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Preface 

Multilayered nanostructures and thin films form the building blocks of most 
of the devices employed in electronics, ranging from semiconductor tran­
sistors and laser heterostructures, to Josephson junctions and magnetic 
tunnel junctions. Recently, there has been an interest in examining new 
classes of these devices that employ strongly correlated electron materi­
als, where the electron-electron interaction cannot be treated in an average 
way. This text is designed to train graduate students, postdoctoral fel­
lows, or researchers (who have mastered first-year graduate-level quantum 
mechanics and undergraduate-level solid state physics) in how to solve in-
homogeneous many-body-physics problems with the dynamical mean-field 
approximation. The formalism is developed from an equation-of-motion 
technique, and much attention is paid to discussing computational algo­
rithms that solve the resulting nonlinear equations. The dynamical mean-
field approximation assumes that the self-energy is local (although it can 
vary from site to site due to the inhomogeneity), which becomes exact in 
the limit of large spatial dimensions and is an accurate approximation for 
three-dimensional systems. Dynamical mean-field theory was introduced 
in 1989 and has revolutionized the many-body-physics community, solv­
ing a number of the classical problems of strong electron correlations, and 
being employed in real materials calculations that do not yield to the den­
sity functional theory in the local density approximation or the generalized 
gradient expansion. 

This book starts with an introduction to devices, strongly correlated 
electrons and multilayered nanostructures. Next the dynamical mean-field 
theory is developed for bulk systems, including discussions of how to calcu­
late the electronic Green's functions and the linear-response transport. This 
is generalized to multilayered nanostructures with inhomogeneous dynam-
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ical mean-field theory in Chapter 3. Transport is analyzed in the context 
of a generalized Thouless energy, which can be thought of as an energy 
that is extracted from the resistance of a device, in Chapter 4. The theory 
is applied to Josephson junctions in Chapter 5 and thermoelectric devices 
in Chapter 6. Chapter 7 provides concluding remarks that briefly discuss 
extensions to different types of devices (spintronics) and to the nonlinear 
and nonequilibrium response. A set of thirty-seven problems is included 
in the Appendix. Readers who can master the material in the Appendix 
will have developed a set of tools that will enable them to contribute to 
current research in the field. Indeed, it is the hope that this book will help 
train people in the dynamical mean-field theory approach to multilayered 
nanostructures. 

The material in this text is suitable for a one-semester advanced gradu­
ate course. A subset of the material (most of Chapter 2 and 3) was taught 
at Georgetown University in a one-half semester short course in the Fall of 
2002. The class was composed of two graduate students, one postdoctoral 
fellow, and one senior researcher. Within six months of completing the 
course all participants published refereed journal articles based on exten­
sions of material learned in the course. A full semester course should be 
able to achieve similar results. 

Finally, a comment on what is not in this book. Because many-body 
physics is treated using exact methods that are evaluated numerically, we 
do not include any perturbation theory or Feynman diagrams. Also there is 
no proof of Wick's theorem, no derivation of the linked-cluster expansion, 
and so on. Similarly, there is no treatment of path integrals, as all of 
our formalism is developed from equations of motion. This choice has 
been made to find a "path of least resistance" for preparing the reader to 
contribute to research in dynamical mean-field theory. 

J. K. Freericks 
Washington, D.C. 

May 2006 
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Chapter 1 

Introduction to Multilayered 
Nanostructures 

On December 29, 1959, Richard Feynman addressed physicists at the ban­
quet of the annual meeting of the American Physical Society. The title 
of his talk was "There's plenty of room at the bottom" [Feynman (1961)]. 
There was much conjecture amongst the audience as to what a talk with 
that title would be about, but Feynman kept it secret. When he delivered 
his speech, Feynman described the new field of nanotechnology, although 
he did not coin that term. He described how one could write all of the 
information published in all the books in the world on the head of a pin 
using manipulation of atoms in three dimensions. At the time, the talk 
seemed to be more science fiction than fact (see Chapter 4 of [Regis (1995)] 
for a historical account), even though the scientific press published many 
articles about the presentation; the field of nanoscience has only blossomed 
since the early 1990s and now there are many devices that work with or 
manipulate the properties of individual atoms, molecules, or small groups 
of atoms or molecules. 

The semiconductor industry has been reducing the size of structures in 
its microprocessors at a rapid rate; they now create line features and transis­
tors that are smaller than 100 nm. Current research on quantum dots treat 
quantum-mechanical boxes that contain a few hundred to a few thousand 
electrons in a small spatial region. Fabrication techniques have become so 
sophisticated that novel devices can be made that involve the transport of 
current through single molecules trapped between metallic electrodes. The 
discovery of conducting carbon nanotubes has provided the nano world with 
a possible electrical wiring system. It is clear that the future will hold many 
surprises and technological advancements coming from nanotechnology. 

As device features are made smaller and smaller, in particular, as they 
become on the order of a few atoms (or nanometers) in size, quantum-
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mechanical effects begin to take over, and ultimately determine the de­
vice performance. It is the job of theorists to understand how to explain, 
model, and design devices when quantum-mechanical effects cannot be ig­
nored. In this book we discuss one particular kind of nanotechnology—the 
field of multilayered nanostructures, which are composed of stacked atomic 
planes of different materials, with the thickness of some of the layers in the 
nanometer regime. Usually these devices are operated by attaching them 
to a voltage (or current) source, which transports electrical or heat current 
perpendicular to the stacked planes. 

The approach and focus of this book are different from those of oth­
ers. Most work on nanostructures focuses on devices that are small in all 
(or all but one) dimensions, so it is appropriate to start from an atomic 
or molecular picture and build up to the nanoscale devices (like quantum 
dots or wires). This class of nanoscale devices usually have strong surface 
effects, because the surface-to-volume ratio is usually large. Here we take 
an alternative "top-down" approach as opposed to the more traditional 
"bottom-up" approach, and consider systems in the thermodynamic limit 
that have only one dimension on the nanoscale (more precisely only one 
dimension has nanoscale inhomogeneity). This allows us to employ dy­
namical mean-field theory to solve the many-body problem because this 
technique is accurate when the number of nearest neighbors for each lat­
tice site is large. In a multilayered nanostructure, there are no surfaces, so 
every lattice site maintains approximately the same number of neighbors 
as in the bulk. Furthermore, multilayered nanostructures are already being 
employed in technology, and are easier to manufacture and to use in devices 
than systems that are nanoscopic in all dimensions. Hence, it is likely that 
most applications that are commercially viable will involve multilayered 
nanostructures (at least for the not-too-distant future). Indeed, this is the 
motivation for producing this work. 

1.1 Thin Film Growth and Multilayered Nanostructures 

Multilayered nanostructures are the most common electronics devices that 
have at least one length scale in the nano realm. They have been in use 
for over five decades! The original devices are based mainly on semicon­
ductors and the so-called pn junction. But research has been performed on 
superconducting variants for over four decades, and there are commercial 
devices in use for niche markets. 
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Electronics devices often rely on nonlinearities to function. Either it 
is the nonlinear current-voltage relation that determines the functionality 
of the device (like in a pn junction where current flows in essentially one 
direction), or it is the avalanche breakdown, or other nonlinear behavior, 
that ultimately determines when the device ceases to work. The classic 
multilayered nanostructure is a tunnel junction, consisting of a sandwich 
of two metallic electrodes separated by a thin layer of insulator. They can 
be easy to manufacture if the insulator is formed by exposing the metal 
surface to air (or other oxygen containing gas mixtures like oxygen and 
argon) where a native oxide layer will form. Since the two metallic regions 
are connected by a "weak link" due to the proximity or tunneling effect 
(described in Section 1.3), the connection is inherently due to quantum-
mechanical effects and the uncertainty principle: electrons in the metal 
cannot remain localized within the metal, but can leak through the barrier 
into the other metal. If the electrodes are superconducting and the barrier 
is thin enough, then the device is a Josephson junction. 

A quantum-mechanical wavefunction is highly nonlinear. In classically 
allowed regions, it will oscillate and have nodes, while in classically forbid­
den regions, it will exponentially decay. Both behaviors are nonlinear, and 
ultimately lead to the nonlinear behavior of multilayered nanostructures. 
We will not discuss nonlinearities much in this work, but we mention this 
fact to remind the reader that whenever quantum-mechanical behavior gov­
erns the transport through a device, it is likely to have some underlying 
nonlinear features. Tuning and controlling these nonlinear features is often 
necessary to make the device useful. Examples of nonlinear current-voltage 
characteristics in Josephson junctions are shown in Fig. 1.1. 

Another useful feature in devices is controllability. Many semiconduc­
tor devices have a voltage gate which can be varied to change the behavior 
of the device. Strongly correlated materials (described in Section 1.2) of­
ten have properties that can be sharply tuned by external fields, pressure 
or chemical doping, and provide an interesting alternative of materials to 
use in devices from the conventional metals, semiconductors, and insula­
tors currently in use. They are of particular interest when one considers 
controlling the transport of the spin of the electron (so-called spintronics 
devices), since magnetism is inherently quantum mechanical in nature, and 
many strongly correlated systems also display interesting magnetic proper­
ties. But, due to their quantum-mechanical behavior, involving correlated 
motion of electrons, they are less well understood than semiconductors, 
and fewer devices have been made from them. At the moment they hold 
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a (a) 

Superconductors 

/ 1 
Substrate 

Fig. 1.1 Current-voltage curve for (a) a hysteretic Josephson junction and (b) a non-
hysteretic Josephson junction. The bottom figure is a schematic of a Josephson junction 
which corresponds to a superconductor-barrier-superconductor sandwich; the supercon­
ductor "leaks" through the barrier from one superconductor to the other carrying current 
with a nonlinear current-voltage relation. The Josephson junction can carry current at 
zero voltage up to the critical current Ic, and then it moves into a resistive state. If the 
current-voltage curve is multivalued (left panel), then it is a hysteretic junction, while a 
single-valued curve (right panel) corresponds to a nonhysteretic junction. Both curves 
ultimately join up to the linear curve of Ohm's law (/ = V/Rn) at high voltage (Rn is 
the normal-state resistance). The characteristic voltage where the current-voltage curve 
starts to become linear is Vc ~ IcRn which is typically no larger than a few meV. 

great promise and interest. This work hopes to aid with the design of novel 
devices that use strongly correlated materials by enabling one to calculate 
properties based on the underlying features of the materials that comprise 
the device. 

Modern science has made great strides in its ability to artificially grow 
multilayered nanostructures. There are a number of different growth tech­
niques that are used, and they each have their set of advantages and dis­
advantages. All growth processes start with a substrate material that is 
chosen either for the lattice match with the candidate material to be grown 
(to serve as a template and to relieve strain), for the chemical inertness 
with respect to the growth material (to reduce interdiffusion and creation 
of unwanted chemical species at the interface), or for practicality in sub-
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Fig. 1.2 Transmission electron micrograph of a sputtered device for use in spintronics. 
The TEM image allows us to see individual atomic planes, and is able to discern the 
chemical composition of each layer. Figure reprinted with permission from [Wang, et at. 
(2005)] (©2005 American Institute of Physics). 

sequent device processing. The ultimate goal of material growth is to lay 
down atomically flat planes of each desired material, one plane at a time, 
and modify the constitution of the growth planes as desired to make the 
device of interest. In reality, this is never fully achieved with any technique, 
but in current state-of-the-art device growth, it is possible to achieve al­
most atomic flatness of the epitaxial growth planes, and in some cases the 
interface regions can be nearly atomically flat with limited interdiffusion or 
chemical reactions. 

The simplest way to grow materials is via sputtering, which involves 
bombarding a target with inert ions, forcing the target atoms to be ex­
pelled and shower onto the substrate where the thin film will be grown (the 
word sputtering comes from the Greek verb sputare which means to spit). 
Sputtering is a simple growth process because one need not worry about 
the relative vapor pressures of the constituents, since the material grows 
in a nonequilibrium fashion. It also grows with the same stoichiometry as 
that of the target (essentially because the atoms that are emitted all come 
from the surface of the target). Sputtering is generally not believed to be 
able to grow atomically sharp interfaces, and it can be difficult to guaran­
tee uniform coverage during the growth process; its main advantages are 



6 Transport in Multilayered Nanostructures: The DMFT Approach 

Atomic Layer-by-Layer 
Molecular Beam 
Epitaxy 
• atomic absoiption 

spectroscopy for feedback 
control 

• ozone oxidation 

• in-situ RHEED with 
digital video 

• We have control over the 
source fluxes to better 
than 1 % accuracy (AA.RHEEI» 

PlusZn 

^ ^ ^ - 6 5 0 - 7 0 0 0 

R o t e - 2 0 s /m l 

P O j - l O 6 T 

photomullipliet 
**» quadrapole 

mass 
spvclrome!-:-! 

lOd'J 
lock 

RHEED reveals 

surface crystal 

structure 

Fig. 1.3 Schematic of a molecular beam epitaxy growth chamber. The MBE growth 
takes place in ultra high vacuum. Different sources are introduced by opening shutters 
that allow the heated material to evaporate into the chamber. Many different means to 
characterize the sample during growth are possible. For example, RHEED oscillations 
show when a monolayer of growth is completed. Figure adapted ivith permission from 
[Eckstein and Bozovic (1995)]. 

that it grows stoichiometrically and it is fast, so impurities may not have 
a chance to enter the device in high concentrations. It can achieve high 
quality growth, as illustrated in a spintronics device grown via sputter­
ing that has nearly atomically flat interfaces for a variety of magnetic and 
nonmagnetic multilayers [Wang, et al. (2005)]. 

Molecular beam epitaxy (MBE) is arguably the most precise of the 
growing techniques. An MBE machine has growth conditions controlled 
to high precision. The growth chamber is inside an ultra high vacuum 
(UHV) chamber that has a sample holder and a series of growth materials 
inside separate furnaces; shutters in front of the furnaces open to allow the 
evaporated vapors of the different materials into the chamber, which will 
hit the sample and stick. A schematic of such a device is given in Fig. 1.3. 
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Fig. 1.4 (Top) RHEED oscillations during growth showing the completion of each mono­
layer. (Bottom) Left panel: schematic of the complex dielectric oxide formed from 
CaTiC>3, BaTi03, and SrTiOs along with a TEM image; right panel: dielectric re­
sponse of different devices. Figure adapted with permission from [Warusawithana, et 
at. (2003)] (original figure © 2003 the American Physical Society) and [Warusawithana, 
Chen, O'Keefe, Zuo, Weissman and Eckstein (unpublished)]. 

The growth process can be monitored by RHEED oscillations which repeat 
as each atomic monolayer is placed down. The growth is usually slow, with 
perhaps a few seconds for each atomic layer. An example of the growth 
of an artificially engineered dielectric is given in Fig. 1.4. The top panel 
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to Cryogenic pump \ / '"•>., 

Fig. 1.5 Schematic of a PLD system for growing MgB2- The magnesium and boron 
targets (heated up by the UV laser pulse) are supplemented by a so-called Knudsen (or 
effusion) cell which is an evaporator of a beam of magnesium to maintain high enough 
Mg pressure for stoichiometric growth. A residual gas analyzer monitors the gases in 
the chamber, where the growth takes place in vacuum. Figure reprinted with permission 
from [Kim and Newman (unpublished)]. 

shows the RHEED oscillations, while the bottom left panel is a TEM of 
the different layers (with a schematic of the device) and the bottom right 
is an example of the dielectric response as a function of the applied field. 

Pulsed laser deposition (PLD) is another high precision growth tech­
nique. It involves ablating materials targets with a high power UV laser 
pulse, which creates a plume that is directed at the sample. The growth 
proceeds in spurts, in this fashion, and can achieve nearly atomic flatness, 
but it is not as common to monitor the layer-by-layer growth as in MBE. 
It is, however, typically much faster than growth in an MBE system, and 
has emerged as a popular choice for thin-film device growth in research 
laboratories because of its speed combined with its innate ability to pre­
serve the target's stoichiometry. An example of a PLD system is shown in 
the schematic picture of Fig. 1.5. A trilayered TiNbN-TaxN-TiNbN sample 
grown with PLD is imaged with a TEM in Fig. 1.6. 
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Fig. 1.6 TEM images of a trilayered TiNbN-Ta^N-TiNbN sample suitable for processing 
into a Josephson junction. The sample was made with the PLD process. The left panel 
has the widest field of view, which is blown up in the upper right and then lower right 
images. Note that although the interfaces meander across the sample, the barrier width 
is quite uniform throughout the growth process. Figure reprinted with permission from 
[Yu, et al. (2006)]. 

Chemical vapor deposition (CVD) is a technique often used in indus­
trial manufacturing. A series of different gaseous phases of materials are 
directed toward the sample, where a chemical reaction takes place at the 
surface, facilitating the growth. CVD is complicated by the need to find 
the right precursor chemical gases for a given growth process. It can be 
combined with other techniques, such as in the growth of MgB2 a recently 
discovered 40 K conventional electron-phonon superconductor, which uses 
a gaseous phase for the boron, but thermal evaporation of solid metal for 
the magnesium. 

A schematic of this hybrid physical chemical vapor deposition (HPCVD) 
procedure is illustrated in the left panel of Fig. 1.7 and is the process used in 
making high quality MgB2 films [Zeng, et al. (2002)]. It shows the sample 
substrate region in black, atop the red sample holder. The boron gaseous 
precursor flows continuously past the sample, and Mg vapor is generated 
around the sample by the heating of solid Mg. The quality of the films can 
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Schemat ic View 
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Fig. 1.7 Left panel: schematic diagram of the hybrid physical chemical vapor deposition 
process used to make ultra high quality MgB2 films. Right panel: cross-sectional TEM 
image of the films showing a narrow interface region, where the sample quality is de­
graded (diagonal region about five atomic planes thick near center of figure). Right panel 
reprinted with permission from [Xi (unpublished)]. Left panel reprinted with permission 
from [Progrebnyakov et al. (2004)] ( © 2004 the American Physical Society). 

be seen in the cross-sectional TEM image in the right panel, which shows 
the substrate (SiC), the high quality atomically flat layers of MgB2, and a 
thin interface region (about five atomic planes thick) where substrate steps 
and dislocation defects are located and degrade the sample quality. These 
films are such high quality because the degraded region is so thin. 

There are many ways to characterize the quality of the final device that 
has been grown. We have already shown a number of TEM images, which 
can determine where the atoms sit, and thereby provides information on the 
flatness of the interfaces, and of interdiffusion or chemical reactions at the 
interfaces. But a TEM image is a destructive process, because one needs to 
slice, polish, and thin the sample until it can be imaged. Furthermore, we 
are often interested in understanding properties of the transport in a device, 
and such information cannot be revealed by TEM measurements. Another 
technique that is quite useful is called ballistic electron emission microscopy 
or BEEM for short. This measurement is shown schematically in Fig. 1.8. A 
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Fig. 1.8 Top panel: BEEM schematic for two different types of samples. The STM is 
always scanned over the surface with a bias voltage applied to it, and there always is a 
Schottky barrier formed by the electronic charge reconstruction at a metal-semiconductor 
interface to provide a barrier to electrons moving through the device. Energetic electrons 
will pass over the barrier and be collected. In this fashion, one can determine the local 
contributions to current flow through the device. Such a map is presented in the bottom 
two panels for a thin (left) and thick (right) disordered AlOx barrier. The thin barrier 
has pinholes, while the thick barrier is pinhole free, and has nearly uniform current flow. 
Reprinted with permission from [Buhrman (unpublished)]. 

scanning tunneling microscope (STM) tip is scanned over the surface of the 
sample with a voltage difference applied so that it can eject electrons into 
the sample. Since the sample sits on top of a metal-semiconductor interface, 
the electron needs to have enough energy to get over the Schottky barrier 
that forms due to an electronic charge reconstruction at the interface, in 
order to be collected. By monitoring this collection current versus the 
position of the STM tip, one can directly measure the uniformity of the 
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sample for perpendicular transport. In other words, one can actually image 
the so-called pinholes, which are "hot spots" in the device that allow current 
to flow more easily and provide an inhomogeneous current flow through the 
device; usually one does not want to have pinholes, because the random 
nature for how they form can significantly effect the uniformity of device 
parameters across a chip. Two BEEM images of a disordered aluminum 
oxide barrier are shown in the bottom panels of Fig. 1.8 [Rippard, et al. 
(2002); Perrella, et al. (2002)]. The left panel has a very thin layer, and 
the right panel has a thicker layer. One can clearly see the pinholes on the 
left (bright yellow regions), which then become much more uniform on the 
right. In both cases, however, the barrier is still quite disordered, because 
the aluminum oxide is not stoichiometric. This can be inferred, in part, from 
the fact that the barrier height to tunneling, which can also be measured in 
the BEEM experiment, is far below half of the band gap of AI2O3. What 
is interesting from a device standpoint is that the disordered aluminum 
oxide barrier creates a uniform tunnel barrier for transport, even if it is 
nonstoichiometric, as long as it is thick enough [Rippard, et al. (2002); 
Perrella, et al. (2002)]. This is one reason why it is so useful in so many 
different types of multilayered nanostructures. 

There is a simple model that explains why the oxygen defects form in 
aluminum oxide [Mather, et al. (2005)], and we describe this model in 
Fig. 1.9. The common way to form an aluminum oxide layer is to first put 
down a layer of aluminum, and then to introduce oxygen gas for a certain 
period of time at a certain pressure to allow the aluminum to oxidize. In 
some devices, like Josephson junctions, there is no device degradation if 
some unoxidized aluminum remains, because it will be made superconduct­
ing by the proximity effect, while in other cases, like in magnetic tunnel 
junctions for spintronics, one wants all of the aluminum to oxidize, be­
cause metallic aluminum will degrade the tunnel magnetoresistance. The 
model for the oxidation process is that the oxygen first sits on the surface 
of the aluminum before it is driven into the sample. After some oxygen has 
moved in, the oxygen vacancies reach a steady state with the chemisorbed 
oxygen surface layer, and no more oxygen will flow through to oxidize the 
aluminum further. When the device is then processed to add additional 
layers, the oxygen surface layer will either be driven in (due to the pro­
cessing conditions) or will react with the new layers being added on top, 
which can potentially degrade the top interface. Heating the sample prior 
to additional growth of multilayers can drive the chemisorbed oxygen into 
the aluminum and reduce the number of defects. Indeed, if the device is 
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Fig. 1.9 Model for aluminum-oxide growth by exposing a thin film of aluminum to 
oxygen. On the right, one can see how a chemisorbed oxygen layer can form on the 
surface, by binding electronically to the defect sites; this chemisorbed layer does not 
allow further oxygen to flow into the barrier. By heating the sample, one can thermally 
activate the oxygen to move over the barrier and be driven into the aluminum layer. This 
is confirmed in the left panel, which shows how the tunnel current turns on at a higher 
and higher voltage as the sample is annealed at higher temperatures, and eventually 
a barrier height equal to half the AI2O3 band gap develops. Left panel reprinted with 
permission from [Mather, et al. (2005)] (©2005 American Institute of Physics) and right 
panel reprinted with permission from [Buhrman (unpublished)]. 

annealed at higher and higher temperatures, one sees the expected barrier 
height for AI2O3 begin to develop (see the left panel of Fig. 1.9). 

In this section, we have described a number of different growth processes 
and characterization tools for multilayered nanostructures. The growth pro­
cess is often quite complex, and significant care must be taken to achieve 
high quality results, but the state-of-the-art does allow quite good devices 
to be grown in research laboratories. Characterization tools used both dur­
ing growth and after growth allow the device properties to be determined 
and understood, helping to find new ways to grow even better devices in 
the future. We will be concentrating on describing the theoretical and nu­
merical formalisms for how to determine the transport through such devices 
throughout this book. 
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1.2 Strongly Correlated Materials 

The first successful semiclassical attempt to describe the conduction of 
electrons in metals was given by Paul Drude in 1900 [Drude (1900a); 
Drude (1900b)]. This model assumes that electrons move independently 
through the crystal without feeling the effects of the other electrons but 
they do scatter off of defects, impurities, lattice vibrations, etc., with a 
constant scattering time called the relaxation time. From this simple as­
sumption, one can produce a constant electrical current from an applied 
electrical field (as described in virtually every solid state physics text). 
This theory was modified by Arnold Sommerfeld in 1927 to include the 
quantum-mechanical effects of the Fermi-Dirac distribution of electrons and 
the Pauli principle [Sommerfeld (1927)]. In spite of its incredible simplic­
ity, the Drude-Sommerfeld model works remarkably well in describing the 
behavior of a wide variety of metals. The theoretical basis for understand­
ing why such a simple model works so well was established by Lev Landau 
with the introduction of Fermi-liquid theory [Landau (1956)]. Fermi-liquid 
theory maps the elementary excitations of the interacting electronic system 
onto the excitations of a noninteracting system, and describes the residual 
weak interactions with a small set of phenomenological parameters. Nearly 
all metals can be described by Fermi-liquid theory (or "dirty" Fermi liquid 
theory, which corresponds to Fermi liquids with some additional static dis­
order that creates a finite relaxation time at the Fermi energy when T = 0). 
The basic result of Landau's Fermi-liquid theory is that some fraction of the 
electrons, corresponding to the electrons with the lowest available energies, 
behave like noninteracting electrons with an infinite relaxation time at the 
Fermi energy when T = 0. Hence they can be described well by semiclas­
sical approaches at finite temperature even though the electrons do feel an 
electron-electron repulsion from the other electrons in the material. 

Strongly correlated electrons are, in general, different from these 
"garden-variety" electrons found in most metals. In strongly correlated 
electron materials, the electrons feel strong effects of the other electrons, 
and hence their motion is constrained by the positions of the neighboring 
electrons, which can lead to interesting phenomena, most notably a metal-
insulator transition, as was first described by Nevill Mott [Mott (1949)]. 

The Mott metal-insulator transition is easiest to describe with an arti­
ficial material of atomic hydrogen placed on a crystal lattice with a con­
tinuously varying lattice parameter. If we assume that the electrons do 
not congregate between the hydrogen nuclei, and hence rule out the forma-
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tion of molecular hydrogen, then the system can be described by electrons 
that hop on a lattice constructed by the periodic arrangement of the hy­
drogen nuclei. If the lattice parameter is very large, then each electron is 
tightly bound to a nucleus, and we have a collection of isolated hydrogen 
atoms, which will not conduct electricity because the electrons are local­
ized, and cannot be unbound by applying a small electric field. This state 
is an insulator. If we now shrink the lattice spacing, bringing the atoms 
closer together, then the wavefunctions of the electrons will begin to over­
lap. When this occurs, the electrons can hop from one hydrogen atom site 
to a neighboring hydrogen atom site if the electrons have opposite spins. 
Once such a process is allowed, the electrons become delocalized, and then 
they can screen out the bare Coulomb attraction with the nuclei, which will 
tend to make them even more delocalized, and eventually they will become 
metallic, easily conducting electricity when a small electric field is applied. 
The change in character from a metal to an insulator as the lattice spacing 
increases is the classic example of the Mott metal-insulator transition. 

Strongly correlated electrons are a little bit different from the hydro­
gen example above, because it is the repulsion of the electrons with each 
other that determines their behavior, rather than the attraction with the 
ion cores (which in most crystals determines the band structure). Hub­
bard devised the simplest model for this behavior [Hubbard (1963)]. In his 
model, which is described in detail in Chapter 2, we have electrons that 
move in a single band on a lattice. They can hop to their nearest neighbors 
with a hopping integral t. When two electrons sit on the same lattice site, 
there is a screened Coulomb repulsion U. All other long-range Coulomb 
interactions are neglected. If we have on average one electron per site, 
then if U <C t, the electrons are delocalized in a band and their motion is 
only slightly modified by the electron-electron interaction. If, on the other 
hand, we have U S> t, then the Coulomb repulsion is so strong we cannot 
have two electrons (of opposite spin) occupy the same lattice site. Hence 
we have exactly one electron per site, and this configuration is frozen with 
respect to charge excitations, so the system is an insulator. This implies 
that there is a Mott-Hubbard metal-insulator transition as a function of U. 
The transition occurs at U —•> 0+ in one dimension [Lieb and Wu (1968)], 
but at finite U values for higher dimensions. 

Predicting when a real material will display Mott-Hubbard insulating 
behavior is quite difficult. One simple rule is that if a density functional 
theory calculation predicts the system is metallic, but experiment shows 
it to be insulating, then it is a strongly correlated insulator. But such a 
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Fig. 1.10 Pressure-temperature phase diagram of the K-C\ material. Transport mea­
surements on this system identified four regions: (1) a Mott insulator; (2) a semicon­
ductor; (3) a bad or anomalous metal; and (4) a Fermi-liquid metal. These four regions, 
along with the antiferromagnetic phase are shown in the phase diagram (the supercon­
ducting phase, which is also present, has not been depicted). The general character of 
this phase diagram, in particular, the first-order phase transition between the metal and 
insulator at intermediate temperatures, can be explained by numerical solutions of the 
Hubbard model using dynamical mean-field theory. Figure reprinted with permission 
from [Limelette et al. (2003)] (© 2003 the American Physical Society). 

definition is neither rigorous, nor does it allow for much predictive power 
in finding new Mott insulators. Gebhard goes to great lengths to carefully 
describe conditions under which one has a Mott insulator [Gebhard (1997)], 
and the interested reader is referred there. More recently, a combination of 
density functional theory plus dynamical mean field theory shows promise in 
being able to provide a numerical framework for predicting Mot t insulators 
and determining their properties, but the current techniques require huge 
investments in computer time, so it is not yet a practical tool for numerically 
exploring new materials (see Sec. 1.7). 

We end this section by giving a recent explicit example of experimen­
tal work and calculations that illustrate the Mott insulating behavior of a 
strongly correlated material. This new material is of high interest, because 
the transition to different regions of the phase diagram can be reached by 
relatively small changes in either pressure or temperature . Experiments 
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on the organic material K - ( B E D T - T T F ) 2 C U [ N ( C N ) 2 ] C 1 (called K-C1) show 
that it can be tuned through the Mott transition by varying the pressure 
over a range of about 1 kbar and temperatures up to 80 K [Limelette, et 
al. (2003)]. Results for the phase diagram are shown in Fig. 1.10. As 
the pressure increases, the ratio U/t decreases, so we see a Fermi-liquid 
metal on the lower right and a Mott insulator (plus an antiferromagnetic 
ordered phase) on the lower left. When the system is heated up, the insu­
lating phase becomes more semiconducting, and the Fermi-liquid behavior 
disappears above the renormalized Fermi temperature; as the system goes 
into this incoherent phase it is metallic, but with anomalous properties, 
and typically poor conductivity. If the temperature is raised even further, 
the first-order transition between the metallic and insulating phases disap­
pears at a classical critical point, above which, the system can undergo a 
smooth crossover from a metal to an insulator as a function of pressure. 
The general behavior of this metal-insulator transition is similar to that of 
the liquid-gas phase diagram of many liquids. 

1.3 The Proximity Effect 

In quantum mechanics, a "box" determined by a finite potential barrier is 
a leaky box, because the wavefunction of the electron always extends out 
of the box boundaries with an exponentially decaying wavefunction. This 
is shown schematically for a one-dimensional box in Fig. 1.11, where the 
wavefunctions of the two lowest bound states are plotted (centered on their 
respective eigenenergies). Note how there is always a finite probability to 
find the electron lying outside the box due to the uncertainty principle. 

In many-body physics, a similar phenomenon occurs whenever two dif­
ferent materials are joined together at an interface; the wavefunctions of the 
right material leak into the left and vice versa. This mild sounding observa­
tion leads to some amazing quantum-mechanical effects; indeed the rest of 
this book focuses on investigating such effects. This "leakage of electrons" 
across a barrier is called tunneling. It is in many respects a mature subject. 
Esaki [Esaki (1958)] described a tunnel diode made out of semiconductors in 
the late 1950s, which was shortly followed by the superconducting version 
studied by Giaever [Giaever and Megerle (I960)]. Josephson [Josephson 
(1962)] showed that one gets surprising effects in a superconducting tunnel 
junction when the barrier is made thin enough. All three shared the Nobel 
prize in 1973 for their work on tunneling. 
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Fig. 1.11 Lowest two wavefunctions for a particle in a one-dimensional box depicted 
by the thick solid lines (these are the only bound states for a box of this depth). The 
dashed lines are the values of the respective energy levels. Note how the wavefunction 
for each case leaks out of the "boundary" of the box. 

The best known proximity effect occurs in a Josephson junction [Joseph-
son (1962)] [Anderson and Rowell (1963)], which is a sandwich structure 
composed of a superconductor-barrier-superconductor. A superconductor 
is a metal that has a net electron-electron attraction mediated by a phonon 
(in conventional low-temperature superconductors), which causes electrons 
with opposite momentum and spin to pair together (due to the so-called 
superconducting correlations). The physical picture is similar to two mar­
bles on a rubber sheet—each feels the depression of the other marble, and 
they roll toward each other. In real superconductors, the electrons also 
repel each other because they have the same electronic charge; the su­
perconductivity occurs because there is a time delay for the interaction 
with the phonons, which allows them to pair electrons together that are 
not located at the same position at the same time. The pairing leads to 
an energy gap, so the superconductor has no low-energy excitations be­
low the energy of the superconducting energy gap (typically on the order 
of 1 meV). In the Josephson junction, the pairing correlations of the su­
perconductor on the left leak into the nonsuperconducting barrier region 
in the middle (be it a metal or an insulator), and join up with the su­
perconducting correlations in the superconductor on the right. This weak 

T • r 
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link between the two superconductors can carry current across it if the 
macroscopic quantum-mechanical phase changes across the barrier region. 
This leads to the Josephson supercurrent—a finite current carried by su­
perconducting pairs with zero voltage across the barrier. There is also a 
corresponding inverse proximity effect, where the pairing correlations in 
the superconductor are weakened by the closeness to the interface with the 
barrier. 

The physical picture for the proximity-effect coupling of Josephson junc­
tions is different for insulating and metallic barriers. In metallic barriers, 
the barrier has low-energy states, but the superconductor has none. As a 
superconducting pair approaches the interface with the barrier, it meets a 
hole in the metal, which annihilates one of the electrons, while the other 
electron moves through the barrier to the next interface. There, the electron 
is retro-reflected as a hole (the hole has the opposite momentum and energy 
of the electron), leaving behind a superconducting pair to travel through 
the superconducting lead on the right. This process is called Andreev re­
flection [Andreev (1964)] (see Fig. 1.12); it takes place over a time scale 
on the order of ft/A independent of the barrier thickness L. In insulating 
barriers, the barrier has no low-energy states, so the electron pairs must 
tunnel through the barrier, which occurs due to the quantum-mechanical 
"leakage" through the barrier. Obviously the supercurrent decreases faster 
with the thickness of the barrier when it is an insulator than when it is a 
metal (although both decay exponentially with the thickness). 

In a normal-metal-barrier-normal-metal nanostructure, there is also a 
proximity effect, and it is similar to the problem of a quantum-mechanical 
particle in a box (Fig. 1.11) when the barrier is an insulator, because the 
metallic wavefunctions see a potential barrier at the interface, since there 
are no low-energy states in the insulator. Hence the wavefunctions decay 
exponentially until they reach the center of the barrier, and then they 
grow until they reach the metallic interface on the other side. Since the 
wavefunction connects the two metallic leads, the electrons can directly 
tunnel from the right to the left (or vice versa). In the metallic case, the 
proximity effect is more subtle, dominated by generating oscillations (with 
the Fermi wavelength) in the metallic leads due to the mismatch of the 
wavefunctions between the two metals. Similar effects can also occur in the 
barrier. 

The study of multilayered nanostructures relies heavily on understand­
ing proximity effects between dissimilar materials brought close together in 
a heterostructure. This forms a significant part of the final five chapters. 
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Fig. 1.12 Schematic plot of the Andreev reflection process. The low-energy electrons 
in the metal are confined to the barrier due to the energy gap A in the superconductors 
(the energy of the superconducting ground state is chosen as the zero in this diagram), 
so they form an electron-hole bound state, which allows a superconducting pair to travel 
from the left to the right through the Josephson junction. A similar process allows 
for current to travel from right to left. The symbol ps denotes the momentum of the 
superconducting pair. Figure adapted with permission from [Shafraniuk (unpublished)]. 

1.4 Electronic Charge Reconstruction at an Interface 

In surface physics, the process of a surface reconstruction, where the atoms 
on the surface rearrange themselves in response to the dangling bonds re­
sulting from the interface with the vacuum, is well-known. The surface 
reconstruction of silicon was one of the first systems to be imaged with the 
scanning tunneling microscope [Binnig, et al. (1983)]. Much of the study 
of surfaces and how they interact with material deposited on the surfaces 
relies on understanding how the surface reconstructs itself. 

In multilayered nanostructures, there are no open surfaces, and there 
is limited freedom for ions to rearrange their spatial locations in response 
to the interface with a different material (small relaxations of atoms near 
the interface certainly occur). But there is no reason why the chem­
ical potential of the leads of the device needs to match the chemical 
potential of the barrier. This puts the barrier in an unstable situa­
tion, where some of the electrons are forced to either leave or enter the 
barrier from the leads (depending on the relation of the chemical po­
tentials). Because the Coulomb interaction is long-ranged, the charge 
redistribution will be confined to the interface regions, with a healing 
length on the order of the Thomas-Fermi screening length [Thomas (1927); 
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Fig. 1.13 Schematic of the electronic charge reconstruction at the interfaces of a mul­
tilayered nanostructure with a barrier that is 20 planes thick. The horizontal axis is 
the plane number (the barrier lies on planes numbered from 31 to 50—the interface is 
indicated with the dashed lines) and the vertical axis is the self-consistently calculated 
change in the charge density on each plane. The chemical potential of the barrier dif­
fers from that of the bulk metallic leads for each of the different curves. The screening 
length is chosen to be approximately 2.2 lattice spacings in both the metallic lead and 
the barrier. Figure adapted with permission from [Nikolic, Freericks and Miller (2002a)] 
(original figure © 2002 the American Physical Society). 

Fermi (1928)] (usually less than an Angstrom in metals). The result is a 
screened-dipole layer at the interface, which creates an electric potential 
that causes scattering to electrons moving through the device and is plot­
ted in Fig. 1.13 [Freericks, Nikolic and Miller (2002)]. One can see how 
charge spills from the barrier into the lead as the mismatch of the chemical 
potentials is increased. This effect is well known in the semiconductor com­
munity when a metal is placed in contact with a semiconductor creating 
a Schottky barrier [Schottky (1940)]. It is used to create a number of the 
different semiconductor-based devices. 

The electric fields created by these screened dipole layers can be quite 
large. They do not cause current to flow, however, because they are exactly 
compensated by an opposite force due to the diffusion current arising from 
the change in the electron concentration. This is because the system has 
reached a static, equilibrium, rearrangement of the electronic charge. 

One of the most interesting applications of interface charge reconstruc­
tion is the case of a metal-oxide-semiconductor field-effect transistor (MOS-
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FET). In this device, one brings together a semiconductor and an insulator 
forming a sharp interface. The electronic charge reconstruction creates a 
thin layer of electrons that are trapped to lie in close proximity to the in­
terface. If engineered properly, the dopant ions, which created the electron 
carriers in the first place, lie in the semiconductor, while the electrons lie 
in the insulator. Then the electrons are far away from scattering sites, 
and they can become incredibly mobile. It is within these systems that 
the quantum Hall effect and the fractional quantum Hall effect were both 
discovered. The creation of this "nearly free" two-dimensional electronic 
gas follows from the physics behind charge reconstruction at an interface. 

Interface charge reconstruction will naturally occur in strongly corre­
lated nanostructures as well, leading to even more interesting behavior 
when one of the materials is a strongly correlated insulator, since the charge 
depletion (or enhancement) can "dope" the insulator into a strongly cor­
related metal phase (or vice versa if the material is already a strongly 
correlated metal). These effects have been imaged in grain boundaries of 
high temperature superconductors, where the grain boundaries are known 
to be electrically active [Mannhart and Hilgenkamp]. A grain boundary 
occurs in the growth of a material where islands of different grains meet, 
and the temperature is too low for the system to anneal the crystallite 
boundaries out of the system. A TEM image of just such a grain boundary 
can be seen in the left panel of Fig. 1.14 [Browning, et al. (1993)]. This 
grain boundary has a large angle orientational mismatch, as is easily seen. 
Unfortunately, these grain boundaries have a significant deleterious effect 
on superconducting wires, as they create Josephson junction weak links be­
tween the grains, and the critical current of the weak link is much smaller 
than the maximal critical current of a bulk single crystal. This has proved 
to be the single largest hurdle to get over in making high temperature su­
perconducting wires (of course, the presence of the grain boundaries can be 
employed to manufacture Josephson junctions, if desired). 

The right panel of Fig. 1.14 [Browning, et al. (1993)] depicts the valence 
of the Copper atom as a function of the distance away from the grain 
boundary. Clearly the grain boundary is electrically active, and has a charge 
reconstruction. What is amazing is how far away from the grain boundary 
this charge rearrangement extends, which is likely due to the fact that the 
strongly correlated metal does not screen charge as efficiently as a more 
conventional metal. The charge distortion is reduced as the misorientation 
angle of the grain boundary is reduced; this is the underlying phenomenon 
that governs the reduction of critical current at a grain boundary. 
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Fig. 1.14 Left panel: high-angle grain boundary in a high temperature superconductor. 
Right panel: charge profile around the grain boundary (Copper valence) as measured 
with electron energy loss spectroscopy (see Fig. 1.16 below). The probe position (horizon­
tal axis) is relative to the center of the grain boundary. The vertical axis is proportional 
to the valence on the copper atom, which changes from a maximum of 2.6 at the top 
to a minimum of 1.0 at the bottom, as the probe is moved across the grain boundary. 
Reprinted with permission from [Browning et al. (1993)]. 

Since diffusion of chemical species is easier along grain boundaries than 
within the grains themselves, it was discovered that the critical current 
across a grain boundary could be enhanced by diffusing Calcium ions to 
the grain boundary location [Hammerl, et al. (2000)]. The Ca ions must 
be modifying the local charge reconstruction at the grain boundary to do 
this. An interesting way to improve the critical current density of a high-
temperature superconducting tape is to grow multilayers of pure Yttrium-
Barium-Copper-Oxide, and of Calcium-doped YBCO. Between the grain 
boundaries the current will be carried predominately in the pure YBCO, 
but at the grain boundaries, because the presence of Calcium reduces the 
charge reconstruction, the critical current density is not reduced as much 
as in the pure YBCO. A schematic of this multilayered device is shown 
in left panel of Fig. 1.15, and the improvement in the critical current is 
shown in the right panel. At this point, it is not clear whether this process 
can be used to make high temperature superconducting wires into a viable 
technology. 

Another example is the artificially engineered band-insulator/strongly 
correlated insulator heterostructure made from SrTiOa (a band insula-
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Fig. 1.15 Left panel: schematic of the growth of pure YBCO (yellow) and Ca doped 
YBCO (red) for increasing the critical current at the grain boundary. Note how the 
Calcium dopes preferentially into the grain boundary region (the grain boundary is 
the black line), presumably changing the electronic charge reconstruction. Right panel: 
enhancement of the critical current density due to Ca doping (increase from the red to 
the orange curve after doping). Reprinted with permission from [Mannhart (2005)]. 

tor that is nearly ferroelectric) and LaTi03 (a strongly correlated insu­
lator) [Ohtomo, et al. (2002)]. The heterostructures of these materials are 
made using PLD, and varying the Sr or La content within the titanate 
background. The heterostructures are grown with nearly atomically flat 
precision and excellent control over the thicknesses of the different layers. 
A detailed analysis of the structure shows little interdiffusion of the species 
across the interface. What is surprising, is that the system has metallic 
conducting channels in the transverse direction (along the planes rather 
than perpendicular to the planes), which vary with the thickness of and 
the spacing of the LaTiC>3 layers within the SrTi03 matrix. Sophisticated 
experimental equipment is needed to image the charge redistribution in 
multilayered nanostructures, because one needs to have both sensitivity to 
the local charge, and an ability to achieve atomic resolution. One way that 
this is accomplished is by combining electron microscopy observations with 
electron energy loss spectra (EELS) as shown in Fig. 1.16. This is done 
with a dedicated scanning transmission electron microscope (STEM) that 
is equipped with an annular detector and an electron spectrometer. In the 
STEM, the optics are devoted to focusing the electron beam to a very fine 
probe (0.13 nm diameter), which is raster scanned over the sample. The 
transmitted electrons scattered at high angles are collected into an annular 
dark field detector which is used for the imaging. Since these electrons are 
primarily Rutherford scattered by the ion cores, the image intensity will 
be roughly proportional to the square of the atomic number. This is why 
this technique is called Z-contrast microscopy (for a review of the instru-
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ment see [Pennycook (2002)]). It is capable of producing incoherent images 
with atomic resolution and atomic specificity. Electrons traveling parallel 
to the optical axis (i.e. through the hole in the annulus) are collected into 
the EELS, so simultaneous EELS measurements can be obtained. These 
spectra can be employed to determine the local electronic charge, or the 
energies for the thresholds of different excitations, or the local chemical 
environment of a particular ion. 

This imaging technique was used to measure the charge profile near the 
grain boundary, shown in Fig. 1.14 [Browning, et al. (1993)], and was used 
in the SrTi03/LaTi03 heterostructures [Ohtomo, et al. (2002)]. This imag­
ing technique has also been applied to YBa2Cu307_<5/Lao.67Cao.33Mn03 
heterostructures [Varela, et al. (2003); Varela, et al. (2005)]. They find 
that the interfaces are nearly atomically flat, with essentially no interdiffu-
sion of chemical species across the interface (determined by examining the 
EELS results). They also can use the STEM-EELS apparatus to map out 
the local charge density, which is plotted in Fig. 1.16. One can see how the 
charge screening length is much shorter in the LCMO material than in the 
YBCO, but the heterostructure is not thick enough for the LCMO material 
to heal its charge to the bulk value. 

The phenomena described above has been termed electronic charge re­
construction [Okamoto and Millis (2004a); Okamoto and Millis (2004b)], 
due to its similarity with the well-known surface reconstruction. Okamoto 
and Millis analyzed the SrTi0 3 /LaTi0 3 system [Ohtomo, et al. (2002)] 
using a hybrid density functional theory/many-body theory approach. The 
low-energy bands are modeled with a tight-binding scheme, and Coulomb 
interactions are introduced to describe the electron correlations. The many-
body theory was analyzed in a static mean-field theory approach [Okamoto 
and Millis (2004a)] and in another approximate many-body physics method 
that can produce the MIT [Okamoto and Millis (2004b)]; both produced 
much insight into the physics behind this behavior. In particular, since the 
different systems are at different chemical potentials in the bulk, there is 
a localized charge transfer at the interfaces, which artificially dopes each 
of the insulators. This leads to metallic regions near the interfaces that 
can conduct electricity in the transverse (planar) directions. The results of 
their calculations are summarized in Fig. 1.17. 

Electronic charge reconstruction is a phenomenon that naturally occurs 
at the interface of any two materials unless they happen to have exactly the 
same chemical potential (which is unlikely to occur in any real system at all 
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Fig. 1.16 Top panel: Experimental setup for a STEM-EELS measurement. This exam­
ple shows a measurement on GaAs. A simultaneous measurement of the positions and 
types of the atoms and of the charge profile can be achieved. Bottom panel: Charge 
profile overlaid over the atomic positions of a YBa2Cu307_,5/Lao.67Cao.33Mn03 het-
erostructure. Top panel adapted with permission from [Pennycook (2002)). Bottom panel 
reprinted with permission from [Varela (2005)). 

temperatures). We describe how to perform self-consistent calculations of 
electronic charge reconstruction in Chapter 3 and give additional numerical 
examples in Chapter 6. 
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Fig. 1.17 Calculated local charge density near the interface of a SrTiOa/LaTiOa het-
erostructure with six planes of LaTiC>3. The top curve shows the charge density as a 
function of distance in the inhomogeneous (longitudinal) direction. The bottom curve 
shows the charge density in the Fermi-liquid-like coherence peak near the electrochemical 
potential. It is clear from the curves, that the interface regions are conducting, with a 
thickness on the order of three atomic planes. Reprinted with permission from [Okamoto 
and Millis (2004b)] ( © 2004 the American Physical Society). 

1.5 Roadmap to Real-Materials Calculations 

In this book, we concentrate on calculations for model Hamiltonians which 
usually include one itinerant electron band only. Model systems have been 
used for decades in many-body physics because they capture the impor­
tant quantum-mechanical aspects of the problem, but are simpler than 
materials-specific calculations. Much can be learned about the many-body 
problem, and about strongly correlated nanostructures by examining these 
model systems. 

But eventually we want to be able to handle real-materials problems in a 
"first principles" fashion. First principles calculations usually start from the 
density functional theory with the local density approximation or a general­
ized gradient expansion. Density functional theory is exact for the ground 
state energies of real materials if the exact exchange-correlation functional 
is known for the material [Hohenberg and Kohn (1964)]. The exchange-
correlation functional is complicated, and not known in the general case. 
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The approximation, called the local density approximation, assumes that 
the functional is the same as the functional of a uniform electron gas with 
the same density at a given position in space. This approximation should 
be accurate for metals where the electron density does not change sharply 
through the material. It has been generalized to include gradient terms for 
the change of the density as well. 

The common way that density functional theory is solved is to map the 
interacting problem onto a noninteracting problem with the same electron 
density (but in a complex potential) [Kohn and Sham (1965)]. Solving 
this problem numerically yields a band structure, which is believed to be 
similar to the true band structure of the material (assuming such a concept 
exists), but density functional theory provides no proof of this result. If 
we want to go beyond the mean-field-like treatment of the local density 
approximation, we first parameterize the density functional theory bands by 
a tight-binding model (where choosing the appropriate basis can be critical), 
and then add electron-electron interaction terms. These interactions can 
be solved with the techniques of dynamical mean-field theory under the 
assumption that the electronic self-energy is local (that is, independent of 
momentum). There has been much progress in solving for properties of 
strongly correlated materials in the bulk with this procedure, but it is a 
computationally intense project. 

Plutonium is one of the most interesting materials from a solid-state 
physics context. It possesses numerous phases as functions of temperature 
and pressure, and it is generally believed that a number of these phase tran­
sitions arise from strong electron correlations. The a — 5 phase transition 
of Pu is interesting because it is accompanied by a 25% volume change, 
which is believed to be governed primarily by a change in character of the 
electrons from a band-like metal to a localized insulator. Since this transi­
tion can affect the stability of Pu when it is stored for long periods of time 
(Pu will be self-heated due to the nuclear radioactivity), it is of significant 
importance to understand its properties. This system was chosen as one of 
the first systems to apply the DFT+DMFT approach to [Savrasov, Kotliar 
and Abrahams (2001)]. The first calculations focused on the electronic 
structure, as modified by the strong electron interactions, and were then 
followed up by work on the phonons [Dai, et al. (2003)]. The phonon disper­
sions were later verified by inelastic X-ray scattering [Wong, et al. (2003); 
Wong, et al. (2005)] and summarized in a short review [Kotliar and Voll-
hardt (2004)] (see Fig. 1.18); this agreement between experiment and theory 
shows the power of these methods. 
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Fig. 1.18 Theoretically calculated phonon dispersion of (5-phase Pu (squares connected 
by full lines) which were later confirmed by inelastic X-ray scattering measurements 
(open red circles). Figure reprinted with permission from [Kotliar and Vollhardt (2004)] 
(©2004 American Institute of Physics) (adapted with permission from [Dai et at. (2003)], 
[Wong et al. (2003)] and [Wong et al. (2005)]). 

The work of Vollhardt and collaborators has concentrated on examining 
transition-metal oxides. Initially they focused on V2O3 [Held, et al. (2001); 
Mo, et al. (2003); Keller, et al. (2004)], which is close to the Mott metal-
insulator transition; more recent work has examined strongly correlated 
metals like CaV0 3 and SrV0 3 [Sekiyama, et, al. (2004); Nekrasov, et al. 
(2005)). In the left panel of Fig. 1.19, we show the spectral function (below 
the Fermi energy) obtained from a high energy (bulk) photoemission study. 
Photoemission is an experiment where high energy light is shone onto a 
clean surface of the material and it expels an electron (Einstein won his 
Nobel prize for this photoelectric effect). By varying the angle of incidence 
of the photon, one can map out the excitation spectra (multiplied by a 
Fermi factor) as a function of momentum. Here we show the local spectra, 
summed over all momenta. The agreement between experiment and theory 
is excellent, and the theory shows small differences between the two sys­
tems. The right panel is a comparison with X-ray absorption spectroscopy, 
since inverse photoemission data is not yet available (inverse photoemission 
corresponds to electrons shone onto a surface and light emitted; X-ray ab­
sorption spectroscopy measures the ease with which X-rays can be absorbed 
by forcing an electron to have a transition from a K-edge oxygen core state 
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Fig. 1.19 Comparison of the parameter free LDA+DMFT(QMC) spectra of SrVOs 
(solid red line) and CaVC>3 (dashed blue line) with experimental data (symbols) below 
and above the Fermi energy. The left panel is high resolution photoemission spectroscopy 
for SrVC-3 (red circles) and C a V 0 3 (blue squares) [Sekiyama et al. (2004)]. The right 
panel is Is X-ray absorption spectroscopy for S1VO3 (red diamonds) and CaVC>3 (blue 
triangles) [Inoue et al. (1994)]. The horizontal line is the experimental subtraction of the 
uniform background intensity. Reprinted with permission from [Nekrasov et al. (2005)] 
( © 2005 the American Physical Society). 

to the Fermi energy of the correlated bands-hence they measure the DOS 
for the unoccupied states modified by atomic matrix elements, which are 
not expected to change the signal in this case). 

The same strategy can be used for multilayered nanostructures. First 
a density functional theory is used to determine the band structure and 
from that an effective (inhomogeneous) tight-binding model is created. The 
interactions are introduced to represent the strong electron correlation ef­
fects. These are treated with inhomogeneous dynamical mean-field theory 
in order to fully solve the problem. So far, no one has attempted such a 
calculation. It requires a generalization of the techniques developed in this 
book along the lines of the progress made with first-principles calculations 
of bulk strongly correlated materials. 

file:///TwFri


Chapter 2 

Dynamical Mean-Field 
Theory in the Bulk 

2.1 Models of Strongly Correlated Electrons 

The most general Hamiltonian for matter is actually quite simple to write 
down. If we consider a collection of N nuclei, whose momenta, position, 
and mass are denoted by capital letters (Pj, Rj , and Mi), and a collection 
of N' electrons, whose momenta, position, and mass are denoted by lower 
case letters (pj, rj, and me), then the Hamiltonian involves just the sum 
of the kinetic energies of all of the particles and their mutual Coulomb 
interactions: 

JV 5 2 N N 2 JV' 2 N' N' 2 

<H = y^ * i i y y^ 6x63e y> Pj y> y^ e 
^2Mi Z^.Zw 2|Ri-R,-| Z - 2 m e

Z - . f - ^ . 21^-^1 

_ y ; y ; _ ^ £ _ , (2.i) 

with Zj the atomic number of the ith nucleus, and e the electric charge 
of an electron (the factors of two in the denominators of the nuclear and 
electronic potentials are to remove double counting); for a neutral system, 
we have YliLi Zi = N'. We use a hat to indicate a quantum-mechanical 
operator. A moment's reflection shows that the solution of the quantum-
mechanical problem represented by this Hamiltonian will include all of the 
equilibrium properties of solids, liquids, and gases, and hence represents 
an enormously complex set of solutions as the parameters are varied over 
different nuclei. 

Since the nuclear mass is so much larger than the electronic mass, the 
first approximation to be made is to take the limit M» —> oo, which means 
that the nuclei will be treated as classical particles. Next, since we are inter-
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ested in solids, and since most solids condense in periodic lattice structures, 
we can fix the nuclear positions to the spatial locations of a lattice with 
periodic boundary conditions. We also assume that the core electrons are 
so tightly bound to the nuclei that they do not contribute to the low-energy 
dynamics, and thereby we remove the core electrons from the Hamiltonian, 
and change the nuclear charges to the ionic charges of the nuclei plus the 
core electrons (we still denote the number of conduction electrons by N', 
and the ionic charges by Z;). Since the ion cores are fixed at their lattice 
sites, the potential energy from the ion cores is just a constant and can be 
ignored. Note that the first and third approximations amount to neglect­
ing the effects of phonons or lattice vibrations on the physical processes we 
will investigate. The phonons do make important contributions to thermo­
dynamic properties and transport properties, but they can be added back 
later if desired. 

So the problem has been reduced to considering the interaction of elec­
trons with static charges (the ion cores) located in a periodic arrangement 
on a lattice. If we ignore the electron-electron interaction term, then we 
have the fundamental problem of constructing the electronic band structure 
for electrons moving in a periodic potential. This is a noninteracting prob­
lem, whose ground state is found by forming a Slater determinant of the 
N' lowest energy states (due to the Pauli exclusion principle). The band 
structure, en(k), are the energy eigenvalues of the reduced Hamiltonian at 
each wavevector k in the first Brillouin zone. The index n denotes the label 
for the different bands. 

When we construct the ground state, we find that for band metals, 
many of the bands are either totally filled or totally empty, and only a small 
number of the bands are partially filled. If we are interested in the low-
energy properties, we can restrict ourselves to consider those partially filled 
bands only. The band structure can be parameterized by a tight-binding 
scheme, where we consider the hopping of electrons from one lattice site (at 
site Rj) to another lattice site (at site Rj), with a strength t^ called the 
hopping matrix. It is the hopping matrix that determines the connectivity 
of the lattice that the electrons are moving on. Now we can add the electron-
electron interaction terms back into our Hamiltonian, and try to solve the 
resulting many-body problem. 

This turns out to still be a rather complicated problem, so physicists 
have tried to simplify it even further to try to understand basic properties 
of electron correlations. The Hubbard model [Hubbard (1963)] is the sim­
plest proposal in this scheme. It assumes that there is only one partially 
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filled band, and it consists of s-wave orbitals, so the hopping matrix de­
pends only on the distance to neighboring lattice sites. Finally, it assumes 
that the Coulomb interaction in the metal is screened, so it is sufficient to 
approximate it by an interaction U when two electrons occupy the same lat­
tice site only. This Coulomb interaction is like the average electron-electron 
interaction in a helium atom, since the electrons on the same lattice site, 
really represent electrons restricted to lie in the same unit cell of the lat­
tice; because of this, the Hubbard model cannot describe the formation of 
chemical bonds between ions, like the dimerization that happens if we have 
a real lattice of hydrogen atoms in Mott's metal-insulator transition prob­
lem. The Hubbard model is illustrated schematically in Fig. 2.1. In spite 
of the apparent simplicity of the Hubbard model, exact solutions exist only 
in one dimension [Lieb and Wu (1968)] and in infinite dimensions [Georges 
and Kotliar (1992); Jarrell (1992); Georges, et al. (1996); Kehrein (1998); 
Bulla (1999)]. 
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Fig. 2.1 Schematic diagram of the Hubbard model on a 3 x 3 square lattice. The boxes 
denote the lattice sites, and the arrows in the upper half of the box indicate the electrons 
(spin-up or spin-down) that occupy a given lattice site for the specific electron config­
uration shown. The allowed hoppings are indicated with the arrows between the boxes 
(some hoppings are forbidden for this configuration by the Pauli exclusion principle). 
The labels U and 0 in the lower half of the box denote the interaction energy for each 
lattice site in the current configuration. 
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The Hubbard model describes the interplay between derealization ef­
fects coming from the kinetic energy and localization effects coming from 
the potential energy. This competition is most apparent in the d-shells of 
solids, even though the model assumes that the orbitals are symmetric. In 
the limit where U becomes large, no lattice site can be doubly occupied, 
which implies the system is an insulator if there is on average one electron 
per lattice site (called a half-filled band). On the other hand, if U is suffi­
ciently small, one would expect that the band structure is only perturbed 
slightly from the noninteracting case, and the system will remain a metal. 
Hence there will be a critical value of U, where the system undergoes a 
metal-insulator transition. In one dimension, we have Uc = 0 [Lieb and Wu 
(1968)], but in infinite dimensions, Uc is approximately equal to the band­
width [Bulla (1999)], so there is a nontrivial metal-insulator transition. The 
literature on this problem is immense, and a thorough and modern account 
can be found in Gebhard's book [Gebhard (1997)]. 

In addition, the Hubbard model possesses a number of interesting mag­
netic ground states. At half filling, the ground state is believed to be antifer-
romagnetically ordered for two and higher dimensions [Anderson (1959a)], 
and for large U, there is the possibility of ferromagnetism occurring near 
half filling [Nagaoka (1966)] (nonsaturated ferromagnetism has been seen 
with DMFT [Ob ermeier, Pruschke and Keller (1997)]); incommensurate 
magnetic order has also been found for intermediate U [Freericks and Jar-
rell (1995)]. 

The simplest model of strong electron correlations emerges from a fur­
ther simplification of the Hubbard model to the case where the down-spin 
electrons do not hop. The up-spin electrons then move through a back­
ground of down-spin electrons and the quantum-mechanical problem is 
a simple bandstructure problem for any given configuration of the static 
particles. The many-body physics enters when we take an annealed ther­
modynamic average over all configurations of static particles that share 
the same particle number. This model was first introduced by Hubbard 
as the alloy-analogy solution (also called the Hubbard-III solution) [Hub­
bard (1965)]. It was rediscovered [Kennedy and Lieb (1986)] as a model 
for crystallization: the static particles were interpreted as ions, and they 
form a periodic arrangement when both the electrons and the ions are half 
filled on all lattices in two or higher dimensions. This periodic "crystalliza­
tion" arises solely from the Pauli exclusion principle, and helps answer the 
fundamental question of solid-state physics—why do nearly all solids form 
periodic arrangements at low temperature? Another interpretation is that 
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of a binary-alloy problem [Freericks and Falicov (1990)], where we interpret 
the presence of a static particle at site i as the presence of an A ion and 
the absence of a static particle at site i as the presence of a B ion—the 
Coulomb interaction U is then the difference in site energies for an electron 
on an A ion and an electron on a B ion. It is conventional now to view this 
simplified Hubbard model as the spinless Falicov-Kimball model [Falicov 
and Kimball (1969)]. The schematic of this model can be seen in Fig. 2.1 
where we set t± = 0. 

The spinless Falicov-Kimball model has much known about its prop­
erties. In one dimension, the ground state is periodically ordered when 
the number of electrons equals the number of ions, and the interaction is 
attractive [Lemberger (1992)]. The phase diagram for different fillings is 
quite complex, and likely includes a devil's staircase [Gajek, J edrzejewski 
and Lemahski (1996)]. For small-C/, one also finds phase separation instead 
of the analog of a Peierl's distortion over some of the phase space [Fre­
ericks, Gruber and Macris (1999)]. In two dimensions, many similar re­
sults occur [Kennedy (1994); Kennedy (1998); Haller and Kennedy (2001)], 
and one also finds a large number of charge-stripe-like phases [Lemahski, 
Freericks and Banach (2002); Lemahski, Freericks and Banach (2004)]. 
If the electron concentration plus the ion concentration is less than one, 
and U is large and repulsive, then the system always phase separates into 
what is called the segregated phase [Freericks, Lieb and Ueltschi (2002a); 
Freericks, Lieb and Ueltschi (2002b)]. 

In the limit of large dimensions, DMFT has been employed to solve the 
spinless Falicov-Kimball model for a wide range of properties ranging from 
charge-density wave order to transport to Raman scattering. A comprehen­
sive review serves as an introduction to these topics [Freericks and Zlatic 
(2003)]. 

The original Falicov-Kimball model [Falicov and Kimball (1969)] is more 
complex than the spinless version. It was originally introduced to de­
scribe the first-order jumps in the resistivity of a number of rare-earth 
and transition-metal compounds. It assumes that the static particles are 
electrons that are localized on the lattice (like /-electrons) and it assumes 
that both the localized and the conduction electrons are spin one-half. 
Since the localized electrons are strongly correlated, we usually set the 
localized-electron-localized-electron interaction to infinity, so we restrict 
the /-occupation to be less than or equal to one at each lattice site. The 
remaining Coulomb interaction is then repulsive, and acts between local-
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ized and conduction electrons when they sit on the same lattice site. If 
the localized electron level Ef lies above the electron chemical potential as 
T —> 0, the system will be metallic at low temperature, but as the tem­
perature is raised, the high entropy of the localized electron states tends 
to transfer electrons from the conduction band to the localized band. This 
can then lead to a strongly scattering "insulating" phase, perhaps with a 
discontinuous jump in the resistivity. Hence, the thermodynamics of these 
models depends greatly on what interpretation is given for the localized 
particles, and how we perform the thermodynamic averaging (in this case 
we fix the total number of electrons not the separate numbers of conduction 
and localized electrons). A schematic of the spin-one-half Falicov-Kimball 
model is given in Fig. 2.2. 

This version of the spin-one-half Falicov-Kimball model provides an al­
ternative to the Mott-Hubbard picture of a metal-insulator transition. Here 
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Fig. 2.2 Schematic diagram of the spin one-half Falicov-Kimball model on a 3 x 3 square 
lattice. A specific configuration of conduction (solid arrows) and localized (open arrows) 
electrons is given, along with the allowed hoppings of the conduction electrons. The 
boxes correspond to the given lattice sites. The upper right corner is the configuration of 
conduction electrons, the lower right corner is the configuration of the localized electrons. 
The upper left box is the on-site Coulomb interaction between conduction and localized 
electrons. The lower left corner is the localized-electron-localized-electron interaction 
which is taken to be infinitely large, forbidding double occupancy. We do not depict the 
localized electron site energy Ef. 
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we have two kinds of electrons: those that conduct electricity and those that 
do not; the metal-insulator transition occurs due to a change in occupancy 
of the different electrons, not to a change in the character of the electrons 
themselves, as in the Mott transition. In the Falicov-Kimball model, one 
can show that there are discontinuous metal-insulator transitions that occur 
as a function of T [Chung and Freericks (1998)]. 

The spin-one-half Falicov-Kimball model also has intermediate-valence 
phases, where the average occupancy of the localized electrons lies some­
where between zero and one as T -> 0 [Chung and Freericks (2000)]. This 
is called a classical intermediate valence state, because the occupancy of 
/-electrons on each lattice site is either zero or one, but the average over 
all lattice sites is noninteger. Hence, the system is inhomogeneous on the 
nanoscale, but appears uniform only when we perform an annealed average 
over all possible configurations of electrons. 

There is one piece of physics that is left out of the spin-one-half Falicov-
Kimball model—it is the possibility of hybridization of the localized electron 
levels with other electron levels. The /-electrons are so tightly bound to 
the ion cores that their direct overlap (with neighboring sites) is so small 
that it can usually be neglected, but the overlap of an /-orbital with an s, 
p, or d orbital on a neighboring lattice site may not be so small. Including 
the hybridization and a (finite) direct on-site Coulomb interaction between 
/-electrons (but neglecting the Falicov-Kimball-like Coulomb interaction 
between the /-electrons and conduction electrons), yields what is called 
the periodic Anderson model, since it is a periodic generalization of the 
single-impurity Anderson model [Anderson (1961)]. Once again, we usu­
ally make a number of further simplifications of the model—one takes both 
the conduction and the /-electron orbitals to have s-wave symmetry, and 
we assume the /-electrons have no degeneracy. Finally, it is often assumed 
that the hybridization runs not between neighboring sites, but is a direct 
hybridization between the localized and conduction electron at the same 
lattice site (this possibility is usually forbidden by symmetry unless the 
conduction electron band has some p-character to it). A schematic of the 
periodic Anderson model appears in Fig. 2.3. It is widely believed that the 
periodic Anderson model describes the physics behind the so-called heavy 
Fermion compounds, which have strong electron correlations, Kondo-like 
physics, and often display exotic magnetic and superconducting phases. It 
possesses a quantum intermediate-valence state, where the average occupa­
tion of the /-electrons is noninteger, and is uniform throughout the lattice. 

Less is known about the solutions of the periodic Anderson model 
than the other two models introduced here. In one dimension, how-
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Fig. 2.3 Schematic diagram of the periodic Anderson model. As in the previous figures, 
the boxes denote the lattice sites, and the upper right corner is the conduction electrons 
on the site, while the lower right corner is the /-electrons on a site. There is no Falicov-
Kimball interaction, so the upper left corner is always 0. The lower right corner denotes 
the / - / interaction, which is now finite. In addition there is a hybridization between the 
conduction electrons and the /-electrons on the same site (denoted V). The /-electron 
site energy is not depicted. 

ever, the model can be solved by the density matrix renormalization 
group [Guerrero and Noack (1996)] where a number of different ferro­
magnetic and antiferromagnetic solutions are found. In infinite dimen­
sions, the model can be solved with DMFT [Jarrell (1995); Tahvildar-
Zadeh, Jarrell and Freericks (1998); Pruschke, Bulla and Jarrell (2000); 
Grenzebach, et al. (2006)] where one finds an enhanced Kondo scale for 
the symmetric case, which yields a Kondo insulating ground state, and 
one finds an interesting protracted formation of the quasiparticle peak in 
the density of states as a function of temperature, which is seen in the 
photoemission of heavy Fermion compounds. 

In the most general case, we need to be able to include all of the relevant 
electronic bands that lie close to the chemical potential and all relevant 
Coulomb interactions and hybridizations. Doing so introduces a number of 
significant complications to the models which makes them harder to solve, 
but much effort has been devoted to solving these problems with DMFT 
techniques. This approach is currently being focused on bulk problems 
only. 
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2.2 Second Quantization 

In the early days of quantum mechanics, Dirac [Dirac (1958)] invented an 
abstract method for solving the simple-harmonic oscillator problem. His 
technique is now commonly taught in undergraduate quantum mechanics 
courses, and it is assumed that the reader is familiar with it. 

Dirac introduced the raising and lowering operators a^ and a, respec­
tively. These operators satisfy the commutation relations: [a*,^] = 0, 
[a, a] = 0 and [a,a^] = 1. The simple harmonic oscillator Hamiltonian can 
be written as 

Wsho = / i w o U t a + ^ J , (2.2) 

with U>Q being the frequency of the oscillator. The raising operator in­
creases the energy of an eigenstate by hioo when it acts on an eigenstate, 
similarly the lowering operator decreases the energy by hu>o when acting on 
an eigenstate. Hence, there must be a lowest energy state |0) which satisfies 
a|0) = 0. From this state, all excited states can be formed, and they are 

\n) = 4r(at)nl°>' (2.3) 
\/n\ 

with the numerical prefactor being the normalization constant; the energy 
of the \n) eigenstate is hu>o(n + l/2). Because there is a simple formula that 
relates the position and momentum operators to the raising and lowering 
operators, any matrix element of any function of position or momentum 
between any two eigenstates can be calculated using just algebraic manip­
ulations. 

The power of this abstract technique is obvious: the solution of many 
different problems is facilitated by these algebraic manipulations instead of 
requiring one to perform integrals over Hermite polynomials, and the like. 
But this approach is even more important than just providing efficiency to 
calculations. It has created a new way of approaching quantum-mechanical 
problems where one can abstractly relate operators to eigenstates. The 
economy of Eq. (2.3) for representing an eigenstate is one of the most 
important properties that will be generalized to Fermionic systems in the 
second quantization formalism. 
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The TV-electron eigenstates are cumbersome to determine for a gen­
eral many-body physics problem, even if they solve a relatively simple 
Schroedinger equation. To get a flavor of this complexity, we need to first 
construct a set of iV-particle basis states that span the Hilbert space for 
the many-body Hamiltonian. These states are constructed from a complete 
set of single-particle states (they can be plane waves, Bloch functions, or 
any other convenient set of states; usually it is most convenient to use the 
single-particle eigenstates of the many-body Hamiltonian, but that is not 
necessary), labeled as {V'n(r)} for n = 1,2,3,... . In this notation, the 
symbol r denotes both spatial and spin coordinates. Then the TV-electron 
basis functions can be written as Slater determinants 

*fc1,fc2,...,fcw(ri,r2,...,rN) = -j= ^ ( - l ) P V f c : (Pr1)ipk2(Pr2)...tljkN (P r N ) , 
ViV. p 

(2.4) 
with the sum over all TV! permutations P of TV objects [the symbol (—l)p 

denotes the parity of the permutation]. The state is labeled by the TV 
different single-particle states (k\,k2,..., few) from which it is constructed. 
Any TV-particle eigenstate can be written as a linear combination over these 
basis states. The wavefunction in Eq. (2.4) is antisymmetric under the 
interchange of any two particles 

*fc1,...,fcN(r1,r2,...,ri,...,rj...,rN) = -* f c l fcjv(r1,r2, . . . , r j , . . . , r i . . . , rN) . 
(2.5) 

Since the notation of the Slater determinant is cumbersome to deal 
with, a shorthand notation called the occupation-number representation 
was developed which denotes which wavefunctions explicitly appear in the 
Slater determinant (i.e., the set of {fcj} used). Since each single-particle 
state appears zero or one times in the Slater determinant, we can repre­
sent the TV-electron basis states by vectors that consist of a string of zeros 
and ones, denoting whether the nth single-particle state ipn appears in the 
given Slater determinant (for an TV-electron state, we must have exactly TV 
terms that are equal to one). For example, the notation |1,0,0,...) repre­
sents the state •0i(ri) and the notation |0,1,1,0,...) represents the state 
h/Mri)?/^!1^) ~~ 1/'2(r2)^'3(i'i)]/V/2- This notation is a very compact way to 
represent states for large numbers of particles. 

In the spirit of Dirac, we introduce abstract operators called the electron 
creation operators ck and the electron annihilation operators c^ which "cre­
ate" an electron in state k or "destroy" and electron in state k, respectively: 
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cfc|n1,n2,...,nfc,...) = |ni ,n2 ) ...,nfc + 1,...), 

4 |n1 ,n2 , . . . ,n f c , . . . ) = |m,n 2 , ...,nfc - 1,...). (2.6) 

Since the Pauli exclusion principle allows each state to be occupied at most 
one time, we must have (c^)2 = 0 and c2 = 0. Since the Slater determinant 
is antisymmetric under the interchange of any two ki indices, it is easy to 
show that 

44-+ 4 4 = o = (4.4'}- (2.7) 

We call this sum of the two operators in different orders the anticommutator 
of the two operators, which is denoted by the curly braces instead of the 
straight brackets for a commutator. Similarly, one can use the definitions 
to show 

{cfe)cfc»} = 0, {c fe,4,} = l (2.8) 

too. Since Cfc|0fc) = 0, we have ckck|0fc) == 0. Since cfc|lfc) = |0fc) and 
4|0fc) = |lfc), we have ckck|lfc) = |lfc). We call the operator nu = ckck the 
number operator for state k, because it counts the number of times (zero 
or one) that the state k appears in the given Slater determinant. It satis­
fies the following commutation relations with the creation and annihilation 
operators: 

K . 4 l = 4> K,cfc] = -cfe, (2.9) 

which are similar to the relations for the raising and lowering operators of 
the simple harmonic oscillator. We call M = Yl'kLi nfe t n e t°*al number 
operator, since it counts the total number of occupied states in the given 
Slater determinant. 

We can use the second quantization formalism to represent the three 
different Hamiltonians that were depicted graphically in the previous sec­
tion. We let c'i(7 (cia) denote the creation (annihilation) operator for a 
conduction electron at lattice site i with z-component of spin a. We let 
Ho (na) denote the creation (annihilation) operator for a localized (or / ) 
electron at site i with spin a. Then the Hubbard model [Hubbard (1963)] 
Hamiltonian becomes 

ftn-ub = - J2 ^ (c\°ci°+sW) + u E n ^ i • (2-10) 
ijo i 
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We use the standard convention of including a minus sign before the hop­
ping matrix here. The screened Coulomb interaction term counts the num­
ber of double occupancies, and multiplies them by the strength U. The 
Falicov-Kimball model [Falicov and Kimball (1969)] Hamiltonian becomes 

TiFK = - Yl Uj (clcja + c]aCla) + EfJ2flha + Uj2 clCiofl> h„>, 
ija ia iaa' 

(2.11) 
for the spin-one-half case, where we need to project onto states where the 
/-electron occupation on each lattice site is less than or equal to 1. The 
spinless case corresponds to removing the spin labels. Finally, the periodic 
Anderson model [Anderson (1961)] Hamiltonian becomes 

Wpam = " Yl tij (clcja + c]aCia) + Ef £ f}jia + [/ £ f^^fljil 
ija ia i 

+ VY(4jia + flcia), (2.12) 
ia 

where we assumed that the hybridization is between the conduction elec­
trons and the /-electrons on the same lattice site (the generalization to 
other situations is easy to write down). 

We have been working with creation and annihilation operators in real 
space. It is sometimes convenient to also consider the Fourier transform to 
momentum space. We define the momentum-space creation and annihila­
tion operators by 

3 3 

with A being the number of lattice sites. It is a simple exercise to show 
that the creation and annihilation operators in momentum space satisfy 
the usual anticommutation relations, in particular, we have {cko-'ck'o-'} = 

<5kk'<W' (readers not familiar with this should verify that it does hold). 
If the hopping matrix tij connects only nearest-neighbor sites (sites i and 
j where R; — Rj = S with 6 a translation vector to a nearest-neighbor 
site) with strength t, then the kinetic energy operator for the conduction 
electrons becomes 

" J2 *«4CJ<7 = Y, ekCLCka, (2-14) 
ija kcr 
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with £k = —t J2s exp(ik-<$) being the bandstructure. In a momentum-space 
representation, the Hubbard model Hamiltonian then becomes 

nHub = Yle*cLcka + j Yl ci^c^1cLic^-k2+k3i, (2-15) 
k(7 k i k 2 k 3 

with similar relations for the Falicov-Kimball and periodic Anderson mod­
els. It is interesting to note that the kinetic energy operator is diagonal 
in the momentum-space representation, while the screened Coulomb inter­
action is diagonal in the real-space representation. All of the complexities 
of the many-body problem arise from the competition that occurs between 
these two terms when we simultaneously diagonalize the Hamiltonian with 

On the other hand, in the case where U = 0, we can solve the Hub­
bard model for any number of electrons. The problem corresponds to a 
tight-binding bandstructure problem, which is diagonalized by making the 
Fourier transform to momentum space [see Eq. (2.15)]. The bandstructure 
£k gives the A energy eigenvalues for the single-electron problem. Since 
the Hamiltonian is diagonal, the many-electron eigenstates correspond to 
Slater determinants in the momentum-space representation. The ground 
state is found by the "bathtub principle": choose the N eigenstates with 
the lowest energy eigenvalues (taking into account the spin degeneracy) to 
"fill the energy bathtub". 

We end this section by presenting a nontrivial application of the sec­
ond quantization formalism. The problem is the ground-state energy of 
the jellium model. In the jellium model, we start from the full solid-state 
Hamiltonian in Eq. (2.1) and we make the approximation that the ionic 
cores are spread out uniformly to produce a homogeneous positive back­
ground charge that cancels out the net negative charge of the conduction 
electrons, so there is no structure to the ion-electron interaction. We will 
express the Hamiltonian for jellium in a momentum basis. Since there is no 
lattice potential anymore, the electrons are free and the bandstructure be­
comes ek = h2k2/2m. When we evaluate the electron-electron interaction 
potential in the momentum-space basis, we find that it involves the Fourier 
transform of the Coulomb interaction. This Fourier transform is not well 
defined in general, so we need to evaluate in by a limiting procedure. We do 
this by replacing the Coulomb interaction with a screened Coulomb inter­
action e2 /r —> e2 exp( — nr)/r and then we take the limit K —> 0 at the end 
of the calculation. The Fourier transform is easiest to carry out in spherical 
coordinates, with the z-axis lying along the direction of the k-vector. It 
becomes 
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/•oo 2 rir rlir 

/ dr—exp(-Kr) / d8r exp[ikr cos 9} / dfirsmO. (2.16) 
Jo r Jo Jo 

The integral over <j> is trivial; the integral over 9 is straightforward, and 
yields 

r dr2^reM-*r)eMikr)-eM-lkr). (2.17) 
Jo %kr 

The integration over r becomes 47re2/(fc2 + A;2). Finally, taking the limit 
K —> 0, gives the Fourier transform of the Coulomb interaction Aire2/k2. 
Note that the Fourier transform of the Coulomb interaction diverges as 
k —> 0. This divergence is canceled by the positive background charge, 
which only has a k = 0 component. Hence the Coulomb potential for the 
jellium model is 

V^W = {Z^lk^0, (2-18) 

in momentum space. 
The jellium Hamiltonian can then be written as 

_ v ^ ^2k2 t 47 re2 V^ 1 t t 
Tljellium = 2_^i ~ 2 r r r C k o ' C k ' 7 ~*~ ~2V~ ^ 7 2 C k + q c r C k ' - q C T ' C k V ' C k c r -

kcr kk 'q#0 C T ( r ' ^ 

(2.19) 
where the factor of 2 in the denominator of the potential energy piece is to 
avoid double counting, the restriction to q ^ 0 is because the positive back­
ground cancels the q = 0 term in the potential, and where V is the volume 
of the jellium "solid" (the normalization factor in the Fourier transform for 
the momentum-space operators is 1/vT in the continuum). 

An estimate of the ground-state energy can be made in a number of 
different ways. If we think of the potential energy as a perturbation to 
the kinetic energy piece of the Hamiltonian, then the first-order perturba­
tion theory says the energy shifts by the expectation value of the potential 
energy in the ground-state of the kinetic energy. This TV-electron ground 
state is found from the bathtub principle by filling in the lowest N energy 
levels. In many-body physics, the first-order perturbation theory is also 
called the Hartree-Fock approximation. It can be viewed as a variational 
approximation to the true energy as well, so it will be an upper bound to 
the exact ground-state energy. 
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Since the band structure is e^ = h2k2/2m, the surfaces of constant 
energy are spheres, and the bathtub principle says we fill in the electronic 
energy states up to the Fermi momentum kp. If there are N states, then 
Sfc<fcFCT 1 = -N, or if we let pe = N/V be the density of electrons, we have 

w ££?**=»• (2-2o) 
with the factor of 2 coming from spin, the factor of 47r coming from the in­
tegral over solid angle, and the factor of V/(27r)3 is the integration measure. 
The integral is easy to evaluate and gives 

Pe - | % , kF = (3n2
Pe)i. (2.21) 

The ground-state wavefunction for the kinetic energy operator is 

K)= I I cLlO). (2.22) 
k<kFcr 

Since the operator c^ac^a is the number operator, which counts the electron 
number in state k with spin a, the expectation value of the kinetic energy 
T satisfies 

. . h2h2 h2 hb 

k<kF 

because the number of electrons is 1 for k < kp and 0 for k > kp. 
The expectation value of the potential-energy operator V is more com­

plicated. To begin, we need to work out the operator expectation value 

«l4+q«,4'-qa'Ck^CkJ^s), (2-24) 

in the kinetic-energy ground state. The operator average has 2N + 2 cre­
ation and annihilation operators which act on the vacuum state to the left 
and to the right. Each creation operator must be paired with an annihila­
tion operator for the same state in order for the average not to vanish. This 
means the momentum vectors of the operators in Eq. (2.24) must lie below 
the Fermi wavevector. In addition, since the operators coming from the 
wavefunction are already paired, we need to pair each creation and annihi­
lation operator in the operator average. Hence there are two possibilities 
where the expectation value does not vanish: (i) when q = 0 and (ii) when 
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a — a' and k + q = k'. The average in the first case is equal to 1 and in 
the second case is equal to —1. It can be written in the following fashion 

«sl4+qCT4<-qCT<ckV,CkCTi<s> = W&+«*ci~\<)(<\<i>-^°k>*'\<) 
H^l4wwl<><Ci4'-q^k(7i<>, 

(2.25) 

where the expectation value of the four-Fermion operator is written as the 
product of the expectation value of two two-Fermion operators (paired in 
each possible way). This result is quite general and is called Wick's theorem, 
although we do not prove it here. Using the results of Eq. (2.25), allows 
us to evaluate the expectation value of the potential energy (see Problem 
A.l). The result is 

«\V\^) = -e^V. (2.26) 

The standard way to express the total energy per electron is with respect 
to the radius r of a sphere that contains one electron, rs = r/ao with ao = 
ti2/me2 = 0.0529 nm the Bohr radius. The parameter rs can be expressed 
in terms of the Fermi wavevector as rs = (97r/4)1//3l//cFao yielding the final 
result 

•Sjellium HF 

iV 

in Rydbergs (Ry = e2/2ao = 13.6 eV). The higher terms in the jellium 
energy are much more complicated to derive and were a significant project 
in the 1950s [Pines (1953); Gell-Mann and Brueckner (1957)]. 

2.3 Imaginary Time Green's Functions 

In many-body physics, the technique of Green's functions has been devel­
oped to solve problems. This method is used, instead of trying to solve 
directly for the many-body wavefunctions (via a Schroedinger equation), 
because it turns out to be much simpler. This is because the Green's func­
tion satisfies a simpler differential equation (and a boundary condition), 
which allows it to be more readily solved. You will see the details of how 
this works in the next few sections. 

2.210 0.916 
Ry, (2.27) 
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The starting point is to define the partition function as in statistical 
mechanics 

Z = Tr{e-^n-^} = ^ e-KE™-*N™\ (2.28) 
771 

with the trace over all normalized many-body wavefunctions \m), which 
satisfy Ti\m) = Em\m) and Af\m) = Nm\m) (we suppress the spin indices 
for simplicity here except where they are necessary; they should be able to 
be added back by the reader if needed). The symbol /? = l / T is the inverse 
of the temperature. Then the Green's function (in real space) is defined by 

G^T.T') = [ ^ ( r - r X e - W - ^ C i M ^ r ' ) } 

+ 6(T' - T)Tr{e-^n-'iAr>c]{T')ci(T)}]/Z 

= -Tr{e-^H-'^TTci(T)c](T,)}/Z, 

= -<TrCl(T)cj(T')>, (2.29) 

where the last two lines define the time-ordering operator TT which or­
ders earlier times to the right taking into account the Fermionic sign 
when operators are interchanged, and the operator average is defined by 
(O) = Tr{exp[-/?(W - /JM)]0}/Z. The symbol 9(T - r ' ) is the unit step 
function, which equals 1 for r > r ' and equals 0 for r < T'. Similarly, the 
momentum-space Green's function is defined by 

Gk(r,T') = - (T r C k (T)4 ( r ' ) ) ) (2.30) 

where we assume the system is translationally invariant (i.e., Gij de­
pends only on R; — Rj). The translational invariance guarantees that the 
momentum-space Green's function is diagonal in the momentum indices, 
i.e., -{TrC^clir1)} = 0 when k ^ k'. 

The Green's function in Eq. (2.29) can be simplified by representing it 
with the Lehmann representation. A complete set of states is introduced in 
between the two Fermionic operators and the trace is written out explicitly 
over all possible states. The result is 

G^T, T') = \ Y\-B{j - T')e-0(Sm-/iJvm) + e{jl _ T)e-/9(E„-/iJ\r„)] 
mn 

x e(
T-r')(fi™-'iJV"'-£;«+'lJV»)(m|ci|n)(n|ct|m>) (2.31) 

where the symbol (n|cj|m) is a matrix element with respect to different 
many-body wavefunctions, and should not be confused with the (O) no-
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tation. The first thing to note is that Eq. (2.31) shows that the Green's 
function is a function of r — r' only. This property is called time-translation 
invariance, and it occurs because the system is in equilibrium, so it ap­
pears the same for any origin of time. In addition, we see that as long as 
\T — T'\ < /3, the Green's function is well defined, because the statistical fac­
tor guarantees the convergence of the summations. Writing the Lehmann 
representation for the momentum-space Green's function shows it is also 
a function of T — r ' too. The Green's function depends, in a complicated 
fashion, on the energy eigenvalues and the matrix elements of the exact 
wavefunctions of the many-body problem. It turns out that these par­
ticular combinations are the combinations that allow us to perform many 
calculations, which is why the Green's functions are so useful. Note that 
the fact that the Green's function is time-translation invariant can also be 
shown directly from Eq. (2.29) by using the cyclic property of the trace 
(TrAB = TrBA) and the fact that H - /MN" commutes with itself. 

The imaginary-time Green's functions can be employed to calculate a 
wide range of different static properties of the many-body system. The 
simplest such property is the average electron filling, which satisfies 

Pe = \ ! > * } = \ Y . G»(°") = Gioc(O-), (2.32) 
i i 

where the symbol 0~ means that we take the limit T' —> T with T' > r. 
The last equality holds in a homogeneous system, where the local Green's 
function does not change from one site to another (which holds on any 
periodic lattice that has not gone into an ordered phase which breaks the 
lattice translational symmetry). One can also determine the average kinetic 
energy, which satisfies 

{t) =-Y^UjGiiQ-). (2.33) 
ij 

Similar averages are determined in momentum space. The filling of elec­
trons in different regions of the Brillouin zone is just (nu) = Gk(0~) and 
the average kinetic energy is (T) = ^ k ekGk(0~). A little thought shows 
that trying to calculate these averages at nonzero temperature from the 
individual wavefunctions would entail much more work than doing so from 
the Green's function. 

Our next step is to show how one can actually calculate the Green's 
function itself. The basic idea is that the Green's function satisfies a differ­
ential equation with a boundary condition. If we can solve the differential 
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equation, then we can determine the Green's functions. In general, the 
differential equation is not easily solved, and often one develops perturba-
tive methods to approximately solve it. In later sections we will show how 
the DMFT approach actually allows us to solve for a wide class of Green's 
functions. 

Since we know that the Green's function depends on one time variable 
r, we need to differentiate with respect to r in order to find the differential 
equation that it satisfies. This is called the equation of motion (EOM) 
technique. The imaginary time derivative of Eq. (2.29) is 

J ^ ( T ) = -6(T){Ci(T)c](Q) + c](0)Ci(r)) (2.34) 

- 9(T)([H - /W,Ci(T)]cj(0)) + 9(r)(c](0)[H -Mf,C i(T)]>, 

where 6(T) = dT0(r) is the Dirac delta function. The following manipula­
tions were used in deriving Eq. (2.34): 

A C i ( r ) = | _ [ e (« -MOr C i ( 0 ) e - (« -MO/ 

= (H - M O e ^ - ^ C i W e - ^ - ^ 
_ e (w-MOr c . ( 0 ) e - (« -MOT ( w _ ^ ) = [H _ ^ c . ( r ) ] 

= e(*-MA/>[W _ ^ C i ( 0 ) ] e - ( K - ^ T , (2.35) 

where the last line is the simplest for calculations. Using the facts that 
{Ci(0),c](0)} = 6ijt [M,Ci(0)} = - q ( 0 ) and [f.c^O)] = £ f t« + *c 4 + 4 (0 ) 
yields the final differential equation for the Green's function in real space 

{-dT + fj,)Gij(r) + ^2tu+sGi+sj(T) 
6 

+e(-T)(c){Q)e<H-^T[V,ci(Q)\e~{'H~'lM)T) = M M - (2-36) 

In general, the commutator [V", Cj(0)] involves at least three Fermion oper­
ators, so the terms with the 9 functions in Eq. (2.36) involve new Green's 
functions, called two-particle Green's functions, but we don't define them 
here. For the Hubbard model, the EOM in Eq. (2.36) becomes 

(-dT + iJ.)Gija (r) + ^ tli+5Gi+5jcy (r) + fl(r)t/(ni_(T (r)cia {T)C]„ (0)> 
6 

-0(-r)£/<ctff(O)Tw(r)c i<T(T)> = <%<5(r), (2.37) 
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with the spin variables restored. The EOM can be employed to determine 
the average potential energy (V). We illustrate this for the Hubbard model, 
but it can be worked out for any model. Starting from Eq. (2.37), take i = j , 
a =T, T —> 0~, and sum over i to yield 

(Vkub) = t / E K « u ) = E [ ( - ^ + ^ G » T ( ^ ) - ^ ) ] | n -liT), 
*—•* *—rf IT—*0~ Z 

i i 

(2.38) 
and the expectation value for the energy follows from (H) = (T) + (V). 

In momentum space, the EOM is similar, but somewhat simpler, be­
cause the kinetic energy part is now diagonal; hence the analog of Eq. (2.36) 
is 

(-dT + /x - ek)Gk(r) - e(T)(e^-^T{V,Cli(0)}e-{n-^)Tci(0)) 

+0(-T)(4(O)e(w -^ ) T [y ,c k (O)]e-(w - ' i A r> r ) = 5{T), (2.39) 

but often the commutator of the annihilation operator with the potential 
energy is more complicated than in real space. 

In addition to the differential equation, we need a boundary condition 
to determine a unique solution. Since the EOM is a first-order differen­
tial equation, we require only one boundary condition. Going back to the 
Lehmann representation [Eq. (2.31)], with — (3 < r < 0 and T' = 0, it is 
easy to show that Gij(r + (3) = —Gij(r) by direct substitution. Hence the 
Green's function is antiperiodic with period /3 [the antiperiodicity can also 
be shown by using invariance of the trace starting from Eq. (2.29)]. This 
antiperiodicity can be used to extend the definition of the Green's function 
to all T by taking the antiperiodic extension (in which case we also need to 
extend the definition of the delta function by the same antiperiodic exten­
sion). Then, we can expand the Green's function in a Fourier series—the 
only nonzero Fourier components occur at the so-called Fermionic Matsub-
ara frequencies iwn — inT(2n + 1) with n an integer. Hence we have 

Gtj (T) = TY, e'^Gij (iwn) (2.40) 
n 

with 

Gij{iun)= / dre^GijiT). (2.41) 

We illustrate a solution for the Green's function in the case of nonin-
teracting band electrons, where the potential-energy operator V vanishes. 
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It is easiest to work in momentum space, so we start from Eq. (2.39) and 
substitute in the momentum-space analog of Eq. (2.40). Using the fact that 
the delta function can be written as 6(T) = T Y2n exp[—zoinr] and that the 
time-derivative can be evaluated by switching the order of the derivative 
and the summation, we find an exact solution for the Matsubara frequency 
Green's function 

G£onint(tw„) - ^ . (2.42) 
iun + [i - ek 

If we substitute these results into Eq. (2.40) and evaluate the summations 
using identities 1.445.1 and 1.445.2 in [Gradshteyn and Ryzhik (1980)], we 
find the noninteracting Green's function is 

GTmt(r) = -sgn(r) 
sinh(ek - fj)[0 - \T\) 1 sinh(ek - M)(f - H ) 

sinh/3(ek - fi) 2 sinh |/?(ek - fi) 

c o s h ( e k - M ) ( l - H ) l c o s h ( e k - M ) ( f - H ) 
sinh/3(ek-/z) 2 sinh ±/3(ek - /z) l ' ' 

[it is important for the reader to verify Eq. (2.43)]. Note that in the 
limit r -> 0*, we find G£onint(0+) = f(ek - fj,) - 1 and G£onint((T) = 
/ (e k — /J,), which is what we expect for a noninteracting system at fi­
nite temperature. Furthermore, one can verify that if — /3 < r < 0, then 
Gk

o n i n t(r) = -G£onin t(/3 + T). Finally, a direct substitution into the dif­
ferential equation in Eq. (2.39) with V = 0, shows that it solves the dif­
ferential equation. Hence this is the noninteracting Green's function. One 
can also calculate (T), but we won't do so here. As an example, we plot 
GI0C(T) = £ ) k G k(r) /A = GU(T) in Fig. 2.4 for a variety of different cases, 
to illustrate how G can vary as the interactions are turned on (techniques 
needed to produce this plot are developed in the next two sections). 

In general, for an interacting system, the Green's function varies from 
the noninteracting solution. We can summarize the deviations from the 
noninteracting system by introducing the so-called self-energy, which in­
cludes all of the effects of the interactions. We do this by modifying 
Eq. (2.42) to 

Gk(iw„) = — ^ T — T , (2.44) 
uvn + yu - Lk(iwn) - ek 

with Ek(iw„) being the momentum and frequency-dependent self-energy. 
An alternative way to express Eq. (2.44) is through the noninteracting 
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Fig. 2.4 Local Green's function as a function of imaginary time for T = 0.1 in the 
spinless Falicov-Kimball on the hypercubic lattice with d —> oo. We choose pe = 0.7, 
w\ = 0.3, and vary U to include U = 0, 1.0 1.5 2.0 and 2.5 (top to bottom for — (3 < r < 
0). The metal-insulator transition occurs near U = 1.5. Notice how the Green's functions 
for different U values agree at T = ±/3 and T = 0, but differ the most near ±/3/2. Indeed, 
the Green's function becomes exponentially small near ±/3/2 in the insulating phase. 

Green's functions and the Dyson equation 

Gk(iujn) = G r i n t ( ^ ) + G r i n t ( ^ ) E k ( i W l l ) G k ( w n ) , 

Gk(iun)-
1 = G r ^ V n ) - 1 - Sk(zWn). (2.45) 

Since a product of Fourier transforms will be Fourier transformed into a 
series of convolutions in imaginary time, the Dyson equation involves a 
number of imaginary-time integrals in the time domain. It turns out, that 
in the limit of large spatial dimensions, the self-energy becomes local, i.e., 
it is independent of momentum, which allows a large number of strongly 
correlated problems to be solved exactly. 

Finally, we end this section by showing how one can calculate differ­
ent expectation values using the Matsubara frequency Green's functions. 
To begin, the average filling is (m) = TY^nGu(iion), but one must use 
caution in evaluating this summation, because it requires a regularization 
scheme to converge (see Problem A.6). Similarly, the kinetic energy sat­
isfies (T) = T^Zn X]kekGk(iw„), and the convergence of the summation 
must be handled carefully here as well. Determining the potential energy 

T | i | i | i | i | i | i | i | i | r 

. I • I . I . I • I • ' • I • ' • ' • 
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is somewhat more complicated, because one needs to evaluate a derivative 
with respect to imaginary time; the derivation is straightforward, and yields 
for the Hubbard model 

(Vkub) = ^ E E - 4, S k v ( i 7 - } ^ = AT££T ( ;u ,„)G l o c T ( iu ,„) , 
^ ^ i w „ + /x-S k T (zc<; n ) -e k ^ 

(2.46) 
where the last equality holds if the self-energy is local. 

2.4 Real Time Green's Functions 

In the last section, we developed a complete theory for the imaginary time 
Green's functions. They can be used to calculate a large array of static 
properties of strongly correlated systems. But we often are interested in 
dynamical properties as well, such as the many-body density of states (seen 
in a photoemission experiment), dc charge and heat transport, optical con­
ductivity, and so on. Dynamical properties require a real-time formalism. 
This cannot be achieved by simply replacing r by —it, because such a 
procedure requires us to properly know the functional form of the func­
tion of r and verify that the substitution maintains the relevant analyticity 
properties. In cases where we only have numerical values for G(r), such a 
procedure is impossible. 

Instead, we can proceed formally by using the Lehmann representation 
in Eq. (2.31) and Fourier transforming with respect to r (setting r ' = 0) 
as in Eq. (2.41). The result yields 

1 _ _ p-0(Em-tiNm) , -0(En-nNn) 
Gi^r,) = -j £ - — p j? F , N (mh\n)(n\c ]m), (2.47) 

where we used the fact that exp[—i/3wp] = — 1. It is easy to show that in 
order for the matrix elements in Eq. (2.47) not to vanish, we must have 
jV„ = Nm + 1, then all of the Matsubara frequency dependence is in the 
term l/[iujp + \i + Em — En] which will be summed over all states labeled 
by m and n. If we analytically continue by replacing iu>p by a complex 
variable z, then we can easily learn two important facts: (i) if \z\ —* oo, 
then Gtl{z) —» l / |z | (since {ct, c\] = 1), and (ii) the term l/{z+n+Em—En] 
has a singularity only if Im(z) = 0 and Re(z) + [i + Em — En = 0. Hence, 
if we consider the set of Matsubara frequencies with u>p > 0, the analytic 
continuation of Eq. (2.47) [by substituting itup —> z] is analytic in the upper 
half plane. Similarly, if we consider the set of Matsubara frequencies with 
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LOP < 0, the analytic continuation of Eq. (2.47) [by substituting iu>p —> z] 
is analytic in the lower half plane. If we take the limit where z approaches 
the real axis from each respective domain, then we can write z = w + iS for 
the upper half plane, and z = u> — i8 for the lower half plane, with u> being 
real and 5 —> 0 + . The Lehmann representation of these two real frequency 
Green's functions is 

I e - /3(£m - /2JVm ) _|_ e-0(En-nNn) 

G^u ±iS) = -Y: i0±iS + fl + E m - E n Hqln)(n|c]|m). 
ran 

(2.48) 
If the two Green's functions denned above are different, then there is a 
branch cut along the real axis for those frequencies, otherwise, the Green's 
functions are analytic across the real axis. In the general case, the branch 
cut extends along the real axis for the regions of frequency corresponding 
to the differences in the energies of the many-body states; i.e., for the 
single-particle excitation energies. As we know from band theory for an 
infinite system, these regions will correspond to finite length pieces along 
the real axis. Since these two Green's functions are complex conjugates of 
one another, we learn that if they are purely real, then there is no branch 
cut, and that the branch cut exists whenever they have a nonzero imaginary 
part. 

It is convenient to summarize the discontinuity of the imaginary part 
at the branch cut by defining the local density of states via 

Aii(U) = -Gti{u + i S ) - ^ U - i S ) . (2.49) 

If we recall the identity 

1 P 
, . . *in6(u>), (2.50) 

LU ±10 CO 

where the symbol P denotes the principle value, and means that when it is 
substituted into an integral, the integration routine must be performed in 
a symmetric fashion about the singularity at to = 0, so that it can be well 
defined. Then, substituting Eq.(2.50) into Eq. (2.49) gives 

AM = | ^ [ e - « £ - - ^ - ) + e - / 3 ( £ " ^ J V " ) ] | H c » | 2 ^ + / x + S m - E „ ) . 
mn 

(2.51) 
This shows that the local DOS is always a real-valued function and that it 
is nonnegative Au(w) > 0, since each term in Eq. (2.51) is nonnegative. If 
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we integrate Eq. (2.51) over all frequency, we find 

ran 

= {Cic\+c\Ci) = l, (2.52) 

which is an important sum rule. We can repeat the above steps for the 
momentum-space Green's functions, to arrive at 

Gk(„ ±i6) = - £ . . , . % = |(m|ck|n)|2. (2.53) 
ran ' 

Then, we define the spectral function via 

AM = -G^U + i5)-G^U-iS), (2.54) 
2m 

and find that Ak(u) > 0, JduAk(u}) = 1, and Au(w) = Sk^k(w) /A . 
The local DOS, or the spectral function, can both be used to provide 

another general integral form of the Green's function, that is valid in either 
the upper half plane or the lower half plane. To derive this relation, we 
must first go back to the Cauchy formula for an analytic function, which 
says 

w—hfc"^- (2'55) 
which follows from the residue theorem for any closed contour C which 
encloses the point z where the function is to be evaluated. If F(z) decays 
like l/\z\ for large \z\, and if F(z) is analytic in the upper half plane, we 
can choose the contour to run from — oo to oo infinitesimally above the 
real axis, and then return along a radial arc that has a radius R —> oo 
in the upper half plane. Since the function F{z) decays for large \z\, the 
contribution along the circular arc vanishes. Then if we let z —» u> + i6 in 
Eq. (2.55) and we recall the identity in Eq. (2.50), we get 

F(uj + iS) = -~P r dLo'^^- + lF{Lj + iS). (2.56) 
2m J_00 u> — a/ 2 

Taking the real part gives ReF(u> + iS) = - P J dw'ImF(ij')/[(uj - OJ')TT] 

which is commonly called the Kramers-Kronig relation (see Problem A. 14 
for further examples of how to apply the Kramers-Kronig relation). This 
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result for the real part shows that the following integral identity (called the 
spectral formula) holds for the Green's function 

Gu(z)= [dw'^1, (2.57) 

which we explicitly wrote down for the local Green's function. 
The first step that we need to take to check that Eq. (2.57) is valid, is 

to reproduce the Matsubara-frequency form of the Lehmann representation 
in Eq. (2.47) when z = iiop. Substituting Eq. (2.51) into Eq. (2.57), and 
performing the integration over a/ immediately produces Eq. (2.47). The 
next step is to examine the integral form as \z\ —» oo. In this case, we find 
Gu(z) —> l/\z\ because of the integral sum rule for the DOS in Eq. (2.52). 
Hence, Eq. (2.57) is an analytic function representation (when restricted to 
either the upper or lower half plane) for the Green's function that decays to 
zero for large arguments, and it produces the correct values at all Matsubara 
frequencies. There is a theorem [Baym and Mermin (1961)], which states 
that the only function that can satisfy these three properties is the unique 
analytic continuation of the Matsubara-frequency Green's functions. This 
theorem is similar in spirit to the conventional unique analytic-continuation 
theorems, which require the two analytic functions to agree over a contin­
uous domain, but here it is limited to having them agree over a countably 
infinite set of discrete points, which is why the additional condition, that 
the function decays for large argument, is needed for the theorem. A simi­
lar set of results holds for the spectral function Ak(co), but we won't repeat 
them here. 

Our analysis on analytic continuation has shown that the Green's func­
tions in the upper or the lower half plane can be determined from the DOS 
or the spectral function. Hence, solving for the relevant A(ui) can be em­
ployed to find all Green's functions. In the next two sections, we will show 
how this function can be calculated within the DMFT approach. In order 
to complete the formalism, we need to determine how the analytic contin­
uation of the Green's function relates to the real-time Green's functions. 
This requires us to perform a Fourier transformation with respect to fre­
quency. If we start from the Lehman representation in Eq. (2.48), then we 
need to compute the Fourier transform 

— / du> , . f — = =Fi0(±t)e<( /1+iSm-Bn) t, (2.58) 
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which follows from the residue theorem: if t < 0 we close the contour 
integral in the upper half plane and if t > 0 we close in the lower half plane 
and the simple pole in the integrand occurs at z = —/x — Em + En ^ i5. 
The Fourier transform of the Green's function then becomes 

Gi(t) = ^ ( ± 0 S^\c-P(Em-y,Nm) + e-0{En-nNn)iei(Em-nNm-En+iiNn)t 

mn 

x (m|c i |n)(n|ct|m) 

- ^iO{±t){cl{t)c){Q) + c){Q)Ci{t)) = TiO(±t)({Cl(t),c](0)}), (2.59) 

where we have included the time-dependence of an operator O via 0(t) = 
exp[it(7i — /jj\f)]0exp[—it(Ti — fiAf)]. SO the real-time representation of 
the Green's function that is analytic in the upper half plane is GR(t) = 
-i6'(t)({c i(i),c](0)}), which is called the retarded Green's function and the 
real-time representation of the Green's function that is analytic in the lower 
half plane is GA(t) = i6(—^({^(t^cHO)}), which is called the advanced 
Green's function (the names come from the nature of the 8 functions). 
Note that the time-ordered Green's function on the imaginary-time axis 
analytically continues to either the retarded or advanced Green's function 
on the real-time axis! 

We can derive an EOM for the advanced and retarded Green's functions 
in real time as well. In real space, we have 

(i~ + v)Gf-A{t) + y£tii+sG%A
j{t) (2.60) 

s 

T ie(±t)({ei^-^t{V,cl(0)}e-i^-^t,c](0)}) = 6^5(1), 

with a similar equation for the momentum Green's functions. The top sign 
is for the retarded Green's function and the bottom sign is for the advanced 
Green's function. 

In the case of noninteracting electrons, where V = 0, the analysis sim­
plifies. We have an explicit expression for the eigenstates and eigenvalues: 
the n-electron eigenstates are formed by products of n distinct creation 
operators acting on the vacuum state. The eigenvalue is the sum of the n 
eigenvalues of the bandstructure associated with those creation operators. 
We can evaluate the retarded Green's function in momentum space from 
Eq. (2.53) by choosing the top sign. The matrix element tells us that the 
state \m) does not have the state labeled by k in it, and En — Em = e^ and 
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Nn — Nm = 1. Furthermore, for each state \m) there is only one state \n) 
that contributes to the summation. Putting this all together yields 

GR nonmt(a;) = }_ y f_ [ ± ± ± - J, ( 2 . 6 1 ) 

m: c^\m)^0 

The only m-dependence is now in the summation over the exponential 
factors. Writing the partition function as 

Z = 
m: 

m: 

E * 
C t |m)#0 

E «" 
4|m>^0 

-«Em-

-/3(Bm-

-/JN„. 

-/lN„ 

.) + 
m: 

i )[i + . 

E 
c*|m> = 

s-/3(ek-

e" 

=0 

-M)I 

-0(E, 

I 

-VtNm) 

(2.62) 

by noting that states that satisfy c^m) — 0 can be written as Cy\n) with 
c'k\n) 7̂  0, and the energy of the \m) state is e^ larger than the energy of the 
\n) state. Plugging Eq. (2.62) into Eq. (2.61) produces the noninteracting 
Green's function and spectral function 

GR nonint(w) = 1 ^nonint ^ = g ^ + _ ^ _ (3,33) 

W + /i - £k + JO 

Summing over momentum gives the local Green's function and the DOS 

Gn nonintM = 1. E * AT-H 4 E ^ + M - ek). 
k k 

(2.64) 
Performing these summations on hypercubic lattices is an exercise in Prob­
lem A.2. Fourier transforming to real time yields 

QR nonint^ = - j ^ e " 1 ^ - ^ 4 , 

GR nonint(i) = _ - ^ f ^ n o n i n t ^ e - i ( e - M ) t _ (2.65) 

We illustrate the solution for the noninteracting Green's functions for 
the case of a Bethe lattice, which is to be thought of as the limit of a Cayley 
tree that has no boundary (a Cayley tree of coordination 3 is illustrated 
in Fig. 2.5). A Cayley tree is a strange structure that actually has nearly 
all lattice sites lying on the surface and is sensitive to surface properties; 
the Bethe lattice, however, is free from those problems because it has no 
surface (see [Thorpe (1981)] for a clear review). The noninteracting Green's 
function for a Bethe lattice with coordination Z can be solved in the spirit 
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Fig. 2.5 (a) Schematic of a coordination Z = 3 Cayley tree. Note how the number of 
sites grows on each column, (b) Schematic of the Bethe-lattice cluster used to calculate 
the noninteracting Green's function from the Hamiltonian in Eq. (2.66). 

of the Bethe approximation [Bethe (1935)]: we examine a single site 0 and 
its cluster of nearest neighbors (1 — Z) by introducing an effective field h on 
each of the neighboring sites, which represents the effect of all other sites 
on the lattice (see Fig. 2.5); our discussion follows that of [Thorpe (1981)]. 
The Hamiltonian of the cluster is 

z z z 

^cluster = -tY^(4C0 + 4>Ci) + h Yl ^ ~ ^^24Ci- (2-66) 
i=l 1=1 i=0 

Taking the Fourier transform of Eq. (2.60) for the case where V = 0, yields 

(L, + /i)Gg nonintM + t>TGf+S^M - 5i3. (2.67) 
5 

Applying a generalization of this (to include the /i-field) to the Bethe cluster 
gives 

z 
(u + M)G0VonintM + i£Gf 0

 nonint(u,) = 1, 
i = i 

(w + ji - h)G?Q
 nonint(u) + tGg,nonin t(w) = 0 

(w + /i - h)G? n o n i n t H + tG?Q
 nonint(w) = 1. (2.68) 
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Using the facts that Gio = Gio and Gu = G\\ for all 1 < i < Z, allows 
these equations to be solved by 

G R non in t / , ,\ 
00 l w J — 

( Z - l ) f 
\U> + U— —, -r 

-.fi non in t / , ,N L P w+/x-fc 
1 

Gf 1 "°" 1 " t H = -t : "••' "}a
u+li~h. (2.69) 

Now we use the fact that the Bethe lattice is homogeneous, to set Goo = 
G u , which yields 

h = ^±t ± iy/(u + tf-4(Z-l)t*. (2.70) 

Finally, plugging the value for h back into Eq. (2.68), we get 

^ ' ° C ( W ) - 27r[(Zt)» - (W + M)2] ' ( } 

for the local DOS of the Bethe lattice, when \u> + fi\ < 2\JZ — It. 
We end this section with some important definitions, and with some 

generalizations of imaginary axis formulas. The momentum-dependent self-
energy is defined by 

° ^ ± l6) = 1 - ^ i ^ i i f ) ' ( 2 ' 7 2 ) 

which follows from the Dyson equation 

Gk(u±iS) = Gk
onint(u>±iS) + G^on[nt{to±iS)Ek{w±iS)Gk(uj±i6). (2.73) 

In cases where the self-energy does not depend on momentum, the summa­
tion over momentum to determine the local Green's function is simple, and 
involves an integral over the noninteracting DOS, since the momentum-
dependent Green's function depends on k only through ek. 

The analog of Eqs. (2.32), (2.33), and (2.46) are pe = f du>f{u>)Aioc(ui), 
(nk) = fduf{u)Ak(u}), (f) = - f dwlm{[w + fj, - E(w)]G\oC{u)}/iT, and 
(V") = /cL)Im{[/i - T,(u))]Gioc(uj)}/n. Techniques used to derive these 
results are developed in Problem A.4. 
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2.5 The Limit d —> oo and the Mapping onto a 
Time-Dependent Impurity Problem 

There is a long history of examining complicated problems in quantum 
mechanics or statistical mechanics in unphysically large dimensions to find 
simpler behavior. In this way, for example, we have learned about how 
critical exponents in the statistical mechanics of phase transitions assume 
mean-field-theory values above some upper critical dimension. The appli­
cation of these ideas to interacting electrons began in 1989 [Metzner and 
Vollhardt (1989)]. The original work of Metzner and Vollhardt showed that 
a particular scaling of the nearest-neighbor hopping with spatial dimension 
d would lead to a finite kinetic energy, which competes with the potential 
energy, when we minimize the total energy of the system. Their idea has its 
roots in the vast literature on alloy theory from the 1960s and 1970s, which 
showed that the inverse of the number of nearest neighbors \/Z was the 
small parameter that governed the convergence of the coherent potential 
approximation [Schwartz and Siggia (1972)]. 

Metzner and Vollhardt chose to scale the nearest-neighbor hopping as 

' - i $ 3 ' (2'74) 

on a simple hypercubic lattice in ef-dimensions. This choice leads to a 
finite average kinetic energy for the noninteracting bands. Indeed, the band 
structure eu = — £* limd-,00 J2i=i cos(ki)/Vd can be viewed as the sum of 
a collection of d "random" numbers distributed from —1 to 1. When we 
take the limit d —> 00, the sum of the random numbers will grow like Vd 
(from the random-walk problem), so dividing by y/d will yield a finite limit 
as d —> 00. The central limit theorem then says that the distribution of 
energies will be a Gaussian distribution. Hence the noninteracting DOS is 
a Gaussian with an infinite bandwidth. But the average kinetic energy for 
any finite filling is finite and can be expressed as 

(T)r — - = I deee " = — = (2.75) 
t*y/7T J_00 2^TC 

with EF the Fermi energy at T = 0. 
The noninteracting Fermi surface is defined by the surface in the Bril-

louin zone where e^ = EF- It is common in many theories to ignore the 
lattice potential, and describe the Fermi surface as a sphere due to the 
quadratic dispersion £k = fr2k • k/2m. But in the limit of large dimensions, 



62 Transport in Multilayered Nanostructures: The DMFT Approach 

the Fermi surface is never spherical. The reason why is that we always 
measure volumes relative to a unit cube. In infinite dimensions, the diag­
onal of the cube has an infinite length (even though the length along each 
axis is finite). Hence, any finite radius sphere will occupy a set of mea­
sure zero inside the unit cube, so they correspond to a vanishing density 
of the electrons. As the dimension increases, the Fermi surfaces become 
more and more "porcupine-like" and less and less spherical. In fact, the 
infinite bandwidth of the noninteracting DOS arises from rare regions in 
the Brillouin zone where the band energy can be very large (think of points 
like the zone center, or the end of the zone diagonal). These regions have 
very small DOS though. 

The main simplification of the d —> oo limit is that the self-energy 
becomes local, i.e., £k(z) has no k dependence. Unfortunately, there is no 
simple way to show this without examining either perturbative expansions, 
or path-integral methods, both of which are beyond the scope of this book. 
But, we can motivate the idea heuristically. A local self-energy means that 
we neglect spatially correlated pieces of the self-energy like Ey with z / j . 
If we examine the perturbative expansion for the self-energy, we see that the 
lowest-order nontrivial contribution for the case when i and j are nearest 
neighbors is proportional to t32d, since it involves three propagations from 
site i to site j and there are 2d total nearest neighbors. Using the scaling 
of the hopping in Eq. (2.74), we find that Ey ex lim^oo 1/Vd —> 0. A 
complete proof of this idea from a perturbative expansion for the Hubbard 
model can be found in [Metzner (1991)], or from a path-integral approach 
using the so-called cavity method in [Georges, et al. (1996)] or [Freericks 
and Zlatic (2003)]. 

If the self-energy for the lattice-based many-body problem is local, then 
that problem can be mapped onto an impurity-based many-body problem, 
but in a time-dependent local field, which is called the dynamical mean 
field. Once again, a proof of this idea requires either perturbation theory 
or path-integral techniques, but the physical principle is easy to describe. 
Since the self-energy is local, it should be able to be represented as the self-
energy of a purely local problem. But it isn't clear just how one can find the 
correct Hamiltonian for the impurity problem to produce the self-energy for 
the lattice. The idea, is that one adds an additional time-dependent field 
to the impurity evolution, and adjusts that field until the self-energy of the 
impurity is identical to the self-energy of the lattice. Since we do not know 
a priori what the self-energy of the lattice is, we must solve this problem 
self-consistently and hope that the self-consistent solution is unique. The 
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only issue that we must accept is that by varying the time-dependent field 
over all possible functional forms, we have enough freedom to describe every 
possible form that the local self-energy can take on the lattice. This time-
dependent field mimics the hopping of the electrons on the lattice, because 
it allows electrons to hop onto and to hop off of the impurity as a function 
of time. Since the potential-energy piece of the Hamiltonian is local, we 
use that piece for the impurity problem with the identical values of the 
interaction strengths as used on the lattice. 

We illustrate these ideas with the concrete example of a spinless electron. 
This problem can be solved analytically for any possible time-dependent 
field. In cases where there is an interaction between electrons with differ­
ent spins, the problem becomes more complicated and is mapped onto a 
generalized single-impurity Anderson model, which can be solved numeri­
cally, but cannot be solved analytically. We discuss that case only briefly 
when we describe the numerical renormalization group method for DMFT. 

We consider the problem of a single impurity electron evolving in a 
nontrivial time-dependent field. The Hamiltonian of the impurity is taken 
to be 

Wimp -nAf= -nc*c. (2.76) 

Next we introduce a general time-dependent evolution operator in the in­
teraction representation on the imaginary-time axis 

S{\) = % exp 
r-0 i-P 

dr dT'A(T,-rV(T)c(T') 
Jo Jo 

(2.77) 

where the time-dependence of the operators is with respect to the impurity 
Hamiltonian in Eq. (2.76). The impurity partition function is defined to be 

Zimp(A, n) = Trc \rTe-^n^-^S(X)} , (2.78) 

with the trace taken over the two Fermionic states with zero or one electron. 
This operator trace is not simple to calculate. The procedure is to first 

examine the functional derivative for the change in the partition function 
due to a small change in the field A 

<5£imp(A,M) = Trc [TTe-^n^-^8S{X)) . (2.79) 
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To find the change in the evolution operator S, we use the calculus of 
variations 

SS{X) = -TT 

r0 r0 
S{X) / dT / dT'8\{T,T')c\T)c{T') 

Jo Jo 
(2.80) 

Substituting Eq. (2.80) into Eq. (2.79) and noting that the time ordering 
can be collected into one time-ordering operation, yields 

£-Zimp(A,^) > (•*>/*) 
Jo Jo 

dT'6X{T,T')Gimp(T',T), (2.81) 

where the impurity Green's function is defined in Eq. (2.29) with the spatial 
indices dropped, and we need to note the order of the time arguments 
in Eq. (2.81). Hence, the impurity Green's function can be written as a 
functional derivative of the impurity partition function with respect to the 
dynamical mean field as 

r i m p (r,r') = -
S\nZimp(X,fx) 

SX(T',T) ' 
(2.82) 

Since the Green's function depends only on the difference of its time argu­
ments, we can infer that we can restrict the dynamical mean field to depend 
only on the time difference, and then we can Fourier transform this result 
to yield 

G\mp(iitJn) 
d\nZimp{X,n) 

dX{iu)n) 
(2.83) 

The next step is to determine the impurity Green's function by solving 
the EOM that it satisfies. This EOM is more complicated than the ones 
we derived before, because of the presence of the evolution operator. The 
complication arises from the fact that the evolution operator is defined as a 
time-ordered product, and we have to order with respect to both time argu­
ments in the double integral of the exponent. It simplifies, however, when 
we discover that if we plan to differentiate with respect to the imaginary 
time r, then we need only write the time-ordered product in the schematic 
form 

T T S ( A ) C ( T ) C V ) = [TTS(X)] C(T) \TTS(X) CHT' (2.84) 
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with 

and 

S(X) = exp 

S(X) = exp 

i:-i: 

0 Jo 

dr" ,A(T / ' - r /")c t(r")c(T" /) 

dT'"A(T"-r'")c t(T")c(T'") 

(2.85) 

(2.86) 

because the r '" terms do not enter the derivative since C2(T') = 0, implying 
they give no contribution. Explicitly evaluating the derivative with respect 
to r finally gives the EOM for the impurity Green's function 

~ + M ) G i m p(r ~r')- JQ dr"X(r - r")Gimp(T" - r') = 6(T - r'). 

(2.87) 
If we think of Eq. (2.87) as a continuous operator equation over a functional 
space, then it can be written schematically as G~lG = 1 where multipli­
cation of the functional operators is accomplished by an integral over r. 
Then we learn that 

G"1 (r, r ' ) =(-1.+^ S(T - r>) - X(r - r'), (2.88) 

in the imaginary-time domain. This operator can be diagonalized by per­
forming a double Fourier transform via the integrals JQ drexp[iwnT] and 
T JQ dr'exp[—iun'T"']. The end result is 

G~* (iun, iu>n') — {iu>n + M - A„) 5nn>, (2.89) 

where we used the notation An = X(iu>n) for the dynamical mean field. The 
matrix operator is diagonal, so we can invert it to find 

Gimp{iu>n) 
1 

iun + \i - A„ 

dZimp(X,fx) 
dXn 

(2.90) 

This differential equation can be easily integrated to yield Z\mp(X, fi) = 
CTl^L-oo^™ + A* — Xn) with C a numerical constant independent of A. 
Using the fact that the partition function for vanishing dynamical mean 
field can be determined directly as Zimp(A = 0,/ix) = 1 + eP^, allows us to 
find the constant C, or to learn that 

2imp(A,M)=2e^2 J ] 
H - Ar, 

lU)n 

(2.91) 
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Fig. 2.6 Flow diagram for the DMFT algorithm. Starting with an initial self-energy 
(usually chosen to be zero, unless something is known about the system a priori), we use 
the Hilbert transformation to calculate the local Green's function. Next, the effective 
medium for the impurity is extracted from the current self-energy and the local Green's 
function via Dyson's equation. The impurity problem is solved determining the impurity 
Green's function from the effective medium. If we want to work with a fixed filling of 
electrons, then the electron filling is calculated, and the chemical potential is updated 
to get closer to the target filling; the update step is sometimes performed only every 
ten or so iterations rather than every iteration, to give the system time to adjust to the 
new chemical potential. Finally, Dyson's equation is used to find the new self-energy 
from the impurity Green's function and the effective medium. The algorithm is iterated 
until converged. Once the chemical potential is determined from an imaginary-axis 
calculation, it is fixed for the real-axis calculation. 

which is proved in Problem A.9. Hence we can analytically solve for the 
partition function and Green's functions of the impurity problem for a 
spinless electron in a time-dependent field. The case of electrons which 
have an interaction between the spins can often only be solved numerically 
using more sophisticated techniques. 

We end this section with a description of how we adjust the dynam­
ical mean field to give us the solution to the lattice problem with a lo­
cal self-energy. The local Green's function of the lattice can be found 
by summing the momentum-dependent Green's function over all momenta 
Gu(z) — ^2kG\i(z). Since the self-energy is local, and has no momentum 
dependence, the sum can be expressed as a one-dimensional integral over 
the noninteracting DOS (which is called a Hilbert transform) 

G«(z)= [dep(e)— l-— , (2.92) 
J z + ii-Y,{z)-e 

with /9(e) the noninteracting DOS and z denoting a variable in the complex 
plane. Since we need to equate this local Green's function with the impurity 
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Green's function, we need to find a way to extract the dynamical mean 
field. This is normally done by defining the effective medium G0(z) = 
l/[z + fi — A(z)] which is found from Dyson's equation 

G ( ' ) =Go(*)-*-S(z) ' Go{z) = G-W + W (2'93) 

where we have written it in two equivalent forms and suppressed the sub­
scripts for the local Green's function or the impurity Green's function. The 
second form allows us to extract X(z) from the local Green's function of 
the lattice and the self-energy. The former allows us to extract the new 
self-energy from the impurity Green's function and the effective medium. 
Hence, the DMFT algorithm is as follows (see Fig. 2.6): (i) start with a 
guess for the self-energy (which is often chosen to be zero); (ii) use Eq. (2.92) 
to determine the local Green's function from the current self-energy; (iii) 
use Eq. (2.93) to extract the effective medium and the dynamical mean 
field; (iv) solve the impurity problem in the presence of the evolution oper­
ator for the given dynamical mean field to determine the impurity Green's 
function; (v) extract the new guess for the self-energy by extracting it from 
the Dyson equation in Eq. (2.93); and (vi) iterate steps (ii) through (v) 
until the results stop changing. This algorithm, originally proposed by Jar-
rell [Jarrell (1992)], solves for the dynamical mean field, self-energy, and 
Green's functions via an iterative technique. There is no guarantee that 
this method will converge in general, or that there is only one solution to 
these equations, but it is found in practice, that the convergence can be 
quite rapid, and that the solutions are often unique. Note that in the spin-
less case, it is obvious that there is a one-to-one correspondence between 
any set of local Green's functions and the corresponding dynamical mean 
field. 

2.6 Impurity Problem Solvers 

The only step of the DMFT algorithm that remains to be worked out is 
to construct an impurity problem solver, that will determine the impurity 
Green's function for the given dynamical mean field or effective medium. 
Finding efficient and accurate impurity problem solvers is the hardest part 
of the DMFT approach. We first illustrate an analytic solution for the 
spinless Falicov-Kimball model, then discuss the ideas behind the numerical 
renormalization group (NRG) approach, and end with a discussion of other 
types of solvers (perturbative, quantum Monte Carlo, and so on). 
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The spinless Falicov-Kimball model has an impurity Hamiltonian tha t 

satisfies 

WfmP - ^ = ~ ^ c + Effif + UJcftf. (2.94) 

The impurity part i t ion function becomes 

Z ™ ( A ) = Tr cTr fTT [ e - " < " . F £ - ^ S ( A ) ] , (2.95) 

with the evolution operator S(X) given by Eq. (2.77). Since rij = pf 

commutes both with the evolution operator and the Hamiltonian, the trace 

over the /-part icles is easy, because it separates into the sum of two simple 

terms. The first has nj = 0, where Hf*p — fJ-Af = —fic^c, and the second 

has n / = 1, where Tif^p — /z7V = Ef + (U — fi)c^c. The first case is identical 

to the spinless case solved in the previous subsection, the second requires 

us to shift n —» n — U and to include the extra factor exp(—@Ef). The net 

result is 

Z™p(\) = Zimp(X,n) + e-PEfZimp(\,n- U), (2.96) 

where we use the result for the impurity partit ion function in Eq. (2.91), 

and the second term corresponds to shifting \x —> \i — U in Eq. (2.91). 

The Green's function for the conduction electrons still satisfies 

Eq. (2.83), so we can immediately learn that 

^imp(A) 1 e-0E'Zjmp(\ + U) l 
ZF*PW iun + H- A„ Zf*p(A) icun + n - \ n - U ' 

i m p \ 

(2.97) 
by taking the derivative with respect to An. If we make the following 
definitions 

flmpM e - " g ' Z i m , ( A , n - [ f ) 

~°~?Zfcirr W1 = — 2 5 w — ' (2'98) 

then we can write the impurity Green's function for the spinless Falicov-

Kimball model as 

G(lLOn) = ; — + 
ilQn + [1 - A„ lLOn + II - An - U 

= wQG0{iujn) + - _ 1 . W l . _-, (2.99) 
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where we have expressed the Green's function in terms of the effective 
medium in the lower line. This form for the Green's function is quite simple, 
and is identical to that used in the coherent-potential approximation. The 
symbol w\ is the filling of the /-electrons and WQ is the concentration of 
lattice sites with no /-electrons. This follows from the fact that WQ = l — w\ 
and that 

(2.100) 
Now we will investigate the self-energy of the impurity in more detail. 

The self-energy is extracted from the relation S n = GQl(iujn) — G~l. This 
is the standard way to find the impurity self-energy which will be equated 
to the local self-energy of the lattice in the DMFT approach. But for 
the spinless Falicov-Kimball model, we can determine an interesting rela­
tion between the self-energy and the Green's function [Brandt and Mielsch 
(1989)]. We substitute GQ 1(iton) = G'1 + £„ into the last line of Eq. (2.99) 
and multiply both sides by Gn(G~x + Y,n){G~l + E n — U). Simplifying the 
terms yields a quadratic equation for the self-energy 

H2
nG

2
n + i:n[Gn-UG2

n]-w1GnU = 0, (2.101) 

which is solved by 

1 U , 1 
2Gn

 + 2" * 2G~yi ~ 2 ( 1 " 2w^UG" + U2Gn> (2"102) 

where the sign is determined by analyticity if the imaginary part of the 
self-energy is nonzero, and by continuity if the self-energy is real. For a 
given value of Wi, this is an explicit equation for the self-energy in terms 
of the local Green's function Gn! It can be employed to find an alternative 
method to solve the DMFT equations than the iterative approach. This 
will be discussed in the next section. 

Unfortunately, the analytic approach given here for the spinless Falicov-
Kimball model will only work for other so-called static models like the 
higher-spin variants of the Falicov-Kimball model, or the static Holstein 
model. For other types of correlated systems, like the Hubbard model or 
the periodic Anderson model, new techniques must be developed. This is 
because the partition function for the impurity will involve a trace over 
the spin up and the spin down particles, which will each have their own 
evolution operators and dynamical mean fields. If there is now an interac­
tion between these particles, then we can no longer evaluate the trace over 
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both particles as we did before, because the number operators of each of 
the particles are not conserved by the evolution operators. Trying to solve 
this problem by introducing an EOM as before does not help, because the 
coupled EOMs can no longer be solved. 

It turns out that this problem can generically be mapped onto a single 
impurity Anderson model, but with a nontrivial conduction density of states 
and a nontrivial time-dependent hybridization function. Nevertheless, the 
NRG approach originally developed by [Wilson (1975)] can be applied to 
this problem, and it can be solved with a numerically exact procedure that 
is most accurate near the Fermi energy. 

This procedure is quite technical and involves a number of subtle steps 
to be taken. In the following, the basic ideas and equations for the NRG 
process will be developed, but the presentation here will be insufficient 
to allow the reader to create a full DMFT-NRG code directly from this 
discussion. Instead, it serves as an introduction to the subject that inter­
ested readers can follow up with the original literature and create their own 
computer codes after digesting the additional technical and computational 
issues required for the procedure. 

We will focus on the Hubbard model for this exposition. The gener­
alization to the PAM is not too complicated, and is fully covered in the 
scientific literature [Pruschke, Bulla and Jarrell (2000)]. We start with an 
examination of the partition function for the impurity Hubbard model in 
the presence of a dynamical mean field for both the up spin and the down 
spin electrons 

2,Hra
u
p
bb(AT, AJ = Trc { T T e - * " ^ b - ^ S ( A T ) S ( A i ) } , (2.103) 

with the impurity Hamiltonian for the Hubbard model [Hubbard (1963)] 
being 

?Cu
p

bb - iiN = -M(cjcT + c l c l ) + ^4CTCICJ. ' (2-104) 

and the evolution operators for the spin-up and the spin-down electrons 
given by Eq. (2.77) with the generalization to include a spin index on the 
field A and on the electron creation and annihilation operators; in the ab­
sence of a magnetic field, we always have Aj = Aj. Unlike the Falicov-
Kimball model case described above, in the Hubbard model case, we can­
not write down an analytic expression for the partition function because 
the time-dependence of the up spin particles depends on the occupation 
of the down-spin particles (from the commutator of the [/-term) and vice 
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versa. So the trace of the time-ordered product in Eq. (2.103) over the four 
Fermionic states is complicated to evaluate. 

In the limit where U — 0, however, the local Green's function can be 
written down, and it satisfies 

GR nonint( ) = \ , (2.105) 

for either spin. The first step of the NRG calculation is to map the im­
purity problem in a time-dependent field onto a Hamiltonian on a finite 
one-dimensional chain, that reproduces a discrete approximation to the 
U = 0 Green's function of the impurity when evaluated on the chain. The 
physical picture is that the impurity electrons interact at the same time 
via the Coulomb interaction, so we need to know the field at t = 0, which 
corresponds to an average of A(u>) over all u>, and they interact with the 
low-energy excitations (small u>) at low temperature. So we introduce a set 
of fictitious chain electron operators, with the goal of using the couplings of 
those electrons to themselves, and to the impurity, to set up a discretized 
version of the time-dependent field that the impurity electron is evolving 
in. Because the A field has nontrivial frequency dependence, this mapping 
is complicated [Sakai and Kuramoto (1994); Chen and Jayaprakash (1995); 
Bulla, Pruschke and Hewson (1997); Gozales-Buxton and Ingersent (1998); 
Bulla, Hewson and Pruschke (1998)]. We describe the procedure for how 
to do this next. It is conventional to define the spectral function of the 
retarded dynamical mean field by A(w) = —ImAfi(o;)/7r and to drop the 
spin index from A. 

The idea of Ken Wilson was to construct a frequency grid for the 
discretized A field on a logarithmic scale, rather than on a linear scale 
[Wilson (1975); Krishna-Murthy, Wilkins and Wilson (1980a); Krishna-
Murthy, Wilkins and Wilson (1980b)]. We begin by choosing a maximum 
and a minimum frequency denoted by ±E, and define a set of frequency 
points on the grid via to^ = ±EA~n with A a numerical constant larger 
than 1, and typically chosen to be in the range of 1.5 to 3. We let a)n<y (ana) 
denote a creation (destruction) operator for a fictitious electron associated 
with the frequencies near w+ and b^ (bncr) denote a creation (destruction) 
operator for a fictitious electron associated with the frequencies near u>~. 
Next, we define a set of positive real numbers via 

(l+)2= TU duA(oj), ( 7 ~ ) 2 = r " + 1 du,A(uO, (2.106) 
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which denote the weight of the A field in the respective logarithmic fre­
quency intervals, and 

C = f" ^ A ( a , ) / ( 7 , t ) 2 , £ = P + 1 ^u>AH/(7 n-)2 , (2.107) 

which denote the weighted average of the frequency in each interval. The 
total weight of the A field is denoted by V2: 

V2 = / E ^ A ( W ) = X:[(7„+)2 + (7n)2]. 

See Fig. 2.7 for a picture of the discretization process. 

(2.108) 

1 2 

Frequency w [t 

Fig. 2.7 Logarithmic frequency grid and discretized approximation to the A field used 
in the NRG approach. The solid black curve is the original A(cj), the red lines are 
the discrete frequencies u>„ = 2.5 x ( 1 . 5 ) _ n , and we choose 19 positive and 19 negative 
frequencies, the green lines are the weights ( 7 * ) 2 (described by the height of the line) 
and the positions £n of the delta function peaks for the discrete approximation to A(OJ), 
and the blue curve is the smoothed function using the logarithmic broadening with 
b = 0.4 (see below). Note how the blue curve is quite accurate for frequencies near the 
Fermi energy ui = 0 (except for a "glitch" at the lowest frequencies) and becomes less 
accurate at higher frequencies. These inaccuracies are reduced by lowering A below 1.5, 
and increasing N beyond 19. 
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The chain Hamiltonian is now constructed via a Lanczos-like procedure 
in two steps. We first write the chain Hamiltonian in three terms: the 
impurity term, a hybridization term of the impurity electron with the "t = 
0" field operator, and a diagonal energy term representing the number 
of electrons created at each discretized frequency with the corresponding 
weight associated with the A field. This chain Hamiltonian is 

Wchain = H?£h(U = 0) + VY/(cU0a+clca) + Y/lC<^naHnbLKa}-
a na 

(2.109) 
The operator coa is Y^n^1nanu + In bno)/V which is "normalized" in the 
sense that {CQCT,C0CT} = 1. One can check that the Green's function of 
Eq. (2.109) is equal to 

Gimp(ui) 
1 

<*> + M " E n + iS 
(2.110) 

by writing the Hamiltonian explicitly in terms of the a and b operators, and 
solving for the impurity Green's function via an EOM (see Problem A.11). 
Comparing with Eq. (2.105), shows that the NRG makes a discretization 
of the spectral function for the dynamical mean field via 

-hm\R(u) = A M = Yl [(ri)25(" ~ £) + {ln?^ ~ O ] , (2-111) 
7T L—' 

n 

but the delta functions lie at £^ rather than LO^ , although these quantities 
are quite close to one another. 

The form for the Hamiltonian [in Eq. (2.109)] is not yet useful for cal­
culations, because it is not in a tridiagonal form. We tridiagonalize it via 
a Lanczos-like procedure. First we take the state cJCT|0) and operate on it 
with the chain Hamiltonian Kchain to create a new state Hch&inCoa\Q)• We 
find the overlap of this new state with the old one, giving us a local site 
energy at site 0, 

e0 = (Olc^WchaincJjO), (2.112) 

and the leftover piece defines the next state on the chain cia |0) and the 
"hopping" Ai between site 0 and site 1 on the chain 

AicJjO) = Hc h a i ncL|0) - e o 4 | 0 ) , (2.113) 

with the normalization condition {£}<,, c l a } = 1. Since 7ichain is Hermitian, 
it is easy to show that the hopping from site 1 to site 0 is also equal to 
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Ai. A direct calculation shows that eo = (w) is the average value of the 
frequency over the field A(w) and that Xf = (ui2) — (w)2 is the quadratic 
fluctuation over the field. Proceeding in this fashion, one constructs all of 
the site energies and hoppings on the chain, and puts the Hamiltonian into 
its final form (see Fig. 2.8) 

Wchain = n ^ h + VYli
cl^ + ^ca) + Y l i e n ^ n a + Xncl+laCm + h.C.], 
a no 

(2.114) 
with each Fermionic operator satisfying the conventional anticommutation 
relations. The explicit computation is difficult. In some cases it can be 
performed analytically for simple fields, in other cases it must be done 
numerically. Since the elements of the chain decay as we move farther 
out along the chain, special care (such as using arbitrary precision arith­
metic [Gozales-Buxton and Ingersent (1998); Bulla, Hewson and Pruschke 
(1998)] or carefully analyzing and stabilizing the recursions [Chen and 
Jayaprakash (1995)]) is needed to accurately determine the chain parame­
ters (see Problem A. 10). 

Note that we did not specify that U = 0 in Eq. (2.114). This is because 
the actual Hamiltonian for the NRG calculation must restore the many-
body interactions on the impurity site (denoted by a square box in Fig. 2.8) 
because the rest of the chain represents the time evolution in the dynamical 
mean field. The next step in the NRG approach is to find all the eigenvalues 
and eigenstates of the chain Hamiltonian. In a typical calculation, one 
takes between 30 and 100 sites in the chain. The impurity Hamiltonian 
has only four states corresponding to zero, one, or two electrons at the 

V A. A. A A 
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EQ £ 1 8 2 E 3 8 4 

Impurity 0 1 2 3 4 

Fig. 2.8 Mapping of the Hubbard impurity in a time-dependent field onto a discrete 
Hamiltonian on a finite chain. The square box denotes the impurity site, where the impu­
rity Hamiltonian lies, and the circles denote the "lattice" sites of the fictitious Fermions, 
determined by the Lanczos-like mapping, with diagonal and off-diagonal elements en 

and An respectively. The off-diagonal element V connects the chain to the impurity site 
and vice versa. This case has a total of N — 5 sites in the chain. Note that all of the 
many-body interactions take place only on the impurity site. 
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impurity. Each site of the chain introduces another 4 states, so the many-
body Hilbert space has dimension 4 L + 1 when we have included the Lth 
site of the chain. As L increases, this number rapidly becomes too large 
to diagonalize the entire Hamiltonian matrix. The strategy of the NRG is 
to diagonalize the full Hamiltonian for the first few steps of the iteration, 
and then, once the Hamiltonian contains more than about 1000 states, we 
keep only the lowest 1000 states for the next iteration, implying we will 
need to diagonalize a 4000 x 4000 matrix as we add each subsequent site 
to the chain and then truncate to the lowest 1000 states. In reality, one 
takes into account a number of useful quantum numbers like the particle 
number, the z-component of spin, the total spin, and so on. Then each 
symmetry block is much smaller, but it is more complicated to construct 
each block with definite symmetry at the each step of the NRG iteration 
(see Problem A. 12). 

Once we have included every site in the finite chain, we will have a 
series of eigenvalues and eigenfunctions associated with each of the steps 
in the iteration. Since the couplings along the chain decrease, it turns out 
that the energy levels come closer and closer to the low-lying excitations 
near the Fermi level. We can use these states and energy levels to calculate 
things like the imaginary part of the retarded Green's function via the 
Lehmann representation. This requires us to know the matrix elements of 
the creation and annihilation operators between the low-lying states that 
we have calculated [Bulla, Pruschke and Hewson (1997)]. It requires some 
care to update these matrix elements as each new chain site is added, but it 
can be done. The final result is, however, a set of discrete delta functions for 
imaginary part of the retarded Green's function. They are constructed as a 
composite from the energy levels and weights (from the matrix elements) of 
a series of calculations for different numbers of sites in the chain. The delta 
functions are then broadened via a set of peaks broadened on a logarithmic 
scale, 

_M^J£] _ (2 u5) 

which are employed to represent the final density of states back on the linear 
frequency scale (usually we take 0.3 < b < 0.6 and we set the broadening 
to zero if u>/En < 0). Since the information about the higher-energy states 
is coarse, and because they arise in a composite fashion from a series of 
calculations at different chain lengths, the DOS may not exactly satisfy 
the requisite sum rules, but it usually is quite accurate at low energies 

<J(w - En) 
e - b - / 4 

b\En\J^ exp 
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(although the broadening can produce some errors here too), and typically 
has pointwise errors on the order of a few percent. The real part of the 
Green's function is finally generated via a Kramers-Kronig analysis. 

To complete the DMFT loop, we need to extract the self-energy, com­
pute the local Green's function from the Hilbert transform, and then de­
termine the new effective medium and dynamical mean field. It turns out 
that calculating the self-energy via E = GQ — G~l is not as accurate as 
extracting it from an EOM-based approach using the four-Fermion expec­
tation value resulting from the commutator with V. The details of how this 
works is quite technical, and can be found in the original literature [Bulla, 
Hewson and Pruschke (1998)]. 

There are other impurity solvers that can be used for the DMFT ap­
proach as well. The two most common ones employed involve a perturba-
tive solution, or employ quantum Monte Carlo methods. The perturbative 
solvers rapidly become quite complex as the order of the perturbation the­
ory is increased. They also often suffer from a breakdown in the interme­
diate and strong coupling regimes. They are never exact approaches. The 
quantum Monte Carlo methods can work only on the imaginary axis, so 
they are best employed to calculate static properties of the given systems 
under study. The quantum Monte Carlo approach involves two steps. First 
the imaginary time interval is discretized and then the four-Fermion interac­
tion terms (like the U terms in the Hubbard model) are decoupled by intro­
ducing so-called Hirsch-Hubbard-Stratanovitch fields [Stratonovitch (1957); 
Hubbard (1959); Hirsch (1983)]. The resulting Fermionic piece of the action 
is now quadratic in the Fermions, so the path integral can be performed 
and it involves a Feynman determinant of a discretized matrix that rep­
resents the action. The Monte Carlo piece then sums over configurations 
of the Hirsch-Hubbard-Stratanovitch fields in imaginary time selecting the 
configurations that tend to be most important [Hirsch and Fye (1986)]. 
These methods suffer from discretization error (which is well understood) 
and statistical error (which can often be controlled). As a final step, a 
maximum-entropy analytic continuation can be performed on the quan­
tum Monte Carlo data to determine the dynamical properties [Jarrell and 
Gubernatis (1996)]. This approach is numerically exact, but it can be ex­
pensive in computer time and is insensitive to sharp, narrow features in 
the DOS. Often it yields the best solutions for complicated many-body 
problems. We won't discuss these alternative methods further. 
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2.7 C o m p u t a t i o n a l A l g o r i t h m s 

Regardless of the choice for the impurity solver, the vast majority of D M F T 

problems are solved by employing an iterative algorithm [Jarrell (1992)]. 

Iterative methods for the solution of nonlinear equations can lead to a 

number of numerical issues that need to be properly controlled. There may 

be more than one fixed-point solution to the equations, the iterations may 

iterate away from rather than toward the fixed point, or the iterations may 

converge slowly. We discuss these computational issues here. 

In most cases, the D M F T algorithm is first solved on the imaginary 

axis, yielding the Matsubara frequency Green's functions and self energies. 

This is done because imaginary-axis methods are often faster and more ac­

curate than real-axis methods. When we initialize a numerical solution for 

D M F T , we must input the basic parameters of the Hamiltonian, including 

the noninteracting DOS, the temperature , and the potential energy pa­

rameters. We often are interested in performing calculations with a fixed 

density of particles. But we cannot input this density into the calculation, 

instead we input a chemical potential. For a given value of /z, with all other 

parameters fixed, we can iterate the D M F T equations to convergence, and 

then compute the electron density. If this is not equal to our target density, 

then we adjust the chemical potential and repeat. Since we are changing 

only one parameter in this process, a one-dimensional root finder can be 

used. The most efficient such root finder is Brent 's false-position plus in­

verse quadratic substitution root-finder [Brent (1973)], which approaches 

the speed and accuracy of a Newton's method approach, with the safety 

of a false-position algorithm, and no need to calculate the derivative of the 

filling with respect to fi, which is complicated to do in practice. It does 

require that the final chemical potential be "bracketed" by the two initial 

guesses for the chemical potential, so we need to have an educated guess for 

where the chemical potential will be. This is not difficult to achieve. Once 

the chemical potential is known, we can switch to a real-axis code to find 

the dynamical properties, without needing to adjust the chemical potential 

anymore. Note tha t this strategy is not feasible for problems solved with 

the NRG approach, because there is no simple way to employ the NRG 

approach to calculate the Matsubara-frequency Green's functions without 

calculating the real-axis Green's functions first. 

This scheme can be sped up, if we adjust the chemical potential within 

the iterative D M F T algorithm, so that we iterate to the D M F T solutions 

at the correct filling. There are two ways to achieve this goal. First, we 
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can estimate the value of the compressibility, which is defined from the 
derivative of the filling with respect to /i, and use a Newton's method to 
adjust the chemical potential every 10 to 20 iterations (the compressibility 
is a two-particle susceptibility that we do not treat in this book). We don't 
adjust at each iteration because we want to give the system some time to 
close in on the DMFT solutions with the new value of fi before we adjust it 
again. In the second case, we simply shift the chemical potential upwards or 
downwards (depending on whether the current filling is too low or too high) 
by a small amount, proportional to the deviation from the target filling, and 
we reduce the maximal allowed shift of /i as the iterations increase. 

The iterative solutions can sometimes fall into a limit cycle as they 
approach the fixed point. Rather than moving in a straight-line toward the 
solution, they orbit around the fixed point, spiraling inwards very slowly. 
The problem of limit cycles can be reduced, or even eliminated by using 
a weighted average scheme in the calculations. Since we need to store 
the old value of the self-energy to test for convergence of the algorithm, we 
construct the new lattice self-energy as a weighted average of the old lattice 
self-energy and the new impurity self-energy 

^new lattice ~ ^ ^ o l d lattice ~r ( t ^ J ^ n e w impurity yZ.LLO) 

The damping factor a is usually taken to lie between 0 (no averaging) 
and 1 (no updating). For the Falicov-Kimball model solutions, it is often 
convenient to choose a = 0 for the first 50 iterations, then increase a = 
0.5 for the next 200 iterations, then increase a = 0.75 for the next 500 
iterations, then increase to a — 0.9 for the next 2000 iterations, and so on. 
One needs to increase the number of iterations as a is increased, because 
the progress of the iterations goes more slowly for larger a. We usually 
want at least 6 to 8 digits of accuracy for the self-energy before we declare 
it converged. This criterion is relaxed with NRG or quantum Monte Carlo 
impurity solvers since they are so costly to run. 

There are occasionally situations where there is more than one solution 
to these iterative equations. Fortunately this is rare, but it occurs, for 
example, in the Mott transition in the Hubbard model at finite temperature. 
When such a situation occurs, the multiple fixed points can be attractive 
or repelling. If they are unstable, then it is unlikely they will be found 
within the iterative scheme, and this is always an unfortunate uncertainty 
with this numerical technique. If they are stable, and hence attractive, 
one needs to start the iteration with self-energies sufficiently close to the 
self-energies of the corresponding fixed points in order to be able to find 
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them. This is actually how their existence was discovered in the Hubbard 
model [Georges, et al. (1996)]. The only way to determine which fixed 
point is the physical fixed point is to calculate the free energy associated 
with each of them—the lowest free energy will be the thermodynamically 
stable solution. 

When we are solving for the chemical potential, we need to calculate 
the Green's function at every Matsubara frequency, because they are all 
needed to determine the electron filling. But when we have the converged 
value for fi, and we want to calculate the real-axis results, then for the 
Falicov-Kimball model we can perform the iteration separately for each 
desired frequency value u>. This can greatly speed up the computational 
time, because most frequencies converge quite rapidly, and they will not 
need to be recalculated after they have converged. The algorithm often 
becomes inaccurate near the band edges in the insulating phase. There are 
a number of problems in the Appendix which deal with these issues. For 
other models, there might be a coupling between different frequencies in 
solving the impurity problem. If this is the case, then the results should be 
calculated for every frequency in each iteration. 

Note that in the NRG calculations, there are a number of places where 
the numerics can be challenging: (i) in constructing the chain parameters 
for a given size chain; (ii) in accurately determining the self-energy from the 
NRG for use in the DMFT iterative algorithm; and (iii) in the convergence 
of the DMFT algorithm. This is made worse by there being a coarser 
knowledge of energy eigenvalues far from the chemical potential and by the 
need to artificially broaden the delta functions to get smooth functions of 
frequency. Nevertheless, it remains one of the most accurate approaches 
available for dynamical properties of strongly correlated systems, and it 
is particularly good for cases where a sharp peak develops near or at the 
chemical potential, as often occurs in Fermi-liquid systems. 

There is one other method that can be employed to solve the DMFT 
equations for the spinless Falicov-Kimball model [Brandt and Mielsch 
(1989)]. Since we know the direct relation between the self-energy and the 
Green's function [from Eq. (2.102)], we can substitute it into the Hilbert 
transform and get a transcendental equation for Gn [or equivalently for 
G(u>) since the quadratic equation holds on the real axis too]. If we solve 
this transcendental equation using a root-finder in the complex plane, mak­
ing sure to avoid the trivial root G — 0, we have an alternative way to solve 
the DMFT algorithm (Miiller's square-root algorithm is a good root finder 
for the complex plane [Miiller (1956)]). This approach is nice, because it 
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does not require any iterations, but it appears to only be possible for the 
Falicov-Kimball model, since the relation between S and G is not known 
for other models. There also is a challenge in being able to choose the 
correct sign for the square root, since it can change as a function of where 
the variable z lies in the complex plane. 

2.8 Linear-Response dc-Transport in the Bulk 

Determining the transport properties of a material, namely the response of 
the electrons in the material to the application of an external electromag­
netic field, or a temperature gradient, is the most useful way to classify 
materials properties. Often the dc conductivity is used to describe the 
material as metallic, insulating, or semiconducting. But the thermal trans­
port, and the effects of a magnetic field (say in the Hall effect), are also 
important properties to measure. From a theoretical perspective, we would 
like to calculate the relevant transport coefficients in the linear-response 
regime, where the effect of the perturbing fields is taken into account to 
first-order only. Since many materials display linear behavior over a wide 
range of fields available in a laboratory, this approximation is usually quite 
adequate. 

Our starting point is to determine the relevant current operators as­
sociated with particular transport mechanisms. We will then employ a 
Kubo-formula analysis to extract the corresponding transport coefficients. 
Our focus will be on dc effects, and we will not investigate any magnetic 
field effects here. 

Suppose an electric field E(r, t) (that can vary with position and time) 
is applied to a material. This field will cause the electron density pe(r,t) 
to vary with position and time as well. The equation of continuity for the 
number current j says that 

^ M + V - J M ) = 0. (2.117) 

If we introduce the definition of the electric polarization P by P(r,t) = 
rpe(r,t), take the partial derivative with respect to time, and integrate 
over all space, then we can use Eq. (2.117) and integration by parts to 
show that j(r, t) = SP(r, t)/dt. In quantum mechanics, we are interested in 
determining operators, where time derivatives are replaced by commutators 
with the Hamiltonian, so the polarization and the number current operator 
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are related via j(r) = i[H, P(r)}. On a lattice, the position variables are 
replaced by site indices, so that Pj(t) = RJCJCJ and 

}j=i[H,Pi\. (2.118) 

Since the potential-energy operator is normally a function of the number 
operators, it does not contribute to the number current, and the only contri­
bution to the current operator comes from the commutator with the kinetic 
energy. Performing the commutator yields two forms for the total number 
current operator j = ]TV jj (in real space and momentum space) 

i S k 

where the symbol 5 denotes the nearest-neighbor translation vector, i + 6 is 
the corresponding nearest-neighbor to site i, and Vk is the electron velocity 
Vk = Ve(k). Note that in cases where the electrons have spin, Eq. (2.119) 
needs to be modified to include a sum over the spin indices. The charge-
current operator, is then written as j c = — |e|j, where we make explicit that 
the charge of the electrons is negative. 

The heat-current operator is more complicated to determine. As elec­
trons move through the lattice, they carry energy and heat with them. The 
heat current is just the energy current minus the chemical potential times 
the number current, because the heat is always measured relative to the 
chemical potential (in other words, an electron that has energy larger than 
/i carries heat, while one with energy less than /i carries coldness). It is easy 
to guess the kinetic-energy contribution to the energy current — one simply 
adds a factor of eu to the last term in Eq. (2.119), but we need to account 
for the potential-energy contributions as well. The procedure for how to do 
this is described thoroughly in Chapter 1 of [Mahan (1990)]. We need to 
generalize the polarization operator to an "energy polarization" operator, 
which requires us to break the Hamiltonian up into pieces, each associated 
with a given lattice site. This can be easily done for the potential energy 
if the interactions are local, but there is no well-defined procedure for the 
kinetic-energy piece. The convention is to break each hopping term in half, 
associating half with the site in each nearest-neighbor pair. In this fashion, 
we write Ji = J ^ Tii, with 

Ui = -\ E ( c k + * + cUsci) + Vi> (2-120) 
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where the local potential energy is, for example, just Vi — Efflft + 
Uc\cifJ/j for the Falicov-Kimball model. The energy current is then de­
fined via }E = i[H, TJJ RjWj]. Because the energy polarization operator 
is not just a function of the electron number operators anymore, the com­
mutators will change for different models, due to the changing potential 
energy. Evaluating the commutators can be complicated as well. For the 
Falicov-Kimball model we find 

SQ = JB-MJ = 5I(ek-M)vk4cfc + JH(V k + V k ' )^(k-k ' )ckck' ' (2-121) 
k kk' 

where W(q) = £ \ exp(- iq • R^fj/V. 
We use the Kubo-Greenwood formula [Kubo (1957); Greenwood (1958)] 

to evaluate the transport coefficients. We will derive it in general, but 
apply it directly to the electrical conductivity. We work in the linear-
response regime, taking the limit that the external field is infinitesimal. 
We imagine modifying our time-independent Hamiltonian by adding a time-
dependent perturbation H'(t). The perturbation is turned on adiabatically 
as t —> — oo. The expectation value for the particle-current operator as a 
function of time is 

<j(*)> = ^ T r {e-W-^&Ht, -°o)jU(t, - c o ) } , (2.122) 

where we introduced the time evolution operator U(t,—oo), familiar from 
time-dependent problems in quantum mechanics, which determines the 
time evolution of all operators. The evolution operator satisfies an EOM 

idtU(t, -co) = [H-nAf + H'(t)]U(t, -co) , (2.123) 

which is solved by a time-ordered product 

U(t,-oo) = Tte-iI^di[H-^+H'(i)]^ (2.i24) 

which requires the time ordering because the operator H' may not commute 
with itself or H — /xA/" for different times. Unfortunately, it is difficult to 
expand Eq. (2.122) in a power series in the perturbation because of the 
time ordering. We need to re-organize the expression, so the time ordering 
involves only the Ti' operator. This is done by introducing the interaction 
representation, defining the interaction representation evolution operator 
via 

Ui{t, -oo) = e'W-^'Uit, -co) . (2.125) 
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It is easy to show that idtUi(t, -co) = TC'i(t)Ui(t,—oo) with the in­
teraction representation of the perturbation being Ti'i(t) = exp[i(W — 
liN)t]H'{t) exp[-i(W-/iAOt]. Hence Ui(t, -oo) = Tt exp{-i J^ dtH'i(i)]. 
Next, we move the rightmost factor U in Eq. (2.122) to the left by the cyclic 
property of the trace, and we replace U by Uj throughout. All of the de­
pendence on the perturbation now lies in the term Uj exp[—j3{7i — /JM)]OJ, 

and we need to expand this to first order. Substituting in the Taylor series 
expansion for the time-ordered product in Uj then yields 

Uj(t, ~oo)e-^n-^u}(t, -oo) = e-0("-"AO (2.126) 
ft 

- i / diiH'^t)^-0^-^} + 0(H'2). 
J — oo 

Now we can evaluate the linear-response current. It satisfies 

(j(*)> = 0) - i f ^ T r i e - ^ - ^ W l e - ^ - ^ K ^ - ^ j } . 
J — oo *• > 

(2.127) 
Using the invariance of the trace, and remembering the definition of time-
dependent operators in the interaction representation, we get the final 
Kubo-Greenwood result 

<j«> = <j> - i / " d*([J/(t),W'/(t)]>. (2.128) 

Note that since we did not use any special properties about the current 
operator, or the perturbation, the above relation is a completely general 
result. We have succeeded in representing the linear-response current with 
expectation values and time-evolutions that take place wholly within equi­
librium. Knowing this, we can drop the / subscripts for the interaction 
picture from the remainder of our formulas since we know the time evolu­
tion is always with respect to TL — (jj\f. 

The Kubo formula is normally written in the form of a current-current 
correlation function. This can be seen when we examine the effects of an 
electric field written in the gauge where the scalar potential vanishes, so 
that Ej(t) — -dtAi(t) (we set the speed of light c = 1). The perturbation 
to the Hamiltonian is then H'(t) = \e\ J2i$i' A-j(t) involving the sum of the 
negative of the dot product of the charge current operator with the vector 
potential over all sites of the lattice. We will examine only uniform fields 
here, so we assume A$ = A is independent of i. Substituting this result into 
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Eq. (2.128) and noting that the expectation value of the current vanishes 
in equilibrium gives 

(-\e\ja(t))=ie2^2 f dt([i0(t),j6(t)])A6(t). (2.129) 

The symbols a and b refer to the spatial indices of the corresponding vectors 
(they are not the lattice sites). 

Since we have time-translation invariance when we are in equilibrium, 
we can take the Fourier transform of Eq. (2.129), and note that A(u) = 
—iEi{(jj)/w, to yield 

<-|e|ja(w)> = ie2 V ab [ 'Eb(u). (2.130) 

V u 

We introduced the symbol n£{ret(w) = - i J dtexp[iu>t}8{t)([ja(t),jb(0)}), 
the retarded current-current correlation function. This is almost in the 
form where we can extract the conductivity. The only remaining issue 
that we need to take into account is that when we add an electric field to 
our system, we have to replace the momentum by the Peierl's substitution 
p —> p + |e|A. When we are on a lattice, the shift is k —> k + |e|A in 
the velocity Vk- This produces an additional term to the charge current in 
linear response, namely the term — ie2{Ta)Ea/w to the response (where Ta 

is the - coska piece of the kinetic energy operator). Putting this together 
with the Kubo result gives 

H e | j a M ) = ie2 £ n * r M - < r a > * < * E t H | ( 2 1 3 1 ) 

b u 

or, since the conductivity satisfies — |e|j0(w) = ^2baab(uj)~Eb(w), 

^H^STM^Afc. (2.l32) 
CO U) 

The real part of Eq. (2.132) is called the optical conductivity, which is 
normally what a theorist will calculate. 

It is not easy to evaluate the conductivity by directly calculating 
Eq. (2.129) and then taking the Fourier transform. Instead, we proceed 
as we did with the Green's functions by first evaluating the response func­
tion on the imaginary axis, and then analytically continuing to the real axis. 
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This is done because the continuation of the imaginary-axis response func­
tion is to the retarded response function, and all calculations are straight­
forward, although they are lengthy. 

We start with the appropriate generalization of the retarded current-
current correlation function to the imaginary-time axis (one can verify that 
this is the correct form by examining the Lehman representation, and then 
converting from the imaginary to the real axis, similar to what we did with 
the Green's functions): 

nii(r) = 4TT 
Z' 

H 
e - / W - ^ T r j a ( T ) j 6 ( 0 ) ] - ( ^ T r [ e -**-""> j o (0 ) ] ) 

0(«-MAOjfc(O)iy (2.133) 

and the expectation values of the current vanish in equilibrium, so the 
last term is zero. This correlation function is periodic when r —> r 4- f3 
because the current operators involve two Fermionic operators, and there 
is no sign change when the current operators are interchanged by the time-
ordering operation. The Matsubara frequency Fourier series corresponds 
to the Bosonic frequencies ivi = 2iirTl and the Fourier coefficients are 

nii(in)= f'dre^U^(r). (2.134) 
Jo 

We calculate the correlation function by adding a field to the Hamil-
tonian, and taking a derivative of the appropriate expectation value with 
respect to the field. In this case, we add a field —j • A(r) with A(r) = 
T^i A( exp(—ZI/JT); note, that the field A is not necessarily the vector 
potential here, but is a fictitious vector-valued function employed in the 
calculations. Since the added field does not commute with the Hamilto-
nian, we need to express it as a time-ordered product using the identity 

e-JQ
0 dT[W-AJV-j-A(r)] ^ e-/9(H-MA^)7- i_e/<fdTJ(r).A(r)5 (2 .135) 

with j(r) = exp[r(W — /iA/")]j exp[-r(H - /JjV)]- Then we can take deriva­
tives, to find that Il^b{m) = d(jb(Q))/dAa{-ivi)/T when A -> 0. Using 
Green's functions to evaluate the expectation value gives 

n£(«*) = E E V ^ eAai-iut) ' (2'136) 
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where we must use the double Fourier transform of the Green's function, 
since the j • A field makes the Green's function lose it's time-translation 
invariance so that 

rP rP 
Gk(iujn,iu>m)=T dr \ dT'efc '»TGk(T,T')e-fa,"'T; (2.137) 

Jo Jo 

after the derivative is taken, we can evaluate the Green's functions in equi­
librium, where Gk(iu>n,iwm) 

ex Snm. The derivative is computed by using 

the identity 

Gk{iujn,iu>m) = y ] Gk(wn ,iu;m ' )Gk"1 (ium>,iun>)Gk(iun>,iu)m), (2.138) 
and noting that any Green's function that does not have a derivative acting 
on it can be replaced by it's (diagonal) equilibrium value. This yields 

The derivative of the inverse of the Green's function is easier to find than 
the derivative of the Green's function itself. To do so, we must first examine 
the EOM for the Green's function, which is 

f dT"[{-9 r + M-ek + v k .A(r)}<5(r-r")-S(T,r")]G k(T",T') =6(T-T'), 
Jo 

(2.140) 
and determines the inverse operator in the square brackets (note, the self-
energy depends on two times now as well). Next, we take the double Fourier 
transform of the inverse operator, to find 

2j[(iuin + / i - £k)<5nm' - E n m / + T 2 J v k • Ai6nm>+i]Gk(iu)m>,iu)m) — 5mn. 
m' I 

(2.141) 
The term inside the square brackets is G^1 (iun, iwm>). There are two terms 
that have a nonzero derivative with respect to Ab{—iv{): the self-energy and 
the A field. Performing the derivatives gives 

n a i ( ^ ) = - r ^ ^ v k Q v k 6 G k ( i u ; n ) G k ( i w n + ; ) 
k n 

+ E E VktGk(wn)-.^"ro Miwm). (2.142) 
k nm OAa{-lVi) 
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The second term on the right hand side is called the vertex correction. 
The self-energy is a functional of the local Green's function, so we can use 
the chain rule to relate the derivative with respect to A to a derivative 
with respect to the (two-frequency) local Green's function. The derivative 
becomes 

dAa(-ivi) £ ', dGn'm' dAa{~Wi)' 
(2.143) 

Since the derivative of the self-energy with respect to the local Green's 
function is independent of momentum, and since ]T k̂

 vkGk(iw„)Gk(«wm) = 
0, because the velocity operator is an odd function of k and the Green's 
functions are even (since they depend only on ek), we have that the vertex-
correction term in Eq. (2.142) vanishes [Khurana (1990)]. The current-
current correlation function is equal to the bare correlation function with 
no vertex corrections in DMFT! 

So the last task we have is to perform the analytic continuation from 
the imaginary frequency axis to the real frequency axis. This is done by 
using a variant of Cauchy's theorem [Mahan (1990)]. We first write the 
summation over Matsubara frequencies as an integral over the contour C 
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Fig. 2.9 Contours used in the analytic continuation: (a) three contours needed for the 
Matsubara frequency summation and (b) contours deformed to four lines parallel to the 
real axis. The Green's functions involve either G(z) or G(z + iv{). The analytic functions 
are GR in region 1 and GA in regions 2 and 3 for the former, and GR in regions 1 and 
2 and GA in region 3 for the latter. 
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shown in Fig. 2.9(a) which has contributions at the poles of the Fermi dis­
tribution which lie at the Fermionic Matsubara frequencies (the residue of 
the pole is —T). The contours are then deformed to lines parallel to the real 
axis, with the Green's functions evaluated with either retarded or advanced 
functions depending on the argument, and the regions of analyticity (since 
the functions are all analytic, there are no additional poles). The result is 

n i i ( i ^ ) = (2.144) 
i r°° 

— J_ dojf(u) £ v k a v k 6 [ G £ M - G£{u)]Gg(u> + iut) 

1 f°° 
+ ^-. / du>f(w - iui) £ VkaVkbG^(u; - ivi)[Gg(w) - G£(w)]. 

Z7Tt J _ o o k 

The analytic continuation (which is unique) is performed by first rewriting 
f(u> — iv{) = f(ui), then taking iv\ —> v + i5 and shifting the integration 
variable u> —» w + v in the second integral. Then, using the definition for 
aab, we finally arrive at 

e2 r°° r 
°ab{y) = 7, / <^> / ] VkaVkbRe< /(w)Gk(T(w)Gk<7(w + u) 

-f(cu + v)G*ka(Lj)GW + v) 

- [ / H - / ( a ; + i/)]Gk f fMGkC T^ + ^ } . (2.145) 

We can perform the summation over k directly. Because ek is an even 
function of k and Vk is odd, we must have a = b. The average of sin2 k a 

times a function of ek over the Brillouin zone turns out to be equal to the 
average of cos2 ka times the same function of ek (which can be related to 
the average of ek because the average of coska cosk& is a \/d correction). 
The net effect is an extra factor of 1/2. The summation over k can be 
written as an integral over energy with a weighting factor of p(e)a2t*2/2d. 
This yields for the optical conductivity 

e2azt*2 f°° f°° 
oab{v) = Sab / du dep{< e) ; 

3JGk(w)Gk(w + v) - Gk(w)Gk(u; + u)\ x Re<̂  Gk(w)Gk(w + v) - Gk(w)Gk(o; + v)\. (2.146) 

The integrand actually involves just the product of the imaginary parts 
of the two Green's functions. If we recall the definition of the spectral 
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function, and we define the constant CFQ = e2,K2/2hdad 2 (which has all of 
the dimensionful constants restored), then the conductivity becomes 

<Tab{v) = ~Sab J" <hj ^ dep(z)f{uj) ~ / ( t " + U) Ak(a;)Ak(u; + v). 

(2.147) 
Using the fact that Imz = (z — z*)/2i, and expanding the integrand by 
partial fractions allows the integral to be performed over e 

*M = $6* f° <L,flu)-fJ>W + V) (2.148) 

x Re 
G(w) - G(w + v) G* (w) - G(w + v) 

v + S(w) - E(w + v) u + T,*(ui)~T,(u + u) 

The final step for the dc-conductivity is to take the limit of v —> 0. Using 
the facts that 

l i m / M - / ( . + ,)=_d/H (2.149) 
v-+o v du> 

and 

GM-GK^) = _2 2[ S ( W ) ] G H , (2.150) 
«>-o i/ + E(w) - £(w + y) 

produces our final result 

7Idw(-1 a(0) = a0 / du; ( - ^ ) T(W), (2.151) 

with the exact many-body relaxation time r(w) defined by 

r M = ^ ( l ^ y + 2 - 2 R e { [ ^ + M - SM]G( W )} ) . (2.152) 

Our calculations have been performed for the hypercubic lattice. All of the 
steps are the same for other lattices up to Eq. (2.145) except there is an 
additional v£ factor. In cases where we need to take into account the cross 
terms coskacosk(,, the analysis is even more complex. Details are worked 
out explicitly for the simple cubic lattice in Problem A. 16. 

We examine the relaxation time for a Mott insulator phase for U = 
3/A/2 on the hypercubic lattice and for U = 3 on the Bethe lattice (which 
correspond to similar insulating phases) for a range of W\ values and T = 0 
in Fig 2.10. Note the unphysical behavior for the hypercubic lattice. The 
relaxation time behaves like a power law in the "gap region" because the 
DOS is exponentially small, but the lifetime of the states is exponentially 
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Fig. 2.10 Exact many-body relaxation time for similar Mott insulators with (a) V = 
3/\ /2 on a hypercubic lattice and (b) V = 3 on a Bethe lattice [the legend in panel (b) 
also applies to panel (a)]. The hypercubic lattice has a number of unphysical behaviors 
due to the fact that it has an infinite bandwidth, and many of the "rare" states have 
long lifetimes, which can contribute significantly to the transport. This can be seen in 
the inset to panel (a) where the w4 behavior of T(U>) is clearly seen in the "pseudogap 
region". 

large, so they can carry current. Also, the relaxation time does not go to 
zero at large frequency for the same reason. The Bethe lattice behaves 
more as is expected: the gap region is well denned with r(w) = 0 within 
the gap, and the relaxation time vanishes outside the band. 

In addition to the dc-conductivity, we are also interested in thermal 
transport. Since electrons carry energy with them as they move through 
the lattice, they transport heat as well as charge. Since the weighting 
factor that determines the energy carried by an electron is different from 
the weighting factor that counts the number of electrons that move through 
the lattice, one can transport heat in the absence of a particle current and 
vice versa. The two thermal transport quantities we want to calculate are 
the thermopower S which is the thermal analog of the Hall effect: since 
the weighting factors for the particle and heat currents differ, as described 
above, we can have a situation where there is no particle current flow, but 
there is heat current flow. So we can apply a thermal gradient over an 
isolated piece of material (that carries no charge current) and measure a 
voltage. The ratio of the voltage difference to the temperature difference 
is given by the thermopower. In addition, we can examine the electronic 
contribution to the thermal conductivity ne. Like electrical current, which 
flows when there is a voltage difference, heat current flows when there is a 
temperature difference. Real materials have two carriers for heat current — 
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the electrons and the phonons. In this book we will not consider the phonon 
contribution, but it often can contribute significantly at low temperatures. 

The standard approach to charge and thermal transport is to relate 
these experimental quantities to relevant particle-current-particle-current 
(Ln) , particle-current-heat-current (L12 = £21), and heat-current-heat-
current (L22) correlation functions. We have already determined L n which 
satisfies <Jdc = e 2 Ln. The thermopower and thermal conductivity satisfy 

" ~ \e\TLn' e~ T 

A theorem by Jonson and Mahan [Jonson and Mahan (1980); Jonson and 
Mahan (1990)], states that if one can determine the exact many-body re­
laxation time, then the thermal coefficients satisfy the so-called Mott non-
interacting form [Chester and Thellung (1961)] 

*«-3/>(-*^)**-»'-». vm 
This result implies that we don't even need to determine the heat-current 
operator in order to calculate the thermal transport; we only need to know 
the relaxation time for the charge transport multiplied by the appropriate 
power of frequency. What is remarkable is that one can perform a brute-
force proof of the Jonson-Mahan theorem for the Falicov-Kimball model in 
DMFT, by exactly calculating all relevant correlation functions and showing 
they add up to reproduce Eq. (2.154) [Preericks and Zlatic (2001)]. The 
details are quite technical and will not be reproduced here. Instead, a 
sketch of the original Jonson-Mahan proof, as formulated in [Mahan (1998)] 
is presented in Prob. A.17. 

We end this section with a brief discussion about optical sum rules. 
The optical conductivity in Eq. (2.147) satisfies a sum rule. The integral of 
a(y) from 0 to 00 is proportional to the average kinetic energy [Maldague 
(1977)]. This is important because it serves as a useful test of the numerics. 
If we independently calculate the average kinetic energy and the optical 
conductivity, then we can verify that the sum rule holds. This is a very 
useful step in ensuring that there are no errors in one's computational codes. 
Unfortunately it is a step that is often neglected by many researchers. We 
urge all readers of this book to perform this check when they are calculating 
transport properties. 

L22 -
L12L. 21 

i l l 
(2.153) 

file:///e/TLn'
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2.9 Metal-Insulator Transitions within D MF T 

The strongly correlated metal-insulator transition is one of the most thor­
oughly studied problems in condensed matter physics. Even so, its solution 
has remained elusive in three dimensions. DMFT has shed light onto this 
problem by illustrating a number of ways in which the transition occurs, 
and by describing a number of different scenarios for the transition itself. 

Fermi liquid theory [Landau (1956)] is one of the hallmarks of condensed 
matter physics. It says that if the interactions are weak, then a fraction 
of the Fermi-like quasiparticles of the noninteracting system remain in the 
interacting system, with minor changes: their lifetime is still infinite at 
the Fermi energy (and T = 0), but their mass can be modified, and their 
spectral weight can be reduced from 1, with the remainder of the weight 
being pushed to higher-energy incoherent excitations. This is the basis of 
much of band theory, which neglects the electron-electron interactions, and 
only includes the electron-ion interactions. In DMFT there are two classes 
of metals: (i) Fermi-liquid metals, which have the same Fermi surface as the 
noninteracting system has (from the Luttinger theorem [Luttinger (1962)] 
and the fact that the self-energy has no momentum dependence) and the 
DOS at the Fermi energy is unchanged from the noninteracting value at T = 
0 [Muller-Hartmann (1989a); Muller-Hartmann (1989b); Muller-Hartmann 
(1989c)] and (ii) a non-Fermi-liquid metal, which has a finite lifetime at the 
Fermi surface (and T = 0), and whose DOS at the Fermi energy may be 
modified from the noninteracting value (when T = 0) because the Luttinger 
theorem no longer applies. The Hubbard model and the periodic Anderson 
model fit into the former category, while the Falicov-Kimball model fits into 
the latter. 

As the interactions increase, if we have, on average, one electron per 
lattice site, then the electron-electron interaction can localize the electrons 
by freezing out the double-occupancies on each lattice site due to a large 
Coulomb repulsion [Gebhard (1997)]. This is seen in the DOS by it be­
ing suppressed to zero at the chemical potential and T = 0. On lattices 
that have a finite bandwidth, like the Bethe lattice, a true gap can open 
as the interactions are increased further. While on lattices that have an 
infinite bandwidth, like the hypercubic lattice, the DOS can only vanish 
right at the chemical potential (it is exponentially suppressed elsewhere 
within a "gap region") and the system only has a pseudogap. Since the 
DOS vanishes at the pseudogap, and since the noninteracting DOS has an 
infinite bandwidth, it is clear from the Hilbert transform, that the only way 
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to get a vanishing DOS is for the Green's function itself to vanish, which 
implies the self-energy is infinitely large. This occurs from the formation 
of a pole in the self-energy at a critical value of the interaction strength 
C/c

pole (see Problem A.13). At half filling, it turns out that the MIT occurs 
when a pole forms in the self-energy on the Bethe lattice as well, but away 
from half filling, in a particle-hole asymmetric MIT, the critical interaction 
strength for gap formation C/|ap, is always less than the critical interaction 
strength for pole formation [Demchenko, Joura and Freericks (2004)] (see 
Problem A. 19). 

The Hubbard model is probably the most studied problem for a strongly 
correlated MIT. The U = 0 state is always metallic, while the U = oo state 
is insulating at half filling, since there is one electron per site and no double 
occupancy allowed. The fundamental questions are: (i) what is the critical 
value of U for the MIT and (ii) is the transition continuous or discontinu­
ous? There are only two limits where this problem has been solved exactly. 
In one-dimension, there is a Bethe-ansatz solution [Lieb and Wu (1968); 
Gebhard (1997)], which shows that the critical value of U is U —> 0 + , so it 
is difficult to study the behavior near the critical interaction strength. In 
infinite-dimensions, there is extensive numerical work, which culminated 
in the NRG analysis at T = 0 [Bulla (1999)], which explicitly showed the 
evolution of the MIT, confirming the qualitative features of an earlier per-
turbative analysis [Zhang, et al. (1993); Georges, et al. (1996)], which has 
two critical values of U, one where the insulating solution C/™s becomes un­
stable, and one where the metallic solution becomes unstable {7™et. Since 
U™s < U™et, there is a coexistence region, where both metallic and insu­
lating phases can exist, but the metallic phase is the global minimum of 
the free energy. Hence the MIT occurs at [/™et. The "gap region" ap­
pears to have a discontinuous jump at the transition, but the numerical 
results are unable to resolve exponentially small DOS at finite frequency w, 
which are known to exist on the hypercubic lattice and may be required by 
Fermi-liquid theory just before the transition [Kehrein (1998)]. 

We summarize the results of [Jarrell (1992); Zhang, et al. (1993); 
Georges, et al. (1996); Bulla (1999); Bulla, Costi and Vollhardt (2001)] 
and some previously unpublished results [Bulla (unpublished)] in a series 
of figures for the hypercubic lattice where Uc ~ 4.1. In Fig. 2.11, we plot 
the DOS on the hypercubic lattice near the MIT. The DOS displays both 
upper and lower Hubbard bands, and in the metallic phase it has a narrow 
quasiparticle resonance, with the DOS at u) = 0 pinned to the noninter-
acting value. In the lower set of panels, we plot the imaginary part of the 
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Fig. 2.11 T = 0 DOS at half filling for the Hubbard model on a hypercubic lattice 
with (a) U = 0.81/c, (b) 0.99t/c, and (c) 1.1UC. Note how the DOS remains at the 
noninteracting value in the metallic phase, and how there are well-defined upper and 
lower Hubbard bands before the transition. The transition occurs by the width of the 
quasiparticle peak shrinking to zero and disappearing. The insulator appears to have 
a well-defined gap at the transition. In the lower panels [(d-f)], we plot the imaginary 
part of the self-energy, which shows a narrow region with Fermi-liquid like behavior 
(quadratic in w and vanishing at w = 0 [in panels d and e]) which gives way to a pole 
at u = 0 characterized by the appearance of a delta function [in panel f]. Adapted with 
permission from [Bulla (1999)] (original figure © 1999 the American Physical Society). 

self-energy for the same values of interaction strength, which show the evo­
lution from a Fermi liquid to a Mott insulator. Recent work [Karski, Raas 
and Uhrig (2005)], employing the density-matrix renormalization group to 
solve for the dynamics of the impurity problem, indicates that there is some 
additional sharp structure in the DOS near the band-gap edges in the cor­
related metal close to the critical U for the MIT; this structure is tied to 
a collective effect between the Fermi-liquid excitations and the incoherent 
excitations across the gap. This additional structure cannot be resolved 
with NRG. 

We show the finite-temperature dependence of the DOS in Fig. 2.12 just 
below the critical value of U. Note how the behavior is quite anomalous for 
a metal. The DOS initially decreases as the temperature is lowered, until 
about T = 0.02, where it discontinuously jumps and increases to ultimately 
form a quasiparticle peak, which saturates at the noninteracting value as 
T -» 0. This behavior will lead to significant anomalies in the transport 
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Fig. 2.12 DOS at half filling for the Hubbard model on a hypercubic lattice at U = 
3.54 = 0.86C/C and various temperatures. Note how the DOS has a dip at the chemical 
potential for high temperature, which initially deepens as T is lowered, and then has a 
sudden, discontinuous increase as the system is cooled below the Fermi-liquid coherence 
temperature and the quasiparticle gap is formed [Bulla (unpublished); adapted with 
permission from data used in Freericks, Devereaux and Bulla (2001)]. 

properties for temperatures above the coherence temperature, where the 
Fermi peak starts to form. 

In the left panel of Fig. 2.13, we plot the DOS as the system is doped 
away from half filling for U slightly above the Mott transition value. As 
the system is doped, the chemical potential rapidly moves into the lower 
Hubbard band, and a quasiparticle peak is superimposed on the lower Hub­
bard band structure. In the right panel, we show the temperature evolu­
tion for pe — 0.915. It shows how the peak sharpens and develops as T 
is lowered. 

In summary, the Hubbard model displays rich physics near the Mott 
transition, that depends crucially on the temperature, the doping, and the 
interaction strength. In general, the ground state is a Fermi liquid on the 
metallic side, and the system is always metallic when doped away from half 
filling. But the Fermi temperature, where the quasiparticle peak develops 
gets pushed down toward T = 0 as the MIT is approaches, which means 
that the metallic phase can display quite anomalous behavior. As the quasi­
particle peak disappears, by having its width reduced to zero, the insulating 
phase appears to have a well-formed "gap region" already in place. This 

— T=0.0033 
— T=0.0088 
— T=0.0238 

T=0.1718 
T=0.2821 
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Fig. 2.13 DOS away from half filling for the Hubbard model on a hypercubic lattice 
with U = 4.24 = 1.03C/C (half-filling). The left panel (a) shows the evolution with doping 
away from half filling, with a fixed temperature T = 0.029, and the right panel (b) shows 
the evolution with temperature at a fixed filling pe = 0.92. Adapted with permission 
from [Freericks, et al. (2003a)] (original figure © 2003 the American Physical Society). 

is a remnant of the coexistence of the insulating and metallic phases for 
u™ < u < c/c

met. 
It is also important to examine situations where the MIT does not occur 

at the particle-hole symmetric point, since nearly all real materials are 
not particle-hole symmetric [Hirsch (1993)]. There are two ways to break 
the particle-hole symmetry: (i) add next-nearest neighbor hopping, which 
breaks the bipartite symmetry of the lattice, or add extra bands that will 
break the particle-hole symmetry; or (ii) modify the model to make it 
explicitly particle-hole asymmetric. For illustrative purposes, we choose 
to examine the second option here. We study the Falicov-Kimball model 
with pe + w\ = 1, but wi ^ 1/2. Since there is on average one particle per 
site, and since the mobile electrons have a Coulomb interaction with the 
localized electrons, then if the interaction is strong enough, the electrons 
will be frozen on the lattice, and unable to conduct. Does the breaking of 
particle-hole symmetry change the character of the MIT? It does not do 
so on the hypercubic lattice, because on the hypercubic lattice, the only 
way to form a pseudogap is to have the self-energy develop a pole, so the 
MIT and the pole formation in the self-energy always occur at the same 
critical value of U. But on any lattice with a finite bandwidth, like the 
Bethe lattice, we find that the opening of a true gap occurs before a pole 
forms in the self-energy. 
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Fig. 2.14 MIT scenarios for the Falicov-Kimball model away from half filling on the 
hypercubic (left panels) and the Bethe lattice (right panels). Panels (a) and (b) show 
the T = 0 DOS at uii = 0.25 and pe = 0.75 for three values of U: (U = 0.8t/#ap [red], 
U = t /# a p [green] and V = l.ZUtp [blue]); in the last case V > C/c

pole for the Bethe 
lattice. The corresponding imaginary parts of the self-energies are shown in panels (c) 
and (d). Note that the chemical potential lies at w = 0 on these curves. The pole for 
U = 1.3J/|ap on the Bethe lattice [the blue curve in panel (d)] is so close to the right 
band edge, that it cannot be separately distinguished in the plot. Panels (c) and (d) 
adapted with permission from [Demchenko, Joura and Freericks (2004)] (original figure 
© 2004 the American Physical Society). 

In Fig. 2.14, we summarize the results for the MIT at wi = 0.25 on 
the hypercubic and Bethe lattices, where f/c

gap = f/c
pole « 1-633 on the 

hypercubic lattice and where U$*e « 1.908 and t/c
pole » 2.309 on the Bethe 

lattice. It is interesting to note that on the hypercubic lattice, the MIT 
occurs at larger U values as wi is reduced from 1/2, while on the Bethe 
lattice, the MIT occurs at smaller U values as w\ is reduced from 1/2, but 
the pole formation occurs at higher values of U. So there is a region in U 
where the system is a Mott insulator, but the pole has not yet developed in 
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the self-energy; this occurs whenever the noninteracting DOS has a finite 
bandwidth. The phase diagram is plotted in Fig. 2.15 along with a plot that 
shows how the pole evolves with U for different values of w\. When we have 
particle-hole symmetry, the pole always lies right at the center of the gap, 
and appears at the MIT. Away from half filling, the pole is created only for 
larger values of U, and it enters from one of the band edges, migrating closer 
to the center as U increases. Hence, the nature of the MIT is completely 
different on lattices with a finite bandwidth and on lattices with an infinite 
bandwidth. Because real systems always have a finite bandwidth, we expect 
the Bethe lattice results to be closer to real three-dimensional systems than 
the hypercubic lattice results when particle-hole symmetry is broken. 

So one may ask the question, how important is the pole formation for 
the MIT? Does the system behave differently when the self-energy has a 
pole versus when it does not? On the hypercubic lattice it definitely does, 
because the pole signals the formation of the insulating (or semi-metallic) 
phase, but on the Bethe lattice, we find no significant change in the behavior 
of the system in the insulating phase after the pole forms. There are no 
observable changes in any of the common charge or transport properties. 
This implies that although the pole formation appeared to be driving the 

j — ' 
•*-> 1—' r> 
r 
Ul 
L. 
Ill k_ 

(0 
r 
o 
o 
o 
<i> 
-*-1 
c 

10 

9 

8 

1 
fi 

5 

4 

.1 

2 

1 
0 

I I ' I ' I ' I ' I ' I ' I I I ' I I 

(a) 

NoV 4/ Insulator + Pole 
p o l e ^ = r _ _ r - ^ / l ns-

Metal 
. i . i . i . i . i . i . i . i . i 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

Localized electron filling w1 

+ 
H, 0.95 

-> 0.9 

[? 0.85 

O 0.75 

| 0.7 

I) 

09 I I 
. / /0.8 / 1 

/ / rJ 1 
7 / / /0-6 

1 \ \ \0,1' 
I \ \ \ " 
I \ \0.2\ . 
I \o.3 \ \ • 

0 ,5 \ \ \ 1 

\ W 
(b) ^ ^ 

-0.5-0.4-0.3-0.2- •0.1 0 0.1 0.2 
•pole /p-gap 

0.3 0.4 0.5 
e/E9° 

Fig. 2.15 Phase diagram showing the three regimes on the Bethe lattice as a function of 
U and w\ in panel (a): (i) the metallic region (below the dashed line); (ii) the insulating 
region with no pole in the self-energy (between the solid and dashed lines); and (iii) 
the insulating region with a pole in the self-energy (above the solid line). In panel (b), 
we plot the relative location of the pole within the gap as a function of U. The curves 
are for different values of w\ and they asymptotically approach 1/2 — w\ as U —• oo. 
Note how the w\ — 0.5 case has qualitative differences with all other cases. Reprinted 
with permission from [Demchenko, Joura and Freericks (2004)] ( © 2004 the American 
Physical Society). 
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Mott physics at half filling, the behavior changes away from half filling, and 
it is likely that the pole formation is not a defining property of the Mott 
phase, it only happens to appear at some critical value of U and it has 
limited effects on the character of the insulating phase. 

2.10 Bulk Charge and Thermal Transport 

We begin our discussion with bulk transport in the Falicov-Kimball 
model [Freericks, et al. (2003b); Joura, Demchenko and Freericks (2004)]. 
As discussed above, the transport properties are likely to be different on 
the hypercubic and the Bethe lattices because the relaxation time r(w) has 
anomalous behavior on the hypercubic lattice—it goes to zero like w4 in 
the "insulating" phase and it goes to a constant for large \w\. We expect 
more normal behavior on the Bethe lattice which has a physically correct 
relaxation time (vanishing inside the gap, and outside the band edges). In 
our model, the conduction electrons scatter off of a fixed concentration of 
local particles with a given interaction strength UFK. But the scattering 
is treated in an annealed statistical ensemble, which cannot be thought 
of as an independent scattering model, where the thermopower would be 
independent of the concentration of scatterers (because the Lu and L\2 
coefficients would each be proportional to the concentration of scatterers, 
and hence their ratio would be independent of the scatterer concentration). 
Instead, we will see strong variations in the thermopower as a function of 
the concentration of scatterers. 

In Fig. 2.16, we plot the conductivity versus temperature for the case of 
half-filling pe = w\ = 0.5 on the hypercubic lattice for a variety of different 
U values. Note how the conductivity at T = 0 continuously goes to zero 
as we pass through the Mott transition at U = \ /2. The behavior for weak 
scattering is a constant conductivity versus temperature at low T, which is 
expected for scattering off of static defects. As we approach the MIT, the 
conductivity starts to rise as T increases, similar to that of an insulator, 
even though it remains metallic down to T = 0. This occurs, in part, 
because the system has a strong dip in the DOS at the Fermi level on the 
metallic side of the MIT; hence heating the sample provides more phase 
space for particles to transport current. 

In Fig. 2.17, we plot the logarithm of the conductivity versus inverse 
temperature on the hypercubic and Bethe lattices for similar values of U. 
The corresponding relaxation time was already plotted in Fig. 2.10. Since 
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Fig. 2.16 DC conductivity versus T for the Falicov-Kimball model at half-filling (pe = 
w\ = 0.5) on a hypercubic lattice. We show results for U = 0.5, 0.75, 1, 1.5, and 
2. The Mott transition occurs at U = \/2. Note how the conductivity goes to zero 
continuously as we approach the MIT and how the metallic phase has anomalous behavior 
(of increasing the conductivity as T increases) for a wide range of U values because the 
scattering is quite strong, even at U — 0.5. 
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Fig. 2.17 Arrhenius plot of the logarithm of the DC conductivity versus 1/T for the 
Falicov-Kimball model at half-filling (pe = w\ = 0.5). Panel (a) is for the hypercubic 
lattice with U = 3/%/2 and panel (b) is for the Bethe lattice with [7 = 3. The relaxation 
time appears in Fig. 2.10. Note how the conductivity does not have an Arrhenius form 
for the hypercubic lattice, but it does for the Bethe lattice (with an activation energy of 
0.315 which is approximately equal to the barrier height of 0.306). 

the hypercubic lattice has long-lived states close to the Fermi level and at 
large energies, the relaxation time has anomalous behavior, which translates 
into anomalies in the transport. In particular, we do not see exponentially 
activated behavior in the conductivity on the hypercubic lattice because of 
the quartic behavior of the relaxation time at low frequency; instead, the 
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conductivity behaves like T4 for low temperature in the insulating phase. 
On the Bethe lattice, where the relaxation time is identically equal to zero 
within the gap, we do see nice activated behavior for temperatures well 
below the gap with an activation energy approximately equal to half of the 
gap in the DOS (since the chemical potential lies at the center of the gap). 

We encounter even more interesting behavior when we examine the 
thermal transport. In Fig. 2.18, we plot the thermopower for the cases 
pe = 1 — w\ on the hypercubic lattice. In the metallic case [U — 1, panel 
(a)], the behavior is as one would expect for a metal with scattering. The 
thermopower is larger the more particle-hole asymmetric the system is, and 
it vanishes linearly with T as T —> 0, due to the shrinking of the Fermi win­
dow. When we go to a correlated insulator [U = 2, panel (b)], the behavior 
looks similar at high temperatures, but is quite different at low temper­
ature. It develops a sharp low-temperature peak for some values of w\. 
The origin of this peak is most likely arising from a sharp T-dependence 
of the chemical potential at temperatures smaller than the "gap". As the 
chemical potential changes sharply with T, the thermopower also changes 
sharply, because the slope of the relaxation time grows as the chemical po­
tential moves away from the center of the gap. This low-temperature peak 
in the thermopower can be important for applications if it gives rise to a 
large figure of merit (see below). In both cases, the thermopower curves 

Fig. 2.18 Thermopower versus T for the Falicov-Kimball model with pe = 1 — wi and 
various values of uii (0.1, 0.2, 0.3, 0.4, and 0.5) on the hypercubic lattice. Panel (a) is 
for a metallic phase with U = 1, while panel (b) is for an insulating phase with [7 = 2. 
The thermopower vanishes when w\ = 0.5 due to particle-hole symmetry; it is largest at 
high T for the most asymmetric cases (w\ = 0.1 here). Note the low-temperature peak 
in the insulating case [panel (b)]. 
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have a broad peak at slightly higher temperatures (between 0.25 and 0.4; 
not shown here). The maximal thermopower can be quite large in both 
cases (up to about 3A;s/|e|), and it tends to increase as the correlations 
increase. 

In Fig. 2.19, we plot the electronic contribution to the thermal conduc­
tivity at the critical interaction strength for the metal-insulator transition 
(at w\ = 0.5) on the Bethe lattice [U = 2, panel (a)] and on the hypercubic 
lattice [U = \/2, panel (b)]. The behavior of the thermal conductivity is 
similar on both lattices at low temperature and does not have strong depen­
dence on w\, even though most of the Bethe lattice curves are insulators, 
while most of the hypercubic lattice curves are metals. At higher temper­
ature (not shown), the behavior differs. On the Bethe lattice, the thermal 
conductivity has a peak around 0.3 and then slowly decreases. On the hy­
percubic lattice, the thermal conductivity continues to increase because of 
the anomalous behavior of the relaxation time for large frequencies. 

The relative efficiency of a thermoelectric cooler is measured with its 
figure of merit ZT, which is defined to be 

ZT = 
TadcS
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Fig. 2.19 Electronic contribution to the thermal conductivity versus T for the Falicov-
Kimball model with pe = 1 — wi and various values of u>i (0.1, 0.2, 0.3, 0.4, and 0.5) 
at the critical interaction strength for the metal-insulator transition at u>i = 0.5. Panel 
(a) is for the Bethe lattice with U = 2, where most of the fillings are insulators, while 
panel (b) is for the hypercubic lattice with V = \ /2 , where all of the fillings except 
w\ — 0.5 are metals. Note how there is little dependence of the thermal conductivity on 
the concentration of scatterers here. 
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Fig. 2.20 (a) Figure of merit versus T and (b) Lorenz number versus T (semi-logarithmic 
plot) for the Falicov-Kimball model with pc = 1 — W\ and various values of w\ (0.1, 0.2, 
0.3, 0.4, and 0.5) at the critical interaction strength for the metal-insulator transition at 
w\ = 0 . 5 on the Bethe lattice {V = 2). The figure of merit vanishes for w\ = 0.5 because 
S = 0 due to particle-hole symmetry. 

which depends on the sum of the electronic (ne) and lattice (ft/) thermal 
conductivities. In our calculations, we will examine the electronic version 
of the figure of merit, which sets K/ = 0; this approach always overesti­
mates the figure of merit, but should be reasonable whenever the electronic 
thermal conductivity dominates over the lattice thermal conductivity (or­
dinarily this will be at high temperature). The figure of merit arises from 
the competition between the transfer of heat that is "dragged" along with 
an electrical current versus the transfer of heat via standard thermal con­
duction. For a thermoelectric cooler application, we need to be able to 
drive the heat to flow from cold to hot, while the thermal conductivity 
process always goes from hot to cold. If the thermopower is large enough, 
we can achieve cooling. It is often stated that one needs ZT > 1 for a 
viable device. While it is true that most commercial devices do operate in 
this regime, one can use devices that operate over narrower temperature 
ranges effectively with ZT < 1. Determining how large ZT must be for 
any given application is not an easy task. But one good rule of thumb is 
that the maximal temperature difference between a hot reservoir Th and 
a cold reservoir Tc satisfies Th — Tc = ZT^/2, so the size of ZT and the 
temperature of the cold reservoir both determine how hot the hot reservoir 
can be, and thereby yield the degree of cooling possible. For example, the 
figure of merit needs to be pushed up to ZT > 4 to be competitive with 
conventional coolant based refrigerators at room temperature. In the re­
sults shown in Fig. 2.20 (a), one can see that as the system is made more 
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particle hole asymmetric, the figure of merit grows. It also grows as T is 
increased, because the Lorenz number is reduced. In any case, one does 
not find very large figures-of-merit here. 

Wiedemann and Franz [Wiedemann and Franz (1853)] noticed that the 
ratio of the thermal conductivity to the charge conductivity was a con­
stant for many different metals when compared at the same temperature. 
Lorenz [Lorenz (1872)] discovered that the ratio was linear in temperature, 
so the Lorenz number 

£=Ar> (2-156) 

is a constant for many different metals. When £ is low, the figure of merit 
is high, and vice versa. Of course, whenever the thermopower has a sign 
change, the figure of merit is small in that vicinity. 

In Fig. 2.20, we plot the figure of merit and the Lorenz number on the 
Bethe lattice at U = 2. The figure of merit does not need to vanish as 
T —• 0 in an insulator. Note how the Lorenz number becomes huge at 
low temperature in these insulators (the Wiedemann-Franz relation need 
not hold in an insulator). A large Lorenz number will suppress the figure 
of merit unless the thermopower grows fast enough to compensate for the 
reduction. 

We now go on to study a different system, where many-body effects 
are even more important. The Kondo effect [Kondo (1964)] is one of 
the oldest and most studied many-body physics problems. As early as 
the 1930s, it was discovered that small concentrations of magnetic impu­
rities in metals often led to a minimum of the resistivity as a function 
of temperature. Since the resistivity of a conventional Fermi-liquid metal 
increases monotonically with temperature, the appearance of a minimum 
was puzzling. In the early 1960s, Kondo showed, via perturbation the­
ory, that a simple model, where the conduction electrons interact with the 
magnetic impurity spin (also called a local moment), leads to the resistiv­
ity minimum (when conventional phonon scattering is included). Ander­
son [Anderson (1961)] developed a simple model, called the single-impurity 
Anderson model, to describe the physical behavior for the general case— 
the Kondo model was a limiting case of the Anderson model when the 
Coulomb interaction between /-electrons was large, and there was, on av­
erage, one /-electron at the impurity site. For years physicists struggled 
with finding an exact solution to these problems. They finally yielded to 
a scaling approach of Anderson and Yuval [Anderson and Yuval (1969); 
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Yuval and Anderson (1970); Anderson, Yuval and Hamann (1970)] fol­
lowed by a numerical solution by Ken Wilson [Wilson (1975)]. These re­
sults were then verified by an explicit Bethe ansatz solution [Andrei (1980); 
Wiegmann and Tsvelick (1983)]. 

The physical explanation for the Kondo effect turned out to be rather 
simple: each impurity system has a characteristic temperature called the 
Kondo temperature (T^-), which can vary over orders of magnitude in dif­
ferent systems. As the temperature is lowered from high temperature to the 
Kondo temperature, the resistivity decreases as in a normal metal (when 
one includes phonon scattering, which is reduced as the phase space for 
phonons decreases at low T). Once the Kondo temperature is approached, 
the impurity acts like a strong scatterer, which eventually binds an electron 
from the conduction sea to form a bound spin singlet at T — 0. This strong 
binding leads to the increase in the resistivity at low temperature. Further­
more, the results of different systems are determined solely by the Kondo 
temperature, and there is a universal form for the resistivity as a function 
of T/TK- (If the phonon scattering was ignored, the high-temperature limit 
would correspond to disordered spin scattering, and there would be no clear 
resistance minimum.) 

Soon thereafter, a class of materials called heavy Fermions was discov­
ered. These materials include 4 / or 5 / electrons in partially filled shells 
(usually Ce, Yb, or U materials), and they possess strongly renormalized 
properties, like an effective electron mass that is 1000 times larger than the 
bare mass. Their transport properties are also unusual. The resistivity of­
ten shows a low temperature increase (as T increases) to a broad maximum 
that slowly decreases (i. e., a resistance maximum). The thermopower of­
ten has a sharp peak at low temperatures. These systems are believed to be 
dense Kondo or Anderson model systems, with an "impurity" at every site. 
The model that describes these systems is called the periodic Anderson 
model. Less is known about the solutions of this model, but much progress 
has been achieved with DMFT using quantum Monte Carlo [Jarrell (1995); 
Tahvildar-Zadeh, Jarrell and Freericks (1997); Tahvildar-Zadeh, Jarrell and 
Freericks (1998); Tahvildar-Zadeh, et al. (1999)] and NRG [Pruschke, Bulla 
and Jarrell (2000); Grenzebach, et al. (2006)]. The behavior of the dense 
Kondo systems is quite different from the dilute impurity case. When one 
is well away from half-filling, but with an /-electron density near 1, there 
is a high temperature scale, similar to the Kondo temperature, where the 
localized electron starts to have its spin moment screened. Then there is a 
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second, often much lower, temperature called the coherence temperature , 

below which the system becomes a Fermi liquid, and the screening of the 

local moments is complete. Because there aren' t enough conduction elec­

trons near the Fermi energy to screen all of the local moments, the screening 

process must be a many-body collective effect; it is this difficulty tha t the 

conduction electrons have in screening tha t in par t causes the coherence 

tempera ture to be so low. This physical process is called the principle 

of exhaustion and was originally proposed by Nozieres [Nozieres (1985); 

Nozieres (1998)]. In a Fermi liquid, the resistivity grows like T 2 at low 

temperature , and vanishes at T = 0 (in real materials, residual disorder 

scattering always creates a finite resistivity). As the coherence disappears, 

the resistivity often decreases again, in the high-temperature limit. So the 

heavy Fermion compounds often have a resistivity maximum, rather than 

the minimum seen in the dilute limit. On the other hand, when one is at 

half-filling, and the /-electron filling is near 1, the system becomes a Kondo 

insulator characterized by a single energy scale, which is often enhanced rel­

ative to the single-impurity Kondo scale. Finally, if the / -electron filling 

deviates significantly from one, the system is in the intermediate-valence 

regime, where the spin screening leading to the Kondo effect competes 

against charge excitations, and there is no complete consensus on how these 

systems behave. 

After this brief introduction to the physical behavior of Kondo-Anderson 

models and heavy Fermions, we show some recent numerical results for 
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Fig. 2.21 (a) DC resistivity versus T and (b) thermopower versus T for the periodic 
Anderson model with V — 0.056, Ef = —0.5, (7 = 1 and various values of the total 
filling ptot (1.4, 1.6, 1.8, and 1.9) on the hypercubic lattice. The DMFT is solved by the 
NRG with a small imaginary part added to the frequency 0.0001 to smooth out the raw 
data for the DOS. Adapted from [Grenzebach, et al. (2006)]. 
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transport [Grenzebach, et al. (2006)] that were obtained for the spin-one-
half periodic Anderson model on a hypercubic lattice using NRG as the 
impurity solver for the DMFT. This problem has numerous numerical chal­
lenges that we will not discuss in detail here, but we will summarize one 
of the most challenging ones. In order to properly calculate transport, one 
needs the relaxation time in a frequency window on the order of the tem­
perature (the so-called Fermi window). The NRG approach determines the 
temperature scale by the size of the finite chain on which a given set of cal­
culations is performed. Since the NRG produces discrete spectra composed 
of delta functions, the DOS and self-energy can have oscillatory structure 
within the Fermi window (because there isn't a dense enough set of delta 
functions due to the finite chain length), which can cause problems for prop­
erly calculating the transport. The solution taken for the numerical results 
shown here is to evaluate the Green's functions and self-energies along a 
line parallel to, but slightly above the real axis. The small imaginary part 
of the frequency helps smooth out these oscillations, and allow calculations 
to be performed in a consistent fashion. 

The data corresponds to a number of different regimes, each based on the 
filling of the electrons. The /-electron filling does not depend too strongly 
on temperature for the temperatures considered here. We will be consider­
ing four different total fillings of the electrons (conduction plus / ) , ranging 
from 1.4 to 1.9; the /-filling satisfies pf « 0.77 for ptot = 1-4, pf « 0.88 for 
ptot = 1.6, pf w 0.96 for ptot = 1-8, and pf « 0.98 for ptot = 1-9. When 
Pf « 1, we are in the Kondo regime, where local moments are well-formed 
at the /-electron sites; when pf differs from 1, we are in the intermediate-
valence regime, where the Kondo effect is less well developed, and instead, 
charge fluctuations of the /-electron become more important. For the nu­
merical data presented here, the ptot = 1-8 and 1.9 data are probably in 
the Kondo regime, but the other fillings are not. The /-electron level lies 
at Ef = —0.5 (measured relative to the conduction band center) and the 
/ - / Coulomb repulsion is U = 1; the chemical potential at low T lies above 
Ef for all of these cases, but is quite close to Ef for the ptot = 1-4 and 1.6 
cases. As the filling approaches 2, the system becomes an insulator. Hence, 
the effective correlations are stronger for larger fillings and the system also 
becomes more Kondo-like. Examining the resistivity data in Fig. 2.21(a), 
shows that the resistivity develops a maximum at low T as the effective 
correlations are increased. The low-T region is consistent with Fermi-liquid 
behavior, since the resistivity increases as T increases, but it doesn't give 
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the expected T 2 growth (the resistivity appears to be finite as T —> 0; this 
is a numerical artifact of the finite imaginary part used in the calculation). 
At higher T, the resistivity becomes anomalous due to the unbinding of the 
spin singlets, which cause significant scattering throughout the lattice. As 
the effective correlations increase {ptot gets larger), this Fermi-liquid regime 
shrinks, and is pushed to lower T because the coherence temperature van­
ishes as the correlations become large enough. Note that the much stronger 
temperature dependence of the resistivity for the periodic Anderson model 
versus the Falicov-Kimball model arises because the PAM has Fermi-liquid 
behavior at low temperature, which governs the low-T behavior, while the 
Falicov-Kimball model does not have such low-T behavior. 

The thermopower in Fig. 2.21(b), has a broad maximum that develops 
into a sharper peak at low T as the effective correlations increase. The mag­
nitude of the thermopower is similar to that seen in the Falicov-Kimball 
model, but in the PAM case, the results are rather generic for a wide range 
of metallic systems and are pushed to much lower temperatures, while in the 
Falicov-Kimball model they arise only from a "fine-tuning" of the parame­
ters for the particle-hole asymmetric insulator. Because the thermopower 
is large for a metal, the electronic figure-of-merit might not change much 
if the lattice thermal conductivity is included, since the Wiedemann-Franz 
law indicates that the phonon contribution to the thermal conductivity is 
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Fig. 2.22 Power factor odcS
2 in arbitrary units. The parameters are identical to those 

in Fig. 2.21. Note how the maximal power factor occurs above the maximum of the 
resistivity. It is highest for the ptot = 1.9 data set. Adapted from [Grenzebach, et al. 
(2006)]. 
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Fig. 2.23 Figure-of-merit ZT. The parameters are identical to those in Fig. 2.21. Note 
how the maximal figure-of-merit occurs for the most strongly correlated data set, and 
how it is pushed downward in T as the effective correlations increase. Adapted from 
[Grenzebach, et al. (2006)]. 

generically small. Note that these results for the PAM are independent 
of the Mahan-Sofo conjecture [Mahan and Sofo (1996)] that a sharp peak 
in the /-electron DOS just off of the chemical potential can give rise to a 
large thermopower. This is because the /-electrons do not directly partic­
ipate in the transport if the hybridization is independent of momentum; 
instead, it is the conduction electron DOS that solely determines the trans­
port, and that DOS actually has a minimum near the chemical potential. 
In this sense, the thermopower behaves in many respects like that seen in 
the Falicov-Kimball model, except now, the peak develops as T is reduced, 
so the T dependence can be stronger, and we have not tuned the chemical 
potential to lie at the bottom of the minimum, just close to it. Finally, 
we comment on possible applications. For a thermoelectric, we want the 
charge conductivity and the thermopower high and the thermal conductiv­
ity to be low. In these systems, as we increase the effective correlations, the 
minimum of the conductivity is in close proximity to the maximum of the 
thermopower, so these two effects work against one another. In the most 
correlated system, the conductivity is rising where the thermopower has a 
peak, so in this regime the system may have better prospects for thermal 
cooling or power generation applications. This issue is emphasized with a 
plot of the so-called power factor VdcS2 (in arbitrary units) in Fig. 2.22, 
which has a maximum at low temperatures and is highest for ptot = 1-9. 
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In addition, we also plot the electronic figure-of-merit for the thermoelec­
tric for the same parameters in Fig. 2.23. Note how the peak develops 
and is pushed lower in temperature as the system becomes more strongly 
correlated. 

In any case, if the Wiedemann-Franz law holds (as it does for most 
metals), then the thermopower needs to be larger than about 2 in these 
units to become useful (in other words, to have ZT > 1). These results 
show that it may be possible to achieve this goal, but it will be a challenge. 
Often in real materials it is necessary to reduce the lattice contribution to 
the thermal conductivity in order to have a viable device. Multilayered 
nanostructures might achieve this goal if the interfaces cause significant 
phonon scattering, but are tuned so as to not affect the electron transport 
significantly. We evaluate transport in such devices later (but based on the 
Falicov-Kimball model). 

Finally, we show the DOS for the conduction and the /-electrons in 
Fig. 2.24. The plot is for T = 0.00003, and fillings ptot = 1.4, 1.6, 1.8, 
and 1.9. We plot both the conduction electron DOS (panel a) and the / -
electron DOS (panel b). Note how the conduction electron DOS develops 
a dip near the chemical potential, while the /-electron DOS is strongly en­
hanced. The dip at the chemical potential brings in anomalous features to 
the resistivity. In particular, as the Fermi window widens at higher T, there 

Fig. 2.24 (a) Conduction electron DOS versus frequency a t T = 0.00003 for ptot = 1-4, 
1.6, 1.8, and 1.9 (b) /-electron DOS for the same parameters. Note how the conduction 
DOS develops a dip near the chemical potential, while the /-electron DOS develops a 
peak. The transport is determined by the conduction electrons, because they carry the 
current. Since the PAM is a Fermi liquid at low temperatures when it is not an insulator, 
the conduction DOS at ui = 0 is equal to the noninteracting result, even though it displays 
a dip in the interacting system. Adapted from [Grenzebach, et at. (2006)]. 
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are more states available for transporting electrons (in conventional met­
als the number of states doesn't change much with T). This enhancement 
primarily causes a reduction in the resistivity, independent of the enhance­
ment that arises from scattering effects. This helps explain the anomalous 
temperature dependence of the resistivity. Similarly, because the DOS is 
asymmetric near the chemical potential, with a large derivative, the ther­
mopower becomes large at low temperature (temperatures smaller than the 
width of the dip). This helps explain the peaks seen in the thermopower 
above. Furthermore, since both the anomalies in the resistivity and the 
peaks in the thermopower are arising from the dip in the DOS, it shouldn't 
be a surprise that the two features are correlated together in some way. 





Chapter 3 

Dynamical Mean-Field Theory of a 
Multilayered Nanostructure 

3.1 Potthoff-Nolting Approach to Multilayered 
Nanostructures 

In 1999, Potthoff and Nolting introduced the formal developments required 
to solve inhomogeneous dynamical mean-field theory [Potthoff and Nolting 
(1999a)]. The original problem they focused on was the Hubbard model on 
a two-dimensional surface of a three-dimensional finite crystal. Their inter­
est was in the stability of the Mott transition as the surface is approached. 
After developing the formalism, they studied the surface Mott transition 
in detail [Potthoff and Nolting (1999b); Potthoff and Nolting (1999c); 
Potthoff (2002)] and the problem of the Mott transition directly in a thin 
film [Potthoff and Nolting (1999d)]. 

We will apply the Potthoff-Nolting approach to multilayered nanostruc­
tures, which involve translationally invariant x-y planes stacked in the lon­
gitudinal ^direction (see Fig. 3.1). Hence we have perfect periodicity in 
the x and y directions, but we allow inhomogeneity in the z-direction. All 
interactions must also be translationally invariant within each plane, but 
can change from one plane to the next. Potthoff and Nolting introduced 
the idea of a mixed basis for inhomogeneous DMFT: Fourier transform the 
x and y coordinates to wavevectors kx and ky but keep the ^-component 
in real space; we describe the z-coordinate with a Greek letter (a, (3, 7 and 
so on). Our requirements are then that each interaction (say a Coulomb 
interaction Ua, for example), the hopping within a plane t'a, and the hop­
ping between planes taa+i and £Q_iQ, are all fixed for a given plane, but 
can change as a function of the plane index a; we do require Hermiticity 
though, so taa+i = i „ + i Q (in the normal state the hopping matrix elements 
will always be real; they can be complex in a superconductor as will be dis-

113 
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Fig. 3.1 Schematic representation of the longitudinally stacked planes of the multilay­
ered nanostructure. The lattice sites are located at the positions of a simple cubic lattice 
(indicated by dots on the far right plane), but the materials (or models) that describe 
the different planes need not be the same. Since we chose the simple cubic lattice for the 
locus of lattice sites, each plane is a square-lattice plane. The kinetic energy is described 
by a nearest-neighbor hopping term, which is the same for every x and y direction on 
each plane (but can vary from plane to plane) and is denoted t|| in the figure, and which 
can vary from plane to plane for hopping to the right or to the left in the longitudi­
nal direction (denoted by t ^ ) . We use Greek labels a, /3, 7 ... to denote the planes 
(which are numbered in blue here), and Fourier transform the representation in the x 
and y directions. The figure shows a situation of a metal-barrier-metal junction, with 
metal leads in pink and the barrier in green. Those colored planes are included in the 
self-consistent calculations (although in most of the data presented here, the pink region 
extends 30 planes on each side, rather than the 10 depicted in the figure). The dashed 
lines indicate the semi-infinite parts of the leads, which are taken to be identical to the 
bulk metal, and are not self-consistently determined; in this sense, they form the left 
and right boundary conditions for the calculation. 

cussed when we develop the theory for Josephson junctions). Because of 
the translations! invariance in each two-dimensional plane, we can describe 
the intraplane hopping via a two-dimensional bandstructure 

£°(kx.k„) = -2«S,[coskx +coskj,], 

where we have chosen the planes to be square lattices. 
The starting point for all of our calculations is to determine the equa­

tions satisfied by the local Green's functions. In the case of inhomoge-
neous DMFT, the formalism is somewhat more complicated than for the 
bulk. First we note that the noninteracting real-space Green's function 

(3.1) 
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G"°nmt(z), with z lying anywhere in the complex plane, satisfies 

J2 [(* + V)*ik + Uk] Glfmt(z) = 5%J, (3.2) 
h 

with —tij the hopping matrix on the simple cubic lattice (organized into 
hopping within a plane and hopping between planes, as described above 
and in Fig. 3.1). Using the mixed basis of Potthoff and Nolting, we Fourier 
transform the x- and y-directions to kx and ky, respectively, and keep the 
z-direction in real space. We denote the two-dimensional wavevector by 
k" = (k x ,k y ,0) and find 

7 

[(z + (j. - C J k | | )5al + t Q Q + 1 < 5 Q + l 7 + t Q a - l < J a - l 7 G ^ n i n t ( k " , z) la(3-

(3.3) 
This has the form we expect; the inverse Green's function (in a matrix 
sense) G£°nmt(k", z)'1 is determined by the quantity in the square brackets 
of Eq. (3.3). 

The next step we need to take is to examine the Dyson equation in the 
remaining real space 

Gaf3(k\z) = G^ i n t (k l l , 2 ) + ^ G - n i n t ( k " , z ) S 7 7 ( Z ) G ^ ( k l i , 2 ) , (3.4) 
7 

where we make the DMFT assumption that the self-energy is local, but it 
can vary from one plane to another (i. e., T:ap = 0 if a ^ (3, but S Q a can 
vary with a). Multiplying on the left by the inverse of the noninteract-
ing Green's function, substituting in its explicit form from Eq. (3.3), and 
performing the sum over 7 explicitly, gives our final equation 

[z + fi- EQQ(z) -ellkll}Ga0(k\z) + iQQ+1Ga+i /3(k11, z) 

+ tQa-iGQ_i / 3(k l l ,z) = 6ap. (3.5) 

When viewed as a matrix in a and /?, this equation has a tridiagonal struc­
ture to it. In other words, for each fixed value of parallel momentum k", the 
problem decouples into a one-dimensional chain in the z-direction, given by 
the tridiagonal structure of the equations. It is precisely this decoupling 
that allows us to efficiently solve the inhomogeneous DMFT. 

The algorithm for solving inhomogeneous DMFT is similar to that of 
the bulk case, with a number of complications. Given a set of local self-
energies for each plane in the simulation, we use the solution of Eq. (3.5), 
to determine the local Green's function on each plane (this is analogous 
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to the Hilbert transform, and is solved with the quantum "zipper" algo­
rithm in the next section). Once we have the local self-energy and the 
local Green's function, we use the conventional algorithm of extracting the 
effective medium, solving the time-dependent impurity problem, and then 
determining the impurity self-energy, just as in the bulk; but it must now 
be done for each plane in the simulation to get the set of all self-energies. 
This loop is then iterated until it converges. 

It seems like this problem becomes infinite in extent, since we have an 
infinite number of sites for an inhomogeneous system that is attached to 
extensive leads. But we can make a simple approximation that restores 
tractability to the procedure—we simulate only a finite number of planes 
and then attach the leftmost piece of the nanostructure to a semi-infinite 
bulk lead which has a self-energy that does not change with plane num­
ber as we move further to the left, and do a similar thing on the right. 
We simply need to choose the width of the simulated region to be large 
enough that the system has effectively healed itself to the bulk limit to 
the right and to the left of the simulated region. When performed in this 
fashion, the calculations are always in the thermodynamic limit, so all local 
DOS are continuous functions of frequency, and do not require any artificial 
broadening. This is the "top-down" approach that we take to multilayered 
nanostructures—we build in the inhomogeneity on top of the thermody­
namic limit, rather than a "bottom-up" approach that starts from atoms 
and increases the number of atoms to get to the nano regime. 

3.2 Quantum Zipper Algorithm (Renormalized 
Perturbation Expansion) 

Tridiagonal systems can have any matrix element of the inverse constructed 
directly via continued fractions and recursion relations. The technique, as 
originally applied to Bethe lattice systems, was called the renormalized 
perturbation expansion, and it is described in detail, in that context, in 
the classic text [Economou (1983)]. This name is an odd choice, because 
the algorithm is exact for calculating the inverse matrix elements of any 
tridiagonal system (no periodicity is required). Here, we prefer to call it the 
quantum zipper algorithm, because we use two sets of recursion relations, 
one from the right and one from the left, that move through the planes, in 
turn, like a zipper is moved. 
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The starting point is the EOM derived above in Eq. (3.5). The equation 
with j3 = a is different from the equations with 0 =fi a. The former is solved 
directly via 

f< (\r\\ z\ = 

z- f /X ^ Q ^ Z J e
Qkll + Ga a(kll,z) r Q - l a + G«„(kll,z) E Q + 1 Q 

(3.6) 
and the latter equations can all be put into the form 

" a a — n + l y k ) Z)tq — n+la-n _ , ^ / \ || 

G a a_n(kll ,z) ~ Z + M E — W - C a - n k l 

" a a - n — 1 (,K ; Z)ta — n — l a —n /Q y\ 
+ GaQ_n(kU,z) ' (6-() 

for n > 0, with a similar result for the recurrence to the right. In these 
equations, we have used SQ to denote the local self-energy E a Q on plane a. 
We define the left function 

T n,\\ _\ G Q Q _ n +l(k , Z)ta-n+ia-n . . 
La-n(k ' Z ) = Ga a_„(kll,z) ( 3-8 ) 

and then determine the recurrence relation from Eq. (3.7) 

toc — na — n — lta—n — la — n 

j Q_n_i(kll ,z) 

We solve the recurrence relation by starting with the result for L_oo, and 
then iterating Eq. (3.9) up to n = 0. Of course we do not actually go out 
infinitely far in our calculations. We assume we have semi-infinite metallic 
leads, hence we can determine L_oo by substituting L-oo into both the left 
and right hand sides of Eq. (3.9), which produces a quadratic equation for 
L_oo that is solved by 

z + (i — E_oo(z) — e , I, 
L-oo(k«,z) = Z -°°k" (3.10) 

LQ_n(k l l ,z) = z + /x -E Q _„(z ) - e " .„ 7 ^ — . (3.9) 

± i v / [ z + M - S _ 0 0 ( z ) - 6 ^ o o k l ! P - 4 t 2 _ 0 0 . 

The sign in Eq. (3.10) is chosen to yield an imaginary part less than zero 
for z lying in the upper half plane, and vice versa for z lying in the lower 
half plane. If L_oo is Ye&^ t n e n w e choose the root whose magnitude is 
larger than i_oo (the product of the roots equals t^.^). In our calculations, 
we usually assume that the left function is equal to the value L_oo found 
in the bulk, until we are within thirty planes of the first interface. Then 
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we allow those thirty planes to be self-consistently determined with La 

possibly changing, and we include a similar thirty planes on the right hand 
side of the last interface, terminating with the bulk result to the right as 
well. This approach is accurate, when the system heals to its bulk values 
within those thirty planes on either side of the interface. If this healing has 
not occurred, then one needs to include more planes before one terminates 
the problem with the semi-infinite bulk solution. 

In a similar fashion, we define a right function and a recurrence relation 
to the right, with the right function 

i W k ' U ) = -Gaa+n - l ( k"'!^|Q + n~ l a + n (3.11) 

and the recurrence relation 

D n,ll r\ — •?<_,, V l-y\ J tg+na+n+itg+n+ia+n , „ . . „ . , 
tta+n{><-", Z) - Z + LI - l_,a+n{Z) - e Q + n k ! 1 = TTjj : • {o.iZ) 

We solve the right recurrence relation by starting with the result for R^, 
and then iterating Eq. (3.12) up to n = 0. As before, we determine R^ 
by substituting R^, into both the left and right hand sides of Eq. (3.12), 
which produces a quadratic equation for R^ that is solved by 

n z + a — £oo(z) — £ i ii 
/*oo(k«, z) = *- ^ 2Shi (3.13) 

± - ^ + M - £ o o W - e | U i i ] 2 - 4 i 2 o ° -

The sign in Eq. (3.13) is chosen the same way as for Eq. (3.10). In our 
calculations, we also usually assume that the right function is equal to 
the value R^ found in the bulk, until we are within thirty planes of the 
first interface. Then we allow those thirty planes to be self-consistently 
determined with Ra possibly changing, and we include a similar thirty 
planes on the left hand side of the last interface, terminating with the bulk 
result to the left as well. 

Using the left and right functions, we finally obtain the Green's function 

Gaa(k« , Z) = j , — (3.14) 
La(kH, z) + fla(kll, z) -[z + tl--Ea(2)- e[kll] 

where we used Eqs. (3.9) and (3.12) in Eq. (3.6). The local Green's function 
on each plane is then found by summing over the two-dimensional momenta, 
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which can be replaced by an integral over the two-dimensional density of 
states (DOS): 

Gaa(z) = J delp2d{ti)Gaa{ei ,z), (3.15) 

with 

PM(4) = 
2n2tla2 \ \ 

(4)2 

(4t |)2 
(3.16) 

and K(x) the complete elliptic integral of the first kind. If t | varies in the 
nanostructure, then changing variables to e = e l / to in Eq. (3.15) produces 

G - ( * ) = / de^Z^2K V l ~ TS Gaa(tie, z), (3.17) 

so that we can take the e variable to run from —4 to 4 for the integra­
tion on every plane, and we just need to introduce the corresponding t^e 
substitution (for e«) into the left and right recurrence relations. In the 
bulk limit (simple-cubic-lattice), where we use ta = t, we find that the 
local Green's function found from Eqs. (3.15) and (3.14) reduce to the well-
known expressions for the three-dimensional Green's functions on a simple 
cubic lattice [Economou (1983)], with a hopping parameter t. 

In this section, we showed how to calculate the local Green's function 
on each plane. The quantum zipper algorithm can also determine all off-
diagonal Green's functions as well. This is done by taking the local solu­
tions, and building up to the off-diagonal ones by employing Eq. (3.5) and 
the definitions in Eqs. (3.8) and (3.11). For details, see Prob. A.23. 

3.3 Computa t iona l M e t h o d s 

The computational issues for a nanostructure are more complex than for 
calculations in the bulk. We describe numerical implementation of the 
Potthoff-Nolting algorithm here. 

Since we have to work with a finite set of computer resources, the nanos­
tructure calculations must be finite in extent. In all of the examples de­
scribed in this work, we take a bulk system to the left and attach it to a 
self-consistently determined nanostructure in the center which has 30 planes 
from the lead of the device on the left before the first nontrivial interface. 
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Then we have a barrier region, which can be as complicated as desired. 
Finally we cap of the right end with another 30 planes and then a bulk lead 
to the right. This means we must simulate 60 planes plus the number of 
barrier planes. Typically, the barrier region is not larger than 200 planes. 
Nevertheless, since we must perform the DMFT algorithm for each plane, 
in order to find the self-energy on each plane, the effort scales with the 
number of planes chosen for the self-consistent region. 

The DMFT algorithm starts with a self-energy on each plane (see 
Fig. 3.2). Next, we use the quantum zipper algorithm to find the local 
Green's function on each plane. This step is the inhomogeneous nanostruc-
ture equivalent to the Hilbert transform. Once the local Green's function is 
known on each plane, we extract the local effective medium via the scalar 
relation 

G0a(z)-l=Ga(z)-1+i:a(z), (3.18) 

on each plane. Next, we need to solve the local impurity problem for the 

given Hamiltonian on the ath plane with the given effective medium. This 

will produce a new local Green's function for each plane, and a new self-

Use Dyson's ^ - ^ 
equation on f £ \ Sum over momentum to find 
each plane \ j y \ l oca l Green's function (quantum 
to find the j f \ z i p p e r algorithm) 

">"e \ / \ lOCa is \ self-energy^ 

Solve the ^ v y ' Use Dyson's equation on each 

impurity p r o b l e n N ^ ^ ^ P l a n e t 0 f i n d t h e e f f e c t i v e m e d i u m 

on each plane ( ^ o a ) 
to find the impurity V_^X 
Green's function 

Fig. 3.2 Flow diagram for the DMFT algorithm in a multilayered nanostructure. Start­
ing with an initial self-energy on each plane, we use the quantum zipper algorithm to 
calculate the local Green's function on each plane. Next, the effective medium for the 
impurity is extracted from the current self-energy and the local Green's function via 
Dyson's equation for each plane. The impurity problem is solved with the impurity 
solver chosen for the given model on each plane. Since the chemical potential is set by 
the filling of the bulk leads, it is input and not updated. Finally, Dyson's equation is 
used to find the new self-energy from the impurity Green's function and the effective 
medium for each plane. 
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energy for each plane. We check to see whether the self-energy has changed, 
and then iterate all of the steps to convergence. 

The biggest complication that enters into the nanostructure calculations 
is the numerical treatment of the determination of the local Green's func­
tion from the local self-energy. When we evaluate Green's functions at the 
Matsubara frequencies, the only singularity in the integral comes from the 
logarithmic divergence of the two-dimensional DOS at zero energy. This 
logarithmic singularity is easy to remove by making a power law substitu­
tion into the quadrature routine near zero (see Prob. A.25). Hence there 
are not many subtle numerical issues on the Matsubara frequency axis. 

When the Green's function is evaluated on the real axis, there is a 
possibility that the integrand has additional singularities that behave like 
the inverse of the square-root of (a — e)2 — b2. This behavior occurs when 
the imaginary part of the self-energy vanishes, as in the bulk simple-cubic 
lattice. In cases where the imaginary part of the self-energy is nonzero, the 
singularity may be avoided by the nonzero imaginary part; nevertheless, it 
is safest to use a quadrature routine that will automatically take care of 
these kinds of singularities, so they will not enter into calculations for some 
ranges of parameters. An outline for how to accomplish this is sketched in 
Prob. A.25. Since the Green's functions for each plane require the L and R 
functions in order to calculate them, we need to perform the recursion for 
all planes to get the relevant functions. Hence, it makes sense to calculate 
the integrations for each plane in parallel, in order to save the labor needed 
in determining the L and R functions for each plane. Such an algorithm will 
be vastly more efficient than one that calculates for each plane separately. 
It is also easy to implement, because we simply set up an integration grid 
over the range where e runs from —4 to 4. The same integration grid is 
used for every plane, so the L and R functions that are generated for a 
given value of e can be used in the calculations for every plane. Note that 
the formalism simplifies somewhat if we assume all t'^a+1 are independent 
of a. Then at each plane, the parallel component of the bandstructure 
is the same, and we can use e instead of k" to label the relevant Green's 
functions. 

This approach creates an algorithm that is embarrassingly parallel. 
When we perform the integration over the two-dimensional DOS, each e 
value is independent of other values, so we can use a master-slave format, 
where the master sends an e value to a slave node, which determines the 
contribution of Ga(e,z) for every a, and sends them back to the master 
node, which accumulates the results and then sends a new e value to the 
slave node. 
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Numerical accuracy of the integration routine is also important. As the 
self-energy develops a sharp structure in frequency on the real axis, the 
integration routine requires more and more points to properly converge. In 
calculations that we have performed, we usually use 5,000 to 10,000 points 
in the integration grid, but have increased to 1,000,000 points when needed 
for frequencies where the self-energy has sharp structures. One always 
has to be careful and check that the integrations have properly converged 
(which can only be achieved by redoing the calculation on a finer mesh and 
comparing it with previous results) in order to ensure that the results are 
correct. Otherwise, it is easy for unsuspecting errors to creep into results 
when one is close to the metal-insulator transition. 

An alternative scheme for the numerical quadrature would be to employ 
integrators that are adaptive and estimate the error of the integration. It 
is not easy to use these integrators on every plane "at once" as can be done 
when the integration grid for each plane is the same, but there do exist 
integrators that can handle singularities at endpoints, and which minimize 
the number of evaluations of the functions in the integrand. The drawback 
is that one has to repeat this effort for each plane in the simulated part of 
the nanostructure, and that can become quite time consuming even on a 
parallel machine. We prefer using the fixed grid for each plane whenever 
possible, although there are circumstances, especially when a system has 
electronic charge reconstruction at an interface, where the grid must change 
for each plane. 

3.4 Density of States for a Nanostructure 

In this section, we give some examples of solutions of the inhomogeneous 
DMFT algorithm for the case of strongly correlated multilayered nanos­
tructures that have no electronic charge reconstruction at the interfaces. 
The systems are tuned so that their chemical potentials match for all T. 
This is only possible in general if there is a symmetry of the Hamiltonian 
that pins the chemical potential to the same constant value for all parts 
of the nanostructure and for all T. We choose to work at the particle-hole 
symmetric point of half filling; our model consists of ballistic-metal leads 
to the left and to the right and of a FK model with half filling for both the 
delocalized and localized particles. In this case, we fix the chemical poten­
tial at fj, = 0 for the leads, which yields half filling. The FK model, will be 
half-filled when the chemical potential equals U/2, which would provide a 
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mismatch. We shift the bands of the FK-model barrier downward by U/2 
to compensate for this. Hence, we write the FK model potential energy as 

VFK = E E U° U^i - \) (w™ - \) • (3-19) 
a ieplane ^ ' ^ ' 

In Eq. (3.19), we use a notation where a denotes the plane number and 
i denotes a site on the plane. In our calculations we always include 30 
self-consistent metal lead planes to the left and 30 to the right. We set 
UFK = 0 for the metal lead planes. 

In Fig. 3.3, we plot the DOS for four different planes in the metallic 
leads as a function of frequency [Freericks (2004b)]. Note how there are 
large amplitude oscillations in the "flat part" of the DOS that are created by 
the change in the quantum-mechanical character of the wavefunctions as we 
move from the metal to the barrier. The number of peaks in the oscillations 
increases by one for each plane as we move away from the interface, and 
the amplitude decays. By the time we have reached the thirtieth plane, the 
DOS looks quite similar to a simple cubic DOS, as expected. Note that 
there are oscillations generated in the other parts of the DOS, with similar 
behavior as well. 

These oscillations are Friedel-like oscillations that arise from the sharp 
change in character of the device at the interfaces. In Fig. 3.4, we show 
these oscillations at u> — 0 as a function of the plane position for UFK = 2 
and 6 nanostructures with a barrier of 20 planes (left panels) [Tahvildar-
Zadeh, Freericks and Nikolic (2006)]. The circles are the data points, and 
the line is a fit of the oscillations to the Friedel-like form 

Aa(u) = 0) = A + Bsin(kaa-6)- — . (3.20) 
(aa + by 

In the ballistic-metal leads, the decay of the amplitude depends inversely 
on the distance from the interface; in the barrier, the amplitude of the os­
cillations decays much faster, being power law when the barrier is metallic, 
and becoming exponential when it is insulating. In the right panels, we 
show the DOS inside the barrier up to the center of the barrier at plane 
number 40 (the results for planes 41 to 80 are a symmetric mirror image). 
For UFK = 6, we use an exponential plot to show the decay of the DOS 
as one moves into the barrier. The decay length of the exponential is inde­
pendent of the width of the barrier [Freericks (2004b)]. For UFK = 2, we 
use a linear scale. Note how there are clear oscillations when the barrier is 
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Fig. 3.3 Lead DOS for an N = 5 barrier device with U — 6. The different panels show 
the DOS in the first metal plane to the left of the barrier, in the second, the third, the 
tenth and the thirtieth. The DOS has oscillations with a large amplitude that decreases 
as we move away from the interface, so that the system approaches the bulk cubic DOS. 
A careful examination of the panels shows that the "flat" region with \UJ\ < 2 shows a 
half-period oscillation for each unit of distance from the current plane to the interface, 
but the amplitude shrinks dramatically as we move further from the interface. Note 
that there are also oscillations (with the same kind of increase in the number of half 
periods with the distance from the interface) in the region with \u>\ > 2. Reprinted with 
permission from [Freericks (2004b)] ( © 2004 the American Physical Society). 

metallic, but the oscillations disappear for insulating barriers (the MIT for 
the FK model on a simple cubic lattice occurs at UFK ~ 4.92). 

In Fig. 3.5 (top), we plot a false color contour plot of the DOS for a 
nanostructure with 20 planes in the barrier and UFK = 2. The ripples from 
the Friedel-like oscillations are most apparent in the central red region of the 
metallic leads. One can also see how the "bands" widen in the barrier, but 

~ I ' I ' I ' I ' I ' I ' I *": 
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Fig. 3.4 DOS at w = 0 for multilayered nanostructures with 30 self-consistent planes 
in each metallic lead and for 20 planes in the barrier, which is described by the Falicov-
Kimball model at half filling with UFK = 6 (upper panels) and UFK = 2 (lower panels). 
Note how there are Friedel-like oscillations in the metallic leads that decay inversely 
with the distance from the interface; in the barrier the decay of the amplitude is more 
rapid and becomes an exponential decay when the barrier is insulating. Adapted with 
permission from [Tahvildar-Zadeh, Freericks and Nikolid (2006)]. 

are depressed near the chemical potential. In the bottom panel, we enhance 
the oscillations present in the nanostructure DOS by taking the difference 
with the corresponding bulk DOS and assigning colors to amplitudes close 
to the origin. Now, one can see oscillations develop in all regions of the 
DOS, including within the barrier. 

In Fig. 3.6, we plot a similar false-color plot for the correlated insulator 
case of UFK = 6. The oscillations in the metallic lead are similar, but the 
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Fig. 3.5 (Top) False-color contour plot of the DOS for a N = 20 barrier plane device 
with UFK = 2. The barrier planes are the lowest ten planes at the bottom of the 
figure, while the thirty metallic planes lie on top. Note how the ripples of the Friedel 
oscillations are most visible in the central region, where the DOS has a plateau (red 
region). (Bottom) False-color plot of the difference between the nanostructure DOS and 
the corresponding bulk DOS for the lead and the barrier. By taking this difference, 
oscillations (on top of the bulk DOS) are enhanced and more easily imaged. We assign 
colors to amplitudes close to the origin to bring out the oscillatory behavior more clearly. 
Bottom figure prepared with the assistance of S. Boocock. 

barrier region looks quite different — it has exponential decay near the 
chemical potential and oscillations near the metallic-lead band edge. In the 
lower panel, we plot the difference between the nanostructure DOS and the 
bulk DOS for the lead or for the barrier (depending on the plane location). 
The oscillations are further enhanced by focusing on the low amplitudes 
near the origin. Note how this visualization technique now brings out the 
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Fig. 3.6 (Top) False-color contour plot of the DOS for a N = 20 barrier plane device 
with UFK = 6. The barrier planes are the lowest ten planes at the bottom of the figure, 
while the thirty metallic planes lie on top. Note how the ripples of the Friedel oscillations 
are most visible in the central region, where the DOS has a plateau (yellow region). Note 
how the oscillations do not change too much in the metallic lead (from Fig. 3.5), but 
the barrier DOS changes dramatically because of the exponential suppression near the 
chemical potential (purple region). Reprinted with permission from [Freericks (2004b)] 
( © 2004 the American Physical Society). (Bottom) False-color plot of the difference of 
the nanostructure DOS from its bulk values. Note how in this picture the oscillations 
on top of the bulk DOS are strongly enhanced and can be seen to occur in all regions 
of energy, and even some can be seen within the barrier near the band edges. Bottom 
figure prepared with the assistance of S. Boocock. 

oscillations present in the upper and lower regions of the DOS in addition 
to those already identified in the central region (in the top panel). Also, 
the oscillations within the barrier can now be clearly seen near the interface 
and near the band edges. 
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Fig. 3.7 Local DOS (vertical axis) as a function of frequency (horizontal axis) in the 
barrier for a single barrier plane multilayered nanostructure. The barrier is described 
by the Falicov-Kimball model at half filling with various UFK values. Note how the 
DOS at the chemical potential initially decreases, but then becomes a local maximum 
(while still decreasing with increasing interaction strength). The DOS always remains 
metal-like as demonstrated in Prob. A.34. Reprinted with permission from [Freericks 
(2004b)] ( © 2004 the American Physical Society). 

In Fig. 3.7, we show the local DOS on the barrier plane for a single-plane 
nanostructure, whose barrier is described by the Falicov-Kimball model 
with different values of the interaction strength. Note how the double-peak 
structure of the Mott insulator develops as UFK increases, but the central 
region of the DOS does not go to zero. Instead, it becomes a local maxi­
mum and appears metal-like for large interaction strength. This behavior 
arises from the delocalizing effect of the metallic leads, and can be thought 
of as a normal-state proximity effect of the leads — they do not allow an 
insulating state to form because there are interface localized states present 
for all interactions strengths. Hence, as one tries to confine the Mott insu­
lator into a thin layer, it "spreads out" slightly and presents a conducting 
channel at low energies. These junctions never display insulating behavior 
in their resistance. For a more quantitative analysis of this system, look at 
Prob. A.34. 

We have a few comments to make about these results. First off, the 
Falicov-Kimball model is not a Fermi liquid, so one might ask what will 
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happen to these nanostructures if the system is described by a model (like 
the Hubbard model) that has a Fermi-liquid ground state. In the bulk, we 
will see the development of the Fermi-liquid coherence peak at low tem­
peratures (below the renormalized coherence temperature). In general, we 
expect such a peak, and such a coherence effect to survive in these nanos­
tructures as well. At low enough temperatures, these systems will become 
good conductors. 

Next, we discuss what to expect for the transport when the DOS starts 
to exponentially decay in the barrier. When the barrier is composed of a 
bulk insulator, then the DOS will decrease with the thickness of the barrier, 
and the transport should be dominated by quantum-mechanical tunneling 
at low temperature. This tunneling gives way to incoherent thermally acti­
vated transport (described by Ohmic scaling) when the temperature is high 
enough [Freericks (2004a)]. 

Finally, one might wonder how this many-body approach of inhomoge-
neous DMFT compares to other approaches such as the Landauer approach, 
which is based on a single-particle picture with particles moving through 
fixed potential barriers, often determined in a phenomenological way. From 
the fact that the DOS of the leads does not change too much with the char­
acter of the insulating phase, we can conjecture that the treatment of the 
lead as a semi-infinite metal in the Landauer approach is probably quite 
reasonable. Further, in the insulating phase, we expect there to be an effec­
tive potential barrier to the electrons, which might be able to be modeled 
(at low T) by an energy-independent barrier as in the Landauer approach. 
So if one chooses the barrier height and shape properly, the results of a 
Landauer approach are likely to be able to reproduce some of the main 
features of the many-body calculation. But this approach always requires 
some kind of fitting to determine the barrier height and cannot be viewed 
as a fully microscopic model for the transport. Nevertheless, it would be 
interesting to try to quantitatively compare these two approaches. 

3.5 Longitudinal Charge Transport Through a 
Nanostructure 

The derivations that led up to Eqs. (2.151) and (2.152) were performed for 
bulk systems that have the full translational symmetry of the lattice. In 
addition, the conductivity was calculated for a uniform (q = 0) electric field. 
In a more general case, where the field has momentum dependence, the dc 
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conductivity gains some momentum dependence <r(q). Maxwell's equations 
relate the charge current density with the electric field and the conductivity. 
In particular, for a translationally invariant system, the relation is that 
j c(q) = <r(q)E(q). Hence the current is proportional to the product of the 
conductivity and the electric fields in Fourier space. If we invert the Fourier 
transform and express the result in real space, then we find that the product 
of two Fourier transforms is transformed into the convolution of the two 
functions in real space, so we have j c (R) = / ddR'a(R — R ' )E(R') . The 
conductivity depends on the difference of the two spatial arguments since 
we have translational invariance on the lattice. The most general form on 
a lattice, when there is inhomogeneity, is then 

3i=aY,<r<*f)Efi. (3.21) 
P 

Equation (3.21) shows that the relationship between the current and the 
electric field is an inherently nonlocal relationship. This result is often 
presented in elementary texts on electromagnetism, but it can be easily 
forgotten, since it may seem reasonable to assume that the current at a 
given location in space depends solely on the electric field at that location. 
That assumption is false, because fields at other locations can affect the 
current at a given position. 

Another important observation we need to make is that when the cur­
rent is flowing in a steady state, we have that the charge density is fixed as 
a function of time (like water flowing through a hose—the amount of water 
in the hose at any given time is the same, even though it is moving, because 
the faucet continually supplies more water to make up for the water that 
exits the end of the hose). If the charge density is a constant, then the 
equation of continuity V • j = dtp = 0 implies that the number current is 
conserved throughout the sample. This means that the charge current that 
is incident on any plane must be the same as the charge current incident 
on any other plane. This fact also will play a crucial role in our analysis of 
transport in inhomogeneous systems. 

We also assume, at the moment, that we have no temperature change 
through the device (i.e., we consider the isothermal conductivity), and we 
assume that there is no electronic charge reconstruction, so the charge 
density is uniform in each of the materials that make up the device (in 
practical situations, this is only guaranteed at all T for the case of half 
filling, where the chemical potential is independent of T due to particle-
hole symmetry). 
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So we must formulate the transport problem in real space. The first 
step is to determine what the number current operator is for longitudinal 
flow in the multilayered nanostructures. Taking the steps that led to the 
bulk current operator in Eq. (2.119), we see that there is no change for 
the real-space expression in a nanostructure, we simply need to restrict the 
direction of the current to lie in the longitudinal direction (for current flow 
perpendicular to the planes), so we have 

jlong = £.long) £»* = - i a t a a + 1 £ (clca + u-cl+uCal), (3.22) 

OL iGplane 

where the summation is over all the sites i of the two-dimensional planes, 
and the notation ai denotes a lattice site on the ath plane at the zth location 
on the plane. Note that the subscript a on the current operator denotes the 
total current operator flowing through the ath plane, and does not indicate 
a Cartesian coordinate of the current operator; the current operator is 
always taken in the z-direction for the longitudinal flow. The current at 
plane a is thus defined to be the total number of electrons flowing to the 
left minus the total flowing to the right. For a derivation of Eq. (3.22), see 
Prob. A.27. 

A comment is in order about the choice given in Eq. (3.22) for the 
current associated with the a th plane. First note that the form chosen is 
not the same as the choice that would arise from taking the commutator 
of the polarization operator (at the a th plane) with the Hamiltonian. The 
direct result from the commutator j a = i[H,^2i€plane zac'aicai] 

3a — ~% 2-^, raa + 1\Ca+licai ~ Caica+li) + * a - l a ( c a - l t C a i ~~ Caica-li)\zan 
iGplane 

(3.23) 
does not seem reasonable, because it is weighted by the 2-coordinate of 
the a th plane, rather than involving the difference of currents moving in 
opposite directions (at the ath plane). When we have full translational 
symmetry, we derive the conventional form for the current operator by 
shifting the spatial index of one of the terms, to explicitly carry out the 
cancellation of the spatial coordinates (just take the summation of the above 
result over a, and shift a —> a + 1 in the last two terms). More reflection 
on this issue, shows that the explicit form of the local current operator that 
will enter the Kubo formula actually originates from the —j • A term that 
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corresponds to the perturbation of the Hamiltonian due to the electric field; 
this is because we evaluate the expectation value of the total current with 
the perturbation of the Hamiltonian due to the external field and that field 
enters via the vector potential value at a specific plane [see Eq. (2.128)]. 
Hence the conductivity matrix is denned from the piece of the total current 
operator that couples to the field at plane a and, since the total current will 
be the sum of the currents at each plane, the current-current correlation 
function for the conductivity matrix involves the local current operators 
that couple to the vector potential. Hence, we choose the perturbation of 
the Hamiltonian to be 

H'{t) = - i | e | o ^ t Q Q + 1 ( 4 + l i c Q i - 4 c Q + l j ) > l a ( t ) , (3.24) 
oti 

where we have taken the vector potential along the ^-direction, and in­
dependent of the intraplane coordinates, because the field is uniform for 
each plane. We feel this choice makes good physical sense because we 
couple the vector potential to the physical current between the ath and 
a + 1st planes. Alternatively, one can view this as a coupling of the 
current between the ath and a + 1st plane to the electric vector poten­
tial located halfway between those two planes (in this interpretation, we 
would use [Aa + Aa+i}/2 as the coupling field). Finally, in the spirit 
of how we break up the energy polarization into pieces associated with 
each lattice site, one can take the local current operator to be j^ns,sym _ 
-iata-ia{4tca_1-clt_1cJ/2-iataa+i(cl+1ca-cltca+1)/2, corresponding 
to the average of the currents located just to the left and to the right of 
plane a. This choice sounds like the most physical choice, but the calcu­
lations for it are somewhat more complicated, and it is not likely the end 
results are too different from our first choice. The difference between the 
two approaches is actually quite simple. In the first approach, one should 
envision the spatial indices a and (3 to correspond to za + a/2 and zp + a/2; 
that is, they are shifted to the right by half the distance between the planes. 
In the second, symmetrized approach, the a and (3 indices denote the planar 
indices. For this reason, we don't expect the final results to be too different 
for either approach. Due to the simplicity, we choose to take the current 
operator to be the current between the ath and a + 1st planes for our 
derivations below, and we show how to get the corresponding symmetrized 
results at the end. 
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As before, we will use the Kubo formula to find the dc conductivity 
matrix. We express it in terms of a polarizability matrix, which we first 
evaluate on the imaginary time axis, then we Fourier transform to the 
Matsubara frequencies, and finally we take the analytic continuation and 
the limit of the frequency going to zero to find the conductivity matrix. 
Hence 

aaP(0) = lim R e ^ £ M , Tla(,(iVl) = [ dre^' (TT^ (T)^S (0)). 

(3.25) 

Since the vertex corrections vanish in the bulk DMFT when we are in 
the infinite-dimensional limit, we are going to make the approximation here 
that we neglect vertex corrections for the nanostructure as well. This step 
isn't even valid in the infinite-dimensional limit, because it relied on the ve­
locity operators being odd in parity and the Green's functions being even, 
but parity is not a good quantum number when there is lattice inhomo-
geneity except for special planes, if the overall structure has a mirror-plane 
symmetry. Hence, the arguments used before to guarantee the vertex cor­
rections would vanish will not hold any longer. Furthermore, we are look­
ing at a three-dimensional system, so there is no guarantee that the vertex 
corrections vanish anymore, in any case. We continue to neglect them, nev­
ertheless, because we expect they will be small, since they vanish in certain 
limits, and for a pragmatic reason, we don't have any straightforward way 
to evaluate them for all models (although they could be systematically cal­
culated for the Falicov-Kimball model). A longer discussion of this issue 
can be found in the last section of this chapter. 

Since we are neglecting the vertex corrections, the polarizability ma­
trix will correspond to the bare function, which has the same functional 
form when represented in terms of Green's functions, as the noninteract-
ing case. Hence, we can evaluate the polarizability matrix by employing 
Wick's theorem, which pairs each of the electron creation operators with 
a respective annihilation operator in the four-operator expectation value, 
and writes the four-operator expectation value as the sum of products of 
all different two-operator expectation values {i.e. Green's functions). We 
introduce this technique here, because it is an alternative way to derive our 
equations, and we have already seen Wick's theorem when we discussed the 
jellium problem. 
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X 
ijGplane 

Substituting the expressions for the current operators into the Kubo 

formula gives 

f0 

Jo 

Y; \rr [ct + li(T)cai(T) ~ c L ( r ) c a + l i ( r ) j 
iGplane 

x [<4-(°)C/HI;(°) - 4+b'(°)%(0)] )• (3-26) 

Now we perform the pairings as directed by Wick's theorem (this process 

is called evaluating the contractions) and we need only worry about the 

pairings between operators at time r and those at time 0, because the 

other pairings can be shown to cancel themselves out. We also assume that 

we pair only creation and annihilation operators together, because we are 

in the normal state. Employing the notation 

Ga0lj{T) = - ( T T c Q i ( r ) 4 ( 0 ) ) , (3.27) 

we find tha t the polarizability matr ix becomes 

n Q / g(^ ; ) = a2taa+itgp+i / dreWlT ^2 I - G/3+ia+iji(-T)GQjgjj(T) 
ij& plane 

+ G/3a+i j i ( - r )G Q / g + i , j ( r ) + G/3+iaji(—T)Ga+ipij{T) 

- Gpaji(-T)Ga+ll3+lij(T) • (3.28) 

Expanding the Green's functions in the Fourier series in terms of the Mat-

subara frequency Green's functions, and performing the integral over r 

yields 

na/3(ii/;) — a taa+itp(3+iT y j y j I -G/3 + i Q + 1 j i ( iw m )G Q /3 i j ( iu j m + i ^ ) 

m ijs plane 

+ G0a+lji(ium)Ga0+lij{ium + iv{) 

+ G(3+iaji(iu}m)Ga+i/3ij(iu>m + ivi) 

- G@aji(iu}m)Ga+\0+\ij{ioJm + ivi) • (3.29) 
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The sum over the planar indices i and j can now be performed. Since 
the Hamiltonian is translationally invariant in the planar directions, the 
summations involve functions of Rj — R^ and of Rj — Rj. The product of 
these two functions has a simple Fourier transform, so we get 

nQ/3(if;) = a tqg+itpp+iTy /) j 

m k» 

- G ,
/3+ia+i(k l l,iwm)G'a/3(k l l,fwm + wt) 

+ G/3Q+i (k11, iujm)Ga/3+i (k", iu)m + m) 

+ G0+ia{k^, iu)m)Ga+ip(k)\, ium + iv{) 

- G/3a(k", iu>m)Ga+ip+i(k11, iujm + ivi) (3.30) 

Now we need to perform the analytic continuation. We rewrite the 
Matsubara summations using contour integrations as in Fig. 2.9, substitute 
f(u) — ivi) —> f{ui), then let ivi —> p + iS. After performing the substitution 
ui —+ to + v in the relevant integrals, we are left with the final formula for 
the polarizability 

nQ/3(i/) = 
a taa+itpp+i 

i _ ii j 

dui 

/(w) { - ImG0+lQ+l (k«, u)Ga0(k", w + i/) 

+ImG0Q+i (k", u)GQ/3+1 (k" ,u + v) 

+ImG/3Q(kll,w)GQ+i/3(kH,a; + v) 

-ImG/jaCk11, w)GQ+i /3+i (k11, w + v)} 

+ /(w + i / ){-GJ+ l a + 1(k»,w)ImGQ / 9(kl l ,a ; + i/) 

+ G £ a + 1 (k", u)lmGa0+1 (kH, w + v) 

+GJ+ l a(k»,w)ImGQ +ip(kll,w +1/) 

-G£Q(k», W)ImGQ+1/3+1 (k", w + i/)}]. (3.31) 
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Using the definition of oap{<S) in Eq. (3.25), produces our last formula for 
the conductivity matrix, after noting that —duf{u) = l/4Tcosh2(/?o;/2), 

J -ImGQ/3+i(ell,w)ImG/3a+i(e",w) 

-ImGQ+1/3(ell,w)ImG/3+iQ(ell,w) 

+ImGQ/3(e
11, w)ImG,g+iQ+i (e11, w) 

+ImG/3a(e",w)ImGc,+i/3+i (3.32) 

where we extracted the relevant dimensionful constants (the integrand 
is taken to be dimensionless, all of the dimensions are included in the 
prefactor). Note that the indices a and j3 (for the conductivity matrix, 
not the Green's functions) correspond to the spatial locations between 
the Q and a + 1 planes and the /3 and /? + 1 planes, respectively. If 
we want the symmetrized version of the conductivity matrix, it satisfies 
< j m (0 ) = K- i /3 - i (0 ) + CTQ-I/J(0) + <ra/3_i(0) + ffa/3(0)]/4. In this case, 
the spatial indices on the left-hand side are always the planar indices. 

In order to determine the conductivity matrix, we need to compute the 
off-diagonal Green's functions that correlate different planes together. This 
is described in Prob. A.23. Note that one needs to specify the actual matrix 
dimensions of the conductivity matrix before calculating it. Since the bar­
rier region is often the region with the largest contribution to the resistance 
(especially in situations where the leads are made from ballistic metals), we 
start with the planes at the center of the device and work outwards. In the 
case of ballistic leads, which provide only a contact resistance, since they 
have vanishing bulk resistivity, we need to take the matrix out to include 
only the first plane of the interface within the lead. In other cases, one 
takes the matrix size out to the point where the probes used to measure 
the voltage drop in the experiment lie. 

Given the conductivity matrix in Eq. (3.32), we now show how to extract 
the resistance of the multilayered nanostructure. We begin from the relation 
between the electric field and the expectation value of the planar current 
density (per unit cell) in linear response 

(j1°nsn=aJ2^p(O)E0. (3.33) 
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Assuming that the conductivity matrix is invertible, we multiply by its 
matrix inverse to find the electric field at each plane in the steady-state 

EQ = ^ K 0 ) ] ^ { j ^ o n g ' c ) , (3.34) 
a P 

where we can drop the index (3 from the current operator because it is 
conserved, and hence identical on each plane. Now we integrate the electric 
field over all of the planes to find the voltage drop across the device 

V = a ^ E Q = ;>>(0)U<j l o"s-c> (3-35) 
a a/3 

(the voltage drop is the difference of the voltage from the left and right leads, 
which accounts for the positive sign for the first equation above). Ohm's 
law says that V = Rnl, so we can immediately extract the resistance-area 
per unit cell product of the nanostructure 

Rna
2 = 5>(0) la f l - (3.36) 

a/3 

The validity of this analysis, by demonstrating that the conductivity matrix 
is indeed invertible, will be presented in detail below. 

Note that it is a resistance Rn that is extracted from a nanostructure 
calculation, and not a resistivity. This occurs because the nanostructure 
has a specific geometrical arrangement, and the measurement technique 
involves the measurement of the total current through the nanostructure 
and the voltage across it, leading to the extraction of the resistance. If this 
was a homogeneous system, we could multiply the resistance by appropriate 
geometrical factors and extract a resistivity, but that procedure makes no 
sense for an inhomogeneous system. 

It is interesting, nevertheless, to take the bulk limit of the derivation 
that led up to Eq. (3.36). Doing so will allow us to extract a resistance 
and should yield Ohm's law [Ohm (1827)]. We first examine the case of a 
ballistic metal that has no scattering. Even though the resistivity vanishes 
in that case, a ballistic lead can have a finite voltage drop, and hence a finite 
resistance over it when we examine the voltage drop over the semi-infinite 
lead. The corresponding resistance is called a contact resistance, and was 
first discussed by Sharvin [Sharvin (1965)]. 
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To get quantitative, we first note that in the bulk, the Green's function 
for a ballistic metal satisfies 

Gaa+n(e",w) = -
^ - ( w + zz-el l )2 

"l |n| 
u> + /x - e'l V 4 - ( u , + M-e | 1 ) 2 

_ + l _ 

v / 4 - ( w + / i - c l l ) ! 
eW | n | , (3.37) 

when \UJ + /i — e'l| < 2, which is when there is a nonzero imaginary part. The 
phase factor 6 is determined by the term in the square brackets, which lies 
on the unit circle. If we examine the aa + n component to the dc conduc­
tivity in the bulk at low temperatures (where we can treat the derivative 
of the Fermi factor as a delta function and integrate over w and simply set 
UJ — 0), we find 

vaa+n(0) = ^ / d e W M I / * " e"l < 2) (3.38) 
4 x ; rnr̂  f—cos(n+ l)0cos(n — 1)6 + cosnOcosnO]. 

4 - (fi - ell)2 

The term in the brackets becomes sin2 0 = 1 — (/x — ell)2/4 which cancels 
the term in the denominator, so the integral becomes just an integral of 
the two-dimensional DOS from zx — 2 to (j, + 2. Evaluating the integral at 
half-filling (/x = 0) produces crQp(0) = 0.63e2/ha2. This agrees with the 
Sharvin result that can be calculated directly from the Fermi surface area 
[the Sharvin conductance is (A;2r/47r) (e2/h) per spin with k\ a suitable 
average of the square of the Fermi wavevector for the noninteracting Fermi 
surface] [Freericks, Nikolic and Miller (2001)]. 

It is possible to show that in the general bulk case, where there is 
scattering in the system and a nonvanishing self-energy, the conductivity 
matrix is a function of a—(5 (because we now have a homogeneous problem). 
Now we want to work in Fourier space rather than real space to perform 
calculations. We write the conductivity matrix as 

cra0(o) = j2^oyq{Za'Z0) (3-39) 
9 

with crq(0) = ^a/3CT«/5(0)exP[_^(2a ~ z/3)]/^2> a n d N the number of 
planes used in the system. Similar expressions can be written for <r~i(0), 
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Fig. 3.8 Numerical properties of the conductivity matrix for a nanostructure with thirty 
planes in each lead and ten planes in the barrier. The leads are ballistic metals and the 
barrier is described by the Falicov-Kimball model at half filling with U = 5. The dashed 
line shows when the conductivity matrix includes the first plane of the lead. In panel 
(a), we plot the resistance-area-per-unit-cell product as calculated from the truncated 
conductivity matrix. Note how we approach the final limiting value once we reach the 
barrier-lead interface. In panel (b), we plot the logarithm of the determinant of the 
truncated conductivity matrix. Note how the determinant changes sharply when we 
enter the lead, which is expected because there is no scattering in the lead. 

and a direct calculation shows that cr^^O) = l/(aq(0)N2). Then we can 
directly compute the resistance, and find it satisfies the Ohm's law scaling 
Rn = Pbu\kNa/a2, with p^lk = a^al3cra0{O)/N (recall the length of the 
system is L = Na). Hence, our formalism has the correct bulk limit. 

One issue of these calculations is does the truncated conductivity ma­
trix have a well-defined matrix inverse so that the resistance calculation 
is well defined? We illustrate that this is so in Fig. 3.8. This is a plot of 
properties of the conductivity matrix for a ten-plane barrier described by 
the Falicov-Kimball model with U = 5. Note how the conductivity rapidly 
converges to its final value as the number of planes in the truncated ma­
trix becomes larger than the size of the barrier. In panel (b), we plot the 
logarithm of the determinant. Note how it starts to sharply decrease once 
the truncated conductivity matrix includes the barrier and the first plane 
in the lead. This is expected, since the conductivity matrix in the lead as­
sumes one of two values depending on whether a is larger or smaller than j3 
and quickly becomes nearly singular. Nevertheless, the computation of the 
resistance-area-per-unit-cell product is completely robust and well-defined. 
As a general rule, one should truncate the matrix at the size of the barrier 
plus one plane on each side to calculate the resistance of a junction. 
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Note that we can now argue a posteriori that the choice we made 
for the local current operator in Eq. (3.22) is a good choice. Our results 
reproduce the Sharvin contact resistance, have a proper bulk limit, and 
the conductivity matrix has the correct behavior for the resistance of a 
junction with ballistic metal leads. While other choices may also produce 
these results, we feel the physical arguments given above make the choice 
we take to be the most reasonable one. 

We make one final comment about conductivity calculations. In the 
case where the chemical potential is either fixed at /i = 0 for symmetry 
reasons, or if we are working at low enough temperatures that the chemical 
potential does not change much with T, then there is a huge simplification 
in the computation of the resistance as a function of T. Since the DOS and 
self-energies of the nanostructure do not depend on temperature for the 
Falicov-Kimball model, we can perform the calculation of the resistance for 
a range of temperatures in parallel, by simply modifying the value of the 
derivative of the Fermi factor that goes into the integral for the truncated 
conductivity matrix. This saves much computation time, since we do not 
need to recalculate all of the off-diagonal Green's functions for each tem­
perature. Unfortunately, this speed up will work only when both the DOS 
and the chemical potential are (nearly) independent of T. 

3.6 Charge Reconstruction (Schottky Barriers) 

In this section, we describe how to modify the DMFT procedure to include 
the charge reconstruction that generically takes place at each interface in a 
multilayered nanostructure. The reason why is simple—the nanostructure 
has its chemical potential set by the leads, which extend out to infinity in 
each direction. If the chemical potential of the barrier region is different 
from that of the leads, then the barrier is in an unstable electronic state, 
which requires charge to rearrange itself, forming screened dipole layers 
at each interface, until the system reaches a steady state with a static 
redistribution of charge. This effect is called the Schottky effect [Schottky 
(1940)] when the interface is between a conventional semiconductor and an 
sp metal. Here we show how to determine this effect for strongly correlated 
systems. 

The approach will be a semiclassical one. Since long-range interactions 
can be treated in a mean-field sense in DMFT, such an approach is con­
sistent with the local approximation for the self-energy that we have been 
taking throughout the text. We will first calculate the electronic charge 
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on each plane via the Green's function approach of Potthoff and Nolt-
ing [Potthoff and Nolting (1999a)]. This calculation can be performed on 
the imaginary (Matsubara) frequency axis because the charge can be found 
by summing the Green's functions over all frequencies (with an appropri­
ate regularization scheme). For some models, like the Hubbard model, 
or the PAM, one cannot perform the calculations solely on the imaginary 
axis with the NRG, so they will need to use a real-axis code to find the 
charge densities on each plane (this complication will be described in de­
tail below). Next, we find the charge deviation on each plane; namely, we 
determine whether extra charge has entered or left the plane. Since the 
positive background charge of the ions remains the same, the charge de­
viation will give rise to an electric field. There are two different ways to 
treat this field. The simplest is to assume the electric charge is uniformly 
spread over the plane [Nikolic, Freericks and Miller (2002a)]. Then the elec­
tric field is constant, perpendicular to the plane, and pointing away from 
it in both directions if the net charge density is positive, while pointing 
toward the plane if the net charge density is negative. The second method 
uses the actual distribution of the ions, and the spatial profile of the elec­
trons, if available, to calculate the charge [Okamoto and Millis (2004a); 
Okamoto and Millis (2004b)]. This approach is closer to an Ewald-like 
summation [Ewald (1921)] of the charge densities. It is expected that the 
two treatments should yield similar results. 

The magnitude of the field when treated as a plane of uniform charge 
density is just 

|E| = N l f t - P S " " ^ (3.40) 
2eo£ra 

where pa is the quantum-mechanically calculated electron number density 
at plane a, p^ulk is the bulk electron number density for the material that 
plane a is composed of, eo is the permittivity of free space, and eTa is the 
relative permittivity of plane a. The contribution to the electric potential 
Vc(z) from this field satisfies 

E = —^Vc{z). (3.41) 

Since the electric field is constant in magnitude, it is straightforward to 
compute the contribution to the Coulomb potential at plane /3 due to the 
change in the charge density at plane a: 
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VS(a) = 
lel(Po .bulk p)a 

2e0 

Z^7=Q+lL2e r . 

o, 
2e r 7 

0 
-y=a- l l 2 e r + 

P > a 
0 = a . (3.42) 
(3<a 

Note that if the relative permittivity is a constant, independent of the 
planes, then the potential energy is proportional to — |z a — zp\/eT as one 
might expect. The reason why we need to sum over two terms in Eq. (3.42) 
is because we envision the ath plane of charge to be infinitesimally thick, 
and go through the lattice sites of plane a, but the dielectric has a thickness 
of a and is centered around the plane of atoms. Hence, if the permittivity 
changes from one plane to another, a polarization charge develops half-way 
between the two planes where the dielectric is changing, and the electric 
field has a discontinuity at that point (see Fig. 3.9). 

We have added a term p to Eq. (3.42). This is used to help the calcula­
tions converge more easily. The parameter p = ^2a{pa — P^ik)/N with N 
the total number of self-consistent planes in the simulation. The parame­
ter p is the average excess electron density, spread uniformly through the 
system. When the algorithm has converged, the parameter p will be close 
to zero; this needs to be checked in any calculation, of course. 

Fig. 3.9 Geometry taken for the classical electrostatics problem. We show the blow up 
of two planes, a and Q + l . Assuming the charge density on plane a is (pa — p^alk)a = aa 

and the relative permittivity is tTa (and similarly for the a + 1 plane), then the change 
in polarization at the interface between the two dielectric planes induces a polarization 
charge on the interface (denoted <7poi) that leads to a discontinuous jump in the electric 
field halfway between the two lattice planes. Once the fields are known, we integrate 
to get the electric potentials. Note the discontinuity in the electric field occurs at the 
midpoint between the two lattice planes. 
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It is actually the potential energy -\e\Vc = V that shifts the chemical 
potential at each planar site. We define a parameter 

eschot(a) = r ^ - , (3.43) 
zeoCra 

which determines how the extra charge density decays away the interfaces. 
The parameter eschot has the units of an energy multiplied by an area; the 
product of eschot with the local DOS has units of the inverse of a length, 
and this is what determines the decay length of the charge profile. Using 
this parameter, we can immediately calculate the potential energy due to 
the Coulomb interaction 

{ E ? = a + i |[eschot(7) + eschot(7 - 1)], P > <* 
0, 0 = a. 

E ? = Q - i |[eschot(7) + eSchot(7 + 1)], 0<a 
(3.44) 

Note that a similar analysis can be carried out if one uses the Ewald-like 
technique for determining the charge reconstruction. Note further that p 
is used to improve the convergence of the iterations and it vanishes for the 
(converged) final fixed point solution. 

These potential energies modify the Hamiltonian by the long-range 
Coulomb interaction of the charge reconstruction. The additional piece 
of the Hamiltonian (due to the charge rearrangement) is 

Wcharge = $ > a E 4c Q i - (3-45) 

a ieplane 

Hence, they can be treated by shifting the chemical potential \x —> fi — Va on 
each plane depending on what the Coulomb potential energy is for the given 
plane. For consistency, we must have that the potentials go to zero as we 
move far enough into either of the leads. This requirement enforces overall 
charge conservation—any charge that moves out of the barrier remains in 
the leads, localized close to the interface, and vice versa. Of course, the po­
tentials Va that appear in the electronic charge reconstruction Hamiltonian 
in Eq. (3.45) must be determined self-consistently. 

There will be no electronic charge reconstruction if the chemical po­
tentials in the bulk of both the leads and the barrier match. In order to 
have freedom to adjust the mismatch of the chemical potentials, we need 
to be able to change the value of the band zero of the barrier relative to 
the band zero of the leads. This parameter is AEpa, which vanishes in the 
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Fig. 3.10 Flow diagram for the DMFT algorithm in a multilayered nanostructure with 
electronic charge reconstruction. The main algorithm in black is the same as before, 
and is all that is needed on the real axis, if an imaginary-axis formulation is available. 
The red portion describes how to perform the self-consistent charge reconstruction. We 
determine the charges on each plane, determine how they differ from the bulk charge on 
the plane to find the excess or deficit charge. Then we use classical electromagnetism 
to find the electric potentials on each plane and then the contribution of the potential 
energy to the electrochemical potential on each plane. Then we average the potentials 
with a large damping factor so that the potentials are updated slowly (typically we take 
99% or more of the old potential in the average). This then is all that is needed for the 
next loop of the algorithm. 

leads, and is generically a nonzero constant in the barrier (independent of 
the temperature or the charge rearrangement). Hence we add an additional 
term - YLa Emplane A £^« cL c<*i t o t h e Hamiltonian. 

The DMFT algorithm is then modified as shown in Fig. 3.10, with the 
new steps indicated in red. If there is a separate algorithm available for 
the Matsubara frequency Green's functions, then we use the red part on 
the imaginary axis, and we don't need it on the real axis. If such an 
algorithm does not exist (such as when we perform calculations with the 
NRG), then we would use the red part on the real axis. The new steps 
are to first find the electron density on each plane. Then we subtract the 
bulk charge density of each plane to find the excess or deficit charge on the 
given plane. Once the change in charge density is known, we can calculate 
the electrical potential, and then the contribution to the potential energy. 
This gets added to the chemical potential to determine the electrochemical 
potential at each plane. But we need to average that result with the old 
potentials in order to be able to slowly converge to the final answer. If the 
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potentials are updated too much, then the system of equations migrates to 
an unphysical fixed point, or limit cycle. Typically, we use at least 99% of 
the old potential (or more) in each averaging. Then we have all the inputs 
for the next loop in the algorithm. 

It is significantly more difficult to reach the correct physical fixed point 
when there is a charge reconstruction. If the iterations are performed with­
out significant damping, to slow the updating of the potentials and the 
Green's functions, then they will not converge to the correct solution of 
developing screened dipole layers at each interface, but instead, will often 
converge to a screened dipole sitting in the middle of the barrier. While 
there is no way to fully guarantee a robust solution to this problem, we 
have found that the following strategies often yield good results: (i) the 
updating of the potentials must be significantly damped by the equation 

ynext iteration = ^yold + ^ _ ^ J ^ e ^ (3.46) 

where we usually take 0.99 < ay < 0.999; (ii) updating of the self-energy 
should continue to be damped as in Eq. (2.116); (iii) the equations should 
converge to a level of at least 5 x 10~8; and (iv) the total charge deviation 
p (summed over all simulated planes) should be smaller than 2 — 3 x 10~5. 
We find that the above computational scheme seems to work in calculations 
where eschot does not change through the lattice, and is relatively small 
(< 0.5), and we choose ay = 0.99; the number of iterations needed is on 
the order of 2000 — 5000. When eschot is larger on one set of planes, then 
we need to increase ay (usually 0.995 is large enough), and we may need to 
anneal in the increase over a series of calculations. The annealing process 
would start by running the calculation for a uniform small value of eschot5 

then slowly increase it in the barrier (or in the leads), in small steps (like 
in steps of 0.5), using the potentials, Green's functions, and self-energies 
from the previous converged calculation as the starting point for the new 
calculation. When performed in this fashion, one can often stabilize what 
would otherwise yield an unstable iterative process. 

The phenomenon of electronic charge reconstruction is illustrated in 
Fig. 3.11 for a barrier of 20 planes attached to leads. There is no scattering 
in any of the planes (all are ballistic metals), but the center of the band 
for the barrier is shifted by an amount AEp- with respect to the position 
it would need to have to yield the required filling [pe = 1.0 for panels (a) 
and (b) and pe = 0.01 for panels (c) and (d) and the chemical potential is 
set by the leads to be /x = 0 in these examples] the exact shifts are written 
in the caption to the figure; we are including spin in these calculations. 
The top panels show the case for metals, while the bottom panels show the 
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Fig. 3.11 Electronic charge reconstruction for a multilayered nanostructure consisting 
of a barrier region of 20 planes. The bulk charge density of the leads is equal to 1.0 (spin is 
included here) and of the barrier is equal to 1.0 in panels (a) and (b) and 0.01 in panels 
(c) and (d). The band for the barrier is shifted by an amount A E f , which changes 
for the different curves [AEF = 0.1 (black), 0.5 (red), 1 (green), 2 (blue), 3 (cyan), 
and 5 (magenta) for panels (a) and (b) and A B p = 1 (black), - 1 (red), - 3 (green), 
and - 1 0 (blue) for panels (c) and (d)). Panels (a) and (c) show the electronic charge 
reconstruction, while panels (b) and (d) are rescaled by dividing the charge deviation 
by A E f . The bands are uncorrelated here. Figures adapted with permission from 
(Freericks, Nikolic and Miller (2002)] (original figure ©World Scientific Publishing Co. 
Pte. Ltd., Singapore). 

case of a metal-doped semiconductor-metal device. The screening length, 
as determined by the parameter eschot(a), is about 2.2 lattice spacings. We 
choose eschot(a) = 0.4 throughout the device (in both the leads and the 
barrier). 
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The physics of the system is quite rich. To begin, note that the charge 
deviation grows as the mismatch of the chemical potentials increases. In the 
half-filled case [panels (a) and (b)] the results are symmetric with the sign 
of AEp, as long as the sign of the charge deviation is changed as well. The 
charge deviations do not change much with respect to temperature, and 
the total charge deviation is smaller than 2 — 3 x 10~5 in the self-consistent 
calculations. Since the various curves in panel (a) all seem to share the same 
general shape, we tried to rescale them by dividing by the shift of the band 
AEp in panel (b). One can see that the rescaling works extraordinarily 
well, with deviations occurring only very close to the interfaces. Note as 
well, that as the chemical potential mismatch increases, the barrier is not 
thick enough to have the charge density heal to its bulk value. This kind 
of behavior is seen in the experimental results shown in the bottom panel 
of Fig. 1.16. 

The behavior for the doped semiconductor case in panels (c) and (d) 
is similar, but has some notable differences. The results do not have any 
symmetry with respect to the sign of AEp here. The curves appear to 
have a different shape as well, as we look at different chemical potential 
mismatches. Indeed, the scaling exercise, illustrated in panel (d) clearly 
shows that the system does not satisfy the same scaling as what was seen 
in the metallic case. This most likely is arising from the fact that the local 
DOS is nearly constant at half filling, but is quite asymmetric as we dope 
off of half filling, and sit close to the lower band edge. The asymmetry 
or nonconstant behavior is what probably leads to a breakdown of the 
scaling. 

The effect of different screening lengths in the leads and in the barrier 
can be seen in Fig. 3.12. The left panel plots the potential, which develops 
a kink at the interface as the screening lengths are made to be different (see 
inset), and the right panel shows the charge density, which heals faster as 
the screening length decreases. In the inset one can see this illustrated by 
the charge at the center of the barrier. In these figures, the barrier is a small-
gap insulator, with wi = 0.5 and C/FK = 6, while the leads are ballistic. One 
can see that the screening and electronic charge reconstruction do not have 
a significant qualitative or quantitative change as interactions are turned 
on: compare the black curve on the right panel of Fig. 3.12 with the green 
curve in panel (a) of Fig. 3.11 (noting that there is spin included in the 
latter figure, but not in the former). 

In Fig. 3.13, we show how the charge profile changes as a function 
of the thickness of the barrier. The leads are strongly correlated metals 
with UFK = 4 and the barrier is a small-gap insulator with UFK = 6. 
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Fig. 3.12 Potential (left) and charge density (right) for the electronic charge recon­
struction of a multilayered nanostructure consisting of a barrier region of 20 planes. The 
bulk charge density of the leads and the barrier is equal to 0.5 (no spin). The band for 
the barrier is shifted by an amount AEp = —1.0 and the barrier has a Falicov-Kimball 
interaction of UFK = 6 and tin = 0.5, which is just on the insulating side of the metal-
insulator transition. The leads are ballistic, with UFK = 0. The screening parameter 
eschot 's equal to 0.4 in the leads and varies from 0.4 (black) to 0.8 (red) to 2.0 (green) 
to 4.0 (blue) in the barrier. Note how the potential (left panel) goes to zero when deep 
in the leads, gets deeper as the screening length is reduced in the barrier, and develops a 
kink at the interface (plane number 30.5) as blown up in the inset. The kink determines 
the jump in the electric field at the interface. The right panel shows the charge density 
which heals much faster as the screening length is reduced. This is clarified in the inset, 
where the charge on the central plane of the barrier is plotted as a function of eschot-

T h e p a r a m e t e r eschot wh ich d e t e r m i n e s t h e s c r e e n i n g l e n g t h s is 0.4 in t h e 

leads and 2.0 in the barrier. Note how the charge deviation in the barrier 
cannot heal to zero for the thinner barriers even though the screening length 
is smaller than a lattice spacing in the barrier. This occurs because the 
total charge outside the barrier is too large to allow the charge within the 
barrier to be restored to its bulk value when the barrier is thin. Such a 
result is similar in qualitative nature to the experimental results shown in 
Fig. 1.16, except that the curvature of the charge profile in the barrier is 
opposite in the calculations and experiment. As the experimental barriers 
are made thicker, we expect that the curvature will change to be similar to 
the calculated results and indeed this is observed in experiment [Varela, et 
al. (2005)]. 

One other thing to note from these numerical examples is that the charge 
reconstruction at the interfaces of the nanostructure does not change much 
with the scattering strength within the different levels. The screened dipole 
layers that form at the interfaces are rather insensitive to changes in the 
correlations within the different planes. Hence, they can can be deter-
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Fig. 3.13 Charge profile for a multilayered nanostructure with UFK = 6 in the barrier 
and UFK = 4 in the leads. The screening length is determined by eschot which is equal 
to 0.4 in the leads and 2.0 in the barrier. The mismatch of the chemical potentials is 
AEF = 2.0. The barrier thickness ranges from N = 20 (black) to N = 15 (red) to 
N = 10 (green) and N = 5 (blue). The different curves are offset so that the center of 
the barriers line up. 

mined quite accurately from a noninteracting system. This observation 
can come in handy in trying to perform calculations for strongly correlated 
models that do not have a simple formulation on the imaginary-frequency 
axis. If we try to perform these kinds of calculations for a system where 
the impurity solver employs NRG, then we have to work directly on the 
real axis. This increases the numerical calculations for two reasons—first, 
the computational time for a real-axis solver is usually longer than for an 
imaginary-axis solver, and second, the inhomogeneous DMFT algorithm 
for the real axis when there is a charge reconstruction is significantly com­
plicated because the numerical integrations now have numerous principal-
value integrations, which are more difficult to handle than in the case when 
there is no charge reconstruction. 

In order to determine the transport through the device we need to eval­
uate the real-axis results for the nanostructure with an electronic charge 
reconstruction. Unfortunately, the algorithms used when there is no elec­
tronic charge reconstruction cannot be simply employed for this case. The 
reason why is that the presence of the different potentials Va on each plane 
causes the nature of the integrands over the two-dimensional DOS to have 
a different singular behavior than they had before. Previously, we focused 
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on square-root-like singularities, which could be removed by a simple vari­
able change. Now, the singularities are poles (because the denominators 
are shifted by the potentials at a given plane, so they vanish at differ­
ent energies, and give rise to a different singular behavior), so we need to 
evaluate the integrals in a principal-value sense, where the real part is in­
tegrated with a symmetric grid around each pole, and the imaginary part 
has a delta-function contribution that needs to be included. The challenge, 
from a numerical standpoint, is that the locations of the poles change from 
plane to plane, and they change from iteration to iteration, so one needs 
to generate a new integration grid for every plane and for every iteration, 
to properly handle the singularities. No one has yet constructed such a 
code, although it should be possible to do so in principle. Instead, a "poor-
man's approach" to the problem is to instead add a small imaginary part 
to the frequency (or equivalently to the self-energy), and evaluate the in­
tegrals slightly off the real axis. Then the imaginary part of the frequency 
smooths out the singularities, and they can be integrated with the same 
technique as used before. If the self-energy has an imaginary part larger 
in magnitude than the imaginary piece added to the frequency, the calcu­
lation is unchanged. It is only in regions where the self-energy has a small 
imaginary part that the calculation is modified. One needs to ensure that 
the quadrature grid spacing is small enough that one can properly capture 
enough points in the "near singularity" to properly integrate it with the 
quadrature rule. Then by performing the calculation for smaller imaginary 
parts, the results can be scaled down to the limit where the imaginary part 
vanishes. This is a more practical way to perform the calculations, but one 
should note that if there is a region where the DOS is becoming exponen­
tially small, it is likely that adding the small imaginary part will change the 
value of the resistance, so one needs to check results for different sizes of 
the imaginary part to make sure they are robust, and represent the correct 
results. Details of solutions of the real-axis properties are given in Chapter 
6 when we discuss thermal transport. 

It is important to examine how the linear-response transport formal­
ism is modified by the electronic charge reconstruction. We have taken the 
chemical potential as a constant throughout the multilayered nanostructure 
for thermodynamic equilibrium. One can directly show that the device car­
ries no charge current even though there are nonzero electric fields arising 
from the electronic charge reconstruction (see Prob. A.26). No current 
flows because the putative current driven by the internal electric fields is 
canceled by an equal magnitude but oppositely directed current driven by 
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the concentration gradient. The standard way to describe this result is via 
a phenomenological equation (for the case with no thermal gradients) [On-
sager (1931a); Onsager (1931b)] 

V V a |e |T 
(3.47) 

where T>ap is the diffusion constant for Fick's law of diffusion [Fick 
(1855)], and the second equality follows from the Einstein relation [Ein­
stein (1905)] (or more correctly the Nernst-Einstein-Smoluchowski rela­
tion [Nernst (1889); Smoluchowski (1906)]) which relates the diffusion con­
stant to the conductivity via 

aa0 = e2Vapdp0/dn. (3.48) 

The symbol jxa = p, — Va is called the electrochemical potential. The 
Einstein relation can be derived by relating the gradient with respect to the 
chemical potential to the gradient with respect to the number concentration 
via the chain rule: dp/dz = (dp/dp)dp/dz, and the fact that the current 
vanishes in equilibrium [Luttinger (1964)]. 

Equation (3.47) implies that the condition for there to be no charge 
current is simply dp/dz = 0. The chemical potential is a constant, but it 
does vary with the filling, so if there is a change in electron concentration, 
then dp/dz = (dp/dp)dp/dz — dV(z)/dz, so the force from the electric field 
will be balanced by the force from the change in electron concentration. In 
addition, note that the current vanishes no matter how large the variation 
in the concentration is (i. e., beyond the linear-response regime), so the 
conclusion is that the current generated by the internal electric field is 
always canceled by the current generated by the change in the electron 
concentration. Hence, for a linear-response treatment of transport, we can 
ignore the forces due to the internal electric fields and the concentration 
gradients, because they always cancel, and we can limit our focus to the 
effects of the external electric field only. This then implies that all of the 
analysis performed previously for the charge current continues to hold, and 
because the form of the charge current is unchanged when we have electronic 
charge reconstruction, the Kubo formula is identical as it was before (with 
the effects of the potentials Va included, of course). 
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3.7 Longitudinal Heat Transport Through a Nanostructure 

The basic idea behind a thermoelectric cooler or power generator is that 
there is a difference between the weighting factors that determine the bulk 
charge current and heat current. The charge current is weighted by the elec­
tron velocity, while the heat current is weighted by the velocity multiplied 
by the kinetic energy minus the chemical potential plus a term from the po­
tential energy. Hence, one can create charge current without heat current, 
or vice versa; by carefully engineering the way electrons move through the 
device, one can control both the energy and charge flow. 

The typical thermoelectric element consists of two metallic reservoirs 
connected by two legs of different materials—one leg is a n-type conductor, 
with the current carried by electrons, and the other leg is a p-type conduc-
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Fig. 3.14 Thermoelectric device schematics for (a) a cooler/refrigerator and (b) a power 
generator. The top is the hot reservoir, while the bottom is the cold reservoir. The right 
leg is an n-type material and the left leg is a p-type material. In the refrigerator in panel 
(a), a voltage source drives a charge current in a clockwise direction, which generates 
a heat current flow from the cold reservoir to the hot reservoir (because the p-type 
material carries heat flow in the same direction as the charge current flow, while the 
n-type material carries heat flow in the opposite direction as the charge current flow). 
This creates a net cooling effect if the thermo-electric driven heat current is larger than 
the conventional heat conducted from the hot to cold reservoir, and the internal Joule 
heating associated with the charge current flow. In the power generator in panel (b), 
a heat source maintains a temperature difference between the hot and cold reservoirs. 
The conventional thermal conductivity drives a heat current in both legs in the direction 
from the hot reservoir to the cold reservoir. This generates a counter-clockwise charge 
current flow, because of the way the charge current is "dragged" by the heat current in 
each leg. The current flow can be tapped similarly to the current flow from a battery 
for running electrical devices. 
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tor, with the current carried by holes. The basic set-up for a cooler (left) 
and a power generator (right) is given in Fig. 3.14. In the case of a cooler, 
a battery is attached between the legs, to drive current through the device 
in a clockwise direction. Heat is transported in the same direction as the 
charge current for the p-type conductor, while it is carried in the opposite 
direction for the n-type conductor. This produces a net heat flow from the 
bottom to the top, resulting in a lower T for the lower reservoir than for 
the upper. Reversing the direction of the current flow changes the direction 
of the heat flow, so the hot and cold reservoirs are switched. This implies 
that the thermoelectric device can be used as a cooler or as a heater just 
by changing the direction of the current flow, or similarly changing the po­
larity of the voltage source. Since conventional thermal conduction carries 
heat in the opposite direction from that driven by the charge current, one 
needs to compare the heat flow generated from the thermopower to that 
from conventional thermal conduction and to the bulk heat generated from 
Joule heating. The balance between these thermal heat flows determines 
the thermoelectric hgure-of-merit ZT which optimizes the thermoelectric 
properties. Thermoelectric coolers are commercially available and are usu­
ally made from semiconductor alloys of Sb, Bi, and Te. They are much 
less efficient than compressor-based refrigerators, and the materials usually 
have a ZT value close to 1. 

The power generator works with a different mode of operation. The up­
per reservoir is heated by a heat source, which causes heat to flow from the 
hot reservoir to the cold reservoir. Accompanying the heat flow is a charge 
current flow, which goes in a clockwise direction. The charge current flows 
until a voltage has developed between the legs that impedes further flow of 
charge. This device thus converts a temperature difference into a voltage 
which can be drawn on to provide current flow, just like a chemical battery. 
Once again, it is not as efficient as other battery sources, but because they 
have no moving parts, and heat sources (from radioactive materials) can 
have long lifetimes, they are the most reliable battery source for unmanned 
deep space probes. They also are being investigated as a means to recycle 
waste heat (from car exhaust systems, or industrial chimneys) and convert 
that heat into electrical power. This application is not yet commercially 
viable. 

In actual devices, the basic thermoelectric element is joined together 
into a module, which cools in stages, with the total temperature difference 
coming from the difference of the hot reservoir in the first element and the 
cold reservoir in the last element. Cooling can be achieved down to about 
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150 K with such devices. For power generation, the module approach is 
also useful for generating high voltage sources, since the maximal voltage 
for a particular element will come from the temperature difference and 
the materials properties of the thermoelectric element (since thermopower 
is measured in /xV/K, a single-stage thermoelectric power generator will 
usually generate less than 1 V). 

In this text, we concentrate on nanostructures, which can be used to 
compose one of the legs of the thermoelectric device. This should be kept 
in mind as we describe different kinds of calculational techniques. We also 
concentrate solely on electronic transport mechanisms. In most thermo-
electrics, the thermal conductivity from phonons can be large enough to 
significantly reduce the figure-of-merit. While we do not treat phonons 
in this book, it is expected that the phonon thermal conductivity will be 
further reduced in a nanostructure, because the interfaces in the nanostruc­
tures will cause significant phonon scattering if the masses of the ions in the 
different materials have a large mismatch [Hicks and Dresselhaus (1993)]. 

There is no simple way to derive the response of a strongly correlated 
system to both electrical fields and thermal gradients. The reason why is 
that the thermal gradient cannot be added as a field to the Hamiltonian like 
the electric field can, hence there is no way to follow the simple Kubo re­
sponse theory developed for the charge current in an electric field (because 
the linear-response approach evaluates correlation functions at a fixed tem­
perature, and a variation of the temperature with position is problematic 
to include within the formalism). Instead, we can couple a fictitious field to 
the heat-current operator, analogous to the vector potential that couples to 
the charge current, and determine the linear response with respect to this 
field. Then, we can compare the Kubo response to a phenomenological set 
of equations that relate the charge and heat currents to the electric field 
and the gradient of the temperature. We can then identify the relevant 
transport coefficients and how they are expressed in terms of correlation 
functions. This strategy was first adopted by [Luttinger (1964)]. 

In our nanostructures, we always have a charge reconstruction when we 
describe devices made from different materials, because the bulk chemi­
cal potentials will have different T dependence, and hence cannot always 
be equal (the only exception is for particle-hole symmetry at half-filling, 
but there the thermopower vanishes, so they are uninteresting for thermal 
transport). Hence the Hamiltonian must be modified to include the po­
tential energy Va on each plane, and the band offsets AEp, as described 
in Sec. 3.6 [i. e., we add 5ZQi(K» - AEFa)cai

cai t o ^A- The band offsets 
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are independent of T, and represent the difference in the band zeroes for 
the leads and the material placed at plane a. The potential energies Va do 
depend on T, but they do not create any currents, because they correspond 
to the static potential associated with the electronic charge reconstruction 
(and the diffusion current generated by the change in electron concentra­
tion cancels the current from the electric field). But they do create internal 
electric fields that maintain the electronic charge redistribution amongst 
the planes. 

The phenomenological study of currents caused by external electric 
fields or temperature gradients has been examined since the early 1800s. It 
was found that an electric field can drive a charge current (which is essen­
tially Ohm's law [Ohm (1827)] with the conductivity as the phenomenolog­
ical constant) and it can drive a heat current because the electrons carry 
heat with them as they move through the material (this phenomenon is 
called the Peltier effect [Peltier (1834)]). Similarly, a temperature gradient 
can drive heat conduction with the phenomenological thermal conductiv­
ity (called Fourier's law [Fourier (1822)]), and because the heat current 
generically carries charge, a temperature gradient can generate a charge 
current (called the Seebeck effect [Seebeck (1823)]). The phenomenological 
equations for the (linear response) longitudinal transport in a multilayered 
nanostructure are then 

<^ l o n g ) = -M<jLo n g) = l 

+ | e | a ^ L 1 2 Q / 3 -

0 

(jQ,long> = _ f l £ L 2 i Q / 3 

P 

- a2_w^22Q/3 
0 

where the indices a and /? denote the planar sites (or the midpoint between 
planar sites), the term (Tjg+i — Tp)/a is the discretized approximation of 
the temperature gradient and the Lij coefficients can be thought of as the 
phenomenological parameters. We define the symbol \ip = ji — Vp — AEpp, 
which may be thought of as the "local chemical potential" for plane /3. Both 
H and Vp depend on T, but the band offset AEFP does not. The origin 
of the temperature derivative of up entering into the phenomenological 

e|a y jLna/3 
0 

Tg+i - Tp 

dfJ-p Tp+i - Tg 
dT a 

+ \e\E/3 

aT0 ' 

dpp Tp+i -

dT a 

+i -Tp 

Tp 

(3.49) 

+ \e\E£ 

aTp 
(3.50) 
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equations arises from the conventional V// term, which becomes VTdfi/dT 
when the system is placed in a thermal gradient. The spatial derivative of 
the V/3 terms does not drive any current, because it cancels with the current 
driven by the equilibrium concentration gradient (which we did not include 
in the above phenomenological equations), so the electric field Ep is the 
external field applied to the device (this is valid only in the linear-response 
regime of a small external electric field). Note, that there is a simple way to 
understand the signs that appear in Eqs. (3.49) and (3.50). First consider 
the external electric field, which can be written as the negative gradient of 
the electric potential. The current (whether of electrons or of holes), always 
runs down the potential hill. Since the conductivity is always positive, the 
first term in Eq. (3.49) must have a positive sign. The thermoelectric 
number current also runs downhill, so it is proportional to the negative 
temperature gradient. For electrons, the charge current is — |e| times the 
number current, which gives rise to the positive sign for the last term in 
Eq. (3.49). Similarly, the thermal conductivity runs down the temperature 
"hill", so it has a negative sign in front of it. The Peltier effect term is the 
hardest to understand, but because the electrons are negatively charged, 
they actually move up the potential hill (the charge current runs down the 
hill because the electrons are negatively charged), so the heat is carried up 
the hill, and hence there is a minus sign in front of the term (recall the 
electric field is the negative gradient of the potential). 

Our next step is to determine how to represent the thermal transport 
coefficients Lij in terms of many-body correlation functions. We have al­
ready done this for the first coefficient, which is proportional to the con­
ductivity matrix, and is represented by a current-current correlation func­
tion: crap = e2Liiap (the modification of the Hamiltonian by the electronic 
charge reconstruction has no effect on the form of the charge current, or 
on the form of the correlations functions, but obviously creates additional 
scattering). Since this coefficient arises from an electric field, which can 
be added to the Hamiltonian, the derivation is rigorous. Similarly, if we 
follow all the steps that led up to the derivation of the conductivity ma­
trix, but we examined the expectation value of the heat-current operator 
instead of the charge-current operator, we would find that the L21 corre­
lation function was identical to the L\\ correlation function except that it 
is a heat-current-charge-current correlation function instead of a charge-
current-charge-current correlation function. 

As we discussed above, there is no complete theory to determine the L\^ 
and L22 coefficients for the phenomenological transport equations. But, 
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classical nonequilibrium statistical mechanics has proved that there is a re­
ciprocal relation between the "cross" terms in the transport equations [On­
sager (1931a); Onsager (1931b)]. Written in the form we have them, this 
relation says that L21 = L\2- Knowing the form for L21, we then conclude 
that L\2 is the charge-current-heat-current correlation function. Keeping 
within this same vein, the natural conclusion is that the final transport 
coefficient L22 is a heat-current-heat-current correlation function (but we 
do not have a rigorous derivation of this result). 

Evaluating these correlation functions would be a chore if we tried to cal­
culate them directly (see [Freericks and Zlatic (2001)] for just such a calcu­
lation in the bulk). Instead, Jonson and Mahan [Jonson and Mahan (1980); 
Jonson and Mahan (1990)] showed that there is a simple relationship be­
tween all of the Lij coefficients—if one is known exactly, then all can be 
found exactly. Similarly, if one is evaluated approximately, the Jonson-
Mahan theorem provides the most reasonable and consistent way to calcu­
late the others. The Jonson-Mahan theorem was originally proved for the 
L21 coefficient in the bulk. Here we extend this work to show a generalized 
Jonson-Mahan theorem that holds for inhomogeneous systems, and extends 
to the L22 coefficient as well. 

In Sec. 3.5, we discussed the issue of how to define the "local" number 
current operator for a given plane, and settled on defining the number 
current operator between planes a and a + 1, as in Eq. (3.22). We also 
need the local heat current operator, which is derived in Prob. A.27 as 

J Q ' = *a*QQ+l S ~ 2^ 2 av ~^~ ta + lij)\ca+licaj ~~ caiCa+ij) 
\ ij 

— 2^« + l Q + 2 2 ^ ( C " + 2 i C a i ~ CuiCa+2i) 
i 

~~ ~^ta-\a / J\
cg+licai ~ CaiCa+li) 

i 

+ 2 12(UaWai + t / "+i w «+i i ) (c i + l i c Q i - c]
aica+li) 

+ 
1 1 

-fi + -(VQ + Va+1) - ~{AEFa + AEFa+1) 

X (Ca+liCai ~ CaiCa + li) (i (3.51) 



158 Transport in Multilayered Nanostructures: The DMFT Approach 

for the Falicov-Kimball model. The heat current operator depends on the 
model being examined, because it involves commutators of the potential 
energy with the energy polarization, and we still subtract the chemical 
potential multiplied by the number current from the energy current to get 
the heat current. One might have thought we should subtract the "local 
chemical potential" multiplied by the local number current operator, but 
that would remove the extra terms in the heat current arising from the 
electronic charge reconstruction; one could have grouped those terms into 
either the Hamiltonian or the local chemical potential—we chose the former, 
so we subtract only fxjlong. 

Now we need to determine the dc limit of the correlation functions Ly­
on the real axis. The procedure is identical to the analytic continuation 
that was worked out for the bulk case. We start by defining a polarization 
operator on the imaginary axis, then we analytically continue to the real 
axis, we form the relevant transport coefficient, and then we take the limit 
of the frequency going to zero. We denote the four polarization operators 
by Lijag{ivi) according to 

lnaf}(m) = I dre<"'T(rT^- l o '«(r)^ l o n g(0)>, 
Jo 

LuQ0(ivi) = fdre^iTrf^^jf^m, 
Jo 

Uxasim) = / dre-^(TTjQ'1°"8(T)j-c,iong(0))) 

Jo 

L22a0(m) = I dre^iTrj^^^jf^HO)), (3.52) 
Jo 

and the transport coefficients satisfy Lijap = lim„_oRe[—iLijap(v)/i>]. 
The Jonson-Mahan theorem [Jonson and Mahan (1980); Jonson and Mahan 
(1990)] can be straightforwardly generalized to treat this case. Begin by 
defining a generalized function 

Fa0(Ti,T2,T3, T4) = (TTiataa+i ^ [cL+li(Tl)cai(T2) - c L( T l ) C a+ l i ( T 2 
iG plane 

xiat/s/3+i J2 [cl+ijirs^jiT^ - ^0J{T3)C0+1J(T4) J. 
jSplane 

(3.53) 

Next, we determine the polarization operators by taking the appropriate 
limits and derivatives. Namely, 
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Lnap= / dTle
WlTFa0{TUT^Q,Q-), 

10 

^ = r * i e t o i T K ^ - ^ ) ^ ( 7 i > , a i o ' o " ) . . 
L22a0= f dne^ 

Jo 
I ( d d \ ( d 9 \ p , , 

T3=0,r4=0-

T 2 = T j , T 3 = 0 , T 4 = 0 -

(3.54) 

This result holds because the (dT — dT<)/2 operator converts the local charge 
current operator into the local heat current operator (see Prob. A.28). Us­
ing these identities, we can now explicitly evaluate the correlation functions 
in DMFT (neglecting vertex corrections), and perform the analytic contin­
uation to determine the final result for the transport coefficients. Note that 
Eq. (3.54) is a general result, which holds for the exact correlation func­
tions (when vertex corrections are included), because it is derived from an 
operator identity. Writing down the analytic continuation to the real axis 
says that we will get extra factors of to or to2 in the integrals that calculate 
the transport coefficients versus the integrand for the L\\ coefficient. While 
this statement is simple to understand and derive, we find it more useful to 
also derive the full expression for the transport coefficients; and to do that, 
we neglect the vertex corrections in our analysis, because they are expected 
to be small for these cases. One should always remember though, that the 
Jonson-Mahan theorem is an exact relation for the transport coefficients, 
when the vertex corrections are included. 

The first step is to evaluate the expectation values of the Fermionic 
operators (in the definition of F) via contractions, because we neglect the 
vertex corrections. This yields 

Fa/3(,Ti,T2,T3,T4) 

= 0, taa+itf3p+i 2_^ {G/3a + lji(T~4 - Ti)Ga0 + lij(T2 — T3) 
ijGplane 

- G/3+lQ + lji(T4 - Ti)Gapij{T2 - T3) 

— Gj3aji(T4 — Ti)Ga+10 + lij{T2 ~ T3) 

+ Gg+iaji(T4 - Ti)Ga+i0ij(T2 - r 3 )} . (3.55) 
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Next, we need to determine a spectral representation for the off-diagonal 
Green's function. Using the fact that 

Ga0ij(z) — - - ^ I m t W ) ( 3 .5 6 ) 
z — w 

with z in the upper half plane (which can be shown by using the Lehmann 
representation), says that 

I r v e-iutnr 
Gapij(T) = - - duT)- ImGa/3ij{uj). (3.57) 

TT J ^ lUJn — IjJ 

Now we convert the sum over Matsubara frequencies into a contour integral 
(that surrounds each Matsubara frequency, but does not cross the real axis 
— the contour is then deformed into two contours, one running just above 
and the other just below the real axis), but we must be careful to ensure 
that the procedure is well-defined. If r < 0, then 

^ ' ?.(i)„ — d) V.TT I ^ 7. — U! 2* Jc 
e 

c *-u-

1 1 

_z + i0+ — w z — i0+ — to _ 

= - e - w r / M . (3.58) 

This result is well-defined because the Fermi factor provides convergence 
(asymptotically like exp[—(3z\) for z —> oo and the exp[—ZT] term provides 
boundedness for z —> —oo when r < 0. Since 1 — f(z) has the same poles 
as f(z) on the imaginary axis, with residues that have the opposite sign, 
and it behaves like exp[/3z] for z —* — oo, one finds 

TEjT—- = c-r[l-/H], (3-59) 
n 

for r > 0. The results in Eqs. (3.58) and (3.59) can then be substituted 
into Eq. (3.57) to get the final formula for the off-diagonal Green's function 

c M _ f-£/du;ImGa/jy(u;)e-<"[1 - / H ] , r > 0 
°Plj[ ' ~ I -U^^Ga0ij{u)e-^[-f(w)}, r < 0. { 6 m 

Now we note that we can restrict ourselves to the case T\ > T2 > T3 > T4 
without loss of generality, because that is the ordering needed to get the 
relevant correlation functions. Then we employ Eq. (3.60) in Eq. (3.55) 
and use the fact that the summations over the spatial indices for the planes 
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can be Fourier transformed, and then the momentum summation can be 
replaced by an integration over the two-dimensional DOS, to yield 

Fap(Ti,T2,T3,T4) = — tQa+i</3/3+i du du' / deV d (e") 

x / ( w ) [ l - f(uj')}e-^T^T^-u'^-^ 

x |lmG /3a(e l l,u;)ImGa+i /3+i(e l l,w') 

+ImG/3+iQ+i (e11, w)ImGQ/3 (e
11, u/) 

-ImG^Q+i (e11, w)ImGQ/3+i (e11, u>') 

-ImG^+lQ(e«>w)ImGQ+1/3(ell,w')} • (3-61) 

Now we can evaluate the polarizations, and directly perform the analytic 
continuation. We Fourier transform the expression in Eq. (3.61) to get the 
Matsubara frequency representation. Then we replace ivi by v + i0+, then 
we construct the transport coefficients on the real axis, and we finally take 
the limit v —» 0 to get the dc response. The factor (<9T — dT>)/2 gives a 
factor of (u> + w')/2 which goes to (u> + v/2) after integrating over the delta 
function that arises in the analytic continuation. Setting v = 0 gives an 
extra power of u> in the integrand for each derivative factor in the response 
coefficient. The end result is 

Lija0 = ^ W i % H i /du, ( - ^ ) "i+j-2 Jd6«p2d(ell) 

{ ImGpa(e11, w)ImGQ+1/3+i (e11, w) +ImGQ/3(e
11, w)ImG / 3+ lQ+i (e11, w) 

- ImG/3Q+i(e11, w)ImGQ/3+i(e11,u))-lmGa+iS(e11,w)ImG/3+iQ(e11,u>)}. 

(3.62) 

This is the generalized Jonson-Mahan theorem for inhomogeneous systems. 
Note that the equality of L\2 with L^x is the Onsager reciprocal rela­
tion [Onsager (1931a); Onsager (1931b)]. 

With the expressions for the phenomenological coefficients that appear 
in Eqs. (3.49) and (3.50) determined, we now can move onto evaluating 
the transport in different cases of interest. The first point that needs to 
be emphasized is that the total number of electrons is always conserved 
in the system, so the charge current is conserved, and cannot change from 
plane to plane. There is no such conservation law for the heat current 
though, because the electrons can change the amount of heat that they 
carry depending on their local environment. Hence, it is the boundary 
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conditions that we impose upon the heat current that determines how it 
behaves in a multilayered nanostructure. This point will become important 
as we analyze different experimental situations. 

The first experiment we would like to analyze is the Peltier effect in a 
multilayered nanostructure. We imagine that the nanostructure is attached 
to a bath that maintains the entire structure at a fixed temperature, and we 
then turn on an external electric field. The Peltier effect is the ratio of the 
heat current to the charge current. A moment's reflection will show that the 
heat current is not necessarily conserved in this system, because we have 
to exchange heat with the reservoir to maintain a constant temperature 
profile. Hence, it isn't even obvious what ratio should be taken for the 
Peltier effect—the average heat current over the charge current, the total 
change in the heat current over the charge current, or the heat current 
transfered over the charge current. We now show how to determine all 
three of these results. 

The starting point is the transport equations [(3.49) and (3.50)] with 
Ta = T independent of the plane number. As in the calculation of the 
current, we first determine the electric field by multiplying both sides of 
Eq. (3.49) by the inverse L\\ matrix. Since the charge current is indepen­
dent of the plane index, we find the electric field satisfies 

^ = iE( L n) Q / 3 0- c J ° n S ) - (3-63) 

Substituting this value of the electric field into Eq. (3.50) then yields 

<^'l0nS> = ~U E L ^ {L-n
l) 0'c,Iong>- (3-64) 

1 1 Pi 

This is all we need to analyze the Peltier effect of a nanostructure. Note 
that the heat current generically will have a dependence, and hence will 
vary from plane to plane (see Fig. 3.15). 

The first question we can ask is how much heat is lost or gained by the 
reservoir that is attached to the device to maintain isothermal conditions. 
This is determined by the ratio of the difference in the heat current at the 
right and the heat current at the left to the charge current. In equations, 

AQ-Q-'°"*) _ Q-g-lo"«) - (jg-'°"g) 1 ^ x 

(3.65) 
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Fig. 3.15 Schematic diagram of the heat transfers in the Peltier effect. The dots refer 
to different planes. A heat current is incident from the left. As we go from one plane 
to another, the heat current changes, as heat is transfered to or from a reservoir to 
maintain the system at a constant temperature. For example, we can examine the total 
heat current transfered to the reservoirs (JQR — JQL), or we can examine the average 
heat current that flows through the device Yla3Qa/N. 

This would measure the net cooling or heating of the reservoir by the device 
as current flows. Similarly, we could measure the average heat flow carried 
through the device 

/jQ,long\ j i 

V ' ' ' a/37 

where N is the number of terms taken in the summation over the index a. 
This expression is analogous to the bulk Peltier effect, which measures the 
ratio of the heat to charge current flows (which are independent of position 
in a bulk system). 

Next we examine the Seebeck effect and a thermal conductivity experi­
ment. In both cases we work with an open circuit, so the total charge cur­
rent vanishes (jc ' long) = 0. The Seebeck measurement is subtle, because we 
don't want to measure the voltage difference with probes at different tem­
peratures, because there will be a contribution from the VTd^/dT terms 
to the voltage drop (and there may be a thermal link allowing heat to 
flow through the voltage probe). An actual experiment uses thermocouple 
probes, where one end of the probe is placed on the sample, and the other 
is placed in a constant To bath. Two probes are needed to measure the 
voltage change and the temperature at two points along the sample. The 
net thermopower is measured relative to the thermopower of the metal used 
in one of the legs of the thermocouple (typically copper). For details, see 
[Domenicali (1954)] and [Nolas, et al. (2001)]; a simpler schematic picture 
of this issue is shown in Fig. 3.16. Alternatively, we can imagine the lead 
to the left placed in a bath at temperature To, the interface plane on the 
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Fig. 3.16 Schematic diagram for how to measure the (relative) Seebeck effect. The 
metallic leads are composed of the same material, and a voltage probe is placed across 
the two ends which both are fixed at a temperature of To. The voltage across those 
probes is VQ. Since heat current will flow across the voltmeter if both ends are not at 
the same temperature, there is no way to directly measure the desired voltage V. But, 
since the change in voltage in the metallic lead in going from To to T on the left hand 
side is exactly canceled by the change in voltage in going from T to To on the right hand 
side, we find the difference between the voltage V and Vo is just equal to the Seebeck 
coefficient of the metallic lead multiplied by AT. Hence, since a measurement uses Vo 
instead of V, the Seebeck coefficient of the barrier is measured relative to the Seebeck 
coefficient of the metallic lead. 

left held at temperature T, the interface on the right held at temperature 
T + AT, and the lead to the right held at temperature T0. The net effect on 
our analysis, if we assume the thermopower of copper can be neglected (or of 
the ballistic lead in the alternative picture), is that we neglect the d^xa/dT 
terms in our analysis (because the chemical potential at the probes is at 
a constant temperature when the potential difference is measured). With 
these caveats in mind, using Eq. (3.49), we find 

E<* = - ^ E (Ln )Q^i2/3 7(r7 + i - T 7 ) . (3.67) 

Multiplying by a and summing over a yields the voltage drop across the 
device. We also need the temperature profile. Substituting Eq. (3.67) into 
Eq. (3.50), and noting that the heat current is conserved if the device is 
isolated and in the steady state (implying heat cannot be transfered out of 
any plane) because the system develops a temperature profile so that the 
heat current is conserved through the device. In this case, we can evaluate 
the temperature profile, which satisfies 
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Ta+i - T ^ - T ^ ( M " 1 ) ^ <JQ'lone>, (3.68) 
p 

with the matrix M defined to be 

Map = L22a0 - 2 ^ ^2lQ7 ( i n )ys Ll260- (3.69) 
7(5 

Now we can sum Eq. (3.68) over a to get the temperature difference over 
the device. Hence the Seebeck effect becomes 

AV 1 Ea016(Ln)a0Ln0yM-6
l 

^T~-\e\T E a , M - • ( 3 - 7 0 ) 

Note that this is not equal to \/T times the Peltier coefficient as in the 
bulk. Instead, we have a weighting of the L\2 to L\\ ratio by the matrix M, 
which is related to the thermal conductivity. This factor cancels in the bulk, 
where the M matrix depends on the difference of the spatial coordinates, 
and the q = 0 response is independent of M because the common factor in 
the Fourier transform will cancel out (as can easily be proved by invoking 
the convolution theorem). If we do not measure AV via thermocouples at 
constant T, then the AV term is modified by a contribution from dfia/dT. 
We do not discuss that modification here, because it is not normally a 
technique used in measurements. 

The thermal conductance is evaluated in a similar way, but does not 
require any subtlety in the measurement. We also work in an open circuit, 
and the heat current is conserved, because we isolate the system. Now we 
measure the ratio of the heat current to the temperature difference to find 
that the thermal conductance per unit area K satisfies 

/„-Q,long\ -i 
K — —^L L — t ("3 711 
K - AT T £ Q / 3 ( M - i ) Q / 3 ' [d-n) 

and the thermal resistance-area product becomes 

i ? t h a 2 = T ^ ( M - 1 ) Q / 3 . (3.72) 
a/3 

The evaluation of the cooling efficiency of a refrigerator is more compli­
cated than our above examples, because it corresponds to a situation where 
we have both a temperature gradient and charge current flow. It is instruc­
tive to first describe the standard "textbook" case of current flow for a bulk 
material before discussing the nanostructure case. But we simplify the bulk 
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case to consider current flow through a single leg of a refrigerator, with the 
charge carriers being electrons. The modifications needed for analyzing a 
full refrigerator are straightforward, and described in detail in many texts 
(see chapter one of [Nolas, et al. (2001)] for an example). 

In order to examine the heat transfer in a refrigerator, we need to include 
one term beyond linear response that gives rise to the Joule heating [Joule 
(1841)] in the volume of the leads, because this is one of the significant 
sources of irreversible heat production (heat is produced regardless of the 
direction of the current, unlike reversible thermoelectric effects where heat 
is produced or absorbed depending on the direction of the current). The 
equivalents of Eqs. (3.49) and (3.50) for the bulk material are 

(f) = | ^ V T + CT£ - SaVT, (3.73) 

0'Q> = S T f f ^ V T + STaE - ^ L 2 2 V T + Vc{f), (3.74) 
|e| al 1 

where we have used the bulk conductivity a and thermopower S. The extra 
term is the last term in Eq. (3.74), which represents the energy carried 
by an electron as it moves down the electrical potential "hill" (Vc is the 
position-dependent electrical potential of the external field). We imagine 
a slab of our material sandwiched between a hot and a cold heat reservoir 
(the hot reservoir at z = L and the cold reservoir at z = 0). The slab 
of material has length L and a cross-sectional area A. The first step we 
take is to eliminate the electric field in favor of the charge current density 
using Eq. (3.73). Hence we set E = (jc)/a - VT(d/j,/dT)/\e\ + 5VT. The 
heat-current equation becomes 

(j(l) = (ST + Vc)(f)-KVT, (3.75) 

where K = (L22 — Li2L,2i/Ln)/T is the thermal conductivity. It is con­
ventional to assume that the a, 5, and K coefficients are independent of 
T, which implies they have no variation with position z, induced by the 
temperature gradient. 

The second step is to examine the heat production within the volume 
of the material. Since (jQ) represents the heat current, we can determine 
the heat balance by summing the heat current entering a given surface, 
and subtracting the heat current exiting the surface. What remains is the 
net heat production within the volume bounded by the surface. By using 
Gauss's law, the surface integral can be replaced by a volume integral, 
which can be summarized by the time rate of change of the heat production 
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within a given volume element, called Q, which is equal to — V • ( jQ) . In 
the steady state, the net heat production must vanish, otherwise, the local 
temperature would rise or fall to compensate for the heat being produced or 
absorbed. Hence, the steady-state response is characterized by a vanishing 
net heat production, or —V • (j®) = 0. For the form of the heat current in 
Eq. (3.75), we find (recall the continuity equation says V • (jc) = 0 in the 
steady state) 

<0 = - V - ( j Q ) = ^ — ^ ^ V T - T V S - ( j c ) + VK-VT + K V 2 r ; (3.76) 
a \e\ al 

the first term on the right hand side is the Joule heat [Joule (1841)], the 
second terra is the Thomson heat [Thomson (1851); Thomson (1854)] (after 
noting that V 5 = (dS/dT)VT), the third, fourth and fifth terms have no 
common name. In deriving Eq. (3.76), we substituted in for — VVC = E, 
using the representation for E in terms of the current and the temperature 
gradient. If we assume the coefficients are independent of T, then VS = 
VK = V^ = 0, and we have just two terms in the heat balance. For the 
steady state, we set Q = 0, or (jc)2/<r = — K V 2 T , which shows that the 
temperature profile curves as we approach either of the heat reservoirs. 
Solving this equation for the temperature profile yields 

T(2) = T C ( ^ ) + T f c £ + £ £ z ( L - z ) , (3.77) 

where Tc is the temperature of the cold reservoir and Th is the temperature 
of the hot reservoir. 

The efficiency of a refrigerator is determined by the ratio of the heat 
transfered to the cold reservoir and the electrical energy required to drive 
the current through the device. The heat transfered is just (j^A, while 
the electrical energy is {jc)AVA. The heat current is given in Eq. (3.75). 
We first note that Vc = -Ez = -(jc)z/a - SzVT, and then we take 
the derivative of the temperature in Eq. (3.77) with respect to z, to find 
a formula for VT (ignoring the dji/dT term). Finally, we set z = 0 and 
T = Tc to determine the heat transfer at the cold reservoir. The result is 

(JQ)A 
2 

A, (3.78) 

where AT = Th — Tc is the difference in temperature between the two 
reservoirs. The potential difference is found by expressing the electric field 
in terms of the charge current and the temperature gradient, substituting in 
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for the gradient according to the temperature profile, and then integrating 
over z from 0 to L. This yields 

(?'c) 
AV = ^-t-L + SAT, (3.79) 

a 

when we neglect d^i/dT. The first term is the Ohm's law voltage drop, and 
the second is the thermoelectric voltage. The efficiency then becomes 

Eff. = ^ q ^ — ?2_ . (3.80) 
0'c> ( ^ + SAT) 

Note that if we ignore the irreversible Joule heating and thermal conduc­
tivity contributions in the numerator, and the Ohm's law voltage in the de­
nominator, then we recover the Carnot efficiency of TC/AT [Carnot (1824)]. 
The irreversible processes always reduce the efficiency, often far below the 
Carnot limit. 

There are many options that one can consider for optimizing the oper­
ation of the refrigerator. One can maximize the heat transfered to the cold 
reservoir by differentiating the numerator of Eq. (3.80) with respect to (jc) 
and setting it to zero. One can maximize the efficiency, by differentiating 
the ratio with respect to (jc) and setting it to zero. Finally, one can maxi­
mize the temperature difference between the hot and cold reservoirs. The 
choice depends on the application. 

Having given a short tutorial on the bulk case, we now consider the 
nanostructure case in detail. The basic ideas are the same as in the bulk 
case, but now the technical details are much more complicated, because 
all of the transport coefficients are now matrices that vary with position. 
The starting point is the two phenomenological equations Eqs. (3.49) and 
(3.50), except we have to add the term V^(jc ' long) to the second equation, 
in order to ultimately describe the Joule heating properly. This term can be 
viewed as a nonlinear correction, but there are numerous other nonlinear 
corrections that are neglected. These other terms are likely to be small 
in comparison to the Joule heat, but there doesn't seem to be a complete 
analysis showing that other possible terms are unimportant. Since the heat 
transport equations are phenomenological in origin anyway, this does not 
cause any more fundamental problems. We also neglect the d/j,/dT terms, 
since they are small in metals at low T, and because we want to simplify 
the analysis. 
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Our first step is to solve for the electric field, which is slightly more 
complicated than what we have done before: 

E* = j - a E (Ln U 0C ' l ong>-7-^ E (Ln Li2)a0 (T0+1~TP). (3.81) 

Before we substitute this result into the heat-transport equation, we must 
note that V£ = -a^/3<Q-E/3, which we write as V£ = -aJ^pOapEp, with 
the matrix 9 defined to by 9ap = 1 for /3 < a and 6ap = 0 for /? > a. Now 
we substitute the formula for the electric field into the formula for the heat 
transport, and collect all of the terms to give 

(jQ,long) = 1 £ (L 2 l L-l) {jclong) _ 1 J2 Ma0(T0 + l ~ T0) 

1 ' 0 0 

- iE(Ln)*0O'c'lons>2 + i ^ r E ( ^ ^ ) ^ ( i > + i - T t ) , 

(3.82) 

with the matrix M defined as before, M = L22 — L2iL^L\2- The terms 
in Eq. (3.82) are first the Peltier heat, then the heat from the thermal 
conductivity, followed by the Joule heat, and the last term appears to be 
related to the Thomson heat, but it isn't simple to extract the conventional 
Thomson heat form from this term (as it is currently written). 

Our next step is to evaluate the steady-state heat transport. This was 
first worked out for inhomogeneous systems by Domenicali [Domenicali 
(1953)], which is reviewed in [Domenicali (1954)]. The strategy is identical 
to that used in the bulk: namely, we calculate the heat production within 
the volume by taking the negative divergence of the heat current. In the 
steady state, the net heat production must vanish, otherwise the tempera­
ture profile would change due to heating or cooling in the sample. For our 
discretized model of a multilayered nanostructure, setting the divergence of 
the heat current to zero, is equivalent to invoking heat-current conservation 
throughout the device. So the heat current does not change from plane to 
plane (which implies that the Peltier effect at a particular plane balances 
the thermal conduction of heat, the Joule heat produced, and the extra 
term which seems related to the Thomson heat when we are in the steady 
state). This allows us to invert Eq. (3.82), and solve for the temperature 
profile. The final result is lengthy, and we simplify it by introducing a new 
matrix, 
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Na0 = -Ma0 + i - (9L^L12)a0. (3.83) 

In terms of N, the temperature profile is found from 

Ta+l -Ta = TY: (N~l)a0 (i
Q'l0^> + J £ {N^L2lL^)a0 {f'^) 

+ 5S^~ l L r i l )^0- C ' 1 O n g ) 2 - (3-84) 
0 

Summing Eq. (3.84) over a yields the total temperature change AT between 
the left and right ends of the multilayered nanostructure. The voltage dif­
ference can be found by substituting the temperature profile into Eq. (3.81), 
multiplying the field by a and summing over a. The end result is 

A V = ̂  £ (Ln ~ L^L12N-'L21L^)Q0 (f'^) 
a/3 

-^J2(LnL^N-lLn)a0^°nS)2 

a/3 

-oE^n^A^UO^8)- (3-85) 
lel a0 

The efficiency is found from the ratio of (j^lons)A to (jc'lonz)AVA. 
We have all of these results from the manipulations summarized above. 
But it isn't as useful to express the results in terms of the charge and 
heat currents, but instead, in terms of the charge current and the change 
in temperature AT. So we first express the heat current in terms of the 
temperature change, from Eq. (3.84), as 

.Q,,ongv _ ^ 1 EapiN-'LnL^Uif^) 
/ -y,long\ 

1 2^a0
 JVa/3 lel 2^a/3 JVa/3~ 

1 V „(W-1L7,M,. f l^
c ' l on^2 

(3.86) 

TEa0Nj \e\ E a / 3 ^ 

Ea/3^ /3 1 
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Replacing (jQ'lons) in favor of AT finally yields the efficiency as 

Eff. 
1 Ea0{N-lL21L^)aP{j^^) 

Za0N, - l 
a/3 

+ 
AT 

TEa0Nj 

1 E a g ^ - ^ U WO"110"8)2 

EapN-0 

O'c,long) ^E(L")^o , c ' l o n g> 
a/3 

+ 

+ 

1 [ Ea0(LnlL12N-'U •ZyS(N-1L21Li1
1)yS 

e 2 \ Ea/3^/31 

X)(iri1ii2^-1i2iiri1)a4<J'c,lons) 

a/3 J 

AT E a ^ n ^ W - 1 ) ^ 
T N Ea/3^/31 

*\* I Ea/3 ^ 

a/3 J 
(3.87) 

The first term in the numerator is the generalization of the Peltier heat 
piece, the second term is the heat transported from the thermal conductiv­
ity, and the third is the Joule heat (but the factor of 1/2 in the bulk case 
isn't obvious from this matrix form), just like in the bulk case. The denom­
inator, however, has some extra terms. The first is the Ohmic potential 
drop, the second is a term not found in the bulk, the third is the voltage 
due to the Seebeck effect, and the fourth is also a term not found in the 
bulk. The two extra terms both vanish in the bulk. While our analysis has 
been completely straightforward, the final results are quite complex! 

A similar type of analysis can be employed to analyze power generators, 
but we will not go into the details of that here. 

There are no additional computational issues for heat transport over 
and above the issues we have already seen with the charge transport. 



172 Transport in Multilayered Nanostructures: The DMFT Approach 

The only point that must be emphasized is that for thermoelectric trans­
port problems we need to have particle-hole asymmetry, so they invari­
ably involve electronic charge reconstruction at the interfaces. The charge 
profile that results, does cause some significant technical challenges for 
determining the Green's functions on the real-frequency axis. But once 
they are known, then determining the transport coefficient matrices follows 
directly. 

3.8 Superconducting Leads and Josephson Junctions 

Superconductivity was discovered in the laboratory of Heike Kammerlingh-
Onnes in 1911 [Onnes (1911)] (G. Flimm, G. Hoist, and C. Dorsmann all 
participated in the experiments). The resistance of mercury was found to 
drop to essentially zero at about 4.2 K. We now know that the resistance 
is exactly zero in a superconductor, but the development of a theory that 
explains this took many years, and was finally achieved by John Bardeen, 
Leon Cooper, and Robert Schrieffer in 1957 [Bardeen, Cooper, and Schri-
effer (1957)] and is called the BCS theory. It is assumed that the reader 
has some familiarity with the phenomena of superconductivity at the level 
of undergraduate solid state physics courses. Here we will develop some of 
the basic ideas for the many-body theory of superconductivity. 

Our starting point is in the bulk, with an attractive Hubbard model 
(C7H = — \U\). The Hubbard model interaction is an instantaneous on-site 
interaction; while it is normally taken to be repulsive, to describe the mutual 
repulsion of the like-charged electrons, there have been numerous studies 
of the attractive version of the model, which can lead to superconductivity 
due to strong local effective electron-electron attraction. This model is 
quite different from the conventional electron-phonon type models, which 
have retarded interactions arising from the fact that the phonon energy 
scales are much smaller than the electron energy scales. Nevertheless, we 
will see the attractive Hubbard model is one of the simplest models for 
superconductivity, and since it obeys all of the universal features of the 
electron-phonon-based models, it gives similar results. We study it in detail 
here. 

As before, we begin with an examination of the equation of motion for 
the Green's functions. On the imaginary-time axis, the exact EOM given 
in Eq. (2.37), which we modify here for the attractive Hubbard model case, 
becomes 
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(r) - e(T)\U\(ni^(T)cia(r)c]a(0)) 
6 

+6(-T)\U\{cl(0)ni^(T)cia(T)) = M M - (3-88) 

Unfortunately, there is no analytic formula for the two-particle operator 
averages that are multiplied by \U\. In the spirit of the BCS theory, we 
will evaluate the averages by using a variant of Wick's theorem, which is 
necessary to allow the system to become superconducting. This approach 
is the Hartree-Fock approximation for the ordered phase of the attractive 
Hubbard model (the first Hartree-Fock calculation of the phase diagram 
of the three-dimensional repulsive Hubbard model is [Penn (1966)]). As 
you may recall, Wick's theorem takes an operator average involving four 
Fermion operators, and writes it as a sum (with the appropriate sign) of the 
product of the averages of all possible operator pairs. If we assume we have 
no magnetic order, then operator averages of the form (ct. (r)c •, (0)) vanish, 
because the electron cannot change its spin as it propagates in imaginary 
time from 0 to r (and in space from site j to site i). One might have also 
set the operator average (CL(T)C . , (0 ) ) to zero as well, because the number 
of electrons is conserved. But the BCS theory tells us that we need to 
allow such averages to be nonzero in the superconducting state, since a 
superconductor involves a phase-coherent mixture of states with different 
electron number. Hence, in the Hartree-Fock theory for superconductivity, 
we approximate the a = | case of Eq. (3.88) by 

{-dT + /i)GijT(r) +y^tii+sGi+sj]{T) 
6 

-<?(r)|l/Knu)<ciT(T)CjtT(0)> - flWlC/Kc^(T)C]T(0))(CU(0)^(0)} 

+e(-r)|C/|(nu>(C]T(0)c iT(r)>+«'(-r)|t/Kc]T(0)cJ i(r)>(c i l(0)c iT(0)> 

= SijS{T), (3.89) 

where we removed the r dependence in some operator averages due to 
time-translation invariance. It is conventional to now define two additional 
Green's functions F and F, which are called the anomalous Green's func­
tions. They are defined by the following: 

^ = - ( ^ ( ^ ( 0 ) ) ; ^ = - ( ^ ( ^ ( 0 ) ) . (3.90) 

These functions are connected by a "Hermitian" identity -FJJ(T) = [Fji(r)}*, 
which can be verified by direct calculation, and the use of time-translation 
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invariance in the operator averages. Using these definitions, we find the 
Eq. (3.89) can be written as 

(-dT + /u)G, j T(r) + ^tu+sGi+sjiir) + |C/|(na}Gij(T) 
6 

+ |£ / |F i i (0- ) i^( r ) = <%<5(r). (3.91) 

This differential equation cannot be immediately solved because we do not 
know the explicit value for the anomalous Green's function F. Hence, 
we need to derive an equation of motion for it as well. Starting from the 
definition in Eq. (3.90), and taking the derivative with respect to r as usual, 
leads to the following equation for the attractive Hubbard model: 

{-dT ~ /i)Fy(T) - J2t;i+sFi+tj{T) ~ \U\ (n^) Fzj (T) 
5 

+ \U\Fii(0-)GiJi(T)=0, (3.92) 

where we used Hermiticity of the hopping matrix to replace U+si by t*i+6. 
These two sets of equations [Eqs. (3.91) and (3.92)] now form a closed 
set of equations for the two Green's functions. It is customary to define 
the superconducting gap function Aj by A* = \U\Fu(0~). Then A* = 

\U\Fti(0-). 
If we assume there are no supercurrents flowing, even if we are in the 

superconducting state, our solution in the bulk will be homogeneous. This 
means that (n,CT) and Aj will be independent of the lattice site i. If we have 
no external magnetic fields either, then the spin up and spin down Green's 
functions are identical too. In this case, we can immediately Fourier trans­
form our results to momentum space (because the real-space summations 
are convolutions) and find 

(-dT +fi+ \\U\(n) - ek)GkT(r) + AF k ( r ) = S(T), (3.93) 

(-dT - /* - \\U\(n) + ek)Fk(r) + A*GkT(r) = 0. (3.94) 

The next step is to introduce the Matsubara frequencies just as before, by 
Fourier transforming the r variable, and remembering that is is antiperiodic 
with period j3. This yields 

(iw„ + M + ^\U\{n) - ek)GkT(iw„) + AFk(iwn) = 1, (3.95) 

(KJ„ -II- -\U\(n) + ek)Fk(iwn) + A*GkT(iwn) = 0. (3.96) 
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These equations can now be solved directly to find 

G k T ( l W n ) = ^ -M-^ l (n)+ £ k 

u>* + (n+l\U\(n)-e*) 2 + |A|2 

Fk{iwn) = : -* • (3.98) 
W2 + ( / x + i | C / | ( n ) - C k ) a + |A|2 

To arrive at a self-consistent solution, with a nonzero superconducting 
order parameter, we use the definition of the superconducting gap to note 
that we must have the following equation hold 

\V\Fn(0-) = | l / |T53^Fk(ia;n) = A'. (3.99) 
n k 

Since F has a A* in the numerator [see Eq. (3.98)], there always is a 
solution with A* = 0, which corresponds to the normal-state solution. If 
the temperature is low enough, then we can satisfy the equation that results 
by canceling the A* from the left and right hand sides, to find the BCS gap 
equation 

I = \U\Ty Idtp{e) 5 . (3.100) 

It can be shown, by comparing the free energies, that whenever a super­
conducting solution exists (i.e., A ^ 0), it is lower in energy than the 
normal-state solution [Bardeen, Cooper, and Schrieffer (1957)]. The su­
perconducting transition temperature occurs when A(T) goes continuously 
to zero. Hence we can find Tc, by finding the temperature that satisfies 
Eq. (3.100) with A = 0. See Prob. A.29 for an analysis of how to numeri­
cally solve for the Tc and the gap in the BCS model. 

In this presentation of the BCS theory we have not discussed phonons, 
which are the usual objects which interact with electrons to produce super­
conductivity. Since phonon energy scales are much smaller than electron 
energy scales, these phonons are only active in scattering electrons within 
a thin energy shell about the Fermi surface (the thickness of the shell is 
on the order of the Debye temperature for the phonons). Hence, in most 
treatments for superconductivity, we can approximate the density of states 
by its constant value at the Fermi surface, and the integral over energy 
can be performed exactly. Once this is done, it turns out that all of the 
superconducting properties have universal relations between them. These 
relations are only approximate if one includes nonconstant DOS effects, or, 

file:///U/Ty
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more importantly, if one includes the retardation effects associated with 
the fact that phonons move much slower than electrons in a crystal, so the 
effective electron-electron interaction mediated by the phonons is retarded 
in time. Accounting for these deviations has been the source of much work 
in the 60s, 70s, and 80s. It is believed these effects are all well understood 
in low-temperature superconductors. 

We will not discuss these kinds of effects further here, because the devia­
tions are often too small to need to be taken into account when determining 
properties of devices like Josephson junctions. Instead, we continue with 
examining the properties of the attractive Hubbard model in the Hartree-
Fock approximation, and we note that if we pick \U\ to be small enough 
that the superconducting Tc is much less than the hopping, then we are 
in the BCS regime, and we should recover all of the well-known universal 
relations. 

In Fig. 3.17, we show plots of the superconducting transition tempera­
ture as a function of \U\, of the superconducting gap as a function of T, and 
of a universal plot of A(T)/A(T -> 0) versus T/Tc. Note how all results es­
sentially collapse onto a universal curve when plotted in this fashion. This 
is the BCS prediction for the behavior, and the Hartree-Fock approxima­
tion to the attractive Hubbard model is described well by the BCS theory 
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Fig. 3.17 (a) Transition temperature, (b) superconducting gap, and (c) universal plot 
of the relative gap versus the reduced temperature for the Hartree-Fock approximation 
to the Hubbard model on a simple-cubic lattice. In panel (b), seven values of \U\ are 
plotted: \U\ = 1 (not visible), 1.5, 2, 3, 4, 6, and 8. 
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for a wide range of interaction strengths. The superconducting transition 
temperature (in panel a) seems to go to zero at a finite value of \U\, but this 
is actually not the case, as it depends on \U\ like Tc ex exp[—C/|[/|] for some 
constant C. The superconducting transition temperature also appears to 
increase without bound as \U\ becomes large. This is an actual artifact of 
the BCS theory. The correct behavior is for the transition temperature to 
have a maximum on the order of about one twentieth of the bandwidth, 
and then it decreases for larger values of \U\. This occurs because one en­
ters the strong-coupling regime where the system forms pairs of electrons 
at high temperature, but they do not achieve the phase coherence needed 
for superconductivity until a much lower temperature is reached (see, for 
example, [Freericks, Jarrell and Scalapino (1993)]). 

It turns out that there is a powerful and compact way of encapsulating 
the BCS equations into a 2 x 2 matrix form. This is called the Nambu-
Gor'kov formalism [Nambu (1960); Gor'kov (1959)]. The starting point 
for this approach is to note that the pairing of electrons is between time-
reversed states. So the state with spin up and momentum k is paired 
with the state with spin down and momentum —k. These two states have 
the same energy because they form a so-called Kramers doublet [Kramers 
(1930)]; put in other words, because the Hamiltonian is time-reversal sym­
metric (when there is no magnetic field), the states that are paired together 
have the same energy when there is no current flowing. This motivates con­
structing a Fermionic spinor from a spin up electron and a spin down hole. 
We define the spinor V,i(T) = [cif(r)> CL(T)] (n°t to be confused with a 
commutator) and form the 2 x 2 matrix Green's function 

6„M=-KM **j(°»=(:»i:!:j;f : » M '*""- ™ ' ^ ^ ' I -« l ( r)c ] T (0 ) ) - ( 7 ^ ( ^ , ( 0 ) ) 
G«T(r) Ftj(r) \ 
Fij(r) -G3I1(-T)J y 

After defining the 2 x 2 Green's function matrix, we now need to determine 
its equation of motion. The EOMs for the Gf and F functions appear in 
Eqs. (3.93) and (3.94). The EOMs for the other two Green's functions can 
be shown to be 

-dr-fi- \\U\(n) + e k ) [-GM(-T)} + A : F « ( T ) = 6(T) (3.102) 

-dT + fi + ^\U\(n) - e k ) Fijir) + A* [-GJ^-T)} = 0 (3.103) 
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as derived in Prob. A.30. Now we perform a Fourier transformation to 
momentum space under the assumption that the superconducting gap is 
uniform in space. The four equations for the Green's functions can be 
summarized by the following matrix equation 

-dT+)i+±\U\{n}-ek A 
A* - 9 r - M - | | C / | ( n ) + e k , 

x(Gv(r) Fk(r) W * ( r ) 0 \ 

Fourier transforming from imaginary time to Matsubara frequencies trans­
forms Eq. (3.104) into 

iujn +n+ \\U\{n) - ek A 
A* iwn-n-±\U\{n)+eki 

/Gk T(«on) Fk(iun) \ _ [ 1 0 \ m n t . , 
^ Ui"n) -G*_ki(iu;n)) - \ 0 l ) - {SA()b) 

Using Gk(iu;n) for the matrix Green's function, and recalling the three Pauli 
spin matrices and the identity matrix 

- C D - *-C"o)- - ( ; - ? ) • ' - ( ; : ) • ^ 
allows us to write a compact form for the EOM 

iwnI + »+\\U\(n)-ek r3 + ReAn - ImAr2 Gk(iu>n) = I. (3.107) 

Finally, we solve for the Green's function by inverting the matrix on the 
left hand side of Eq. (3.107). The Green's function becomes 

r r , -WrJ + [At + | I^K") ~ ek] r3 + ReAn - ImAr2 

Gk(zw„ = l- i. J (3.108) 
^ + [ / i + I | [ / | ( n } - e k ] 2 + |A|2 

which agrees with Eqs. (3.97) and (3.98) as it must. 
We wish to go beyond the simple Hartree-Fock approximation to the 

attractive Hubbard model to describe additional scattering and how it can 
degrade the superconductivity. We will use local charge scattering via the 
Falicov-Kimball model for this purpose. We can solve the Falicov-Kimball 
model (plus the Hartree-Fock approximation to the attractive Hubbard 
model) exactly using the DMFT algorithm. To do so, we must first describe 
how to solve the Falicov-Kimball model impurity for spin-one-half electrons 
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with additional anomalous dynamical mean fields that allow us to deter­
mine the anomalous Green's functions. This derivation is a straightforward 
generalization of the work that we already did for the spinless electron in 
the normal state, but it does require a careful analysis. 

We start with a spin-one-half electron evolving in normal dynamical 
mean fields Af and Aj, and in anomalous dynamical mean fields a and a 
(because the up spins do not interact directly with the down spins, we can 
solve this problem directly). The four evolution operators are then 

S(X-\) — exp 

5(AJ = exp 

S'{a) = exp 

S'(a) = exp 

rP rP , 
- dr dr 'AT(r,r ')c (r)cT(r') 

Jo Jo 

- [ dr [ d r 'A^r^Oc j^c^ r ' ) 
Jo Jo 

rP fP 
- dr dT,a(r,TJ)ci{T)c^T') 

Jo Jo 

- f dr [ dT/a(T,T ,)c{(T)c|(r') 
Jo Jo 

(3.109) 

(3.110) 

(3.111) 

(3.112) 

and the partition function to be evaluated is 

2 i m p(AT ,A i ;a,Q) = TrCT,Cl { T T e - ^ i - - ^ ) 5 ( A T ) 5 ( A i ) S ' ( a ) 5 / ( a ) } . 

(3.113) 
The Green's functions satisfy Ga{r,T') = -51n^imp/(5Ac r(r ' ,r), F(T,T') = 
-5\nZimp/5a(r',T), and F(T,T') = -5InZimp/Sa(T',T). Fourier 
transforming changes the functional derivatives to ordinary derivatives: 
Ga(iun) = -dZimvld\a(iujn), F{icon) = -dZimp/da(iujn), and F(iwn) = 
—dZimp/da(iu)n). Just like we did before in the normal case, we need to 
evaluate the EOMs for the Green's functions. The derivation is similar to 
what was done previously, and after Fourier transforming from imaginary 
time to Matsubara frequencies, we get 

iujn +n - X](iion) -a{iu)n) 
-a{iun) IU). n - fl + Xl(iUn) 

G(lLOn) — I, (3.114) 

which can be directly solved to obtain the Green's function. This is per­
formed in Prob. A.31. Once the Green's functions have been determined, 
we can then find the impurity partition function, which becomes 
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_ A Pu- TT ^iuJn + ^ ~ AT(itJn)][iu;n - M + A*(iw„)] + a{iwn)a{iwn) imp = 11 (i^)5 ' 
(3.115) 

We solve the problem for the Falicov-Kimball model in the same way 
as we did in the normal state. We form the full partition function by 
adding together the impurity partition function evaluated at /i and the im­
purity partition function evaluated at ^ — UFK [with an additional weight 
of exp(—(3Ef) for spinless localized electrons]. We will not go through the 
algebra for this here because the Falicov-Kimball model alone cannot sup­
port a superconducting state; it involves interactions with static particles, 
and Anderson's theorem [Anderson (1959b)] says that static interactions 
cannot lead to superconductivity. We will instead leap to the solution of 
the attractive Hubbard plus Falicov-Kimball model. To do this, we need 
to shift each Xa field by —\U\(n}/2 and the a (a) fields are shifted by —A* 
(—A) respectively. The full partition function becomes 

Z = 4e0» ;Q [[iLOn + n + \\U\{n) - X^iun)}[iton + /x + \\U\{n) - X^iun)]* 
n 

+ [a(ibjn) - A*][a(iwn) - A]}/( tw„) 2 

TFK] 

x[iun + fi+ i\U\{n) - XiiiuJn) - UFK}* 

+ [a(iwn) - A*}[a(iojn) - A]}/( iu; n) 2 . 

(3.116) 

The Green's functions next follow by taking derivatives with respect to the 
appropriate dynamical mean fields. First we need to define the localized 
electron filling w\ — 1 — WQ , which satisfies 

w0 = (1 - u>\) l + e-P(Ef+u^-nt) ( 3 1 1 7 ) 

; ; yr \iujn + /i + \\U\(n) - UFK - X(iun)\
2 + \a{iujn) - A'12"1 ' 

In Eq. (3.117), we have used the fact that the self-consistent solution sat­
isfies Af = Aj = A and a = a*. Now we take the appropriate derivatives 
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with respect to the dynamical mean fields to find the Green's functions, 
which become 

r a ^ - , [iwn + »+%\U\(n)-\(iun)Y 
Gl{Wn)-^\i»n + » + m(")-Mi»>>n)P + Miu>n)-*\2 ( 8 ) 

+ w 
iun + [i+ %\U\{n) - UFK - \{iion)}* 

1 |iw„ + n + \\U\{n) ~ UFK - X(iun)\
2 + \a{iwn) - A*|2 

F{iUn) = W° \iu>n + M + \\U\(n) - A I M 2 + |a(iu,n) - A*|2 ^ ^ 

-a(iu)n)* + A 
W l |zu>n + M + | | [ / | (n) - UFK - A(ia;n)|2 + |a(tw„) - A*|2 

(zc„) - ^o ! . ^ + ^ + i | ( 7 | ( n ) _ A ( . w n ) | 2 + H.Un) _ A , | 2 ^.12U) 

[-a(«Jn) + A*] 
W l |iwn + M + i|C/|(n) - UFK - \(iUnW + Hiun) - A*|2 

n ,. x, _ - [ w n + / i + | | £ / | ( n ) - A ( w n ) ] , , . , , 
G i ( l W n ) ~ W° \iun + n+ \\U\(n) - A ( ^ n ) | 2 + \a(icon) - A*|2 ^ 1 2 1 ) 

-[iion + /i + \\U\(n) - UFK - \{iun)} 
+ Wl \iton + n+ \\U\(n) - UFK - \(iun)\

2 + |a(iw„) - A*|2 

To complete the DMFT algorithm, we need to extract the self-energy 
from the impurity Green's function (this is the self-energy of the attractive 
Hubbard model plus the Falicov-Kimball model, with the Hubbard piece 
evaluated in the Hartree-Fock approximation). We begin with the definition 
of the effective medium in the Nambu-Gor'kov notation: 

^(i.n)=(iUJn + »-X{^) . -^l]: A (3.122) 
U V -Ot(lUn) lU>n - H + \(lU)n)* J 

and the 2 x 2 matrix self-energy E then satisfies 

E(zwn) = Go(iwn) -1 - <G(«*>„)-1, 
T,{iu>n) $(itun) 

$*(iwn) -S*(iwn) 

-I |L/ | (n) + E F K ( ^ n ) A + $F K(iW„) \ 
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In Eq. (3.123), we have separated out the Hartree-Fock contributions 
from the Falicov-Kimball model contributions for clarity. Finally, the local 
Green's function for the lattice is determined from the appropriate Hilbert 
transformation 

G(iu>„) = / dep(e) [iunl + (fj, - e)r3 - E(iwn)] _ 1 . (3.124) 

(See Prob. A.32 for efficient ways to evaluate this Hilbert transform.) The 
full DMFT algorithm starts with the self-energy matrix set equal to a con­
venient starting value. Unlike in the normal state, where we often set 
the self-energy to zero, here we need to ensure that the off-diagonal piece 
of the self-energy $ is nonzero to begin with, or we will not stabilize a 
superconducting solution; the off-diagonal piece will iterate to zero if we 
are above Tc. Eq. (3.124) is then used to find the local Green's function 
matrix. The Dyson equation in Eq. (3.123) is then employed to find the 
the effective medium Go- Next the impurity Green's function is deter­
mined from Eqs. (3.118-3.121), and the new self-energy follows from the 
Dyson equation Eq. (3.123). The loop is iterated until the self-energy stops 
changing. 

Note that we no longer have a simple way of determining the transition 
temperature, as we did before with the BCS gap equation [in Eq. (3.100)], 
because we do not have any way of determining the precise proportion­
ality of the a fields with the gap A (in other words we need to know 
limA-+o a(itun)/A* in order to perform calculations above Tc). This is 
needed to cancel the factor of A that we canceled from both sides of the 
BCS gap equation. Instead, we now need to solve for the gap as a func­
tion of temperature, and find the Tc from the point where the gap goes 
to zero [which is easiest to do by linearly extrapolating A2(T) with a lin­
ear extrapolation as T —> Tc]. Such a procedure is much more laborious, 
because there is "critical slowing down" of the iterative solutions near Tc. 
Alternatively, one could calculate the pair-field susceptibility and find the 
temperature where it diverges, but this is beyond the scope of the book. 

In Fig. 3.18, we plot the reduction of the superconducting Tc for the 
half-filled Hubbard-Falicov-Kimball model, with an attractive interaction 
of \U\ = 4 and various UFK (with fixed w\ = 0.5). In panel (a), we show Tc 

versus UFK which is reduced initially by a quadratic dependence on UFK; 
this arises from the fact that the self-energy for the Falicov-Kimball model 
has an imaginary part that grows like (UFK)2 initially. Once we hit the 
insulating phase around UFK w 4.92, the Tc drops rapidly, going to zero 
near 5.5. In panel (b), we show a plot of the superconducting gap; the 
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FK interaction strength U / t Temperature T [t] 

Fig. 3.18 (a) Transition temperature and (b) superconducting gap versus temperature 
for the \U\ = 4 attractive Hubbard model with wi = 0.5 and various values of UFK. 
Note how the transition temperature is reduced, and that the dependence is initially 
quadratic in UFK. Once we reach the insulating phase (around UF ss 4.92) the Tc 

rapidly drops to zero. In the right panel, the superconducting gap is plotted. These gap 
functions all satisfy the universal BCS form when plotted in reduced variables. We chose 
L/F K=0, 0.25, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 4.75, 5, 5.1, 5.2, 5.3, 5.4, and 5.45. 

shape stays essentially the same as Tc is reduced. In fact, if those results 
were plotted in terms of the reduced gap and reduced temperature, they 
would show the universal BCS form. 

In Fig. 3.19, we show a more experimentally relevant plot of the gap 
reduction for a fixed scattering strength of the defects, but with a varying 
concentration w\. In panel (a), we show the results for UFK = 3, and in 
panel (b), we show the results for UFK = 6. The inset to panel (a) is the 
superconducting transition temperature. These kinds of curves can be pro­
duced by exposing superconductors to varying doses of ion damage, or by 
introducing different concentrations of nonmagnetic impurities. While it is 
well-known in the theory of superconductivity that magnetic impurities are 
strong pair breakers [Anderson (1959b)], nonmagnetic impurities can have 
the same effect if they push the system close to a metal-insulator transition. 
Indeed, the Tc reduction is initially linear in the concentration of defects, 
similar to the magnetic-impurity prediction [Abrikosov and Gor'kov (I960)], 
but the decrease slows as we reach half-filling (wi = 0.5), where the Tc re­
duction is maximal. In panel (b), the Tc is suppressed all the way to zero 
because the system undergoes a density-driven metal-insulator transition 
(at w\ =• 0.5), and the scattering is too strong as the insulating phase is ap­
proached to support the superconductivity. Note how the dip in Tc is very 
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Temperature T [ t ] *1 

Fig. 3.19 (a) Superconducting gap versus temperature for the \U\ = 4 attractive 
Hubbard-Falicov-Kimball model with UFK = 3 and various values of w\ in steps of 
0.05; the conduction electron filling is fixed at 1.0. The maximal depression occurs at 
uii = 0.5 and curves are identical with u>\ —> 1 — w\ due to particle-hole symmetry. 
These curves are closer to what is seen in experiment, as defects typically have a given 
interaction strength, with their concentration being varied. Inset is the behavior of Tc, 
which initially decreases linearly with the concentration of defects. This behavior was 
first proposed by [Abrikosov and Gor'kov (I960)] for the case of magnetic impurities; 
nonmagnetic impurities, like what we have here are not supposed to change Tc if the 
DOS is unchanged [Anderson (1959b)], but our scattering is strong enough to change the 
DOS, thereby leading to a reduction in Tc. The rate of decrease of Tc must slow down 
as w\ —> 0.5, because the Tc is a minimum at that point, (b) Superconducting Tc for 
UFK — 6. In this case, the Tc is suppressed to zero for large enough defect concentration 
(compare with Fig. 3.18). The gap function continues to display the universal form, and 
so it is not included. 

sharp as w\ approaches 0.5; it appears to decrease like Tc « \/0.5 — w\, 
but there may be small deviations at the lowest temperatures, which are 
difficult to determine accurately. This is the same kind of behavior as seen 
with magnetic impurities [Tinkham (1975)], but here it is driven by the 
proximity to the metal-insulator transition, rather than the breaking of 
time-reversal invariance, which arises from the spin-flip scattering off of a 
magnetic impurity. 

One of the most important properties of a superconductor is that it can 
carry current without losses. We would like to calculate the current that 
a superconductor can carry within our many-body formalism. The basic 
physical idea is that there is a superconducting gap, so we can modify the 
distribution of electrons in the ground state, and still maintain the super­
conductivity, if we do not change the energy by more than the condensation 
energy resulting from the presence of the gap. To carry current, we need to 
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shift the center of the distribution of electrons (in momentum space) from 
the origin, to a finite wavevector Q. Then the electrons will have a net flow 
in the Q direction, because the distribution has a nonzero total momentum. 
This implies that we are pairing the electronic states k -f Q/2 and spin-up 
with the states —k-f Q/2 and spin down. Since these states are not related 
by time-reversal symmetry any more, they will have somewhat different 
energies, and it is more difficult to pair them together (when the difference 
in energy is larger than the superconducting gap, the two states won't gain 
energy through pairing, and will become normal). When Q becomes too 
large, the system will lose its superconductivity. The maximal value of the 
current density as a function of Q is called the critical current density of 
the superconductor. 

It turns out that a uniform current will flow in the bulk if the super­
conducting gap behaves like 

A j = e i Q - R * A , (3.125) 

with A real (the uniform current flow is a theoretical construct, actual 
materials often have inhomogeneous current profiles). At this point we 
take this statement as an ansatz, and we will show later that indeed it 
does produce a uniform current. The presence of a phase gradient (the 
phase grows linearly with position) for the superconducting gap function 
breaks the translational invariance of the system. This is to be expected, 
because we now have a direction defined by the direction that the current 
is flowing. It turns out that the normal Green's functions retain their 
translational invariance, but the anomalous Green's functions do not. Our 
strategy is to find the correct phase factor that we need to multiply the 
anomalous Green's functions by to restore translational invariance. We 
will produce this factor by introducing a canonical transformation to the 
Fermionic creation and annihilation operators, whose net result will be 
to introduce a complex phase onto the hopping matrix elements. Once 
translational invariance has been restored, we will then be able to solve the 
problem directly by going to momentum space. 

It is not easy to determine what phase factor is needed to restore transla­
tional invariance to the Green's functions in the presence of a phase gradient 
on the superconducting gap. We now go through this derivation step by 
step. We take the EOMs in Eqs. (3.91) and (3.92), and Fourier transform 
to Matsubara frequencies: 
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5^[(iwn + n+ -\U\(n))6it + tu\Gm{iu)n) + AiFi:J(iion) = <%, (3.126) 
l Z 

$ } ( > „ - n - \\U\(n))5u - t^FtjiicOn) + A*Gin(iun) = 0. (3.127) 
i z 

Solve Eq. (3.127) for Gm 

Gijiiiujn) = —^ ^[(iujn - /x - \\U\(n))5u - *:,]Fw(iw„), (3.128) 

and substitute the result into Eq. (3.126). We write the anomalous Green's 
function with a double Fourier transform, because we do not know that it 
is translation invariant when there is a current flowing. The formula is 

Ftj(iu;n) = ^ e i k - R i + i k ' - R ' -F k k , ( i u ; n ) . (3.129) 
kk' 

Substituting this formula into the expression allows the summation over 
the spatial indices to be carried out, and after some significant algebra, one 
finds 

£e«(k+Q)-R<+ik'.R,/?kk, ( iWn) 

kk' 

x [-(iu>n + n+ -\U\(n) - ek+Q)(icon - fi - -\U\(n) + ek) + A2] = AStj. 

(3.130) 

If we shift the i and j spatial components by a nearest-neighbor translation 
vector, the right hand side is unchanged, because the constant A is indepen­
dent of i and j , hence we learn that the factor exp[z<5-(k+Q+k')] = 1. Since 
we restrict our momenta to the Brillouin zone, we learn that k' = —k — Q. 
So we find 

£ e , ( k + Q H R , - R ^ k i _ k _ q ( . W n ) 

k 

x [-(ujn + ii + -\U\(n) - eu+Q)(iuJn - H - ^\U\{n) + ek) + A2] = A % 

(3.131) 

The only way to have the left hand side become a Kronecker delta function 
is for the summand to be just the exponential factor. In other words, we 

must have 



DMFT of a Nanostructure 187 

•Fk,-k-Q(iu>„) = 

A 
-(iw„ + /i + %\U\(n) - tk+Q)(iion - n - \\U\{n) + ck) + A 2 ' 

(3.132) 

Now we can construct the real-space anomalous Green's function from the 
Fourier transform, or 

k 

A 
V - • 

- ( tw n + /i + l\U\(n) - ek+Q)(JWn - M ~ II^K") + £k) + A2 ' 
(3.133) 

This final formula does indeed show that the anomalous Green's function 
is not translation invariant. But if we define a new anomalous Green's 
function 

•̂(iWn) = J^+^FijliWn), (3.134) 

then it is easy to see that f'ij is translationally invariant. Now we use 
Eq. (3.128) to see that the normal Green's function dj] is translationally 
invariant; nevertheless, we define a new normal Green's function via 

gin(iun) = e ^ , ( R i - R ^ G i i T ( i w n ) . (3.135) 

Both Eqs. (3.134) and (3.135) follow if we introduce new electron creation 
and annihilation operators 

ciCT = e-^-R>clCT, 4 = ^ - ^ 4 , (3.136) 

and express the Green's functions in terms of the tilde operators. Since 
all of the anticommutation relations of the tilde operators are unchanged 
after the phases in Eq. (3.136) are introduced, this transformation is called 
a canonical transformation. 

The canonical transformation of the creation and annihilation operators 
restores full translational symmetry to the system. Hence, our strategy 
for finding the critical current is to (i) transform the Hamiltonian to be 
expressed in terms of the tilde operators, (ii) Fourier transform to solve the 
problem in momentum space, and (iii) invert the canonical transformation 
to find the original Green's functions. The current can then be determined 
from these original Green's functions. 
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The first step is to express the attractive Hubbard plus Falicov-Kimball 
model in terms of the tilde operators. Since fna = n ^ (because the two 
phase factors cancel), the only change in the form of the Hamiltonian is for 
the hopping matrix, because ci(Tci+da = exp[—iQ • 5/2}ciaci+Sa. Hence, if 
we define iu+s = exp[iQ • 6/2]ta+s, the Hamiltonian in the tilde operators 
is 

U- i_ij\f = -^Ui+sctci+Sv ~ \u\ X ^ ' T % - M ] T ^ T + % ) 
6a i i 

i i 

The only difference from the original Hamiltonian is that the hopping ma­
trix is now complex-valued (although it remains Hermitian). This achieves 
our first goal of transforming the phase gradient of the order parameter 
onto the hopping matrix elements. The hopping matrix is translationally 
invariant, so we can diagonalize the problem by going to momentum space. 
Because of the extra phase factors on the hopping matrix, the eigenvalues 
of —Uj are ek+Q/2> while the eigenvalues of —?*• are ek_Q/2. The DMFT 
algorithm is essentially the same as before, because the impurity part of the 
problem is unchanged. The only modification is that the Hilbert transform 
becomes 

^ I A ° ^ n - ^ + Ek-Q/2 / 
(3.138) 

Note that we cannot replace the sum over momentum by an integral over 
the DOS any more because the integrand does not depend solely on eu-
But if we work on a simple cubic lattice, and note that if we choose Q in 
the 2-direction, then 

£k±Q/2 = -2£[cos(kx) +cos(k„)] 

- 2£cos(kz) cos(Q2/2) ± 2isin(k2) sin(Q2/2). (3.139) 

The summation over kx and ky can be performed by integrating over the 
two-dimensional DOS; we then have one final integration over kz. This 
last integral over k2 can be performed via contour integration and the 
residue theorem rather than calculating it numerically; see Prob. A.33 for 
details. 

Once the Green's functions for the tilde variables have been determined, 
we find the Green's functions for the original variables by introducing the 



DMFT of a Nanostructure 189 

appropriate phase factors. The current density is finally found by evalu­
ating the expectation value of the current operator (it is the same current 
operator that we used in the normal state, and we evaluate it, neglecting 
vertex corrections, as before). The result is 

3* = | ^ T £ > G „ + 4 , ( i W n ) = U ^ I m [eWgii+s,(iu>nj\ , 
n n 

(3.140) 
where there is an additional factor of 2 arising from the sum over spin 
states. The nearest-neighbor Green's function is found from 

Gil+Sz (iw„) = J2 e i ( k 2 + ^ ^ k ( i w „ ) . (3.141) 
k 

Calculating this nearest-neighbor Green's function requires evaluating an­
other integral similar to the one used for the generalized Hilbert transform 
[see Prob. A.33 (d)]. Note that the current will vanish when Q = 0 or 
when A = 0. Finally, we increase Q until the system cannot support su­
perconducting order any more. The maximal current density is the critical 
current density. Note that the direct calculation of the current in this case 
shows that it is uniform, so the ansatz that we keep the magnitude of the 
gap fixed, and vary just the phase of the gap through space, is verified a 
posteriori. 

In Fig. 3.20, we plot current-phase-gradient relation for the bulk su-
percurrent. In panel (a), we fix the density of charge scatterers and vary 
the strength of the scattering, while in panel (b) we fix the strength of the 
scatterers and vary their concentration. Note how the charge scatterers 
initially have a small effect on the current (when the scattering strength 
is small), but then they suppress it all the way to zero as the scattering 
increases. The filled circles show the critical current for each case. The lo­
cation of the critical current migrates to the left as the scattering increases. 
The results are similar when we increase the concentration of scatterers, all 
with the same strength of scattering, but the reduction appears to be linear 
in the concentration for most concentrations. An interesting early review 
of critical currents in superconductors can be found in [Bardeen (1962)]. 

The problem is only slightly more complicated for nanostructures. In 
this case, we do not know the phase profile for the BCS gap, and it need 
not be described by a simple phase gradient. We will actually determine 
the phase profile via self-consistently solving the problem. We start with a 
given current in the bulk, which is described by a uniform phase gradient. 
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Fig. 3.20 (a) Current as a function of the phase gradient at T = 0.3 for the \V\ = 4 
attractive Hubbard model with w\ = 0.5 and various values of UFK. Note how the critical 
current is initially insensitive to the charge scatterers, but then is reduced dramatically 
as the system moves closer to the metal-insulator transition. The solid circles show the 
critical current for each case, (b) Current as a function of phase gradient at T = 0.3 for 
the \U\ — 4 attractive Hubbard model with C/FK = 6 and various values of w\. Note 
how the critical current is reduced essentially linearly with the concentration of charge 
scatterers for most cases. 

We fix the phase gradient to this value by choosing the change in phase of 
Fa to be equal to Q at the first self-consistent plane of the nanostructure. 
We describe the general anomalous Green's functions via an overall phase 
Fa = |FQ |exp[i^Q]. In the bulk, we would have cpa = Q2ct, but for the 
nanostructure we will see deviations of this form. As before, we transform 
the phase that accumulates on the anomalous Green's functions onto a 
phase of the hopping matrix elements. This is accomplished by making the 
same canonical transformation as before 

pi<t>a/2j . (3.142) 

this produces the change in the hopping taa+\ —> exp[—i((f>a — <fia+i)]taa+i. 
Because the total charge is conserved, even if we have an inhomogeneous 
system, one important consistency check is to verify that the current density 
does not change from one plane to the next. This method of computation 
works with a current-biased junction, just like what would be done in an 
experiment. As the current is increased, we will find a point where the 
current density through the device reaches a maximum. Once this occurs, 
we have achieved the critical current density of the device. It is always 
smaller than the critical current density in the bulk. 

Note that we need to use a generalization of the quantum zipper algo­
rithm, within the Nambu-Gor'kov formalism, to solve for the Green's func-



DMFT of a Nanostructure 191 

tions, but such a modification is rather straightforward to carry out [Miller 
and Freericks (2001)]. The key issue is that the quantum zipper algorithm 
will work with 2 x 2 matrix functions for the recursion to the left or to the 
right. One needs to be particularly careful about the phases on the hopping 
matrix elements as well, because those matrix elements are complex when 
we perform the canonical transformation to the tilde variables. 

The Nambu-Gor'kov generalization of the quantum zipper algorithm 
begins with the following equation for the Matsubara frequency Green's 
function in the mixed basis (in terms of the tilde operators): 

Ga/3(k",tWn) = 

B a_i 0 : : 
. . . iw„ I -A a _ i (k» ) B a 0 0 

B a i w n I - A a ( k « ) B Q + 1 0 

0 B£+ 1 i u a - A a + i ( k « ) B a + 2 

v o o 

where the matrices Aa(k") are the total planar energies for a particular 
plane, given by 

Mk'^f^"^?.^-'* „ *"£?>) (3-144) 

and the matrices BQ are the hopping terms (which couple the a — 1st and 
a th planes), 

(3.145) 

The planar Green's function, G a a (k" , iun), is readily evaluated as a com­
bination of continued fractions just as we did before, except now we need to 
keep track of the additional 2 x 2 matrix structure of the Nambu-Gor'kov 
approach. We define the matrix-valued right function, KQ(k", iwn), and the 
matrix-valued left function, La(k'l,iwn), from their respective recursion re­
lations 

Ra(kll,ta;n) = i w n I - A a ( k l l ) - B a + i R - | 1 ( k « ) t u ; t , ) B l + i (3-146) 
La(k«,iw„) = i c j „ I - A a ( k l l ) - B f

a L - l 1 ( k « , J u ; n ) B a . (3.147) 

-1 

/ a/3 

(3.143) 

-t a—la 
t* ^a - l a 
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The recursive calculation continues to infinity, but once it has been extended 
to planes in the uniform bulk region, the coefficients for each plane become 
constant. The effect of a constant spatial phase gradient in A is equivalent 
to a constant phase factor in the hopping integral, taa+\, that does not 
change between planes in the bulk (when we work with the tilde operators 
instead of the original operators). Hence, by equating all RQ(kH,iu>„) with 
Roo (k'l, iu>n) for a outside of the self-consistent region and LQ (k", iuJn) with 
L_oo(kl',wjn) for a in the bulk limit, an exact terminator function can be 
calculated as the solution of a complex quadratic matrix equation: 

R0O(k,zwn)B^1ROo(k l l,iwr i) + [Aoo(k«) -*w n l ] B^1R0o(k",twn) 

+ Boo = O (3.148) 

L_00(k l l,iwn)B:J0L_0o(k l l,ia; r i) + [A_00(k
11) - iwnl] B:^L_ 0 0 (k l l , iw„) 

+ : (3.149) 

Note that the same terminator function is used for all sites in the interme­
diate layers, and the functions RQ and LQ calculated for one site are also 
used in the calculation for the next site. These matrix quadratic equations 
are solved iteratively for the bulk. 

The continued fractions form the local planar Green's functions, accord­
ing to 

GQQ(kll,iwn) = {iunl - Aa(kH) -BJ.L-l^k'l . tWnJBa 

- B a + i R - | 1 ( k " , z w „ ) B l + 1 } (3.150) 

which, using Eqs. (3.146-3.147), can be simplified to 

G Q a(k l l , iw n )= [ma(k^icon)+ha(k\iu>n)-iu>nI + Aa{k^ (3.151) 

The Green's functions connecting neighboring planes, a and a ± 1, which 
are required to calculate the current flow, satisfy two equivalent forms 

<Gaa+i(k[l,iu)n) = -GQQ(k l l,«wn)Ba+1R^{.1(k l l,iw„) 

= -L- 1 (k l l , iw n )BQ + 1GQ + l a + i (k" , ia ;T l ) (3.152) 

Gaa-i(k-ll,iuj„) = -GQ a(k l l , ia;n)B^L-i1(k l l , iu;„) 

= -R^ 1 (k^ iw n )BJ ,G Q - i a - i (k l l , iw„) . (3.153) 
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The current per unit cell area, Jaa+i, which flows along each link between 
two neighboring planes, a and a + 1, in the z-direction is finally given by: 

Jaa+i = J^-Tj^f rfeW)Im [ e ^ - ^ > S a Q + 1 ( £ l l , i u , „ ) 

(3.154) 
the phase factor is needed because we express the current in, terms of the 
original electron creation and annihilation operators. A stringent conver­
gence check for self-consistency, when there is a phase difference between 
the bulk superconductors, is that the current flow is constant from one 
plane to the next (i.e., Jaa+i is independent of a). 

The approach given here is a generalization of the Bogoliubov-DeGennes 
equations [Bogoliubov, Tolmachev and Shirkov (1958); de Gennes (1966)] 
to allow for strong electron correlations. In addition, by employing the 
local approximation and inhomogeneous DMFT, we can solve the resulting 
equations much more efficiently on a computer. 

There are some additional numerical issues that arise in these calcula­
tions. It can become difficult to determine the phase profile as we near the 
critical current. A worthwhile strategy is to slowly increase the current bias 
(i. e., the phase gradient Q at the first plane), and to use the phase profile 
from a previous calculation as the starting point for the next calculation. 
This "simulated annealing" type strategy often aids in being able to stabi­
lize the iterative nature of the solutions. Second, when the critical current 
density of the device becomes too small, then one can run into numerical 
problems which appear to arise from loss of precision error. In many of 
our calculations, we found it difficult to stabilize solutions when the critical 
current density was smaller than 10 - 1 2 times the critical current density in 
the bulk. 

A complete discussion of solutions of these equations in the case of a 
Josephson junction is given in Chapter 5. 

3.9 Finite Dimensions and Vertex Corrections 

Our theory has assumed that the vertex corrections vanish for inhomo­
geneous DMFT if they vanish in the bulk. Strictly speaking this is not 
true. For example, the vanishing of the vertex corrections for the con­
ductivity, arises solely from the fact that the velocity operator is odd in 
parity, while the irreducible vertex is even in parity. When combined in the 
Bethe-Salpeter equation to form the conductivity response function, this 
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difference in parity causes the vertex-correction terms to vanish. When 
we consider an inhomogeneous multilayered device, this parity argument 
no longer holds for longitudinal transport. The charge vertex generically 
varies from plane to plane, so it does not have a well-defined parity, and 
the current operator is expressed in a real-space format, which also does 
not have a well-defined parity. Hence, we can no longer explicitly show 
that the vertex corrections vanish. We have assumed in this book that the 
modifications due to the effect of the charge vertices will be small enough 
that they can be neglected. It would be quite interesting to examine this 
problem directly and see how large these vertex corrections can be even if 
the vertex functions remain local. 

Our exposition in this chapter has used the local approximation 
throughout, where the self-energy and the irreducible vertex function are 
both local. In any finite-dimensional system, this does not hold, so our 
approach is only approximate. For the three-dimensional cases we have 
studied, the expectation is that the self-energy and irreducible vertex con­
tinue to have limited momentum dependence, so the local approximation 
does capture most of the important physical behavior in these systems. One 
can ask, however, what can be done to reintroduce the small momentum 
dependence into the self-energy and the vertex functions. There has been a 
great body of work on this problem in the bulk. The basic idea is to general­
ize the self-consistent impurity problem to a self-consistent cluster problem 
which allows some level of momentum dependence to be restored. One such 
technique is the dynamical cluster approximation [Hettler, et al. (1998); 
Hettler, et al. (2000); Jarrell and Krishnamurthy (2001)] (DCA), which 
restores momentum dependence in a coarse-grained fashion. Using the 
DCA, provides a self-consistent, systematic means to take into account 
finite-dimensional effects, and it does so in a manner that always main­
tains the correct analyticity of the Green's functions, self-energies, and 
response functions. While the DCA has only rarely been applied to 
three-dimensional systems [Kent, et al. (2005)], it has been applied to 
many two-dimensional problems [Aryanpour, Hettler and Jarrell (2002); 
Macridin, Jarrell and Maier (2004)], and it does show the expected 
behavior—the self-energy picks up mild momentum dependence, and the 
irreducible vertex does affect the transport properties, but does not change 
qualitative features, only quantitative details. 

One could imagine generalizing our inhomogeneous DMFT approach to 
include some momentum dependence via using the DCA to determine the 
local Green's functions on each plane. This can be most easily done if the 
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self-energy is allowed to have momentum dependence only in the planar 
directions. Then the sum over kx and ky cannot be replaced by a sum over 
the two-dimensional DOS, but this only creates a more complicated numer­
ical algorithm, because we need to replace a one-dimensional integral over 
the 2d-bandstructure by a two-dimensional integral over the Brillouin zone. 
Then the impurity solver for each plane would need to be replaced by the 
DCA approach. If it is necessary to include long-range spatial correlations 
in the inhomogeneous (longitudinal) direction, then our whole method of 
approach to this problem would have to be redeveloped, because the quan­
tum zipper algorithm could no longer be applied. 

One obvious system that would be interesting to study with this tech­
nique is the class of high-temperature superconductors. The copper-oxygen 
planes are strongly correlated, but the planes are often only weakly cou­
pled together through the material. Hence, a DCA approach to handle each 
plane, coupled with the inhomogeneous DMFT approach for coupling the 
planes together, could yield an interesting theory for these systems. This 
problem has not yet been attempted by anyone. 

An alternate approach that allows some momentum dependence to be 
restored to these systems would be to calculate the perturbative contri­
butions to the momentum dependence of the self-energy and irreducible 
vertices. This technique can be problematic, because the simplest way to 
do this usually breaks causality for some frequencies, hence the theory be­
comes unphysical in some regimes. Nevertheless, as a quick way to see the 
size of finite-dimensional effects, this approach may be a useful one to apply 
to some problems. 





Chapter 4 

Thouless Energy and Normal-State 
Transport 

4.1 Heuristic Derivation of the Generalized 
Thouless Energy 

Semiclassical approaches often lead to interesting ideas for analyzing 
quantum-mechanical behavior. The Thouless energy is one such idea 
that has proved to be remarkably important as a quantum-mechanical 
energy scale. The idea for the emergence of such an energy scale origi­
nated with work of Thouless in the 1970s [Edwards and Thouless (1972); 
Thouless (1974)]. In this work, which was first numerical, the idea of ex­
amining how the quantum-mechanical levels were spaced in energy (for 
the disorder problem) and how that level spacing related to the localization 
transition, was first introduced. This notion of using a quantum-mechanical 
level spacing, denoted by A E (and not to be confused with the supercon­
ducting gap), to determine properties related to transport is a useful con­
cept, which has now been adopted into a new object called the Thouless 
energy. The Thouless energy for a diffusive conductor is typically defined as 
the quantum-mechanical energy scale that can be extracted from the dwell 
time of the quasiparticle within a region of thickness L of the conducting 
material. In diffusive transport, the motion of the particles is random, so 
the average (or dwell) time that each particle spends inside of a region is 
proportional to the square of the size of the region, with the proportionality 
being the inverse of the diffusion constant V. This motivates the definition 
of an energy scale via 

#Th = = 7 J . (4-1) 

When the resistance of a disordered material is examined via numerical 
means, it is found that a dimensionless version of the resistance TN (where 
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we divide by the quantum of resistance for spin-one-half particles RQ = 
h/2e2) can be interpreted as the ratio of two energy scales: the Thouless 
energy i?Th and the level spacing Ag- The formula is 

RN 1 AE 
rN = i^ = ^ * W (4"2) 

The localization transition occurs near the region where TN ~ 1-
The inverse level spacing can be interpreted as the change in the number 

of electrons in the material per unit of energy. Since the total number of 
electrons (determined by adjusting the chemical potential fi) satisfies 

N(n) = vJ<LjA{u-n)f{u,-ri, (4.3) 

the inverse level spacing becomes Ag = dN/dji. The local DOS A(u> — fi) 
is independent of the chemical potential because A(u>) has the chemical 
potential located at ui = 0, so by subtracting fi from the argument, we 
remove the chemical-potential dependence. Thus the inverse level spacing 
satisfies 

df(io) A£: = V JduA(u) 
du> 

(4.4) 

Since the derivative of the Fermi-Dirac distribution is sharply peaked 
around u> = 0 for low T, we can replace the DOS factor in the integrand 
by A(0), for metals at low T, and then the integral over u yields 1 (recall 
that the DOS is measured from the chemical potential, so A(0) is the DOS 
at the Fermi energy Ep). The final formula for the inverse level spacing in 
metals is then 

Ai1 = VA(0). (4.5) 

Using Eqs. (4.1) and (4.2) then produces a resistance equal to 

hi? L 
R^^JWAE = 2^VA(O)A' ( 4-6 ) 

which is the common form one finds for a diffusive conductor whose volume 
is V = LA (this form is often derived from the so-called Einstein relation; 
see the next section for details). 

A similar line of reasoning could be used to define the dwell time in 
a ballistic conductor (which suffers no scattering) to determine a ballistic 
Thouless energy, but we do not go through such a path, because we instead 
want to focus on a more general form for the Thouless energy that can be 
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inferred from the reasoning we have already developed. The idea is to note 
that if we take Eq. (4.4) as the fundamental definition for the inverse level 
spacing, even if we have a strongly correlated metal or insulator, then we 
can use numerical (or experimental) results for the resistance of different 
size materials to determine the Thouless energy via the relation developed 
in Eq. (4.2) [Freericks (2004a); Freericks (2004b)]: 

-^Th = 
RQ 

2TT R^A-1 

h- (4 7) 

4.2 Thouless Energy in Metals 

There are typically two kinds of metals that are discussed in reference to 
the Thouless energy—(i) ballistic metals that have no scattering and (ii) 
diffusive metals that can be described by semiclassical diffusion. We have 
already seen that the Thouless energy decreases like 1/L2 for a diffusive 
conductor. In a ballistic metal, the decrease is instead like 1/L, because 
the dwell time in the region of size L is proportional to L/vp with vp 
some appropriate average Fermi velocity for the quasiparticles. One can 
also infer these dependences from Eq. (4.7) in the following way: for a 
diffusive conductor, the resistance grows linearly with the thickness L of 
the conductor (Ohm's law), so the Thouless energy decreases like 1/L2, 
while for a ballistic conductor the resistance is independent of L, so the 
Thouless energy decreases like 1/L. However, it is interesting to find more 
specific results for the Thouless energy in these two limits because we can 
use them to compare with the body of work in the field, and ensure that 
our generalized Thouless energy approach makes sense. 

We start with noninteracting electrons in three dimensions and we will 
consider the transport through a macroscopic region of cross-sectional area 
A and length L. Free electrons have an energy dispersion e^ = h2k2/2m. 
It is a simple exercise to show that the DOS at the Fermi energy satisfies 
A(b) — 2mkp/h2 and the Fermi velocity is vp = Vkfk/ft = /ikp/m, with 
kp the Fermi wavevector and m the effective mass of the quasiparticle. This 
yields an inverse level spacing of A^1 = 2mALkF/h2. 

In a ballistic conductor, we need to imagine the material of size L x A 
as sandwiched between two semi-infinite metallic leads. If there is a trans-
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missivity T at the lead-metal interface, then the resistance is given by 
i?N = 4:irRQ/kpAT, which is the inverse of the number of conducting chan­
nels available at the Fermi surface (modified by the transmissivity). This is 
called the Sharvin resistance [Sharvin (1965)] or contact resistance between 
the lead and the metal. Using the inverse level spacing, and the generalized 
Thouless energy formula, then gives the ballistic Thouless energy as 

^ballistic hvpT 
Th = 1 Z ~ - ( } 

This behaves like 1/L as we know it should. 
In a diffusive conductor, where we also sandwich the material of size 

L x A between two semi-infinite metallic leads, we have both a contact 
resistance plus the diffusive contribution from the diffusive conductor of 
length L. If we start from the bulk form for the resistivity, we use a sim­
ple Drude law [Drude (1900a); Drude (1900b)] to find the resistivity as a 
function of a mean-free-path £ = V^T, with r the relaxation time for the 
scattering process. The simple result is that 

171 37ri?n 
"dc = ^ = -fcp-' (4-9) 

with pe = kp/3-ir the electron density. If we assume a contact resistance 
given by Rc = AifRc^/h^AT as derived above, then the total resistance 
becomes 

RN = 
4 3L 
T + T K-pA 

(4.10) 

and the associated Thouless energy is 

d̂iffusive hvvt h v 
pdittusive _ '""f " _ '^~_ (A -i i \ 
* T h " 3(1 + ^ ) L 2 - (l + 5 f c ) Z T ( 4 - U ) 

where we used the fact that one can define the diffusion constant via 
V = v-pl/Z (this follows from the fact that the dc conductivity is adc = 
fcp£/37ri?Q, which can also be written as a^c — 2e2VA(Q) via the Einstein 
relation—solving for V yields the desired result). This result differs slightly 
from the expected 1/L2 behavior due to the inclusion of the contact resis­
tance. If the term 41/2TL is small, then we recover the 1/L2 behavior, but 
if it is non-negligible, we expect to see deviations. 

Using the techniques described in Chapters 2 and 3, we can now generate 
both the resistance of a multilayered nanostructure and the bulk DOS, so 
we can evaluate all the terms in Eq. (4.7) and determine the Thouless 
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energy of different devices. The numerical calculations to carry this out are 
complex, and a project to do so is described in Prob. A.37. For simplicity, 
we assume that the hopping between all lattice sites is the same, namely 
equal to t, which we use as our unit of energy; the lattice sites are taken to 
be the locations on a simple-cubic lattice. We examine the case of ballistic 
metal semi-infinite leads (no scattering) and a central barrier region that is 
described by the Falicov-Kimball model with an interaction strength UFK 

and with a concentration of defects equal to w\ = 1/2; these terms vary only 
from one plane to another, and are fixed within any given plane. We work 
at half-filling for both the leads and the barrier, so the chemical potential 
lies at \x = 0 for all T and there is no electronic charge reconstruction 
because the chemical potentials match identically between the two different 
materials. Hence we only have three parameters to vary: (i) the strength 
of the interaction UFK; (ii) the length of the barrier L = Na; and (iii) the 
temperature T. Nevertheless, this is a rich parameter space to examine, 
because there is a metal-insulator transition occurring at UFK « 4.92i. 
Note that it is only charge transport that is interesting to study for this case 
because the particle-hole symmetry implies that the thermopower vanishes, 
so there are no thermoelectric effects. 

Let us begin with a review of the bulk charge transport on a simple-cubic 
lattice at half filling in the Falicov-Kimball model. The dc conductivity 
continuously goes to zero at the metal-insulator transition, which occurs 
near UFK = 4.92. In the metallic phase, the conductivity is a fairly flat 
function of T for low temperature, because the imaginary part of the self-
energy does not have strong frequency dependence. If we concentrate our 
examination in this low-T region, then we can extract a mean-free-path for 
the electrons via the Einstein relation (using the interacting DOS). The 
result of this exercise is shown in Fig. 4.1. When the mean free path drops 
below one lattice spacing (at approximately UFK = 3) we have reached the 
so-called Ioffe-Regel limit [loffe and Regel (I960)] which is supposed to be 
the minimum possible metallic conductivity. Nevertheless, in the Falicov-
Kimball model, the conductivity continues to continuously go to zero at 
UFK « 4.92. The diffusive picture for transport holds up to this critical 
transition point, but beyond that point, use of the formula for the mean 
free path may make no sense anymore. 

In Fig. 4.2, we plot the relative value of the resistance of a strongly 
scattering metal UFK = 2 (panel a) and for an anomalous metal UFK — 
4 (panel b) for different thicknesses of the barrier. One can see that as 
the barrier is made thicker, the shape of the curves becomes similar, and 
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Fig. 4.1 Mean free path as determined from the Einstein relation for the bulk con­
ductivity in the Falicov-Kimball model on a simple-cubic lattice at half filling. The 
temperature is T = 0.01. Although the mean free path drops below the Ioffe-Regel limit 
at UFK ~ 3, the conductivity (and mean free path) continuously goes to zero at the 
metal-insulator transition. Adapted with permission from [Tahvildar-Zadeh, Freericks, 
and Nikolic (2006)]. 

actually it reproduces the bulk resistivity shape, as one might expect. Since 
the resistivity is decreasing as T increases in both cases, these are very 
strongly scattering metals, but the decrease is minimal for UFK = 2, and 
at low T one can approximate the resistivity by just a constant, while it is a 
significant reduction for the UFK — 4 case, which arises due to the fact that 
the DOS has a large dip near the chemical potential, so more states are able 
to participate in the transport as the temperature is raised. In addition, 
we note that the cases with thin barriers always have conventional metallic 
behavior even in panel (b) where the mean free path is less than a lattice 
spacing, but the crossover to the anomalous metallic behavior occurs much 
sooner for the stronger scattering material. 

Plots of the resistance-area-per-unit-cell product are shown in Fig. 4.3 
as a function of the interaction strength UFK. Note how there is virtually 
no indication of the metal-insulator transition in the thin barrier cases, 
but it becomes more obvious, with the resistance increasing sharply, as the 
thickness increases. In all cases there is a finite intercept at UFK — 0 due 
to a nonzero contact resistance. The numerical calculations become quite 
challenging to accurately determine the resistance in the Mott insulating 

T1—I—I—I—|—I—I—I—I—|—I—I—I—I—|—I—I—I—I—|—I—I—I—r"= 
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Temperature [t] Temperature [t] 

Fig. 4.2 Panel (a): relative resistance versus temperature for different thickness devices 
and UFK = 2. Panel (b): relative resistance versus temperature for different thickness 
devices and UFK = 4. We plot barrier thicknesses corresponding to 1, 2, 5, 10, 15, 20, 
30, 40, 60, and 80 planes. 

phase when the barrier is thick. We are unable to accurately determine 
Rn for interaction strengths larger than 6 at N = 20. This arises due to 
the fine structure that builds up in the self-energy on different planes, as 
illustrated in Fig. 4.4. This figure depicts how the self-energy develops a 
sharp peak reminiscent of the delta-function peak seen in the bulk Mott 
insulator, but here the peak has a finite width and height. This structure 
becomes very fine, and is challenging to determine accurately. 

The numerical issues associated with a self-energy, like the one depicted 
in Fig. 4.4, arise from two separate issues: (i) first there is a huge variation 
in the self-energy over a short energy scale (the change is over almost nine 
orders of magnitude for a range of frequency about O.li) and (ii) extracting 
the self-energy when the Green's function is small is subject to loss of 
precision since the DMFT algorithm requires taking the difference of two 
large numbers to yield the self-energy. While these issues are also present in 
the bulk (especially on the hypercubic lattice, where the "Mott-insulator" is 
really always a pseudogap), one can derive analytic expressions to determine 
the self-energy in regions where the numerics fails. For a nanostructure, 
it is much more difficult to try to construct such an analytic expression 
due to the inhomogeneity, hence calculations become infeasible when the 
numerics fails. One way to see that the numerics is failing is to note that 
the first visible error is usually that the exponential decay of the DOS at the 
chemical potential will stop as the number of planes increases (often, you 
will actually see a peak start to develop). Whenever this occurs, it is likely 
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Fig. 4.3 Resistance as a function of UFK for four different barrier thicknesses: (a) N = 1 
(circles) and N = 2 (squares); (b) TV = 5; and (c) N = 20. Note how there is essentially 
no indication of the metal-insulator transition for a single plane junction, but it becomes 
clear for the TV = 5 and TV = 20 cases. The temperature is T = 0.01. Adapted with 
permission from [Freericks, Nikolic and Miller (2001)] ( © 2001 the American Physical 
Society). 

that the numerical code is starting to have precision issues, so this should 
always be checked with moderately thick insulating barriers, to insure that 
the numerical precision is adequate. Sometimes increasing the number of 
quadrature steps, by reducing the grid spacing, can improve the precision 
enough that the results become viable, but at some point they undoubtedly 
fail. 

Given the resistance and the bulk DOS, we are now able to calculate 
the Thouless energy. In the ballistic case, the Thouless energy trivially 
will be given by Eq. (4.8) because the resistance is given by the contact 
resistance for any thickness. Hence we focus on diffusive junctions that have 
contributions from both the contact resistance and the diffusive resistance 
from the interior of the barrier. We show results for two cases UFK — 2 and 
4 in Fig. 4.5. These plots are of -Exh versus L on a semilogarithmic plot and 
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Fig. 4.4 Semilogarithmic plot of the imaginary part of the self-energy on the central 
plane of the barrier with five different thicknesses (N = 1, 4, 7, 10, and 15). The value 
of the interaction energy is UFK = 6. These results do not depend on temperature. 
Reprinted with permission from [Freericks (2004b)] ( © 2004 the American Physical So­
ciety). 

of E-YhL2 versus L on a linear plot. The former shows how the Thouless 
energy decreases, while the latter shows whether the 1/L2 dependence holds 
at large L; this 1/L2 dependence appears sooner for UFK = 4, because the 
contact resistance is a smaller relative contribution to the resistance in this 
case. The curves, which are plotted for different temperatures, show how 
the diffusion constant varies with T (it appears to increase almost linearly 
with T at high T for UFK = 4), but the overall dependence on T is rather 
weak, as expected for metals. 

There is one other point to make about the "depression" of the diffu­
sion constant in the top panels of Fig. 4.5. If the formula in Eq. (4.11) 
held exactly, then by using the mean free paths plotted in Fig. 4.1 we could 
determine precisely what the behavior for different cases should look like. 
But when we have very thin junctions, their resistance is relatively insen­
sitive to the size of the interactions (see Fig. 4.3), which tells us they are 
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Fig. 4.5 Left panels: Thouless energy versus L for four different temperatures and 
U* 2. Right panels: the same but for U •• 4. The top panels are E^L1 versus L, 
while the bottom panels are &rh versus L on a semilog plot. Reprinted with permission 
from, [Freericks (2004b)] ( © 2004 the American Physical Society). 

less resistive than one would predict from Eq. (4.10). This implies that the 
Thouless energy will be enhanced for the smallest thicknesses, and hence 
the diffusion constant won't vary as much as might be expected. This 
becomes more evident as the strength of the scattering increases. 

These results show that the Thouless energy is well-defined and easily 
extracted from data for the resistance versus temperature. In actual junc­
tions or devices, the contact resistance can create a significant modification 
of the 1/L2 dependence, but this is recovered in the large L limit. We will 
see in the next chapter how the Thouless energy plays a significant role in 
describing the behavior of Josephson junctions. 

4.3 Thouless Energy in Insulators 

In insulators, the Thouless energy has significantly stronger temperature 
dependence than in metals. This is because the inverse level spacing, as 
defined in Eq. (4.4), vanishes as T —> 0 in an insulator. Since the bulk 
dc resistivity becomes infinite, this may not seem like a problem, but the 
resistance of a device will not be infinite due to quantum-mechanical tunnel­
ing, which will allow electrons to flow through the junction even at T — 0. 
Hence, the Thouless energy will diverge for an insulator as T —> 0. Note 
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Fig. 4.6 Left panel: Thouless energy versus T for different thicknesses and U = 5. 
The dashed line is the curve £>rh = T. Reprinted with permission from [Freericks 
(2005)]. Right panel: Thouless energy versus T for different thicknesses and t / F K = 6. 
The dashed line is the curve Bxh = T. Running from top to bottom, the curves are for 
N = X, 2, 3, 4, 5, 7, 10, 15, and 20. Reprinted with permission from [Freericks (2004b)] 
( © 2004 the American Physical Society). 

that it is easy to understand why the resistivity becomes infinite, but the re­
sistance remains finite. The resistivity is denned for the bulk material, and 
the Kubo formula always involves an integral of an effective relaxation time 
multiplied by a derivative of a Fermi function. That derivative becomes a 
delta function at T — 0, so the conductivity is determined by the relaxation 
time at u> = 0. If the relaxation time vanishes, then the resistivity will be 
infinite. By definition, the relaxation time does vanish in any insulator. 
On the other hand, when we investigate the resistance of a nanostructure, 
we need to evaluate a similar Kubo formula in real space, but here none 
of the integrands vanish, because the DOS is always finite at the chemical 
potential everywhere in the nanostructure. This arises due to the normal-
state proximity effect, that allows the metallic wavefunctions to leak into 
the insulator. If the insulator was not attached to metallic leads, then the 
resistance need not be finite, but whenever it is attached to metallic leads, 
the resistance must be finite (although it can become extremely large in 
magnitude). Hence, we always see a finite resistance to the nanostructure 
that has an insulator sandwiched between two metallic leads. 

If we want to interpret the Thouless energy in terms of a tunneling time 
(analogous to the dwell time), this would say that the tunneling time goes 
to zero as T —> 0, but it isn't clear that such an interpretation can be 
easily made and quantitative theories for the tunneling times of particles 
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across barriers have been controversial. In any case, we do not need to 

try to interpret the Thouless energy in terms of a tunneling time, because 

our approach allows us to work directly with the Thouless energy to learn 

interesting results. 

We show plots of the Thouless energy versus temperature for various 

thicknesses of the barrier in Fig. 4.6 [Freericks (2004b); Freericks (2005)]. 

Panel (a) is near the critical metal-insulator transition, with UFK = 5, 

while panel (b) is a small gap Mott insulator, with UFK = 6. The dashed 

line is the line E^h = T. The points of intersection of the two lines define 

the place where Err, = T for a given thickness of the barrier. 

Note how the more insulating the barrier becomes, the stronger the T 

dependence is. In the case UFK = 5, the temperature is not low enough 

to clearly see the divergence as T —> 0, but for the case with UFK = 6 the 
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Fig. 4.7 (a) EThL
2 and (b) i ? T h versus L for UFK = 6 and various temperatures. Note 

how we see a 1/L2 behavior at high temperature, indicating that the thermally activated 
transport is diffusive inside a Mott-insulating barrier at high temperature. 
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divergence is obvious. Furthermore, the thicker the barrier is, the lower the 
temperature where J5xh = T and the lower the crossover temperature where 
the Thouless energy changes its slope from increasing to decreasing with T. 
Hence, the effective energy scale for transport is lower for a thicker barrier. 
While this may sound counter-intuitive, we will see in the next section, 
that this makes good sense as we unravel the crossover from tunneling to 
incoherent (Ohmic) transport in a device. 

We plot the analog of Fig. 4.5 in Fig. 4.7 for UFK = 6, which is a small-
gap Mott insulator. Note how at high temperature and for thick junctions, 
the Thouless energy behaves like l/L2, indicating diffusive transport. For 
thinner junctions at low temperature, where the transport is via tunneling, 
the "diffusion constant" varies significantly with thickness initially. This is 
because the transport is not diffusive in that regime. It is interesting to see 
that as the device makes the transition from tunneling to incoherent, ther­
mally activated, Ohmic transport, the character of the transport changes 
from quantum-mechanical tunneling to semiclassical diffusion. We will see 
a more dramatic illustration of this in the next section. 

4.4 Crossover from Tunneling to Incoherent Transport in 
Devices 

When the barrier is an insulator, we expect the system to display tunneling 
at low temperature, which crosses over to thermally activated transport 
at high temperature. We have already seen that the thermally activated 
transport is diffusive, when we examined the Thouless energy at high tem­
peratures. Now we examine the resistance directly. Plotted in Fig. 4.8 is the 
resistance versus temperature on a log-log plot. Panel (a) shows the small-
gap insulator UFK = 6 and panel (b) shows the near critical Mott-insulator 
UPK = 5. In the top panel, we can clearly see tunneling exhibited by the 
flat steps of equal size as the thickness increases. These equally spaced 
steps indicate the system has a resistance that grows exponentially with 
the thickness, which is a hallmark of the tunneling regime. Furthermore, 
the resistance depends only weakly on T in this regime, and since tunnel­
ing is a quantum effect, it does not display strong T dependence. As the 
temperature is made larger, the curves turn over, and all lie nearly on top 
of each other. This is the Ohmic linear scaling regime, where the resistance 
scales like Rn ss pdcL/A. The thermally activated regime displays diffusive 
transport that can be described by Ohm's law. The magenta dashed curve 
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Fig. 4.8 Top panel: Resistance versus T on a log-log plot for different thicknesses of the 
barrier and UFK = 6. The dashed line with solid circles is the curve corresponding to 
points where £xh = T. Reprinted with permission from (Freericks (2004b)] ( © 2004 the 
American Physical Society). Bottom panel: The same plot but for UFK = 5. Reprinted 
with permission from (Freericks (2005)). The constant <To satisfies <TQ = 4e2/ha2. 

w i t h sol id circles m a r k s t h e p o i n t s w h e r e t h e T h o u l e s s e n e r g y is e q u a l t o 

the temperature. We can clearly see that this criterion properly determines 
the crossover from tunneling to activated, incoherent transport. 
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Surprisingly, the crossover point does not seem to have any simple rela­
tionship to the barrier height; it also may seem strange that the crossover 
occurs at a lower temperature for thicker barriers. But these results can be 
easily understood with a little thought. The tunneling phenomenon acts 
like a "quantum short" through the device, which we can view as a conduct­
ing channel in parallel with the thermally activated channel. At low T, the 
thermally activated channel is too resistive, so all of the current flows via 
tunneling. As the T rises, the thermally activated resistance drops because 
the resistivity depends exponentially on the inverse of the temperature. 
As this resistivity drops, the resistance of the thermally activated conduc­
tion channel also drops, and once it becomes lower than the resistance due 
to tunneling, the majority of the current is carried by the thermally acti­
vated carriers. Since the tunneling resistance grows exponentially with the 
thickness, this crossover resistance is higher for thicker junctions, so they 
crossover at a lower temperature than the thinner junctions. The depen­
dence on the barrier height is complicated because the barrier height enters 
into the activated behavior for the resistance, and it also plays a role in 
determining the magnitude of the tunneling resistance, but there is no sim­
ple way to determine precisely the functional dependence of the crossover 
temperature on the barrier height. 

In panel (b), we see curves corresponding to the near critical Mott in­
sulator. Not too surprisingly, this device does not behave in any simple 
fashion. The resistance does show flat plateaus at low T, but they are not 
equally spaced as the thickness increases, so they do not depend exponen­
tially on the thickness. But they are not linear either, and this regime is 
really a new regime that probably does not have any simple analytic be­
havior to describe it because the DOS depends so strongly on energy in 
the region close to the chemical potential. At high temperatures, there is a 
crossover to the linear-scaling Ohmic regime, with the transport being dif­
fusive. The Thouless energy does provide a reasonable "ballpark" estimate 
for this crossover, but it is not as good at predicting the location when we 
are too close to the metal-insulator transition; of course, if we push to the 
metallic side of the transition, there is no crossover. 

In Fig. 4.9, we see a different perspective on this issue, with a plot of the 
resistance versus thickness at a fixed temperature T = 0.01 for UFK = 2, 
4, 5, and 6. Panel (a) is a semilog plot and panel (b) is a linear plot. This 
allows us to easily find the Ohmic scaling regime and the exponential scaling 
regime. Both the strongly scattering metal UFK = 2 and the anomalous 
metal UFK = 4 display Ohmic scaling, plus a contact resistance, for all 
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Fig. 4.9 Resistance versus thickness at T = 0.01 for UFK — 2, 4, 5, and 6. Panel (a) 
is a semilogarithmic plot, which can show exponential dependence of the resistance on 
thickness, while panel (b) is a linear plot, which can show Ohmic linear scaling of the 
resistance. The metallic phases (UFK = 2 and 4) obey perfect linear scaling, plus a small 
contact resistance. The small-gap Mott-insulator (UFK = 6) has exponential dependence 
of the resistance on L, while the near-critical insulator ( t / F K = 5) has behavior that 
increases faster than linear, but not fast enough to be exponential. Reprinted with 
permission from [Freericks (2004b)] ( © 2004 the American Physical Society). 

thicknesses. The slope of the curve agrees perfectly with the resistivity 
that is calculated from the bulk Kubo response function. The small-gap 
Mott insulator has perfect exponential dependence of the resistance on 
the thickness until we reach a thickness of about 20, where it starts to 
turn over. Indeed, the Thouless energy predicts the crossover thickness 
(sometimes called the Thouless length) occurs near 20 for T = 0.01. The 
near-critical insulator (UFK = 5) does not obey either simple scaling form— 
the resistance increases faster than linearly, but slower than exponential in 
the thickness. 
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Fig. 4.10 Resistance versus temperature for a diffusive metal with UFK = 4. The 
different curves correspond to different thicknesses. Unlike the insulating case in Fig. 4.8, 
here we see no signal of tunneling behavior; instead, the curves all have a similar shape, 
indicating the linear scaling of the resistance at each T for diffusive transport. Reprinted 
with permission from [Freericks (2004b)] ( © 2004 the American Physical Society). 

Our final results are shown in Fig. 4.10, where we plot the resistance 
versus temperature for different thicknesses in a diffusive metal. Unlike the 
insulator case in Fig. 4.8, here we see the linear scaling of the resistance 
with thickness, as all curves share a similar shape (especially as the barrier 
is made thicker). This result is analogous to what we saw in Fig. 4.2, where 
the curves all had a similar shape, especially once the barrier was thick 
enough. 

The results of this section clearly show that the Thouless energy, which 
can be thought of as the energy scale associated with charge transport, 
plays an important role in understanding the different behavior in multi-
layered nanostructures. In particular, we can use the Thouless energy to 
determine whether we have ballistic or diffusive transport by examining 
how it changes with thickness at large thickness and we can use it to de­
termine the crossover from tunneling to incoherent transport in a junction 
(either as a function of thickness for fixed temperature, or as a function 
of temperature for fixed thickness). We will see in the next chapter, that 
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it also plays an important role in determining the properties of Josephson 
junctions, especially for junctions with thick enough barriers. 

The generalized Thouless energy should be a useful diagnostic tool for 
characterizing the quality of different junctions. It is easy to determine the 
Thouless energy if one can measure the resistance and if one has a good 
idea of the shape of the bulk DOS of the barrier material. We hope that 
experimentalists will find this concept useful to apply to devices that are 
being manufactured. It also can be used as an engineering guide, if one 
wants tunneling at a given temperature, the Thouless energy can immedi­
ately tell you at what thickness you should expect there to be a crossover 
to diffusive transport given a certain barrier height. 



Chapter 5 

Josephson Junctions and 
Superconducting Transport 

5.1 Introduction to Superconducting Electronics Devices 

Silicon-based transistors and circuits currently run at up to 4 GHz in com­
mercially available computers, but are not expected to be able to be clocked 
much faster than 10 GHz. Other semiconductors may be able to push the 
clock speed a few times faster, but we are rapidly approaching the maximal 
speeds for semiconductor-based electronics. Superconducting electronics, 
on the other hand, which are based on Josephson junctions as the funda­
mental circuit element [Josephson (1962)], have inherent switching speeds 
that are dramatically higher. Niobium-based junctions have been used to 
create a T-flip-flop circuit that runs at 770 GHz [Chen et al. (1999)]. 
Other superconductors, like MgB2, may be able to operate at even higher 
speeds. While it is true that superconducting electronics will need sig­
nificant development to progress to even 100 GHz speeds in complicated 
circuits (tens to hundreds of thousands of junctions on a chip) like analog 
to digital converters (which are still much simpler than a microprocessor), 
the theoretical ceiling on clock speed is set much higher for superconductor-
based technologies, and with enough time devoted to the development of 
advanced circuits, it may be possible to create ultrafast digital electronics 
from Josephson junction-based chips. 

A Josephson junction consists of a multilayered sandwich that has su­
perconducting leads to the right and the left, and a central barrier region 
that can be an insulator (SIS junction), a normal metal (SNS junction), a 
strongly correlated metal or insulator (SCmS or SCiS junction), or com­
binations of these (the SINIS junction has been examined recently). The 
central region of the Josephson junction is not inherently superconducting, 
so the superconductivity is reduced as we move from the superconductor 
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into the barrier region. But the superconductivity cannot go to zero too 
rapidly, because that would cost too much in energy, so it gradually goes 
to zero, resulting in superconducting correlations that leak from the left 
superconductor into the right superconductor; from a technical standpoint, 
the gap function can go discontinuously to zero, but the pair-field Green's 
function decays much more slowly. This physical process allows super­
conducting pairs of electrons to travel through the device, and it typically 
creates a complicated nonlinear current-voltage characteristic; nonlinear be­
havior is often the most important aspect of a device for applications (recall 
the transistor has a nonlinear current-voltage relation, because current is 
exponentially suppressed to flow in one direction through a pra-junction; 
the nonlinear current-voltage relation of a Josephson junction is even more 
complex—see Fig. 1.1). 

One of the most important aspects of a Josephson junction is how 
rapidly it switches from a state where current can flow with no voltage 
across the junction (it is driven by a gradient of the phase of the super­
conducting order parameter through the device) to a resistive state where 

(0 

D 

o 
> 

Fig. 5.1 Schematic plot of voltage pulses with different values of the characteristic 
voltage, given by the figure-of-merit IcRn. Note how the width of the pulse narrows as 
the characteristic voltage increases because the area under the curve is the same for all 
curves (and equal to the flux quantum). 
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there is current flowing with a voltage across the junction, and then back 
to the no voltage state. As this switching behavior occurs, we can examine 
a plot of the voltage versus time (see a schematic in Fig. 5.1). It turns out 
that the integral of this voltage pulse is equal to a flux quantum </>o = h/2e. 
Hence, the higher the peak of the voltage pulse, the narrower the pulse, and 
thereby, the faster the switching speed. So the height of the voltage pulse 
will determine the switching speed of a Josephson junction, and we want 
to maximize this to get the narrowest pulse. The peak voltage, also called 
the characteristic voltage, is equal to the product of the critical current at 
zero voltage Ic and the normal-state resistance Rn. This product, IcRn, is 
also called the figure-of-merit of a Josephson junction. 

The figure-of-merit has some simple limiting values in well-known cases. 
For a thin insulating barrier (called a SIS tunnel junction), the product 
is IcRn — 7rA(0)/2|e|, which was first worked out by Ambegaokar and 
Baratoff [Ambegaokar and Baratoff (1963)]. This result is independent of 
the barrier height, and only depends on the size of the superconducting 
gap, which is around 1 meV for low-temperature superconductors. The 
fact that the figure-of-merit is independent of the barrier material is easy 
to understand: both the critical current and the resistance will depend on 
the barrier height, but they do so in a reciprocal fashion, leading to an IcRn 

product that is independent of the barrier height. At low temperature, one 
can also show that IcRn satisfies IcRn = 7rA(0)/|e| for thin metal-barrier 
junctions (SNS junctions) [Kulik and Omelyanchuk (1977)]. This is also 
independent of the properties of the barrier, but is more complicated to 
derive, because it relies on evaluating properties of the proximity effect in 
the normal metal. 

Current Josephson-based devices are manufactured from niobium-
aluminum-oxide-niobium trilayers [Rowell, Gurvitch and Geerk (1981); 
Gurvitch, Washington and Huggins (1983)]. The growth process involves 
first depositing a Nb layer, followed by a thin Al layer. Then the device 
is exposed to oxygen, which forms a disordered, nonstoichiometric K\Ox 

barrier layer, and finally it is capped with an upper layer of Nb. The alu­
minum layer needs to be thin, but it does not need to be controlled too 
stringently, because the proximity effect will make a thin aluminum layer 
superconducting, since it sits on top of the niobium. The thickness of the 
barrier is determined by the amount of oxygen that the aluminum is ex­
posed to, but if the barrier is too thin, then it does not form a uniform 
barrier, and transport is dominated by so-called pinholes, which are hot-
spots in the barrier that conduct electrons more easily than other regions 
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(see Fig. 1.8). The barrier height of pure sapphire (AI2O3) is about 4.5 eV, 
but the barrier height observed in actual Josephson junctions is often much 
smaller, on the order of 1 — 2 eV, and this is because the aluminum oxide 
is not stoichiometric, due to it being oxygen-deficient (see Fig. 1.9). 

These Nb-AlO^-Nb Josephson junctions are tunnel junctions, which 
have a multivalued, hysteretic current-voltage curve [see Fig. 1.1 (a) for 
an example]. But the current-voltage characteristic needs to be single val­
ued (corresponding to what is called a nonhysteretic junction) for use in 
rapid single-flux quantum logic (RSFQ) [Mukhanov, Semenov and Likharev 
(1987); Likharev (2000)], which is the fastest operating logic for a Josephson 
junction device [see Fig. 1.1 (b)]. A hysteretic Josephson junction can be 
converted to a nonhysteretic junction by adding a shunt resistor in parallel 
with the Josephson junction. This is what is used for current Nb-based 
junctions that are employed on chips to make electronics devices. The 
area of the junction in currently available technology is on the order of a 
square micron. If we make the area smaller, we can get into a regime called 
the self-shunted junction regime, where the junction has a nonhysteretic 
current-voltage curve without requiring an external shunt resistor. 

To understand what parameters are required for self-shunted junctions, 
we perform some simple back-of-the-envelope calculations. For typical 
Josephson junctions, we need to run on the order of 1 mA of current through 
each junction to prevent errors in the circuit. If the junction area is 0.1 /i2 , 
then the junction will have a current density of 106 kA/cm2. The IcRn 

product tends to be about 1 mV, so the resistance is about 1 Q. If the 
barrier thickness is between 1 — 10 nm, then the resistivity ranges from 
Pdc =1-10 mf2-cm; this is near the metal-insulator transition, which typi­
cally occurs around 1 mfi-cm. Hence, as the area of the Josephson junction 
is made smaller, it is natural to consider junctions made from materials 
that lie close to the metal-insulator transition. 

One example of a class of self-shunted junctions that have shown promise 
for Josephson technology is tantalum-deficient TaxN barriers [Kaul, et al. 
(2001)]. This material is a normal-metal barrier, that can be tuned to pass 
through a metal-insulator transition at TaaNs [Yu, et al. (2002)]. These 
junctions illustrate good Josephson properties at low temperature, but the 
properties in available prototype junctions change too rapidly with temper­
ature (as the temperature is raised), which is problematic for circuits, since 
the switching speed is related to the IcRn product and timing errors can 
quickly force a RSFQ circuit to cease working. 
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5.2 Superconduct ing Proximity Effect 

When a superconductor is placed close to a nonsuperconducting material, 
we have an inhomogeneous many-body problem to solve. The supercon­
ductivity is reduced within the superconductor as we approach the inter­
face, while superconducting correlations leak into the nonsuperconducting 
material, and decay with some characteristic length scale. The healing 
length of the superconducting gap in the superconductor, from its reduced 
value at the interface, to its bulk value far from the interface is called the 
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Fig. 5.2 Plot of the anomalous Green's function at equal time (the pair-field amplitude) 
as a function of the plane number for a Josephson junction with 20 planes in the barrier. 
The superconducting part (up to plane 30) has [/" = - 2 and is at half-filling. The 
barrier (plane 31 to 40) is described by a Falicov-Kimball model with l /H = 0, uii = 0.5, 
and at half-filling as well. The top plots (a) are for UFK = 6 while the bottom plots 
(b) are for UFK = 2. The superconducting planes are plotted on a linear scale (on 
the left), while the barrier planes are plotted on a log scale. The blue dots are the 
calculated numerical data, and the curves are various fits described in the text. Adapted 
with permission from [Tahvildar-Zadeh, Frccricks and Nikolic (2006)). 
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Ginzburg-Landau coherence length because they were the first to create a 
phenomenological model that describes how superconductivity is depressed 
near the surface of a superconductor [Ginzburg and Landau (1950)]. This 
healing length should be related to the superconducting coherence length 
£o, which is the average distance between paired electrons in the super­
conductor (and can be calculated in the bulk). The BCS theory says the 
coherence length satisfies £o = hvp/TrA(0), where VF is an appropriate av­
erage Fermi velocity, averaged over the Fermi surface. If we average the 
modulus of the Fermi velocity over the Fermi surface on a simple-cubic 
lattice with nearest-neighbor hopping at half-filling, we find VF K 3.15at/H, 
which yields a coherence length of £0 « 5.1a when UH = - 2 [A(0) = 0.198i 
and Tc = 0.1112]. Since the Ginzburg-Landau coherence length satisfies 
£GL = 0.74£o/\A - T/Tc near Tc, a fit of the healing length near Tc allows 
an independent extraction of £o from the inhomogeneous solution; we find 
£o ~ 5.2a when we fit our data, indicating that the coherence length is 
around 5 lattice spacings when UH — —2. This is a short coherence length 
superconductor. 

In Fig. 5.2, we plot the pair-field amplitude (value of the local anoma­
lous Green's function as t —-> 0+) as a function of position at a temperature 
T = 0.01 w Tc/ll. The Josephson junction has 30 self consistent planes 
to the right and to the left, and 20 planes in the barrier; only half of the 
junction is shown because the results are symmetric for the other half. The 
top panels are for UFK = 6 and the bottom for UFK = 2, with w\ = 0.5 and 
half-filling. The blue dots are the numerical results found by solving the 
inhomogeneous DMFT equations in the superconducting phase. The dif­
ferent curves are different types of fits, according to different fitting forms. 
But before we discuss the fitting, it is useful to examine the numerical data 
in more detail. Note how the gap is suppressed more in the normal-metal 
barrier (bottom panels) than in the correlated insulator barrier (top pan­
els) for the superconducting part of the junction (left). In the normal-metal 
case, there are only small oscillations, but in the insulating case, the pair-
field amplitude has significant oscillations. It is believed these oscillations 
arise from Fermi wavelength effects, since a semi-infinite superconducting 
lead terminated by the vacuum should have oscillations that decay as we 
move away from the surface. For the normal-metal barrier, it makes sense 
to try the phenomenological Ginzburg-Landau form for fitting the pair-field 
amplitude via 
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Fa(0
+) = Fbulk(0+) tanh ( ^ 4 r J ) . (5-1) 

where we view ceo and £GL as phenomenological fit parameters. This form 
is supposed to only hold near Tc, but it has an exponential decay from 
the bulk value far from the interface for all T, and hence is a reasonable 
first try. We can see the fit (red curve) is quite good for the SNS junction, 
with significant deviations only near the interface, while it fits the average 
well (if the oscillations are smoothed out) for the SCiS junction. When 
we have oscillations, we modify the fit in Eq. (5.1) by multiplying by a + 
bsin[k(a + a)a]/\a + a'\l/, which provides a simple decaying oscillatory form 
on top of the exponential healing. One can see the fit (green curve) is quite 
good in the insulator case now, with deviations also occurring near the 
interface only. The period of the oscillations is about two lattice spacings, 
which is not easy to understand, because the Fermi surface has a range of 
wavevectors over the Fermi surface. The decay of the amplitude is also ill 
understood—it decays like the inverse of the eighth power of the distance 
from the interface. Note that £GL is essentially independent of the strength 
of the correlations in the barrier and is about 5a. 

Within the barrier, the decay is governed by the normal-metal coher­
ence length £jv, and is expected to be exponential in the distance from the 
interface. Because the correlations grow in a symmetric way as we approach 
the second interface to the right, the simplest functional form to use for a 
fit is 

FQ(0+) = F c o s h ( ^ y (5.2) 

This form works almost equally well in metallic or insulating barriers. The 
coherence length is a function of temperature, and it also varies with the 
thickness of the barrier. It is an increasing function of the thickness for 
thin barriers, but then approaches a limit as the system becomes thick 
enough. This thick-barrier limit is what we call the normal-metal coherence 
length of the junction. As can be seen in the right panels of Fig. 5.2, 
£iV depends strongly on UFK (it is about 6.5a for UFK = 2 and 0.6a for 
JJFK = 6). We do not need to include any fitting with oscillations within the 
barrier itself. Previous results showed one additional oscillation within the 
barrier [Freericks, Nikolic and Miller (2001); Freericks, Nikolic and Miller 
(2002)], but that oscillation appears to be a bug in an earlier version of the 
code. 
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Fig. 5.3 Plot of the anomalous Green's function at equal time as a function of the plane 
number for a SNSNS Josephson junction with 30 self-consistent planes in the left lead, 7 
planes of normal metal, 6 planes of superconductor, 7 planes of normal metal, and then 
30 self-consistent planes in the right lead. The dashed line shows the result for a 20 plane 
SNS junction. The temperature is T = 0.01. Reprinted with permission from [Freericks, 
Nikolic and Miller (2002)] (©World Scientific Publishing Co. Pte. Ltd., Singapore). 

We can get more complicated results if we introduce additional inho-
mogeneities on length scales smaller than the respective coherence lengths. 
For example, in Fig. 5.3, we plot the pair-field amplitude for a SNSNS 
junction, which has the middle 6 planes of the barrier replaced by super­
conductors [Freericks, Nikolic and Miller (2002)]. One can see the expected 
growth of the pair-field amplitude as we enter the superconductor in the 
center of the device. Since, it will turn out that the critical current of the 
Josephson junction depends on how large a phase gradient can be placed 
over the central plane of the barrier, one would expect a higher critical 
current for the SNSNS junction, because the superconducting correlations 
are enhanced. Indeed, it increases by over a factor of two. 

Finally, we can ask what happens to the Josephson junction if there 
is an electronic charge reconstruction at the interfaces. This can arise 
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from a chemical potential mismatch between the superconductor and the 
barrier. If we take clean metals for both the superconductor and the normal 
metal, so the screened dipole layers at the interfaces provide significant 
scattering near the interfaces, we can consider the junction to be similar to 
a SINIS junction, which can be thought of as a SIS junction that has the 
insulating barrier split in half and filled in the center by a normal metal to 
try to make the junction thicker, and hence less susceptible to pinholes, and 
possibly could produce junctions with smaller spreads in parameters across 
a chip; unfortunately, it seems like the reproducibility of each insulating 
barrier is difficult to achieve if the insulators are grown artificially. But 
the screened-dipole layer approach might be more reproducible, because 
it relies on intrinsic properties of the materials, which would most likely 
create symmetric, well-defined barriers at the interfaces. 
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Fig. 5.4 Plot of the anomalous Green's function at equal time as a function of the plane 
number for a SINIS Josephson junction with 30 self-consistent planes in the left lead, 
20 planes of normal metal, and 30 self-consistent planes in the right lead. The different 
curves correspond to different Fermi level mismatches (AEp labels the different curves). 
The electronic charge reconstruction is plotted in Fig. 3.11. Reprinted with permission 
from [Freericks, Nikolic and Miller (2002)] (©World Scientific Publishing Co. Pte. Ltd., 
Singapore). 
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An example of a SINIS junction, generated by electronic charge recon­
struction, is plotted in Fig. 5.4 [Freericks, Nikolic and Miller (2002)]. The 
first point to note, is that as the charge redistribution increases, due to 
a larger mismatch, the pair-field amplitude is significantly reduced within 
the normal-metal barrier. In the superconductor, we see the inverse prox­
imity effect is initially reduced in magnitude, as we saw in the correlated 
insulator barriers, but as the Fermi-energy mismatch is increased, the in­
verse proximity effect becomes larger. This occurs because we are starting 
to see significant effects of the charge reconstruction, which extends fur­
ther and further into the superconducting lead as the mismatch is made 
larger (more correctly, the magnitude of the scattering which arises from 
the change in the charge density becomes larger, since the screening length 
is unchanged). 

In this section, we have shown the wide variety of different length scales 
that are associated with Josephson junctions. They display both proximity 
effects and inverse proximity effects, as well as Fermi-wavelength-driven 
oscillations. We have focused solely on length scales associated directly 
with the pair-field amplitude here. We will see below that there are a 
number of other important length scales for other properties, but many of 
them can be directly related to the length scales described here. 

5.3 Josephson Current 

In the bulk, we applied a constant phase gradient to generate a supercurrent 
when we were in the superconducting state. We saw that there was a fairly 
wide range of Q values where the current increased as the phase gradient 
increased, but then over a fairly narrow range, the current suddenly dropped 
and then vanished (see Fig. 3.20) once the superconductor could sustain no 
more current (because the phase gradient was too large). Since the phase 
variation from plane to plane is nonuniform in a Josephson junction, it is 
difficult to characterize the change in the phase by a single phase gradient 
(which one would we choose). Instead, we examine the total phase change 
over the barrier region of the Josephson junction. We define the barrier to 
"begin" halfway between the last superconducting plane on the left and the 
first barrier plane on the left (this is at position 30.5 for our calculations) 
and to "end" halfway between the last barrier plane on the right and the 
first superconducting plane on the right. Then we simply accumulate all of 
the phase change across the entire barrier, and use that total phase change, 
called the phase across the Josephson junction, to characterize the current 
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flowing through the junction. It is easy to see that the phase gradient 
must change from plane-to-plane, because the pair-field amplitude changes 
from plane-to-plane. Since the current passing through each plane must 
be a constant value through the device, the phase gradient must vary to 
compensate for the changes in the pair-field amplitude through the junction. 
We expect the phase gradient to be the largest at the region where the pair-
field amplitude is the smallest, and, once that plane can no longer sustain 
a larger phase gradient across it, the current stops increasing, and we reach 
the critical current of the device. In most cases we consider, this maximal 
phase gradient occurs at the central plane of the barrier. 

In Fig. 5.5, we show the current-phase relation for a number of differ­
ent thickness SNS junctions. The superconductor has Uu = —2 and is at 

Fig. 5.5 Current-phase relationship for a series of different thickness SNS junctions. The 
barrier is a ballistic metal with no scattering, while the leads also have no scattering, 
but they do have a superconducting attraction of C/H = —2. All parts of the device 
are at half-filling, and the temperature is T = 0.01 ~ T c / l l . The different curves are 
for different thicknesses of the barrier. One can see that as the barrier is made thicker, 
the current drops, and the curve becomes more sinusoidal. In fact, if we plot J{<j>)/Jc, 
versus the phase </>, we find simple sinusoidal behavior once the thickness is larger than 
about 25 planes. The dashed line is the critical current density in the bulk. Adapted with 
permission from [Freericks, Nikolic and Miller (2002)] (original figure ©World Scientific 
Publishing Co. Pte. Ltd., Singapore). 
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half-filling. The normal-metal barrier has no Hubbard or Falicov-Kimball 
interaction and is also at half-filling. The thin barrier (N = 1) can sustain 
a critical current density nearly as high as the critical current density in 
the bulk. The shape of the curve is far from sinusoidal. As the thickness 
increases, the current density drops, and the curves become more sinu­
soidal in shape. Once we reach a thickness of about 25 planes, we recover 
sinusoidal behavior for all larger thicknesses. Pure sinusoidal behavior is 
expected from the [Josephson (1962)] result of an SIS junction, but we see it 
here for thick enough SNS junctions as well. The deviations from the sinu­
soidal shape arise mainly from the self-consistency of the solutions. When 
the critical current density is close enough to that of the bulk, we need to 
examine the solutions with full self-consistency to achieve high accuracy. 
When scattering is added into the barrier, we also recover the sinusoidal 
behavior for thicker barriers, but the thickness where this occurs becomes 
much less than 25 planes. 

It is also interesting to examine what the actual phase change looks like 
over each of the planes of the junction. Since the phase change is dominated 
by the gradient term, we subtract it from the results we plot, and show 
just the phase-deviation 6</>a — 4>a — aQ. Since the phase returns to the 
bulk result of a constant phase gradient far from the interfaces, the phase-
deviation plot must become flat as we move far from the interface in either 
direction. But it does not need to go to zero as a —> oo. Instead, it can go 
to a constant. The difference between the right and the left phase-deviation 
functions represents the additional phase accumulated over the barrier, in 
addition to the phase corresponding to the phase gradient multiplied by the 
thickness of the barrier. Note that in previous work [Freericks, Nikolic and 
Miller (2001); Freericks, Nikolic and Miller (2002)], too large of a gradient 
was subtracted, so that the phase-deviation function went to zero far to 
the left and far to the right (or one could view that as a slightly different 
definition of the phase deviation function). 

The phase-deviation function for a ballistic normal metal and for 
a weakly scattering diffusive normal metal SNS junction is plotted in 
Fig. 5.6 (a) and (b). Note how the deviation goes to a constant far from the 
interfaces, as expected, because we need to recover the bulk limit there. But 
there is always an additional total phase shift due to the barrier that needs 
to be added on to determine the total phase across the junction. As the 
interaction strength increases, the contribution from the phase-deviation 
function becomes more and more important. When it completely dom­
inates the phase change, then we can neglect the contribution from the 
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Fig. 5.6 Phase-deviation plot for a twenty-plane barrier SNS junction with (a) no scat­
tering and (b) scattering given by UFK = 1 and u>i = 0.5. The curves are clustered 
around the critical current of the junction, where Q is maximal (recall the value of the 
critical current density is determined by the value of Q that we introduce in the leads, 
because current is conserved through the junction). Note how the general shape of the 
phase deviation is similar for all cases, and how there is some sharp features present in 
the SNS junction with no scattering. Only a small amount of scattering is needed to com­
pletely smooth out all of that extra structure. The slopes of the phase deviation function 
are largest at the central plane, indicating that the total phase gradient is largest there, 
as discussed in the text. Panel (a) adapted with permission from [Freericks, Nikolic and 
Miller (2002)] (original figure ©World Scientific Publishing Co. Pte. Ltd., Singapore). 

gradient, which is quite small; this is how Josephson performed his original 

analysis [Josephson (1962)]. In addition, note the sharp structure present 

at the interface for the barrier that has no scattering (a), and how it is 

washed out when there is scattering in the barrier (b). The slope of the 

phase deviation curve is the largest at the central plane of the barrier, which 

says that the total phase gradient is largest there. This is to be expected, 

because the pair-field amplitude is the smallest there. 

The critical current density for a ballistic metal barrier (UFK — 0), a 

diffusive metal barrier (UFK = 1 and 2), a strongly correlated metal near 

the metal-insulator transition (UFK = 4), a near-critical Mott insulator 

J7F K = 5, and a small-gap Mott insulator UFK = 6, is shown in Fig. 5.7. 

We use a semi-logarithmic plot to explicitly show the exponential decay of 

the critical current density with the thickness of the junction. The behavior 

is qualitatively the same for all different kinds of barriers, but the decay rate 

increases dramatically as the scattering increases. Note how the exponential 

decay of the critical current only sets in once the barrier is thick enough, 

as there is some curvature to the curves for thin barriers. Furthermore, the 

BCS theory predicts tha t the decay of the critical current with the thickness 
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Fig. 5.7 Critical current density (normalized by the bulk critical current density) for 
barriers described by the Falicov-Kimball model with wi = 0.5 and different UFK values 
as a function of the thickness of the barrier (with T = 0.01). Note how in all cases 
(ballistic metal barrier, diffusive metal barrier, and insulating barrier) the critical current 
density decreases exponentially with the thickness of the barrier. The rate of decrease 
increases substantially after the metal-insulator transition. The superconductor is at 
half-filling with f/H = —2. The barrier is described by the Falicov-Kimball model at 
half-filling with w\ = 0.5 and UFK values shown as the labels to the different curves. 
Adapted with permission from [Tahvildar-Zadeh, Freericks and Nikolic (2006)]. 

of the barrier is also governed by the normal-metal coherence length £jv, 
which describes the exponential decay of the pair-field amplitude when 
there is no current flowing. Comparing our numerical results for these 
two different calculations, verifies that they are essentially identical. The 
numerical values for £JV, as extracted from the above plot, are as follows: 
(i) U = 0, 6v = 29.1; (ii) U = 1, &v = 11; (iii) U = 2, &v = 6.26; (iv) 
U = 4, 0v = 2.85; (v) U = 5, £N = 1.4; (vi) U = 5.5, fjv = 0.79; and (vii) 
U = 6, £JV = 0.62. 

In the quasiclassical theory of superconductivity, the decay length for a 
diffusive SNS junction is supposed to be governed by the thermal diffusion 
length, which is defined to be £T = y/hV/2nT, where V is the diffusion con­
stant. We can extract the diffusion constant by using the Einstein relation, 
as described in Chapter 4, if we know the bulk value of the resistivity. Per­
forming this analysis for these different barriers, produces good agreement 
with the length scales extracted directly from the data. The approach does 
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not work well once U > 4.92, where the bulk system has a metal-insulator 
transition. The final results for the thermal diffusion length are: (i) U = 1, 
£r = 12.8; (ii) U = 2, £N = 6.37; and (iii) U = 4, £N = 2.82. Agreement 
with the above data is quite good (we cannot perform such an analysis for 
the ballistic metal case, or for the insulating cases at low temperature). 

So the Josephson current that flows through the junction is described 
well by quasiclassical notions when the barrier is a diffusive metal, but the 
inhomogeneous DMFT approach allows us to also investigate properties of 
insulators, and to study systems close to the strongly correlated (Mott) 
metal-insulator transition. 

In Fig. 5.8, we plot the critical current density as a function of barrier 
thickness for a SINIS junction where both materials are at half-filling, but 
the Fermi level of the barrier is shifted by AEf as shown in the labels 
of the figure. This shift causes there to be a screened-dipole layer, which 
corresponds to the electronic charge reconstruction at the interface. Note 
how the presence of this charge scattering causes a significant reduction of 
the critical current, which then settles down to an exponential dependence 
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Fig. 5.8 Critical current density (normalized by the bulk critical current density) for 
SINIS junctions where the "insulating" layers are generated by an electronic charge 
reconstruction (at half-filling) due to a Fermi-level mismatch. Note how the critical 
current is initially reduced dramatically due to the scattering off the screened dipole 
layers, but then it has an exponential dependence on the barrier thickness once the 
barrier is thick enough. Adapted with permission from [Nikolic, Freericks and Miller 
(2002a)] (original figure © 2002 the American Physical Society). 
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on the barrier thickness once the barrier is thick enough. There is no 
scattering in the barrier, and the charge screening length is about three 
lattice spacings. 

5.4 Figure-of-Merit for a Josephson Junction 

The critical current is one piece of the figure-of-merit for a Josephson junc­
tions. The other piece is the normal-state resistance. The critical current 
can be calculated on the imaginary axis (using Matsubara frequencies), but 
in the ordered superconducting state. The normal-state resistance requires 
a real-axis calculation, but there is no superconducting order. In fact, we 
have already calculated the resistance as a function of temperature when 
we examined the Thouless energy in Chapter 4. So we simply combine the 
two results to get the IcRn product. Note that we actually calculate Ic/A 
and RnA for the junctions, but the area factors cancel when we evaluate 
the products. 

Since the IcRn product is a voltage, it is common to multiply by the 
electric charge to get an energy, and then compare that energy to the su­
perconducting gap at T — 0. In other words, the figure-of-merit is often 
reported in the combination |e|/ci?n/A(0). We will do this here as well. 

The figure-of-merit is plotted in Fig. 5.9 for four different thicknesses as 
a function of UFK at T = 0.01. In panel (a), we plot the results for N = 1 
(top) and N = 2 (bottom), in panel (b), we have N = 5, and in panel (c), 
we have N = 20. For the single-plane barrier, the IcRn product is highest 
for the metallic junctions, and drops as the scattering increases. Once UFK 

is large enough, it becomes constant. The dashed line is the Ambegaokar-
Baratoff prediction [Ambegaokar and Baratoff (1963)], and we can see our 
results drop below their results. This is because the gap is suppressed as 
we approach the interface, which results in a small reduction of the figure-
of-merit. The N = 2 case has even more significant drop as scattering is 
added to the barrier, until we hit the metal-insulator transition (around 
UFK « 4.92), and it rises to end up near the constant value of the N — 1 
case. In panel (b), we have a moderately thick barrier, and the results there 
are even more interesting. The figure-of-merit is suppressed significantly in 
the metallic phase, but then turns around dramatically and increases in 
the insulating phase, going above the value seen for the thin barriers. The 
thick barrier case in panel (c) behaves similarly, but to a higher extreme, 
as we see a large suppression on the metallic sign, and a hint of an increase 
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Fig. 5.9 Figure of merit at T = 0.01 as a function of UFK for four different thickness 
Josephson junctions: (a) N = 1 and N = 2; (b) N = 5; and (c) JV = 20. Note how 
the thin junctions have a figure-of-merit independent of the properties of the barrier 
when the barrier height is large enough, and how the thicker barriers have a significant 
change in their properties at the metal-insulator transition. Adapted with permission 
from [Freericks, Nikolic and Miller (2001)] (original figure © 2001 the American Physical 
Society). 

on the insulating side, but the data is difRcult to generate for UFK values 
larger than 6. 

Since the Thouless energy played such a prominent role in describing the 
behavior of the transport in normal devices, we can ask the question about 
what role the Thouless energy plays in transport in superconductors. There 
is much guidance on this issue from quasiclassical calculations. There, it 
is found that the Thouless energy determines the figure-of-merit when the 
Thouless energy is the smallest energy scale, and the superconducting gap 
determines the figure-of-merit when it is the smallest energy scale [Dubos, 
et al. (2001)]. The quasiclassical approach predicts a universal behavior of 
the figure-of-merit versus the Thouless energy, which approaches the Kulik-
Omelyanchuk limit when the superconducting gap is the smallest energy 
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Fig. 5.10 Figure-of-merit at T = 0.01 versus the Thouless energy on a log-log plot. 
Panel (a) is a blow-up of the upper region of panel (b). Five numerical cases are pre­
sented: (i) a ballistic-metal barrier with fFK = 0 (red circles); (ii) a diffusive metal near 
the loffe-Regel limit with [j\rmFK _ i ( g r e e n squares); (iii) an anomalous ("pseudogap") 
metal with UFK = 4 (blue triangles); (iv) a near-critical Mott insulator with U = 5 
(cyan filled circles); and (v) a small-gap Mott insulator with UFK = 6 (magenta aster­
isks). In addition, we show the quasiclassical prediction in yellow and an exponential 
curve in black. Adapted with permission from [Freericks, Tahvildar-Zadeh and Nikolid 
(2005)] (original figure ©IEEE) . 

and it is proportional to lOBxh when the Thouless energy is the smallest 
energy. The specific result is plotted in Fig. 5.10 in yellow for T = 0.01. On 
that same plot, we show numerical results for IcRn versus £>r-h for a ballistic 
metal SNS junction (red circles), a strongly scattering metal near the loffe-
Regel limit of minimal metallic conductivity [loffe and Regel (I960)] (green 
squares), an anomalous metal (blue triangles), a near-critical Mott insulator 
(cyan filled circles), and a small-gap Mott insulator (magenta asterisks). 
Note how both diffusive metals fall right on top of the quasiclassical curve. 
The ballistic metal case falls on top of an exponential curve (since the 
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resistance is independent of the thickness, the figure-of-merit decays in the 
same way that the critical current decays). The insulating phases are close 
to the diffusive metal ones, but do show some deviations: (i) they fall lower 
than the quasiclassical result when the Thouless energy is large; (ii) they are 
higher when the Thouless energy is small; (iii) the crossover point lies near 
the region where lO-Exh — A; and (iv) it appears that they may illustrate 
new universal behavior for the insulating case at small E^h, but this cannot 
be confirmed from the available data. Hence, we find a second important 
use for the generalized Thouless energy derived in Chapter 5. It appears 
to be able to determine the properties of the figure-of-merit of a Josephson 
junction. We hope that these results motivate experimental groups to try 
to analyze their data within the generalized Thouless energy concept. 

Since the critical current of a Josephson junction always decreases ex­
ponentially with the thickness of the barrier, but the resistance increases 
more slowly (it is constant for a ballistic metal, increases linearly for a 
diffusive metal and a thick enough Mott insulator, and increases exponen­
tially for a thin Mott insulator), we expect the figure-of-merit to always 
ultimately decrease as the barrier is made thicker. Since the Thouless en­
ergy decreases with increasing barrier thickness as well, as can be read off of 
Fig. 5.10, it is useful to replot the relationship between the figure-of-merit 
and the Thouless energy to make this dependence on the thickness more 
apparent. We do this in Fig. 5.11 [Tahvildar-Zadeh, Freericks and Nikolic 
(2006)]. The horizontal axis may appear to be a strange set of units, but 
if we recall for a diffusive conductor that the Thouless energy behaves like 
Em ~ KD/L2 — 2nT^/L2 when expressed in terms of the thermal diffu­
sion length, then we see ^/T/ETh = L/V2TT£T- Once again, we see different 
behavior for the ballistic junctions and the other junctions, but the quasi-
classical prediction, and the two diffusive metal SNS junctions lie on top of 
each other. The insulating barriers have a similar behavior, and a similar 
shape to that of the diffusive junctions, but their quantitative behavior is 
different. Once again, we do see the possibility that there is a universal 
insulating curve, but it is difficult to verify that conjecture from the data 
that we have. 

We interpret these results in the following way. First, it is clear that 
the Thouless energy is a valuable way to summarize transport data for 
Josephson junctions in addition to junctions in the normal state. Second, 
these results illustrate one reason why the quasiclassical approach works so 
well. When fitting quasiclassical results to data, one often chooses an ap­
propriate diffusion constant by fitting resistance data and using an Einstein 
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Fig. 5.11 Similar plot of the figure-of-merit at T = 0.01 versus the square-root of the 
ratio of the temperature to the Thouless energy. This horizontal axis is proportional 
to L/£x for diffusive conductors, and it displays the results in a reasonable way for all 
of the considered cases. Adapted with permission from [Tahvildar-Zadeh, Freericks and 
Nikolic (2006)). 

relation. Since the results shown here reproduce the quasiclassical behavior 
for all diffusive cases, even if the mean-free-path is much less than a lat­
tice spacing, it shows that the quasiclassical approach may be valid beyond 
the regime where the mean-free-path is large compared to the Fermi wave­
length. Furthermore, since the insulating barriers have similar behavior, 
albeit with slightly different shapes, the quasiclassical approach is a good 
first approximation to them as well. 

5.5 Effects of Tempera tu re 

In externally shunted tunnel junctions, the resistance of the junction (cor­
responding to the intrinsic resistance through the barrier and the resistance 
through the shunt resistor) does not vary much with temperature over the 
operating range of the circuit (typically a few degrees Kelvin at a temper­
ature below 10 K). Hence the majority of the temperature dependence of 
properties of the Josephson junction occur due to variations of the critical 
current with T. If we consider barriers tuned close to the metal-insulator 
transition, particularly junctions where the temperature is similar in mag-



Josephson Junctions and Superconducting Transport 235 

1 

^ 0.8 
O 
^JJ 0.6 
\ 
P 0.4 

o 
~ 0.2 

0 
0 0.2 0.4 0.6 0.8 1 

Reduced Temperature (T /T ) 

Fig. 5.12 Reduced critical current versus reduced temperature for a variety of thin (JV = 
1, open symbols) and moderately thick (N = 5, closed symbols) Josephson junctions with 
varying scattering in the barrier. The solid line is the prediction of [Ambegaokar and 
Baratoff (1963)]. All cases are at half filling with UH = —2 in the leads, and vanishing in 
the barrier. The barrier has w\ = 0.5 and UFK values as shown in the caption. Reprinted 
with permission from [Freericks, Nikolic and Miller (2003)] (©2003 American Institute 
of Physics). 

nitude to the Thouless energy, then we expect to see stronger temperature 
dependence of the superconducting properties. In addition, it turns out 
that the critical current in metallic barriers also has significantly stronger 
T dependence than seen in SIS junctions. 

These different properties are summarized in Fig. 5.12 [Freericks, Nikolic 
and Miller (2003)]. The solid line is the Ambegaokar-Baratoff predic­
tion [Ambegaokar and Baratoff (1963)]. Open symbols are for thin barrier 
(JV = 1) and solid symbols are for moderately thick barriers (N = 5). If 
we start by examining a thin insulating barrier (N = 1, UFK = 16, open 
triangles), we see that it tracks well with the Ambegaokar-Baratoff result. 
It is essentially flat at low temperature (because the gap hardly changes 
with T there), and it approaches Tc linearly. As the interaction strength is 
reduced, and we move to an anomalous metal (UFK = 4, open circles) and 
then to a strongly scattering metal (£/FK = 2, open squares), the critical 
current has a stronger temperature dependence and it drops more rapidly 
as T increases. While the curves appear to approach T = 0 linearly, they 
actually are expected to saturate at the lowest temperatures. Interestingly, 
at higher temperatures, the curvature changes sign. Furthermore, there is a 
wide range of temperatures where the slope is similar in size to the slope of 
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Fig. 5.13 Plot of the figure-of-merit versus UFK for two different temperatures T « 
T c / l l (open) and T RS T c /2 (solid). The top panel is for a single-plane barrier and the 
bottom panel is for a N = 5 barrier. Note how the SNS junctions have a higher figure-of-
merit at low T for the TV = 1 junctions, but this switches as T is increased. The situation 
is somewhat similar in the TV = 5 junctions, but here we have clear optimization in the 
Mott-insulating phase. Adapted with permission from [Freericks, Nikolic and Miller 
(2003)] (original figure ©2003 American Institute of Physics). 

the SIS junction (for 0.5 < T/Tc < 0.9). This means that the temperature 
dependence will be similar to that of the SIS junction in this regime. But 
if the IcRn product is too small, the SIS junction will still be preferred, 
because it will switch faster. 

When we move to the moderately thick junctions (N = 5, solid curves), 
we see some interesting behavior too. The metallic junction has even 
stronger T dependence, dropping rapidly as T increases (UFK = 2, solid 
squares). The character does not change much as the scattering increases 
within the metallic phase (compare to the UFK = 5, solid circles data), but 
then rapidly increases as we go into the small-gap Mott insulating regime 
UFK = 7 (solid triangles). This last set of data is intriguing because it has 
essentially the same slope as the SIS junction curve, but it is only reduced 
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Fig. 5.14 Plot of the figure-of-merit versus reduced temperature for the same parameters 
as in Fig. 5.12. The thin metallic junctions are the best at low temperature, and the 
thin insulating junctions are best at high temperature. The moderately thick junction 
shares a similar shape as the thin tunnel junctions, but is reduced somewhat in size for 
like Ts. 

by about 10-20%. If the resistance is large enough, we can expect to see 
an enhancement of the IcRn product, but the main interest is that these 
kinds of junctions may have less pinholes, and better junction uniformity 
across a chip, because they have thicker barriers. 

Moving on to the figure-of-merit, we show a plot of |e|7ci?„/A(0) versus 
UFK for the N = 1 and N — 5 junctions in Fig. 5.13. The open symbols 
are T « T c / l l , and the solid symbols are T « Tc/2. In the thin junction 
case (top panel), the figure-of-merit is optimized at low temperature for 
metallic junctions, but their T-dependence is so strong, the figure-of-merit 
is significantly suppressed even at T « Tc/2. One can clearly see a much 
reduced temperature dependence in the insulating regime. Turning to the 
moderately thick junction (N = 5, lower panel), we see a local maximum for 
the metallic barriers, but the figure-of-merit is optimized for more insulating 
junctions. The temperature dependence is much larger here, but is almost 
uniform as a function of UFK. We see optimization just on the insulating 
side of the metal-insulator transition. 

Our final results are summarized in Fig. 5.14. Here we plot the figure-
of-merit versus reduced temperature for the same cases as in Fig. 5.12. 
These results summarize what we have been discussing so far. We have 
optimization for the thin junctions (N = 1): the metallic junction is best at 
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low T and the insulating junction is best for higher T. When we look at the 
moderately thick junction (N = 5), we see a significant suppression for the 
metallic junctions, but then there is a rapid rise as the interaction strength 
increases on the insulating side of the transition (if UFK is increased further, 
we expect it to overtake the thin insulating junction results). 

In general, the temperature dependence of Josephson junctions is not 
examined too much for devices, because one has, in theory, the option to 
run at low enough temperature to achieve high-quality properties. But 
refrigeration costs are significant, and running at as high a temperature 
as possible is desired. As we raise the operating temperature, we find 
that the switching speed will be reduced, and the circuit will become more 
susceptible to timing errors due to temperature fluctuations over the chip. 
Finding the balance between all of these different concerns is a complex 
engineering and optimization problem. 

5.6 Density of States and Andreev Bound States 

Our formalism development focused on imaginary-axis properties in the su­
perconducting state, because they allow us to study much of the behavior 
of the junctions. There are, however, a number of interesting dynami­
cal properties of Josephson junctions, which require a real-axis treatment 
within the ordered phase. A detailed description of such a formalism is be­
yond the scope of this book, and interested readers need to develop the for­
malism for themselves; the original literature [Miller and Freericks (2001); 
Nikolic, Freericks and Miller (2002b); Freericks, Nikolic and Miller (2002)] 
discusses these calculations, but does not provide complete formulas. The 
modifications of the formalism in going from the imaginary to the real axis 
are not too complicated, but the denominators can now become singular, 
which adds some significant complications for how the numerics needs to 
be carried out. Here we will briefly describe bulk calculations and then 
summarize a number of physical ideas that can be inferred from calculated 
results and be presented in figures. 

The analytic continuation of the formulae for the Green's functions from 
the imaginary to the real axis is straightforward except for the 22 compo­
nents of the Nambu-Gor'kov matrices, since they are the negative of the 
complex conjugate of the function evaluated at negative frequency. Hence 
a factor like iton - \x - \U\(n)/2 + X(iu>n) will be analytically continued to 
w — fi— \U\{n)/2 + X*(—u>). Using such a technique allows one to determine 
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the impurity solution for the Green's function on the real axis. To complete 
the DMFT loop, we need to first define two functions 

F K sF K(o; + iO+)-£ F K *(-a> + zO+) 
z (W) = i , 

X F K M = S F K (^ + '0 + ) + S F K ' ( - ^ + « ) + ) . ( 5 . 3 ) 

Then the Hilbert transform for the Nambu-Gor'kov form of the Green's 
function becomes 

G(w)= f dep(e) (5.4) 

u,ZFK(u>) - n - \\U\{n) + xFK(") + e 
A* + $FK*(w) 

A + $FK(w) 
u,ZFKH + M + i | t / | < n ) - x F K M -

1 
X

 ( J 2 Z F K 2 ( W ) - [/* + | | t / |<n) - X F K M - e]2 - |A + $ F K (w) | 2 ' 

Once the DMFT algorithm has converged, then the DOS is found from 
the 11 component of the Green's function matrix. The DOS is plotted in 
Fig. 5.15 for the Hubbard-Falicov-Kimball model with C/H = - 2 and UFK 

ranging from 0 to 3 and wi — 0.5. Note the main effect of the scattering 
is to reduce the gap, shifting the peak down in energy (the frequency is 
renormalized by the gap for the C F K = 0 case). 

There is a wide range of interesting behavior to consider when examin­
ing the DOS within a Josephson junction. On the one hand, in the bulk 
superconductor, the presence of the superconducting energy gap, pushes 
states away from the Fermi energy, and creates a pile-up of states at an 
energy equal to the gap energy (both above and below the chemical po­
tential). As T —> 0, this pile-up of DOS actually diverges! On the other 
hand, if the barrier is a normal metal, then there is significant DOS near 
the Fermi energy because it is a metal. In a quasiclassical calculation, this 
nonzero DOS in the barrier survives at low energy, but is predicted to go 
to zero linearly as the chemical potential is approached. Andreev [Andreev 
(1964)] discussed this physical situation first. The states that lie inside 
the normal-metal barrier cannot move into the superconductor, because 
there are no low-energy states present, so they must be localized within the 
barrier region. These localized, or bound states can actually carry current 
through the Josephson junction, as depicted in Fig. 1.12. The idea is that a 
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Fig. 5.15 Bulk superconducting DOS for the attractive Hubbard model with UH = —2 
and the Falicov-Kimball interaction UFK = 0, 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0. We 
renormalize the frequency with respect to the UFK = 0 gap at T = 0; the calculations 
here are done at T = 0.01. Note how the main effect of the scattering is to reduce the 
gap, but maintain a similar shape to the DOS. These results should be compared to 
those that follow for Josephson junctions with similar interactions in the barrier. 

superconducting pair of electrons is incident from the left. This pair of elec­
trons meets a hole in the normal-metal barrier, leaving an electron behind 
that moves to the right. That electron travels to the barrier-superconductor 
interface on the right, and a superconducting pair and a retroreflected hole 
emerge; the hole travels to the left in the metal, and the superconducting 
pair travels to the right in the right superconducting lead. The net effect 
is that a superconducting pair has been carried across the barrier from the 
left to the right, and there is a localized electron-hole state that remains 
in the barrier. A similar process can carry current in the opposite direc­
tion, and one can view the lack of supercurrent when there is no phase 
difference across the junction as corresponding to an equal occupation of 
the left and right current-carrying states. In a one-dimensional system, the 
Andreev bound state has a well-defined energy, but in a three-dimensional 
system, because of the possible nonzero value for the transverse (kx and 
ky) momenta, these Andreev bound states appear as finite-width peaks in 
the DOS. Because the electrons involved in the Andreev bound states have 
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energies close to the chemical potential, we expect these states to be located 
at an energy below the bulk superconducting gap. 

When scattering is added to the barrier, we can characterize the level of 
scattering with the Thouless energy for the diffusive metal barrier (plus the 
contribution from the contact resistance, of course). When such scattering 
is included, quasiclassical calculations say there will be a so-called "hard" 
minigap in the DOS, where the DOS vanishes over a region proportional 
to £xh about the chemical potential [Golubov and Kupriyanov (1989); 
Golubov, Wilhelm and Zaikin (1997); Zhou, et al. (1998); Pilgram, Belzig, 
and Bruder (2000)]. Since there is no gap when there is no scattering, 
and the Thouless energy decreases as the thickness of the barrier increases, 
the gap region is expected to first grow, and then decrease as scattering is 
turned on. Since a ballistic-metal-barrier junction has a nonzero Thouless 
energy, this analysis cannot be consistent with the Thouless energy solely 
determining the minigap, but most quasiclassical approaches ignore the 
contact resistance contribution to the Thouless energy, so from their per­
spective, the Thouless energy vanishes for a ballistic-metal-barrier junction, 
and the analysis is consistent. 

There are additional sources of scattering that are not incorporated into 
these quasiclassical approaches. One important source is the so-called A/p 
scattering [Hurd and Wendin (1994)], which says that as electrons move 
through the junction, if we take into account Fermi-surface effects, then 
the superconducting amplitude is modified on the order of A//i by these 
Fermi-surface effects (/J, is the distance from either the upper or lower band 
edge to the chemical potential). What is less known is what effect this will 
have on the DOS. Another important source, if there is scattering that is 
described by a self-energy, is the life-time effects associated with the many-
body excitations. Generically, life-time broadening effects cause sharp fea­
tures in the DOS to be washed out, and can lead to the disappearance of 
gaps within the spectrum. 

We show a contour plot of the local interacting DOS for a N = 10 SNS 
Josephson junction (UH = —2, no scattering in the barrier, T = 0.01) in 
Fig. 5.16 [Miller and Freericks (2001)]. We show half of the junction, start­
ing with the barrier planes (numbered from 1-5, starting from the center 
of the barrier), and continuing into the leads (numbered 6-35). The en­
ergy axis is plotted in units of the bulk superconducting gap at T = 0, 
so that the energy field of view consists of all of the subgap states in the 
device. The first thing to note is that the DOS does not go linearly to 
zero at u = 0, as predicted by quasiclassical theories for ballistic-metal 
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Fig. 5.16 Three-dimensional plot of the low-energy DOS of a N = 10 SNS Josephson 
junction with [/H = —2 in the leads, and no scattering in the barrier. The plane numbers 
start in the center of the barrier and move outward; hence the barrier extends from 1 to 
5, and the superconductor from 6 to 35. The horizontal (energy) axis is plotted in units 
of A(0) = 0.198, the bulk superconducting gap at T = 0. Reprinted with permission 
from [Miller and Freericks (2001)]. 

barriers [Saint-James (1964); McMillan (1968)]. Instead, there is a "hard" 
minigap that has formed. In addition, we see peaks in the subgap states 
that are localized in the vicinity of the barrier, but they clearly extend 
for some distance into the superconductor. Furthermore, we can see an 
alternating parity to the spatial profile of the Andreev bound state peaks: 
they either are peaked at the central barrier plane, or have a node there, 
and this behavior alternates. Finally, as the Andreev states approach 
the gap energy, they extend further and further into the superconducting 
leads. 

Since the minigap is not supposed to form in a SNS barrier that has no 
additional scattering, and because there are no life-time effects, the most 
likely explanation for the origin of the minigap is the finite A/fj, scatter­
ing. We confirm that this notion is correct in Fig. 5.17. The two curves 
are for the same thickness barrier, but with different values of the attrac­
tive Hubbard interaction. As the interaction is reduced, both the gap and 
the minigap shrink, whereas, we would have expected the minigap to be 
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Fig. 5.17 DOS at the central plane of a iV = 5 barrier Josephson junction with C/H = —2 
and C/H = —1.7. Note how the minigap gets smaller in each case, which supports 
the notion that it arises from A/ / i scattering, while the Thouless energy is unchanged. 
Adapted with permission from [Nikolic, Freericks and Miller (2002b)] (original figure 
© 2002 the American Physical Society). 

unchanged if its size was governed by the Thouless energy. Instead, the 
shrinking of the size of the minigap points to its origin lying in the A/fi 
scattering effect, since A is reduced when UH = -1 .7 . Note how different 
the inhomogeneous results are from the homogeneous (bulk) results shown 
in Fig. 5.15. 

Nevertheless, one can wonder whether the Thouless energy plays a role 
in the size of the minigap, and for an SNS junction we need to include 
the Thouless energy that arises from the contact resistance of the junction. 
Comparing the data for UFK = 0.1 in Fig. 5.18 for the N = 5 and N = 10 
data, we would expect that the minigap would be a factor of two smaller for 
the N = 10 case, if the minigap was proportional to the Thouless energy 
(since the Thouless energy is two times smaller), but the minigap is almost 
a factor of three smaller. Furthermore, as scattering is introduced, by 
increasing UFK further, the minigap shrinks rapidly, and then disappears. 
These results are hard to understand from any model that says it is the 
Thouless energy alone that determines the size of the minigap. Indeed, it 
is likely that there is an alternative explanation to those results. The data 
depicted in Fig. 5.18 have a number of interesting features and trends in 
them, though, that are at least consistent with the notion of the Thouless 
energy playing a role in the behavior. For example, as the thickness of the 
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Fig. 5.18 Local DOS at the central plane of the barrier of an (a) N = 5 and (b) N = 10 
Josephson junction with varying UFK (the value is included in the label of the legend). 
Note how the minigaps for corresponding cases are smaller for the thicker barrier, and 
how the DOS loses all low energy structure once UFK becomes large enough, even though 
it is well before the metal-insulator transition. The horizontal axis is plotted in units 
of A(0). Adapted with permission from [Nikolic, Freericks and Miller (2002b)] (original 
figure © 2002 the American Physical Society) and from [Freericks, Nikolic and Miller 
(2002)] (original figure ©World Scientific Publishing Co. Pte. Ltd. Singapore). 

barrier increases, the minigaps decrease, and by the time we reach N = 20, 
no more minigap can be observed in the data. At this point, we see the 
expected quasiclassical prediction that the DOS vanishes linearly at w = 0 
(not shown here). As scattering increases in the system, we never see a 
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situation where the minigap increases due to increased scattering, instead, 
it seems to rapidly decrease and then disappear. It disappears sooner for 
thicker barriers, as we probably expected it would. The best idea for the 
source of the disappearance of the minigap is a life-time effect that arises 
from the scattering off the Falicov-Kimball defects. This scattering grows 
like [ t /F K] 2 , and it can rapidly cause the minigap feature to be washed 
away. 

We study the issue of how the DOS heals to the bulk superconducting 
DOS as we move away from the barrier in Fig. 5.19. The behavior of the 
DOS in this figure is quite complex. One might have assumed that the 
DOS would go back to its bulk value on a length scale on the order of the 
healing length for the pair-field amplitude, that was analyzed earlier in this 
chapter. But the healing length is around 5,1 lattice spacings, and we can 
still see significant variation of the DOS (especially at energies close to the 
gap energy) when we are even 30 planes away from the interface. While the 
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Fig. 5.19 Local DOS as a function of position within the superconducting leads showing 
how the full gap is eventually restored as we move further away from the barrier, but 
the healing of the DOS requires much longer length scales than the healing length for 
the pair-field amplitude in the superconductor, especially for energies close to the gap 
energy. The barrier has UFK = 1, jV = 5, and £o « 5.1a; the distance z is measured from 
the SN interface. Adapted with permission from [Nikolic, Preericks and Miller (2002b)] 
(original figure © 2002 the American Physical Society). 
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Fig. 5.20 Local DOS on different planes for the SNSNS Josephson junction shown in 
Fig. 5.3. Plane 40 is the center of the central S layers. Plane 35 is at the first NS interface 
away from the center. Plane 31 is at the first SN interface away from the center. Plane 10 
is twenty planes into the superconductor from the last interface. Adapted with permission 
from [Fieericks, Nikolic and Miller (2002)] (original figure ©World Scientific Publishing 
Co. Pte. Ltd., Singapore). 

length scales for these two processes need not be the same, it would be useful 
to better understand why the decay length is so long. Anomalously long-
proximity effects for single-particle properties are usually assumed to occur 
due to low-energy excitations, with energies far below the gap energy, that 
result in superconducting correlations that stretch for longer length scales 
than the conventional proximity effect. This is the reason why we expect 
the minigap to be present when the Thouless energy is smaller than the 
superconducting gap. But the situation here is occurring at higher energy 
scales due to the long decay lengths of the Andreev bound states that sit 
close to the superconducting gap edge. Exactly why this occurs is not clear, 
and remains unexplained. 

Interesting behavior also occurs in more complicated Josephson-like 
structures. Here we examine more closely the SNSNS junction that we first 
encountered in Fig. 5.3. Even though the N = 20 junction has no minigap, 
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Fig. 5.21 (a) Local DOS on the central plane of a N = 10 Josephson junction with 
no scattering in the barrier, as a function of the current in the device. We show no 
current (black curve), j = jc/4 (red curve) and j = jc/2 (green curve). Note how the 
Andreev-bound-state peaks split when current flows due to the Doppler shift, (b) Local 
DOS when j = Jc/4 for various planes in the same Josephson junction. Adapted with 
permission from (Freericks, Nikolic and Miller (2002)] (original figure ©World Scientific 
Publishing Co. Pte. Ltd., Singapore). 

the minigap returns here because we now have four superconductor-normal-
metal interfaces, which enhance the A//i scattering. The plane labeled 40 
is in the center of the superconducting planes in the middle of the SNSNS 
junction, the plane labeled 35 is near the middle NS interface (within the 
normal metal), the plane labeled 31 is near the first SN interface (within the 
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normal metal), and the plane labeled 10 is deep within the superconduct­
ing lead. One can see the minigap structure has developed, but the central 
superconducting region (black curve) is far from being BCS-like and has 
significant subgap states, with a large peak at w « 0.6A(0). As we move 
from the central superconducting plane into the normal metal (red curve), 
we see some spectral weight shifts toward lower energy, and the emergence 
of a new Andreev bound state peak at about 0.9A(0) (green curve). As 
we move deep into the superconductor the BCS density of states begins 
to be recovered (blue curve), but there is still a remnant of the large An­
dreev bound state at about 0.6A(0), which appears as a small peak in the 
figure. 

Finally, we examine how the DOS varies when a current is flowing 
through the junction. We found challenges with the convergence of the 
calculations when the current was pushed too high, but we still find inter­
esting behavior for small currents. Since Andreev bound states come in 
pairs, each carrying current in an opposite direction, we expect to see a 
modification of the the peak locations when current is flowing because we 
now have a well defined direction in the junction (the direction of the cur­
rent flow), and one of the Andreev bound states is transporting current in 
the same direction, while the other is in the opposite direction. This leads 
to a shift in the energies of the bound states, which is called a Doppler 
shift. We expect to see the single Andreev bound state peaks to split in 
two, and have the splitting increase as the current flow increases. This can 
be seen in Fig. 5.21 (a). Finally, we show the results for the DOS when a 
fixed current density j = jc/8 flows through the junction, as a function of 
position within the junction. There are more peaks present here, because 
the Doppler shift splits all of the Andreev bound state peaks, but the mini-
gap is still present, and we can see remnants of these structures leak far 
into the superconductor before they disappear [Fig 5.21 (b)]. 



Chapter 6 

Thermal Transport 

We examine the phenomenon of electronic charge reconstruction for systems 
that have barriers that lie close to a metal-insulator transition. We will 
consider a Mott-insulating barrier (the focus here is on spinless systems, 
adding spin is simple, and will have minor modifications to the results), 
where the entire system is held at half-filling. This system is interesting, 
because, in the bulk, both constituents of the device have no thermoelectric 
effects, because both the Seebeck and Peltier coefficients vanish due to 
particle-hole symmetry. But if we attach these two thermoelectrically inert 
materials together, and there is a Fermi level mismatch between them, then 
the electronic charge reconstruction breaks the particle-hole symmetry and 
allows them to have thermoelectric effects. What is different in the Mott-
insulating case from a metallic case is that in the bulk Mott insulator, the 
DOS has sharp structure near the chemical potential, which is likely to 
lead to a large thermoelectric effect. From an applications perspective, we 
are using electronic charge reconstruction as an engineering tool, to try to 
enhance the thermoelectric response of the full device over and above that 
of its constituent parts. In this sense, the geometry of the multilayered 
nanostructure, and the way that the Mott insulator is deconfined between 
the metallic leads plays a crucial role in determining the thermoelectric 
response. 

6.1 Electronic Charge Reconstruction Near a 
Metal-Insulator Transition 

As before, we will consider a system made of ballistic metal leads and a 
strongly correlated electron barrier. We fix eschot = 0.4, which corresponds 
to a screening length of a few lattice spacings, for both materials. When 
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there is a mismatch of Fermi levels, the electronic charge reconstruction 
will provide an inhomogeneous doping of the Mott-insulating barrier. 

Since the electronic charge reconstruction generically makes the barrier 
metallic (although it can have strong scattering), we perform the calcula­
tions for the DOS and the real-axis self-energies by simply adding a small 
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Fig. 6.1 DOS for different planes in the metallic lead of a multilayered heterostructure 
at half filling with ballistic metal leads and a barrier described by the Falicov-Kimball 
model at half filling with UFK = 6. The center of the band of the barrier is shifted 
up in energy by It (AEp = - 2 ) . The top panel is the first metal plane to the left of 
the interface, then we follow with the second, third, tenth, and thirtieth planes. Note 
the asymmetry in the DOS that enters due to the charge reconstruction and how it is 
reduced the farther we move from the interface. 
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imaginary part (O.OOli) to the frequency, so that we can avoid any singu­
larities that involve principal-value integrations. We choose at least 10,000 
quadrature points, so that there is sufficient accuracy to properly describe 
any of the near singular behavior. This allows for a quick means to calcu­
late the DOS and the transport of these systems. If, on the other hand, the 
barrier is insulating, and the chemical potential lies close to the location 
of the pole in the bulk material, then the calculations need to be handled 
more carefully. 

The lead is a ballistic metal and the (N = 20) barrier is a Mott insu­
lator described by the spinless Falicov-Kimball model (with wi = 0.5 and 
JJFK = 6). The center of the band of the barrier is shifted to create a 
chemical potential mismatch which then leads to an electronic charge re­
construction. We calculate the reconstruction for each temperature that 
we examine, but the change with temperature is minimal at low temper­
ature (an example of the charge rearrangement can be found in Fig. 3.12 
for AEp = —1). The shift of the band energies of the barrier, and the 
electronic charge reconstruction break the particle-hole symmetry of the 
system. We illustrate this with a plot of the DOS for a number of different 
planes in the leads in Fig. 6.1. Note how the asymmetry is quite strong 
near the interface, but fades away as we move further away. These results 
should be compared to Fig. 3.3, which has no shift of the barrier band en­
ergies (and has N = 5, but the width of the barrier has little impact on the 
lead DOS). 

Next we examine the DOS in the barrier for the same device in Fig. 6.2. 
Here the asymmetry is not as marked as it was in the leads, but the shift 
of the center of the band for the central plane is dramatically less than 2 
(it decreases the further we are from the interface), because it is partially 
reduced by the magnitude of the Coulomb potential energy at the given 
plane of the barrier; on the central plane, the magnitude of the Coulomb 
potential is close to 1.6, which explains why the shift of the band center is 
only about 0.4 instead of 2. 

We plot a false-color contour plot of the low temperature DOS of the 
multilayered nanostructure in Fig. 6.3. One can clearly see how the DOS is 
shifted as we increase the chemical potential mismatch of the barrier, and 
include the resulting electronic charge reconstruction. Note how there is 
an interesting bending of the bands, how the shift of the barrier is reduced 
by the Coulomb potential from the electronic charge reconstruction, and 
how the DOS develops extra oscillations near the band edges of the leads. 
Indeed, the change of the Coulomb potential with distance in the barrier 
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Fig. 6.2 DOS for different planes in the barrier of a multilayered heterostructure at half 
filling with ballistic metal leads and aJV = 20 barrier described by the Falicov-Kimball 
model at half filling with UFK = 6. The center of the band of the barrier is shifted 
up in energy by 24 (AEp = —2). The top panel is the first metal plane to the right 
of the interface, then we follow with the second, third, fifth, and tenth planes. Note 
how the band of the barrier has shifted by less than two units because of the electronic 
charge reconstruction (this is because the electrical potential is approximately —1.6 at 
the central planes of the barrier). 

explains the curvature of the blue region in the center of the barrier, because 
the magnitude of the potential shift decreases as we approach the interface, 
so the center of the DOS shifts to the right as we approach the interface 
from within the barrier. 
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Fig. 6.3 False color plot of the T = 0.01 DOS for a N = 20 metal-barrier-metal junction 
with different shifts of the bands (top, AEF = 0; middle, - 2 ; and bottom, - 4 ) . The 
barrier is described by the half-filled Mott-insulating Falicov-Kimball model at fFK = 6. 
One can clearly see how the DOS is modified by the combination of the shift of the band 
energies and the resultant charge reconstruction. 

6.2 Thermal Transport Through a Barrier Near the 
Metal-Insulator Transition 

Transport can also be calculated in these systems using the formalism de­
veloped in Chapter 3. As with the DOS, we add a small imaginary part to 
the frequency (or equivalently to the self-energy) to smooth out any poten­
tial poles that require principal-value integration (we choose the same size 
shift of 6 = O.OOli). Using the different L*j matrices, we can determine the 
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Fig. 6.4 Electronic charge resistance-area product in a N = 20 plane device described 
by the V = 6 Falicov-Kimball model at half filling with a shift of the band given by 
AEp = —1 (solid line), —2 (dashed line) and —4 (chain-dashed line). The temperature 
runs from 0.01 to 0.1 and the resistance-area units are ha2/e2. 

charge and thermal resistance, the Seebeck and Peltier coefficients of the 
device, and the efficiency for use as a thermal cooler or as a power genera­
tor. Here we will focus solely on the resistances, and on the thermoelectric 
effects, but will not discuss calculations of the efficiency of parts of a cooler 
or generator. 

We start with the results for the U = 6 Falicov-Kimball model barrier at 
half filling, but with the band for the barrier shifted by AEp as described 
above. The resistance in the case with no electronic charge reconstruction 
saturates at larger than 1012 at low temperature. When the barrier-plane 
bands are shifted, we see that the resistance is sharply reduced, because the 
system has become metallic, but they have little temperature dependence. 
As the chemical potential is shifted farther away from the chemical potential 
of the leads, the system becomes more metallic, because the reduction of 
scattering due to the reduction of the correlations is more important than 
the increase in scattering that arises from the increased electronic charge 
reconstruction. 

The thermal resistance-area product is plotted in Fig. 6.5 for the same 
device. Note how the thermal resistance diverges as C/T for T —> 0. This is 
because the thermal conductivity of each constituent goes to zero linearly in 
T, so the thermal resistance should diverge. As with the charge resistance, 
we see that the farther we shift the barrier band from the metallic lead 

AEF=-1 

AE.=-2 
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Fig. 6.5 Electronic thermal resistance-area product in a TV = 20 plane device described 
by the U = 6 Falicov-Kimball model at half filling with a shift of the band given by 
AEp = —1 (solid line), —2 (dashed line) and —4 (chain-dashed line). The temperature 
runs from 0.01 to 0.1 and the thermal-resistance-area units are ha2/kst. 

band, the smaller the thermal resistance becomes. This is also expected 
because the system is becoming more metallic. 

We can define a device Lorenz number by taking the ratio of the resis­
tances and the temperature via £ = e2Rn/Rth,k%T. This is the analog of 
the bulk Lorenz number, but is now well defined for a device as well. We 
expect that the Lorenz number should approach the metallic value of 7r2/3 
given by the Wiedemann-Franz law, unless the device does not reproduce 
the law even if its constituents do. As can be seen in Fig. 6.6, we do pro­
duce the correct T —> 0 limit and the more metallic the device is, the more 
constant the Lorenz number is with T. The Lorenz number does change as 
T increases, and it decreases in magnitude, which is a good sign for ther­
moelectric calculations, since the Lorenz number enters in the denominator 
of the figure of merit (at least in the bulk). 

Having completed an examination of the charge and thermal resistances 
of the device, we now move onto the thermoelectric effects. In the bulk, 
the Peltier effect and the Seebeck effect are closely related due to Onsager's 
reciprocal relations. But in a nanostructure, we saw when we derived the 
inhomogeneous analogs of the Peltier and Seebeck effects that they are ex­
pected to be different, even though the transport coefficients L12 and L21 
do satisfy Onsager reciprocity microscopically. This arose because the See­
beck effect was weighted by a matrix related to the thermal resistance, while 

T • I • I • r 
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Fig. 6.6 Device Lorenz number e 2 Rn /Rthk%T plotted for the same device as in the 
preceeding two figures. Note how it approaches the universal metal result of 7T2/3 at 
low temperature even though it is made out of heterogeneous multilayers. This implies 
that the changes to the charge resistance and the thermal resistance are identical due 
to the inhomogeneous multilayered structure, which is what one would naively guess by 
adding the respective resistances in series, if each plane satisfies the Wiedemann-Franz 
law. This naive picture seems to hold for the full quantum system. 

the Peltier effect was not. Furthermore, there are many different "Peltier 
effects" that can be examined because the heat current is not conserved 
for a Peltier-effect experiment, so we now detail the different ones that can 
be considered. First, one can examine the ratio of the heat current car­
ried through the device to the charge current carried through the device. 
Because the heat current vanishes as we move deep into the metallic leads 
(remember the leads are particle-hole symmetric so they have no net Peltier 
effect), we find the local Peltier coefficient decreases the farther away from 
the interface that we move. We define one Peltier coefficient to include the 
average heat transport through the entire barrier plus the first plane in the 
lead to the left and to the right. The second Peltier coefficient we can ex­
amine is to determine the total change in the heat current as we move from 
the left to the right of the device. Unfortunately, this change turns out to 
be identically zero, probably because the device has mirror symmetry about 
the center of the barrier, but we have not proved this result analytically. 
Because of the vanishing of this difference, we instead examine the ratio 
of the local heat current at the central plane of the barrier to the charge 
current. These are the two different Peltier coefficients that we will calcu­
late for our devices. The Seebeck effect is much more straightforward, as it 
results from an unambiguous experiment. From a numerical standpoint it 
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Fig. 6.7 Theoretical prediction for the Seebeck effect on the same device as in the 
preceeding figures. The Seebeck coefficient continues to increase in magnitude over this 
region of temperature in a linear fashion. It is not large enough to likely be important for 
thermoelectric applications for these parameters, but it is amazing that one can get such 
a large Seebeck effect when constructing a heterostructure out of two materials which 
both have exactly zero Seebeck coefficient. 

is also well-defined, because the Seebeck coefficient approaches a constant 
as we expand the matrices to incorporate the entire barrier, just like the 
resistance and thermal-resistance calculations. 

We start by showing the Seebeck-effect results, because they are well 
defined. We plot the numerical results for the Seebeck coefficient of the 
device, measured by determining the ratio of the voltage difference to the 
temperature difference of the junction in an open circuit. These results are 
shown in Fig. 6.7. Interestingly, the Seebeck effect is largest for the metallic 
system that is closest to the insulating phase. Since it must vanish when 
AEp- = 0, it must eventually drop as we approach the insulator, and hence 
there should be a region where the Seebeck effect has a maximal response. 
Similar to what we saw in the bulk case, this large Seebeck effect is arising 
from a "fine-tuning" of parameters. 

Next we examine the two Peltier effects discussed above in Fig. 6.8. 
The thick curves look at the average heat current transmitted through 
the device, averaging over the barrier planes plus the first metallic plane 
on either side, and the thin curves are the local Peltier coefficient at the 
central plane of the barrier. If we recall that the relation between the 
Peltier coefficient and the Seebeck coefficient in the bulk is II = ST, we 
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Fig. 6.8 Theoretical prediction for the Peltier effect on the same device as in the pre-
ceeding figures. The Peltier coefficient satisfies II = ST in the bulk, and appears to be 
close to that here. The thick curves are for the average Peltier effect for the heat current 
carried through the device (averaging over the planes of the barrier and the first metallic 
plane on either side) and the thin curves are for the local Peltier effect at the central 
plane of the barrier. 

see that the magnitude of either Peltier coefficient is similar to the Seebeck 
coefficient, but both are quantitatively different. It appears that the heat 
current in the center of the barrier is somewhat larger than the average 
heat current for this device. Such a result is to be expected since the heat 
current vanishes far from the barrier. 

Note that both the Seebeck and Peltier effects are positive, indicating 
hole-like transport, which is to be expected due to the way we shifted the 
band of the barrier—the barrier was shifted into the lower Hubbard band, 
so the carriers are holes. 

In summary, we have shown some remarkable thermal-transport effects 
for inhomogeneously doped Mott insulators. Starting with materials that 
have exactly zero thermoelectric effect, we find that if there is a chemi­
cal potential mismatch between the two materials, then if we place them 
into a multilayered nanostructure, the electronic charge reconstruction will 
inhomogeneously dope the Mott insulator into a metal, and create a large 
thermoelectric response due to the breaking of particle-hole symmetry. This 
effect is an interesting one that can be employed to try to enhance ther­
moelectric effects by using multilayered heterostructures. Since the het-
erostructure has many boundaries between the different materials, it should 

T ' — i • — i • r 
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act to reduce the phonon contribution of the thermal conductivity as well. 
Hence this approach may have promise for use in creating new thermo­
electric devices from materials that may not have a large intrinsic Seebeck 
coefficient. These conclusions are in the same spirit as the work of Rontani 
and Sham [Rontani and Sham (2001)], but here the focus is on Mott in­
sulators rather than excitonic insulators. It will be interesting to consider 
other cases as well, such as what happens when a doped Mott insulator 
is used as a barrier and the electronic charge reconstruction modifies the 
electron filling to make it insulating. 





Chapter 7 

Future Directions 

While we spent some time in this book developing a formalism for arbitrary 
impurity solvers, all of the numerical results for multilayered nanostructures 
came from solutions of the Falicov-Kimball model. There is no inherent 
reason why this has to be so, the field is sufficiently new, however, that more 
sophisticated solvers like the numerical renormalization group, have not yet 
been applied to these inhomogeneous DMFT problems. While significant 
work can be done with a working inhomogeneous DMFT-NRG code, we 
will not discuss this straightforward generalization further, but instead will 
concentrate on three new directions where theoretical work can go in the 
future: (i) the field of spintronics; (ii) real-materials modeling; and (iii) 
nonequilibrium and nonlinear field effects. 

7.1 Spintronics Devices 

The field of spintronics was born with the proposal by Datta and Das for a 
spin-based transistor [Datta and Das (1990)]. The basic idea of spintronics 
arises from the pursuit to find alternative ways to create digital electronics 
circuits with electrons. Currently, most electronics devices involve manip­
ulating the electronic charge in the device. For example, a pn junction is 
essentially a one-way switch, which lets current flow in one direction, but 
not in another. The reason why so many devices rely on manipulating the 
charge is that it is easy to do so by simply applying an electric field to the 
device (as in a conventional transistor). But the electron also has a spin 
degree of freedom. Usually this spin degree of freedom is not exploited for 
any kind of digital electronics calculations, although it is heavily used in 
magnetic-field sensors, which are employed in hard-drive storage, but also 
are being used more frequently for sensors of position (by attaching a mag-
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net to an object, and detecting the field as the object is moved close to, or 
far away from the sensor). The use in hard-drive technology is based on 
the giant magnetoresistance effect, where the resistance of a multilayered 
metal structure (made of magnetic and nonmagnetic metals), changes de­
pending on the direction of an external magnetic field. A normal metal is 
sandwiched between two ferromagnetic metals which can have their magne­
tizations either aligned or anti-aligned with each other. Current is passed 
through the nonmagnetic layers, parallel to the ferromagnetic planes. If the 
two ferromagnetic layers are aligned in the same way, then as an electron 
moves through the nonmagnetic layer, and bounces off each ferromagnetic 
layer, it will be in a high resistance state if the magnetizations are antipar-
allel, because each electron will have spin-flip scattering at one interface, 
and it will be in a low resistance state if they are parallel, because one spin 
species will conduct more easily than the other (since it has no spin-flip 
scattering), and will shunt the current flow. Hence, a simple measurement 
of the resistance can determine whether the two magnetizations are parallel 
or antiparallel. If one of the magnetizations can be pinned to always point 
in one direction, and the other is free to move in response to an external 
field, then the device can be employed as a magnetic-field sensor. Indeed, 
this is how all read heads on hard disk drives currently operate. 

This use of spin-dependent properties for magnetic-field sensing is a 
very useful tool, but it is not a new form of computation. Recently there 
has been a significant effort to try to find spin-based analogs of the charge 
transistor, or to find ways to use spins for alternative forms of computa­
tion, such as quantum computing. Since it is difficult to shield magnetic 
fields, it will be much more useful if the spin dynamics can be controlled 
by electric fields rather than magnetic fields. One promising way that this 
can occur is via something called the Rashba effect [Rashba (I960)], which 
involves a coupling, via the relativistic spin-orbit interaction, between an 
electric field and the spins of the electrons in materials that don't have in­
version symmetry. The hope was that this effect could be used to generate 
spin-polarized currents, especially in semiconductors. Other ideas are based 
on half-metallic ferromagnets, which are not like conventional ferromagnets 
(such as iron or chromium) that have both spin species present at the Fermi 
energy, with the total number of up spin and down spin electrons being dif­
ferent. In conventional ferromagnets, the DOS at the Fermi energy can 
be dominated by either the majority or the minority spin species, because 
the magnetization arises from all the electrons not just those at the Fermi 
energy and the band structures for the two different spins are different. 
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Fig. 7.1 Schematic picture of the GMR spin valve. The' structure has a pinned ferro­
magnet on the left, a nonmagnetic spacer metal in the middle, and a free ferromagnet on 
the right. Current is passed through the device parallel to the planes. Depending on the 
configuration of the free ferromagnet, the electrons will see more or less spin-flip scatter­
ing. Each spin feels spin-flip scattering at every other reflection off the interfaces when 
the magnets are anti-aligned. The majority spin feels no spin-flip scattering, while the 
minority spin feels spin-flip scattering at every reflection, when the magnets are aligned. 
The difference in resistance, which is typically on the order of 1-10%, can be used to 
sense an external magnetic field (which causes the free ferromagnet to change direction). 

Instead, in a half-metallic ferromagnet, we can theoretically have a situa­
tion where the DOS of the minority carriers is exactly zero at the Fermi 
energy, and the minority spin band has a gap in it. Chromium dioxide 
is one candidate for such a half-metallic ferromagnet, but to date no such 
material has been completely verified to exist (other candidates include so-
called half-Heusler alloys). Using such a half-metallic ferromagnetic, one 
can create a spin polarized current at low enough T, which can be used 
as either a spin filter, or as a spin injector. Unfortunately, when one tries 
to inject such current into semiconductors, it has turned out to be quite 
difficult to maintain the spin polarization for long periods of time (long 
enough to perform significant computation), and this has proved to be one 
of the biggest challenges in the field. In addition, the issue of finding a way 
to amplify the spin current, in the same way that a transistor can amplify 
the charge current, is needed, but has not yet been discovered. 

Other promising paths for spintronics-based work include examining 
dilute magnetic semiconductors, which usually involve II-VI semiconductors 
with small concentrations of Mn atoms, that create ferromagnetic materials 
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over some range of doping, and over some range of T (but usually well below 
room temperature). Since these materials are so much more similar to 
conventional semiconductors (as opposed to metals), it is hoped that they 
could provide a better way to inject and maintain spin-polarized current 
within a semiconductor, but more work is needed before this idea can come 
to fruition. 

Having given a simple and quick introduction to the subject, we now will 
discuss how inhomogeneous DMFT can be employed in calculations relevant 
for spintronic systems. Just like we introduced an ordered phase when we 
discussed Josephson junctions, a ferromagnetic phase can be described by a 
simple Hartree-Fock approximation in the presence of a nonzero ferromag­
netic exchange coupling. This procedure is equivalent to Slater's picture 
of itinerant ferromagnetism. Next, one can add different barrier layers, or 
construct other multilayered systems, by adding materials near the Mott 
metal-insulator transition, or semiconductors, or nonmagnetic metals, and 
then the transport (for current perpendicular to the planes) can be calcu­
lated using the Kubo approach in real space. In this way, a wide range of 
different spintronic systems can be examined with the DMFT approach. If 
different materials are placed next to each other, the electronic charge and 
spin reconstruction at the interface will need to be determined—both the 
charge and the spin can be screened at the interface. 

Since spin-orbit coupling plays such an important role in these systems, 
it is likely that one would need to modify the formalism to take into account 
the spin-orbit interaction (and other interactions like the Rashba coupling). 
This complicates the formalism, because we need to treat the electronic 
Green's functions as 2 x 2 matrices, with off-diagonal terms that represent 
the spin-flip processes. Treatment of such problems is more complicated, 
but the formalism should be able to be developed in analogy to how we 
developed the formalism for the superconducting state, which also involved 
a 2 x 2 matrix formalism. Doing so is beyond the scope of this book. 

Finally, it is likely true that the character of the orbitals, be they s, 
p, d, or /-orbitals, may be important in determining the magnetic proper­
ties, since degeneracy, and Hund's rules lie at the heart of ferromagnetic 
phenomena. This could require the theories for spintronics to involve more 
complex multiband models that can take into account the change in char­
acter of the orbitals from one material to another. A general description 
for how to do this follows in the next section. 
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7.2 Multiband Models for Real Materials 

Another new direction to proceed in is to consider multiband models of real 
materials and add electron correlations as needed to the formalism. This is 
within the spirit of the DFT+DMFT approach described in Chapter 1, but 
it needs to be generalized to the inhomogeneous problem. One strategy for 
proceeding is to first work out a DFT calculation for all materials that will 
be put into the multilayered nanostructure. Next, a tight-binding analy­
sis is performed, to try to fit the DFT band structure to a tight-binding 
bandstructure; it is important to keep just nearest-neighbor tight-binding 
parameters in the 2-direction (otherwise the quantum-zipper algorithm can­
not be employed). The tight-binding fitting procedure is not completely 
determined. Choices will need to be made to try to fit the bandwidths, 
or the shape of the Fermi surface, or the Fermi velocities, with the tight-
binding procedure, since all will not be able to be fit when the tight-binding 
approach is truncated to a small number of neighbors. How to choose to 
best make the fit will depend on the physical properties that need to be 
modeled (for transport, probably getting the Fermi surface shape and the 
Fermi velocities correct is more important than the bandwidths). There 
are two possible results that can come out of such an analysis. Either the 
tight-binding bandstructure is separable [in the form e(ka;,ky) -I- e(k2)] or 
it is not. If it is separable, then one can replace the summation over the 
planar momentum by an integral over the respective two-dimensional DOS. 
If it is not separable, this means that the hopping integral in the z-direction 
depends on either kx , ky, or both. Then the quantum zipper algorithm can 
still be used, but now one will need to perform a two-dimensional integral 
over kx and ky separately; this can make the algorithm require signifi­
cantly more computer resources than if one can use just a single integral 
over the two-dimensional DOS. The issue may even be more subtle. The 
two-dimensional DOS has a logarithmically divergent van Hove singular­
ity in it. If we work directly with the DOS, then we can properly handle 
the singularity by performing a change of variables in the quadrature. If, 
instead, we are summing over the two-dimensional planar Brillouin zone, 
then the singularity might either be masked, or it might require many in­
tegration points to properly produce it. This can further complicate the 
numerical implementation of the algorithm. 

Next, a DFT calculation should be performed of the interface between 
the two materials that are being grown on top of each other. When the 
interface is fully relaxed, and the charge redistribution from the electronic 
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charge reconstruction has taken place, one can try to extract the modifi­
cation of the hopping parameters for atoms close to the interface, and one 
can extract the charge screening length, and the mismatch of the chemical 
potentials. All of these quantities will be important inputs into the DMFT 
transport code. 

The other issue that needs to be discussed is the issue of what models 
will be used, and what impurity solvers will be employed. If one wants to 
investigate properties of disordered charge scatterers on transport (which is 
challenging to implement within a DFT perspective), one can include such 
effects by using an appropriate Falicov-Kimball-like model which will prop­
erly handle annealed disorder. If one wants to investigate other types of 
interactions, like those found in the Hubbard, Kondo, or periodic Anderson 
models, then it is unlikely that an NRG approach can be used, because the 
NRG cannot easily handle multiband situations, since one needs to main­
tain too many states to be practical at each iteration, and the numerical 
accuracy cannot be maintained. Instead, a combination of quantum Monte 
Carlo plus numerical analytic continuation would need to be employed, 
which has its own share of numerical problems, that can make such cal­
culations very time-consuming, and possibly beyond the scope of today's 
computers. 

To illustrate how such a calculation might proceed, we discuss the prob­
lem of making c-axis Josephson junctions out of MgB2 superconductors. 
MgB2 was discovered in 2001 as a medium temperature s-wave supercon­
ductor with a transition temperature that satisfies Tc « 39 K [Nagamatsu, 
et al. (2001)]. The material forms a layered hexagonal lattice structure of 
alternating Mg and B planes (with twice as many B atoms in a plane as 
the Mg atoms). The B atom states are the states close to the Fermi energy, 
so the electrons sit in s and p hybridized states. These electrons either 
move within the planes, or between the planes, and the hopping is much 
larger within the planes. Similarly, the superconductivity has two different 
gaps: a large gap that is on the planar states and a small gap that involves 
electrons moving between planes. One might be able to view the small gap 
as a kind of a "bulk" proximity effect, where the planar electrons have a 
strong enough pairing to become superconducting at a high temperature, 
and they make the longitudinal electrons become superconducting via an 
"internal" proximity effect. Since the two gaps have a large difference in 
size (more than a factor of two), one important question is which gap will 
govern the Josephson properties—the large gap or the small one? As dis­
order is added to the system, the superconductivity is reduced, and the 
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Fig. 7.2 Atomic positions of the magnesium (black), boron (dark gray), and oxygen 
(light gray) atoms at a MgB2-MgO interface. The magnesium and boron atoms lie on 
hexagonal lattices, and the MgO, which has a face-centered-cubic structure, is oriented 
in the (111) direction, so it also stacks hexagonal planes on top. Figure reprinted with 
permission from [Schnell (unpublished)]. 

two gaps come closer in magnitude to each other, and once the Tc drops 
below about 25 K, the gap is uniform throughout. If the small gap domi­
nates the supercurrent transport in a Josephson junction, then is it better 
to disorder the system a bit to have a uniform-sized gap, or is the purest 
system the best superconductor to use for the leads? Finally, there is the 
question of what barrier will yield optimal performance. Aluminum oxide 
is a candidate that is an obvious one to try, because it works so well for so 
many different systems, but it may be dangerous here, because aluminum 
impurities cause a substantial reduction to the Tc of MgB2, and introducing 
Al will likely cause the interfacial region to have many Al defects. Mag­
nesium oxide is an interesting candidate, because it is well lattice matched 
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to MgB2 when grown in the (111) direction (see Fig. 7.2). Unfortunately, 
the bandstructure in the (111) direction is not separable, so calculations on 
such a device will necessarily be complicated. Another potentially interest­
ing barrier to consider is boron nitride, which requires no oxygen during 
growth; oxygen has been known to rapidly form a native oxide barrier on 
MgB2 during growth, which may be detrimental if one is trying to grow a 
different barrier. Finally, T1B2 has been considered for a SNS type junc­
tion, but such junctions are rarely used for digital electronics circuits unless 
run at low temperature, because the critical current decreases too rapidly 
with temperature. 

7.3 Nonequilibrium Properties 

Another interesting new direction involves studying nonequilibrium prop­
erties. When a a material or device is placed in a large electric field (if 
one volt is placed over a material on the order of one nanometer thick, an 
electric field of 109 V/m is applied over the material, and this is a huge 
field) one needs to go beyond linear response theory to determine what 
is happening. Hence, when one studies properties of multilayered nanos­
tructures, it becomes important to consider nonlinear response effects of 
the large electric fields that will be applied to the systems. There is no 
simple way to generalize the Kubo approach to consider nonlinear effects, 
instead one needs to examine the nonequilibrium version of the many-body 
problem, whose formalism was worked out independently by Kadanoff and 
Baym [Kadanoff and Baym (1962)] and by Keldysh [Keldysh (1964)]. 

Fortunately, these approaches provide an exact means to calculate 
nonequilibrium and nonlinear response effects, because the exact nonequi­
librium Green's functions are known for the noninteracting system, and 
there is a complex formalism that can add the many-body interactions to 
solve the full problem. The numerics associated with trying to carry this 
out is quite challenging, and only now do we have sufficient computer power 
to be able to solve such problems. The basic idea that underlies the formal­
ism is that when a system is driven by an external field, we do not know 
what state it evolves to at long times after the field has been turned on. In 
the equilibrium case, we always know we have an equilibrium distribution, 
but in the nonequilibrium case, the system usually evolves to some form of 
steady state, which can have current flowing, and is impossible to determine 
a priori. As a result, the theory becomes well defined if we imagine evolv-
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ing time forward to some maximal time, and then evolving it backward 
again, back to the initial time we started from. Since the initial system is 
in an equilibrium distribution, we can properly determine the equations of 
motion for the Green's functions. 

We now have two different Green's functions that need to be 
determined—one is the familiar retarded Green's function, which provides 
information about the different quantum states that are available in the 
system. The other is the so-called lesser Green's function, which tells us 
how the electrons occupy those states (in equilibrium, the electronic states 
are occupied according to a Fermi-Dirac distribution, so we need only con­
sider the properties of the states themselves, since the occupation is already 
known). These two Green's functions are coupled together, and further­
more, we need to work with two-time Green's functions, because we no 
longer have time-translation invariance (after all, we turn on an external 
field at some time and see how the system evolves). A moment's reflection 
shows that this is indeed a very complex situation, because we will be ana­
lyzing both the steady-state contributions and the transient contributions 
to the response of the system, and quite complex behavior can arise. 

Nevertheless, DMFT is well situated to be able to solve these nonequi-
librium problems. The same arguments that led to the conclusion that the 
self-energy was local for the equilibrium problem also hold for the nonequi-
librium problem, so we can assume the self-energy has no momentum de­
pendence. Recall that the impurity problem involves a single site in the 
presence of a time-dependent field. This field can depend on two times with­
out causing any serious problems to the formalism for solving the problem, 
although it can no longer be diagonalized by making a Fourier transforma­
tion to frequency space. Instead, the continuous matrix operator in time 
must be diagonalized, which is carried out by first discretizing the time 
axis with a fixed time step, and then performing matrix operations with 
the resulting discrete matrices. If the limit where the step size goes to zero 
can be taken, then the result should yield the continuous operator solu­
tion. The difficult part of the DMFT loop is actually the step where we 
sum over all momenta. In equilibrium, the summation can be replaced by 
a single integral over the noninteracting DOS. In the nonequilibrium case, 
the summation involves at least a double integral over two energies and 
the integrand is now a matrix of two time variables instead of just a scalar 
function. 

Fortunately there are a number of important sum rules that the Green's 
functions satisfy, and using these sum rules, one can quantify the accuracy 



270 Transport in Multilayered Nanostructures: The DMFT Approach 

of the calculations, and verify whether scaling approaches are properly scal­
ing to the zero step-size limit [Turkowski and Preericks (2006)]. To date 
there has been much progress on solving the bulk nonequilibrium response 
with numerical algorithms that require huge amounts of computer time. 
The results are promising, and show how the Bloch oscillations are atten­
uated as scattering increases, and how their character changes completely 
as the system moves through the Mott transition from a metal to an in­
sulator. Generalizing this approach from the bulk to an inhomogeneous 
nanostructure is a problem for the future. Solving this problem will allow 
one to determine the voltage profile through the device as a function of the 
current flowing, and will allow one to calculate the current-voltage charac­
teristic. It is likely that one will need to take into account dielectric effects 
from the ionic cores of the material, because those cores have bound elec­
trons that cannot contribute to the current, but they can be polarized, and 
contribute to the dielectric function, thereby modifying the capacitance of 
the device. The capacitance must play a role in determining the shape of 
the current-voltage characteristic. This a rich problem that should be able 
to provide a multitude of useful results. 

7.4 Summary 

This book ends with a short summary section. The material presented here 
should enable readers who master the exercises to begin exploring research 
problems of transport in strongly correlated multilayered nanostructures. 
In this sense, we have provided a set of tools that can make one efficient 
in performing calculations and analyzing new systems. As hinted at in the 
previous three sections, there is much new work that can be done, and we 
hope that this book facilitates entry into this research field. Dynamical 
mean-field theory is still rapidly growing and developing; hopefully the 
readers will aid in its future evolution. 
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Problems 

These series of problems accompany the text and are designed to help read­
ers master the material. Those who successfully complete these problems 
will have a set of tools that will allow them to carry out calculations for 
strongly correlated multilayered nanostructures at the research level. 

A . l Jellium model 

Using the result of the four-fermion expectation value in Eq. (2.25) gives 
an expression for the expectation value of the potential energy 

, 2 

<eiviVv0s> = l-2y2 

2 (27r)6A<fe 
d3k f d3k' 

kj Jk'Kkf 

Aire* 

y i k - k ' l 2 ' 
(A.l) 

the factor of 2 is from spin and the factor of V2/(2n)6 comes from the 
momentum integral measure. Perform the integration over k' first, using 
the direction of k as the z-axis (i.e., k • k' = kk' cos6, or |k - k'|2 = 
k2 - 2kk'cos6 + k'2). Show that the integral of l / | k - k'|2 over k' yields 

y / dk'k'Ya. 
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Then perform the integral over k to find 

Combining this with the average kinetic energy gives 
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Use the fact that pe = kF/37r2, and the definition of a Rydberg (Ry= e2/2ao 
with ao = h2 /me2 the Bohr radius) to show that 

E jellium HF 

N 
-(kfa0) - — fc/a0|Ry. 

Finally, use the definition of rs to get 

•Ejellium HF 

N 

3 /97r 

5 V 4 I r 
1_ _ 3_ (9n\3 J_ 

Ry, 

and plug in the numbers to verify Eq. (2.27). 

(A.5) 

(A.6) 

A.2 Density of states for the hypercubic lattice in 1, 2, 
3, and oo dimensions 

(a) Calculate the density of states on a hypercubic lattice with nearest-
neighbor hopping t = t* /2\fd using t* as the energy unit and taking the 
limit d —> oo . Use the following ideas (or your own techniques): 

Pd—oo(e) 

with the bandstructure 

= hm n (r/a ^\ 
"^.tl \J-«/a **) 

8{e - £fc), 

eh = —It \] cos(fcja) = —-= \_, cos(kia). 

Write the delta function as 
1 f°° 

(A.7) 

(A.8) 

(A.9) 

and substitute into the above formula. Now the integral over each fc» can 
be carried out. Note that you can expand in small quantities (like 1/d) and 
that 

+ •—£- + ... •lim ( 1 + ? + ^J=i^ole X p d 
lim exp a + 

d—>oo 

d2 

exp[a]. (A.10) 

.4ns: Poo(e) = exp(-e2/t*2)/^t*£l, with fi = limd_00 ad the unit cell 
volume. 
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Fig. A.l Scaled DOS for d = 1, 2, 3, and oo. Note how the DOS looks more like the 
infinite-dimensional result as d increases. 

(b) Using units where the lattice constant satisfies a = 1, and where the 
hopping satisfies t = t*/2yd for each dimension d, plot the density of 
states for d = 1, d = 2, d = 3, and d = oo on the same plot (see [Economou 
(1983)] for assistance in calculating the DOS for different d). Comment on 
the behavior as a function of d. 
Ans: the DOS are plotted in Fig. A.l. 
(c) Using the general formula for the density of states of a coordination 
Z Bethe lattice [as derived in Eq. (2.71)], take the limit where the co­
ordination number approaches infinity Z —> oo, but the hopping satis­
fies t = t* j\[Z. Describe the similarities and differences of the infinite-
coordination-number Bethe lattice DOS with the hypercubic lattice DOS. 
Ans: PBetne(e) = \/4i*2 — e2/27rt*; the Bethe lattice has a finite bandwidth 
while the hypercubic lattice has an infinite bandwidth. 

A.3 Noninteracting electron in a time-dependent 
potential 

Begin with the impurity Hamiltonian 

W = - /xc f c , ( A . l l ) 
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for a spinless electron ({c^,c}+ = 1). Let 

S(U) = exp - i f dte{t)0{to-t)Uc\t)c{t) (A.12) 

be a time-dependent phase added as a time-ordered product to the defini­
tion of the Green's function (take to > 0) with c(t) = exp(iHt)cexp(-«Ht) 
and c*(t) = exp(i7it)c^ exp(-iHt). In other words, define 

G(t, t') = -i(Ttc(t)c\t')S(U)), (A.13) 

with Tt denoting the time-ordering operator. 
(a) Calculate the generalized partition function 

Z(U) = TV {Tte~iS dteW8(to-t)UcHt)c(t)e-0n} ^ (AAA) 

directly from the anticommutation relations of the c's and c^'s and the 
time-ordering operator. Hint: there are only two Fermionic states in the 
trace: the vacuum state |0) which is annihilated by c and the one-electron 
state |1) = c^|0) which is annihilated by c*. 
Ans: Z = 1 + exp(/3^i — UQU). 
(b) Evaluate all twelve cases for the Green's function G(t,t') defined above 
for t < t' < 0, t < 0 < t' < to, t < 0 < to < *') etc. Once again, use only 
the operator definitions and the explicit form of the Green's function to 
perform your calculations; be sure to write out the time ordering explicitly. 
Ans: for 0 < t' < t < t0 we have G(t,t') = -iexp[i(fj, - U)(t - t')]/[l + 
exp(/3/i — UQU)]\ the results are similar for other cases. 

A.4 Relation between imaginary-time summations and 
real-axis integrals 

Consider the average kinetic energy 

K=(f) = £e k (4c k ) , (A.15) 
k 

expressed as the expectation value of the momentum creation and annihi­
lation operators (with e/j the bandstructure). 
(a) Using the definitions of the Matsubara Green's functions, show that the 
average kinetic energy satisfies 

K = VTYJ I dt epoo(e)G(e, iun), (A.16) 
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Fig. A.2 Contours used for relating Matsubara summations to integrals over the real 
axis, (a) Contours c and c' that give the Matsubara summation, (b) Contours that the 
contours in panel (a) can be deformed into that yield the integral over the real axis. 

within dynamical mean-field theory with p,*, the noninteracting DOS for 
the given lattice. 
(b) Using the fact that the Fermi-Dirac distribution /(w) — 1/[1 +exp(/?w)] 
has simple poles at the Fermionic Matsubara frequencies with residue — T, 
show that the Matsubara frequency summation can be written as a contour 
integral over the (two-piece) contour in Fig. A.2 (a): 

K = -^— dz deePoo(e)GR(e:u>)- — dz deePoo(e)GA(e, w), 

(A.17) 
where R and A refer to the retarded and advanced Green's functions. Since 
the integrands are respectively analytic in the upper and lower half planes, 
the contours can be deformed to the final result [see Fig. A.2 (b)] 

K = f du f deePoo(e)lmG(e,u). (A.18) 

(c) Using the fact that the self-energy is local, perform the integral over e 
to yield 

V f°° 
K= / dwIm{[w + /i-E(w)]G(w)} . (A.19) 

^ J-oo 

Hence the average kinetic energy can be determined either by a summation 
over Matsubara frequencies, or by a one-dimensional integral on the real 
axis. Note that the same trick used on the real axis in part (c), to replace 
the integral over e by local quantities, can be used in the imaginary-axis 
formula to get rid of the integration over e. 
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A.5 The Green's functions of a local Fermi liquid 

In a local Fermi-liquid system, one can write the retarded Green's function 
as 

GR(k,u) = Z , + G inc(fc,^), (A.20) 

with 0 < Z < 1 and 7 proportional to T2 (7 = CT2, C > 0, for small 
to). Suppose we are at a low enough temperature that we can neglect the 
incoherent piece of the Green's function. Determine the local density of 
states near the Fermi level for finite, but small T (you can express your 
answer in terms of the noninteracting local Green's function). Take the 
limit of T —> 0. At 10 = 0, you should find that the DOS for the interacting 
system is the same as the DOS for the noninteracting system. This is a 
result of Luttinger's theorem for a local self energy. 
Ans: A(UJ) = - I m G ^ ' C f + n + i^f)/*. 

A.6 Rigid-band approximation to the Falicov-Kimball 
model 

Suppose we have a local DOS for spin-1/2 electrons that satisfies 

Aa{uj) = ^ A a ( f c , U > ) = ( l - W l ) / 3 B e t h e M + Wi/9Bethe(w ~ U) , (A.21) 
k 

with wi(T) = 1 + exp(—0Ef). Choose the total filling of the electrons to 
satisfy pe(T) = l-wx{T),U = t*, and Ef = O.lt*. 
(a) Plot the local DOS A(u>) (per spin; we drop the spin index since the 
results are independent of a in the paramagnetic phase), with the chemical 
potential located at u = 0, for T = 0, 0.1, and 1. Note that you must 
solve numerically for /i(T) and you must use Eq. (A.24) to determine the 
conduction electron filling. Hint: you will need a good one dimensional 
root solver [Brent (1973)] to determine the chemical potential. 

(b) Write a computer program to calculate 

Gioc{iun)= [du.A^ , (A.22) 
J iun-uj 

for the Fermionic Matsubara frequencies iun = iirT(2n+ 1) using the local 
DOS determined in part (a). Once you have generated G\oc(iu>n), use those 
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Energy e / t 

Fig. A.3 DOS for the rigid-band approximation when T = 0.1. 

values to calculate the filling of the electrons from the Matsubara- frequency 
formula (the factor of 2 is from spin) 

Pe = ZTy^Giocjiuin), (A.23) 

and compare those results to the alternate real-axis formula 

pe = 2 j duA{w)f{w) = 2 j d u ^ L , (A.24) 

with u> = 0 located at the chemical potential. Perform this analysis for 
T = 0.01, 0.1, and 1. Hint: The sum over Matsubara frequencies must be 
truncated, but the sum must be handled carefully, since the terms go like 
1/itJn for large n. So use the fact that 

z - ' iu„ + x 1 + e-Px 2 ' 
(A.25) 

judiciously in evaluating your sum (you need to choose an appropriate value 
for x too). Try to prove the identity in Eq. (A.25). Be sure to estimate 
the error in your Matsubara summation, and explain how you chose the 
Matsubara frequency cutoff (which will depend on the temperature). 
Ans: you should find you get four digits of accuracy to the electron filling 
when T = 0.1 and you use about 7500 positive Matsubara frequencies. 
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A.7 Comparing the spectral formula to the Hilbert 
transform 

This problem is a continuation of the previous problem (A.6). Using the 
two equivalent forms for the retarded Green's function 

G K ( W ) = \dJ
 A ^ = [de PBeth^e\ , (A.26) 

v ; J u>-ui' + t6 J u> + n- E(w) - e ' v ; 

and the explicit forms for A{OJ) and /JBethe(e)> perform the integrals analyt­
ically, and solve your resulting equations for E(w) in terms of w\, fi, w, etc. 
Plot both the real and the imaginary parts of E(w) for T = 0.0, 0.01, 0.1, 
and 1. Is this system a Fermi liquid? Choose the same parameters as in 
Problem A.6. Note that the only way to evaluate the second integral above 
is to first making a trigonometric substitution that removes the square root, 
then introduce a complex variable z = exp(i#), and express the integral as 
a line integral around the unit circle, and finally, evaluate the integral by 
the calculus of residues and the residue theorem. You should find two poles 
inside the unit circle, and the residues need to be determined carefully. As 
a check, it is worthwhile to write a computer code to numerically perform 
the integration for some test choices of the self-energy (just pick some val­
ues in the complex plane), and compare the numerical integration against 
the analytical result from the residue theorem. Hint: you will need to de­
velop a strategy to choose the signs of the square roots that arise in this 
calculation. When there is an imaginary part to G or E, choose the signs 
so the imaginary parts are negative; when G or E are real, choose them by 
continuity. 

Ans: E(w) = cu + /J, — GR(ui) — G f l(o;)_1; you will need to solve for an 
explicit expression for gR to substitute into the above form. 

A.8 Imaginary-time Green's functions 

Consider a homogeneous translationally invariant interacting system. As­
sume that (c^c) = n. Show that lim r_0+ G(T) = n — 1, limT_*0- G(T) = n, 
limT_0- G{T) = —n, and limT^/g+ G{T) = 1 — n for the Green's func­
tion G(T) = —(TTC(T)C^(0)). Show the time-translation invariance prop­
erty, that G(T,T') = G(T — r ' ) , and the antiperiodicity property G(T) = 
—G(T + (3) for —j3 < T < 0. Show your work explicitly and perform your cal­
culations directly from the definitions of the Green's functions in imaginary 



Appendix: Problems 279 

time. Hint: you will need to use the invariance of the trace TrAB = TiBA; 
a and B represent different quantum operators. 

A.9 Partition function for a spinless electron in a general 
time-dependent field 

In this problem we will verify that the partition function of a single-site 
impurity in a general time-translation-invariant field can be expressed as 
the following infinite product: 

oo . , 

£imp(A,M)=2e/W2 JJ W " + M A", (A.27) 

by a brute-force evaluation. 
(a) By taking derivatives of both sides of Eq. (A.27), show that the partition 
function satisfies the differential equation 

1 dZimp(\,n) 
•ZimP(A, fi) d\n iu>n + (i - A„ 

(b) Next show that when the field vanishes 

(A.28) 

Zimp(A = 0,M) = 2 e ^ / 2 TT ! ^ L ± i i = i + e ^ . (A.29) 
tUJn 

(c) Finally show that 

r ^ / W c ] = i + e ^ , (A.30) 

by directly evaluating the trace over the impurity electron states. 
These three parts show that the partition function, expressed as the 

infinite product in Eq. (A.27), satisfies the correct differential equation, 
and has the right boundary condition at A = 0, hence it is the partition 
function. 

A. 10 Mapping the impurity in a field to an impurity 
coupled to a chain in the NRG approach 

In this problem we will derive expressions for the chain parameters given a 
specific A(w). In his original work [Wilson (1975)], Ken Wilson found an 
analytic expression for the An values when A(w) = AQO(O; + E)Q(—u> + 
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E), a constant running from — E < ui < E. This result was generalized 
to arbitrary power laws in [Bulla, Pruschke and Hewson (1997)]. It is 
important to note that these coefficients typically decrease like A„ oc A - " ' 2 . 
This is what makes the truncation to a finite chain work. We will first derive 
some general formulas for the first three terms in the chain, then evaluate 
them for the constant case and for a quadratic "pseudogap" case. 
(a) Use the notation 

K1) = £ [(7+mr + (7„-)2(cr], (A.SI) 
n 

with the 7 and £ coefficients defined in Eqs. (2.106) and (2.107). Note that 
if A(UJ) is an even function, then £+ = — £~, which we shall assume to hold 
in this problem. 

Start with the state CQ|0), and operate on it with the full chain Hamil-
tonian on the left. Show that (0|cWchaincJ|0) = V, and that eo = 
(0|coHchaincJ|0) = 0. The new operator C\ is defined via 

Aic{|0) = H c h a i r 4 | 0 ) - Vct\0). (A.32) 

Using the fact that {c j , ^} = 1, show that Ai = A / ( W 2 ) / ( 1 ) . 

Now we continue for the next state. Operate on c\\0) with the Hamil-
tonian. Show that e\ = 0, and then using 

A24|0) = WchaincJlO) - Ai4|0), (A.33) 

determine c\ and A2. Repeat for €2, c\ and A3. 
Ans.: You should find A2 = ^[(^4)(1) - (io2)2}/{iv2)JT), e2 = 0, and A3 = 
V > 6 > < ^ > < 1 ) - (a;4)2(l)]/[(o,4)(^)(l> - <W2)3]. 

(b) Using the form A(o>) = A0(w + E)Q(-ui + E), evaluate all 7„'s, £n 's, 
and the first three A values. Note that you should evaluate the summations 
that you find for each (u>m) exactly. 
Ans.: 
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Note how the A's decrease approximately as 1/A"/2 as n increases. 
(c) Using the form A(w) = Aw2G(o; + E)Q(-w + E), evaluate all 7„'s, £n 's, 
and the first three A values. 
(d) Note that the general case, of an arbitrary integer power law for A (a;) 
has been solved analytically for all n. If you want to try an extended project, 
see whether you can reproduce the general result in [Bulla, Pruschke and 
Hewson (1997)]. To do this you need to find a general recursion relation for 
the A coefficients, and then solve the recursion, similar to what is discussed 
in [Wilson (1975)]. Be cautioned that this last problem is equivalent to a 
significant research project. 

A. 11 Impurity Green's function for the chain 
Hamiltonian in the NRG approach 

In this problem, you will show that the chain Hamiltonian with the in­
teraction vanishing on the impurity site produces a discretized version of 
Eq. (2.105). The strategy is to use EOM techniques. First, define the 
following Green's functions: 

G(r) = -<T T C (T)C+(0) ) , 

G+{T) = -<TTan(r)c+(0)>, 

G~{T) = -(TT6n(r)c+(0)). (A.35) 

Next write the Hamiltonian for the chain explicitly in terms of the a, b, and 
c operators 

Wchain = ? C p
b b ( [ / = 0) + 5 > + 4 f f a „ C T + i~biabna\ 

no 

+ Y^^n^na + l~c\bna + ~(taloco + 7n & L O - ( A - 3 6 ) 
no 

Taking derivatives with respect to imaginary time r and then Fourier trans­
forming to Matsubara frequencies, show that 

(iwm + fi)G(iu>m) = 1 + ^ [ 7 + G + ( i w m ) + -y~G~(iu}m)}, 
n 

{ium - £+)G+(iwm) = 7+G(iwm), 

(iwm - £-)G-(iwm) = 7~G(iwm). (A.37) 
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Solve the equations in Eq. (A.37) for G, analytically continue by substi­
tuting iujm —> u) + iS, and then extract XR(OJ) from the form in Eq. (2.105). 
Finally, using A(w) = -lm\R(uj)/n, verify Eq. (2.110). Look at Fig. 2.7 to 
see an example of how this works. 

A.12 Solving the NRG many-body Hamiltonian for the 
chain 

(a) We start by examining the impurity Hamiltonian at the end of the 
chain (the box in Fig. 2.8). The Hamiltonian is given in Eq. (2.104). There 
are four states: (i) no electrons; (ii) a spin-up electron; (iii) a spin-down 
electron; and (iv) a doubly occupied site. Find the energies of each of these 
states and the quantum numbers for the number of electrons, the total spin, 
and the z-component of the spin. 
(b) When we add the first site (labeled by 0), we add an additional four 
states corresponding to no, one, or two electrons on site 0. This creates 
a tqtal of 4 x 4 = 16 many-body states. We can break those states up 
in terms of the following quantum numbers: (i) N = 0, S = 0, Sz — 0 
(one state); (ii) N = 1, S = 1/2, Sz = ±1/2 (four states); (iii) N = 2, 
S =1, Sz=0, ±1 (three states); (iv) N = 2, S = 0, Sz = 0 (three states); 
(v) N = 3, S = 1/2, Sz = ±1/2 (four states); and (vi) N = 4, 5" = 0, 
Sz = 0 (one state). The (i), (iii) and (vi) cases are l x l matrices, the 
(ii) and (v) cases are 2 x 2 matrices, and the (iv) case is a 3 x 3 matrix. 
Construct all six matrices and find the ten distinct eigenvalues. You will 
need to determine an explicit representation for each of the 16 states in 
order to find the matrices. Be sure to use your knowledge of addition of 
angular momentum in completing this task and recall cases where there is 
spin degeneracy. 

Ans.: for [i = 2, U = 4, V = 1.5 and eo = 0, you should find the ten 
eigenvalues are (N = 0: 0; N = 1: -2.80278, 0.802776; N = 2: -4.16228, 
-2, 0, 2.16228; N = 3: -2.80278, 0.802776; and iV = 4: 0). Note that these 
results have particle-hole symmetry due to our choice of parameters; i.e. 
the eigenvalues for N — 0 and N = 4 are the same, as are the eigenvalues 
for N = 1 and N = 3. 
(c) Assuming you have a set of eigenfunctions and eigenvalues with definite 
quantum numbers N, S, and Sz at a given stage of the NRG. Describe 
how to construct an algorithm to compute the block-diagonal matrices and 
the quantum numbers for the many-body problem at the next iteration of 
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the NRG, where we add another site at the end of the chain. Why is it 
necessary to have the chain be one-dimensional in order to construct the 
new Hamiltonian without requiring additional information about the states 
(i.e., just those three quantum numbers are all that is required). 

A. 13 Metal-insulator transition in the half-filled 
Falicov-Kimball model 

Consider the spinless Falicov-Kimball model on the Bethe lattice. Choose 
the case of half filling for both particles: w\ = 1/2 and pe = 1/2. The 
DOS will split into upper and lower Hubbard bands at a critical value of 
the coupling strength U. 
(a) Plot the DOS for appropriately chosen values of U to see the weakly 
correlated metal, the strongly correlated metal, the critical DOS at the 
MIT, and the strongly correlated insulator. Determine Uc for the MIT. 
(b) Solve for the self-energy S(w) for arbitrary U, and show explicitly that 
the self-energy develops a pole at Uc. Plot the strength of the pole (i.e., the 
residue) versus U. By extrapolating this curve to zero, you have another 
way of determining Uc. Hint: the residue of the pole can be found by 
examining limw^o wS(w); note that since we fix w\ = 1/2, there is no need 
to calculate the atomic partition function in your analysis. 
Ans: See Fig. A.4 for the size of the residue of the pole as a function of U. 

A. 14 Kramers-Kronig analysis for the Green's function, 
and the effect of the pole in the Mott insulator 

Take the results of Problem A. 13 for the values U = 1, U — 2, and U = 
3. Using ImG(w), employ the Kramers-Kronig analysis to find ReG(w). 
Compare this to the ReG(w) that you can calculate directly. Do the same 
starting with ReG to find ImG. Repeat for ImE and for ReS - \i. Note 
that you need to subtract the constant value that the real part of the self-
energy approaches as \J\ —> oo, since the Kramers-Kronig relation assumes 
the function vanishes at large frequency. 

In each case, plot the result of your Kramers-Kronig integration versus 
the result calculated directly from DMFT. Adjust the step size and fre­
quency cutoffs until you can achieve good accuracy. What do you need to 
do when there is a pole in the self-energy? Comment on the overall accu­
racy of these calculations. Is it better to use the Kramers-Kronig relation 
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Fig. A.4 Residue of the pole in the self-energy for the Mott-insulating phase on the 
Bethe lattice at half filling. 

for the real part or for the imaginary part, or does it make no difference? 
Hint: the imaginary part of the self-energy picks up a delta function con­
tribution when there is a pole; you will find this difficult to calculate from 
the Kramers-Kronig transformation of the real part. 

A.15 Metal-insulator transition on a simple cubic lattice 

Use the dynamical mean-field approximation to calculate the Green's func­
tion of the simple cubic lattice in the local approximation. Rather than 
use the exact three-dimensional DOS in the Hilbert transform, use the 
approximate result of Unrig [Uhrig (1996)], which is derived in parts 
(a-c). 

Make an ansatz that the three-dimensional simple cubic DOS can be 
approximated by (taking t = 1) 

pap(e) = - fM(c)>/36 - e2 + N(e)^4 - (e - 4)2 + N(-e)y/4 - (e + 4)^1 , 

(A.38) 
where the first term is present for - 6 < e < 6, the second for 2 < e < 6, 
and the third for — 6 < e < — 2. The functions M and ./V are polynomials in 
e: M(e) = TOO + TO2e2 + 771464 + ... is even and iV(e) = no + rue + ni^2 + ... 
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has no restrictions. In this form, we have an even DOS which has the right 
van Hove singularities in the three-dimensional band. 

The strategy we will take is to calculate the moments of the approximate 
DOS 

Ak= / deefcpaP(e), (A.39) 

and of the exact DOS 

Ek= / deekp3d(e), (A.40) 
J-6 

and then force the coefficients m* and m to produce the exact moments 
for some number of fc-values. Since both DOS are even functions, all odd 
moments vanish. 
(a) For the approximate moments, note that 

^ z-6 

Ak = - deefc(mo-t-m2e2 + m 4 e 4 + . . . ) V 3 6 - e 2 

7T 7 -6 

+ - / de efc(n0 + nxt + n2e2 + ...)x/4 - (e - 4)2 . (A.41) 

Restrict yourself to include only mo and m,2 in the polynomial M(e) and 
no, ni , and n2 in the polynomial N(e). In terms of mo, m2, no, n i , and 
n2, evaluate the moments Ao, A?, A4, AQ, and As exactly (use a symbolic 
manipulation program to carry out the algebra). 
Ans: A0 = 18m0+162m2+4no+16ni+68n2; A2 = 162m0+2916m2+68n0+ 
304m + 1416n2; A4 = 2916m0 + 65610m2 + 1416n0 + 6816m + 33684n2; 
AQ = 65610m0 + 1653372m2 + 33684n0 + 170032n1 + 873272n2; and A8 = 
1653372m0 + 44641044m2 + 873272n0 + 4549600n! + 23987752n2. 
(b) Now calculate the exact moments Ek by the following procedure. Begin 
with the three-dimensional DOS 

-I fTT PIT r7T 

P3d(e) — ,n so / dkx / dky / dkz6(e+2tcoskx+2tcosky+2tcoskz), 
(2TT)J J_V J_V J_V 

(A.42) 
and then substitute into the definition for Ek and integrate over e to give 

Ek = / dkx I dky I dk2(coskx + cosky + coskz)
k . (A.43) 
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Evaluate the first 5 even moments Eo, E2, £4, EQ, and Eg. 
Ans: E0 = 1; E2 = 6; E4 = 90; E6 = 1860; and Eg = 44730. 
(c) Solve the set of five equations Ak = Ek for the coefficients mo, 7712, no, 
n\, and n2 to determine the polynomials M(e) and AT(e) for the approximate 
three-dimensional DOS. Plot the approximate DOS versus the exact DOS; 
determine how large the absolute error is for the approximation (the exact 
DOS was found in Prob. A.2). 

M(e) 13033 
+ ez and N(e) ,2 81 

174528 ' u 6283008 """ J , W 12928 u25856 L 51712-

Figure A.5 plots the difference of the exact and the approximate DOS. 
Note that the maximal error is about 0.2% near \u\ = 2. 
(d) Using the approximate form for the three-dimensional DOS, write a 
computer program to calculate the DOS for w\ = 1/2 and pe — 1/2 for the 
spinless Falicov-Kimball model on the simple-cubic lattice. Plot the DOS 
for U = 0 - 8 in steps of 1. Note that Uc for the MIT lies at about Uc « 4.92. 
Hint: the Hilbert transform can be evaluated analytically in three separate 
pieces, since the Hilbert transform of powers multiplied by a square-root 
function can be integrated exactly. Note that this requires a proper choice 
of the signs for the different square-root factors. Using this analytic form 
for the Hilbert transform will speed up the computer program significantly. 
Ans: See the plot of the UFK = 6 results in the figure. 
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Fig. A.5 Difference between the approximate DOS and the exact DOS in three dimen­
sions. Since the DOS is about 0.14, the absolute error is less than approximately 0.2%. 
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Fig. A.6 DOS for the half-filled Falicov-Kimball model on a simple cubic lattice with 
UPK = 6, which is a small-gap Mott insulator. 

A. 16 DC conductivity for the simple cubic lattice 

(a) Evaluate the transport DOS for the simple-cubic lattice 

sW 
-I />7T /*7T fit 

= TT-^3 / dkx / dkv / dkz sin2 kx8(e - ek), (A.44) 

by using the approximate DOS from Problem A.15, and deriving a differ­
ential equation for the transport DOS in terms of the approximate DOS. 
Begin by noting that (t = 1) 

de ̂ -^--"t-k^-^^ d 

2 sin kx dk-, 
6(e - ek). (A.45) 

Use this result to prove that cJptrans(e)/de = —ep3d(e)/12. 
(b) Taking the approximate DOS for Problem A.15, solve the differential 
equation derived in part (a) for the transport DOS, and use that to cal­
culate the dc-conductivity on a simple-cubic lattice. Evaluate pdc = l/&dc 
as a function of temperature for 0 < T < 2 and U = 2, 3, 4, 5, 6. Com­
ment on the behavior of the resistivity. Hint: the transport DOS can­
not be expressed as a polynomial multiplied by the approximate 3-d DOS, 
so it is best to solve the differential equation to determine the transport 
DOS analytically, and then perform the integration over both the energy 
variable and the frequency variable numerically. Your work can be sim­
plified by denning a function GtI(z) = JptI(e)/(z — e) (in terms of the 
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Hilbert transform of the transport DOS) and expressing the integrand for 
the transport coefficients in terms of G t r and other local functions. Note 
that dGtr(z)/dz = — [1 — zG(z)]/12, which relates the derivative of the 
transport Hilbert transform to the local Green's function, will be useful in 
deriving the dc response functions. 
Ans: You should find 

Cdc 

with 

- <ro,3d p dw (~^-) T(W), (A.46) 

TM = i ImGtr(w) 1 1 ^ ,, _ , , , „ , ,, 
(A.47) 

_ ImS(w) 12 12 

The plot shows the results for UFK — 6. 

A. 17 Jonson-Mahan theorem 

In this problem, we will verify the Jonson-Mahan theorem, as formulated 
in [Mahan (1998)]. For simplicity, we will work on the spinless case, but the 
generalization to include spin is straightforward. The first step is to work 
with a general form for the heat-current operator. Since the heat-current 
operator depends on the potential energy, we will consider a general form 
for the local potential energy 

V = Y, Vick + £ [Vjlci + Vfc\ft] (A.48) 
i i 

where / / ( / J are localized electron creation (annihilation) operators at site 
i for a hybridization piece of the Hamiltonian as in the PAM. The form 
in Eq. (A.48) even holds for the Hubbard model if the coefficients Vi can 
depend on the opposite spin operators (which they can). 

(1) Verify that a direct computation of the heat-current operator yields 

JQ = Yl Vk(£k ~ ^)4ck + o ] 0 V k + vk')^(k - k')4ck' 
k kk' 

+ 7x ? V k (e*'Ri^c* + e _ i k ' R i ^ c k / i ) . (A-49) 

where ^ ( k —k') = ]T\ exp[—i(k — k') -Rj]Vi/A. Note that this general form 
agrees with what we derived for the Falicov-Kimball model, as it must. 
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Hint: You will need to evaluate the commutators of the creation and anni­
hilation operators with the potential. 

(4) Now we need to perform the appropriate analytic continuation. 
Since F and S each depend on two time variables, their Fourier transform 
involves a double transformation. Show that 

Fab{r,r') = T 2 ^ F a 6 ( ^ n ! i o ; m ) e ^ " r - ^ r ' ) , 
nm 

Sab(T,T>) = T2Y,Fab(i^n^m)l-{iu:n + iojm)e^T-l^T'\ (A.52) 
nm 

The Fourier transformation of the L coefficients involves a single Fourier 
transformation: 

Ln(ii'i)ab= / d,TemTFab(T,T~) = T^Fab(iojn,iujn + wi), 

fP 1 
L2i(m)ab= / dTetUlTSab(T,T~) =T^2,Fab{iun,iujn + ivl){iujn + -iz/j). 

• ' 0 n 

(A.53) 

The last part of each equation above needs to derived explicitly. 
(5) The final step is to complete the analytic continuation as described 

in Chapter 2. It may appear somewhat trickier than before, because the 
F function depends on two frequencies, not one, but if you replace the F 
function by its actual value (knowing what the L\\ analytic continuation is, 
you will see that it involves the product of two Green's functions at different 
frequencies). The analytic continuation can now be performed as before by 
taking into account the analytic properties of the Green's functions. Show 
that the Jonson-Mahan theorem holds for the relation between the L\\ and 
L2\ coefficients. Since L21 = £12 we are done. 

It turns out that the Jonson-Mahan theorem always holds when the 
potential is a sum of local terms (as in the general potential we took for 
this problem). 

A. 18 Charge and thermal conductivity for the 
Falicov-Kimball model 

Taking the results of Problems A.15 and A.16, calculate the Lorenz number 
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Fig. A.7 Resistivity for the half-filled Falicov-Kimball model on a simple cubic lattice 
with UFK = 6, which is a small-gap Mott insulator. 

(2) Using the equations of motion for the imaginary time creation and 
annihilation operators, show that 

dTcl(r) = [H-^,c{(r)} 

= (ek - /x)cjc(r) + e^H~^[V, c j > - ^ - < ^ \ 

dTCk(T) = [H-l^,Ck(T)} 

= - ( e k - H)C^T) + e ^ - ^ > [ V , c k ] e - ^ - ^ . (A.50) 

(3) Now we are ready to proceed with the proof. Start with the definition 
of two correlation functions 

Fab(T,r') = ^ v k a ( r r 4 ( r ) C k ( r ' ) j f c ( 0 ) ) , 

Sab(T,T') = -(dT - dT,)F(T,T'). (A.51) 

Note that a and b refer to coordinate axes of the corresponding vectors. 
It is easy to show that Fab{T,T~) = Ln(r) a i , = (TTja(r)jb(0)). Using the 
equations of motion derived above, show that Sab(r, r~) = I/2i(r)a6 = 
<TTjQa(T)jb(0)>. 
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Fig. A.8 Lorenz number for the half-filled Falicov-Kimball model on a simple cubic 
lattice with UFK = 6, which is a small-gap Mott insulator. 

for 0 < T < 2 and U = 2, 3, 4, 5, 6 (pe = 1/2 and wx = 1/2). Recall that 
in a Fermi liquid, the Lorenz number approaches a constant 7r2/3. How do 
these results compare to those in a conventional metal? Note that you can 
fix the chemical potential at \x = U/2 for this calculation for all T. 
Ans: The plot shows the results for UFK = 6. 

A. 19 The particle-hole asymmetric metal-insulator 
transition 

(a) Compute the Green's function of the spinless Falicov-Kimball model on 
a simple-cubic lattice with pe = 1 — w\, w\ = 0.1, 0.2, 0.3, 0.4, and 0.5. 
Find Uc for the critical opening of a gap in the DOS for each filling. Plot 
the critical DOS for each case. 
Ans: Uc « 4.95 for u>i = 0.3. 
(b) How much larger does U have to be than Uc in order for there to be a 
pole in the self energy [consider the same fillings as in (a)]? 
Ans: Up0ie « 5.35 for w\ = 0.3. 

A.20 Non Fermi-liquid behavior of the Falicov-Kimball 
model 

Compute the self energy of the spinless Falicov-Kimball model on a simple-
cubic lattice with pe = 1 — w\, w\ = 0.1, 0.2, 0.3, 0.4, and 0.5. 

1 i ' i • i • i • i • i ' i ' i • i • 

• ' • ' ' 
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Take U = 1, 2, 3, 4, 5, and 6. Compare S(w) to the results of Fermi-
liquid theory. Is this system ever a Fermi liquid? Do the results depend on 
temperature? 

A.21 Thermopower of the Falicov-Kimball model and the 
figure-of-merit 

(a) In the case of half-filling for both particles of the Falicov-Kimball model, 
show that the thermopower vanishes due to particle-hole symmetry. 
(b) Calculate the thermoelectric figure-of-merit ZT for the spinless Falicov-
Kimball model on the simple cubic lattice for U = 2, 3, 4, 5, and 6, and 
wi = 0.1, 0.2, 0.3, 0.4, as a function of T for 0.001 < T < 2. Set the 
electron filling to pe — 1 — w\. Plot ZT versus T for all w\ values at a 
given value of U on one plot. Hint: one must be careful to determine the 
chemical potential properly for low temperature in the insulating phases, 
as the simple numerical root-finding technique will not normally produce a 
chemical potential in the gap. The T —> 0 limit of the chemical potential 
must lie at the center of the gap, and using the constraint where the number 
of "holes" equals the number of "electrons" at finite temperature will allow 
the chemical potential to be found for all T. This procedure requires a 
real-axis code to be carried out. Note that you may still run into precision 
problems in determining the thermopower, due to the need to take the 
ratio of two small numbers, each of which is becoming inaccurate at low 
temperatures for U = 5 and 6. 

Ans: The plot shows the results for U = 3 and w\ = 0.1, 0.2, 0.3, and 0.4. 

A.22 U —> oo Green's functions 

Consider the spinless Falicov-Kimball model on the infinite-coordination 
Bethe lattice. As U —> oo, we have 

GM = - ^ p r + ™\ TT -> (i - u^GoM, (A.55) 

if /U <C U. Employ the DMFT algorithm to compute an analytic expression 
for the DOS and for the self-energy when U —> oo and 0 < w\ < 1 and 
0 < pe + w\ < I- You can express your result in terms of w, w\, fi, and U. 
Ans: A(u>) = y/4(l — w\) — {LO + /z)2/27r which has the same form as the 
noninteracting DOS, except it is band-narrowed, and has weight 1-wi. 
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Fig. A.9 Figure-of-merit for the Falicov-Kimball model on a simple cubic lattice with 
UFK = 3 and various fillings. As expected, the figure-of-merit grows as T increases, and 
as the system becomes more particle-hole asymmetric; it vanishes at half-filling. 

A.23 Determining Gap from the quantum zipper 
algorithm 

(a) Starting from the expression for the quantum zipper algorithm given 
in Eq. (3.5), examine the cases 7 = a, 7 = a — 1, 7 = a — 2, ..., 7 = a — n 
to show that 

^* aa — n\<^ i z) — 
G0 -X^K , Z)ta — n-\-ia — n (A.56) 

LQ_n(kll,z) 

where z denotes a complex variable in the upper half plane and LQ_n(k", z) 
satisfies the recursion relation in Eq. (3.9). Note that you need to prove 
that L satisfies the appropriate recursion relation. 
(b) Similarly, show that 

^ a a + n - l l k i z)^a-\-n-la+n 
G, aa+ri (k

11,*) 
Ra+n^Kz) 

(A.57) 

with Ra+n(k^,z) satisfying the recursion relation in Eq. (3.12). 
(c) Show that for a bulk (no a dependence to t) homogeneous system of a 
noninteracting metal, we have 
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L(e, LO) = R(e, w) = U+% € ± \ ^ / ( w +/x - e ) 2 - 4 , (A.58) 

for the left and right functions, and that the off-diagonal Green's functions 
become 

Gr
QQ+n(e,o;) = ± 

y/iuj + fi- e)2 - 4 
-i n 

J. „ _ ^ 2 _ 4 l 
(A.59) 

OJ + /j, — e \/(u; + /̂  - e)2 - 4 

where the choice of the signs has to be made according to the analyticity 
requirements. Show how to choose these signs, and, in particular, determine 
the imaginary part of the Green's functions, when UJ lies within the band. 
Note that the imaginary part of the off-diagonal Green's functions need not 
have a definite sign as the local Green's function has. Note further that we 
have chosen e = ea for each a, since we are in the bulk. 

A.24 The stability of the left and right recursion relations 
of the quantum zipper algorithm 

In this problem, we analyze the recursion relations for the left and right 
functions in Eqs. (3.9) and (3.12). 
(a) Show that if a given L or R function has a positive imaginary part, 
then the next L or R function in the recursion relation also has a positive 
imaginary part. This shows that the recursion relation is stable when there 
is an imaginary part. 
(b) Show that when L-QQ or R^, is real, then the physical root is stable 
in the recursive iterations. In other words, show that the large magnitude 
root is the physical root, and show (either by an eigenvalue analysis, or by 
numerical testing) that the large root is stable in the iterations. 

A.25 Efficient numerical evaluation of integrals via changes 
of variables 

It is instructive to understand how computers perform numerical quadra­
ture and how to prepare integrands for efficient evaluation. When using 
packaged routines, adaptive integration schemes work the best. But some­
times, it is easier to write your own integration code, or to prepare the 
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integrand for use with a package, if you know the potential "singular" be­
havior in your integrand. 
(a) Using a midpoint rectangular integration scheme, evaluate the integral 

/ dxy/x, (A.60) 
Jo 

whose value is equal to 2/3. How many points are needed to achieve an 
accuracy of two decimal points, three decimal points, four decimal points, 
and five decimal points. How many points are needed for eight digits of 
accuracy? What is the best accuracy you can achieve with a midpoint in­
tegration routine? 
Ans: 0.6695 for N = 7, 0.66699 for N = 31, 0.666699 for N = 147, and 
0.66666999 for N = 688. One needs N « 175,000 for eight digits of accu­
racy! 
(b) The reason why the integration was so difficult was because the function 
y/x has an infinite slope at x = 0. We can remove this "singularity" by 
making a change of variables x — y2. Repeat part (a) for the transformed 
integral. Discuss why preparing the integrand for numerical quadrature is 
useful. Note that the substitution x = y2 is easy to perform in a computer 
program. All quadrature routines have the form / = ^2iweight(i)f(i), 
where the weight function changes as we change variables. If we set up 
a grid with respect to y instead of a;, we simply set x = y for each y 
point, and substitute that into our function f(x) to calculate that piece of 
the integrand. We need to also modify the weight function, which will now 
include the new term 2yAy for each point in the y grid. When the integrand 
is a complicated function, using this strategy can save significant coding 
time. Is it easier to achieve high accuracy for the transformed integral? 

(c) The function In a; has an integrable singularity in it. Compare a mid­
point integration routine for In x from 0 to 1 with that of a transformed 
integrand, when we pick x = ya, for some exponent a. What choice of a 
is the smallest integer such that the derivative of the integrand is finite at 
X = 0? 

(d) In the evaluation of the Green's functions for a multilayered nanostruc-
ture, we need to perform integrals, which behave like 

[ de // \ 2 ^P2d(e)h(e); (A.61) 
J-A \J(a - e)2 - b2 

this integrand has lne behavior near e = 0 due to the logarithmic diver­
gence of the two-dimensional DOS at the center of the band, and it has 
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an inverse square-root singularity when e = a ± b [the function h(e) has 
no singularities]. Devise a scheme to divide the region of integration into 
pieces that contain no singularities, and hence can be integrated directly, 
and those that have isolated singularities that can be removed by an appro­
priate change of variable. Determine a possible change of variables for each 
of the different regions. Note that your results will depend on what the 
values of a and b are, since there is no singularity if a ± b < —4 or a ± b > 4. 
Hint: a square-root singularity of the form given above is best removed 
by either a trigonometric or a hyperbolic trigonometric substitution like 
e = a + bcosd or e = a ± focosh#. 
(e) If the integrand contains a principal-value integration, of the form 

J e — a+ io 

where h(e) has no singularities but is nonzero in a region around e — a, 
and 5 = 0 + . This integrand has a true nonintegrable singularity, unless 
we evaluate the integrand with a special procedure called a principal-value 
integration. The strategy is to create an integration grid that is uniformly 
spaced, and which goes through the point e = a. Then, because the inte­
grand changes sign at e = a, we can "cancel" the singularity by evaluating 
the integrand on a symmetric grid above and below a. We have to add an 
imaginary part coming from the delta function associated with the limit 
S —> 0+ , which equals — iir5(e — a). Write a computer code to perform a 
principal-value integration when a = 1 and h(e) = ecos(-7re/4). Take the 
integration limits to run from 0 < x < 2. Note that we do not include the 
point e = a in the numerical integration when we evaluate in a principal-
value way. 
Ans: 0.19988556-2.22144147i. 

A.26 Equilibrium solutions with charge reconstruction 

In this problem, we will show that an equilibrium solution for the charge 
reconstruction in a nanostructure carries no charge current. 

An examination of the local charge current operator shows that if 
Gaa+i = Ga+ia, then the expectation value of jl°ns = 0. The quantum 
zipper algorithm shows that 



Appendix: Problems 297 

a ,, cull ,\ _ G « » ( k l U ) U + i 

-RQ+l(kH,z) 

GQ + iQ(k",z) = ——11— . (A.63) 

Use the recursion relations for the Green's functions and for the R and L 
functions to express the result for the Green's functions in terms of Ra+i 
and La. Note that the equations derived in the text need to be modified to 
include the electrostatic potentials from the charge reconstruction. Show 
that 

GQ a + i (k",*) = Ga+iQ(kll,*) 1 

LQ(kll, z)i?Q+1(kll, z) - taa+ita+Xa ' 
(A.64) 

which shows that the expectation value of the local current operator van­
ishes even in the presence of the electronic charge reconstruction. This is 
what we expect, because the equilibrium state will not have any currents 
flowing, even though there are nonzero electric fields in the system. A sim­
ilar result should hold for the local heat current, but such a derivation is 
significantly more complicated. 

A.27 Local charge and heat current operators for a 
nanostructure 

We work out a concrete example for deriving local current operators in 
a nanostructure described by the Falicov-Kimball model. Start with the 
Hamiltonian in real space 

H - fiM = - 2_^taijcaicaj - 2_^taa+i(ca+licai + caica+u) 
aij ai 

+ Y^WoWai ~ M + Va - AEpa)^^, (A.65) 
ai 

where a refers to the plane, i and j are spatial coordinates on the plane, 
t" is the intraplane hopping, t is the interplane hopping, and U is the 
Falicov-Kimball interaction. We let wai = faifai be the number operator 
for the localized electrons, which can be thought of as a classical variable 
taking the values of 0 or 1. The parameter AEpa is the shift of the band 
zero for planes whose band zero does not match with the band zero of the 
leads. Va is the static potential from the electronic charge reconstruction, 
as described in Sec. 3.6. 
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Using the procedure outlined in the text for calculating the longitudinal 
charge-current operator from the commutator of the polarization operator 
(in the z-direction) with the Hamiltonian, determine the total longitudinal 
charge-current operator in real space. Show that we can define the local 
longitudinal charge-current operator by 

J a n S = iatac+l Y^(CUliCai " c L C a + li)> ( A - 6 6 ) 
i 

where the charge current involves multiplying the number-current operator 
above by the electric charge — |e|. Verify that the total current operator 
satisfies j l o n g = X^QJQ" 8 ' Note: a symmetrized version of the current 
operator is j „ n g ' s y m = (j„"f +j« n g ) /2 , which averages the current operators 
to the left and to the right of plane a. 

Continuing, use the procedure outlined in the text for calculating the 
longitudinal heat-current operator from the commutator of the heat polar­
ization operator (in the z-direction) with the Hamiltonian, determine the 
total longitudinal heat-current operator in real space. Show that we can 
define the local longitudinal heat-current operator by 

J Q ' = lataa+lS ~ 2_^, nV'aij "^ ''a + lij)\Ca+liCaj ~ caica+ij) 
\ ij 

\ "V t t ^ 
~ o*Q + l Q + 2 l-^^Ca+2iCai ~ Caica+2i) 

i 

i 

+ X Yl(UaWai + Ua+UWa+li)(ci
a + uCai - c 4 c Q + u ) 

2 

+ -V- +2^Va + y " + l ) + 2 ( A E F Q ~ AEFa+l) 

X ( 4 + l i c a i ~ c L c a + l t ) > > ( A - 6 7 ) 

with j Q ' l o n g = YLa J§ ' l o n g- We also can define the symmetrized heat current 
operator as jQ>long.sym = ( j ^ ° n g + jg ' l o n g) /2. 

Note that the strategy we have adopted here is to first calculate the 
total current operators, and then to extract "reasonable" choices for the 
local current operators from the expressions for the total current. This 
procedure is not unique, and the choice made for the heat-current operator 
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in Eq. (A.67) is precisely the choice needed to generalize the Jonson-Mahan 
theorem to the local correlation functions. This makes it the most reason­
able choice to make. 

A.28 Operator identity for the Jonson-Mahan theorem 

By explicit computation, verify that 

}>™T 2 V a r ~ 6 V ) i a t a a + 1 ^2 [Ca+li(r)cm(T') - cL(T)Ca+li(r ')J 
^ ' i£ plane 

= ^ ' l o n g ( r ) . (A.68) 

A.29 BCS gap equation 

In this problem we will find the Tc and superconducting gap for the attrac­
tive Hubbard model on a simple-cubic lattice using the BCS (Hartree-Fock) 
approximation. The gap equation appears in Eq. (3.100). The strategy for 
solving for the gap as a function of temperature requires us to first find the 
transition temperature, and then the gap as a function of T. 

(a) Solving for the transition temperature. To solve for the transition 
temperature we need to use a one-dimensional root finder and find the 
temperature where Eq. (3.100) is satisfied with A = 0. This is easy to do if 
we pick two temperatures that bracket the root, and use a one-dimensional 
root finder like Brent's false-position method [Brent (1973)]. The key is 
that we need to choose an appropriate number of Matsubara frequencies, 
and perform the summation over them, after evaluating the integrals over 
the DOS. These integrals appear formidable if one is to do them exactly. 
But we can evaluate them approximately, yet highly accurately, by using 
the methods developed for the Green's functions on a simple-cubic lattice. 
Verify that 

/ 
dep(e) 

c4 + ( M + ! | t / | ( n ) - e ) 2 + |AP 
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~ - V ^ + | A | 2 + / x + i | t / | < n ) - e 

G(z)-G*(z)= 
i 

S=i^2+|AP+M+I|[/ |(„> 

2iy/U* + |A|2 

-2iy/w* + |A|2 

This allows you to quickly calculate the terms for each Matsubara fre­
quency by using the results of Prob. A.15 for the Green's functions of the 
simple-cubic lattice. Write a computer program to calculate the transition 
temperature (i.e., set A = 0) for enough values of U that you can repro­
duce Fig. 3.17 (a). Note you should use an energy cutoff for your Matsubara 
frequency summations (something like |u>„| < 100) to provide a consistent 
truncation to the summations as you vary the temperature. 
Ans. you should find Tc = 0.03463 for \U\ = 1.5 and Tc = 0.6472 for 
|[ / | = 4. 

(b) The superconducting gap. Choose \U\ = 2, 3 and 4. For each case, 
solve the gap equation to find A(T) as a function of T. Plot your results 
as A(T)/A(T -> 0) versus T/Tc. You should be able to verify the results 
in Fig. 3.17(b). Note that you will need to find a way to comfortably 
determine the gap as T —> 0. Explain how you do this. 

A.30 Equations of motion needed for the 
Nambu-Gor'kov formalism 

Starting from the definitions for F and G[ given by 

Ftj(T) = -(TTCiT(T)Cji(0)>, -GM(-T) = -(TrclWcj^O)), (A-70) 

take derivatives with respect to r and use Wick's theorem to approximately 
evaluate the four-fermion operator average, and derive Eqs. (3.102) and 
(3.103). 

A.31 Spin one-half atom in a time-dependent normal and 
anomalous dynamical mean field 

Derive Eq. (3.114) by first computing the equation of motion in imaginary 
time by taking the derivative of each Green's function with respect to r , 
and then Fourier transform to the Matsubara frequencies. 
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Invert Eq. (3.114) to find the four Green's functions, 

iujn - fi + X*(iu>n) 

[iun + (i- X-\{iLjn)][iwn -/i + \*{iu>n)] - a(iu>n)a(iojn) 

ajiun) 
[iLjn + ii- Af (iun)}[icon - ji + A*(iw„)] - a(iun)a(iu!n) 

Qj{iu)n) 
[iu;n + ii- X\(iu>n)][iun - /i + AJ(iwn)] - a(iwn)a(iujn)' 

iun + M ~ Xi(iun) 
[i(jjn + [i - X^(iun)}[iu>n -ii+ X*(iujn)} - a(iu>n)a(iu>n) 

(A.71) 

Verify that the partition function, given in Eq. (3.115), is consistent with 
the above equations, by calculating the derivatives of Zimp with respect to 
each of the dynamical mean fields. Finally, show that the partition function 
reduces to the noninteracting result when the dynamical mean fields vanish. 
This establishes the form for the partition function used in the text. 

Note that the fact that G-\ = G; and F — F*, tells us that the self-
consistent solution to the DMFT equations will have Af = Aj and a = a*. 

A.32 Hilbert transformation in the Nambu-Gor'kov 
formalism 

In this problem we will show how to efficiently evaluate the Hilbert trans­
formation in the superconducting state [given in Eq. (3.124)]. The first step 
is to explicitly calculate the matrix inverse yielding 

f , - ( w n - i lmSn)! + (/i- ReS n - e)r3 - R e $ n n + Im$„r2 

" J m k - Im£„)2 + (IM- Re£„ - e)2 + |$„ |2 

(A.72) 

Next, we need to evaluate two integrals. Verify that 

/ dep^ i a ^ l u = R e G ( a + i b ) . (A-73) 
J {a-ey+b* 

GT(iw„) 

F(iun) 

F(iuin) 

-G\{lLOn) 
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I i / x 1 ImG(a + ib) 

with G(z) = J dep(e)/(z — e) the ordinary Hilbert transform that we use to 
calculate the normal-state Green's function in the bulk. Finally, use those 
integrals to show that 

G(iun) = ReG(z)T3 + [(ujn-ilmEn)I+Re$nTi-Im$nT2] " , (A.75) 

with z — a + ib. To complete the calculation, you need to recognize that 
a = n — Re£ n and b — y/(LOn — ImEn)2 + | $ n | 2 - This then is an efficient 
starting point to modify normal-state codes for use in superconductivity 
problems. 

A.33 Evaluating Hilbert transformation-like integrals 
needed for determining the bulk critical current on 
a simple-cubic lattice 

In this problem we will show how to perform the integration over kz by con­
tour integration and the residue theorem. Our starting point is Eq. (3.138) 
which is the generalization of the Hilbert transformation when we have 
current flowing in the bulk. 

(a) Show that the Green's function can be expressed as the following 
integral 

G{iu,n) = Jde\\pM^)J2irdk 

277 

ia — 2t sin ^ sin k — b — 2t cos ^ cos k 

2t sin § sin k)2 -(b + 2t cos § cos A;)2 - |c|2 : 

ia — 2t sin § sin k + b + 2t cos % cos k 

(A.76) 

with a = wn — Im£ n , b = fi — e" — Re£n , and c = $ n . 
(b) Transform the integral over k to an integral over the unit circle in 

the complex plane by making the substitution z = exp[ik], to yield 
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(tui, ^/deW)/ 
dz 

1-KIZ 

iaz-itsin^(z2 - 1) - bz - tcos f {z2 + 1) 

c z 

cz 
ia-itsinQ(z2 - I)+ bz+ tcos &{z2 4-1) 

1 

— (az — isin 7^[z2 l])2 - (bz + tcos §[z2 + l])2 - \c\2z2 (A.77) 

The contour integral is taken around the unit circle in the counter-clockwise 
direction. Now show that the denominator of the integrand can be written 
as 

1 t 2 t 2 ' 

+ 2( - - s m | - + - c o s | )z + l 

+ fc2 + |c|: 

i 2 + 2 cos Q j z2 

(A.78) 

which will be used in part (c). 
(c) Because the quartic polynomial in z has a 1 for its constant term, the 

product of all of the roots of the polynomial equals 1. Hence, if we assume 
that no roots lie on the unit circle, at least one root, yielding a pole, must 
lie inside the unit circle, and at least one root must lie outside. Using the 
residue theorem, we can evaluate the integrals under the assumption that 
the roots are all distinct, and none lie on the unit circle. Do this to find 

<G(iwn) dc«pM(c«) 
r j : | r j - | < l 

iar •j + it sin § (r2 - 1) - br-j - tcos § (r2 + 1) 

c n 

iarj + it sin § ( r 2 - 1) + brj + tcos § ( r 2 -f 1) 

-t2Tlk&(rs-rky 
(A.79) 
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Now one can perform the integration over the two-dimensional density of 
states remembering to change variables near e" = 0 to remove the singu­
larity from the numerical quadrature. Note that it is a good practice to 
check the number of roots that lie inside the unit circle, as these should not 
change for any given calculation as e" changes (otherwise roots have crossed 
the unit circle), and one should also check that none of the roots become 
multiple roots either. This method for evaluating the integral is much more 
efficient than a two-dimensional integration, because the root-finder for a 
quartic polynomial in z is very fast, and one has just a one-dimensional in­
tegral that remains, which is simple to evaluate if the singularity is properly 
removed. 

(d) We also need the integral defined in Eq. (3.141) to find the current 
flowing through the superconductor. This integral is similar to the (1,1) 
component of the integral evaluated above, except we have an additional 
factor of 

cos k cos — — sin k sin — + i sin k cos — + i cos k sin — > 

5 H ) e , § + 5 H ) e ' ! = z e , ! (A'so) 
in the integrand, which is simple to evaluate in the same way as in part 
(c). Determine what the final formula for the integral is after evaluating 
the residues. 

(e) Since the only change to the superconducting algorithm when current 
is flowing is the change in the generalized Hilbert transformation, use the 
result in part (c) to modify your superconducting bulk code to be able to 
determine the critical current. Run some cases to reproduce, for example, 
the curves given in Fig. 3.20. 

A.34 The single-plane Mott-insulating barrier 

In this problem, we will calculate the local DOS at the chemical potential 
for the central plane of a N — 1 strongly correlated nanostructure (see 
Fig. 3.7). Begin by neglecting the self-consistency in the noninteracting 
metallic leads (i.e., set La = L_oo and Ra — Roo for all a except the plane 
with the Falicov-Kimball interaction) and choose the system to be at the 
symmetric half-filling point for both particles (pe = 1/2 and w\ = 1/2). 
(a) Show that the local Green's function for the central plane (a = 0) 
satisfies 
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G c = o M = [ dep2d(e)- * (A.81) 
J 2(w - e) - S0(w) ± V(w - e)2 - 4 

and determine a procedure to choose the sign of the square root. 
(b) Assume So(w) is large in magnitude for small to (which occurs in a Mott 
insulator) and show that the Green's function can be expanded as 

with s{uj) = J dep2d(e)\/V - e)2 - 4 . 
(c) Now plug the above formula for the Green's function into the DMFT 
algorithm to find the leading behavior of the self-energy; verify that the 
self-energy is large for small to. Numerically evaluate the integral s{u>) for 
small LO to finally determine the DOS at the central plane 

po{u = 0) = — . (A.83) 

You can compare these numerical results with the full self-consistent so­
lution: U = 6 p0(0) = 0.0378; U = & p0{0) = 0.0211; and U = 12 
po(0) = 0.0093. 

A.35 Green's functions of the particle-hole symmetric 
Falicov-Kimball model nanostructure 

This problem is more of a project than a homework problem since it will re­
quire a significant amount of time to complete. It is a necessary prerequisite 
for the last problem. 
We will examine a multilayered nanostructure consisting of perfect (ballis­
tic) metal leads and a barrier described by the Falicov-Kimball model at 
half filling. If we choose the leads to also be at half filling, then the chemi­
cal potential is equal to 0 for all T, and there is no charge reconstruction. 
Take a frequency grid that runs from —10 to 10 with a step size of 0.01, 
and write a computer code to calculate the real-axis local Green's functions 
for the multilayered nanostructure. Take 30 self-consistent ballistic metal 
planes on each side of the barrier, and examine the cases with a barrier 
thickness of 1, 5, and 10 planes. Perform calculations for U = 2, U = 4, 
and [7 = 6. Note that if you want to parallelize the code, the calculations at 
each frequency grid are independent of each other and can be distributed 
to different nodes. Be sure to use the results of problems A.23-A.25 in 
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developing your code. Be sure to write out the self-energies into a file if 
you plan to also complete Problem A.37. Hint: Use a quadrature grid of 
about 2000 points for the U = 2 and U = A calculations. You may need 
to increase the number of grid points for the thicker U = 6 calculations. 
You will need to come up with an appropriate convergence criterion for 
the Green's function at each frequency; it is better to iterate the equations 
at each frequency separately, because some frequencies require far fewer 
iterations than do others. You should also use particle-hole symmetry and 
calculate only the positive, or the negative frequencies, and determine the 
other ones via the symmetry. Note that the Green's function should look 
like a smooth function of frequency (on a logarithmic scale for (7 = 6), 
and the integral of —1/TT times the imaginary part should equal 1 for each 
plane. 

A.36 Parallel implementation for the resistance calculation 
of a nanostructure 

Show that the resistance calculation for a ballistic-metal-barrier-ballistic-
metal nanostructure at half filling can be performed for all temperatures 
of interest once the local self-energy has been found. Describe how to 
construct a parallel algorithm for performing this calculation. Is it better 
to send the calculations for different temperatures to different nodes or 
for different frequencies to different nodes? Be sure to describe how you 
will calculate the Kubo response, namely how will you generate the off-
diagonal Green's functions (see Problem A.23). Hint: think about the 
temperature dependence of the elements of the conductivity matrix (note 
that the chemical potential does not depend on T for half filling). Also 
think about how to check whether the conductivity matrix is invertible. 

A.37 Resistance and Thouless energy of a nanostructure 

This problem is a project that builds on the results of Problems A.35 and 
A. 36. 
Taking the results of your calculations for the Green's functions and self-
energies in Problem A.35, create a program to calculate the resistance of 
a multilayered nanostructure for the same cases as discussed in Problem 
A.35. Take 100 temperature points from 0.01 to 1, and plot the resistance 
as a function of temperature. Next, using the results of Problem A.19 
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for w\ = 0.5, calculate the Thouless energy and plot it as a function of 
temperature. Describe the differences in the temperature dependence of 
both the resistance and the Thouless energy for the three different cases. 
Hint: Be sure to use the same integration grids used to generate the self-
energies when you calculate the off-diagonal Green's functions. Access to 
a parallel computer will greatly speed up your calculations. 
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