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Series Preface

Books in this series are intended to serve researchers and scientists who wish to
keep abreast of advances in the expanding field of nano- and micro-technology,
and as a resource for teachers and students of specialized undergraduate and post-
graduate courses.

The earlier book Microfluidic Technology and Applications, by Michael Koch,
Alan Evans and Arthur Brunnschweiler, provided a comprehensive introduction
to the theory, modelling and fabrication of fluidic systems whose characteristic
dimensions do not get smaller than a micron. The modelling and understand-
ing of the operation of such systems can rely on Navier-Stokes-type equations,
that assume conventional continuum laws, without the need to consider localised
molecular interactions. Recent advances in fabrication now provide electronic
components and fluidic systems in the nanometric scale. Thus, molecular inter-
actions can no longer be ignored in our approach, either by numerical modelling
or through the design of suitable experiments, to understand key phenomena such
as viscosity, boundary layers, and fluid flow, for example.

In this book Peter Dyson, Rajesh Ransing, Paul Williams and Rhodri Williams
take us step by step through the fluidic world bridging the nanoscale, where
molecular physics is required as our guide, and the microscale where macro con-
tinuum laws operate. The pedagogic treatment is suitable for inclusion in taught
Masters Degrees, and the book as a whole should be considered as essential read-
ing for all researchers in Nanotechnology. I know of no other book that covers
this material, and of no other authors who could have tackled their task with such
clarity and authority.

Ronald Pethig
Professor of Micro- and Nano-Systems

University of Edinburgh
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Preface

BACKGROUND

Fluid simulation at the nano/meso scale (50 nm–500 nm) presents a current stum-
bling block for the numerical modelling community. The traditional consideration
of fluids assumes that the influence of molecular interactions is negligible, but at
nano/meso scales this is not the case. This book aims to tackle this problem by
providing the reader with the knowledge necessary to approach fluid simulation at
this scale. Techniques and tools are also presented to give a detailed insight into
how simulations in this area can be performed successfully. The core problem
faced at the meso scale is the multiscale nature of the problem and the tradeoff
between molecular and bulk fluid properties and physics. As well as providing the
reader with simulation techniques, this book will also illustrate some experimen-
tal examples that show where these theoretical methods may be applied.

Current advances in nano and micro technology have allowed engineering
to take place at smaller and smaller scales. IBM’s research in nanotechnology
now allows electronic components to be manufactured with dimensions as small
as 29.9 nm, which allows the continuation of ‘Moore’s law’ that has been fol-
lowed for the last 40 years. Other critical advances include a nano-engineered
bio-silicone drug delivery system developed by QinetiQ, which can attack cancers
by taking drugs directly to tumour sites. These applications are at the forefront of
science today and it is essential to maintain the ability to predict the behaviour of
these devices to exploit the technology.

To design such systems successfully requires the ability to simulate complete
fluid systems at scales above and below the actual device dimensions, which saves
time and experimental costs. However, it is not currently possible with existing
simulation methods. Experimental techniques also need to be developed or refined
in order to measure properties of interest at this scale.

A wide range of simulation techniques are available, at macro and nano scales,
but the scales they tackle contain very different physics models. Unfortunately,
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Figure 1 Length scales of simulations, showing the targeted location of the method pro-
posed in this book.

at meso scale dimensions the conventional macro scale continuum simulations
become less effective, as they fail to capture all the key physical nano scale inter-
actions. Figure 1 shows the regimes of simulation methods over a range of scales;
existing meso scale methods such as lattice Boltzmann (LB) [1] and dissipative
particle dynamics (DPD) [2] tackle problems at the high end of the meso scale
region. This work focuses on the lower end of the meso scale where molecular
physics plays a larger part.

Despite advances in numerical simulation techniques care must be taken not to
go too far down the simulation-only road. Experimental measurements and tech-
niques that rely on nano/meso scale properties are required to verify the simula-
tions. Advances in experimental and simulation techniques should be considered
in tandem.

All fluid is constructed of molecules under continuous motion and it is the
arrangement of these molecules that defines the bulk behaviour of a fluid. For ex-
ample, a fluid flowing over a solid boundary displays layers of fluid of different
velocities at varying distances from the boundary. At a molecular level, the con-
stant molecular interchange between fluid layers causes slower layers to exert a
net drag force on faster layers, and vice versa. This causes a velocity profile that
can be used to quantify this molecular exchange effect in terms of the macroscopic
quantity of viscosity.

At meso scales, fluid displays macro scale effects such as viscosity, laminar
and turbulent flow regimes, boundary layers, etc., but at such small scales, the
number of molecules and molecular interactions is no longer effectively infinite
and the conventional continuum laws are not able to describe them adequately.
The continuum laws are unable to include the localized molecular physics that
dominates the behaviour of the fluid at this scale.

Even though the conventional continuum laws do not apply in the meso scale
regime, modelling engineering problems at these scales require us to quantify the
macro scale effects resulting from the molecular interactions as these properties
are key to characterizing fluid behaviour in engineering systems. Addressing this
challenge forms the kernel of this book, which is to be met by looking at meso
scale systems in terms of both bulk and molecular scale physics.
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PREFACE xv

OUTLINE

This book is divided into eight chapters. The following is a synopsis of each.

� Chapter 1. A discussion of fluid flow behaviour on scales between the contin-
uum and molecular scale is presented. This chapter presents a background in
the continuum view of fluid and how it can be described and modelled at these
scales. The discussion then moves to the molecular scale and how fluid at these
scales differs from the continuum model. The basic outline of the construction
of molecular simulation models is given and conditions when molecular scale
effects dominate the behaviour of fluid systems are discussed.
Aim. To provide the reader with basic knowledge on the treatment of fluid at
scales above and below the meso scale.

� Chapter 2. A review of existing meso scale modelling schemes is presented
in two sections, ‘top down’ and ‘bottom up’ approaches. Top-down methods
operate by adding molecular information into a continuum simulation, which
includes a discussion of the limits and breakdown of the continuum laws.
Bottom-up approaches tackle meso scale problems by using molecular physics,
which are simplified in regions of low activity.
Aim. By the end of this chapter, the reader should be aware of and understand
existing simulation techniques and their advantages/disadvantages when ap-
plied to fluid systems at meso scales.

� Chapter 3. A meso scale simulation method is developed based on a ‘bottom-
up’ approach. This chapter shows the implementation of the molecular model
and the upscaling of information to characterize the bulk properties of the fluid
system.
Aim. The reader should understand how fluid modelling at the meso scale can
be undertaken by employing molecular physics models to characterize bulk
properties.

� Chapter 4. The developed method is extended to deal with flowing fluids with
the implementation of a flow generation method, balanced by additional ther-
modynamic controls. Case studies are presented in two sections, sampling
and gradient studies. The sampling case studies explore the parameters of the
bulk property characterization and explain their use. The gradient studies show
examples of use with thermally driven and pressure driven flows, validated
against published results.
Aim. This chapter explores the limitations of the meso scale approach dis-
cussed in the previous chapter. Using these case studies the reader should see
the depth of knowledge available from molecular models and how it may be
used to characterize fluid systems.

� Chapter 5. The developed method is applied to a molecular scale flow through
a slit pore to demonstrate the depth of information that this method can
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extract from a meso scale molecular model by looking only at the distribution
of velocity across the pore. Different flow regimes are examined and shown to
exhibit similar behaviour to laminar/turbulent flow.
Aim. The reader should see how a fluid system can be explored using meso
scale methods. This chapter also shows some of the current limitations faced
by this meso scale approach.

� Chapter 6. The developed meso scale method is applied to large scale systems
containing between 20 000 and 100 000 molecules. An investigation is also
performed to examine the behaviour of the method in terms of performance
with large numbers of molecules.
Aim. The reader should understand the computational performance issues
faced by molecular physics models at these scales.

� Chapter 7. A discussion of various experimental measurements and tech-
niques that depend on fluid flow and properties at the nano/meso scale is pre-
sented. These measurements range from macro scale measurements, such as
rates of membrane filtration, down to nano scale measurements performed us-
ing the atomic force microscope (AFM). Comparison between simulation and
experiment is shown for several cases.
Aim. By the end of this chapter the reader should be aware of and understand
experimental techniques that can be used to study fluid systems at different
scales and should also be aware of how events at the nano/meso scale can
affect experimental results at the macro scale.

� Chapter 8. This chapter summarizes the approaches considered in this book
and the current challenges faced in the meso scale simulation of fluid systems.
Some suggestions are given for further work required in the area.

Peter Dyson
Rajesh S. Ransing
Paul M. Williams

P. Rhodri Williams
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Symbols and Abbreviations

The following notation will be used unless otherwise stated.

a Acceleration (m/s2)
a Particle radius (m)
ahyd Hydrodynamic particle radius (m)
A Area (m2)
A Baseline (counts/s)
Ah Area of a hexagon (m2)
AH Hamaker constant (J)
Am Area of membrane surface (m2)
B Instrument factor ≤ 1
c Solute concentration (kg/m3)
co Feed concentration at the inlet (kg/m3)
cw Solute concentration at the membrane (kg/m3)
Cb Solution feed concentration (m3/m3)
d Distance to OHP (m)
deff Effective particle diameter (m)
D Interparticle surface–surface separation (m)
DBo Dilute limit Brownian diffusion coefficient (m2/s)
Deff Effective diffusion coefficient (m2/s)
Dm Gradient (or mutual) diffusion coefficient (m2/s)
Dmon Monomer diffusion coefficient (m2/s)
Ds Self (or tracer) diffusion coefficient (m2/s)
Dw Gradient diffusion coefficient at the membrane surface (m2/s)
e Elementary charge (C)
E Energy (J)
EKE Kinetic energy (J)
EPE Potential energy (J)
�E Energy cost of forming bubble (J)
f Tangential momentum accommodation coefficient
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xviii SYMBOLS AND ABBREVIATIONS

F Force (N)
F Hydrodynamic force (N)
FATT London–van der Waals force (N)
FELEC Electrostatic force (N)
FEXTRA Extra interaction force (N)
FTOT Total force between two particles (N)
g Gravitational acceleration (m/s2)
g1(τ ) Field autocorrelation function
G1(τ ) Normalized field autocorrelation function
G2(τ ) Intensity autocorrelation function
h Half-channel height (m)
h Smoothing length (m)
ho Separation distance (m)
H Height (m)
I (t) Observed scattered intensity
k Boltzmann constant (J/K)
kb Boltzmann constant (J/K)
K Spring constant of cantilever (N/m)
K (φ) Hydrodynamic (or hindered settling) coefficient
KHAPP Happel’s permeability coefficient (m2)
Kn The nth cumulant
K n Knudsen number
l Channel length (m)
l Characteristic length (m)
Ł Mean free path (m)
Ls Slip length (m)
m Mass (kg)
n Number of moles
no Ion number concentration (m−3)
no Refractive index of solvent
N Number of molecules
p Momentum (kg m/s)
p Pressure (N/m2)
pB Interior bubble pressure (N/m2)
pD Disjoining pressure (N/m2)
pV Saturated vapour pressure (N/m2)
P Pressure (Pa)
Pc Critical pressure (Pa)
PENT Entropic pressure (N/m2)
Pr Prandtl number
P(�) Unknown distribution function of the decay rates
�P Applied pressure (N/m2)
q Scattering vector (m−1)
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SYMBOLS AND ABBREVIATIONS xix

Q Volume flow rate (m3/s)
r Centre-to-centre separation distance (m)
r Radius (m)
ri j Separation distance between two particles i and j (m)
R Bubble radius (m)
R Universal gas constant (J/kg K)
Rc Critical bubble radius (m)
Rm Membrane resistance (m−1)
Re Reynolds number
S Surface tension (J/m2)
Sβ Surface area of spherical cell (m2)
S(φ) Thermodynamic coefficient (or structure factor)
t Filtration time (s)
t Time (s)
T Temperature (K)
Tc Critical temperature (K)
u Axial bulk velocity component in the x direction (m/s)
u Velocity (m/s)
uo Average inlet bulk velocity (m/s)
U Applied velocity (m/s)
U Potential energy (J)
U Relative viscosity (m/s)
U (ri j ) Molecular potential between nano-particles (J)
v Speed (m/s)
v Transverse bulk velocity in the y direction (m/s)
vav Average or measured permeate flux (m/s)
vw Wall permeation velocity (m/s)
v̂ Unit vector
〈v〉 Ensemble average
V Volume (m3)
V Volume filtered (m3)
VATT Attractive interaction energy (J)
VTOT Total interaction energy (J)
w(r ) Weighting function
x Axial direction (m)
x, y, z Cartesian coordinates
x̄ Average value
xx,y,z Cartesian components
xi, j,k Identifiers
y Transverse direction (m)
z Valency of ion
Z Number of charges on the particle surface
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xx SYMBOLS AND ABBREVIATIONS

α Concentrated disordered dispersion exponent
α Polynomial constants
β Boltzmann factor
β Rejection coefficient
γ Strain
� Decay rates (h)
ε Fractional cake voidage at the membrane surface
εo Permittivity of vacuum (C/V m)
εr Dielectric constant of the background solvent
ε Well depth (reduced units, K)
η Viscosity of the solution (kg/m s)
[η] Intrinsic viscosity
ηa Apparent viscosity of the solvent (kg/m s)
ηp Viscosity of protein solution (kg/m s)
ηs Viscosity of the solvent (kg/m s)
θ Characteristic angle (deg)
θ Scattering angle (deg)
κ Debye–Hückel parameter (m−1)
λ Order parameter
λo Wavelength of scattered light (m)
µ Dynamic viscosity (Pa s)
ν Dynamic viscosity (Pa s)
ξ Thermostat parameter
π Ratio of the circumference to the diameter of a circle
π(φ) Osmotic pressure (N/m2)
�
m Osmotic pressure difference across the membrane (N/m2)
ρ Density (kg/m3)
ρ Density of the solution (kg/m3)
σ Collision diameter (nm)
σ Range of additional repulsion (m)
τ Molecular frequency scale (ns)
τ Shear stress (Pa)
τ Time (s)
φ Volume fraction
φeff Effective volume fraction
φmax Maximum packing fraction
φo/d Order/disorder phase transition volume fraction
ψβ Potential at the outer boundary of the cell (V)
ψo Electrostatic potential at the particle surface (V)
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1
The Nature of Fluid Flow

Aim. To provide the reader with basic knowledge on the treatment of fluid
at scales above and below the meso scale.

1.1 INTRODUCTION

The fundamentals of fluid flow on a wide range of scales are introduced in this
chapter. The characterizing properties of a fluid and their relevance at large scales
(kilometre to millimetre scale) and small scale (nanometre and angstrom scale)
will be discussed. The continuum approach to describing the behaviour of a fluid
will be presented along with the methods of simulation at the continuum scale.
In contrast, the molecular scale is considered along with fluid structure and sim-
ulation methods used at this scale. Examples of the change in physics and fluid
behaviour that occur as the scale is reduced are presented, concentrating on the
effect of confinement on a fluid.

This chapter highlights the special requirements of meso scale systems. Ele-
ments from both the continuum scale and the molecular scale are needed to model
and describe a meso scale fluid systemfully.

1.2 BASICS OF FLUID MOTION

The basic characteristic property that defines a fluid is viscosity. Fluid, unlike
solids, is unable to offer any permanent resistance to a shearing force. The fluid
will continue to deform as long as the force is applied, taking the shape of any
solid boundary it touches. The deformation of a fluid occurs from shearing forces

Fluid Properties at Nano/Meso Scale: A Numerical Treatment P. Dyson, R. S. Ransing, P. M. Williams and P. R. Williams
© 2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-75124-4
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2 THE NATURE OF FLUID FLOW

θ θ

Figure 1.1 Internal shear between fluid layers.

acting tangentially to any solid surface. The fluid can be considered as layers
parallel to a surface, which slide over each other, as shown in Figure 1.1. Each
fluid layer applies a shear force to the next, and is in turn sheared by those it
touches.

The ability to deform continuously under an applied force makes fluids behave
differently from solids. Solid bodies are capable of maintaining an unsupported
shape and structure, and can resist finite shear.

Fluids themselves fall into two categories, liquids and gases. To a fluid dynam-
icist, who is interested in flows at the macro scale, there are two characterizing
differences between them:

� Liquids have densities an order of magnitude larger than gases.
� Liquids and gases respond very differently to changes in pressure and temper-

ature.

Gases can also be expanded and compressed more easily than liquids due to the
lower density and spacing between molecules. The motion of all fluids relies on
the interaction and internal shear between fluid layers, but the actual interaction
between layers occurs from collisions between many molecules on the molecular
scale (∼ 10−9 m). In fact, all fluid effects and properties occur from molecular
interactions, but at the macro scale (∼ 10−4 m) the detailed molecular physics of
this behaviour can be neglected as the number of molecules within the character-
istic length can be considered as sufficiently large. At these scales the fluid can be
viewed as having physical properties corresponding to the statistical averages of
the underlying molecules and are known as continuum or bulk properties. Molec-
ular physics, manifested in a continuum framework, has the ability to be defined
as continuous functions of time and space.



P1: PIC
c01 JWBK251-Ransing June 20, 2008 10:40 Printer Name: Yet to Come

BASICS OF FLUID MOTION 3

1.2.1 Continuum/Bulk Properties

Bulk or continuum properties such as velocity, density and pressure remain con-
stant at a point and changes due to molecular motion are assumed to be negligible.
These properties are also assumed to vary smoothly from point to point with no
jumps or discontinuities. This assumption is correct as long as the characteris-
tic distance of the system is of an order of magnitude greater than the distance
between molecules.

This assumption of bulk physical properties allows the behaviour of fluid sys-
tems to be approximated by a set of deterministic equations that represent the
underlying infinite chaotic molecular motion on a much larger scales. The defi-
nition and basis of these bulk properties will be of significant importance in later
discussions, so it is necessary to explain the origin of some of these bulk proper-
ties to clarify concepts.

1.2.1.1 Density

The density of a fluid is defined as the mass contained within a unit volume. It is
computed as a function of mass (m) and volume (V ) of a sample as follows:

ρ = m

V
. (1.1)

This expression of density is represented in terms of mass per unit volume
(kg/m3). Other expressions of density used are specific weight (weight per unit
volume, N/m3), relative density (relative to another density, dimensionless) and
specific volume (reciprocal of density, m3/kg). Density can also be computed from
molecular properties, in terms of sample volume, V , containing N molecules of
individual mass, mmolecule [3]:

ρ = Nmmolecule

V
. (1.2)

This expression also has units of kg/m3 and can be defined from N = 1 to
N = ∞.

1.2.1.2 Temperature

The temperature (T ) at any point in a fluid is derived from the internal kinetic
energy of the underlying N molecules, each with velocity, vi , and mass, m [4]:

EKE =
N∑

i=1

1
2 mv2

i . (1.3)
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At continuum or bulk scales the number of molecules is assumed to be infinite,
but the distribution of the velocity of this (almost) infinite number of molecules
can be assumed to follow the Boltzmann distribution, which in one dimension
appears as

f (v) =
√

m

2πkbT
e−mv2/2kbT , (1.4)

where kb is the Boltzmann constant. This distribution can then be used to calculate
the average squared velocity in the system to relate the velocity distribution to the
kinetic energy,

〈v2〉 =
√

m

2πkbT

∫ ∞

−∞
v2e−mv2/2kbT dv, (1.5)

which gives

〈v2〉 =
√

m

2πkbT

√
π

2

(
2kbT

m

)3/2

= kbT

m
. (1.6)

The equation for the translational kinetic energy of the molecules can now be
related to the temperature of the system in one dimension:

EKE = 1
2 m〈v2〉 = kbT

2
. (1.7)

For three dimensions, this simply becomes

1
2 m〈v2〉 = 3

2 NkbT, (1.8)

which describes the temperature of a local system of N molecules. In terms of
bulk properties, where locally N → ∞, the temperature is considered constant
and varies smoothly from over the whole domain.

1.2.1.3 Pressure

The pressure is explained by kinetic theory as arising from the force exerted by
colliding gas molecules on to the walls of the container [5]. To explain the me-
chanics of pressure, consider a single molecule with velocity, v, along the x di-
rection contained within two walls perpendicular to its direction of travel and
separated by length, l, as shown in Figure 1.2.
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l

v

Figure 1.2 Single molecules oscillating between two walls.

By considering the collision between the molecule and one of the walls, the
momentum lost by the molecule and the wall is

�p = pinitial − pfinal = mvx − (−mvx ) = 2mvx . (1.9)

The time between successive collisions on this particular wall will be

�t = 2
l

vx
(1.10)

Force is the rate of change of momentum, so the force on the wall from the single
molecule is

F = �p

�t
= 2mvx

2l/vx
= mv2

x

l
. (1.11)

For a large number ( j) of molecules and collisions with the wall, this becomes

F = m
∑

j v2
j x

l
. (1.12)

Now, by adding in collisions with walls in all six directions this gives

F = 2
m

l

∑
j

(
v2

j x + v2
j y + v2

j z

)
. (1.13)

For equilibrium conditions and a sufficiently high collision rate with the walls,
the force on all six walls can be assumed to be the same. Therefore the force on a
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single wall becomes

F = 1

6

(
2

m
∑

j v2

l

)
= m

∑
j v2

3l
, (1.14)

where v j is the velocity of molecule j in three dimensions. It is now possible to
talk in terms of the average velocity of the molecules, (1/N )

∑
j v2

j , which can be

represented by v2:

F = Nmv2

3l
. (1.15)

This can then be divided by the area, A, of the wall to give the pressure

P = F

A
= Nmv2

3l A
. (1.16)

The cross-sectional area multiplied by length yields a volume, Al = V , which
when combined with Equation (1.2) yields

P = 1
3ρv2, (1.17)

thereby describing pressure as a function of density and kinetic energy of
molecules, which, as shown in Equation (1.8), is in turn directly related to the
temperature of the system. As with temperature, at continuum scales the num-
ber of molecules tends to infinity, and any fluctuations or statistical differences
become approximately zero. In this case both pressure and temperature may be
considered as constant at any point in the fluid domain.

1.2.1.4 Viscosity

Viscosity quantifies the resistance put up by a fluid undergoing finite shearing
forces and can commonly be perceived as internal fluid friction, or resistance to
pouring. This effect occurs from the drag forces occurring between adjacent fluid
layers moving with different velocities. The concept of viscosity is best demon-
strated by example.

Figure 1.3 shows a fluid trapped between two parallel plates separated by dis-
tance H . The top plate moves with constant velocity U and the bottom plate is
at rest. The fluid in between them adheres to both plates, so that the fluid layers
at each of the plates has the same velocity at the plate. The velocity of the fluid
changes linearly in this case, so the velocity at any point between the plates can
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U 

H u(y) 

y

Figure 1.3 Viscous flow between parallel plates; the bottom plate is at rest and the top
plate moves with velocity U .

be computed as follows:

u(y) = y

H
U. (1.18)

It is known from experiments that, for Newtonian fluids, the frictional force per
unit area, τ , is proportional to the difference in velocity between the two plates
and inversely proportional to the separation, H . Together, this is interpreted as the
frictional force being proportional to the velocity gradient, du/dy,

τ = µ
du

dy
, (1.19)

with the proportionality factor being the fluid parameter µ, which characterizes
the drag between fluid layers and is known as the dynamic viscosity. This is
known as Newton’s law of viscosity, where a linear relationship between ve-
locity gradient and shear stress is assumed. While this is valid for most sim-
ple fluids such as water and most gases, non-Newtonian fluids such as plastics
and pseudo plastics exhibit a more complex relationship and Newton’s law does
not apply.

To obtain the coefficient of viscosity, µ, for a Newtonian fluid, the situation
shown above in Figure 1.3 is used. The coefficient is then extracted by comparing
the applied U and the drag force on the opposite plate, τ .

The concept of kinematic viscosity is described in fluid systems where fric-
tional and inertial forces interact. It is defined as the ratio of dynamic viscosity,
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µ, to the fluid density, ρ,

v = µ

ρ
, (1.20)

Causes of viscosity Viscous effects occur due to internal friction between fluid
layers, and it is important to consider the nature and cause of this drag. The
molecules in a fluid are continuously moving and have little, if any, structure.
Consequently, they are in constant molecular exchange between fluid layers. This
exchange occurs via two mechanisms, the transfer of mass, by a fluid molecule
physically crossing between fluid layers, and the transfer of energy via interlayer
collisions/potential energy interactions.

This constant exchange occurring over a sufficiently large number of collisions
causes energy and momentum to propagate smoothly throughout the fluid at a
rate governed by the physical properties of the molecular interactions and the
conditions of the fluid. However, the condition of the fluid in terms of pressure
and temperature causes different effects in liquids and gases.

Viscosity of gases In a gas, the molecules are widely spaced and interact rel-
atively little, so an increase in temperature increases the kinetic energy of the
molecules and viscosity increases as a result of increased mass transfer between
layers. According to the kinetic theory of gases [5], the viscosity is proportional
to the square root of the absolute temperature, This, however, is an exact solution
to an approximate model while in reality, the rate of increase of viscosity is much
higher [3]. In gases, viscosity is found to be independent over the normal range of
pressures, with the exception of extremely high pressure.

Viscosity in liquids In liquids, which have much higher densities, the distance
between molecules is much shorter and the cohesive/attractive forces between
them increase the viscous effect. The response to an increase in temperature, and
hence kinetic energy, decreases the effect of these cohesive forces, which reduces
the viscosity. However, the increased molecular interchange between fluid lay-
ers increases the viscosity [3]. The net result is that liquids show a reduction in
viscosity for an increase in temperature.

Due to the close packing of the molecules in a liquid, high pressures also affect
the viscosity. At high pressures, the energy required for the relative movement of
a molecule is increased, causing an increase in viscosity.

1.2.2 Continuum Approximations

At distances above the micro scale, approximately ≥ 10−6 m, the number of
molecules in the system can be in the order of millions! In these cases, the num-
ber of molecular interactions occurring over length and time scales is also huge.
Because of this, it can be considered acceptable to assume that the influence
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of any individual molecular exchange/interaction is negligible as the number of
molecules in any volume tends to infinity. The continuum assumption considers
an infinite number of molecules in a domain and neglects their individual contri-
butions. The interpretation of continuum is given as:

Continuum. A continuous thing, quantity, or substance; a continuous series
of elements passing into each other [6].

If a fluid is considered as a continuum, then each part is considered as identical
(i.e. the fluid is homogenous) to the next and infinitely divisible, and the molecular
structure of the fluid is ignored. This means that the fluid is assumed to have the
same properties even if the domain dimensions are 100 nm, 1 mm or 1 km.

By making the continuum assumption, molecular scale effects are neglected
and the bulk properties are defined by the physical observable relationships be-
tween them. These properties can then be used to characterize fluid flows, as done
in experiments by Reynolds [7] whose number, the Reynolds number, presents a
criteria for dynamic similitude.

Re = ρuL

µ
. (1.21)

The Reynolds number is the ratio of inertial (u/ρ) to viscous (µ/L) forces, where
L is the characteristic dimension of a flow with speed u. This can be used both to
determine kinematic and dynamic similitude for comparing scale models to real
applications and also to characterize the point of transition between laminar and
turbulent flow (critical Reynolds number).

A large Reynolds number indicates that the inertial forces dominate the sys-
tem, with a low viscosity causing the small scales of fluid motion to be relatively
undamped. A low Reynolds number flow, however, has high viscous forces, which
damp out small scale motion.

The Reynolds number represents simple characterization of the behaviour of
a fluid system. To look more in depth at the measure and description of fluid
behaviour, a set of continuum governing equations is used. However, before
these are considered it is important to set out the rules for the fluid mechan-
ics interpretation of a continuum, which are known as the continuum assump-
tions/approximations.

1.2.2.1 Continuum approximations

� Infinitely Divisible. The characteristic length of the fluid should be several
orders of magnitude larger than molecular diameters, such that the number of
molecules in the system is large enough to be considered as approximately in-
finite. By assuming an infinite number of molecules, the fluid is considered
homogenous at all scales, and can be divided up/decomposed into an infinite
number of identical sections. If the fluid is considered in terms of a finite
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Figure 1.4 Left: continuous and infinitely divisible. Right: finite number of molecules,
mass and energy localized and not continuously distributed.

number of molecules, when it is divided up even in a finite number of sections,
some will contain mass (a molecule) and energy and some will not (Figure 1.4).

� Thermodynamic Equilibrium. To maintain the assumption of continuum
mater with an infinite number of molecules, there must also be an approxi-
mately infinite number of intermolecular interactions occurring over length and
time scales in the system. This means that there is a continuous propagation
of energy throughout the system. Discontinuities cannot occur as the fluid is
continuous (infinitely divisible) and an infinite number of infinitely small in-
termolecular energy exchanges smooth out and propagate fluid properties and
energy through the system.

This is also essential to maintain the linear relationship between the stress
and strain rate and the heat flux and temperature gradient. The thermodynamic
equilibrium condition also states that there are sufficient interactions or colli-
sions to smooth out any statistical variations occurring from the molecular scale
(Figure 1.5).

Molecular

P
ro

pe
rt

y

Continuum

P
ro

pe
rt

y

x x

Figure 1.5 Statistical variations in properties arising from a finite number of molecules
in the system,
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If these conditions are met, the fluid system can be considered as a continuum.
This is an important classification, as it means the flow can be approximated using
continuum laws.

The continuum laws can be applied in both simple analytical form, as in the
Bernoulli equation (inviscid flows),

P

ρ
+ v2

2
+ gh = constant, (1.22)

or for more complex situations that require numerical solution. For cases such as
simple pipe flows, the Bernoulli equation can be of use where little information
is required. However, in complex systems or geometries, a more detailed analysis
and interrogation is required. In this case, fluid behaviour can be simulated using
a set of conservative governing equations solved numerically. These simulations,
based on the continuum assumptions and continuum scale observations and laws,
provide a detailed and accurate model of fluid behaviour, where experiments are
difficult or expensive, or a greater amount of information is needed.

1.2.3 Continuum Scale Simulation

Both simple and complex fluid systems can be investigated, within the limits of
the continuum assumptions, by sets of governing differential equations that de-
scribe fluid behaviour. The mathematical solution of these equations throughout
a fluid domain is known as computational fluid dynamics (CFD). The governing
equations describe the mathematical representation of a physical model that is
derived from experimental flow measurements and observations. These represen-
tative equations are then replaced with an equivalent numerical description, which
is solved using numerical techniques for the dependent variables of velocity, den-
sity, pressure and temperature. One of the most widely used sets of governing
equations are the Navier–Stokes equations.

1.2.3.1 Navier–Stokes governing equations

The Navier–Stokes equations are a set of governing equations that describe the
behaviour of fluids in terms of continuous functions of space and time. They
state that changes of momentum in the fluid are based on the product of the change
in pressure and internal viscous dissipation forces acting internally. The scheme
works by not considering instantaneous values of the dependent variables, but
their flux, which in mathematical terms is interpreted as the derivative of the vari-
ables. The equation set is separated into three conservation laws for mass, energy
and momentum.
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Mass The conservation of mass, known as the continuity equation, is obtained
by considering the mass flux into and out of any elemental control volume within
the flow field. In the Cartesian coordinate system, x , y, z, fluid velocities along
those directions are u, v, w respectively. The continuity equation then becomes

δρ

δt
+ δ(ρu)

δx
+ δ(ρv)

δy
+ δ(ρw)

δz
= 0. (1.23)

The first term accounts for any change in density over time, while the rest of the
terms describe the change in density in the x , y and z directions.

Energy The expression for the conservation of energy in a fluid system is

δ(ρe)

δt
+ δ(ρue)

δx
+ δ(ρve)

δy
+ δ(ρwe)

δz

= ρQ + δ

δx

(
k
δT

δx

)
+ δ

δy

(
k
δT

δy

)
+ δ

δz

(
k
δT

δz

)

− P

(
δu

δx
+ δv

δy
+ δw

δz

)
− ϕ

(
δu

δx
+ δv

δy
+ δw

δz

)2

+ µ

{
2

[(
δu

δx

)2

+
(

δv

δy

)2

+
(

δw

δz

)2
]

+
(

δv

δx
+ δu

δy

)2

+
(

δw

δy
+ δv

δz

)2

+
(

δu

δz
+ δw

δx

)2
}

, (1.24)

where ϕ is the bulk viscosity, Q is the heat added per unit mass, k is the thermal
conductivity and e is the internal energy

Momentum The conservation of momentum equations are as follows:

δ(ρu)

δt
+ δ(ρu2)

δx
+ δ(ρuv)

δy
+ δ(ρuw)

δz

= ρX − P

x
+ δ

δx

{
µ

[
2
δu

δx
− 2

3

(
δu

δx
+ δv

δy
+ δw

δz

)]}

+ δ

δy

[
µ

(
δu

δy

δv

δx

)]
+ δ

δz

[
µ

(
δw

δx

δu

δz

)]
, (1.25)



P1: PIC
c01 JWBK251-Ransing June 20, 2008 10:40 Printer Name: Yet to Come

BASICS OF FLUID MOTION 13

δ(ρv)

δt
+ δ(ρvu)

δx
+ δ(ρv2)

δy
+ δ(ρvw)

δz

= ρY − P

y
+ δ

δy

{
µ

[
2
δv

δy
− 2

3

(
δu

δx
+ δv

δy
+ δw

δz

)]}

+ δ

δz

[
µ

(
δv

δz

δw

δy

)]
+ δ

δx

[
µ

(
δu

δy

δv

δx

)]
, (1.26)

δ(ρw)

δt
+ δ(ρwu)

δx
+ δ(ρwv)

δy
+ δ(ρw2)

δz

= ρZ − P

z
+ δ

δz

{
µ

[
2
δw

δz
− 2

3

(
δu

δx
+ δv

δy
+ δw

δz

)]}

+ δ

δx

[
µ

(
δw

δx

δu

δz

)]
+ δ

δy

[
µ

(
δv

δz

δw

δy

)]
, (1.27)

where X , Y and Z are components of body force.
Equations (1.23) to (1.27) represent the Navier–Stokes set of conservation

equations used to compute fluid properties numerically. For these properties to
be used to simulate a fluid system, they need to be localized at discrete points
within the flow domain before they are solved using a numerical scheme.

1.2.3.2 Solving continuum equations

There are a number of schemes for solving the fluid conservation equations in a
simulation environment, such as the finite difference, finite volume, finite element,
boundary element, etc. However, the three most developed and widely used of the
bunch will be considered: the finite difference method, the finite element method
and the finite volume method.

Finite difference method (FDM) The finite difference method is a simple and
efficient method for solving the continuum governing differential equations. In-
stead of derivatives being computed over infinitesimal elements, increments of
finite width are used as an approximation. There are three varieties of finite dif-
ference, the forward, backward and central difference, which are highlighted in
Figure 1.6 and are calculated as follows for parameter p at point P:

Forward difference:

(
∂p

∂y

)
i, j

= pi, j+1 − pi, j

h
(1.28)
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y 

h 

h 

x 

P

i, j +1

i,j −1 

i,j 
i−1,j i +1,j 

Figure 1.6 Illustrating the finite difference method calculations at point P.

Backward difference: (
∂p

∂y

)
i, j

= pi, j − pi, j−1

h
(1.29)

Central difference: (
∂p

∂y

)
i, j

= pi, j+1 − pi, j−1

2h
(1.30)

Using this method the partial differential equations can be replaced with simple
algebraic equations that can be solved either iteratively or by matrix inversion.
This can be implemented for fluid flow simulations to yield the values of the flow
variables at discrete points in the flow field. Due to the structures of the FDM,
problems are limited to ones with simple boundaries where a structured mesh can
be used. For more complex problems, the finite element method allows for more
versatility but is much more complex.

Finite element method (FEM) The aim of the finite element method is to de-
termine the values of the dependent variables of the conservative flow equations.
The FEM achieves this by dividing the flow domain into a finite number of cells
or elements, each containing a small portion of the continuous fluid. At points
placed at the corners or sides of these elements, points that are known as nodes,
the governing equations are evaluated (see Figure 1.7). Instead of working with
the differential equations directly, the FEM uses these nodes to discretize and
evaluate the governing equations in an integral form using weighting functions.
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Figure 1.7 Governing equations evaluated at nodes surrounding fluid elements.

Finite volume method (FVM) Similar to the finite element method, the FVM
discretizes the flow domain into elemental control volumes surrounding a node.
Flow parameters are then treated as fluxes between control volumes, and conser-
vation is maintained in each element. This allows for better treatment of flows
with discontinuities such as shock waves.

1.2.3.3 Advantages

Continuum simulations are able to provide an accurate model for fluid behaviour
in a wide range of applications and systems. The division of the flow field into dis-
crete elements allows complex geometries to be simulated, and smaller elements
can be used to refine the solution in areas of high gradients or where a greater
accuracy is needed.

By approximating the fluid as a continuum and ignoring the underlying molec-
ular behaviour, a great deal of computational effort is saved and accuracy has been
proved to be sufficient in many applications. The molecular information can be
approximated at these scales, as the molecular motion cancels out, yielding only
bulk properties at this scale.

Continuum simulations also have the flexibility to prescribe a wide variety of
boundary conditions capable of replicating almost any system, while still main-
taining global conservation laws.

1.2.3.4 Limitations

Continuum mechanics, however, has its drawbacks. It is dependent on the gener-
ation of the mesh of elements and nodes it uses in the approximation. The gen-
eration of these meshes can be almost as time consuming and challenging as the
actual simulation. These meshes can also have a significant effect on the solution,
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either through resolution or the distribution of nodes, and must be generated with
consideration for the system of interest.

The scale of the system is also limited by the continuum approximations. Be-
cause of the continuum approximations, the matter of interest must be uniform
throughout and infinitely divisible. This removes the ability to deal with discrete
objects, such as, at the top of the scale, extreme planetary systems and, at the
lower end, molecules. As the continuum governing equations are approximate re-
lationships which are approximated in their solution, careful validation and testing
must also be performed, which is true of any simulation method. Particular care
must also be taken close to the continuum limit.

The breakdown of these approximations in the meso scale region between the
continuum and molecular scales was studied in detail and the transition from con-
tinuum to molecular scale effects is explained in depth in later sections.

1.3 MOLECULAR MECHANICS

At very small scales (≤ 10−8), the mechanics of fluid take on an entirely dif-
ferent form. The continuum approximations and laws are not valid as the num-
ber of molecules in the system is of the order of tens to thousands. At this
scale the molecular interactions dominate the physics of the fluid, and it is de-
batable whether fluid is an accurate description as it is better described as a
molecular flow.

1.3.1 Molecular Properties

The properties at a molecular scale (∼ 10−9) are very different from those con-
sidered at the bulk/continuum scale. At this scale, the characteristic length of the
flow is comparable to the diameters of individual molecules. There is no concept
of bulk properties, and fluid-like motion is in the form of the motion of individual
molecules. The fluid is now not continuous, as the molecular centres represent
discontinuities in both density and energy.

The molecular chemistry of the making or breaking of bonds or changes to
the internal structure of molecules is not considered in this research, although
it is important to understand the mechanisms by which molecules interact in a
chemically stable fluid.

A molecule is formed of an aggregate of two or more atoms bonded together
by special bonding forces. The examination of interactions between bonded
molecules was first undertaken by a Dutch chemist, Johannes Diderik van der
Waals, whose studies into noble gases led to the characterization of the forces
between molecules [8]. The van der Waals force was originally considered to
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Figure 1.8 Van der Waals potential, as the sum of attractive, London, and repulsive, Pauli,
forces.

describe the force between all molecules,

U (r ) = Aebr

r
− C6

r6
, (1.31)

where A, b and C6 are characterizing parameters for the molecules and r is the
distance from the molecule centre. However, it is now mainly used to describe
the polarization of molecules into dipoles.

The interaction forces are characterized in two parts, a long-range attractive
force, C6/r6, and a short-range but strongly repulsive force, Aebr/r , as shown in
Figure 1.8.

The repulsive forces, or London forces [9], named after the physicist Fritz
London, represent the weak forces that occur between transient dipoles/ multi-
poles. This occurs from an uneven distribution of electrons surrounding the nu-
cleus of the molecule, creating a temporary multipole.

The electron density in a molecule’s electron cloud varies due to the finite num-
ber of electrons orbiting the atom, but the variation of density in the cloud created
hotspots of high charge, creating a temporary multipole that attracts hotspots of
opposite charge on other molecules. A molecule with a temporary multipole can
also attract/repel electrons from neighbouring molecules, thereby propagating the
multipole effect. These short-term multipoles produce the net affect of a weak
attractive force between neutral molecules such as nitrogen, methane and many
others. The London forces are higher for larger molecules with more dispersed
electron clouds.



P1: PIC
c01 JWBK251-Ransing June 20, 2008 10:40 Printer Name: Yet to Come

18 THE NATURE OF FLUID FLOW

The attractive part of the potential comes from the strong short-range repulsive
forces between two overlaps between negatively charged electron clouds, based
on the Pauli principle [10]. The Pauli principle states that as the clouds of electrons
of the two interacting particles intersect, the energy increases dramatically.

The behaviour of a molecular system is defined by the properties of a system
of molecules. However, the individual properties of molecules can be combined
together to describe the state, or global, properties of the system or region. An
analogy can be found with the macro scale ideal gas equation of state, which
relates the pressure, P , volume, V , and temperature, T , of an ideal gas of n moles:

PV = n RT . (1.32)

The van der Waals equation of state [11] describes a similar relationship for
the molecular system,

P = RT

V − b
− a

v2
n RT =

(
P + a

n2

V 2

)
(V − nb) , (1.33)

where n is the number of moles and the gas law is corrected for the internal
volume of the molecules using correction factor b and adjusted with parameter a,
which characterizes the cohesion/attraction between molecules. Parameters a and
b can also be obtained from the critical properties of the fluid [12]:

a = 27R2T 2
c

64Pc
, (1.34)

b = RTc

8Pc
. (1.35)

The equation of state approaches the ideal gas law as these correction factors
approach zero. This allows the description of the fluid to be made in terms of the
state of the fluid, rather than as a large number of chaotic molecules. The van der
Waals equation is best suited to low-temperature and pressure systems, but there
are other equations of state that can be applied to other situations, e.g. Lennard–
Jones equation, Clausius equation, etc.

1.3.2 Molecular Simulations

Molecular simulations play a vital role in science today by providing a framework
on which to investigate theories and solutions in a relatively low-risk and low-
cost environment. At the molecular scale, investigations and experiments are very
costly to perform, and in some situations it is not possible with current technology.
Because of this, molecular simulations are often thought of as blurring the line
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between experiment and simulation, as they can be used to investigate theories
that otherwise could not be tested.

Molecular simulation is the study of material/fluid by considering the individ-
ual interactions of atoms or molecules, and will be described in detail in Chapter 2.
General simulation schemes involve representative molecules interacting with
some sort of boundary and each other to achieve a change in position and mo-
mentum. There are many different forms of simulation methods and techniques
that can be applied to many different situations, each offering different advan-
tages. The basic mechanism behind almost all molecular simulations is relatively
basic, relying on a system of particles that represent atoms or molecules that in-
teract using Newton’s law,

F = ma, (1.36)

where the force acting on a particle, F , is equal to its mass, m, multiplied by its
acceleration, a. The force acting on any one of the many particles in the system is
determined by the movement of those around it. There are two branches of molec-
ular simulation, stochastic and deterministic. The deterministic approach is in the
form of a molecular dynamic (MD) simulation, where the outcome could theo-
retically be worked out. Stochastic methods, such as the Monte Carlo simulation
method, have an element of unpredictability and chance and the result cannot be
exactly calculated in advance; these will be discussed in more detail later. Despite
the deterministic approach of standard molecular dynamics, it remains a statisti-
cal mechanics method, as system property values are developed from ensemble
averages over the system.

Molecular simulations rely on representative molecules interacting with each
other, so each molecule must possess individual properties that determine how it
will move in the next time step; these are position, r , and momentum, p, applied in
the number of dimensions present in the simulation. It is from these properties that
interactions and collisions are found and evaluated, thus allowing the simulation
to proceed. Given that the state of the whole system is governed by a function of
the properties of all the individual particles, the concept of ‘phase space’ can be
introduced. At any time in the simulation, the state of the system can be defined
by a single point in a 6N -dimensional ‘phase space’, where N is the number of
particles in a three-dimensional system. Each three-dimensional particle contains
information about its momentum (px , py , pz) and position (x , y, z) in each of
the three dimensions, so for N particles there are 6N variables. As the simulation
progresses, the phase point will move throughout phase space, sampling more
of the regions accessible without violating any of the rules set at the start of the
simulation, such as constant energy, pressure or temperature.

In the following sections the basics behind simulations of molecular systems
will be described, before proceeding to a description of how it applies to real fluid
flow problems and situations.
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1.4 TYPES OF SIMULATION

The above sections have described the general form of molecular simulations used
to explore the constant energy surface of a system. However, the simulation so far
can describe the positions and momentum of the molecules in the system. These
properties are useful within the simulation, but cannot be compared with a real sit-
uation because such information is not available. Available system properties such
as temperature, entropy, pressure, etc., are the result of the motion of many parti-
cles and not properties of individual molecules. Such bulk properties are extracted
from the simulation data with the use of statistical mechanics, by averaging the
properties of a large number of molecules over a specified period of time.

This method of property evaluation relies on Boltzmann’s ergotic hypothesis
[4]. The hypothesis assumes a quantum description of the system of particles and
for any system there are i different possible energy states conforming to a constant
energy E (proportional to the system volume). Over a sufficiently long period of
time the hypothesis assumes that the phase space trajectory will sample almost
all of these energy state configurations resulting in an average value, known as
the ensemble average and considered to be representative of the system (over all
state configurations, see Figure 1.9). The ergotic hypothesis therefore states that
over a sufficient period of time, the ensemble average is equal to the statistical
average obtained by simulation. This is a reasonable assumption for most cases,
but it does not apply when considering meta-stable phases or glasses.

The ergotic hypothesis leads to the construction of many different conservation
laws that can be applied to simulate different properties and situations. These
groups sample different ensemble averages and conserve different properties in
molecular simulations, the most common of which are listed below:

� Microcanonical Ensemble (NVE). a constant number of particles, volume and
energy. It is also common to control the temperature of the simulation during
the equilibrium stage so that the target system temperature is reached within a

Figure 1.9 Left: poor phase space sampling. Right: excellent phase space sampling, re-
sulting in excellent ensemble averages of bulk properties.
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suitable number of time steps. The simplest form of temperature control is to
scale the velocities periodically, but this is not a truly isothermal method and
must be removed before the properties are collected.

Although energy is considered to be conserved, there will be slight fluctua-
tions and the possibility of a small drift due to truncation and rounding errors
from the calculations.

This type of ensemble is useful for predicting thermodynamic response
functions.

� Canonical Ensemble (NVT). a constant number of particles, volume and tem-
perature. As in the microcanonical ensemble, during the initialization stage the
velocities are scaled to the desired value for the set temperature. Although use-
ful for initialization, velocity scaling is not suitable to use as a control for a
simulation as it is crude and not a truly isothermal method. Therefore, other
thermostatic methods must be used to apply the temperature control, which will
be explained in detail in Chapter 3. This ensemble is used to perform confor-
mational (spatial arrangements of a molecule) searches of models evaluated in
a vacuum without periodic boundary conditions. Even when periodic boundary
conditions are used, this ensemble can be useful if pressure is not a significant
factor, as the constant temperature and volume provides less perturbation due
to the absence of pressure coupling.

� Isobaric–Isothermal Ensemble (NPT and NST).

– NPT: a constant number of particles, pressure and temperature. Tempera-
ture is controlled using one of the thermostatic schemes detailed in Chap-
ter 3 and the pressure is controlled by varying the volume of the system us-
ing the Berendsen, Anderson or the Parrinello–Rahman schemes [13]. The
Berendsen and Anderson schemes work by varying the size of the system,
while the Parrinello-Rahman scheme is also capable of varying the shape of
the system.

– NST: a constant number of particles, stress and temperature. This is an ex-
tension to the constant pressure ensemble, which adds extra control on the
stress components xx , yy, zz, xy, yz and zx .

Both methods are mainly used in structural applications. NST can be used to
evaluate stress/strain relationships and NPT is generally used when the correct
pressure, volume and temperature are important.

� NPH and NSH.

– NPH: a constant number of particles, pressure and enthalpy. This ensem-
ble is similar to the NVT ensemble, only the size on the cell is allowed
to vary.
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R

l

Figure 1.10 Monte Carlo integration.

– NSH: a constant number of particles, stress and enthalpy. The control of the
stress of the system implies the use of one of the variable volume schemes,
of which the Parrinello–Rahman scheme is used to vary the size and shape.
This ensemble can only be used in fully three-dimensional periodic systems.

In both ensembles, enthalpy, h, is conserved but it is also common, as with
many of these methods, to use temperature scaling in the initialization and equi-
libration stages to stabilize the system. NPH and NSH are commonly used to
investigate natural response functions such as specific heat (at constant temper-
ature), thermal expansion, adiabatic compressibility and adiabatic compliance
tensors.

� Grand Canonical Ensemble (µVT). Simulations with constant chemical poten-
tial µ, volume and temperature are used widely to investigate capillary phenom-
ena and other chemically driven effects.

These ensembles are used within statistical mechanics, both for stochastic and
deterministic approaches, to investigate different environments and systems. The
Monte Carlo molecular simulation method represents the stochastic approach,
which incorporates an element of randomness in the molecular model.

1.4.1 Monte Carlo Simulation

The Monte Carlo simulation method is a powerful tool for integrating complex
equations using a relatively simple probability theory [14]. This is best illustrated
by a simple example, where the value of π is calculated using a brute force ap-
proach to Monte Carlo integration. To approach this problem, first consider an arc
with radius R, within a square domain of side l, as shown in Figure 1.10. The do-
main is probed using a number of test points, randomly distributed over the area,
as shown in Figure 1.11
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Figure 1.11 Monte Carlo integration; domain is interrogated by random points, some of
which lie within the arc.

The area inside the arc is then estimated by the ratio of the number of points
inside its constraints (squares) and the total number of points (squares + circles):

Squares

Circles + squares
= area of arc

area of square
, (1.37)

which becomes

Area of arc = Number of squares

Number of circles + number of squares
× area of square.

(1.38)
The equation for the area of an arc is known as π R2, so this becomes

π R2

4
= squares

circles + squares
× l2. (1.39)

Rearranging for π gives

π = squares

circles + squares

4l2

R2
. (1.40)

Equation (1.40) relates the ratio of particles within the arc to the value of π .
The accuracy of the estimation is mainly dependent on the number of points used
to probe the domain. This approach is known as the brute force approach, and is
the less sophisticated form of Monte Carlo integration, where there is an equal
probability for a sample point to be taken from anywhere within the domain.

Monte Carlo simulation uses elements from this technique to move the
molecules in the system in the following way:

1. A molecule is selected at random from the system.

2. The molecule is then moved a random distance in a random direction.
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3. The resulting change in potential energy of the whole system is then evaluated
and if it is reduced, the move is accepted.

4. Some failed moves are also accepted according to a probability value, P . Com-
pletely rejected moves are ignored.

The distance a particle is moved is often scaled to alter the acceptance ratio of
moves making the simulation more efficient.

When applied to molecular simulation there is a need to improve computa-
tional efficiency by making certain approximations for solving equations on rela-
tively inactive regions. It is at this point that importance sampling techniques are
introduced into the Monte Carlo method, as described by Metropolis et al. [15].

The Metropolis Monte Carlo method biases the contribution of each move to
the statistical average based on the Boltzmann factor. The probability of a particle
being selected is also influenced by the Boltzmann factor as follows:

1. The overall system energy is calculated, Ei .

2. From the system, one molecule is picked out. The probability of selection for
each particle is determined by the probability parameter A.

3. The molecule is assigned a small perturbation, such as a small displacement in
position, and the new system energy is calculated, E j .

4. If the new system energy is smaller than the old system energy, accept the
addition of the perturbation.

5. If the new system energy is greater than the old system energy, accept the per-
turbation with probability B = e−E j −Ei /kbT (note that β = e−E/kbT is the Boltz-
mann factor).

6. Repeat steps 1 to 5.

This gives the probability value that an added perturbation will be accepted as
A multiplied by B. Allowing a small proportion of moves that increase the system
energy to be accepted provides a limited amount of protection against settling in
meta-stable configurations on quasi-equilibrium states. By doing this, the system
is pushed towards the configuration that is most likely to occur, thus speeding up
the simulation run time.

Another modified form of the Monte Carlo technique is the force biased
method [16]. This adds some extra calculation overheads into each molecule eval-
uation to determine the resultant force acting on the particle by its neighbours,
biasing the random move performed within the simulation. This also improves
the computational efficiency as statistical averages need to sample fewer configu-
rations.
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Additional information on the Monte Carlo simulation method and its different
ensembles can be found in the book by Gould et al. [17]. Gould provides examples
of Monte Carlo methods, focusing on its advantages at simulating phase changes,
which has been used to good effect by Levesque et al. [18] applied to hydrogen
storage in carbon nanotubes.

1.4.2 Molecular Dynamics

Molecular dynamic (MD) simulations model fluid in two ways, with molecules
being represented as hard or soft spheres. Modelling with hard sphere models
provides a relatively simple approach to approximating a system of molecules but
still has valid applications, such as looking into the liquid–gas phase transition
and diffusion, and hard sphere fluids have a well-defined critical point. The draw-
backs are mainly to do with the discontinuous nature of the model. The collisions
are performed instantaneously and spheres only interact repulsively, whereas real
systems have some form of attraction between particles. Because of this, it is also
used for gas simulations where the distances between molecules are far greater
than their diameter, and intermolecular interactions occur rarely. Despite these
disadvantages, the model is still widely and successfully used, but care must be
taken to ensure that it is appropriate to the situation being simulated.

A more realistic, but more complex and computationally demanding approach,
is the soft sphere model. In this model, the long-range attractive and repulsive
forces are modelled as a continuous function of the separation between pairs of
molecules. The use of a continuous interaction function improves the accuracy of
the simulation at the cost of increasing the computational load.

1.4.3 Introduction to the Physics of MD Simulations

Molecular dynamic simulations work on the same basic principles regardless of
the actual interaction laws (hard or soft spheres) and rely on the following three
steps: initialization, equilibrium and production. These stages are detailed below
following the example of a molecular scale cubic cell suspended in a fluid away
from any physical boundaries, as shown in Figure 1.12.

1.4.3.1 Initialization

When the simulation is run, the first task performed is to define the problem; this
is known as initialization. This stage of the simulation accounts for only one time
step and is used to create the system of spheres based on a set of user-defined
parameters. In the example used, a control volume suspended in a fluid of set
volume and density is simulated (Figure 1.12). The initialization stage is where



P1: PIC
c01 JWBK251-Ransing June 20, 2008 10:40 Printer Name: Yet to Come

26 THE NATURE OF FLUID FLOW

Figure 1.12 Control volume of fluid suspended away from any solid boundaries.

the dimensions of the considered volume of the system are defined and represen-
tative molecules are placed within. Therefore a method is needed to position N
spheres within the system. If the spheres were to be randomly assigned positions,
there is a quite high probability that some of them may overlap, creating extremely
high interaction forces, disrupting the system with unnatural forces. It is therefore
more practical to assign positions based on a lattice or crystal structure.

However, this creates a problem, as fluid molecules do not conform to a
static lattice, but move constantly within the domain. This means that the fluid
molecules need to break out of the initial lattice structure and find a natural,
randomized, equilibrium position. A degree of randomization is added to the
molecules to allow them to break out of this structure. This can either be done
by adding a degree of randomization to the initial molecular positions or to assign
random initial velocities. Randomized positions, however, are generally used for
very large systems to reduce the simulation time taken to settle into a random
‘cloud’. By assigning random initial velocities to the molecules it is also possible
to control the initial temperature of the system by assigning velocities based on
the Boltzmann velocity distribution (Equation (1.4)).

Once all of the initial positions and velocities for all of the spheres have been
defined, the forces on each of the atoms must be evaluated, giving the overall
force on the particle. The force calculations are used to perform changes to the
dynamics of the particles in the system, but these changes are performed within
the time loops of the simulation. There are two time loops within the simulation,
one in the equilibrium stage and one in the production stage.

1.4.3.2 Equilibration

The simulation time allotted to the equilibrium period immediately follows the
initialization stage. This provides a buffering/settling time for the particles to mix
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H

∆h

Figure 1.13 Boltzmann factor derived from an elemental change in height in the atmo-
sphere.

themselves up and reach a maintainable equilibrium state that is sufficiently ran-
domized. Once a stable, but randomized, situation is reached, the production stage
can proceed, which provides all the useful information about the run.

While the simulation is proceeding, there needs to be some way to measure
how well randomized the simulation has become and whether or not an equilib-
rium state has been reached.

Monitoring Initially, the positions and velocities of all the molecules in the sys-
tem are defined, both of which need to be relaxed before the production phase can
take place. To ensure this has been completed, there needs to be ways of detecting
the state of the simulation. The state of the dynamics of the particles are measured
against the Maxwell–Boltzmann velocity distribution, while the breakdown of the
positions is evaluated using the order parameter (see below).

The Maxwell–Boltzmann velocity distribution is strongly linked to the Boltz-
mann factor, derived from the kinetic theory of gases. By looking at a small
change in height of the atmosphere, and relating the pressure to kinetic theory,
the Boltzmann factor is derived from the change in pressure and can be found as
shown in Figure 1.13.

Boltzmann distribution The force exerted on the boundary of a fluid is described
as n, the number density (number of molecules divided by volume) multiplied by
the volume and the weight of each molecule (force due to momentum exchange
at collision at the boundary)

F = mg An�h. (1.41)
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Therefore pressure becomes

�P = − F

A
= −mg An�h

A
, (1.42)

�P = −mgn�h. (1.43)

The ideal gas law can be rearranged for n:

Pv = NkbT, n = N

V
= P

kbT
, (1.44)

which when substituted into the expression for �P gives

�P = −mg�h

kbT
P. (1.45)

Thus, for h → 0, ∫
1

P
dP = − mg

kbT

∫
dh (1.46)

gives

P = P0e−mgh/kbT , (1.47)

where e−mgh/kbT is known as the Boltzmann factor. This form of the Boltzmann
factor has been derived from potential energy, and as potential energy, can be
written as mgh, the factor can be rewritten as

β = e−EPE/kbT , (1.48)

where E is the energy. A similar derivation can be performed using kinetic energy,
resulting in a Boltzmann factor of

β = e−EKE/kbT . (1.49)

This describes the probability that a molecule is at a certain energy level for a
prescribed temperature, T . By normalizing probability values so they add to a unit
value, the Boltzmann factor can be evaluated over a range of speeds to obtain the

Maxwell–Boltzmann distribution for speeds. Where speed v =
√

v2
x + v2

y + v2
z ,

f (v) = 4π
( m

2π RT

)2/3
v2e−mv2/(2RT ). (1.50)
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Figure 1.14 Maxwell distribution of velocity for temperatures of 300 K, 400 K, 500 K
and 1000 K.

This velocity–probability distribution (Figure 1.14) can therefore be used to
assess the dynamics of a simulation, by comparing the distribution of the resul-
tant velocity of molecules with this distribution. This is an important test, as even
for systems at steady state, as the velocity of individual particles does not remain
constant, they are constantly interacting and colliding with each other. It is sen-
sible to consider the overall distribution of velocities within the system to get a
view of how the system is behaving and how it is approaching equilibrium.

By monitoring the distribution of velocities and its resemblance to the
Maxwell–Boltzmann distribution, a measure of the approach to equilibrium is
developed. It is then used to identify stability in the simulation. If the simulation
is not stable, the temperature would fluctuate and the system would not be in equi-
librium. It is therefore necessary to observe the development of the distribution
over a period of time, ensuring that it converges with minimal oscillations. The
graphs in Figure 1.14 show examples of the distribution at different temperatures.

The variations arise from statistical noise that occurs due to the finite number
of molecules in the simulation. The greater the number of molecules, the lower
is the noise in the extracted distribution. For an infinite number of molecules,
the distribution would be followed perfectly, going the possibility of a continuum
description.

Other measured thermodynamic properties, such as pressure and density, are
also sensitive to the state of the system. By looking at these properties and seeing
how they behave is another tool in the identification of equilibrium and smooth
running of the simulation. Properties are averaged over a period of time and need
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time to adjust themselves to the correct, stable value. If some instabilities are
present and the properties are not converging, the system cannot be in a steady
state.

The stability of a property does not just imply that the value remains approxi-
mately constant, but it should also be able to recover its value after a small amount
of perturbation, such as a temperature adjustment.

The order parameter The order parameter gives an indication of the randomiza-
tion of the positions of the particles within the system. There are many formula-
tions of this parameter relating to different initial structures, but only an example
of a face centred cubic (f.c.c.) lattice is considered here.

First, the system of particles is broken down and the three Cartesian coor-
dinates are considered independently. The form of the order parameter must be
such that it is possible to detect when a particle is on or near an original lattice
site.

The form of such a function is described for a single particle as

λi = cos

(
4πxi

a

)
, (1.51)

where a is the spacing between lattice sites and xi is the position of molecule
i . By summing this over all particles the average value can be calculated for all
molecules, for each of the three directions:

λx = 1

N

N∑
i=1

cos

(
4πxi

a

)
, λy = 1

N

N∑
i=1

cos

(
4πyi

a

)
,

λz = 1

N

N∑
i=1

cos

(
4π zi

a

)
. (1.52)

The overall value can then be calculated from the three directional components:

λ = 1
3

(
λx + λy + λz

)
. (1.53)

This is the order parameter for the system. After the initialization of the sim-
ulation, the order parameter can be used to confirm that the lattice has been con-
structed correctly; if λ = 1, all lattice sites are occupied. During the run the parti-
cles move from their initial position, which alters their individual order parameter
to a value between −1 and 1 (Figure 1.15). For a fully randomized simulation,
the parameter should be approximately zero, indicating an even distribution of
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1

−1

λi
a Lattice positions in one dimension

Figure 1.15 Order parameter relative to lattice positions.

particles between the bounds of the simulation. The order parameter can also be
used to determine the point of solidification and the quality of the lattice, as used
by Radhakrishnan and Gubbins [19].

A successfully equilibrated system should be sufficiently randomized and have
reached a stable equilibrium point from which the production phase can begin.
The stable point should have the same global properties regardless of the initial
positions of the molecules, and can be tested by applying random noise to the
positions of the molecular lattice and examining several equilibration phases. A
fully equilibrated system will have the following properties:

� Stable levels of kinetic, potential and total energy. Variations in energy levels
are to be expected, but there should be no drift in average values of energy.

� The order parameter should be zero, indicating that the molecules are suffi-
ciently randomized.

� Velocities of all molecules should conform to velocity distributions for the set
temperature for the system.

� Stable state which is independent of initial positions of molecules.

Although the above criteria help identify equilibrium, there is still a chance for
undetected instabilities to be present, so care must be taken to be certain that
a steady state has been reached. After sufficient randomization, the production
phase of the simulation can begin.

1.4.3.3 Production

After the successful randomization of the system of molecules, the production
phase can take place. This is basically an extension of the equilibrium phase to
calculate the properties of the stable system over a set period of time. As the sys-
tem is assumed to be sufficiently equilibrated, some of the controlling factors and
adjustments are removed to allow the simulation to progress freely. Although the
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controls are removed, the parameters such as the order parameter and velocity
distribution are still monitored to check for anomalies. At the end of the equili-
bration phase, all property averages are reset to zero so that when the production
phase starts, the properties are not affected by the approach to equilibrium and are
the result of the production phase only.

This is the stage of the simulation where the interrogation and investigation of
the system may start. There are two main types of dynamic models used in simu-
lation to describe molecular dynamics, hard sphere and soft sphere. They differ in
the way they handle interactions between particles. The hard sphere model consid-
ers interactions as binary collisions, whereas the soft sphere approach considers
the molecules to be continually interacting via long-range potential functions with
their neighbours.

1.4.4 Hard sphere model

Hard sphere simulations only interact by colliding with one another and exchang-
ing linear momentum in a perfectly elastic way. The forces present in the hard
sphere model are relatively simple and easy to calculate. As there are no long-
range interactions, spheres only interact when they are colliding. The hard sphere
models are generally event driven, where the simulation time only steps forward
to the next event, or collision. This is based on the assumption that all spheres
have an initial position and velocity, and that sphere travels along the same direc-
tion at a constant speed (as there is no acceleration), such that the position at any
time can be calculated as follows [4]:

ri (t) = ri (t0) + (t − t0)vi (t0) (1.54)

where ri and vi are the position (of the centre of the sphere) and velocity of particle
i , t0 is the start time and t is the new time. As all molecules move in this way the
time until two spheres overlap, i.e. when a collision occurs, can be predicted,
highlighting the deterministic nature of the molecular dynamics approach.

At any collision between two spheres, each with diameter σ , the distance be-
tween the centres will be σ . Therefore a collision occurs between two molecules
with position at time t , of r1(t) and r2(t), when

|r1(t) − r2(t)| = σ, (1.55)

which can be calculated as

[r1(t) − r2(t)]2 = σ 2. (1.56)
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At this time, t , a collision is occurring and in a simulation of N molecules the
molecules that are colliding next need to be determined. By substituting Equa-
tion 1.54 for r1 and r2 in Equation (1.56) and rearranging for t , the time at which
the two spheres will collide is given as

tc = t0 +
(−v12r12) ±

√
(v12r12)2 − v12(r2

12 − σ 2)

v2
12

, (1.57)

where

v12 = (tc − t0)v1 − (tc − t0)v2, (1.58)

r12 = r1(t) − r2(t). (1.59)

This gives the collision time, tc, for two spheres providing they are moving to-
wards each other. Therefore, before tc is calculated, the state of the collision for
the colliding pair must be determined.

For example, take molecule 1 from the simulation and consider the possibility
that it may collide with molecule 37. There are two basic possibilities, either they
are moving towards each other or away. Mathematically, this is described by the
projection of the velocity difference along the line of the centres of the spheres
by finding the product of v12 and r12. If the result is less than zero, the spheres are
moving together:

v12r12 < 0. (1.60)

If the spheres satisfy this condition, they are said to be moving towards each other,
but this does not guarantee a collision. To determine if they will collide we need
to consider the limiting case where they come in contact as they pass each other.

By considering the one sphere to be fixed and the other to have velocity equal
to the velocity difference, Figure 1.16 shows the limiting case for collision. It
can be seen that, there must be a limiting value of θ that, if exceeded, ensure no
collisions occur and the spheres pass each other [4].

r12

v12

θ
σ

Figure 1.16 Hard sphere collision detection.
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This collision test is evaluated for every possible colliding pair within the sys-
tem by looping over all molecules and calculating the next collision time for each.
From these times, a table of collision times is created containing predictions for
when each sphere will have its next collision. The calculation of this table is the
last step in the initialization stage.

The table can then be used and updated in the equilibrium and production
stages to advance the simulation and evaluate the next collision.

Collisions are modelled as binary interactions, occurring instantaneously,
where the molecules exchange linear momentum.

1.4.4.1 Time steps

The first task in the time step loop is to look at the table of predicted collision
times and find which collision will occur next. The first collision to happen is the
only reliable prediction as the collisions afterwards may occur in a different order.
The simulation is then progressed by advancing to the time of this collision and
moving all spheres using

r (t + �t) = r (t) + v(t)�t. (1.61)

The new position for each sphere, r (t + �t), is calculated from the old position,
r (t), by adding the distance travelled at constant velocity, v(t), during �t . When
all spheres have been moved, the two that are colliding will be in contact and the
momentum exchange can take place. As the masses of the spheres are the same,
the mass terms can be cancelled out of the momentum equation completely, leav-
ing just an exchange of velocity. The velocities of the two spheres are projected
along the line of their centres, as in the two-dimensional example in Figure 1.17.
At the collision, the component of velocity along the line connecting the two

Figure 1.17 Hard sphere collision evaluation. Momentum is transformed from physical
coordinates along the line between the centres of the molecules, along which they exchange
momentum.
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centres is exchanged, while the component of velocity perpendicular to this line
remains the same for both spheres. The velocities of both spheres are updated and
can be used to update the prediction table for the next collision time for the pair.
There is no need to update the table for all the molecules, as only the colliding pair
experience a change in velocity. The updated tables can then be used to predict
the time step to the next collision.

1.4.5 Soft sphere model

The soft sphere model of molecular interactions considers molecules to interact
by exerting a force on each other relative to the distance between them. These
interactions occur continually, with each molecule having a ‘zone’ in which any
other molecule present is influenced. Hard spheres will only interact when contact
is made.

The initialization stage starts as stated above, where the initial positions and
velocities have been defined for all molecules in the system. Force calculation for
soft sphere models is more complex due to the addition of long-range interactions.
Particles in the system continually attract and repel their neighbours through a
predefined potential function, as opposed to the instantaneous and perfectly elastic
collisions of the binary collisions described above.

This is best described with the use of Figure 1.18, where the centre particle
is interacting with particles within a set radius, RC. The most common potential
used is the Lennard–Jones 12-6 potential, which provides an approximation of the
attractive and repulsive forces experienced by nonbonded molecules.

RN

RC

Figure 1.18 Soft sphere interaction detection.
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The potential functions are continuous and become weaker as the distance
between molecules increases, so it is therefore convenient to set a limit to the
‘zone of influence’ (typically around 2 to 3 times the interaction radius of the
molecules) of any one molecule (outside which the potential is approximately
zero). This finite limit cuts off the weak, long-range interactions between far-off
particles, interactions that can be approximated by ‘long-range correction fac-
tors’ [4] to increase the efficiency of the simulation. Despite this streamlining,
the process of finding a particle neighbour is time consuming and there needs
to be an effective method of storing the lists of neighbouring particles for each
sphere.

Soft sphere molecular dynamics provides an accurate model for molecular
scale fluids and is generally used for dense fluids, where the cohesive part of the
intermolecular interaction plays a more important role. Travis and Gubbins [20]
and Tuzun et al. [21] show good examples of general molecular simulations.
Other applications include chemical gradient driven flows [22] and studies of pore
roughness [23] on flow parameters.

1.5 EFFECTS AT MOLECULAR SCALE

In this section, the effect of scale on the mechanics of a fluid at molecular scale
are discussed along with the different mechanisms that are present which cannot
be modelled on a continuum scale. The most obvious effects are present in highly
porous media, where there is a high mix of fluid and solid molecules.

1.5.1 Phase Change in Confined Systems

The process of changing phases is in some cases modelled relatively well with
hard spheres, but with soft sphere models when thawing, the melting temperature
is often overestimated by up to 30 % [24]. The melting temperature is the point at
which solid and liquid can coexist, but for there to be liquid present, there needs
to be a section within the simulation domain where the structure starts to break
down (nucleation of the new phase). At any phase change a good indication is a
jump in the caloric curve relating to the adsorption of latent heat.

If the system properties come close to the temperature and pressure of the
phase boundary, the dynamics of the system can change quite substantially, and
this needs to be taken into consideration. The change between liquid and gas is not
as drastic as the change between liquid and solid, where the molecules fall into
or out of a structured formation. As the temperature of the molecules is lowered,
molecules possess less energy and do not interact with each other as strongly, and
consequently they move less and less. The kinetic energy of the particles then
reaches a point where, for a given density, they are kept in the same position by
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all the other particles. At this point, the particles do not possess enough energy
to break out of their position, due to the proximity of other molecules. During
a phase change, energy is absorbed or discharged in the form of latent heat at
constant temperature; this is the extra amount of energy needed by the molecules
to break out of the lattice and start moving around the container.

Phase change is a well-understood mechanism, but the molecules behave
slightly differently when the solid/fluid is confined. Simulations of hard sphere
fluids confined between hard walls were found to exhibit quasi-one-dimensional
motion near the wall [25], where the molecules near the walls were pushed up
against the container and could only move approximately parallel to the wall.
This effectively creates different phase behaviour parallel and perpendicular to
the boundary. The compressibility factor parallel and perpendicular was measured
using the radial free space distribution function (RFSDF) within a Monte Carlo
simulation of hard spheres [26]. The study showed that as the distance between
the plates was reduced from a separation to sphere diameter ratio of 21 to 3, the
difference between the compressibility factors was increased between the parallel
and perpendicular directions (with respect to the wall). This indicates that there is
also a difference in pressure between the two components.

The RFSDF has components from both the compressibility factor and the order
parameter, so by looking at the order parameter the phase of the fluid can be
determined as a function of distance from the wall. Molecules away from the
walls are still in the liquid phase and are free to move, but molecules closer to
the wall are trapped between a nonmoving boundary and the moving particles
colliding against them.

The quasi-one-dimensional motion combined with the difference in pressure
results in the phenomena of anisotropic phases, where close to the wall molecules
are in the solid phase perpendicular to the wall and in the liquid phase parallel
to the wall. Taking this quasi-one-dimensional theory one step further, and con-
straining a fluid within a cylindrical pore only two molecular diameters wide (be-
tween centres of molecules within the wall), freezing of the fluid is not observed
to occur. The study by Peterson et al. [27] showed that no phase transitions are ob-
served in a single nano-pore with a diameter twice that of the molecule diameter
(between the centres of wall molecules), right down to absolute zero. However,
Radhakrishnan and Gubbins [28] showed that phase change was possible when
the nano-tubes were arranged in a cluster, due to correlation effects. Using a grand
canonical Monte Carlo (GCMC) simulation (constant chemical potential, volume
and temperature) they first showed that a phase change was not observed in a
single pore; however, this also highlighted the problem of fluctuations in ther-
modynamic properties due to the limited number of particles in the system. The
investigation then turned to simulating a hexagonal cluster of pores, and the same
cluster surrounded by periodic images of itself. The walls were oxygen molecules
and the transported molecules were methane, and the periodic pore model showed
that clusters of pores do show evidence of freezing at a temperature of about 40 K.
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x

z

y

L

Figure 1.19 Confined geometry for simulation of liquid–liquid phase coexistence, L =
10.95, periodic boundary conditions along the x and y axes. Two parallel plates in the xy
plane are separated by length L in the z direction.

The simulation also replicated the hysteresis effect of regular phase change, but
highlighted the importance of the correlation effect between pores.

In a Monte Carlo simulation of water, Meyer and Stanley [29] investigated the
coexistence of two liquid phases of water within a strongly confined geometry,
shown in Figure 1.19. The theory of this is based on the fact that amorphous so-
lidified water displays two distinct phases, one with a lower density than the other,
and by extrapolating the transition line to a higher temperature to the meta-stable
liquid region, there is a possibility of two liquid phases being present. This has
been shown for bulk liquids, so Meyer and Stanley [29] investigated the same
theory, where the geometry is confined as above. It was found that the pressures
normal and parallel to the wall were different and, furthermore, at temperatures
below 230 K the pressure parallel to the wall was found to become density in-
dependent, typical of the coexistence of phases of different densities in constant
volume simulations [30]. The pressure normal to the wall, however, remained den-
sity dependent right down to absolute zero. They concluded that it was possible
for these high and low density phases to coexist within the simulation.

A combination of these works was looked at by Gatica et al. [31] to investi-
gate the adsorption of fluids within carbon nanotubes. As with the work above,
adsorbed fluid was expected to exhibit one-dimensional or quasi-one-dimensional
behaviour. The study found the corrugation experienced by an adsorbed molecule
to be much less when compared to planar graphite [31, 32], leading to fluid ad-
sorbed on to the wall, showing what is known as a cylindrical shell phase. When
the density within the nanotube is increased significantly, the cylindrical shell
phase solidifies and becomes similar to the incommensurate monolayer solid film
on graphite, which is well known and studied [33]. At some point there must be a
transition between the solid and fluid, and at this threshold there must also be the
possibility of coexistence of the two phases. The solid ‘axial phase’ is recognized
when the fluid becomes confined close to the axis of the tube as the number of
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molecules in the system is increased (hence increasing the density of the fluid).
This axial phase transition operates in a similar way to capillary condensation and
layering transition. The layering transitions are known to occur at higher temper-
ature, but the one-dimensionality of the system limits the transition to occur at
T = 0 ◦C. It has also been shown that a bundle of adsorbing tubes exhibits corre-
lation effects, which raises the transition temperature above zero [30, 34].

The work of Radhakrishnan and Gubbins [19] agrees with the above discussion
of confined phase change, but applied to slit shaped pores. As with the cylindrical
pores, fluids confined within slit shaped pores showed strong evidence of a third
phase close to the walls. They investigated the effect of the wall–fluid interaction
strength on the phase change, varying it from strongly attractive to repulsive, with
respect to the fluid–fluid interaction strength.

Previous work by Miyahara and Gubbins [35] had already found that the
strength of the interaction affects the hysteresis loop of the freezing temperature
relative to the bulk material. However, Maddox and Gubbins [36] also found that
the reduced confinement of the fluid in slit pores, as opposed to cylindrical pores,
leads to higher freezing temperatures.

The study found that for strongly attractive walls the layer of particles near-
est the wall froze at a higher temperature than those in the middle of the pore,
similar to many of the examples described above for cylindrical pores. However,
as the interaction swings the other way, becoming repulsive, the freezing effect
also switches so that the centre of the pore freezes before the layer in contact with
the walls. This implies that there must be a level of attraction or repulsion where
the fluid freezes at one temperature, making the intermediate shell phase meta-
stable, or disappear completely. The attractive/repulsive interaction potentials at
the walls represent the difference between graphite carbon/silica walls, as carbon
walls are strongly attractive and silica walls are weakly repulsive. However, most
silica-based porous materials have cylindrical pores.

Kim and Steele [37] also looked at phase change at solid boundaries, studying
the effect corrugation had on the monolayer of methane on graphite. Their small
scale simulations of 289 molecules showed that increased corrugation leads to
pre-transitional effects that are not present in solidification against smooth walls.

1.5.2 Adsorption/Desorption in Pores

Adsorption is the process by which a fluid adheres in a thin film to a solid or
liquid with which it has contact. As an example, the following discussion consid-
ers the effect of the conditions for filling and emptying of a silicate nanotube, as
studied by Gelb [38]. The first thing to remember is that classical statistical me-
chanics laws do not allow a first-order phase transition to take place within short-
range one-dimensional systems, even for the case of meso scale pores, despite
their three-dimensional structure. Bundles of pores or tubes add to the system’s
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Figure 1.20 Phase regions for adsorption filling of a pore.

dimensionality, which alters the behaviour due to the long-range interactions. This
can result in a first-order change of phase within such a cluster due to the pres-
ence of neighbouring tubes. These interpore effects are difficult to characterize
in real materials and are therefore not, at present, widely investigated by simula-
tions [28]. The filling of a pore involves three basic components, a high density
phase representing the filled part of the pore, a low density part representing the
multilayer adsorption and the interface between the two, as shown in Figure 1.20.

As would be expected from continuum scale observations of surface tension,
the interface between the ‘wet’ walls of the pore and the ‘filled’ region is almost
hemispherical. Higher temperature adsorption results in a thicker layer at the walls
through the adsorption layer, resulting in a lower surface tension and an increase
in the number of interfaces within the pore. The effect of inhomogeneity of phases
along the length of a pore becomes negligible when there is no hysteresis present
between adsorption and desorption, and leads to a rounding-off of the phase tran-
sition, similar to the effect of periodic boundaries on bulk fluid [38]. It is therefore
acceptable to think of the phase transition within nano scale pores as almost first
order and apply standard transition thermodynamics, as long as the temperature
does not approach the critical point and the distance between phase interfaces is
comparable to the pore diameter. The term ‘critical point’ used in capillary con-
fined fluids has a different meaning to that of a bulk fluid, and is used to describe
the point at which adsorption/desorption hysteresis disappears. As a consequence
of the inhomogeneity along the pore, it is not possible to observe a critical point
in the bulk fluid sense, or its associated properties. At lower temperatures, the ad-
sorption layer is thinner and the interfaces are further apart, so small periodic cells
are used whereas, for very high temperatures, the adsorption layer grows to such
an extent and the interfaces are so close together that only one phase is present.
The hysteresis, with respect to chemical potential during filling and emptying, is
present in both experiment and simulation, but its effects are more pronounced
in simulation, possibly due to the short time scale accessible. Longer pores have
more capacity to exhibit inhomogeneity along their length which can present dif-
ferences in nucleation on new phases and hysteresis loops. Pores with closed ends
can have the effect of the closed end acting as an already nucleated dense phase
while filling and affect the hysteresis loop.

The simulations performed by Gelb [38] were for adsorption of xeon on silica.
A simplified model for silica was used, with the surface molecules modelled by
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Figure 1.21 Cylinder oxygen atoms removed from the system to create a pore.

oxygen. Silicone molecules are not present on the surface of silica and are weakly
interacting and were therefore removed from the model. The pore was created
by defining a box, 5.4 nm square at one end with a length varying from 8 nm to
108 nm, full of a standard configuration of oxygen atoms for silica and removing
a cylindrical volume of atoms from the centre to create the desired pore geometry
(Figure 1.21). A small amount of relaxation was applied to the system after the
removal of the cylinder in order to remove some of the translational symmetry
experienced by the use of smooth continuum walls, although this was done at
the cost of increasing the computational load of the simulation. Three geometries
were explored in this investigation, a finite pore with two open ends, an infinite
pore with periodic boundary conditions and a single-ended pore. The geometries
were also modified in diameter and length for further comparison. The simula-
tions were based on a grand canonical Monte Carlo (GCMC) method (constant
chemical potential, volume and temperature) as it samples the correct ensemble
for adsorption/desorption simulations and has been found to be reliable, despite
inaccuracies when dealing with transport to and from the interface.

During the filling and emptying of long pores (108 nm) it was noted that equi-
libration became extremely slow at the top of capillary rise and the bottom of
desorption drop and required up to thirty times as many more moves than usual.
During the desorption of the long open-ended pore, the interface between the two
phases moves steadily away from the open end, and there was no evidence of nu-
cleation of either phase away from the interface. Desorption within an open-ended
pore often results from the nucleation of the low-density phase within the high-
density region, resulting in ‘bubbles’ forming. However, in this case, the interface
also moves at an almost constant velocity.
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The filling of the single-ended pore shows the reverse happening; the closed
end acts as an already nucleated phase and the interface moves up the pore towards
the open end at a relatively steady rate. Open-ended ‘infinite’ pores do not have the
‘head start’ of the closed end and must nucleate the start of the high-density phase
before the filling process can properly begin. This means that capillary rise occurs
at a higher chemical potential than closed-ended pores. Because of this higher
potential, the closed-ended pore has a smaller width hysteresis loop than the open-
ended tube, which also reduces the temperature at which hysteresis disappears.
It was also found that the reduced hysteresis loop found with the single-ended
pore occurs at a chemical potential almost exactly in the middle of the larger
loop of the open-ended pore. Gelb [38] also noticed that at the ends of the pore,
weaker repulsive interactions could be affecting the stability of the simulation as
the interface approached the ends of the tube.

Open-ended and infinite pores were also compared using two different pore
diameters of, 4 nm and 3 nm (see Figure 1.22). Although the hysteresis loop for
the open-ended pore was smaller than for the closed-ended pore, it is still smaller
than the loop for the periodic pore. The effects of the open-ended pore are more
dramatic for the 4 nm diameter as a much higher chemical potential is needed
to induce nucleation of a new phase, making the presence of the open end more
important. The hysteresis experienced by the open-ended pores for both diameters
is mainly on the desorption drop and not on the adsorption side. However, the
capillary rise occurs at a slightly higher chemical potential, indicating that the
open ends may be stabilizing the low density phase at the ends.

The final investigation performed by Gelb [38] looked into the effect of chang-
ing the length of the pore cell for the periodic/infinite pore. Three lengths were
tested, 8 nm, 16 nm and 108 nm, and it was found that as the length was increased,
the width of the hysteresis loop was reduced. This was attributed to the fact that
the longer pores contained more density fluctuations, leading to a higher proba-
bility of nucleation of a new phase. This, however, could have been due to poor
sampling resolution as the difference is fairly small and is most pronounced at
a reduced temperature of T̃ = 0.927. There was a fairly close agreement be-
tween the two longest pores, of 8 nm and 108 nm, which could indicate that the

Finite, open ended pore Infinite, periodic pore

Figure 1.22 Infinite versus open pores.
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difference in the hysteresis loops is not affected when the length becomes signifi-
cantly greater than the pore diameter.

Gelb’s [38] observations have been summarized below:

� Pore length has little effect on the adsorption/desorption hysteresis despite the
added probability of nucleation, but the effect is greatest when the length is
close to the pore diameter.

� Open ends on pores show much less desorption hysteresis for 3 nm diameter
pores than for 4 nm diameter pores.

� Single-ended pores show almost no hysteresis due to the nucleation of phases
at the end of the pores. Density also fluctuates greatly at pressures near conden-
sation.

� Interpore correlation effects could yield a ‘novel type of phase transition in two
dimensions’.

The effect of the length of the tube is a fairly expected result. As long as the
tube is long enough to separate the effects of the ends of the tube, the middle sec-
tion shows little variation along its length. The difference in desorption hysteresis
between pore sizes is mainly due to the nucleation of the ease of progression of
the new phase, which is made easier by the effectively larger particles, due to the
narrower pore. The lack of hysteresis shown in single-ended pores is mainly due
to the closed end acting as a dense phase, giving a good start to phase nucleation.

1.6 SUMMARY

In this chapter a general overview of fluid behaviour on continuum and molecular
scales was presented. The bulk, or continuum, properties have been discussed
along with their origins from molecular mechanics. Several methods for solving
for these continuum properties were presented in terms of the governing equations
that quantify the relationships between them.

On the molecular scale, the origin of intermolecular forces and interactions has
been presented and a wide variety of molecular simulation schemes have been
discussed, from the deterministic molecular dynamics to the stochastic Monte
Carlo method. Finally, the importance of these methods has been highlighted by
considering the molecular examples in Section 1.5.

This chapter has shown the different approaches to fluid simulation that are
needed as the scales of the system changes. The meso scale lies in between the
continuum and molecular scales and must use elements from both to capture cor-
rectly the proper physics (from the molecular scale) and provide a description in
terms of useful fluid properties (as characterized on the continuum scale).
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2
Fluid Physics at Meso Scales

Aim. By the end of this chapter, the reader should be aware of and un-
derstand existing simulation techniques and their advantages/disadvantages
when applied to fluid systems at meso scales.

2.1 INTRODUCTION

The focus of this chapter will be to present and discuss methods for combining
information and physics from the continuum and molecular scales. The discussion
begins with methods that couple continuum with molecular simulations. From
this, two basic methods will emerge, where molecular simulations are used either
to couple to the continuum region as a boundary condition (and vice versa) or
by the molecular information being used to modify or enhance the continuum
solution in a particular region.

Many of these methods consider solid systems or sparse gas dynamics, both of
which can access larger length scales with molecular simulation than dense gases
or liquids, due to the dynamics and distance between molecules. Existing meso
scale methods will then be discussed, such as dissipative particle dynamics and
the lattice Boltzmann method. The meso scale methods commonly used present a
‘top-down’ approach, the benefits of which and applications will be discussed.

The final section will discuss direct schemes from upscaling information from
the ‘bottom-up’ approach to looking at schemes for extracting bulk properties
from molecular dynamics, with a view to extract not only the properties but also
the property distributions throughout the molecular domain.

Fluid Properties at Nano/Meso Scale: A Numerical Treatment P. Dyson, R. S. Ransing, P. M. Williams and P. R. Williams
© 2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-75124-4
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2.2 TOP-DOWN APPROACH FOR MESO SCALE
COMPUTATION

The meso scale region is defined as a scale in between the micro scale and molec-
ular scale (approximately between 10−6 m and 10−8 m). The meso scale exists to
cover the change in physics between the continuum approximated view and the
discontinuous molecular description. Hence, the upper limit of the meso scale is
set by the point at which the continuum approximating laws are violated. This can
occur at a range of scales, depending on the state and properties of the fluid; e.g.
a sparse gas invalidates the continuum laws at larger scales than a solid.

2.2.1 Continuum Limit

For the fluid to be considered a continuum, the laws described in Section 1.2.2 are
summarized as follows:

� The fluid is continuous and infinitely divisible.

� The fluid is in thermodynamic equilibrium.

Because of the dependence of the continuum laws on the state of the fluid char-
acterized by the rarefaction and energy of the molecules, the point of failure of
these laws must be considered carefully. Travis et al. [39] show a comparison be-
tween Navier–Stokes hydrodynamics and molecular simulation, which displays
different behaviour in terms of the velocity profile and heat flux profile. Due to
the differences in density and kinetic theory, it is therefore necessary to consider
the continuum to molecular transition separately for liquids and gases.

Gases have a very well developed kinetic theory, and consequently are better
able to describe the transition from continuum mechanics to fully molecular flow.

2.2.1.1 Gas flows

To assess the validity of the continuum or molecular model for a gas, it is neces-
sary to obtain a measure of the rarefaction of the gas at the scale of interest. To
do this, the concept of mean free path is introduced. The mean free path is the
average distance travelled by a molecule before it collides/interacts with another
molecule. For an ideal hard sphere gas, the mean free path, Ł, is a function of
pressure, P , and temperature, T , as follows:

Ł = kbT√
2π Pσ 3

. (2.1)
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Figure 2.1 Range of Knudsen number for gas systems.

This provides a measure of the rarification of the gas. This can then be compared
with the characteristic length of the flow field, l, which can either be taken as the
characteristic dimension or the gradient of a bulk property, such as density

l = ρ

|dρ/dx | (2.2)

The ratio of the characteristic length to the mean free path of the gas is known as
the Knudsen (K n) number:

K n = l

Ł
, (2.3)

the value of which is used as a measure of the rarefaction of a gas with respect
to the scale of the system, in order to test the validity of the continuum approxi-
mations. Typical values are shown in Figure 2.1 from the large scale continuum
to molecular systems. A very small K n number (< 0.001) describes a system
that is well within the continuum laws, but as the K n number increases the small
scale effects of the fluid become more pronounced [40]. The first stage of the
breakdown of the continuum approximations occurs at a K n number of greater
than 0.001 where areas of high gradient, such as boundaries, cannot maintain the
continuous distribution of macroscopic properties. This is a result of the devia-
tion from thermodynamic equilibrium, where there are insufficient collisions in
the system for the energy to propagate smoothly in areas of high gradient such as
at the boundaries. The low number of molecular interactions with the boundary
means that the velocity and temperature of the solid and fluid are no longer the
same at the interface, causing a violation of the no-slip condition (similarly the
no-jump-in-temperature condition) that is assumed in continuum mechanics [41].

To account for this initial deviation from the classical equations, the linear
Navier boundary condition [42] describes the slip and no-slip conditions by re-
lating the difference in velocity between the wall and fluid (ufluid − uwall) to the
strain rate at the wall (∂u/∂y)wall:

ufluid − uwall = Ls

(
∂u

∂y

)
wall

, (2.4)
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with Ls being the slip length. This slip condition can be included in the contin-
uum approximations as long as slip length Ls is known or obtained via molecular
simulation or experiment. For normal large scale continuum simulations Ls is so
small that the fluid and wall move at the same speed (no-slip condition), but as
the K n number of the system increases above a value of 0.001, the slip effect
becomes more pronounced. The amount of slip that is allowed depends on the
roughness of the surface over which the fluid is flowing and the interaction rate
between the fluid and solid molecules.

A similar equation for the slip at the boundary, which includes temperature
discontinuities, was presented by Smoluchowski [43]:

ugas − uwall = 2 − σv

σv

Ł

(
∂u

∂y

)
wall

+ 3

4

µ

ρTgas

(
∂T

∂x

)
wall

, (2.5)

where σv is the momentum accommodation coefficient and Ł is the mean free path
from above. The first term is a modified version of Equation (2.4) with the slip
length being replaced by a description of roughness and scale, [(2 − σv)/σv]Ł.
The second term represents the thermal creep, responsible for slip in the direc-
tion of increasing temperature along the surface [44]. Similarly, the equation to
account for temperature discontinuities at boundaries is

Tgas − Twall = 2 − σT

σT

[
2γ

γ + 1

]
Ł

Pr

(
∂T

∂y

)
wall

, (2.6)

where Tgas and Twall are the temperatures of the fluid and wall respectively, γ is the
specific heat ratio and Pr is the nondimensional Prandtl number. The thermal ac-
commodation coefficient, σT, is similar to the momentum coefficient of Equation
(2.5) and characterizes the material properties of the interface.

These equations can apply modifications to the continuum governing equa-
tions, but the violation of the no-slip condition is only the initial sign of the fail-
ure of the continuum laws and the approach to the limit of the continuum laws.
However, Bing-Yang et al. [23] demonstrated that the Maxwell slip model fails as
the surface roughness of the wall approaches the mean free path of the fluid for
gas systems.

For higher K n numbers, the violation of the continuum laws becomes more
serious, as the effect of finite numbers of molecules affects the propagation of
macroscopic properties further away from boundaries and wider areas of high
gradient. Also the localization of mass and energy at molecular sites starts to bring
statistical variations into the fluid properties. This type of breakdown occurs in the
transition region between the continuum and molecular regions.
A transition region where continuum approximations cannot accurately predict
the system behaviour is between K n numbers 0.1 to 10. In this region, the
mean free path and characteristic length of the gas are comparable, indicating the
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importance of the underlying molecular physics of the system. In these systems,
the continuum equations cannot be applied, even with boundary modifications.

For K n number greater than 10, the mean free path of the gas is more than
10 times greater than the characteristic length of the system, and the fluid is well
within the limits of and can only be described by molecular physics.

2.2.1.2 Liquid flows

The transition between the continuum and molecular regions for liquids goes
through the same stages as for gases, but there is no parameter to act as a guide
throughout the transition. The K n number cannot be defined, as there is no con-
cept of mean free path for liquid flows and molecules are in a constant state of
collision and move over much shorter distances [40, 44]. The kinetic theory for
liquids is not as well advanced as for dilute gases, making the transition diffi-
cult to measure. However, Loose and Hess [45] showed that thermal equilibrium,
and therefore Newtonian behaviour, stops as the strain rate, γ̇ , exceeds twice the
molecular frequency scale, τ :

γ̇ = ∂u

∂y
≥ 2τ−1, (2.7)

where the molecular time scale is derived from molecular properties of mass, m,
well depth, ε, and collision radius, σ , as

τ =
√

mσ 2/ε, (2.8)

where u is the longitudinal velocity normal to y, and σ and ε are the characteris-
tic length and energy scales for molecules of mass, m. However, under standard
conditions the extremely small molecular time scale for liquids such as water puts
the continuum/Newtonian limit extremely high.

Other studies by Pfahler et al. [46] showed the breakdown of the continuum
description by comparing experimental data for the friction factor in a micro-
channel liquid flow with the continuum description. They varied the speed and
depth of the channel (100 µm wide by 0.8 µm and 1.7 µm deep) and plotted the
friction factor as a function of the Reynolds number, comparing the results with
those of Navier–Stokes predictions. They concluded that there was a well-defined
point at which the behaviour of the liquid deviated from the predictions.

Liquid flows, however, remain difficult to classify in terms of the deviation
from the continuum description. When compared to gases, the breakdown occurs
at smaller length scales, due to the closer packing of the molecules. Equations
(2.5) and (2.6) are also valid for fluids but, as described above, the exact point at
which they apply is difficult to determine.
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The discussion above shows that there is a limit at which the continuum ap-
proximations can no longer be considered accurate. Beyond this point it is neces-
sary to include information from the molecular scale. Methods for the inclusion
of this information will now be presented.

2.2.2 Top-Down Meso Scale Methods

This method of domain coupling has been mainly applied to structural problems
where the particles of the molecular region are frozen with a near-zero mean
square displacement. In the region of the interface, a finite element mesh is scaled
to dimensions that coincide with the molecular lattice. The boundary between the
two regions must ensure that there is a connection between the degrees of freedom
in the continuum and molecular models that maintains all dynamic and conserva-
tion laws. The thickness of the interface is as small as possible so that the number
of parameters linking the two domains is kept to a minimum. The domain cou-
pling must also maintain the thermodynamics, static elastic and dynamic elastic
responses of the material.

One method of coupling length scales in this way, developed to deal with crack
propagation, was by Rafii-Tabar and coworkers [47] and resembles an iterative
variation of the serial approach applied to crack propagation problems. With this
approach, the continuum region is used to calculate the boundary conditions for
the molecular region, which calculates the effective stochastic diffusion coeffi-
cient and growth at the crack tip for a short time interval, using a zero temperature
molecular simulation. The average velocity that the tip travels is also calculated
and all the molecular information is fed back into the continuum simulation for
the next iteration. This approach uses a form of Langevin dynamics at the crack
tip and finite element (FE) simulation for the continuum, with the molecules at the
interface between the two representing the boundary conditions for the molecular
region and having no thermal dynamics. So far this method has been limited to
two-dimensional simulations with a molecular region not around 5000 molecules.
This approach was also used by Ayton et al. [48], who used it to simulate flow
through biological membranes.

A similar coupling scheme was also described by Abraham [49] in the MAAD
program. In this method, finite element and molecular dynamic regions are linked
by defining a region between the two called the ‘handshake region’ (Figure 2.2),
with a Hamiltonian described by finite element cells and two/three body interac-
tions crossing the boundary, each contributing half-weight. The displacements in
the finite element region are updated by a molecular dynamic algorithm so as to
ensure seamless transmission of displacements.

The hybrid models are very computationally efficient and give almost
seamless coupling between areas of different length scales. However, direct cou-
pling between molecular sites and continuum meshes is not suitible for fluids, as
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Figure 2.2 MAAD handshake region (FE/MD) [49].

the molecular sites in a fluid move constantly throughout the domain (thermal mo-
tion/diffusion) even if the fluid is at rest. Coupling between fluid domains requires
an interface between the two that allows for the movement of molecules. For
solids, the validity of the continuum equations can be extended, as the molecules
are within a rigid structure and they move little, if at all, allowing the continuum
laws to be valid at smaller scales. In fluids, however, the dynamic molecular struc-
ture cannot be treated in the same way. Garcia et al. [50] developed the coupling
between the Navier–Stokes equations and direct simulation Monte Carlo (DSMC)
models for dilute gases by using a Chapman–Enskog velocity distribution-based
current generation scheme. This model considers only the scattering of molecules
due to collisions; it is the diffusion that is vital to the model, as opposed to the
simulation of cracks and solid systems, where diffusion is negligible and position
is important. The method they developed is based around an adaptive mesh and
algorithm refinement (AMAR) base, where they use DSMC to enhance the ac-
curacy of the final stage of refinement (Figure 2.3). The simulation is detailed as
follows. The continuum region covers the whole domain of the simulation, even
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DSMC Buffer Zone

FEM

Figure 2.3 Direct simulation Monte Carlo used as the finest stage in an adaptive mesh
and algorithm refinement method [50].

overlaying the DSMC region. The DSMC region is contained within a number
of these cells and are surrounded by buffer cells. Buffer cells are controlled by
the continuum solution at the end of a molecular time step, the molecules within
the buffer zone are deleted and a new set of molecules are created using the hy-
drodynamic parameters of the continuum solution. The buffer cells are used by
the continuum part of the solution for two reasons: the first is to monitor the flux
through the boundary between the DSMC and continuum region, and the sec-
ond is to influence the DSMC region by assigning the density and velocity of the
created molecules. The time steps used are not the same in the DSMC and con-
tinuum solutions, as this would lead to instabilities, but they must both progress
at the same rate. There are in general four molecular time steps, tpart, to every one
continuum time step, tcont, meaning that the DSMC simulation must perform four
steps for every one of the continuum. The method follows the following routine:

1. The continuum region performs one step in time, tcont, through all cells includ-
ing those covering the DSMC region.

2. The molecules in the buffer region are replaced with particles determined by
the hydrodynamic gradients (density/velocity/temperature) of the continuum
cells that cover them. Molecules are given a velocity assigned by a distribution,
as in the initialization stages of molecular dynamics, which is determined by
the form of the continuum solver. If the simulations are based on the Euler
equations, the Maxwell–Boltzman distribution is used, and for Navier–Stokes
equations the Chapman–Enskog distribution is used.

3. Momentum and energy corrections are made to all other particles, determined
by their overlying continuum cells.
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4. DSMC advances one molecular time step, tpart. Particles are allowed to pass
freely in and out of the buffer zone.

5. Particles crossing the boundaries between cells contribute to a correction of
the intercell flux between the continuum cells.

6. Repeat DSMC time steps (4 to 6) until the continuum time step, tcont, is
reached.

7. Conserved quantities, such as density, are used to correct continuum values.
8. Simulation then repeats steps 1 to 7 until the total time is reached.

This method uses molecular simulation laid over the continuum mesh to refine
the continuum solution. As the molecules are created in the buffer zone at each
time step, this causes problems of relaxation of the molecules at the beginning
of each molecular iteration, which could influence the results, as the boundary
conditions are essential to the solution of such a problem.

A similar approach was developed by Nie et al. [51], where a Navier–Stokes
region was coupled to a molecular region to evaluate a channel flow with a fixed
obstacle. The molecular region was placed around the obstacle.

The approach to the meso scale has been attempted in many ways, the most
publicized being to couple continuum approximations with molecular informa-
tion. This allows for the minimum volume considered by molecular simulation,
thus improving the overall efficiency of the simulation. There are, however, some
distinct problems associated with coupling these two simulation schemes. First,
the continuum and molecular simulations have a different frame of reference.
This is to say that the continuum region models the fluid in a steady state pic-
ture where variables like velocity, pressure and density take values relative to
fixed positions in the system (Eulerian approach), whereas the molecular model
considers the dynamics of the molecules within a fixed region (Lagrangian ap-
proach). This presents a barrier to the coupling of the two schemes that can be
overcome, as will be shown, but can be especially difficult for dynamic fluid
systems.

Second, there is a substantial gap between effective length scales considered
by continuum and molecular simulations especially for dense gases and liquids.
Consequently, the majority of coupling schemes have been developed for solid
and fracture mechanics, which present a simpler problem as molecules are fixed
to lattice sites, allowing a much simpler integration between molecular and fi-
nite element approximations. Other schemes work with relatively rarefied gases,
with low K n numbers, that allow the molecular simulation to operate at contin-
uum dimensions, as the computational effort of molecular methods scale with the
number of molecules in the system.

Another branch of ‘top-down’ simulation methods contains those that define
new systems of governing equations and include a higher degree of molecular
physics. These will be considered next.
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2.2.2.1 Dissipative particle dynamics

A similar approach is known as dissipative particle dynamics (DPD) introduced
by Hoogerbrugge and Koleman [2]. This is effectively similar in concept to
molecular dynamics, where the particles used move using Newtons laws, but the
interaction laws are different from those used in molecular dynamics. Here, a sin-
gle particle represents a group of molecules moving throughout the domain, and to
account for the internal degrees of freedom of each ‘area’ of fluid, the interactions
have fluctuating and diffusive components. DPD is typically used for simulating
colloids [52] and complex fluids [53, 54], as its particle structure allows for the
easy integration of large fluid particles and suspensions.

Dissipative particle dynamics was originally derived from a molecular dy-
namic framework, but the bulk particle interaction laws are closer to contin-
uum equations and include modification to represent the molecular physics. This
method is widely used mainly for simulations in the high end of the meso scales.
Because of its representative particle approach, this method allows easy coupling
with continuum particle methods such as smooth particle hydrodynamics.

2.2.2.2 Lattice Boltzmann method

The lattice Boltzmann (LB) method considers a fluid flow by solving the
Boltzmann equation at many points over a discrete lattice/mesh. In this method,
molecules exist as numbers possessed by each cell and flow is considered as the
flux of molecules between cells. These lattice-based methods are mainly used to
solve highly porous and complex geometries [1,55] at the meso scale and for mul-
ticomponent flows [56]. Lattice Boltzmann simulations are best suited to simula-
tions of sparse gas systems where molecular interactions rarely occur. A similar
approach using the Boltzmann equation was developed by Naris et al. [57] which
implemented a simplification for the collision integral.

The lattice Boltzmann and dissipative particle dynamics methods have been
combined with smooth particle hydrodynamics to construct the DL meso
software package [58]. This combination of methods has been very successful
at modelling within the higher end of the meso scale. These methods allow the
fluid to be modelled at meso scales, but they have their limitations. The LB and
DPD methods make assumptions about the distribution of the molecular physics
occurring within their elements/particles, and the actual internal molecular inter-
actions are approximated. The molecular degrees of freedom are removed to save
computational load.

An alternative approach to investigating fluid behaviour and capture fluid prop-
erties at the meso scale is from first principles of molecular interactions, or the
‘bottom-up’ approach. By directly modelling the molecular interactions within a
fluid, it is possible to model a fluid in an environment that is closer to experimen-
tation than simulation.
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2.3 BOTTOM UP APPROACH FOR MESO SCALE
COMPUTATION

As has been demonstrated in the previous section, the continuum approximations
begin to fail within the meso scale region (≤ 10−6 m). However, although the
continuum assumptions fail, the bulk properties are still observable and have sig-
nificant impact and meaning when a meso scale fluid is considered. This section
demonstrates how meso scale fluid systems can be modelled from a ‘bottom-
up’ approach, by considering the fluid physics from first principles of molecu-
lar interactions. These molecular simulations also demonstrate bulk behaviour,
modelling the continuum properties from their molecular origins, as described in
Section 1.2.1.

2.3.1 Molecular Dynamics Model

Molecular dynamic simulations model the individual molecules of a fluid by rep-
resenting each individual molecule as a coordinate point in space, with a set of
molecular properties attached to it that describes its mass, size and interaction
strength. The general scheme for molecular dynamics is presented in Section 1.3
and this section will focus on the details of the simulation and its relevance to
meso scale systems.

2.3.1.1 Molecular potential model

The most commonly used potential model in molecular dynamics is the Lennard–
Jones potential (Figure 2.4). Intermolecular potentials are used as a simplified
model of all the interactions that are present in real systems. The approximation
is derived in different ways, either by experiment or from first principles of molec-
ular dynamics. Experimental based potential models are generally based more on
realism than provable mathematics. The actual potential model represents, in gen-
eral, the short-range repulsive (Pauli/Coulomb forces) and long-range attractive
(van der Waals/London) interactions, but in all Lennard–Jones models electronic
degrees of freedom are neglected.

There are two basic parts of the Lennard–Jones potential, an attractive part and
a repulsive part. This is described mathematically as

Uri j = 4ε

[(
σ

ri j

)12

−
(

σ

ri j

)6
]

, (2.9)

where U (ri j ) is the potential energy between molecules i and j , with ri j being
the distance between them. Parameters σ and ε represent the collision radius and
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Figure 2.4 Lennard–Jones interaction potential for methane (CH4).

well depth (strength of interaction) respectively. ε is commonly referred to in the
form ε/kb. Some common values for Lennard–Jones interactions are shown in
Table 2.1.

When these soft sphere interactions take place in simulations it is necessary to
shorten the range of the potential to prevent overlapping in periodic systems and
to reduce the computational load. The cut-off is usually performed at two and a
half times the molecular diameter, but is dependent on the system and is generally
limited in periodic system to a maximum of half the distance between the two
periodic boundaries.

The Lennard–Jones potential, despite its common use, should only be ap-
plied where there are no electrons available for bonding and there are only weak
long range interactions. More complex materials such as metals and semiconduc-
tors require a more complicated many-body potential model rather than a pair-
wise model such as the Lennard–Jones. Many bodied potentials are affected by

Table 2.1 Lennard–ones potential parameters.

Well depth, ε/kb (K) Collision diameter, σ (nm)

C 28 0.34
Ar 124 0.342
CH4 148 0.304
Kr 190 0.361
Xe 229 0.406
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local environment density, assigning weaker bonding where many molecules are
present. Even in rare gases, many body effects are present, but they are much less
pronounced.

For systems containing multiple types of molecules, e.g. fluid mixtures, there
are rules that combine the Lennard–Jones parameters of the two components,
called the Lorenz–Barthelot mixing rules [59]. For the collision radius, the pa-
rameters are combined to give a single value for the evaluation of the Lennard–
Jones potential between the two dissimilar molecules; for example, the radius for
molecules numbered 1 and 2 is given as

σ1,2 = σ1 + σ2

2
, (2.10)

which takes the average of the two values. For the well depth, they are combined
as follows:

ε1,2 = √
ε1 × ε2. (2.11)

For systems with many molecules, the searching through the flow domain for
pairs of molecules, close enough to interact with nonnegligible Lennard–Jones
potentials, can take a significant amount of time to process. Efficient schemes used
to search for and keep lists of neighbouring molecules will now be presented.

2.3.2 Boundary Conditions

In the simulation of real systems, the molecules need to be contained in a con-
trolled environment. Either geometric or computational constraints can limit the
size of the simulation to a finite control volume, but molecules must be contained
within the simulation cell and must have the ability to influence the system beyond
the confines of the simulated volume. The method by which this is done must be
carefully designed and applied. In molecular simulations where fluid boundaries
are used, periodic boundaries are frequently used.

2.3.2.1 Periodic boundary conditions

Molecular simulation is currently only practical on a very small scale due to the
computationally demanding particle-based techniques. It is therefore necessary is
some situations to cut down the size of the simulation region to decrease the run
time, similar to the way finite element analyses take advantage of symmetry. Pe-
riodic boundary conditions effectively surround the simulation cell with identical
copies of the main cell, as shown in Figure 2.5.
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Primary simulation cell

Primary cell surrounded by 
copies/images

Figure 2.5 Periodic boundary conditions.

As a molecule passes over the boundary and out of the primary cell and into
an adjoining image, at the same time an identical molecule with exactly the same
properties passes in from the image on the opposite side into the primary cell. In
the case of the soft sphere model, cross boundary interactions also need to be taken
into account by finding the nearest image of an interacting particle. This is best
illustrated by the one dimensional example in Figure 2.6, where it is shown that
as the separation between two molecules becomes greater than a/2, the particle
i is nearest to the image of the second particle, j . At the boundaries of the main

Image 1 Primary Cell Image 2

i
(image1)

i
(image2)

i
(image2)

j
(image1)

a

Particle i’s influence 

i j

Figure 2.6 Soft sphere cross boundary interaction.
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cell, the simulation sees and interacts with the opposite side of the same cell,
effectively looping itself and creating the appearance of an infinite unconstrained
simulation.

Periodic boundary conditions allow for the automatic conservation of flow
properties. Mass is conserved perfectly; as there is no molecule deletion or cre-
ation by the boundaries, the molecules simply pass through the boundary as if
it were not there. Similarly, energy is conserved and the boundary presents no
obstacle to intermolecular interactions or molecule movement.

These periodic boundary conditions are for approximating a very large or infi-
nite region of fluid with a relatively small simulation cell. There are also situations
where it is necessary to confine a fluid to a region using solid walls or boundaries,
and it is this situation that will be considered next.

2.3.2.2 Wall boundaries

For a molecular simulation of fluid with solid boundaries, it makes sense to ap-
ply a solid molecular wall with a similar interaction model by simulating all the
frozen solid molecules in that wall. Although this is the most numerically accurate
approach, it is also the most computationally demanding. Even for the case of a
single-walled carbon nanotube, where there is only one layer of ‘solid’ molecules
containing the flow, solid structures generally have a higher density and add a
large number of particles to the simulation. There are several alternative strate-
gies to save computation time, which will now be discussed.

Fortunately, there are several strategies available to model solid boundaries
while maintaining all the information about a molecular wall. To reduce the com-
putational load of a molecular wall, the wall molecules can be completely frozen,
removing all degrees of freedom from the wall. This allows the molecular walls
to retain their roughness/corrugation, but they lose the ability to absorb energy
from the fluid as the cost of reduced computation time [60]. This also results in
a stiffer wall interaction model as wall molecules cannot react to fluid molecule
collisions, but significantly reduces the number of force interactions that need to
be evaluated.

Over meso length and time scales, the collision rate with solid boundaries
can be very high, which allows the molecular behaviour at boundaries to be ap-
plied as an approximation over many collisions. The main scheme for applying
this is the diffuse boundary condition [61], which will be considered in the next
chapter.

The above describes a molecular model for use at nano scales (≈ 10−9 m),
but the scales of interest are between 10−6 m and 10−8 m. Therefore this physics
model must be able to provide information about the fluid on these larger scales.
Methods for upscaling the physics and information from these molecular simula-
tions will now be discussed.
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2.3.3 Bottom-Up Meso Scale Methods

The main issue faced with bottom-up methods is the upscaling of information
from the molecular model and the removal of degrees of freedom from the sys-
tem to save computational resources. The first approach considered is the serial
approach, where a very small molecular simulation describes the physical rela-
tionships behind a large scale fluid system.

A serial approach is used when the scales are only weakly linked together.
Parameters are calculated at the smallest scale and the information is fed into the
next scale up, where it is used to calculate a larger scale parameter, and so on until
the largescale analysis can be performed.

This approach is best described by an example. Clementi [62] did a study of
the tidal circulation in Buzzards Bay by starting with the quantum-mechanical
simulation single water molecule. This information was then used to model the
behaviour of a small cluster of molecules and then a database of interactions
between the molecules was formed. The information contained in the database
could then be used to describe an empirical potential to be used in a molecular
dynamic simulation. The density and viscosity of water could then be calculated
and fed into a continuum scale computational fluid dynamic simulation to predict
the tidal movement of the bay. This shows how an accurate solution can be derived
by upscaling information from the molecular to the kilometre scale. However, in
the serial approach information only passes one way through the calculation and
therefore its use is limited to situations such as the one described above where the
scales are only weakly linked.

2.3.3.1 Derived scaling

The coupling techniques previously described involve coupling several regions
of different scales. Now a method will be discussed that involves a single model
that has a varying density in the same way that varying mesh densities are used
in regular large scale finite element (FE) simulations. This negates the need to
couple models together so the system can be simulated as a whole.

The best way to understand this approach is to imagine the simulation in two
layers, one containing molecular information and covering the whole system at a
fine scale and the other as a mesh, similar to FE, scaled from nodes corresponding
to molecule sites close to the region of interest up to large scales where elements
contain many molecules (Figure 2.7).

As the large scale elements contain many molecules, there is a large amount of
information that is unnecessary, as in a region of low activity a lot of the data held
by the parameters of each molecule is approximately the same. Therefore degrees
of freedom need to be removed from the system to cut down on the processing
of unnecessary information, which is done using the quasi-continuum method
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Underlying Atomic Mesh

Coarse Mesh Gradually Scaled to Atomic Sites

Mesh of Representative Atomic sites

Atomistic Region

Figure 2.7 Constant density molecular layer (small dots) overlaid with an equivalent FE
mesh.

described below. The cut-down molecular properties are then used to obtain the
equations of motion by averaging molecules surrounding each node, resulting in
the mean behaviour representing an area of molecules. This is similar to a stan-
dard FE simulation, but instead of the equations of motion being computed from
a continuum model, the molecular model is used. As the size of the elements re-
duces, the number of molecules within each element reduces until the nodes of
the mesh coincide with the sites of the molecules, where the equations of motion
are derived from individual molecules and there is no longer a need to discard
information. As can be seen, the less demanding element-based simulation grad-
ually breaks down into the more demanding molecular simulation as the scale is
reduced, providing almost seamless coupling.

Further away from a region of interest there is less activity and the resolution
of the solution can be reduced to cut down computation time. This is done by
increasing the size of the elements in the mesh, removing degrees of freedom
from the molecules and averaging the properties to approximate the motion of
the area. It was found that in some statistical models the Hamiltonian keeps its
form as the degrees of freedom are removed; only the parameters change, so the
parameters can be redefined as the scale of the mesh is changed by the use of an
equation. The renormalization group equation [63] does just that and can update
the Hamiltonian at any scale.

The method presented to reduce the number of degrees of freedom was created
by Tadmor et al. [64] and later developed by Phillips and coworkers at Brown Uni-
versity, Providence, Rhode Island [65–68], called the quasi-continuum technique.

Quasi-continuum technique In areas at a distance from the area of study, where
the displacement fields contain no steep gradients, the energy of the molecules
local to each other possess approximately similar values. It is this approximation
that is the key to the quasi-continuum method, which aims to reduce the process-
ing time of the mid to large scale areas of the simulation. Assuming that this is
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true, the local neighbourhood of molecules can be represented by the value of
just one molecule. By doing this the number of degrees of freedom in the com-
putation of the energy of the system can be dramatically reduced. The standard
method for computing the system energy involves the summation of the energies
of all molecules in the simulation, as below:

Etotal =
N∑

i=1

Ei , (2.12)

where

Etotal = total energy,
Ei = energy of individual molecule i ,
N = total number of molecules.

However, by representing an area of molecules with a single node/particle can re-
duce the computational demand dramatically. This is applied by choosing an finite
element mesh with nodes defined by a quadrature rule over the relevant area as
summing the energies of the molecules at the quadrature defined sites multiplied
by weights proportional to the volume of representation of each representative
molecule and the number of molecules in that area. This reduced sum contains far
fewer terms than the energy equation described above, giving

Etotal =
M∑

α=1

Eα (2.13)

where

Etotal = total local energy,
Eα = energy of representative molecule α,
M = total number of local representative molecules.

The molecules that are not included do not possess any properties of their
own except their position vector. Only molecules local to the representative node
contribute to the properties of the node, as shown in Figure 2.8.

By assuming that the deformation gradient is also homogeneous around the
representative node, the local deformation gradient can by defined by F . The
deformed configuration has Bravais lattice vectors, b, that are obtained from those
in the reference configuration, B, as below:

Ba = Fba. (2.14)
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Area of Representation

Figure 2.8 Lattice structure of molecules in regions of low gradients.

Once the Bravais lattice vectors are found, the formation of the energy equation
reduces to basic lattice statics.

As the area of interest is approached, gradients increase causing the areas that
can be assumed to have uniform energy to become smaller and smaller until there
cannot be any assumptions about the homogeneity of neighbouring molecules. At
this point the nodes of the mesh occupy all molecular sites. It is at this point that
all quadrature weights become unity and every molecule is accounted for.

The computational cost of applying this method is relatively high and stays
constant throughout changing mesh sizes. However, errors arise from the lack of
continuity between cells. This becomes more dominant near the breakdown of the
effective FE mesh where there are only a few molecules per cell and the position
of the molecules becomes important. This leads to small added forces that can be
accounted for. This method is generally used for two- or three-dimensional tests
to model defective systems (cracks, dislocations and interfaces) and has recently
been selected to study the effect of nano indentation [66].

So far, studies have been limited to solid problems as the lattice structure of
a solid leads to an easily predictable deformation. This approach is difficult to
apply directly to fluids as new laws for the removal of degrees of freedom will be
needed.

2.3.3.2 Approximating methods

A wide range of methods are also available for upscaling molecular information
from alternate applications. Molecular simulations rely on molecules being rep-
resented by data points with properties associated to them. Point approximating
methods such as smooth particle hydrodynamics (SPH) and moving least squares
(MLS) are capable of averaging data spread over a number of points. These meth-
ods show promise for the upscaling of information from molecular models.
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Smooth particle hydrodynamics (SPH) SPH, first presented by Lucy [69], is a
continuum particle method that solves continuum equations over a system of mov-
ing interpolation points [70, 71]. The property values at any point throughout the
fluid relies on the properties of the surrounding points, and it is the method of
sampling these properties that has most significance to this application. Instead of
sampling the continuum properties, we seek to use this approach to extract the lo-
cal bulk properties from the molecular motion at discrete nodes placed throughout
the flow domain. The SPH method constructs average property values as a func-
tion of distance from each central point with the use of a weighting, or kernel,
function.

Moving least squares The moving least squares approximation scheme relies on
the construction of many least squares approximations applied over a large num-
ber of points [72]. This method is generally used for creating smooth surfaces
over mesh structures in computer graphics. This method is generally applied as
an approximation to all points in the system, taking each one in turn and con-
structing an approximation from its neighbours. The approximation in MLS is
more advanced than the kernel averaging approach of SPH, where a polynomial
function is fitted to the local property distribution.

This is similar to the approach taken by Liao and Yip [73], who used the under-
lying molecular information to fit a continuous predetermined temperature func-
tion described over the flow field to the molecular property distribution. Also,
the equivalent continuum mechanics (ECM) method [74] used the meshless local
Petrov–Galerkin method to solve for the local displacement in a solid molecular
lattice.

Coarse-grained molecular dynamics Coarse-grained MD (CGMD) [75] was de-
veloped to deal with dynamic and finite temperature systems. In the cases con-
cerning crack propagation, hybrid models work well and allow transfer of strain
fields and elastic waves from one region to another, with minimal back-scattering.
However, finite element based methods start to break down as scales reach molec-
ular dimensions. One of the basic principles behind the finite element method
assumes that the energy of each element is evenly distributed, but when the el-
ements only contain a few molecules, the energies are localized in the nucleus
(kinetic energy) and in the covalent bonds between the molecules (potential en-
ergy). CGMD provides an alternative to the finite element method that is slightly
improved at large scales and greatly improved at small scales at the interface with
the molecular dynamic simulation. In situations such as crack propagation or very
small systems, high-frequency elastic waves have more of an effect; CGMD pro-
vides improved methods to deal with these, but these waves are negligible for
larger systems and systems with less strong sources. CGMD constructs the coarse-
grained structure with statistical techniques evaluating the interpolation of the
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displacement field of the molecules and their equilibrium position, resulting in a
weighted sum. This method acts as a replacement for the finite element method
described before and shows significant improvement in the treatment of the elastic
wave spectrum and small scale analysis. The computational demand is higher than
regular finite element techniques, so it is used mainly where high performance is
required or where the interface region is close to an area of interest.

2.4 SUMMARY

As has been shown in this and the previous chapters, the continuum equations
are unable to account for the molecular scale effects that become important at the
meso scales. It is therefore necessary to include this molecular information in the
simulation model. This chapter has presented and discussed two approaches by
which to include these effects, the ‘top-down’ and ‘bottom-up’ approaches.

The top-down approach uses molecular simulations only in regions where they
are needed, as the final level of refinement in a mesh. This approach is useful
when considering a large system possessing a few small areas where molecular
scale detail is needed. However, several issues arise, especially when considering
fluids. To couple a molecular region to a continuum mesh requires the contin-
uum analysis to be valid with only a small number of molecules in each element.
This is at the extreme of, and possibly past, the limits of the continuum approx-
imation. Also, problems occur at the boundary between the two regions in fluid
systems. The chaotic molecular motion of fluid molecules does not allow for sim-
ple boundary treatment at fluid boundaries, as the surrounding continuum region
will not allow the use of periodic boundaries.

The chaotic nature of meso scale fluid systems leads to a bottom-up scheme,
which is more suitable in most situations. Here, the physics of the system is gov-
erned by a molecular model, and information is upscaled and areas of low activity
can be simplified. These methods are, however, very computationally demanding
for large scale systems, but can present a very accurate solution. The way in which
information is passed and degrees of freedom are removed is critical to the suc-
cess of this approach. Approximation methods such as least squares and SPH are
well suited to this application as they provide a reliable and well tested method
for approximating information over many points.

In the next chapter, a method is developed specifically to tackle fluid simulation
at meso scales.
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3
Meso Scale Model Based
on First Principles

Aim. The reader should understand how fluid modelling at the meso scale
can be undertaken by employing molecular physics models to characterize
bulk properties.

3.1 INTRODUCTION

The meso scale represents the range of scales in between the scales that can be
defined by the continuum laws (typically � 10−6 m) and molecular physics (typ-
ically � 10−9 m). The behaviour of fluid at these scales is neither fully described
by the bulk continuum nor the molecular scale properties and physics. Contin-
uum simulations are unable to model molecular scale effects, which presents a
lower limit to the scale at which these approximations can be used. A molecular
scale fluid model can predict the behaviour of fluid by considering thousands of
molecular interactions, but provides no method of quantifying bulk effects, such
as viscosity or temperature and velocity gradients, throughout the flow field.

Continuum mechanics, however, can describe and quantify these bulk proper-
ties, but molecular scale effects are ignored. The onset of molecular behaviour
must be understood to recognize the point at which the continuum approxima-
tions fail.

The molecular dynamics simulations are able to predict the behaviour of the
fluid accurately, but in order to describe the flow quantitatively, the bulk character-
izing properties, such as pressure, temperature and velocity, need to be extracted.
Such properties arise from the molecular interactions intuatively modelled by the
molecular simulation, but are not quantified locally for at molecular scales they

Fluid Properties at Nano/Meso Scale: A Numerical Treatment P. Dyson, R. S. Ransing, P. M. Williams and P. R. Williams
© 2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-75124-4
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are not well defined and have little meaning. At meso scales, these have increased
importance as the bulk effects are visible and need to be considered in engineering
applications.

In this chapter a bottom-up meso scale approach is developed and explained.
A molecular model is implemented to control the physics of the fluid, along with
tools and modifications to improve the efficiency when dealing with large num-
bers of molecules. Also, areas of low activity are simplified (such as solid bound-
aries) to improve efficiency further. This physics model then passes molecular
information to the upscaling routines where it is used to characterize the bulk
fluid effects in terms of useful engineering properties.

3.2 FLUID PHYSICS MODEL

To model meso scale fluid flows from first principles, the physics of the fluid
behaviour must be considered at a scale smaller than the meso scale. For this, a
molecular dynamics model is used to evaluate the system in terms of the molec-
ular interactions. As it is intended for the model to work with dense as well as
spares fluids, the molecules interact via a soft sphere model with the nonbonded
Lennard–Jones 12-6 potential. The use of molecular dynamic simulations has
been highlighted in Section 1.4 and will be used along with the diffuse bound-
ary conditions. The molecular model must be capable of simulating large num-
bers of molecules to allow access to meso scale systems of reasonable density
(computational demand of a molecular simulation is heavily dependent not only
on the number of molecules in the system but also on the number of neighbours
possessed by each molecule, which is related to the fluid density).

To keep track of the neighbours of each molecule, an efficient book keeping
scheme, the Verlet lists, is implemented for the molecular dynamics model.

3.2.1 Book Keeping

3.2.1.1 Verlet lists

The most common method used to search for and store possible interactions is
known as the Verlet neighbour lists [76], and is described below. This method
works by using two arrays, one that stores the actual interactions (nlist) and an-
other that acts as an index (npoint), referencing the start points for the neighbour
lists of each individual molecule.

Once these arrays have been initialized, a full search is performed for every
molecule i for all other molecules within RN. The search is performed within
a radius that is larger than the cut-off radius RC for the potential to include all
particles that will interact with sphere i over the next n time steps (Figure 3.1).
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RN

RC

Figure 3.1 Interaction radius of the cut-off potential RC and neighbour search RN.

The difference between RN and RC is limited by the root-mean-square velocity of
the simulation, with

RN − RC < nṽh, (3.1)

where RC and RN are the cut-off radius for the list and the potential respectively,
n is the number of time steps between list updates, h is the time step length and
ṽ is the root-mean-square velocity for the simulation. This limits the thickness of
the region so that a molecule from outside the neighbour list cannot travel into a
spheres interaction zone (RC) without being included by an update of the list. This
removes the need for the complete neighbour list to be repopulated at every time
step; it is only updated periodically, saving a significant amount of computational
time.

For any molecule in the system, i , the neighbour search is performed over
all molecules numbered > i . This prevents the same pairwise interactions being
recorded twice, in an interacting pair, as both will be in each other’s interaction
zone.

For a system of N particles, the pointer list, n point, will contain N entries. The
value stored for each molecule refers to the entry number of npoint at which the
neighbour list for that molecule starts. Therefore, the number of entries in npoint
is much higher as, depending on density, each particle has around 50 neighbours,
which leads to an array of at least 15 000 entries for a system of 300 particles.
This is illustrated in Figure 3.2.

An alternative to the Verlet lists was proposed by Sun and Ebner [77] where ar-
rays were used to achieve the same effect. This used no extra memory and perfor-
mance scaled with the number of molecules in the system. However, the reference
locality was broken in these lists, reducing the performance for large systems.

Once the neighbour lists have been updated, they are used to evaluate the net
force exerted on each molecule by its neighbours.
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Figure 3.2 Verlet list book keeping scheme.

3.2.2 Force Interactions

The Lennard–Jones potential function is used for energy calculations and the force
for each interaction is derived from the potential function

Fi = −∂U (ri j )

∂ri j
, (3.2)

where F is the force acting between the two molecules (positive for molecule i
and negative for molecule j ; Newton’s third law) and U is the potential func-
tion. This represents the force acting along the line between the centres of the
two molecules, and the resulting force is applied in opposite directions to both
molecules using Newton’s third law to save the same interaction being calculated
again from the opposite direction. Applying the force of the collision to both
molecules halves the number of collisions that need to be processed as each pair
needs only to be evaluated once. This is done by only evaluating the entries in the
list where i > j . The forces are converted to units of acceleration, enabling the
time step part of the simulation to proceed.

3.2.3 Time Integration Scheme

Given an initial resultant force for each molecule, the first step in the time pro-
gression loop is to predict the new positions of all the molecules at the new time.
There are several methods used to do this [24], and all are based on the simple
finite difference algorithm.
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3.2.3.1 Verlet algorithm

This is the most commonly used algorithm in molecular dynamic simulations,
mainly because of its simplicity. The algorithm proceeds as follows:

1. Perform a Taylor series expansion of r (t) forward and backward in time:

r (t + �t) = r (t) + ∂r

∂t
(t)�t + 1

2!

∂r2

∂2t
(t)�t2 + 1

3!

∂r3

∂3t
(t)�t3 + O(�t4),

(3.3)

r (t − �t) = r (t) − ∂r

∂t
(t)�t + 1

2!

∂r2

∂2t
(t)�t2 − 1

3!

∂r3

∂3t
(t)�t3 + O(�t4).

(3.4)
2. Add these two expressions together:

r (t + �t) = 2r (t) + r (t − �t) + ∂r2

∂2t
(t)�t2 + O(�t4). (3.5)

Equation (3.5) is the general form of the Verlet algorithm.

It is easy to see that the truncation error varies with �t4, making the prediction
accurate to the third order, despite the absence of any third-order terms. However,
there comes a problem when starting off the algorithm, as the approximation for
t + �t relies on the current and previous time steps, t − �t . At t = 0, it is
common to use the backward Euler method to estimate a value for r (−�t).

3.2.3.2 Gear’s predictor–corrector algorithm

The predictor–corrector algorithm devised by Gear [78,79] is used to describe the
progression of the molecules throughout the domain during the simulation time
t , which is broken down into a finite number of short time steps. The time step is
sufficiently small, so the forces and accelerations can be considered as constant.
Forces and accelerations are updated once every time step. There are three basic
steps in this algorithm, prediction, evaluation and correction:

� Prediction. Position, velocity, acceleration, third, fourth and usually fifth deriva-
tives are predicted at t + �t from current time t using a simple Taylor series
for each molecule in the time step:

ri (t + �t) = ri (t) + r i
i (t)�t + r ii

i (t)
(�t)2

2!
+ r iii

i (t)
(�t)3

3!

+r iv
i (t)

(�t)4

4!
+ rv

i (t)
(�t)5

5!
, (3.6)
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ṙi (t + �t) = r i
i (t) + r ii

i (t)�t + r iii
i (t)

(�t)2

2!
+ r iv

i (t)
(�t)3

3!
+ rv

i (t)
(�t)4

4!
, (3.7)

r̈i (t + �t) = r ii
i (t) + r iii

i (t)�t + r iv
i (t)

(�t)2

2!
+ rv

i (t)
(�t)3

3!
, (3.8)

r iii
i (t + �t) = r iii

i (t) + r iv
i (t)�t + rv

i (t)
(�t)2

2!
, (3.9)

r iv
i (t + �t) = r iv

i (t) + rv
i (t)�t, (3.10)

rv
i (t + �t) = rv

i (t). (3.11)

� Evaluation. The force evaluation at time t yields a net force on each particle,
which is converted to acceleration (F = ma) and compared with the predicted
acceleration from the previous step, resulting in an error signal:

Fi =
N∑

i �= j

−∂U (ri j )

∂ri j
ˆri j , (3.12)

where ˆri j is the unit vector between the centres of spheres i and j . This force
is then converted to an acceleration by dividing by the mass of the particle and
subtracting from it the predicted value for acceleration, r̈i (t + �t), giving �r̈i .

� Correction. The error signal �r̈i from the difference between the accelerations
is multiplied by a stability factor and used to adjust the positions. The stability
factor set depends on the time step to maximize the stability of the algorithm:

�Rii
i = �r ii

i (�t)2

2!
, (3.13)

ri = r p
i + αo�Rii , (3.14)

r i
i = r ip

i �t + α1�Rii , (3.15)

r ii
i (�t)2

2!
= r iip

i (�t)2

2!
+ α2�Rii , (3.16)

r iii
i (�t)3

3!
= r iii p

i (�t)3

3!
+ α3�Rii , (3.17)

r iv
i (�t)4

4!
= r ivp

i (�t)4

4!
+ α4�Rii , (3.18)

rv
i (�t)5

5!
= rvp

i (�t)5

5!
+ α5�Rii . (3.19)

The corrected positions are then fed back into the Taylor series approximation
for the next time step, and the simulation can proceed.



P1: VQN

c03 JWBK251-Ransing June 20, 2008 10:51 Printer Name: Yet to Come

FLUID PHYSICS MODEL 73

Table 3.1 Coefficients of the fifth-order Verlet algorithm.

Order Third Fourth Fifth

a0
1

6

19

120

3

16

a1
5

6

3

4

251

360
a2 1 1 1

a3
1

3

1

2

11

18

a4
1

12

1

6

a5
1

60

Values for stability factors αi depend on the order of the Taylor series expan-
sion [4] and are shown in Table 3.1. These values can be derived by studying the
resulting stability matrices. The accuracy of the prediction relies on the order, k,
of the expansion due to the truncation error, O(�t k−1).

The main advantage of this method is its versatility, which takes a single step
forward in time but can be modified to become a multistep method by combining
it with the Verlet algorithm. The algorithm can be extended by adding terms to
the Taylor series or using the stability factor to maintain stability for a larger or
smaller time step.

3.2.3.3 Velocity Verlet algorithm

The velocity Verlet Algorithm is similar to the Verlet algorithm, but is performed
over two half time steps. The algorithm proceeds as follows:

1. Evolve velocities by half the total time step, δt/2 :

vi (t + δt/2) = vi (t) + ai (t)δt/2. (3.20)

2. Use these projected half time step velocity values to evolve positions at the full
time step, δt :

ri (t + δt) = ri (t) + vi (t)δt + ai (t)δt2/2, (3.21)

which becomes

ri (t + δt) = ri (t) + vi (t + δt/2)δt. (3.22)

3. Update the intermolecular forces and convert using Newtons law, F = ma, to
achieve updated accelerations for all the molecules.

4. Complete the velocity time step:

vi (t + δt) = vi (t + δt/2) + ai (t + δt/2)δt/2. (3.23)
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The velocity Verlet algorithm is the most compatible time integration method
with thermostats and temperature controls, and is implemented into the model de-
scribed above. This method also requires less storage than the predictor–corrector
algorithm as only the position, velocity and acceleration vectors need to be stored
between time steps, reducing the computational resources required. It is also sim-
ple and easily integrated, with a wide variety of thermostating methods.

Time step The selection of the optimal time step is crucial in molecular dynam-
ics simulations. A large time step will progress the simulation time with minimal
CPU (central processing unit) time. However, a time step that is too large can have
two effects:

� Large time steps. The integration scheme assumes that the forces on each
molecule are constant over the length of the time step. If the step is too large the
deviation from this assumption causes errors in the calculation and conservation
of energy.

� Very large time steps. Molecules may move large distances between sucessive
steps and when close to other molecules may jump from low interaction to
extremely high interaction forces where the molecules overlap. This can cause
unphysically high forces and instability in the system. This behaviour often
results in a complete breakdown of the molecular behaviour and energies, which
tend to infinity.

The optimal time step will conserve energy and provide the greatest leap for-
ward for the simulation time for each step. To examine this effect, the results of a
simple investigation are presented. The system contains 114 molecules in a 2 nm
wide periodic cube and the effect on average energy with a range of time steps is
evaluated.

Figure 3.3 shows plots for kinetic and potential energy against a range of
lengths of time step, varying from 0.5 fs to 25 fs. It was found that increasing
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Figure 3.3 Graphs showing the effect of increasing the time step from 0.5 fs to 25 fs on
kinetic energy (left) and potential energy (right).
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the time step beyond 25 fs causes massive instabilities in the system and energy
levels become extremely unphysical. The kinetic energy of the system is shown to
drop by larger and larger amounts as the time step increases. The potential energy
shows a slightly increasing trend (in terms of negative values) but noise of 0.5 %
about the line of best fit.

As the time step approaches zero, the kinetic energy approaches a value of
0.7057 aj (attojoule, J × 10−18) and the potential energy approaches approxi-
mately −1.0792 aj. To obtain the best and most stable results, the system’s energy
should be as close as possible to these values. A time step of 2 fs can be seen
to maintain energy levels to within 0.02 % for kinetic energy and ±0.5 % for po-
tential energy, while still progressing the simulation at an acceptable rate. A time
step of 2 fs is used in all models presented in this book.

3.2.4 Boundary Conditions

Having achieved an efficient molecular physics model, the boundary conditions
surrounding the fluid should also be efficient and appropriate to the scale of the
system of interest. This is done with the implementation of the diffuse boundary
conditions.

3.2.4.1 Diffuse boundary conditions

The diffuse boundary condition replaces a dynamic/static molecular wall with a
smooth planar boundary with appropriate hydrodynamic conditions to replicate
the scattering occurring from the corrugation, or roughness, of the molecular wall
[61]. This effect is shown in Figure 3.4, where the figure on the left shows a
single molecule approaching a molecular wall. Depending on whether it hits a
wall molecule on its side or on top, it rebounds in a different direction. The figure
on the right shows the effect of the diffuse boundary conditions, where the same
effect of the molecular scattering is replicated over many molecular collisions.

Solid molecular wall

Colliding
Fluid Molecule Colliding

Fluid Molecule

Velocity parallel to wall reselected
from Maxwell distribution

Lennard–Jones Continuous Wall

Angle of reflection
is unpredictable

Figure 3.4 The diffuse boundary conditions.
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The scattering is performed by selecting a proportion of molecules and re-
selecting their component of velocity parallel to the wall from the Maxwell–
Boltzmann distribution for the set temperature of the wall. The Maxwell–
Boltzmann distribution for velocity is different from the speed distribution
(Equation 1.50), and is defined as

g(v) =
√

m

2πkbT
e−mv2/(2kbT ) (3.24)

which is shown in Figure 3.5.
The proportion of molecules selected for this ‘thermalization’ is set by the

tangential momentum accommodation coefficient, f , for the solid.

Tangential momentum accommodation coefficient, f The tangential momentum
coefficient is the proportion of molecules that go through the thermalization pro-
cess in the diffuse boundaries. Its value can range from 0 to 1, to represent the
degree of corrugation of the solid. Different degrees of corrugation occur for the
following cases:

� f = 0. This is the extreme case, where none of the colliding molecules are ther-
malized by the solid. The colliding molecules maintain 100 % of their momen-
tum parallel to the wall and are only affected by the intermolecular interaction
potential perpendicular to the wall.
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Figure 3.5 Velocity distribution molecules in a fluid system for a single component of
velocity.
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In this case the walls are perfectly smooth and there is no thermal exchange
between the two.

� f = x . In the case of f = x , the proportion of colliding molecules, x , have
their velocities parallel to the wall reselected from the Maxwell–Boltzmann
distribution. This effectively removes (x × 100) % from the momentum of the
fluid close to the wall (as the average of the Maxwell–Boltzmann distribution is
zero), thereby creating a drag force between the fluid and wall.

The Maxwell–Boltzmann distribution is a function of wall temperature, and
the thermalized molecules enable the addition or removal of thermal energy
from the fluid. This can be used as a method of thermostating the system or
applying a temperature gradient or boundary condition to the flow.

The tangential momentum coefficient therefore acts to vary the exchange that
occurs between the fluid and wall in terms of thermal and bulk kinetic energy.
The reselection of the velocities also achieves molecular scattering of colliding
molecules, similar to the effect of a fully molecular wall, but averaged over a
large number of collisions.

� f = 1. This is the extreme case of perfect stick between the fluid and the wall.
In this case, 100 % of the colliding molecules undergo the thermalizing process,
removing all of the linear momentum of the fluid at the wall (as the average of
the velocities applied will be zero). This represents the condition of no slip
between the fluid and boundary, and the condition that the fluid and wall will
be at the same temperature at the boundary. This is not to be confused with the
no-slip condition used in continuum mechanics, as this extreme case is unlikely
and results from strong interaction forces in a molecularly sparse solid, whereas
the continuum no-slip condition occurs from an approximation of scale, as well
as frictional effects.

Arya et al. [61] demonstrated that the tangential momentum accommodation
coefficient was dependent on two dimensionless variables, the reduced roughness
and the reduced energy. The reduced roughness

σfw

L
(3.25)

is the ratio of the fluid–wall Lennard–Jones interaction radius, σfw, and the lattice
spacing, L . L is the diagonal spacing between solid molecule sites, shown in
Figure 3.6.

The reduced energy is defined as the ratio of the Lennard–Jones well depth,
εfw, to the thermal energy:

εfw

kbT
. (3.26)
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L

σ

Figure 3.6 Example of a solid lattice displaying the lattice spacing parameter L and the
wall molecule diameter σ .

They also found that f was dependent on the bulk velocity of the fluid, but this
only has an effect at large velocities.

By studying a fully molecular boundary, Arya et al. [61] were able to plot val-
ues for a wide range of f . Values for f are also confirmed by the work by Sokhan
et al. [60] who performed similar investigations for the tangential momentum ac-
commodation coefficient for the flow between parallel plates. Values for carbon
nanotubes have been studied in depth by Cooper et al. [80] and Bhatia et al. [81].

Implementation Because of the separate treatment of the parallel and perpen-
dicular components of the colliding molecule, the diffuse boundaries require a
more complex implementation than an interacting molecular wall. Because of the
soft sphere nature of the simulation, there are no instantaneous collisions, only
molecules that are interacting with the wall. It is therefore critical to clarify the
definition and criteria that a molecule near a boundary must satisfy if it is to
be considered as colliding. To be accepted as a colliding molecule, a molecule
must be:

� within the repulsive zone of the walls interaction potential;
� experience a change of direction perpendicular to the wall.

The first criteria is tested by calculating the perpendicular distance, d, between
the molecule and the wall, as illustrated in Figure 3.7. The section of boundary is
defined by the line between two points, stored in the boundary vector b:

b =
[

xb2 − xb1

yb2 − yb1

]
(3.27)
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Figure 3.7 Calculating distance, d , between the molecule and the wall from the position
vector, r , and the boundary vector, b; d has unit vector v.

and the position vector r is defined as the distance between the molecule (m) and
the start of the boundary, at point 1:

r =
[

xb1 − xm

yb1 − ym

]
. (3.28)

The unit vector, v̂, normal to the boundary is

v̂ =

[
yb2 − yb1

− (xb2 − xb1)

]
yb2 − yb1

− (xb2 − xb1)

. (3.29)

To find the distance d, the dot product of the position vector and the unit vector v̂

is taken as

α = |v̂· r | = |(xb2 − xb1)(yb1 − ym) − (xb1 − xm)(yb2 − yb1)|√
(xb2 − xb1)2 + (yb2 − yb1)2

, (3.30)

which can be simplified to

α = xm(y1 − y2) + ym(xb2 − xb1) + xb2 yb1 + xb1 yb2√
(xb2 − xb1)2 + (yb2 − yb1)2

. (3.31)

Distance can then be calculated by multiplying α by the direction v̂ and the mag-
nitude of r :

d = α|r |v̂, (3.32)
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Figure 3.8 Variation of the dot product with the molecular distance from the wall.

Which can then be used to calculate the strength of the interaction between the
molecule and the wall, which in turn can be used to detect the first criteria for a
colliding molecule, as described above, as well as calculating the repulsive force.

The second criteria is evaluated in a similar way. By looking at the dot prod-
uct of velocity and the unit vector perpendicular to the boundary, and monitoring
its change between time steps, the point at which the molecule stops moving to-
wards the boundary and starts moving away can be identified. At this point, the
sign of the dot product changes, as shown in Figure 3.8. If a molecule is consid-
ered to collide with the boundary, by satisfying the criteria described above, it is
then given a random number to be compared against the tangential momentum
accommodation coefficient, f . If this test is successful and the molecule is ac-
cepted for thermalization by the wall, the parallel component of velocity is found,
again by taking the dot product, but parallel to the boundary. This velocity is then
randomly picked from the Maxwell–Boltzmann distribution (Equation (3.24)) for
the temperature of the wall.

This boundary method provides a good approximation for solid boundaries
right down to the molecular scale [82], and as the scale of the simulation increases
and the number of collisions in the length and time scale of the system increases,
the accuracy of the approximation also increases.

3.2.5 Modified Boundary Potential

As these diffuse boundaries are modelled as smooth planes, a standard Lennard–
Jones interaction at the boundary does not take into account the depth of the solid.
If the solid is more than one layer of molecules thick, the fluid may experience a
stronger attractive force as the long-range attractive part of the potential of other
solid layers reaches into the fluid domain. Figure 3.9 shows this effect; the smooth
boundary is positioned at x = 0 and the effect of two layers within the solid is
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Figure 3.9 Total Lennard–Jones potential for three molecular layers.

shown. The resulting potential shows a much stronger attractive component. This
must be taken into account by the interaction potential between the solid and fluid,
and can be done by modifying the parameters, σ and ε, for the solid and fluid of
interest.

This section has developed a molecular fluid model capable of efficient sim-
ulation of systems containing large numbers of molecules. However, this model
handles the motion of individual molecules. The information from this model de-
scribes, but fails to characterize, the bulk fluid effects present in meso scale fluid
systems. The characterization of these bulk effects and the description of the fluid
in terms of its bulk properties is critical to engineering applications. The next
section implements a method for extracting such information from the molecular
system using the ensemble properties described in Section 1.2.1.

3.3 EXTRACTING LOCAL BULK PROPERTIES

The data possessed within the molecular flow model is chaotic and adjacent
molecules can possess very different properties that average out over a large num-
ber of molecules to an approximately stable value. To allow the examination of
bulk properties and their distribution throughout the flow domain, ensemble prop-
erties are assembled from local averages at discrete points through the flow field.
Each point is assigned a subdomain from which to draw its information. The num-
ber of molecules within each subdomain can vary significantly for a large number
to only a few. The approximating method must therefore be able to deal with these
potential problems. The bin averaging method presents a crude approximation that
has no refinement or weighting parameter, which gives noisy local averages even
with a large amount of data, making it impractical for property distributions over
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short simulation runs (time is critical, especially for simulations of large numbers
of molecules, within the meso scale). The smooth particle hydrodynamics (SPH)
method improves the approximation by applying a weighting (or kernel) function
to the approximation. The least squares approximation uses the strength of the
SPH method to fit a predetermined polynomial to the underlying property distri-
bution. This is the most demanding of the three methods (and requires a small
matrix inversion), but provides a good opportunity for high sampling resolution
in time and space.

3.3.1 Approximation Method

The upscaling of information needs to be done in such a way that no important
information is lost or altered. During this process some information is lost, as the
point of upscaling is to remove unnecessary detail and degrees of freedom. There-
fore, the information must be included into the assembly of the bulk properties.
There are several well-known interpolating schemes available, such as moving
least squares and smooth particle hydrodynamics that will be discussed along
with the simple bin averaging scheme. The methods below aim to construct local
ensemble averages of molecular properties at points placed throughout the do-
main, which together can be used to study the distribution of bulk properties over
the whole domain.

The most simple method of assembling bulk property distributions is the bin
averaging scheme.

3.3.2 Bin Averaging

The simplest way of averaging and upscaling molecular properties is the bin
averaging scheme. This is where the molecular domain is divided into discrete
cells and all the molecules in each cell are averaged to construct the ensemble
properties for that cell (Figure 3.10). The bin averaging scheme has significant
drawbacks. The resulting distributions can have significant variations, as adjacent
molecules could be in different cells and two molecules on opposite sides of the
same bin could have completely different properties but contribute equal weight-
ing to the average. The resulting distribution is rough and contains a substantial
amount of noise, and in order to be able to obtain smooth property distributions
throughout the flow field, a large sample time is necessary. This reduces the time
resolution of the samples that can be taken and can increase the overall time of
the system to get a stable steady result.

The bin averaging is, however, easy to implement and is still widely used to
investigate steady systems [60]. The drawbacks of this method lead to the search
for a more refined approach that will allow for better time resolution and shorter
sample times with less statistical noise.
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Figure 3.10 Bin averaging scheme.

3.3.3 Smooth Particle Hydrodynamics (SPH)

SPH, first presented by Lucy [69], is a continuum particle method that solves
continuum equations over a system of moving interpolation points [70, 71]. The
property values at any point throughout the fluid relies on the properties of the
surrounding points; it is the method of sampling these properties that has most
significance to this application. Instead of sampling the continuum properties, we
seek to use this approach to extract the local bulk properties from the molecular
motion at discrete nodes placed throughout the flow domain.

The sampling is done in a similar way to the molecular dynamics searching,
where the molecules around each node are evaluated, but the properties of each
node are given a weighting as a function of their proximity to the node. In this
way the molecules closest to the node contribute more than the molecules further
away, allowing the node to represent best the property value at that exact point in
the flow field. The resulting distribution is much smoother than the bin averag-
ing method, but is completely reliant on the strength of the weighting, or kernel
function.

3.3.3.1 Approximation

The approximation is constructed using an integral for the function based on the
delta function:

f (x) =
∫

�

f (x ′)δ(x − x ′) dx ′, (3.33)

δ(x − x ′) =
{

1, x = x ′

0, x �= x ′

}
. (3.34)
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h

i

Figure 3.11 Smoothing length, h.

The first equation is exact as the function value is calculated at x , integrated over
its volume. The delta function, however, is of no use when approximating many
molecules so a weighting function is used instead. This replacement causes the
function to become representative, and therefore approximate:

f (x) ≈
∫

�

f (x ′)w(x − x ′, h) dx ′, (3.35)

where w(x − x ′, h) is the kernel weight function with h being the smoothing
length, also known as the radius of the zone of influence, as shown in Figure
3.11. The kernel function is of critical importance to SPH as there is no assump-
tion made about the distribution of data with which to form an approximation; it
is solely the strength of the kernel that governs the accuracy. The integral is con-
verted to a summation of a set of molecules to be used in a simulation, with the ap-
proximation of property f (x) denoted by the addition of angled brackets 〈 f (x)〉:

〈 f (x)〉 =
N∑

j=1

f (x ′)w(x − x ′, h)�V . (3.36)

This sums the weighted contribution for all the particles, j = 1, 2, 3, . . . , N
within the smoothing length, or the zone of influence of the approximated point
to achieve the approximate value at point i .



P1: VQN

c03 JWBK251-Ransing June 20, 2008 10:51 Printer Name: Yet to Come

EXTRACTING LOCAL BULK PROPERTIES 85

The derivative of a function, and hence the flux of a property, can also be
represented by the SPH approximation by substituting f (x) for �· f (x) in the
above equation:

〈�· f (x)〉 =
∫

�

[
�· f (x ′)

]
w(x − x ′, h) dx ′. (3.37)

3.3.3.2 Errors

As the approximation relies mainly on the strength of the kernel, to perform an
error analysis Equation (3.37) is expanded in a Taylor series within the integral
form:

〈 f (x)〉 =
∫

�

{
f (x) + f ′(x)(x − x ′) + r [(x − x ′)2]

}
w(x − x ′, h) dx ′, (3.38)

〈 f (x)〉 = f (x)
∫

�

w(x − x ′, h)dx ′ + f ′(x)
∫

�

(x ′ − x)w(x − x ′, h)dx ′ + r (h2),

(3.39)

where r is the residual and the first integral, f (x)
∫
�

w(x − x ′, h) dx ′, can be
simplified from the continuity conditions of the weighting functions discussed
previously, where the integral of the kernel is equal to 1:

∫
�

w(x − x ′, h) dx ′ = 1. (3.40)

The kernel is also an even function, so

∫
�

(x ′ − x)w(x − x ′, h) dx ′ = 0. (3.41)

This reduces the error function down to

〈 f (x)〉 = f (x) + r (h2). (3.42)

Therefore the error of the SPH kernel approximation of a function is of the
order h2.

The smooth particle hydrodynamics (SPH) method adds a weighting (or
kernel) function to the approximation, but as the SPH approximation is only based
on the kernel, it is best suited to stable property distributions, where there is little
noise and values change slowly and steadily throughout the subdomain.
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3.3.4 Moving Least Squares

3.3.4.1 Method

The moving least squares approximation scheme relies on the construction of
many least squares approximations applied over a large number of points [72]. It
is generally used for creating smooth surfaces over mesh structures in computer
graphics. It is generally applied as an approximation to all points in the system,
taking each one in turn and constructing an approximation from its neighbours.
This is best described in one dimension (Figure 3.12). In the whole domain there
are nodes distributed with positions, x , so a start is made by selecting an arbitrary
node, i . This node is then assigned a ‘zone of influence’ and all neighbouring
particles contribute to the local approximation of the function. The distance from
the central node, i , determines the strength of the influence a neighbour has on
the approximation so that nodes closer to i have more influence than a node close
to the limit of the zone.

These approximations are performed on every node, so that the end result is
a system of particles with associated functions describing the approximation at
each node. The combination of all of the local approximations leads to a global
approximation over the whole simulation domain.

The moving least squares method applies a least squares approximation of the
neighbourhood at points throughout the domain in order to construct a global
approximation (Figure 3.13). In the molecular upscaling framework, the molec-
ular properties are averaged at points defined by a coarse fixed grid over the do-
main. At each point the ensemble bulk properties are constructed as follows: a set
of N molecules within a system, with individual positions xi , yi and zi having

Node, i

Zone of influence

Neighbourhood of points

Figure 3.12 Least squares neighbourhood approximation.
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a) Local approximations

b) Global approximated function

Figure 3.13 MLS local to global approximation.

associated parameter values ui for i = 1 to N . The calculation will be il-
lustrated using two dimensions for the purpose of simplicity and readability.
Therefore, for a system of n neighbouring points with positions xi and yi

(i = 1, 2, 3, . . . , n), the parameters are stored as

uT = {
u1 u2 · · · ui

}
. (3.43)

The local approximation at the node (x , y) of U , U h , is assumed to take the form
of a polynomial over the local subdomain. For this example, the approximation
will use a quadratic basis function

U h = a0 + a1x + a2 y + a3x2 + a4xy + a5 y2, (3.44)

which can be written in matrix form as

U h = PTa, (3.45)

where P contains the basis function (which is in this case quadratic) and a con-
tains the coefficients

PT = {
1 x y x2 xy y2

}
, (3.46)

a = {
a0 a1 a2 a3 a4 a5

}
. (3.47)
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The coefficients must be found in order to complete the approximation, which is
done by considering the function describing the error in the approximation at each
molecule:

Error = [U h(x, y) − Ui ] (3.48)

over molecules i = 1, 2, 3, . . . , N . Then sum the error over N local molecules
using a sum weighted as a function of the molecules distance from the central
node:

J =
N∑

i=1

w(x − xi , y − yi )[U
h(x, y) − Ui ]. (3.49)

Minimization of the weighted error function, Equation (3.49), leads to

(wPT P)a = (wPT)u, (3.50)

Aa = Bu, (3.51)

where

A =




w(x − x1, y − y1)
w(x − x2, y − y2)

...
w(x − xi , y − yi )







1 x y x2 xy y2

x x2 xy x3 x2 y xy2

y xy y2 x2 y xy2 y3

x2 x3 x2 y x4 x3 y x2 y2

xy x2 y xy2 x3 y x2 y2 xy3

y2 xy2 y3 x2 y2 xy3 y4




, (3.52)

B =




w(x − x1, y − y1)
w(x − x2, y − y2)

...
w(x − xi , y − yi )




[
1 x y x2 xy y2

]
, (3.53)

U T = [
u1 u2 · · · ui

]
, (3.54)

a = {
a0 a1 a2 a3 a4 a5

}
. (3.55)

Therefore the a coefficients can be found by solving

a = A−1u B. (3.56)
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Once the coefficients have been calculated, they can be used in the original ap-
proximation for the local parameter values, Equation (3.44), to yield the approxi-
mated value of the bulk property U at the node at (x , y).

3.3.4.2 Basis functions

The basis or approximating function used in the approximation depends on two
conditions, the dimensionality of the system and the order of the approximation
required. Basis functions are constructed using a form of Pascal’s triangle, as
shown in Figure 3.14.

The triangle is shown in three dimensions with the first two levels shown. A
linear basis function is constructed by summing all the components in the linear
level and above:

P(x, y, z) = 1 + x + y + z. (3.57)

The quadratic basis function is constructed in the same way, by summing all the
components in and above the quadratic level:

P(x, y, z) = 1 + x + y + z + x2 + y2 + z2 + xy + yz + xz. (3.58)

These are the full basis functions for three-dimensional systems, so for systems
with fewer dimensions simply set the coordinates that are not needed to zero and

Quadratic components

Linear components

z 2

Z
Z

Y

X

x

x 2 xz

y
 

yz  

1

xy

y 2

Zz

Figure 3.14 Basis function construction.
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Figure 3.15 The difference between linear and quadratic basis functions for a one-
dimensional example with five sample points (approximated around the centre point).

the basis reduces, for example, to two dimensions:

for z = 0, (3.59)

P = 1 + x + y + x2 + xy + y2. (3.60)

Higher-order basis functions can provide improved accuracy, but as the or-
der increases the number of terms in the basis function increase substantially.
Figure 3.15 demonstrates the difference between linear and quadratic approxima-
tions for a sample data set. Comparing the above examples of three-dimensional
basis functions for linear and quadratic forms shows an extra six terms in the
quadratic form. This may not appear as a great increase, but this increases the size
of the A matrix from a 4 × 4 to a 10 × 10 matrix, which can add a significant
amount of time to a simulation, especially when a large number of nodes are being
solved. For this reason, cubic basis functions are rarely used as the A matrix is al-
most double the size of the quadratic version. A balance must be reached between
accuracy and practicality.

3.3.4.3 Solving equations

In order to determine the coefficients for the local approximation, Equation (3.44),
the solution to Equation (3.56) must be found. The equation is basically the matrix
form of a set of simultaneous equations, so the analytical solution is fairly trivial
and easy to solve by hand for one or two calculations by simply inverting the A
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matrix. However, to be used in a simulation this solution to the equation must be
found many times for every time step, a task that cannot be done by hand. There
are many methods for solving such sets of equations, but LU decomposition is
used in this case because it provides an efficient solution, without the need to
invert large matrices.

LU decomposition In order to solve a system of equations of the form

Ax = B, (3.61)

where A is an N × N matrix, B is a vector of size N and X is the vector of N
unknowns. LU decomposition starts by decomposing matrix A into two diagonal
matrices, one upper and one lower as follows, for N = 3:

A = LU, (3.62)


 A1,1 A1,2 A1,3

A2,1 A2,2 A2,3

A3,1 A3,2 A3,3


 =


 L1,1

L2,1 L2,2

L3,1 L3,2 L3,3





U1,1 U1,2 U1,3

U2,2 U2,3

U3,3


 , (3.63)

so that 
 A1,1 A1,2 A1,3

A2,1 A2,2 A2,3

A3,1 A3,2 A3,3


 =


 L1,1U1,1 L1,1U1,2 U,U,

L2,1U1,1 L2,2U1,2 + L2,2U2,2 U2,1U1,3 + L2,2U2,3

L3,1U1,2 L3,2U1,2 + L3,2U2,2 L3,1U1,3 + L3,2U2,3 + L3,3U2,3


 (3.64)

This gives N × N equations for N × N + N unknowns as the decomposition is
not unique, but can be solved by Crout’s method as follows:

Ax = LU x = L(U x) = B, (3.65)

B = Ly, y = U x . (3.66)

Now solve for y using back-substitution:

y = 1

Li,i


bi

i−1∑
j=1

Li, j y j


 , i = 1, 2, 3, . . . , N . (3.67)
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Use the result of y to solve for x using forward-substitution.

x = 1

Ui,i


yi

N∑
j=i+1

Ui, j x j


 , i = 1, 2, 3, . . . , N , (3.68)

which results in the values of the original unknowns, x . LU decompositions, how-
ever, are still unable to solve for matrices with singularities (where the determi-
nant is zero).

3.3.5 Weight Functions

The error function used to find the coefficients for the approximating function is
calculated at each point and added as a weighted sum. The weighting function
determines how important it is to get the error at that point to a minimum so that
points closer to the central point are approximated with a higher accuracy than
those further away. There are five criteria that all weighting functions must satisfy:

1. They must be > 0 within the subdomain of centre particle. Particles within
the subdomain of the central point are allowed to influence the local
approximation.

2. They must be = 0 outside the subdomain of centre particle. Particles outside
the subdomain are not allowed to contribute to the local approximation.

3. The integral over the subdomain must be equal to one. This is known as the
‘consistency condition’, which is a condition that states that the weighting
function is sufficient to interpolate the minimum requirement (constant func-
tion) exactly; e.g:

f (x) = c, c = constant, (3.69)

approximated as

〈 f (x)〉 = f (x) = c. (3.70)

Therefore

〈 f (x)〉 =
∫

�

f (x)w(x) dx = c, (3.71)

which becomes

c
∫

�

w(x) dx = c. (3.72)
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For this to be true,
∫
�

w(x) dx must be equal to one. When this condition is
satisfied, the approximation is able to integrate, at least, the minimum of a
constant function exactly..

4. They must decrease as the distance from the centre increases. The particles
within the subdomain that are closer to the centre point are given a higher
weighting in the approximation..

5. They must approach ‘Dirac’s delta function’ as the radius of the subdomain
r → 0. The delta function, accredited to Paul Dirac, is a function that has the
value of infinity at x = 0 and zero everywhere else. It is simple to see that
as the radius of the weight function decreases, the zone of influence shrinks
around the central point, where it is a maximum, and zero elsewhere.

These conditions describe a weighting function that will give the best approxi-
mation close to the central point. The fifth condition is not always necessary as it
is difficult to find a function that fits the other four criteria and not the fifth, but is
included for completeness. An additional condition usually added is that the func-
tion is positive over all the subdomain; however, there are exceptions to this rule
such as the weight functions used in point interpolation methods (PIM). There are
three basic weighting functions in general use: the quadratic spline, Gaussian and
exponential. All are a function of the radius from the central node, i .

In one, two and three dimensions,

r = x − xi for one dimension, (3.73)

r =
√

(x − xi ) + (y − yi ) for two dimensions, (3.74)

r =
√

(x − xi ) + (y − yi ) + (z − zi ) for three dimensions, (3.75)

and the weighting functions are

Quadratic spline:

w(r ) = 1 − 6r2 + 8r3 − 3r4, (3.76)

Gaussian:

w(r ) = exp−(2.5r2), (3.77)

Exponential:

w(r ) = 1

100r
. (3.78)
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Figure 3.16 The three most common weighting functions: quadratic spline, Gaussian and
exponential.

The choice of weighting function has a substantial influence on the local ap-
proximation generated by the MLS method, as will be shown in later chapters.
The profiles of the weighting functions are shown in Figure 3.16.

3.3.6 Grid Structure Implementation

The least squares approximations are performed at nodes placed within the flow
field. The three-dimensional molecular domain is overlaid with a grid of nodes,
in either one, two or three dimensions, depending on the problem and the distri-
butions of interest or expected.

Figure 3.17 shows a representation of a molecular region overlaid by a two-
dimensional net of nodes, each having a zone of influence. Each molecule within
the zone of a node contributes to the approximation at that node and is weighted
as a function of is distance.

The molecular parameters are collected from the molecules at intervals during
the simulation. Ensembles for density, pressure and temperature are stored in a
separate A matrix and B (of the least squares approximation described above)
vector for each node. As described in Section 3.3.4, the matrices are used to form
the vector of coefficients of the fitted polynomial basis function

A = (wPT P), B = (wPT), (3.79)

Aa = Bu, (3.80)
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W(Rcut)

R
cut

Rcut

Figure 3.17 Net of approximating nodes placed over the molecular flow region.
Molecules within each node subdomain contribute to the property average at that node
with weighting W (rcut), according to their proximity, Rcut.

where P is the basis function (a function of position of the molecule relative
to the node) and w is the weighting function. For convenience, the B vector is
combined with the vector of property values, u, which is a function of the phase
space (position and momentum of the molecule) position of each molecule within
the subdomain.

The sampling of the properties in no way influences the dynamics of the
molecules in the molecular system, which are used purely to extract information
from the molecular model. It is, however, important to consider the way in which
the sampling is done in order to present the best data for the averages without
losing information. It is also important to keep the number of sampling points to
a minimum.

3.3.7 Sampling

When ensemble averages are constructed it is important to make the distinction
between samples and ensembles. In this method, a sample is taken as an instanta-
neous snapshot of the local data at each node. Ensembles are generated using the
data collected over a number of these samples over a period of simulation time.
Molecular data collected in different ensembles can construct the different bulk
fluid properties at these local points. A number of ensemble averages can be taken
over the duration of the simulation in order to capture time-dependent effects, as
well as providing a measure of the approach to the equilibrium state.

Each individual sample is combined into the A matrix and B vector, and a num-
ber of samples are used to make an ensemble average at the node, providing an
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Simulation time
Ensemble average

Sample time

Figure 3.18 Highlighting the differences between samples collected to make up the en-
semble averages, accumulated at points throughout the simulation time.

approximate value for the parameter over time as well as space in the simulation
(Figure 3.18). The length of simulation time between samples and the length of
time over which the approximations are computed is key to stability and accuracy
in the ensemble averages.

The objective of the sampling is to provide the ensemble with data about the
bulk state of the fluid, but information is not required about the behaviour of
individual molecules. To ensure that it is the bulk behaviour and not individual
molecular behaviour that is being fed into the ensemble, the information is ex-
pressed in terms of the local phase space. Phase space is a function of the position
and momentum of all molecules in the system. For a local bulk fluid property,
there is a region that contains all of the available phase space positions for the
current state and time. By sampling as many points in the phase space available
to the local molecules, the best description of the state of the fluid at that point
can be found. If samples are taken too often, only a narrow portion of phase space
can be sampled. If, however, there is time for the molecules to interact and move
within the domain, the next sample may contain different data about the same
available phase space volume. If the sample time is too long, the sampling be-
comes inefficient and reduces the amount of useful data that are collected during
a simulation.

Similarly, if the ensemble averages of the samples are taken over a short period
of time, there is insufficient sample data available to represent the available phase
space to provide a stable ensemble average. If the averaging time is too long, then
an unnecessary amount of information is contributed to the approximation and the
time resolution is unnecessarily decreased.

In the next chapter, the effect of changing the sample and ensemble times is
investigated and its effect on the resulting bulk properties that are extracted is
found. These two sections have shown the implementation of a method designed
to simulate meso scale fluid systems from a bottom-up approach. The developed
method relies on a molecular scale fluid model and bulk properties are extracted
from the underlying molecular motion. The next section examines the operation
of the molecular model in more detail.

3.4 VERIFICATION OF PROPOSED MESO
SCALE MODEL

The information in the above section has discussed how fluid can be modelled
via the consideration of physics on a molecular scale. This section will provide
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Figure 3.19 Cubic control volume considered away from any physical boundaries.

an example of a molecular dynamic simulation to demonstrate the operation of
the developed model. For this, the example considered will be a cubic volume
of methane molecules suspended away from any boundaries to allow the use of
periodic boundary conditions in all three dimensions (Figure 3.19).

The 512 methane molecules (CH4) used in this example interact via the soft
sphere Lennard–Jones 6-12 potential and move according to Newton’s law via the
Verlet algorithm as described above. Although this is a simple steady state system,
this example can demonstrate the application of molecular dynamic simulations.

To start the simulation, the number of molecules and their properties are input
into the initialization stage of the simulation. This allows a lattice of molecules
to be created to fill the domain with the given number in order to generate the
required density. The set temperature is then used to apply random velocities to
the molecules according to the Boltzmann distribution.

The next part of the simulation is to equilibrate, or settle, the molecules, as
the initial lattice is not a stable maintainable state, but a lattice makes for easy
initial placement. During the breakout of this lattice, there is also large variations
in molecular properties.

Figure 3.20 displays what happens when the molecules in the lattice are re-
laxed. Here, potential (PE), kinetic (KE) and total energies (E total) are plot-
ted from t = 0 to t = 1 ps. During the equilibration period, the kinetic energy
(and hence the temperature) is kept constant. This is because while the molecules
are settling down they can be exposed to unphysical and high interaction forces,
which can cause the energy of the system to become out of control. For this, sim-
ple velocity scaling is used.

Velocity scaling is a crude method of temperature control in molecular sys-
tems, where the kinetic energy of the molecules calculated using

EKE,t = 1
2 mv2 (3.81)
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Figure 3.20 Top: kinetic, potential and total energies for initial stages of equilibration.
Bottom: distribution of molecules at stages throughout the equilibration process: a, initial
lattice; b, peak in potential energy; c, stabilization of a randomized system.

is compared to the kinetic energy of the initial temperature,

EKE,t=0 = 3
2 NkbT . (3.82)

The scaling factor is then

α = EKE,t

EKE,t=0
, (3.83)

which is then used to scale all the velocities of all the molecules in the system
using

vi = viα (3.84)

to maintain the global kinetic energy at each time step.
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This is a crude and unphysical approach to temperature control and is only
suitable for steady state simulations to achieve equilibrium. For more complex
simulations, such as those examined later, a more refined approach is required to
control temperature.

Consequently, the only variation in energy comes from the potential energy
component in the simulation. The plot of energies shown in Figure 3.20 is for the
initial breakout of the lattice and three parts, a, b and c, are identified..

� The initial lattice (a) is the potential energy value computed from the initial
positions of molecules..

� Molecules move with initial velocity and slack across periodic boundaries is
taken up. The peak in potential energy (b) occurs from the momentum of par-
ticles crossing empty spaces..

� Potential energy begins to stabilize (c), molecules are constantly moving, col-
liding and exchanging momentum, but global potential energy is conserved.
Fluctuations occur from molecules changing state, but the system is in the
equilibrium state.

The equilibrium state can also be monitored using the order parameter described
previously, tending from one at point a to zero at point c.

To check the thermodynamic state of the fluid, the velocity distribution in each
of the three dimensions can be compared to the Boltzmann distribution, as shown
in Figure 3.21. If the distributions match, then a stable thermodynamics state
could be present, and when combined with the other equilibrium tests, it can
identify when the whole system is stable. Figure 3.21 shows the instantaneous
distribution of speeds of the molecules within the system and is shown against the
exact distribution with 15 % error bars.

Once this equilibrium state has been reached, the production stage can start,
which collects all the useful properties of the simulation. At the start of the pro-
duction stage, the velocity scaling is removed, effectively freeing the simulation
of any constraints. At this point the global ensemble averages can start to take
data from the molecules in the system.

On the left of Figure 3.22 is a plot of the equilibrium stage, similar to Figure
3.20, but the time has been extended to 20 ps. Here, the initial peaks are present
as the lattice structure breaks down, but then the potential energy remains approx-
imately constant. On the right is the production run that follows the equilibration
stage. In this case the production run has also been performed over 20 ps but
the velocity scaling is removed. With the kinetic energy allowed to change, the
constant exchange between potential and kinetic energies can be observed. In the
equilibration stage, the fluctuations of the potential energy were directly translated
on to the total energy because the kinetic energy was being continually rescaled.
Now the kinetic energy has been released, the molecules exchange their kinetic
and potential energies in perfectly elastic collisions, such that the net energy in the
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Figure 3.21 Distribution of velocities in a molecular simulation compared to a Boltz-
mann distribution, shown with 15 % error bars.

system remains constant. It is during this period that the ensemble properties may
be taken over the desired simulation time, as this is the period where the system
is in steady state.

The simulations so far have been using a control volume of 512 molecules.
Figure 3.23 shows a plot of the variation in the potential energy per molecule
with respect to the number of molecules in the simulation. All simulations have
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Figure 3.22 Potential (PE), kinetic (KE) and total energies during the equilibration and
production stages of the simulation.
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Figure 3.23 Average potential energy per molecule versus the number of molecules in
the periodic cell.

the same density and the volume per molecule remains constant, but the average
potential energy gathered in the simulation differs significantly. There is a clear
region where there are enough molecules to predict the potential energy of the
simulation correctly and the energy per molecule is approximately constant. Also
from this graph, it is clear that increasing the system size from 512 molecules to
1000 would not have a significant effect on the results, and present a much higher
demand on the computational resources.

If this potential energy is to be accepted as correct, there needs to be a bench-
mark with which to test the results for the simulation. This can be done by as-
sembling an ensemble average for the pressure using a form of the virial equation
of state summed over all the interactions and molecules. This equation of state
allows the calculation of global pressure from the kinetic and potential energy in
the system. The simulation of the above system yielded a global pressure of

Psim = 44.28 MPa. (3.85)

which can be compared to the pressure obtained from an analytical equation of
state, in this case the Lennard–Jones equation of state, which yields

Pl j = 44.53 MPa. (3.86)

This gives the difference in pressure between the simulation result and the analyti-
cal pressure to be 0.58 %, which gives confidence in the accuracy of the simulation
model.
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3.5 SUMMARY

This chapter has shown and explained a molecular physics based approach to
meso scale fluid simulation. The molecular model is capable of handling very
large numbers of molecules using processing power and memory requirements
efficiently. This is further improved by the implementation of the diffuse boundary
conditions, which allow the computational resources to concentrate on the highly
dynamic part of the simulation, the fluid.

The bulk property averaging scheme allows the fluid properties and fluid ef-
fects displayed by the bulk of the fluid to be characterized as distributions within
the flow field. The implementation of this method is in the form of a versatile
node-based structure. Property interrogation nodes can be placed throughout the
domain wherever needed and sample and ensemble times can be tuned to suit
the current application. These parameters are covered in more depth in the case
studies in the next chapter.
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4
Enhancements to the Meso
Scale Model

Aim. This chapter explores the limitations of the meso scale approach dis-
cussed in the previous chapter. Using these case studies the reader should
see the depth of knowledge available from molecular models and how it
may be used to characterize fluid systems.

4.1 INTRODUCTION

This chapter focuses on the further development of the meso scale approach dis-
cussed in the previous chapter. The development starts by extending the method
to handle flowing fluids. When a fluid flows through a pipe or channel, the interac-
tion between the fluid and solid molecules causes the molecules close to the wall
to slow down, as has been discussed in the viscous fluid discussion in Chapter 1.
This, combined with the internal collisions of fluid molecules causes a boundary
layer to form. Capturing this boundary layer in the form of a velocity profile can
tell us a great deal about the fluid behaviour, as will be seen in Chapter 5. The
section discusses the generation and capture of fluid flow behaviour in molecu-
lar systems. The first issue to be discussed is the method of driving molecules to
generate a flow.

This extended method is then explored and tested in a number of case stud-
ies. The first case studies focus on the parameters of the bulk property extraction
scheme, examining the sample and ensemble length, radius of sub-domain and
weighting function. These studies are performed on a fluid at rest and do not em-
ploy the thermal control element of the method.

Fluid Properties at Nano/Meso Scale: A Numerical Treatment P. Dyson, R. S. Ransing, P. M. Williams and P. R. Williams
© 2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-75124-4
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The second section of case studies look at the collected bulk properties as dis-
tributions throughout the domain. A temperature gradient through a fluid confined
between two parallel plates is considered on a fluid at rest. In this example ther-
mal energy is propagated by the thermal motion of the molecules in the fluid. A
study of a fluid flowing between parallel plates is also considered. This exam-
ple employs both the thermostat and flow driving elements of the model, and is
compared with results published in literature.

4.2 DRIVING FORCES

In order to generate a flow, there must be a driving force to push the molecules
between one point and the next. A flow can be generated in a number of ways,
varying in their complexity and computational demand. In the following section,
methods for generating fluid/molecular flows will be presented and discussed,
focusing on their application to meso scale systems.

The first method is the most demanding computationally, but presents the
simplest concept. It relies on three components, a high-pressure reservoir, a low
pressure reservoir and a test section that connects them, as shown in Figure 4.1.

The high-pressure reservoir is maintained at a constant high pressure by re-
cycling the molecules that exit the test section into the low-pressure reservoir.
This has the effect of keeping the low-pressure reservoir at a vacuum, but the
high-pressure reservoir must be sufficiently large to smooth out the effect of
molecules being inserted, which can lead to anomalies and discontinuities if they
are inserted too close to the entrance of the test section, or overlapping another
molecule.

High Pressure

Test Section

Low Pressure

Figure 4.1 Schematic of molecules driven through the test section by maintaining two
reservoirs at different pressures. The low-pressure reservoir is usually maintained at a
vacuum.
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This approach to flow generation needs a very large number of molecules,
most of which are not within the test section and contribute little to the results
of the simulation. This method does, however, allow pressure-driven flows to be
directly modelled in a controlled and stable environment. However, in order to
model the flow of fluid or molecules through a meso scale test section, the number
of molecules needed would be prohibitively large.

Two similar, but reduced, approaches were developed by Liao and Yip [73]
and Sun and Ebner [77]. The first, by Liao and Yip, is known as the reflecting
particle method (RPM) [73]. This method removes the large reservoir and uses
an extended part of the test section, with periodic boundary conditions at each
end, to form a smaller reservoir in line with the flow. The high and low pressures
are generated by using a selective membrane at some point along the flow, which
allows molecules to pass freely across in one direction, but in the other direction
a proportion of the molecules are reflected back. Figure 4.2 demonstrates the ap-
plication of the membrane to model pressure-driven flow along a test section. The
pressure difference can be controlled by altering the probability of reflection of
the membrane.

The second approach is by Sun and Ebner [77] where the high- and low-
pressure regions are created by replacing the periodic boundary conditions with
a source region and a sink region. The sink is maintained at a vacuum by re-
moving all molecules from the system that enter this region. The source region,
at the opposite end of the cell, is a small volume with a movable boundary at
the end. This boundary acts as a piston, reducing the volume of the source re-
gion and pushing the molecules into the volume considered by the simulation.
Once the boundary has travelled a short distance, the density of the system is
measured and the boundary resets to its original position; the void created fills
with enough molecules of the same density. Molecules are added with velocities
as described by the Maxwell velocity distribution at the temperature of the wall.
This approach maintains a pressure gradient between the source and sink regions,
causing a flow of molecules. The number of molecules injected and the volume

Test section

Periodic
boundaries

Periodic
boundaries

RPM membrane
Low Pressure

Free pass

Reflected with
probability, p

Pass with 
probability (1-p)

High
Pressure

Figure 4.2 Left: the reflecting particle method, where molecules may pass freely in one
direction, but are reflected with probability p when exiting the ‘high-pressure’ region.
Right: the RPM membrane used to investigate channel flow. The test section must be clear
of the membrane.
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swept by the boundary is very small to minimize oscillations occurring as the new
particles break out of the regular lattice used initially to position the particles. Sun
and Ebner applied this successfully in two dimensions to study compressible flow
[77] and has the potential to be applied in three dimensions.

By using these methods of applying a pressure gradient to drive the flow of
molecules, force is transmitted in a very natural way, through the interactions of
the particles. This is useful in modelling the reaction of a fluid to pressure gra-
dients, as the pressure and density vary continuously along the length of the test
section between the source and sink regions. However, this is not useful for con-
sidering steady, fully developed flows, which model the flow in channels with no
density variation along their length (an infinitely long test section). These systems
require a different approach.

To model fully developed flows, Sokhan et al. [60] modelled a driven flow be-
tween parallel plates by applying a uniform acceleration, in the required direction
of flow, uniformly to all molecules in the system. The application of an accelera-
tion is similar in a way to a gravitational effect pulling the molecules along the test
section, although the acceleration is typically much larger. This, however, creates
the problem that by applying an external force to the molecules energy is added
to the closed system. As this external work is being done on the system in order
to approximate the effect of a constant pressure gradient (effectively applied over
an infinitely long section), the energy added to the molecules must be removed.
The energy is removed by the application of a thermostat.

The simplest form of thermostat, velocity scaling, has been described in Sec-
tion 3.4, but is far too crude for this application as temperature must be controlled
throughout the duration of the simulation, even during the production phase.

4.3 THERMOSTATS

The aim of a thermostat is to maintain a control on the temperature, and hence
kinetic energy, globally within the system. However, the way in which this is
done is critical as controlling/altering the energy of molecules within the system
affects the dynamic behaviour of the whole system. Control must be maintained
without having an effect on the system behaviour. If energy is being added to the
system in the form of an acceleration to model the effect of a pressure gradient
acting in one direction, it should have the effect of influencing the proportions of
energy within the system, but not change its global value.

4.3.1 Gaussian Thermostat

The Gaussian thermostat aims to control the temperature of the system by using
Gauss’s principle of least constraint [83]. The principle of least constraint states
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that the constrained trajectories actually followed should deviate as little as pos-
sible from the trajectories of the unconstrained equations of motion.

In the motion of the molecules in the system, the equation of motion is simply
Newton’s law,

F = ma, (4.1)

which we wish to constrain to a constant global temperature, leading to the for-
mation of a constraint function that constrains the system temperature to the set
temperature, as

g(r, v, t) = 1

2

N∑
i=1

mv2 − 3

2
NkbT = 0, (4.2)

which is the difference between the system temperature and the temperature set
by value T . Differentiating once with respect to time gives the equation for the
constraint plane

N∑
i=1

mivi ai = 0 (4.3)

Assuming that the unconstrained equations of motion lead the simulation away
from the constraint surface, the equations of motion are corrected by considering
the function of the square of the curvature [84], C :

C = 1

2

N∑
i=1

mi

(
ai − Fi

mi

)2

. (4.4)

The physical accelerations in the system correspond to the minimum value of C ,
so for an unconstrained system, C = 0 and the system evolves under Newton’s
equations. This leads to the constrained equation of motion:

ai mi = Fi − λvi mi , (4.5)

where λ is the friction factor applied to the molecules as scaling by their momen-
tum and defined as

λ =
∑N

i=1 Fivi∑N
i=1 miv

2
i

(4.6)
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Equations (4.5) and (4.6) are known and implemented together as the Gaussian
isokinetic equations of motion. It is important to note that the scaling/friction fac-
tor is different to that used in the velocity scaling approach, and friction/scaling is
applied as a function of the individual molecule momentum.

4.3.2 Nosé–Hoover

The Nosé–Hoover thermostat [85, 86] is a method of temperature control that is
based on the inclusion of an extra parameter in Nosé–Hoover dynamics coordinate
space [87]. This means the inclusion of the thermostat parameter, ξ , the second
derivative of which is simply a function of the kinetic energy of the system and
the temperature:

ξ̈ = 1

Q

[
N∑

i=1

miv
2
i − NfkbT

]
, (4.7)

where Nf is the number of degrees of freedom of the system. This equation for
ξ̈ is the difference between the actual and set temperature of the system, which
is multiplied by the reciprocal of a weighting function, Q, and can be defined
as

Q = NfkbT τ 2, (4.8)

where τ 2 is the characteristic time scale of the motions of real particles [88]. This
weighting function controls the application of the thermostat and can be adjusted
for particular applications. A low weighting function can cause high-frequency
oscillations in ξ̇ , where as a high value it can overconstrain the system.

The Nosé–Hoover thermostat is used in this method because its level of control
can be tuned to the specific system of interest using the mass parameter, allow-
ing the thermostat to work effectively while applying the minimum of constraint
on the system. It is, however more complex to implement it in the equation of
motion; the implementation will be considered next.

4.3.2.1 Implementation in the proposed meso scale model

The thermostat parameter therefore has its own equation of motion and can be in-
cluded in the velocity Verlet equations of motion of the molecules. The equations
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of motion for the complete system proceed through the simulation time as
follows:

1. Thermostat parameters and mass Q are computed:

ξ̈ (t) = 1

Q

[
N∑

i=1

mivi (t)
2 − NfkbT

]
,

ξ̇ (t + δt/2) = ξ̇ (t) + ξ̈ (t)δt/2,

ξ (t + δt) = ξ (t) + ξ̇ (t + δt/2)δt.

2. Molecular velocities and positions are updated, including the corrections from
the thermostat parameter, using the velocity Verlet algorithm:

vi (t + δt/2) = vi (t) + [ai (t) − vi (t)ξ̇ (t + δt/2)]δt/2,

ri (t + δt) = ri (t) + vi (t + δt/2)δt.

3. Molecular forces are updated using interaction and boundary forces, F = ma.

4. Complete the time step for the velocity of molecules and the thermostat pa-
rameter:

vi (t + δt) = vi (t + δt/2) + [ai (t + δt) − vi (t + δt)ξ̇ (t + δt)]δt/2,

ξ̇ (t + δt) = ξ̇ (t + δt/2) +
[

N∑
i=1

mivi (t + δt)2 − NfkbT

]
δt

2Q
.

This coupled equation is then solved using the iterative Newton–Raphson
method.

These thermostats allow for the control of molecular systems, while present-
ing the minimum effect on the dynamics of the system. This allows for molecules
to be driven by a pressure gradient, modelled by an acceleration applied to the
molecules. However, with such a complex system operating, there needs to be
careful benchmark tests made to make sure of the accuracy of the simulated
molecules.
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4.4 CASE STUDIES

To explore that capabilities of the developed approach, a number of case stud-
ies are presented. These are split into two sections, a study of the parameters
of the bulk property collection scheme and an examination of temperature- and
flow-driven systems. The initial simulations are performed with the thermostat
disabled, and thus a temperature control is not necessary, but the simulation of a
driven flow has the thermostat feature enabled.

4.4.1 Sampling

To study the parameters for the extraction of the ensemble averages, a molecular
scale system is used to provide the most challenging bulk method. The reason for
this is twofold: to reduce the computational load of the simulations to allow many
simulations to be performed in a reasonable amount of time and, second, with
only a few molecules, the least squared approximating nodes are starved for data,
providing an excellent test for the performance of this approach at its weakest
point, systems with low numbers of molecules.

To test the operation and sensitivity of these parameters, a simple molecular
dynamics simulation is used as a demonstration, and is set up in a similar way
to the simulation presented in Section 3.4. For this application, the limits of the
system are set to a 15 nm × 15 nm × 8.3 nm box, containing 5104 methane
molecules interacting with a Lennard–Jones 12-6 potential. Periodic boundary
conditions are applied in all three dimensions. The fluid is permanently at rest,
with motion occurring only from internal thermal diffusion for the system tem-
perature of 300 K. Within the molecular flow field a one-dimensional line of nodes
was inserted along the y direction, at 0.5 nm intervals (shown in Figure 4.3).

As mentioned, the simulated fluid is at rest, so by recording the bulk velocity
of the fluid in the x direction, the molecular velocities occurring by thermal dif-
fusion should cancel out to yield an ensemble average of zero velocity at each of
the nodes. With this knowledge, this system can be used to explore the effect of
the parameters used to gather the least square approximations of the molecular
behaviour. Investigations into the optimal number of time steps between samples,
number of samples used in each ensemble average and the radius of the weighting
function for each node are presented below. A study of the effect of the different
weighting functions is also presented.

4.4.1.1 Case Study 1: length of time between samples

This investigation looks into the effect of coherence between samples and will
identify when the molecules local to each node have had sufficient time to change
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y

x

Least square nodesmolecular fluid

Figure 4.3 Simulation of a periodic molecular system, modelling fluid at rest; molecular
properties are averaged by an array of one-dimensional nodes placed across the field.

their individual points in phase space so that the maximum number of available
configurations in phase space is covered by each ensemble. The investigation pro-
ceeds as follows. The number of samples for each ensemble average taken at each
of the nodes is kept constant at 20. The length of simulation time that elapses be-
tween each sample taken is varied between 25 and 400 time steps. The simulation
time step is 2.0 ps, which relates to gaps between samples of 50 ps and 800 ps
respectively.

Then 5104 molecules are placed in a lattice 15 nm by 15 nm by 83 nm, which
is equilibrated to a stable point at rest at a temperature of 300 K, using periodic
boundary conditions in all three dimensions. Temperature controls are removed
and the molecules are left to maintain an equilibrium state. No external forces
are applied to the molecules and only molecular motion/diffusion for the system
temperature is present. The local velocity is monitored at 29 nodes arranged in a
one dimensional array as shown in Figure 4.3, with each node having a cut-off
radius of 1.0 nm. All simulations are performed from exactly the same starting
point, with identical molecular data at the beginning of the production phase.

The fluid is at rest, so the bulk velocity of the fluid is zero. However, the
molecules of the fluid are constantly moving throughout the fluid, diffusing with
thermal motion. Poor phase space sampling will yield a nonzero value of velocity
at the nodes and lead to larger variations in the ensemble values at the nodes. A
more complete sample, of a wider portion of phase space, will lead to the thermal
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Figure 4.4 A graph demonstrating the relationship between the interval between sam-
ples and the standard deviation of the resulting one-dimensional velocity distribution. The
equation of the best fit line is also shown.

motion of the molecules to cancel out, giving consistent values of velocity at the
nodes. In this case, where there is no driving force applied to the fluid, the velocity
at any point should be zero.

Figure 4.4 shows a plot of the average standard deviation (averaged over all
nodes) of the values of velocity plotted against the number of time steps between
each sample. It is necessary at this point to remember that the same number of
samples are taken for each case so that every ensemble taken contains the same
amount of data. The results show an exponential decrease in the standard devia-
tion of the nodal values as the time between samples increases. This leads to the
conclusion that samples taken at more than 200 time step intervals (400 ps) gives
a good result, but the larger the time between samples the less variation there
will be in the results. Increasing the sample interval to 400 time steps reduces the
variation 18 % but the ensemble time increases by 200 %. The line of best fit is
asymptotic to zero variation, indicating that the sample length could be extended
indefinitely while still reducing the variation in the results. However, in practice
a reasonable variation must therefore be accepted to allow for an acceptable reso-
lution in time. For these cases, the variation is considered acceptable at 200 time
steps or greater.

Figure 4.5 shows a plot of the average value of velocity (averaged over all
nodes) plotted against the interval between samples. This shows the accuracy of
the ensemble increasing as the time between samples increases, achieving an av-
erage velocity closer to the zero velocity specified. However, the data presented
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Figure 4.5 Graph showing the average value of velocity plotted against the number of
time steps between samples.

contains a significant level of noise making a relationship difficult to determine,
but the average velocity shows a definite trend to zero as the sample time in-
creases, giving a very close approximation for sample times greater than 250 time
steps.

Both of these graphs demonstrate the same result. The more time molecules
are allowed in order to change state before being re-sampled, the better the
interrogation of the available phase space performed by each of the local
approximations. In both cases, the improvement is exponential, although the aver-
age velocity data are noisy. However, a longer time between samples reduces the
resolution of the ensembles in terms of simulation time. This must be considered
when long sample times are used. A way of increasing the time between samples
is to take fewer samples per ensemble, which will be discussed in detail in the
next case study:

4.4.1.2 Case Study 2: number of samples per ensemble

By performing a similar study, the effect of the number of samples collected
per ensemble average can be investigated. Simulations were set up as described
above, with the samples taken at regular intervals of 75 time steps, but the ensem-
bles were constructed with between 2 and 40 samples.
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Figure 4.6 Graph standard deviation of velocity plotted against the number of samples
per ensemble.

Figure 4.6 shows a plot of the average standard deviation of the collected en-
semble velocity over all the nodes against the number of samples collected per
ensemble average. The graph shows a similar relationship to sample timing study,
with a slightly lower gradient, but as the number of samples increases in each en-
semble, the variation in the results of this steady state system reduces to give more
stable values. As the number of sample points increases, more points throughout
the available phase space are sampled, leading to a better representation of the
local ensemble by the approximation.

4.4.1.3 Case Study 3: time between samples versus number of samples
per ensemble

The above study suggests that increasing the time between successive samples of
the molecular data should be as long as possible in order to sample the widest
available area of phase space. Similarly, to obtain bulk properties with the least
amount of noise, there must be the maximum number of samples taken for each
ensemble average in order to sample as many different points in the phase space
as possible. However, in a realistic simulation example, there is a limit to the
amount of simulation time that can be allowed between the ensemble averages
being taken. This could be a limit on an ensemble taken for a steady system over
a long period of time or short intervals for a dynamic system, where greater reso-
lution in terms of time is required. In these cases, there is a maximum time over
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which an ensemble can be taken. This means that within one ensemble a balance
must be made between the number of samples used in each ensemble and the time
between each sample taken.

To test the sensitivity of this tradeoff, the same example of fluid methane at
rest, as described above, was used. The total ensemble time is limited to 20000
time steps, and the sample interval is varied between 100 and 1000 time steps to
correspond to 200 and 20 samples per ensemble respectively.

Figure 4.7 shows a plot of the standard deviation of the ensemble velocity,
averaged over three ensembles taken for the varying time between samples. In
the previous results, it has been shown that the best and most stable results are
obtained by leaving long periods between taking each sample and taking a large
number of samples. However, for simulations with a finite time frame, there is
a limit on this behaviour. As the length between samples increases, the number
of samples that can be taken in the ensemble reduces, causing the variation in
the results to increase as the time between samples increases. The results shown
in Figure 4.7 are dominated by the variation caused by the reduced number of
samples in the ensemble, and the variation expected to be caused by the short
sample times does not have an observable effect in the sampled region.

From these results, it can be concluded that the largest acceptable time between
samples is approximately 400 time steps for this case. To generalize this, 400 time
steps represents 2 % of each ensemble time, allowing 50 samples to be taken in
each ensemble. Although the variation in the solution maintains a similar value
for lower times between samples, the highest available values should be used to

0
0.000116 

0.000118 

0.00012 

0.000122 

0.000126 

0.000124 

0.000128 

200 400 600

No. time steps between samples

S
ta

n
d

ar
d

 d
ev

ia
ti

o
n

 o
f 

ve
lo

ci
ty

800 1000 1200

Figure 4.7 Plot to demonstrate the effect of trading off the length of time between sam-
ples against the number of samples per ensemble, for a fixed ensemble length of 20000
time steps.
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achieve the best representation of the phase space, saving on the computational
time involved with processing a higher number of samples.

4.4.1.4 Case Study 4: radius of weighting function

The radius of the weighting function governs the area or volume over which
the approximation is constructed at each node. This parameter is critical, as a
smaller radius gives better resolution in space at the cost of fewer molecules
within each sample. Simulations were performed as above for the same sample
times and number of samples per ensemble, and in this case only the radius as-
sociated with the nodes was altered. To give a idea of scale, the 29 nodes are
spaced at 0.5 nm intervals across the 15 nm width of the simulation. The radius
at each node is changed from 0.2 nm up to 2 nm. Figure 4.8 gives an approx-
imate idea of scale, showing the radius in two dimensions. Figure 4.9 shows a
plot of the standard deviation of the velocity obtained at each of the ensembles
against the ratio of the node’s radius to the diameter of the underlying molecules
(for methane σ = 0.381 nm). This shows an increasing accuracy as the radius is
increased, with an abnormally large value for a standard deviation at R/σ = 0.5.
This is due to the radius being so small that only a single molecule can fit in the
node’s ‘zone’, making the node very sensitive to the properties of an individual
molecule.

This can also be highlighted in the plot of the average velocity, shown in
Figure 4.10, which reinforces the fact that one of the nodes has sampled a
molecule with a speed that is on the higher side, as given by the Maxwell–
Boltzmann distribution. This has had a dramatic effect on the value of one of the
nodes. These results highlight that the radius of a node must be large enough to
capture as many molecules as possible but be small enough to be able to capture
any variations that may be present in the distribution of the property, leading to a
compromise between resolution, stability and statistical error.

R = 20 nm
R = 10 nm
R = 5 nm

Figure 4.8 Two-dimensional example of the radius of a weighting function compared to
the number of molecules present, for the example simulation.
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Figure 4.9 Standard deviation of velocity collected at the nodes, plotted against the ratio
of the node radius to the molecular diameter.
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Figure 4.10 Average ensemble velocity plotted against the ratio of the node radius to the
molecular diameter.
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4.4.1.5 Case Study 5: weighting function

The weighting function plays a very important part in the property extraction, be-
ing the basis on which molecules are allowed to contribute to a node’s ensemble
average. By again performing the same test simulation, the effect of the differ-
ent weighting functions highlighted in Section 3.3.5 (quadratic, exponential and
Gaussian weighting functions) can be tested.

Figure 4.11 shows the values of the average ensemble standard deviation for
the three weighting functions tested. From this, the Gaussian weighting function
comes out on top, providing the most stable result, closely followed by the ex-
ponential function. In this application, the quadratic weighting function gives the
most variation.

From these studies, it can be concluded that in order to obtain good stable
results for the bulk properties collected at the least squares nodes, each sample
must probe the available local phase space as comprehensively as possible. To
do this, the ensembles must be constructed from as many samples as possible,
and the samples must be taken with long intervals between them to allow the
molecules to select a new phase space position. For this reason, a sample interval
between 100 and 400 time steps should be used. However, these two parameters
must be selected with the resolution of the distribution of properties, with respect
to time, in mind. Similarly, for the nodal radius a larger radius will provide bet-
ter phase space sampling but reduces the resolution in terms of the simulation
space.
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Figure 4.11 Values of standard deviation for each of the weighting functions.



P1: JYS
c04 JWBK251-Ransing June 20, 2008 10:53 Printer Name: Yet to Come

CASE STUDIES 119

The parameters for the bulk property collection must therefore be carefully
chosen for the system of interest, especially for systems that include gradients
and properties dependent on position and time within the simulation.

4.4.2 Gradient Study

In the previous section, the local averages have been extracted and evaluated for
stable systems with approximately uniform properties throughout. This was used
to study the effect of the parameters of the bulk ensemble approximations against
a known value. In this section, systems involving properties that vary in space as
well as time are considered. These provide more of a challenge, as spatial and
temporal resolution of the nodes must be seriously considered and traded off
against the stability and accuracy of the ensemble averages collected at the nodes.

Two distributed bulk properties will be considered. First, the distribution of
temperature will be studied in a fluid at rest, contained between two parallel plates
at different temperatures. The nodes will then monitor the distribution of temper-
ature throughout the field, as the thermal energy propagates through the fluid via
the molecular collisions. Second, velocity distributions will be studied within a
flowing fluid field. As will be shown, the study of velocity distributions requires
special treatment, as extra controls on the system are needed, which will be pre-
sented and validated against existing molecular simulations.

4.4.2.1 Case Study 6: temperature gradient

As an initial test of this method, the molecular simulation was performed on a fluid
at rest. The fluid is trapped between two parallel plates of different temperatures,
as shown in Figure 4.12. The plates are separated by 7.1 nm, with the left-hand
wall having a temperature of 300 K and the right-hand wall having a temperature
of 250 K. The fluid methane in the middle interacts with the wall via the diffuse
boundary conditions. The tangential momentum accommodation coefficient was
chosen to be f = 0.81, to simulate a sparse solid lattice of carbon molecules. A
large value of f was used to achieve a large amount of variation of the temperature
within the simulation domain to examine the ability of the bulk property extraction
component to capture details of a relatively high gradient property.

The fluid molecules were equilibrated from their initial lattice and temperature
of 275 K and settled to an equilibrium state. The temperature of the molecules
were observed using 36 nodes placed at 0.2 nm intervals within the domain. The
radius of interaction was set to 0.4 nm, and ensembles were taken over 50000 time
steps (2 fs time steps).

The molecules were free to interact with each other, with the only temperature
control being applied by the boundary walls. The resulting thermal profiles for
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molecular fluid 

Least square nodes 

y

x

Wall
300 K

Wall
250 K

Figure 4.12 Schematic of fluid with the temperature gradient. The wall on the left is
maintained at 300 K and the wall on the right at 250 K. An array of one-dimensional least
squared nodes crosses the fluid between them to collect local values for temperature.

the steady state result are shown in Figure 4.13. From this graph, the temperature
gradient extracted from the molecular model can be clearly seen between the
average ensemble temperature collected near the left-hand wall and the value at
the right-hand wall. In the centre of the fluid section, the temperature gradient is
almost linear, but the gradient becomes steeper in a relatively wide region close to
the walls. This is due to the slip and jump at the boundary, where a discontinuity is
allowed. Error bars are shown at 0.5 %, indicating the variation between profiles
extracted.

This simple example highlights how the least squares nodes can be imple-
mented and used to interrogate a molecular domain, providing distributions of
useful engineering properties. The next step is to move this method on to a more
challenging system that can aid in the validation of the molecular mechanics
model.

4.4.2.2 Case Study 7: velocity

This method allows the molecular model to simulate engineering systems at meso
scale dimensions with large numbers of molecules. However, the accuracy of
this model with its simplifications for boundary conditions and pressure gradi-
ents needs validation with existing work to ensure that the model is still accurate.
The performance of a molecular simulation can be tested in a number of ways,
and in this section validation results are presented to give an idea of the accuracy
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Figure 4.13 Temperature gradient for methane between two parallel plates at x = 0,
maintained at 300 K, and at x = 7.1 nm, maintained at 250 K. The black line shows the
average temperature profile shown with a 0.5 % variation.

of the method. There is almost no experimental data available for meso scale sys-
tems and computational restrictions limit comparisons on the continuum scales,
so tests are performed at high-end molecular scales where information on simu-
lations is readily available. This also allows the testing of the molecular model
separately from the approximating (least squares) components.

The molecular dynamics model was tested against the molecular simulations
performed by Sokhan et al. [60], whose simulations were performed using a
model based on the DL POLY [89] package. The system considers fully devel-
oped Poiseuille flow of methane through a graphite slit pore.

The system is simplified to methane molecules flowing between two parallel
plates of graphite, which contain the molecules in the y direction and periodic
boundary conditions in the x and z directions. The system dimensions are shown
in Figure 4.14, with the graphite plates being separated by 7.1 nm; the lengths
of the simulating cell in the x and z directions are 7.715 nm and 8.368 nm re-
spectively. Into this volume was put 5104 methane molecules, corresponding to a
reduced density of ρ ′ = 0.61 and interacting via a Lennard–Jones potential with
a collision radius σ = 0.381 nm and a well depth ε/kb = 148.1 K.
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Figure 4.14 Cross-section of an artificially created slit pore.

The graphite plates were modelled in Sokhan’s simulation using two fully
molecular solid lattices of carbon atoms (σ = 0.34 nm and ε = 28 K). The wall
used in this simulation was modelled with diffuse boundary conditions, with a
tangential momentum accommodation coefficient of 0.029, which was derived
for this system in the same paper by Sokhan et al. [60] and confirmed by the work
of Arya et al. [61] for methane on graphite.

Typically, the solid–fluid interaction parameters are computed using the
Lorentz–Berthelot combining rule, which between the carbon and methane
molecules leads to parameters σ = 0.3605 nm and ε/kb = 64.39 K. However, the
work presented by Sokhan et al. shows results for different strengths of interaction
between the wall and fluid molecules, so a stronger potential of ε/kb = 148.1 K
was used to simulate a higher degree of wetting.

The fluid molecules are driven down the channel by applying a uniform accel-
eration to all molecules of 4 × 10−11 m/s. In Sokhan’s simulations with flexible
walls, the energy added via this acceleration could be removed and adsorbed by
the wall molecules. However, in the case of the rigid molecular walls and the
diffuse boundaries used in the present model, a Gaussian thermostat was used to
perform the same task.
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Figure 4.15 Comparison between the presented model and results published by Sokhan
et al. [60]. Error bars are shown at ±3 m/s.

The resulting velocity profiles are shown for comparison in Figure 4.15. The
results from Sokhan were taken over a 1 ns period, whereas the results obtained by
the presented method were constructed within a 0.1 ns long ensemble. The vari-
ation displayed by successive profiles extracted by the presented method is less
than ±3 m/s or 5 % of the average velocity; the variation of Sokhan’s comparison
is not known. The two velocity profiles show very similar curvature, but the re-
sults of Sokhan et al. [60] display a slightly lower average velocity than the results
of the presented method. The similarity between the profile shapes means that the
fluid molecules propagate the fluid energy in the same way, although the differ-
ences in the average velocity appear to be caused by differences in the boundary
conditions applied. As an additional check extra validation tests were performed
to test the system conformity to the thermal distributions.

The molecular dynamics of the fluid molecules was checked against the
Maxwell–Boltzmann velocity distribution in each of the three dimensions, as well
as the total speed distribution. Figure 4.16 shows the distributions from a short
snapshot of the steady state simulation above, along with the exact versions of the
distributions. All distributions show good agreement with the profile of the exact
versions within 15 %, demonstrating that the molecules of the fluid conform to the
correct thermodynamic state and that the thermostat is not having adverse effects
on the velocity distributions.
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Figure 4.16 Distribution of X , Y and Z components of velocity, and the distribution of
resultant speeds compared to distributions for temperature of 300 K with 15 % error bars.

The velocity distribution for the velocities assigned to the thermalized
molecules at the boundary were also tested, to ensure that the thermalization was
being performed correctly. Figure 4.17 shows the same level of variation as the
bulk temperature distributions within the fluid.
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Figure 4.17 Velocity distribution of molecules thermalized by the boundary, shown
against the velocity distribution for 300 K with 15 % variation
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These results provide confidence in the developed meso scale molecular model.
The simplifications applied to allow larger molecular systems to be accessed have
not had an adverse effect on the mechanics, as shown by this molecular scale
example compared to existing molecular simulation data from a well-established
and developed code.

4.5 SUMMARY

In this chapter the method developed in the previous chapter has been extended
to enable the simulation of flowing fluid systems. The generations of a flow have
been implemented in the form of applying a representative acceleration to all
molecules in the system. This addition of energy is balanced by a thermostatting
system designed to remove thermal energy from the simulation without affecting
the dynamics of the molecules.

A number of case studies have been presented to look at the behaviour of
the bulk property extraction scheme. These highlighted the importance of sample
length and the size of the ensemble as well as their effect on the stability and
resolution of the solution. Also highlighted was the tradeoff between sample and
ensemble times for simulations within a restricted time frame.

Case studies involving property gradients were also considered. The temper-
ature gradient simulation example highlights the thermal control that can be im-
parted on the fluid by the boundaries. This also highlighted the method’s ability to
capture bulk property distributions with high accuracy and resolution. The veloc-
ity profile case study results demonstrated good agreement with both published
results and thermal distributions.
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5
Modelling Fluid Regimes
at Nano/Meso Scales

Aim. The reader should see how a fluid system can be explored using meso
scale methods. This chapter also shows some of the current limitations faced
by this meso scale approach.

5.1 INTRODUCTION

In this chapter, the application of the presented approach and how it may be used
to extract useful data and properties from a fluid system dominated by molec-
ular physics is discussed. To highlight its application, the bulk property extrac-
tion method is used to investigate flow regimes present in nano scale channel
flows.

In the next section, flow regimes and the characterization of fluid flow in a
continuum framework are discussed as a background to existing knowledge of
fluid behaviour. Fluid flow from the molecular scale exists as a flow of molecules,
but in meso scale systems the behaviour of both bulk and molecular flow becomes
important. The third section presents a molecular fluid model for flow in a slit pore
15 nm high. The method developed in Chapters 3 and 4 is used to analyse the fluid
at different flow rates by purely considering the bulk velocity distribution of the
fluid. From this information the flow at high and low flow rates is compared,
allowing the different flow behaviours to be analysed. To begin, continuum flow
regimes will be discussed.

Fluid Properties at Nano/Meso Scale: A Numerical Treatment P. Dyson, R. S. Ransing, P. M. Williams and P. R. Williams
© 2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-75124-4
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5.2 FLOW REGIMES

Fluid can flow in two basic forms, which were investigated by experiment by
Reynolds (1842–1912) in the early 1880s [7]. These experiments highlighted the
two different flows present in fluid systems, which will now be considered with
the same approach as this experiment.

Figure 5.1 shows the setup of Reynolds experiments. A large tank of water
has a long thin transparent tube, through which the water must pass to exit via
the valve. The water is driven down the tube by the pressure difference between
the pressure at the inlet to the tube in the tank and pressure of the outlet. The flow
rate of the water along the tube can then be controlled by opening and closing the
valve.

Dye is released into the centre of the flow along the tube via a thinner tube
ending just inside the entrance. The dye is allowed to flow along the tube at the
same speed as the water, and is used to visualize the internal behaviour of the fluid.
By altering the flow rate of water passing down the transparent tube, Reynolds was
able to study the way in which water flows through channels and tubes at varying
speeds.

If the valve is only partly open, restricting the flow in the tube to only a small
velocity, the thin stream of dye remains in the centre of the flow and is almost
completely undisturbed (Figure 5.2). This is the observable result, at continuum
scales, of the infinite molecular interchange occurring within the fluid, as has
been discussed in Chapter 1. If multiple dye streams were employed at different
places across the tube section, none would be disturbed, although those close to
the boundary would move with a slower velocity. This gives the effect of the
fluid being composed of layers of fluid moving parallel to each other, which is
commonly refered to as laminar flow.

Valve

Dye

Outlet
Water

Figure 5.1 Apparatus used by Reynolds to study flow regimes.
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Direction of flow

Dye

Figure 5.2 Parallel motion of a filament of dye within a laminar flow.

As the valve is opened further, the velocity of the fluid in the tube increases,
and at some point the stream of dye begins to oscillate. If the valve were to be
opened further, there comes a point at which the stream begins to diffuse at a
distance away from the inlet. Further opening of the valve gives rise to a point at
which a sudden breakdown of the dye stream at a distance from the inlet occurs,
where the dye mixes almost completely with the water. Reynolds noticed that
these disturbances only occurred at high flow speeds at a distance away from the
inlet and that the mixing commenced suddenly.

The mixing of flow that occurs at these high flow rates is known as the turbu-
lent flow regime. At this point, the fluid cannot be described in terms of layers of
fluid at constant velocity across the channel, but particles of fluid (in terms of the
continuum description of a fluid particle) mix across the width of the tube. The
fluid particles in this flow regime have components of velocity that are not just
in the direction of flow, and their paths criss-cross over each other in a seemingly
unpredictable and chaotic way (Figure 5.3). In turbulent flow, the motion is irreg-
ular and conforms to no pattern in terms of frequency or formation of eddies, as
the mixing occurs on a wide range of scales. However, there still remains a bulk

Direction of flow

Dye

Figure 5.3 Chaotic mixing of filaments of dye within a turbulent flow.
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average flow of fluid towards the outlet that the fluid particles follow, but they do
not follow as pure a trajectory as fluid particles in a laminar flow.

Gotthilf Ludwig Hagen [90], a German physicist and hydraulic engineer, was
the first to notice that the transition occurred in a tube at a specific velocity. He
also noted that this velocity was dependent on the temperature of the fluid flowing
through the tube, directly related to which is the viscosity. However, Hagen was
unable to derive a general law to describe this behaviour.

Further experiments were performed using the above apparatus by Reynolds
[7]. He noticed the inverse relationship between the transition velocity and the
diameter of the tube. This led to the construction of the Reynolds number,

Re = ρul

µ
, (5.1)

which is a function of density ρ, viscosity µ, velocity u and the characteristic
dimension l (in this case the tube diameter). The relationship that Reynolds came
up with was a measure with which to judge the transition to turbulence, but also
taking advantage of the similarity of flows.

Reynolds noticed that large scale flows showed similar behaviour to that of
flows of the same geometry, but on a smaller scale with a higher viscosity. This
similarity of flows is used extensively in experimental investigations, and similar
flows can be considered similar if they possess the same Reynolds number. The
smooth, predictable nature of laminar flow allows it to be easily analysed math-
ematically. However, the complex and chaotic behaviour of turbulent flows does
not allow for easy prediction. Turbulent flows are individual, and the exact dy-
namics of a turbulent flow is unrepeatable and is affected by dynamics on many
scales. However, the behaviour of the fluid on small scales can be represented by
statistical methods to provide an approximation of the multiscale mixing and eddy
effects.

There are three basic models used for turbulent flow simulation on the contin-
uum scale, DNS, LES and RANS. DNS (direct numerical simulation) presents
the fullest simulation model turbulence and can be very accurate, but it is
also very computationally expensive. RANS (Reynolds averaged Navier–Stokes)
is the most simple, where turbulent terms are approximated as a function of
the Reynolds number. LES (large eddy simulation and larger eddy simulation)
presents a balance between the two, where the eddies on the scale of the simula-
tion are evaluated fully and smaller scale eddies are approximated using a diffuse
term.

5.2.1 Laminar Flow

Laminar flow can be described as fluid flowing in adjacent parallel layers, or
laminae. Layers of fluid flow over each other, imposing shear or drag forces
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on adjacent layers. Also the streamline followed by continuum fluid particles do
not cross, but follow smooth predictable paths. This is the description commonly
used for laminar flow at continuum scales. This description, however, is not valid
at molecular scales as fluid layers and continuum particles cannot be described
through the chaotic thermal motion of the molecules. It is therefore necessary to
identify other distinguishing features to determine weather a flow is laminar in a
molecular system.

For laminar, low speed flows, both Hagen and Poiseuille (1799–1869) found,
through experimentation, a linear relationship between the head loss in a length
of pipe and the flow rate of fluid. This head loss is the result of a linear rela-
tionship between the friction force experienced by the fluid from the wall im-
posing a velocity gradient on the flow. Here, the shear force between fluid lay-
ers results in a velocity gradient across the channel or pipe. This is quantified
by the Hagen–Poiseuille equation for the flow rate Q in a cylindrical pipe of
radius R:

Q = − π

4µ

(
dp

dx

) ∫ R

0

(
R2r − r3

)
dr, (5.2)

which simplifies to

Q = −π R4

8µ

(
dp

dx

)
. (5.3)

The velocity at any radius of the pipe can also be calculated as

u(r ) = − 1

4µ

(
dp

dx

) (
R2 − r2) . (5.4)

Velocity profiles of flows (see Figure 5.4) can be extracted from molecular simu-
lations using the methods described in Chapter 4 and compared with those com-
puted from the above equations. These equations, however, do not account for the
slip between the solid and fluid at molecular scales [41]. On the continuum scale,
it is assumed that there is no slip at the boundary and the fact that slip is present
may have an effect on the linear relationship between the flow rate and pressure
head. The velocity distribution of the flow in a channel or pipe, extracted from
a molecular simulation, contains information about both the conformity to the
laminar profile described by Hagen and Poiseuille and the flow rate in the tube.
This information can be used to identify laminar behaviour through the chaotic
molecular motion.
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Figure 5.4 Velocity profile for laminar flow in a cylindrical pipe of radius R, as described
by Hagen and Poiseuille [90].

5.2.2 Turbulent Flow

Turbulent flow occurs at high speeds, where the inertial terms of the Reynolds
number dominate the viscous terms. In a turbulent flow regime, there is a high
level of chaotic mixing and diffusion. From a continuum viewpoint, the paths fol-
lowed by fluid particles are erratic and cross continuously as the flow is mixed up.
On a molecular scale, the dynamics of the molecules does not appear to change
significantly, as the chaotic random motion is present in both laminar and turbu-
lent flows.

Experimental tests were performed by Henri Darcy(1803–1858) in 1857 [91]
on turbulent flow in long pipes of different sizes, which resulted in the Darcy law
for head loss in turbulent pipes. Due to the chaotic unpredictable nature, almost
all models for turbulence contain some form of experimental results, as pure nu-
merical analysis is not currently possible.

To identify a turbulent flow, observations of chaotic behaviour on its own is
not sufficient at molecular scales, as it is present in laminar flow as well in the
form of thermal motion. However, the mixing within turbulent flows occurs on
a wider range of scales, which has the effect of increasing the energy losses in-
ternally within the fluid, where energy is dissipated away from the direction of
flow. As a result, this increased instability in the fluid can be noted by observing
the relationship between pressure loss and flow rate. The relationship should be
similar to the laminar relationship, but with a lower gradient as the energy needed
to drive the flow is higher. The increased energy perpendicular to the direction of
flow should also increase the mixing of the fluid, leading to a different velocity
profile that is more uniform across the centre of the channel.

This section has introduced continuum scale behaviour of the fluid in the form
of two flow regimes, laminar and turbulent flow. These regimes can be easily
observed, tested and simulated at continuum scales. However, as these simulation
methods break down as the meso scale is approached, little is known about the
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behaviour of molecular flows. In the next section, the method derived in Chapter
4 is used to extract information from a molecular simulation over a range of flow
rates, to allow the behaviour of the flow to be analysed at different speeds.

5.3 FLUID FLOW CHARACTERIZATION FROM
MOLECULAR SIMULATION

In this section, a molecular simulation is used to model the physics of a fluid
passing through a slit pore of height 15 nm. Least square nodes are used to extract
the bulk velocity distribution to provide information about the behaviour of the
fluid at these scales. The slit pore is approximated by two parallel plates with
diffuse boundary conditions in the y direction and periodic boundary conditions
in the x and z directions.

In the following case, the velocity profile of the flow is extracted to measure the
fluid response to increasing pressure gradients. The velocity gradient contains in-
formation about the flow rate of fluid along the channel which, for traditional lam-
inar flows, should increase linearly with the increasing pressure gradient. How-
ever, at molecular scales, there is a definite amount of slip between the fluid and
the boundary. This will affect the velocity gradient by raising the mean velocity in
the channel as the frictional effect of the wall is reduced. The shape of the velocity
gradient should maintain its Poiseuille profile approximately, allowing molecular
variation, but with a nonzero velocity at the boundary, as shown in the validation
tests in Chapter 4.

The system used in the tests is designed to replicate the flow of methane con-
fined within a graphite slit pore. A two-dimensional schematic of the simulated
three-dimensional system is shown in Figure 5.5. The pore walls are modelled
as two single layers of carbon molecules in a graphite lattice, interacting via a
Lennard–Jones potential. The Lennard–Jones parameters for methane were a col-
lision diameter of σ = 0.381 nm, a well depth of ε/kb = 148.1 K and a molecular
mass of 16.043 amu. The Lorentz–Berthelot mixing rules were used for the col-
lision diameter, giving σ = 0.3605 nm for the carbon–methane interaction. The
well depth used was ε/kb = 148.1 K, equal to the methane–methane well depth
and similar to the methane wall used by Miyahara [35,60], but the tangential mo-
mentum accomodation coefficient of the diffuse boundary was derived from the
parameters of the carbon lattice, f = 0.025. The boundaries are fixed and possess
no momentum, and therefore need no mass parameter.

The pore walls are 15 nm apart and infinite dimensions parallel to the pore
are replicated using periodic boundary conditions in the x and z directions, with
lengths 15 nm and 8.5 nm respectively.

Simulations were performed using a range of pressure gradients, simulated by
applying a uniform acceleration to all fluid molecules. All tests were performed
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15 nm

Single layer carbon

15 nm

Single layer carbon

Methane

Figure 5.5 System to test flow regimes between parallel plates.

with the temperature at the wall maintained at 300 K and as the boundaries are
solid and cannot remove sufficient energy from the system, the fluid temperature
was maintained at 300 K using a Nosé–Hoover thermostat. The driving accelera-
tion applied to the fluid was varied from 2 × 1011 m/s2 to 1 × 1012 m/s2 to test the
response of the fluid over a wide range of flow rates.

The fluid response was measured using a one-dimensional array of nodes
placed across the domain in the y direction, at 0.5 nm intervals. Samples of the
x component of velocity (along the channel) of the molecules were taken every
200 time steps and ensemble averages were computed every 2000 time steps. By
taking ensemble averages at these relatively short intervals, the progress of the
simulation can be monitored using the velocity profile to check that a stable solu-
tion is reached for each run.

5.3.1 Characteristics of Low-Speed Molecular Flow

For the above model of a slit pore, the driving force along the pore ranged from
2 × 1011 m/s2 to 1 × 1012 m/s2. The resulting velocity profiles computed from the
ensemble averages were recorded and the average velocity of the flow in each
case was found. Figure 5.6 shows a plot of the resulting stable average velocity
against the driving force applied to the flow.
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Figure 5.6 Average velocity in the channel plotted against the driving force (simulating
pressure gradient) for low-speed flows.

The average velocity is plotted in Figure 5.6, as it is proportional to the flow
rate of the fluid in the channel against the driving force applied to the flow. The
graph shows a linear relationship between average velocity and the driving force,
which passes through point (0,0). A degree of deviation is present from the linear
line due to the short time over which the ensemble averages were taken, but a
clear relationship is present.

In the chaotic molecular structure of a fluid, the molecules are continually mov-
ing with their own thermal velocity, conforming to the Boltzmann distribution. A
useful comparison to draw is between the average of the thermal motion of the
molecules and the average ‘bulk’ velocity of the flow. The average speed of a
molecule in one direction can be computed from the Boltzmann equation as

vaverage =
√

T kb

m
. (5.5)

For a system temperature of 300 K, the average velocity due to thermal motion
becomes [4]

vaverage = 394.34 m/s. (5.6)

The lowest driving force tested in this system gives an average bulk velocity
of 15 m/s, corresponding to a total of 3.8 % of the average thermal velocity
of molecules. Similarly, the largest velocity of 65.5 m/s corresponds to 16.6 %,
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both of which are very small compared to the magnitude of the motion of the
molecules.

5.3.2 Characteristics of High-Speed Molecular Flow

By extending the range of driving forces applied, the bulk velocity extracted cap-
tured a change in the behaviour of the flowing molecules. Figure 5.7 shows a
plot of the average velocity of the flow against the driving force for values up
to F /m = 5.0 × 1013 m/s2. On the left-hand side of the graph, the same data as
the graph shown in Figure 5.6 is displayed. However, for larger driving forces, a
change in the behaviour can be seen beyond this region.

Beyond the linear, slow-speed flow region (far left of graph), the same increase
in driving force causes less of an increase in the average velocity. The fluid re-
sponse reduces further until another approximately stable relationship is displayed
for driving forces of between 1.2 × 1013 m/s2 and 5 × 1013 m/s2. This high-speed
flow regime is present over a range of velocities from 190 m/s to 254 m/s, which
when compared with the average thermal velocity of the molecules is 48.2 % and
64.4 % respectively. The low gradient of the graph in the high flow rate region of
the graph indicated that a higher proportion of the energy given to the fluid by the
driving force is diffused away from the direction of motion.

The range of driving forces tested was stopped at 5 × 1013 m/s2 because it was
found that at higher values the thermostat interfered with the dynamics of the
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Figure 5.7 Average velocity in the channel plotted against the driving force (simulating
pressure gradient).
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simulation. At values of 6 × 1013 m/s2, the molecular motion becomes unstable,
causing clusters of molecules to form. This is due to the system becoming over-
constrained with molecules settling into a quasi-equilibrium state in which they
change energy states as little as possible; however, they still maintain the global
velocity distributions.

The results shown in Figure 5.7 demonstrate that the behaviour of different
flow regimes can be captured and identified from a molecular simulation, where
the high flow regime displays much higher losses than the low flow rate regime.
The low-speed flow can be likened to a laminar flow, where losses are low, mean-
ing that the exchange between layers parallel to the direction of flow should be
minimal. In the high flow case, losses are higher and a higher level of interaction
and exchange is expected to be perpendicular to the flow direction. This can be
examined by comparing further data extracted during the simulations.

5.3.3 Comparisons and Data Analysis

To further aid in the characterization of these two regions, comparisons can be
drawn between their behaviour. The presented method for obtaining the bulk prop-
erties has been used above to extract velocity profiles of the flow to plot the aver-
age velocity of the flow against the applied driving force. From these results, two
regions have been identified: one that displays significantly higher losses than the
other. Further analysis of these regions can be performed by comparing the veloc-
ity profiles extracted from simulations performed in each of the regimes. Figure
5.8 shows the velocity profiles extracted for driving forces of 2 × 1012 m/s2 and
4 × 1013 m/s2, corresponding to flows within the low and high flow rate regimes
respectively. The velocity profiles were extracted using 29 nodes placed at 0.5 nm
intervals across the channel, sampling at 75 time step intervals (2.0 fs time step),
and each ensemble was measured over 0.4 ps.

The extracted profiles are shown in Figure 5.8. The profile extracted from the
simulation with a low flow rate (bottom) displays a profile that is much more
curved than the high flow rate profile. Accounting for the slip between the wall
and the boundary, the profile is similar in shape to the analytical Poiseuille pro-
file for describing laminar flow in pipes and channels. The profile is caused by
the smooth propagation of energy throughout the system, where a molecule dif-
fusing across the channel experiences many low-energy collisions, altering its
thermodynamic state as it passes each point. Both profiles show the same degree
of variation, ±25 m/s. The variation is dependent on the thermal motion of the
underlying molecules and therefore the same for high- and low-speed flows.

The high flow profile, on the other hand, displays a markedly different shape.
For this flow regime, the molecules possess more energy and display a signif-
icantly flatter velocity profile, showing that there is less difference in kinetic
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Figure 5.8 Velocity profiles extracted from molecular simulations for driving forces of
2 × 1012 m/s2 and 4 × 1013 m/s2. Flows at the two speeds show a variation of ±25 m/s.

energy at neighbouring points through the simulation. This is in agreement with
the continuum description of a turbulent flow with a flatter profile, as there is a
higher degree of energy transfer between adjacent layers of fluid (mixing of en-
ergy), causing this velocity profile to form. This highlights the difference in the
propagation of energy within the system, but does not indicate the propagation of
mass within the channel.

An examination of the diffusion of mass within the system was performed us-
ing the following tests. The same simulation as above was set up and equilibrated
to steady state for driving forces of 2 × 1012 m/s2 and 4 × 1013 m/s2, correspond-
ing to the same low and high flow rates between parallel plates used above. All
the molecules falling within a vertical band between x = 3.0 nm and x = 5.0 nm
were selected and tagged at the start of the production stage. The simulation then
proceeded for a short 282 fs period to allow the molecules to diffuse from their
original positions, but not reach the periodic boundaries (for clarity). After this
short time period the final distributions of the molecules can be plotted to deter-
mine the spread achieved as a result of diffusion.

Figure 5.9 shows the initial and final plots for the low and high flow rates for
only those molecules tagged at the start of the simulation; all other molecules have
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Figure 5.9 Initial and final distributions of molecules in the centre of the channel after
282 fs (the flow is from left to right). Left: low flow rate. Right: high flow rate.

been removed from the images. From these images, it is clear that the molecules
in the high flow rate stream have moved further than those in the low flow rate
stream. It is also noticeable that the high flow molecules have not dispersed as
much as those in the low flow. This is confirmed by looking at a histogram plot of
the distribution of the molecules, shown in Figure 5.10.

In Figure 5.10, the frequency has been normalized for the number of molecules
in each band, as the low and high flow examples contained a slightly different
number of molecules. These results highlight the fact that there is a substantial
difference between the distributions of the two regimes. The standard deviation of
the low flow rate simulation is 0.0443, whereas the high flow value is substantially
lower, at 0.0302.

The same test performed with a horizontal band, between y = 6.0 nm and
y = 9.0 nm, allows an examination of the way in which the molecules diffuse
vertically, perpendicular to the solid boundaries. Figure 5.11 shows the initial and
final plots. In these figures, the distribution of molecules in the low and high flow
rates in the y direction is visibly the same in both cases. Figure 5.12 shows a
histogram of the data collected, along with the initial position of the band. The
graph shows that the majority of molecules have diffused in different directions
in the low and high cases, but the distributions of the molecules after a short time
are almost identical. The low flow rate gives a standard deviation of 0.0320 and
the high flow rate gives a value of 0.0304.



P1: PIC
c05 JWBK251-Ransing June 20, 2008 10:54 Printer Name: Yet to Come

140 MODELLING FLUID REGIMES AT NANO/MESO SCALES

Low flow rate 

Vertical distribution

Original
position

0.14 

0.12 

0.1 

0.08 

0.06 F
re

q
u

en
cy

0.04 

0.02 

0 
0 1 2 3 4 5 6 7 

X Position (nm)
8 9 10 12 11 13 14 15 

High flow rate 

Figure 5.10 Graph comparing the distributions of the molecules in low and high flow
rate simulations after 282 fs of simulation time.

Figure 5.11 Initial and final distributions of molecules in the centre of the channel after
282 fs (the flow is from left to right). Left: low flow rate. Right: high flow rate.
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Figure 5.12 Graph comparing the distributions of the molecules in low and high flow
rate simulations after 282 fs of simulation time.

These results give an indication over a small time frame of the diffusion of
mass within the molecular system in the x (streamwise) and y (perpendicular to
pore walls) directions. In the x direction, the molecules within the high speed
flow diffuse less than those travelling in the lower-speed flow. However, there
is little change in the diffusion of the molecules in the y direction due to the
interaction with the solid boundaries. The molecules in the high flow case have a
bulk motion that is a greater proportion when compared to the thermal motion of
the molecules, which has the effect of ordering the molecules. Also, the increased
energy being diffused perpendicular to the direction of motion has the effect of
containing the molecules by the increased strength of the neighbour interactions
(due to the increased energy perpendicular to the direction of flow). In the low
flow case, the molecules have a much smaller component of bulk velocity and
have more freedom to drift within the fluid domain.

The result is that as the speed of the flow increases, energy is distributed inter-
nally within the fluid. This is shown in Figure 5.7, where the energy lost identifies
two regimes where a change of behaviour can be identified. Beyond this point, it
can be shown in the comparison between the two velocity profiles in Figure 5.8
that for high flow rates the energy is diffused over a wider area across the chan-
nel, but the mass diffuses less. This is due to the increased molecular exchange
between regions of fluid in terms of molecular interactions.
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However, in the high flow case energy appears to be distributed in directions
perpendicular to the direction of flow, showing turbulent behaviour. In a contin-
uum framework, this would be accompanied by an increase in temperature across
the channel. In this case, however, the thermal constraints imposed by the ther-
mostat fix the average temperature of the channel. This overconstraining of the
system could be a factor in the behaviour that has been extracted from the molec-
ular dynamics. This is an area of meso scale simulation that needs more investi-
gation and comparison with experiments for extra clarification, and may lead to
the development of a new meso scale energy constraint system.

5.4 SUMMARY

In this chapter, it has been shown how bulk behaviour can be extracted from the
simulation of the internal molecular interaction and how this information can be
used to investigate fluid flow systems. This chapter has concentrated specifically
on the extraction of bulk velocity of a fluid in a slit pore, but the same principles
can be implemented for pressure, density and temperature distributions, either
independently or investigated together, depending of the dynamics of the system
of interest.

In the slit pore case study, the velocity profiles were extracted as ensembles of
average velocity at nodal sites placed at regular intervals across the channel. The
spacing of the nodes, together with the radius of influence associated with each
node, allows for the provision of spatial resolution and clearly displays the curved
velocity profile in the low flow rate case. In all the extracted profiles, a degree
of statistical variation is present, and profiles are approximated as averages. This
is due to the short ensemble time allotted for ensemble profiles to provide good
temporal resolution and allow the approach to steady state to be monitored.

Using this approach, a change in behaviour could be captured, highlighting the
possibility of two flow regimes being present. This combined with an analysis
of the diffusion showed a reduction in the mass diffusion but an increase in the
diffusion of energy within the fluid, which together with the consideration of the
system energy constraints goes to account for the high losses in the high flow sys-
tem. This example has highlighted how this method may be employed to extract
useful data from a molecular physics dominated system and allows the analysis
and characterization of a fluid system in terms of useful engineering properties
and behaviour. Also highlighted are the energy constraint issues using the current
thermostat systems.
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6
Performance of Proposed Meso
Scale Model

Aim: The reader should understand the computational performance issues
faced by molecular physics models at these scales.

6.1 INTRODUCTION

In this chapter, the computational issues associated with performing simulations
using the molecular model and bulk property extraction on meso scale systems
are discussed. The next section details the performance issued faced with large
scale molecular modelling and studies how the computational demands change
as the system size increases. This section also highlights the importance of the
consideration of density when considering large scale molecular simulations.

The third section contains a study of the flow along a slit pore of meso scale
dimensions. Simulations contain between 20 000 and 100 000 molecules, and the
impact this increased number of molecules and increased density has on the per-
formance of the computation and the behaviour of the fluid is discussed.

6.2 ISSUES IN USING LARGE NUMBERS
OF MOLECULES

In general, as the number of molecules increases in the system the computational
time and resources required also increases. The number of molecules in a system
can change in three ways, as a result of a change in density, a change in volume or

Fluid Properties at Nano/Meso Scale: A Numerical Treatment P. Dyson, R. S. Ransing, P. M. Williams and P. R. Williams
© 2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-75124-4
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a change in both. Up to this point in this book, molecular simulations have been
performed within cells of a maximum dimension of 15 nm, with a maximum of
5104 molecules. This has been in order to allow validation of the molecular model
and the ability to explore the abilities of the bulk property extraction method with
low numbers of molecules, where the method is weakest. In this section the result-
ing impact on the computational resources is discussed as a result of increasing
the size of the molecular system to achieve meso scale dimensions.

First, the effect of an increase in the number of molecules at constant density
(increased volume) is discussed.

6.2.1 Processing Large Numbers of Molecules

An increase in the system size has a number of knock-on effects within a molec-
ular simulation. By increasing the number of molecules, the time to process the
molecules and their interactions increases as well the memory needed to store
their positions and lists of neighbours. Additionally, information on each molecule
position, velocity and resultant force in all three dimensions must be stored during
each time step.

In order to simulate meso scale systems that contain large (up to 100 000)
numbers of molecules, the computational requirements of the simulation must be
fully understood. To explore the limits of a molecular model, performance tests
are performed to gain an understanding of the computational requirements in two
ways. First, the effect of a simple increase in system size is tested by comparing
the processing time of simulations with different numbers of molecules of the
same density (volume altered). Second, these results will be compared to simu-
lations of varying density in systems of the same volume. These tests will help
an understanding of the issues important in simulating large molecular systems
and the limits faced. These simulation tests are performed with a small num-
ber of molecules, between 14 and 5104 molecules. It is hoped that these small
molecular numbers will display some overhead processing time of the standard
computations and operations performed, giving a minimum computation time.

6.2.1.1 Constant density simulations

The simulations performed at constant density were performed using a cubic
cell with periodic boundary conditions in all three dimensions. The side of the
cubes tested were 1 nm, 2 nm, 3 nm, 4 nm, 5 nm, 6 nm, 7 nm, which contained
14, 114, 385, 913, 1783, 3080 and 5104 molecules respectively, as shown in Fig-
ure 6.1. This test explores the scalability of the molecular model and the extra
requirements needed to simulate large molecular numbers. For each system, the
time taken to reach 1ns of simulation time was recorded, along with the average
number of neighbour interactions per molecule. In a molecular simulation, as the
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Figure 6.1 Simulations performed at constant density, over a range of volumes and num-
bers of molecules, to test computational requirements.

number of molecules increases, so does the size of the arrays required to the store
position and velocity of all the molecules. For each additional molecule in the
system, the size of the array increases, thus increasing the amount of computer
memory required. However, the size of the neighbour list arrays depends on the
number of neighbour pairs in the simulation and changes with the number of
molecules and the density of the simulation. The neighbour lists can be far longer
than the molecular properties arrays, and because of their dependence on the num-
ber of molecules as well as the system parameters, can capture behaviour that may
further increase the computational time and memory requirements.

Figure 6.2 shows a plot of the number of molecules against the average number
of neighbours possessed by molecules within the system, over the different system
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Figure 6.2 Plot of the number of molecules against the average number of neighbours
per molecule for the constant density simulations.
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Figure 6.3 Plot of the total number of neighbours against the number of molecules for
the constant density case.

volumes at constant density. This graph shows a constant 72.6 neighbours per
molecule for simulations with above 385 molecules, and hence for systems with
sides greater than 3 nm. The low number of neighbours for 14 (1 nm) and 114
(2 nm) molecules are due to the neighbour list cut-off radius being greater than
2 times the length of the periodic cell, as only a one-image buffer is considered
in each dimension. However, this constant relationship is to be expected beyond
the 3 nm system, due to the constant density. This presents a linear relationship
between the number of molecules and the total number of neighbour pairs (Figure
6.3), steadily increasing the computational time needed to process all neighbour
interactions.

Figure 6.4 shows a plot of the number of molecules against the time taken for
the simulation to reach 1 ns. This graph shows a smooth relationship between the
time needed to process the simulation and the number of molecules. The time
increase added for each molecule added increases with the number of molecules.
As shown in Figure 6.2, the number of neighbours per molecule is constant for
the larger systems, but in this case extra time is spent searching through the ex-
tra molecules and constructing and processing the neighbour list interactions.
Neighbour searches are performed periodically as described in Chapter 1, but
the searches are performed over the whole system. By adding one extra molecule
to a system of N molecules, the number of search evaluations being performed
increases by N, and at this density the number of extra interactions to process
increases by approximately 72.



P1: VQN

c06 JWBK251-Ransing June 20, 2008 10:55 Printer Name: Yet to Come

ISSUES IN USING LARGE NUMBERS OF MOLECULES 147

18 

16 

14 

12 

10 

8 

6 

4 

2 

0 
0 1000 2000 3000 4000 5000 6000 

T
im

e 
fo

r 
1n

s 
si

m
u

la
ti

o
n

 t
im

e 
(h

o
u

rs
)

Number of molecules

Figure 6.4 Plot of the number of molecules against time taken to reach 1 ns of simulation
time for the constant density simulations.

Such computational costs can be reduced by implementing another stage of
search/sorting that can be performed over smaller areas frequently, and over the
whole system less frequently. This, however, would require more memory, thus
trading off memory against computation time.

6.2.1.2 Constant volume simulations

To aid as a comparison with the above results for system sizes at constant density,
simulations were performed over a range of molecular numbers at constant vol-
ume. Simulations were performed over a range of densities (Figure 6.5) within a
constant volume cube of side 5 nm and periodic boundary conditions in all three
dimensions.

The densities tested were 2.984, 24.29, 82.05, 194.6, 380.0, 656.4 and 1087.
kg/m3 with 14, 114, 385, 913, 1783, 3080 and 5104 molecules of methane respec-
tively. In these simulations, the number of molecules increases, which increases
the time required to process and move the system molecules, and are subject to
all the issues raised about computational time and resources as the constant den-
sity tests above. However, these simulations are performed at increasing density,
which when compared to the results above, isolate the effect of increasing the
length of the neighbour lists.

Figure 6.6 shows a plot of the number of molecules against the average num-
ber of neighbours per molecule possessed by each molecule in the simulation.
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Figure 6.5 Simulations performed for different numbers of molecules at the same vol-
ume, with varying densities to test the additional computational resources required for
high-density systems.

The graph shows a linear increase in the number of neighbours with the increase
in the number of molecules present. This means that the neighbour lists are not
only getting longer due to the increased number of molecules, as was shown in the
constant density test results, but the length of the neighbour lists is also increasing
because the number of neighbours possessed by each molecule in the system is in-
creasing. This further increases the number of pairwise force evaluations required,
extending the demand on memory storage and CPU processing.

Figure 6.7 shows a plot of the number of molecules against the time taken
for the simulation to reach one nanosecond, for a range of system densities as
specified above. Simulations were performed on a 3 GHz processor PC with 2 GB
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Figure 6.6 Plot of the number of molecules against the average number of neighbours
per molecule.
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Figure 6.7 Plot of the number of molecules against time taken to reach 1 ns of simulation
time for constant volume simulations (solid line) and constant density simulations (dashed
line, Figure 6.4).

RAM (random access memory). The graph for the constant volume simulations
(simulations of varying density, shown by the solid line) is shown against the
results for the processing time of the constant density simulations (dashed line,
Figure 6.4). The constant density simulations were performed in a 5 nm cube and
the range of numbers of molecules used was the same in both constant density and
volume simulations. As a result, the two resulting curves intersect at the system
containing 1783 molecules.

This, however, creates an interesting point on the graph in Figure 6.7, where
systems larger than 1783 molecules (constant density simulations performed at
380.0 kg/m3) show that the higher-density simulations (solid line) require more
computational time than the simulations containing the same number of molecules
at a lower density(from the constant density simulations). This is due to the ex-
tended length of the neighbour lists and the number of extra interactions that need
to be processed. However, for the simulations with less than 1783 molecules, sys-
tems with lower densities than the constant density simulations show that a shorter
length of processing time is needed to process the interactions within the system,
as the neighbour lists are shorter. This demonstrated the importance of consider-
ing the density of a molecular simulation when considering the resources required
by a simulation.

The above study highlights the issues present in simulating large numbers of
molecules. Although these simulations have been undertaken using a maximum of
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only 5104 molecules, they show the reaction of the system to changes in volumes
and density in terms of performance. It is particularly important to understand
these concepts with small system sizes, as the only difference between these tests
and large–massive systems (apart from larger numbers) is the reduced proportion
of time spent on overhead calculations and linear operations.

These results highlight the importance of considering the density of the sim-
ulation as well as the number of molecules being processed, as a high-density
simulation (or one with high density regions) can significantly increase the pro-
cessing time and memory requirements. Also highlighted is the tradeoff that is
possible between CPU resources and memory, which can be made during the
search routines. This can utilize a larger memory usage to speed up the time
taken searching for neighbouring pairs within the simulation domain with a
tree-like search structure.

These issues are key, as the results indicate that there is a limit on the available
simulation domain at meso scales in terms of both molecular numbers and density,
which depend on the computing power available.

6.2.2 Boundary Conditions

In this molecular model, the solid molecular boundaries have been replaced with
an approximating continuous wall to remove solid molecules from the simulation
in order to reduce computational cost. These diffuse boundary conditions repli-
cate the scattering/corrugation effect of a molecular wall over a large number of
collisions by thermalizing a proportion of the colliding molecules. As the charac-
teristic length and time of the system increases, the number of collisions occurring
with the wall over this time and length scale increases. As a result, the wall ap-
proximation is being performed over a larger number of collisions, and provides a
much better approximation. The boundary conditions have been validated against
fully molecular walls at molecular scale dimensions with results published by
Sokhan et al. [60], in Chapter 4. This validation of the model with a low colli-
sion rate over the time and length scale of the simulation gives confidence in the
validity of the boundaries at larger scales where the collision rate is higher.

6.2.3 Bulk Property Extraction

At meso scale dimensions, bulk properties become much more defined and sta-
ble as their definition improves and importance rises, but they are still below the
limit at which they can be evaluated by the continuum governing equations. The
parametric study performed in Chapter 4 highlights the fact that the ensemble
averages of properties collected is improved by sampling the widest range of
available phase space positions. A molecular system with meso scale dimensions
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Figure 6.8 Extracting bulk properties from systems with a high number of molecules
(left) and a low number of molecules (right).

containing a large number of molecules allows a greater number of molecules to
be included in the influence zone of each node as the resolution of the system
moves up to meso scale resolutions, when compared to a system of molecular
scale dimensions of the same density (Figure 6.8).

6.3 MESO SCALE SIMULATIONS

The small scale tests performed up to now have tested the lower limits of this
method for extracting bulk ensemble properties from molecular simulations. The
results may be less accurate because the ensemble averages have low numbers of
molecules. Nevertheless, the method provides a framework that allows the charac-
terization of bulk effects from a molecular model. These bulk fluid properties have
a definitive meaning above the molecular scale over large numbers of molecules.
The bulk properties have a definite definition on a continuum scale, but there are
a wide range of governing equations that can predict bulk fluid behaviour at these
scales. The aim of this method is to capture the behaviour of these properties at
meso scales, where they have meaning but cannot be characterized by continuum
equations. It is particularly important to characterize the fluid in terms of mean-
ingful properties relevant to solving engineering problems occurring at the meso
scale. In this section simulations are performed at meso scale dimensions to ex-
amine the way in which the behaviour of this method, and the dynamics of the
molecular model, change when a large number of molecules is used.

The system used is similar in form to the slit channel used previously to aid
comparison with smaller systems; this is shown in Figure 6.9. The slit chan-
nel is approximated by two parallel sheets of graphite separated by 93 nm,
with modified boundary potentials to approximate an infinite solid comprised of
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Figure 6.9 Approximated slit pore, showing the flow of methane molecules between
parallel graphite planes.

parallel graphite layers. The walls themselves were approximated using the dif-
fuse boundary conditions with a tangential momentum accommodation coeffi-
cient of f = 0.029 [60,61]. Periodic boundary conditions are applied in the x and
z directions at 93 nm and 40 nm respectively. An acceleration of 1 × 1013 m/s2 is
used to simulate a pressure-driven flow in the x direction.

The available volume between the graphite walls was filled with methane
molecules interacting with Lennard–Jones potential with a collision radius of
σ = 3.81 Å and a well depth of ε = 148.1 K. A range of densities was investi-
gated of 1.58, 3.15, 4.73 and 7.89 kg/m3, corresponding to 20 000, 40 000, 60 000
and 100 000 molecules respectively. All simulations were performed with a fluid
and wall temperature equal to 300 K. This model generates a flow of molecules
along the slit pore, the behaviour of which was observed using a one-dimensional
series of 46 nodes placed perpendicular to the direction of flow, in the y direc-
tion. The nodes, spaced at 2 nm intervals, captured the streamwise component of
velocity.

The nodes collected molecular properties of molecules within a radius of in-
fluence of 2.5 nm, using the Gaussian weighting function in the least squares ap-
proximation. The Gaussian weighting function was shown to be the most capable
in the parametric study in Chapter 4, and the nodal radius was chosen to allow for
high resolution in order to allow the boundary layers at the solid interfaces to be
captured.
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Figure 6.10 Bulk ensemble velocity profiles taken at 2 ps intervals. At t = 0 the fluid is
at rest.

The time step used was 2 fs and samples were taken every 100 time steps.
The ensemble averages were calculated over all nodes every 2000 time steps. The
parametric study also found that larger times between samples and ensembles
gave the best results, but for these simulations relatively short times were chosen
to capture the development of the steady state solution.

Figure 6.10 shows the development of the solution for the low-density system
containing 20 000 molecules. This graph clearly shows the system’s progress to
develop a steady state solution from t = 0 where the velocity of the system is
zero, to the final equilibrium state after 90 000 time steps at t = 180 ps. At t = 0,
the initial velocity increase between ensembles is large and the data contains a lot
of variation, but as the simulation progresses the change in velocity between suc-
cessive profiles reduces until the equilibrium state is reached. Once equilibrium
has been reached, the successive velocity profiles are almost identical and show
significantly less variation than at the start of the simulation, where diffusion is a
higher component of the resultant velocity of the molecules.

The above simulation was repeated for systems of the same volume contain-
ing 40 000, 60 000 and 100 000 to examine the effect that a density increase
has on large systems in terms of both the fluid behaviour and the performance
of the simulation. All simulations were performed with the same approximated
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Figure 6.11 Steady state velocity profiles for slit channel systems with 20 000 (top),
40 000 (middle top), 60 000 (middle bottom) and 100 000 (bottom) molecules, correspond-
ing to densities of 1.58, 3.15, 4.73 and 7.89 kg/m3. For clarity the average profile is shown
with ±7 m/s.

pressure gradient of 1 × 1013 m/s2 and using the same parameters for collecting
the ensemble properties.

The resulting steady state profiles are shown in Figure 6.11 for the four differ-
ent densities. The average of four extracted profiles is shown with variations in
each case of ±7 m/s. From this graph the difference between the simulations of
different densities can be seen. All of the results show boundary layer effects at
both walls, but the velocity at the wall is slightly higher on the right-hand side of
the graph. This is due to the distance between the nodes and the solid boundary,
which is 1 nm on the left of the graph and 3 nm on the right. This has been done
to highlight the errors that are introduced at the boundaries. If a node’s ‘zone of
influence’ extends beyond the boundaries of the fluid only a proportion of its avail-
able area may contain molecules; hence there are fewer molecules from which to
sample the local behaviour. This leads to an increase in the variation in the results
as fewer points in the available phase space are sampled, an effect that can be
clearly seen when comparing the results of the four simulations on the left- and
right-hand sides of the graphs. Here, the node placed at 3 nm from the boundary
has its 2.5 nm ‘zone’ fully within the fluid domain and shows a clear distinction
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between the four sets of results. The final node on the left, placed at 1 nm from
the boundary, shows more variation as more of the node’s ‘zone’ is outside the
fluid domain. However, this node captures a lower velocity at the boundary, than
the node on the right. This is an important effect to consider when placing nodes
within the domain, as nodes closer to the boundaries give better information about
the behaviour at the boundary, but only if the information is within an acceptable
tolerance. This effect is minimized when the number of molecules is increased
and as the percentage difference between the number of molecules in boundary
nodes and the number of molecules in other nodes is reduced.

As the density of the simulation is increased, the average velocity in the chan-
nel decreases. In continuum terms, increasing the density of a simulation increases
the Reynolds number. However, at molecular scales, the concept of Reynolds
number is not well defined due to the variation of flow properties. A flow with
a higher Reynolds number could potentially mean higher losses within the sys-
tem, and Chapter 5 highlighted the fact that higher losses were found in systems
with a high diffusion of energy and a lower diffusion of mass. Higher density sim-
ulations exhibit an increased number of collisions due to the increased number of
neighbouring molecules.

6.3.1 Performance of Meso Scale Simulations

These meso scale simulations at different densities contain large numbers of
molecules, from 20 000 to 100 000. The performance tests performed earlier in
this chapter highlighted the high demand of high-density simulations, and as a
result these tests were performed at relatively low densities. All simulations in
this section were performed on a Xeon 3.2 GHz processor with 6 GB RAM. To
examine the performance, similar data to previous tests were extracted in the form
of neighbour pairs and simulation time.

Figure 6.12 shows a plot comparing the number of molecules in the simulation
against the number of neighbour pairs per molecule. The graph shows the same
linear relationship to that shown by the smaller scale variable density simulations
in Figure 6.6, although in these tests the density is much lower (small scale density
simulations were performed at a density of 72.8 kg/m3).

Figure 6.13 shows a plot of the simulation rate of the variable density simula-
tions at meso scales, which shows an exponential decrease in the number of time
steps that can be performed per hour as the number of molecules in the system
increases. In the 20 000 molecule case, 3483 time steps could be completed in an
hour, but by increasing the number of molecules by a factor of 5, the number of
steps that can be processed decreases by a factor of 21.4 to 163 per hour. This
demonstrates the high cost of large systems of molecules. The computational cost
could increase significantly for systems of higher densities.
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Figure 6.12 Number of molecules plotted against the number of neighbour pairs per
molecule for the meso scale density simulations.
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Figure 6.13 Plot of number of time steps achieved per hour against the number of
molecules in the meso scale variable density simulations.
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6.3.1.1 Predictions

Using the data collected in the above section, it is possible to predict the conse-
quences of dramatically increasing the number of molecules. Figure 6.14 shows
a plot of the number of molecules against the number of neighbour pairs for the
same, constant volume, examples shown above. In this figure, the line of best fit
has been extended to predict the number of neighbours present if there were one
million molecules in the same volume. The figure shows that on average there
would be approximately seven neighbour pairs per molecule. As has been shown
above, the density of the system impacts strongly on the CPU time and resources
required to complete each time step. Figure 6.15 shows a plot of the number of
molecules against the number of time steps that can be completed per hour. This
figure has used the line of best fit to predict the number of time steps completed
per hour for a system containing one million molecules. The plot shows that ap-
proximately 2.2 time steps can be completed per hour. This dramatic reduction
is due to the time required to process the movement of such a large number of
molecules, the time searching through the domain for neighbouring molecules,
and the evaluation of the forces between neighbour pairs (which is also increased
as the high density of the system generates a larger number of force interactions
to be processed). To perform the same 180 ps equilibration time with a one mil-
lion molecule simulation would take approximately 4.6 years of continuous sim-
ulation time. This time could be seriously reduced with the implementation of
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Figure 6.14 Plot predicted from previous data of the number of molecules plotted against
the number of neighbour pairs per molecule for up to 1 million molecules.
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Figure 6.15 Plot predicted from previous data of the number of time steps achieved per
hour against the number of molecules up to one million.

parallel processing and by performing searches for neighbour pairs over smaller
subdomains rather than over the global system.

6.4 SUMMARY

This chapter has presented a large number of issues associated with modelling
meso scale systems with a molecular model. At meso scales, the number of
molecules begins to prohibit the range of systems that can be simulated. The limit
on the molecular model is not in terms of scale and dimensions but in terms of
the number of molecules and the density of the system. The penalty in terms of
increased computational cost increases exponentially as the number of molecules
or density increases.

From the bulk property extraction method point of view, as the number of
molecules increases over the length scale of the simulation, the better the defi-
nition and the more stable the ensemble averages of the bulk properties become.
A greater number of molecules improves the phase space sampling at each of the
nodes, allowing a better resolution in time as well as space compared to the length
scale of the simulation.
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7
Experimental Aspects of
Fluid Properties at the
Nano/Meso Scale

Aim. By the end of this chapter the reader should be aware of and under-
stand experimental techniques that can be used to study fluid systems at
different scales and should also be aware of how events at the nano/meso
scale can affect experimental results at the macro scales.

7.1 INTRODUCTION

So far this book has discussed many different methods for modelling the
properties/flow of fluids at the nano scale. In this section, a practical example
of where these models may be used to predict process parameters will be
examined. The process considered here will be the membrane separation of
nano-fluids. Nano-fluids consist of a solid/liquid mixture in which nano-sized
particles (diameter < 100 nm) are suspended evenly in the base liquid [92]. The
membrane separation of these fluids is based on the microhydrodynamics and
interfacial events occurring at the membrane surface and inside the membrane.
This immediately points to the requirement for understanding the behaviour and
properties of the fluid at the nano-scale.

This chapter will outline the following:

(a) colloidal interactions relevant to the process;

(b) the use of the colloidal interactions in describing the properties of a nano-
fluid, i.e. osmotic pressure, gradient diffusion coefficient and viscosity;

Fluid Properties at Nano/Meso Scale: A Numerical Treatment P. Dyson, R. S. Ransing, P. M. Williams and P. R. Williams
© 2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-75124-4
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(c) comparison of experimental results with theoretical predictions for the nano-
fluid properties;

(d) comparison of theoretical predictions with experimental results for the rate of
frontal and cross-flow ultrafiltration.

Also considered in this chapter are other aspects of fluid behaviour arising from
nano confinement, including their tensile and nano-rheological behaviour. Key
experimental technologies for the study of fluids under such conditions are
discussed.

7.2 COLLOIDAL INTERACTIONS IN NANO-FLUIDS

The interactions between the particles contained in a nano-fluid, or between
these particles and an interface, control the operation of many industrially im-
portant processes and also determine the properties of the final products. In most
aqueous-based nano-fluid systems there are three types of interactions that are
usually operative:

� London–van der Waals or dispersion forces (ubiquitous);

� electrostatic or double-layer forces (when particles and surfaces are charged);

� steric interactions (short range for small molecules, long range for macro-
molecules).

Entropic effects are also important when considering the properties of nano-fluids.
In this chapter only electrostatically stabilized systems will be considered.

The first properties that need to be quantified when trying to evaluate these sys-
tems are the size and charge. The size of nano-fluid particles can be determined
by photon correlation spectroscopy [93, 94]. One of the characteristics of nano-
particles is that they are in constant random thermal, or Brownian, motion. This
motion causes the intensity of light scattered from the particles to vary with time.
Large particles move more slowly than small particles, so the rate of fluctuation
of the light scattered from them is also slower. Photon correlation spectroscopy
uses the rate of change of these light fluctuations to determine the size distribution
of the particles scattering light [94].

The zeta potential (and thus charge) can be obtained from electrophoretic mo-
bility measurements [95]. Microelectrophoresis is the measurement of the move-
ment of nano-particles, in dilute dispersion, when they are placed in an electric
field. The measurement can be used to determine the sign of the charges on the
particles and also their electrophoretic mobility, which is related to the surface
charge and zeta potential [95].

In order to optimize processing it is also necessary to have knowledge of how
the interaction properties are influenced by pH and ionic strength. For relatively
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simple nano-fluids, quantification of the electrostatic and dispersion forces will
give a complete description of the overall interactions. For more complex systems
it is necessary to compare such initial predictions with experimental data to
quantify the additional specific interactions. The atomic force microscope (AFM)
probe techniques used in atomic force microscopy and AFM hybrid instruments
is ideal to do this [96, 97]. These techniques can be used to measure the forces
of interactions between surfaces and other particles in a range of process-relevant
environments.

Colloidal interactions are responsible for strikingly influencing the transport
properties of nano-fluids, such as gradient diffusivity and also viscosity, and the
thermodynamic properties such as the osmotic pressure. The osmotic pressure is a
key property in membrane separation processes as it controls the spatial distribu-
tion of particles in the concentration polarized layer and hence the rate of perme-
ation. As a result, any fundamental attempt to model the filtration of nano-fluid
systems requires adequate knowledge of the influence of colloidal interactions
both on osmotic pressure and transport properties.

7.2.1 Particle–Particle Interactions

7.2.1.1 Electrostatic interactions

The electrical double layer, zeta potential and surface of shear Virtually all col-
loids in an aqueous dispersion acquire a surface charge and hence an electrical
double layer. The Gouy–Chapman model [95] gives the simplest description of
an electrical double layer which comprises a charged surface and a diffuse layer
of counter ions, treated as point charges, in the solution. The distribution of the
charges in the solution is described by the Poisson–Boltzmann equation (PBE).
This model can be refined by taking the finite size of real ions into account [95],
so that the diffuse layer in reality is assumed to start at the outer Helmholtz plane
(OHP), which lies a small distance, d, away from the particle surface. The space
charge in the electrolyte is now divided into two regions: (a) the compact or inner
region very near the particle surface (up to the OHP) and (b) the diffuse layer
where the PBE applies.

The detailed structure of the inner region of the double layer is not directly
important in the modelling of ultrafiltration processes [98, 99], but the method by
which the distance to the OHP is calculated will depend on the type of model used
for describing the compact region. The position of the OHP is important as this is
widely assumed to lie coincident with or very near to the surface of shear at which
the zeta potentials are calculated from electrophoretic mobility data [95]. The zeta
potential is then the potential at the beginning of the diffuse layer. For oxide sur-
faces, such as silica, a triple-layer model such as the Gouy–Chapman–Grahame–
Stern model [95] is often used to describe the compact region. This model allows
for a plane of (partially dehydrated) adsorbed ions on the particle surface and is
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the most usual way that the high surface charge on the oxide is reconciled with the
quite low diffuse double-layer potentials (zeta potentials) found. For the protein
bovine serum albumin (BSA), the modified Gouy–Chapman model [95] where
the OHP is located at the plane of closest approach of the hydrated counterions
is probably more appropriate. This is because although some ion binding of the
electrolyte ions does occur with the BSA surface, the number of ions bound is
low [100] so an inner layer as described by the Gouy–Chapman–Grahame–Stern
model would be inappropriate.

7.2.1.2 Overlap of the electrical double layers: cell model

When particles interact their diffuse double layers will overlap, resulting in a re-
pulsive force that opposes further approach. The multiparticle nature of such in-
teractions in concentrated dispersions can be taken into account using a Wigner–
Seitz cell model [101] combined with a numerical solution of the nonlinear
Poisson–Boltzmann equation in spherical coordinates [98]. A configurational
force can then be calculated that implicitly includes the multibody effects:

FELEC = 1

3
Sβn◦kT

(
cosh

zeψβ

kT
− 1

)
, (7.1)

where Sβ is the surface area of the Wigner–Seitz cell and �β is the potential at
the cell boundary.

From Equation (7.1) it can be seen that the configurational force will depend
upon the numerical solution of the PBE to calculate �β .The numerical solution
of the PBE requires two boundary conditions. The condition that is used at the
outer cell boundary is that of electroneutrality. A choice of boundary conditions
is available at the particle surface. It is important to choose physically meaningful
conditions at the particle surface that may depend on the colloidal material being
considered. For metal colloids in a solution, a constant surface potential boundary
condition is appropriate. A constant surface charge boundary condition may be
appropriate when the surface charge is caused by crystal lattice defects, such as
in clay minerals. In the case of biomaterials and oxide surfaces, the charge can
be generated by surface dissociation reactions that are influenced by the solution
conditions. This can be described by a boundary condition known as charge
regulation [102]. A boundary condition where the zeta potential is held constant
is also possible.

7.2.1.3 London–van der Waals forces

The most rigorous calculations of London–van der Waals forces are based on an
analysis of the macroscopic electrodynamic properties of the interacting media.
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For the present purposes a calculation procedure that is less exacting but accu-
rately represents the results of modern theory is required. An effective approach
is to calculate a value for the Lifshitz–Hamaker constant, which may be found if
refractive index data for the pure substances in the colloidal dispersion are known
over a range of wavelengths. A ‘Cauchy plot’ [103] may then be used to estab-
lish parameters that are used to calculate the Lifshitz–Hamaker constant. The at-
tractive interaction energy, VATT, can then be calculated for two equal spheres of
radius a at a distance D apart using [104]

VATT(D) = − AH

6

{
2a2

D2 + 4aD
+ 2a2

(D + 2a)2
+ ln

[
1 − 4a2

(D + 2a)2

]}
, (7.2)

where AH is the screened, retarded Liftshitz–Hamaker constant [105]. The attrac-
tive force between two particles can be calculated from the interaction energy
expression as

FATT(D) = −dVATT

dD
. (7.3)

7.2.1.4 Entropic pressure

The packing of particles at a high concentration leads to an entropic pressure,
tending to disperse them. Various researchers have proposed equations to describe
the hard sphere entropic pressure data produced by molecular dynamic calcula-
tions [106, 107]. The resulting continuous approximation that gave the best results
for both high and low volume fractions is the Padé approximation of Hall [107],

PENT

kT
=

(
3φ

4π (a + d)3

) (
1 + φ + φ2 − 0.67825φ3 − φ4 − 0.5φ5 − Xφ6

1 − 3φ + 3φ2 − 1.04305φ3

)
,

(7.4)

where

X = 6.028 exp [Y (7.9 − 3.9Y )] and Y = π
√

2

6
− φ.

7.3 OSMOTIC PHENOMENA AND OSMOTIC PRESSURE

When a membrane that separates two fluid phases is impermeable to one (or more)
of the components of one of the fluid phases, there is a net flow of diffusible com-
ponents across the membrane, which is usually in such a direction that the non-
diffusible component is diluted. This phenomenon is called ‘osmosis’. Osmosis is
a process in which the solvent is transported through the membrane as a result of
the difference in transmembrane concentration. If the system is not subject to any
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Figure 7.1 Illustration of osmosis and osmotic pressure.

external influence, such as removal of excess solvent, then a hydrostatic pressure
difference is established, at which point net material transport reaches zero. This
condition is known as ‘osmotic equilibrium’, and the corresponding pressure dif-
ference is referred to as osmotic pressure (see Figure 7.1). Osmotic equilibrium
is a hydrodynamic equilibrium; solvent still passes through the membrane but the
fluxes are statistically the same in both directions.

7.3.1 Measurement of Osmotic Pressure

7.3.1.1 Osmometers

All osmometers contain two compartments, which are separated by a membrane.
Solvent is usually placed in one compartment and the solution in the other. There
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are also arrangements for measuring the pressure in or applying a controlled pres-
sure to either or both compartments. Pressure, in this context, may be either posi-
tive or negative. When there is no application of any controlled external pressure,
the system reaches equilibrium with the pressure on one side of the membrane
being higher than the other. The osmotic pressure is then obtained. The process to
reach equilibrium is slow, taking quite a few hours or even longer [108]. Therefore
some researchers use systems with applied pressure, the rate of approach to equi-
librium is measured, often under controlled applied pressure, and the equilibrium
position when the net flow is zero is determined by interpolation [109–111].

These two kinds of procedure for measuring the osmotic pressure may be
broadly distinguished as the static method, in which systems are allowed to reach
equilibrium, and the dynamic method, which uses systems with applied pressure.
Figure 7.2 shows a schematic diagram of a static method membrane osmometer.

To measure the osmotic pressure of nano-fluids using the static method, the
following experimental protocol is used. A nano-fluid of known concentration
and background solvent conditions (pH and ionic strength for aqueous solutions)
is loaded carefully into one chamber of the osmometer and then the pure solvent
at the same conditions (pH and ionic strength) is placed in the other chamber.
The nano-fluid chamber is then sealed, while the solvent chamber is left open to
the atmosphere. After both sides of the osmometer are filled, the pressure in the
nano-fluid chamber is followed and recorded via a computer. The pressure build-
up is monitored until a steady state is reached (usually after about 3–6 hours). The
equilibrium pressure is then recorded. The equilibrium pressure is taken to be the
osmotic pressure of the nano-fluid at the given conditions. The whole apparatus
is kept at a constant temperature throughout the experiment.

1

2

Nano-Fluid

Membrane

3

4

5 6

Solvent

Figure 7.2 Schematic diagram of a static osmometer experimental setup: 1, computer; 2,
pressure indicator; 3, pressure transducer; 4, osmometer cell (see Figure 7.3); 5, thermo-
couple; and 6, temperature indicator.
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Figure 7.3 Osmometer cell.

The main advantage of membrane osmometry is that it yields a direct mea-
surement of the osmotic pressure. However, there are several disadvantages when
using a membrane osmometer to measure the osmotic pressure of a nano-fluid.
There can often be problems with membrane leakage, membrane asymmetry,
compression, solute contamination or temperature gradients. Ballooning of the
membrane, which is caused by pressure differentials, is another problem. Dis-
solved air in the system can cause difficulties, so all solvents and solutions should
be degassed before insertion. The measurements themselves take a long time as
the sample and reference electrolyte require time to equilibrate. There can also be
major practical difficulties in making highly concentrated nano-fluids for use in
the membrane osmometer. Entry of the reference solvent into the nano-fluid in the
osmometer results in dilution of the sample being measured, so analytical tech-
niques for measuring the concentration of the final dispersion are also required.

7.3.1.2 Frontal ultrafiltration

Frontal (or dead-end) ultrafiltration experiments are usually carried out using a
cell similar to that shown in Figure 7.4.

The whole experimental setup is shown schematically in Figure 7.5. The sys-
tem is pressurized with nitrogen gas. The applied pressure is monitored by an
on-line pressure. A digital electronic balance connected to a computer is used to
continuously measure the weight of the permeate. A water jacket around the fil-
tration cell body is used to keep the temperature of the system at 25 ◦C. Rates of
filtration were determined by continuously weighing the filtrate on an electronic
balance connected to a microcomputer.
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Figure 7.4 Amicon ultrafiltration cell (Model 8050), with a capacity of 60 mL, maximum
operation pressure of 530 kPa, a membrane diameter of 43 mm and an effective membrane
area of 13.4 cm2.

During a frontal ultrafiltration experiment the volume filtered as a function
of time is normally measured. From the recorded time versus volume data,
the derivatives dVi/dt i and dzi/dt i = d2Vi/dt2

i may be derived from Taylor’s
theorem [112]:

dVi

dti
=

[
ti − ti−1

(ti+1 − ti )(ti+1 − ti−1)

]
Vi+1 +

[
ti+1 − 2ti + ti−1

(ti+1 − ti )(ti − ti−1)

]
Vi

−
[

ti+1 − ti
(ti − ti−1)(ti+1 − ti−1)

]
Vi−1, (7.5)

dzi

dti
=

[
ti − ti−1

(ti+1 − ti )(ti+1 − ti−1)

]
zi+1 +

[
ti+1 − 2ti + ti−1

(ti+1 − ti )(ti − ti−1)

]
zi

−
[

ti+1 − ti
(ti − ti−1)(ti+1 − ti−1)

]
zi−1. (7.6)

The osmotic pressure at any given time can therefore be evaluated using [113]

�πm(t) = �P − ηs Rm

Am

dV

dt
. (7.7)
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1
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Figure 7.5 Schematic diagram of the batch ultrafiltration system: 1, nitrogen flask; 2,
pressure transducer; 3, filtration cell; 4, water jacket; 5, magnetic stirrer; 6, electronic bal-
ance; and 7, personal computer.

These derivatives also enable the voidage, ε, of the nano-particles at the mem-
brane surface at any given time to be calculated by a simple interpolation proce-
dure [113]. The concentration of the particles corresponding to a given osmotic
pressure can then be established as voidage is simply related to the nano-particle
concentration.

In order to obtain a full osmotic pressure curve, frontal ultrafiltration exper-
iments need to be carried out at several different pressures. This is due to the
nature of numerical differentials taken from experimental data. Differentiation of
numerical data may be an unstable process, i.e. any fluctuations in the original
data will be amplified [112]; therefore, as the filtration proceeds with time, the
smaller changes in volume with respect to time result in greater errors for the cal-
culated flux. It is therefore best to use only the initial data from the first 5 minutes
of filtration (approximately five to six points) to evaluate the osmotic pressure
and concentration values, for after this instability may arise due to the numerical
errors from the numerical differentiation. This method for measuring the osmotic
pressure has the following advantages over conventional membrane osmometer
measurements: (a) only very simple apparatus is required, (b) results are obtained
quickly, (c) only small sample quantities are required and (d) only dilute initial
samples are needed, as the ultrafiltration process creates a concentrated solution
at the membrane, making sample preparation a simple task. However, this mea-
surement is not a direct measurement and some calculations have to be performed
in order to obtain the required data.

7.3.1.3 Results

Figures 7.6 to 7.8 show experimental results for the osmotic pressures of several
different nano-fluids. The osmotic pressures were determined using the various
different methods for measuring the osmotic pressure. The data for BSA were
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Figure 7.6 Osmotic pressure of bovine serum albumin (BSA) as a function of concentra-
tion at 25 ◦C and in 0.15M NaCl at pH 5.4 and 7.4 [111].
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Figure 7.7 Osmotic pressure of recombinant human lactoferrin recombinent as a function
of volume fraction at 25 ◦C and in 0.03M NaCl at pH 4.0 and 7.0 [114].
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Figure 7.8 Osmotic pressure of silica as a function of volume fraction at 25 ◦C, pH 9.0
and at various ionic strengths [115].

determined using a dynamic osmometer [111], the data for lactoferrin was deter-
mined using a static osmometer [114] and the data for silica was determined via
the ultrafiltration method [115]. Despite the examples shown here, osmotic pres-
sure data are generally scarce in the literature and the data that do exist are usually
confined to the dilute (low volume fraction) range, which is inadequate for many
purposes. Osmotic pressures of dispersions of charged nano-particles depend on
the nature, concentration and pH of the supporting electrolyte as well as on the
nature, size and concentration of the nano-particles. This creates a problem for
systematic investigations, as the methods by which osmotic pressures are mea-
sured are tedious and time consuming. This is where numerical simulation of the
nano-fluid becomes important.

7.3.2 Numerical Calculation of the Osmotic Pressure
for Nano-Fluids

7.3.2.1 Colloidal interaction approach

The osmotic pressure for proteins or other electrostatically stabilized nano-
particles may be calculated accurately via the use of extended Deryaguin–
Landau–Verwey–Overbeek (DLVO) theory [99, 114]. This allows the prediction
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of the osmotic pressure for the whole concentration range for a given set of
physicochemical conditions. By assuming a face centred cubic (f.c.c.) structure
within a nano-fluid (there is considerable evidence that electrostatically stabilized
nano-fluids exist in a regular packing form of minimum energy [98]), the
osmotic pressure at any point in the dispersion may be calculated from the
particle–particle interactions [99, 114],

π (φ) =
√

6

Ah
(FATT + FELEC + FEXTRA) + PENT, (7.8)

where π (φ) is the osmotic pressure, Ah = 2
√

3 (a + D/2)2 is the effective
area occupied by a particle at a hypothetical plane, FATT is the attractive force
between two particles, FELEC is the electrostatic force between two particles,
PENT is the entropic pressure and FEXTRA accounts for any extra interactions
between particles (all these terms depend on particle separation and thus solution
concentration).

7.3.2.2 Molecular dynamic approach

As described in Section 2.3.2, the nano-particles in a nano-fluid can be repre-
sented as a coordinate point in space, with a set of molecular properties being
attached to it that describe its mass size and interaction strength. The main part
of the model will revolve around describing the molecular potential between the
nano-particles. In this case, we model the Coulomb repulsion between spherical
particles is modelled by using the standard potential due to the mutual interaction
of their electrical double layers [116]:

U (rij) = 4πεoεr a2ψ2
o

exp[−κ(rij − 2a)]

rij
, rij > 2a, (7.9)

where εo is the permittivity of vacuum, εr is the dielectric constant of the back-
ground solvent, a is the particle radius, ψo is the electrostatic potential at the par-
ticle surface, κ is the Debye-Hückel parameter and rij is the separation distance
between two particles i and j . In this case the potential at the particle surface can
be related to the number of charges on the particle surface, Z , using

ψo = Ze

4πεoεra(1 + κa)
, (7.10)

where e is the elementary electronic charge.
Once the molecular potential model is set up the molecular dynamics simula-

tion may be performed and after a suitable length of time has passed to allow for
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Figure 7.9 Comparison of predicted osmotic pressure values with the experimental data
of Vilker et al. [111] for bovine serum albumin as a function of concentration at 25 ◦C and
in 0.15M NaCl at pH 5.4 and 7.4.

equilibration, the pressure of the system may be extracted. This pressure is equiv-
alent to the osmotic pressure of the system. In order to use this model, the value
of the surface potential, ψo, or the number of charges, Z , is required. These val-
ues may either be determined experimentally or used as fitting parameters when
comparing simulation results to experimental data.

Results of the osmotic pressure calculation, via the two different methods, for
BSA particles in a 0.15M NaCl electrolyte solution are shown in Figure 7.9. The
cell model method uses a charge regulation boundary condition when solving
the Poisson Boltzman equation, so only the pH, ionic strength and particle size
(a = 3.2 nm for BSA molecules) are required as input parameters (all these
properties are measured experimentally). The molecular dynamics model uses
measured zeta potentials (at pH 7.4, ζ = −23.4 mV; at pH 5.4, ζ = −5.1 mV)
and the particle size as input parameters. Excellent agreement between theory
and experiment is obtained.

7.4 GRADIENT DIFFUSION COEFFICIENT

The Brownian motion of a single sphere in a liquid medium due solely to the
thermal fluctuations of the molecular movements around the particle is described
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by the well-known Stokes–Einstein equation,

DBo = kT

6πηsahyd
, (7.11)

where DBo is the Brownian diffusion coefficient, ahyd is the hydrodynamic radius
of the particle, ηs is the viscosity of the fluid, k is Boltzmann’s constant and T is
the absolute temperature. However, the diffusion of a particle in a concentrated
suspension is influenced by the presence of its neighbours. Moreover, there are
two diffusion processes that need to be distinguished. The first of these processes
is known as self-diffusion and describes the fluctuating trajectory of a tracer par-
ticle among others. The self-diffusion coefficient, Ds, is obtained via a time aver-
age of the position correlation function. The second of these diffusion processes
is known as gradient or mutual diffusion. This is the macroscopic flux of particles
produced by Brownian motion in the presence of a gradient in the total density of
particles. The gradient diffusion coefficient, Dm, is the one that appears in Fick’s
law of diffusion. The tracer diffusion coefficient, Ds, and the gradient diffusion
coefficient, Dm, coincide with the Brownian diffusion coefficient, DBo , at infinite
dilution but differ in more concentrated suspensions.

Theoretically, the calculation of the gradient diffusion coefficient is a difficult
task because the calculation of multiparticle interactions is complicated and not
entirely resolved. Several methods have previously been used to predict the mu-
tual diffusion coefficient (see for example, References [117] to [120]) but due to
the dearth of adequate experimental measurements up to sufficient volume frac-
tions, comparison between theory and experiment has been rare.

7.4.1 Experimental Measurement of the Gradient
Diffusion Coefficient

Experimental measurement of the diffusion coefficient is usually performed by
dynamic light scattering (otherwise known as photon correlation spectroscopy).
Alternative methods to dynamic light scattering are not numerous and are rarely
used. These methods include the capillary method [121–123], the porous barrier
(membranes) method [121] and Gouy interferometric methods [124]. The advan-
tages and disadvantages of these different types of methods have been discussed
previously [125]. In this section the dynamic light scattering method will be con-
sidered.

Dynamic light scattering measurements can be performed using suitable exper-
imental equipment. Within a dynamic light scattering measurement, the sample is
placed in the path of a laser beam and the light scattered by the particles is detected
by a photomultiplier. The light source used is usually a laser operating with ver-
tically plane polarized light at a known wavelength. The measurements should be
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carried out at a low laser power, so the results are not influenced by local heating
of the samples, which would be caused by use of a more powerful beam. The scat-
tering angle, θ , can also be varied. Variation of the scattering angle corresponds
to a variation in the magnitude of the scattering vector, q = (4πno/λo) sin(θ/2),
which is important when analysing the data. The temperature of the samples is au-
tomatically kept at 25 ± 0.1 ◦C. By varying the concentration of nano-particles in
the nano-fluid, the variation of the gradient diffusion coefficient with concentra-
tion may be obtained. However, one of the problems encountered with dynamic
light scattering is that of multiple scattering at higher concentrations. It can be
confirmed that the nano-particle concentrations used are not high enough to cause
multiple light scattering by carrying out the experiments in two cells of different
optical path lengths. If multiple light scattering effects were present, significant
differences in the intensity autocorrelation function would be apparent for these
two cells. However, this means that light scattering techniques are usually re-
stricted to volume fractions below about 0.1.

7.4.2 Experimental Data Analysis

Most of the common light scattering equipment available operates in the homo-
dyne mode of operation. The light scattered by the dispersed particles is coher-
ently detected at a certain angle with respect to the incident radiation. Since the
dispersed particles are in continuous Brownian motion, the observed scattered in-
tensity, I (t), will fluctuate along the time axis. Therefore, analysis as a function
of time of these intensity fluctuations provides information on the motion of dis-
persed particles.

In a light scattering experiment, the time analysis is carried out with a cor-
relator that constructs the time autocorrelation function, G2(τ ), of the scattered
intensity [94]:

G2(τ ) = [I (t) I (t + τ )]. (7.12)

This correlation function depends only on the time difference, τ , and is indepen-
dent of the arbitrary time, t , at which the evaluation of G2(τ ) is started. The square
brackets refer to an average value of the product, I (t) I (t + τ ), for various times t .

For a dilute monodisperse solution, the scattered light intensity autocorrelation
function, G2(τ ), can be related to the field autocorrelation function, g1(τ ) (the
function of interest), via

G2(τ ) = A(1 + B|g1(τ )|2), (7.13)

where A is, in principle, a time-independent constant proportional to the
square of the time-averaged scattered intensity, called the baseline, and B is an
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instrument factor ≤ 1 [94]. Hence, from the measured quantity G2(τ ) and
baseline A, which is also measured, the normalized field autocorrelation function,
G1(τ ), is determined [94]:

G1(τ ) =
√

Bg1(τ ) =
(

G2(τ ) − A

A

)1/2

. (7.14)

For the case of monodisperse particles, g1(τ ) is represented by a single expo-
nential function [94]:

g1(τ ) = exp (−Dmon q2τ ), (7.15)

where Dmon is the diffusion coefficient of the monodisperse particles being stud-
ied. In this case, G1(τ ) may be fitted to a simple exponential and the diffusion
coefficient is easily evaluated.

For the practical case of polydisperse samples the field autocorrelation function
of the scattered light for a homodyne experiment assumes the form [94]

g1(τ ) =
∫ ∞

0
P(�) exp (−�τ ) d�, (7.16)

where � is the decay rate and is related to the effective diffusion coefficient, Deff,
by � = Deff q2 and P(�) is the unknown distribution function of the decay rates
[94]. The detailed analysis of such complex correlation functions is a difficult
and not entirely resolved problem. Nevertheless, some valuable information can
be extracted from the initial decay of the field autocorrelation function via the
method of cumulants [126]. In the method of cumulants the factor exp(−�τ )
is expanded around exp(−〈�〉τ ), where 〈�〉 is the mean decay rate, yielding a
polynomial in time delay,

ln G1(τ ) = 1
2 ln B +

∑
Kn(−τ )n/n!, (7.17)

where the nth cumulant is defined as

Kn = (−1)n lim
τ→0

dn

dτ n
lnG1(τ ). (7.18)

For a system of polydisperse particles, the first cumulant defines an effective dif-
fusion coefficient

Deff(q) = K1

q2
. (7.19)
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Therefore plotting K1 versus q2 should result in a straight line that passes
through the origin and has a gradient that is equal to the effective diffusion coef-
ficient, Deff(q).

Experimental data can now be obtained and treated in the following way:

(a) For given concentrations of the nano-particles and electrolyte strengths the
normalized field autocorrelation function can be measured at different scatter-
ing angles.

(b) Taking the initial portion of the ln G1(τ ) versus τ curve (at least 15 data points
starting from the minimum time value) a straight line is fitted through the data
(giving a correlation coefficient >0.95) to obtain K1, the first cumulant.

(c) A curve of K1 versus q2 can now be plotted and a regression line that passes
through the origin can be fitted through the points. The gradient diffusion
coefficient is then determined from the regression curve gradient, which is
equal to Deff(q) (Equation (7.19)).

Figure 7.10 shows how the first cumulant data, K1, determined at each scatter-
ing angle may be used to determine the gradient diffusion coefficient for a 10 g/L
dispersion of BSA particles in a 0.01M KCl electrolyte. The gradient of the plot of
K1 versus q2 yields the effective diffusion coefficient, Deff(q), in Equation (7.19).
Figure 7.10 shows that the data are well represented by a straight line fit through
the origin of the graph. For larger particles this linear dependence on the scatter-
ing angle is unlikely to be present as light scattering may be used to detect the
structure factor of the dispersion [128], thus introducing into the diffusion coeffi-
cient determination, a dependence on the scattering angle, as shown by the data of
Petsev and Denkov [117] for latex particles. However, for smaller particles where
the length scales are often too small to be resolved by light, the linear relation-
ship shown in Figure 7.10 is typical. It is, however, necessary to measure the light
scattering at different scattering angles in order to check that this is the case and
that no dependence on the scattering angle is apparent because if there was a de-
pendence on the scattering angle then the gradient diffusion coefficient would be
obtained via an extrapolation of a curve of Deff versus q to the zero scattering
vector, i.e. Dm = Deff(0) [117].

Figure 7.11 shows the overall results for the measured gradient diffusion coef-
ficients for BSA at various ionic strengths and concentrations all at a constant pH.
As with the osmotic pressure, it can be seen that the physicochemical conditions
have a great effect on the gradient diffusion coefficient. Again by modelling the
nano-fluid, predictions of the gradient diffusion coefficient may be obtained.

7.4.3 Gradient Diffusion Coefficient Calculation

The calculation of the gradient diffusion coefficient will be briefly outlined here
as a thorough review of such calculations may be found elsewhere [127]. At finite
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Figure 7.10 K1 versus q2 for BSA at a concentration of 10 g/L in 0.01 M KCl at various
scattering angles [127].
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Figure 7.11 Experimental diffusion coefficients of BSA at pH 6.5 as a function of volume
fraction [127].



P1: VQN

c07 JWBK251-Ransing June 20, 2008 11:0 Printer Name: Yet to Come

178 EXPERIMENTAL ASPECTS OF FLUID PROPERTIES

concentrations, colloidal interactions and hydrodynamic interactions mediated by
the fluid modify the dilute-limit value of the Brownian diffusion coefficient, DBo .
The combined action of these interactions may be described by the generalized
Stokes-Einstein equation [129],

Dm(φ) = DBo

K (φ)

S(φ)
, (7.20)

where K (φ) is the hydrodynamic interaction coefficient and S(φ) is the ther-
modynamic coefficient. This equation is valid over the entire range of volume
fractions. The thermodynamic coefficient, S(φ), may be directly determined from
the osmotic pressure, π (φ), as [130]

1

S(φ)
=

[
4πa3

hyd

3kT

∂π (φ)

∂φ

]
. (7.21)

Prediction of the osmotic pressure thus allows the calculation of S(φ).
The hydrodynamic coefficient, K (φ), accounts for the fact that in concentrated

suspensions the drag force exerted on a single particle deviates from Stokes’ law
because of the presence of the neighbouring particles. This coefficient describes
the sedimentation velocity of an assemblage of spheres. This coefficient may be
calculated for completely disordered hard spheres from [131]

K (φ) = (1−φ)α, (7.22)

where α = 6.55, and for completely ordered f.c.c. hard spheres from [127]

K (φ) = 1 − 1.7876φ2/3−0.0602φ2/3 + 1.2989φ − 0.6233φ4/3

+ 0.4842φ5/3 − 0.3079φ2 (7.23)

The point at which the order/disorder transition occurs is equivalent to the point
at which the disordered system line, Equation (7.22), coincides with the ordered
system line, Equation (7.23) [127]. Hence, α may be determined if the volume
fraction of the order/disorder transition, φo/d, is known, by equating Equations
(7.22) and (7.23), taking logs and rearranging:

α =
log

(
1 − 1.7876φ

1/3
o/d−0.0602φ

2/3
o/d + 1.2989φo/d−0.6233φ

4/3
o/d + 0.4842φ

5/3
o/d−0.3079φ2

o/d

)
log(1−φo/d)

(7.24)

For electrostatically stabilized dispersions, the value of α varies with the
particle interactions [127]. In order to calculate the appropriate value for α,
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perturbation theory is used [127]. This entails a rescaling of the particle size due
to the colloidal interactions [132]. The new particle size is determined via

deff = 2ahyd +
∫ σ

2ahyd

{
1 − exp

[
− VTOT(r )

kT

]}
dr (7.25)

In order to calculate the effective diameter via this method, the interaction po-
tential, VTOT(r ), needs to be known as a function of separation distance. This
interaction energy is determined from the pair interaction force by numerically
integrating the force distance curve,

VTOT(r ) = −
∫ r

∞
FTOT(r )dr, (7.26)

where FTOT(r ) = FELEC(r ) + FATT(r ).
Once the effective hard sphere diameter is known, the thermodynamic prop-

erties, such as the osmotic pressure, then correspond to those for a hard sphere
suspension, with

φeff = φ

(
deff

2ahyd

)3

. (7.27)

This method provides a basis for prediction of the order/disorder transition for
electrostatically stabilized colloids as the hard sphere order/disorder transition
is well known (φo/d = 0.55 for hard spheres [130]). Consequently, an electro-
statically stabilized colloidal dispersion will become an ordered f.c.c. solid when
[130],

φo/d = 0.55

(
2ahyd

deff

)3

. (7.28)

Therefore, knowing φo/d enables the calculation of α for an electrostatically
stabilized solution from Equation (7.24), and thus the calculation of K (φ) for
the disordered region from Equation (7.22). Once the value of φo/d is reached,
Equation (7.23) then applies for the calculation of K (φ), even for charged
suspensions [127].

The generalized Stokes–Einstein equation (Equation (7.20)) may also be mod-
ified to account for the influence of the secondary electroviscous effect on K (φ)
[120],

Dm(φ) = DBo

ηs

ηa

K (φ)

S(φ)
, (7.29)

where ηs is the solvent viscosity and ηa is the apparent solvent viscosity.
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Figure 7.12 Comparison between theoretical predictions and experimental results for the
diffusion coefficients of BSA at pH 6.5 as a function of volume fraction [127].

A comparison between gradient diffusion coefficient experimental data (mea-
sured by photon correlation spectroscopy [127]) and the theoretical predictions
for the protein BSA is shown in Figure 7.12. Again good agreement between
theory and experiment has been obtained.

7.5 VISCOSITY

In dilute nano-fluid systems the viscosity of the solution may be described by
Einstein’s equation [133],

η

ηs
= 1 + [η]φ + 0(φ2), (7.30)

where η is the viscosity of the solution, ηs is the viscosity of the pure solvent and
[η] is the intrinsic viscosity. For hard spheres the value of the intrinsic viscosity
is precisely calculated as 2.5 [133]. The presence of electrical charges on the
spheres, however, causes an augmentation of the intrinsic viscosity. This effect
can be calculated theoretically (the currently accepted theoretical model being
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that of Booth [134]), but it may also be determined experimentally by measuring
the viscosity of a range of dilute solutions and plotting a graph of η

/
ηs−1 versus

φ. This results in a straight line passing through the origin with a gradient that is
equal to the intrinsic viscosity.

For concentrated suspensions, correlations have been widely used to describe
the viscosity of the system, one of the most commonly used being that of Krieger
and Dougherty [133],

η

ηs
=

(
1− φ

φmax

)−[η]φmax

, (7.31)

where φmax is the maximum packing fraction. For f.c.c. packed hard spheres, φmax

= 0.7404 and [η] = 2.5; therefore the index in Equation (7.31) becomes 1.85,
which is close to the commonly quoted value of 2 [135].

However, in order to use this correlation experimental data are required. Also,
when considering electrostatically stabilized solutions, the particle interactions
will affect the values of φmax and [η].

7.5.1 Viscosity Experiments

Tests and instruments to measure viscosity range from the simple to the com-
plex. Viscosity can be measured using a falling ball test which measures the time
required for a ball to fall through the test liquid contained in a temperature con-
trolled glass tube (a small change in temperature can result in a large change of
viscosity). When this test is done using a standardized falling ball viscometer, the
absolute viscosity can be determined. Falling ball viscometers are used to measure
the viscosity of Newtonian fluids.

Viscosity can also be measured with a simple device known as a glass capil-
lary viscometer. The viscosity is determined by measuring the time needed for a
known volume of fluid to pass through a small opening. The simplest glass capil-
lary viscometer is probably the Ostwald-type capillary viscometer, used commer-
cially in many applications.

The absolute viscosity of both Newtonian and non-Newtonian fluids can be
measured using rotational viscometers. These viscometers measure viscosity by
sensing the torque required to rotate a spindle at constant speed while immersed in
the sample fluid. The torque is proportional to the viscous drag on the immersed
spindle, and thus to the viscosity of the fluid.

The viscosity measurements shown in Figure 7.13 were obtained using an Ost-
wald type viscometer suspended in a water bath kept at a constant temperature of
25 ± 0.1 ◦C [136]. A range of dilute BSA solutions was used (0–20 g/L). The data
shows the straight line relationship predicted by the dilute limit theory (Equation
(7.30)), from which the intrinsic viscosity may be found. The intrinsic viscosity
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Figure 7.13 Experimental data for the intrinsic viscosity of BSA at pH 8.0 in a 0.03M
NaCl electrolyte [136].

for this system at the given conditions (0.03M NaCl, pH 8.0) is 3.62. This value
is comparable with the value of 3.75 measured by Kozinski and Lightfoot [137].
They also used an Ostwald viscometer to measure the viscosity of BSA solutions.
In their experiments they used three different sizes of viscometers to determine
whether non-Newtonian effects were present. The viscosity of BSA solutions was
measured over a much higher range of concentrations (0–450 g/L) in two different
types of buffer solution (0.5M arsenate buffer at pH 6.7 and 0.1M acetate buffer).
No significant differences in the viscosity measurements were found between the
different systems.

Figure 7.14 shows the experimental data of Kozinski and Lightfoot [137] plot-
ted versus several different types of fit to their experimental data. This shows that
many different types of expression can be fitted to experimental viscosity data
(Equation (7.31) could also be fitted to these data). The behaviour of the viscos-
ity versus concentration curve for these BSA dispersions is typical of that for
concentrated nano-fluid systems. Figure 7.15 shows the viscosity for silica parti-
cles dispersed in a sodium chloride solution. The viscosity of these solutions was
measured using a Carri-Med controlled stress rheometer with a cone and plate
geometry. Again the viscosity measured here shows the same trend versus con-
centration/volume fraction as the BSA viscosity.
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Figure 7.14 Viscosity of BSA solutions versus concentration [137].
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Figure 7.15 Viscosity of nano-silica particle solutions versus volume fraction (pH 8.9,
0.03M NaCl, a = 9.71 nm).
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7.5.2 Viscosity Calculation

Experimental results such as those shown in Figures 7.14 and 7.15 are ideal for
comparison with computer simulations. In order to predict the viscosity of a con-
centrated suspension it is necessary to take into account both the many body hy-
drodynamic interactions and the spatial distribution of the particles. However, in
spite of many recent works, including theoretical, experimental and numerical ap-
proaches, the prediction of the viscosity of concentrated suspensions is still poorly
achieved [135]. Many of the simulations are not dissimilar to computer simula-
tions of liquids such as argon and chlorine [138]. They use Newtonian equations
of motion and a Lennard–Jones type of particle–particle interaction law, the main
differences being that the interparticle forces are smaller and the hydrodynamic
resistance to motion is much greater for suspensions. Nonequilibrium molecular
dynamics in particular is a technique that may be used to predict the viscosity of
a suspension [139].

7.6 MEMBRANE SEPARATIONS

Membrane separation technology is a novel and highly innovative process
engineering operation. Membrane filtration processes are nowadays used as an
alternative to conventional industrial separation methods such as distillation,
centrifugation and extraction, since they potentially offer the advantages of high
selective separation, separation without any auxiliary materials, ambient tem-
perature operation, usually no phase changes, small units, modular construction,
simple integration into existing production processes and relatively low capital
and running costs. The former advantages make membrane processes even more
interesting for certain types of materials that have been inherently difficult and
expensive to separate, such as:

1. Finely dispersed solids, especially those that are compressible, have a density
close to that of the liquid phase, have high viscosity or are gelatinous.

2. Low molecular weight, nonvolatile organics or pharmaceuticals and dissolved
salts.

3. Biological materials that are very sensitive to their physical and chemical en-
vironment.

The various membrane separation methods can be divided according to their sep-
aration characteristics, which may be classified by the size range of materials
separated and the applied driving force (Table 7.1).

In general, three filtration modes can be distinguished: unstirred and stirred
frontal (or dead-end) filtration and cross-flow filtration. In the unstirred frontal
situation the solution is put under pressure without any agitation in the liquid.
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Table 7.1 Classification of membrane separation processes for liquid systems.

Separation Examples of materials
Name of process Driving force size range separated

Microfiltration Pressure gradient ∼0.1–10 µm Small particles, large
colloids, microbial cells

Ultrafiltration Pressure gradient ∼5–0.1 µm Emulsions, colloids,
macromolecules,
proteins

Nano-filtration Pressure gradient ∼0.5–5 nm Dissolved salts, small
organics

Reverse osmosis Pressure gradient <0.5 nm Dissolved salts, small
organics

Electrodialysis Electric field gradient <5 nm Dissolved salts
Dialysis Concentration gradient <5 nm Treatment of renal failure

Agitation can be provided with a stirring bar in the stirred dead-end mode. In the
cross-flow situation the solution is pumped to flow tangentially over the mem-
brane surface.

In the next section we will consider the ultrafiltration process for the separation
of nano-fluids. Ultrafiltration separates solutes of the size (or molecular weight,
Mw) of approximately 5 to 100 nm (or 2 × 103 to 2 × 105 Mw), using a pressure
difference of usually 100 to 500 kPa as the driving force. At a fundamental level,
ultrafiltration is a very complex process. The events leading to the formation of
a cake at ultrafiltration membranes are taking place on a length scale of nanome-
tres. The interactions between the particles at this scale are very important in the
development of appropriate models. This immediately points to the requirement
for understanding the colloid science of such processes.

7.7 MEMBRANE ULTRAFILTRATION MODELS

7.7.1 Frontal Ultrafiltration Model

This section reviews in outline a full description of the development of a theoreti-
cal model for frontal ultrafiltration [98, 140]. Only the most significant equations
are described here.

The description of the filtration process starts with a D’arcy-type expression
for flow through porous media:

1

Am

dV

dt
= KHAPP

ηs

dpy

dy
(7.32)
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which relates the small element of cake thickness, dy, to the small volume of per-
meate, dV, passing through its formation. KHAPP is taken as Happel’s permeability
coefficient [14] which is calculated from

KHAPP =
(

2 (a + d)2

9 (1−ε)

3 − 4.5 (1−ε)1/3 + 4.5 (1−ε)5/3 −3 (1−ε)2

3 + 2 (1−ε)5/3

)
(7.33)

By performing a volume balance over the solids in the filter cake and allowing
for the time dependence of the pressure, p2, at the membrane surface, a set of
simultaneous equations can be developed which will describe the ultrafiltration
process (a full derivation is given in References [98] and [140]):

d

dt

(
dV

dt

)
= − (dV/dt)2

V + Am Rm (1/Cb−1/(1−ε)) (1−ε) (ηs/ηA (ε)) KHAPP (ε)
(7.34)

dV

dt
= z, (7.35)

p2(t) = p3 + ηs Rm

Am
z. (7.36)

These equations can be solved by a numerical predictor–corrector schema subject
to the following boundary conditions:

At t = 0, V = 0, p2(t) = p1 and z =dV

dt
= Am

ηs Rm

(
p1−p3

)
.

The particle interactions are incorporated into these equations through the local
voidage, ε, which varies with position in the filter cake and time, depending on
the local interparticle interactions. The time-dependent boundary condition at the
filter cake–membrane interface is given by

p2(t) = p1−pD. (7.37)

7.7.2 Cross-Flow Ultrafiltration Model

Figure 7.16 shows a schematic representation of the ultrafiltration system being
considered. To model the concentration polarization in thin channel ultrafiltra-
tion systems, it is adequate to use parabolic-type transport equations by using
a boundary-layer-type approach [142]. Thus, for steady laminar flow in a thin
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Figure 7.16 Schematic representation of ultrafiltration through one wall in a flat plate
system.

channel ultrafiltration module with one porous wall, the appropriate governing
equations are [142, 143]

Continuity equation:
∂u

∂x
+ ∂v

∂y
= 0, (7.38)

Momentum equation: u
∂u

∂x
+ v

∂u

∂y
= − 1

ρ

∂p

∂x
+ ∂

∂y

(
η

ρ

∂u

∂y

)
, (7.39)

Mass balance: u
∂c

∂x
+ v

∂c

∂y
= ∂

∂y

(
D

∂c

∂y

)
. (7.40)

It is worth noting here that u and v are the bulk flow velocities; i.e. the con-
vective transport of the fluid and particles is the same. Notice that the proper-
ties of the nano-fluid, viscosity, density and diffusion coefficient, are included
in these equations. Which equations are subject to the following boundary
conditions:
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At the inlet, x = 0:

c = co, v = 0, u = 1.5uo

[
1− (y − h)2

h2

]
. (7.41)

These boundary conditions specify the inlet flow and concentration profiles. The
inlet velocity profile may in principle be either uniform (plug flow) or parabolic
(Poiseuille flow). The concentration profile of the feed at the inlet is assumed to
be uniform.

At the non–porous wall, y = 0:

u = 0, v = 0,
∂c

∂y
= 0. (7.42)

This boundary condition represents the no-slip condition as well as no-solute
transport through the nonporous wall.

At the membrane wall, y = 2h:

u = 0, vw = �P−π

ηs Rm
,

∂c

∂y
= βvwcw

Dw

. (7.43)

These equations give the conditions at the membrane wall for the momentum
and solute continuity [136]. The no-slip condition is assumed at the membrane
surface. The momentum equation is coupled with the solute continuity equation
by the wall flux and solute mass balance of the convective–diffusive transport at
the membrane surface with the solute rejection coefficient, β (for the ultrafiltra-
tion experiments considered here complete rejection of the solute is assumed i.e.
β = 1). The local wall flux is determined by the axial transmembrane pressure
drop, the concentration dependent local osmotic pressure drop across the mem-
brane, and the effective membrane resistance.

No analytical solution is known for the system of equations, Equations (7.38)
to (7.40), subject to boundary conditions, Equations (7.41) to (7.43). This system
of equations can, however, be solved by a finite-difference method [144, 145]. A
full description of the solution method can be found in Bowen et al. [146].

From the solution of Equations (7.38) to (7.40), the local permeate flux dis-
tribution, vw(x), along the channel length, x , is obtained. Thus, integrating the
local permeate flux over a distance, l, the channel length from the inlet gives the
average permeate flux, vav:

vav(l) = 1

l

∫ l

0
|vw(x)| dx . (7.44)

Integrating along the whole channel length results in the steady state value, which
can be measured experimentally [146].
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In order to solve both the frontal and cross-flow ultrafiltration models, the prop-
erties of the nano-fluid are required: osmotic pressure, diffusion coefficient and
viscosity over a range of concentrations.

7.7.3 Comparison of Experimental and Theoretical Data

Figure 7.17 shows the effect of the variation of the zeta potential (by variation of
pH) at a constant ionic strength of 0.03M and an applied pressure of 400 kN/m2.
This figure illustrates the overall very good quantitative predictive ability of the
developed model over the whole range of zeta potentials tested. It should be noted
that the model predictions are physics based with no adjustable parameters. Very
good agreement between theory and experiment was obtained. This is to be ex-
pected, as the main parameter involved in the frontal ultrafiltration model is the
osmotic pressure and, as show in Section 7.3.2, the modelling of the osmotic pres-
sure is in excellent agreement with experimental data. This method goes to show
how modelling at the nano scale can be taken to predict process operation at the
macro scale.

In Figure 7.18 model predictions have been compared to experimental
cross-flow ultrafiltration data obtained for BSA [136]. Reasonable agreement
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Figure 7.17 Time over volume versus permeate volume for varying pH at an ionic
strength of 0.03M [140].
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Figure 7.18 Permeate flux, vav, versus applied pressure, �P , for a 10 g/L solution of
BSA at pH 10.0 in a 0.03M NaCl electrolyte [136].

was obtained when all solution properties were allowed to vary, showing the im-
portance of accounting for them properly. However, comparison between theory
and experiment was not exact. This is most likely to be due to some uncertainty
in the theoretical viscosity prediction, as the theoretical methods for predicting
the osmotic pressure (Section 7.3) and the gradient diffusion coefficient (Section
7.4) have been compared to experimental data for these properties and have
shown excellent agreement. Better predictions could be obtained by using a more
sophisticated description of the rheological properties. Indeed, precise calcula-
tion of the rheological properties of charged colloidal systems remains a major
challenge in colloid science. Even so, Figure 7.18 shows that the predictions
obtained when allowing all the properties to vary are overall significantly better
than the other predictions for the range of applied pressures considered.

7.8 TENSILE AND OTHER RHEOLOGICAL PROPERTIES
OF LIQUIDS ON THE MESO SCALE

7.8.1 Metastability and Cavitation Phenomena

There has been considerable interest in the possible existence of a separation-
induced spinodal and the associated phenomenon of spontaneous cavitation, the
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term ‘cavitation’ referring to the formation of cavities (or cavitation ‘bubbles’)
in a liquid when it experiences tension [147]. If the tension exceeds the liquid’s
cavitation threshold (or effective tensile strength) the liquid changes irreversibly
into a two-phase system of liquid and a mixture of vapour and dissolved gas [148].

The rheological behaviour of thin liquid films is an important aspect of
lubrication [149] and printing [150], processes that often involve meso scale
(0.1–10 µm) thickness films undergoing rapid deformation between separating
surfaces. In the case of fluid mechanical machinery these are usually solid
surfaces, whereas in biomechanics they may be flexible surfaces, such as
biological membranes. The ‘cracking’ of knuckle joints has been attributed to
cavitation within meso scale lubricating films of synovial fluid [151], while
surface damage in microelectromechanical system devices has been attributed to
the cavitation of lubricant films [152]. The ability of liquids to sustain tension
is an important factor in the survival of plants, in which the cohesion–tension
(C-T) theory has been proposed to explain water transport [153]. The C-T theory
assumes that water, when confined in small tubes with wettable walls such as
xylem elements, can sustain a tension ranging from 3 MPa to 30 MPa. The liquid
forms a continuous system in the water-saturated cell walls, from the evaporating
surfaces of the leaves to the absorbing surfaces of the roots. During evaporation,
the reduction in water potential at the surfaces causes movement of water out of
the xylem, with water loss producing tension in the xylem sap that is transmitted
throughout the continuous water columns to the roots.

In coating processes, cavitational film-splitting may result in the formation
of rapidly stretching filaments, whose break-up leads to unwanted droplet depo-
sition. Filament formation is also a feature of coating flows involving adhesive
films [154], but descriptions of the process are still largely qualitative, invoking
terms such as ‘tack’ [155, 156]. The tack of an ink film is primarily connected
with the tensile forces developed in film-splitting [157], the function of cavitation
being to limit the forces of separation of surfaces joined by a tacky liquid [158].
By definition, the tack of an ink film is the maximum tensile stress (or ‘negative
pressure’) that it can withstand before splitting [150].

Due to the high deformation rates which typify many meso scale cavitation
phenomena, significant viscoelastic effects may be anticipated. One such effect
is a delay in the cavitation of viscoelastic liquids in micrometre-sized gaps, due
to the development of normal stresses [159]. Others claimed that viscoelastic ef-
fects include a displacement of the point of cavitation from the centre of contact
(where film thickness is a minimum) and enhanced film thicknesses [160]. Little
is known about the influence of viscoelasticity in submicrometre liquid film cav-
itation, but the initial film thickness is a crucial factor; for sufficently thin films,
even ostensibly low rates of surface separation may provoke the high rates of
fluid deformation necessary to generate enough tension (through viscous forces)
to result in cavitation [161].

It is important to realize that in ultrathin films of water, cavitation may
occur spontaneously, due to the antipathy between the liquid and hydrophobic
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surfaces between which it is confined [162]. Spontaneous cavitation was first
observed experimentally by Christenson and Claesson [162]. Theory predicts that
vaporous cavities will only form in pure liquids as a result of large tensions, some
1300–1400 bar in the case of water [163], although a somewhat higher figure
(ca. 1900 bar) results from an interpretation of the thermodynamic properties
of stretched water known as the stability limit conjecture [164]. Experiments
involving very small quantities of pure water have produced tensions close to this
homogeneous nucleation limit [165] but they are not commonly observed. Thus
the idea of bubble nucleation, and its manifestation as a liquid’s effective tensile
strength, Fc, has been introduced.

In some treatments, nuclei represent ‘holes’ in the liquid, which grow into
macroscopic bubbles, but heterogeneous nucleation may involve microscopic im-
purities such as ‘motes’ of dirt or dust that act as nuclei. An energy barrier against
nucleation arises because the liquid–gas transition is discontinuous and the in-
terface between the two phases has a finite energy per unit area – the surface
tension, S. Thus the formation of a bubble has an energy cost of 4π R2S. When
such a bubble forms, the energy of the whole system also contains the work of the
negative pressure over the bubble volume, so that the total energy cost of forming
the bubble is [166]:

�E = 4π R2S + 4π

3
R3 P. (7.45)

At negative pressures, this energy has a maximum for a critical radius Rc =
2S |P|.

The liquid pressure, p, exterior to a bubble of radius R will be related to the
interior pressure, pB, by

pB − p = 2S/R, (7.46)

where S is the surface tension. It is assumed that the concept of surface tension (or
surface energy) can be extended down to bubbles or cavities a few intermolecular
distances in size. If the temperature, T, is uniform and the bubble contains only
vapour, then the interior pressure, pB, will be the saturated vapour pressure,
pV(T). However, the exterior liquid pressure, p = pV −2S/R, will have to be
less than pV in order to produce equilibrium conditions. Consequently, if the
exterior liquid pressure is maintained at a constant value just slightly less than
p = pV −2S/R, the bubble will grow, R will increase the excess pressure, causing
the growth to increase, and rupture to occur. For some finite tension the liquid
stretches without limit.

This may be considered in terms of the potential tensile strength of a pure
liquid involving two molecules that are separated by a variable distance, r: equi-
librium occurs at the separation ro and the attractive force is equal to δφ/δr, where
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φ is the potential energy ssociated with the intermolecular force which is a max-
imum at r1, where typically r1/ro is calculated as 1.1 or 1.2. The application of a
constant tensile stress equal to that corresponding to r1 ruptures the liquid since,
for r > r1, the attractive force is insufficient to counteract that tensile force [148].

The pressure at which that happens is called the spinodal limit, at which the
sound velocity becomes zero (i.e. the compressibility is infinite) and there is no
barrier to nucleation. Thus for small tensions the energy barrier is large and the
probability of bubble formation is low. A pure liquid may sustain tension for a
prolonged period but it is important to realize that a liquid under tension is in
a metastable state – it inhabits the region between the spinodal and the coexis-
tence curve where liquid and vapour coexist. The spinodal parabola meets the
coexistence curve at the critical point, but otherwise is separated from it by a fi-
nite distance [167]. In the absence of nucleation sites, the metastable fluid can
be macroscopically long-lived, but it is not possible to proceed past the spinodal
line and remain as one phase; at the spinodal the molecules may be regarded as
self-nucleating.

Berard et al. [168] showed that the free energy of a bridging cavity is lower
than that of liquid water when the surfaces are separated as far as micrometres and
claim that the fact that such cavities are not observed as the two surfaces approach
contact from far apart indicates that the liquid between them is metastable, i.e.
that there is some barrier preventing cavitation. The theory for the long-ranged
hydrophobic attraction relies upon this notion of induced cavitation – the force
between two colloids in a near-critical or a near-spinodal fluid is attractive and
long-ranged – and the connection between the spinodal attractions in the bulk and
measured long-range attractions between hydrophobic surfaces is the observed
cavitation [169].

Computer simulations by Berard et al. [168] on a Lennard–Jones liquid con-
fined between hard walls showed cavitation at small separations and that there
was indeed a spinodal separation. Approaching this separation it was found that
the attractions were much stronger than the van der Waals attraction, and longer
ranged. Qualitatively, a separation-induced spinodal can account for the measured
hydrophobic attractions [170].

In the case of cavitation which results from the development of fluid mechan-
ical stresses (as tension), Joseph [161] has pointed out that the concept of ‘neg-
ative pressure’ is not particularly useful, it being more pertinent to consider the
state of stress experienced by a liquid. In so doing, it is convenient to decom-
pose the stress into a deviator and mean normal stress, the most positive value of
principal stresses being the maximum tension. In order to facilitate a comparison
of a liquid’s cavitation threshold stress with the principal stresses at each point
within the liquid, it is necessary to know the flow field. In terms of studying cav-
itation inception within meso scale liquid films, this requirement imposes strin-
gent experimental demands as it requires a comparison of the cavitation threshold
at each point in a liquid sample with the principal stresses there. For liquids in
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motion, cavitation criteria must be based not on the pressure but on the stress, and
a cavitation bubble will open in the direction of maximum tension in principal
coordinates. An important point that emerges is that a liquid can cavitate as a re-
sult of experiencing a shear deformation, the resulting cavity being pulled open
by tension in the direction defined by principal stresses.

7.8.2 Experimental Techniques

7.8.2.1 Experimental studies of the tensile properties of meso scale fluid films

Of the few experimental techniques capable of working at (or below) the meso
scale, the various ‘force microscopes’, such as the surface forces apparatus (SFA),
have been the most successful, but instances of their use in studies of thin fluid
films are comparatively rare. Notable exceptions are provided by the work of
Israelachvili and coworkers [171] who observed the growth and disappearance
of vapour cavities in liquid films between separating mica surfaces in SFA ex-
periments. The growth of a cavity was claimed to represent a ‘new’ cavitation
damage mechanism, insofar as surface damage occurred during cavity inception
[172]. This is an interesting finding given that by far the greatest effort in cavi-
tation damage research has involved the study of bubble collapse and its conse-
quences. Lord Rayleigh’s seminal analysis of the collapse of an isolated spherical
void in an incompressible liquid [173] leads to the conclusion that, as the collapse
nears completion, the pressure inside the liquid becomes indefinitely large. It is
principally this ‘Rayleigh collapse’ mechanism (albeit extensively modified) that
has led to the association of bubble collapse with cavitation damage [174].

Little is known about the dynamics of cavities formed in thin films but, due
to their inevitably close proximity to the film’s bounding surfaces, significant
departures from spherical symmetry may be anticipated [175]. The asymmetry
of cavity collapse leads to potentially damaging phenomena, such as liquid jets
[176], but the issue of cavitation damage due to cavity growth has received rel-
atively little attention, despite the possibly damaging consequences to capillaries
and small blood vessels of the intraluminal expansion of cavitation bubbles in
the areas of laser angioplasty [177], electrohydraulic lithotripsy [178] and shock
wave lithotripsy [179].

The atomic force microscope (AFM) enables imaging of the surface topog-
raphy of both conducting and nonconducting materials with atomic resolution
[180]. It has also been used to study nanomechanical, adhesion and viscoelas-
tic properties [181, 182], the dynamic properties of systems such as membranes
[183], the adhesion of a single biological cell to a surface [184] and the properties
of liquids [185, 186].

Barrow et al. [187] have reported work in which an AFM was used to stretch
(and, ultimately, to rupture) a thin film of liquid between a moving colloid sphere
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Figure 7.19 High-speed microphotographic (HSMP) system consisting of a microscope
objective lens, a telephoto lens, a set of magnifying extension tubes and a Kodak HS4540
high-speed video camera. The HSMP system is aligned with the colloid probe mounted on
the cantilever of a Digital Instruments DI 3100 AFM [187].

and a static, plane surface. Their experiments involved a novel high-speed video
microphotographic system, which was used to record the development of fluid
filaments following rupture of the fluid film (see Figure 7.19).

Figure 7.20 shows how the force between an AFM cantilever and a sample is
recorded as a function of the scanner displacement, the latter being varied in this
case using a piezoelectric crystal. A laser beam reflected from the back of the
cantilever falls on to a photosensitive position detector (PSPD) photodiode whose
output is used to detect changes in cantilever deflection. To generate a force–
distance curve, the cantilever tip deflection is recorded as a function of the tip-
sample separation as the piezo scanner raises the sample towards the tip and sub-
sequently retracts away. In order to convert the resulting data into force as a func-
tion of true sample-tip separation, it is necessary to know the spring constant, K, of
the cantilever and to define zero values of the force and of the separation distance.

In AFM work the cantilever tip geometry is often unknown. In the experiments
reported by Barrow et al. [187] the tip was replaced by a ‘colloid probe’ of known
geometry in order to facilitate a comparison of normalized data. The probes
(Figure 7.21) were made by attaching 15 µm diameter silica spheres to tipless
cantilevers for which the values of K were 2.9 N/m and 2.1 N/m, and whose res-
onant frequency (measured in the absence of a colloid sphere using the AFM’s
noncontact, frequency-sweep mode) was 160 kHz and 320 kHz respectively. The
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Figure 7.20 Basic arrangement of the AFM in which a laser beam reflected from the
back of the cantilever falls on to a photosensitive position detector (PSPD) photodiode
which detects changes in cantilever deflection.

optimal positioning of the sphere at the apex of the tipless cantilever, combined
with its small mass, results in an insignificant modification of the spring constant
of the bare cantilever [188]. Colloid spheres of this type have a maximum peak-to-
valley roughness of 3 nm over an area of 0.45 µm2 [186]. The planar surface was
prepared by oxidation of polished silicon wafers to give a 500 nm thick coating.

Typically these consist of an ‘approach’ and a ‘retraction’ stage (Figures 7.22
and 7.23), in which the maximum distance between the probe and the surface
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Figure 7.21 Scanning electron microscope (SEM) image of a spherical ‘colloid probe’
of the type used in the experiments.

over which force measurements are made is ca. 3 µm. At the position denoted
‘a’ in Figure 7.22, the probe is initially located far from a nominally ‘dry’ surface
(an unevenly distributed water moisture layer is present on surfaces in air with
relative humidity greater than 20 %). At position ‘a’ the cantilever is undeflected,
with the corresponding ‘zero-force’ PSPD output being constant. On approaching
the surface, at a constant velocity, the PSPD output decreases at position ‘b’,
this reduction corresponding to a downward deflection of the cantilever (an event
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Figure 7.22 Typical force curves obtained for the approach and retraction of a probe to
and from a nominally dry surface.
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Figure 7.23 Typical force curves obtained for approach and retraction to and from a
surface covered by a film of viscous liquid.

which is referred to as ‘snap in’). This is attributed to the action of capillary
forces due to the presence of a surface layer of water moisture and to short-range
attractive forces that act upon the probe prior to the establishment of a physical
surface contact.

Between positions ‘b’ and ‘c’ the probe is arrested by the surface, but the
other end of the cantilever is attached to the scanner column which continues
to descend. Consequently, the cantilever deflection reverses, corresponding to a
compressive force in region ‘c’. The scanner continues to descend until a prede-
fined limit of compressive force is recorded (at ‘d’). By specifying a lower value
of the limiting contact force (at ‘d’), a tolerable cantilever deflection is achieved.
Following this phase of the ‘approach’ curve, the scanner retracts over a specified
distance (3 µm) relative to the final position of approach until the probe-surface
contact is broken.

The general features of the corresponding curves obtained when a film of liquid
(substantially more viscous than water) is placed on the surface are represented
in Figure 7.23. Although the approach curve is similar to that shown in Figure
7.22, the retraction of the scanner is not accompanied by a ‘snap back’ to zero
force. Rather, a more gradual reduction of tensile force is usually recorded, sub-
sequent to the generation of the peak tensile force. This reduction is recorded
over significantly greater distances than those previously noted for work involv-
ing a nominally ‘dry’ surface, this characteristic feature of the retraction curve
being attributed to the formation of a liquid film that spans the gap between the
probe and the surface. Thus, both the magnitude and the range of the measured
tensile force increase significantly in the presence of a liquid film.
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In Figures 7.22 and 7.23, the PSPD output is presented as a function of piezo
position relative to the piezo’s starting height, not to the planar surface. A change
in PSPD output (relative to the zero-force) is produced by a deflection of the
cantilever and causes an additional vertical displacement of the probe, which is
independent of scanner position. In Figure 7.22, the region between ‘c’ and ‘d’
is referred to as the region of constant compliance in which the PSPD output is a
linear function of the scanner position and the probe is considered to be in contact
with the solid surface. It follows that within the region of constant compliance, the
magnitude of the piezo displacement is equal to the magnitude of displacement of
the probe relative to the piezo (corresponding to a compressive deflection of the
cantilever). Under such circumstances, the relationship between the PSPD output
and cantilever deflection is calculated from the gradient of the constant compli-
ance region. This relationship is assumed valid for deflections corresponding to
the development of tensile forces.

Barrow et al. [187] used their AFM–HSMP system to record a sequence of
images at 1000 frames per second (f.p.s.) during retraction curve experiments on
a sample of 12 Pa s silicon oil (see Figure 7.24). As the retraction curve pro-
ceeds, the liquid film splits rapidly prior to the formation of a microfilament,
which is subsequently stretched by the continuing upward motion of the sphere. A
provocative finding made in this work was that, under some circumstances, when
the sphere and the surface were pulled apart sufficiently rapidly, an unexpected
transient decrease of the sphere–surface separation was recorded.

The results of numerical simulations of cavitation bubble dynamics reported
by Barrow et al. [187] suggest that the growth of a cavitation bubble within a
liquid may result in the development of sufficiently large negative pressures to ac-
count for this phenomenon. The results of separate experiments involving acoustic
pulse propagation within metre-long columns of liquid [189] and high-speed mi-
crophotography were used to show that the peak tensile forces recorded in the
AFM experiments corresponded to the development of tensile stresses that are
commensurate with the fluid’s effective tensile strength (or ‘cavitation threshold’).
The results of this study, the first to apply the AFM in cavitation bubble dynam-
ics work, provided evidence in support of the mechanism mooted by Israelachvili
and coworkers [190], i.e. that in the cavitation of liquids within confined spaces,
such as situations involving meso scale films, the growth of a cavity may be more
damaging than its subsequent collapse.

7.8.2.2 Experimental studies of the nanorheological properties
of meso scale fluid films

The rheological properties of adsorbed polymer layers at the nanoscopic level
can be obtained from a force-sensing apparatus such as a surface force apparatus
(SFA) or an atomic force microscope (AFM), by adapting these techniques to
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Figure 7.24 A sequence of images recorded at 1000 frames per second (f.p.s.) during
AFM retraction curve experiments on a sample of 12 Pa s silicon oil. The liquid film splits
rapidly prior to the formation of a filament, which is subsequently stretched by the contin-
uing upward motion of the sphere.
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act in a dynamic mode, thus effectively enabling them to act as rheometers.
This technique, described as ‘nanorheology’ by Suraya et al. [191], involves
applying a small-amplitude sinusoidal motion to one surface. This driving signal
creates an oscillatory motion of the fluid within the gap due to hydrodynamic
forces, which induces the second surface to respond by oscillating at the same
frequency. However, due to viscous effects, the amplitude of the oscillation is
attenuated and the phase is shifted relative to the driving motion. For a purely
viscous medium, the response signal will be 90◦ out-of-phase, while a fully
elastic response would be precisely in-phase (if the driving frequency is lower
than the resonant frequency) with the driving signal. For polymer-coated surfaces
in relative motion in a dilute polymer solution, a viscous response may be seen
at very large surface separations. However, when the separation distance is a few
times the thickness of the polymer layers, they begin to deform; the viscoelastic
nature of the system becomes more apparent and the phase shift then becomes
smaller, while the response amplitude becomes larger.

Suraya et al. [191] note that there is no direct method of determining the stress
and the strain from the raw data, since these dynamic experiments only measure
the hydrodynamic force in terms of phase and amplitude. Consequently, a me-
chanical model is required to interpret the detected motions in terms of physical
stress and strain. To interpret experimental data, some nanorheological studies be-
tween polymer-coated surfaces have used the hydrodynamic lubrication equation,
which describes the hydrodynamic force that arises from the flow of a Newtonian
liquid of viscosity η, between a bare plane and a spherical surface of radius R, at
a separation distance ho apart, moving at a relative velocity U, given by

F = 6πηU
R2

ho
, (ho 
 R). (7.47)

This equation also applies for a linear viscoelastic fluid, in which case the velocity,
force and viscosity are treated as complex quantities. This approach provides a
quantitative description of the rheological properties of the fluid between the two
surfaces if that fluid is a continuum. However, when the fluid between the two
surfaces is not uniform, such as when there is an adsorbed polymer layer, only
qualitative information can be obtained.

Suraya et al. [191] have reported the use of this oscillatory AFM technique
to investigate the viscoelastic properties of adsorbed hydroxypropyl guar (HPG)
layers. Polymer-coated surfaces exhibit static interactions arising from bridging
and steric behaviour. In addition, there are also dynamic interactions that arise
from the rheological behaviour of the adsorbed polymer layers. The oscillations
were performed at frequencies between 300 Hz and 1 kHz, with applied oscil-
lation amplitudes of 2 nm. Qualitative data analysis was carried out using com-
plex viscosity and complex modulus transfer functions based on a hydrodynamic
lubrication model.
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The results indicated viscous behaviour at large surface separations and vis-
coelastic behaviour in the region of polymer layer overlap, as would be expected
for adsorbed polymer layers. The adsorbed HPG layers also showed an indica-
tion of frequency-dependent viscoelastic behaviour and ‘shear thinning’ (in terms
of a reduction of viscosity with frequency). The experiments revealed an unan-
ticipated correlation between the apparent thickness of the adsorbed layers and
the viscoelastic properties of the system, this being attributed to the shear thin-
ning behaviour of the layers. The future development of such nanorheological
techniques is likely to prove important as they will provide an improved under-
standing of macroscopic properties in terms of phenomena that are observed on
the nanoscopic scale.

7.9 SUMMARY

A discussion of various experimental measurements and techniques that depend
or fluid flow and properties at the nano/meso scale is presented. These measure-
ments range from macro scale measurements, such as rates of membrane filtra-
tion, down to nano scale measurements performed using the atomic force mi-
croscope (AFM). Comparison between simulation and experiment is shown for
several cases.
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8
Future Advancement

Aim. This chapter summarizes the approaches considered in this book and
the current challenges faced in the meso scale simulation of fluid systems.
Some suggestions are given for further work required in the area.

8.1 FUTURE ADVANCEMENT

The work presented in this book has highlighted techniques for how to tackle
simulation of fluid in meso scale systems. In the development of a complete
molecular-based meso scale simulation method there are several issues that need
to be tackled to improve the efficiency and robustness and increase the scale and
complexity of systems that can be simulated. None of these issues are trivial and
present significant scope for further research. The main issues are detailed below:

� Search efficiency. Much of the time spent processing the molecular model
is spent searching for neighbours within the domain. As the system size in-
creases as compared to the interaction radius of the individual molecules and
the number of molecules, the proportion of time spent searching throughout
the domain for neighbour pairs increases. This efficiency could be significantly
increased by the implementation of a second level of search routine, where fre-
quent neighbour searches are performed over smaller subdomains of the flow
field. Research is needed to identify efficient search techniques that are rele-
vant for extremely large numbers of molecules that are constantly moving and
mixing together.

� Parallel implementation. To allow the meso molecular model access to larger
systems containing upward of one million molecules, this method would require

Fluid Properties at Nano/Meso Scale: A Numerical Treatment P. Dyson, R. S. Ransing, P. M. Williams and P. R. Williams
© 2008 John Wiley & Sons, Ltd. ISBN: 978-0-470-75124-4
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Figure 8.1 Left: flow restriction modelled with current periodic boundary conditions and
molecular energy conserved. Right: modified boundaries allow a different type of problem
to be simulated.

parallelization to take advantage of multiple processor machines. This will en-
able the storage and faster processing of large numbers of molecules and longer
neighbour lists to reduce the computation time per molecule. This is also com-
patible with methods of improving search routines, as a form of domain decom-
position would be required. Due to the chaotic nature of fluid simulation, data
storage and communication must be efficiently maintained to make the most of
the available resources.

� Meso scale boundary conditions. For most engineering problems, the typical
periodic boundary condition used in MD simulations, that the fluid properties
must be identical on opposite sides of the simulation cell, is unrealistic, as il-
lustrated in Figure 8.1. The figure on the left shows the type of system that
can be simulated using periodic boundary conditions. The limitation of these
conditions is that the fluid at opposite sides of the simulation cell must be at
identical states to prevent violation of thermodynamic laws. In order to sim-
ulate the change in fluid properties at intermediate sections, e.g. a restriction,
the inlet and outlet conditions will need to be exactly the same and, hence, far
away from the restriction to apply periodic boundary conditions. This means
that independent conditions cannot be applied to the boundary to solve com-
mon fluid flow situations that occur in engineering problems. For example, the
boundary condition as shown in Figure 8.1 (right) cannot be evaluated using
periodic boundaries. However, maintaining the invisibility of the boundary to
the fluid molecules presents a significant challenge.

� Investigate and develop energy/temperature controls. This book has identified
that the current temperature controls are insufficient to deal with increases in
temperature due to changing internal dynamics. Examples highlighted in Chap-
ter 5 showed that the temperature of the high flow system was not allowed to
increase as would be expected for a turbulent system. This needs more inves-
tigation and possibly a new method for applying system controls and would
significantly expand the range of systems that can be simulated, allowingd the
effective use of reduced boundary conditions.
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