height between z and z + 6z in an area dA is
2 2 2
54””]{2}12, dz d’z dZ] d(dZ)’ [dZJ’ (de et 2.141)
de dy dx* dy?/ \dv/ \dy/ \dx’

where the limits of integration have to obey the constraints given.
A key parameter that Nayak highlights is the ratio of some of the moments. In particular, for a Gaussian
isotropic surface the parameter a is given by

2
density of maxima g] (2.142)

o = s which in effect=[ - — -
density of positive crossin

(m, )2

and is obviously closely related to k used in the previous section 2.1.3.5. The parameter o (or k) can be use-
ful in determining the reliability of parameters.
In equation (2.142)

M= Myy= 0% My= M= My the mean square slope

my=myg=moy=3my,  the mean square second differential.

The moments with double subscripts represent the non-isotropic case.
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It is known that all the relevant characteristics of stationary profiles can be expressed by means of the
spectral moments. (Later it will be shown how these moments can be estimated by methods other than cross-
ing and peak counts.)

For the areal surface the moments mpgq are given by

mpq:fj. o!wip(w,,n,)do, do, (2.143)
and can be found by relating them to profile moments m,(6) at angle 6:
m,(0)=m,,cos"0 + (’3 m,_y1,c08 ' 0sind +...+ m,, rsin’0... (2.144)

using equation (2.143).
The second-order surface spectral moments m,g, m, and mg,, can be found from three second-order
profile moments in arbitrary directions 6;, 6,, 65,. Thus

(mzo\ (mz G )\

tmllJ = Mltmz(ez)J (2.145)
Moy, m,(6;)
where
(005291 2sin6, cosb, sin20
M =] cos?d, 2sinf,cos0,sin20 |. (2.146)

cos’0;,  2sin6,cosh,sin20
If 6, =0°, 6, =45°, 6; =90°, equation (2.145) reduces to

my, = m,(0)
my; = m,(45) — 5m,(0) — 1m,(90)
my, = m,(90).

Thus, if my is the variance of the slope in the zero direction, myy, is the variance of the slope in the 90°
direction then m; is the covariance of the slopes in those two directions. It should be noted that the angles 0°,
45° and 90° were chosen for convenience only; however, equation (2.145) may be used with any three angles.

Again employing equation (2.144), the fourth-order surface spectral moments myg, ms3;, My, M3 and
Mgy, can be calculated from five fourth-order profile spectral moments in arbitrary directions 6y, 6, 65, 6, and
0s. These are

(m40\ (7714(91 )\

ms, my(6,)
my, | = M7 m,(0;) (2.147)
my3 my(0,)
Moy my(05)
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where

( cos'0, 4sinO,cos®0;  6cos’0;sin*0;  4cosB,sin’0, sin“@l\
cos'0, 4sin0,c0s’0, 6cos?0,5in’0, 4cosO,sin’0, sin*0,
M =] cos*@; 4sinO;cos’0; 6cos’0;sin’0; 4cosO,sin’d;  sin6; |.
cos*0, 4sin0,cos’0, 6cos’,sin’0, 4cosO,sin’0, sin*0,
cos*0s 4sinfscos’0s  6c0s’0ssin’0;  4cosOssin’0s  sin*6;

The values of my, and my, are the variances of the curvature in two perpendicular directions, and m;, is
the covariance between these two curvatures. The values of mj3, and m; are the weighted covariances
between the curvatures in two perpendicular directions defined as follows:

SN2\ V2
et
dx? dy?

(2.148)

2 1/2 2 3/2
o { ]
dx? dy?

These expressions are considerably simplified when the surface is assumed to be isotropic, which
implies that the stochastic properties of the surface in general and m,(6) in particular are independent of 6.
Under this assumption, the surface and profile spectral moments are related by

My = m,

Mmyy = My, = M,
my, =0 (2.149)
Myy = Moy = 3my, = my

My = M.
Therefore, for this case the desired characteristics can be obtained from a single profile.

It can be shown, for instance, that using this nomenclature and with the associated constraints, that the
density of summits is given by

Dy, = ! (m“] (2.150)
673 m,

The parameter o is similar to the Q factor of the power spectral density. Large o implies a wide spec-

trum. For a — 1.5 the spectrum becomes narrow.
Letting z' = z/ o (normalized height)

2
for o — 1.5 ‘2\3(_2)[ ?—1+exp(-z"?)] forz'=0

psum(zl): \27[
0 for z' <0

(2.151)

for @ = @ pon(z)= ——exp(=12")
N2
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which imply that for wideband surfaces the summit distribution is indeed Gaussian, whereas it is not for nar-
rowband surfaces where it becomes more nearly Rayleigh or Maxwellian.

Similarly the expected value of the mean curvature for summits of height z’, expressed in a normalized
form by dividing by my, is

p(sum. curv. at z')\/m4

. .at z’ -
plsum. curv. at2') - 53 050 foro > 1.5
Vm,

=(8/3) 7 for a —

which indicates that for wideband surfaces the mean curvature varies linearly with peak height whereas for
narrowband surfaces it is very nearly independent.

Estimates of m,, m, and m,4 can be obtained from the number of maxima, minima and zeros on the pro-
file (as the k value of profiles). It has been shown by Longuet-Higgins that

. 2
o= MoMa _ [densny of extremesj 2.152)

m3 density of zeros

thereby showing that a. is in fact k> which is obtained from the profile. Hence the o value can be found by a
simple counting routine.
Also, the density of peaks (or valleys) is as proposed earlier:

1/2
Dy =1(’”4j (2.153)
2w \m,

which can be compared with the density of summits
D, ~1 .Z(Dpcak )2. (2.154)
Note this is not the simple factor of (Dpeak)2 as one might expect. Similarly the peak and summit heights

differ. This is due to the presence of saddles and cols in the areal case.
The probability density ppea (2') is given by

o (2') = — exp| — +7-kyexp| —=— |(1+erfk
Py (2" \/27-[|: p 2% 2€Xp ) ( 2)

where
2

(a—l\]'

“=a)

It has also been shown that the probability density for a summit is

1/2

72

and kz(l k‘j z'. (2.155)
2k?

Pan(2'0) = f;eXp(—ksz " =2+ 2exp(=t*/2)Jexp[=} kst + kytz7)]

where k;= a/(2a —3)and ky = k3 (12/a)"/2, and
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20 1 2
(i; + gfj (2.156)
Ly

1
tzl(aj
2m4

from which pg,, at the limiting values o = 1.5 can be found:

zrexp(—z'%/2 Z'> 0l
ppeak(z,): p( ’ ) }a: 15
0 z' > OJ
| (2.157)
Ppeat(2') = ——exp(—z"2/2) a—>.
N2

A comparison of these distributions reveals that the profile shows far fewer higher peaks and more low
peaks than actually exist. The discrepancy is greatest for o — 1.5 and zero for a — %« (figure 2.57).

Figure 2.57 Peak and summit distributions.

The important point here is that tribologically important parameters can be found by means of the
moments of the spectra. Whitehouse earlier approached this in a completely different way using the corre-
lation function rather than the power spectrum and using discrete points from it rather than the continuous
analysis of Nayak.

Similar effects are revealed for curvatures etc. Practical verification of these results has been obtained
previously by Williamson [41] by making use of relocation profilometry. He shows divergences of the same
order. See also Sayles and Thomas [42]. The conclusion reached from Longuet-Higgins’ and Nayak’s work
is that the high-order statistics of the two-dimensional surface depends on the variances of the height, slope
and second differential, mg, m,, my. which can be obtained from a single profile for Gaussian isotropic sur-
faces and from three non-parallel profiles for Gaussian non-isotropic surfaces—a technique checked by Wu
et al [43].

It should be noted that there are fundamental assumptions made in much of the preceding work, which
are that the height distribution is random (i.e. Gaussian in nature) and also that asperities and valleys follow
reasonably well-behaved shapes.

Unfortunately neither has to be true for the surface roughness produced by many single-point and mul-
tiple-point cutting processes such as milling; the amplitude distribution is anything but random so that the
results obtained above would hardly be applicable. Similarly the asperities are often not simple peaks; the
very nature of cutting, especially with a blunt edge tool or grit, produces a wave-like effect which introduces
overhang and re-entrant features into the geometry and gives multivalued z values for x and y — not at all
easy to deal with mathematically. (Incidentally, the latter factor is also true for sea waves, a factor which lim-
its the usefulness of Longuet—Higgin’s approach to a relatively calm sea.)
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Other models have been used, some of which presume on the nature of the waviness present. For exam-
ple, the work of Lukyanov [36] makes the assumption that the roughness is random and the waviness is not.
Thus

z(x,y) = h(x,y) + w(x, y). (2.158)

This approach will be considered under waviness.

2.1.4.2 Practical approach to areal (3D) measurement

Much of the previous work on areal (3D) assessment has been of a theoretical nature and has been based on
the work of Longuet—Higgins [26] transposed from Oceanography by Nayak [30]. This work, coupled with
the inability to map surfaces quickly and with high fidelity, put off practicing engineers. Both of these prob-
lem areas are being eroded by the more pragmatic approach of Stout er al [53], who, working with EC sup-
port have produced some plausible practical alternatives to the purely theoretical approach. It must be said
that once the direct link with the theory has been broken the constraints imposed by rigour are lifted, allowing
some useful ‘functional’ parameters to be put forward. The justification for these new parameters is power-
ful; they fit in better with practical engineering. A summary of these and similar parameters is given below.

One good idea in the development of a new parameter was to change the letter prefixing profile para-
meters from R to S indicating ‘surface’ parameters. This is not an international standard but it is a step forward
in itself. There should be no ambiguity between the ‘surface’ and profile parameters. The abbreviations used
below have not been adopted formally but, as they are straightforward, they are used here.

The primary parameter set is split into four groupings of parameters: amplitude parameters, spatial
parameters, hybrid parameters and functional parameters.

Missing from the 17 parameters listed above is the symbol S, representing the surface average. It would
probably be sensible to include it because it does represent the most tangible link with the part.

However, the original reasons for using R,, namely that it could be checked from the profile chart
whereas the RMS value could not, simply no longer applies because of the digital takeover. It certainly
makes no sense to put both in—there are more than enough parameters anyway.

The amplitude parameters follow the profile definitions but the areal ones do not necessarily.

Some specific areal parameters result from the nature information, lay and isotropy can now be
included. S,,, the length of the shortest autocorrelation function, is one such parameter following on from the
proposal of Kubo [36].

The hybrid parameters again follow on from the profile equivalent.

The functional parameters listed below use the definitions proposed by Stout [53]. They are basically an
extension of the automotive parameters Ry,, R;, R, used for describing the shape of the material ratio curve.
In the first instance these were obtained from the profile but in the ‘surface’ material ratio S,, they better
describe what is taking place when the surface is being used. These surface parameters are provisionally
listed in EUR 15178EN Surface Bearing Index. Sy; is given by

5, =2 - 1L (2.159)

Zoos  Moos

In equation (2.159) zj o5 is the height of the surface at a height of 5% bearing (material) ratio.

A large value of S); indicates good load carrying capability and would indicate a good bearing.

For a Gaussian surface Sy; is about 0.6 and for a range of surfaces, including multiprocess finishes such
as plateau honing, the value is between 0.3 and 2 which is a useful range. A run-in surface tends to have a
larger value than an unworn surface so the Sj; parameter could be used as a measure of wear.
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Table 2.8 Primary set of 3D surface roughness parameters.

Amplitude parameters

Sy Root-mean square deviation of the surface (um)
S, Ten point height of the surface (um)

Sex Skewness of the surface

Sku Kurtosis of the surface

Spatial parameters

Sds Density of summits of the surface (mm)
St Texture aspect ratio of the surface

Sal Fastest decay autocorrelation length (mm)
S Texture direction of the surface (deg)

Hybrid parameters

Sa Root-mean square slope of the surface (pm/pm)
Sar Arithmetic mean summit curvature (um)
Sec Developed surface area ratio (%)

Functional parameters characterizing bearing and oil retention properties

Shi Surface bearing index

Sei Core oil retention index

Svi Valley oil retention index

S Material volume (um?*/mm?)

S. Core valley volume (um?*/mm?)
S, Deep valley volume (um?/mm?)

The primary parameter set is split into four groupings of parameters: amplitude parameters, spatial
parameters, hybrid parameters and functional parameters.

Surface material ratio Sy,

Sy, = Sq_ (2.160)

20.05
where z( 5 is the height of the surface at 5% material ratio.
Core fluid retention index S,;
S =(¥(0.05) - v,(0.08))/S, (unit area) (2.161)
where v represents valley.
If S, is large it indicates that the surface has good fluid retention properties.
The range is

0<S,; <0,95— (A5 — hoos) (2.162)

when £ is z normalized by S,.
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Valley fluid retention index S,;
S, =, (h =0.8))/S, (unit area) (2.163)
Here
0<8,;<0.2 = (hog—ho.0s) (2.164)

For a Gaussian surface S,; is about 0.1 in value. The values 0.05, 0.8 etc are arbitrary but accepted as
reasonable.

The use of functional parameters is not new. As early as 1936 Dr. Abbott proposed what is now the
material ratio curve as a parameter useful for load carrying.

There is nothing wrong with functional parameters except for the fact that they are matched to specific
applications and can give misleading values for unrelated functions. Mixtures of functional parameters could
be used to describe different applications but then the parameter rash could well be the outcome.

Another problem is that the functional parameters mentioned above have been designed for multi-process
finishes. However, the real gains to be made by measuring over an area are in predicting or modelling the path
of the tool and not fine tuning the roughness. This is what is missing from today’s list of parameters—all 17 of
them according to table 2.8.

Using parameters such as S,, gives very little useful information about the ‘lay’ especially in multi-tool
processes such as face milling. It could be argued that using a very general parameter to estimate a very spe-
cific lay pattern is questionable. The ironic part of this exercise is that the most important information (for
example the tool path) in milling is completely ignored at the measurement stage only to be replaced by an
almost irrelevant correlation procedure.

Undermining all the attempts to classify the areal properties of surfaces is the fact that the actual ‘sys-
tem’, of which the surface is only a part, is neglected. The ‘system’ is comprised of at least two surfaces
making contact at perhaps part of a bearing. The way these interact is of prime importance. One reason why
the ‘systems’ approach is neglected is because the function of the system is difficult to achieve. Short of car-
rying out the function with real parts, which is impractical, the possibilities are to simulate the mechanics of
the system in a computer given the measured data from both surfaces or to analyse the system theoretically.
The latter is acceptable providing that the assumptions made are realistic.

The message is that it is pointless having 14 or 17 or 23 parameters for one or even both surfaces unless
the interaction mechanism is itself characterized. At present, at best, the average distance between the mating
surfaces is known and possibly any tilt. Usually even these factors are not known together with roundness
error, cylindricity, etc. It seems inconceivable that most of the major systems parameters are neglected, yet
more and more detail is sought for individual surfaces. The one redeeming factor is that Stout [130] has
moved away from the theoretical parameters (found in communication theory and applied to surfaces) in
favour of ‘functional’ parameters which should be at least partially relevant.

Nature of Areal Definitions

Description of areal properties corresponding to say a peak or valley and in particular dominant cases [45].

One of the first attempts to describe a surface in terms of hills and valleys was made by Maxwell [46].
According to him, a hill is an area from which maximum uphill paths lead to one particular peak and a dale
is one in which maximum downbhill paths lead to one particular dale. Also boundaries between hills are water
courses and between dales watersheds; course line and ridge lines respectively. Both ridge and course lines
emanate from saddle points and terminate at peaks and valleys.

Scott extends the ridge and course concepts to major hills and valleys [45], i.e. ‘a hill is a single domi-
nant peak surrounded by a ring of course lines connecting pits and saddle points, and a dale is a single dom-
inant valley surrounded by a ring of ridge lines connecting peaks and saddle points’.
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This ‘motif” method has some merit because functions such as mechanical seal and flow in general depend
for their efficiency on a knowledge of the probability of escape routes. Pathways between peaks and valleys
in the areal model can provide one way to estimate the flow of liquid within the zone. In the case where con-
tact has been made, as in a seal, it may be a relevant parameter.

The pathway from summit to dale is shown in figure 2.58. This is called a ‘change tree’. Clearly the tree
can be made for hills and vales and for the typical joint situation.

The critical paths drawn on the contours of a surface together with the hills and vales trees give an idea
of the way that flow of liquid or air passes across the surface. Rather than just saying that there must be leak-
age between two surfaces in, say, a mechanical seal it could be possible using this methodology to determine
the actual pathway.
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Figure 2.60 Dale change tree. Figure 2.61 Hill change tree.

2.1.5  Discrete characterization
2.1.5.1 General

Whitehouse based a typology on what was measured, that is the actual ordinates of the surface itself. Thus
instead of using joint probability distributions p(z, m, ¢) involving surface height z, slope m and curvature c, all
taken as random variables, he used the joint probability distributions p(zy, z», z3, 4.,... ) of measurements of the
surface. These were used to examine the average joint behaviour of the measurements using the multinormal
distribution in such a way as to predict functionally important properties or manufacturing process properties.

This completely different way of using the multinormal distribution was tackled by considering the
average behaviour of discrete ordinates of the surface rather than the continuous variables used by Nayak.
This involved discrete values of the autocorrelation function rather than moments of the continuous power
spectrum (figure 2.62(a)).
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Figure 2.62 (a) Three-point autocorrelation function. (b) Areal correlation coefficient positions.

In a series of papers from 1969, he and co-workers [29, 47-49] developed a characterization of profiles and
areal (or 3D) surfaces totally in terms of discrete values of the autocorrelation function of the profile and
areal coverage of the surface (figure 2.62(b)).

A summary of the way in which this typology of surfaces can be used will be given here. The theory is
demonstrated in chapter 3, where exactly the same procedure can be used to explain digital measurement
results. This is the innovation. It formally relates the characterization of the surface to the measurement pos-
sibilities. One important note is that, whereas the results for the discrete autocorrelation function of a profile
converge to that of Nayak’s profile as the spacing (#) between correlation points is taken to zero, the discrete
areal results do not converge to the continuous areal results.

The results for profiles by Whitehouse and Nayak have been compared experimentally and theoretically
by Bhushant [50]. Also a characterization by Greenwood [30] will be given. This latter treatment is an
attempt to simplify and clarify the Whitehouse results.

All the methods of Nayak, Whitehouse and Greenwood rely on the multinormal distribution as a basis
for the calculations. It has been found that a certain amount of non-Gaussian behaviour can be tolerated. It
has been suggested by Staufert [S1] that a skew value of up to =1 still allows good results.

The Whitehouse parameters for a profile are given in terms of the profile correlation function at the ori-
gin R%] and at positions # and 24 from the origin, that is A(k) and A(2h) called here p; and p,. Thus the mean

peak height is
/2 ( 1/2\
R, (l—plj 201/x tan‘l(6_4pl+p2)j (2.165)
b (1-p,)

the density of peaks is

1/2 1/2
D,= " tan" ((3—4/?1+Pz)j =L tan- (Aaj (2.166)
th (1-p2) mh 4

the density of zero crossings is

Nng=—2C08"" P (2.167)
mh
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the mean slope is

1/2 /2

o854

the variance of peak heights is
1+ (R {[(A/27D, )(4,/4;)]"? = (4 /47D?2)} (2.169)

the mean curvature of peaks is
(R} 45)/[2Dyh* (w4))' (2.170)

the variance of curvatures is

0l =[(R; 4,)/[4h*A)1(87A)) + (2h/D, ) (A 4,)" > —(A:h*/D})] (2.171)

and the correlation between curvature and peak height is
correlation=[1-(1 - 2p; +p,)/(407)]"* (2.172)

where A1 =1-p, Ay =(1-p,), A3=(3 —4p; + p>) and G% is the peak variance normalized with respect
to 0% i.e., R

This set of parameters derived from three points on the correlation can always be augmented by using
more than three points, say five or seven.

As it stands this model permits a best spectral fit of the form P(w):

P(0)~1/[(j©) +jo(p? —p)/ (1= p})+ pi(ps ~1)/ (1= p})P 2.173)

of which the exponential is a special case. Fitting four or more points to the autocorrelation function
allows second-order spectra to be modelled and higher degrees of freedom. This has been found to be
largely unnecessary.

In extending this to areal (or 3D) surfaces a number of options arise depending on how the area is sam-
pled. The comparison of the behaviour of surface properties between continuous and discrete models is not
straightforward. This is because of the options available in the discrete definition. Here, the straightforward
tetragonal pattern of sampling will be used in which a summit is defined if it is larger than four orthogonal
adjacent points as in figure 3.21(c). Digonal, trigonal and hexagonal patterns will be considered in addition
to this in chapter 3 on digital processing.

The problem is that none of the patterns is wrong or right; they are just different. This difference matters
because it is not just what is characterized here as a discrete model, it is actually what everybody measures.
This discrete modelling provides the link between the theory and the actual experiments.

As an example of how the continuous method differs from the discrete, consider the density of summits.

For the continuous case given by Nayak

Dy =(67V3)"(Dy/ - D,) (2.174)

and for the discrete tetragonal model for the limiting case when 7 — 0
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D, = F+2sin”(1/3)+ 42 (D4j .

4z D,
I so-101/
_ \537r + 2sin (1//3)+4\/2 Do
4r
=1.306D,,,. @.175)

Hence the discrete summit density is 30% larger than the continuous. This is because the discrete model
identifies what it thinks are summits but which turn out not to be! This is easily possible because any discrete
model cannot include all the possibilities of exclusion from the summit definition in the analogue case.
Taking this further, the argument would maintain that the fewer the number of points making up the defini-
tion, the higher the density would appear to be. Indeed, for trigonal models in which three adjacent points to
a central one are considered, the density is 73% higher. In equation (2.175) D, and D, are the second and
fourth differentials of the autocorrelation function at the origin, that is A”(0) and A(0): and

AH(O)
A" (0)
which is the correlation between the height and curvature for a random waveform.
For summit height the continuous summit mean height is

N=-D,(D;)"*~ -

E[z|continu0us]:in : (2.176)
Vr

For tetragonal characterization, which is the standard pattern used by most researchers, E[zIdiscrete] is given by

8\527r

E(z|discrete]= ;
7T+ 2sin7!(1/3) + 4~ 2

4

nj =0.938 x E[z|continuous]. (2.177)
N7

= (0.938)[

The mean summit height is lower by 6%.

These disturbing differences are taken further in the next chapter but the point here is that, even if it is
agreed that correlation (or spectral) methods form the basis of a good model for the characterization of the
surface, much has to be agreed between researchers either before they will agree with each other’s results on
the same surface or on whether they ever get to the ‘true’ value of the surface even if it were possible. The
problem has been masked by dealing mainly with profiles. Discrete (measured) values of the profile will
gratifyingly converge to the theoretical case as the sampling gets higher. But in the areal case they never do!
The difference is dependent on the coverage of the discrete model.

2.1.5.2 Alternative discrete methods

In an effort to clarify the situation Greenwood [49] reworked the discrete results of Whitehouse and changed
the nomenclature to simplify the results. For example, the probability of an ordinate being a peak in
Greenwood’s theory becomes

n=2 where 0 =sin"'(ho,/25,,) (2.178)

/
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instead of

(3=4p, +p,)"?)

Nzltan’1 k
T (I-p,)

where oy and o, are the standard deviations of curvature and slope respectively; 8 becomes one of the char-
acterizing parameters (actually dependent on #).

Similar expressions corresponding to equations (2.165)—(2.171) are found. Thus the mean peak curva-
ture (expressed as a ratio to oy) is

\ L7 sin6/6 (2.179)

and the variance of peak curvature (again expressed to o7, the variance of curvature) is
1+ (sin 29/29)—§(sin 6/6)>. (2.180)

The other parameter Greenwood uses to characterize the surface he calls r, where r is given by

r=(0,/0)0 2.181)
where
p2m g =Ml (2.182)
m;

This r represents the ‘surface roughness character’. Between the r and 6, Greenwood goes on to estab-
lish summit properties using a third parameter

t=2(1-2p,+py2)/(3—4p, + p,). (2.183)

For a good comparison of the Nayak, Whitehouse and Greenwood models the reader should consult the
paper by Greenwood [30]. The two methods of Whitehouse and Greenwood are merely different ways of
tackling the discrete problem.

The Nayak model for the surface is continuous, the Whitehouse model is discrete and the Greenwood
model attempts to provide a link between the two. It should be remembered, however, that although
Greenwood’s characterization provides simpler formulae, the parameters oy and o, are still determined by
discrete methods which use the Lagrangian numerical analysis values. Whitehouse accepts from the start the
overall dependence on discrete values and establishes the method of characterization completely on it; the
characterization formulae and the numerical analysis formulae are made to coincide.

In these methods of characterizing surfaces there is almost universal acceptance of the fact that the ratio
of zero crossings (or mean line intersections) and the peak density is a useful surface characterization param-
eter involving, in its various guises, a, r and k.

The important result is that there are no intrinsic parameters for the surface. No surface has a mean
summit height of Z; it only has a mean summit height Z for a given numerical model f(z) and sample interval
h. Providing that f(z) and # accompany z when results are compared (and assuming that there are no instru-
mental problems) this is acceptable.

To conclude this section, it has been shown that in any practical situation it is necessary to characterize
the surface and the procedure if results are to be compared. Another point which this section on surface
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roughness shows is the enormous difference in complexity which the manufacturing engineer requires to
specify the surface as compared with that of the tribologist. The former requirement is straightforward—
simple averages like R, can be used—whereas in the latter much more complicated parameters are required.

Finally, these methods of specifying the characteristics of surfaces have resulted in methods involving
average values, which allow the probability of extreme values such as peaks to be estimated. This does not
solve the problem of specifying freak behaviour (even if the freak can be found). Neither does it get much
closer to solving the question of what surfaces are really like. At best the properties within very closely
defined limits can be specified, although even with fractal-type surfaces (discussed later in section 2.1.8 and
chapter 7) this is difficult.

2.1.6  Assessment of isotropy and lay

The characterization of the lay of surfaces has been sadly neglected, mainly because of its complexity. An
elementary classification is shown in figure 2.64.

Isotropy is usually taken to mean the lay of random-type surfaces, thereby differentiating between
grinding on the one hand and, say, shotblasting on the other. General lay takes all surfaces into account. It
cannot, however, be ignored in very many functional situations, especially relating to bearings, mechanical
seals and cylinder walls; it can be more important than the value of the roughness. The reason, as Wirtz [52]
pointed out, is due to the large variety of motions of the machine tool in generating the surface. Simply using
the lay as a means of typology or characterization is not enough.

One method suggested by Peklenik and Kubo depends on characterizing the plots of the variations in
the correlation functions on a linear or polar scale. This method is convincing but difficult to do because of
the need to map the surface in some detail. An alternative method is to use the ‘long crestedness’ criterion of
Longuet-Higgins. This type of surface approximates to a series of parallel grooves. The definition that
relates to that of Peklenik and Kubo requires taking profile graphs in different directions and estimating some
feature of the plot (figure 2.56). In Longuet—Higgins’ case the following long crestedness (LC) criterion has
been defined [26] as

My + My, + [(myy —my, )? +4mi ]2
LC: 20 02 [( 20 02) 11]

5 e (2.184)
My + Mgy — [(Myg + Mgy )* —4my ]

For a completely isotropic surface LC = 1; for a completely long crested wave (m;) i, = 0 and LC — oo,
If (my)min is made equal to 0, my; is equal to (mg, mo)V/2, remembering that the mg, and m,, moments would
have been taken at right angles.

An excellent account of this type of approach is given by Pandit et al [60]. This will be referred to in
section 2.1.7.6. Although this method of quantifying isotropy is sensible for truly random surfaces, it runs
into severe problems for other kinds of surface. Take for example a face-turned part. Such a criterion would
produce an isotropic result only if the measured tracks started at the centre of the face; anywhere else as a
starting point would give a different result. From the measurement point of view the surface is neither ran-
dom nor stationary. One could argue that this technique should only be used for random surfaces. The prob-
lem here, however, is that it is never possible to be sure whether deterministic elements are present. This
criticism applies equally to the correlation plotting methods proposed by Peklenik and Kubo.

A technique for describing isotropy was also tried by Ledocq [54] who made a succession of traces in
radial directions on various machined surfaces (similar to the work of Peklenik and Kubo). He then plotted
the variations of well-known parameters such as R, and R, the average wavelength and the 0.5 correlation
length. Unfortunately, although results were obtained they proved to be inconclusive, not least because of the
instrumental difficulty of measuring texture along the lay—the problem is that of knowing what, if anything,
to do with the sampling length for different directions!
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What is needed is a technique which deals with any surface and preferably gives a numerical value to
the isotropy and lay.

One sensible approach has been proposed by Wirtz [51] who suggested that it should be possible to
relate the lay to a number of basic geometrical features such as circles, lines, etc (figure 2.63). In principle,
this technique would derive from the appearance of the surface the movements of the tool which generated it.
This after all is the lay. There is, however, still the problem of quantifying it. It seems that this type of method
as it stands has potential but not yet the capability because of the difficulty of measurement. Probably the best
method up to now is to use a two-dimensional spectrum method of a scaled-down model of the surface using
‘liquid gates’. This enables an areal diffraction pattern to be produced which reveals the lay. Perhaps the only
method is that used at present following drawing practice.

Radius fixed, Generator fixed,
moving generator moving radius

Figure 2.63 Typical lay patterns of machined parts produced with single tool.

In this method the pattern is identified by reference to standard patterns in a way which is similar to the use
of metallurgical atlases. In these, photographs of metals under different conditions are compared by eye.
There is, however, no reason why the comparison cannot now now be done by a pattern recognition method
by computer. There are many techniques for recognizing patterns. Many such patterns have been presented in
early work in the French standards for surfaces and in British standards (figure 2.64)

A much more comprehensive approach has been suggested along these lines [63] which characterizes
the lay along set theory lines into patterns comprising points, straight lines, circles (including secants), poly-
gons and curves. Up to 17 different groupings have been observed, each group having two subset groupings.
In all, hundreds of different observed patterns can be classified in this way. However, the complexity of the
system probably makes the application of this method prohibitive. This technique, as in the Wirtz methods, is
basically a pattern recognition technique and so, in principle, with the massive advances in this subject since
the appearance of vision systems for robots, could be tried again.

Also, since the work on fractals is essentially a description of form and structure [56], it is likely that
there is scope for a proper visual classification system.

The work on areal assessment is basically on two levels: one is visualization and the other is quantifica-
tion. The point to be made here is that the use of simple visualization is not to be ignored because, as pointed
out by Stout [53], a great deal of information, particularly about structure, is available from a surface map.
Use of suitable software can enable the eye to see many different aspects of the surface which would nor-
mally be lost.

Stout lists a few suitable operations which can be carried out on a 3D map to help the operator [53].
These are:

(1) inversion by turning the picture upside down;
(2) magnification in any direction;
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Figure 2.64 A classification of lay.

(3) truncation of the signal at any level of height;
(4) contouring.

One of the very few pieces of work which directly addresses lay measurement of non-random surfaces is
by Boudrean and Raja [117]. The technique is quite simple: it makes use of the fact that two closely spaced par-
allel profiles will appear to be shifted whenever the dominant lay direction is not perpendicular to the profile
direction. Boudrean and Raja utilize the cross-correlation function to measure these shifts and then simple lin-
ear models are applied to the shifts to quantify the lay characteristics. This contribution was interesting in the
sense that it could cater for lay which was curved as well as straight. The only problem in the case of curved
lay is that the shift between profiles depends on the position of the traces within the data map (figure 2.65).

From the information obtained by this method useful data concerning the manufacturing process could
be obtained after considerable interpretation. This work certainly reinforced the view that all data on the sur-
face of a workpiece is useful for something.
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Figure 2.65 Raja lay topology.
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So far this chapter has virtually followed a chronological path. This development has been intentional
because it keeps firmly in mind the problems that arose in the early days and the methods used to solve them.
Although the techniques are much more powerful today new problems keep emerging.

The interesting point is that the old problems keep re-emerging as new processes are introduced or new
functions demanded.

Many of the newer methods such as discrete analysis and random process analysis are now incorpo-
rated into instruments. However, there is a continual search for newer, perhaps better, parameters. In what
follows a few of the alternative parameters will be revealed. Although these have been demonstrated in
various research papers they cannot be said to have gained universal acceptance. This may or may not
come. Nevertheless, it is useful to mention them because they point the way to possible developments in
the future.

2.1.7  Potential methods of characterization
2.1.7.1 Amplitude and hybrid parameters

The route taken so far—that of considering the profile parameters which are in use today, progressing to ran-
dom process analysis and from this to the areal evaluation of surfaces proposed by Longuett—Higgins, Nayak
and Whitehouse—is taken as the general direction of progress in surface characterization. There have, how-
ever, been many other attempts to classify the surface roughness which, although not major advances, can
still be considered to be interesting and even valuable in some applications. Some of these are briefly consid-
ered to show the general way in which the subject is developing.

Many simple classification systems for a typology of surfaces have been based either on the amplitude
characteristics alone or on the spacings of profiles. A notable exception in the early days was Myres [14] who
used four parameters, Ry, Aq, RMS curvature and the directionality described in equation (2.11). His interest
was mainly in the influence of surfaces on friction. Incidentally, he found that over a wide range of rough-
nesses Aq had a correlation of 0.85 with u the frictional coefficient—a result which would be received with
some scepticism today.

There have been a number of attempts to classify the amplitude probability density function [8]. The
first were probably Pesante [9] and Ehrenreich [10] who used the slope of the bearing (material) ratio
curve even earlier but did not point out explicitly the statistical significance. Other people tried various
ratios of the R, and R, values taken from the material ratio curve, and Oonishi appears to have been the
first to consider the combination of different processes on the same material ratio curve [48]. He also
tried to incorporate some ideas about including a peak count in addition to the height information, as did
Reason [7].

These attempts showed two things: one was that the existing parameters were insufficient to character-
ize the surface; the other was that it was not very clear which way to go forward!

2.1.7.2 Skew and kurtosis

More recently a more statistical method was suggested by Al-Salihi [24] who included the skew and kur-
tosis values together with the R, or Ry values as a complete set of characters. The two extra moments
were an attempt to quantify the shape of the amplitude density curve. For many surfaces this technique
was an acceptable step forward. However, problems can occur because the two parameters are not inde-
pendent. An alternative method was proposed by Whitehouse [55]. His idea was to try to devise parame-
ters which weighted peaks differently to valleys, thereby introducing a variable which could be useful in
predicting function. The proposal was to use the beta function as a means of characterizing the amplitude
density curve.
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2.1.7.3 Beta function [55]
The beta function is one that is defined within a given range of O(r)1. It is expressed in terms of two argu-
ments, a and b. Thus B(a, b) is given by

1

B(a,b) =J z'(1-z)""dz. (2.185)

0

It can be expressed in terms of a probability density pg(a, b, z):

1
Bla.b)

ppla,b,z) = 271 (1-z)’" (2.186)

where B(a, b) is the normalizing factor to make pg a true density. The usual parameters of the distribution can
be determined in terms of @ and b. Thus, using gamma function identities,

Bla,b) = “O®) 4od T(a+1) = al'(a) 2.187)
['(a+b)
1
P J zz7'(1 - y)~'dz = Bla+lb) _a (2.188)
Bla,b) o B(a,b)  a+l
the variance is
o7 = ab , (2.189)
(a+b+1)(a+b)
the skew is
1/
5,y = 2@ (a +b+ 1} 2.190)
a+b-2 ab
and the kurtosis is
— 2 — — X
K, :6[(a b)'(a+b-1) ab(a+b+2,. @.191)

abla+b+3)a+b+2)

The basic philosophy was that any practical amplitude distribution could be approximated by a beta
function (figure 2.66). Note that the function has two parameters, each independent of each other, and so
could be used as a basis for a typology or characterization; a is the weighting allocated to ordinates of the
profile measured from the lowest valley upwards and b is the weighting of the same profile as seen from the
top of the profile and measured downwards. Peaks and valleys are therefore differently weighted. This could
(a point evaluated later) provide useful functional discrimination. The problem arises of how to determine a
and b from the profile. By changing the range in equation (2.185) from 0 to 1 to R, + R, or R, and replacing
o, the standard deviation of the distribution, by R, the a and b parameters become

R(RR, ~R}) , _R,(R.R, - R}
a=——"-—"—¥———-" B3 —

(2.192)
R.R? R.R?
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Figure 2.66 The beta function (left) symmetrical and (right) asymmetrical case.

The fact that odd peaks or valleys are only raised to a unit power suggests extra stability over the skew and
kurtosis characterization method. Nevertheless, the weakness of the technique is that good estimates of R,
and R, have to be made, which is difficult, indicating once again the basic problem of measuring peaks and
anything derived from them! As an example of how the technique works from manufactured surfaces, com-
pare this typology with one based on the skew and kurtosis. This is shown in figures 2.67(a) and 2.67(b).
The other problem associated with the beta function approach is that it cannot easily cope with multi-

mode distributions as can be seen by reference to figure 2.66. So, for simple periodic profiles, there is some-
times a problem.
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Figure 2.67 Process identification: (a) central moments, (b) beta function.
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It has correctly been pointed out by Spedding [56, 62] that the beta function is only one example of the
class of Pearson distributions and that delving further into these classes points to a better and still more com-
prehensive classification system. It may also be said that other descriptions of distributions exist which utilize
three parameters and so could, in principle, be used to improve this type of characterization. One such is the
hypergeometric function. The problem then arises of having too many parameters. If three are needed for
the shape of the distribution and one for the size or scale factor then already the situation exists where four
parameters are needed to specify amplitude information alone. This would be difficult to implement or justify
practically. Alternative methods of characterization of the amplitude density function have been tried by using
different types of function other than the beta function. Examples of this have been the Chebyshev polynomial
approximation and the Fourier characteristic function

An obvious choice is the characteristic function of the distribution. This is the Fourier transform of the
amplitude distribution function where w is usually replaced by {. Thus

)= f " exp(igap(a)e (2.193)

Because this is a continuous function an arbitrary choice of { would be needed upon which to build a
typology. However, a method is possible based upon the first few coefficients of the Fourier series of p(z)
using the range R = R, or R, as the fundamental wavelength.

Here a typology could be based on F(n), n = 0, 1, where F(n) is given by

F(n) = f “exp(jn2nz/R, )(z)dz (2.194)
0

which means matching to the distribution an expression of the form f(A, B, C) where
f(4,B,C)= A+ Bcos(2nz/R) + Csin(27z/R). (2.195)

By a similar technique to that used for the beta function A, B and C can be found in terms of R, R, and
R, or R,. Thus

A=1/R
2 2
B= 2”(RJrRs +R? —RRVJ
R 6 (2.196)

C= ”(1—2&)
RU R

At first sight this appears to have some advantages. One of these certainly is that there is a strong con-
nection between this and power spectral analysis, which is often used for random process analysis and cur-
rently used in surface metrology analysis. Unfortunately, despite having three parameters available (two, if
the first is regarded as trivial), the possible shapes that can be matched are much more limited than even the
beta function. Also, the simple, deterministic types of profile have awkward values. For example, the sine
wave has values of C = 0 and B = 0.822. Symmetry considerations of the distribution especially are not well
dealt with by using the odd symmetry of the sinusoidal component. Another disadvantage is that the shape of
the fitted distribution does not change as the coefficients B and C are changed in magnitude. This is not true
for the beta function: as a and b get large the distribution becomes more ‘spiky’, a property which allows a
little extra flexibility. Obviously the Fourier transform approach would be more suitable if more coefficients
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were used, but this is not allowable because of the practical difficulty of adopting any system which employs
more than one or two parameters.

2.1.7.4 Chebychev function and log normal function

Another possible type of function to use is the Chebychev function. This is not an arbitrary choice of func-
tion because serious attempts to analyse the profile itself into Chebychev rather than power spectral coeffi-
cients have been made recently. The method would involve identifying a curve p(Ty, T}, T>) with the
amplitude distribution of the profile p(z), where T, T; and T, are Chebychev polynomial coefficients of the
first kind and where p(Ty, T}, T,) is given by

p(T, 1, 1) = Ty + Tz + T,(22% — 1) (2.197)

which for a range corresponding with * R/ 2 gives the coefficients in terms of surface profile parameters as

13 60 (Rq\z ( R\z_
— 4+ = 1

=4 4 lar) L _ﬁj
T =§( —&\\ _ (2.198)
: 2( ZRJ '
_ 45 (Rq\z ( RP\Z 1
*“aoller) U T2r) T

An interesting alternative to the beta function which appears certainly to be as good is due to Murthy
et al [57] who proposed a log normal distribution. Thus, if the profile ordinates are z(x), then v is In(z). If the
transformed variable v is distributed according to a Gaussian (normal) model then z has a log normal distri-
bution which is often found in distributions of extreme values such as peak distributions.

This distribution is

2
Pz o) = ——exp —1[2_] . (2.199)
zo\2n 2\ o
Classical theory gives
z = exp(u+0o?/2)
G’ = expu+20?)-2z°. (2.200)

When the expression is referred to surface characteristics R, Ry, R, as for the beta function, the argu-
ments p and G become

[ @RrR)* )
> \@2R,)* +(R,)

) ) 2.201
(R R (2.201)

(2R,)

qQ

Copyright © 2003 IOP Publishing Ltd.



Plotting u against o for a number of processes gives much the same amount of discrimination as the
beta function. Unfortunately omitted from the investigation is the Gaussian curve which is discussed in more
detail in the section on multiparameters. Murthy et al also consider a two-dimensional mapping of the mate-
rial ratio curve [57]. Some current thinking, not entirely new, concludes that three basic parameters are
needed for the height, one for scale and two for shape. It can, of course, be arranged that three parameters all
have the dimensions of length and the ratios provide shape information. One such method separates the bear-
ing curve into three parts: the peaks, the basic surface and the valleys (figure 2.13). This method, not yet stan-
dardized, seems to give good results for multiprocesses such as plateau honing but the construction necessary
to identify the three regions of the curve is not suitable for periodic surfaces. It should be pointed out that this
type of surface, which is split according to height regions as above, is often called a ‘stratified’ surface. This
word is used to indicate that each stratum of the surface is targeted at a given function, that is load capacity,
oil retention, etc.

2.1.7.5 Variations on material ratio curve

One method for characterizing stratified surfaces uses the material ratio curve. This note is purely practical
and should not be used as an alternative to the cumulative peak variants mentioned earlier. In particular this
method is used in plateau honing in the car industry. As is well known there are two important aspect of the
profile which have to be independently assessed: one is the plateau comprising usually fine grinding or hon-
ing marks, and the other is the deep valleys. The former carries the load, the latter acts as an oil channel and
debris trap.

This curve (figure 2.13) is split into three by means of drawing a secant to the region at the point of
inflection corresponding to a 40% material ratio which is then drawn to intercept the axes. The height of the
distribution is then split into three, Ry, Ry and Ryi; Ry is a measure of the peaks, Ry measures the basic
‘core’ or ‘kernel’ of the surface and Ry estimates the depth of the valleys.

(a) Evaluation process for determining the parameters from the material ratio curve

(i) Calculating the parameters Ry M,; and M,, [57]

The equivalent straight line, calculated according to the procedure, intersects the abscissae M; = 0% and
M, = 100%. These points define the intersection lines which determine the roughness core profile by dividing
off the protruding peaks and valleys.

The vertical distance between these intersection lines is the core roughness depth Ry. Their intersections
with the material ratio curve define the material portions M, and M,,. If these intersection points lie above
the highest point or below the lowest point on the material ratio curve then they are set to give M,; = 0%
and/or M, = 100%. In this case the parameters R, and/or R are then zero.

(ii) Calculating the equivalent straight line

The equivalent straight line is calculated for the centre section of the material ratio curve which includes 40%
of all the measured profile points. This ‘central region’ lies where the secant of the material ratio curve over
40% of the material portion shows the smallest gradient (see the figure).

A straight line is calculated for this ‘central region’ which gives the minimum mean square deviation in
the direction of the profile ordinates. This method was developed for the German car industry and this and its
variants are proving to be useful. It should be mentioned, however, that the straight part of the curve results
more from the way the curve is plotted than because it is a reality. If the bearing or material ratio curve were
plotted on probability paper rather than linearly there would be no ‘s’ shape for a random surface, only a
straight line.
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To determine the region for the equivalent straight line calculation move a secant (AM, = 40%) along the
material ratio curve. The secant with the smallest gradient establishes the ‘central region’ of the curve for the
equivalence calculation.

Note:
To ascertain the material ratio curve, the class widths of the ordinates of the roughness profile should be
selected to be small enough to allow at least 10 classes to fall within the ‘central region’.

For surfaces with very small roughness or surfaces with an almost ideal geometrical plateau such a fine clas-
sification may no longer be meaningful because of the limited resolution of the measurement system. In this case
the number of classes used in the calculation of the equivalent straight line should be stated in the test results.

The ‘central region’ is ascertained as follows. Commencing at the top, the associated secants with the
least material portion difference of AM, = 40% are determined. The least steep secant determines the ‘cen-
tral region’ (if there are equal gradients then the one for the highest region is used).

(iii) Calculation of Ry and Ry

The areas above and below the region of the material ratio curve that delimit the core roughness depth Ry are
shown hatched in figure 2.68. These correspond to the cross-sectional area of the profile peaks and valleys
which protrude out of the roughness core profile.

Prob (MR%)

Figure 2.68 (a) Conventional plot, conventional surface; (b) probability plot, conventional surface and two-process
striated surface.

The parameters R, and Ry, are each calculated as the side of a triangle which has the same area as the ‘peak
area’ or ‘valley area’ (see figure 2.68(a)). The triangle corresponding to the ‘peak area A’ has M, as the base
and that corresponding to the ‘valley area A,” has 100%—M,, as the base.

Note:

The parameters according to this standard shall only be calculated if the material ratio curve is ‘s’ shaped as
shown in the figures and in practice only shows a single point of inflection. Experience has shown that this is
always the case with lapped, ground and honed surfaces.
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The conversion of ‘peak area’ and ‘valley area’ into equivalent area triangles is really a way of estab-
lishing the top limit of the R, (and Ry) parameter value.

From figure 2.68
Rvk
A4, = 7(100 — MR2)um (2.202)
Ry
A4, = TPMRMIH- (2.203)

For the conversion to equivalent area triangles instead of the area, the curve itself allows Ry and R to
be slightly smaller. One represents the fine process and the other the coarse process. In this plotting the ker-
nel disappears altogether. Nevertheless it is proving useful and this is what counts.

Because of the rather artificial form of the ‘s’ shape needed to define Ry, Ry and Ry a lot of research is under
way to find a more rigorous breakdown. One way utilizes the fact that many surfaces are Gaussian or at least rea-
sonably close in nature. This has led to the use of the material probability curve [58]. In this the percentage of
material is plotted on a cumulative probability plot. In this way a straightforward finishing process shows itself as
a straight line whereas a surface such as plateau honing shows itself as two distinct lines (figure 2.68()) which
intersect. How to determine the point of intersection accurately and how to identify the three surface striations
Rk, Ry and Ry from this type of presentation have caused problems. One rather complicated way [58] is briefly
outlined below. It is not simple because a number of non-linear effects can confuse the situation. These are:

(1) the presence of debris or rogue peaks in the data,

(2) non-statistical valleys,

(3) the curvature of the material probability curve in the region of the transition from one process to
another.

One technique for characterizing the curve, due to Scott [120,128], is as follows:

1. Fita conic (assumed non-elliptical) to the material probability curve z = Ax?> + Bxz x Cz> + Dx + E
where x is the material probability curve expressed in standard deviations and z is profile height.
From this conic the asymptotes are determined.

2. The asymptotes are bisected with a line which is drawn to intersect the conic. This intersection can be
used as the material ratio point at which the processes change. In any event it is a first approximation to it.
3. The second derivative of the material ratio curve is computed using a data window of (0 .025 stan-
dard deviations. This computation is carried out upwards above the point of intersection and down-
wards below the point of intersection separately. When the magnitude of the second differential
exceeds six standard deviations in either region this determines the points of the upper plateau limit
(UPL) and lower plateau limit (LPL) respectively.

4. The z axis of the material probability curve is normalized.

5. Better asymptotes can be constructed at this point specifically by fitting linear regression lines
through the regions from the intersection to UPL and LVL (lower valley limit) respectively. The
bisector can be redrawn more accurately.

6. Further boundary points of the lower plateau limit (LPL) and upper valley limit (UVL) are found
by bisecting the angle between the asymptotes and the principal bisector.

Thus the material probability curve now has three regions.

7. A linear regression is then performed within each region of the original non-normalized material
probability curve. The slope of the line in the region UPL to LPL can be called R, while the slope of
the line in the region UVL to LVL can be called R,. The intersection point M, is the material ratio
at the plateau-to-valley intersection.
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It has to be made clear that these alternatives to Ry, R and Ry (i.e. Rgp, My, Rg,) are only tentative and are
included to illustrate the diversity of ways of characterizing multiprocess surfaces. Both methods have their
problems. The former involves characterizing a rather arbitrary ‘s’ shape into three regions. The latter assumes
as a basis the Gaussian nature of surfaces, and utilizes somewhat arbitrary curvature criteria to identify the
plateau and valley regions. Both methods are useful; which, if either, will ultimately be used remains to be seen.

The discussions above have concentrated on the height discrimination of striated surfaces. It should not
be forgotten that any surface generated by a number of processes in which the surface is not completely erad-
icated by the following one has complex spatial characteristics. This means, for example, that deep valleys
can be very wide and can cause considerable distortion of any filtered profile. Hence if a conventional instru-
ment is to be used to measure striated surfaces the longest filter cut-off possible should be used otherwise
errors will be introduced. For a detailed discussion of these problems see the analysis by Whitehouse [119].

Figures 2.70 to 2.75 show the stages involved in getting the parameters R etc. What is missing is the
method of filtering. This is discussed in the next section. Figure 2.69 shows that the method is dependent on
maximum peak dependence.

Figure 2.69 Problem of identifying limiting maximum and minimum.

m
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smallest gradient
************ ) £ £
& 53
T I R
% % ' 2 40%

\
0,
Figure 2.70 Layering of profile—core. 0 2004060 80 100%

Figure 2.71 Identification of 40%.

Equivalent
straight line
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0 '20 40 60 80 100%
M1 M2
Material ratio M, —>

Figure 2.72 Identification of M,; and M,,.
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Figure 2.73 Layering of profile Ry, Ry, Ry
Figure 2.74 Identification of areas A1, A2.
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Figure 2.75 Material ratio curve.

Figures 2.70-2.75 Choice of filter and sampling length.

The effect of not using a valley cut-off can be quantified. Basically the cut-off should be as long as possible,
e.g. 2.5 mm, to prevent the mean line dropping into the valleys (figure 2.76).

Ry filtering
This filtering technique is according to ISO 13565 pt. 1 and DIN 4776.

(a) 0.8 mm

(b) 2.5 mm

Figure 2.76 Choice of sampling lengths.
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(a) Profile

(b) Modified profile

Figure 2.77 Standard 2CR filter.

Filtering process to determine the roughness profile

The filtering process is carried out in several stages given the modified profiles.

The first mean line is determined by a preliminary filtering of the primary profile with the phase correct
filter in accordance with ISO 11562 using a cut-off wavelength Ac in accordance with clause 7 and correspon-
ding measuring conditions in accordance with Table 1 of ISO 3274:1996. All valley portions which lie below
this mean line are removed. In these places the primary profile is replaced by the curve of the mean line.

The same filter is used again on this profile with the valleys suppressed. The second mean line thus
obtained is the reference line relative to which the assessment of profile parameters is performed. This refer-
ence line is transferred to the original primary profile and the roughness profile according to this part of ISO
13565 is obtained from the difference between the primary profile and the reference line.

Selection of the cut-off wavelength Ac = 0.8 mm. In justified exceptional cases, Ac = 2.5 mm may be
selected and this should be stated in the specification and test results.

Table 2.9 Relationship between the cut-off wavelength
Ac and the evaluation length In

Ac In
0.8 4
2.5 12.5

Both the R, filter and the long cut-off are compromises. This is inevitable because there is more than one
process present in the profile. Attempting to embody both in one procedure is bound to produce errors.

Scope

ISO 13565 describes a filtering method for use with surfaces that have deep valleys below a more finely fin-
ished plateau, with a relatively small amount of waviness. The reference line resulting from filtering accord-
ing to ISO 11562 for such surfaces is undesirably influenced by the presence of the valleys. The filtering
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(a) Unfiltered primary profile (valleys shown hatched)
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(b) Unfiltered primary profile after suppression of valleys
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(d) Roughness profile in accordance with this standard

Figure 2.78 R, filtering.

approach described in figure 3.26 suppresses the valley influence on the reference line such that a more sat-
isfactory reference line is generated. However, a longer cut-off should always be tried [119].

Normative references

The following standards contain part of ISO 13565. At the time of publication, the editions indicated are
valid.
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ISO 3274:1996, Geometrical Product Specifications (GPS)—Surface texture: Profile method — nomi-
nal characteristics of contact (stylus) instruments.

ISO 4287:1997, Geometrical Product Specifications (GPS)—Surface texture: Profile method — terms,
definitions and surface texture parameters.

ISO 11562:1996, Geometrical Product Specifications (GPS)—Surface texture: Profile method

Definitions

For the purposes of this part of ISO 13565, the definitions given in ISO 3274 and ISO 4287 apply.

ISO 13565-1:1996 (E)
Reference Guide

To measure profiles in accordance with this part of ISO 13565, a measuring system which incorporates an
external reference is recommended. In case of arbitration the use of such a system is obligatory. Instruments
with skids should not be used.

Traversing direction

The traversing direction should be perpendicular to the direction of lay unless otherwise indicated.

Another point which causes confusion is concerned with the material ratio obtained from the profile and
that obtained over an area. In fact these are equal. The profile MR squared is not the areal value. See figure
3.27(a) which is a series of blocks of profiles. This can be moved about to look like figure 3.37(b) which is
still the same MR value yet it is the complete areal view from whichever direction is taken.

If a large number of tracks are made on figure 3.27 the material ratio is always the same. It is not valid
to take just one reading on the lower surfaces. This equivalence is one reason why it is valid to base the use
of the various functional parameters on the material ratio.

A completely different approach which is of considerable importance is the modelling of the surface
profile by means of time series analysis. Because of its importance some space here will be devoted to the
subject. It will also be examined again in the section on surface generation in chapter 3.

2.1.7.6 Time series analysis methods of characterization—the characterization of spatial information

The basic idea behind this technique is to consider the surface profile as being part of a system [56, 59-63,
65-67]. In fact it is considered to be the output from a system (as might be seen as a force or temperature or
whatever) when a completely random input (white noise) is put into it (figure 2.79).

By assuming the input and knowing the output, the surface can be considered to be an operation on white
noise; in other words it modifies the white noise in a way that can be viewed as a classification of the surface.
This has some appealing features because surfaces are produced by a manufacturing system, each block of

White-noise o Surface
input Surface characterization |

(operation) profile

Figure 2.79 Time series method characterization.
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which has transfer characteristics (transfer function). Why not consider the surface as part of the overall system
and deal with it accordingly (see chapter 7)? This not only makes sense, it also fits into the basic philosophy of
chapter 6 where the whole manufacturing system is considered to centre on the component produced.
Unfortunately, this time series subject can fit into processing methods of chapter 3 as well as here because it relates
to digital or discrete data. However, as it is a form of characterization it will be dealt with briefly in this section.

Linear physical systems can be categorized in terms of with respect to their dynamic behaviour by sys-
tems of simultaneous linear differential equations. The simultaneous systems can be transformed into a sin-
gle differential equation which is usually denoted in discrete form. (For simplicity the time domain will be
used to follow existing terminology but it should be remembered that, in practice, the time axis is spatial. It
can usually be related via the instrument to time.)

n n—1 m
anm n,lw+...+aoz(t):bmw+...+blw+u( (2.204)

dr" de! de™ dt

with m < n — 1; u(f) is white noise with zero mean and c? variance. The discrete form of this equation is
denoted by an autoregressive moving average equation (ARMA) model of order N, M:

(AyDY + Ay D'+ Ay _,DV 72 + ...+ AD + Ay)z(t) = (By DM + By, DY + ...+ B\D + B,)i(2.205)

where z(?) is the profile, D is a difference operator (D¥z,, = z,__|) or shift operator, Ay are autoregressive coef-
ficients, By are moving average coefficients and u(f) is the supposed input to the system (assumed to be white
noise or a variant).

The problem is that of determining the values of the A and B. Once found these can be thought of as
describing the profile.

For simplicity, to see how this is done, given a measured profile signal in digital form z,, a signal z;,
which is generated by an ARMA (&, M) equation, shall be used to approximate this measured signal.

To determine the A and B values the least-squares method can be used. So

Z(zi — Z/)2 =9 (2206)
i—-1
where S is a minimum, and z; — z'; is the error, or residue.

In principle, once the A and B are known the spectrum of the profile can be obtained and from this the
spectral moments derived. Thus

o2 [1+ 2 1-1(Bi/By)exp(—jio)]*(4o/Bo)
27 [1+ Z F21(Ac /A )exp(— jko)?

P(o) = (2.207)

where G, is the standard deviation of u. If the model is autoregressive only then the numerator in equation
(2.207) disappears.

It has been pointed out that the estimation of the coefficients in the full ARMA model is difficult [63]
because it is a non-linear estimation and has to be achieved by iteration. However, for simplicity, if the model
is reduced to an autoregressive one then clearly a linear system exists and the parameters can be found.

Take for example the case of an AR (2) model: where

E[(z; — (Az;_y + Bz, +u;))’ (2.208)

1S a minimum.
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Taking expected values and differentiating with respect to A and B respectively gives the Yule—Walker
equations. These are solved to get A and B.

In this case if the variance of the profile is unity and has zero mean and E[zz; - ] = p; and E[ziz;_»] = pa,
then

(1,4 (p)
RN

from which

4 P=p) o pr—pi
(1-p1) (1-p7) (2.210)

or

_ N2
=P, (PmpD), (2.211)
(1= pf)

(-ph)

is the autoregressive equation representing the profile, where p; and p, are points taken from the autocovari-
ance function (autocorrelation function of the surface at spacings equal to one and two sample intervals
respectively).

It is interesting to note that this result could have been obtained directly from the multinormal distribu-
tion in equation (2.65), which describes the probability density functions of z;, z; | and z; _,. Thus the proba-
bility density of z;, given z;_; and z;_, is given by

(2.212)

p(zlzz ) = \z-p? ox (_ {zi—p (1= po)ziy +1(pf = po)/ (L= pD)zis}

\27(L= py)(1+ ps — 2p7) [2(1 - p)(1+ p, —2p2)/(1 = pD)]

The denominator of the exponential represents twice the variance of the constrained zi, which means that this
is the variance of the white noise random distribution from which the z; can be picked, given that the mean
value of the white noise distribution is determined by the square root of the numerator — which depends on
the specific values of z; _| and z; _, as shown in equation (2.212). A further check can be used by the method
outlined by Watson and Spedding [62].

In general for an AR(N) model o2 = (1-Ap,—Bp,— ... —Np,) o, where the A, B, etc, are taken from equa-
tion (2.205).

The above variances and means follow for a simple AR(2) surface:

AZ
and p, = + B. (2.213)
1-B 1-B

P =

The time series approach has been criticized because it nominally applies to random waveforms (i.e.
Gaussian). However, variations on the basic approach have been made which allow asymmetrical distribu-
tions to be modelled.

For non-normal distributions using the same method as equation (2.213) the relationships have been
worked out [56] for the skew and kurtosis of the profile in terms of those of the generator. The main point is
that skew and kurtosis can be forecast, within certain limits, for the non-Gaussian case, so the former criticism
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is not really a problem. The issue is not so much how to characterize surfaces, as is addressed here, but how
to simulate surfaces in a computer for functional tests. The surface generation problem will be considered in
chapter 3 section 3.11.

DeVries [63] discusses how AR(1) and AR(2) models of surfaces with non-Gaussian distributions can
be achieved. The general case for ARMA models was developed by Davies et al [56] and subsequently
applied to surfaces [62].

The philosophy is that any ARMA model can be expressed in an infinite series of moving averages
(MA). Thus

z,=a, +ca,_,+ca,_, +. (2.214)
where ¢y, ¢, are constants (e.g. for the AR(1) process) and
Zi + @izt g but  z =@z, + (2.215)

sozi=ai+ @ a_ 1+ @la;_»+...and so on. c|, ¢y, etc, can be found from repeated use of (2.215) from
which the skew of the profile is

3
Ci
Sk, = Zq:f:i(’Skm (2.:216)
SO

and the kurtosis of the profile is

4 -1 2.2
K = 10 Ci K +627) I GG 2.217)
P (Zq 02)2 :
i=0 Ci

where ¢ is the number of terms in the series of equation (2.214), Sk;, is the skew of the random number gen-
erator and K, is the kurtosis of the random number generator.

These formulae show that it is therefore possible to specify the skew and kurtosis of the generated pro-
file as characterization parameters (for the shape of the amplitude distribution) together with the parameters
of the ARMA model for the spatial parameters. So, for an AR(2) model, there would be five parameters in
total (including R, or Ry) to specify the surface profile.

Autoregressive methods are really ways of modelling the spectrum of the surface, either through the
spectra or in terms of the correlation coefficients.

Another of the problems associated with ARMA methods is that of trying to incorporate some measure
of periodicity. One way suggested has been to separate out the deterministic component from the random
component and to characterize them separately. Wold’s discrimination [64] allows the breakdown of wave-
forms into random and deterministic components, at least in principle. As mentioned before, it is highly sus-
pect to allow these theorems to mask the intrinsic difficulty of measuring the surface.

DeVries [63] and others [43] characterize the surface profile by first determining the order of the AR
model and the associated parameters and then transforming to the spectrum as in equation (2.207). From the
spectrum the moments, say my and m,, can be found and from these a parameter describing the RMS slope of
the profile or the average wavelength 2n(m0/ my)"/? is obtained. The advantage of such an approach is that,
whereas the parameters A and B rely heavily on the sample, a smoothed version of the power spectrum does not.

A typical order required for an AR model of a turned surface worked out to be over 10 and for other
complex surfaces over five, which obviously means that too many parameters are being involved—hence
the need to reduce them by taking moments of the spectrum instead. The benefits of this approach over that
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of a direct estimation of the power spectrum are that the time series model does allow a systems approach in
the sampled data domain and so allows surface simulation of the required spectral characteristics.

A more recent targetted classification of surfaces has been made by Lukyanov [47] who classifies the
autocorrelation function into basically only two types; these have been shown earlier, one representing ran-
dom surfaces and the other narrow band surfaces. Each type has a subset, for example

type I either correlation or exp(—art?)

1+ar?

(2.218)
type II: either cos,fi or exp(—at?)cosw,T.
1+ar?

2.1.7.7 Possible methods of classification based on a Fourier approach

Transforms have been mentioned earlier in this chapter, in particular with respect to height information. The
basic idea of breaking down the surface waveform into a series of numbers by means of a Fourier analysis is
not new. In this method the idea is that, when applied to a surface, the coefficients of the operator can be used
as a basis for characterization. It is tempting to apply this technique to other than the Fourier series or Fourier
transform. Quite a lot of effort has gone into investigating alternatives. Transforms such as those of Walsh,
Hadamard and Wigner [65—67] have been and still are being tried. These other transforms are related to the
Fourier transform. How they are applied to surfaces is considered in chapter 3 on data processing but a brief
mention of them will be given here.

(a) Hartley transform
This is the difference between the real and imaginary parts of the Fourier transform and is defined as

F(u,v) = Fieu(u,v) + jFie(1,v) the Fourier transform
H(u,v) = Fry(u,v) = F0(u,v) the Hartley transform (2.219a)
jEmag (U,V) = %(F(U,V) - F(—l/l, —V).

There are a few interesting differences between these two transforms. One is that the Hartley transform does
not use the complex plane as such, unlike the Fourier transform. For this reason, it is not really sensitive to
phase and there can be some ambiguity in sign.

The transform has a similar equation relating its two argument functions as the power spectrum and the
correlation function. Thus

H(u) =JL f(x)cas(kux)dx. (2.219b)

Here the operator cas means cos and sin.

The original intention of using the Hartley transform was for speed. However, its computation is not as
simple or straightforward as the Fourier transform, so it has not been found to be a serious competitor to the
Fourier transform. This is given in chapter 3 together with the transforms below in rather more detail.

(b) Square wave function

(i) Walsh functions

Instead of correlating the signal with a sine wave as in Fourier analysis a square wave is used. This has some
advantages because the clipped signal is very easy to achieve digitally and has already been used in the eval-
uation of the pseudo-autocorrelation function using the Steltjes integral.
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The square wave signal is also faster to use than the sine wave. However, not surprisingly, the very fact
that it is a square gives it extra usefulness in examining surfaces having sharp changes or discontinuities. It
does not, however, break down into very meaningful coefficients if the surface is continuous and undulating,
which is where the Fourier transform comes into its own.

(ii) Hadamard function

There are other transforms, which use a binary approach, such as the Hadamard transform. This again suffers
from the fact that if the surface wave is anything like sinusoidal instead of giving a simple single coefficient,
it breaks the sine wave down into a rather unconvincing set of coefficients.

Consequently, although these and similar transforms like the wavelet transform have not been taken up
seriously in surface metrology as yet, they may well be in the future. This is because the nature of surface
texture is changing.

It may be that as the presence of sharp features on surfaces such as ridges, crevices or scratches
increases, the square function transforms will be used more often.

2.1.7.8 A general note about space-frequency functions

Most engineers accept the Fourier transform and Fourier analysis as a meaningful way to break up a signal
into an alternative form, i.e. sinusoids (equation (2.220)). Many signals have an oscillating base as in vibra-
tion. This representation has been very useful.

F(w)= f z(x)exp(— jwx )dx (2.220)

Equation (2.220) gives the amplitude and phase of the coefficient F(w) when the function z(x) is multiplied by
the exponential function and integrated over all x. The value F(w) owes much of its stability to the fact that the
integral range is very wide. Unfortunately this attribute has drawbacks. If there is a change in the statistical
nature of z(x) over a small range of x it is completely swallowed by the integral. Local variations cannot be
picked out. Often the global average such as in equation (2.220) is a measure of good performance. For exam-
ple, in roundness measurement if the average value of the third harmonic is low, then it can be deduced that
there is no workpiece clamping problem. On the other hand if one of the tool used in face milling is broken,
e.g. the first tooth on a twelve tooth tool, measuring the twelfth harmonic will not show up the presence of the
broken tooth. What is needed is a function which has the attributes of a differentiator to highlight small changes
as well as an integrator to have stable results. There have been many attempts to solve this dual problem. The
space-frequency (or time-frequency) functions are a general class of function designed to have the dual role.

One function—the structure function (first used in surface metrology in 1971 by Whitehouse[126]) has
the elements of a dual function. It is defined as

E(z(x - @.z(x + %D - 2(02 - O'Zp) (2.221)

where o is R, the root mean square roughness and p is the correlation.
The term

z(x)—z(x + 1) ~ Z'(x) (2.222)

) S(t) = E(z(x) —z(x + 1)2) = T%Tz’(x)z dx (2.223)
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or S(r) = E[z(x - ;j.z(x + ;D (2.224)

which is very closely related to the Wigner function kernel.

Unfortunately this function has only one argument spatially and none in frequency. Therefore the search
has been for alternatives to the simple random process power spectrum and autocorrelation.

In equation (2.224) there is the one operational parameter 7. To be useful another parameter is needed.
It seems that an obvious extension is to take the Fourier transform of the kernel.

So
Y(z,B)= J z(x - g.z(x + gexp(—jﬁx)dx (2.225)

—0

In equation (2.225) there are two variables 7 and 8 which satisfies the criterion for isolating positions in
space and time. The equation (2.225) is obviously contrived but it is very close to the Wigner distribution
which has a formal physics pedigree and does develop from the Fourier transform and autocorrelation. The
kernel in fact is made up of an autocorrelation term, equation (2.225), and a Fourier term, exp(—j(x). It fits in
well with an engineering approach.

The ambiguity function has a formula similar to equation (2.22) so it also falls under the Fourier
umbrella. An example of their use is found later in the book in chapter 5.

It will be seen in chapter 6 and elsewhere that the autocorrelation function and the power spectrum are
very useful. Their use derives mainly from the fact that because they are insensitive to phase change they are
inherently stable. In the case of the autocorrelation function this revolves around the kernel

(z(x)z(x + 7)). (2.226)

It is fairly obvious that this sort of average, although useful for stationary signals (in the spatial sense),
is not very revealing with non-stationary signals, that is where the statistics of the surface change as a func-
tion of x. This is because for a given 7 the dependence on x is lost because the kernel is integrated with
respect to x. To be useful for characterizing non-stationary signals x has to be conserved. One very powerful
possibility is to redefine the kernel in such a way that the value of x is retained. Such a possibility is given by

C(r,x) = <z(x +17/2)z" (x — 1/2)>. (2.227)

The ensemble average is centred on x. This effectively means that the expression for the average is cen-
tred on x rather than being a distance x from an arbitrary origin.
Equivalently a short time spectrogram can be postulated, P(®, x). This is

2

Plo.x)=|  z(B)h(B - x)exp(—jop)dp (2.228)

where /4 is a window function located at x and which weights z(-). This results in an average w centred on x
and extending over the width of the window. It does not give the instantaneous frequency at x. §is a dummy
space variable.

Using this thinking directs attention to two types of function, the Wigner function and the ambiguity
function. Some of their principal properties are given below.
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(a) Wigner distribution functions and ambiguity functions
The Wigner function is

W(x,o) :Jw z[x - gjz*[x + }2(] exp(—joy)dy (2.229)
and the ambiguity function is
N X X .
Ay, @) = z| x 5 | x + 5 exp(—jox)dx (2.230)

The very unusual feature of these is that the functions W(x, @) and A(y, @) can be obtained equally easily
from the frequency domain. Thus

W(x,0) = j : F(w - w]F[co + “’j exp(+jx@)d@ (2.231)
2) 2 2

Ay, o) = —f ( jF (a) +2)exp( —jy®)do. (2.232)

It is obvious from this that both functions can be arrived at equally easily from the space or frequency
direction. They can be said to exist in between the two — hence the dual term space-frequency. They can also
be expressed in terms of each other:

W(x,0)= —ff Xz exp[ j(oy —ox)]dody

(2.233)
Ay, @) = —JJ' x 10} exp[ j(@x — oy)]dxdw.

By looking at the equations it can be seen that both functions utilize what are effectively the Fourier ker-
nel exp() and the correlation kernel (z(x)z(x + 7)) thereby making use of the benefits of both. This means that
both functions W(-) and A(-) are more flexible than either the autocorrelation or the power spectrum.

If it comes to a choice between W(x, w) and A(y, ®), the winner is marginally the Wigner function (as
far as can be seen at present) because it alone retains the actual values of x and @ and so is most suitable for
non-stationary characterization.

In principle, therefore, the possibility of being able to characterize the average statistics of the surface, and
also the non-typical characteristics of the surface such as defects or flaws, using one function is now a possibility.

The fact that the values of x and o are retained makes the Wigner function behave like a two-dimen-
sional convolution. Making x or @ zero simulates filtering in the space or frequency domain. On the other
hand, the ambiguity function acts more as a correlator, ¢ and @ being effectively lags. For @ = 0 the ambi-
guity function is the autocorrelation function.

In effect, in the space-frequency domain the ambiguity domain moves, whereas the Wigner domain
expands or shrinks. In both cases there is a fixed element. In the Wigner function it is the position of the centre
of the domain; in the ambiguity function it is the size of domain (i.e. the bandwidth-extent product is constant).

It is clear that the Wigner and ambiguity functions are likely to work on a surface profile. It is obviously
impossible to visualize the areal functions, which are of four dimensions in space-frequency.

Together, the ambiguity function and the Wigner distribution function have much potential. The prob-
lem now arises of formulating a way of characterization based on these functions. There is now far too much
information available. To make a sensible and practical attempt to reduce the data, it seems plausible to resort
to taking the moments of the functions as for previous functions. Because of the double arguments, the
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moments can be in frequency, space or both. Thus the Wigner function has moments which are given below
and which are surprisingly simple:

Z,(x)j _ j oF(0)do 0234,

first frequency moment = Im[
2(x))  [F(w)do

second frequency moment = — Tped (z'(x)j
2 dx\z(x)

JoF@)}o (] oF (@)do)
~ [Fe)o | [Fo)do

F'(a;)] _ Ixz(x)dx
F(@))  [z(x)dx

(2.235)

first spatial moment = Im( (2.236)

second spatial moment = — 1 Re d (Wj
2 do\F(o)

~ szz(x)dx ~ (j xz(x)dx\ ’

. 2.237
Iz(x)dx jz(x)dx ( :

This form is obvious when it is realized that for the spatial moments @ = 0 and for the frequency moments
x = 0. The moments are in fact the set obtained from the profile and spectrum directly—only they are linked
together by the Wigner function.

Similar results are obtained for the ambiguity function. The global first moment for frequency is given by

ifJ'a)W(x,a))dxdco = ifoo‘F(co)‘zdw/a% (2.238)
2w 2w

= —J x‘z(x)‘2 dx/z*>  for space (2.239)

where o7 1is the variance of F(w) and ¢ is the variance of z.

As an example of how these moments can be used, consider the dynamics of machine tools. For this it
is necessary to examine the types of signal which could be imprinted on the surface by vibration of the tool.
It turns out that amplitude modulation characteristics are revealed by the second local moment in frequency
whereas non-stationarity tends to be revealed by the first-order local moments in frequency [72]. The spatial
moments can isolate scratches and faults in the same way.

Thus for z(x) = a(x) exp(je(x)) (pitch vibration of tool)

zeroth moment (frequency) = p(x) = a*(x)

first moment (frequency) = Q(x) = p(x)

(2.240)
_ ~ 1ldfa(x)
second moment (frequency) = m(x) = ———| —=|.
2dx\ a(x)
The instantaneous power and frequency are found at x.
If the surface wave is due to yaw vibration of the tool
z(x) = aexp(j(a/2)x?)
p(x)=a? (2.241)

Q(x) = ax.
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For frequency modulation
z(x) = aexplwyx + @, + bsin(w,, + @,,)]

p(x)=o?
Q(x) = 0y + bw,,cos(@,x + @y,).

(2.241a)

From equation (2.241) it is clear that the first moment clearly identifies the type of signal.

The question arises as to whether the space-frequency functions can be useful for characterizing other
surface features. The answer is probably positive in the case of surface defects and flaws.

How does a scratch of width 2x; and position x, on the surface fare with this moment treatment? This
has a spectral response given by

2
F(o) = (1j {~exp(=jar,) + 2expl=je(x, + )] - expl-jo(x, +2x)]]. (2242)
jo

This gives the first moment value of x, and the second moment equal to the dispersion x} / 24 which cor-
responds to the position and width of the defect. From this data it seems plausible to suggest that useful infor-
mation on defect classification can result by using the Wigner function. The ambiguity function would be
useful in classifying the shape of the defect rather than its size and position.

(b) Gabor transform [131]

Another function of the space-frequency type is called the Gabor transform. This is a function which makes use
of the transform symmetry of the Gaussian-shaped pulse; that is, the shape of a Gaussian pulse in the time (or
space) domain is the same in the frequency domain. So, the input signal is broken down into a linear combination
of shifted Gaussian pulses in the time (space) domain. Obviously these same pulses can be thought of as also
existing in the frequency domain. Because the responses to Gaussian pulses are well known they can be put in a
look-up table and used instead of a calculation of transformation. This considerably speeds up the calculation
(some details are given in section 3.8.5); it has not yet been used in surface metrology but may be in the future.

Wavelet Transforms

The Wigner and ambiguity functions are time (space) functions. Both time (space) and frequency are to be
selected so that different parts of the signal can be investigated by basically shifting the original analysis and
also by changing the scale. The effective kernel in both contains an exponential term and a correlation term.
In effect the kernel provides a short term function which is a mixture of a correlation term and a Fourier term.
The slope of this depends on the actual values of the kernel arguments.

An alternative approach is provided by wavelet theory which has as its kernel an arbitrarily shaped func-
tion with two arguments: one position (or time) and the other a scale factor. The fact that the waveform is
arbitrary gives tremendous flexibility. It can be represented in a number of forms, for example short-time
Fourier transform decomposition of signal into basis functions, sub-band signal decompositions etc.

There is only one constant in the above list and this is the equation (i.e. the form of the wavelet transform).

W (ab) = L | h*(t_bj z(t)dt (2.243)
Va a
In the equation for the transform the wavelet /() operates on the signal f(f) under the integral. W(a, b) is the
wavelet transform.

Historically the first glimmering of the wavelet theory was due to Gabor [131] in 1946. What he did was
to localize the signal by a ‘window’ of finite width before Fourier analysis was used. This is often called the
Gabor representation. The penalty of this localization is loss of frequency resolution. However, this approach
can isolate transients in signals.
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One representation often used is to divide the frequency into cells of constant bandwidths e.g. octaves or
decades rather than constant absolute size (i.e. giving the representation in terms of function of constant shape).
In this guise the wavelet transform is characterized by position and scale rather than position and frequency.
Wigner and ambiguity functions are genuinely time (space) frequency functions so the wavelet transform can
be considered to be complementary to them both. The other point is that Wigner and ambiguity functions have
fixed form, whereas wavelets can have any form providing that the basic equation is equation (2.243).

Wigner and ambiguity functions have components of autocorrelation and Fourier or power spectrum; the
wavelet does not. It is not possible to evaluate moments in a general form as in Wigner and ambiguity functions. The
freedom of the wavelet transform allows position and bandwidth to be simultaneously changed, whereas Wigner
and ambiguity functions have fixed position and variable bandwidth or fixed bandwidth with flexible position.

The main problem with the use of wavelets is their variety. It started out with Gabor in 1946 who tried
to localize features in the waveform under test by pre-processing with a finite duration window before the
Fourier analysis, thereby ensuring some degree of localization albeit at expense of frequency resolution.

The key to the approach was to divide the frequency domain into cells of constant (usually octave) band-
width thus giving a representation in terms of functions of constant shape (the original ones were Gaussian).

The main difference between the Fourier and wavelet approaches is as follows.

The Fourier representation of analysing the signal with a view to localization is twofold.

(1) splitting up the real axis into units of given length
(i) representing the function is each interval by its Fourier series (i.e. a block transform).

Such a representation has position and frequency parameters. The wavelet on the other hand describes sig-
nals in terms of scale rather than frequency.

Thus the wavelet of f{x) is the set of coefficients as equation (c) with two parameters—position index n
and scale index m.

The important thing to note is that the wavelet method is very versatile, unlike the Wigner, but its versa-
tility means that the shape of the function has to match the application if good results are to be obtained. For
example, it is no good trying to represent a sine with Gaussian shaped packets, it is a complete mismatch.
Wigner treats every waveform equally.

The point here is that it is sensible to have some idea of the function before applying wavelet theory.

For general applications the wavelets should be orthonormal in the same way as in a Fourier series.
Wavelets which have this property can be useful in the processing of surface data. Raja et al are probably the
first investigators to use wavelets [132].

One of the problems with wavelet application is that to get best results the shape of the wavelet should match
the feature of interest on the surface and yet at the same time have the orthonormal property indicted above. These
two requirements are not necessarily easy to satisfy simultaneously. Take for example the hat transform shown
earlier. This shape—or more precisely the negative of it f(x) = — f(x) —is very suitable for identifying the unit grain
impression left on the surface during grinding but it does not have the required orthogonal properties.

The wavelet technique does allow fractal analysis [78]. The multiscale property of possible fractal sur-
faces can be explored by having the wavelet scale variable step down in octaves. It is unlikely that many sur-
faces would scale down by more than two decades so there is a real problem of knowing through how many
orders of magnitude self similarity holds true.

Space frequency function wavelet theory
The main point is that space frequency functions are used for dispersive functions, basically when the char-
acteristics are changing in time (space) and/or frequency.

The wavelet transform method decomposes a space function (in surface metrology) into a set of basic
functions or wavelets in the same way that a Fourier analysis breaks down a signal into sinusoids of dif-
ferent frequency

Copyright © 2003 IOP Publishing Ltd.



Thus W(a,b) = T f(x)[q/*(a,b)(x)]dx (2.244)

Where v (ab)(x) is given by equation (2.245) (see equation (2.243) for time version).

y(ab) = W[x - bj

va a

(2.245)

The basic wavelet is y(x). It can be seen from equation (2.245) that y(ab)(x) is a member of the wavelet set
obtained from the base by a spatial shift (x — b) and a scale reduction of a. These operations are shift and dilation.

It is easy to see that by changing a and b the wavelet can be positioned anywhere in the space domain x
by b and adjusted in size by a.

In effect a and b are used to adjust the space and frequency location. Small @ produces a large wavelet
which corresponds to a high spatial resolution and vice versa, large a shrinks the wavelet function in the fre-
quency domain to concentrate in a small region in frequency. Obviously poor spatial resolution goes with this
in exactly the same way as in a Fourier transform pair.

This localization property in space and frequency is exactly the same as with the Wigner function. Small
variations can be targeted and not lost in the large averaging of the Fourier transform method.

It is usual to arrange the various wavelets in such a way as to be orthogonal and hence independent of
each other.

In discrete terms the input signal f(x) is multiplied by discrete wavelet functions y ;(x) equivalent to
equation (2.245)

Where W (x) = L w(_zj kj (2.246)
Vo T\
In equation (2.246) 2/ represents the frequency of each of the wavelet basis functions in equation (a) and 2/k
represents the location in space corresponding to the b term in equation (2.245).
The wavelet coefficients Cik may be regarded as a space frequency map of the original signal.

0

Ck=1|f (x)w;k(x)dx (2.247)

—00

As already noted there are many variations of the wavelet theory. One popular variant, multi-resolution is
given here.

This equation (2.246) is used to sample the input signal and its approximations at different resolutions.
At each resolution the scaling coefficients and the wavelet coefficients are

M

C’+1,k =

J

g(i - 2k)d h (2.248)

—on

0

doy =Y h(i—2k>djl< (2.249)

J
Equations (2.248) and (2.249) represent a decomposition of the (j—1) scaling coefficients into low frequency
and high frequency terms. The terms g and & are high pass and low pass filters derived from the analysis
wavelet y and the scaling function.
One application uses orthogonal filters of length 4 units.
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o) = (1 + \53)/4\/2, 1) = (3 + J3)/4\/2
H2) = (3 - x/3)/4\s"2, H3) = (1 - \/3)/4\52

gln) = (1) 3 -n)

The actual functions to multiply the raw data are very simple, as can be seen in the example above.
Computationally they are fast and efficient especially if the functions are orthogonal (i.e. independent). Very
often the wavelets are Gaussian in shape which allows for smooth, well behaved frequency characteristics.
Also the Gaussian shape is a good default characteristic because it is a reasonable match for most functions.
Incidentally, in this form the wavelet transform is very much like the original Gabor transform.

A summary of the essential points is shown below in figure 2.80(a).

It is undeniable that the space frequency functions are useful in spotting changes in statistics which
result from machine tool and process problems. Can these functions be used in a functional way? The answer
to this is yes with some provisos. Functions which involve flow can utilize space frequency function S.

Thus

(2.250)

Data Data modification Multiplier Result

fix) > exp(—jwx) »{ Fourier - F(w)

IAVAV AV a V) .
(continuous)

fix) —| f(x + @f(x - %) —>  exp(—jw1) »|  Wigner - W(w1)
A VAVAVAV, (continuous)

fx) > y/[x — bj » Wavelet - W(ab)

a

’l/\/" (localized)

Figure 2.80(a) Space frequency functions.
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Figure 2.80(b) Space frequency and the function map.
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However, the space variable has to be replaced by a time variable. Where space/time frequency functions are
not really useful is in functions which involve the ‘normal’ contact of surfaces. Here the contact mechanism
is parallel rather than serial and is concerned with peak behaviour in a somewhat non-linear way. Using the
classification given in chapter 7.

Can wavelets help with fractals [133]? Should a Markov process with exponential correlation function be
described as a fractal surface or be left as it is? There is a danger of seeing fractal behaviour in all waveforms.

The basic idea behind wavelet use is to analyse the surface into different scales. Here ‘scale’ implies
‘resolution’. In effect, wavelet analysis could be described as a ‘mathematical zoom lens’.

According to Raja [132] the dyadically dilated wavelets constitute a bank of octave band pass filters and
the dilated scaling functions form a low pass filter bank.

Wavelet

shape I

Octave
selection

N
e

Figure 2.81

Depending on how many octaves are covered by the wavelet (e.g. three in figure 2 .82(a)) the surface spec-
trum can be successively approximated.

Usually the zero frequency response is taken to be zero because the wavelet has zero area. The use of
‘raised’ wavelets does allow a dc component. Also placing a Dirac delta function central and opposite to the
wavelet can simulate the high pass version.

There is a real possibility of using wavelets to unveil specific features of manufacture or function. For
example, take one of the most popular wavelets which is in the form of a hat of form

g(x) = (1 - xz)exp[—x;] (2.251)

This takes the form shown in figure 2.82(b)i.

It seems difficult to spot any manufacturing identity with this shape, so it would appear to be inappro-
priate to use this wavelet shape. However, rotating the hat through 180° about the x axis produces the shape
shown in figure 2.82(b)ii. This is precisely the shape of a single grain impression left on the surface by grind-
ing and would have a very high correlation with this shape. It is true that autocorrelation would identify such
a waveform, but in its correlation form, which is not as obvious the spatial form given in figure 2.82(b)ii.
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The obvious path, therefore, would be to use the autocorrelation function of the surface profile to reveal the
presence and horizontal scale of the grain impression. Knowing this, the hat shape could be used as a wavelet
to find out exactly where the impression is strongest within the profile.

Without the pilot examination of the surface using autocorrelation the chances of picking a suitable
wavelet shape and scale would be remote.

In fact this hat shape would not be used directly because it does not have the orthonormal properties
required for the wavelet, so the wavelet method would probably be replaced with a cross correlation of the
hat with the profile.

It would be necessary to find a wavelet set with the nearest shape and scale using one of the techniques
used by Daubechies [134].

2.1.8  Fractals

Recently, it has been observed that some surfaces have a particular type of behaviour called the fractal prop-
erty. Mandelbrot [52] described structures in nature such as snowflakes, coastlines, clouds, etc, as having the
fractal property. Simply, this is that the geometry, regular or random, exhibits ‘self-similarity’ over all ranges
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of scale. This means that these structures are characterized by some dimension which is not Euclidean. For
example, a snowflake is not two dimensional; in fractal terms it is just over unity.

The fractal property of some engineering surfaces was first investigated by Sayles and Thomas [70].

There are two terms that are relevant in terms of scale. One is ‘self-similarity’ which refers to the
property that it has the same statistics regardless of scale. In terms of roughness parameters therefore self-
similarity implies that any parameter should be independent of the scale of sampling. The second, a ‘self-
affine’ fractal, is only self-similar when scaled in one direction. Single-valued fractal functions must be
self-affine because a small feature can only occur on a larger feature if its slope is larger. On this basis a
surface profile should preferably be considered to be single-valued because surface slopes are steeper for
finer sampling.

The difference between the self-similar property and the self-affine property is that self-similar fractals
require only one parameter to define them — D, the fractal dimension — whereas self-affine surfaces require
an additional one that relates to the scale being viewed.

In roughness terms it is necessary to specify, in addition to D, the way in which the ratio of vertical to
horizontal magnification has to be changed in order to preserve self-similarity. The name given to this other
parameter is called ‘topothesy’ after Berry [71].

Another way of classifying fractal surfaces is by the power spectral density. If the power spectrum is

P(w) =k/o" (2.252)
the dimension D is given by
D=(5-v)/2. (2.253)
Yet another way is using the structure function S(o) where 6 is the sample interval
S(o) s, (2.254)

In these terms the topothesy A is the horizontal distance over which the chord joining the ends of the
sample interval between measurements has an RMS slope of 1 radian:

s(a)az =1, (2.255)
The constant of proportionality in equation (2.196) is A% —2, so
s(8) = a22520-2) (2.256)
This formula enables the dimension of a profile of a surface to be found. By plotting the logarithm of
structure function against the logarithm of the sample interval a straight line should result, whose slope
enables D to be found. The intercept at unity gives A (figure 2.83).
There is another way to evaluate the fractal dimension of a profile. This is using the high spot and local
peak counts m and n. Thus, given the structure function formula,
s(6) = a22520-), (2.257)

the structure function can be evaluated in terms of the derivatives of the autocorrelation function.

5(5) - —A"(O)éz. (2.258)
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Figure 2.83 Determination of fractal properties.

Also the curvistructure function C(8) is given
C(5) - Aiv(o)é“ (2.259)
which can be related to S(5) by differentiating S(S(5)).

So equating these enables D the fractal dimension to be obtained. For example, in terms of m, the local
peak spacing

mo L | (0) -1 ap? _6p+2 (2.260)
2 \/—A"(O) 26

Hence D is found in terms of a simple count of peaks at the scale of size (which is usually determined by the
instrument).
A, the topothesy, is less important but it is obtained from

A= (ansD-')z'"(w*”

(2.261)

The topothesy has the dimension of length and can have any value, but the fractal dimension D can only
have values between 1 and 2; 1 corresponds to a straight line while 2 is an infinitely rough profile that fills in
the whole plane of the profile. Hence the dimension D is not very sensitive to different processes as is seen
below in table 2.10.

Table 2.10

Process D Topothesy (um)
Ground 1.17 3.38 X 10
Turned 1.18 2.74 X 1074
Bead blast 1.14 427 X 10~
Spark eroded 1.39 3.89 X 107!

In practice no real surface has fractal properties over all scales of size, only a very limited range, which means

that there is no unique D value for the surface any more than there is a unique value for other parameters.
The reason why there is interest in fractal behaviour is fundamentally to get out of the problem which

has beset all tribologists and surface investigators for the past twenty years. This concerns the dependence of
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the surface parameters on instrument characteristics which include evaluation length or area covered, resolu-
tion and sampling interval. It will be shown in the next chapter how non-intrinsic surface parameters like
peak curvature and slopes depend heavily on the short and long wavelengths of the surface-measuring
instrument. Obviously if a parameter can be found which is scale invariant then its value when measured
within the bandwidth of the instrument would be perfectly valid for scales above and below the instrument’s
capability. Results could genuinely be extrapolated from one scale to another. The fractal dimension D and
topothesy A are such parameters. It is therefore very tempting to find fractal dimensions in surfaces. These
would be true intrinsic parameters.

The important question, therefore, is whether surfaces, and engineering surfaces in particular, are fractal.
There seems to be a desire for them to be so, for the reasons given above, but is this justified? Obviously the
question is mostly related to the method of manufacture of the surface. Fractal comes from fracture mechan-
ics, so it would seem plausible to say that any process based on fracture mechanics would produce fractal
surfaces. This may well be true for the machining of brittle components such as ceramics; it is not true for
many processes in which plastic flow occurs.

Also, fracture mechanics is based on the laws of crack propagation, which follow a Brownian pattern. It
would seem plausible again to suggest that any surface made up of a growth mechanism such as in the depo-
sition of materials [73], solidification of a liquid [72] and fracture [75] (i.e. growth of cracks) would have
fractal properties. Some fractal behaviour in stainless steel [138] has been observed.

Some of the basic properties of fractals in an engineering concept are attempted by Majundar and
Bhusan [76].

In terms of characterization, if z(x) is a profile of a fractal surface (everywhere continuous but not dif-
ferentiable everywhere) it can be characterized as

2(x) =GP DY %’Z’C) 1<D<2 y>L (2.262)
7/ - n

n=n

Here G is a scaling constant related to topothesy by
A = G/(2D —2)y2Iny (2.263)

and y" corresponds to a frequency term, that is reciprocal wavelength y”" = 1 / A" This is very similar to
expanding z(x) in a Fourier series except that, instead of the harmonics increasing linearly with n (i.e. ny),
they increase as a power law y".

This is a case of the Weierstrasse — Mandelbrot function (W — M). It has interesting properties

z(yx) =y *Pz(x) (2.264)

which make z(x) a self-affine function because the scaling of z and x is unequal; n corresponds to the low cut-
off frequency.

(a) Fractal relation to power spectrum and its moments
Since z(x) comprises a superposition of infinite frequency modes it is a multiscale function. Although the
series for z(x) is convergent that of dz/ dx is divergent.

The relation to the power spectrum P(®) is

P(a))z G 1 (2.265)
2lny P ’
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The structure function is
(z(x)) — z(x,)]*) = G*P~Y)T (2D - 3) sin((sz)”j (x; — x,)472P) (2.266)

Also A(7) = my(1 —%S(T))

GAP-D 1 f 1 1 \\
2\ _ 2 _ —
(z)=0"=m, = _ L @-20) (“-2D) ) (2:267)
2lny (4-2D)\w; [oN
2D-1)
e\ _ 52y G #(wﬁw—n _ wﬁwm) (2.268)
dx 2lny (2D -2)
2 2AD-1)
W\ _ g2y, =G i(a)ﬁﬂ — ) (2.269)
dx? 2lny 2D

All these terms for curvature, slope and RMS are in terms of D and are restricted by the instrument
restraints oy and o, — the lower and higher bandwidth limits.

If the length of the sample and the resolution @y, are known ( @y is related to the evaluation length) then
by measuring mj, m, and m, given above, G and D can be determined and so the fractal dimension D and the
parameter G which characterizes the roughness at all scales.

The equations above [ 76] show that the averages of the profile, slope and curvature are functions of the
two length scales and their dependence involves the D dimension of the surface. The variances of z, dz/ dx
and d2z/dx? in themselves give little information about D and the multiscale structure of the surface.

The asperity density depends on a:

D_1y (4-2D)
o = MoMa _ (—)(Q’hj (2.270)
m? D2 -D\w,

It can therefore be seen that for all D less than 2 the parameter o depends on oy, and @y, and is therefore
instrument dependent and thus non-unique — the same old problem!
The scale dependence of surface parameters like the roughness RMS R, etc, are shown in table 2.11.

Table 2.11

Parameter Dependence on wy and o
R, o™

Mean peak height P

A, WP

Mean peak curvature wh

Majundar and Bhusan [76] suggest that the only way to remove this restriction of instrument dependence is
to use the multiscale structure of self-affine asperities. This could be simulated by using the relationship con-
necting the profile ordinate z(x) by

z = GP-he-D) cos(zmcj where — %<x<%. (2.271)
/
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If the dimension of a surface is taken to be D = 2 then the power spectrum behaves as 1 / 0> If oy, > w, then
the height varies as In(wy, / ). If now the surface profile is multiplied by a length scaling factor 8> 1, it increases
the spatial resolution and decreases the sampling length and @, becomes B, and ©; becomes [, . The pre-
diction is that the heights remain constant, the slopes increase as 8 and the curvatures by 2. The relationships fol-
low this trend as can be seen in figure 2.84. How fractal dimensions occur in contact will be seen in chapter 7.

100 B2 curvature
=
= B slopes
= 10
B, heights
1 2 4 10
p

Figure 2.84 Dependence of surface properties on scale factor .

In conclusion, the tendency to look for fractal behaviour is justified in the cases of the finer surfaces which
tend to be manufactured by non-plastic processes and more by growth or deposition mechanisms.

If it can be assumed that a D value is common to all scales of size then this truly is an intrinsic parame-
ter to the surface so that, in principle, measuring D for any scale of size suffices for all. Hence if D (and A) is
estimated from one scale of size it may be common to all scales, but there is no guarantee as different process
mechanisms may come into play. Measuring the standard parameters of height, slope and curvature defi-
nitely only relates to the scale of size in which they are measured, as will be seen in chapter 3.

By far the safest path is to find what scale of size is most important and measure the relevant parameter
corresponding to that size. This method has to be the best whether fractal characteristics are assumed or not.

If fractal properties are assumed then the dimension parameter can be measured at the most convenient
scale, usually corresponding to the most available instrument.

The properties of other scales can then be inferred directly and models of contact etc worked out for
those of a scale of size that cannot be readily measured, perhaps because they are too small.

All the evidence is that for the finer surfaces there is more of a chance of having fractal properties than
for the rougher. However, it could be that with the growing use of ductile grinding in which there is little or
no fracture behaviour, fractal behaviour will be restricted to a few processes in which case there is no real
benefit in pursuing the fractal path for general characterization. Also, at the longer wavelengths where the
mechanisms are less violent and more continuous, in the sense that they are usually produced by variations in
the tool path rather than the machining process, fractal behaviour is less likely.

The interesting point to note is that the fractal approach is so closely related to the order of the power
spectrum that these two approaches could be considered to be different views of the same thing. In fact the
value of D =1.5 corresponds to the exponential autocorrelation function which is a natural consequence of
the process having Poissonian statistics and would be the most likely shape of function for any truly random
method of generation. It has already been noted by Mulvaney [77] that surfaces have spectra which are
almost exponential anyway. He suggests

P(a)) - K (2.272(a)
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rather than
Pw)=K/o". (2.272(b))

This fits in with the earlier observations on spectra by Whitehouse and Archard [28].

In conclusion, it seems that the fractal approach is in fact the spectral one with a different emphasis
being put on the order of the power. The only real danger is that investigators try to impose fractal character-
istics when they do not exist. The danger is that scale insensitive parameters (fractals) are used to try to char-
acterize scale sensitive behaviour, e.g., dynamics [135].

It has been stated earlier that engineering surfaces such as milling, turning, etc. are highly unlikely to
have fractal properties. One criterion which can be used to tell whether or not a process is likely to be fractal
is simply to determine whether or not it is, or has, a growth mechanism (or decay) as part of its characteris-
tics. Single point cutting obviously has not and nor does grinding, except when in the brittle cutting mode.

Any process involving sputtering, coating or even painting could well be fractal. The surface of thin
films or doped semiconductor materials also have the deposited element present and so can be fractal.

In other words, conventional engineering processes are unlikely to be fractal despite some investigation
[136]. However, with miniaturization, more specialized processes are being evolved often with bombardment
methods; the result is that in the nanotechnology regime fractal processes are more likely.

Can friction and wear be characterized by fractal methods? How can fractal methods be applied to
chaos? How sensitive are fractal methods to their definition? The last of these questions [139] has been dis-
cussed as a function of scale and the sensitivity of the fractal dimension with orientation of the surface pro-
file. Brown [139] uses patchwork analysis to investigate roughness characterization and seems to go further
with his straightforward method than many using more complicated techniques.

2.1.9  Surface texture and non-linear dynamics in machines

One of the ways in which surface texture is useful is in acting as a fingerprint of the manufacturing
process and machine tool behaviour. This will be seen in chapter 6 where it is demonstrated that tool
wear, built-up edge and tool vibration can be controlled by use of the correlation function and power
spectrum. The surface reacts to the way in which the process is changing or vibration is built up in the
spindle and traverse table.

One emerging way in which the link from the surface to the machine tool is being carried out is briefly
mentioned below and in more detail in chapter 6. This concerns the use of non-linear dynamic system the-
ory. Using this technique it should be possible to improve knowledge of the relationship between the
machine tool and the surface (e.g. for turning or milling operations).

What makes the system non-linear is that for some part of the cutting cycle, especially in milling [79],
the tool is not in contact with the workpiece. For turning this is not so evident. In milling the stability bound-
ary may be two or three times wrongly calculated by conventional methods. This makes the understanding of
such effects desirable — especially in acceptance testing of milling machines.

The idea is to build up a mathematical model of the machine tool dynamics from the observed data —
that is, the surface roughness which has been produced [80]. This means that a state space has to be con-
structed from what is in effect a time series (i.e. the surface profile). This method has the potential of getting
actual values of machine tool parameters.

The cutting model consists of a single non-linear oscillator coupled to a mass edge with the cutting
attached to it. This gives

Mz»+Tac+ Az = Fsinc (2.273)
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The cutting force excites vibration z in the oscillator of the form
force = bcyc, (2.274)

where b is the chip width, ¢, is the cutting stiffness and ¢, is the chip thickness
According to Scott [ 80] the equation of motion is

» + Cz +Dz = B, (2.275)
Normalizing the time domain for one rotation of the spindle is conventional and convenient. In equation (2.215)
C=A/M, B = sin(a)bc,/ M, C = T/M. (2.276)

Because the long-term behaviour best illustrates the non-linearity rather than the transient response — the
system can then be steadied to reveal ‘strange attractor’ behaviour — a state-space representation of the sys-
tem consists of z, z and the last profile (this means the profile produced in the last revolution).

The basic idea is that from this state-space representation using the model on the one hand and the sur-
face on the other, a convergence can be achieved in which the parameters of the model and, thus, the cutting
conditions, can be optimized.

Obviously the use of such a technique is in its infancy, but providing that the model is reasonable in the
first place it should enable a much greater understanding of the relationship between the texture and the process.

The fundamental difference between this approach and the typology arguments given in much of this
chapter is this: conventionally, the characterization of the surface profile or areal data has resulted in a set of
numbers which preserve as much of the real information in the data as possible, consistent with the use to
which it will be put; these values are then used to help pin down the control of manufacture or function. In
the state-space approach all the profile data are used — the convergence to a pattern which reduces to num-
bers, allowing the actual parameters of the process itself to be estimated in value. This latter method must be
better in that it is a more direct link but it does have recourse, at least in the first instance, to a realistic model
of the process and the machine tool.

2.2 Waviness

This is an integral part of the surface texture. There is a considerable controversy as to whether waviness
should be included with the roughness evaluation or not. Probably more has been written on methods of sepa-
rating the two than on any other subject in surface metrology. Some investigators think that it has all been a
waste of time and that, functionally, the geometry as a whole is important. That this is undoubtedly true in a
number of function applications, such as light scattering, is a valid point. However, there are a number of rea-
sons why waviness should be measured apart from the roughness; the principal one being that it represents an
important symptom of machine tool behaviour. From the point of view of manufacturing control, its measure-
ment is most valuable. On the other hand, there are functional uses where roughness is much more important
and should not be corrupted with irrelevant information, static contact being a typical example. Anyway, the
fact that they may be assessed separately should not preclude their integration when required. What is more
questionable is the wavelength at which the separation between roughness and waviness is supposed to occur.
This obviously changes from process to process and even within a process. Problems such as this have ensured
that there has been a considerable metrological gap in the measurement and understanding of waviness.

Here the two basic metrological problems, that of measurement and that of providing a numerical index,
are retarded, mainly because it is only recently that any real functional significance has been attached to wavi-
ness. Because of this inheritance of neglect any attempt to measure it has been with either form-measuring
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instruments or surface-roughness-measuring instruments. The former have generally been too insensitive
while the latter have had insufficient range. Fortunately this state of affairs has changed rapidly, most instru-
ment manufacturers now providing suitable instrumentation. Typical lengths of traverse are of the order of 10
mm or more and with sensitivities of the order of a tenth of a micrometre.

It is in the horizontal properties rather than in the vertical where the main differences lie. The heights of
waves need not be and indeed often are less than that of the peak-to-valley roughness but the horizontal spac-
ings are usually much larger than those of the roughness, often an order of magnitude or more. Therefore,
methods of separation are usually based on some kind of wavelength discrimination. At the other end of the
scale it is often stated [81] that unless at least three successive waves exist on the surface then no waviness
can be measured.

It is difficult to isolate the measurement of waviness from the reference lines used in roughness because,
in some instances, they are one and the same thing. Whereas waviness is often regarded as no more than a
demarcation between roughness and errors of form, the roughness reference line also has an additional job of
segregating roughness from the set-up effect of the instrument. In surface metrology there is difficulty in iso-
lating intrinsic references (those derived from the surface itself) from the references used for convenience
which are derived from a profile and which themselves may be tainted with errors due to the set-up of the part
relative to the measuring instrument.

This discrepancy between the waviness profile and the roughness reference is most severe when using
filters, because these operate not only on the profile (the boundary of metal to air itself) but also on its posi-
tion and angle in space. It is only when the filter has had time (or space) to find this steady-state position and
angle that the true geometry can be assessed. So it is better to talk about waviness after this situation has been
reached. It has been common practice to regard waviness as the reference line for roughness, which only
works if the filtering has been done properly using a phase converted filter.

Because of the inherent difficulties involved, waviness will be defined more by familiarity rather than
formally. A number of aspects will be considered, some historical and some theoretical. In this way, the basic
problems will be brought into the open even if only indirectly.

A good starting point is to consider some of the features of waviness (sometimes called secondary tex-
ture) and the question of what is meant by waviness, or if in fact it exists or needs to be measured at all. These
questions depend crudely on three things:

(1) what is common usage;
(2) whether purely causative arguments can be used; or
(3) whether functional effects are the real criterion?

Unfortunately the answers to these problems not only are unknown, they are largely mixed up.

For this reason what will be discussed will be to some extent disjointed. However, the historical defini-
tion will be introduced here that ‘waviness is some sort of amplitude effect induced by the machine tool,
normally to the detriment of the performance of the workpiece’. It is usually felt that waviness is a result of
poor manufacture, that is, chatter due to a machine tool which is too elastic. Also, it is not always detrimen-
tal, as will be seen in chapter 7. The problem is that if it is produced by poor manufacture it cannot be prop-
erly controlled anyway! If it is also causative (i.e. produced by the machine tool) then it imposes not only a
distinctive geometry on the surface but also subsurface properties. These in turn have different functional
effects additional to the subsurface effects produced by roughness. On balance, therefore, it seems prudent to
try to evaluate them separately.

There is another reason for separating the components of the surface out rather than leaving them
together. The reason for this is that the process marks on the surface are not important just for their geometry.
They are important in the subsurface sense.

The reasoning is thus. Process marks — the machined marks — are produced at very high speeds, pro-
ducing very hot spots on the surface which seriously stress the subsurface. Residual stress is severe and is
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concentrated close to the surface, e.g. 1um. Plastic movement also introduces stresses. On the other hand
waviness due to the machine tool is produced slowly and elastically at quite large Hertzian depths (fig. 2.85)
— ten times the surface roughness.

Subsurface plastic damage
caused by roughness

Subsurface elastic effects
caused by waviness

Figure 2.85 Subsurface stresses.

A graph showing the relative averages of roughness and waviness is shown in figure 2.86 remembering that
the power spectrum P(w) is not the power.

e
- \ Energy producing

P(w) | e
1Roughness surface roughness

Waviness
Form -

Power spectrum

Frequency

Figure 2.86 Distribution of energy.

From figure 2.86 it is seen that far more energy goes into the surface skin via the roughness than via waviness
and form simply because the energy is proportional to the square of the frequency.

It can be said that the geometrical profile of a surface not only gives roughness and waviness geometry
but also gives an indirect stress picture of the subsurface. Very sharp curves on the surface are produced with
high energies hence high temperatures and produce abusive conditions in the subsurface.

The important point is that if there are two surfaces involved, such as in contact, it is not possible to give
equal weight to all components of the geometric spectrum. Each one is a reflection of the energies which pro-
duced it and each one represents different mechanical properties. So roughness and waviness should be sep-
arated and dealt with in a way compatible with their thermal pedigree. If the function does not involve two
surfaces, as in optical scatter, by all means treat them as one geometry but not otherwise.

One extra problem sometimes encountered is whether the waviness which is visible on the workpiece
actually exists! Sometimes, if a number of summits spaced widely apart in the x and y directions are slightly bur-
nished the eye can make up very convincing patterns. The low resolution of the eye tends to pull detail together.

In any event the patterns formed on the surface by waviness can be varied. Some, like pronounced chat-
ter marks and coarse feed marks of a badly trued grinding wheel, can be identified at a glance; others may need
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an instrument to reveal their presence; and some cannot be measured. In the case of surfaces of revolution,
those extending along the lay of the roughness often become the circumferential departures from roundness.

Waviness as seen in a profile graph can often be appraised both as an undulation of the mean line and as
an undulation of a line drawn through the more prominent crests. It is thus possible to speak both of mean
line waviness and of crest line waviness. Generally the two are not the same, although they can sometimes be
much alike.

One of the few papers dealing exclusively with waviness devotes much space to this problem [81].

Whichever of these two methods of definition is functionally the more significant is open to question.
Another problem is finding the real nature of waviness as opposed to form error and roughness. It is often
asserted that the constituents of the geometry making up the surface are additive. Certainly in the case of
waviness this is open to doubt; it depends on whether waviness is defined as a band of undulations within the
total geometry. Typically the presence of waviness is detectable visually as a pattern of marks spread more or
less periodically along the surface. This sort of effect on the eye can be produced by different types of wave-
form. Three idealized examples are shown in figure 2.87.

Figure 2.87 Different modulated waviness.

This figure shows the single case often encountered in which the waviness is superimposed on the roughness.
It also shows a waveform having the form of an amplitude-modulated signal, which means that there must
exist multiplicative components in the geometry, and it shows the case where the phase or frequency of the
tool mark is changing with passage along the surface. Each of these geometries can cause a visual effect, and
certainly (a), (b) and possibly (c) could also be caused by faulty machining, particularly when the machining
has been done by numerically controlled machines. At present little or no provision is made for differentiat-
ing between these cases but it can be done using the Wigner function. It may well be that more than one of
these effects are present on any one surface. The shape of the waviness component depends to some extent
upon the type of reference used to isolate it from the roughness. For example, the crest line drawn through
figure (a) follows almost exactly the mean line, as it does in figure 2.87(c). However, the mean line is straight
for figure (b) which is certainly not true for the crest or valley line.

More practical cases are shown in figure 2.88 which shows both geometric and visual pictures.

In one case (face turning with a loose cross-slide) there is an undulation which is many times higher
than the tool scratch marks, although it is hardly detectable by eye, while in the other (straight flat grinding),
what might be taken for pronounced chatter marks are found to have a height hardly greater than that of the
normal scratch marks. The illusion of deep chatter marks here is caused by a periodic change in the direction
of the scratch marks without much change in their general level, this phenomenon being quite common.

Obvious differences in waviness between just these two ways of representing the surface highlight one
difficulty of measurement.

Copyright © 2003 IOP Publishing Ltd.



L

Yo

Figure 2.88 Graphs of real surfaces showing different errors in combination.

Metal

Air

(c) 10000/100

(a) 10000/100
TN AT T
(b) 10000/100

i

f

Air
Metal
W
Metal
Air
Metal

/
ﬂ

T

(e) 2000/25

(a) 10000/3
(b) 10000/3
(c) 10000/3

g

—_
2507
—_
v
25“”
—
e
25“N |
—
I
100p”

It seems more than likely that the selected definition of waviness will depend upon the function of the sur-
face. This is because all measurements of waviness take place on the surface before it is used. What is really
essential in some instances, such as wear, is that the waviness of the run-in profile is measured, even if it is by
prediction from the unworn profile — under these circumstances the waviness determined from a mean line
may well be the most significant. On the other hand it seems equally likely that in the problems of limits and
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fits a crest line may be the best reference to use simply because, under these conditions, the initial contact
points are not removed because there is little load or movement.

Work based on these different methods of defining the reference has been carried out by a number of
workers and various definitions have already been introduced into the national standards of some countries.

The first task before putting a number on waviness is to get a waviness profile. In surface roughness the
instrument itself did this. The profile represented an air-metal boundary. Fitting parameters to this boundary,
assuming a reference line to have been suitably defined, was justifiable. Problems arising from a less than
perfect reference could be compensated for afterwards. This is not so easy in waviness. It is not as a rule a
boundary — it is a profile derived from a profile. There seem to be more degrees of freedom to be constrained
than in roughness.

The way in which the waviness profile behaves on average for random waveforms has been evaluated
[84]. This will be discussed in the chapter on instrumentation. However, it does show that again both the
height 4 and the spacings of asperities A are involved;

1/2
average waviness ~ {Zln( 8Rh ﬂ . (2.277)
22 \/ 2r

In each of the above cases the standard roughness filter is compared in figure 2.31 with the so-called phase-
corrected filter. Notice how the phase-corrected filter follows the line that the eye would probably judge to be
the waviness.

Figure 2.31 also shows how in some severe practical cases the phase-corrected mean line of roughness
looks like a convincing waviness profile. It is still true to say, however, that such distortion due to the stan-
dard wave filter does not always occur. It is only when microcontact and macrocontact are being investigated
that these effects are better minimized.

Yet other methods exist, one even more open ended than the others. This is based simply on experience
of the process. If an inspector can detect poor machining by eye from the surface or the profile graph it
should be possible to measure it by taking advantage of the versatility of a computer. Once the geometrical
outcome of a fault has been identified on a graph an algorithm can be written to simulate it. This method suf-
fers from the disadvantage that, for each machine, process and material part, the algorithm might have to be
changed. There is evidence, however, that this new approach is being used more often in industry.
Unfortunately computer versatility sometimes creates more problems than it can resolve.

The ways in which the waviness profile can be obtained in practice will be briefly discussed in chapter 4.
In many cases the fitting of the reference line to roughness has many common features with the waviness pro-
file so that much overlap is possible. In those situations where both waviness and roughness are required at
the same time, it is becoming apparent that the use of a computer coupled to the instrument considerably
reduces the measurement problems.

Another case in which waviness can be best isolated by a computer is when random process theory is
being used. In this technique it is the generally periodic nature of the waviness which is relied upon as a basis
for separation rather than the different frequency bandwidth.

As has been explained in section 2.1, the autocorrelation function can identify periodic from random
components providing that certain conditions are met; the principle being that there must be a clear distinc-
tion as to whether or not phase-modulated periodicity can or cannot be tolerated.

Leroy [85] has attempted to isolate the waves on the surface by an iterative process. He identifies the
dominant periodicity first by a novel level-crossing procedure similar to the motif method. Then he assumes
first estimates of the values of the amplitude and phase from that of the nearest subharmonic of the length of
the chart. This enables some sinusoid to be drawn on the profile. From the differences between it and the pro-
file small adjustments are made until the maximum deviation is a minimum, or the least-squares deviation is
a minimum. Once this sinusoid is optimized to a predetermined degree it is removed from the profile and the
procedure repeated on the next sinusoid. The whole operation is cycled until the profile has been broken
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down into a sufficient number of sinusoids. These are not necessarily orthogonal sinusoids. A similar result
can be obtained by breaking down the profile length into its harmonics. Providing that the profile length is
large compared with the longest surface waveform, the spectrum is generally satisfactory.

Methods of assessing waviness have sometimes been carried out using a twofold attack. This involves
determining the presence of waviness and measuring the amount of waviness, preferably at the same time.
Some investigators have merely concentrated on developing a waviness profile, others on the assessment. In
general, though, the numerical assessment of waviness is still being argued about.

There is also the problem of what to measure once the profile of the waviness has been decided, whether
based on a mean line method or an envelope.

One such approach based on the theory of crossovers developed by Rice and others has been advocated
by Peklenik [86]. He assumed that the waviness takes the form of a second-order random process (which it
quite often does). He then determined the superior and inferior envelopes on a bandwidth criterion. Typical
graphs are shown in figure 2.89.

Surface profile X(7) 'Fjlv_e]ope B(") Mean line m

—_ X

(b)

Figure 2.89 Concept of surface envelope: (a) ground surface, (b) turned surface.

Peklenik [86] uses the mean height of the envelope as a starting point for assessing the usefulness of the
waviness concept in envelope terms which, when worked out using the theory of narrow-band processes,
gives a value of a above the mean line of the profile, where a is the RMS value of the surface. This estab-
lished a level above which it is considered that functional effects may well be concentrated.

From these two parameters are worked out the average width of the profile above this level and the time 7
of one period of the envelope. Thus the concept of the dominant wavelength of the waviness emerges. This
has also been advocated by Spragg and Whitehouse [13] as an extension of their average wavelength concept
from that of surface roughness to waviness.

Peklenik further suggests that the rate of change of the envelope and phase angle are important, a point
which emerges later with the Wigner distribution function.

Thus, the probability density of the envelope, slope and phase change have, subject to the assumptions
above for an amplitude-modulated profile, the following Gaussian form

p(&) = — I exp[ = J (2.278)

f 20,2 2
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Further possibilities include using the correlation function of the envelope and the correlation function of the
phase as the parameters of waviness characterization. From these investigations the most probable useful
parameter for the narrow-band Gaussian model appears to be

a, =2M,,/T,. (2.280)

This expresses the estimated average peak length of solid material M, related to half the envelope wave-
length T, [86]. But a problem arises with this suggestion when the waviness has no amplutude-modulating
factor: frequency modulation can result from tool vibration. Under these circumstances the waviness charac-
terization must lie only in the phase terms.

Usually when waviness amplitude has been specified in the past it has been in terms of a measure of the
separation of the envelope maxima and minima, in some cases this measured value being an average of a
number of measurements. The measurement of waviness according to Perthen (reference [10] in chapter 4)
and Von Weingraber (reference [8] in chapter 4) has been the average drop between the straight line repre-
senting the form error and the envelope line established by a rolling circle having a 3.2mm radius (figure
2.90). One advantage of this method is its consistency, the roughness and waviness numerical values being
additive. This could usefully be called mechanical waviness. However, the original choice by Perthen and
Von Weingraber of 3.2 mm is seen to be too small in figure 2.90 because the transmission characteristic for
waviness never approaches the value of unity.

Roughness Form
1.0 1.0

—R = 3.2mm waviness

A

Figure 2.90 Problem of roughness, waviness and form — transmission characteristics.

The mechanical methods of detecting waviness by means of a stylus, which is a blunt foot that rides the
roughness, is well known as the basis of the E system. It is very straightforward for profiles in which roughness
and waviness signals are additive (figure 2.89). Also, even-amplitude modulation as in figure 2.89 can easily
be picked up, whereas other forms of waviness, such as a ‘chirp’ signal or frequency modulators, hardly make
any impression on a mechanical system. The Wigner method finds these anyway, as will be seen next. Note
that this disadvantage should not have too high a weighting because some waviness effects are additive to the
roughness signal. This could be caused, for example, by the slideway ball screw having an error in pitch.

Modulation effects in waviness are usually caused by the tool vibrating radially relative to the com-
ponent or axially due to tool column stiffness problems (figure 2.89) or self-generated chatter between the
tool and the workpiece. It should be added here that these causes of waviness are not likely to introduce
fractal properties to the envelope because by definition they are much slower moving than the effects that
cause the roughness.

Copyright © 2003 IOP Publishing Ltd.



Waviness Form

=3 --“\\\\\““

o / /

Figure 2.91 Mechanical waviness and form.
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Obviously in the M system the RMS values of the waviness (defined as the mean line of the roughness) and
the roughness are also additive whether or not the filters used are phase corrected. However, the advantage of
using a phase-corrected method is that average values also become additive, that is the transmission charac-
teristics of the waviness line and the roughness always add up to unity, whereas if phase shift is ignored this
is not so. For simple waveforms this is illustrated in figure 2.92.

Ground 5000/100

A L =

2+ Profile J 3

twavclcngth =
Sampling

length

Poor grinding 5000/100

Figure 2.92 Typical waviness on surfaces.

A better method is to use a phase-corrected filter whose characteristic intersects the roughness wave filter at
50% (figure 2.93).

1.0
‘Waviness amplitude
Roughness amplitude
0 Frequency

Figure 2.93 Relationship between waviness and roughness amplitude for phase-corrected filter.

In such cases, the two components are exactly complementary in phase and in amplitude. The fact that the
waviness reference includes the tilt, misalignment of the surface and form error cannot be avoided.

In practice, the filter characteristics of waviness (i.e. those characteristics excluding roughness) are
We(A) = 1-R(A).
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One of the issues is the slope and shape of the curve. Linear characteristics are to be preferred even if
only to be consistent with the fact that the phase characteristics are linear in frequency. However, current
thinking favours the Gaussian shape.

So, one criterion for waviness has been that it is deterministic, for example has a known geometrical
form. The roughness on the other hand is deemed to be random. Obviously this idea is simplistic because of
the large number of cases in which either the process is also deterministic or the waviness is random albeit of
long wavelength.

Hence it can be seen that use of the local frequency moments can isolate the various forms that
envelopes can take. This is most likely to be important in functional cases.

It seems, therefore, that more discriminating functions like the Wigner distribution function and the
ambiguity function can help in quantifying the waviness.

2.3 Errors of form
2.3.1 Introduction

One of the biggest problems with waviness is that it is difficult to deal with from a purely geometrical stand-
point. It is not a measure of a metal-air boundary as is roughness. Neither is it a deviation from a perfect
Euclidean shape as are the measurements of the deviations from straightness, flatness and roundness. At least
in these latter cases there is some defined perfection. (The definition can be written down formally.) This
makes the measurement problem easier. On the other hand the wide range of different engineering shapes
that have to be contended with is considerable. Some general classification will be discussed in what follows.
Figure 2.94 shows a breakdown of relevance.

To be consistent with what has already been said deviations from, or concerned with, a linear causative
variable will be considered. Form can be considered to extend into straightness and then flatness, after which
different goemetric variables such as circles, epi-trochoids, etc, have to be examined.

The only practical way is to relate the geometry to cause and use, as in figure 2.94.

There are, as in most metrological problems, three separate difficulties which need to be considered.
The first is the nature of the problem, the second is the method of assessment and the third is the method
of display.

. . °
Roughness o Waviness® Form

1.0
AQ)

I

Functional use

Process Machine
tool
|6 J U J
vV vV
Production Design

Figure 2.94 Quality regimes for surface geometry.
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Table 2.12 gives display symbols for the various components of form error.

Table 2.12 Error of form symbols.

O Roundness

———
@ Concentricity \ /
I I Parallelism H Cylindricity

D Flatness
I Squareness

Errors of form suffer from the opposite of roughness. In roughness the short wavelengths are known subject
to instrumental constraints such as stylus tip dimension. It is the long-wavelength boundary of waviness
which is difficult to define. In form errors the long wavelengths are determined by the ideal shape specified,
for example a circle, and it is the short-wavelength boundary with waviness that has to be specified.
Because of the difficulty of defining anything in absolute terms, in waviness it is usual to define the short
wavelength of form in terms of the size of the piece. It is usually defined as a fraction of the relevant dimen-
sion of the workpiece. A factor of one-third or a quarter has been used. Wavelengths less than this are diffi-
cult to explain in terms of errors of form.

Errors of form are relatively easy to characterize: they are broken down into Euclidean shapes such as cir-
cles, planes, etc. This is easy when compared with the problem of characterizing roughness, especially now
that the surface characterization using fractals has started. However, complex problems arise in the methods of
assessing form error. In what follows emphasis will therefore be placed on the assessment problem.

The ideal form itself can be regarded as a skin in space. It needs a certain minimum number of points to
describe its shape and position.

The ideal skin so defined is infinitesimally thin but practical surfaces are not. If zonal methods are being
used in assessment, such as a minimum zone in which the thickness is a measure of the minimum peak-to-
valley distance from the skin, one more data point is needed to fix the thickness of the skin. That is, the min-
imum zone sphere needs five points of constraints corresponding to three points for origin, one for size (a
radius) and one for thickness of zone (see table 2.13).

Errors of straightness are often due to errors in machining and slideway error, but they can also be the
result of sagging of the workpiece under its own weight, thermal effects produced during machining, stress
relief after machining and many other reasons.

The types of component usually involved in this sort of assessment are shafts, slideways, etc.

There are, as in most metrological problems, three separate difficulties which really need to be consid-
ered. The first is the nature of the problem, the second is the method of assessment and the third is the method
of display of the very small deviations.

A more comprehensive list is shown in table 2.14.

The points in the column do not refer to degrees of freedom: for example one degress of freedom is a
translation in the 2 direction is a movement along a line which needs two points to establish it.

Also a rotation about one axis is one degree of freedom yet it requires 3 points to establish the circle.
The points are geometric constraints imposed by the shape. Knowledge of these points enables unambigous
paradigms to be developed.

Straightness

Co-axiality

Runout
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Table 2.13

Feature No of points
Line 2
Plane 3
Circle 3
Sphere 4
Cylinder 5
Cone 6
Table 2.14 Zonal points
Figure Points for definition
Function 2D
Line
2
Minimum

deviation from line

Plane

Minimum
Deviation from plane

Circle

Maximum
deviation from minimum
circumscribed circle (ring

gauge)

Maximum
Deviation from maximum
inscribed circle (plug
gauge)

Manimum zone

clectel gl

4

Function 3D Figure Points Deviations from

Sphere @ 4 5

Rigle
i, .
cone CI:D Cﬁ{)da 5 6
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In addition to these three obvious considerations, there are some practical points that are also relevant.
These are basically concerned with the way in which the data is gathered. This step is vital because upon it
often depends the way of classifying the data. Obviously the more data points the better, providing the errors
are reduced rather than increased by getting them.

Ideally there should be as small a number of data points as possible, preferably taken at those points
which are known to be functionally sensitive. Also the sample pattern for obtaining the data should be picked
so that the points have equal uncertainty. The other issue is matching the data pattern to the shape of the
workpiece. Rather than consider these practical points separately they will be dealt with as they occur. Also,
as in the case of roughness, measurements to get the raw data and characterization of the data are difficult to
separate: indeed they must often be carried out together.

2.3.2  Straightness and related topics

It should be noted that the terms straightness and roundness are somewhat misleading. They should really be
‘the departures from true roundness’ and for straightness ‘departures from a straight line’. Common usage
has reduced then to the single word.

In measuring straightness it is common practice to measure the error by methods that take account of the
length of the surface to be measured. For example, if a surface plate is to be measured for flatness, the instru-
ment chosen would be such that it would ignore scratches and scraping marks and detect only the longer
wavelengths on the surface. However, if the workpiece is the spindle of a watch component only a few mil-
limetres long, then a different approach is required, since the spacings of the undulations which could be
classed as errors of form are now very short and it becomes much more difficult to separate form error from
the surface texture.

Because the measurement of the straightness of small components to a high order of accuracy is fairly
easily achieved by the use of instruments having accurate slideways, the graphical representation is usually
satisfactorily displayed on a rectilinear chart.

In using such instruments the parallelism or taper of opposite sides of a bore or shaft can be made sim-
ply by taking multiple traces on the recorder. Note that this is correct providing that there is no relative
movement between the workpiece and the datum when taking the traces.

For the assessment of independent bores there is an added complication. Repositioning of the part rela-
tive to the datum is usually necessary in order to fit the pick-up into the different holes. Accurate relocation
methods need to be used in this situation. Figure 2.95 shows a typical example of the parallellism of surface
generators.

As has been stated, it is difficult to isolate the method of assessment of a parameter from the method of
measurement. Straightness measurement can be achieved in a number of ways, either directly or indirectly.
The direct method involves comparing the surface with a straight line datum, which can be either a mechan-
ical reference or the line of sight of a telescope, the reference being the line, the test piece being the surface.
Alternatively the instantaneous slope of the surface or its curvature can be measured and the straightness

Figure 2.95 Worn cylinder bore generators.
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obtained by integration. As a first step in characterization the data has to be provided. Then the characteriza-
tion proper can take place usually by fitting a suitable function to the graph.

All of these methods ultimately must end up with a graph that shows the deviations of the surface from
a straight line reference somewhere in space as in figure 2.96. In general the reference is not in the same
direction as the surface, neither is it within the measured profile.

-—-Ilz-l—v

Ax Line of sight

Figure 2.96 Measurement of straightness using autocollimator of level.

The value of a; would be a direct measurement (figure 2.96), or it could be given by

a;, =AY (2.281)

Jj=1

Probe system
e Y

Workpiece

Figure 2.97 Measurement of curvature using multiprobes.

If the measurements are made with an autocollimator or a level which measures angle rather than deviation
[98]. This method has the advantage that the arbitrary value b is removed, but the problem of the arbitrary tilt
shown in figure 2.96 is left. However, this can be removed if instead of angle the curvature or higher orders
of deviation are measured. This can be achieved by the method shown in figure 2.97.

In the example of straightness there may be variations in the linear distance between the part and the datum,
there may be variations in the tilt between the two and there may even be relative curvature variations. Such a sit-
uation involving all of these might arise in measuring the form of a moving flexible sheet of material, for example.

2.3.3  Generalized probe configurations for variable errors

Because of the diversity of problems of this nature met within metrology it is necessary to identify a more
generalized configuration. Take the variations mentioned above, for instance: the distance z between the
datum and the test object can be expressed as a random variable in time. Thus
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z =d(t)+ m()x + c(t)x? (2.282)

where d, m, ¢ are independent random variables representing average separation, tilt and curvature respec-
tively; x is distance. Those coefficients above the second can be regarded as a characterization of errors of
straightness.

To eliminate this number of random variables four probes are needed in the general case [88]. The
probes would have sensitivities of 1, a, b, ¢ and they would be at distances /; /,, [ ; and ! 4 from the centre of
the measuring system in figure 2.97. Three equations need to be satisfied:

l+a+b+c=0 (2.283)
~l—aly +bly+cl, =0 (2.284)
B +al? +bl2+cl} =0. (2.285)

Equation (2.283) takes account of average separation, (2.284) the tilt and (2.285) the quadratic terms.
The tilt term has to have odd symmetry about the mid-point of the carriage — hence the negative signs in
the equation. Obviously just the same order of systematic error can be determined by having multishifts
instead of multiprobes. Solving these equations reveals a very useful fact that formulae for numerical dif-
ferentiation can be used in multiprobe technology. For example, consider the case where [, =—2h, [, =— h,
I3 =+ h and I, = + 2h. The probe combination signal to satisfy equations (2.283-285) with these constraints
imposed is given by C where

C=V,-2V, +2V, -V, (2.286)

anda=-2,n=2,c=-1.
Notice that equation (2.286) corresponds to the simple formula for the third numerical differential
where the measured ordinates fi, f>, etc, have been replaced by probes. Thus,

Rfrr=1(fo-2/+2f1 - f2) (2.287)

In this case there is a gap of 2h between V, and V3. h is the unit of spacing between the probes. Making
all the probes equidistant gives a = -3, b = 3, ¢ = -1, which reduces the overall distance from 4% to 3A.
Such a system has a harmonic weighting function W given by

W, = [exp(—j2nl,/A) + aexp(—j2al,/ 1) + bexp(j2|ls/2) + cexp(—j2nl,/1)]. (2.288)

Wh, will be explained with respect to similar methods in the measurement of roundness and refers to the
harmonic distortion introduced by the method and which, because it is known, can be removed easily by
computer [88]. Techniques like this are becoming more popular because computation allows errors and
tedium to be removed from the calculation. This trend is a progression from the earlier methods of error
reversal used to get rid of errors in the straight-edge used as a reference [100].

2.3.4  Assessments and classification

There is one serious problem with the indirect methods as opposed to the direct method which to some extent
offsets their benefits. This is the enhancement of any noise. These methods are basically differentiation
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methods which reduce the signal-to-noise ratio and, whilst this is not too serious a problem in the measure-
ment of straightness, it can be very serious in measuring flatness. Methods have to be adopted to reduce
noise. This is a good example of the balance which has to be achieved between ease of measurement and
complexity in processing. Luckily the latter is becoming less expensive and faster so that clever spatial con-
figurations for probes can be utilized more often.

Assuming that such a data set as seen in figure 2.96 has been obtained by the appropriate means, the
problem of characterizing it remains, that is what it means in terms of departures from straightness.

A proposed way has been first the use of a best-fit least-squares line drawn through the profile to estab-
lish the reference (figure 2.98). Then from this line the sum of the maximum positive and negative errors is
taken as a measure of the departure from true straightness.

Deriving such a line is equivalent to fitting a first-order regression line through the data set representing
the profile of the workpiece, as in fitting reference lines to separate waviness from roughness, although here the
subtle difference is that the drawn line is an end in itself. Deviations from it will be the deviations from
the intended shape. Let the vertical deviation from an arbitrary level at distance x be z. Also let the equation of the
least-squares line to the data be Z = C + mx.

It is required to find the coefficients C and m in such a way that the sum of the differences squared
between Z and z for all x is a minimum (figure 2.98):

S = f (z — Z)*(cos’a). (2.289)
/ Profile Best-fit line
;/T:_‘_‘"_L/_/_;?——Lﬁ"‘
A Az Az+

4

X

Figure 2.98 Straightness — best-fit line.

Using exactly the same technique as for equation (2.16) but only using the digital equivalent

A 2( Sy~ (UN)ZE % 2 2, J
2xl —(/N)Xx,) =25z +(/N)Zz) (2.290)
because the angles are small this reduces to
me2X2z=NYxz
(Zx)? -NXx? (2.291)

However, these small angles will not be valid for microminiature parts, as they are evaluated with small-
range coordinate-measuring machines, and so

N
C=z—mx wherez = in,..
NS (2.292)

The process of estimating m and C, the tangent and the intercept, can be regarded as an application of
the principle of maximum likelihood assuming N sets of random independent variables.
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The calculation of the flatness and straightness deviations using formulae like (2.291) instead of
(2.292) is getting less justifiable as instruments become more integrated. Precision and miniature coordinate-
measuring machines will soon be available to measure straightness etc as well as size and there will be no
guarantee that the general direction of measurement will be close to the plane or line direction being sought.
This is a very important consideration for the future.

A very simple method of getting an estimate of the slope often used in practice is that of merely joining
the first and last data points together with a line. Another method consists of defining a zone comprising two
separated parallel lines which just contain the straightness data between them.

A few points need to be noted. One is that such a zonal method needs three points of contact. It is easy
to show that if there are only two points of contact, one at a peak and one at a valley, then the separation of
parallel lines through them is not a minimum. Three points of constraint are needed, which could be two
peaks and one valley or two valleys and one peak. It can be shown that in situations involving the minimiza-
tion of linear problems the maxima and minima will always be alternate [90]. This shows the principle of the
Steifel exchange technique of linear programming. Three unknown parameters, m, c, to establish one line
and E| to establish the separation of the reference line and the minimum case of a straightness minimum
zone, and three contact points are needed (figure 2.99).

Mf\d\/
\

Ay

Straightness error

Figure 2.99 Straightness — Steifel exchange.

How this zonal method differs from those used in roundness will be discussed in the relevant section on
roundness.

Usually, but not necessarily, the zonal method described here will give a smaller actual value of the
straightness than the least-squares method. Obviously by definition it cannot ever be bigger because it is the
minimum value. Differences between the two methods usually do not exceed 10% or thereabouts. Similar
considerations apply to flatness. Also the obvious problem with zonal methods is their susceptibility to the
odd very large peak or valley. This is the same problem as that which occurred in the evaluation of the sur-
face texture peak parameter. The danger is that a large peak or valley may not be typical of the process.

Numerical techniques for evaluating the minimum zone will be given in section.

It could be argued that alignment should be encompassed in the subject of straightness because it is the
measurement of discrete points from a line. The basic technique is similar to that of straightness measure-
ment but the art is in its application to a multiplicity of engineering components such as large frames, bear-
ings and plant. These details are covered adequately elsewhere [87].

Errors in gears, screw threads, etc, are specialized subjects dealt with in engineering metrology books
and will not be covered here. Needless to say the same problems always exist: that of establishing a reference
and assessing the errors from it.

2.3.5  Flatness

Flat surfaces of large size such as surface plates and tables are of considerable importance in precision engi-
neering because they act as reference surfaces for the inspection of other workpieces.

Assessment of the flatness of a surface can be accomplished in a variety of ways and with good fidelity.
One of the oldest ways of testing a surface for flatness is to sweep it in several places with a straight-edge and
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observe where and how much light leaks through. This method suffers from the sag of the edge and the dif-
fraction of the light through the gap if it is very small. Also the edge has to be rotated on the surface to ensure
true planarity (figure 2.100).

Straight-edge

Workpiece

Figure 2.100 Straightness — straight-edge.

Other methods of measuring flatness such as the use of coordinating-measuring machines working relative to
a fixed axis, or the use of autocollimators, levels and curvature devices as previously used in straightness
measurement, have their attendant problems of noise generation. For this reason the data points have to be
used with great care.

In addition to the techniques discussed in the measurement of straightness there are additional ones in
flatness. The most important of these is interferometry, especially in the heterodyne mode, which enables the
contour of the surface to be evaluated in absolute terms. This technique will be described in the section on
optical methods. It must suffice here to say that the technique is viable and does produce, under certain con-
ditions, absolute values.

Flatness is an extension of straightness errors to two dimensions (called areal here as in roughness). One
equation of a plane is

z=c+mx+m,y (2.293)

where the x and y are here taken to be the causative variables and z the observational variable.

There are a number of methods of assessing flatness, some similar to straightness. However, because
the assessment is somewhat laborious there are often pilot measurements based on a ‘Union Jack’ pattern
(figure 2.101) and limiting the measurements somewhat. Historically it appears that the first reference plane
was simply taken to be that plane defined by passing it through three corners of the plate. It has since been
suggested that the plane parallel to the diagonals is becoming more widely used.

These two methods are not analytically defined and yet are relatively easy to carry out. The ‘Union
Jack’ pattern is often criticized because of the relatively poor coverage of the area. However, as was seen in
straightness, errors are often in the form of a bow and the maximum errors are generally at the edges of the
plate or mirror where coverage is most extensive, so the choice of pattern is not so haphazard as might appear.

Not all flatness problems involve surface plates. More and more investigations are involved in the meas-
urement of the flatness of rough objects. In these cases autocollimators and inclinometers are not so much
used. Probe methods can be used which measure relative to a fixed internal datum plane or movement.

Consider first the least-squares plane method. As an example the technique adopted in straightness will be
extended. The normal equations are similar to those in straightness but have one more variable in number. The
variables of minimization are derived from making S — the sum of deviation squared — a minimum, that is

N
S = Z[zi = (c+mx; + myy;)J (2.294)
i=1

is a minimum.
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D C

Figure 2.101 Testing of engineer’s surface plate

Note:
The constraint on this equation is the same as for straightness.
Leaving off the limits of summation and subscripts the normal equations become

Yz=cN+my x+m).y
dDxz=cy x+my x*+my xy (2.295)
Dyz=cdy+my xy+my y

From these m, can be found, yielding

i (OIS ITEDILTH I EDI DI WEED WD EDIE PIIITD WD

M

m,

where M is a determinant given by

N Xx Xy
M=%x Y Say (2.296)
2y o 2xy 2

obtained directly from equations (2.236). After finding m, two equations remain. Thus

Y z-mYy y=cN+m) x
D Xz—my Y Xy =cy x+my x*

where the right-hand side is similar to that for straightness. From equation (2.291) ¢ and m can be found.

It can also be shown, as in straightness, that the best-fit plane always passes through the centroid of the
observed points x, y, z. Referring all measurement to this as origin therefore eliminates the term c in the equa-
tions given (also true in straightness).

If uniform increments are taken in orthogonal directions it is possible to simplify these equations con-
siderably, yielding the new plane

(2.297)

Z=mx+m,y (2.298)
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where
m, = Yy xz= xp> vz
>y (o)
_ ZxZZyZ—nyZyz-
>y ()

The error from the mean plane can be expressed either as the maximum peak plus the deepest valley
from it or as a standard deviation [91] (RMS value) og:

(2.299)

m,

(S mx+my-27)" 0300
-2 +m2 +1) '

OFf

where the summation is over all points in the plane.

There are much simpler ways to establish a plane, however, and it has to be said that usually there is not
much difference between estimates of flatness from any method, as can be seen with reference to table 2.15
below. Perhaps the simplest is to join any three corners together with lines. The plane containing these lines
is then used as the reference. This is called the three-corner plane and is often used in industry.

Table 2.15

Diagonals E, E; E, E, E, Least Squares E, Minimum Zone E;
1 26.0 24.0 22.0 28.7 28.7 249 24.0
2 36.0 39.0 354 35.6 39.0 38.5 354
3 40.0 40.0 47.0 48.0 41.0 40.2 40.0
4 44.0 73.0 76.6 82.2 83.0 47.2 41.9
5 46.0 52.1 64.1 68.5 70.9 41.8 38.1
6 46.0 60.0 70.5 76.7 71.8 427 40.8
7 49.0 44.8 60.0 84.0 64.0 42.8 40.7
8 66.0 141.1 141.4 138.4 122.0 71.0 66.0
9 85.0 91.8 86.8 100.0 87.4 74.0 84.3

10 100.0 98.3 127.0 126.0 125.0 93.0 92.2

11 262 273 273 271 263 264 262

12 280 597 584 577 537 302 280

13 800 930 1210 1220 1020 823 752

From Microtechnique XXVI1 (7); 1 unit = 1 x 107in.

A least-squares plane is an example of multiple regression as opposed to simple linear regression for
straightness.

Yet another approach has been proposed by Miyazaki [102]. He takes the analysis one step further and
uses the best-fit least-squares criterion to estimate the most probable values of the measurements from those
actually measured. To do this he applies the constraint that the total measurement around each of the unit
cells making up the measurement area must be consistent. Thus in one cell unit shown in figure 2.102(a) the
errors must be consistent:

Hojo vy = —vey; =0 (2.301)
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0.01 -0.07 -0.07 -0.07 —-0.08 -0.07
0.01 0.11 0.01 —0.01

Figure 2.102 Miyazaki method for surface plate.

where the i and j subscripts here refer to the coordinates of the measured points on the plane. For each lattice
unit this condition must hold.

For the integrated matching of each of these constraint equations over the whole of the plane two well-
known techniques are used. The first makes use of Taylor’s theorem to first order. It represents any deviation
from the intended or estimated value at a different point as being first order in Taylor’s theorem, making the
necessary assumption that changes between values are small compared with the values themselves. Thus, in
two dimensions, where the deviations are z(x, y),

OzAx | CzAy
z(x + Ax,y + Ay) = z(x,y) + —— + —= (2.302)
&
or
AZ:@ + @ (2.303)
(4

Second, use is made of the Lagrangian multipliers to enable the conditional differential equations (each rep-
resented by an individual measurement cell) to be solved. Methods like this involving best estimates rather
than raw data points are becoming increasingly used in metrology. A point to note is that two-dimensional
unit mapping of the surface rather than three-dimensional is all that is required.

Miyazaki therefore obtained weighting factors with which to multiply each of the measured values in
order to get the most consistent set of measurements overall.

In practice a balance has to be struck between the accuracy of the method and the labour involved. The
most accurate method is based on the least-squares method, but it is laborious to measure.

Note here that the method relies upon uniform spacings in the two orthogonal directions.

As an example of how this works, consider a plate whose datum has been taken as that giving the mini-
mum of the square deviation. The weighting factors are shown in figure 2.102(b)taking the simple case where
there are only four contiguous cells of measured data.
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In the figure, §; represents the deviations from the ideal plane at position x;. Similar tables have been
evaluated for different plates.

The whole method is equivalent to an areal weighting function applied to the ordinates obtained relative
to the least-squares plane obtained by conventional methods.

The best-fit method of assessing straightness and flatness is also used in measuring circular parts of
spheres as well as cylinders and cones. In fact it is the most generally used method, as will be seen later in
chapter 3. It has refinements, as in the previous method, using Langrangian multipliers and allowing for the
errors in each individual measurement. However, errors in the algorithm generally produce more errors than
those in the individual point measurements, so a general well-conditioned algorithm should be used. In
chapter 3 such a general method based on the work by Forbes at NPL is used [93].

Such treatments usually form the background to national standards documents, for example BS 7172,
the British Standard Guide to the Assessment of Geometric Features, Position, Size and Departure from
Nominal Form (1989), and follow from methods of determining the true shape of nominal flats, cylinders,
spheres and cones from coordinate-measuring machine measurements.

Cardon et al [94] have proposed a different method similar to the minimum-zone method for determin-
ing straightness. The definition is a min-max algorithm taken with a coordinate system such that C=0. The
error in flatness is called E

E; = min(max(z — (m;x + m,y)) — min(Z — (mx + m,y))). (2.304)

Whereas for straightness the minimum zone always has two points of contact on the peaks and one on the
valleys or vice versa, for flatness the situation is rather different: four constraints are needed and these may
well be two peaks and two valleys (or, in the areal texture nomenclature, summits and troughs). This is one
occasion where roundness and flatness have a degree of commonality.

The four constraints are needed because of the need to derive the four variables c, m, m, and the sepa-
ration of the zones containing the surface.

Some comparisons have been made by the above authors who compared different results taking differ-
ent datum surfaces [94].

By definition the minimum-zone method must give the smallest error for the plate. As in straightness the
divergences between this method and least squares is about 10%.

However, another criterion has to be adopted which is concerned with the time taken to obtain the data,
which itself can be related to accuracy as a result of any temperature drift effects. The authors had to use a
computer optimization procedure to get the minimum zone.

It has been pointed out that many of these sophisticated methods are unnecessary and uneconomic. For
example, using three plates [105] and with hand scraping to remove high spots can give plates flat to about
5 um, so it may be only in cases where the surface plate suffers wear and needs to be checked that the more
automatic inspection methods of testing are needed. How to achieve automatic inspection quickly is at pres-
ent being investigated.

Another reason for using an optimized datum plane is that the manufacturers of plates could penalize
themselves unnecessarily. The actual flatness error value reported depends on the method of assessment
used.

It is obviously worthwhile trying to get better methods of evaluation even for this reason alone. The
manufacturer then picks the one that shows the smallest deviation and presumably stands a better chance of
being sold.

A great many algorithms have been devised [95] in which the grid system takes into account the shape
of the surface to be measured. This will be seen for the methodology roughness measurement covered later
in chapter 3.

Figure 2.103 shows an example of triangular cells as opposed to rectangular ones as for the ‘Union
Jack’ methods.
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Figure 2.103 Triangular measurement cell.

Ideally the order in which the points are taken should be specified so as to reduce the errors — and to check
on the build-up of errors (e.g. in figure 2.104).

Key positions for the data, particularly those on the diagonals, are taken with extra care, the verticals
usually acting as checkpoints.

Another shape is shown in figure 2.104. Notice that there is always some gap left at the edge of the plate.
If wear has occurred on the plate it is likely to be at the periphery and so is never used for high-accuracy work.

Triangular cells are being used more often because of the better coverage of the surface. Also the possi-
bility of hexagonal sampling patterns is now being tried because of good coverage and high accuracy.

VAVAVA

Figure 2.104 Triangular cell to fit circular plate

2.3.6  Roundness

So far, deviations from ideal shapes that are linear or substantially so, can be related to a straight generator.
There are, however, many other different shapes that are equally important. In particular the circle can be

Copyright © 2003 IOP Publishing Ltd.



regarded as one such unit geometric element from which more complex engineering forms can be derived.
About 70% of all engineering components have an axis of rotational symmetry in them somewhere. The man
who first realized its importance was RE Reason of Rank Taylor Hobson, who set out almost single-handed
to build instruments to measure roundness [96]. Out-of-roundness or more simply roundness will now be
considered as the next logical step in building up a more total geometry of a surface.

How the roundness error can be visualized with respect to the surface texture errors is shown in figure
2.105. Shown in the figure are roughness marks C and waviness marks A and B.

Figure 2.105 Roundness and texture.

2.3.6.1 Nature of departures from roundness

Roundness or strictly out-of-roundness is more important than is usually thought. It is not generally realized
that the energy needed to turn or grind comes from rotation, either from the workpiece or the tool. This rota-
tion is absolutely critical to the process and the efficiency of the energy transfer largely determined by the
axis of rotation.

Control of the rotational axis is achieved by roundness measurement (Fig. 2.106(a)).

Very many of the common machining processes are rotational, e.g. grinding, turning, milling. Only
planing and broaching are translational.

Also, in functional situations lateral movement between surfaces is usually of a rotational nature
(Figure 2.106(b)). Roughness and roundness can both be closely associated with the function map
(Fig. 2.106(¢)).

The first problem is the definition. A multitude of alternatives are in use, some derived from the meas-
uring instrument used and some from the use of the workpiece or its method of manufacture. Generally a
workpiece is described as round in a given cross-section if all parts on the periphery are equidistant from
a common centre (the Euclidean definition). This sounds obvious but in most cases the part has not got a
diametral form described completely by the equation of a circle. Superposed are other types of form. Some
are due to the method of manufacture, such as grinding marks, and some are due to errors in the particular
machine tool producing the part. These are the phenomena described earlier in surface texture. Usually, how-
ever, they are excluded in the primary measurement by means of filters or a blunt stylus acting as a mechan-
ical filter. Out-of-roundness is usually restricted to a consideration of lobing and to some of the higher
frequencies. It is in the identifying of the different harmonic components that the characterization takes
place. In roundness, however, there is a need for the characterization of the method of collecting the data, as
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(a) Manufacture

Workpiece

Cutting tool

Energy to cut material-from rotation
Roundness provides control of rotation

(Rotational energy used in turning, milling, grinding,
translation energy only planing)

(b) Function
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usually rotation—roundness vital

Normal movement in contact
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Maximum energy transfer in rotation
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(¢) Process

Roughness
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(machine tool)

Figure 2.106 Consideration of roundness factors

will be seen. Because of the many different sizes of workpiece it is usually best to specify frequency charac-
teristics in terms of what is effectively a wavenumber, that is in terms of undulations per circumference of
revolution. Lobing is considered to be those deviations having a wavenumber from 2 to about 15, although
sometimes higher numbers are included. These are often of quite high magnitude (e.g. micrometres in height)
and most often of an odd wavenumber. These odd lobes are most frequently almost of constant-diameter form
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as a result of being made by centreless grinding. Lobing may exhibit an even or odd number of lobes, and
may be of more or less constant height and spacing as produced by grinding, lapping, etc, but can be more
random. Lobing is regarded as important, especially in problems of fit. One basic consideration for fit is that
the effective size variation for odd-lobed cylinders is positive for external profiles and vice versa for inter-
nal profiles. There is one big difference between odd and even lobing, and this is that even lobing is measur-
able by diametral assessment but odd lobing is not. For some applications this constant-diameter property is
not important, for instance in ball bearings where only separation between components is the criterion.
Because one criterion used for out-of-roundness is the variation in diameter, a comparison between the prop-
erties of figures 2.107 and 2.108 is informative. Figure 2.107 is constant radius and figure 2.108 is a Releaux
triangle (spherical triangle).

Q Figure 2.107 Constant-diameter figure.

Figure 2.108 Constant-diameter figure — Relaux triangle.

The properties of a Releaux triangle are significant. The generator P'Q’ has two of the properties of diameters
of circles. It has constant length and is normal at both ends to the tangent to the curve. The generator P'Q’
constrains the true centre at only three angles and the radius from the centre O is only normal to the curve at
six points. (In general, for an n-lobed figure there are n and 2n points.) Notice also that the generator P'Q’ is
normal to the curve because the constraining curves (figure 2.108) AB, BC and CA are arcs of circles. One
further point which can be significant in instrumentation is that the instantaneous centre of rotation of P'Q’
is not the mid-point R but one of the three apexes of the triangle, for example point S shown in the figure.

Note:
The Releaux triangle has the smallest area and the greatest deviation from roundness of all constant-diameter
figures.

Higher-order lobing up to nearly one thousand undulations per revolution is said to be important from a
functional point of view, especially again in the bearing industry where acoustic noise may be important.

Another common form of out-of-roundess is ovality or the two-lobed effect. Multiplicity of this effect is
sometimes called polygonation. In some circumstances, parts may need to be oval, for instance in piston
rings, so that out-of-roundness errors may not necessarily be detrimental to performance. Oval or elliptical
parts are unique in roundness because they can easily be made circular simply by the application of a force
of compression on the long diameter, or vice versa. Other names have been given to different features of the
spectrum of undulations. One used when there has been a chatter set up between the grinding wheel and
workpiece is called ‘humming’ and owes its name to the acoustic noise that it produces and results in a char-
acteristic peak in the spectrum of the workpiece. The typology of roundness is given in table 2.18 (p280).
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Another classic example of the importance of odd-lobed roundness is in the conventional measurement
of the pitch diameter of screw threads. The pitch diameter is measured indirectly over wires lying in the
thread spaces above and below, as shown in figure 2.109 for a 60° screw-thread gauge. If the wire is, say,

elliptical the diameter is suspect.

Figure 2.109 Screw-thread measure.

The higher undulations are usually not as important from the functional point of view as the lower ones, but
they may be quite large in amplitude. Instrumentation has to be used to isolate the two bands. Typical meth-
ods involve mechanical filtering by means of a blunt stylus and/or electrical filtering.

Roundness means different things to different people. This is why the characterization is important.
There are three basic ways in which roundness can be measured. These will be outlined here but can be
obtained in some detail from the works of Reason [96]. Some of the distortions of such methods are given
here. Algorithms associated with the assessment are given in chapter 3 on processing.

The three methods are diametral, chordal and radial. The first is the measurement of the diameter of a
component by means of a micrometer or a height gauge or any device which uses two parallel flat anvils as
the sensor. The out-of-roundness is regarded as one-quarter of the difference between the maximum and the
minimum readings of D as the part is rotated (figure 2.110). Thus, to a good approximation

D(0) = r(0)+ (0 — ). (2.305)
r, (0
D(®
rz(O) ©)

Figure 2.110 Radial representation.

To see how this technique responds to different equally spaced lobes the Fourier coefficients of equation
(2.304) are used. From equation (2.305) F\,(n) is the measured coefficient for the nth lobe and F,a(n) is the
true coefficient which may be zero or may exist:

En (n) = F'acrual (}’l)[l + exp(jnﬂ)]' (2306)
Notice that when 7, the number of undulations per revolution, is an odd number then F,(n) is zero — despite
the fact that F,a(n) exists. Hence diametral methods cannot see bodies with an odd number of lobes. As

mentioned before this might not be serious if the body is to be used as a spacer such as in a roller bearing, but
it would be serious in, say, a gyroscope which spins about its centre.
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2.3.6.2 Chordal methods

The second method represents the traditional vee-block method. Strictly, it is the variation in the chord join-
ing the points of contact of the part and the two faces of the vee. This variation induces changes in the verti-
cal position of the gauge when the part is rotated.

Note that chordal methods can only be converted into radial results from a common centre when undu-
lation spacing is uniform and the vee angle is chosen correctly (figure 2.111).

Probe

Figure 2.111 Vee-block measurement of roundness.

As the part is rotated the indicator reading varies. The difference between the maximum and minimum read-
ings is noted. This is called the total indicator reading (TIR).

It is interesting to note that this technique is a derivative of the intrinsic equation method of defining an
arbitrary curve relative to itself by means of a target at P and the length of curve from an arbitrary axis. Here
the target is where the vee contacts the part and the arc length is the circumferential distance between the two
points of contact.

As in the case of the diametral method this technique introduces distortions into the assessment of
roundness. These need to be understood because of the general use and misuse of the vee-block approach in
industrial workshops. The distortion of the lobes in this case is given by.

chasurcd (l’l) = Factua] (n)[l + (_1)” C‘Osm/j . (2307)
Cos y

For example, if n=5 and y=60, then F(5) is measured to be zero although it is obvious that the workpiece
is not perfectly round!

This distortion factor obviously varies according to the angle of the vee. This should be remembered
because recent instrumental methods discussed later include this basic principle. It is clear that it is pointless
trying to characterize a signal if part of it is distorted by the method of measurement.

To be absolutely sure that a part is round using this method more than one vee has to be used. In order
to use this technique effectively some idea of the probable lobing on the workpiece has to be known so that it
is impossible to fall into the trap shown in equation (2.307). Even then this equation would not guarantee that
problems could not arise, because it assumes uniform angular separation of the lobes. Methods based on this
technique have been used for some time with limited success [97].

Other investigators [98] have worked out the technique and introduced an extra degree of freedom by
offsetting the indicator dial (figure 2.112), the offset probe being in effect equivalent to using another vee to
reduce aberrations in the measurement.

This investigation showed that it is possible to optimize the offset angle and the vee angle to minimize
the spread of distortions obtained over the important range of undulations from 3 to 15 (figure 2.113).

Fortunately such methods of roundness measurement in which a degree of distortion has to be accepted
[98,99] are now largely redundant with the advent of computers.

Similar techniques have been tried without recourse to just two points of contact. One is shown in fig-
ure 2.114.
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Figure 2.114 Multiple floating skid method.

This method is not really a vee-block method because the reference is taken to be the integrated effect of a
large number of point contacts which are freely mounted on the yoke. The indicator is able to move through
the yoke and has a sharp point. Variations between the indicator stylus and the integrated yoke position con-
stitute the out-of-roundness.

Although this is not an instrumentation chapter, it is worth mentioning here that such a method would
clearly be an instrumentation and operation nightmare. However, recent work by M Svitkin of Technornach
in St Petersburg has made this method viable in specification and cost [140].

2.3.6.3 Radial methods

The third and preferred method is to compare the workpiece shape directly with a true circle. This can be
achieved by using a mechanical reference such as a disc or annulus or a spatial reference in the form of an arc
in space generated by a very good bearing in the spindle in figure 2.115(a) and in the rotating table in figure
2.115(b). Again, as in flatness, it is necessary to refer to the measuring instrument before assessment can take
place. Instrument distortion, as with the vee-block method, still needs to be understood before meaningful
assessment can take place. In many cases the assessed value of a surface parameter should be prefixed with
the instrument used to obtain the data.
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The methods are shown in figure 2.115(a-c). In figure 2.115(c) there is a reference disc which is fixed to
the workpiece to be measured. A gauge contacts the master disc and another contacts the workpiece. The dif-
ference between the two signals is processed, not the individual signals.

(a) (®)
Reference F-l '
spindle Worktable o
: i
Centring Hex
screws
i | Reference
Spindle spindle
Turntable
Pick-up
Centring
screws ©
T
Worktable
r =]

I

l

\ \

) |
Workpiece Master disc

Figure 2.115 Various methods of assessing roundness using radial techniques.

Sometimes the master disc itself is left off together with one probe and the accurate rotation left to the cen-
tres on which the component is held, but this method is fraught with problems due to sag of the workpiece,
poor centres, etc.

Other methods using mechanical references have been devised, for example when the reference has been
a ring into which the workpiece, assumed to be a shaft or cylinder, is placed. A gauge then measures the dif-
ference between the two; problems of concentricity between the reference part and the workpiece are some-
times serious and unavoidable. Also, other errors can occur because of misalignment of the axis of the
workpiece and the reference piece.

Out-of-roundness is sometimes referred to in the USA as DFTC (departure from true circle) which best
describes the nature of the measurement. Whilst on the subject of names, out-of-roundness is sometimes
shortened to just roundness for convenience (a shortcut not used in most European countries) and sometimes
it is referred to as OOR. In any case, as a reminder it represents the deviation of the workpiece periphery
from a true circle drawn somewhere in space. The reference circle need not be the same size nor need it be
concentric (although it usually is). Eccentricity errors are usually due to the set-up and not to real deviations,
except in exceptional circumstances such as the egg shape. There is a trend towards integrated measurement
in which the size and shape are measured at the same time by the same instrument. This will be justified
when size tolerances are less than out-of-roundness errors. There is evidence that this situation is already
here in some cases, such as in gyroscopes and compact-disc spindles. Under these circumstances great care
has to be exercised with the algorithms to ensure that they are compatible.
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2.3.6.4 Nature of the signal produced by a radial departure instrument

In order to see the out-of-roundness at all it is necessary to magnify the deviations from a perfect circle and
to display them on a chart in some form or other. It is from this record that judgements are made about the
nature of the deviations, for example the amount and type of lobing. Unfortunately the fact that high magni-
fications have to be used can cause a certain amount of distortion of the graph to occur under certain circum-
stances. These distortions can, and often do, interfere with the interpretation of the out-of-roundness. For this
reason it is impossible completely to divorce any discussion of the nature of roundness from that of instru-
mentation. In what follows the nature of the relationship between the workpiece and the graph will be
explored so that misinterpretations in practice will be minimized. The whole issue of interpretation will be
brought out in the roundness section of processes.

Because, in principle, we are making a transformation between the real part deviations and some graph
or storage medium, the visual picture of one need not resemble the other in all of its features. The choice of
which coordinate system to use depends upon which detail needs to be enhanced. This choice, the problems,
and some of the advantages of the type of display will now be considered.

This section highlights the fact that the roundness of the component itself and the signal received from
the roundness instrument do not necessarily have a completely straightforward relationship. In order to get
any satisfactory signal some distortions result. The nature of these distortions is sometimes misleading and it
therefore has to be understood.

The departures from true roundness, as revealed by the instrument, are plotted using either polar or
Cartesian coordinates. Both kinds have geometric properties which need to be understood if the graphs are to
be interpreted correctly. This is important because a wrong assessment can easily be produced.

Polar coordinates provide a realistic display that can be immediately related to the workpiece. For
example, if the workpiece is held over the graph in correct orientation, the directions in which the crests and
valleys occur can be seen directly, and this is often convenient.

Polar graphs have the useful property that, even if there is a small amount of eccentricity between the
workpiece and the axis of rotation, the resulting eccentric plot of the periphery of a truly round workpiece may
still be substantially circular. Small residual eccentricity in setting up an instrument can therefore be accepted.
Polar graphs as normally obtained have the further property that chords through the centre of the workpiece
plot as chords through the centre of rotation of the chart regardless of the residual eccentricity. The extent to
which the workpiece has a constant diameter can therefore be checked on the graph by direct measurement
through the centre of the chart, as shown in figure 2.116.

Figure 2.116 Choice of coordinates

A point to be watched is that, generally, the peak-to-valley height of the plot must not be too great a pro-
portion of the mean radius, otherwise the disproportionate compression of peaks and valleys may greatly
falsify both the visual and numerical assessments. Cartesian coordinates permit closely spaced detail to be
plotted on a more open circumferential scale than is generally practicable with polar graphs (where the scale
is limited by the radius on which the plot is made) but do not permit the residual eccentricity to be so readily
separated from the undulations to be measured. As an example, each of the Cartesian plots A, B;, C;, D, in
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figure 2.117 was taken at the same time as the corresponding polar plots A,, B, C,,, D, in figure 2.118. While
the four polar plots are much alike and have substantially the same peak-to-valley height despite the different
amounts and directions of eccentricity, the Cartesian plots are not alike either in appearance or in peak-to-
valley heights.

0.50 0.50
0.52 0.49

Figure 2.118 Polar display of roundness.

This is because the proper reference line for the polar plot remains substantially circular even in the presence
of a certain amount of eccentricity, whereas the reference line for the Cartesian plot becomes a sine wave, of
which the amplitude cannot be determined by inspection. In consequence, the tolerance on centring for a
polar graph can be several times the radial error, while for a Cartesian graph it must be negligible in compar-
ison. For many years this was a dominant consideration. More recently it has become possible to compute
and plot (or eliminate) the sinusoidal reference line electronically, so that Cartesian coordinates can now be
used more often.

The practical point in favour of the Cartesian presentation, which will be clarified in the next section, is
that area measurement is more valid; attempts to measure, say, wear scars on ball bearings using the polar
graph can be fraught with danger. Simple areas measured off the chart will not be valid. This is due to the fact
that the instrument is fundamentally measuring a ‘skin’ of the surface. This skin looks much more Cartesian
in nature than polar.
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2.3.6.5 Relation between the centred workpiece profile and the radius-suppressed polar plot

If the equation of the true workpiece as measured from its centre is r(0), in order to be able to see and meas-
ure the out-of-roundness components on a polar graph (i.e. the departures of #(0) from a true circle), it is nec-
essary to magnify the radial values considerably. However, only a small component of the term r(0) is the
out-of-roundness, the rest being the physical radius of the workpiece. At the magnifications generally neces-
sary to measure the small changes in r(0) an excessive size of chart, perhaps ~ 103 metres, would be neces-
sary if the total radius term was magnified. The only practical solution is to magnify the differences between
r(0) and a true circle, say L, having a radius nominally equal to the physical mean size of r(0) taken all round.
Then, if the mean radius of 7(0) is R, what appears on the graph will be p(0), where p(8) = M(r(0) - L)+S with
S the inside radius of the chart (usually chosen to be of the order of 10mm or so).

The important point to note is that p(6) does not have the same shape as () owing to the effect of
radius suppression and the magnification.

This can be seen by looking at figure 2.119(a) which shows these effects. Simply removing a radial
value of X from a workpiece having a nominal radius R and peak-to-valley out-of-roundness H changes the
appearance. What was a convex-sided shape is transformed into a concave-sided shape. The effect of magni-
fication is similar. Magnifying the out-of-roundness by different amounts produces the same sort of effect
(figure 2.119(b).

(@)

Figure 2.119 Effect of radius suppression.

The kind of distortion shown in these figures can be minimized by confining the graph to an outer zone of the
chart, but even so, careful thought and some degree of calculation may be needed before the true shape of the
part can be correctly deduced from the graphical representation of the undulations.

2.3.6.6 Effect of imperfect centring

Apart from the effects on the shape of the centred graph caused by the suppression of the radius, further dis-
tortion occurs due to imperfect centring of the workpiece on the reference axis, affecting its appearance and
hence the correct comparison of radii, diameters and angles [100].

To see what this effect is, consider a truly circular workpiece of radius R.

The polar equation of such a workpiece, whose geometric centre O’ is positioned eccentrically by
an amount e at an angle from the centre of rotation O of the instrument is given by a function k(6)
where:

k(0) = e cos(0 — @) +[R* —e* sin(0 — ¢)]"%... (2.308)
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or
2
k(0) = e cos(0— )+ R— i sin2(0— )] +... . (2.309)

This function &, a function of 0, is the same as 7(0) when e=0 and looks perfectly circular off axis (e # 0) as
well as on axis (e=0).

Consider the situation where the same part is measured by a roundness instrument. What is actually
measured by the transducer is given by the following function p(0) where p(0)=M(k(0) — L), where M is the
magnification and L is the suppressed radius. When this is displayed on the polar chart of the instrument it
becomes (figure 2.120).

p(0) = M(K(e)—L)+5...

(2.310)
where S is the inner radius of the chart
Actual circular
part
|
1
\
Centre of
measurement
Figure 2.120 Spatial situation k = e cos (0 —¢ ) + \Rz —e%sin*(0 - ) (circle).
A polar representation of p(0) given by
M62 -2
p(0) = M[e cos(6 —p)+ M(R— L)+ S —Esm @-@)+... . (2.311)

This equation no longer represents the shape of a displaced circle because the relative sizes of the individual
terms compared with those in equation (2.309) have been changed.

In particular this can be seen with reference to the first two terms in equation (2.308) R is typically
25mm whereas e is 0.02mm, the ratio being of the order of 1000:1. Comparison between the corresponding
terms in equation (2.309) reveals that this ratio is much smaller. S is typically 12mm, M is 1000, R-L=0.02
mm. Thus M(R-L)+S: M e cos(6-(a) is of the order of 1.1 for a typical roundness graph. The disproportion-
ing of the relative magnitudes of the terms means that the function representing the transducer signal no
longer looks circular when plotted. In fact it is not circular!

Because of the equivalence of the scale of size of the first two terms and the relative unimportance of the
following terms, equation (2.311) may be written as

p(O@)=M(r—L)+ S+ Me cos(6 — @) (2.312)
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without significant loss of accuracy for most practical situations. Letting M(R - L) + S =t and M e =E, equa-
tion (2.312) becomes

p(0)=1t+E cos(0 - o). (2.313)

Centre of
chart —

Apparent centre
of workpiece

Figure 2.121 Eccentric workpiece — limagon effect, 8 mm eccentricity on chart (30% chart eccentricity).

Outer limit
of chart

Inner limit
of chart

Figure 2.122 Eccentric workpiece — limagon effect, 12mm eccentricity on chart (50% chart eccentricity).

Thus, whereas equation (2.308) represents the true equation of a circle displaced about a centre, the equivalent
equation (2.313) displayed by a roundness-measuring instrument does not represent the equation of a circle but
that of a limacon as is shown in figures 2.121 and 2.122. Notice that the limacon is the general form of a cardioid.

The limagon form gives a clue as to the most suitable method of generating a true reference for a circu-
lar part as seen by a roundness instrument. It represents in effect the first Fourier coefficients of the trans-
ducer signal, that is the dc term and first harmonic.

2.3.6.7 Assessment of radial, diametral and angular variations

The eccentric polar graph has some interesting properties. It can be shown that, in general, diametral variation
and angular relationships should be measured through O, the centre of the chart, and not through the centre of
the plot on the chart. This is easily seen for the practical case where e / R is small and the polar form of the mag-
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nified workpiece as seen on the chart is a limagon. Measuring diameters should always give a constant value if
the workpiece is perfectly circular. Thus the diametral measurement through O is p(8)+p(0 + 180)=2¢ which
is always constant. Measurement through the apparent centre of the workpiece will not yield a constant value
but will depend upon O. It will be a maximum value at right angles to the direction of the eccentricity and a
minimum in the direction of eccentricity of 2.

Obviously for measurements taken through the origin of the part on the graph rather than the chart cen-
tre to be valid then the magnitudes of the terms in equation (2.309) must compare with those of (2.313), that
is § ~ ML, which corresponds with the situation where there is no radius suppression, that is the inner radius
of the graph S = LM. Then the graph no longer takes on the shape of either a limagon or a circle. However,
this situation is very rare and only occurs when the magnification is small and the radius of the part is small,
which automatically makes L small and the apparent shape very different. Instead of the bulge at the centre
at right angles to the origin it is a reduction!

Angular considerations are similar. In normal circumstances for eccentric parts the angular relationships
of the component are only valid when measured through the centre of the chart; it is only in special cases
where there is only a small amount of zero suppression that consideration should be given to measurement
through a point in the region of the centre of the part. This is shown in figure 2.123.

Figure 2.123 Angular relationship through chart centre.

It is possible to make the limacon obtained when the workpiece is eccentric simply by adding further terms
in equation 2.311. The displaced graph can look more and more circular despite being eccentric. However,
this doesn’t mean that angular relationships (in the eccentric ‘circular’ trace) are corrected. All angle meas-
urements still have to go through the centre of the chart. Centring the corrected graph by removing the eccen-
tricity term is the only way that the centre for roundness is at the circle centre — it is also at the centre of
rotation so that there is no problem.
Radial variation can be measured from the centre of the profile itself rather than the centre of the chart, but
the measurements are subject to the proviso that the decentring is small.

R E Reason has given maximum permissible eccentricities to allow reasonably accurate measurement
of the diametral, radial and angular relationships, subject to the criteria that the differences are just measura-
ble on the graph. These are listed in the following tables.

Table 2.16

Eccentricity E Radial error Diametral error
(mm) R'-R D'-D

1.35 0.0212 0.0425

2.5 0.0875 0.175

5.0 0.35 0.7

7.5 0.75 1.5
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The errors in table 2.16 refer to the eccentric errors of a graph of mean radius 40 mm.

Table 2.16 is important because it shows the permissible tolerance on centring for different purposes as
shown on the chart. For example, with 1.25 mm eccentricity the error is too small to be detected, while with
2.5 mm eccentricity it will only just be measurable. Above this the difference will only matter if it is a large
enough proportion of the height of the irregularities to affect the accuracy of their assessment. Eccentricity
up to 5 mm can generally be accepted for normal workshop testing, with 7.5 mm as an upper limit for a graph
around 75 mm diameter.

Table 2.17 shows that the more perfect the workpiece the better it needs to be centred. This requirement
is generally satisfied in the normal use of the instrument, for good parts tend naturally to be well centred,
while in the case of poorer parts, for which the criterion of good centring is less evident, the slight increase
in ovality error can reasonably be deemed of no consequence.

Some diametral comparisons with and without eccentricity are also shown in table 2.17.

Table 2.17

Eccentricity of graph

. 2.5 mm 5 mm 7.5 mm
Diameter of
workpiece (mm) Magnification must exceed:
0.25 400 1600 3600
0.5 200 800 1800
1.25 80 320 720
2.5 40 160 360
5 - 80 180
12.5 - 40 72

A practical criterion for when diameters can no longer be compared through the centre of the chart can
be based on the smallest difference between two diameters of the graph that could usefully be
detected. Taking 0.125mm as the smallest significant change, table 2.17 shows the lowest permissible
magnification for a range of workpiece diameters and eccentricities when the graph has a mean diam-
eter of 3 in (75 mm).

Notice how in figure 2.123 that, even when the workpiece has been decentred, the valley still appears to
point towards the centre of the chart and not to the centre of the graph of the component. This illustrates the
common angular behaviour of all roundness instruments.

A criterion for when angles should no longer be measured from the centre of rotation can be based on the
circumferential resolving power of the graph. Allowing for an error in the centring of the chart itself, this
might be in the region of 0.5 mm circumferentially.

If lower values of magnification should be required then the definitive formulae should be consulted.
This applies to both the diametral measurement and the angular relationships. These tables merely give the
nominally accepted bounds. Summarizing the foregoing account of the properties of polar graphs, it will be
seen that the following rules can generally be applied:

Plotting:

1. To avoid excessive polar distortion, the trace should generally be kept within a zone of which the
radial width is not more than about one-third of its mean radius.

2. The eccentricity should be kept within about 15% of the mean radius for general testing, and
within 7% for high precision.
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Reading:

1. Points 180° apart on the workpiece are represented by points 180° apart through the centre of
rotation of the chart.

2. Angular relationships are read from the centre of rotation of the chart.

3. Diametral variations are assessed through the centre of rotation of the chart.

4. Radial variations are assessed from the centre of the profile graph, but are subject to a small error
that limits permissible decentring.

5. What appear as valleys on the chart often represent portions of the actual surface that are convex
with respect to its centre.

Modern measuring instruments are making it less necessary to read or plot graphs directly, but the foregoing
comments are intended to provide a suitable background from which all advances can be judged.

2.3.6.8 Roundness assessment

Clearly, there are many parameters of roundness that might be measured, for example diametral variations,
radial variations, frequency per revolution (or undulations per revolution), rates of change (velocity and acceler-
ation). Most, if not all, could be evaluated with respect both to the whole periphery and to selected frequency
bands. Radial variations can be assessed in a number of ways, for example in terms of maximum peak-to-val-
ley, averaged peak-to-valley, and integrated values like RMS and R,. As far as can be seen, there is no single
parameter that could fully describe the profile, still less its functional work. Each can convey only a certain
amount of information about the profile. The requirement is therefore to find out which parameter, or parameters,
will be most significant for a given application, remembering that in most cases performance will depend on the
configuration of two or more engaging components, and that roundness itself is but one of the many topo-
graphic and physical aspects of the whole story ofworkpiece performance. Assessment is now widely made on
a radial basis because the parameters so determined provide information about the quality of roundness regard-
less of the number of irregularities. It is with variations in radius that the present method is mainly concerned.

A basic point is that whatever numerical assessment is made, it will refer to that profile, known as the
measured profile, which is revealed by the instrument and is in effect the first step in characterization.

The peak-to-valley height of the measured profile, expressed as the difference between the maximum
and minimum radii of the profile measured from a chosen centre, and often represented by concentric circles
having these radii and thus forming a containing zone, is widely used as an assessment of the departure of a
workpiece from perfect roundness. This is called the ‘roundness error’, the ‘out-of-roundness’ error or some-
times DFTC (departure from true circle).

The centre can be determined in at least four different ways which lead to slightly different positions of
the centre and slightly different radial zone widths in the general irregular case, but converge to a single cen-
tre and radial zone width when the undulations are repetitive. All four have their limitations and sources of
error. These four ways of numerical assessment are referred to and described as follows (see figure 2.124):

(1) Ring gauge centre (RGC) and ring gauge zone (RGZ)
If the graph represents a shaft, one logical approach is to imagine the shaft to be surrounded with
the smallest possible ring gauge that would just ‘go’ without interference. This would be repre-
sented on the chart by the smallest possible circumscribing circle from which circle the maximum
inward departure (equal to the difference between the largest and smallest radii) can be measured.
As mentioned in the introductory section this is a functionally questionable argument.

(2) Plug gauge centre (PGC) and plug gauge zone (PGZ)
If the graph represents a hole, the procedure is reversed, and the circle first drawn is the
largest possible inscribing circle, representing the largest plug gauge that will just go. From this

Copyright © 2003 IOP Publishing Ltd.



Figure 2.124 Methods of assessing roundness. R, — Rpin = 0.88 mm (a); 0.76 mm (b); 0.72 mm (c¢); 0.75 mm (d).

is measured the maximum outward departure, which can be denoted on the graph by a circum-
scribing circle concentric with the first.

(3) Minimum zone centre (MZC) and minimum zone (MZ)
Another approach is to find a centre from which can be drawn two concentric circles that will
enclose the graph and have a minimum radial separation.

(4) Least-squares centre (LSC) and least-squares zone (LLSZ)
In this approach, the centre is that of the least-squares circle.

The obvious difference between the ring methods and the least-squares circle is that whereas in the former the
highest peaks and/or valleys are used to locate the centre, in the least-squares circle all the radial measurements
taken from the centre of the chart are used. Another point is that the centre of the least-squares circle is unique.
This is not so for the maximum inscribing circle nor for the minimum zone. It can be shown, however, that the
minimum circumscribing centre is unique, therefore joining the least-squares circle as most definitive. Methods
of finding these centres will be discussed in chapter 3. Fig. 2.125 shows the reliability of these methods.

Of these four methods of assessment the least square method is easiest to determine.

Summarizing, the only way to get stable results for the peak-valley roundness parameters is by axial
averaging i.e. taking more than one trace. The least squares method gets its stability by radial averaging i.e.
from one trace. Put simply the least squares is basically an integral method whereas the other three methods
are based on differentials and are therefore less reliable. As will be seen the calculation of the least square
parameters is straightforward.

Although the minimum zone method is more difficult to find than the plug gauge and ring gauge meth-
ods it leads to a more stable determination of the common zone between a shaft and bearing as seen in
Figure 2.126. Four points determine the clearance zone using the minimum zone method whereas only two
determine the clearance zone using the plug/ring gauge method.

Note:
(1) the energy interaction takes place at the common zone.
(2) Common zone plug/ring — two point interaction.
(3) Common zone minimum zone — four point interaction.
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Conceptually, the ring gauge, plug gauge and minimum zone methods are graphical in origin, the
inspector working on the chart with a pair of compasses and a rule. These methods therefore provide simple
practical ways for assessing the out-of-roundness. They suffer to some extent from two disadvantages. First,
the fact that the centres so derived are dependent on a few isolated and possibly freak peaks or valleys which
can make the measurement of concentricity somewhat risky. Second, a certain error is bound to creep in if the
graph is eccentric because the graphical method depends on circles being drawn on the chart whether or not
the part is centred.

It has already been shown that the shape of a perfectly round part as revealed by an instrument will
look like a limagon when decentred, and therefore ideally the inspector should use compasses that draw
limagons [90].

The form of this error can easily be seen especially using some of the newer instruments, which use
large graphs and small central regions.

For example, consider the ring gauge method (minimum circumscribed circle). This will be deter-
mined by the largest chord in the body, which is obviously normal to the vector angle of eccentricity. Thus
from figure 2.127 it will be ¢=2 p sin 6, where p =t + E cos 6, and 6, is the angle at which the chord is a
maximum, that is p sin 0 is maximum.

Figure 2.127 Use of large polar chart.

Thus sin 0 (¢ + E cos 60) is a maximum from which

de _ 2E cos?0, +t cosf, — E = 0. (2.314)
do
Hence
(22 2)
0, = cos‘ILM . (2.315)
AE

This will correspond to a chord through a point O”, that is (¢ + E cos 0;) cos B 0,.

Notice that this does not correspond to the chord through the apparent centre of the workpiece at O’, a
distance of E from O. The angle 6, corresponding to the chord such that (¢ + E cos 6,) cos 6, = E, from which
Ecos®O,=tcos ,—E=0,
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(e +4E2)
02 — COS*\MJ (2.316)

2FE

from which it can be seen that 6, is always less than 6,. The maximum chord intercepts the diameter through
O and O’ at a distance of less than E (because the terms under the root are substantially the same).

The maximum chord value is given by 2(¢ + E cos 0,) sin 6; using the same nomenclature as before. The
apparent error in the workpiece measured on the chart (due to using compasses on the badly centred part)
will be seen from figure 2.131 to be d, where d is given by

d = (t+ Ecos0,)(sinf, —cosb, )+ E —t (2.317)

which has to be divided by the magnification to get the apparent error on the workpiece itself. It should be
emphasized that this effect is rarely of significance. It is not important at all when computing methods are
used, but as long as graphical verification of results is carried out and as long as manufacturers use larger
polar graph paper with smaller centres there is a danger that this problem will occur.

1
i

/'L o EO

€

L <_— Limagon
t
Figure 2.128 Effect of centring on minimum zone.

This apparent out-of-roundness value of the graph on the chart would be measured even if the workpiece and
the spindle of the instrument were absolutely perfect. Ways of computing these centres and zones without
regard to this inherent error obtained when evaluating graphically will be discussed in chapter 3.

This distortion can also be troublesome when examining charts for lobing and in some circumstances
can cause confusion in interpreting cylinders having a tilted axis relative to the instrument datum.

2.3.6.9 Effect of imperfect centring on the minimum zone method

On a perfectly circular eccentric part the form revealed by a roundness instrument is as shown in figure
2.128. It can be shown that the centre of the minimum zone coincides with that of the least-squares circle and
plug gauge for this case. This is because moving the centre of the circle from the plug gauge centre at O’
inwards towards O minimizes the plug gauge radius faster than it minimizes the ring gauge radius. To find the
apparent measurement of out-of-roundness it is necessary to find the maximum radius from O’, that is dy,x
which is obtained when

d = (t* + E? sin?0)"? (2.318)
1S a maximum, that is

E’%sin’0 —0
(2 + Esin’6)'2
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from which 0= TC/ 2 and dyay = (£ + E)'/2. Hence the error is

E=dpy—t=(2+E)"?—t (2.319)
e=E?/21,

This is what would be measured by the operator. For £ = 10 mm and ¢ = 30 mm the error could be 1.7 mm on
the chart, a considerable percentage!

2.3.6.10 Effect of angular distortion

From figure 2.128 the relationship between « as measured from O and 6 as measured from O’ is

o = tan‘( (t + E cosB)sinf j (2.320)
(t+ E cosO)cosO — E '

where for convenience the eccentricity has been taken to be in the x direction.

As previously mentioned the angles should always be measured through the centre of the chart irre-
spective of the eccentricity for normal purposes.

This is easily seen by reference to figure 2.132. Merely magnifying the derivations from the centred part
and transcribing them to a chart as in figure 2.133 does not significantly change the angular relationships
between the arrows as marked off. However, if the angles between the arrows are measured relative to the

Chart
range

Slightly eccentric
part

Centrex
of rotation

Figure 2.129 Actual extent of movement of workpiece relative to its size.

Limagon
True circle shape

\
Apparent centre
Centre of . /T‘ of workpiece

chart I\ el i ]

Figure 2.130 Effect of angular distortion.
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apparent centre O’ (which an operator may think is the true centre), considerable distortion of the results
occur. Figure 2.131 shows what actually happens to angles on the chart when the workpiece is decentred.
Instead of the arrows being separated by 60° they are seemingly at «; and «, which are gross distortions.

Figure 2.131 Effect of angular distortion.

Although this angular invariance of the centred and eccentric charts is somewhat astonishing, it is not usual
for it to cause confusion except in special cases. One such case is measuring any type of rate of change or
curvature of the profile from the chart.

A slope feature subtending an angle 66 in the centred case of figure 2.132(a) will still subtend it in the
eccentric case of figure 2.132(b). The feature will appear to enlarge on the one side and shrink on the other.
In fact, however, they still subtend the same angle 66 about the chart centre. But measuring any feature from
the apparent centre at O’ will give considerable angular errors, which in turn give corresponding errors in
slope because it is a function of 6.

Figure 2.132 Effect of angular distortion on slope measurement.

Differentiating the equation for angle shows that ox; is (¢ + E)/ t times as big as 60 and Ox; is (t — E)/t
times 60.

For E = 10 mm and =30 mm the subtended angle of a feature as seen from the apparent centre O’ can
differ by a factor of 3:1 depending on where it is relative to the direction of eccentricity!

Hence if the slope feature has a local change of radius 6r the value of 6r / oa will vary by 3:1 depending
on where it is. For E = 10 mm the variation is 2:1. The extent of this possible variation makes quality control
very difficult. The answer will depend on the purely chance orientation of the slope feature relative to the
direction of eccentricity.

Measuring such a parameter from O, the chart centre, can also be difficult in the highly eccentric case
because dp/d0 = E sin 6 which has a minimum value of E length units per radian at a direction of 6 = 1/2,
that is perpendicular to the direction of eccentricity. More affected still are measurements of curvature
because the d@ to dx distortions are squared. The only safe way to measure such parameters is by removing
the eccentricity by computation or by centring the workpiece accurately.
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Amongst the most obvious difficulties associated with the application of zonal methods is the possible
distortion of the centre position due to irregular peaks on the circumference. An example of this can be seen
with reference to the measurement of an ellipse using the plug gauge method.

Apart from the effects of eccentricity, polar distortion can affect more especially the drawing of the
inscribed circle.

Consider, for example, the representation of an ellipse at 200X magnification in figure 2.133(a). All
possible centres coincide and there is no ambiguity. But if the magnification is increased to 1000X, the rep-
resentation acquires the shape shown in figure 2.133(b). Although the MZ, RG (and LS) centres remain the
centre of the figure, two centres can now be found for the circle representing the largest plug gauge. Thus,
while the MZ, RG and LS evaluations are the same for both magnifications, the plug gauge value, if based lit-
erally on the maximum inscribed circle, is erroneously greater for the higher magnification. In the former,
plotted on as large a radius as the paper permits, the ambiguity of centres is just avoided, but on a small
radius at the same magnification the ambiguity reappears. It is therefore important, when seeking the plug
gauge centre, to keep the zone width small compared with its radius on the graph, that is to plot as far out on
the paper as possible and to use the lowest magnification that will provide sufficient reading accuracy.

(@)

Figure 2.133 Problems in plug gauge assessment.

This is a practical example of how zonal methods based upon graphical assessment can give misleading
results if applied literally. Again, they highlight the importance of knowing the nature of the signal. Because
the best-fit circle is only a special case of that of a best-fit limited arc, the general derivation will be given
from which the complete circle can be obtained. The only assumption made in the derivation is that for
practical situations where what is required is a best-fit partial limacgon rather than a circle simply because of
the very nature of the instrumentation. How this all fits in with the graphical approach will be seen in the
next section.

2.3.6.11 Equation of a reference line to fit a partial circular arc as seen by a roundness instrument [110]

Keeping to existing convention, let the raw data from the transducer be r(6), r having different values as 0
changes due to the out-of-roundness or roughness of the part.
Remembering that the reference line to the data from the transducer before display on the chart has the
equation
M(R—- L)+ Me cos(0 — ¢) (2.321)
and letting

MQR-L)=S Me=E (2.322)
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and

E cosp=x Esinp=y (2.323)
then the limacon form for the reference line between 6, and 6, is

p(0)—S = R+ xcosO + ysinf
and in order to get the best-fit limacon having parameters R, x, y to the raw data r(6) the following equation

(2.324) has to be minimized. (Here, for simplicity, the argument 6 to the r values will be omitted.) The crite-
rion for best fit will be least squares. Thus the integral /, where

0,
I= j [ — (R + x cosO + y sinf)]*do (2.324)
6,

has to be minimized with respect to R, x and y respectively. This implies that

(07) -0 (51) -0 (07) -0. (2.325)
OR/ ;5 X g Vs

.y R,

Solving these equations gives the desired values for R, x and y over a limited arc 6, to 6,. Hence the gen-
eral solution for a least-squares limacon over a partial area is given by

0, 6, 0, 0,
X = {AU rcosO dO - B f rd@j + C(f rsinf dO - D f rd@ﬂ/E
0, 0, 0; 0,
) 0> 02 0,
= {FU 7sin® dO — D J rd@) + CU rcos6 dO0— B f rdeﬂ/E (2.326)
0, 0, 0, 0,

0, — 0, = 0,
=1 j rdo— % f cosd do— Y f sin do.
92 - 91 0, 92 - 91 0, 92 1 0,

<

In this equation the constants A, B, C, D, E and F are as follows:

02 1 0, 2
A= f sin’0d0 - U sin@d@)
0, 0, -0 0,

» 06
1

B=

(sinB, —sinb,)

0, 0, 0,
C L@ f cosedef sinede—f sin0cos0d0
0, 0

01

1 (2.327)
D= (cos6, — cosb,)

2 1

E =AF -C? where 4, F and C are as defined here

02 1 02 2
F= f cos’0d0 — ——— U cos@d@) .
01 0, — 0

2 91
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In the special case of full arc equation (2.326) reduces to

2 2 2n
rR=1L f rdo =1 f reos0d 0 y=1 f rsinfd 0 (2.328)
0 T T

2w 0

which are the first Fourier coefficients.
In equation (2.326) the only unknowns for a given 6, and 6, are the three integrals

0y 0> 02
f rd@ j rcosfdo f rsin0do (2.329)

01 01 01

which can be made immediately available from the instrument.

The best-fit circle was first obtained by R C Spragg (see BS 2370) [111], the partial case by Whitehouse
[100].

For the instrument display the constant polar term S is added spatially about O to both the raw data and
the computed reference line in exactly the same way so that the calculation is not affected, that is the term
cancels out from both parts within the integral equation (2.326). Note that the extent to which the assumption
made is valid depends on the ratio e/R which, for most practical cases, is of the order of 1073,

Two practical examples of how the lines derived from these equations look on difficult surfaces are
shown in figure 2.134.

Reference flat

Keyway

Figure 2.134 Best-fit reference lines for partial circumference.

Because in practice the ratio e/R is so small all angular relationships have to be measured relative to the ori-
gin of the chart and not the centre of the part as seen on the graph. Also, because the initial and final angles
of a partial arc or circumference will be known from the instrument’s angular reference, a considerable
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reduction in computation can be achieved simply by ensuring that the limits of integration are symmetrical
about the centre of the arc. This change can be effected by a polar transformation of the angular datum on the
instrument by

0 +0,)/2. (2.330)

Thus, if 6; =( 6, — 91)/ 2, equation (2.264) becomes

X= UGS rcosO do — sin 0 J'g3 7 d0j[93 + sin20; _ 1 + C05293j_]
-0 0 -03 2 0, 0,

3
03 . -1
sin20
= U_ v sin@ dej (93 - 23j (2.331)
1 ([
R = —U rd0 —2x sin93).
20,V 03

Use of these equations reduces the amount of computation considerably at the expense of only a small
increase in the constraints of operation.

<

(a) Graphical procedure for determining the best-fit circle and centre

For measuring out-of-roundness around a complete circumference then equation (2.332a) is the important
one. Although as will be shown later this is easy to instrument, it is more laborious than the other three meth-
ods of measurement to obtain graphically. The way proposed at present is based on the observation that any
r cos 0 value is an x measurement off the chart and any r sin 6 value is a y measurement (see figure 2.135).

Figure 2.135 Calculation of best-fit least-squares circle.

Thus replacing the r cos 0 values and r sin 6 values and taking discrete measurements around the profile
graph rather than continuously, as will be the case using analogue instrumentation, then the parameters of the
best-fit circle to fit the raw data x, y of the coordinates of the centre and the mean radius R will be given by

=Ly
Yi — r;. (2.332)
1 N i=1

-

><\

Z\N
=

i
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Equation (2.326) gives the best-fit conditions for a partial arc which can enclose any amount of the full cir-
cle. Often it is necessary to find the unique best-fit centre of a concentric pair of circular ares. This involves
minimizing the total sum of squares of the deviations. Arcs 1 and 2 have the sum of squares S; and ;.

M
S, =D (r—R —x cos 6, — y sin 6,)*
i=1

N
S, =Y. (r—R, —x cos 0, — y sin 0,)".

i=1

(2.333)

Minimizing S + S, and differentiating these polar equations with respect to x, y, R, and R, gives

(Y cos? 6, + 3 cos? 6, Ssin6, cos 0, + Ysin6, cosf, Y cosh, 3 cosh,)
D sin6, cos6; + Y sin6; cosh; Y sin’0, + Y sin’ 0, D'sin 6, Y sin6,
D" cosb, > sin6, M 0
> cosb, D siné, 0 N
(x) (Zrij cosO, + Y r; cos@,\
A D ry, sinb; + > r;; sin6; |, (2334

R, zrij
R, 27

These equations are useful when data is available in the polar form. But when data is available in the
Cartesian form, the other criterion, namely minimizing the deviation from the property of the conic as an
example, is useful as described below. In this case the equations of the arcs are written as

x4y’ —ux—vy—-D =0

X4y’ —ux—vy—-D,=0 (2.334a)
and the total sum of the squares of the deviation from the property of the arc/conic is defined as:
E, = Z(x2 +y*—ux; — vy — D) + Z(x2 +y*—ux; —vy, — D). (2.335)

Differentiating partially with respect to u, v, D, and D,, then the equation in matrix form for the solution
of u, v, D; and D, is given by

(in2+2xf DX+ X Y, % ij\(u\ (Z(x%+y%)xi+2(x12.+y/2.)xj\
DX ViEXX Y VAV Dy 2yl o | | 268D+ 200+ vy,

2% 2 M o[l D, | |Zx+3 " (2.336)
2 2V 0 NJ\D, 2X 2y
Then
X = u/2 y = v/2
R = \m R, = /D, +(u* +v?I/4. (2.337)
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Obviously the key to solving these sorts of problems is how to make the equations linear enough for simple
solution. This is usually done automatically by the choice of instrument used to get the data. The fact that a
roundness instrument has been used means that the centre g, b is not far from the axis of rotation. If a CMM
(coordinate measuring machine) had been used this would not be the case unless the centre positions were
carefully arranged.

2.3.6.12 Lobing coefficients

Because a signal taken from a roundness instrument is necessarily periodic it is straightforward to break
down the profile of the part into a Fourier series whose fundamental component corresponds to one revolu-
tion of the instrument.

This analysis has some useful features because, whereas all the methods of numerical assessment dis-
cussed so far have been in terms of amplitude, only the Fourier series gives an opportunity to introduce a fre-
quency factor into the assessment.

Thus using the same terminology as before, the raw data from the instrument p@) may be expressed as

p(0)=R+ iCn cosO(nb —o,) (2.338)

n=1

or

R+ (a, cos n®+b, sinb no).
n=1

In practice the series of harmonics is not taken to infinity but to some number M deemed sufficient to
represent the profile of the workpiece adequately.

In the equation (2.339) C, =(a% + b2)"/2 and ¢, = tan’ (b, / ay) represent the amplitude of the nth har-
monic and ¢, the phase, that is the orientation of the harmonic in the profile relative to the angle on the
instrument taken as datum.

The coefficients are obtained from the profile (6) by the following expressions:

rR=1 f (0) d0 orin digital form 1+ 3 1()

2r = N

1 (7 2

a, =— r(0) cos n6 dO or —Z r;(0) cos n6 (2.339)

T NS

1 (F . 2 :
b, =~ 7(0) sin n6 dO or =3 r(0) sin nb.

T o NS

The coefficients described in the equations above can, to some extent, be given a mechanical interpreta-
tion which is often useful in visualizing the significance of such an analysis.

Breaking the roundness signal down into its Fourier components is useful because it enables a typology
of the signal to be formulated. This is shown in table 2.18.

From table 2.18 it can be seen that there are a number of influences that produce the signal which is
assessed for the out-of-roundness of the workpiece. The point to note is that these influences are not related
directly to each other: some are genuine, some are not. It is important to know the difference.

Although useful there are problems associated with placing such mechanical interpretations on the coeffi-
cients because it can sometimes be misleading.
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An analysis of these waveforms would yield that both have a term C; and yet an engineer would only
regard figure 2.136(a) as being eccentric. In fact the analysis of the profile in figure 2.136(b) shows it to con-
tain harmonics all through the spectral range of n = 1 to infinity so that it could also be thought of as being

elliptical and trilobe etc. The general term C, is given by
24
C, = sin(naj
2

nrw

Table 2.18 Roundness signal typology.

Fourier coefficient Cause

Effect

0 (a) Dimension of part
(b) Instrument set-up

Instrument set-up

2 (a) Ovality of part
(b) Instrument set-up
3 (a) Trilobe on part

(b) Machine tool set-up

4-5 (a) Unequal angle — genuine
(b) Equal angle — machine tool
5-20 Machine tool stiffness
20-50 (a) Machine tool stiffness

(b) Regenerative chatter

50-1000 Manufacturing process signal

Tolerance/fit

Eccentricity on graph

Component tilt
Distortion of
component due to jaws
of chuck clamping
Distortion due to
clamping
Out-of-roundness

Out-of-roundness
causes vibration

Out-of-roundness
causes noise

(@ Chart (b)

Eccentric graph

Graph of part with keyway

Figure 2.136 Problems with the harmonic approach.

so that

C, = z—Asin(a / 2).
T

(2.340)

(2.341)

Fortunately examples like this are not very often encountered and so confusion is not likely to arise.
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One way of utilizing the spectrum in the numerical assessment of roundness has been suggested by
Spragg and Whitehouse [12] who worked out an average number of undulations per revolution (V,) based
upon finding the centre of gravity of the spectrum, in keeping with the random process methods of roughness.

N, is given by

n=my

Z n(A,sin n6 + B, cos nf)
N, ="=" (2.342)

n=n,
D" a,cos n0 +b,sin no)

n=m

where no account is taken of the sign of the coefficient. The limits m, and m, refer to the bandwidth.

The advantages of this method over simply counting the number of undulations around the circumfer-
ence is that there are occasions where it is difficult, if not impossible, to make a count. In particular, this sit-
uation arises if the profile has a large random element or a large number of undulations.

Consider figure 2.137(a). It is easy to count the undulations on a four-lobed figure but for figure
2.137(b) it is much more difficult. The average wavelength values are shown for comparison.

(a)

Figure 2.137 Average wavelength for roundness: (a) average height 0.4 um, average UPR 4; (b) average height 1 um,
average UPR 20.

Another similar idea has been proposed by Chien [112] who defines effectively the root mean square energy.
Thus N, the Nth-order wavenumber equivalent in energy to all the rest of the spectrum, is defined as

1/2
N = [Z(aﬁ +byn* | Y (ay +b; )) . (2.343)
n=1 n=1

2.3.6.13 Roundness assessment without a formal datum

The vee method has been mentioned as a screening technique for measuring round workpieces more or less
as an approximation to the radial method.

The question arises as to what is really needed as an instrument. Is it necessary to have recourse to the
sophisticated radial methods described above? This question breaks down into whether it is possible to meas-
ure roundness radially without an accurate datum. This in turn poses the question as to whether both can be
done without introducing serious distortions of the signal which need to be compensated for. The answer is
that it is possible to arrange that a certain vee probe combination can remove the need for an accurate axis of
rotation. It is also possible to use a multiplicity of probes as in the case of straightness. Consider a truly circu-
lar part and its measurement. Errors in the measurement of such a part would result from spindle uncertainty.
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The probe configuration has to be such that any random movement of the part is not seen. This is equiv-
alent to making sure that a movement of the workpiece as a whole during the measurement cycle is not
detected and that it does not upset the signal. Suppose that there are two probes at angles of — aw and fto a
datum angle. If the part, considered to be a simple circle, is moved an amount e at an angle 6 the two probes
will suffer displacements of e cos(5 + @) and e cos(5 — B) assuming that e < 1072 R, where R is the workpiece
radius, and providing that the movement is confined to a region, within 1072 R, about the centre of action of
the probes. For an instantaneous movement not to be registered the following equation has to be satisfied:

ecos(0 +a)+ecos(d+ p) =0. (2.344)

This can only be true if x = m + f3, the diametral probe configuration analysed in equations (2.305) and
(2.3006).

To get more out-of-roundness information another probe is needed. Let this other one be at the reference
angle and the two existing probes be at angles of —a + f from it as in figure 2.138. The multiprobe signals
corresponding with the multiorientation method become

V1(60) = s(0) + e cos O
V,(0)=s(0+a)+ecos(d+a) (2.345)
V3(0) = s(8 — B) + e cos (6 — B).

where s is the workpiece signal and e is the eccentricity.

Probe
system

Figure 2.138 Variable error removal in roundness.

To eliminate workpiece movement some combination of the probe output voltages must be chosen so as to
make the terms in e and 6 zero. Notice that e represents an error movement at a particular moment in time; it
is not dependent on 6, unlike e(6). The zero condition can be met if the probes are equispaced around the cir-
cumference at 120°, but this has a serious disadvantage, which is that they totally enclose the workpiece.
However, use can be made of the fact that movement of a workpiece always affects at least two probes in the
opposite sense. This is a result of their spatial configuration around the part. By moving one probe through
180° and changing its direction of sensitivity by 180° the same result can be accomplished, and the compo-
nent is no longer totally enclosed!

This new feature is of great importance in measuring the roundness of large inaccessible objects to a
high harmonic content, in sifu. The advantage of having a probe assembly subtending a total angle of less
than 7 cannot be overemphasized; it means that the probes do not have to be fitted to a split collar.
Consequently the problems of register and alignment of the probes are considerably reduced.
Mathematically this mechanical repositioning of the probe can be simulated by changing the harmonic
weighting function from W, = exp(jnm) + exp(jmc/ 3) + exp( - jmt/ 3), which is obtained from having to
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ensure that e cos 6+ e cos(6+ a) + ecos(60—f)=0,to Wo =1 — exp(imc/3) - exp(-jnn/3), which is obtained
from a similar angular imposition. In weighting function terms the removal of random eccentricity errors
corresponds to the formula giving a zero value for the case where n = 1, that is F, (1) = 0. This is true for W,
and W,. However, there is a considerable mechanical advantage to be gained by using the second configura-
tion. Summarizing, a very important point has emerged from this analysis, which is that multiprobe methods
are subject to one more constraint than multiorientation methods. In the weighting function there has to be
complete suppression for n = 1, otherwise the variable errors would not be removed. (This is not necessary in
the multiorientation case; eccentricity errors corresponding to n = 1 can be removed for each data set — the
data are simply centred.) This constraint in the multiprobe method is in effect a fixing of the probe angles. To
minimize the harmonic suppression of this technique it is possible to use probes having different sensitivities
[103]. The general weighting function W then becomes

W =1-aexp(jna)— b exp(—jnf) (2.346)

which has the same amplitude and phase characteristics as before but x and 3 are constrained. A point to note
is that because of these constraints imposed by the different error removal methods the weighting function
for the multiprobe method need not be the same as the same-order multiorientation.

One important consequence of the first-order constraint F,. (1) = 0 is that the zeroth-order F. = 0 is not
zero. Thus

F.(0) = F,(0)(1—a —b) = 0. (2.347)

The case a + b = 1 is not allowed because this makes x and f both zero. Mechanically, equation (2.347) means
that the multiprobe method is necessarily sensitive to radius differences between parts. This apparent short-
coming can be made use of. Measuring the average value of the combination signal over one revolution gives
F. (0). This can be converted to F. (0) = 0. The range of this radius measurement depends only on the range of
the transducers and the overall accuracy depends on how accurately any one radius has been calibrated relative
to a master workpiece. This new technique is inherently more accurate than conventional methods because it
is substantially independent of random errors in the measuring system. In the multiorientation case the radius
terms cannot necessarily be maintained from one run to the next in sequence because of drift etc, so for every
orientation the data is preprocessed to remove the zero-order radius term (and the eccentricity term).

How the probe angles are fixed in the general case can be worked out from equation (2.346) with n=1.
Thus

1=a*+b? +2ab cos(a + B) (2.348)
a =cos™'(1-b* +a*)/2a

(2.349)
B =cos™'(1-a* +b*)/2b.

From these expressions some relationships can be determined. For e+ f= 7 / 2,a*+b*=1andfora+B<mn,
a+ b > 1. Should there be any confusion, the vee block method [97] is not the same as the multiprobe method: the
vee-block method is essentially a low-order lobe-measuring technique.

The signal has amplitude and phase characteristics of A(n) and ¢(n):

A(n) =[(1-a cos na — b cos nf)* + (b sin nf — a sin na)2]1/z
@(n) = tan'[(b sin nf — a sin na)/(1—a cos na — b cos nf)]. 2350

The real significance of the use of variable sensitivity in the method will become clear in the case of vari-
able error suppression. It is interesting to note from equation (2.349) that this is the general case for three points.
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If the major criterion is simply to get rid of the first harmonic caused by spindle movements, one probe
and two points of contact at an angle of x + 8 will in fact suffice to satisfy equations (2.344) and (2.345), that
is a vee method, for example, on two skids (figure 2.139). This is simpler than the three-probe method and
does not need balanced probes. However, it does not have the same flexibility as the three-probe method
because a and b can be adjusted with respect to each other and still maintain equation (2.349). This means
that the Fourier coefficient compensation equation (2.351) can be made to be much more well behaved over
a wide range of n, so reducing numerical problems.

—Probe
Yoke

Figure 2.139 Three-point roundness with two skids.

So far, using the multiple probe technique, the out-of-roundness has been obtained by a synthesis of modified
Fourier components. There are other ways. One such simple but novel method is to solve a set of linear
simultaneous equations. In effect what needs to be done in the two-orientation method, for example, is to
look for only that part of the signal which has moved by the angle o. The signal which moves is identified as
component out-of-roundness. The signal which remains stationary is attributed to instrument error.

Solving for the spindle and component values (here called S) in terms of the matrix M and the input
voltages V

S=M"V. (2.351)

This method still suffers from exactly the same frequency suppressions as the synthesis technique. As
before the effect can be reduced by making « small, but other problems then arise. Differences between
measurements become small—the readings become correlated and the matrix inversion becomes susceptible
to numerical noise. For any given «, however, it is possible to remove the need for a matrix inversion and at
the same time improve the signal-to-noise ratio. This is accomplished by repeating the shift of the specimen
until a full 360° has been completed, that is having m separate but equiangled orientations [88, 122]. The
reduction of noise will be about 7~'/2 in RMS terms. Once this exercise has been carried out it is possible to
isolate the component error from the instrument error simply by sorting the information. For example, to find
the component signal it is necessary to pick one angle in the instrument reference plane and then to identify
the changes in probe voltage at this angle for all the different orientations in sequence. To get instrument
errors, a fixed angle on the workpiece has to be chosen instead. Before this sifting is carried out the data sets
from each orientation have to be normalized. This means that the data has to be adjusted so that the eccen-
tricity and radius are always the same. These are the two Fourier coefficients which cannot be guaranteed to
be the same from one orientation to the next, because they correspond to setting-up errors and do not relate
to instrument datum or component errors. Figure 2.140 shows a typical result in which a magnification of 1
million has been obtained using this method. The figure illustrates a plot of the systematic error in a typical
spindle. Providing that these errors do not change in time they can be stored and offset against any subse-
quent data runs, therefore enabling very high magnifications to be obtained.
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Figure 2.140 Systematic error determination.

The above treatment has dealt primarily with the nature of roundness as seen by an instrument. There are
other significant aspects of the part not specifically concerned with roundness but with other metrological
features of the component such as concentricity, squareness, curvature, etc, and they can be evaluated and
classified from data obtained with a roundness instrument. They can confuse the roundness data.

In what follows a number of these features will be identified and quantified. It will be shown that a mul-
tiplicity of ways of assessing the features all give slightly different forms depending on the nature of the
assumptions made. This is particularly true of the measurement of curvature. Why these features are included
here is because of the pressure to make integrated measurements of the whole component in order to cut
down setting-up and calibration time. The fact that, in general, they are a different type of signal to that of
roundness obviously makes characterization more difficult.

2.3.6.14  Eccentricity, concentricity

Eccentricity is simply a measurement of the difference in position between the centre of rotation of the
instrument and the geometric centre of the workpiece. This is the term e referred to in the text and covered
extensively in [96].

Concentricity represents the roundness equivalent of taper Here the difference in the centres of circles
taken from different parts of a component is the measure. Sometimes it is taken simply as 2X eccentricity.

In figure 2.141 the distance e represents the lack of concentricity of the two circles in the same plane,
that is the eccentricity of one relative to the other. No mention is made of the difference in radius between the
two circles. Such circles may be taken in different parts of a bore or shaft or inside and outside cylinders, etc.

Figure 2.141 Concentricity determination.

Obtaining concentricity values instrumentally has been discussed elsewhere but it is desirable at this stage to
mention one or two points relevant to the future discussion.

The addition of the reference circle greatly facilitates the measurement of errors of concentricity
between two or more diameters. If the profile graphs are round and smooth the relationship can easily be
determined by measuring the radial separation along the axis of maximum eccentricity (figure 2.142). If,
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Graph of reference Eccentricity
surface axis

Figure 2.142 Eccentricity assessment: eccentricity = (M — N)/2X 1/magnitude, where M and N are in inches or millimetres.

Eccentricity
Graph of reference axis

surface

Figure 2.143 Eccentricity assessment.

however, the graphs are of poor shape then it is a great advantage to have the least-squares circles which are
automatically plotted on the graph as the basis for measurement (figure 2.143).

Remember that the centre positions of such circles are defined by the first harmonic of the Fourier
series.

In the measurement of concentricity of cross-sections in separated planes it is first necessary to establish
a reference axis aligned to the axis of rotation of the turntable. The relationship of all other cross-sections
may then be compared with respect to this defined axis. The surfaces chosen to define the reference axis will
depend largely on the configuration of the workpiece, but in most cases it can generally be established from
either two cross-sections along the workpiece, or from one cross-section and a shoulder or end face.

If two cross-sections along the workpiece are chosen they should be cross-sections of functional sur-
faces (i.e. bearing surfaces), where good roundness and surface roughness quality may be expected. For the
greatest possible accuracy in setting up the reference axis, the two surfaces should be as widely spaced as
possible.

If the shaft has two separated bearing surfaces which happen to be the only suitably finished surfaces
from which to define the reference axis, and which in themselves are to be measured for concentricity, the
procedure would be to define the axis in the most widely spaced cross-sections in the two surfaces and then
to measure the relationship of the required intermediate cross-sections.

Spragg has evaluated the errors that can arise when two probes are used to evaluate concentricity [104].

Measurements can sometimes be speeded up by the use of two probes. However, care must be used. If
the perfect part shown is eccentric, the differential signal is (62/ 2R)(1 — cos 26). There is an apparent ellipse
present, so the eccentricity should be closely controlled if two probes are used (figure 2.144).
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Figure 2.144 Problems with probe positions, (a) pick-up styli in line with
centre of rotation, (b) pick-up styli not on centre line; (¢) pick-ups on same

side of part but not aligned to axis of rotation.

A further geometrical problem arises if the pick-up styli are not accurately aligned to the centre of rotation
(by g, say). Then the output is

2

€ (1= cos 26) + 2€9(1 - cos0). (2.352)
2R R

This shows that the ellipse produced by having an eccentric part is modified to a kidney shape (limagon)

by a factor g. If the pick-ups are on the same side of the component, lack of alignment again gives an error.
This time it is

§@+ma—mw) (2.353)

The cylinder illustrated in figure 2.145(a) is shown to have a misalignment between the axis of the outside
surface and the axis of the bore. To determine the amount of misalignment it is necessary to define a reference axis
from the outside surface and align this axis to the axis of rotation of the turntable in such a way that the profile
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graphs from surfaces at A and B are concentric. Misalignment of the bore axis may then be measured by trans-
ferring the stylus to the bore and taking graphs at C and D, although movement of the pick-up position along the
component does not in any way affect the alignment of the component relative to the selected axis.

(a) Misalignment
of axis

|
Centre of levelling \l B
rotation of WC
turntable \
1D |
! A

L
1in(25.4 mm)] //j‘ i
i s ||
< 7
1
Table ‘squared—T'r_._AXiS of table

on’ to axis rotation

®)

Figure 2.145 (a) Cylinder with misaligned bore;
(b) determination of squareness.

I
|

2.3.6.15 Squareness

Squareness can be measured with a roundness instrument, for example by measuring the circles at A and B
to establish a reference axis. In squareness measurement and alignment two measurements other than the test
measurement are needed to establish a reference axis. For eccentricity one measurement other than the test
measurement is needed.

In figure 2.145(b) the squareness can be found relative to axis AB by measuring the eccentricity of the graph
on the shoulder C and, knowing the position at which it was made, r, the angular squareness e/ r can be found.

In all such measurements great care should be taken to ensure that the workpiece is not moved when the
probe is being moved from one measuring position to another.

2.3.6.16 Curvature measurement from roundness data

So far only departures from roundness have been considered or immediate derivatives like eccentricity or
squareness. There is, however, a growing need to measure many features simultaneously with one set-up.
This saves time and calibration and in general it reduces errors. One such multiple measurement is that of
measuring the curvature of the component at the same time as the roundness or sometimes in spite of it.
There is one major problem of estimating curvature on a workpiece by least-squares techniques and this
is the fact that the normal equations are non-linear. Operational research techniques allow some leeway in
this area. An ideal way of getting out of this problem is to linearize the equations by making suitable approx-
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imations. In the case of the circle the limagon approximation provides just this basic link, but it does rely on
the fact that the e/R ratio has to be small, therefore allowing second-order terms to be ignored. Measuring
circular workpieces with a roundness instrument is, in effect, linearizing the signal mechanically.

When attempting to measure the curvature of workpieces having a restricted arc the same limitation arises.
Measuring the workpiece using the formulae for instantaneous curvature can be very dangerous if there is noise
present in the nature of form or roughness, because differentiation tends to enhance the noise at the expense of
the long-wavelength arc making up the curve. Also, limagon approximations rely on a natural period which can-
not be assumed from the length of the wave, so two factors have to be considered from the metrology point of
view: one is linearization (if possible) and the other is noise stability. Obviously there are a large number of
ways in which both can be achieved. Two are given below to illustrate the different techniques.

From figure 2.146, if the coordinate axis starts at O, then the equation of the circle is

(@a=x;)* +(ys +b) =1 (2.354)

W Transducer
Z. range

0 : '

~—— f

r Independence

length

Figure 2.146 Form and texture — integrated method.

It is required to find the best estimates of a, b and r taken from a Cartesian-coordinate-measuring system
x, y. It is unlikely that the limagon form for partial arcs would be suitable because there is no easy way of esti-
mating the fundamental period. The x values are not necessarily equally spaced and are subject to error, and
the y values are likely to be contaminated with roughness information.

Assume that the data has the correct units, that is the magnification values removed. Let the observed
quantities be X, X, . . ., Yy, Y2, Y3. . . and the values of the true curve be xi, x5, . . ., 1, Y2, ¥3. . . . Let the
weighting of each of the data points be w, for the x and w, for the y (here assumed to be the same for all the
x and y values but not necessarily the same as each other, i.e. wy # w,). Let the residues between the observed
and adjusted values be U; and V;. Thus U;=X;—x;and V; =Y, — y,.

An assumption is made that the observed values can be expressed in terms of the true values and the
residuals by the first two terms of a Taylor series. This means that only first differentials are used. Thus

F(X, ... X,,Y,..Y,,a.b,1,) = F(X1,X5, e s X0, Vis Vay eev s Vs Gy by 1)

N
+ZU V,—+A(9—F+Ba—F+R(i;F (2.355)

por S o a b

where F'is some function in this case dependent on that of a circle.
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(a) Least squares
The nature of minimization is such that

S=w U} +wJV?}) (2.356)

is a minimum, that is Sw(residues)? is a minimum with respect to the adjusted values. In equation (2.356) if
the values of x are not in error then the residuals U; will be zero; this implies that the weight w, is %. Equation
(2.356) will therefore involve the minimization of S such that S = (w,U;) is a minimum only and vice versa
with x.

(b) Curve fitting
Here not only are observations involved but also estimates ao, b, ry of the unknown parameters of the curve
to be found.

In general, for n points of data D conditions or conditional equations can be used to help define the
adjusted values of x, y and a, b, . Thus

E(xle "'xnyn;a9b9 V)ZO]
Fy( . )=0r D equations for D conditions. (2.357)
Fp( : )=0

F,, F, are conditional functions and have to be chosen such that, when equated to zero, they force
the conditions that have to be imposed on the adjusted coordinates. Note that all these would automatically
be satisfied if the true values of x|, x,, yi, ¥, @, b, r were available.

The derivatives of these condition functions which are to be used are

F F F F F

. (2.358)
Ox; oy; oa ob or
The function F satisfying the above is obtained from equation (2.297), yielding
F=(a—-x?+(+b?-r*=0. (2.359)

Suitable estimates of the derivatives can be obtained by using the observed quantities and estimates of
the parameters ao, by, ro. Thus

OF OF OF
T =2xi—a) ——=2yi+b) ——=2a-x)
ox; oy, oa
(2.360)
oF
— =2y, +b = -2r,
P ( 0) 0
The terminology is such that
OF
A _2(y, +by). (2.361)
b 6% 0)

A point on the estimation of ay, b,, and r, will be made later. The values of equation (2.360) are required in
the calculation. The nearest to the true number has to be obtained at every point by using the observed values
and the estimated parameters.
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To force the adjusted data to lie on each point of the true curve it would be necessary for F(x; y; a, b, r) =0
to be true for all i. Here again estimates can be used:

F(X;, Y;; ay, by, r)#0 for all i in general (2.362)

but the number should be close to zero in each case if possible.

Thus equation (2.360) provides n equations. Using this Taylor assumption there are as many conditions
as points.

Defining

2 Z
I = 1(6’7] +1(5Fj (2.363)
w, \Ox; w, \Ou;

which is called the reciprocal of the weight of the condition functions, when the observed values are used it

is possible to write out the normal equations for curve fitting in matrix form. This method by Whitehouse
[106] is based upon the Deming approach [105]:

[, 000@@@\(%\%\

i

Ooa 0Ob oOr
o 1, o o % Ll | B
oa
0 0 L, 0
: : X = (2.364)
o o0 o L B E| ||
oa 0Ob oOr
oF oE o o ol 14l le
Oa Oa oa
OF 0oF,  OF, B 0
ob ob ob
OF, OF, OF,
o o 0 % 0 0
or Or or R 0

where

S =MF+M1LF +AF, etc
S=3% AF, (2.364a)

that is, the minimum squares sum S is expressible in terms of the Lagrange multipliers. It is not necessary to
compute them as far as S is concerned, nor the residuals!

Equation (2.364) can be immediately reduced to a set of equations containing only A, B, R by eliminat-
ing the Lagrangian multipliers 4, 4,, etc. Thus

Alzl(E—aEA—aE'B—aECj i=1..n (2.365)
oa ob oc

i
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Note that a = ap—A, b = by—B, r = rp—R and A, B, C are the residuals in the parameters. Thus the final
equation to be solved is

(< (ar) 1 o o 1 <ok or 1) [ ’
Z(x] yo o Loshdl o 1 , ZFGF; 1

oa) L da ob L, da or L, A "oa L,

2

oF, oF, 1 (8}7) 1 OF OF 1 oF 1

o o L oAl L o o 1 = F=i . (2.366)
2% o L 2\ 5 L 25 o Ll |8 2R, L

2

OF, OF, 1 0F OF, 1 (aFj o] g pOE 1

Zwaagzwabgzarg y Z'wb,

This equation can be expressed directly in terms of the observed values and estimated parameters.
Assuming that the x values are accurately known, w, = %, U; = 0 and wy, = 1, then

2 2
L = (Fj = [Fj = 4(by + 3, 2367)
Vi b

If n is the number of ordinates, all summations will be from 1 to n. Equation (2.307) becomes

s o) slas) [

by +y, by + y, ((bo +, )J 4
ay — X; B
z(bo +y,-j " roz[( + ;) ] |8
_ ay) — X;
) w(t) el

Z[(Go—x) +(by + y,)* —13] (ag —x:) 3
(i +by)?

=| 12 [(ao—x)* +(by + y,)* = r3] m ) (2.368)
0 i
1

(bo + ;)

(bo + i )2]

= 2l(ag = xi)* + by + y:)* = 1]

From this the values of A, B, R are found by a simple matrix inversion. Notice that the rank is only three for
a circle and four for a sphere so that the inversion is not complicated.
Having found A, B, R, the true parameters a, b, r can then be found froma =ay—A, b=by— B, r=ry—R.

(c) Estimation of ay, by, ro
These can be estimated very easily from the data subject to certain constraints such as by < ry which follows
from the nature of the mechanical set-up. Three methods are proposed to illustrate the flexibility which is
usually available:

1. Selecting three points on the raw data P, P,, P; at points X}, Y}, X, Y», X;, Y3 and forcing the con-
dition equations to be true, therefore yielding three simultaneous equations from which ay, by, ry can
be found. Thus
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Y, =[rd - (x —a)*1"* - by
Y, =[r5 —(x2 —ay)’]"* = by (2.369)
Y, = [’”(2) —(x; - 010)2]1/2 - by

from which a simple estimate of the parameters can be found. The values P, P,, P; could be obtained
from a smoothed part of the arc.

2. Taking the data, splitting it into three parts, finding the average points Py, P, P; of coordinates (X |, Y}),
(X 5, Y»), (X 3, Y3) and the same procedure fitted as in equation (2.379).

3. Using the spherometer formula to give estimates of y, and r, assuming the value x, is obtained
(figure 2.147).

L Figure 2.147 Pilot estimates.

This gives good estimates for small arc length or where an independent estimate of y, is available,
which it usually is from the graph; y is the average of the ordinates. Thus

=94+ E X — X (2.370)
Yo=Y o ( 0)

where

nZ(xo - xi)4 _[Z(xo - xi)2]2

R= - - (2.371)
2[2)’1’2(350 -x) - nZJ’i(xo - X;) ]

A number of simplifications are immediately possible because in most cases a good estimate of x,

would be L / 2 where L is the length of the chart.

Also in equation (2.371) no direct use has been made of the fact that the x values are evenly
spaced. The use of orthogonal functions should enable some simplifications to be made.

(d) Results
Based on preliminary results it seems best to use method 2 or 3 to get a pilot estimate of the radius. Only a
single iteration is necessary to get -a final value accurate to 1 in 10, It seems that this value could well be
improved to the required value of 1 in 5000 which is a specification aim for useful evaluation.

(e) Procedure

1. Work out estimates ay, by, ro from the data.
2. Work out point for point the F' values from the same data:

F =0 —ay) +(y +by)* —rj
Fy=(x—a)) +(»n+b) —rp (2.372)
etc.
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3. Work out the differential values at every point of 9F/dx, 9F /da, dF /b, 9F / dr that is

F o —a) et (2.373)
ox

Here some simplification is possible because JF’ / dr = 2r, is constant.
4. Work out the L values at every point. Thus

2 2
)
ox; J ow, \ox; / w

y

) ) (2.374)
_ R —a)P | 20 +b)F
W, w,
Here again if the x values are very accurately known then
2
w, =0 and L, = (aF’lJ 1 (2.375)
oy, / w,

where w, can be made unity.
5. Evaluate the sums over all the values i = 1 to n of the products for each point of the terms in the
matrix, that is

" 0F, OF, 1
Ziii

% oa L . (2.376)
i=1 a i

Note that many of the differential terms can be removed if L; is a function of just x or y separately.
6. Fill up the matrix with these numbers.

7. Invert the matrix to get the parameter residues A, B, R.

8. Evaluate the true circle parameters.

(f) Conclusion
It seems that the method outlined, based on that used by Deming, avoids the difficulty found when treating
curves which have non-linear coefficients such as circles. These non-linearities make evaluation very difficult
using conventional least squares. This method also has the advantage of being able to take into account the
accuracy of the data in the y and x directions.

A point to emerge is that, for accurate results, spatial sampling of the data rather than time sampling will
be necessary.

It is possible to compensate to some extent for the problems associated with linear approximation in
other ways than that given above. Two such a methods, which do not use the Taylor’s theorem approximation
are outlined below.

(i) Method 1
The origin of the measurements will be taken at point O in figure 2.146 where the datum line of the trans-
ducer intersects a radius normally; the datum line will be taken as the x axis. The y axis will be the radial line
whose origin is at O and which is at an unknown distance b from the centre of the component, T.
If the radius of the component is 7 any point (x, y) on the circle will satisfy the equation
X+ (y+by =rt=c? (2.376a)

where ¢ here is taken to be the curvature.
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There is a method [109] that gives a closed form for the solution of the radius of curvature equation. A
profile is defined as a set of data points in a fixed plane that lie on the surface of the component to be meas-
ured. Let these be (x;, y;), i =1 n. It is assumed that the radius and coordinates of the centre of the true circle
are not known. The problem is then to obtain estimates of these particular parameters. The technique used is
a best-fit curve-fitting method.

The equation of a circle of radius R and centre at (a, b) is

(x—a)y +(y-b) =R’ (2.377)

Because (x;,y;) do not lie exactly on a circle, but will have some machined error incorporated into them, it fol-
lows that

(x;—a)+(y; =b)*—R*=2E, i=1,...,n (2.378)

The criterion of best fit is to choose those values of R, a, b that minimize >-; E7 Rearranging (2.378) gives
x} +y} =R*—a® —b* +2ax; +2by, + 2E, (2.379)

or
z; =c+ax; +by, + E, (2.380)

where z; = (x?+y?)/2 and ¢ = (R*—a*~b?)/2.

Note that this is now in the form of a linear equation and thus has the desired values of ¢, a, b by least
squares, which is the best-fit criterion.

The normal equations in the least squares become

(n in Zyl. \(é\ (Zzi 3
LZ X, 2] ZL%JL&J = LZ Z,-x,-J (2.381)
zy,' inyi lez b Zziyi
which can easily be solved in the usual way to obtain the estimates of a, b and ¢, namely 4, b, ¢ From c an
estimate of the radius R is obtained as follows:

R= (2¢+42+b?)@ (2.382)

Having now obtained estimates of the radius and coordinates of the centre of the ‘true’ circle they can be
extracted from the profile to leave a residual profile, that is a profile of the surface texture and form error of
the original workpiece. Thus

* ) -1 N AN
xi =Rtan"[(y; -b )@(xi _Aa). (2.383)
yi = —ay +(y,-by -R
where (x7, y}) forms the new profile.

This trick of changing a non-linear problem into a linear one by considering the squared terms as sim-
ple linear parameters is not new. Recourse to this approach is often found in problems with roundness and
cylindricity etc, so it is not an academic exercise. It is an elegant, but not entirely formal, way of getting
around the problem of non-linearity often found in engineering metrology.
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The advantage of this method over many other methods is the fact that it is non-iterative and the estima-
tor is found in closed form.

This technique can be generalized to include any general conic section (i.e. ellipses, hyperbolics, para-
bolics, etc), but this is beyond the scope of the present section.

2.3.6.18 Estimation of radial slope

Out of roundness error or, more often, ‘roundness’ is not the only parameter which affects the performance of
circular objects. One example is to be found in the ball bearing industry where noise is a problem. This has
been attributed to impulsive forces on the balls inflicted by errors in the race (fig. 2.148).

Thus, if m is the mass of the ball, the impulse resulting from a change in the race radius Sr

m = O .00 _ mw(d”j (2.384)
ot o0 ot do.

the term 3—; is not a conventional roundness term but is important nevertheless. It may be that the impulsive

character of the signal generated by the §r term relates more to pressure variation i.e. acoustic noise than does
error or roundness.

or

do

Figure 2.148

dr . . . . . .
= can be measured directly using a conventional roundness instrument or it can be found from the harmonic

do
spectrum of the raceway (the lobing). Thus if F(w) is the spectrum of r(6) the roundness signal then wF(w)

is the spectrum of ar
do
ie. ar®) _, wF(w) (2.385)
do

dr

Hence given F(w) multiply by w and taking the inverse Fourier transform gives 40

directly.
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An instrumental method of determining Zf; will be given in chapter 4. Usually the values of % used are

the average modulus within a given value of 06 (about 5° to correspond with the Hertzian elastic zone diam-
eter on the ball) and the maximum value taken around the circumference of the race. Incidentally, the inner
ring is considered to be more important than the outer race.

Figure 2.149 Measurement of radial slope.

One way of measuring the radial slope of the round workpiece is to use a conventional radius-measuring
instrument having an accurate spindle, and to differentiate the signal emanating from the probe either by
analogue or digital methods. The digital formulae for such a measurement are explained in the chapter on
processing.

Another way is to measure the rate of change of radius. This is very important in noise generation in
bearings. One method is to use a spatial differentiator comprising two probes (figure 2.149). These two
probes will in fact provide the very simplest tangent estimate. However, it is important to remember that the
workpiece has to rotate in order for all the periphery to be examined and this in itself could require the use of
a precision spindle. This can be overcome to some extent as in some of the other examples of form measure-
ment by using a combination of a probe and vee system as shown above. The vee suppresses the first-order
movement or eccentricity of the workpiece relative to the centre of the probes, thereby considerably reducing
irrelevant measurements of dr/ d6 caused when even a perfectly circular part is eccentric to the axis of sym-
metry of the instrumentation.

It can be shown that the effect of local slopes on the vee faces will cause problems on the dr/d@ meas-
ured by the probes to the extent that the ratio of a given harmonic perturbation on the workpiece as seen on
the vee relative to the dr/ df measured by the probe is

cos(nﬁ/Z) sin o

for n>1. (2.386)
cos(ﬁ/2) sin no

It is useful to consider whether there is an effective transfer function for the system. The effect of a given har-
monic from the ring on the probe output takes no account of the fact that they may be out of phase. This gives
an effective transfer function TF given by

_sinny sin o

TF (2.387)

sin y sin na
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The theoretical validity of the method depends on the degree to which the periphery of the ring can be
regarded as a good reference. This can be worked out and it can be shown that the dr/ d@ error values are at
most 80% out. This is not good enough for an absolute roundness instrument but certainly good enough for a
screening instrument.

2.3.6.19 Assessment of ovality and other shapes

Ovality is the expected basic shape in workpieces generated from round stock rolled between two rollers. It
is one of the commonest faults in rings such as ball races. It is, however, different from other faults in that it
is most likely to disappear when the rings are pressed into a round hole or over a round shaft and when func-
tioning. This is also true for piston rings. They are often made deliberately oval so as to be able to take the
load (along the major axis) when inserted into the cylinder. On the other hand it is a bad fault in balls and
rollers and leads to a two-point fit of a shaft in a hole and hence to sideways wobble.

There is, in principle, a clear distinction to be made between ovality and ellipticity. The term ovality can
be applied to any more or less elongated figure and has been defined as the maximum difference in diameter
between any cross-section regardless of whether the axes are at right angles. The ellipse on the other hand
has to have the axes at right angles. In most cases the method of production is such that the two are synony-
mous and the terms ovality and ellipticity are taken as being the same.

For this reason the second harmonic of the Fourier series of the roundness profile is commonly
called the ellipticity and ovality. If the maximum diametral difference is divided by 2 this gives the
peak-to-valley radial height. Division by 6.28 gives the Ra (CLA, AA) departure from the least-squares
reference circle.

The shapes so far examined concern purely circular forms. Concentration upon this does not imply that
other forms based on circles are not met with in engineering practice — they are, and often many different
types of gear are based on centre symmetry, for example. Because of their extensive treatment elsewhere and
their obvious prominence in the measurement of pitch, angle, etc, rather than the less important departures
from true shape, they will not be included here.

Another sort of example is the class of shapes under the heading of trochoids. These are finding some
use now in motor engineering. By the very nature of their use in rotary engines departures from the ideal
form, especially in terms of waviness and roughness, can be important.

The shape used in the stator of such rotary engines has the form of an epi-trochoid. This is a general form
of an epi-cycle, that is the locus of one point within a circle as it is rotated around another (figure 2.150).

The equation of this point in terms of 6, the position of one circle centre O’ relative to the other centre O, is

x =(a+b) cosf —Ab cos(a Z bj@
(2.388)

= (a+b) sinf— Ab sin(a+bb]0

Figure 2.150 Measurement of Wankel motor stator.
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from which the radial distance r between O and a fixed point Q on a circle radius b located Ab from O is
given by
r=[(a+b) + A*b* — 2Ab(a + b)cos(a/b6)]"> (2.389)
which reduce, when a=2b, to
x =3b cosf—Ab cos 360
x =3b sinf — Ab sin 360
which is the case for the Wankel stator.
It is in those regions where y = 0 and x ~ b(3 — A) (i.e. in the regions where r is a minimum) that care

has to be taken to ensure that waviness is excluded. It can be shown that in these regions the form can be
expressed by a parabola

(2.390)

y? =3bx-b(3-1) (2.391)

from which deviations due to waviness can be found by simple instrumental means.

Similar curves can be generated by circles rolling within circles; in these cases they are hypotrochoids
(figure 2.151). One of particular interest in engineering is the case as above where a = 2b. The locus of the
point Q distance Ab from O’ is in fact an ellipse.

Problems of measuring these types of curve and even faithful data on the effect of misgeneration are not yet
readily available.

Hypotrochoid Figure 2.151 Hypotrochoid measurement.

Aspherics

Aspheric surfaces are put into optical systems to correct for spherical aberration. Spherical aberration always
occurs when polishing optical surfaces using random methods. This is because of the central limit theorem of
statistics which asserts that the outcome of large numbers of operations, irrespective of what they are, will

exp(—y2/20'2)

V271.o

result in Gaussian statistics of the output variable, say y. So p(y) = . In the case of optics in

x>+ yr+z2

three dimensions the p(x, y,z)is of the form exp( ] from which the form of the geometry is obvi-

202
ously x? + y? + z2, which is spherical.
Luckily the sphere is not a bad starting point for optical instruments. In certain regions the curves look
similar. See Figure 2.152.
The general form for a curve which can be developed to an aspheric form is equation 2.392. For example consider
the general conic equation for Z. By adding a power series (i.e. Ajx + A,x?) the aspheric can be generated. In
practice the number of terms is about twelve but often up to 20 can be used. This may be to avoid patent problems.
Thus the general form

(shape factor) - x*
R+R —(1+ K)x?

Z= +Ax+4,..... (2.392)
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Actual profile

Aspheric axis

Figure 2.152

Best fit aspheric form

R is the base radius and the shape factor is +1 for concave and -1 for convex curve.
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Figure 2.153 Conical shapes.

Obviously in figure 2.153 the shape factor is always —1.

\ Spherical mirror

Aspheric lens

Functional
wavefront
(aplanatic)

Focus 1
~

/> Wavefront

Figure 2.154 System correction — Schmidt plate.
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Figure 2.155 shows the parameters which are often needed to be specified.

Modified profile of residuals T

Figure 2. 155 Parameters of residuals from aspheric shape.

When residuals have been calculated from best fit aspheric form the following parameters can be deter-

mined.
Fig (figure) The vertical distance between the least squares best-fit line and the profile height.
R“ Average absolute deviation of residuals from best-fit line.
R Maximum peak to valley error
» Distance of residual peak from aspheric axis.
X, Distance of residual valley from aspheric axis
S Maximum surface slope error
Sonn Mean surface slope error.

2.3.6.20 Three-dimensional measurement — sphericity

In the same way that straightness was extended into flatness, roundness can be extended into sphericity.
Sphericity may be taken as the departure of a nominally spherical body from truly spherical shape, that
is one which is defined by the relationship

R*=(x-a)}+(y-b)P+(z-0c) (2.393)

Because of the inherently small size of these departures (in real workpieces such as ball bearings etc) relative
to the dimension R itself, the same procedure as for roundness can be used. As in waviness the lack of suit-
able instrumentation has inhibited much work in this subject. Some attention will be paid to this point here
(figures 2.156 and 2.157).

y Figure 2.156 Coordinate system for sphericity.
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Figure 2.157 Coordinate system for sphericity.

Using the same nomenclature as in the case of roundness

p=R4+¥, Y0 2 (2.394)
R R R

making the same assumptions as before. Thus equation (2.394) is in effect a three-dimensional limacon.
Because of the nature of the object to be measured, spherical coordinates should be used (p, 6, «). Thus

x = p cosf cosa assuming X X r.r £z
p R p R p R
y = p sinf cosa (2.395)
z = p sina
0 corresponds to the longitude angle and « to the latitude. From this equation
p=R+a cosf cosa +b sinf cosa + ¢ sina (2.396)

may be written. This is the nature of the signal to be measured.
(a) Best-fit minimization

Assuming that, in a real case, the raw data is r(6, ), then it is required to minimize the integral Z, which is
given by

a) 0,
I =f J' [7(0,0) — p(0,))*dO da
oy 0,
ar (0,
:f f [#(0,a) = (R+acos O cos a +bsin O cos a + ¢ sin a)l’ (2.397)
oy 0,

dropping the argument of r and the limits of integration for simplicity. This becomes

szj.[r—(R+acos9 cos a+b sin 0 cos o + ¢ sin )P dO da

=fj(r2—2rR—2ra cos O cos a-2rb sin O cos oo —2rc sin @

+R? +2Ra cos 0 cos a +2Rb sin O cos o + 2Rc sin a + a® cos® 8 cos® a
+2ab cos 0 cos o sin O cos o + 2ac cos O cos o sin o +b? sin? @ cos® a
+2bc sin O cos a sin o +c?sin’ a) dO da. (2.398)
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For best-fit minimization

o a A a_
OR oa ob oc

0. (2.399)

Separately leaving off d6, de, rationalizing the trigonometry and letting =6,—6, and a=a,—a, then

—J.jr+R0a+ancose cosa+bfjsin0 cosa+cffsina:0 (2.400)

—ffr cos 0 cosa+Rffcos(9 cosa+afjcos20 cosza-lrbffcosB sin 0 cos® o (2.401)
+ch.c059 cosasina =0
—fjr sin 0 cosa+Rstin9 cosa+affcos€ sin 0 cos2a+bffsin29 cos’ a (2.402)

+cffsin9 cosasina =0

—ffr sina+Rstina+aJ'fc059 cos o sina+bffsin9 cos o sina+cJJsin2a=0. (2.403)

From these four equations R, a, b, ¢ can be evaluated for best fit for partial spheres in limitations for
either « or 6.

(b) Full sphere
In the case where 6,—0, =27 and a,—a; =27

2r (27
a= %f f r(0,a) cos 8 cos a dO da
T 0 0
4 2n (27
b= 4—2f J r(0,a) sin @ cos a dO da (2.404)
nJo Jo
2 2n (27
C= 4—2f f r(0,a) sin 0 d6 da
aJo Jo

1 2 (2m
T 0 0

(The numerical equivalents of these equations are derived in chapter 3.) These are the best-fit coeffi-
cients for a full sphere and could be evaluated from a point-to-point measuring system whose sensitive direc-
tion is always pointing to the common origin O (figure 2.156).

The numerical equivalents of these equations are

a=4y.(x/N) b=4Y(y/N) c¢=2Y(y/N) R=>(r/N). (2.405)

After getting the centre and radius the amount of sphericity is obtained by calculating all the radii with
respect to the centre and finding their maximum difference.

Copyright © 2003 IOP Publishing Ltd.



(¢) Partial sphere: case A
Letting 6,—6, = 27, a,—a; = da and mean angle a=«a (i.e. one latitude) the normal equations become, using
the mean value theorem

2z
—5af r(0,a) d6 + Roéa2m + 2ncda sin a = 0 (2.406)
0
or
2
—J' 7(0,00)dO0 + 27nR + 27c sin a =0
0
2r
—da cos o f r(0,a) cos 6 dO + %27:50:(1 +cos2a) =0
0
or
2
—-cosa f r(0,a) cos 0dO +am cos’> a =0 (2.407)
0
or
2
- J' r(8,a) cos 6dO +amcos a = 0.
0
Hence

2
f r(0,a) cos 6 dO

a =
recosa Yo
1 27 (2.408)
b= f r(0,a) sin 6 dO
Tcosa Yo
(the best value being when cos a =1,1i.e. @ =0)
2
—da sin o f r(0,0) d0 + RSa2r sin o + cSa2n sin(2/a) = 0 (2.409)
0

or

2
—f r(0,a) d0 +27R + c2x sin o = 0.

0

This equation (2.409) shows that it is only possible to get a true value of R when sin « = 0, that is around
an equatorial trace. Under these conditions.

2r
R= Zi f #(6,0) d6. (2.410)
0

T
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(d) Partial sphere: case B
For o = 27 and 6,—6, = 66, mean angle 6, equation (2.406)

—fjr(e,a) do da+Rde9 da+ajfsina dg da =0 (2.411)

becomes

—50]}*(9,05) do +R602m =0

or

2n
R= 1 f r(0,a) da.
2w Jo

Equation (2.407) becomes

2
—00 cos 6 J. r(0,0) cos a da +am cos? 0 So + %bé@ sin 20 =0 (2.412)
0

2
—f r(0,a) cos o do +am cos 0+ b sin 6 = 0.
0

Equation (2.408) becomes
2
— 60 sinf f r(0,a) cosa da +am 80 sind cos@ +br sin’0 = 0. (2.413)
0

Equations (2.412) and (2.413) show that a and b cannot be determined using great circles of con-
stant 0 values:

(2.414)
—”r(e,a) d6 da sin a +%27r59 =0
2
—50 J #(0,a) sin o dO do + %27759 =0
0

2r
c= 1 f r(0,a) sin a do.
T Jo

Hence all measurements will help with the evaluation of R and ¢ with equal weight, which is not the
case for constant « and variable 6, which have to be weighted; only the great circle value @ = 0 enables R to
be obtained.

2.3.6.21 Interpretation of results of equations (2.406)—(2.414)

Consider equations (2.406) — (2.410) and figure 2.158. The probe will move only a distance r in response to
a shift of a in the x direction. Hence all estimates of a thus derived from the raw r values will be smaller by
the factor cos a. In order to get the true estimate of a and b from lesser circles (i.e. those where o # 0) a
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weighting factor of 1 / cos a has to be applied to compensate for this. For high latitudes (declinations) the fac-
tor will be so great as to make the estimate meaningless in terms of experimental error.

Figure 2.158 Direction of probe movement.

To get the best estimates of a and b the average of a number of latitudes should be taken.

Similarly equations (2.410)—(2.414) show that the measurement of great circles by keeping 6 constant
(i.e. circles going through the poles, figure 2.159) will always give equal estimates of ¢ and R but none will
give estimates of a and b. This is only possible if more than one value of 6 is used. Similarly to get a measure
of R and c from equation (2.409) at least two values of « should be used. For a full exposition of the partial
sphericity problem refer to Murthy ef al [111].

Figure 2.159 Longitudinal tracks.

In a cylindrical coordinate measurement system the probe sensitivity direction is pointing the wrong way for
good spherical measurement. All sorts of complications would be involved in compensation for this. To build
up a composite sphere using cylindrical coordinates (r, 6, z) the value of r would have to be measured very
accurately for each latitude, far better in fact than is possible using normal techniques. A 1um resolution
would not be sufficient. This problem is shown in figure 2.160.

Figure 2.160 Cylindrical coordinates for sphericity.
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Note:

A general rule for surface metrology instrumentation is that if the measuring system is matched to the
component shape in terms of coordinate system, the number of wide range movements in the instrument
which require high sensitivity can be reduced by one.

Measurement and checking of sphericity using a zonal technique rather than best-fit least squares is
likely to produce errors in the estimation of the centre positions because it is difficult to ensure that peaks and
valleys are always related.

(a) Partial sphericity
As in most engineering problems the real trouble begins when measuring the most complex shapes. Spheres
are never or hardly ever complete. For this reason estimates of sphericity on partial spheres — or even full
spheres — are made using three orthogonal planes. This alternative is only valid where the method of manu-
facture precludes localized spikes. Similarly estimates of surface deviations from an ideal spherical shape
broken down in terms of deviations from ideal circles are only valid if the centres are spatially coincident —
the relation between the three planes must be established somewhere! With components having very nearly a
spherical shape it is usually safe to assume this if the radii of the individual circles are the same [112].

In the case of a hip prosthesis the difficult shape of the figure involves a further reorganization of the
data, because it is impossible to measure complete circles in two planes. In this case the partial arc limagon
method proves to be the most suitable. Such a scheme of measurement is shown in figure 2.161.

Partial circle

‘. Full circle

Figure 2.161 Prosthetic head — partial sphere.

Similar problems can be tackled in this way for measuring spheres with flats, holes, etc, machined onto or
into them.

The display of these results in such a way as to be meaningful to an inspector is difficult, but at least
with the simplified technique using orthogonal planes the three or more traces can all be put onto one polar
or rectilinear chart. Visually the polar chart method is perhaps the best, but if, for example, wear is being
measured on prosthetic heads it is better to work directly from Cartesian records in order to measure wear (by
the areas under the charts) without ambiguity.

Assessment of the out-of-sphericity value from the least-squares centre is simply a matter of evaluating
the maximum and minimum values of the radial deviations of the measured data points from the calculated
centre (a, b, ¢) and radius R.

(b) Other methods
The minimum zone method of measuring sphericity is best tackled using exchange algorithms [113]. Murthy
and Abdin [114] have used an alternative approach, again iterative, using a Monte Carlo method which,
although workable, is not definitive.
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The measurement of sphericity highlights some of the problems that are often encountered in surface
metrology, that is the difficulty of measuring a workpiece using an instrument which, even if it is not actually
unsuitable, is not matched to the component shape.

If there is a substantial difference between the coordinate systems of the instrument and that of the com-
ponent, artifacts can result which can mislead and even distort the signal. Sometimes the workpiece cannot
be measured at all unless the instrument is modified. An example is that of measuring a spherical object with
a cylindrical coordinate instrument. If the coordinate systems are completely matched then only one direc-
tion (that carrying the probe) needs to be very accurate and sensitive. All the other axes need to have adjust-
ments sufficient only to get the workpiece within the working range of the probe. This is one reason why the
CMM has many basic problems: it does not match many shapes because of its versatility, and hence all axes
have to be reasonably accurate.

The problem of the mismatching of the instrument with the workpiece is often true of cylindricity meas-
urement, as will be seen. Special care has to be taken with cylinder measurement because most engineering
components have a hole somewhere which is often a critical part of the component.

2.3.7  Cylindricity

The cases of flatness and sphericity are naturally two-dimensional extensions from straightness and round-
ness, whereas cylindricity and conicity are not. They are mixtures of the circular and linear generators. The
number of engineering problems which involve two rotations is small but the combination of one angular
variable with one translation is very common hence the importance attached to cylindricity and, to a lesser
extent, conicity. There is little defined in non-Euclidean terms. In what follows ‘cylindricity’ will be taken as
departures from a true cylinder.

Many misconceptions surround cylindricity. Often a few acceptable measurements of roundness taken
along a shaft are considered a guarantee of cylindricity. This is not true. Cylindricity is a combination of
straightness and out-of-roundness. Worst of all, any method of determining cylindricity must be as independent
of the measuring system as possible. Thus, tilt and eccentricity have to be catered for in the measurement frame.

To go back to the assessment of shaft roundness, the argument is that if the machine tool is capable of
generating good roundness profiles at different positions along the shaft then it will also produce a straight
generator at the same time. This method relies heavily on the manufacturing process and the machine tool
and is not necessarily true (figure 2.162). To be sure of cylindricity capability these roundness graphs should
be linked linearly together by some means independent of the reliance on manufacturing. Alternatively, lin-
ear measurements could be tied together by roundness graphs, as shown in figures 2.163(a) and (b).

Figure 2.162 Cross-section of shaft with roundness graphs.
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There is another possibility which involves the combination of a and b in Fig 2.163; to form a “cage” pattern.
This has the best coverage but takes longer.

@ = o [LAD)

(d)

Figure 2.163 Methods of measuring cylinders (@) radial section method; (b) generatrix method; (c) helical line method,
(d) points method.

Yet another suggestion is the use of helical tracks along the cylinder (figure 2.163(c)). In any event some
way of spatially correlating the individual measurements has to be made. Whichever one is used depends
largely on the instrumentation and the ability to unravel the data errors due to lack of squareness, eccentric-
ity, etc. Fortunately quite a number of instruments are available which work on what is in effect a cylindrical
coordinate system, namely 7 z, 6 axes, so that usually work can be carried out on one instrument.

In those cases where component errors are large compared with the instrument accuracy specifications,
for example in the squareness of the linear traverse relative to the rotational plane, the instrument itself will
provide the necessary spatial correlation.

Unfortunately, from the surface metrology point of view there is still a serious problem in displaying the
results obtained, let alone putting a number to them.

The biggest problem is to maintain the overall impression of the workpiece and at the same time retain
as much of the finer detail as possible. The best that can be achieved is inevitably a compromise. The prob-
lem is often that shape distortions produced by tilt and eccentricity mask the expected shape of the work-
piece. The instrumental set-up errors are much more important in cylindricity measurement than in sphericity
measurement. For this and other reasons cylindricity is very difficult to characterize in the presence of these
unrelated signals in the data.

Another problem interrelated with this is what measured feature of cylindricity is most significant for
the particular application. In some cases such as in interference fits, it may be that the examination and spec-
ification of the generator properties are most important, whereas in others it may be the axis, for example in
high-speed gyroshafts.

Depending on what is judged to be most suitable, the most informative method of display should be
used. Because of the fundamental character of cylindrical and allied shapes in all machines these points will
be investigated in some detail.
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2.3.7.1 Methods of specifying cylindricity

As was the case in roundness, straightness, etc, so it is in cylindricity. There is a conflict amongst metrolo-
gists as to which method of assessment is best — zonal or best fit.

There is a good case for defining cylindricity as the smallest separation ¢ which can be achieved by fit-
ting two coaxial sleeves to the deviations measured (figure 2.164(d)). This corresponds to the minimum zone
method in roundness. But other people argue that because only the outer sleeve is unique the minimum cir-
cumscribing sleeve should be used as the basis for measurement and departures should be measured inwardly
from it.

Cylinder axis Cylinder axis
PV

(b)

Cylinder axis

Figure 2.164 Methods of defining a cylinder: (a) least-squares axis (LSC); (b) minimum circumscribed cylinder (MCC);
(¢) maximum inscribed cylinder (MIC); (d) minimum zone cylinder (MZC).

Yet again there is strong argument for the use of a best-fit least-squares cylinder. Here the cylindricity would
be defined as P1+V, (remember that figures of roundness show highly magnified versions of the outer skin of
the real workpiece which will be considered later). The advantage of the best-fit method is not only its
uniqueness but also its great use in many other branches of engineering. Using the minimum zone or other
zonal methods can give a distortion of the axis angle of the cylinder without giving a substantially false value
for the cylindricity measurement. This is the case where the odd big spike (or valley) dominates the position-
ing of the outer (inner) sleeve. Least-squares methods would take note of this but would be unlikely to give a
false axis angle. For this reason the conventional way of examining the least-squares cylinder will be dealt
with shortly. It should be remembered here that it is a vastly more difficult problem than that of measuring
either roundness or straightness. Interactions occur between the effect of tilt of the cylinder and the shape dis-
tortion introduced necessarily by the nature of cylinder-measuring machines — the limagon approach. How
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these interact will be considered shortly. Before this some other different methods will be considered to illus-
trate the difficulty of ever giving ‘one-number’ cylindricity on a drawing with ease.

Figure 2.165 Cylindrical data set (Goto [103]).

Another difficulty arises when the concept of the ‘referred cylinder’ is used. This is the assessment of the out-
of-cylindricity of the measured data from a referred form — the cylinder that is the perfect size to fit the data.
The problem is that the referred cylinder has to be estimated first from the same raw data!

2.3.7.2 Assessment of cylindrical form

Ideally any method of assessment should isolate errors of the instrument and the setting-up procedure from
those of the part itself.

One attempt at this has been carried out [103] (figure 2.165). Taking the coordinate system of the instru-
ment as the reference axes, 6 for rotation and z for vertical translation they expressed the profile of a cylinder by

H(0,2) = 3 AP (2)+ 3> 4, P.(2) cos i + B, Py(2) sin i6 (2.415)
=0

ijhy
i=1 j=0

where P and A, B are orthogonal polynomials and Fourier coefficients respectively. The choice of function in
any of the directions is governed by the shape being considered. In the circular direction the Fourier coeffi-
cients seem to be the most appropriate because of their functional significance, especially in bearings. P is in
the z direction and A, B are the Fourier coefficients in any circular plane, j represents the order of the vertical
polynomial and i the harmonic of the Fourier series. r denotes the observation of the deviation of the probe
from its null at the /th direction and on the kth section. Thus

_ Z;ZIZ; 1P (z;) cos if,
2.2 Pi(z) cos® 6,
_ zlkzl Z;I:l’”kP/(Zk) sin i6,

Y ZZP[Z(Z]{) COS2 192 (2416)

ij

The advantage of such a representation is that some geometric meaning can be allocated to individual
combinations of the functions. The average radius of the whole cylinder, for instance, is taken as (0, 0),
and the dc term in the vertical and horizontal directions. (0, j) terms represent variations in radius with z
and (i, 0) represent geometrical components of the profile in the z direction, that is the various samples of
the generator.
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The effect of each component of form error can be evaluated by the sum of squares
t
Sij = g(Af,- + ij)(; Pi(z, )j- (2.417)

Taper due to the workpiece and lack of squareness of the axes is given by the coefficient (I, 0) as will be seen
from the polynomial series.

More complex forms are determined from the way in which the least squares polynomial coefficients
change, for example the Legendre polynomial

R(z)=1

P(z)==z

1(2) R (2.418)
P(z)=—/—-—- etc.

5(2) _

In this way, taking higher-order polynomials often enables complex shapes to be specified.

Extending this concept has to be allowed because often the behaviour of the axis of the part has to be
considered, not simply the profile (or generator). In these instances the function representing the cylinder
may be better described using three arguments representing the three coefficients. Thus F(P, A, B) describes
the shape, where the centre coordinates for a given Z are Ay, B,.

Plotting the curve representing F(z, 1, 1) describes the behaviour of the x and y axes with height. Also,
plotting F(z, 0, 0), the way in which the radius changes with height, can be readily obtained (figure 2.166).

AR—

Figure 2.166 Method of specifying cylindrical error.

The questions of what order of polynomial is likely to be met with in practice to describe the axis change
with z or how R changes with z have not been determined mainly because of the lack of availability of suit-
able instrumentation. This situation has now been remedied. However, it seems that these changes as a func-
tion of z could be adequately covered by simple quadratic curves. Examining these curves gives some of the
basic information about the three-dimensional object. However, showing these curves demonstrates the diffi-
culty of displaying such results, as in figure 2.167.

One obvious way is to develop the shape, but this has the disadvantage that it does not retain a visual
relationship to the shape of the workpiece.

As in the measurement of flatness, Lagrangian multipliers can be used to reduce error from the readings.
Here, however, there are more constraining equations than in flatness.
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Axial direction

Figure 2.167 Development of cylinder surface.

Other more general shapes such as conicity can be equally well dealt with (figure 2.168). Exactly the same
analysis can be used except for scaling factors in the angular direction.

Figure 2.168 Conality development.

Note that, in all these analyses, the validity of the Fourier analysis relies on the fact that the signal for the cir-
cular part is a limacgon. The use of the Fourier coefficients to identify and separate out set-up errors from the
genuine form errors depends on this approximation.

An example of the problems involved is shown in figure 2.169. Assessing the departure from a true
cylinder or any similar body by using a single parameter in the separation of radii, as in figure 2.169, as the
basis of measurement is prone to ambiguity. Figure 2.170 shows the classical shapes of taper, or conicity,
bowing, concave and convex ‘barrelling’. Each of the figures illustrated in figure 2.170 has the same nominal
departure. ‘One-number cylindricity’ is obviously not sufficient to control and specify a cylindrical shape.
The figures obviously have different forms and consequently different functional properties. Only by sum-
ming some type of specification, which includes, for example, the change of apparent radius with height
and/or the way in which the least-squares axis changes with height, can any effective discrimination of form
be achieved.

Figure 2.171 shows various combinations of the forms on a nominal cylinder.

Figure 2.169 One-number cylindricity — minimum sepa-
ration of two cylinders.

The fact that the axial deviations and the polar deviations are usually regarded as independent, at least to a
first order suggests that the best way to measure a cylinder is by means of a cylindrical-based coordinate-
measuring machine, or its equivalent, in which a linear reference and a rotational reference are provided at
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“ Figure 2.170 Three types of error in cylindrical form,
typical examples (a) axis distortion, (b) generatrix deviations,
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(c¢) cross-section form deviations.

(a) - (b)
.

Figure 2.171 Errors in cylindrical form basic types of devi-
ations (a) axial form error; (b) overall shape; (¢) radial form

error; (d) combination of errors.

the same time. Furthermore, the argument follows that these two features should not be mixed in the meas-
urement a set of individual roundness data linked with straightness should be obtained. This idea is generally
used as shown in figure 2.163. However, the spiral method does mix them up. The advantage is purely instru-
mental, both drive motors for the reference movement are in continuous use, giving high accuracy if the bear-
ings are of the hydrodymamic type and also some advantage in speed. Figures 2.172-2.176 show other
definitions, such as run-out coaxiality, etc, and the effect of sampling.

Cylindricity or, more precisely, deviations from it, is much more complicated than roundness, straight-
ness or sphericity. This is not only because it is three dimensional but also because it is defined relative to a
mixture of coordinate systems, that is polar and Cartesian rather than either one or the other. Cylindricity is
also much more important functionally than sphericity because of its central role in bearings and shafts in

Copyright © 2003 IOP Publishing Ltd.



machines. The figures highlight some of the problems. One of the most important is the realization that con-
siderable thought has to be put into defining the axes of cylinders. Whereas the actual ‘one-number’ peak-to-
valley deviation estimating cylindricity is not too sensitive to the choice of algorithm used to estimate the
referred cylinder, the position of the best axis very definitely is. The extra large peak or valley can completely
swing the direction of the axis, as seen in figure 2.172. Also, the amount of data required to cover completely
the surface of a cylinder is likely to be high. It is sensible to use hundreds of data points per revolution in
order to catch the spikes. This sort of cover is not required for the harmonic content of the basic shape, but it
is required to find the flaw (see figure 2.176). Mismatching of shapes, such as in figure 2.173, is also a prob-
lem. Trying to fit a cone into a cylinder requires more constraint than if the data set of the test piece is nomi-
nally cylindrical. In the case shown a preferred direction would have to be indicated, for example.

Asperity

]

'

"

i

[
daa

Figure 2.172 Effect of asperities. The MIC, MZC, MCC axes are very sen-

Shifted | Original sitive to asperities and where possible should not be used for the datum axis.
datum l datum

Figure 2.173 Some factors which cause errors in cylindricity measurement.

Instability of the Mc cylinder

Datum axis __,

Total Figure 2.174 Total run-out, some definitions of cylindrical parameters. Total
= o run-out run-out is similar to ‘total indicated reading’ (TIR) or ‘full indicated move-
= ment’ (FIM) as applied to a roundness or two-dimensional figure, but in this
= — case it is applied to the complete cylinder and is given as a radial departure of

=== two concentric cylinders, centred on a datum axis, which totally enclose the
D cylinder under test.
Cylinder axis

There is also the problem of incompatible standards as shown in figure 2.175 for coaxiality. Whichever is
used has to be agreed before queries arise. If in doubt the ISO standard should always be used. Again, if in
doubt the least-squares best-fit algorithm should be used. This may not give the smallest value of cylindric-
ity, neither may it be the most functional, but it is usually the most stable and consequently less susceptible
to sample cover and numerical analysis problems, as seen in figure 2.176.
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Figure 2.175 Some definitions of cylindrical parameters. Coaxiality is the ability to measure cylindricity, and to set an
axis allows the measurement of coaxiality and relates the behaviour of one axis relative to a datum axis.

With only 50

data points some
of the surface
detail is lost

Figure 2.176 Some factors which cause errors in cylin-
dricity measurement: the effect of insufficient data points

per plane.

Many other factors are important, such as the definition of run-out and inclined cylinders, as will be seen.
Many have not yet been formally defined but are unfortunately being asked for.

The proposed method for defining cylindricity described above relies on the usual reference
limacgon, at least at first sight. It seems that this method was first adopted more to demonstrate the use of
least squares by which the parameters can be found than for metrological reasons, but it is a method of
describing the surface of which more use could probably be made. The most comprehensive discussion
of the problem of cylindricity is due to Chetwynd [113]. Harmonic analysis in roundness measurement
has been variously proposed, and the extension to a polynomial axis seems natural. It is, however, still
restricted by the need to interpret part of the ‘profile error’ as caused by residual misalignment of the
workpiece to the instrument coordinate system. To do this the first harmonic of each cross-section (e.g. A
and B)) and the linear polynomial along the axis are the only terms caused by misalignment. Thus the
limagon approximation is being applied at each cross-section to account for eccentricity there and the
least-squares straight line through the centres of these limagons is taken as the tilt error between the
workpiece and the instrument.

Other workers have implicitly assumed the use of a 'reference cylinder’, which is in fact a limagon on
each cross-section perpendicular to the z axis, with the centres of these limacons lying on a straight line.
This is true even of methods which do not actually measure such cross-sections, such as schemes using a
helical trace around the workpiece. Virtually all reported work is concerned with least-squares methods.
One partial exception is an attempt to discover the minimum zone cylinders from the least-squares solution.
Many search methods have been proposed but are considered to be inefficient and an alternative is proposed
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which uses a weighted least-squares approach, in which the weights relate to the residuals 