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Preface

This book outlines physically intuitive concepts of nanophotonics using a 
novel theoretical framework that differs from conventional wave optics. In 
the early 1980s, M. Ohtsu commenced his pioneering research into optical 
near-fields, because he understood that future optical science and technol-
ogy would require breaking the diffraction limit of light. One decade later, a 
reliable technology was established for fabricating high-quality fiber probes. 
This led to the development of near-field optical microscopy and spectros-
copy, with high-resolution, beyond the diffraction limit of conventional opti-
cal microscopy.

Immediately after establishing the fiber probe technology, Ohtsu tried to 
describe the nature of optical near-fields in a physically intuitive manner, 
as the nanometric subsystem (nanometric material systems interacting via 
optical near-fields) under study is always buried in a macroscopic subsys-
tem consisting of the macroscopic substrate material and the macroscopic 
electromagnetic fields of the incident and scattered light. In the nanometric 
subsystem, the optical near-field should be regarded as an electromagnetic 
field that mediates the interaction between nanometric materials. After start-
ing to develop a novel theory to describe this interaction, he found that it 
could be applied to realize novel photonic devices, fabrication techniques, 
and systems. Therefore, in 1993, the idea of nanophotonics was proposed. It is 
a novel technology that utilizes the optical near-field to realize novel devices, 
fabrications, and systems.

Following elaboration of the idea of nanophotonics, much theoretical and 
experimental work has been carried out, and several novel functions and 
phenomena that originated from the intrinsic optical near-field interaction 
have been discovered. Examples include device operation via the optical 
near-field energy transfer between the optically forbidden energy levels 
of excitons and subsequent relaxation, and a fabrication technique using a 
non-adiabatic process with optically inactive molecules. These constitute 
examples of qualitative innovation in optical science and technology because 
they were impossible to realize as long as conventional propagating light 
was used. The true nature of nanophotonics is to realize this qualitative innova-
tion. After reading this note, it may be surmised that the advantage of going 
beyond the diffraction limit, that is, quantitative innovation, is no longer essen-
tial but is simply a secondary aspect of nanophotonics. One of the objectives in 
publishing this book was to review this qualitative innovation for the students, 
engineers, and scientists who will be engaged in nanophotonics.

In conventional optical science and technology, light and matter have been 
discussed separately, and the flow of optical energy in a photonic integrated 
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circuit or system has been unidirectional from a light source to a photode-
tector. By contrast, in nanophotonics, light and matter have to be regarded as 
being coupled to each other, and the energy flow between nanometric par-
ticles is bidirectional. This means that nanophotonics should be regarded as a 
technology fusing optical fields and matter.

The term nanophotonics is occasionally used for photonic crystals, plas-
monics, metamaterials, silicon photonics, and QD lasers using conventional 
propagating lights. Here, as will be described in Section 1.4, the stern warn-
ing from C. Shannon on the casual use of the term information theory, which 
was a trend in the study of information theory during the 1950s, should be 
considered. The term nanophotonics has been used in a similar way, although 
some work in nanophotonics is not based on optical near-field interactions. 
For the development of nanophotonics, far-reaching physical insights into the 
local electromagnetic interaction in the nanometric subsystem composed of 
electrons and photons is required.

Chapter 1 of this book reviews the background, history, and present sta-
tus of research and development in nanophotonics and related technolo-
gies. It explains why qualitative innovation lies at the heart of nanophotonics..
Chapter 2 presents a novel theoretical model and a new approach that 
describes the interaction between nanometric material systems via optical 
near-fields in a physically intuitive manner. Nanophotonic devices and sys-
tems are designed and their performances are analyzed using this model. 
A non-adiabatic fabrication process is also evaluated using this model..
Chapters 3 and 4 deal with nanophotonic devices and fabrication techniques, 
and present examples of qualitative innovation. Chapter 5 presents a novel 
nanophotonic system realized by assembling nanophotonic devices. Its per-
formance is also an example of qualitative innovation in optical information 
technology.

Chapters 1 and 2 were written by M. Ohtsu and K. Kobayashi, respectively. 
Chapters 3 and 4 were coauthored by T. Kawazoe and T. Yatsui. Chapter 5 
is by M. Naruse. All of the authors checked the entire manuscript under the 
supervision of M. Ohtsu.

The authors gratefully acknowledge Prof. H. Hori (Yamanashi University) 
for his collaboration in conducting the authors’ research on nanophotonics, 
and for his critical comments on the manuscript.

Motoichi Ohtsu
Bunkyo, Tokyo

September 2007
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�

1
Introduction

1.1 Modern Optical Science and Technology 
and the Diffraction Limit

As a major step forward in quantum theory and its applications, the laser, 
a novel light source, was invented in 1960 [1]. The use of lasers has dramati-
cally changed optical science and technology, and it is considered to be one 
of the biggest scientific achievements of the 20th century, on a par with the 
invention of transistors. Lasers have a variety of applications because of the 
high controllability of their amplitude, phase, frequency, and polarization. 
Their industrial applications are known as photonics or optoelectronics, 
with examples including optical disk memory, optical fiber communication 
systems, and optical fabrication, including photolithography.

A compact disk (CD), popularly used as read-only memory, is an example of 
an optical disk memory. It has numerous small pits on its surface for storing 
digital signals, such that one pit corresponds to one bit, and to read these signals, 
the disk surface is illuminated by a laser beam focused by a convex lens. Detec-
tion of the laser light reflected from the disk surface corresponds to the readout 
operation. Random access memories, such as digital versatile disks (DVDs), have 
also been developed, in which a focused laser beam is used to store and rewrite 
information by locally heating the disk surface. A report on future trends in the 
photonics industry recently estimated that the storage density of the optical disk 
memory should be as high as 1 Tb/inch2 in the year 2010 (see Figure. 1.1) [2], but 
the diameter of a circular pit corresponding to 1 Tb/inch2 is 25 nm, which can-
not be fabricated or read due to the diffraction limit of light. As an alternative 
storage technology, a hard disk drive system using magnetic storage technology 
has realized a storage density much higher than that of optical disk memory. 
However, this system also has an upper limit of storage density due to thermal 
instability of the magnetic domain. As a result of this limit, densities higher than 
300 Gb/inch2 are difficult to realize, and 1 Tb/inch2 is a much higher value.

Long-distance optical fiber communication systems have been estab-
lished by installing submarine optical communication cables in the Pacific 
and Atlantic oceans. These systems have also been used for local area net-
works. These technical trends mean that the electronics technology in these 
systems has been replaced by optical technology. Furthermore, this 
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�	 Principles of Nanophotonics

replacement is required for very short-distance communication systems, such 
as board–board, chip–chip, and device–device systems in electronic circuits 
to increase the degree of integration and decrease the power consumption (see 
Figure. 1.2) [3]. It is thus advantageous to replace some electronic devices with 
photonic devices to facilitate connecting with optical fibers. Consequently, the 
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Figure 1.1
Technical road map showing the increase in storage density of optical disk systems. The stor-
age density already realized by nanophotonics is also shown.
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tonics is also shown.
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Introduction	 �

size of the photonic device (e.g., lasers and modulators) must be reduced to 
be as small as electronic devices for greater integration, which, however, is 
impossible because of the diffraction limit of light.

Optical fabrication technology has been developed for fabricating a variety 
of devices. For example, photolithography is popularly used for fabricating 
semiconductor dynamic random access memories (DRAMs). It uses focused 
light to process the material surface, and fabricated sizes have been reduced 
using shorter wavelength light. It is estimated that 64–256-Gb DRAMs will 
be required in the near future, and the linear pattern in these devices must 
be as narrow as 35–70 nm (see Figure 1.3) [4]. However, such narrow pat-
terns cannot be fabricated because of the diffraction limit of light. To nar-
row the pattern to within the diffraction limit, various light sources emitting 
extreme ultraviolet light, synchrotron radiation, and X-rays, as well as elec-
tron beams, are under development, but they may not be feasible in mass 
production because of their large size, high energy consumption, and high 
cost. Thus, novel, inexpensive, and practical fabrication tools are required for 
fabricating semiconductor devices and advanced photonic devices.

The examples presented here indicate that 21st-century society requires 
novel optical science and technology to meet the measurement, fabrication, 
control, and function requirements on the scale of several tens of nanometers 
because conventional optical science and technology cannot overcome the dif-
fraction limit of light waves.
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nanophotonics
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Technical road map of the line width reduction of patterns fabricated by photolithography. The 
names of light sources and DRAM capacities are also shown. EUV and SR stand for extreme 
ultraviolet light and synchronous radiation, respectively. The line width already realized by 
nanophotonics is also shown.
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�	 Principles of Nanophotonics

After a light wave passes through a small aperture on a plate, it is con-
verted into a diverging spherical wave. Such divergence is called diffraction, 
an intrinsic characteristic of waves. For a circular aperture, the divergence 
angle is about l/a, where l and a are the wavelength of the incident light and 
the aperture radius, respectively. Due to diffraction, the spot size of the light 
cannot be zero, even if it is focused with a convex lens. The spot size on the 
focal plane is as large as l/NA, where NA is the numerical aperture, which is 
smaller than unity for a conventional convex lens. Therefore, when two point 
sources of light are located closer together than l/NA, their images formed 
by a convex lens cannot be resolved on the focal plane.

This also holds true for imaging under an optical microscope, and the 
smallest size resolvable with an optical microscope (i.e., the resolution) is 
l/NA, which is called the diffraction limit. Consequently, for optical disk mem-
ory, the storage and readout of pits smaller than l/NA are impossible. Shorter 
wavelength lasers have been developed to decrease the diffraction-limited pit 
size, but the upper limit of the storage density achieved using visible light is 
several 10 Gb/inch2, while the value required in the year 2010 is 1 Tb/inch2.

Semiconductor lasers, optical waveguides, and related integrated photonic 
devices must confine the light within them for effective operation, and the 
active layer of a semiconductor laser has to exceed the diffraction-limited 
volume, that is, l3, for this confinement. The core diameter of an optical fiber 
must exceed l. These examples indicate that photonic devices cannot be 
smaller than the wavelength of light, which is the diffraction-limited size 
of photonic devices, but photonic devices for optical fiber communication 
systems in the year 2015 must be even smaller.

The narrowest line width of a pattern fabricated using photolithography is 
also limited by diffraction. The progress in reducing the pattern size has been 
the result of effort to use a shorter wavelength light to decrease the diffrac-
tion-limited value. However, further shortening of the wavelength requires 
gigantic, expensive light sources, which can become prohibitive when develop-
ing practical microfabrication systems. For visible light sources, the 35–70 nm 
line width required for 64–256-Gb DRAMs is far beyond the diffraction limit.

To summarize, the miniaturization of optical science and technology is 
impossible as long as conventional propagating light is used. This is the 
deadlock imposed by the diffraction of light. We must go beyond the diffrac-
tion limit to open up a new field of optical science and technology. This field 
is called nanophotonics, and will be reviewed in this book.

1.2 Breaking Through the Diffraction Limit

Novel or nanometer-sized materials may be used for future advanced 
photonic devices. However, the size of these devices cannot be reduced 
beyond the diffraction limit as long as propagating light is used for their 
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operation. This also applies to improvements in the resolution of optical fab-
rication and for increasing the storage density of optical disk memories. To 
go beyond the diffraction limit, we need nonpropagating nanometer-sized 
light to induce primary excitation in a nanometer-sized material in such 
a manner that the spatial phase of excitation is independent of that of the 
incident light.

The use of optical near fields has been proposed as a way to transcend 
the diffraction limit [5]. This proposal holds that an optical near field can be 
generated on a sub-wavelength-sized aperture by irradiating the propagat-
ing light. It also holds that the size of the spatial distribution of the optical 
near-field energy depends not on the wavelength of the incident light, but 
on the aperture size. Although these claims are no more than those in the 
framework of primitive wave optics, optical near fields have been applied 
to realize diffraction-free, high-resolution optical microscopy (i.e., near-field 
optical microscopy), which achieved rapid progress after high-resolution, 
high-throughput fiber probes were invented and fabricated in a reproduc-
ible manner [6, 7]. In the early stage of such studies, however, the concept 
of optical near fields was not clearly discriminated from that of an evanes-
cent wave on a planar material surface (i.e., a two-dimensional topographical 
material) or that of a guided wave in a sub-wavelength-sized cross-sectional 
waveguide (i.e., a one-dimensional topographical material).

To distinguish these clearly, note that an evanescent wave is generated by 
the primary excitations, that is, electronic dipoles, induced near the two-
dimensional material surface, which align periodically depending on the spa-
tial phase of the incident light (see Table 1.1). In contrast, the guided wave in 
a sub-wavelength-sized cross-sectional waveguide is generated by the elec-
tronic dipoles induced along the one-dimensional waveguide axis. They align 
periodically depending on the spatial phase of the incident light. Examples 
are the silicon and metallic waveguides used for silicon photonics and plas-
monics, respectively. The two-dimensional evanescent wave and one-dimen-
sional guided wave are both light waves, and are generated by the periodic 
alignment of electric dipoles depending on the spatial phase of the incident 
light. Because of this dependence, the two components of the evanescent wave 

Table 1.1

Comparison of an Evanescent Wave and an Optical Near Field

Evanescent Wave Optical Near Field
 

Alignment of electric 
dipole moments

Depends on the spatial phase 
of the incident light

Depends on the size, 
conformation, and structure 
of the particle

Decay length The wavelength of the incident 
light

The size of the particle

Generated propagating 
light

Reflected light(total reflection) Scattered light
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vector along the material surface take real numbers. The component along the 
waveguide axis takes a real number in the case of a guided wave. These real 
numbers limit evanescent and guided waves to the category of diffraction-
limited light waves.

Unlike these waves, an optical near field is generated by the electronic 
dipoles induced in a nanometric particle (i.e., a sub-wavelength-sized zero-
dimensional topographical material). Their alignment is independent of the 
spatial phase of the incident light because the particles are much smaller 
than the wavelength of the incident light. Instead, it depends on the size, 
conformation, and structure of the particle. In other words, because of the 
uncertainty principle for the wave number (∆k) and position (∆x) of the light, 
that is, ∆k∆x ≥ 1, the wave number and consequently the wave vector are not 
defined accurately in a sub-wavelength-sized area (∆x < l). Thus, the optical 
near field is free of diffraction, and as a result, optical science and technology 
beyond the diffraction limit can be realized only by using optical near fields, 
and not evanescent or guided waves (see Figure 1.4).

Classical electromagnetics explains the mechanisms of optical near-field 
generation described above (see Figure 1.5). Electric dipoles are induced by 
irradiating a nanometric particle with incident light. Among the electric 
lines of forces originating from these electric dipoles, the optical near field 
is represented by those that originate from the positive charge of the electric 
dipole and terminate on the negative charge. This does not propagate to the 

Imaginary numberImaginary numberkz

Imaginary numberReal numberky

Real number

Nanophotonics

Real numberkx

Zero-dimensionalOne-dimensionalTwo-dimensional

x

y
z

Plane Wire
Particle

(QD, etc.,)

∆k >> k

Photonics
Wave optics

Figure 1.4
Relationship between the profile of a material surface and the wave number of the light. kx, ky, 
and kz: x-, y-, and z-axis components of the wave number. Dk: uncertainty of the wave number. 
k: absolute value of the wave number. The dimensions in the y–z plane and along the three axes 
are sub-wavelength.
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far field. Because the particle is much smaller than the wavelength of the 
incident light, the alignment of the electric dipoles is determined indepen-
dently of the spatial phase of the incident light. Therefore, the spatial distri-
bution and decay length of the optical near-field energy depend not on the 
wavelength of the light, but on the size, conformation, and structure of the 
particle. Moreover, the scattered light is represented by the closed loop of 
the electric line of forces, and propagates to the far field.

Methods such as Green’s function, a calculation using the finite-difference 
time domain (FDTD) method, and so on have been developed to describe the 
optical near field based on conventional optics theories [8]. However, con-
ventional optics theories do not provide any physically intuitive pictures of 
nonpropagating nanometric optical near fields because these theories were 
developed to describe the light waves propagating through macroscopic 
space or materials. A novel theory has been developed based on a framework 
that is completely different from those of the conventional theories. It will be 
reviewed in Chapter 2.

This novel theory is based on how one observes an optical near field, that 
is, the interaction and energy transfer between nanometric particles via 
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Figure 1.5
Generation of optical near fields.
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an optical near field. This perspective is essential because the interaction 
and energy transfer are indispensable for nanophotonic devices and nano-
photonic fabrications. That is, to observe a nonpropagating optical near 
field, a second particle is inserted (see Figure 1.6) to generate observable 
scattered light by disturbing the optical near field. However, the real system 
is more complicated than that shown in Figure 1.6 because the “nanometric 
subsystem” (the two particles and the optical near field) is buried in the 
“macroscopic subsystem” consisting of the macroscopic substrate material 
and the macroscopic electromagnetic fields of the incident and scattered 
light (see Figure 1.7).

Scattered light

Incident light

Particle A Particle B

Photodetector

Optical near field

Figure 1.6
Observation of optical near fields.

=

Optical near fieldScattered light

Substrate

Incident 
light

Particle A Particle B

Macroscopic subsystem

Scattered light

Nanometric 
subsystem

Incident 
light

Figure 1.7
A nanometric subsystem composed of two particles and an optical near field; this is buried in 
a macroscopic subsystem.
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The premise behind the novel theory is to avoid the complexity of describ-
ing all of the behaviors of nanometric and macroscopic subsystems rigorously, 
because we are interested only in the behavior of the nanometric subsystem. 
The macroscopic subsystem is expressed as an exciton–polariton, which is 
a mixed state of material excitation and electromagnetic fields. Because the 
nanometric subsystem is excited by an electromagnetic interaction with 
the macroscopic subsystem, the projection operator method is effective for 
describing the quantum mechanical states of these systems [9]. Under this 
treatment, the nanometric subsystem is regarded as being isolated from the 
macroscopic subsystem, whereas the functional form and magnitude of effec-
tive interactions between the elements of the nanometric subsystem are influ-
enced by the macroscopic subsystem. In other words, the two nanometric 
particles can be considered as being isolated from the surrounding macro-
scopic system and as interacting by exchanging exciton–polariton energies.

Because the time required for this local electromagnetic interaction is very 
short, the uncertainty principle allows the exchange of a virtual exciton–polari-
ton between the two nanometric particles, as well as that of a real exciton–
polariton (see Figure 1.8). The former exchange corresponds to the nonresonant 
interaction between the two particles. The optical near field mediates this inter-
action, which is represented by a Yukawa function. The Yukawa function rep-
resents the localization of the optical near-field energy around the nanometric 
particles, like an electron cloud around an atomic nucleus whose decay length 
is equivalent to the material size [9]. The latter corresponds to the resonant 
interaction mediated by the conventional propagating scattered light, which is 
represented by a conventional spherical wave function.

Spatial distribution of
the electromagnetic

field
(a: Particle size)

Spherical wave
function exp(-ir/a)/r

Yukawa function
exp(-r/a)/r

Scattered light
(propagating)

Exchange of
a real exciton-polariton

Optical near field
(nonpropagating)

Excited state

Ground state
Particle A Particle B

Excited state

Ground state
Particle A Particle B

Exchange of
a virtual exciton-polariton

Substrate

Incident 
light

Figure 1.8
Real and virtual exciton–polaritons.
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1.3 Nanophotonics and Its True Nature

As described in Section 1.2, the optical near field is an electromagnetic field that 
mediates the interaction between nanometric particles located in close prox-
imity to each other. Nanophotonics utilizes this field to realize novel devices, 
fabrications, and systems, as proposed by M. Ohtsu [10]. That is, a photonic 
device with a novel function can be operated by transferring the optical near-
field energy between nanometric particles and subsequent dissipation. In such 
a device, the optical near field transfers a signal and carries the information. 
Novel photonic systems become possible by using these novel photonic devices. 
Furthermore, if the magnitude of the transferred optical near-field energy is 
sufficiently large, structures or conformations of nanometric particles can be 
modified, which suggests the feasibility of novel photonic fabrications.

Note that the true nature of nanophotonics is to realize “qualitative innova-
tion” in photonic devices, fabrications, and systems by utilizing novel func-
tions and phenomena caused by optical near-field interactions, which are 
impossible as long as conventional propagating light is used (see Figure 1.9). 
On reading this note, one may understand that the advantage of going 
beyond the diffraction limit, that is, “quantitative innovation,” is no longer 
essential, but only a secondary nature of nanophotonics. In this sense, one 
should also note that optical near-field microscopy, that is, the methodology 
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Material
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System

Diffraction limit

Small number of
nanometric particles

Optical near field

Nanophotonics Photonics

Photonic crystals,
Plasmonics,

Metamaterials,
Silicon photonics,

QD lasers  

Bulky material

Propagating light

Microcavity lasers,
Optical waveguides,
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Diffraction

Novel functions and phenomena Qualitative innovation
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Nanophotonic devices

Figure 1.9
Nanophotonics for realizing qualitative innovation.
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used for image acquisition and interpretation in a nondestructive manner, is 
not an appropriate application of nanophotonics because the magnitude of 
the optical near-field energy transferred between the probe and sample must 
be extrapolated to zero to avoid destroying the sample.

Quantitative innovation has already been realized by breaking the diffrac-
tion limit. Examples include the following:

	 1.	 Optical–magnetic hybrid disk storage systems: The optical near field 
is used to heat the surface of the magnetic storage medium locally 
to decrease the coercivity. Immediately after heating, the magnetic 
field writes the pit. The Japanese National Project (METI-NEDO 
Program entitled “Terabyte Optical Storage Technology”) has real-
ized 1 Tb/inch2 storage density, which is higher than the diffraction 
limit of optical storage and the limit imposed by the thermal fluc-
tuations of a hard disk drive system (see Figure 1.10) [11].

	 2.	 Nanophotonic devices and systems: The operation of novel photonic 
devices has been demonstrated by utilizing the optical near-field 
energy transfer between closely located quantum dots (QDs) and the 
subsequent dissipation. These devices are much smaller than the wave-
length of light (see Figure 1.11). A novel router system was also demon-
strated using several nanophotonic devices to show that the system size 
is much smaller than that of a conventional system (Figure 1.12) [12].

	 3.	 Photochemical vapor deposition and photolithography: An opti-
cal near field is used to excite molecules for fabrication with nano-
meter-sized resolution (Figure 1.13) [13].

1Tb/inch2

Near field optical-
magnetic hybrid storage

E-beam lithography Master disk

Optical-Magnetic
hybrid storage cell 

Storage Disk

Nano-imprinting

Nanopattened medium

Optical near field
generator

Vertical magnetic
storage media

Flying head
Reading head

Writing/Reading systemNano-mastering

Figure 1.10
A high-density optical–magnetic hybrid disk storage system.
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Figures 1.1–1.3 show the status of these quantitative innovations. For micros-
copy and spectroscopy using optical near fields, a near-field spectrometer has 
been developed for diagnosing single semiconductor QDs [14], semicon-
ductor devices [15], single organic molecules [16], and biological specimens 
[17]. Numerous experimental results for spatially resolved photolumines-
cence and Raman spectra with a 10-nm resolution have accumulated [18]. 
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Figure 1.11
Nanophotonic devices and an integrated circuit.
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Commercial near-field photoluminescence spectrometers have been produced 
for operation at the ultraviolet–infrared and liquid helium–room temperature 
ranges [19]. These are popularly used in different areas of nano-science and 
technology.

However, it is important to note that these examples also realize qualita-
tive innovation. Examples include the following:

	 1.	 An optical storage system containing an optical disk and optical–
magnetic hybrid disk: By utilizing the inherent hierarchical nature 
of optical near fields, a multilayer memory system has been demon-
strated [20]. In addition, by using near-field optical energy transfer 
and subsequent dissipation, a traceable memory system has been 
developed [21].

200 nm 150 nm

Highly integrated
system by

nanophotonics

Conventional systemConventional system

Figure 1.12
A conventional router system and its improvement using nanophotonics.

~40 nm

90 nm

Figure 1.13
Nanophotonic lithography. Right: Appearance of the system. Left: A scanning electron micro-
scopic image of a fabricated corrugated pattern.
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14	 Principles of Nanophotonics

	 2.	 Nanophotonic devices and systems: To operate the above-men-
tioned nanophotonic devices, optical near-field energy transfer is 
utilized between the forbidden optical transition energy levels of 
adjacent QDs, which is impossible as long as propagating light is 
used. Subsequent energy dissipation in a QDs can fix the position 
and magnitude of the transferred near-field optical energy. Assem-
bling these devices, the optical router system has established quali-
tative innovation in its novel performance [22].

	 3.	 Photochemical vapor deposition and photolithography: A nonadia-
batic process that does not follow the Franck–Condon principle has 
been demonstrated [23], which is attributable to the exchange of 
a virtual exciton–phonon–polariton via an optical near field. This 
process has enabled deposition and lithography using a long wave-
length light source, which suggests that large, expensive ultraviolet 
light sources are no longer required. It also suggests that harmless, 
chemically stable molecules can be dissolved and resist films can 
be carved, even if they are optically inactive.

Details of these examples will be reviewed in Chapters 3–5. Nanophotonics 
has also led to innovative growth in related sciences. One example is atom 
photonics, which controls the thermal motions of neutral atoms in a vacuum 
using optical near fields [24]. Theoretical studies have examined the manipu-
lation of a single atom based on the virtual exciton–polariton model [25], and 
in an experimental study, an atom was successfully guided through a hol-
low optical fiber [26]. Recent studies have examined atom-detecting devices 
[27], atom deflectors [28], and an atomic funnel [29]. Atom photonics will 
open a new field of science that examines the interaction between virtual 
exciton–polaritons and a single atom. Furthermore, it can be applied to novel 
technologies for fabricating atomic-level materials.

Basic research to further the field of nanophotonics is being carried out 
actively. An optical near-field problem has been formulated in terms of the 
Carniglia–Mandel model as a complete and orthogonal set that satisfies the 
infinite planar boundary conditions between the dielectric and a vacuum. This 
approach has revealed interesting atomic phenomena occurring near the sur-
face, which have been analyzed based on angular spectrum representation [30, 
31]. For example, optical radiation from an excited molecule on the substrate 
surface has been analyzed [32], and a self-consistent, nonlocal, semiclassical 
theory on light–matter interactions has been developed to reveal the optical 
response in a variety of nanostructures [33]. In particular, the size dependence 
and allowance of a dipole-forbidden transition in a nanometric QDs system 
were noted [34, 35]. The optical manipulation of nanometric objects in super-
fluid 4He has been investigated based on the nonlocal semiclassical theory [36]. 
Electron transport through molecular bridges connecting nanoscale electrons 
has been formulated [37], and a unified method has been proposed for treating 
extended and polaron-like localized states coupled with molecular vibrations. 
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A one-dimensional molecular bridge made of thiophene molecules has been 
analyzed numerically. The study of optical near fields associated with molecular 
bridges is now in progress. In addition, as basic experimental work, desorption 
and ionization have been carried out assisted by optical near fields, and their 
application to mass spectroscopy has been proposed [38, 39].

Thus far, the general opinion concerning modern technology is that “the 
light should be used for communication because it is fast” while “the electron 
should be used for computers because it is small.” This means that light can-
not be used for computers because it is large. However, the miniaturization 
of electronic devices is reaching the fundamental limit due to electric cur-
rent leaking through ultrathin films. Nevertheless, nanophotonics has already 
demonstrated the possibility of miniaturizing photonic devices beyond the 
diffraction limit (quantitative innovation), as well as novel functions and phe-
nomena (qualitative innovation). This means that nanophotonics has great 
potential to open novel fields of technology, which are impossible with conven-
tional photonics, and deviates from the general opinion. In addition to com-
munication, fabrication, and storage, this may include information security.

1.4 Some Remarks

Nanophotonics now exists as a novel field of optical technology in nano-
metric space. However, the name “nanophotonics” is occasionally used for 
photonic crystals [40], plasmonics [41], metamaterials [42, 43], silicon photon-
ics [44], and QD lasers [45] using conventional propagating lights. For exam-
ple, plasmonics utilizes the resonant enhancement of the light in a metal by 
exciting free electrons. The letters “on” in the word “plasmon” represent the 
quanta, or the quantum mechanical picture of the plasma oscillation of free 
electrons in a metal. However, plasmonics utilizes the classical wave optical 
picture using conventional terminology, such as the refractive index, wave 
number, and guided mode. Even when a metal is irradiated with light that 
obeys the laws of quantum mechanics, the quantum mechanical property 
is lost because the light is converted into the plasma oscillation of elec-
trons, which has a short phase relaxation time. To reduce device size and 
heat generation, it is still insufficient to quantize the plasma oscillation 
because the position of the photon is defined only in a space larger than the 
wavelength of light, which is the consequence of the uncertainty principle. 
That is, the wave function of a photon cannot be defined in sub-wavelength 
space. However, if a sub-wavelength-sized nanometric particle is used to 
absorb the light, it works as a photodetector, and consequently, the photon 
can be detected and its position determined by the size of the particles with 
high spatial accuracy. This means that a local interaction between nano-
metric particles and photons is required to go beyond the diffraction limit. 
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Furthermore, the energy transferred via this interaction must be dissipated 
in the nanometric particles or adjacent macroscopic materials to fix the posi-
tion and magnitude of the transferred energy. Because plasmonics does not 
deal with this local dissipation of energy, it is irrelevant for quantitative 
innovation by breaking the diffraction limit, or for qualitative innovation. 
Local energy transfer and its subsequent dissipation have become possible 
only in nanophotonics by using optical near fields [46, 47].

Here, we should consider the stern warning by C. Shannon on the casual 
use of the term “information theory,” which was a trend in the study of infor-
mation theory during the 1950s [48]. The term “nanophotonics” has been 
used in a similar way, although some work in “nanophotonics” is not based 
on optical near-field interactions. For the true development of nanophotonics, 
one needs deep physical insights into the virtual exciton–polariton and the 
nanometric subsystem composed of electrons and photons.
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2
Basis of Nanophotonics

In Section 2.1, as a base for nanophotonics, we provide a quantum theoreti-
cal description of optical near fields and related problems that puts matter 
excitation such as electronic and vibrational ones on an equal footing with 
photons. With the help of the projection operator method, we derive effec-
tive interactions exerted in the nanometric material (nanomaterial) system  
surrounded by an incident light and a macroscopic material system, which 
are called optical near-field interactions. They are essential to understand the 
topics of the following sections, that is, the principles of operations of nano-
photonic devices and those of nanofabrication using optical near fields.

Section 2.2 discusses the principles of operations of nanophotonic devices 
that are based on the control of the excitation (energy) transfer between nano-
materials via optical near fields, or optical near-field interactions. In an exam- 
ple of nanomaterials, we describe the fundamentals of a semiconductor quan-
tum dot (QD) such as energy levels, electron or hole states, and electron-hole 
pair states in a QD. After the outline of basic ideas of nanophotonic devices, 
a quantum master equation for the relevant system (a typical open system) is 
described in some depth, which is then utilized for a discussion of the tem-
poral evolution of the excitation transfer and the relaxation of an electron-hole 
pair between adjacent QDs driven by an optical near field.

In Section 2.3, we deal with nanostructure fabrication, in particular, photo-
chemical vapor deposition (CVD) with optical near fields. Before the detail, 
we briefly show that the steep gradient fields lead a molecule to a nonadiabatic 
transition. Experimental illustration is then outlined, and unique features 
found in the experimental results are explained by using a simple quasipar-
ticle model. Finally, the mechanism of photon localization in a nanometer 
space is discussed in detail, focusing on the phonon’s role to the elementary 
process of photochemical reactions with optical near fields.

2.1 Optical Near-Fields and Effective Interactions 
as a Base for Nanophotonics

Several theoretical approaches to optical near-field problems, different from 
each other in viewpoints, have been proposed for these two decades. The 
optical near-field problems including its application to nanophotonics are 
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ultimately how one should formulate a separated (more than two) compos-
ite system, each of which consists of a photon-electron-phonon interacting 
system on a nanometer scale and at the same time is connected with a mac-
roscopic matter system as a source or a detector system. It must be inevitable 
toward realization of nanophotonics to clearly answer those issues. In order 
to provide a base for a variety of discussions in this research field, we will 
develop a new formulation within a quantum theoretical framework, put-
ting mater excitations (electronic and vibrational) on an equal footing with 
photons.

It is well known that a ‘‘photon,” whose concept has been established as a 
result of quantization of a free electromagnetic field [1], corresponds to a dis-
crete excitation of electromagnetic modes in a virtual cavity. Different from 
an electron, a photon is massless, and it is difficult to construct a wave func-
tion in the coordinate representation that gives a photon picture as a spa-
tially localized point particle as an electron [2]. However, if there is a detector 
such as an atom to absorb a photon in an area whose linear dimension is 
much smaller than the wave length of light, it would be possible to detect 
energy of a photon with the same precision as the detector size [3,4]. In opti-
cal near-field problems, it is required to consider the interactions between 
light and nanomaterials and detection of light by another nanomaterial on a 
nanometer scale. Then it is more serious for quantization of the field how to 
define a virtual cavity, or which normal modes to be used, since there exist 
more than two systems composed of an arbitrary shape, size, and material 
on the nanometer region, and still connected with a macroscopic material 
system such as a source or a detector system.

In this section, we describe a model and a theoretical approach to address 
the issue, which is essential to understand principles of operations of nano-
photonic devices and that of nanofabrication using optical near fields.

Let us consider a nanomaterial system surrounded by an incident light 
and a macroscopic material system, which is electromagnetically interact-
ing with one another in a complicated way, as schematically shown in 
Figure 2.1. Using the projection operator method (refer to Appendix A), 
we can derive an effective interaction (refer to appendix B) between the 
relevant nanomaterials in which we are interested, after renormalizing 
the other effects [5–8]. It corresponds to an approach to describe ‘‘photons 
localized around nanomaterials” as if each nanomaterial would work as 
a detector and light source in a self-consistent way. The effective interac-
tion related to optical near fields is hereafter called an optical near-field 
interaction [5–8]. As it will be discussed in detail in this section, the opti-
cal near-field interaction potential between nanomaterials separated by R 
is given as follows:

	
V

aR
Reff

exp= -( )
, 	 (2.1)
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where a-1 is the interaction range that represents the characteristic size of 
nanomaterials, does not depend on the wavelength of light. It indicates 
that photons are localized around the nanomaterials as a result of the 
interaction with matter fields, from which a photon, in turn, can acquire 
a finite mass. Therefore, we might consider that the optical near-field 
interaction is produced via the localized photon hopping [9–11] between 
nanomaterials.

On the basis of the projection operator method introduced in Appendix 
A, we will investigate formulation of an optical near-field system that was 
briefly mentioned earlier. Moreover, explicit functional forms of the optical 
near-field interaction will be obtained by using either the effective interac-
tion V̂eff  in Eq. (B14), or its approximation with Eq. (B23) [5,6].

2.1.1 Relevant Nanometric Subsystem 
and Irrelevant Macroscopic Subsystem

As illustrated in Figure 2.1, the optical near-field system consists of two sub-
systems: one is a macroscopic subsystem including the incident light, whose 
typical dimension is much larger than the wavelength of the incident light. 
The other is a nanometric subsystem whose constituents are, for example, 
a nanometric aperture or a protrusion at the apex of the near-field optical 
probe, and a nanometric sample. We call such an aperture or a protrusion 
a probe tip. As a nanometric sample we mainly suppose a single atom/ 
molecule, or QD (QDs). Subdivision of the total system is schematically illus-
trated in Figure 2.2. Two subsystems are interacting with each other, and it is 
very important to formulate the interaction consistently and systematically.

Let us call the nanometric subsystem as relevant subsystem n, and the 
macroscopic subsystem as irrelevant subsystem M. We are interested in 

Incident
light

Macroscopic material system

Nanomaterial system
(Relevant system)

Renormalized

Effective interaction

FiGUrE 2.1
Schematic drawing of the effective interaction between nanomaterials after renormalizing the 
effects of the macroscopic material and incident light field system.
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the subsystem n, in particular, the interaction induced to the subsystem n. 
Therefore, it is a key to renormalize the effects originating from the sub-
system M in a consistent and systematic way. Now we show a formulation 
based on the projection operator method described in Appendix A.

2.1.2 P Space and Q Space

It is preferable to express exact states |ψ 〉� for the total system in terms of 
a small number of bases of a small number of degrees of freedom as pos-
sible, which span P space. In the following let us assume two states as the 

�	  This notation is the bra and ket notation developed by P. A. M. Dirac. In quantum mechanics 
a physical state is represented by a state vector in a complex vector space. Following Dirac, 
such a state is called a ket and denoted by |y . We also introduce the notation of a bra vector, 
denoted by y|. There is a one-to-one correspondence between a ket vector and a bra vector. 
An observable, such as energy and momentum, can be expressed by an operator, such as Ĥ 
and 

�̂
,p  in the vector space, and quite generally an operator acts on a ket vector from the left 

as Ĥ |ψ 〉  [1, 12, 13].

Total system

Light source

Incident light

Fiber probe
Scattered light

Photodetector

Probe tip

Sample

Scattered light

Incident light

Relevant
subsystem

Photodetector Light source

Substrate

FiGUrE 2.2
Subdivision of the optical near-field system into a relevant nanometric subsystem and an irrel-
evant macroscopic subsystem.
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P-space components: | | | |φ1 0〉 = 〉 〉⊗ 〉s p M
�

( )  and | | | |φ2 0〉 = 〉 〉 ⊗ 〉s p M
�

( ) .  Here 
|s〉 and |s� 〉 are eigenstates� of the sample that is isolated from the others, 
whereas |p〉 and |p� 〉 are eigenstates of the probe tip that is also isolated�. In 
addition, exciton polariton states as bases discussed in Appendix C are used 
to describe the macroscopic subsystem M, and thus |0( )M 〉 represents the 
vacuum for exciton polaritons. Note that there exist photons and electronic 
matter excitations even in the vacuum state |0( ) .M 〉  The direct product� is 
denoted by the symbol ⊗. The complementary space to the P space is called 
Q space, which is spanned by a huge number of bases of a large number of 
degrees of freedom not included in the P space, as schematically shown in 
Figure 2.3.

�	  When an operator Â acts on a ket vector |a , there are particular kets of importance so that 
aa |a  is a constant aa times |a . They are known as eigenkets of operator ˆ .A  If the eigen-
kets are particularly denoted by |1, |2, …,| j, …, then the following property is satisfied 
ˆ , ˆ , , ˆ , ,A a A a A aj|1 |1 |2 |2 | |〉 = 〉 〉 = 〉 〉 = 〉1 2 � �j j where a1, a2, …, aj  , …, are just numbers and the 

set of numbers {a1, a2, …, aj, …} is called eigen values of operator ˆ .A  The physical state cor-
responding to an eigenket is called an eigenstate. The eigenstates in the text, for example, |s 
and |p are eigenkets of the Hamiltonian describing the isolated sample and probe, Ĥs  and ˆ ,Hp  
respectively.

�	  Here a two-level system is assumed for each material system, but can be easily extended to a 
multilevel system by introducing another projection operators.

�	  Let A and B be a 2 by 2 matrix, respectively, and expressed as
 
A B= 




= 





a a
a a

b b
b b

11 12

21 22

11 12

21 22
, ,

 
in order to understand the concept of the direct product. Then the direct product, C = A ⊗ B, 

is given by
 
C

B B

B B
=






a a

a a
11 12

21 22  
with a

b b

bijB =






a a

a a
ij ij

ij ij

11 11

21 11b
 
for (i, j) = 1,2.

.

.

.

.

.

.

|s > |p > |0(M) >

.

.

.

|s* > |p* >

P space

Q space

Total space

FiGUrE 2.3
Schematic illustration of P space and its complementary space, Q space. The P space is spanned 
by a small number of bases of a small number of degrees of freedom, while the Q space is 
spanned by a huge number of bases of a large number of degrees of freedom.
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2.1.3 Effective Interaction Exerted in the Nanometric Subsystem

When we evaluate the effective interaction in the P space given by

	
ˆ ( ˆ ˆ ) ( ˆ ˆ ˆ )( ˆ ˆ )� / � � /V PJ JP PJ VJP PJ JPeff = - -1 2 1 2 	 (2.2)

(see Appendix B, especially Eq. (B14)), and trace out the other degrees of free-
dom, the result gives an effective interaction potential of the nanometric sub-
system n after renormalizing the effects from the macroscopic subsystem M. 
Using the effective interaction potential, one can forget the subsystem M as if 
the subsystem n were isolated and separated from the subsystem M.

As the first step of the procedure, let us employ the bare interaction between 
the two subsystems in a dipole approximation as

	
ˆ ˆ ˆ ( ) ˆ ˆ ( )V D r D rs s p p= - ⋅ + ⋅{ }⊥ ⊥� � � � � �

µ µ 	 (2.3)

(see Appendix D for the derivation and physical meanings). It should be noted 
that there are no interactions, that is, ˆ ,V = 0 without incident photons in 
the macroscopic subsystem M. The electric dipole operator is denoted by�̂

( , ).µ aa = s p The subscript s and p represent physical quantities related to 
the sample and the probe tip, respectively. Representative positions of the 
sample and the probe tip are chosen for simplicity by the vectors 

�
rs and 

�
rp , 

respectively, but may be composed of several positions. In that case the quan-
tities inside curly brackets in Eq. (3) should be read as summation. The trans-
verse component of the electric displacement operator�, 

� �ˆ ( ),D r⊥  is expressed 

in terms of the vector potential 
� �ˆ

( )A r  and its conjugate momentum 
� �ˆ ( )Π r  as

	

� �
�

� � � �ˆ ( )
ˆ

ˆ ( ) ˆ (Π r
c

A
t c

P r
c

E r= ∂
∂
- = -⊥ ⊥1

4
1 1

42π π
)) ˆ ( ) ˆ ( ),- = -⊥ ⊥1 1

4c
P r

c
D r

� � � �
π

	 (2.4)

according to Appendix D. Here c is light speed in vacuum, while 
� �ˆ ( )P r⊥  and

� �ˆ ( )E r⊥  are the transverse components of the polarization and electric fields, 
respectively.

With the help of the mode expansion of 
� �ˆ

( )A r  and 
� �ˆ ( )Π r  as

	

� � � � � �
�

�ˆ
( ) ( ) ˆ ( )

/

A r
c

V
e k a k e

k

i=






2 2

1 2
π
ω l l

kk r ik r

k

a k e⋅ - ⋅

=

+{ }∑∑ � � �

�

�
ˆ ( )�
l

l 1

2

	 (2.5)

and

	

� �
�

� �ˆ ( )
ˆ

Π r
c

A
t

i
c V

k= ∂
∂
= - 





=
∑1

4 4
2

2
1

2

π π
π ω

l
��

� � �� � � �

k

ik r ike k a k e a k e∑ ⋅ - ⋅-
1 2/

�( ) ˆ ( ) ˆ ( )l l l
��
r{ } , 	 (2.6)

�	  The transverse component is defined by ∇⋅ =⊥
�
F 0,  while the longitudinal component is 

defined by ∇× =
�

�F 0,  for an arbitrary vector field 
� �
F r( ).
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we can rewrite the transverse component of the electric displacement opera-
tor as

	

� � � � ��

�

ˆ ( ) ( ) ˆ
/

D r i
V

e k ak

k

⊥

=

= 



∑∑ 2

1

2 1 2
π ω

l
l ll l( ) ˆ ( ) ,�

� �� � � �
k e a k eik r ik r⋅ - ⋅-{ } 	 (2.7)

where the plane waves are used for the mode functions, and the creation and 
annihilation operators of a photon with wave vector 

�
k , angular frequencyω �

k ,
and polarization component l are designated by ˆ ( )�a kl

�
 and ˆ ( ),a kl

�
 respec-

tively. The quantization volume is V, and the unit vector related to the polar-
ization direction is shown by

� �
e kl ( ).

Because exciton polariton states as bases are employed to describe the macro-
scopic subsystem M, the creation and annihilation operators of a photon in Eq. 
(7) are rewritten by the exciton polariton operators ˆ ( ),�ξ

�
k  and ˆ ( ),�ξ

�
k  and then 

they are substituted into Eq. (3). Using the electric dipole operator defined by

	

�̂
µa = with creation and annihilation operatorrs and

and dipole moment

ˆ( ) ˆ ( )�B r B r
� �
a a��

µa , 	 (2.8)

we obtain the bare interaction in the exciton polariton picture as

	

ˆ ( ˆ( ) ˆ ( ))
/

�V i
V

B r B r
ks

p

= - 



 +∑

=
�

� � �2 1 2π
a a

a
∑∑ -( ( ) ˆ( ) ( ) ˆ ( )).� �K k k K k ka aξ ξ

� � � �
	 (2.9)

Here K ka ( )
�

 is the coupling coefficient between the exciton polariton and the 
nanometric subsystem n, and given by

	
K k e k f k eik r
a a l

l

µ a( ) ( ( )) ( )
� � � � � �
= ⋅

=

⋅∑
1

2

	 (2.10)

with

	
f k

ck
k

k
k ck

( )
( )

( )
( ) ( )

.= -
- -Ω

Ω Ω
Ω Ω

2 2

2 2 22 	 (2.11)

The asterisk stands for the complex conjugate, whereas c, Ω(k) and Ω are eigen-
frequencies of both exciton polariton and electronic polarization of the mac-
roscopic subsystem M, respectively (refer to Appendix E for the derivation).  
The dispersion relation for a free photon, ω �

k ck=  is used in Eq. (11). Note 
that the wave-number dependence of f(k) characterizes a typical interaction 
range of exciton polaritons coupled to the nanometric subsystem n.

Next step is to evaluate the amplitude of effective interaction exerted in the 
nanometric subsystem, for example, effective sample-probe tip interaction in 
the P space

	 V Veff eff( , ) | ˆ | .2 1 2 1≡ 〈 〉φ φ 	 (2.12)

C9721_C002.indd   25 5/1/08   11:41:05 AM

© 2008 by Taylor & Francis Group, LLC



26	 Principles of Nanophotonics

Using Eq. (2) as V̂eff with first-order approximation of ˆ( )J 1  Eq. (B23) in 
Appendix B, we can explicitly write down Eq. (12) in the following form:

	

V PVQV E E P P E EP Q P Qeff
0 0 0 0( , ) ˆ ˆ2 1 2

1
1 2= -( ) + -

-
φ φ φ (( )

= 〈 〉 〈 〉

-

∑

1
1

2 1
1

1

ˆ ˆ

| ˆ | | ˆ |

VQVP

PVQ m m QVP
E

m P

φ

φ φ
0 --

+
-






E E EQm P Qm
0 0 0

1

2

,
	 (2.13)

The second line shows that a virtual transition from the initial state |φ1 in 
the P space to an intermediate state |m in the Q space is followed by subse-
quent virtual transition from the intermediate state |m to the final state |φ2 
in the P space. Here E EP P1

0
2

0  and EQm
0  denote eigenenergies of | (| )φ φ1 2〉 〉  in 

the P space and that of |φm in the Q, respectively. Now we can proceed to 
further process by substituting the explicit bare interaction V̂  in Eq. (9) with 
Eqs. (10) and (11) into Eq. (13). First of all, note that the one-exciton polariton 
state among arbitrary intermediate states| ,m〉  can only contribute to nonzero 
matrix elements. Therefore Eq. (13) can be transformed into

	
V d k

K k K k
k s
p s

eff ( , )
( )

( ) ( )
( ) ( )

�

2 1
2 2

3

0

= -
-

�
� �

π Ω Ω
++

+











∫ K k K k

k p
s p( ) ( )

( ) ( )
,

�
� �

Ω Ω0

	 (2.14)

where the summation over 
�
k is replaced by 

�
k- integration, that is, V d k( )2

3
3π ∫  

in a usual manner. Excitation energies of the sample (between | �s 〉 and | )s〉  
and the probe tip (between | �p 〉 and | )p〉  are assumed as E ss = �Ω0( )  and 
E pp = �Ω0( ), respectively.

Exchanging the arguments 1 and 2, or the role of the sample and probe tip, 
we can similarly calculate V Veff eff( , ) | ˆ |1 2 1 2≡ 〈 〉φ φ as

	

V d k
K k K k

k p
s p

eff ( , )
( )

( ) ( )

( ) ( )

�

1 2
2 2

3

0

= -
-

�
� �

π Ω Ω
++

+











∫

K k K k

k s
p s( ) ( )

( ) ( )
.

�
� �

Ω Ω0

	 (2.15)

Therefore, the total amplitude of the effective sample-probe tip interaction 
is given by the sum of Eqs. (14) and (15), which includes the effects from the 
macroscopic subsystem M. We write this effective interaction potential for 
the nanometric subsystem n as V reff ( )

�
 as follows:

V r d k e k e kp seff ( ) [( ( ))( (
� � � � � � �
= - ⋅ ⋅∫1

4 2
3

π
µ µl l )))] ( )

( ) ( )
�

� � � �

f k
e

E k E
e

E k E

ik r ik r
2

⋅ - ⋅

+
+

-

 a a


==

∑∑
al p s,

,
1

2

		  (2.16)
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where we have set E k k( ) ( ),= �Ω  and Ea a a= -∗� �Ω Ω0 0( ) ( ) for a = p and a = s. 
The summation over polarization l is performed as

	

� � � �
e k e k k ki j ij i jl l

l

d( ) ( ) ˆ ˆ ,
=
∑ = -

1

2

	 (2.17)

and thus the summation of ( ( ))( ( ))
� � � � � �
µ µl lp se k e k⋅ ⋅  over l can be reduced as 

follows:

	

( ( ))( ( )) ( (
� � � � � � � �
µ µ µl l

l
lp s pi ie k e k e k⋅ ⋅ =

=
∑

1

2

)))( ( )) ( ˆ ˆ

,

µ µ µ dl
l

sj j

i j

pi sj ij i je k k k
� �∑∑

=

= -
1

2

))
,i j
∑

		  (2.18)

with the unit vector ˆ / .k k k≡
�

 Noticing d k k dkd k dk d d3 2 2= =Ω sinθ θ ϕ  and

	

d d θ ϕ d πθ
ij

ik r
ij

ikr
ije d e d d

i
± ⋅ ±= =∫
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Ω cos (cos )

2
kkr

e e
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-
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∫
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- =
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2π

( ),

ˆ ˆ � �
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e e
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ikr ikr

∇ ∇ = ∇ ∇ -

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-

∫
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Ω π 


,

	 (2.19)

we find
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e e
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
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( )
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ikr ikr
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

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



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-

3 3

ˆ̂ ˆ ,r ri j



	 (2.20)

where r̂ is the unit vector defined by ˆ / ,r r r≡
�

 and the j-th component is 
denoted by r̂j  Hence the effective interaction potential can be rewritten as

V r k dk f k
E k E E k

s p

eff ( ) ( )
( ) ( )

,

�
�= -

+
+

=
∑1

2
1 12 2

π
a a --
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


× ⋅ + -

-∞

∞

⋅

∫ E

e
ikr k rs p

ik r

a
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� � � � 1 1 1

2 2 iik r
r r e

ikr ks p
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3 3

1 3
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		  (2.21)
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where the integration range is extended from (0,  ∞) to (- ∞,  ∞). When the 
dispersion relation of exciton polaritons, which have been chosen as a basis 
describing the macroscopic subsystem M, is approximated as

	
E k

k
m

E
ck
Em( )

( ) ( )
,= + = +�

� �Ω
2 2

2 2pol pl
	 (2.22)

in terms of the effective mass of exciton polaritons, mpol, or E m cpl pol= 2  and 
the electronic excitation energy of the macroscopic subsystem M, Em = �W, 
Eq. (21) is further simplified as follows:

V r k dk f k
E

c k i
s p
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pl( ) ( )

( ) (
,
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�

�
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
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
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�� � �� �
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2 2 3 3 
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s p
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� �

		  (2.23)

with

	
Da a a± ≡ ± >1

2
�c

E E E E Em mpl( ) , ( ). 	 (2.24)

The k-integration can be performed with the residues evaluated at k i= ±Da  
and we have
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
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where the constants Wa±  is defined by
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If the angular average of ( ˆ)( ˆ)
� �
µ µs pr r⋅ ⋅  is taken, the following expression
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is obtained for the effective interaction potential, or the optical near-field 
interaction potential Veff(r), which consists of the sum of the Yukawa func-
tions

 
Y r e rr( ) .D D

a
a

±
-≡ ±  with a shorter interaction range Da+ (heavier effec-

tive mass) and a longer interaction range Da- (lighter effective mass).
To sum up, we find that the major part of the effective interaction exerted 

in the nanometric subsystem n is the Yukawa potential after renormalizing 
the effects from the macroscopic subsystem. This interaction comes from the 
mediation of massive virtual photons, or polaritons, where exciton polaritons 
have been employed in an explicit formulation, but in principle other type 
of polaritons would be applicable. In this section, we have mainly focused 
on the effective interaction of the nanometric subsystem n, after tracing out 
the other degrees of freedom. It is certainly possible to have a formulation 
with the projection onto the P space that is spanned in terms of the degrees 
of freedom of the massive virtual photons. This kind of formulation empha-
sizes a “dressed photon” picture, in which photons are not massless but mas-
sive as a result of light-matter interactions.

2.2 Principles of Operations of Nanophotonic 
Devices Using Optical Near-Fields

This section discusses the principles of operations of nanophotonic devices 
that are based on the control of the excitation energy transfer between nano-
materials by using the characteristics of optical near fields described in the 
preceding section, and then shows how to formulate them. To begin with 
we choose a semiconductor QDs in an example of nanomaterials to explain 
the fundamentals such as energy levels, electron or hole states, and electron-
hole pair states in a QD. Using such fundamentals, we briefly outline the 
basic ideas and principles of operation of nanophotonic devices. Then by 
introducing the density operator, a quantum master equation for an open 
system is described in detail, in order to discuss the temporal evolution of 
the excitation energy transfer and the relaxation of an electron-hole pair 
between adjacent QDs driven by an optical near field, which is the heart of 
the problem.

2.2.1 Energy States of a Semiconductor QD

Because a QD is a nanomaterial confined in all the three dimensions, it has 
unique properties that cannot be fulfilled in bulk semiconductor materi-
als; for example, an electron or an electron-hole pair created by light in a 
QD has discrete energy eigenvalues originating from the fact that wave 
functions of the electron or electron-hole are confined in the material. 
It is called a quantum confinement effect. In the following subsections, 
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30	 Principles of Nanophotonics

we summarize fundamental aspects of a semiconductor QD whose confine-
ment geometry is spherical or cubic [34–38].

One-Particle States

Even in a nanometric QD, the property is determined by a lot of electrons. In 
such a many-particle problem, it is useful to employ the envelope function and 
effective mass approximation on the assumption that the energy eigenvalues 
of the electron in the periodic lattice, that is, the energy bands, are not apprecia-
bly modified through the quantum confinement. This approximation allows 
us to determine a ground state and excited states of one-particle (electron or 
hole) problem, and a ground state of many-particle problem by successively 
placing particles into lowest energy levels that are not already occupied. The 
one-particle wavefunction in a QD can be given by a product of the one-par-
ticle wavefunction in a bulk material and the envelope function that satisfies 
the boundary conditions of the QD. Thus the eigenstate vector |ye  for a single 
electron in the QD is expressed as

	

| |ψ ξ ψe e e g〉 = 〉∫ d r r r3 ( ) ˆ ( ) ,�� �
Φ 	 (2.28)

in terms of the crystal ground state |Φg  operated by the field operator for 
electron creation ˆ ( ),�ψ e

�
r  and multiplied by the envelope functionξe( ).

�
r  Since 

no electrons in the conduction band exist in the crystal ground state, the field 
operator for electron annihilation ˆ ( )ψ e

�
r  operated on |Φg 〉  gives the follow-

ing relation:

	
ˆ ( ) .ψ e g

�
r |Φ 〉 = 0  	 (2.29)

The field operators for electron creation and annihilation satisfy the anti-
commutation relation for a fermion as

	

ˆ ( ), ˆ ( ) ˆ ( ) ˆ ( ) ˆ (� � �ψ ψ ψ ψ ψe e e e e
� � � � �
′{ } ≡ ′ +r r r r rr r r r) ˆ ( ) ( ),ψ de

� � �
′ = - ′ 	 (2.30)

where d( )
� �
r r- ′  is the Dirac delta function. The equation for the envelope 

function ξe ( )
�
r  can be obtained from the Schrödinger equation

	 Ĥ Ee e e e| |ψ ψ〉 = 〉 	 (2.31)

with the Hamiltonian Ĥe  for a single electron in the QD as

	

ˆ ˆ ( ) ˆ ( )�H d r r
m

r E d re e
e

e g= - ∇








 +∫ 3

2
2 3

2
ψ ψ

� � � ∫∫ ˆ ( ) ˆ ( ),�ψ ψe e
� �
r r 	 (2.32)

and the energy eigenvalue Ee. Here me and Eg denote the effective mass of 
an electron and the band gap energy of the bulk semiconductor, respectively 
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(see Figure 2.4). Substituting the explicit expressions into the Schrödinger 
equation, we have

	

ˆ ˆ ( ) ˆ (�H d r r
m

re e e
e

e|ψ ψ ψ〉 = ′ ′ - ∇




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� � �
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�

′ 〉

= - ′
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e e g
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- ′ ′ 〉

= - ∇

∫∫ e e g

e
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3
2

2
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ξξ ψ ξ ψe e g g e e( ) ˆ ( ) ( ) ˆ� �� � �

r r E d r r
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




 〉 +∫ ∫|Φ 3 (( )

�
r |Φg 〉

	 (2.33)

and

	
E E d r r re e e e e g| |ψ ξ ψ〉 = 〉∫ 3 ( ) ˆ ( ) ,�� �

Φ 	 (2.34)

FiGUrE 2.4
Band structure and energy gap Eg of bulk semiconductor. The electron energy in the bulk 
semiconductor, E(k), is plotted as a function of wave number k.
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Eg 
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where we used the anticommutation relation and the ground state property. 
It follows from these equations that the envelope function must satisfy the 
eigenvalue equation as

	
- ∇ = -� � �2

2

2m
r E E r

e
e e g eξ ξ( ) ( ) ( ). 	 (2.35)

Replacing the subscript of the envelope function, e by h, we similarly 
obtain the eigenvalue equation for the one-hole state

	
- ∇ =� � �2

2

2m
r E r

h
h h hξ ξ( ) ( ), 	 (2.36)

where Eg = 0 is used.
Now let us solve the equation for the envelope function, assuming the 

spherical boundary conditions as ξ ξe h( ) ( )
� �
r r= = 0  for | | .

�
r R>  Noticing that 

the Laplace operator is written in the spherical coordinates as

	

∇ = ∂
∂

-

= - ∂
∂

∂
∂
+

2
2

2

2

2

2
2

1

1 1

r r
r

r
L

L

,

sin
sin

sinθ θ
θ
θ θ

∂∂
∂







2

2φ
,
	 (2.37)

we can divide the envelope function ξ( )
�
r

 
into the radial and angular parts 

as ξ θ φ( ) ( ) ( , ).
�
r f r Yl lm=  Here L denotes the operator of the orbital angular 

momentum, and obey the following eigenvalue equation

	 L2 1Y l l Ylm lm( , ) ( ) ( , )θ φ θ φ= + 	 (2.38)

with |m| ≤ l, where the functions Ylm (q, f) are the spherical harmonics with l = 
0.1,2, … and m = 0, ± 1, ± 2,… . The radial part fl(r) should satisfy

	

d f
dr r

df
dr

l l fl l
l

2

2
22

1 0+ + - + =[ ( )]a 	 (2.39)

with

	
a 2

2 2

2 2≡ -m
E E

m Ee
e g

h h

� �
( ), ,or 	 (2.40)

and the solution has the form of f rnl R
j r R
j
l nl
l nl

( ) ,( / )
( )=

+
2
3 1

a
a  where the spherical Bes-

sel function of order l is denoted as jl, and anl is determined from the bound-
ary conditions as

	 j n nl nl n( ) , ( , , , ), , .a a π a= = = =0 1 2 3 4 490 11for and� 334, � 	 (2.41)
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Note that the envelope function depends only on R and not on specific 
parameters for the electron and hole. It is because we dropped the suffix e 
and h from ξ( ).

�
r  The energy eigenvalues are discrete and given by

	
E E

m Re nlm g
e

nl
, = + 





�2 2

2
a

	 (2.42)

and

	
E

m Rh nlm
h

nl
, = 





�2 2

2
a

	 (2.43)

Next we consider the cubic boundary conditions that an electron or a hole 
is confined in a cubic QD with side length L. Let us begin with a one-dimen-
sional case illustrated in Figure 2.5, where the following one-dimensional 
well potential

	

V x

x
L

x
L

( ) =
≤

∞ >










0
2

2

for

for

| |

| |

	 (2.44)

x

E

E1

E2

E3

x

x

x

–L/2 L/20

(a)

(b)

n = 3

n = 2

n = 1

ξ(x)

FiGUrE 2.5
(a) One-dimensional well potential with infinite height and several energy eigenstates repre-
sented by dashed lines, (b) corresponding envelope functions.
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is assumed. The envelope function x(x) obeys the Schrödinger equation as

	
- +





=�2 2

22m
d
dx

V x x E xx( ) ( ) ( ),ξ ξ 	 (2.45)

and the boundary conditions as

	
ξ ξL L

2 2
0



 = -


 = 	 (2.46)

are satisfied. The solutions of the equation are given by
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( ) sin( )

x
L

k x
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k x

x

x

=

=










2

2


	 (2.47)

and it follows from the boundary conditions that kx has the following dis-
crete values:

	

k
L

n

k
L

n
n

x

x
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odd

= -

=










=

π

π

( )
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( , , ,

2 1

2
1 2 3 ��). 	 (2.48)

Therefore, the energy eigenvalues are also discrete as E nx
k
m m L x

x= = ( )� �2 2 2

2 2
2π , 

with nx = 1 2 3, , , ,�  where we set n nx = -2 1 for kx
even ,  while nx = 2n for kx

odd . 
Similarly, the envelope functions x(y) and x(z) can be obtained by replacing 
x by its corresponding y and z, respectively, and thus the envelope functions 
for an electron or a hole confined in the three-dimensional well potential 
have the form of x(x) x(y) x(z). The energy eigenvalues specified by a set of 
quantum numbers (nx, ny, nz) are given as follows:

	
E

m L
n n n nn n n x y z xx y z, , ( ,= 



 + +( )�2 2

2 2 2

2
π

for nn ny z, ) , , , .= 1 2 3 � 	 (2.49)

If we assume that the energy eigenvalues of an electron in a periodic 
potential, or the conduction and valence bands, and the energy gap are not 
changed drastically, the energies of an electron in the conduction or valence 
bands are given by

	

E E
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(2.50a)

and
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(2.50b)
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respectively. The relation between energy and momentum is called the dis-
persion relation. The energy-dispersion relation of either Ec or Ev cannot be 
measured in semiconductor materials, because an electron excited by light, 
from the valence band to the conduction band, is simultaneously followed 
by a hole generation in the valence band. It requires a measurement of the 
energy dispersions of both an electron and a hole, Ec and Ev. In order to dis-
cuss such energy dispersions, we will examine the electron-hole pair states 
in the next subsection.

Electron-Hole Pair States in a QD

Let us consider the following eigenstate vectors for an electron-hole pair

	
|ψ ψ ψ ψeh e h e h e e h h〉 = ∫ d r d r r r r r3 3 ( , ) ˆ ( ) ˆ ( )� �� � � �∫∫ 〉|Φg , 	 (2.51)

where the crystal ground state mentioned before is represented by |Fg , and 
the field operators of an electron creation in the conduction and those of 
a hole creation in the valence band are designated by ˆ ( )�ψ e e

�
r  and ˆ ( ),�ψ h h

�
r  

respectively. The envelope function for an electron-hole pair is denoted by 
ψ ( , ),

� �
r re h  which obeys the following equation:

	
- ∇ - ∇ + +










� � � �2
2

2
2

2 2m m
V V r r

e
e

h
h c conf eh eψ ( , hh g eh e h) ( ) ( , )= -E E r rψ

� � 	 (2.52)

with the Coulomb interaction potential Vc and the confinement potential 
Vconf . When the confinement region is a sphere with a radius R, Vconf (r) = 0 for 
||
�
r = r ≤ R, while Vconf  (x, y, z) = 0 for -L/2 ≤ x, y, z ≤ L/2 when it is a cube with a 
side-length L. Here it might be useful to qualitatively examine the electron-
hole pair states by comparing the confinement size (R or L) with the Bohr 
radius a0 that represents the average distance of the electron and the hole in 
the pair. Noting that the confinement potential is proportional to 1/R2 (1/L2) 
while the Coulomb interaction potential is proportional to 1/R (1/L), let us 
consider three cases: (a) R << a0, (b) R >> a0, and (c) intermediate region.

(a) R << a0

In this region, the Coulomb interaction between an electron and a hole is 
weak, and each electron (hole) in a pair independently moves in the corre-
sponding electron (hole) confinement potential. In particular, when both the 
Coulomb and confinement potentials are zero in a perfectly confined area, 
the lowest energy of an electron-hole pair is given, in terms of energy eigen-
values in the one-particle problem already discussed, as follows.

	
E E

m R m R
E

m R
= + + = +g

e h
g

r

π π π2 2

2

2 2

2

2 2

22 2 2
� � �

	 (2.53)
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where mr is the reduced mass for an electron-hole pair defined by

	
1

m m mr

= +1 1

e h

. 	 (2.54)

(b) R >> a0

Because the Coulomb interaction between an electron and a hole becomes 
strong in this case, it is a good approximation to treat an electron-hole pair 
as a single particle (an exciton). Then the center of mass motion of the exciton 
is confined within the area of R (L). Defining the mass of the exciton as M = 
me + mh, the center of mass coordinates as 

� � �
r m r m r

MCM
e e h h= + , and the relative 

coordinates between an electron and a hole as 
� � �
β = -r re h , respectively, we can 

write the envelope functions of the exciton as

	 ψ φ βµ ν( , ) ( ) ( ),
� � � �
r r F re h CM= 	 (2.55)

where we have, in particular,

	
F r

R

j

j
Y

n r
R

n
mν

a

a
( )

( )
( )

� �

� �
�

�

CM CM

CM

=
( )
+

2
3

1

Ω 	 (2.56)

and

	
φ β

π
β

µ= = -




1

0
3

0

1
s a a
( ) exp .
�

	 (2.57)

for the spherical boundary conditions, as similarly obtained in the one-particle 
problem. Here the solid angle WCM for 

�
rCM  is used, and φ βµ( )

�
 is assumed to 

be the lowest (1s) form. The energy eigenvalues of the states specified by the 
quantum numbers (n, l) are

	
E E E

MR
nn

n
�

��
�= + + =g ex

2 2

22
1 2 3

a
( , , , ), 	 (2.58)

and discretized as expected, where Eex is the exciton binding energy in he 
bulk system. Similarly for the cubic boundary conditions, we have the enve-
lope functions for the center for mass motion as

F r
L

L
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L
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π π

( )
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

		  (2.59)
and Eq. (57) for the relative motion.

The energy eigenvalues are expressed in a similar way as

	
E E E

ML
n n n n nn n n x y z xx y z, , ( ,= + + + +( )g ex

π 2 2

2
2 2 2

2
�

yy zn, , , , )= 1 2 3 � 	 (2.60)
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and are also discretized. Note that the center of mass motion is confined to 
a sphere of radius R - ha0 or a cubic of side length L - ha0 where the factor 
h is of the order of unity and depends on the electron-hole mass ratio [37]. 
This is called dead-layer correction, indicating a finite size of the exciton 
whose center of mass coordinates is limited to be smaller than the actual 
size of a QD.

(c) Intermediate region

The situation in this region is more complicated than those in (a) and (b). Let 
Bohr radii of an electron and a hole be ae and ah, respectively, and suppose 
that the confinement size R is larger than ah, and smaller than ae. Then one 
may assume that a hole can move in an average potential generated by a 
free-electron confined within a QD, and approximate the envelope functions 
of the exciton as

	 ψ ξ ψ( , ) ( ) ( ).
� �

�
� �

�r r r rn me h e h h 	 (2.61)

Using the orthonormalization of ξn m r�
�

( ),e  we can write down the equation 
for the envelop functions of the hole as follows:

	
- ∇ -








 =∫� � � �

�

2
2 2

2m
dr r V rn m

h
h e e c h h| ( )| ( )ξ ψ EE E

m R
rn- -





g

e
h h

� ��
2 2

22
a ψ ( ), 	 (2.62)

where the spherical confinement is assumed and Vconf = 0 within the con-
finement. When the cubic boundary conditions are used, the envelope func-
tions of an electron ξ ξ( ) ( )

� �
�r rn me e=  and the discrete energy � �2 2

22m R
n

e

a  should be 
replaced by ξ ξ( ) ( )

� �
r rn n nx y ze e=  and �2

2
2 2 2 2

m L x y zn n nπ( ) + +( ) ,
 
respectively. In both 

cases, the second term on the left hand side shows the Coulomb potential for 
the hole averaged by the electron. The equations can be numerically solved 
on a case by case basis.

2.2.2 Dipole-Forbidden Transition

On the basis of the above discussion, let us examine the behavior of an elec-
tron-hole pair excited by an optical near field, or by a propagating far field. 
In order to make the difference clear, we consider the case (b) in an exam-
ple. It is then convenient to use a Wannier function basis, a complete set of 
orthogonal functions representing that electrons are localized at an atomic 
site 

�
R, as schematically shown in Figure 2.6. The Wannier functions w rbR

�
�

( )  
are defined by

	
w r

N
ik R rbR bk

k

� �
�

� � � �
( ) exp( ) ( ),≡ - ⋅∑1 ψ 	 (2.63)

with the Bloch functions ψ bk r�
�

( )  that are plane waves modulated with the 
periodicity of the lattice and are obtained from a linear combination of 
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electron wavefunctions in an isolated atom at arbitrary site. Here N is the 
number of constituent atoms, The Wannier functions for different bands 
(index b) and different site 

�
R  are orthogonal, which follow from

	

w r w r d r
N

i k R kbR b R
� �

� � � � � �
� ( ) ( ) exp[ (′ ′∫ = ⋅ - ′ ⋅3 1 ′′

=

′
′ ′∑ ∫R r r d r

N
i

k k
bk b k)] ( ) ( )

exp[

,

�

� �
� �

� �
ψ ψ 3

1
(( )]

exp[

,

� � � �

�

� �
��k R k R

N
i

k k

bb kk⋅ - ′ ⋅ ′

=

′

′ ′∑ d d

1
kk R R

k

bb bb RR⋅ - ′ =∑ ′ ′ ′( )]
� �

�
� �d d d

	 (2.64)

We express the field operator of an electron creation in the conduction  
and that of a hole creation in the valence band in terms of the Wannier  
basis. In case (b), where an electron-hole pair (an exciton) is confined within 
a QD, the exciton state |Fn  specified by the quantum numbers ν µ= ( , )m  are 
represented as a superposition of a variety of electron states at 

�
R  and hole 

states at 
�
′R  as

	
| |Φ Φv R R g

R R

F R c c〉 = 〉′
′

m( ) ( )ˆ ˆ�

,

� �
� �

� �
C.M. c vϕ βµ∑∑ . 	 (2.65)

Here F Rm( )
�

C.M.  is the center of mass motion of the exciton specified by a set 
of quantum numbers m = ( , , )m m mx y z  while ϕ βµ( )

�
 is the relative motion 

specified by the quantum number m, and the product of them represents the 

Atomic site

Wannier function

R
R + 2d R + 4dR – 2dR – 4d

FiGUrE 2.6
Wannier function at an atomic site R is schematically shown. The lattice constant is assumed 
to be d.
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envelope function of the exciton. The creation operator of an electron at 
�
R in 

the conduction band is denoted by ˆ .�c Rc
�
′  and the annihilation operator of an 

electron at 
�
′R  in the valence band is represented by ˆ .c Rv

�
′  The crystal ground 

state is designated by |Fg  as before.
In order to derive the optical near-field interaction based on Eq. (13) in Sec-

tion 2.1, or the effective interaction between a QD pair, we first calculate the 
transition matrix elements from the exciton state |Fn  to the crystal ground 
state | Fg  as

	

〈 〉 =
′
∑∑Φ Φg

R Rk

V F R| |ˆ ( ) ( ) ˆ(
,,

ν µ
l

ϕ β ξm

� � �

� ��
C.M. kk g k gR R k R R k) ˆ ( ),

�
,v c v c

� � � � � �
�

′ ′ --( )l lξ 	 (2.66)

with

	
g i

V
f k w r r wR R k Rv c v c

� � � � �
� � � �

′ ′= - ∫,
�( ) ( ) ( )l

π µ2
RR

k rr e k d r( )
� � � � �
⋅ ⋅
l ( ) ei 3 	 (2.67)

where we used the fact that the expectation values of 〈 〉′Φ Φg R R R R gc c c c| |ˆ ˆ ˆ ˆ� �
v c c v

� � � �
1 2

 
are not zero only if 

� �
′ =R R1 and 

� �
R R= 2 hold. In Eq. (67), the transformation 

of the spatial integral into the sum of the unit cells and the spatial locality of 
the Wannier functions provide d � �

RR′ . Defining the transition dipole moment 
for each unit cell as

	

� � � � �
� �µ µcv v c

UC
= ∫ w r r w r d rR R

� ( ) ( ) ( ) ,3 	 (2.68)

and noticing that it is the same as that of the bulk material, independent of 
the site 

�
R, we obtain the final form of

〈 〉 = - ⋅Φ Φg V i f k e k F R| |ˆ ( )[ ( )] ( )ν l
π µ ϕ2
V cv .
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m µµ

l

ξ ξ( ) ˆ( ) ˆ ( )�0
1
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��

� � �� �

Rk

k R kk k∑∑∑
=

⋅ - ⋅-e ei i
��
R{ }.

		  (2.69)

Here it should be noted that the exciton-polariton field expanded by the plane 
wave with the wave vector 

�
k  depends on the site 

�
R  in the QDs because the 

long-wave approximation e i± ⋅ ≈
� �
k R 1 is not applied, which is usually used for 

far-field light. According to the formulation described in Section 2.1, we have 
the optical near-field interaction energy between a pair of QDs, in the lowest 
order, as

	
V PVQ m m QVP

E E E
P Q Q

m

P
P

m
Q Peff f i

i f

= 〉〈
-

+∑ Ψ Ψˆ ˆ 1 1

0 0 0 --





E m
Q
0

, 	 (2.70)

where E E0 0i
P

f
P,  and E m0

Q  represent the eigenenergies of the unperturbed 
Hamiltonian for the initial and final states in P space and the intermediate 
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state in Q space, respectively. Since we focus on the interdot interaction of 
Eq. (70), we set the initial and final states in P space to | | | |Ψ Φ Φi

P A
g
B〉 = 〉 〉 〉mµ 0  

and | | | | .Ψ Φ Φf
P

g
A B〉 = 〉 〉 〉′ ′m µ 0

 
Then the intermediate states in Q space that 

involve an exciton-polariton with the wave vector 
�
k  are utilized for inter-

mediating from one QD to the other, according to | | | |m kQ
g
A

g
B〉 = 〉 〉 〉Φ Φ

�
 and 

| |m kQ A B〉 = 〉 〉 〉′ ′| | .Φ Φm mµ µ

�
 The superscripts A and B are used to label two QDs. 

Using Eq. (69), one can rewrite Eq. (70) as

	

V F R F R YA B A
A

B
B Aeff = ′

∗
′
∗∫∫ϕ ϕµ µ( ) ( ) ( ) ( ) [ (0 0 m m
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R R Y R R d R d RA B B A B A B- + -) ( )] ,3 3

		  (2.71a)

where the sum of 
�
R A Ba a( , )=  in Eq. (69) is transformed to the integral 

form. The integral Kernels Y RABa ( )
�

( , )a = A B with 
� � �
R R RAB A B= - ,which 

connect the spatially isolated two envelope functions F RA
Am ( )

�
 and F RB

B′m ( ),
�

 
are defined by
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	 (2.71b)

Here the transition dipole moments for QDa (a = A, B), 
�
µacv ,  are defined by 

Eq. (68), and Ea denotes the exciton energy in QDa . Then Eq. (71b) can be 
rewritten in the same way as described in Section 2.1, for example, corre-
sponding to Eq. (27) in Section 2.1

	
Y R
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µ µ

a( )
�

= - -+ +
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-+cv cv e
3

2D DD
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- -( )2 e Da RAB , 	  (2.72)

where R RAB AB=| |
�

 is used. This is valid for the optical near-field excitation.
For far-field excitation, the displacement vector fields in the QDs are spa-

tially homogeneous and the long-wave approximation e i± ⋅ ≈
� �
k R 1 is applied. 

Then the transition matrix elements can be written in the separated form in 
terms of 

�
R and ( , )

�
k l  as
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		  (2.73)
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The intergral ∫ F R dRm
a ( )

� �
 as well as 

�
µcv  provide the criterion whether the elec-

tric dipole transition is allowed or forbidden between the crystal ground state 
|Fg and the exciton state |Φνa 〉  in the QD a(=A, B) specified by the quantum 
number ν µ= ( , ).m  Thus it follows that the electric dipole transition is forbid-
den if the spatial integral of the envelope function F Rm

a ( )
�

 representing the 
center of mass motion of the exciton is zero, ∫ =F R dRm

a ( ) ,
� �

0  while it is allowed 
if the integral is not zero as ∫ ≠F R dRm

a ( )
� �

0 . For example, let us calculate the 
spatial integral for a spherical QD. Since we have
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	 (2.74)

the transition to the state specified by � = =m 0  is only allowed. Similarly 
when all the integrand are even functions, we obtain the nonzero result as
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for a cubic QD, and thus the transitions are allowed if all of ( , , )n n nx y z  are 
odd, while they are forbidden if either of ( , , )n n nx y z  is even. It follows from 
these results that the center of mass motion of the exciton in a QD is spa-
tially modulated and the even or odd properties of the envelope function are 
mixed in the near-field case, which results in the violation of the forbidden 
conditions.
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For later use, we give typical values of the coupling strength, |Veff | in Eq. 
(71a), using an example of CuCl quantum cubes embedded in a NaCl matrix 
[39, 40]. In Figure 2.7, the calculation results are plotted as a function of the 
intercube distance, where the solid curve represents the coupling strength 
between two dipole-allowed levels m m= ′ = ( , , )1 1 1  of QDs with a width of 
5 nm, while the dotted curve is the result for m = ( , , )1 1 1  of QD with a width of 
5 nm and ′ =m ( , , )2 1 1  of QD with a width of 7 nm. For conventional far-field 
light, ′ =m ( , , )2 1 1  is the dipole-forbidden exciton level, but it is allowed via 
an optical near-field interaction, as described earlier. Alternatively, a propa-
gating far field constructs a symmetric state (cf. Eq. (77)) from two resonant 
exciton levels of inter-QDs by global coupling, while an optical near field 
allows producing an antisymmetric state (cf. Eq. (77)) by its steep gradient 
field to excite either one of QDs individually. The antisymmetric coupling 
strength is estimated as | |V Ueff 5.05≡ ′ =� meV ( ′ =-U 1 130 ps)  for intercube 
distance of 6.1 nm, which is approximately a quarter of the symmetric case 
at the same intercube distance.

2.2.3 Coupled States Originating in Two Energy Levels

We have learned the fundamental properties of one-electron (or hole) states, 
electron-hole pair states in a QD, forming a variety of energy levels. Let us 
now consider what kind of coupled states are produced through the interac-
tion between arbitrary two energy levels, regardless of a single or different 
QDs. In the following, for simplicity, we focus on two energy levels belong-
ing to different QDs, and assume that state vector |1 in the QD 1 has the 
same energy e as state vector |2 in the QD 2 while the interaction energy 
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FiGUrE 2.7
Optical near-field coupling strength as a function of the intercube distance. The solid curve 
shows the coupling strength between two dipole-allowed levels (1,1,1) of QDs with a width of 
5 nm, while the dotted curve is the result for the (1,1,1) level of QD with a width of 5 nm and the 
(2,1,1) level of QD with a width of 7 nm.
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between them is �U, as shown in Figure 2.8. The Hamiltonian for the system 
is given by

	 H U= 〉 〈 + 〉 〈 + 〉 〈 + 〉 〈ε(| | | |) (| | | |).1 1 2 2 1 2 2 1� 	 (2.76)

Using the symmetric state |S and antisymmetric state |A respectively 
defined by

	
| (| | ), | (| | ),S A〉 = 〉 + 〉 〉 = 〉 - 〉1

2
1 2

1
2

1 2 	 (2.77)

we evaluate the expectation value of the system energy as follows:
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ε

	 (2.78)

and

	

〈 〉 = 〈 - 〈 〉〈 + 〉〈 〉 - 〉A A 1 2 1 1 2 2 1 2| | ( | |)[| | | |](| | )H
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2

( | |) | | | | | |1 2 1 2 2 1 1 2

ε ��U.

	 (2.79)

Here the orthogonality and normalization conditions of the state vectors, 
i | j = dij for (i, j = 1,2), were used. It follows that these state vectors |S and |A 

|1> |2>

|A>

|S>

|Φg> |Φg>

2ħU

QD 1 QD 2 

ε ε

FiGUrE 2.8
Symmetric and antisymmetric states, |S and |A, generated by the interaction between energy 
levels |1 and |2 of QDs 1 and 2, respectively.
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are eigenstates of the Hamiltonian H, which indicates that the symmetric 
state |S and the antisymmetric state |A are produced after the interaction 
between the states |1 and |2 of the eigenstates of noninteracting two QDs. In 
particular, the state |S corresponds to the bonding sate in a molecular case, 
whereas the state |A corresponds to the antibonding state.

Now we then evaluate the scalar product of the transition dipoles 
� �
µ µ1 2⋅ , 

in terms of the states |S and |A. The transition dipole moment between |Fg 
and |1 of QD 1, for simplicity, is parallel to that between |Fg and |2 of QD 2, 
and set the magnitudes of them as µ µi i i= > =| | ( , ).

�
0 1 2  Noticing that

	

� �ˆ ˆ ˆ , ˆ | | , ˆ |� �µ µi i i i i ib b b i b= +( ) 〉 = 〉 〉 =Φ Φg g 0 	 (2.80)

we have

	

〈 ⋅ 〉 = 〈 + 〈 +( )S S| ˆ ˆ | ( | |) ˆ ˆ ˆ�
� �
µ µ µ µ

1 2
1 2

1 1 22
1 2 b b b ++( ) 〉 + 〉

= 〈 + 〈( ) +

ˆ (| | )

| | ˆ ˆ ˆ

�

�

b

b b b

2

1 2
1 2 12

1 2

1 2

µ µ ��

� �

ˆ (| | )

|ˆ ˆ | |ˆ

b

b b b

2

1 2
1 2 12

2 1

( ) 〉 + 〉
= 〈 〉 + 〈

1 2

1
µ µ ˆ̂ |

,

b2

1 2 0

2〉





= >µ µ

	 (2.81)

which indicates that the transition dipole moments of 
�
µ1  and 

�
µ2  are parallel 

in the symmetric state |S. Similar calculation gives

	 〈 ⋅ 〉 = - <A A| | ,
� �
µ µ µ µ1 2 1 2 0 	 (2.82)

which shows that they are antiparallel in the antisymmetric state |A. It fol-
lows from these results that the excitation of two nanometric QDs with a 
far field light leads us to the symmetric state, that is, the state with parallel 
dipoles produced in QD 1 and 2, becausee two QDs cannot be distinguished 
spatially owing to the diffraction limit. By contrast, the near-field excitation 
of them can produce either one or both of the symmetric and antisymmetric 
states. In this sense, the symmetric state is called a bright state while the 
antisymmetric state is called a dark state. This is one of the major differences 
between the near-field and far-field excitations. In particular, the superposi-
tion or entangled sate of |S and |A are generated since the specific QD either 
1 or 2, for example, dot 1 can be excited locally with an optical near field. 
Then the state |1 is expressed by

	
| (| | )1

1
2

〉 = 〉 + 〉S A 	 (2.83)
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which shows the quantum coherence. Since the state vectors |S and |A also 
form a complete and orthonormalized basis, state vectors |y(t) of the system 
at an arbitrary time t are expressed in terms of the basis by

	
| ( ) exp | expψ ε ε

t i
U

t i
U

t〉 = - +



 〉 + - -


1
2

�
�

�
�

S 

 〉








| ,A 	 (2.84)

where we assumed that the state vectors |y(t) are also normalized and |y(0) = |1 at 
time t = 0. Using the state vectors |1 and |2, we can rewrite Eq. (84) as follows:

| ( ) [cos( ) sin( )]exp |ψ ε
t Ut i Ut i t〉 = - -




1
2 �

S〉〉 + + -

 〉





[cos( ) sin( )]exp |Ut i Ut i t

ε
�

A


= -

 〉+ 〉 -1

2
exp {cos( )(| | ) sin(i t Ut i U

ε
�

S A tt

i t Ut i

)(| | )}

exp {cos( )| si

S A

1

〉 - 〉

= -

 〉 -ε

�
nn( )| }.Ut 2〉

		

(2.85)

This expression shows that the occupation probability r11(t) is given by

	 ρ ψ11
2 21( ) | | ( )| cos ( )t t Ut= 〈 〉 = 	 (2.86a)

when a particle such as an electron, a hole, or an exciton occupies the state |1 
of the QD 1 at time t, while the occupation probability r22(t) is provided by

	 ρ ψ22
2 22( ) | | ( )| sin ( )t t Ut= 〈 〉 = 	 (2.86b)

when a particle occupies the state |2 of the QD 2 at time t. As shown in Figure 2.9, 
they complementally vary with a period of p/U. It means that the excita-
tion energy e of the system is periodically transferred between the resonant 
energy levels of two QDs, 1 and 2, which is called nutation. It should be 
noted that the nutation cannot be continued permanently unless the relevant 
QD pair system is perfectly isolated from the other systems. It usually stops 
through the relaxation process such as the energy dissipation caused by the 
interaction with other systems. For example, the initial population of QD 1 is 
transferred to the population of QD 2 at later time, and the nutation stops by 
the energy dissipation, which then establishes the energy transfer from QD 1 
to 2. In fact, this kind of (excitation) energy transfer has been experimentally 
observed [41–43], and the analogy to the light-harvesting photosynthetic sys-
tem [44–46] has been pointed out. The following section deals with theoretical 
treatment of temporal evolution of such energy transfer between nanomate-
rials triggered by an optical near field.
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2.2.4 Basic Ideas of Nanophotonic Devices

In the previous subsections, we have briefly described fundamental aspects 
on energy levels of an electron, a hole, and an exciton in a semiconductor QD 
that is one of constituent candidates of nanophotonic devices. The essential 
points, some of which are prerequisite for nanophotonic device operations, 
are summarized as follows:

The energy levels are discretized in a QD.
There are two kinds of energy levels, one of which can be excited by 
both near and far fields, while the others is excited only by a near field.
A coupling of two discrete energy levels produces a symmetric state 
that is accessible with a far field, and an antisymmetric state that can 
be accessed only by a near field.
Excitation energy in a QD can be transferred to another neighboring 
QD, via resonant or nearly resonant discrete energy levels.

Phenomena accessible only by an optical near field allow a new type of 
nanophotonic devices whose operations are hardly, or cannot be obtained 
with existing photonic devices using a wave nature of light. On the basis of 
such nanophotonic devices, a variety of functions (light source, signal trans-
mission, control, operation, and interface) and systems are realized as will 
be discussed in the upcoming chapters, in detail. Moreover, it is possible to 
fabricate constituent elements and building blocks of nanophotonic devices 
by making use of novel properties of optical near fields that originate in their 
spatial localization, as will be described in Section 2.3.

As schematically shown in Figure 2.10(a), basic ideas and principles of oper-
ation of nanophotonic devices are to transmit quantum coherence generated 

•
•

•

•

0
t

2U
π

U
π

2U
3π

U
2π

2U
5π

ρ11

ρij

ρ22

FiGUrE 2.9
Temporal evolution of the occupation probability of the state |1 in the QD 1, r11(t), and that of the 
state |2 in the QD 2, r22(t). The solid curve represents r11(t), and the dashed curve shows r11(t).
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FiGUrE 2.10
(a) Basic idea and principles of operation of nanophotonic devices, (b) use of excitation trans-
fer between nanomaterials and energy dissipation via incoherent phonons, (c) use of nutation 
between nanomaterials and collective phenomena, control of phase relaxation and quantum 
coherence via coherent phonons, (d) use of antisymmetric state that prohibits interactions with 
incoherent phonons and propagating far field.
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in discrete energy levels of a nanomaterial to neighboring nanomaterials, 
and to control the paths via interactions with a macroscopic matter system 
[8,11,39,40,47–49]. For example, unidirectional excitation energy transfer is 
performed with energy dissipation via incoherent phonons and destruction 
of quantum coherence occurred between nanomaterials that result in signal 
transmission from one to another nanomaterial, or between nanophotonic 
device components, as shown in Figure 2.10(b). It is also possible to suppress 
relaxation of quantum coherence and to continue the nutation between 
nanomaterials via coherent phonons or coherent photons, which promote 
a chance of occurrence of collective phenomena, as shown in Figure 2.10(c). 
In addition, a selective coupling between electric dipole-allowed levels by 
varying the size of two neighboring nanomaterials allows us to obtain an 
interface function of converting the transferred energy into a propagating 
light. Figure 2.10(d) schematically illustrates a way of converting an input 
signal of optical near fields into excitation of a nanomaterial and storing it, by 
selectively coupling with an antisymmetric state and suppressing the inter-
actions with propagating light and incoherent phonons.

When nanomaterials are excited by a far (propagating) field, we selectively 
use energy levels resonant with incident photon energy, from electric dipole-
allowed levels. On the other hand, when they are excited by an optical near 
field, electric dipole-forbidden levels as well as electric dipole-allowed levels 
are utilized, owing to the spatially local excitation of each nanomaterial, not 
the global excitation of whole nanomaterials. It can be performed by config-
uring nanomaterials asymmetrically in space. It is thus one of advantages 
of nanophotonic devices to make use of spatial information as well as fre-
quency information of nanomaterial systems.

At the end of this section, let us summarize the goals, advantages, and 
future issues of nanophotonics by comparing with single molecular electron-
ics. In the field of molecular electronics, one has a discussion on the subjects 
how to replace or complement the existing silicon devices (quantitative revo-
lution), and how to construct a novel system such as a molecular computer 
based on a new concept and architecture towards new directions of molecu-
lar devices (qualitative revolution). This situation is valid for nanophotonics, 
as discussed in Chap. 1.

Here as an example of single molecular electronics, look at a single molecule 
cascade and cellular automaton. The single molecule cascade is a molecular 
configuration, where one of the molecules adsorbed and configured on the 
substrate with an atomic precision is first moved with a scanning tunneling 
microscope (STM). This operation is called a single molecule manipulation, 
and then the movement of the other molecules chain-react [50]. It is very 
important for fabrication and design of such molecular devices as well as for 
basic science to understand the mechanism of this molecular chain-reaction. 
It is also a key issue to clarify how the excitation energy from an initially 
excited molecule is transferred to another molecule and is converted to the 
energies of the internal degrees of freedom such as an electronic excitation, 
a vibrational/rotational excitation, and a translational motion. This kind of 
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understanding might provide an important guideline to investigate a com-
mon process in the principles of operation of nanofabrication with optical 
near fields and those of nanophotonic devices.

Cellular automaton is a device that consists of a lot of cells with the same 
structure, and the cells are regularly allocated in space, each of which Coulom-
bicly interacts with the surrounding cells, according to a set of rules [51]. Each  
state of the cells is determined by each local Coulomb interaction, and logic 
operations are performed by using a change in the states of the cells. Cellular 
automaton has the following advantages: parallel operation is possible. Wir-
ing between all cells is not required, since local interactions are utilized. Total 
system is constructed with a repetition of single structure, and thus process-
ing capability can increase according to the number of cells used. Currently 
molecular cellular automaton using a single molecule as a cell, and QD cel-
lular automaton using a QD as a cell are investigated.

Figure 2.11 (a) illustrates a cell that consists of four molecules or QDs. 
When two excess electrons exist in a cell, electron’s configuration on the 
diagonal leads us to a stable state because of Coulomb repulsion. As shown in 
Figure 2.11 (a), we assign two states relating to electron positions as “0” and 
“1,” respectively. Now let us consider a case where two cells are configured 
and electron positions in one of them changes from “0” to “1.” Then the other 
cell is immediately transformed to the state “1” via Coulomb interaction. In 
order to use this phenomenon, we arrange the cells along the line, as shown 
in Figure 2.11 (b), where the most left cell corresponds to the input cell. The 
stable states of the other cells take the same configuration of electrons as 
the input cell, and thus the input signal can be transmitted to the most right 
cell without electric current. This avoids a heating problem, which is one of 

1
1

(a)

(b)

1 0
Cell

Molecule or QD

Input

Output

FiGUrE 2.11
(a) Fundamental unit of cellular automaton: 0 and 1, (b) cells along the line, where the most left 
cell corresponds to the input cell and the most right cell is the output cell.
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the essential issues in nanometer scale devices, as excitation energy trans-
fer does in nanophotonic devices. The difference is that cellular automaton 
depends on the static (Coulomb) interactions between the elements of the 
cells while nanophotonics is based on the dynamic interactions that provide 
prompt response and controllability. Towards realizing cellular automaton, 
the following problems should be solved; the first is how to supply ener-
gies required for maintaining the states of the cells and for transitions. The 
second is how to synchronize each transition as a whole system because 
each state transition stochastically occurs in molecular systems. The third is 
how to initialize the system. The second and the third are common issues in 
nanophotonics and cellular automaton.

2.2.5 Fundamental Tool for Describing Temporal Behavior

In order to give a fundamental, but important theoretical tool for description 
of dynamic properties of nanophotonic devices, we introduce the density 
operator and derive a quantum master equation describing the temporal 
behavior [18,52–55]. Using perturbative solutions of the equation, we analyti-
cally examine behaviors of excitation energy transfer between nanomateri-
als via optical near fields [8,11,39,40,47,49].

Density Operator and Density Matrix

For a system isolated from the outside (which is called a closed system) the 
temporal evolution of the system can be described in terms of eigenstates 
|yq  with eigenvalues q for observable Q, or their eigenfunctions in the coor-
dinate representation ψ ψq qr r( ) | .

� �
= 〈 〉  However, it is rather difficult to exactly 

describe the temporal evolution of an open system in terms of wave func-
tions, where more than two systems are interacting each other and energy 
and phase relaxation take place via the interactions. It is well known that the 
density operator method is suitable to discuss the temporal evolution of such 
an open system.

Here we consider electronic states of multiple nanomaterials prepared on 
the substrate, which are superpositions of state vectors |yn with a variety of 
statistical (stochastic) weights Wn. The density operator ρ̂  is then defined 
by

	

ˆ | |,ρ ψ ψ= 〉 〈∑Wn n

n

n 	 (2.87)

where the state vectors |yn are not necessarily orthogonalized nor normal-
ized. Therefore we usually expand |yn as

	
| | ,( )ψ φn m

n
m

m

a〉 = 〉′ ′
′
∑ 	 (2.88)

C9721_C002.indd   50 5/1/08   11:43:58 AM

© 2008 by Taylor & Francis Group, LLC



Basis of Nanophotonics	 51

in terms of complete orthonormalized state vectors | ′ 〉φm  specified by the 
quantum numbers ′m  such as energy eigenstates, where am

n
′

( ) denote the 
expansion coefficients of the state vectors. Similarly we have the following 
expression for the Hermitean conjugates as

	
〈 = 〈∑ψ φn m

n
m

m

a| |.( )� 	 (2.89)

Substituting Eqs. (88) and (89) into Eq. (87), we obtain the density operator 
as

	

ˆ | |( ) ( )�

, ,

ρ φ φ= 〉〈′ ′
′
∑ W a an m

n
m
n

m

n m m

m 	 (2.90)

and the matrix elements of ρ̂  in terms of the state vectors 〈φi| and |φ j 〉  as

	

ρ φ ρ φ φ φ φ φij i j n m
n

m
n

i m m jW a a≡ 〈 〉 = 〈 〉 〈′ ′| ˆ| | |( ) ( )� 〉〉

=

′
∑

∑
n m m

n i
n

j
n

n

W a a

, ,

( ) ( )� ,
	 (2.91)

where the orthogonality and normalization of the state vectors 〈 〉 =′ ′φ φ di m im|  
and 〈 〉 =φ φ dm j mj|  are used. Since the statistical (stochastic) weights Wn are 
real, the density operator is Hermitean, that is, ˆ ˆ�ρ ρ=  (the symbol � denot-
ing the Hermitean conjugate), and thus the density matrix is a Hermitean 
matrix, or

	 〈 〉 = 〈 〉 =φ ρ φ φ ρ φ ρ ρi j j i ij ji| ˆ| | ˆ| , .� � 	 (2.92)

In particular, using the energy eigenstates | ,φi 〉  we obtain the diagonal 
components as

	
ρii n i

n
i
n

n

n i
n

n

W a a W a= = ≥∑ ∑( ) ( )� ( ) ,
2

0 	 (2.93)

which shows the incoherent superposition. The probability to find the state 
|ψ n 〉 in energy eigenstate |φi 〉 is given by | | ,( )ai

n 2  and the diagonal components 
of the density matrix represent the probability that the system occupies the 
state | .φi 〉  By contrast, the off-diagonal components ρij i j( )≠  is the coherent 
superposition and thus represent quantum coherence of the system. Both 
components are independent observables. Denoting a trace of ρ̂  as tr ˆ ,ρ  we 
have

	
tr ˆ ( )ρ ρ≡ = =∑ ∑∑ii

i

n i
n

in

W a
2

1 	 (2.94)
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for any basis. Because the expectation value of an operator Ô  corresponding 
to an arbitrary observable is given by

	
〈 〉 = 〈 〉∑ˆ | ˆ | ,O W On n n

n

ψ ψ 	 (2.95)

substitution of Eqs. (88) and (89), with the help of Eq. (90), leads to

	

〈 〉 = 〈 〉

= 〈

′ ′
′

′

∑ˆ | ˆ |

|

( ) ( )�

, ,

O W a a On m
n

m
n

m m

m m n

m

φ φ

φ ˆ̂| | ˆ |

|ˆ ˆ |

,

ρ φ φ φ

φ ρ φ

m m m

m m

m

m

m

O

O

〉 〈 〉

= 〈 〉 =

′
′

′
′

′

∑
∑ trr( ˆ ˆ ),ρO

	 (2.96)

where completeness of the state vectors | ,φm 〉  ∑ 〉 〈 =m m m| | ,φ φ 1  is used. Note 
that all information about the system is involved in the density matrix.

Time Evolution Operator and Liouville Equation

In order to study the temporal evolution of the system described by Hamil-
tonian ˆ ,H  we introduce the time evolution operator that connects the state 
vectors at time t = 0 and at arbitrary time t. Then the equation for the density 
operator is derived by utilizing the time evolution operator. Let us consider 
the system interacting with the time-dependent external field, where the 
interaction explicitly depends on time as ˆ ( ),V t  and thus the Hamiltonian is 
also time-dependent as ˆ ( ).H t  The Schrödinger equation for the state vectors 

| ( )ψ t 〉  at arbitrary time t, is given by

	
i

t
t H t t�

∂
∂

〉 = 〉| ( ) ˆ ( )| ( ) .ψ ψ 	 (2.97)

Defining the time evolution operator ˆ ( )U t  as

	 | ( ) ˆ ( )| ( ) ,ψ ψt U t〉 = 〉0 	 (2.98)

and its Hermitean conjugate ˆ ( )�U t  as

	 〈 = 〈ψ ψ( )| ( )| ˆ ( ),�t U t0 	 (2.99)

we rewrite the Schrödinger equation in the following form

	
i

U t
t

H t U t�
∂
∂

〉 = 〉( )
| ( ) ˆ ( ) ˆ ( )| ( )ψ ψ0 0 	 (2.100)
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and

	
- 〈 ∂

∂
= 〈i

U t
t

U t H t� ψ ψ( )|
( )

( )| ˆ ( ) ˆ ( ),
�

�0 0 	 (2.101)

where the initial conditions for the time evolution operators, ˆ ( ) ˆ ( )�U U0 0 1= =  
are satisfied. Since they are valid for arbitrary state vectors, the time evolu-
tion operators satisfy the following equations:

	
i

U t
t

H t U t�
∂
∂
=

ˆ ( ) ˆ ( ) ˆ ( ) 	 (2.102)

and

	
- ∂

∂
=i

U t
t

U t H t�
ˆ ( ) ˆ ( ) ˆ ( ).

�
� 	 (2.103)

Multiplying ˆ ( )�U t  from the left side and ˆ ( )U t  from the right side, we easily 
obtain

	
i U t

U t
t

U t
t

U t i� ˆ ( )
ˆ ( ) ˆ ( ) ˆ ( )�

�∂
∂
+ ∂
∂












= ��
∂
∂

=
ˆ ( ) ˆ ( )

,
�U t U t

t
0 	 (2.104)

which shows that ˆ ( ) ˆ ( )�U t U t  is constant with ˆ ( ) ˆ ( ) .�U U0 0 1=  Therefore it fol-
lows that ˆ ( ) ˆ ( ) ,�U t U t = 1  and that the time evolution operator ˆ ( )U t  is unitary. If 
the Hamiltonian does not explicitly depend on time, the operators ˆ ( )U t  and 
ˆ ( )�U t  can be written as

	

ˆ ( ) exp
ˆ

, ˆ ( ) exp
ˆ

�U t
Ht

U t
Ht= -







=







i i
� �

.. 	 (2.105)

Using the solution of Eq. (102) for the time evolution operator, we derive the 
equation describing the temporal evolution of the density operator. Noting 
that the density operator at time t = 0 is expressed by

	

ˆ( ) | ( ) ( )|,ρ ψ ψ0 0 0= 〉 〈∑Wn n n

n

	 (2.106)

we calculate

	

ˆ ( ) ˆ( ) ˆ ( ) ˆ ( )| ( ) ( )|ˆ� �U t U t W U t Un n n

n

ρ ψ ψ0 0 0= 〉 〈∑ (( )

| ( ) ( )| ˆ( ),

t

W t t tn n n

n

= 〉 〈 =∑ ψ ψ ρ
	 (2.107)
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where we used the definition of the time evolution operator in Eq. (98). If the 
Hamiltonian is time-independent, then the density operator at time t can be 
written as

	

ˆ( ) exp
ˆ

ˆ( )exp
ˆ

.ρ ρt
Ht Ht= -













i i
� �

0 	 (2.108)

Differentiation of Eq. (107) in terms of t results in

	

i i i� � �
∂
∂
= ∂

∂
+

ˆ( ) ˆ ( ) ˆ( ) ˆ ( ) ˆ ( ) ˆ(�ρ ρ ρt
t

U t
t

U t U t0 00

0

)
ˆ ( )

ˆ ( ) ˆ ( ) ˆ( ) ˆ ( ) ˆ ( ) ˆ(

�

�

∂
∂

= -

U t
t

H t U t U t U tρ ρ 00) ˆ ( ) ˆ ( ),�U t H t

	 (2.109)

and finally the Liouville equation is obtained as follows:

	
i�
∂
∂
= - ≡

ˆ( ) ˆ ( ) ˆ( ) ˆ( ) ˆ ( ) [ ˆ ( ), ˆ(
ρ ρ ρ ρt

t
H t t t H t H t tt)], 	 (2.110)

which is essential for discussion of the temporal evolution of observables.
In an example, let us consider a case where nanomaterials are interacting 

with a laser field as an external field. The unperturbative Hamiltonian Ĥ0 is 
assumed to be time-independent, whose eigenstate vectors are denoted by 

| ,( )φn
0 〉  and energy eigenvalues are designated by En

( ) ,0  while the interaction 
depends on time t as ˆ ( ).V t  Using the state vectors | ( )φn

0 〉  as a basis, we derive 
the equation for the density matrix defined by

	
ρ φ ρ φ′ ′=m m m mt t( ) ˆ( ) .( ) ( )0 0

	 (2.111)

The left-hand side of Eq. (110) gives ih∂rm′m(t)/∂t while the right-hand side 
reads

	

φ ρ ρ φ

φ

′

′

-

=

m m

m

H t t t H t

H

( ) ( )

( )

ˆ ( ) ˆ( ) ˆ( ) ˆ ( )

( ˆ

0 0

0
0 ++ - +

= -′

ˆ ( )) ( ) ˆ( )( ˆ ˆ ( )) ( )

( )

V t t t H V t

E E

m

m

ρ ρ φ0
0

0
mm m m m mt V t t( ) ( ) ( )ˆ ( ) [ ˆ ( ), ˆ( )] .0 0 0( ) +′ ′ρ φ ρ φ

	 (2.112)

Therefore the Liouville equation is obtained as follows:

	
i�
∂
∂

= -( ) +′
′ ′ ′

ˆ ( ) ˆ ( )( ) ( ) ( )ρ ρ φm m
m m m m m

t
t

E E t0 0 0 [[ ˆ ( ), ˆ( )] .( )V t t mρ φ 0 	 (2.113)
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Interaction Representation

It is rather difficult to solve the Liouville equation (110), or (113), but if the 
interaction ˆ ( )V t  is so weak that it can be treated as a perturbation, then the 
time-dependent perturbation theory can be applied. Here note that the rap-
idly varying time dependence of the state vectors | ( )ψ t 〉 is created by the 
unperturbed Hamiltonian Ĥ0  as ˆ ( ) exp( ˆ / ).U t H t0 0≡ -i �  In order to explicitly 
express this dependence, let us write

	
| ( ) ˆ ( )| ( ) exp

ˆ
| ( )ψ ψ ψt U t t

H t
t〉 ≡ 〉 = -







0

0�
�

�i 〉〉,
 
	 (2.114)

where the state vectors | ( )�ψ t 〉  are called the interaction representation while 
the state vectors | ( )ψ t 〉  are called the Schrödinger representation. Inserting 
Eq. (114) into the Schrödinger equation, we have

	
i�

�
�∂ 〉

∂
= +( ˆ ( )| ( ) )

[ ˆ ˆ ( )] ˆ ( )| (
U t t

t
H V t U t t0

0 0
ψ ψ )) ,〉 	 (2.115)

which can be rewritten as

	
i�

�
� �∂ 〉

∂
= 〉 ≡| ( ) ˆ ( ) ˆ ( ) ˆ ( )| ( ) (�ψ ψt

t
U t V t U t t V t0 0 ))| ( )�ψ t 〉

 
	 (2.116)

after performing the differentiation. Here ˆ ( )V t  is expressed in the interac-
tion representation as

	

�
�

V t U t V t U t
H t

V( ) ˆ ( ) ˆ ( ) ˆ ( ) exp
ˆ

ˆ (�= =






0 0

0i
tt

H t
)exp

ˆ
,-







i 0

�
 
	 (2.117)

from which it follows that if ˆ ( )V t = 0 is satisfied, then �V t( ) = 0  and ∂ 〉
∂ =| ( )�ψ t
t 0 

are obtained. It means that �V t( )  completely governs the temporal evolution 
of | ( ) .�ψ t 〉  Therefore if �V t( )  is a small perturbation, | ( )�ψ t 〉  vary slowly in time 
and the perturbation theory provides a reasonable solution in practice. Simi-
larly an arbitrary operator ˆ ( )O t  is expressed in the interaction representation 
as follows:

	

�
�

O t U t O t U t
H t

O( ) ˆ ( ) ˆ ( ) ˆ ( ) exp
ˆ

ˆ (�= =






0 0

0i
tt

H t
)exp

ˆ
.-







i 0

�
 
	 (2.118)

Because ˆ ( )U0 0 1=  and | ( ) | ( )�ψ ψ0 0〉 = 〉 hold, the temporal evolution of | ( )�ψ t 〉 can 
be determined by

	

| ( ) ˆ ( )| ( ) ˆ ( ) ˆ ( )| ( ) ˆ� ��ψ ψ ψt U t t U t U t U〉 = 〉 = 〉 =0 0 0 00 0

0

�( ) ˆ ( )| ( )

( )| ( ) ,

t U t

U t

�

� �

ψ

ψ

〉

≡ 〉
	 (2.119)
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that is, �U t( )  completely governs the temporal evolution of the state vectors 
| ( )�ψ t 〉  in the interaction representation. It follows from the definition that this 
operator �U t( )  satisfies the following equation

	

i i i�
�

� �
∂
∂
= ∂

∂
+ ∂U t

t
U t

t
U t U t

U t( ) ˆ ( ) ˆ ( ) ˆ ( )
ˆ (�

�0
0

))

ˆ ( ) ˆ ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( )

ˆ

� �

∂

= - +

=

t

U t H U t U t H t U t

U

0 0 0

0
��( ) ˆ ( ) ˆ ( ).t V t U t

	 (2.120)

Using ˆ ( ) ˆ ( ) ,�U t U t0 0 1=  we further rewrite ˆ ( )V t  and ˆ ( )U t  in the interaction rep-
resentation as

	
i�

�
�∂

∂
= =U t

t
U t V t U t U t U t

( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( ) ˆ ( )� �
0 0 0 VV t U t( ) ( ),�

 
	 (2.121)

from which the temporal evolution of �U t( ) is wholly determined by �V t( ), or 
ˆ ( ).V t  under the condition of �U( )0 1=  It is justified, in this respect, to rely on 
the perturbation theory used in the interaction representation. This is true 
for the density operator and the density matrix. The density operator in the 
interaction representation is written in the form

	
�

�
ρ ρ ρ( ) ˆ ( ) ˆ( ) ˆ ( ) exp

ˆ
(�t U t t U t

H t
t= =







0 0

0i
))exp

ˆ
.-







iH t0

�
 
	 (2.122)

Noticing that the temporal evolution of ˆ( )ρ t  is given by Eq. (107) in terms of 
the time evolution operator ˆ ( ),U t  we have

	
� �ρ ρ ρ( ) ˆ ( ) ˆ ( ) ˆ( ) ˆ ( ) ˆ ( ) ( ) ˆ� �t U t U t U t U t U t= =0 00 (( ) ( ),�0 �U t 	 (2.123)

where the definition of �U t( )  as �U t U t U t( ) ˆ ( ) ˆ ( )�≡ 0  was used. Finally we can thus 
transform the Liouville equation Eq. (110) into the interaction representation

	
i�

� � �∂
∂
=ρ ρ( )

[ ( ), ( )].
t

t
V t t

 
	 (2.124)

Here note that Eq. (124) plays a fundamental role, but it was derived, on 
the basis of the concept of the external field that cannot be affected by the 
response of the relevant system and can be treated in classical theory. Since 
we are interested in an open system, where the response of the relevant sys-
tem affects the external system, we will discuss in the following how Eq. (124) 
is modified to describe the temporal evolution of an open system. Such an 
equation to be derived is called the quantum master equation.
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Quantum Master Equation for an Open System
Let us assume a closed system, which is described by the Hamiltonian Ĥ  
and is called a total system. Then we divide the total system into two sub-
systems: one is the open system S whose temporal evolution is paid attention 
to; the other is the reservoir system R interacting with the system S. Suppose 
that no interactions between them at time t = 0. Then the isolated systems S 
and R are described by the Hamiltonians ĤS  and ˆ ,HR  respectively. Taking 
the eigenstate vectors | ( )ϕi

S 〉  and | ( )Φ j
R 〉 as a basis, we express the matrix ele-

ments of the density operator for the total system (S + R) in the form

	
ϕ ρ ϕ′ ′i j i jt( ) ( ) ( ) ( ), ˆ ( ) ,S R

tot
S RΦ Φ

 	 (2.125)

where the suffix i(j) and ′ ′i j( )  denote the quantum numbers to specify the 
system S (R). After time t > 0, the interaction between the systems S and R, 
ˆ ,VS-R  makes the state vectors of the system S different from | .( )ϕi

S 〉  Taking it 
into account, we define the reduced density operator ˆ ( ),( )ρ S t  and have to rep-
resent the density matrix in terms of a basis of | .( )ϕi

S 〉  Since ˆ ( )( )ρ S t  is defined 
in the following form after taking a trace with respect to the system R, trR

	

ˆ ( ) [ ˆ ( )] ˆ ( )( ) ( ) ( )ρ ρ ρS
R tot

R
tot

Rtrt t tj j

j

= =∑ Φ Φ ,,

 
	 (2.126)

the density matrix is represented as

	

ϕ ρ ϕ ϕ ρ ϕ′ ′=  i i i it t( ) ( ) ( ) ( )ˆ ( ) ˆ ( )S S S S
R tottr (( ) ( ) ( ) ( ) (ˆ ( )S S R

tot
R S=











′ ∑ϕ ρ ϕi j j

j

itΦ Φ )) ,

		  (2.127)

and the expectation values of an arbitrary operator acting only on the state 
vectors that belong to the system S is written

	

〈 〉 = =ˆ ( ˆ ( ) ˆ ) ˆ ( ) ˆ( ) ( ) ( ) ( ) ( ) (O t O t Oj
S

S
S S S Str ρ ϕ ρ SS S

S S S S S S

) ( )

( ) ( ) ( ) ( ) ( ) (ˆ ( ) ˆ

ϕ

ϕ ρ ϕ ϕ ϕ

j

j

j i i jt O

∑
= ))

,

.
i j
∑

	 (2.128)

From Eq. (124), the quantum master equation in the interaction representa-
tion is written

	
i tot

S-R tot�
� � �∂
∂

=ρ ρ( )
[ ( ), ( )],

t
t

V t t 	 (2.129)
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and the temporal evolution of ˆ ( )( )ρ S t  is given

	
i tr

S

R S-R tot�
� � �∂
∂

=ρ ρ
( )( )

[ ( ), ( )]
t

t
V t t 	 (2.130)

by taking a trace with respect to the system R. Here �ρ( )( )S t  and �V tS-R ( )  are 
respectively expressed in the interaction representation as

	

�
� �

ρ ρ( ) ( )( ) exp
ˆ

ˆ ( )exp
ˆ

S S S Si i
t

H t
t

H t=






-






	 (2.131)

and

	

�
�

V t
H H t

V tS-R
S R

S-R
i

( ) exp
( ˆ ˆ ) ˆ ( )exp= +











-- +











i S R( ˆ ˆ )
,

H H t
�

	 (2.132)

where both ĤS and ĤR are assumed to be time-independent. As mentioned 
earlier, the perturbative solutions are reasonable in practice if the interac-
tion between the systems S and R, �V tS-R ( ) is weak. Assuming such a case and 
using the perturbative expansion in terms of �V tS-R ( ),  we obtain the solutions 
of Eq. (130). It follows from Eq. (129),

	

� �
�

� �ρ ρ ρtot tot S-R toti
( ) ( ) [ ( ), (t dt V t t= + ′ ′ ′0

1
))],

0

t

∫ 	 (2.133)

which is substituted into the right-hand side of Eq. (130). Then we have

	

∂
∂

= +
t

t V t�
�

� �
�

ρ ρ( )( ) [ ( ), ( )]
( )

S
R S-R toti

tr
i

1
0

1
22

0

dt V t V t t
t

′ ′ ′∫ trR S-R S-R tot[ ( ),[ ( ), ( )]]� � �ρ ,, .

		  (2.134)

which can be rewritten as

	

∂
∂

=   -
�

�
� �ρ ρ

( )
( )( )

( ), ( ) ˆS

R S-R
S

i
tr

t
t

V t R
1

0 0
11
2 0�

� � �dt V t V t t
t

′ ′ ′∫ trR S-R S-R tot([ ( ),[ ( ), (ρ ))]])

([ ( ),[ ( ),= - ′ ′∫1
2 0�

� � �dt V t V t
t

trR S-R S-R ρttot ( )]]),′t

		  (2.135)

where the density operators for the systems S and R at t = 0 are denoted by

	
ˆ ( ) ˆ ( ) ˆ ,( )ρ ρtot

S0 0 0= R 	 (2.136)
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or

	
� � � �ρ ρ ρtot

S S( ) ( ) ( ) ˆ( ) ( )0 0 00 0= =R R 	 (2.137)

in the interaction representation owing to no interactions between them. The 
right-hand side of Eq. (135) shows that both systems S and R have correla-
tions between them at t > 0 after the interaction turns on.

Now let us adopt the Born approximation represented by

	
� �ρ ρtot

S( ) ( ) ˆ( )t t R= 0 	 (2.138)

which means the states belonging to the system R do not change from the 
initial ones at t > 0 while the states in the system S are largely affected by the 
interaction �V tS-R ( ).  Under the condition, Eq. (135) can be approximated

	

∂
∂

= - ′ ′∫�
�

� �ρ( )( )
( ), ( )

S

R S-R S-Rtr
t

t
dt V t V t

t1
2 0

,, ( ) ˆ ,( )�ρ S ′









( )t R0 	 (2.139)

from which it follows that �ρ( )( )S t  to be solved depends on all �ρ( )( )S ′t  in the 
past from the initial to current time t. Then we approximate �ρ( )( )S ′t  on the 
right-hand side of Eq. (139) by �ρ( )( ),S t  which is called the Markov approxima-
tion, where the effects on the system S instantaneously occur and the inter-
action with the system R in the past time can be neglected. In Born-Markov 
approximation, Eq. (139) reads

	

∂
∂

= - ′ ′∫�
�

� �ρ( )( )
( ), ( )

S

R S-R S-Rtr
t

t
dt V t V t

t1
2 0

,, ( ) ˆ ,( )�ρ S t R0










( ) 	 (2.140)

which is called the quantum master equation for an open system. It shows that 
�ρ( )( )S t  in the open system cannot be obtained from �ρ( )( )S 0  via the time evolution 
operator ˆ ( ).U t  This irreversibility is a result of the relaxation process occurred 
in the system S as a result of the interaction between the systems S and R.

In order to examine the correlation time of the reservoir and the meaning of 
the Markov approximation, let us take an example of the interaction in the form

	

ˆ ˆ ˆ ,V si i

i

S-R = ∑� G 	 (2.141)

where ŝi and Ĝ i denote the operators relating to the system S and R, 
respectively. Equation (141) can be easily expressed in the interaction 
representation

	

� � � �V t s
H H t

i i

i

H
S-R

i i

e eS R S( ) (ˆ ˆ )
( ˆ ˆ ) ( ˆ ˆ

= + - +∑ G HH t

H t
i

H t

i

H t
is

R

S S Re e e
i i i

)

ˆ ˆ ˆ
ˆ ˆ= 





-∑� � � � G ee
i

R-





= ∑

�

� � �

ˆ

( ) ( ),

H t

i

i

is t tG

	 (2.142)
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and Eq. (139) reads

	

∂
∂

= - ′ ′∫�
� � � �ρ( )( )

( ) ( ), ( )
S

Rtr
t

t
dt s t t s t
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i i j
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



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


( )
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∑ �
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ρ S
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tt s t t t t Rj i j

t

) ( ) ( ) [ ( ) ( ) ˆ ]( )� � � �′ ′{ ′ρ S
Rtr G G 0

0∫∫∑
- ′ ′

i j

i j is t t s t t R

,

( )( ) ( ) ( ) [ ( ) ˆ� � � � �ρ S
Rtr G 0GG

G

j

j i j

t

s t t s t t

( )]

( ) ( ) ( ) [ ( ) ˆ( )

′

- ′ ′ ′� � � �ρ S
Rtr RR t

t s t s t R

i

j i j

0

0

�

� � � �

G

G

( )]

( ) ( ) ( ) [ ˆ( )+ ′ ′ρ S
Rtr (( ) ( )] .′ }t ti

�G

	 (2.143)

Using the properties of the trace that tr tr trR R R( ˆ ˆ ˆ ) ( ˆ ˆ ˆ ) ( ˆ ˆ ˆ )ABC BCA CAB= =  and 
the definition of the correlation functions

	 〈 ′ 〉 = ′� � � �G G G Gi j i jt t R t t( ) ( ) [ ˆ ( ) ( )]R Rtr 0  	 (2.144)

and

	 〈 ′ 〉 = ′� � � �G G G Gj i j it t R t t( ) ( ) [ ˆ ( ) ( )],R Rtr 0 	 (2.145)

we rewrite Eq. (143)

	

∂
∂

= - ′ ′ ′ -
�

� � � �ρ ρ
( )

( )( )
( ) ( ) ( ) (

S
St

t
dt s t s t t si j j ′′ ′ { 〈 ′∫∑ t t s t ti

t

i j

i j) ( ) ( ) ( ) (( )

,

� � � �ρ S

0
G G tt

t s t s t s t tj i i

)

( ) ( ) ( ) ( ) (( ) ( )

〉

+ ′ ′ - ′

R

S S� � � � �ρ ρ )) ( ) ( ) ( ) .� � �s t t tj j i′  〈 ′ 〉 }G G R
	 (2.146)

The effects of the system R are taken into account through the correlation 
functions (144) and (145), and if the correlation functions decay much faster 
than the time scale of the variation in �ρ( )( )S t  as

	 〈 ′ 〉 = 〈 ′ 〉 ∝ - ′� � � �G G G Gi j j it t t t t t( ) ( ) ( ) ( ) ( ),R R d 	 (2.147)

then it is allowed to replace �ρ( )( )S ′t  by �ρ( )( ).S t .In other words, if the time 
constant of the temporal evolution of the system S is much slower than the 
decay time of the characteristic correlation function, the Markov approxima-
tion is justified. In the following discussions, we will use the Born-Markov 
approximation.
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Let us now consider a damped oscillator model within the Born- 
Markov approximation, in order to investigate the quantum master equation 
including the relaxation process in detail. The Hamiltonian describing the 
model system is given by

	
ˆ ˆ ˆ,�H a aS = �ω0 	 (2.148a)

	

ˆ ˆ ˆ ,�H r rj j j

j

R =∑�ω 	 (2.148b)

	

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ� � � � �V a r a r a aj j j j

j

S-R = +( ) ≡ +(∑� �κ κ G G)) , 	 (2.148c)

where ĤS  for the system S describes the harmonic oscillator with energy of 
�ω0 ,  and its creation and annihilation operators are ˆ�a  and ˆ,a  respectively. 
The Hamiltonian ĤR  for the system R describes a set of the harmonic oscil-
lators with energy of �ω j ,  creation and annihilation operators ˆ�rj  and ˆ .rj   
The interaction between the system S and R is denoted by V̂S-R  and the cou-
pling constant is κ j .  Comparing with Eq. (141), we have the following corre-
spondence: ˆ ˆ, ˆ ˆ , ˆ ˆ , ˆ ˆ ,� �s a s a1 2 1 2= = = =G G G G whose interaction representation 
can be easily obtained as follows.

	 �s t a aa at a at t
1

0 0 0( ) ˆ ˆ ,ˆ ˆ ˆ ˆ� �= =- -e e ei i iω ω ω 	 (2.149a)

	 �s t a aa at a at t
2

0 0 0( ) ˆ ˆ ,ˆ ˆ � ˆ ˆ �� �= =-e e ei i iω ω ω 	 (2.149b)
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
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
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	 (2.149c)
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	 (2.149d)

As a prerequisite for the Born-Markov approximation, trR S-R( ( ) ˆ )�V t R0 0=  
holds, and thus it follows 〈 〉 = 〈 〉 =� �G G1 2 0( ) ( )t tR R  and 〈 ′ 〉 =� �G G� �( ) ( )t t R  
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〈 ′ 〉 =� �G G( ) ( ) .t t R 0  Taking it into account, we modify the quantum master equa-
tion as
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		  (2.150)

where it is noted that nonzero contributions to the correlation functions 
relating to the system R are given by
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〈 ′ 〉 = +∑ - ′-� �G G( ) ( ) | | [ ( , )� ( )t t n Tj

j

t t
j

j
R

ieκ ωω
2

11], 	 (2.151d)

with n T R r rj j j( , ) ( ˆ ˆ ˆ ).�ω = trR 0  In order to replace the summation over j by the 
integration, we define the density of states g(w) so that the number of the 
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harmonic oscillators with angular frequency in the interval w to w  + dw  is 
given by g(w)dw . In addition, replacing the integral variable t′ by t = t - t′, 
we obtain

	
〈 - 〉 =

∞

∫� �G G�( ) ( ) ( )| ( )| ( , )t t d g n Tτ ω ω κ ω ωωτ
R

ie
0

2 ,, 	 (2.152a)
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With the help of these relations, the quantum master equation can be 
rewritten as
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		  (2.153)

where the t integration is dominated by times, that is, the reservoir correla-
tion time tR that is much shorter than ts, the time scale for the evolution of
�ρ( )( ),S t  and thus �ρ τ( )( )S t -  is replaced by �ρ( )( )S t  (Markov approximation). 

Moreover, becausee t is of the order of ts, we can extend the t integration to 
infinity, and performing the integral

	
lim ( ) ,( )
t

t

d
P

→∞
- -∫ = - +

-
τ πd ω ω

ω ω
ω ω τe ii 0

0
0

0
	 (2.154)
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where P designates the Cauchy principal value. Finally, we obtain the fol-
lowing equation
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∂
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		  (2.155)

Here we used the boson commutation relation [ˆ, ˆ ]�a a = 1  and set D, D′, and g 
as

	

D

D

≡
-

′ ≡

∞

∫P d
g

P d
g

ω ω κ ω
ω ω

ω ω κ ω
ω

( )| ( )|
,

( )| ( )|

2

00

2

0 --

≡

∞

∫ ω
ω

γ π ω κ ω

n T

g

( , ),

( )| ( )| .

0

0 0
22

	 (2.156)

For transformation of the representation from �ρ( )( )S t (interaction representa-
tion) to ˆ ( )( )ρ S t (Schrödinger representation),
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	 (2.157)

the time derivative is used as follows:
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	 (2.158)
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The first term on the right-hand side is explicitly calculated as
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while the substitution of Eq. (155) modifies the second term as

	

- + -i S SD[ˆ ˆ, ˆ ( )] ( ˆ ˆ ( )ˆ ˆ ˆ� ( ) ( ) � �a a t a t a a aρ γ ρ
2

2 ˆ̂ ( ) ˆ ( )ˆ ˆ)

( , )(ˆ ˆ (

( ) ( ) �

( )

ρ ρ

γ ω ρ

S S

S

t t a a

n T a t

-

+ 0 ))ˆ ˆ ˆ ( )ˆ ˆ ˆ ˆ ( ) ˆ ( )ˆ� � ( ) � ( ) ( )a a t a a a t t+ - -ρ ρ ρS S S aaâ ),�
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where explicit transformation of each operator from the interaction to 
Schrödinger representation is employed as
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	 (2.161)

Finally, the quantum master equation for a damped oscillator is derived in 
the Schrödinger representation as
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or in the Lindblad form as
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The energy shift caused by the reservoir system R is denoted by w0 + D, while 
the terms proportional to g represent the relaxation process.

2.2.6 Exciton Population Dynamics and Nanophotonic Logic Operation

On the basis of the above formulation, we will investigate the dynamics 
of exciton population in a two-QD system and a three-QD system, each of 
which is coupled to the phonon reservoir. This kind of study enables us to 
understand nanophotonic functional devices [56].

Dynamics of a Two-QD System

In Figure 2.12, we schematically illustrate a two-QD system interacting with 
a phonon reservoir system, where all the energy-transfer paths are depicted 
except for the coupling to far-field light because of different time scales. The 
Hamiltonian for the system is modeled as

	
ˆ ˆ ˆ ˆH H H H= + +0 int SR 	 (2.164)

and

	

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ� � � �H A A B B B B bn n0 2 1 1 1 2 2 2= + + +� � � �Ω Ω Ω ω bbn

n
∑ , 	 (2.165a)

	
ˆ ˆ ˆ ˆ ˆ ,� �H U A B B Aint = +( )� 2 2 	 (2.165b)

	

ˆ ˆ ˆ ˆ ˆ ˆ ˆ .� � � �H g b B B g b B Bn n n n

n

SR = +( )∑� 1 2 2 1 	 (2.165c)

When we assume that initial and final states are constructed only in terms of 
one-exciton states, the creation and annihilation operators of an exciton with 

†A A †

†B2B2

B1 B1

†

QD-A QD-B

bnbn
E1

εn

Phonon
reservoir

ħU gn

E2

0

FiGUrE 2.12
Schematic illustration of two-QD system. QD-A and QD-B are resonantly coupled via an optical 
near-field interaction, and the sublevels in QD-B are coupled with a phonon reservoir.
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energy of E2 = � Ω2 or E1 = � Ω1 can be written as follows:

	

ˆ (| |) , ˆ | | , ˆ (| |) ,� �A A B= 〉 〈 = 〉 〈( ) = 〉 〈e g g e e gA A B11

ˆ̂ (| |) , ˆ (| |) , ˆ (| )�B B B1 2 2= 〉 〈 = 〉 〈 = 〉〈g e e g g eB B1 2 BB2
,

	 (2.166)

where |ei and |gi represent the exciton and crystal ground states, respec-
tively, relating to QD-A or QD-B specified by the suffix. It easily follows that 
the commutation relations hold as
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i i
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jj i jB B i j] ˆ , ˆ ( , , ).� �= = 

 =0 1 2

	 (2.167)

This means that the operators are neither bosonic nor fermionic. Bosonic 
operators (ˆ , ˆ )�b bn n  are for the phonons with energy eigenvalues �ωn. In the 
following discussion, for simplicity, the rotating wave approximation is used 
in the interaction Hamiltonian Ĥint  as

	 ( ˆ ˆ ) ˆ ˆ ˆ ˆ ˆ ˆ .� � � �A A B B A B AB+ +( ) ≈ +2 2 2 2
	 (2.168)

Phonon reservoir is assumed to be a collection of multiple harmonic oscil-
lators labeled n. Optical near-field couplings are denoted by �U, whereas exci-
ton-phonon couplings are designated by �gn.  Let us consider the one-exciton 
dynamics in the system, using three bases, as illustrated in Figure 2.13. The 
quantum master equation for the density matrix, within the Born-Markov 
approximation, is given in the Schrödinger representation as

	

d t
dt

U r t t
ρ ρ ρ11

12 21
( )

( )[ ( ) ( )],= -i 	 (2.169a)

	

d t
dt

d t
dt

U r t t
ρ ρ ρ ρ12 21

11 222
( ) ( )

( ) [ ( ) ( )] (- = - -i nn t t+ -1 12 21) [ ( ) ( )],γ ρ ρ 	 (2.169b)

QD-A QD-A QD-AQD-B QD-B

QD-B

|φ3>|φ2>|φ1>

FiGUrE 2.13
Three bases for the one-exciton dynamics in a two-QD system. The filled circles marked on the 
levels represent the exciton occupation of each level.
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d t
dt

U r t t n
ρ ρ ρ γ ρ22
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ρ γ ρ γ ρ33

22 332 1 2
( )

( ) ( ) ( ),= + - 	 (2.169d)

where the abbreviation ρ φ ρ φmn m nt t( ) | ˆ( )|≡〈 〉  is employed. When the tempera-
ture, T, equals to zero (n = 0), these coupled equations can be analytically 
solved. The diagonal parts representing the population probability for each 
energy level in QD-A and QD-B, as well as the off diagonal parts represent-
ing quantum coherence, are written as
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	 ρ ρ ρ33 11 221( ) [ ( ) ( )],t t t= - + 	 (2.170c)

	
ρ ρ γγ

12 21 2 2
( ) ( ) e sinh( ) sinh( )t t

U
Z

Zt Zt Zt= - = +-i ccosh( ) ,Zt



 	 (2.170d)

where Z U≡ -( / ) ,γ 2 2 2  and the initial conditions ρ11 0 1( ) =  and ρmn( )0 0=  
for the other matrix elements are used. When we define the state filling time 
τS  as ρ τ33

11( ) eS = - -  which corresponds to the time for the excitation energy 
transfer from QD-A to the lower energy level in QD-B. It follows from Eqs. 
(170a)–(170d) that the temporal evolution of the population is quite different 
at U > γ /2  and U < γ / .2  Although Eqs. (170a)–(170d) seem to be undefined at 
U Z= =γ/ ( ),2 0  taking a limit value, there is a definite solution regardless of 
whether Z→ +0,  or -0 is taken. In Figure 2.14, the state-filling time ts is plot-
ted as a function of the ratio of g/2 to U. For U > γ/ ,2  the population shows 
a damped oscillation with envelope function e ;-γ t  thus, τS  is determined by 
the relaxation constant g  as τ γS � -1.  By contrast, for U < γ/ ,2  ρ22( )t  decays 
monotonically. At first glance, as g/2 increases, we expect ts to decrease 
monotonically, because the population flows into the lower energy level 
more quickly; nevertheless, ts increases again, as shown in Figure 2.14. This 
occurs because the upper energy level in QD-B becomes effectively broad 
with increasing g, which results in a decrease in the resonant energy transfer 
between the QDs. When the ratio g /2U is sufficiently large, ts increases lin-
early, as seen in Figure 2.14. Therefore the state-filling time is not only deter-
mined by the coupling strength between two QDs via the optical near field, 
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but also by the coupling strength to the phonon reservoir system. It follows 
from the figure that the fastest energy transfer is obtained when γ /2 � U  is 
satisfied.

The term 2 33γ ρn t( )  on the right-hand side of Eq. (169c) indicates that the 
finite temperature effect caused by the finite number of phonons ( )n ≠ 0  
induces back transfer of the excitation energy from the reservoir to the two-
QD system. Within the Born-Markov approximation adopted, this term inco-
herently increases the population ρ22( ).t  As the population ρ33( )t  increases, 
the back transfer becomes large, and gives the residual populations ρ11( )t  
and ρ22( )t  in the upper levels in both QDs.

So far, the theoretical modeling of the population dynamics in a two- 
QD system has an ideally perfect resonance condition, which may be too 
tight to fabricate such a system with definite size ratios. In order to release 
the resonance condition, we estimate allowable tolerance, or size deviation 
of QDs from designed values. When the deviation from the resonant energy 
�DΩ  in QD-B is introduced, the factor on the right-hand side in Eq. (170a) is 
modified, and the ratio of that in off-resonance to on-resonance is approx-
imately proportional to 

γ
γ γ

2

2 2 2+DΩ ( / ).� U  Therefore, we can achieve effi-
ciency more than 50 % even if the deviation W < g is introduced. When the 
dot size and relaxation constant are set as 7.1 nm ( )= 5 2 nm  and �γ = 3  meV, 
respectively, approximately 10 %-deviation of the dot size can be allowed. As 
the size of QDs is larger, the tolerable deviation is more relaxed. It is feasible 
to make such QDs by the recent advancement of nanofabrication techniques. 
In fact, experimental results show the consistent population dynamics as 
discussed in references 39 and 40.

Dynamics of a Three-QD System

Let us consider the dynamics of the excitation energy transfer driven by 
an optical near field in a three-QD system illustrated in Figure 2.15. In this 
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FiGUrE 2.14
The state-filling time ts plotted as a function of the exciton-phonon coupling strength g/2 to the 
interdot optical near-field coupling strength U.

C9721_C002.indd   69 5/1/08   11:47:41 AM

© 2008 by Taylor & Francis Group, LLC



70	 Principles of Nanophotonics

system two identical QDs (QD-A and QD-B) are resonantly coupled with 
each other via an optical near field, which form a coherent operation part, 
while the third QD with larger size than the other two corresponds to a dis-
sipative output part. Following the reduced density operator (matrix) for-
malism, we examine the temporal evolution of one-exciton states or that of 
two-exciton states created via optical near fields. First of all, it is necessary to 
choose an appropriate basis constructing matrix elements. The one-exciton 
and two-exciton states, for the purpose, are adopted so that the number of 
density matrix elements is minimized in the quantum master equation [57]. 
As a one-exciton state, that is, the state that one exciton exists in either one of 
three QDs, QD-A, QD-B, and QD-C, the following four states are adopted:

	

| , , , , , , ,

| , ,

� �

�

S

A

1 1 2 1 2

1

1
2

1
2

〉 = +( )

〉 =

A B C C A B C C

A B CC C A B C C

A B C C A B

1 2 1 2

1 1 2 1

, , , , ,

, , , , | ,

�

�

-( )

′ = 〉 =P P ,, , ,�C C1 2
















	 (2.171)

where the symmetric and antisymmetric states relating to the one-exciton 
are abbreviated to S and A with suffix 1 on the left-hand side, respectively. 
The suffix A, B, and Ci (i = 1,2) denote that no excitons exist in QD-A, QD-B, 

QD-B 
 

QD-C 
 

QD-A 
 

Input A 

Input B 

Optical 
 near-field 
 coupling 
 

Coherent 
operation part 

Dissipative output part 

Non radiativeC2 

C1 
Output 

relaxation 

FiGUrE 2.15
Three-QD system with spatially symmetric configuration. It consists of two identical two-level 
dots (QD-A and QD-B) and a three-level dot (QD-C). From the configuration, the coupling 
between QD-A and QD-B is stronger than that between QD-A and QD-C (QD-B and QD-C), 
and thus the system is divided into two parts: a coherent operation part with optical nutation 
and a dissipative output part with nonradiative relaxation.
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and QD-C, whereas A*, B*, and Ci
* (i = 1,2) represent one exciton exists in QD-

A, QD-B, and QD-C, respectively. For example, the state vector | , , ,�A B C C1 2 〉 
shows that one exciton exists in QD-A while no excitons exist in other QDs, 
and | , , ,�A B C C1 2 〉  represents that there is one exciton in QD-B only. Because 
the exchange of A and B keeps the state vector |S1 unchanged, |S1 is symmet-
ric in this sense. Similarly, the two-exciton states are classified by whether 
the lower level in QD-C, C1 is occupied or not. For the states without C1 occu-
pation, we adopt

	

′ = +( )

′ =

S

A

2 1 2 1 2

2

1
2

1
2

A B C C A B C C

A B

� � � �

�

, , , , , , ,

, ,CC C A B C C

A B C C

1 2 1 2

2 1 2

, , , , ,

, , , ,

� � �

� �

-( )

′ =









P










	 (2.172)

and for the states with C1 occupation
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








	 (2.173)

Then we obtain the reduced density matrix elements in terms of these ten 
states, which satisfy the quantum master equation as

	

∂
∂

= - +
t

t H t C C t Csˆ( ) [ ˆ , ˆ( )] ˆ ˆ ˆ( ) ˆ� �ρ ρ ρi
�

G
2

2 1 2 2
ˆ̂

ˆ ˆ ˆ ˆ ˆ( ) ˆ( ) ˆ ˆ ˆ ˆ� � � �

C

C C C C t t C C C

1

2 1 1 2 2 1 1

{
- -ρ ρ CC2}.

	 (2.174)

Here we consider the Hamiltonian ĤS  describing excitons in QDs coupled 
via optical near fields as

	

ˆ ˆ ˆ , ˆ ( ˆ ˆ ˆ ˆ ) ˆ ˆ� � �H H H H A A B B CC iiS int= + = + +0 0 � �Ω Ω CC

H U A B B A U B C C

i

i=
∑

= + + ′ +

1

2

2

,

ˆ ( ˆ ˆ ˆ ˆ ) ˆ ˆ ˆ� � �
int � � 22 2 2

� � �ˆ ˆ ˆ ˆ ˆ ,B C A A C+ +( )
	 (2.175)
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where the creation (annihilation) operator of an exciton in QD-A is denoted 
by ˆ �A ( ˆ )A  and its energy eigenvalue by � �Ω ΩA = .  The creation (annihila-
tion) operator of an exciton in QD-B is likewise denoted by ˆ �B  ( ˆ )B  and its 
energy eigenvalue by � �Ω ΩB = ,  while the creation (annihilation) operator 
of an exciton in QD-C is expressed by ˆ �Ci  ( ˆ )Ci  and their energy eigenvalues 
by �ΩCi

.  The coupling strengths of excitons, via optical near fields, between 
QD-A and QD-B, QD-B and QD-C, and QD-C and QD-A are designated by 
UAB = U, and UBC = UCA = U′, respectively, as illustrated in Figure 2.16. Insert-
ing Eq. (175) into Eq. (174) and using the one-exciton states, we obtain the 
quantum master equation in the matrix form.

	

∂
∂

= ′ -′ ′t
t U t tS S S P P Sρ ρ ρ

1 1 1 1 1 1, , ,( ) { ( ) ( )},i 2 	 (2.176a)

	

∂
∂

= -( ) -{ } + ′′ ′t
t U t US P S P Sρ ρ ρ

1 1 1 12, ,( ) ( )i i 2DΩ G
11 1 1 1, ,( ) ( ) ,S P Pt t-{ }′ ′ρ 	 (2.176b)

	

∂
∂

= - - +{ } - ′′ ′t
t U t UP S P Sρ ρ ρ

1 1 1 12, ,( ) ( ) ( )i i 2DΩ G
SS S P Pt t

1 1 1 1, ,( ) ( ) ,-{ }′ ′ρ 	 (2.176c)

	

∂
∂

= - - ′′ ′ ′ ′ ′t
t t U tP P P P S Pρ ρ ρ

1 1 1 1 1 1, , ,( ) ( ) { (G i 2 )) ( )},,- ′ρP S t
1 1

	 (2.176d)

	

∂
∂

= ′ ′t
t tP P P Pρ ρ

1 1 1 1, ,( ) ( ),G 	 (2.176e)
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Ĉ2 Ĉ2

Ĉ1
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ħΩB
ħUAB

FiGUrE 2.16
Schematic energy diagram in a three-QD system for exciton creation and annihilation opera-
tors and excitation transfer. The optical near-field couplings for the QD pairs are denoted by 
UAB for QD-A and QD-B, UBC for QD-B and QD-C, and UCA for QD-C and QD-A. The nonradia-
tive relaxation coupling caused by the exciton-phonon coupling is designated by G.
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where the matrix elements 〈 〉a ρ β| ˆ( )|t  are abbreviated to ρa β, ( ),t  and the 
energy difference �( )Ω ΩC2

-  is denoted by �DΩ.  The density matrix using 
the two-exciton states can similarly obtained as follows:

	

∂
∂

= ′ -′ ′ ′ ′ ′ ′t
t U t tS S S P P Sρ ρ ρ

2 2 2 2 2 2, , ,( ) { ( ) ( )i 2 }} ( ),,- ′ ′GρS S t
2 2

	 (2.177a)

	

∂
∂

= - + +{ } + ′′ ′ ′ ′t
t U tS P S Pρ ρ

2 2 2 22, ,( ) ( ) ( )i i 2DΩ G
UU t tS S P Pρ ρ′ ′ ′ ′-{ }2 2 2 2, ,( ) ( ) , 	 (2.177b)

	

∂
∂

= + -{ } - ′′ ′ ′ ′t
t U t UP S P Sρ ρ

2 2 2 22, ,( ) ( ) ( )i i 2DΩ G ρρ ρ′ ′ ′ ′-{ }S S P Pt t
2 2 2 2, ,( ) ( ) , 	 (2.177c)

	

∂
∂

= - ′ -′ ′ ′ ′ ′ ′t
t U t tP P S P P Sρ ρ ρ

2 2 2 2 2 2, , ,( ) ( ) ( )i 2 {{ }. 	 (2.177d)

It should be noted that the matrix elements relating to both the symmetric 
states | ,|S S1 2〉 ′ 〉  and the antisymmetric states | ,|A A1 2〉 ′ 〉  never appear simul-
taneously in these equations when QDs are spatially allocated in a sym-
metric way as considered here. In addition, opposite contributions, that is, 
�( )DΩ -U  and �( ),DΩ +U  are involved in these equations corresponding to 
the one-exciton and two-exciton states, respectively. This kind of difference 
in resonance conditions indicates that two-input logic operations are pos-
sible, as discussed in later chapter.

The differential equations for typical initial conditions can be solved ana-
lytically with the help of Laplace transformation. When an exciton is initially 
generated only in QD-A, that is, ρ ρ ρ ρS S A A S A A S1 1 1 1 1 1 1 1

0 0 0 0 1 2, , , ,( ) ( ) ( ) ( ) /= = = = , 
the probability that the exciton is transferred to the C1 level in QD-C is given 
by
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ω ω
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	 (2.178)

with
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	 (2.179)
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Analytic solutions for two-exciton states can be similarly obtained. Under 
the initial condition ρ ′ ′ =P P2 2

0 1, ( ) ,  that is, when both QD-A and QD-B are 
occupied by one excitons, the probability of an exciton transferred to the 
lower energy level in QD-C is

	

ρ ρ ρS S P P S S

t

t t t dt
2 2 2 2 2 2

0

2
1
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		  (2.180)

with
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,
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(2.181)

Here note that in Eqs. (178) and (180) the second terms with the denominators 
ω ω+ --2 2  and ′ - ′+ -ω ω2 2 ,  respectively, contribute to the increase of the popula-
tion in the output energy levels. It follows that efficiency of energy transfer 
is dominant for the one-exciton state when DΩ =U  is satisfied, while that 
is dominant for the two-exciton state in the case of DΩ = -U. These are ana-
lytical description of resonant energy transfer depending on the number of 
input excitons and a basic idea for logic operations. Based on the dynamics 
of excitons, or temporal evolution of density matrix for excitation energy 
transfer, functionality of a variety of nanophotonic devices will be discussed 
later, as well as AND-logic and XOR-logic operations that will be explained 
later.

Nanophotonic Logic Gates: AND- and XOR-Operations

When the upper energy level in QD-C is negatively shifted to �( ),Ω-U  
an AND-logic gate operation can be realized. Let us explain it, by using 
Figure 2.17, which illustrates the energy diagram in the system with negative 
detuning in QD-C. The resonant energy transfer occurs only for the two-
exciton state via the symmetric state in QD-A and QD-B, while the energy 
transfer for the one-exciton state does not occur because the upper energy 
level in QD-C is resonant to the antisymmetric state that is dipole forbidden 
for the symmetrically arranged QD system. This selective energy transfer 
assures an AND-logic operation.

The temporal evolution of the exciton population on the lower energy 
level in QD-C is plotted in Figure 2.18 to numerically examine the earlier 
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qualitative discussion (cf. Eqs. (178) to (181)). Here the strengths of the optical 
near-field coupling, �U = 89 µeV  and � ′ =U 14 µeV  are used for CuCl 
quantum cubes embedded in NaCl matrix. By contrast, the coupling to far-
field light is neglected because the population dynamics caused by the optical 

Input state

QD-A
QD-B

QD-C

Output state
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FiGUrE 2.17
Energy diagram in a three-QD system with negative detuning in QD-C, �DU = -�U. Here the 
filled circles represent that the occupation probability is unity, while the half filled circles 
show that the occupation probability is 1/2. It follows from the diagram that two excitons exist-
ing in the input state can be only transferred to the output state.
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FiGUrE 2.18
Temporal evolution of exciton population on the lower energy level (output level) in QD-C. The 
solid curve shows the result for one-exciton state, while the dotted curve represents the result 
for two-exciton state. The coupling strength between QD-A and QD-B is �U = 89 meV, while 
that between QD-A and QD-C (QD-B and QD-C) is �U′ = 14 meV. The energy shift of the upper 
level in QD-C is assumed to be �U below �W, corresponding to Figure 2.17.
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near-field coupling is much faster than that of the far-field coupling, by typi-
cally two orders of magnitude. The energy shift of the upper level in QD-C 
is assumed to be 89 µeV  below �Ω,  and the nonradiative relaxation time to 
be 10 ps. It follows from the figure that the exciton population is occupied 
nearly in 100 ps for the two-exciton state, which is determined by the cou-
pling strength � ′U  between QD-A and QD-C (QD-B and QD-C). The output 
population is observed only for the two-exciton state as expected, because 
the coupling between the input and output states occur via the symmetric 
state. On the other hand, the population of the one-exciton state increases 
very slowly, owing to the weak coupling between the symmetric state in the 
input side and the output state. The state-filling time is much longer than the 
spontaneous emission lifetime caused by the e-h recombination, and thus 
the exciton population for the one-exciton state does not affect the output 
signal. In this manner, these behaviors for the one- and two-exciton states 
surely correspond to the AND-logic gate whose size is much smaller than 
the diffraction limit of light.

When the upper energy level in QD-C is positively shifted to �( ),Ω +U  
opposite to the AND-logic gate, an XOR-logic gate operation can be real-
ized. It follows from the energy diagram shown in Figure 2.19 that the sym-
metric and antisymmetric states for one- and two-exciton states satisfy the 
conditions for an XOR-logic operation. Namely, the resonant energy transfer 
from the input to output systems occurs for the one-exciton state in either 
QD-A or QD-B via the symmetric state, while it does not occur for the two- 
exciton state since the input system is resonant to the antisymmetric state in 
the output system that is dipole forbidden for the symmetrically arranged 
QD system.
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FiGUrE 2.19
Energy diagram in a three-QD system with positive detuning in QD-C, �DU = �U. The filled 
circles represent that the occupation probability is unity, while the half filled circles show that 
the occupation probability is 1/2. It follows from the diagram that one exciton existing in the 
input state can be only transferred to the output state.
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Figure 2.20 shows the temporal evolution for the one- and two-exciton 
states calculated from Eqs. (178)–(181). The parameters used are the same 
as those in Figure 2.18. In Figure 2.20, the output population appears for the 
one-exciton state, and the state-filling time is determined by the coupling 
strength ′U  between QD-A and QD-C (QD-B and QD-C). The situation is 
the same as the AND-logic operation. Here the readers may ask why the 
exciton population reaches a half of the maximum for the one-exciton state 
in the XOR-logic gate operation. This is because a one-side QD is locally 
excited as an initial condition, in which both the symmetric and antisym-
metric states are simultaneously excited with the same occupation probabil-
ity as described in Eqs. (171). On the other hand, the output population for 
the two-exciton state shows slower increase, though it is as twice fast as that 
for the AND-logic gate operation. The reason also originates from the ini-
tial state; the symmetric state in the input system is occupied the half of the 
maximum at the initial time because of the local excitation, whereas the full 
of the initial population for the two-exciton state can couple to QD-C in the 
case of positive energy shift. It should be noted that the XOR-logic operation 
in this case can be performed stochastically, that is, repetition of operations 
are meaningful.

Now let us summarize these operations realized in three QD system 
in Table 2.1. The system behaves as an AND-logic gate when the energy 
difference is set to DΩ = -U,  whereas it does as an XOR-logic gate when 
DΩ =U  is satisfied. These operations are classical, not quantum mechani-
cal, and so quantum coherence time is not a critical parameter. Instead, the 
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FiGUrE 2.20
Temporal evolution of exciton population on the lower energy level (output level) in QD-C. The 
solid curve shows the result for one-exciton state, while the dotted curve represents the result 
for two-exciton state. The coupling strength between QD-A and QD-B is �U = 89 meV, while 
that between QD-A and QD-C (QD-B and QD-C) is �U′ = 14 meV. The energy shift of the upper 
level in QD-C is assumed to be �U above �W, corresponding to Figure 2.19.
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operations are limited by energy transfer time from the coherent operation 
part to the dissipative part, which is estimated about 50 ps for the CuCl 
quantum-cube system, which is enough shorter than the radiative lifetime 
(~1 ns) of excitons in each QD.

2.3 Principles of Nanofabrication Using Optical Near Fields

It is the first theoretical step for understanding of nanofabrication with 
optical near fields to consider how steep gradient electric fields of optical 
near fields affect nanometric particles, or nanomaterials. We briefly show 
that the steep gradient fields lead a molecule to a nonadiabatic transition, 
from a quantum-theoretical consideration. We then outline the nanofabrica-
tion technique using the optical near field [58,59], and discuss the unique 
feature found in the results of photodissociation experiments using a simple 
(exciton-phonon polariton (EPP)) model [60,61]. Finally the mechanism of 
photon localization in space with phonon’s degrees of freedom, and pho-
non’s role to the elementary process of photochemical reactions with optical 
near fields are discussed in detail [62,63].

2.3.1 Field Gradient and Force

A variety of theories have been developed to derive a force exerted on a neu-
tral atom placed in a gradient electric field of light [64–66], one of which uses 
the energy shift of the atom depending on the spatial variance of the field. 
The energy levels of the atom become position-dependent, and their gradi-
ent 

�
∇ gives the force exerted on the atom, according to the theory. Because 

the optical near field is expressed by the Yukawa function and has a steep 
spatial gradient, we expect the stronger force exerted on an atom, a molecule, 

TAblE 2.1

Relationship between the input and output 
populations for the energy difference, and the 
corresponding logic gate operations.

Input Output: C
 

A B AND-gate (DΩ = -U) XOR-gate (DΩ = U) 
0 0 0 0
1 0 0 0.5
0 1 0 0.5
1 1 1 0
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nanoparticles and so on, than that by a propagating far field. We apply the 
theory, as an example, to a neutral molecule.

Let us assume an effective Hamiltonian ˆ ,Heff  which describes an interact-
ing system of the electric field of light and molecules, and is given in terms 
of eigenstate vectors |ψa

�
r( )〉  with eigenvalues E ra ( )

�
 by

	

ˆ ( )| ( ) ( )|,H E r r reff = 〉 〈∑ a
a

a aψ ψ
� � �

	 (2.182)

where 
�
r  denotes the molecular position in space, and the suffix a identi-

fies the electronic and vibrational states of the molecules. The gradient force 
exerted on the molecules is written

	
� � �
F H H= - 〈∇ 〉 = - ∇ˆ ( ˆ ˆ ),eff effTr ρ 	 (2.183)

in terms of the density operator ˆ.ρ  Substituting Eq. (182) into Eq. (183), we have

	

� � �
F E E= - ∇ 〉 〈 - ∇ 〉∑[ ( ˆ| |)] [ ˆ{( | )a a a

a
a aρ ψ ψ ρ ψTr Tr 〈〈 + 〉 ∇〈

= - ∇ 〈 〉

∑ ψ ψ ψ

ψ ρ ψ

a a a
a

a a a
a

| | ( |)}]

[( ) | ˆ| ]

�

�
E∑∑ ∑- 〈 ∇ 〉 + ∇〈 〉Ea

a
a a a aψ ρ ψ ψ ρ ψ[ | ˆ( | ) ( |) ˆ| ],

� �

		  (2.184)

where the vector 
�
r  is, for simplicity, omitted from the expression, and the 

definition of the trace

	

Tr( ) |( )|� �= 〈 〉∑ ψ ψβ
β

β 	 (2.185)

and the orthonormal conditions of the eigenstates 〈 〉 =ψ ψ da β aβ|  are used. 
The first term on the right-hand side shows the average force originating in 
the spatial gradient of energy for each level multiplied by the occupation 
probability. In order to examine the meaning of the second term, we evalu-
ate the work done by an infinitesimal displacement of the molecule from 

�
r

to 
� �
r dr+  as

	
- ⋅ = 〈 〉 ⋅ + 〈 〉 + 〈∑� �

F r E Ed d d dψ ρ ψ ψ ρ ψ ψa a a
a

a a a| ˆ| [ | ˆ| aa a
a

ρ ψ| ˆ| ],〉∑ 	 (2.186)

where the following notations, d dE r Ea a= ⋅∇
� �

 and | |d dψ ψa a〉 = ⋅∇ 〉
� �
r  are 

used.
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Expanding the state vector | ( )ψa
� �
r r+ 〉d  as

	 | ( ) | ( ) | ( ) | (ψ ψ ψ ψa a a a
� � � � � � �
r r r r r r+ 〉 = 〉 + ⋅∇ 〉 =d d )) | ( ) ,〉 + 〉dψa

�
r 	 (2.187)

we have

	

〈 + + 〉 - 〈ψ ρ ψ ψ ρ ψa a a a( )| ˆ| ( ) ( )| ˆ| (
� � � � � �
r r r r r rd d ))

( )| ˆ| ( ) ( )| ˆ| ( )

〉

= 〈 〉 + 〈 〉ψ ρ ψ ψ ρ ψa a a a
� � � �
r r r rd d ,,

	 (2.188)

and thus can rewrite the second term in Eq. (184) as follows:

	
E r r r r ra a a a aψ ρ ψ ψ ρ ψ[ ( )| ˆ| ( ) ( )| ˆ|〈 + + 〉 - 〈

� � � � �
d d (( ) ].

�
r 〉∑

a

	 (2.189)

This equation indicates that the occupation probability of the energy level 
specified by a varies according to the spatial change of the eigenstate | ( ) ,ψa

�
r 〉  

and results in the nonadiabatic transition, not the conventional adiabatic one. 
Therefore it is expected that this kind of nonadiabatic transition becomes 
more apparent since the optical near field is localized in a nanometer 
region.

2.3.2 Near-Field Nanofabrication and Phonon’s Role

As discussed in Section 2.1, optical near-field probes, whose tips are sharp-
ened to a few nanometers, can generate a light field localized around the 
apex of the same order. The spatial localization is, of course, independent 
of the wavelength of incident light, and the size of the localization is much 
smaller than the wavelength. In fabricating nanophotonic devices [8,47], 
[67–69] with such probes, for example, it is critical to control the size and 
position of the nanostructures, which requires efficient control and manipu-
lation of the localization of light fields. If one could control and manipulate 
the localization of light field at will, one would necessarily obtain more effi-
cient and functional probes with higher precision, which will be applicable 
to predict quantum phenomena. It is true not only in a probe system, but also 
in an optical near-field problem, in general. In these respects it is very impor-
tant to clarify the mechanism of spatial localization of optical near fields on 
a nanometer scale.

Experiments on photodissociation of diethylzinc (DEZn) and zinc-bis 
(acethlacetonate) or Zn(acac)2 molecules and deposition of Zn atoms using 
an optical near field have been conducted for nanostructure fabrication, as 
will be discussed later. The experimental results show that the molecules 
illuminated by the optical near field are dissociated even if the energy of 
incident light is lower than the dissociation energy, which is impossible 
when a far field with the same energy and intensity is used. A simple analy-
sis indicates that data cannot be explained by conventional theories based 
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on the Franck-Condon principle� or the adiabatic approximation for nuclear 
motions in a molecule, and suggests that phonons in an optically excited 
probe system might assist the molecular dissociation process in a nonadi-
abatic way [60,61,71]. In this situation, it is necessary to study the photon- 
phonon interaction as well as the photon-electronic excitation interaction in 
a nanometer space, and to clarify the phonon’s role in the nanometric optical 
near-field probe system, or more generally in light-matter interacting system 
on a nanometer scale. Then a quantum theoretical approach is appropriate 
to describe an interacting system of photon and matter (electronic excita-
tion and phonon) fields. It will allow us not only to understand an elemen-
tary process of photochemical reactions with optical near fields, but also to 
explore phonon’s role in nanostructures interacting with localized photon 
fields.

In this subsection we review the nanofabrication technique using the optical 
near field, and discuss the unique feature in the results of photodissociation 
experiments, using a simple model (exciton-phonon polariton (EPP) model).

Photodissociation of Molecules—Experimental

As schematically illustrated in Figure 2.21, optical near-field chemical vapor 
deposition (NFO-CVD) is used to fabricate a nanometer-scale structure 

�	  It takes into account in an intuitively clear way the fact that the electronic motions are rapid 
in comparison to the nuclear motions: during an electronic transition, the position and veloc-
ity of the nuclear coordinates will thus not change noticeably, and thus electronic transitions 
maintain the internuclear distance. By the electronic selection rules, transitions between 
vibrational levels in a ground state of a molecule are prohibited.

244, 325, 488, 684 nm
Incident light

Fiber probe

Optical fiber

Incident light

Ar

DEZn

Water bath
Vacuum chamber

Sapphire
substrate

Piezo
stage

280 K

Leaked far field

Deposited Zn
Optical
near field

FiGUrE 2.21
Experimental setup for optical near-field chemical vapor deposition (NFO CVD). The DEZn 
bottle and CVD chamber were kept at 7 and 25 degrees C, respectively, to prevent the conden-
sation of DEZn on the sapphire substrate. During deposition, the partial pressure of DEZn was 
100 mTorr and the total pressure in the chamber was 8 Torr.
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while controlling position and size [58,72]. Incident laser light is introduced 
into an optical near-field probe, that is, a glass fiber that is chemically etched 
to have a nanometric sized apex without metal coating usually employed. 
The propagating far field is generated by light leaking through the circum-
ference of the fiber, while the optical near field is mainly generated at the 
apex. This allows us to investigate the deposition by an optical near field 
and far field simultaneously. The separation between the fiber probe and 
the sapphire (0001) substrate is kept within a few nanometers by shear-
force feedback control. By appropriately selecting reactant molecules to be 
dissociated, NFO-CVD is applicable to various materials such as metals, 
semiconductors, and insulators. In the following, however, we concentrate 
on diethylzinc (DEZn) and zinc-bis (acetylacetonate) (Zn(acac)2) as reactant 
molecules, at 70–100 mTorr at room temperature. In order to investigate the 
mechanism of the photochemical process, deposition rates depending on 
photon energy and intensity have been measured with several laser sources: 
for DEZn molecules,

the second harmonic of an Ar+ laser ( .�ω = 5 08 eV, corresponding 
wavelength l = 244 nm), whose energy is close to the electronic exci-
tation energy (5 eV) of a DEZn molecule.
an He-Cd laser (�ω = 3.81 eV, corresponding wavelength l = 325 
whose energy is close to Eabs � 4 13.  eV[73,74], corresponding to the 
energy of the absorption band edge.
an Ar+ laser (�ω = 2.54 eV, corresponding wavelength l = 488 whose 
energy is larger than the dissociation energy of the molecule (2.26 
eV), but much smaller than the electronic excitation energy and Eabs.
a diode laser (�ω = 1.81 eV, corresponding wavelength l = 684 whose 
energy is smaller than both the dissociation and electronic excita-
tion energies, as well as Eabs.

and for Zn(acac)2 molecules

an Ar+ laser �ω = 2.71  eV, corresponding wavelength l = 457  nm), 
whose energy is much smaller than the electronic excitation energy 
and Eabs 5.17�  eV.

Shear-force topographical images are shown in Figure 2.22 after NFO-CVD 
at photon energies listed earlier. In conventional CVD using a propagating 
light, photon energy must be higher than Eabs because dissociative mole-
cules should be excited from the ground state to an excited electronic state, 
according to the adiabatic approximation [70,75]. In contrast, even if photon 
energy less than Eabs is employed in NFO-CVD, the deposition of Zn dots 
are observed on the substrate just below the apex of the probe used. Much 
more interested, photons with less energy than the dissociation energy 
can resolve both DEZn and Zn(acac)2 molecules into composite atoms and 

•

•

•

•

•
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deposit them as nanometric dots [60,71]. One possibility inferred from the 
results is a multiple photon absorption process, which is negligibly small 
because the optical power density used in the experiment was less than 
10 kW/cm2 that is too low for the process. The other possibility is a multiple 
step transition via an excited molecular vibrational level that is forbidden by 
the Frank-Condon principle, but allowed in a nonadiabatic process. In order 
to clarify the unique feature of NFO-CVD, we will give a simple model to 
discuss the process later.

EPP Model

We consider a quasiparticle (exciton-phonon polariton) model as a simple 
model of an optically excited probe system, in order to investigate the physi-
cal mechanisms of the chemical vapor deposition using an optical near field 
(NFO-CVD) [61]. We assume that exciton-phonon polaritons, the quanta of 
which are transferred from the optical near-field probe tip to both gas and 
adsorbed molecules, are created at the apex of the optical near-field probe. 
Here it should be noted that the quasi-particle transfer is valid only if the 
molecules are very close to the probe tip because the optical near field is 
highly localized near the probe tip, which has been discussed in Section 2.1 
and will be discussed later. The optical near field generated on the nanomet-
ric probe tip, which is a highly mixed state with material excitation rather 

Substrate

Deposited Zn
Zn atom

Optical near field

Incident light

DEZn

(a)

(b)

(c)

45 nm

50 nm

40 nm

FiGUrE 2.22
Schematic drawing of NFO-CVD and experimental results. Incident photon energies used are 
(a) 3.81 eV, (b) 2.54 eV, and (c) 1.81 eV.
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than the propagating light field [6,7], is described in terms of the following 
model Hamiltonian:

	

ˆ ˆ ˆ ˆ ˆ ˆ ˆ� � �H a a b b
i

a bp p p p p p p= + +� � � � � � � �ω ω ex c

2
Ω

�� � �

�

� � �

�
� �

�

p p p

p

p p p

p

b a

c c i M

-( ){ }
+ +

∑
∑

ˆ ˆ

ˆ ˆ (

�

�Ω pp q b b c cp q p q q p- +{ } +



- -

�
� � � � � �

�
)ˆ ˆ ˆ ˆ . .� � h c

pp q

p p p

p

p p p

p

B B c c

,

� �ˆ ˆ ˆ ˆ

�

� � �

�

� � �

�
� �

∑
∑ ∑= +ω pol Ω

++ ′ - +{ } +- -i M p q B B c cp q p q q p�
� �

� � � � � �( ) ˆ ˆ ˆ ˆ .� � h cc. ,
,





∑

� �
p q

	 (2.190)

where the creation (annihilation) operators for a photon, an exciton (a quasi-
particle for an electronic polarization field), a renormalized phonon (whose 
physical meanings will be discussed later), and an exciton polariton are 
respectively denoted by ˆ (ˆ ),�a ap p

� �  ˆ (ˆ ),�b bp p
� �  ˆ (ˆ ),�c cp p

� �  and ˆ ( ˆ ),�B Bp p
� �  and their fre-

quencies are ω �
p , ω �

p
ex , Ω�

p , and ω �
p
pol , respectively. The subscripts 

�
p  and 

�
q  indi-

cate the momenta of the relevant particle in the momentum representation 
such as a photon, an exciton, a renormalized phonon, an exciton polariton, or 
an exciton-phonon polariton. Each coupling between a photon and an exciton, 
a phonon and an exciton, and an exciton polariton and a phonon is designated 
as Ωc ,  M p q( ),

� �
-  and ′ -M p q( )

� �
 respectively. The first line of this description 

expresses the Hamiltonian for a photon-exciton interacting system and is 
transformed into the exciton-polariton representation as shown in the third 
line [25], whereas the second line represents the Hamiltonian for a phonon-
exciton interacting system. Note that electronic excitations near the probe tip, 
driven by photons incident into the fiber probe, cause mode-mode couplings 
or anharmonic couplings of phonons, and that they are taken into account as 
a renormalized phonon; therefore, multiple phonons as coherently squeezed 
phonons in the original representation can interact with an exciton or an exci-
ton polariton simultaneously. In the model, quasiparticles (exciton-phonon 
polaritons) in bulk material (glass fiber) are approximately used, and thus 
their states are specified by the momentum. Strictly speaking, momentum 
is not a good quantum number to specify the quasiparticle states at the apex 
of the probe, from the symmetry consideration, and they should be a super-
position of such momentum-specified states with different weights. Instead 
of this kind of treatment, we simply assume that the quasiparticles specified 
by the momentum are transferred to a vapor or adsorbed molecule that is 
located near the probe tip, utilizing highly spatial localization of the optical 
near field to be discussed in detail later.

Now we assume that exciton polaritons near the probe tip are expressed in 
the mean field approximation as

	

ˆ ˆ ( )
.�B B

I V
dk k

� �

�0 0

0 0

0

= 〈 〉 = ω
ω 	 (2.191)
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Here I0 0( )ω  is the photon intensity inside the probe tip with frequency ω0  
and momentum �

�
k0 ,  and V represents the volume to be considered while 

the probe tip size is denoted by d. Using the unitary transformation as

	

ˆ

ˆ
B

c

iv u

u iv
p

p k

p p

p p

�
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-


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


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′ ′
′ ′
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


0

ˆ̂

ˆ ,
( )

( )

ξ

ξ
-

+













�

�

p

p

	 (2.192)

we can diagonalize the Hamiltonian in the exciton-phonon polariton repre-
sentation [76] as
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	 (2.193)

where the creation (annihilation) operator for an exciton-phonon polariton 
and the frequency are denoted by ˆ ( ˆ )�ξ ξjp jp

� �  and ω( ),
�
p  respectively. The suf-

fix (-) or (+) indicates the lower or the upper branch of the exciton-phonon 
polariton. The transformation coefficients ′up

�  and ′vp
�  are given by

	
′ = +

+






′ = -

+
u

Q
v

Qp p
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2 2
2

2

1
2

1
2

1
2

1
2

D
D

D
D( )

,
( ))

,
2







	 (2.194)

where the detuning between an exciton polariton and a phonon is denoted 
by D Ω≡ - -ω � � �

p p k
pol

0
,  and the effective coupling constant is expressed as 

Q I dM p k≡ ′ -0 0 0 0( )/ ( )ω ω�
� �

 Therefore, in this model, a molecule located near 
the probe tip does absorb not simple photons but exciton-phonon polari-
tons whose energies are transferred to the molecule, which excite molecular 
vibrations as well as electronic transitions. In the following sections, we will 
discuss how phonons work in the optically excited probe system in detail.

2.3.3 Lattice Vibration in Pseudo One-Dimensional System

Before discussing the optically excited probe system, lattice vibrations in a 
pseudo one-dimensional system are briefly described, and its quantization 
is outlined. We also examine the effects of impurities or defects in such a 
system to show that the localized vibration modes exist as eigenmodes, and 
those energies are higher than those of delocalized ones.

Owing to the progress in nanofabrication, the apexes of optical near-field 
probes are sharpened on the order of a few nanometers. In this region, the 
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guiding modes of light field are cut off and visible light cannot propagate 
in a conventional way. Therefore it is necessary to clarify the interactions 
among light, induced electronic, and vibrational fields in the nanometer 
space such as the optically excited probe tip, and the mechanism of local-
ization (delocalization) of light field as a result of self-consistency of those 
interacting fields. As the first step, we examine the lattice vibrations them-
selves in this section. Let us assume a pseudo one-dimensional system for 
the probe tip, as schematically illustrated in Figure 2.23. The system consists 
of a finite number (N) of atoms or molecules, which will be representatively 
called molecules. Each molecule is located at a discrete site and is connected 
with the nearest-neighbor molecules by springs. The size of each molecule 
and the spacing between the molecules depend on how the system is coarse-
grained. In any case, the total site number N is finite, and the wave number 
is not a good quantum number because the system breaks the translational 
invariance [77]. That is why we begin with the Hamiltonian of the system 
to analyze vibrational (phonon) modes, instead of the conventional method 
using the dynamical matrix [78]. By denoting a displacement from an equi-
librium point of a molecule by 

�
xi  and its conjugate momentum by 

�
pi ,  the 

model Hamiltonian� is given by

	

H
p
m

k
x x

k
xi

ii

N

i i

i

N

= + - +
=

+
=

-

∑ ∑
�
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1

1
2

1

1

1
2

2 2 2
( ) ++( )�

xN
2 , 	 (2.195)

where mi is the mass of a molecule at site i, and k represents the spring con-
stant. Both edges (i = 1 and i = N) are assumed to be fixed, and longitudinal 

�	  In this subsection, the Hamiltonian is not quantum mechanical, but classical, and thus not 
an operator that is indicated by the hat notation “̂ .”

FiGUrE 2.23
A pseudo one-dimensional system for a near-field optical probe tip.
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motions in one-dimension are considered in the following. The equations of 
motion are determined by the Hamilton equation as

	

d
dt

x
H
p

d
dt

p
H
xi

i
i

i

�
�

�
�= ∂

∂
= - ∂
∂

, . 	 (2.196)

If one uses a matrix form defined by
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, 	 (2.197)

one can obtain the following compact equations of motion:

	
M

d
dt

x k x
2

2

� �
= - G , 	 (2.198)

with transpose of the column vector 
�
x  as 

� � �
�

�
x x x xN

T ≡ ( , , , ).1 2  Multiplying 
the both hand sides of (198) by M

-1
 with ( )M mij ij i= d  we have

	

d
dt

x k x
2

2

� �
′ = - ′A , 	 (2.199)

where the notation 
� �
′ =x Mx  and A =

- -
M M

1 1
G  are used. Since it is 

symmetric, the matrix A can be diagonalized by an orthonormal matrix P 
as follows:

	
Λ Λ

Ω
= =-P AP, or1

2

( ) .pq pq
p

k
d 	 (2.200)

Substitution of Eq. (200) into Eq. (199) leads us to equations of motion for a 
set of harmonic oscillators as

	

d
dt

y k y
d
dt

y yp p p

2

2

2

2
2� � � �

= - = -Λ Ω, ,or 	 (2.201)

where 
�
y  is set as 

� �
y x= ′-P 1 .  There are N normal coordinates to describe the 

harmonic oscillators, each of which is specified by the mode number p. The 
original spatial coordinates 

�
x  are transformed to the normal coordinates 

�
y  as

	

� � � �
x M y x

m
yi

i
ip p

p

N

= =
-

=
∑1

1

1
P or P, . 	 (2.202)
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Quantization of Vibration

In order to quantize the vibration field described by Eq. (261), we first rewrite 
the Hamiltonian Eq. (195) in terms of normal coordinates 

�
yp  and conjugate 

momenta 
�
π p , which should be replaced by the corresponding operators 

�̂
yp  and �̂

π p  to have

	

ˆ ( ˆ , ˆ )
ˆ

ˆ .H y yp

p

N

p p

p

N
� �

�
�

π
π

= +
= =
∑ ∑

2

1

2 2

1
2

1
2
Ω 	 (2.203)

Then the commutation relation between 
�̂
yp  and 

�̂
π q  as

	

� � � � � �
�ˆ , ˆ ˆ ˆ ˆ ˆ ,y y y ip q p q q p pqπ π π d



 ≡ - = 	 (2.204)

is imposed for quantization. When we define operators b̂p  and ˆ�bp  as

	

ˆ ˆ ˆ ,b i yp
p

p p p= -( )1
2�

� �
Ω

Ωπ 	 (2.205a)

	

ˆ ˆ ˆ ,�b i yp
p

p p p= +( )1
2�

� �
Ω

Ωπ 	 (2.205b)

they satisfy the boson commutation relation

	
ˆ , ˆ ˆ ˆ ˆ ˆ .� � �b b b b b bp q p q q p pq




 ≡ - = d 	 (2.206)

The Hamiltonian describing the lattice vibration of the system, (203), can 
then be rewritten as

	

ˆ ˆ ˆ ,�H b bp p p

p

N

phonon = +





=
∑�Ω 1

2
1

	 (2.207)

and it follows that ˆ (ˆ )�b bp p  is the annihilation (creation) operator of a phonon 
with energy of �Ωp  specified by the mode number p.

Vibration Modes: Localized vs Delocalized

In this subsection, we examine the effects of impurities or defects in the sys-
tem. When all the molecules are identical, that is, mi = m, the Hamiltonian 
Eq. (195), or the matrix A can be diagonalized in terms of the orthonormal 
matrix P whose elements are given by

	
Pip N

ip
N

i p N=
+ +





 ≤ ≤2

1 1
1sin , ( , ),π 	 (2.208)
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and the eigenfrequencies squared are obtained as follows:

	
Ωp

k
m

p
N

2 24
2 1

=
+









sin

( )
.π 	 (2.209)

In this case, all the vibration modes are delocalized, that is, they are spread 
over the whole system. By contrast, if there are some doped impurities or 
defects with different mass, the vibration modes highly depend on geometri-
cal configuration and mass ratio of the impurities to the others. In particular, 
localized vibration modes manifest themselves when the mass of the impu-
rities is lighter than that of the others, where vibrations with higher frequen-
cies are localized around the impurity sites [79–82].

Figures 2.24(a) and (b) illustrate that the localized vibration modes exist as 
eigenmodes in the one-dimensional system caused by the doped molecules 
with different mass in the chain, and eigenenergies of localized modes are 
higher than those of delocalized ones. In Figure 2.24(a), phonon energies are 
plotted as a function of the mode number when the total number of sites is 
30. The rectangles represent the eigenenergies of phonons in the case of no 
impurities, and the circles show those in the case of six impurities, where 
the doped molecules are located at site 5, 9, 18, 25, 26, 27. It follows from the 
figure that phonon energies of the localized modes are higher than those of 
the delocalized modes. The mass ratio of the doped molecules to the others 
is 1/2, and the parameter � k m/ .= 22 4  meV is used. Figure 2.24(b) shows 
the vibration amplitude as a function of the site number. The solid and 
dashed curves represent two localized modes with the highest and the next 
highest energies of phonons, respectively, while the dotted curve illustrates 
the delocalized mode with the lowest energy. In the localized modes, the 
vibration amplitudes are localized around the impurity sites.

In the next section, we will discuss the interactions between photons and 
inhomogeneous phonon fields on the nanometer scale, since we have 
found inhomogeneous phonon fields in the one-dimensional system with 
impurities.

2.3.4 Optically Excited Probe System and Phonons

In this section, we consider a simple model for a pseudo one-dimensional 
optical near-field probe system to discuss the mechanism of photon localiza-
tion in space as well as phonon’s role. In order to focus on the photon-phonon 
interaction, the interacting part between photon and electronic excitation is 
first expressed in terms of a polariton, and is called a photon in the model. 
Then the model Hamiltonian, which describes the photon and phonon inter-
acting system, is presented. Using the Davydov transformation [77,83,84], 
we rewrite the Hamiltonian in terms of quasiparticles. On the basis of the 
Hamiltonian, we present numerical results on spatial distribution of pho-
tons, and discuss the mechanism of photon localization caused by phonons.
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Model Hamiltonian

We consider an optical near-field probe schematically shown in Figure 2.23, as a 
system where light interacts with both phonons and electrons in the probe on a 
nanometer scale. Here the interaction of a photon and an electronic excitation is 
assumed to be expressed in terms of a polariton basis [6,7] as discussed earlier, 
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and is hereafter called a photon so that a special attention is paid on the photon-
phonon interaction. The system is simply modeled as a one-dimensional atomic 
or molecular chain coupled with photon and phonon fields. The chain consists 
of a finite N molecules (representatively called) each of which is located at a dis-
crete point (called a molecular site) whose separation represents a characteristic 
scale of the near-field system. Photons are expressed in the site representation 
and can hop to the nearest neighbor sites [11] because of the short-range interac-
tion nature of the optical near fields (see Eq. (1) in Section 2.1).

The Hamiltonian for this model is given by

	

ˆ ˆ ˆ

ˆ
( ˆ ˆ

�H a a

p
m

k
x x

i i

i

N

i

ii

N

i i

=

+ + -

=

=
+

∑

∑

�ω
1

2

1

12 2
)) ˆ

ˆ ˆ

,

�

2

1

1

2

1
2

i

N

i

i N

i i

k
x

a a

=

-

=
∑ ∑+













+ �χ ˆ̂ ˆ ˆ ˆ ˆ ,� �x J a a a ai

i

N

i i i i

i

N

=
+ +

=

-

∑ ∑+ +( )
1

1 1

1

1

�

	 (2.210)

where ˆ�ai  and âi  correspondingly denote the creation and annihilation opera-
tors of a photon with energy of �ω  at site i in the chain, x̂i  and p̂i  represent 
the displacement and conjugate momentum operators of the vibration, respec-
tively. The mass of a molecule at site i is designated by mi, and each molecule is 
assumed to be connected by springs with spring constant k. The third and the 
fourth terms in Eq. (210) stand for the photon-vibration interaction with coupling 
constant c and the photon hopping with hopping constant J, respectively.

After the vibration field is quantized in terms of phonon operators of mode p 
and frequency Ωp ,  ˆ�bp  and ˆ ,bp  the Hamiltonian Eq. (210) can be rewritten as

	

ˆ ˆ ˆ ˆ ˆ

ˆ ˆ

� �

�

H a a b b

a

i i

i

N

p p p

p

N

ip i

= +

+

= =
∑ ∑� �

�

ω

χ

1 1

Ω

aa b b

J a a a

i p p

p

N

i

N

i i i

ˆ ˆ

ˆ ˆ ˆ ˆ

�

� �

+( )

+ +

==

+ +

∑∑
11

1 1� aai

i

N

( )
=

-

∑
1

1

,

	 (2.211)

with the coupling constant cip of a photon at site i and a phonon of mode p. 
This site-dependent coupling constant cip is related to the original coupling 
constant c as

	
χ χip ip

i pm
= P

�
2 Ω

, 	 (2.212)
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and the creation and annihilation operators of a photon and a phonon satisfy 
the boson commutation relation as follows:

	

ˆ , ˆ , ˆ , ˆ ,

[ˆ , ˆ ]

� �a a b b

a a

i j ij p q pq

i j

  = 



 =d d

==   = = 

 =

ˆ , ˆ [ˆ , ˆ ] ˆ , ˆ ,

[

� � � �a a b b b bi j p q p q 0

ˆ̂ , ˆ ] ˆ , ˆ ˆ , ˆ ˆ , ˆ� � �a b a b a b a bi p i p i p i= 

 =




 = qq

� .



 = 0

	 (2.213)

The Hamiltonian Eq. (211), which describes the model system, is not easily 
handled because of the third order of the operators in the interaction term. To 
avoid the difficulty, this direct photon-phonon interaction term in Eq. (211) will 
be eliminated by the Davydov transformation in the following subsection.

Davydov Transformation

Before going into the explicit expression, we discuss a unitary transforma-
tion Û  generated by an anti-Hermitian operator Ŝ  defined as

	
ˆ exp( ˆ) , ˆ ˆ ,�U S S S≡ = -with 	 (2.214a)

and

	
ˆ ˆ .�U U= -1 	 (2.214b)

Suppose a Hamiltonian Ĥ  that consists of a diagonalized part Ĥ0  and a 
nondiagonal interaction part V̂  as

	
ˆ ˆ ˆ .H H V= +0 	 (2.215)

Transforming the Hamiltonian in Eq. (215) as

	
�H UHU UHU≡ = -ˆ ˆ ˆ ˆ ˆ ˆ ,� 1 	 (2.216)

we have

	

� �H H S H S S H

H V S

= + + +

= + +

ˆ [ ˆ , ˆ ] [ ˆ ,[ ˆ , ˆ ]]

ˆ ˆ [ ˆ , ˆ

1
2

0 HH S V S S H0 0 0
1
2

] [ ˆ, ˆ ] [ ˆ ,[ ˆ , ˆ ]] .+ + +�
	 (2.217)

If the interaction V̂  can be perturbative, and if the operator Ŝ  is chosen so 
that the second and the third terms in Eq. (217) are canceled out as

	
ˆ [ ˆ , ˆ ],V S H= - 0 	 (2.218)

C9721_C002.indd   92 5/1/08   11:49:57 AM

© 2008 by Taylor & Francis Group, LLC



Basis of Nanophotonics	 93

the Hamiltonian Eq. (217) is rewritten as

	
� �H H S S H= - +ˆ [ ˆ ,[ ˆ , ˆ ]] ,0 0

1
2  

	 (2.219)

and can be diagonalized within the first order of ˆ .V
Now we apply this discussion to the model Hamiltonian Eq. (211),

	

ˆ ˆ ˆ ˆ ˆ ,� �H a a b bi i

i

N

p p p

p

N

0

1 1

= +
= =
∑ ∑� �ω Ω 	 (2.220a)

	

ˆ ˆ ˆ ˆ ˆ ,� �V a a b bip i i p p

p

N

i

N

= +( )
==
∑∑ �χ

11

	 (2.220b)

tentatively neglecting the hopping term. Assuming the anti-Hermitian oper-
ator Ŝ  as

	

ˆ ˆ ˆ ˆ ˆ ,� �S f a a b bip i i p p

pi

= -( )∑∑ 	 (2.221)

we can determine fip from Eq. (218) as follows:

	
fip

ip

p

=
χ
Ω

. 	 (2.222)

This operator form of Ŝ  leads us to not the perturbative but the exact trans-
formation of the photon and phonon operators as

	

ˆ ˆ ˆ ˆ ˆ exp ˆ ˆ� � � � �a
χ

i i i
ip

p
p p

p

N

U a U a b b≡ = - -( )
=
∑Ω

1












, 	 (2.223a)

	

ˆ ˆ ˆ ˆ ˆ exp ˆ ˆ� �a
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i i i
ip

p
p p

p

N

U a U a b b≡ = -( )



 =
∑Ω

1






, 	 (2.223b)

	

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ,� � � � �β
χ

p p p
ip

pi

N

i iU b U b a a≡ = +
=
∑Ω

1

	 (2.223c)

	

ˆ ˆ ˆ ˆ ˆ ˆ ˆ .� �β
χ

p p p
ip

pi

N

i iUb U b a a≡ = +
=
∑Ω

1
	 (2.223d)
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These transformed operators can be regarded as the creation and annihi-
lation operators of quasiparticles—dressed photons and phonons—that sat-
isfy the same boson commutation relations as those of photons and phonons 
before the transformation:

	
ˆ , ˆ ˆ [ˆ , ˆ ] ˆ ,� �a a di j i j ijU a a U  = = 	 (2.224a)

	
ˆ , ˆ ˆ ˆ , ˆ ˆ .� � �β β dp q p q pqU b b U



 =





 = 	 (2.224b)

Using the quasiparticle operators, we can rewrite the Hamiltonian Eq. (211) as
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(2.225)

with

	

ˆ exp
( ) ˆ ˆ�J Ji

ip i p
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=
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1
Ω




, 	 (2.226)

where it is noted that the direct photon-phonon coupling term has been elimi-
nated while the quadratic form ˆ ˆN Ni j  with the number operator of ˆ ˆ ˆ�Ni i i= a a  
has emerged as well as the site-dependent hopping operator Eq. (226). The 
number states of quasiparticles are thus eigenstates of each terms of the 
Hamiltonian Eq. (225), except the last term that represents the higher order 
effect of photon-phonon coupling through the dressed photon hopping. 
Therefore it is a more appropriate form to discuss the phonon’s effect on 
photon’s behavior as localization.

Quasiparticle and Coherent State

In the previous section, we have transformed the original Hamiltonian by 
the Davydov transformation. In order to grasp the physical meanings of the 
quasiparticles introduced earlier, the creation operator ˆ �a i  is applied to the 
vacuum state | .0〉  Then it follows from Eq. (223a)
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
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	 (2.227)
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where a photon at site i is associated with phonons in coherent state, that is, 
a photon is dressed by an infinite number of phonons. This corresponds to 
the fact that an optical near field is generated from a result of interactions 
between the photon and matter fields.

When ˆ�βp  is applied to the vacuum state | ,0〉  we have

	
ˆ | ˆ | ,� �βp pb0 0〉 = 〉 	 (2.228)

and it is expressed by only the bare phonon operator (before the transforma-
tion) in the same p mode. Therefore we mainly focus on the quasiparticle 
expressed by ˆ , ˆ�a ai i  in the following section. Note that it is valid only if the 
bare photon number (the expectation value of ˆ ˆ�a ai i  is not so large that the 
fluctuation is more important than the bare photon number. In other words, 
the model we are considering is suitable for discussing the quantum nature 
of a few photons in an optically excited probe system.

The coherent state of phonons is not an eigenstate of the Hamiltonian, and 
thus the number of phonons as well as energy is fluctuating. This fluctuation 
allows incident photons into the probe system to excite phonon fields. When 
all the phonon fields are in the vacuum at time t = 0, the excitation probability 
P(t) that a photon incident on site i in the model system excites the phonon 
mode p at time t is given by

	

P t tip

p
p( ) exp [cos( ) ]= -


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
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2
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Ω

Ω


, 	 (2.229)

where the photon-hopping term is neglected for simplicity. The excitation 
probability oscillates at frequency of 2π/ ,Ωp  and has the maximum value 
at t p= π/ .Ω  The frequencies of the localized phonon modes are higher than 
those of the delocalized ones, and the localized modes at the earlier time are 
excited by the incident photons.

Figure 2.25 shows the temporal evolution of the excitation probability 
P tp0

( )  calculated from
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	 (2.230)

where a specific phonon mode p0 is excited while other modes are in the 
vacuum state. In Figure 2.25, the solid curve represents the probability that 
a localized phonon mode is excited as the p0 mode, while the dashed curve 
illustrates how the lowest phonon mode is excited as the p0 mode. It follows 
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from the figure that the localized phonon mode is dominantly excited at the 
earlier time.

2.3.5 Localization Mechanism of Dressed Photons

In this section, we discuss how phonons contribute to the spatial distribution 
of photons in the pseudo one-dimensional system under consideration. When 
there are no interactions between photons and phonons, the frequency and hop-
ping constant are equal at all sites, and thus the spatial distribution of photons 
are symmetric. It means that no photon localization occurs at any specific site. 
However, if there are any photon-phonon interactions, spatial inhomogeneity 
or localization of phonons affects the spatial distribution of photons. On the 
basis of the Hamiltonian Eq. (225), we analyze the contribution from the diago-
nal and off-diagonal parts in order to investigate the localization mechanism of 
photons.

Contribution from the Diagonal Part

Let us rewrite the third term of the Hamiltonian Eq. (225) with the mean 
field approximation as
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ˆ ˆ ,�a a
=
∑

1

	 (2.231)
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FiGUrE 2.25
Temporal evolution of the excitation probability of a localized (delocalized) phonon mode that 
is represented by the solid (dashed) curve. The system is initially excited by a photon at the 
impurity site 26. The coupling constant χ = 10.0 fs -1nm -1 and the parameter � k m = 22 4.  meV 
are used, while other parameters are the same as those in Figure 2.24.
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with
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where Eq. (212) is used to obtain the expression in the last line of Eq. (232). 
In addition, we neglect the site dependence of the hopping operator Ĵi  to 
approximate J, for the moment. Then the Hamiltonian regarding the quasi-
particles (â  and ˆ )�a  can be expressed as

	

ˆ ( ) ˆ ˆ ˆ ˆ ˆ ˆ� � �H Ji i i

i

N

i i i= - + +
=

+ +∑� �ω ω a a a a a a
1

1 1 ii

i

N

( )
=

-

∑
1

1

, 	 (2.233)

or in the matrix form as

	

ˆ ˆ �H
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J N
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-
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ω ω
ω ω

ω ω

1
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0

0



�̂
,a 	 (2.234a)

with

	
�

�ˆ ˆ , ˆ , , ˆ ,� � � �a a a a≡ ( )1 2 N 	 (2.234b)

where the effect from the phonon fields is involved in the diagonal elements 
ωi .  Denoting an orthonormal matrix to diagonalize the Hamiltonian Eq. (234a) 
as Q and the r-th eigenvalue as Er, we have

	

ˆ ˆ ˆ ,�H E A Ar r r

r

N

=
=
∑�

1
	 (2.235a)

with

	

ˆ ( ) ˆ ˆ ,Ar ri i ir i

i

N

i

N

= =-

==
∑∑ Q Q1

11

a a 	 (2.235b)

and

	
ˆ , ˆ ˆ ˆ ˆ ˆ .� � �A A A A A Ar s r s s r rs




 ≡ - = d 	 (2.235c)
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98	 Principles of Nanophotonics

Using these relations Eqs. (235a)–(235c), we can write down the time evolu-
tion of the photon number operator at site i as follows;

	

ˆ ( ) exp
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ˆ exp
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N t i
H

t N i
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
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11

	 (2.236)

The expectation value of the photon number operator ˆ ( )N ti  is then given by

	
〈 〉 = 〈 〉 =N t N t Ei j j i j ir jr is js r( ) | ˆ ( )| cos{(ψ ψ Q Q Q Q --

==
∑∑ E ts

s

N

r

N

) } ,
11

	 (2.237)

in terms of one photon state at site j defined by

	

| ˆ | ˆ | .� �ψ aj j jr r

r

N

A〉 = 〉 = 〉
=
∑0 0

1

Q 	 (2.238)

Since the photon number operator N̂i  commutes with the Hamiltonian 
Eq. (233), the total photon number is conserved, which means that a polari-
ton called as a photon in this chapter conserves the total particle number 
within the lifetime. Moreover, 〈 〉N ti j( )  can be regarded as the observation 
probability of a photon at an arbitrary site i and time t, initially populated 
at site j. This function is analytically expressed in terms of the Bessel func-
tion as

	
〈 〉 = - -{ }- +N t J Jt J Jti j j i

i
j i( ) ( ) ( ) ( ) ,2 1 2

2
	 (2.239)

when there are no photon-phonon interactions ( )ωi = 0  and the total site 
number N becomes infinite. Here the argument J is the photon hopping con-
stant, and Eq. (239) shows that a photon initially populated at site j delocal-
izes to a whole system.

Focusing on the localized phonon modes, we take the summation in Eq. (232) 
over the localized modes only, which means that an earlier stage is consid-
ered after the incident photon excites the phonon modes, or that the dura-
tion of the localized phonon modes dominant over the delocalized modes is 
focused (see Figure 2.25). This kind of analysis provides us with an interest-
ing insight to the photon-phonon coupling constant and the photon hopping 

C9721_C002.indd   98 5/1/08   11:50:34 AM

© 2008 by Taylor & Francis Group, LLC



Basis of Nanophotonics	 99

constant, which is necessary for the understanding of the mechanism of 
photon’s localization.

The temporal evolution of the observation probability of a photon at each 
site is shown in Figure 2.26. Without the photon-phonon coupling ( ),χ = 0  a 
photon spreads over the whole system as a result of the photon hopping, 
as shown in Figure 2.26(a). Here the photon energy �ω = 1.81  eV and the 
hopping constant �J = 0 5.  eV are used in the calculation. The impurities are 
assumed to be doped at site 3, 7, 11, 15, and 19 while the total site number 
N is 20 and the mass ratio of the host molecules to the impurities is 5. Fig-
ure 2.26(b) shows a result with χ = ×1 4 103.  fs-1 nm-1 whereas other param-
eters used are the same as those in Figure 2.26(a). It follows from the figure 
that a photon moves from one impurity to other impurity sites instead of 
delocalizing to a whole system. As the photon-phonon coupling constant 
becomes much larger than χ = ×1 4 103.  fs-1 nm-1, a photon cannot move 
from the initial impurity site to others and stay there.
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(a) The probability that a photon is found at each site as a function of time in the case of χ = 0 
and �J = 1 eV. Other parameters are the same as those in Figure 2.24. (b) The probability that a 
photon is found at each site as a function of time, in the case of J k N� �( / )( / ) .χ 22 Other param-
eters used are the same as those in Figure 2.24.
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100	 Principles of Nanophotonics

The effect caused by the photon-phonon coupling c is expressed by the 
diagonal component in the Hamiltonian, whereas the off-diagonal compo-
nent involves the photon hopping effect caused by the hopping constant J. 
These results indicate that photon’s spatial distribution depends on the com-
petition between the diagonal and off-diagonal components in the Hamil-
tonian, that is, c and J, and that a photon can move among impurity sites 
and localize at those sites when both components are comparable under the 
condition

	
χ �

�
N

kJ
, 	 (2.240)

where the localization width seems very narrow.

Contribution from the off-Diagonal Part

In the previous section, we have approximated J as a constant independent 
of the sites, in order to examine the photon’s spatial distribution as well as 
the mechanism of the photon localization. Now let us treat the photon hop-
ping operator Ĵi

 more rigorously, and investigate the site dependence of the 
off-diagonal contribution, which includes the inhomogeneity of the phonon 
fields. Noticing that a quasiparticle transformed from a photon operator by 
the Davydov transformation is associated with phonons in the coherent state 
(see Eq. (227)), we take expectation values of Ĵi  in terms of the coherent state 
of phonons |γ 〉  as

	 J Ji i≡ 〈 〉γ γ|ˆ | .	 (2.241)

Here the coherent state |γ 〉  is an eigenstate of the annihilation operator b̂p 
with eigenvalue γ p  and satisfies the following equations

	
ˆ | |bp pγ γ γ〉 = 〉 	 (2.242a)

and
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





∑ ∑c b cp p

p

p p

p

γ γ γ 〉〉 , 	 (2.242b)

where cp is a real number. Since the difference between the creation and 
annihilation operators of a phonon is invariant under the Davydov transfor-
mation, the following relation holds:

	
ˆ ˆ ˆ ˆ .� �β βp p p pb b- = - 	 (2.243)
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Using Eqs. (242a), (242b), and (243), we can rewrite the site-dependent hop-
ping constant Ji in Eq. (241) as
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where Cip is denoted by

	
Cip

ip i p

p

≡
- +χ χ 1

Ω
. 	 (2.245)

Figure 2.27 shows the site dependence of Ji in the case of N = 21. Impurities 
are doped at site 4, 6, 13, and 19. The mass ratio of the host molecules to the 
impurities is 5, while �J = 0 5.  eV and χ = 14 0.  fs-1 nm-1 are used. It follows 
from the figure that the hopping constants are highly modified around the 
impurity sites and the edge sites. The result implies that photons are strongly 
affected by localized phonons and hop to the impurity sites to localize. Here 
we have not considered the temperature dependence of Ji, which is impor-
tant for phenomena dominated by incoherent phonons [85]. This is because 
coherent phonons weakly depend on the temperature of the system. How-
ever, there remains room to discuss more fundamental issue, that is, whether 
the probe system is in a thermal equilibrium state or not.

In Figure 2.28, we present a typical result that photons localize around 
the impurity sites in the system as the photon-phonon coupling constants 
c vary from zero to 40.0 fs-1 nm-1 or 54.0 fs-1 nm-1 with �J = 0 5.  eV kept. 
As depicted with the filled squares in the figure, photons delocalize and 
spread over the system without the photon-phonon couplings. When the 
photon-phonon couplings are comparable to the hopping constants, χ = 40 0.  
fs-1 nm-1, photons can localize around the impurity site with a finite width, 
two sites at HWHM, as shown with the filled circles. This finite width of 
photon localization comes from the site-dependent hopping constants. As 
the photon-phonon couplings are larger than χ = 40 0.  fs-1 nm-1, photons can 
localize at the edge sites with a finite width, as well as the impurity sites. 
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102	 Principles of Nanophotonics

In Figure 2.28, the photon localization at the edge site is shown with the filled 
triangles, which originates from the finite size effect of the molecular chain 
[77,86]. This kind of localization of photons dressed by the coherent state 
of phonons leads us to a simple understanding of phonon-assisted photo-
dissociation using an optical near field; molecules in the electronic ground 
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The site dependence of the hopping constants Ji in the case of N = 20. Impurities are doped at 
site 4, 6, 13, 19. The mass ratio of the host molecules to the impurities is 1 to 0.2, whereas �J = 0.5 eV 
and χ = 40.0 fs-1nm-1 are used.
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Probability of photons observed at each site. The filled squares, circles, and triangles represent 
the results for χ = 0, 40.0, and 54.0 fs-1nm-1, respectively. Other parameters used are the same 
as those in Figure 2.27.
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state approach to the probe tip within the localization range of the dressed 
photons, and can be vibrationally excited by the dressed-photon transfer to 
the molecules, via multiphonon component of the dressed photons, which 
might be followed by the electronic excitation. Thus it leads to the dissocia-
tion of the molecules even if the incident photon energy less than the dis-
sociation energy is used.

As a natural extension of the localized photon model, we have discussed 
the inclusion of phonon’s effects into the model. The study was initially 
motivated by the experiments of photodissociation of molecules by optical 
near fields, whose results show unique feature different from the conven-
tional one with far fields. After clarifying delocalized or localized vibration 
modes in a pseudo one-dimensional system, we have focused on the inter-
action between dressed photons and phonons by using the Davydov trans-
formation. We have theoretically shown that photons are dressed by the 
coherent state of phonons, and found that the competition between the photon- 
phonon coupling constant and the photon hopping constant governs the 
photon localization or delocalization in space. The obtained results lead us to 
a simple understanding of an optical near field itself as an interacting system 
of photon, electronic excitation (induced polarization), and phonon fields in 
a nanometer space, which are surrounded by macroscopic environments, as 
well as phonon-assisted photodissociation using an optical near field.
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3
Nanophotonic Devices

This chapter reviews the principles of a qualitative innovation in device oper-
ation—nanophotonic devices—which operate by near-field optical energy 
transfer and subsequent energy dissipation. As examples, the operations of 
an AND gate, NOT gate, and optical nanofountain are demonstrated.

3.1	 Excitation Energy Transfer

Unlike a single QD, a system consisting of coupled QDs possesses unique 
properties, such as the Kondo effect [1,2] and Coulomb blockade [3, 4], and 
violates Kohn’s theorem [5]. The QD system is involved in a variety of inter-
actions, for example, carrier tunneling [1–3,6], Coulomb coupling [4], and the 
spin interaction [5]. Moreover, it is important to investigate the interactions 
among QDs, not only for elucidating various physical phenomena, but also 
for developing novel functional devices [1–6]. Recently, studies on the car-
rier distribution in a single QD have been performed using near-field optical 
spectroscopy [7], which indicated that the optical near field couples strongly 
with the excitation in a QD and can act as an intermediate in the interaction 
between QDs. In addition, it is stronger than a propagating optical field. This 
optical near-field interaction [7] is of particular interest because it governs 
the coupling strength among QDs.

Mukai et al. reported ultrafast “optically forbidden” energy transfer from 
the outer ring of loosely packed bacteriochlorophyll molecules called B800 
to the inner ring of closely packed bacteriochlorophyll molecules known 
as B850 in the light-harvesting antenna complex of photosynthetic purple 
bacteria [8]. Theoretically, they showed that this transfer is possible when 
the point transition dipole approximation is violated as a result of the size 
effect of B800 and B850. This transfer is a result of the optical near-field inter-
action between B800 and B850. Similarly, energy can be transferred from 
one dot to another via the optical near-field interaction in the QD system, 
even if it is a dipole (optically)-forbidden transfer. The energy transfer from 
smaller to larger QDs has been studied in a spectrally, spatially, and time-
resolved experiment. Kagan et al. observed the energy transfer among CdSe 
QDs coupled via a dipole–dipole interdot interaction [9]. Crooker et al. also 
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studied the dynamics of the exciton energy transfer in close-packed assem-
blies of monodisperse and mixed-size CdSe nanocrystal QDs and reported 
the energy-dependent transfer rate of excitons from smaller to larger dots 
[10]. These examples are based on the optical near-field interaction. The 
physical model for the unidirectional resonant energy transfer between 
QDs via the optical near-field interaction has been explained, and the opti-
cally forbidden energy transfer among randomly dispersed CuCl QDs has 
been demonstrated experimentally using optical near-field spectroscopy 
[11]. The theoretical analysis and temporal evolution of the energy transfer 
via the optical near-field interaction were discussed in Chapter 2. This sec-
tion reviews experimental works involving the direct observation of energy 
transfer from the exciton state in a CuCl QD to the optically forbidden exci-
ton state in another CuCl QD using optical near-field spectroscopy.

Cubic CuCl QDs embedded in a NaCl matrix have the potential to be 
an optical near-field coupling system that exhibits this optically forbidden 
energy transfer. This is made possible because for this system, other forms 
of energy transfer, such as carrier tunneling and Coulomb coupling, can be 
neglected as the carrier wave function is localized in the QDs; this occurs 
because the potential depth exceeds 4 eV and the Coulomb interaction is 
weak because of the small exciton Bohr radius of 0.68 nm in CuCl [11]. The 
energy transfer via a propagating light is also negligible, since the optically 
forbidden transition in nearly perfect cubic CuCl QDs is used here; that is, 
the transition to the confined exciton energy levels has an even principal 
quantum number [12]. Sakakura et al. have already described the transition 
to the optically forbidden levels in a hole-burning experiment using cubic 
CuCl QDs [13]. Although they attributed the transition to an imperfect cubic 
shape, the experimental and simulation results did not show such imperfec-
tion. Thus, the transition was attributable to the energy transfer between 
the CuCl QDs via the optical near-field interaction, which is similar to the 
optically forbidden energy transfer between B800 and B850 in the earlier-
mentioned photosynthetic system.

So far, this type of energy transfer has not been observed directly because 
such a nanometric system is usually extremely complex. However, CuCl QDs 
in a NaCl matrix is a very simple system. The translational motion of the 
exciton center of mass is quantized because of the small exciton Bohr radius 
for CuCl QDs, and CuCl QDs become cubic in a NaCl matrix [13–15]. The 
potential barrier of CuCl QDs in a NaCl crystal can be regarded as infinitely 
high, and the energy eigenvalues for the quantized Z3 exciton energy level 
(nx, ny, nz) in a CuCl QD with side length L are given by
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-
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2 2 2
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π

	 (3.1)

where EB is the bulk Z3 exciton energy; M is the translational mass of an 
exciton; aB is its Bohr radius; nx, ny, and nz are quantum numbers (nx, ny, nz = 
1, 2, 3, …); and d = (L - aB) corresponds to the effective side length found 
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after considering the dead layer correction [13]. The exciton energy levels 
with even quantum numbers are dipole-forbidden states, which are optically 
forbidden [12]. However, the optical near-field interaction is finite for such 
coupling to the forbidden energy state [16].

Figure 3.1 shows schematic drawings of different-sized cubic CuCl QDs 
(X and Y) and the confined-exciton Z3 energy levels. Here, d and 2d  are 
the effective side lengths of cubic QDs X and Y, respectively. According to 
Eq. (3.1), the quantized exciton energy levels of (1,1,1) in QD X and (2,1,1) in 
QD Y resonate with each other. Under this resonant condition, the coupling 
energy of the optical near-field interaction is given by the following Yukawa 
function [16,17], which was discussed in Chapter 2:

	

V r
r

r
( )

exp( )
.= - ⋅α µ
	 (3.2)

Here, r is the separation between the two QDs, a is the coupling coefficient, 
and the effective mass of the Yukawa function µ is given by

	

µ =
+2E E E
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where ENaCl is the exciton energy of the NaCl matrix. The value of a depends 
on the experimental conditions, which were estimated in Chapter 2. Assum-
ing that the two CuCl QDs in the NaCl matrix have side lengths 5 and 7 
nm (a size ratio of 1 2: ) and the interdot distance is 6.1 nm, then the 
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Figure 3.1
Upper: Schematic drawings of closely located cubic CuCl QDs X and Y with effective side 
lengths (L—aB) of d and 2 d,  respectively, where L and aB are the side lengths of the cubic QDs 
and the exciton Bohr radius, respectively. Lower: Their exciton energy levels. nx, ny, and nz rep-
resent quantum numbers of an exciton. EB is the exciton energy level in a bulk crystal.
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coupling energy V (r) is 5.05 meV.  This corresponds to an energy transfer time of 
130 ps because of the optical near-field coupling, which is much shorter than 
the exciton lifetime of a few nanoseconds. In addition, the intersublevel tran-
sition tsub, from higher exciton energy levels to the lowest [18], as shown in 
Figure 3.1, is generally less than a few picoseconds and is much shorter than 
the transfer time. Therefore, most of the energy of the excitation in a cubic 
CuCl QD with a side length of d is transferred to the lowest exciton energy 
level in a neighboring QD with a side length of 2d  and recombines radia-
tively in the lowest level of (1, l, 1) in QD Y.

The CuCl QDs embedded in NaCl matrix used experimentally were fabri-
cated using the Bridgman method and successive annealing, and the average 
size of the QDs was found to be 4.3 nm. The sample was cleaved just before 
the near-field optical spectroscopy experiment to keep the sample surface 
clean. The cleaved surface of a 100-mm-thick sample was sufficiently flat for 
the experiment; that is, its roughness was less than 50 nm, at least within a 
few microns squared. A 325-nm He–Cd laser was used as the light source. 
A double-tapered fiber probe was fabricated using chemical etching and a 
150-nm gold coating was applied [19]. A 50-nm aperture was fabricated using 
the pounding method [20].

The curve in Figure 3.2(a) shows the far-field luminescence spectrum of 
a sample that was recorded with a probe-sample separation of 3 mm in col-
lection-mode operation [17] of a cryogenic near-field optical microscope at 
15 K. It represents the collective luminescence intensity from several cubic 
CuCl QDs, and is inhomogeneously broadened owing to the size distribu-
tion of the QDs. Figure 3.2(b) shows the differential spectrum, which is the 
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Figure 3.2
PL spectra. (a) Far-field PL spectrum of a sample recorded with a probe-sample separation 
of 3 μm for collection-mode operation at 15 K. (b) The differential PL spectrum, which is the 
intensity difference between the luminescence measured with probe-sample separations of 
3 mm and less than 10 nm. X, Y, and Z correspond to the wavelengths of the lowest exciton state 
in cubic QDs with side lengths of 4.6, 6.3, and 5.3 nm, respectively.
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intensity difference between the luminescence measured with probe-sample 
separations of 3 mm and less than 10 nm. This curve consists of several 
fine structures that appear as the contribution of the QDs near the apex 
of the probe because of the drastic increase in the measured luminescence 
intensity for a probe-sample separation of less than 10 nm. The average 
density of the QDs is 1017 cm–3. Therefore, the average separation between 
the QDs is less than 30 nm as estimated from the concentration of CuCl. 
Consequently, the spectral peaks in Figure 3.2(b), obtained from near-field 
measurements using the 50-nm aperture fiber probe, originate from sev-
eral QDs of different sizes. Among these, peaks X and Y correspond to the 
confined Z3-exciton energy levels of quantum number (1,1,1) for the cubic 
QDs with side lengths (L) of 4.6 and 6.3 nm, respectively. Their effective 
side lengths d are 3.9 and 5.6 nm, which is a size ratio close to 1 2: , so 
the (1,1,1) and (2,1,1) quantized exciton levels resonate with each other and 
this is responsible for the energy transfer between the QDs. Figures 3.3(a) 
and (b) show the spatial distributions of the luminescence intensity, that 
is, near-field optical microscope images, for peaks X and Y in Figure 3.2(b), 
respectively. The spatial resolution, which depends on the aperture diam-
eter of the near-field probe, was smaller than 50 nm. These images clearly 
show anticorrelation features in their intensity distributions, as mani-
fested by the dark and bright regions surrounded by dashed white curves. 

Fig. 3.3Fig. 3.3

(a) X:4.6nm(a) X:4.6nm (b) Y:6.3nm(b) Y:6.3nm

(c) Z:5.3nm(c) Z:5.3nm

Figure 3.3
Spatial distributions of the near-field luminescence intensity for the peaks marked X, Y, and Z 
in Figure 3.2(b).
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To confirm the anticorrelation feature more quantitatively, Figure 3.4 shows 
the values of the cross-correlation coefficient C between the spatial distribu-
tion of the intensity of the luminescence emitted from the (nx, ny, nz) level 
of an exciton in a cubic QD with a 6.3 nm side length and that from the 
(1,1,1) level in a QD with a different side length L. They have been normal-
ized to that of the auto-correlation coefficient of the luminescence intensity 
from the (1,1,1) level in a 6.3-nm QD, which is identified by an arrow A in 
Figure 3.4. To calculate the values of C, a spatial Fourier transform was per-
formed on the series of luminescence intensities in the chain of pixels inside 
the region surrounded by the dashed white curves in Figure 3.3. The large 
negative value of C identified by an arrow B clearly shows the anticorrelation 
feature between Figures 3.3(a) and (b), that is, between the (2,1,1) level in a 
6.3-nm QD and the (1,1,1) level in a 4.6-nm QD.

This anticorrelation feature can be clarified by noting that these spatial 
distributions in luminescence intensity represent not only the spatial distri-
butions of the QDs, but also some kind of resonant interaction between the 
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Figure 3.4
Values of the cross-correlation coefficient C between the spatial distribution of the intensity of 
the luminescence emitted from the (nx, ny, nz) level exciton in a QD with a 6.3 nm side length 
and that from the (1,1,1) level in a QD with a different side length L. They have been normalized 
to that of the auto-correlation coefficient of the luminescence intensity from the (1,1,1) level in a 
6.3-nm QD, which is identified by an arrow A. The other four arrows (B–E) represent the cross-
correlation coefficient C between higher levels in a 6.3-nm QD and other sized QDs. They are 
between (B) the (2,1,1) level in a 6.3-nm QD and the (1,1,1) level in a 4.6-nm QD, (C) the (2,2,1) 
level in a 6.3-nm QD and the (1,1,1) level in a 3.9-nm QD, (D) the (3,1,1) level in a 6.3-nm QD and 
the (1,1,1) level in a 3.6-nm QD, and (E) the (2,2,2) level in a 6.3-nm QD and the (1,1,1) level in a 
3.5-nm QD. For reference, the white arrow represents the value of C between the (2,1,1) level in 
a 6.3-nm QD and the nonresonant (1,1,1) level in a 5.3-nm QD.
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QDs. This interaction induces energy transfer from QDs X (L = 4.6 nm) to 
QDs Y (L = 6.3 nm) because most of the 4.6-nm QDs located close to 6.3-nm 
QDs cannot emit light, but instead transfer the energy to the 6.3-nm QDs. As 
a result, in the region containing embedded 6.3-nm QDs, the luminescence 
intensity in Figure 3.3(a) from 4.6-nm QDs is low, while the corresponding 
position in Figure 3.3(b) is high. As noted earlier, it is reasonable to attribute 
the origin of the interaction to the near-field energy transfer. Anticorrela-
tion features appear for every pair of QDs with different sizes to satisfy the 
resonant conditions of the confinement exciton energy levels. This is the first 
spatially resolved observation of energy transfer between QDs via an optical 
near field.

Conversely, no anticorrelation features were found in the spatial distri-
butions of the luminescence intensities from other QDs whose sizes did 
not satisfy the resonant condition given by Eq. (3.1). This was confirmed 
by comparing Figure 3.3(a) to Figure 3.3(c). Here, Figure 3.3(c) shows the 
spatial distribution of the luminescence intensity of peak Z in Figure 3.2(b), 
which corresponds to cubic QDs with a side length of 5.3 nm. The white 
arrow in Figure 3.4 indicates the relationship between Figures 3.3(b) and 
(c). The negligibly small value of C identified by this arrow confirms the 
absence of the anticorrelation feature between the exciton energy levels in 
a 6.3-nm QD and the (1,1,1) level in a 5.3-nm QD as a result of their non-
resonant state.

Furthermore, arrows C–E clearly represent large negative values of C, which 
indicates the existence of the anticorrelation feature between higher levels in 
6.3-nm QD and other sized QDs. They are; (arrow C) the (2,2,1) level in a 6.3-nm 
QD and the (1,1,1) level in a 3.9-nm QD, (arrow D) the (3,1,1) level in a 6.3-nm 
QD and the (1,1,1) level in a 3.6-nm QD, and (arrow E) the (2,2,2) level in a 
6.3-nm QD and the (1,1,1) level in a 3.5-nm QD. These anticorrelation fea-
tures can also be explained by the resonant optical near-field energy trans-
fer. The features represented in this figure support the interpretation of the 
experimental results. The large cross-correlation coefficient C identified by 
arrows D and E in Figure 3.4 are evidence of multiple energy transfers. Since 
the (1,1,1) levels in 3.5- and 3.6-nm QDs resonate or nearly resonate with the 
(2,1,1) level in a 4.6-nm QD, another route of energy transfer exists in addi-
tion to direct transfer from the 3.5- and 3.6-nm QDs to 6.3-nm QDs, that is, 
the transfer via the 4.6-nm QDs. Such multiple energy transfers increase the 
value of C identified by arrows D and E in Figure 3.4.

The anticorrelation features appear for every pair of QDs if the resonant 
conditions of the confinement exciton energy levels are satisfied. Figure 3.5 
shows two-dimensional plots of the cross-correlation coefficient C between 
two QDs. The white broken lines indicate the QD pairs with resonant energy 
levels of (2,1,1)–(1,1,1), (2,2,1)–(1,1,1), (3,1,1)–(1,1,1), and (2,2,2)–(1,1,1). The large 
negative value along the broken lines results from the optical near-field 
energy transfer between QDs. This evidence of the near-field energy trans-
fer between QDs can give rise to a variety of applications, as shown in the 
following sections.
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3.2	 Device Operation

Optical fiber transmission systems require increased integration of photonic 
devices for higher data transmission rates. It is estimated that the size of 
photonic matrix switching devices should be reduced to a subwavelength 
scale because in the near future it will be necessary to integrate more than 
10,000 × 10,000 input and output channels on a substrate [7]. Because conven-
tional photonic devices, for example, diode lasers and optical waveguides, 
have to confine light waves within their cavities and core layers, respectively, 
their minimum sizes are limited by the diffraction of light [21]. Therefore, 
they cannot meet the size requirement, which is beyond this diffraction 
limit. An optical near field is free from the diffraction of light and enables 
the operation and integration of nanometric optical devices. That is, by using 
a localized optical near field as the carrier, which is transmitted from one 
nanometric element to another, the above requirements can be met. Based 
on this idea, nanometer-sized photonic devices have been proposed, which 
are called “nanophotonic devices” [7]. A nanometric all-optical AND gate (i.e., 
a nanophotonic switch) is one of the most important devices for realizing 
nanophotonic integrated circuits, and the operation of a nanophotonic AND 
gate has been already demonstrated using a coupled QD system.
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Two-dimensional plots of the cross-correlation coefficient C between two cubic QDs. The white 
lines show QDs pairs with resonant energy levels of (2,1,1)–(1,1,1), (2,2,1)–(1,1,1), (3,1,1)–(1,1,1), 
and (2,2,2)–(1,1,1).
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A logic gate, for example, an AND gate and a NOT gate, is a block in a 
digital system. Logic gates have some inputs and some outputs, and every 
terminal is under one of two binary conditions, low (0) or high (1), given by 
different optical intensities for the optical device. The logic state of the input 
terminal is controlled by the optical input signal, and the logic state of the 
output terminal changes depending on the logic state of the input terminals. 
An intensity of approximately zero and a much higher intensity are prefer-
able in the low and high logic states, respectively, such that the ratio of high 
to low intensity exceeds 30 db. For nanophotonic devices, the high state (1), 
which is called “true,” is defined simply as the higher intensity state and the 
low state (0), which is called “false,” is defined as the lower intensity state.

Section 3.2.1 presents the operation of nanophotonic AND gates using three 
CuCl QDs [22, 23], whereas Section 3.4.2 presents the use of a ZnO nanorod for 
room-temperature operation [24]. A nanophotonic NOT gate using CuCl QDs 
is outlined in Section 3.2.2. The optically forbidden energy transfer between 
neighboring nanostructures via the optical near-field interaction, which was 
reviewed in Section 3.1, is a key phenomenon for these operations.

3.2.1	 Nanophotonic and Gate

Operation of a nanophotonic AND gate using cubic CuCl QDs embedded in 
a NaCl matrix has been demonstrated [22,23]. When closely spaced QDs with 
quantized energy levels resonate with each other, near-field energy is trans-
ferred between them, even if the transfer is optically forbidden, as noted in 
Chapter 2 and Section 3.1. Figure 3.6(a) shows the circuit symbol and logic 
combinations for an AND gate. The output is “true” when both inputs are 
“true”; otherwise, the output is “false.” Figures 3.6(b) and (c) explain the 
“false” and “true” states of the proposed nanophotonic AND gate. Three 
cubic QDs, QDinputA, QDinputB, and QDoutput, are used as the two inputs and out-
put ports of the AND gate, respectively. Assuming an effective size ratio of 
1 2 2: : ,  the quantized energy levels (1,1,1) in QDinputA, (2,1,1) in QDoutput, and 
(2,2,2) in QDinputB resonate with each other. Furthermore, energy levels (1,1,1) 
in QDoutput and (2,1,1) in QDinputB also resonate. In the “false” state operation 
(Figure 3.6(b)), for example, input A is “true” and input B is “false,” almost all 
of the exciton energy in QDinputA is transferred to the (1,1,1) level in the neigh-
boring QDoutput, and then to the (1,1,1) level in QDinputB. Therefore, the input 
energy escapes to QDinputB, and consequently no optical output signals are 
generated from QDoutput. This means that the output is “false.” In the “true” 
state (Figure 3.6(b)) when inputs A and B are both “true,” the escape route to 
QDinputB is blocked by the excitation of QDinputB because of state filling in QDin-

putB on applying the input B signal. Therefore, the input energy is transferred 
to QDoutput and an optical output signal is generated. This means that the out-
put is “true.” These operating principles are realized with the condition tex > 
tet > tsub, where tex, tet, and tsub are the exciton lifetime, energy transfer time 
between QDs, and inter sublevel transition time, respectively. Since tex, tet, 
and tsub are a few nanoseconds, 100 ps, and a few picoseconds, respectively, 
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for the CuCl QDs used in a NaCl matrix, the condition of operation described 
in Section 3.1 is satisfied.

In an experiment using CuCl QDs embedded in a NaCl matrix, a double-
tapered UV fiber probe was fabricated using chemical etching and coated 
with 150-nm-thick aluminum (Al) film. An aperture less than 50 nm in 
diameter was formed by the pounding method [20]. To confirm the AND-
gate operation, the fiber probe was used to search for a trio of QDs that had 
an effective size ratio of 1 2 2: : .  Since the homogeneous line width of a 
CuCl QD increases with the sample temperature [25,26], the allowance in 
the resonatable size ratio is 10% at 15 K. The separation of the QDs must be 
less than 30 nm for operation of the proposed AND gate because the energy 
transfer time increases with the separation; moreover, it must be shorter than 
the exciton lifetime. It is estimated that at least one trio of QDs that satisfies 
these conditions exists in a 2 × 2 mm scan area. To demonstrate AND-gate 
operation, a QD trio had to be found in the sample, as shown in Figure 3.6.

Near-field photoluminescence (PL) pump-probe spectroscopy was used 
to find the QD trio by fixing the fiber probe under three excitation condi-
tions: (1) with the pump laser only (l = 385 nm), (2) with the probe laser 
only (l = 325 nm), and (3) with both the pump and probe lasers. The wave-
length of the pump laser was tuned to the (1,1,1) exciton energy level in a 
6.3-nm CuCl QD. To clarify the PL difference with and without the pump, the 
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Figure 3.6
Principle of AND-gate operation. (a) The circuit symbol and logic combinations for an AND gate. 
(b) and (c) The “false” and “true” states of the nanophotonic AND gate.
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differential PL intensity (PLdiff) was defined as PLdiff = PLpump&probe-PLpump-
PLprobe, where PLpump, PLprobe, and PLpump&probe are the PL intensities measured 
under conditions (1), (2), and (3), respectively. Figure 3.7 shows the PLdiff spec-
trum obtained at the position where the QD trio exists. In this figure, two 
satellite peaks appear at the positions of the (1,1,1) levels in the 4.6-nm and 
3.5-nm QDs. The appearance of the satellite peaks means that the AND-gate 
system proposed in Figure 3.6 was present in the area under the probe. In 
other words, a trio of cubic QDs with sizes of 3.5, 4.6, and 6.3 nm existed. 
Because their effective respective sizes L - aB were 2.8, 3.9, and 5.6 nm (aB: an 
exciton Bohr radius of 0.68 nm in CuCl), the size ratio was close to 1 2 2: :  
and they could be used as QDinputA, QDoutput, and QDinputB, respectively. The 
pumping to the 6.3-nm QD blocks the energy transfer from the 3.5-nm and 
4.6-nm QDs to the 6.3-nm QD because of state filling of the 6.3-nm QD, and 
the 3.5-nm and 4.6-nm QDs emit light that results in the satellite peaks in 
Figure 3.7. Therefore, a QD-trio for a nanophotonic AND gate was found. 
The PL peak from the 4.6-nm QD corresponds to the output signal in 
Figure 3.6(c). The PLdiff intensity from the 4.6-nm QD was 0.05–0.02 times the 
PL intensity from the 6.3-nm QD, which was obtained with the probe laser 
only. This value is quite reasonable considering the pumping pulse energy 
density of 10 mW/cm2 because the probability density of excitons in a 6.3-nm 
QD is 0.1–0.05 [25], which is close to the PLdiff intensity from the 4.6-nm QD. 
This result indicates that the internal quantum efficiency of the AND-gate 
system is close to unity.

In the experiment examining the AND-gate operation, the second har-
monics of Ti:sapphire lasers (wavelengths 379.5 and 385 nm), which were 
tuned to the (1,1,1) exciton energy levels of QDinputA and QDinputB, respectively, 
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Figure 3.7
Near-field differential PL spectra measured at the position of a QD trio acting as a nanopho-
tonic AND gate.
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were used as the signal light sources for inputs A and B. The output sig-
nal was collected by the fiber probe, and its intensity was measured using a 
cooled microchannel plate after passing through three interference filters of 
1 nm bandwidth tuned to the (1,1,1) exciton energy level in QDoutput at 383 nm. 
Figures 3.8(a) and (b) show the spatial distribution of the output signal inten-
sity in the “false” state (i.e., with one input signal only) and in the “true” state 
(i.e., with both input A and input B signals) using near-field spectroscopy at 
15 K. The insets in this figure are schematic drawings of the existing QD trio 
used for the AND gate, which was confirmed by the near-field PL spectra. 
Here, separation of the QDs by less than 20 nm was estimated theoretically 
from time-resolved PL measurements, as explained in the next paragraph 
(see the illustrations in Figure 3.8). In the “false” state, no output signal was 
observed because the energy of the input signal was transferred to QDinputB 
and swept out as PL at 385 nm. To quench the output signal in the “false” 
state, which was generated by accumulating excitons in QDinputB, the input 
signal density to QDinputA was regulated to less than 0.1 excitons in QDinputB. 
In the “true” state, a clear output signal was obtained. The output signal was 
proportional to the intensity of the input B signal, which had a density of 0.01 
to 0.1 excitons in QDinputB.

Next, the dynamic properties of the nanophotonic AND gate were evaluated 
using the time-correlation single-photon counting method. As a pulse-input 
B signal source, the 385 nm second harmonic of a mode-locked Ti:sapphire 
laser was used. The repetition rate of the laser was 80 MHz. To avoid cross 
talk originating from spectral broadening of the pulse duration between 
input signals A and B, the pulse duration of the mode-locked laser was set to 
10 ps. The time resolution of the experiment was 15 ps. Figure 3.9 shows the 
temporal evolution of the input B pulse signal (lower part) applied to QDinputB 
and the output signal (upper part) from QDoutput. The output signal increases 
synchronously with the input B pulse within less than 100 ps, which agrees 
with the theoretically expected result based on the Yukawa model [16]. As this 
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Spatial distribution of the output signal from the nanophotonic AND gate in the “false” (a) and 
“true” (b) states measured using near-field microscopy.
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signal rise time is determined by the energy transfer time between the QDs, 
the separation between the QDs can be estimated from the rise time as 
being less than 20 nm; the rise time can be shortened to a few picoseconds 
by decreasing the separation of the QDs. Since the decay time of the output 
signal is limited by the exciton lifetime, this nanophotonic AND gate can be 
operated at a few hundred megahertz, and the operating frequency can be 
increased to several gigahertz by exciton quenching using plasmon coupling 
[27]. The output signal ratio between “true” and “false” was about 10, which 
is sufficient for use as an all-optical AND gate, and can be increased using a 
saturable absorber and electric field enhancement of the surface plasmon [28].

The advantages of this nanophotonic device are its small size and high-den-
sity integration capability based on the locality of the optical near field. The 
figure of merit (FOM) of an optical AND gate should be more important than 
the switching speed. Here, the FOM is defined as F = C/Vtsw­Psw, where C, V , tsw, 
and Psw are the “true”–“false” (ON–OFF) ratio, volume of the device, switching 
time, and switching energy, respectively. Table 3.1 compares the nanophotonic 
AND gate and conventional photonic gates. The FOM of the AND gate is 10–
100 times higher than that of conventional photonic gates because its volume 
and switching energy are 10–5 times and 10–3 times those of conventional pho-
tonic gates, respectively. The materials and fabrication methods for realizing 
practical nanophotonic devices will be reviewed in Section 3.4 and Chapter 4.

3.2.2	 Nanophotonic NOT Gate

A nanophotonic NOT gate is a key device for realizing a functionally com-
plete set of logic gates for nanophotonic systems, and its operation is dem-
onstrated in this section using CuCl QDs [29]. Figure 3.10 shows a schematic 
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Temporal evolution of the input B pulse signal (upper part) and output signal (lower part) from 
the nanophotonic AND gate located in the dashed circle in Figure 3.8(b). The duration and 
repetition rate of the control pulse were 10 ps and 80 MHz, respectively.
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explanation of the nanophotonic NOT gate. QDIN and QDOUT correspond to 
the input and output terminals of the NOT gate, respectively. Assuming a 
pair of QDs with a size ratio of 1 2+α :  (a << 1), the quantized energy 
levels with the set of quantum numbers (2,1,1) in QDIN and (1,1,1) in QDOUT 

Table 3.1

Figure of merits of an optical AND-gate (*n is a real number much larger than unity)

Classification Size:V
Switching 
Time: tsw

Switching 
Energy: Psw

True-False 
Ratio: C FOM: F

 

Nanophotonic (l/10)3 <100 ps 1 photon 10 >1

Sublevel transition (nl)3* 100 fs 103 photons 103 10–1

Mach-Zhender (nl)3 10 ps 10–18 J 102 10–2

c(3): Nonresonant (n l)3 10 fs 106 photons 103 10–3

c(3): Resonant (nl)3 1 ns 103 photons 104 10–4

Optical MEMS (nl)3 1ms 10–18 J 104 10–5
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Figure 3.10
A nanophotonic NOT gate. (a) and (b) Schematic explanation of the “true” and “false” states 
using cubic QDs. (c) The experimental result of hole burning for CuCl QDs embedded in a 
NaCl matrix at 5 K.
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are slightly nonresonant with each other. The energy from the optical 
power supply generates an exciton in QDOUT. Without the input signal (i.e., 
the input is “false”), the exciton in QDOUT disappears and emits a photon, 
which is observed as an output signal, as shown in Figure 3.10(a). That is, 
input = “false” and output = “true.” Conversely, by applying the input signal 
(i.e., the input is “true”), the energy level (2,1,1) in QDIN becomes resonant 
to (1,1,1) in QDOUT because of broadening of its line width. This broaden-
ing was confirmed experimentally for CuCl QDs. Figure 3.10(c) shows the 
spectral hole in the absorption spectrum of CuCl QDs observed in a far-field 
hole-burning experiment at 5 K; antiholes appear on both sides of the spec-
tral hole. This experimental result shows that the excitation broadens the 
homogeneous line width of QDs, which might arise from shortening of the 
phase relaxation time of the excitons in QDs because of carrier–carrier scat-
tering. Consequently, the exciton energy in QDOUT is transferred to QDIN via 
an optical near-field interaction [11], which suppresses output signal genera-
tion (Figure 3.10(b), that is, input = “true” and output = “false”). As a result, 
the temporal behavior of the output signal is the inverse of that of the input 
signal. By selecting a suitable threshold to distinguish “true” and “false,” 
these behaviors are used for a NOT gate.

CuCl QDs embedded in a NaCl matrix were used to verify operation of 
the NOT gate, as CuCl QDs offer discrete energy levels similar to the exciton 
described in Figure 3.10 [13]. The mean size of the QDs was 4.1 nm and the 
mean distance between the QDs was 25 nm. In the experiment, the second 
harmonics of a continuous-wave (CW) Ti:sapphire laser (hw = 3.2704 eV) and 
a mode-locked Ti:sapphire laser (hw = 3.2195 eV) were used as the optical 
power supply and input signal pulse, respectively. The respective power 
densities were 1 and 2 W/cm2 at the sample surface. Under the excitation 
condition, fewer than 0.1 excitons occurred in a QD. These lasers excited the 
sample from its back and the output signal was observed using a near-field 
spectrometer in collection mode. The sample temperature was controlled 
at 15 K. To find the QD pair acting as a nanophotonic NOT gate, the QD 
positions were mapped by measuring the luminescence distribution on the 
sample, which was obtained using a near-field spectrometer using He–Cd 
laser excitation (hw = 3.81 eV). The signal was observed after several QD pairs 
were selected as candidates for nanophotonic NOT-gate operation. Finally, a 
nanophotonic NOT gate was found, with the probability of about one device 
per 1 mm2 of scanning area. Figure 3.11(a) shows the spatial distribution of 
the optical near-field output-signal intensity when an input signal is “false” 
(i.e., with the optical power supply only). Figure 3.11(b) shows the distribu-
tion when the input signal is “true.” The insets in this figure are schematic 
drawings of an existing QD pair that function as a NOT gate, which was 
confirmed from the PL spectra. The sizes of the two QDs estimated from the 
wavelengths of their luminescence were 5.0 and 6.3 nm, which satisfy the 
NOT-gate operation condition, as shown in Figure 3.10. Note that the photon 
energy of the optical power supply (hw = 3.2704 eV) is maintained nonreso-
nant to the (1,1,1) exciton level in the 5.0-nm QD (hw = 3.2304 eV) to decrease 
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the artifact originating from the laser by using narrowband optical filters 
and observing a clear output signal. Sufficiently low optical power was sup-
plied to the 5.0-nm QD from neighboring QDs [11,30]. The NOT-gated signal 
appears at the center of the dashed circle in Figure 3.11, from which the size 
of the device was estimated to be 20 nm. Comparison of Figs. 3.11(a) and (b) 
clearly demonstrates the operation of a NOT gate.

The dynamic behavior of the NOT gate was observed using the time-corre-
lation single-photon counting method. Figure 3.12 shows the temporal evo-
lution of the output signal. The horizontal dashed line indicates the output 
signal level without the input signal pulses (i.e., the input is “false”). Without 
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Figure 3.11
The spatial distribution of the output signal from a nanophotonic NOT gate measured using 
near-field microscopy at Input = “false” (a) and Input = “true” (b).
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The temporal evolution of the output (upper) and input pulse (lower) signals from the nano-
photonic NOT gate circled in Figure 3.11.

C9721_C003.indd   124 4/28/08   2:46:24 PM

© 2008 by Taylor & Francis Group, LLC



Nanophotonic Devices	 125

the input pulses, the signal level is constant, since a CW-laser was used as the 
optical power supply. This signal level is defined as “true.” With the input 
pulses, the output signal increases within a time period shorter than the time 
resolution of 20 ps because of the artifact of the input pulses, and it decreases to 
a level lower than the initial level. Here, the signal level lower than the dotted 
line is defined as “false.” Then, the output signal level becomes “false” 50 ps 
after the “true” input pulse. The fall time of the output signal to the minimum 
level is about 100 ps, which corresponds to the energy transfer time between 
QDs. The “false” output signal level recovers to the “true” level within 10 ns. 
The recovery time is longer than the exciton lifetime in 6.3-nm CuCl QDs 
(tex  ~ 1 ns) because the energy transfer from the optical power supply affects 
the recovery. That is, the recovery time depends on the competition between 
exciton annihilation via recombination and exciton creation via energy 
transfer.

The advantages of this nanophotonic NOT gate are its small size and low 
power consumption, as explained in Section 3.2.1.

3.3	 Interconnection with Photonic Devices

An interconnection device needs to be developed to collect the incident 
propagating light and drive the nanophotonic device for efficient operation 
of the system [7,31,32]. Conventional far-field optical devices, such as convex 
lenses and concave mirrors, cannot be used for this interconnection because 
of their diffraction-limited operation. This section demonstrates a novel opti-
cal device, the optical nanofountain, which concentrates optical energy in a 
nanometric region using optical near-field energy transfer among QDs. This 
nanometric optical device enables not only highly efficient interconnection 
to nanophotonic devices, but also a variety of nanometric optical operations 
and measurements, such as a nanometric optical tweezers and highly sensi-
tive nanometric-resolution microscopes.

As noted [10,11], the principle of the energy transfer among QDs is equiv-
alent to that of the light-harvesting photosynthetic system, which concen-
trates and harvests optical energy into nanometric photosynthetic systems 
in a sophisticated manner. Figure 3.13 shows a schematic explanation of 
the photosynthetic purple bacteria Rhodopseudomonas acidophila [33,34], 
which has two light-harvesting antennae: LH1 and LH2. LH1 contains a 
32-bacteriochlorophyll (BChl) ring and LH2 contains a B800 ring with nine 
BChls and a B850 ring with 18 BChls. They harvest photons and efficiently 
transfer the excitation energy from B800 to LH1, where the excitonic energy 
of B800 is higher than that of LH1. This unidirectional energy transfer is a 
result of the nanometric dipole–dipole interaction, that is, an optical near-
field interaction [16], among BChl rings with low energy dissipation [8]. The 
optical nanofountain, i.e., the optical energy concentrator, operates in the 
same manner as the light-harvesting system in photosynthetic bacteria.
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The optical nanofountain is operated using the energy transfer between QDs 
via an optical near-field interaction, as shown in Figure 3.14(a) [16–18]. When 
closely spaced QDs with quantized energy levels resonate with each other, near-
field energy is transferred between them. Assuming that an effective size ratio 
between closely located cubic QD-A and QD-B is 1 2: , the quantized energy 
levels (1,1,1) in QD-A and (2,1,1) in QD-B resonate with each other, so that almost 
all of the excitation energy in QD-A is transferred to the (1,1,1) level in QD-B via 
near-field energy transfer and subsequent intersublevel relaxation [18]. This uni-
directional energy transfer from smaller to larger QDs concentrates the optical 
energy in a nanometric region in a biomimetic manner. When different sized 
QDs with resonant energy sublevels are distributed as shown in Figure 3.14(b), 
energy transfer occurs via the optical near field, as illustrated by the arrows. 
Light incident to the QD array is ultimately concentrated in the largest QD. The 
area of optical energy concentration corresponds to the size of the QD.

The name optical nanofountain was proposed because light spurts from the 
largest QD after it is concentrated by stepwise energy transfer from smaller 
neighboring QDs, so that this device looks like a fountain in a basin, as shown 
schematically in Figure 3.14(c). From the experimental tests of nanophotonic 
AND-gate operation in Section 3.2.1, the concentration efficiency of this device 
should be close to unity because no other possible relaxation paths exist in the 
system. The operation of an optical nanofountain was demonstrated using 
CuCl cubic QDs embedded in a NaCl matrix. The average QD size was 4.2 nm 
and the average separation was less than 20 nm. Although the QDs have an 
inhomogeneous size distribution and are arranged in the matrix randomly, the 
operation can be confirmed if an appropriate QD group is found using a nano-
metric-resolution near-field spectrometer. For the operation, the optimum sam-
ple temperature T was 40 K. At T < 40 K, the resonant condition becomes tight 
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Figure 3.13
Schematic explanation of the photosynthetic purple bacteria Rhodopseudomonas acidophila.

C9721_C003.indd   126 4/28/08   2:46:27 PM

© 2008 by Taylor & Francis Group, LLC



Nanophotonic Devices	 127

because of narrowing of the homogeneous line width of the quantized energy 
sublevels, while at T > 40 K, the unidirectional energy transfer is obstructed by 
the thermal activation of excitons in the QDs. A 325-nm He–Cd laser was used 
as the excitation light source. A double-tapered UV fiber probe with an aper-
ture 20 nm in diameter was fabricated using chemical etching and coated with 
a 150-nm-thick Al film to ensure sufficiently high detection sensitivity [19].

Figure 3.15(a) shows a typical near-field PL spectrum of the sample in col-
lection-mode operation [17]. It is broadened inhomogeneously because of the 
quantum size effect and size distribution of the QDs. The PL of the exci-
ton molecules has never been observed since the excitation density is less 
than 1 W/cm2. The spectral curve includes several fine peaks, which are the 
PL spectra that come from different sized QDs. Because of the size-selec-
tive QD position from the spatial distribution of the PL peak intensity, the 
two-dimensional scanning measurement of the PL intensity collected by the 
photon energy allows us to search for QDs acting as optical nanofountains. 
At 40 K, approximately one optical nanofountain was found in a 5 × 5 mm 
region on the sample surface experimentally.
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Figure 3.14
Optical nanofountain. (a) Schematic explanation of the energy transfer between QDs via an 
optical near-field interaction. Enx, Eny, Enz (nx, ny, nz) = (1,1,1) or (2,1,1) is the quantum number rep-
resenting the excitonic energy level in a QD. (b) Schematic explanation of the optical nanofoun-
tain and unidirectional energy transfer. (c) Schematic drawing of a nanofountain in a basin.
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Figure 3.15(b) shows the typical spatial distribution of the PL from QDs 
operating as an optical nanofountain. Here, the collected PL photon energy, 
Ep, was 3.215 eV ≤ Ep ≤ 3.350 eV, which corresponds to the PL from QDs of size 
2.5 nm ≤ L ≤ 10 nm. The bright spot inside the dashed circle corresponds to 
a spurt from an optical nanofountain, that is, the focal spot of the nanomet-
ric optical condensing device. The diameter of the focal spot was less than 
20 nm, which was limited by the spatial resolution of the near-field spec-
trometer. From the Rayleigh criterion (i.e., resolution = 0.61·l/NA) [35], its 
numerical aperture (NA) was estimated to be 12 for l = 385 nm. To dem-
onstrate the detailed operating mechanism of the optical nanofountain, we 
show the size-selective PL intensity distribution; that is, the photon energy 
is shown in Figures 3.16(a)–(d). The dashed circles and areas scanned by the 
probe are equivalent to those in Figure 3.15(b). The PL intensity distribution 
is shown using a gray scale, with normalized scales of (a) 0–0.6, (b) 0–0.2, (c) 
0–0.1, and (d) 0–1. The cubes represent QDs whose positions were estimated 
from the PL intensity distribution. In Figure 3.16(a), a single QD of 6 nm ≤ L 
≤ 10 nm is observed at the center. In Figures 3.16(b) and (c), the observed QDs 
are 4 nm ≤ L ≤ 6 nm and 2.5 nm ≤ L ≤ 4 nm, respectively, and they are located 
around the dashed circles. Figure 3.16(d) shows the total luminescence inten-
sity distribution obtained as the integral of Figures 3.16(a)–(c). The bright 
spot in this figure agrees with the position of the largest QD in Figure 3.16(a) 
and the smaller QDs are distributed around it. This means that the optical 
energy is concentrated to the largest QD. The PL intensity at the bright spot is 
more than five times greater than that from a single isolated QD with L = 10 
nm, while the PL intensities of the smaller surrounding QDs are lower than 
those of the isolated QDs. This indicates that optical energy is transferred 
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Figure 3.15
Experimental results for an optical nanofountain. (a) Near-field PL spectrum of CuCl QDs at 
40 K. The relationship between the photon energy of PL and the size of the QDs is shown above 
and below the horizontal axes. (b) Spatial distribution of the PL intensity in an optical nano-
fountain. The bright spot surrounded by a dashed circle is the focal spot.
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from smaller to larger QDs and is concentrated in the largest QD, as shown 
by the arrows in Figure 3.16(d). This device can also be used as a frequency 
selector based on the resonant frequency of the QDs, which can be applied, 
for example, to frequency domain measurements, multiple optical memories, 
multiple optical signal processing, and frequency division multiplexing. The 
application of the optical nanofountain will be discussed in Chapter 5.

3.4	 Room-Temperature Operation

Practical nanophotonic devices for room-temperature operation are under 
development using III-V compound semiconductor QDs and ZnO nanorods. 
They are reviewed in this section.

0 0.6 0 0.2

0 0.1 0 1

(b)(a)

(d)

50 nm

(c)

Figure 3.16
Spatial distribution of the PL intensity of CuCl QDs of (a) 6 nm ≤ L ≤ 10 nm (3.215 eV ≤ Ep ≤ 3.227 eV), 
(b) 4 nm ≤ L ≤ 6 nm (3.227 eV ≤ Ep ≤ 3.254 eV), (c) 2.5 nm ≤ L ≤ 4 nm (3.271 eV ≤ Ep ≤ 3.350 eV), and 
(d) the total for 2.5 nm ≤ L ≤ 10 nm (3.215 eV ≤ Ep ≤ 3.350 eV) for the same area as in Figure 3.15(b). 
The cubes represent the positions estimated from the PL intensity distribution.
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3.4.1	U sing III-V Compound Semiconductor QDs

Of the III-V semiconductors, InAlAs is one of the best materials for such 
practical devices because its bandgap energy can be controlled widely from 
0.3 to 2.2 eV and it is easy to prepare samples with a high density of QDs. As 
the first step, In0.5Al0.5As QDs were prepared using molecular beam epitaxy 
(MBE) in S-K mode growth [36] to make the bandgap energy exceed 1.6 eV, 
at which standard photodetectors have high sensitivity. Figures 3.17(a) and 
(b) show sample structures and an atomic force microscope (AFM) image 
after the growth of QD layers. To operate the nanophotonic device, double 
QD layers were grown; the mean QD size was 5 nm in height and 25 nm in 
diameter. Using this fabrication method, the QDs could be aligned vertically 
and the sheet density of QDs was 1011 cm–2. Therefore, both the vertical and 
horizontal distances between QDs were about 30 nm, and vertical and hori-
zontal coupling of QDs was expected via the optical near-field interactions.

To investigate the suitability of the fabricated sample as a nanophotonic 
device, the far- and near-field PL spectra were measured. In Figure 3.17(c), the 
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Figure 3.17
InAlAs QDs and PL spectra. (a) The structures of InAlAs QDs. (b) An AFM image after the 
growth of QD layers. (c) Far-field (dashed curve) and near-field (solid curve) PL spectra of 
InAlAs QDs.
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dashed curve shows the far-field PL spectrum at 12 K. The PL around 1.8 eV 
comes from the In0.5Al0.5As QDs that were broadened owing to their size inho-
mogeneity. The solid curve shows the typical near-field PL spectrum at 11 K. 
For near-field spectroscopy, a He–Ne laser (�w = 1.958 eV) was used to obtain 
the PL peak from a single QD at 1.7569 eV in illumination-collection mode 
operation. The spectral line width was less than 500 meV. It was free from size 
inhomogeneity and limited by the spectral resolution of the spectrometer. This 
narrowness of the PL spectra indicates that the sample was of high quality.

Figure 3.18 shows near-field PL spectra at different positions on the sample 
surface. The insets show the intensity distributions of the respective PL peaks 
QD1 and QD2. As their photon energies and intensity distributions differed, 
PL peaks QD1 and QD2 came from different QDs, confirming the existence of 
several QDs within an area of 1 mm2. The observed density of QDs was much 
lower than the density of the QDs measured using AFM because the energy 
transfer to the nonradiative relaxation path in the surface QD layer and non-
radiative energy dissipation caused the low QD density measured using 
near-field spectroscopy. The PL efficiency of QDs without a cap layer is very 
low because of nonradiative recombination [37]. When horizontal and verti-
cal energy transfer to the top QD layer takes place without a cap layer, most 
of the QDs dissipate the excitation energy nonradiatively. This supports the 
postulate that the sample acted as the desired nanophotonic device because 
the energy transfer is necessary for the operation of the nanophotonic device. 
In addition, in this sample, the intralayer energy transfer is negligible in the 
experiment because most of the excitation energy was transferred to the QDs 
with the fastest relaxation time and lowest energy level, and the observed 
QDs had no transfer destinations (or negligible small), since a single QD was 
observed with high-intensity PL.
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Figure 3.18
Near-field PL spectra of different InAlAs QDs at different positions. The insets show the PL 
intensity distributions on the sample surface.
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Figure 3.19 shows the temporal evolution of the signal obtained from the 
InAlAs QDs. In the measurement, the probe position was fixed at the bright 
region on the sample surface, that is, the bright spot shown in Figure 3.18, 
and this region was excited using a CW He–Ne laser (�w = 1.958 eV) and 
mode-locked Ti:sapphire laser (�w = 1.722 eV). The photon energy of the 
luminescence collected using a spectral filter was 1.745–1.796 eV. The out-
put signal decreased synchronously with the excitation pulse of the mode-
lock laser and recovered to the signal level without pumping. Specifically, 
the observed QDs acted as a NOT gate. The mechanism of this NOT-gate 
operation observed in the double-layer InAlAs QDs is explained as follows: 
With the CW laser only, part of the scanning region is bright because most 
of the excitation energy is dissipated via nonradiative relaxation following 
the energy transfer between QDs. Some of the excitation energy can reach 
the radiative QDs. With the CW and mode-locked lasers, the energy trans-
fer paths to the radiative QDs disappear because other relaxation paths to 
the nonradiative QDs are generated because of spectral broadening by the 
mode-locked laser pulses. 

3.4.2	U sing a ZnO Nanorod with Quantum Wells

This section reviews AND-gate operation using ZnO nanorods [38]. ZnO 
is a promising material for realizing the room-temperature operation of 
nanophotonic devices since its exciton binding energy, Eex, exceeds the ther-
mal energy (26 meV) at room temperature. Eex is reported to increase to 
110 meV in ZnO/ZnMgO multiple quantum well (QW) structures [39], which 
is much larger than the value for other materials such as GaN/AlGaN mul-
tiple QWs (68 meV) [40], CdSe/ZnSe quantum structures (15 meV) [41], and 
InAs QDs on GaAs substrate (12 meV) [42]. Furthermore, ZnO/ZnMgO 
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Figure 3.19
Temporal evolution of the output signals from the InAlAs QDs acting as a nanophotonic 
NOT gate.
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nanorod heterostructures have been fabricated and the quantum confine-
ment effect has been observed from single QW structures [43].

To confirm the promising performance of the nanophotonic AND gate, 
three pairs of ZnO/Zn0.8Mg0.2O QWs were fabricated in a ZnO nanorod with 
a mean diameter of 80 nm using catalyst-free metal–organic vapor phase 
epitaxy [44]. As shown in Figure 3.20(a), the two QWs were 3.2 (QW1) and 
3.8 nm (QW2) thick (Lw), and their separations in the three pairs were 3, 6, 
and 10 nm. Figure 3.20(b) is a transmission electron microscopic image. 
The routes of energy transfer and subsequent relaxation are shown in 
Figure 3.21(a). The ground state of the exciton in QW1 (EA1, wavelength (l) = 
361 nm) and first excited state in QW2 (EB2) resonate with each other [43]. On 
applying a single input signal (INA = 1 and INB = 0), all the exciton energy in 
QW1 is transferred to the excited state in the neighboring QW2. Furthermore, 
since EB2 is the dipole-forbidden energy level because of its odd wave func-
tion, the energy transferred to EB2 relaxes rapidly to the ground state in QW2 
(EB1, l = 362 nm). Consequently, no output signals are generated from QW1. 
When applying two input signals (INA = 1 and INB = 1), the routes of energy 
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Figure 3.20
Structure of ZnO/ZnMgO double QWs grown on a ZnO nanorod. (a) Schematic explanation. 
(b) Z-contrast transmission electron microscopic image.
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transfer to QW2 are blocked by the excitation of QW2. As a result, an output 
signal is generated from QW1.

Figure 3.21(b) shows the luminescence spectra monitored from the top of 
the nanorod using the fiber probe (aperture diameter: 30 nm) of a near-field 
optical spectrometer. A microchannel plate and band-pass filter (1 nm band-
width, central l = 361 nm) were used for the measurement. Curve NFINA was 
obtained with a single input signal INA by illuminating the bottom of the 
nanorod with CW He–Cd laser light (l = 325 nm). No emission was observed 
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Figure 3.21
AND-gate operation with ZnO/ZnMgO double QWs. (a) Schematic of the energy transfer and 
dissipation. (b) NFINA and NFINA&INB show PL spectra obtained by applying a single input sig-
nal INA and two (INA and INB) input signals, respectively. (c) Time-resolved PL signal.
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from the exciton ground state of QW1 (EA1) or the excited state of QW2 (EB2) at 
l = 361 nm, indicating that the excited energy in QW1 was transferred to the 
dipole-forbidden excited state of QW2. On applying the two input signals (INA 
and INB) simultaneously, the route for the energy transfer from the ground 
state of QW1 to the excited state of QW2 was blocked because of state filling in 
the ground state of QW2. As a result, an output signal was generated, which 
is represented by the spectral peak Eout at 361 nm on the curve NFINA&INB. The 
dynamic behavior of the AND-gate operation was evaluated using the time-
correlation single-photon counting method by measuring the time-resolved 
luminescence signals, as shown in Figure 3.21(c). The rise time is 100 ps, 
which is determined by the near-field optical coupling strength between the 
two QWs. Note that the rise times of the three pairs of QWs are not resolved 
in the curve in this figure because the output signals from these pairs were 
detected simultaneously using a fiber probe located on the top of the nano-
rod. However, this value of the rise time is correct because previous papers 
[38, 45] have estimated values of 36 and 125 ps for QW separations of 3 and 
10 nm, respectively. The decay time constant is 483 ps, which is common to 
the three pairs as it depends on the exciton lifetime in the ground energy level 
of QD2 (EB1) and is independent of the separation between the two QWs.

Because the spectral width reaches the thermal energy (26 meV) at room 
temperature, a higher Mg concentration in the barrier layers and narrower Lw 
are required for room-temperature operation to avoid overlap of the spectral 
peaks of the ground and first excited states. This can be achieved by using 
two QWs with Lw = 1.5 nm (QW1) and 2 nm (QW2) with a Mg concentration of 
50%, where the energy difference between the ground and first excited states 
in QW2 is 50 meV [46].

References

	 1.	 Goldhaber-Gordon, D., Shtrikman, H., Mahalu, D., Abusch-Magder, D., 
Meirav, U., and Kastner, M. A., 1998. Kondo effect in a single-electron transis-
tor. Nature 391: 156–159.

	2.	 Simmel, F., Blick, R. H., Kotthaus, J. P., Wegscheider, W., and Bichler, M., 
1999. Anomalous Kondo effect in a QD at nonzero bias. Phys. Rev. Lett. 83: 
804–807.

	 3.	 Molenkamp, L. W., Flensberg, K., and Kemerink, M., 1995. Scaling of the Cou-
lomb energy due to quantum fluctuations in the charge on a QD. Phys. Rev. 
Lett. 75: 4282–4285.

	 4.	 Taut, M., 2000. Solution of the Schrödinger equation for QD lattices with Cou-
lomb interaction between dots. Phys. Rev. B 62: 8126–8136.

	 5.	 Burkard, G., Seelig, G., and Loss, D., 2000. Spin interactions and switching in 
vertically tunnel-coupled QDs. Phys. Rev. B 62: 2581–2592.

	 6.	 Waugh, F., R., Berry, M. J., Mar, D. J., Westervelt, R. M., Campman, K. L., and 
Gossard, A. C., 1995. Single-electron charging in double and triple QDs with 
tunable coupling. Phys. Rev. Lett. 75: 705–708.

C9721_C003.indd   135 4/28/08   2:46:51 PM

© 2008 by Taylor & Francis Group, LLC



136	 Principles of Nanophotonics

	 7.	 Ohtsu, M., Kobayashi, K., Kawazoe, T., Sangu, S., and Yatsui, T., 2002. Nano-
photonics: Design, Fabrication, and Operation of Nanometric Devices using 
Optical Near Fields. IEEE J. Sel. Top. Quant. Electron. 8: 839–862.

	 8.	 Mukai, K., Abe, S., and Sumi, H., 1999. Theory of rapid excitation-energy 
transfer from B800 to optically-forbidden exciton state of B850 in the 
antenna system LH2 of photosynthetic purple bacteria. J. Phys. Chem. B 103: 
6096–6102.

	 9.	 Kagan, C. R., Murray, C. B., Nirmal, M., and Bawendi, M. G., 1996. Electronic 
Energy Transfer in CdSe QD Solids. Phys. Rev. Lett. 76: 1517–1520.

	10.	 Crooker, S. A., Hollingsworth, J. A., Tretiak, S., and Klimov, V. I., 2002. Spec-
trally Resolved Dynamics of Energy Transfer in QD Assemblies: Towards Engi-
neered Energy Flows in Artificial Materials. Phys. Rev. Lett. 89: 186802 1–4.

	11.	 Kawazoe, T., Kobayashi, K., Lim, J., Narita, Y., and Ohtsu M., 2002. Direct 
Observation of Optically-Forbidden Energy Transfer between CuCl Quantum 
Cubes via Optical Near-Field. Phys. Rev. Lett., 88: 067404 1–4.

	12.	 Tang, Z. K., Yanase, A., Yasui, T., Segawa, Y., and Cho, K., 1993. Optical selec-
tion rule and oscillator strength of confined exciton system in CuCl thin films. 
Phys. Rev. Lett. 71: 1431–1434.

	13.	 Sakakura, N., and Masumoto, Y., 1997. Persistent spectral-hole-burning spec-
troscopy of CuCl quantum cubes. Phys. Rev. B 56: 4051–4055.

	14.	 Ekimov, A. I., Eflos, AI. L., and Onushchenko, A. A., 1985. Quantum size 
effect in semiconductor microcrystals. Solid State Commun. 56: 921–924.

	15.	 Itoh, T., Yano, S., Katagiri, N., Iwabuchi, Y., Gourdon, C., and Ekimov, A. I., 
1994. Interface effect on the properties of confined excitons in CuCl microcrys-
tals. J. Lumin. 60&61: 396–399.

	16.	 Kobayashi, K., Sangu, S., Ito H., and Ohtsu, M., 2001. Near-field optical poten-
tial for a neutral atom. Phys. Rev. A 63: 013806 1–9.

	17.	 Ohtsu, M., 1998. Near-Field Nano/Atom Optics and Technology. Berlin: Springer.
	18.	 Suzuki, T., Mitsuyu, T., Nishi, K., Ohyama, H., Tomimasu, T., Noda, S., Asano, 

T., and Sasaki A., 1996. Observation of ultrafast all-optical modulation based 
on intersubband transition in n-doped quantum wells by using free electron 
laser. Appl. Phys. Lett. 69: 4136–4138.

	19.	 Saiki, T., Mononobe, S., Ohtsu, M., Saito, N., and Kusano J., 1996. Tailoring a 
high-transmission fiber Probe for photon scanning tunneling microscope. 
Appl. Phys. Lett. 68: 2612–2614.

	20.	 Saiki, T., and Matsuda, K., 1999. Near-field optical fiber probe optimized for 
illumination-collection hybrid mode operation. Appl. Phys. Lett. 74: 2773–1775.

	21.	 Yariv, A., 1971. Introduction to Optical Electronics, New York: Holt, Rinehart and 
Winston.

	22.	 Kawazoe, T., Kobayashi, K., Sangu, S., and Ohtsu, M., 2003. Demonstration of a 
nanophotonic switching operation by optical near-field energy transfer. Appl. 
Phys. Lett. 82: 2957–2959.

	23.	 Kawazoe, T., Kobayashi, K., Sangu, S., Ohtsu, M., 2003. Demonstrating nano-
photonic switching using near-field pump-probe photoluminescence spec-
troscopy of CuCl quantum cubes. J. Microscopy 209: 261–266.

	24.	 Yatsui, T., Sangu, S., Kawazoe, T., Ohtsu, M., An, S.-J., Yoo, J., and Yi, G.-C., 2007. 
Nanophotonic switch using ZnO nanorod double-quantum-well structures. 
Appl. Phys. Lett. 90: 223110 1–3.

	25	 Landolt-Bornstein, Physics of II-VI and I-VII Compounds, Semimagnetic Semicon-
ductors 17b, 1982. Berlin: Springer-Verlag.

C9721_C003.indd   136 4/28/08   2:46:51 PM

© 2008 by Taylor & Francis Group, LLC



Nanophotonic Devices	 137

	26.	 Masumoto, Y., Kawazoe, T., and Matsuura, N., 1998. Exciton-confined-phonon 
interaction in QDs. J. Lumin. 76&77: 189–192.

	27.	 Neogi, A., Lee, C. W., Everitt, H. O., Kuroda, T., Tackeuchi, A., and Yablonovitch, 
E., 2002. Enhancement of spontaneous recombination rate in a quantum well 
by resonant surface plasmon coupling. Phys. Rev. B 66: 153305 1–4.

	28.	 Raether, H., Surface Plasmons, Vol. III of Springer Tracts in Modern Physics, 1988. 
Springer.

	29.	 Kawazoe, T., Kobayashi, K., Akahane, K., Naruse, M., Yamamoto, N., and 
Ohtsu, M., 2006. Demonstration of nanophotonic NOT gate using near-field 
optically coupled QDs. Applied Physics B 84: 243–246.

	30.	 Kawazoe, T., Kobayashi, K., and Ohtsu, M., 2005. Optical nanofountain: A bio-
mimetic device that concentrates optical energy in a nanometric region. Appl. 
Phys. Lett. 86: 103102 1–3.

	31.	 Nomura, W., Ohtsu, M., and Yatsui, T., 2005. Nanodot coupler with a surface 
plasmon polariton condenser for optical far/near-field conversion. Appl. Phys. 
Lett. 86: 181108 1–3.

	32.	 Nomura, W., Yatsui, T., and Ohtsu, M., 2006. Efficient optical near-field energy 
transfer along an Au nanodot coupler with size-dependent resonance. Appl. 
Phys. B 84: 257–259.

	33.	 McDermott, G., Prince, S. M., Freer, A. A., Hawthornthwaite-Lawless, A. M., 
Papiz, M. Z., Cogdell, R. J., and Isaacs N. W., 1995. Crystal structure of an inte-
gral membrane light-harvesting complex from photosynthetic bacteria. Nature 
374: 517–521.

	34.	 Jordan, P., Fromme, P., Witt, H., T., Klukas, O., Saenger, and W., Krauss, N., 2001. 
Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolu-
tion. Nature 411: 909–917.

	35.	 Born, M., and Wolf, E., 1983. Principles of Optics, Sixth Edition, Pergamon Press.
	36.	 Goldstein, L., Glas, F., Marzin, J. Y., Charasse, M. N., and Roux, G. Le, 1985. 

Growth by molecular beam epitaxy and characterization of InAs/GaAs 
strained-layer superlattices. Appl. Phys. Lett. 47: 1099–1101.

	37.	 Saito, H., Nishi K., and Sugou, S., 1998. Influence of GaAs capping on the opti-
cal properties of InGaAs/GaAs surface QDs with 1.5 mm emission. Appl. Phys. 
Lett. 73: 2742–2744.

	38.	 Yatsui, T., Sangu, S., Kawazoe, T., Ohtsu, M. An, S.-J., Yoo, J., and Yi, G.-C. 2007. 
Nanophotonic switch using ZnO nanorod double-quantum-well structures. 
Appl. Phys. Lett. 90: 223110 1–3.

	39.	 Sun, H. D., Makino, T., Segawa, Y., Kawasaki, M., Ohtomo, A., Tamura, K., and 
Koinuma, H. 2002. Enhancement of exciton binding energies in ZnO/ZnMgO 
multiquantum wells. J. Appl. Phys. 91: 1993–1997.

	40.	 Senger R. T., and Bajaj, K. K. 2003. Binding energies of excitons in polar quan-
tum well heterostructures. Phys. Rev. B 68: 205314 1–9.

	41.	 Gindele, F., Woggon, U., Langbein, W., Hvam, J. M., Leonardi, K., Hommel, D., 
and Selke, H. 1999. Excitons, biexcitons, and phonons in ultrathin CdSe/ZnSe 
quantum structures. Phys. Rev. B 60: 8773–8782.

	42.	 Wang, P. D., Merz, J. L., Ledentsov, N. N., Kop’ev, P. S., Ustinov, V. M., and 
Sotomayor Torres, C. M. 1996. Enhanced exciton binding energy in InAs mono-
layers grown on (311)A GaAs substrates. Solid State Comm. 100: 763–767.

	43.	 Park, W. I., An, S. J., Yang, J.L., Yi, G.-C., Hong, S., Joo, T., and Kim, M. Y. 2004. 
Photoluminescent properties of ZnO/Zn0.8Mg0.2O nanorod single-quantum-
well wtructures. J. Phys. Chem. B 108: 15457–15460.

C9721_C003.indd   137 4/28/08   2:46:52 PM

© 2008 by Taylor & Francis Group, LLC



138	 Principles of Nanophotonics

	44.	 Park, W. I., Yi, G.-C., Kim, M. Y., and Pennycook, S. J. 2003. Quantum con-
finement observed in ZnO/ZnMgO nanorod heterostructures. Adv. Mater. 15: 
526–529.

	45.	 Sangu, S., Kobayashi, K., Shojiguchi, A., Kawazoe, T., and Ohtsu, M. 2003. Exci-
tation energy transfer and population dynamics in a QD system induced by 
optical near-field interaction. J. Appl. Phys. 93: 2937–2945.

	46.	 Park, W. I., Yi, G.-C., and Jang, H. M. 2001. Metalorganic vapor-phase epitaxial 
growth and photoluminescent properties of Zn1-xMgxO (0≤x≤0.49) thin films. 
Appl. Phys. Lett. 79: 2022–2024.

C9721_C003.indd   138 4/28/08   2:46:52 PM

© 2008 by Taylor & Francis Group, LLC



139

4
Nanophotonic Fabrication

This chapter reviews the principle of nanophotonic fabrication based on the 
localized photon model. The performance of several fabrication methods 
is presented: photochemical vapor deposition, lithography, and size- and 
position-controlled growth.

4.1	 Adiabatic Nanofabrication

As an introduction to nanophotonic fabrication, adiabatic nanofabrication 
is reviewed; that is, the use of an optical near field can realize nanoscale 
fabrication and quantitative innovations are demonstrated. Near-field opti-
cal chemical vapor deposition (NFO-CVD; Figure 4.1) has been developed, 
and enables the fabrication of nanometer-scale structures while controlling 
their size and position precisely [1–6]. That is, the position can be controlled 
accurately by regulating the position of the fiber probe used to generate the 
optical near field. To guarantee the generation of an optical near field with 
sufficiently high efficiency, a sharpened UV fiber probe was used, which 
was fabricated using a pulling/etching technique [7]. Under the uncoated 
condition, the diameter of the sharpened probe tip remained sufficiently 
small, which enabled high-resolution position control and in situ shear-force 
topographic imaging of the deposited nanometer-scale structures. Because 
the deposition time was sufficiently short, the deposition of metal on the 
fiber probe and the resultant decrease in the throughput of optical near-field 
generation were negligible. The separation between the fiber probe and sap-
phire (0001) substrate was kept within a few nanometers by shear-force feed-
back control. Immediately after the nanodots were deposited, their sizes and 
shapes were measured via in situ vacuum shear-force microscopy [8], using 
the same probe as used for deposition. Because of the photochemical reac-
tion between the reactant molecules and the optical near field generated at 
the tip of an optical fiber probe, NFO-CVD is applicable to various materials, 
including metals, semiconductors, and insulators.

Conventional optical CVD method uses a light source that resonates the 
absorption band of metal–organic (MO) vapor and has a photon energy that 
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exceeds the dissociation energy [9]. Therefore, it utilizes a two-step process: 
gas-phase photodissociation and subsequent adsorption. In this process, reso-
nant photons excite molecules from the ground state to the excited electronic 
state and the excited molecules relax to the dissociation channel, and then 
the dissociated metallic atoms adsorb to the substrate [10]. However, it was 
found that the dissociated MO molecules migrate on the substrate before 
adsorption, which limits the minimum lateral size of the deposited dots 
(Figure 4. 2(a)). A promising method for avoiding this migration is dissocia-
tion and deposition in the adsorption phase (Figure 4.2(b)) [11].

An example of NFO-CVD is the deposition of a Zn dot. Because the 
absorption band edge energy of gas-phase diethylzinc (DEZn) is 4.6 eV 
(l = 270 nm) [9], a He–Cd laser (3.81 eV, l = 325 nm) was used as the light 
source for the deposition of Zn; it is nonresonant to gas-phase DEZn. How-
ever, a red-shift occurs in the absorption spectrum of DEZn with respect to 
that in the gas-phase; that is, it resonates the adsorption phase DEZn. The 
red-shift is attributable to perturbations of the free molecule potential sur-
face in the adsorbed phase [9, 12]. Using a sharpened UV fiber probe, DEZn 
was dissociated selectively and 20-nm Zn dots were fabricated successfully 
with 65 nm separation on a sapphire (0001) substrate (see Figure 4.3(a)) [6]. 
Furthermore, because the nonresonant propagating light that leaked from 
the probe did not dissociate the gas-phase DEZn, atomic-level sapphire 
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Vacuum
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Figure 4.1
Schematic explanation of NFO-CVD.
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steps around the deposited dots were clearly observed after deposition. 
By changing the reactant molecules during deposition, nanometric Zn and 
Al dots were deposited successively on the same sapphire substrate with 
high precision (see Figure 4.3(b)) [4].

To realize sub-10-nm scale controllability in size, the precise growth 
mechanism of Zn dots with NFO-CVD was investigated [6]. The deposi-
tion rate was found to be maximal when the dot grew to a size equivalent 
to the probe apex diameter. This dependence is accounted for by the theo-
retically calculated dipole–dipole coupling with a Förster field. The theo-
retical support and experimental results indicate the potential advantages 
of this technique for better regulating the size and position of deposited 
nanometer-scale dots.

Figures 4.4(a) and (b) show scanning electron micrographic (SEM) images 
of the fiber probe used in this study. The estimated apex diameter, 2ap, was 
9 nm based on the fitted dashed circle (see Figure 4.4(b)). Figure 4.5(a) shows 
a shear-force image of four Zn dots deposited with irradiation times of 60 
(dot 1), 30 (dot 2), 10 (dot 3), and 5 s (dot 4) with a laser output power P of 5 mW. 
The Zn dots were deposited as 300 and 260 nm separation along the x- and 
y-axes, respectively, under servo-control of the position of the fiber probe. 
As shown in the cross-sectional profiles in Figure 4.5(b), Zn dots as small 
as 30 nm in diameter were fabricated. Their separations are 306 and 299 nm 
along the x-axis and 260 and 254 nm along the y-axis, confirming the high 
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Figure 4.2
Photodissociation of MO molecules: (a) gas phase and (b) adsorption phase.
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Shear-force image of closely spaced dots: (a) Zn dots. (b) The cross sectional profile along the line 
indicated by arrows A and A′ in (a). (c) Zn and Al dots.
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Figure 4.4
SEM images of an ultraviolet fiber probe. The magnified image of (a) is shown in 
(b). 2ap: apex diameter.
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positional accuracy (<10 nm). The main source of the residual inaccuracy is 
the hysteresis of the piezoelectric transducer (PZT) used for scanning the 
fiber probe, which can be decreased by carefully selecting the transducer.

Figure 4.6(a) plots the normalized deposition rate R of Zn dots as a func-
tion of the dot size S. Because the measured dot size S’ was a convolution 
of the probe apex diameter 2ap and the real size S, which was estimated as 
S = S’ − 2ap. Note that R is maximal at S = 2ap. This indicates that the 
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Deposited Zn dots. (a) A shear-force image. The laser irradiation times of dots 1–4 were 60, 
30, 10, and 5 s, respectively. (b) The cross-sectional profiles along the lines indicated by arrows 
A–A,’ B–B,’ C–C,’ and D–D,’ respectively.
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magnitude of the near-field optical interaction between the deposited Zn dot 
and the probe apex is enhanced resonantly with respect to S, resulting in 
the resonant increase in R. In other words, the near-field optical interaction 
exhibits size-dependent resonance characteristics.

To determine the origin of this size-dependent resonance, the magnitude 
of the near-field optical interaction was calculated between closely spaced 
nanoparticles (Figure 4.6(b)). Spheres ‘p’ and ‘s’ represent the probe apex 
and Zn dot, respectively. Because the separation between two particles is 
much narrower than the wavelength, the Förster field (proportional to R-3, 
where R is the distance from the dipole) is dominant in the oscillating dipole 
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Figure 4.6
The time-dependent deposition rate R. (a) Experimental results. Solid squares and open circles 
indicate the normalized deposition rate with a laser power P of 10 and 5 mW, respectively. 
Dashed and solid curves indicate the calculated values of I2/I1. (b) Schematic of the growth of 
a Zn dot.
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electric field. In this quasi-static model, the intensity Is of the light scattered 
from the two closely spaced spheres, ‘p’ and ‘s,’ is given by [13]:

	 I I I E ES p S p S= + = + + +1 2
2 2 2 24( ) | | ( ) | | ,α α α α α� 	 (4.1)

where a i = 4p e0(e i − e0)/(e i + 2e0)ai
3 is the polarizability of sphere i (= p, s) with 

radius ai. Da  is the polarizability due to the dipole-dipole interaction. I1 rep-
resents the light intensity scattered from the spheres and I2 represents the 
light because of the dipole–dipole interaction induced by the Förster field. 
Therefore, the light intensity under study, normalized to I1, is given by

	

I I
G A

A G A
P P

P P P
2 1

3

3 31 1
/

( ) ( )
,=

+ + 	 (4.2)

where Ap = ap/as and Gp = (ep − 1)(es + 2)/(ep + 2)(es − 1). For deposition by the 
fiber probe, the dielectric constants of Zn and fiber probe are es = (0.6 + i4)2 
[14] and ep = 1.52, respectively. The diameter 2ap of sphere p was 9 nm (see 
Figure 4.4(b)). The dashed curve in Figure 4.6(a) show the calculated value 
of I2/I1 as a function of the Zn dot size S (= 2as), which agrees well with the 
experimental results. This agreement indicates that the increase in R origi-
nates from the dipole–dipole coupling with the Förster field at a dot size 
equivalent to the probe apex diameter.

The experimental results and suggested mechanisms demonstrate the 
potential advantages of this technique for improving regulation of the size 
and position of deposited nanometer-scale dots.

4.2	 Nonadiabatic Nanofabrications

This section presents the nonadiabatic processes involved in optical CVD and 
photolithography. These methods have realized qualitative innovation in nano-
fabrications by utilizing the spatially localized nature of optical near fields.

4.2.1	 Nonadiabatic Near-Field Optical CVD

Conventional optical CVD utilizes a two-step process: photodissociation 
and adsorption. For photodissociation, a propagating light must resonate 
the reacting molecular gases to excite molecules from the ground state to an 
excited electronic state. The Franck–Condon principle holds that this reso-
nance is essential for excitation. The excited molecules then relax to the dis-
sociation channel, and the dissociated atoms adsorb to the substrate surface. 
However, a nonadiabatic photodissociation process is observed in NFO-CVD 
under the nonresonant condition of the electronic transition, which vio-
lates the Franck–Condon principle. This section discusses the nonadiabatic 
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NFO-CVD of nanometric Zn dots and presents experimental results based 
on the exciton–phonon–polariton (EPP) model.

Figure 4.7 shows shear-force topographical images after NFO-CVD for 
photon energies of 5.08 eV (l = 244 nm) (a) and 2.54 eV (l = 488 nm) (b), 
and the cross-sectional profiles (c) of Zn dots deposited on a sapphire sub-
strate in atomic-level steps [15]. In the experiment, DEZn was used as the 
CVD gas source. The experimental setup for NFO-CVD is same as that 
used in Section 4.1. For Figure 4.7(a) ( . ),hω = 5 08 eV  the laser power was 
1.6 mW and the irradiation time was 60 s. Before carrying out NFO-CVD, 0.4-
nm-high atomic-level step structures were clearly observed on the sapphire 
substrate. After NFO-CVD, they disappeared and a deposited Zn dot less 
than 50 nm in diameter was seen at the center of the image. This occurred 
because the optical near field deposited the Zn dot directly under the apex of 
the fiber probe. Furthermore, because high-intensity propagating light leaks 
from a bare fiber probe, that is, one without a metallic coating, and is absorbed 
by the DEZn, a Zn layer was deposited on top of the atomic-step structures. 
For Figure 4.7(b), the laser power was 150 mW and the irradiation time was 75 
s. The photon energy ( . )hω = 2 54 eV  was higher than the dissociation energy 

–100 –50 0 50 100

0

5

10

0

1

2

Position (nm)

H
ei

gh
t (

nm
)

H
ei

gh
t (

nm
)

Atomic-level
step

488 nm

244 nm

(c)

300 nm

(a) (b)

300 nm

Figure 4.7
Shear-force topographical images after NFO-CVD at a photon energy of 5.08 eV (l = 244 nm) (a) 
and 2.54 eV (l = 488 nm) (b). The image sizes are 300 × 300 nm. Four dotted lines in (b) represent 
the atomic-level steps of the substrate surface. (c) Cross-sectional profiles of the deposited Zn pat-
terns. Dashed and solid curves represent profiles along dashed lines (a) and (b), respectively.
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of DEZn, but it was still lower than the absorption edge of DEZn [16]. There-
fore, it was not absorbed by DEZn. A Zn dot less than 50 nm in diameter 
appears at the center of the dotted circle in this figure. While using conven-
tional CVD with propagating light, a Zn film cannot be grown using a light 
source with a photon energy lower than the absorption edge ( hω < 4.13 eV: l 
> 300 nm) [17]. Deposited Zn dots were observed on the substrate just below 
the apex of the fiber probe using NFO-CVD. The atomic-level steps in this 
figure are still observed, despite the leakage of the propagating light from 
the bare fiber probe. In Figure 4.7(c), the dashed curve represents the cross-sec-
tional profile of the Zn dot deposited at l = 244 nm taken along the dashed 
line in Figure 4.7(a). The solid curve is a cross-sectional profile of the Zn dot 
deposited using a l = 488 nm light source, taken along the dashed line in 
Figure 4.7(b). These curves confirm that Zn dots with a full-width at half-
maximum (FWHM) of 30 nm were deposited in the region where the optical 
near field is dominant. The dashed curve has 4-nm-high tails on both sides 
of the dot, which represent the deposition caused by the leaked propagating 
light. This deposition process is based on the conventional adiabatic photo-
chemical process described in Section 4.1. In contrast, the solid curve has no 
tails; therefore, it is clear that the leaked 488-nm propagating light did not 
deposit a Zn layer. Note that a Zn dot 30 nm in diameter without tails was 
deposited under nonabsorbed conditions (l = 488 nm).

Figure 4.8 shows shear-force topographical images of the sapphire sub-
strate after NFO-CVD using an optical near field with photon energies of 
3.81 eV (l = 325 nm) (a), 2.54 eV (l = 488 nm) (b), and 1.81 eV (l = 684 nm) (c). 
The respective laser power and irradiation time were (a) 2.3 mW and 60 s, 
(b) 360 mW and 180 s, and (c) 1 mW and 180 s. The high quality of the depos-
ited Zn was confirmed by X-ray photoelectron spectroscopy. Furthermore, 
photoluminescence was observed from ZnO dots, which were fabricated 
by oxidizing the Zn dots deposited by NFO-CVD [8]. In Figure 4.8(a), the 
photon energy ( )hω  exceeds the dissociation energy (Ed) of DEZn, and is close 
to the absorption band edge (Eabs) of DEZn, that is, hω > Ed  and hω ≅ Eabs [16]. 
The diameter (FWHM) and height of the topographical image were 45 and 
26 nm, respectively. The small tail (shown by the dotted curve) represents a 
Zn layer less than 2 nm thick, and was deposited by the propagating light 
leaking from the bare fiber probe. This deposition is possible because the 
DEZn absorbs some of the propagating light at hω = 3 18. eV. The very high 
peak suggests that the optical near field enhances the photodissociation rate 
at this photon energy because its intensity increases rapidly at the apex of the 
fiber probe. In Figure 4.8(b), the photon energy still exceeds the dissociation 
energy of DEZn, but is lower than the absorption band edge of DEZn, that 
is, E Eabs d> >hω  [16]. The diameter and height of the image were 50 nm and 
24 nm, respectively. This image has no tail because Zn was not deposited by 
the high-intensity propagating light leaking from the bare fiber probe. This 
confirmed that the photodissociation of DEZn and Zn deposition occurred 
only with an optical near field of hω = 2 54. eV.  Figure 4.8(c) represents the 
cases hω < Ed  and hω < Eabs.  Zn dots were deposited successfully at these 
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low photon energies. The topographical image showed dots with a diameter 
of 40 nm and a height of 2.5 nm. The experimental results in Figure 4.8 dem-
onstrate dissociation based on a nonadiabatic photochemical process that 
violates the Franck–Condon principle.

To discuss this novel dissociation process quantitatively, Figure 4.9 shows 
the relationship between the photon-flux (I) and the deposition rate of Zn 
(R). For hω = 3 81. eV (), R is proportional to I. For hω = 2 54. eV () and 
1.81 eV (), higher-order dependencies appear and R is fitted by the 
third-order function R a I b I c I= + +h h hω ω ω

2 3. The respective values of ahω , 
bhω ,  and chω  are a3 81

65 0 10. . ,= × -  b3 81 0. ,=  and c3 81 0. =  for hω = 3 81. eV , 
a2 54

124 1 10. . ,= × -  b2 54
272 1 10. . ,= × -  and c2 54

421 5 10. .= × -  for hω = 2 54. eV,  and 
a1 81 0. ,=  b1 81

294 2 10. . ,= × -  and c1 81
443 0 10. .= × -  for hω = 1 81. eV . The results 

of fitting are shown with the solid, dashed, and dotted curves in Figure 4.9. 
Because no conventional photochemical processes, for example, the Raman 
process and two-photon absorption, can explain these experimental results, 
the discussion later in this chapter uses a unique theoretical model based on 
the discussion in Chapter 2.

Figure 4.10 shows the potential curves of an electron in a DEZn molecu-
lar orbital drawn as a function of the internuclear distance of the C–Zn 
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Figure 4.8
Shear-force topographical images after NFO-CVD at wavelengths of l = 325 (a), 488 (b), and 684 
(c) nm. The image sizes are 450 × 450 nm. The laser output power and irradiation time for depo-
sition were 2.3 mW and 60 s (a), 360 μW and 180 s (b), and 1 mW and 180 s (c), respectively.
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The relationship between the photon-flux and the rate of Zn deposition. The dotted, solid, and 
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Potential curves of an electron in DEZn molecular orbitals. The relevant energy levels of the 
molecular vibration modes are indicated by the horizontal broken lines.
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bond, which is involved in photodissociation [16]. The relevant energy 
levels of the molecular vibration mode are indicated by the horizontal 
broken lines in each potential curve. When a propagating light is used, 
photo-absorption (indicated by the white arrow) triggers the dissociation 
of DEZn [19]. With an optical near field nonresonant to the electronic state, 
there are three possible origins of photodissociation [20]: (1) the multiple 
photon absorption process; (2) a multiple step transition process via the 
intermediate energy level induced by the fiber probe; and (3) multiple step 
transition via an excited state of the molecular vibration mode. Case (1) is 
negligible because the optical power density was less than 10 kW/cm2. Case 
(2) is also negligible because the DEZn was dissociated by ultraviolet–near- 
infrared light, although DEZn does not have relevant energy levels over 
such a broad wavelength region. As a result, the experimental results 
strongly support case (3). That is, the photodissociation is caused by a tran-
sition to an excited state via a molecular vibration mode, which involves 
three multiple-step excitation processes, as shown in Figure 4.10. Because 
the system is strongly coupled with the vibration state, it must be consid-
ered a nonadiabatic system.

For this consideration, an exciton–phonon polariton (EPP) model was pre-
sented in Chapter 2. The EPP model holds that the optical near fields excite 
the molecular vibration mode because of the steep spatial gradient. Because 
the optical near-field energy distribution is spatially inhomogeneous in a 
molecule because of its gradient, the electrons respond inhomogeneously. 
As a result, the molecular vibration modes are excited because the molecular 
orbital changes and the molecule is polarized as a result of the inhomoge-
neous response of the electrons, as shown in Figure 4.11(a). The EPP model 
describes this excitation process quantitatively. The EPP is a quasiparticle, 
which is an exciton polariton carrying the phonon (lattice vibration) gener-
ated by the steep spatial gradient of the optical field energy distribution, as 
shown in Figure 4.11(b). In contrast, because the propagating light energy 
distribution is homogeneous in a molecule, only the electrons in the mole-
cule respond to the electric field of the propagating light. Therefore, the 
propagating light cannot excite the molecular vibration.

Zn(acac)2 has never been used for conventional optical CVD because of its 
low optical activity. With NFO-CVD, however, the optical near field can acti-
vate the molecule nonadiabatically and the dissociated Zn atom is adsorbed 
under the fiber probe. Figure 4.12(a) shows a shear-force topographical image 
of Zn deposited on a sapphire substrate. The laser power and irradiation 
time were 1 mW and 15 s, respectively. The Zn dot was 70 nm in diameter 
and 24 nm high [21,22]. The chemical stability of Zn(acac)2 keeps the substrate 
surface clean and helps to fabricate an isolated nanostructure. Figure 4.12(b) 
shows the shear-force topographical image of a deposited Zn dot that is 
among the smallest ever fabricated using NFO-CVD (5 nm in diameter and 
0.3 nm high). The deposition conditions consisted of Zn(acac)2 at a pressure 
of 70 mTorr in the CVD chamber and a laser wavelength, power, and irradia-
tion time of 457 nm, 65 mW, and 30 s, respectively.
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4.2.2	 Nonadiabatic Near-Field Photolithography

Section 4.2.1 reviewed a unique nonadiabatic photochemical reaction, which was 
explained using the EPP model [20–23]. According to this model, the nonadia-
batic photochemical reaction can be considered a universal phenomenon and is 
applicable to several photochemical processes. This section reviews the applica-
tion of the nonadiabatic photochemical reaction to photolithography, which can 
be called nonadiabatic photolithography [22, 23]. For the mass production of pho-
tonic and electronic devices, nonadiabatic photolithography can be used because 
conventional photolithographic components can be applied to this system.

The wave properties of propagating light cause problems for high-resolution 
photolithography because of diffraction and the dependence on the coherency 
and polarization of the light source. To fabricate high-density corrugations, the 
optical coherent length is too long compared to the separation between adjacent 
corrugation elements, even when a Hg lamp is used. In addition, the absorption 
by the photoresist is insufficient to suppress interference of scattered light. Fur-
thermore, because the intensity of the propagating light transmitted through a 
photomask strongly depends on its polarization, the photomask must be designed 
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Figure 4.11
Schematic explanations of the excitation of molecular vibration mode using an optical near 
field (a) and exciton–phonon polariton (b).
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while considering these dependences. In contrast, the outstanding advantage of 
nonadiabatic photolithography is that it is free from these problems.

Figure 4.13(a) shows a schematic configuration of the photomask and the Si 
substrate on which the photoresist (OFPR-800: Tokyo-Ohka Kogyo) was spin-
coated. They were used in contact mode. Figures 4.13(b) and (c) show atomic 
force microscopy (AFM) images of the photoresist surface after development. 
Figure 4.13(b) shows the result obtained using conventional photolithogra-
phy. The g-line (436 nm) from a Hg lamp was used as the light source. The 
fabricated pattern of corrugation was an exact replica of the photomask. 
Conversely, with nonadiabatic photolithography using a 672-nm wavelength 
light source, the grooves on the photoresist appeared along the edges of the 
Cr mask pattern, as shown in Figure 4.13(c). The corrugated pattern was 
30 nm deep. The line width was 150 nm, which was narrower than the wave-
length of the light source. On the photomask, a steep spatial gradient of opti-
cal energy distribution is expected because of optical near fields, whereas 
direct irradiation with 672-nm light cannot expose the photoresist. This dem-
onstrated that the photoresist was patterned using a nonadiabatic process.

Figure 4.14 shows AFM images of another photoresist surface (TDMR-
AR87 for the 365-nm wavelength i-line from a Hg lamp: Tokyo-Ohka Kogyo) 
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Figure 4.12
Shear-force topographical images after NFO-CVD using Zn(acac)2 with a 457-nm-wavelength 
light source. (a) A deposited Zn dot. The image sizes are 750 × 750 nm. (b) A deposited Zn with 
a diameter of 5 nm and height of 0.3 nm. The image sizes are 150 × 150 nm.
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Figure 4.13
Experimental results of nonadiabatic photolithography. (a) A schematic of the photomask and 
Si substrate on which the photoresist (OFPR-800) was spin-coated. (b) Atomic force microscopy 
images of photoresist OFPR-800 exposed to the g-line of a Hg lamp. (c) AFM images of photo-
resist OFPR-800 developed after a 4-h exposure with a 672-nm laser.
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Figure 4.14
Experimental results of nonadiabatic photolithography. (a) AFM images of photoresist TDMR-
AR87 exposed to the linearly polarized g-line of a Hg lamp for 3 s. (b) AFM images of pho-
toresist TDMR-AR87 exposed to the linearly polarized g-line of a Hg lamp for 10s using a 
circle-shaped array photomask; (c) AFM images of photoresist OTDMR-AR87 developed after 
a 40-s exposure to the g-line of a Hg lamp using a T‑shaped array photomask.
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after development. Figure 4.14(a) shows the corrugated pattern fabricated 
using linearly polarized g-line light. Two-dimensional arrays of circles and 
T-shapes have also been fabricated successfully on this photoresist (see 
Figures 4.14(b) and (c)). This would be impossible using adiabatic photolithog-
raphy because of its polarization-dependent nature and interference effects.

An optically inactive electron beam (EB) resist film (ZEP-520: ZEON) can 
also be patterned nonadiabatically. Figure 4.15 shows an AFM image of 
the developed EB resist surfaces. The light source was the third harmonic 
of a Q-switched Nd:YAG laser and the exposure time was 5 min. A two- 
dimensional array of 1-mm-diameter disks was fabricated successfully, even 
on the EB resist, which would be impossible using propagating light. The 
developed pattern had a depth of 70 nm, which is sufficient for the subse-
quent etching of the substrate. Because the EB resist film has an extremely 
smooth surface, the homogeneity in the contact with the photomask was 
improved. This suggests that a smooth organic or inorganic thin film can be 
used as a photoresist irrespective of its optical inactivity.

4.3	 Self-Assembling Method Via Optical 
Near-Field Interactions

This section demonstrates the size- and position-controlled deposition of 
nanometric materials based on the size-dependent resonance between the 
optical near field and materials. This method of deposition enables highly pre-
cision nanofabrication without using an optical fiber probe and photomask.

0 200 400 600 800

A

B

50 nm

30 nm

(b)

Position (nm)

2 μm

(a)

A
B

Figure 4.15
Surface of an electron beam resist exposed for 5 min using a Q-switched laser (355 nm) and 
a circle-shaped (1 um diameter) array photomask. (a) AFM image. (b) Cross-sectional profiles 
along dashed lines A and B in (a).
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4.3.1	R egulating the Size and Position of Nanoparticles 
Using Size-Dependent Resonance

To improve the size controllability, the dependence of plasmon resonance 
on the photon energy of optical near fields can be used and the growth of 
nanoparticles can be controlled during the deposition process. Using this 
dependence, this section demonstrates the deposition of a nanometer-scale 
Zn dot using NFO-CVD [5].

First, nanoparticles were deposited on the cleaved facets of UV fibers (core 
diameter = 10 mm) using conventional optical CVD (see Figure 4.16(a)). Gas-
phase DEZn at a partial pressure of 5 mTorr was used as the source gas. The 
total pressure, including that of the Ar buffer gas, was 3 Torr. As the light 
source for the photodissociation of DEZn, a 500-mW He–Cd laser (photon 
energy Ep1 = 3.81 eV [l = 325 nm]) was coupled to the other end of the fiber. 
The irradiation time was 20 s. This irradiation covered the facet of the fiber 
core with a layer of Zn nanodots (see Figure 4.16(b)). Figure 4.17(a) shows a 
SEM image of the deposited Zn nanodots and their size distribution. The 
peak radius and FWHM of this curve are 55 and 25 nm, respectively.

DEZn:5mTorr 

EP1 EP2

(a)

50 µm

(b)

Figure 4.16
Conventional optical CVD on the cleaved facet of an optical fiber. (a) Schematic explanation. 
(b) SEM image of the end of the fiber.
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To control the size distribution, 20 mW Ar+ (Ep2 = 2.54 eV [l = 488 nm]) or 
He–Ne (Ep2 = 1.96 eV [l = 633 nm]) laser light was introduced into the fiber, 
in addition to the He–Cd laser. Their photon energies are lower than the 
absorption band edge energy of DEZn; that is, they are nonresonant light 
sources for the dissociation of DEZn. The irradiation time was 20 s. The inset 
of Figures. 4.17(b) and (c) show SEM images of Zn nanodots deposited with 
irradiation at Ep = 3.81 and 2.54 eV and at Ep = 3.81 and 1.96 eV, respectively. 
Figures 4.17(b) and (c) show the respective size distributions. The peak radii 
are 15 and 9 nm, respectively, which are smaller than those of the dots in 
Figure 4.17(a), and depend on the photon energy of the additional light. Fur-
thermore, the FWHM (5 and 6 nm, respectively) was definitely narrower than 
that in Figure 4.17(a). These results suggest that the additional light controls 
the size of the dots and reduces the size fluctuation; that is, size regulation 
is realized.

Possible mechanisms for the size regulation of the dots using additional 
light are now discussed. A metal nanoparticle has strong optical absorption 
because of plasmon resonance [24, 25], which strongly depends on particle 
size. This can induce the desorption of the deposited metal nanoparticles 
[26,27]. As the deposition of metal nanoparticles proceeds in the presence of 
light, the growth of the particles is affected by a trade-off between deposi-
tion and desorption, which determines their size, and depends on the pho-
ton energy. It has been reported that surface plasmon resonance in a metal 
nanoparticle is red-shifted with increasing particle size [26, 27]. However, the 
experimental results do not agree with these reports (compare Figures 4.17(a)–
(c)). To find the origin of this discrepancy, a series of calculations was per-
formed and resonant sizes were evaluated. Mie’s theory of scattering by a 
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Figure 4.17
The radius distributions of Zn nanoparticles deposited using optical CVD with (a) Ep = 3.81 eV, 
(b) Ep = 3.81 and 2.54 eV, and (c) Ep = 3.81 and 1.96 eV. Inset: SEM images of Zn nanoparticles.
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Zn sphere was used while considering the first mode only [28]. The curves in 
Figure 4.18(a) represent the calculated polarizability a with respect to three 
photon energies. The vertical axis is the value of a normalized to the volume, 
V, of a Zn sphere in air, which depends on its radius and is maximal at the 
resonant radius. The dashed curve in Figure 4.18(b) represents the resonant 
radius as a function of the photon energy, which is not a monotonous func-
tion and is minimal at Ep = 2.0 eV (l = 620 nm). Because the imaginary part 
of the refractive index of Zn is also minimal at Ep = 2.0 eV (l = 620 nm) (see 
the solid curve in Figure 4.18(b)), the minimum of the solid curve is because 
of the strong absorption in Zn.

Although Figure 4.18(a) shows that the resonant radius (47.5 nm) for Ep = 
2.54 eV exceeds that (40 nm) for Ep = 3.81 eV, the calculated resonant radius 
for Ep = 3.81 eV is in good agreement with the experimentally confirmed par-
ticle size (see curve A in Figure 4.17(a)). Because the He–Cd laser light (Ep = 
3.81 eV) is resonant for the dissociation of DEZn and is responsible for the depo-
sition, irradiation with a He–Cd laser during deposition causes the particles 
to grow, and this growth halts when the particles reach the resonant radius 
because the rate of desorption increases because of resonant plasmon excita-
tion. This is further supported by the fact that the resonant radius (37.5 nm) 
for Ep = 1.96 eV is smaller than that for Ep = 3.81 eV (see Figure 4.18(a)) and 
illumination with the additional light causes the particles to shrink (see 
Figure 4.17(c)).
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Figure 4.18
Calculated results. (a) Curves A–C show the polarizability a normalized to the volume V for 
a Zn sphere surrounded by air for Ep = 3.81, 2.51, and 1.96 eV, respectively. (b) The resonant 
radius of a Zn sphere (dashed curve). The imaginary part of the refractive index of Zn, nZn, 
used for the calculation (solid curve) (refer to [14]).
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Another possible mechanism involves the acceleration of dissociation 
by the additional light. The photodissociation of DEZn produces transient 
monoethylzinc and Zn results from the dissociation of the monoethylzinc. 
Although the absorption band of monoethylzinc was not determined, the 
photon-energy dependence of the size observed using the additional light 
might have been because of the acceleration of the dissociation rate; that is, 
the additional light, which was nonresonant for DEZn, resonated the mono-
ethylzinc [10], because the first metal–alkyl bond dissociation had a larger dis-
sociation energy than the subsequent metal–alkyl bond dissociation [29, 30].

Based on the dependence described earlier, NFO-CVD was used to con-
trol the position of the deposited particle (see Figure 4.19). Figures 4.19(a)–(c) 
show topographical images of Zn deposited by NFO-CVD with illumina-
tion from a 1-mW He–Cd laser (Ep = 3.81 eV) alone, or together with a 1-mW 
Ar+ laser (Ep = 2.54 eV) or a 1-mW He–Ne laser (Ep = 1.96 eV), respectively. 
The irradiation times were 60 s. During deposition, the partial pressure of 
DEZn and the total pressure including the Ar buffer gas were maintained at 
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Figure 4.19
Bird’s-eye view of shear-force topographical images of Zn deposited by NFO-CVD with (a) Ep = 
3.81 eV, (b) Ep = 3.81 and 2.54 eV, and (c) Ep = 3.81 and 1.96 eV, respectively. (d) Curves A–C show 
the respective cross-sectional profiles through the Zn dots deposited in (a)–(c).
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100 mTorr and 3 Torr, respectively. In Figure 4.19(d), curves A–C are the 
respective cross-sectional profiles through the Zn dots in Figures 4.19(a)–(c). 
The respective FWHM was 60, 30, and 15 nm; that is, lower photon energy 
gave rise to smaller particles, which is consistent with the experimental 
results shown in Figure 4.17.

These results suggest that the additional light controls the size of the dots and 
reduces the size fluctuation. Furthermore, the position can be controlled accu-
rately by regulating the position of the fiber probe used to generate the opti-
cal near field. The experimental results and suggested mechanisms described 
earlier show the potential advantages of this technique for controlling the size 
and position of the deposited nanodots. Furthermore, because our deposition 
method is based on a photodissociation reaction, it could be widely used for 
the nanofabrication of other materials, such as GaN [31] and GaAs.

4.3.2	 Size-, Position-, and Separation-Controlled 
Alignment of Nanoparticles

To realize the mass production of nanometric structures, near-field desorp-
tion can be applied to other deposition techniques without using a fiber probe. 
An example is a self-assembling method that fabricates nanodot chains by 
controlling the desorption with an optical near field [32]. This approach is 
illustrated schematically in Figure 4.20(a). A chain of metallic nanoparticles 
was fabricated using radio frequency (RF) sputtering under illumination on 
a glass substrate. To realize self-assembly, a simple groove of 100 nm wide 
and 30 nm deep was fabricated on the glass substrate. During deposition 
of the metal, linearly polarized light illuminating the groove directly above 
(E90) was used to excite a strong optical near field at the edge of the groove 
(see Figure 4.20(b)), which induced the desorption of the deposited metallic 
nanoparticles [5]. A metallic dot has strong optical absorption because of 
plasmon resonance [24, 25], which strongly depends on the particle size. This 
can induce desorption of the deposited metallic nanodot when it reaches 
the resonant diameter [26, 27]. As the deposition of metallic dots proceeds, 
the growth is governed by a trade-off between deposition and desorption, 
which determines dot size, depending on the photon energy of the incident 
light. Consequently, the metallic nanoparticles should align along the groove 
(Figure 4.20(b) and (c)).

Illumination with 2.33-eV light (50 mW) during the deposition of aluminum 
(Al) resulted in the formation of 99.6-nm-diameter Al nanodot chains with 
27.9 nm separation that were as long as 100 mm in a highly size- and position- 
controlled manner (Figures 4.21(a) and (b)). The deviation of both nanodot 
size and the separation, determined from SEM images, was as little as 5 nm. 
To identify the position of the chain, we compared topographic atomic force 
microscopic (AFM) images of the surface of the glass substrate at the same 
position before and after Al deposition. Curves A and B in Figure 4.21(c) 
show the respective cross-sectional profiles across the groove. Comparison 
of these profiles showed that the nanodot chain formed around edge G2. 
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Figure 4.20
Size- and position-controlled formation of an ultra-long nanodot chain. (a) The groove is parallel 
to the y-axis. The slanted light had a spot diameter of 1 mm. E90 and E0 are perpendicular and 
parallel to the y-axis, respectively. (b), (c) Cross sections in the x–z- and y–z-planes, respectively.

Furthermore, illumination with parallel polarization E0 along the groove 
resulted in film growth along the groove structure and no dot structure was 
obtained. Because the near-field intensity with E90 (polarization perpendicu-
lar to the groove) was strongly enhanced at the metallic edge of the groove 
in comparison with E0 owing to edge enhancement of the electrical field (see 
Figure 4.20(b)), a strong near-field intensity resulted in nanodot chain forma-
tion. Dot formation at the one-sided edge originated from the asymmetric 
electric-field intensity distribution, owing to the slanted illumination.

Chains of Al dots were also observed with RF sputtering of Al under 
illumination from 2.62-eV light (100 mW) with E90 using the same grooved 
(100 nm wide and 30 nm deep) glass substrate, which resulted in the formation 

C9721_C004.indd   160 4/28/08   2:49:42 PM

© 2008 by Taylor & Francis Group, LLC



Nanophotonic Fabrication	 161

of 84.2-nm nanodots with 48.6 nm separation (Figures 4.21(d) and (e)). 
Although the deviation of both nanodot size and the separation were as 
large as 10 nm, the dot size was reduced in proportion to the increase in 
the photon energy (99.6 nm × (2.33/2.62) = 88.6 nm). This indicates that 
the obtained size is determined by the photon energy and that the size- 
controlled dot-chain formation originates from photo-desorption of the 
deposited metallic nanoparticles [5]. The period under 2.62-eV light illumi-
nation (132.8 nm) was longer than that (127.5 nm) using the 2.33-eV light. 
However, the ratios of the center–center distance (d) and radius (a) of the 
nanodots (d/a = 2.56 and 3.15 obtained under 2.33-eV and 2.62-eV light illu-
mination, respectively) are similar to the optimum value. This is in the 
range of 2.4 to 3.0 for the efficient transmission of the optical energy along 
a chain of spherical metal dots calculated using Mie’s theory [33]. This is 
determined by the trade-off between the increase in the transmission loss in 
the metal and the reduction in the coupling loss between adjacent metallic 
nanoparticles as the separation increases. To explain the optimum separa-
tion of the nanoparticles depending on the photon energy, theoretical analy-
sis that includes the effect of the metallic film underneath the nanodot chain 
is required. However, these results imply that the center–center distance is 
set at the optimum distance for efficient energy transfer of the optical near 
field, given that such a strong optical near field can induce desorption of the 
deposited metallic nanoparticles and result in position-controlled dot-chain 
formation.

We anticipate that the fabricated structure will have high efficiency for 
optical near-field energy transfer, making it suitable as a nanodot coupler. 

A

B

Groove

H
ei

gh
t (

nm
)

50 nm

G1
G2

Dot(c)

E90

y

x

y

x

(b) E90

(d)

500 nm

500 nm Position (µm)
0 0.1 0.2 0.3

(a)

(e)

10 µm

5 µm

Glass
surface

Figure 4.21
Experimental results. (a) SEM image of deposited Al with perpendicular polarization E90 
(hw = 2.33 eV). (b) Magnified image of (a). (c) Curves A and B show the respective cross-sectional 
profiles of AFM images across the groove before and after Al deposition, at the same position. 
(d) and (e) SEM image of deposited Al with perpendicular polarization E90 (hw = 2.62 eV).
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Such efficient energy transfer has been reported along a nanodot chain with 
a metallic film underneath the nanodot chain [34]. Furthermore, because our 
deposition method is based on a photo-desorption reaction, illumination 
using a simple lithographically patterned substrate could realize the fabrica-
tion of size- and position-controlled nanoscale structures with other metals, 
e.g., Au (see Figure 4.22(a)) and Pt (see Figure 4.22(b)) or semiconductors. The 
use of the self-assembling method with a simple lithographically patterned 
substrate will dramatically increase the throughput of the production of 
nanoscale structures required by future systems.
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5
Fundamentals of Nanophotonic Systems

5.1 Introduction

To accommodate the continuously growing amount of digital data handled 
in information and communications systems [1], optics is expected play a 
wider role in enhancing overall system performance by performing certain 
functional behavior [2] in addition to merely serving as the communication 
medium. The application of inherent optical features, such as parallelism, to 
computing systems has also been investigated [3, 4]. However, many tech-
nological difficulties remain to be overcome in adopting optical technolo-
gies in critical information and communication systems: one problem is the 
poor integrability of optical hardware because of spatial density restrictions 
imposed by the diffraction limit of light, resulting in relatively bulky hard-
ware configurations.

Nanophotonics, by contrast, which is based on local interactions between 
nanometer-scale matter, such as QDs, via optical near-fields, offers ultra-
high-density integration because it is not constrained by the diffraction 
limit [5, 6, 7, 8, 9]. Fundamental nanophotonic processes, such as opti-
cal excitation transfer via optical near-fields between QDs [5] or metal 
nanoparticles [9], have been studied in detail. This higher integration den-
sity, however, is only one of the recognized benefits of optical near-fields 
over conventional optics and electronics. From an architectural perspec-
tive, nanophotonics drastically changes the fundamental design rules of 
functional optical systems at the physical layer, and suitable architectures 
may be built to exploit this.

This chapter approaches nanophotonics from a system perspective, con-
sidering the unique physical principles of optical near-field interactions. In 
particular, this chapter deals with two representative physical features in nano-
photonics: one is optical excitation transfer via optical near-field interactions, 
and the other is the hierarchical property in optical near-field interactions.

First, in Section 5.2, optical excitation transfer between QDs via optical 
near-field interactions is briefly reviewed, as well as its implications in com-
putational theory (Section 5.2.1). Then, a so-called memory-based architec-
ture will be introduced in which functionality or computations are associated 
with table lookup operations (Section 5.2.2). As its fundamentally required 
functionalities, two basic features are then discussed: One is a mechanism 
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for global summation, or collection, of information; the other is interconnects. 
Their enabling architectures will be shown by appropriate use of resonant 
energy levels between QDs and inter-dot interactions via optical near-fields. 
Also, the optical excitation transfer process is analyzed by noting the envi-
ronmental factors prevalent on the nanometer scale for signal transfer; this 
will impact the security of practical devices and systems, specifically, tamper 
resistance against attacks (Section 5.2.3).

Second, in Section 5.3, the hierarchical nature in optical near-field interac-
tions and its application to systems are discussed (Section 5.3.1). A dipole-
dipole interaction model will be shown, together with its application to 
hierarchical memory architectures (Section 5.3.2). Furthermore, it is shown 
that an unscalable hierarchy is achievable in optical near-field interactions 
where a coarse graining process is not related to a mean-field approximation 
of the fine-grained lower-layer signals. Its foundations are described based 
on an angular spectrum representation of optical near-fields (Section 5.3.3). 
Also, such hierarchical properties can be exploited by combining them with 
energy dissipation processes occurring on the nanometer-scale, which is also 
one of the key physical aspects of the optical excitation transfer discussed in 
Section 5.2. As one such example, a traceable memory architecture that can 
record memory access events will be presented (Section 5.3.4).

The overall structure of this chapter is outlined in Figure 5.1. Through 
such architectural and physical insights, nanophotonic information and 
communications systems will be demonstrated that can overcome the 

Hierarchical architecture Memory-based architecture 

Input 
D1 

DM 

Optical near-field 
interactions 

Light-matter interaction 
in the nanometer scale 

Hierarchy in optical 
near-field interactions 

Optical excitation 
transfer 

Secure devices/systems 

V Answer 

FIGURE 5.1
Overview of this chapter: from light-matter interactions on the nanometer scale to functional-
ities and system architectures.
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integration-density limit imposed by the diffraction of light with ultra-low-
power operation, as well as providing unique functionalities which are only 
achievable using optical near-field interactions.

5.2 Optical Excitation Transfer and System Fundamentals

5.2.1	 Optical Excitation Transfer Via Optical 
Near-Field Interactions and Its Functional Features

In this section, optical excitation transfer processes involving optical near-
field interactions are reviewed from a system perspective. Their theoreti-
cal details and their experimental demonstrations have been discussed in 
Chapters 2, 3, and 4. Here, their fundamental principles are first briefly reviewed 
and their functional features are introduced for the later discussion.

The interaction Hamiltonian between an electron and an electric field is 
given by

	
ˆ ˆ ( ) ˆ ( ) ˆ ( ) ,int

†H r r D r dr= − •∫ψ µψ
� � � � � �

	 (5.1)

where 
�
µ  is a dipole moment, ˆ ( )†ψ

�
r and ˆ ( )ψ

�
r  are respectively creation and

annihilation operators of an electron at 
�
r , and 

� �ˆ ( )D r  is the operator of electric

flux density. In usual light-matter interactions, the operator 
� �ˆ ( )D r  is a con-

stant because the electric field of propagating light is considered to be con-
stant on the nanometer scale. Therefore, as is well known, one can derive 
optical selection rules by calculating a transfer matrix of an electrical dipole. 
As a consequence, in the case of cubic QDs for instance, transitions to states 
described by quantum numbers containing an even number are prohibited. 
In the case of optical near-field interactions, by contrast, because of the steep 
electric field of optical near-fields in the vicinity of nanoscale matter, an opti-
cal transition that violates conventional optical selection rules is allowed. 
Detailed theory can be found in Chapter 2.

Optical excitations in nanostructures, such as QDs, can be transferred 
to neighboring ones by using near-field interactions [5, 9, 10]. For instance, 
assume two cubic QDs whose side lengths L are a and 2a,  which are called 
QDA and QDB, respectively (see Figure 5.2(a)). Suppose that the energy eigen-
values for the quantized exciton energy level specified by quantum numbers 
(nx, ny, nz) in a QD with side length L are given by

	
E E

ML
n n nn n n B x y zx y z( , , ) ,= + + +( )�2 2

2 2 2

2 2

π
	 (5.2)

where EB is the energy of the bulk exciton, and M is the effective mass of the 
exciton. According to eq. (5.2), there exists a resonance between the level of 
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quantum number (1,1,1) for QDA and that of quantum number (2,1,1) for QDB. 
There is an optical near-field interaction, which is denoted by U, because 
of the steep electric field in the vicinity of QDA. Therefore, excitons in QDA 
can move to the (2,1,1)-level in QDB. Note that such a transfer is prohibited 
for propagating light because the (2,1,1)-level in QDB contains an even num-
ber [11]. In QDB, the exciton sees a sublevel energy relaxation, denoted by 
Γ, which is faster than the near-field interaction, and so the exciton goes to 
the (1,1,1)-level of QDB. It should be emphasized that the sublevel relaxation 
determines the unidirectional exciton transfer from QDA to QDB.

Now, several unique functional aspects should be noted in these excita-
tion transfer processes. First, as already mentioned, the transition from the 
(1,1,1)-level in QDA to the (2,1,1)-level in QDB is usually a dipole-forbidden 
transfer. In contrast, the optical near-field allows such processes. Second, in 
the resonant energy levels of those QDs, optical excitation can go back and 
forth between QDA and QDB, which is called optical nutation. The direction 
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mation: a basic function for memory-based architectures. (c) QD arrangement for summation 
via an optical near-fields. (d) Intensity for three different input combinations and spatial inten-
sity distribution of the output photon energy.
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of excitations is determined by the energy dissipation processes. Therefore, 
based on these mechanisms, the flow of optical excitations can be controlled 
in QD systems via optical near-field interactions.

From an architectural standpoint, such a flow of excitations directly leads to 
digital processing systems and computational architectures. First of all, two 
different physical states appear by controlling the dissipation processes in the 
larger dot; this is the principle of the nanophotonic switch discussed in Chap-
ters 2 and 3. Also, such a flow control itself allows an architecture known as a 
binary decision diagram, where an arbitrary combinatorial logic operation is 
determined by the destination of a signal flowing from a root [12].

Such optical excitation transfer processes also lead to unique system archi-
tectures. In this regard, Section 5.2.2 discusses memory-based architectures 
and their nanophotonic implementations, including the issue of intercon-
nects. Also, Section 5.2.3 demonstrates that optical excitation transfer pro-
vides higher tamper resistance against attacks than conventional electrically 
wired devices by exploiting environmental factors for signal transfer. Based 
on those architectural and physical insights, unique functional capabilities 
of nanophotonics, breaking through the diffraction limit of light, will be 
clearly grasped.

5.2.2	 Parallel Architecture Using Optical Excitation Transfer

5.2.2.1	 Memory-Based Architecture

This section discusses a memory-based architecture, as an architecture 
utilizing optical excitation transfer. In this architecture, computations are 
regarded as a table lookup or database search problem. The inherent par-
allelism of a memory-based architecture is well matched with the physics 
of optical excitation transfer, and provides performance benefits in high- 
density, low-power operations.

Here, a packet forwarding application is first introduced as a concrete 
example of memory-based architectures. In this application, the output port 
for an incoming packet is determined based on a routing table in a router. A 
content addressable memory (CAM) [13] or its equivalent is typically used 
for such functions. In a CAM, an input signal (content) serves as a query to a 
lookup table, and the output is the address of data matching the input.

All-optical means for implementing such functions have been proposed, 
for instance, by using planar lightwave circuits [14]. However, because sepa-
rate optical hardware for each table entry is needed if based on today’s known 
methods, if the number of entries in the routing table is on the order of 10,000 
or more, the overall physical size of the system becomes impractically large. 
By contrast, by using diffraction-limit-free nanophotonic principles, huge 
lookup tables can be configured compactly.

Then, it is important to note that the table lookup problem is equivalent to 
an inner product operation. Assume an N-bit input signal S = ( , , )s sN1 �  and 
reference data D = ( , , ).d dN1 �  Here, the inner product S D• = ∑ •=i

N
i is d1  will 

C9721_C005.indd   169 4/28/08   2:51:21 PM

© 2008 by Taylor & Francis Group, LLC



170	 Principles of Nanophotonics

provide a maximum value when the input perfectly matches the reference 
data, assuming an appropriate modulation format [15, 16]. Then, the function 
of a CAM is to derive j that maximizes S D• j .  A nanophotonic implementa-
tion of such a function can be implemented in a highly dense form, as shown 
in Section 5.2.2.2. In addition, a large array of such inner product operations 
will allow a massively parallel processing system to be constructed.

Consequently, multiple inner products are equivalent to a matrix-vector 
multiplication, which is capable of implementing a wide range of parallel 
computations [4]. As a simple example, digital-to-analog conversion will be 
demonstrated by tuning the near-field interaction strength, as discussed at 
the end of Section 5.2.2.2.

Furthermore, arbitrary combinational logic can be reformulated as a table 
lookup operation; more specifically, any computation is equivalent to per-
forming a lookup in a table in which all possible input/answer combinations 
are pre-recorded. For example, consider a two-input, two-bit ADD operation, 
A + B. In the ADD operation, the third-bit of the output (the carry bit) should 
be logical 1 when the second bits (that is, the 21 bit positions) of both inputs 
are 1, regardless of their first bits, that is, when (A, B) = (1*, 1*) where * denotes 
either 0 or 1 (i.e., a don’t care bit). Therefore, following the data representa-
tion format such as Logic 1 = 10, Logic 0 = 01, and don’t care = 11, the table 
lookup entry D should be (10111011), so that any input combination satisfying 
(A, B) = (1*, 1*) will provide a maximum inner product S D• .

5.2.2.2	 Global Summation Using Near-Field Interactions

As discussed in Section 5.2.2.1, the inner product operations are the key 
functionality of this architecture. The multiplication of two bits, namely 
x s di i i= • , has already been demonstrated by a combination of three QDs 
[17,18]. Therefore, one of the key operations remaining is the summation, or 
data gathering scheme, denoted by ∑xi ,  where all data bits should be taken 
into account, as schematically shown in Figure 5.2(b).

In known optical methods, wave propagation in free-space or in wave-
guides, using focusing lenses or fiber couplers, for example, well matches 
such a data gathering scheme because the physical nature of propagating 
light is inherently suitable for collection or distribution of information such 
as global summation. However, the level of integration of these methods is 
restricted because of the diffraction limit of light. In nanophotonics, by con-
trast, the near-field interaction is inherently physically local, although func-
tionally global behavior is required.

The global data gathering mechanism, or summation, is realized based 
on the unidirectional energy flow via an optical near-field, as schemati-
cally shown in Figure 5.2(c), where surrounding excitations are transferred 
towards a QD QDC located at the center [19, 20]. This is based on the excita-
tion transfer processes presented in Section 5.2.1 and in Figure 5.2(a), where 
an optical excitation is transferred from a smaller dot (QDA) to a larger one 
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(QDB) through a resonant energy sublevel and a sublevel relaxation process 
occurring at a larger dot. In the system shown in Figure 5.2(c), similar energy 
transfers may take place among the resonant energy levels in the dots sur-
rounding QDC so that excitation transfer can occur. One may worry that if 
the lower energy level of a larger dot is occupied, another signal cannot be 
transferred to that level because of the Pauli exclusion principle. Here, thanks 
again to the nature of the optical near-field interaction, the excitation popu-
lation goes back and forth in the resonant energy level between a smaller 
dot and a larger dot, a phenomenon which is known as optical nutation 
[17, 18, 21]. Finally, both excitons can be transferred to QDB. The lowest energy 
level in each QD is coupled to a free photon bath to sweep out the excitation 
radiatively. The output signal is proportional to the (1,1,1)-level population 
in QDB.

A proof-of-principle experiment was performed to verify the nanoscale 
summation using CuCl QDs in a NaCl matrix, which has also been employed 
for demonstrating nanophotonic switches [17] and optical nano-fountains 
[20]. A QD arrangement where small QDs (QD1 to QD3) surrounded a large 
QD at the center (QDC) was chosen. Here, at most three light beams with 
different wavelengths, 325 nm, 376 nm, and 381.3 nm, are irradiated, which 
respectively excite the QDs QD1 to QD3 having sizes of 1 nm, 3.1 nm, and 
4.1 nm. The excited excitons are transferred to QDC, and their radiation is 
observed by a near-field fiber probe tip. Notice the output signal intensity 
at a photon energy level of 3.225 eV in Figure 5.2(d), which corresponds to a 
wavelength of 384 nm, or a QDC size of 5.9 nm. The intensity varies approxi-
mately as 1:2:3 depending on the number of excited QDs in the vicinity, as 
observed in Figure 5.2(d). The spatial intensity distribution was measured 
by scanning the fiber probe, as shown in the inset of Figure 5.2(d), where 
the energy is converged at the center. Hence, this architecture works as a 
summation mechanism, counting the number of input channels, based on 
exciton energy transfer via optical near-field interactions.

Such a QD-based data-gathering mechanism is also extremely energy 
efficient compared to other optical methods such as focusing lenses or 
optical couplers. For example, the transmittance between two materi-
als with refractive indexes n1 and n2 is given by 4n1n2/(n1+n2)2; this gives a 
4% loss if n1 and n2 are 1 and 1.5, respectively. The transmittance of an N- 
channel guided wave coupler is 1/N from the input to the output if the cou-
pling loss at each coupler is 3 dB. In nanophotonic summation, the loss is 
attributed to the dissipation between energy sublevels, which is significantly 
smaller. Incidentally, it is energy- and space-efficient compared to electrical 
CAM VLSI chips [8, 22, 23].

In the summation mechanism shown earlier, the coupling strengths 
between the input QDs and the output QD are uniform. However, these 
coupling strengths can be independently configured, for instance, by modi-
fying the relative distances. Theoretically, this corresponds to configuring 
the near-field coupling strengths between QDs. For instance, consider three 
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input QDs, QD1 to QD3, coupled to QDC approximately in a ratio of 1:2:4. 
This arrangement can be described by a digital-to-analog conversion for-
mula given by

	 d s s s= + +2 2 20
1

1
2

2
3 , 	 (5.3)

where d is the output, and s1, s2, and s3 represent the presence/absence of 
excitations in QD1 to QD3, respectively. Each of the inputs si is optically 
applied to the system, whose frequency is resonant with the (1,1,1)-level in 
QDi. Experimental demonstrations are shown in Ref. [8]; the output intensity 
is approximately linearly correlated to the input bit set combination, show-
ing the validity of the digital-to-analog conversion mechanism. Compared 
to known optical approaches, such as those based on space-domain filtering 
and focusing lenses [3, 4], or optical waveguides and intensity filters [24], the 
nanophotonic approach achieves a significantly higher spatial density.

It should also be noted that, in terms of interconnections, the input data 
should be commonly applied to all lookup table entries, which allows another 
possible interconnection mechanism. Because the internal functionality is 
based on energy transfer via optical near-field interactions and it is forbidden 
for far-field light, global input data irradiation, that is, broadcast intercon-
nects, via far-field light may be possible; this is discussed in Section 5.2.3.2.

5.2.3	I nterconnections for Nanophotonics

5.2.3.1	 Interconnections for Nanophotonics

Nanophotonics allows the realization of nanometer-scale device integration, 
but stringent interconnection requirements are imposed in coupling exter-
nal signals to nanophotonic devices. Interconnection within nanophotonic 
devices is another important asset from a systems perspective. To fulfill such 
requirements, far- and near-field conversion and other interconnection tech-
nologies have been developed [25,26,27,28]. In this subsection, rather than 
showing technological details of such interconnections, their fundamental 
differences compared with conventional lightwave-based optical intercon-
nections are reviewed.

As shown in Section 5.2.1, the unidirectional signal flow is produced by the 
energy dissipation process at the destination. With conventional propagat-
ing light, by contrast, unidirectional flow is determined by the fact that there 
is no reflection at the destination. One practical consequence of this is the 
importance of fabricating antireflection coatings on devices receiving opti-
cal inputs in order to avoid interference in the system. In addition, incoming 
input light reflected by a mirror will be completely returned to the original 
input port. This is because there exists no chemical potential in usual light 
because a photon has no mass; this is one of the fundamental differences 
between conventional propagating light and nanophotonics.
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5.2.3.2	 Broadcast Interconnects

In this subsection, another interconnection scheme is shown based on both 
far- and near-field interactions for data broadcasting purposes, as schemati-
cally shown in Figure 5.3 [29]. As discussed at the end of Section 5.2.2.2, data 
broadcasting is a fundamental operation found in memory-based architec-
tures in which multiple functional blocks require the same input data, as 
schematically shown in Figure 5.3(a). Examples of such architectures include 
matrix-vector product [3,4] and switching operations, such as those used 
in a broadcast-and-select architecture [30]. For example, consider a matrix- 
vector multiplication given by  = As,  where  = ( , , )v vm1 �  and s = ( , , ),s sn1 �  
and A is an m × n matrix. To compute every vj from the input data s, broad-
cast interconnects are required if every vj is calculated at distinct processing 
hardware. Optics is in fact well-suited to such broadcast operations in the 
form of simple imaging optics [3, 4] or in optical waveguide couplers thanks 
to the nature of wave propagation. However, the integration density of this 
approach is physically limited by the diffraction limit, which leads to bulky 
system configurations.

The overall physical operation principle of broadcasting is as follows. 
In nanophotonics, unidirectional energy transfer is possible between 
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FIGURE 5.3
(a) Broadcast interconnects for parallel processing. (b) Their nanophotonic implementation using 
near-field interaction between QDs for internal functions and far-field excitation for identical 
data input (broadcast) to nanophotonic devices within a diffraction-limit-sized area.
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neighboring QDs via local optical near-field interactions and sublevel relax-
ation, as discussed in Section 5.2.1.

Suppose that arrays of nanophotonic circuit blocks, such as the nanopho-
tonic switches described later, are distributed within an area whose size is 
comparable to the wavelength, as shown in Figure 5.3(b). For broadcasting, 
multiple input QDs simultaneously accept identical input data carried by 
diffraction-limited far-field light by tuning their optical frequency so that 
the light is coupled to dipole-allowed energy sublevels, as illustrated in 
Figure 5.3(b); this is described in more detail later.

In a frequency multiplexing sense, this interconnection method is simi-
lar to multi-wavelength chip-scale interconnects [31]. Known methods, 
however, require a physical space comparable to the number of diffraction- 
limited input channels because of wavelength demultiplexing, whereas in 
the proposed scheme, the device arrays are integrated on the subwavelength 
scale, and multiple frequencies are multiplexed in the far-field light supplied 
to the device.

The far- and near-field coupling mentioned earlier is explained here based 
on a model assuming cubic QDs, which was introduced in Section 5.2.1. 
According to eq. (5.2), there exists a resonance between the quantized exci-
ton energy sublevel of quantum number (1,1,1) for the QD with effective side 
length a and that of quantum number (2,1,1) for the QD with effective side 
length 2a.  (For simplicity, the QDs with effective side lengths a and 2a  are 
referred as “QD a” and “ QD 2a ,” respectively.) Energy transfer between 
QD a and QD 2a  occurs via optical near fields, which is forbidden for far-
field light [17, 18, 21].

It should be noted that the input energy level for the QDs, that is, the (1,1,1)-
level, can also couple to the far-field excitation. This fact can be utilized for 
data broadcasting. One of the design restrictions is that energy sublevels for 
input channels do not overlap with those for output channels. Also, if there 
are QDs internally used for near-field coupling, dipole-allowed energy sub-
levels for those QDs cannot be used for input channels because the inputs 
are provided by far-field light, which may lead to misbehavior of internal 
near-field interactions if resonant levels exist. Therefore, frequency parti-
tioning among the input, internal, and output channels is important. The 
frequencies used for broadcasting, denoted byΩi i i i A= { , , , },, , ,ω ω ω1 2 �  should 
be distinct values and should not overlap with the output channel frequen-
cies Ωo o o o B= { , , , }., , ,ω ω ω1 2 �  A and B indicate the number of frequencies used 
for input and output channels, respectively. Also, there will be frequencies 
needed for internal device operations, which are not used for either input 
or output (discussed later in the sum of product examples), denoted by
Ωn n n n C= { , , , },, , ,ω ω ω1 2 �  where C is the number of those frequencies. There-
fore, the design criteria for global data broadcasting is to exclusively assign 
input, output, and internal frequencies, Ωi, Ωo, and Ωn, respectively.

Figure 5.4 illustrates two examples of frequency partitioning, where the 
horizontal axis shows QD size and the vertical axis shows energy sublevels. 
The 3-digit sets in the diagram are the quantum numbers of the QDs. In an 
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example shown in Figure 5.4(a), a nanophotonic switch (2-input AND gate) 
composed of three QDs with a size ratio of 1 2 2: :  is used. The details of 
the switching principle are shown in Ref. [17]. The two input channels are 
assigned to QD a and QD 2a, and the output appears from QD a2 . Here, mul-
tiple input dots QD a and QD 2a can accept identical input data via far-field 
light for broadcasting purposes. Adding more optical switches for different 
channels means adding different size dots, for instance, by multiplying the 
scale of the QDs by a constant while maintaining the ratio 1 2 2: : ,  such as a 
QD trio of 2 2a,  4a, and 4 2a,  so that the corresponding far-field resonant 
frequencies do not overlap with the other channels. More dense integration is 
also possible by appropriately configuring the size of the QDs. As an exam-
ple, consider a QD whose size is 4 3/ .a  The (1,1,1)-level in this QD 4 3/ a  can 
couple to the far-field excitation. It should be noted that this particular energy 
level is equal to the (2,2,1)-level in QD 2a, which is an already-used input 
QD; however, the far-field excitation in this particular energy level cannot 
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FIGURE 5.4
Frequency partitioning among external and internal channels, and examples in (a) multiple imple-
mentations of 3-dot nanophotonic switches, and (b) 4-dot configuration for sum of products.
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couple to QD 2a because the (2,2,1)-level in QD 2a is a dipole-forbidden energy 
sublevel. Therefore, a QD trio composed of QDs of size 4 3/ ,a  8 3/ ,a  and 

16 3/ a  can make up another optical switch, without interfering with other 
channels, even though all of the input light is irradiated in the same area.

Another situation in which an internally used frequency exists is a sum of 
products operation. A simplified example is shown in Figure 5.4(b). The QD a 
and QD 2a operate on two inputs, and their product appears in the (1,1,1)-level 
in QD 2a, which is further coupled to the sublevel (4,2,2) in QD 4a. The QD 
4a is the output dot. Here, the QD 2a  is internally used; thus, any frequency 
that could couple to QD 2a  cannot be used for other input channels.

To verify the broadcasting method, the following experiments were per-
formed using CuCl QDs inhomogeneously distributed in an NaCl matrix at 
a temperature of 22 K. To operate a 3-dot nanophotonic switch (2-input AND 
gate) in the device, at most two input light beams (IN1 and IN2) were irradi-
ated. When both inputs exist, an output signal is obtained from the positions 
where the switches exist, as described earlier. In the experiment, IN1 and IN2 
were assigned to 325 nm and 384.7 nm, respectively. They were irradiated 
over the entire sample (global irradiation) via far-field light. The spatial inten-
sity distribution of the output, at 382.6 nm, was measured by scanning a near-
field fiber probe within an area of approximately 1 mm × 1 mm. In Figure 5.5(a), 
only IN1 was applied to the sample, and so the output of the AND gate is 
ZERO (low-level), whereas in Figure 5.5(b) both inputs were irradiated, which 
means that the output is ONE (high-level). Note the regions marked by , , 
and . In those regions, the output signal levels were respectively low and 
high in Figures 5.5(a) and (b), which indicates that multiple AND gates were 
integrated at densities beyond the scale of the globally irradiated input beam 
area. That is to say, broadcast interconnects to nanophotonic switch arrays are 
accomplished by diffraction-limited far-field light.

IN1: 325 nm
IN2: none

IN1: 325 nm
IN2: 384.7 nm

200 nm200 nm

OFF state

(a) (b)

ON state

0

0.24

FIGURE 5.5
Experimental results of broadcast interconnects: Spatial intensity distribution of the output of 
3-dot AND gates. (a) Output level: low (1 AND 0 = 0), and (b) output level: high (1 AND 1 = 1).
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Combining this broadcasting mechanism with the summation mecha-
nism discussed in Section 5.2.2.2 will allow the development of nanoscale 
integration of optical parallel processing devices, which have conventionally 
resulted in bulky systems.

5.2.4	 Signal Transfer and Environment: Tamper Resistance

In addition to breaking through the diffraction limit of light, such local inter-
actions of optical near-fields also have important functional aspects, such as 
in security applications, particularly tamper resistance against attacks [32]. 
One of the most critical security issues in present electronic devices is so-
called side-channel attacks, by which information is tampered with either 
invasively or noninvasively. This may be achieved, for instance, merely by 
monitoring their power consumption [33].

In this subsection, it is shown that devices based on optical excitation trans-
fer via near-field interactions are physically more tamper-resistant than their 
conventional electronic counterparts. The key is that the flow of informa-
tion in nanoscale devices cannot be completed unless they are appropriately 
coupled with their environment [34], which could possibly be the weakest 
link in terms of their tamper resistance. A theoretical approach is presented 
to investigate the tamper resistance of optical excitation transfer, including 
a comparison with electrical devices, for example, a single charge tunneling 
device [35], and numerical calculations based on a virtual photon model [36] 
will also be shown.

Here, tampering of information is defined as involving simple signal 
transfer processes, because the primary focus is on their fundamental physi-
cal properties.

In order to compare the tamper-resistance, an electronic system based on 
single charge tunneling is introduced here, in which a tunnel junction with 
capacitance C and tunneling resistance RT is coupled to a voltage source V 
via an external impedance Z(w), as shown in Figure 5.6(b). In order to achieve 
single charge tunneling, besides the condition that the electrostatic energy 
EC = e2/2C of a single excess electron be greater than the thermal energy kBT, 
the environment must have appropriate conditions, as discussed in detail in 
Ref. [35]. For instance, with an inductance L in the external impedance, the 
fluctuation of the charge is given by

	

< > = 



δ

ρ
β ω

Q
e s2

2

4 2
coth ,

�
	 (5.4)

where ρ ω= EC S/ ,�  ωS LC= −( ) ,/1 2  and β = 1/ .k TB  Therefore, charge fluctuations 
cannot be small even at zero temperature unless ρ >> 1. This means that a 
high-impedance environment is necessary, which makes tampering techni-
cally easy, for instance by adding another impedance circuit.

Here, let us define two scales to illustrate tamper resistance: (I) the scale associ-
ated with the key device size, and (II) the scale associated with the environment 
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required for operating the system, which are respectively indicated by the dot-
ted and dashed curves in Figure 5.6. In the case of Figure 5.6(b), the scale I is the 
scale of a tunneling device, whereas the scale II covers all of the components. It 
turns out that the low tamper resistance of such wired devices is because scale II 
is typically the macro-scale, even though scale I is the nanometer scale.

As another example, the system in Figure 5.6(c) contains a field effect 
transistor (FET), which is the key device and is associated with the scale I. 
Because an FET needs connections to ground and power supply to function, 
the flow of information is determined by the energy dissipation occurring 
outside of scale I. Again, therefore, the scale II is defined so that it covers all 
of the components. Therefore, the scales I and II, as well as the tamper resis-
tance, have the same properties as in the previous case.

In contrast, in the case of the optical excitation transfer shown in 
Figure 5.6(a), the two QDs and their surrounding environment are governed 
by scale I. It is also important to note that scale II is the same as scale I. More 
specifically, the transfer of an exciton from QDA to QDB is completed because 
of the nonradiative relaxation process occurring at QDB, which is usually dif-
ficult to tamper with. Theoretically, the sublevel relaxation constant is given 
by

	
Γ = 2 2π ω ω| ( )| ( ),g D 	 (5.5)

where �g( )ω  is the exciton-phonon coupling energy at frequency w, � is 
Planck’s constant divided by 2p, and D(w) is the phonon density of states 
[37]. Therefore, tampering with the relaxation process requires somehow 
“stealing” the exciton-phonon coupling, which would be extremely difficult 
technically.

(b)

Z(ω)

V
RT

C

(c)

V

(a)

U

Γ

QD A QDB

ee ee

h h

FIGURE 5.6
Model of tamper resistance in devices based on (a) optical excitation transfer, (b) single charge 
tunneling, and (c) a transistor. Dotted curves show the scale of a key device, and dashed curves 
show the scale of the environment required for the system to work.
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It should also be noted that the energy dissipation occurring in the optical 
excitation transfer, derived theoretically as E E( , , ) ( , , )2 1 1 1 1 1−  in QDB based on 
eq. (5.2), should be larger than the exciton-phonon coupling energy of �Γ, 
otherwise the two levels in QDB cannot be resolved. This is similar to the 
fact that the condition ρ >> 1  is necessary in the electron tunneling example, 
which means that the mode energy �ωS  is smaller than the required charg-
ing energy EC.  By regarding �Γ  as a kind of mode energy in the optical 
excitation transfer, the difference between the optical excitation transfer and 
a conventional wired device is the physical scale at which this mode energy 
is realized: nanoscale for the optical excitation transfer, and macro-scale for 
electric circuits.

Another possible method of attack is to use a probe, that is, an invasive 
attack, to tamper with the exciton flow. This is modeled by the system shown 
in Figure 5.7(a), where the original two QDs are depicted by A and B, and 
the attacker is represented by C. By using a virtual photon model [36], the 
solid curves shown in Figure 5.7(b) and (c) show the calculated evolution of 
the population of the lower level of B (= B1) in the absence of the attacker dot 
C. The interdot interaction is assumed to take 100 ps ( ),U−1  and the sublevel 
relaxation at B is assumed to take 5 ps ( ),Γ−1  as typical parameters. Now, in 
the presence of C, the dashed curve and the dotted curve in Figure 5.7(b) 
respectively show the evolution of the lower levels of B (B1) and C (C1). It is 
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FIGURE 5.7
Tamper resistance in optical excitation transfer system. (a) Physical model based on virtual 
photon model. (b,c) Evolution of population of B1-level without QD C (solid curve), B1-level 
with QD C (dashed curve), and C1-level (dotted curve).
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clear that there is little population in C1, meaning that tampering is difficult, 
because the sublevel relaxation at B is faster than the interaction between B2 
and C2. Now, suppose that the interaction between B2 and C2 could be made 
faster (for example, 50 ps); then, the attacker could have a higher population, 
as shown by the dotted curve in Figure 5.7(c). However, at the same time, 
the population of B1 (dashed curve) is degraded accordingly, meaning that 
the attack is detectable from the performance degradation of the original 
system.

To summarize this subsection, the tamper resistance of optical excitation 
transfer via optical near-field interactions is analyzed by noticing the energy 
dissipation process or environmental factors for signal transfer. The tamper 
resistance is associated with the physical scale required for the environment, 
which is the nanoscale for optical excitation transfer and the macro-scale 
for conventional electrical circuits. As such, the physics of signal transfer in 
devices based on optical excitation transfer and conventional wired devices 
differ significantly.

5.3 Hierarchy in Nanophotonics and Its System Fundamentals

5.3.1	 Physical Hierarchy in Nanophotonics and Functional Hierarchy

In this section, another feature of nanophotonics, the inherent hierarchy 
in optical near-field interactions, is exploited. As schematically shown in 
Figure 5.8(a), there are multiple layers associated with the physical scale 
between the macro-scale world and the atomic-scale world, which are pri-
marily governed by propagating light and electron interactions, respectively. 
Between those two extremes, typically in scales ranging from a few nano-
meters to wavelength-size, optical near-field interactions play a crucial role. 
In this section, such hierarchical properties in this mesoscopic or subwave-
length regime are exploited.

Such physical hierarchy in optical near-field interactions will be analyzed 
by a simple dipole-dipole interaction model, as discussed in Section 5.3.2, 
and based on an angular spectrum representation of optical near-fields, as 
shown in Section 5.3.3. Before going into details of the physical processes, 
functionalities required for system applications are first briefly reviewed in 
terms of hierarchy.

One of the problems for ultra-high-density nanophotonic systems is inter-
connection bottlenecks, which have been addressed previously in Section 
5.2.3 regarding broadcast interconnects. In fact, a hierarchical structure can 
be found in these broadcast interconnects by relating far-field effects at a 
coarser scale and near-field effects at a finer scale.

In this regard, it should also be mentioned that such physical differences in 
optical near-field and far-field effects can be used for a wide range of appli-
cations. The behavior of usual optical elements, such as diffractive optical 
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elements, holograms, or glass components, is associated with their optical 
responses in optical far-fields. In other words, nanostructures can exist in 
such optical elements as long as they do not affect the optical responses in 
far-fields. Designing nanostructures accessible only via optical near-fields 
provides additional, or hidden, information recorded in those optical ele-
ments while maintaining the original optical responses in far-fields. In fact, 
a “hierarchical hologram” or “hierarchical diffraction grating” has been 
experimentally demonstrated [38].

Because there is more hierarchy in the optical near-field regime, further 
applications should be possible; for example, it should be possible for nano-
meter-scale high-density systems to be gradually hierarchically connected to 
coarse layer systems.

Hierarchical functionalities are also important for several aspects of mem-
ory systems. One is related to recent high-density, huge-capacity memory 
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FIGURE 5.8
(a) Hierarchy in optical near-field interactions. (b) Dipole-dipole interaction. (c) Signal contrast 
as a function of the ratio of the radius of the sample and the probe. (d) Spatial resolution varies 
depending on the scale of the sample and the probe.
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systems, in which data retrieval or searching from entire memory archives 
is made even more difficult. Hierarchy is one approach for solving such a 
problem by making systems hierarchical, that is, by recording abstract data, 
meta data, or tag data in addition to the original raw data.

Hierarchy in nanophotonics provides a physical solution to achieve such 
functional hierarchy. As will be introduced later, in Figure 5.9(a), low- 
density, rough information is read-out at a coarser scale, whereas high-den-
sity, detailed information is read-out at a finer scale. Section 5.3.2 and 5.3.3 
will show physical mechanisms for such hierarchical information retrieval.

Another issue in hierarchical functionalities will be security. High- 
security information is recorded at a finer scale, whereas less-critical security 
information is associated with a coarse layer. Also, in addition to associating 
different types of information with different physical scales, another kind of 
information could be also related to one or more layers of the physical hier-
archy, for instance, traceability, history, or aging of information. Section 5.3.4 
will demonstrate a traceable memory as an example.

5.3.2	 Hierarchical Memory Retrieval

This section describes a physical model of optical near-field interactions 
based on dipole-dipole interactions [39]. Suppose that a probe, which is mod-
eled by a sphere of radius rP , is placed close to a sample to be observed, 
which is modeled as a sphere of radius rS. Figure 5.8(b) shows three different 
sizes for the probe and the sample. When they are illuminated by incident 
light whose electric field is E0, electric dipole moments are induced in both 
the probe and the sample; these moments are respectively denoted by pP = 
aPE0 and pS = aSE0. The electric dipole moment induced in the sample, pS , 
then generates an electric field, which changes the electric dipole moment 
in the probe by an amount DpP = DaPE0. Similarly, pP changes the electric 
dipole moment in the sample by DpS = DaSE0. These electromagnetic interac-
tions are called dipole-dipole interactions. The scattering intensity induced 
by these electric dipole moments is given by

	

I

E

= + + +

≈ + + +

| |

( ) | | ( )

p p p pP P S SD D

D

2

2
0

2 4α α α α αP S P S || |E0
2
	 (5.6)

where Da = DaS = DaP [39]. The second term in eq. (5.6) shows the intensity 
of the scattered light generated by the dipole-dipole interactions, contain-
ing the information of interest, which is the relative difference between the 
probe and the sample. The first term in eq. (5.6) is the background signal for 
the measurement. Therefore, the ratio of the second term to the first term of 
eq. (5.6) corresponds to a signal contrast, which will be maximized when 
the sizes of the probe and the sample are the same (rP = rS), as shown in 
Figure 5.8(c). (A detailed derivation is found in Ref. [39].) Accordingly, the 
spatial resolution varies depending on the sizes of the probe and the sample. 
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Figure 5.8(d) shows normalized signal intensity profiles corresponding to 
three cases where the sum rS + rP is respectively D, 3D, and 6D (D = 80 nm). 
Thus, one can see a scale-dependent physical hierarchy in this framework, 
where a small probe, say rP = D/2, can nicely resolve objects with a compa-
rable resolution, whereas a large probe, say rP = 3D/2, cannot resolve detailed 
structure but it can resolve structure with a resolution comparable to the 
probe size. Therefore, although a large diameter probe cannot detect smaller-
scale structure, it could detect certain features associated with its scale.

Based on this simple hierarchical mechanism, a hierarchical memory sys-
tem is constructed. Consider, for example, a maximum of N nanoparticles 
distributed in a region of subwavelength scale. Those nanoparticles can be 
nicely resolved by a scanning near-field microscope if the size of its fiber 
probe tip is comparable to the size of individual nanoparticles; in this way, 
the first-layer information associated with each distribution of nanoparticles 
is retrievable, corresponding to 2N-different codes. By using a larger-diame-
ter fiber probe tip instead, the distribution of the particles cannot be resolved, 
but a mean-field feature with a resolution comparable to the size of the probe 
can be extracted, namely, the number of particles within an area comparable 
to the size of the fiber probe tip. Thus, the second-layer information associ-
ated with the number of particles, corresponding to (N + 1)-different level of 
signals, is retrievable. Therefore, one can access different set of signals, 2N or 
N + 1, depending on the scale of observation. This leads to hierarchical mem-
ory retrieval by associating this information hierarchy with the distribution 
and the number of nanoparticles using an appropriate coding strategy.

For example, in encoding N-bit information, (N-1)-bit signals can be encoded 
by distributions of nanoparticles while associating the remaining 1-bit with 
the number of nanoparticles. Details of encoding/decoding strategies will be 
found in Ref. [40].

Simulations were performed assuming ideal isotropic metal particles to 
see how the second-layer signal varies depending on the number of par-
ticles using a finite-difference time-domain simulator (Poynting for Optics, 
a product of Fujitsu, Japan). Here, 80-nm-diameter particles are distributed 
over a 200-nm-radius circular grid at constant intervals. The solid circles 
in Figure 9(d) show calculated scattering cross-sections as a function of the 
number of particles. A linear correspondence to the number of particles 
was observed. This result supports the simple physical model described 
earlier.

In order to experimentally demonstrate such principles, an array of Au 
particles, each with a diameter around 80 nm, was distributed over a SiO2 
substrate in a 200-nm-radius circle. These particles were fabricated by a lift-
off technique using electron-beam (EB) lithography with a Cr buffer layer. 
Each group of Au particles was spaced by 2 mm. A scanning electron micro-
scope (SEM) image is shown in Figure 5.9(b) in which the values indicate the 
number of particles within each group. In order to illuminate all Au particles 
in each group and collect the scattered light from them, a near-field optical 
microscope (NOM) with a large-diameter-aperture (500 nm) metallized fiber 
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probe was used in an illumination collection setup. The light source used 
was a laser diode with an operating wavelength of 680 nm. The distance 
between the substrate and the probe was maintained at 750 nm. Figure 5.9(c) 
shows an intensity profile captured by the probe, from which the second-
layer information is retrieved. The solid squares in Figure 5.9(d) indicate the 
peak intensity of each section, which increased linearly. Those results show 
the validity of hierarchical memory retrieval from nanostructures, schemati-
cally shown in Figure 5.9(a).
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FIGURE 5.9
(a) Hierarchical memory retrieval from nanostructures. (b) SEM picture of an array of Au 
nanoparticles. Each section consists of up to seven nanoparticles. (c) Intensity pattern captured 
by a fiber probe tip whose diameter is comparable to the size of each section of nanoparticles. 
(d, square marks) Calculated scattering cross sections in each section. (b, circular marks) Peak-
intensity of each section in intensity profile shown in (c).
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5.3.3	 Analysis and Synthesis of Hierarchy in Nanophotonics: 
Angular Spectrum-Based Approach

Hierarchical memory retrieval was demonstrated based on a simple interac-
tion model in Section 5.3.2. Such an approach, however, demonstrates only 
part of the potential impact of the hierarchical nature of optical near-fields. In 
fact, there is a serious logical limitation in the mechanism based on the former 
discussion, as will be described later. In a logical sense, the signal obtained 
in the second layer depends on the summation of the signals obtained in the 
first layer. In other words, the signal obtained in the second layer is a mean-
field approximation of the first layer signals; meaning that the upper layer 
signal exhibits a scalable feature with respect to the range of observation. 
Therefore, for example, it is impossible to have situations such as (i) retriev-
ing a logical ONE in the first layer and, simultaneously, a logical ZERO in the 
second layer; and (ii) retrieving a logical ZERO in the first layer and, simul-
taneously, a logical ONE in the second layer. One of the motivations of this 
subsection is that such limitations are overcome in nanophotonics.

Here, the hierarchical nature of optical near-field interactions is analyzed 
based on an angular spectrum representation of the electromagnetic field 
[41, 42, 43]. This allows an analytical treatment and gives an intuitive picture 
of the localization of optical near-fields and represents relevance/irrelevance 
in optical near-field interactions at different scales of observation because it 
describes electromagnetic fields as a superposition of evanescent waves with 
different decay length and corresponding spatial frequency. Another merit of 
the angular spectrum representation in analyzing hierarchy in optical near-
fields is that it explicitly contains the physical parameters associated with the 
positions and orientations of electric dipoles. It can also incorporate scatter-
ers, such as nanoparticles, together with their positions and sizes [44].

As mentioned earlier, the coarse graining is conventionally a simple aver-
aging process, meaning that the signal in the upper layer is obtained in terms 
of a mean-field approximation of the fine-grained, lower-layer signals. In 
contrast, here it is demonstrated that the optical near-field amplitude can be 
distributed independently at different scales of observation, by implement-
ing subwavelength structures in dipole-source distributions because of the 
rapidly decaying nature of higher spatial-frequency terms in optical near-
fields. In other words, the coarse graining of the optical near-fields provides 
an optical property independent of the lower-layer feature; such an unscalable 
hierarchical property of optical near-fields will be analyzed and attempts 
will be made towards engineering it.

5.3.3.1	 Analysis of Hierarchy Based on Angular Spectrum

This section theoretically analyzes the hierarchical coarse-grain process 
with the help of an angular spectrum representation [41, 42, 43].

Suppose, for example, that there is an oscillating electric dipole, d(k) = d(k) 
(cos , ),( )φ k 0  on the xz plane which is oriented parallel to the x axis, as shown 
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in the inset of Figure 5.10(a). Now, consider the electric-field of radiation 
observed at a position displaced from the dipole by R = ( )r zk k k

||
( ) ( ) ( )cos ,ϕ . The 

angular spectrum representation of the z-component of the optical near-field 
is given by
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Here, s||is the spatial frequency of an evanescent wave propagating parallel 
to the x axis, and Jn(x) represents Bessel functions of the first kind. Here the 
term f sz

N( , , , )||
( ) ( )d d1 �  is called the angular spectrum of the electric field.

Now, assume that there are two-dipoles whose phases differ from each 
other by p, and consider the electric field at a position equidistant to those 
dipoles and away from the x-axis by distance Z. The distance between the 
dipoles is G, which also represents the spatial fine/coarse structure of the 
original optical excitations. Here, G and Z indicate distances in units of 
wavelength. If the angular spectrum shown in Figure 5.10(a) contains higher 
spatial frequency components, it means that the electric field is localized at 
that position to the extent given by that spatial frequency. In order to evaluate 
localization at different scales (Z) and associate it with the spatial structure 
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of the optical excitations (G), the spatial frequency that gives the maximum 
of the angular spectrum is noted; this is called the “representative spatial 
frequency” (RSF). Figure 5.10(b) shows RSF as a function of the distance Z, 
as well as its dependence on G; this diagram gives a quantitative, intuitive 
picture of the hierarchy in the subwavelength regime.

For instance, first note RSF when Z is 1/5. The RSF exhibits nearly equal 
values for all cases G = 1/5, 1/10, and 1/20. This indicates that the degrees 
of localization of the electric field at this scale (Z = 1/5) are comparable and 
do not depend on the fine structure of the dipoles. Second, at Z = 1/10, the 
RSF values of G = 1/10 and 1/20 are nearly equal but that of G = 1/5 is small. 
This means that at this scale, G = 1/10 and 1/20 exhibit comparable degrees 
of localization but that of G = 1/5 deteriorates. Third, at Z = 1/20, these three 
cases exhibit different degrees of localization. As just described, the propa-
gation of locality can be treated intuitively and explicitly by using the angu-
lar spectrum representation.

Numerical calculations were performed based on finite-difference time-
domain methods to see how the calculation results compared with the pre-
dictions of the angular spectrum analysis. In order to simulate two dipoles, a 
virtual light source was assumed in Ag nanoparticles whose diameter was 10 
nm. The operating wavelength used in the simulations was 488 nm. The gaps 
between the simulated dipoles were (i) 25 nm, (ii) 50 nm, and (iii) 100 nm, cor-
responding to G values of 1/20, 1/10, and 1/5, respectively. In order to verify 
the localization of optical near-fields, intensity distributions were evaluated 
along the x-axis at positions (i) 25 nm, (ii) 50 nm, and (iii) 100 nm away from 
the dipoles. The distributions represented in Figure 5.11 agreed well with 
the theoretical predictions; for example in case (ii), the curves corresponding 
to G = 1/10 and 1/20 showed comparable responses, but the localization for 
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G = 1/5 deteriorated. As such, the angular spectrum representation helps in 
giving an analytical and intuitive understanding of the hierarchy in optical 
near-fields.

5.3.3.2	 Synthesis of Hierarchy Based on Angular Spectrum

The analysis shown in Section 5.3.3.1 leads to the possibility of designing a 
system in which the electric field exhibits a desired hierarchical response 
based on the fact that, as demonstrated, the orientations of the dipoles and 
their spatial arrangement are correlated with the localization of optical near-
fields at each scale. Specifically, in the following, a two-layer system is intro-
duced where (1) by observing very close to the dipoles, two items of first 
layer information are retrieved, and (2) by observing relatively far from the 
dipoles, one item of second layer information is retrieved.

Now, suppose that there are two closely spaced dipole pairs (so there are 
four dipoles in total). The dipoles d(1) and d(2) are oriented in the same direc-
tion, namely, f(1) = f(2) = 0, and another dipole pair, d(3) and d(4), are both ori-
ented oppositely to d(1) and d(2), namely f(3) = f(4) = p. Those four dipoles are 
located at positions shown in Figure 5.12(a). Here, at a position close to the x 
axis equidistant from d(1) and d(2), such as at the position A1 in Figure 5.12(a), 
the electric field is weak (logical ZERO) because (i) the angular spectrum orig-
inating from d(1) and d(2) vanishes, and (ii) the electric field originating from 
d(3) and d(4) is small because d(3) and d(4) are far from the position A1. In fact, as 
shown by the dashed curve in Figure 5.12(b), because the angular spectrum 
at position A1 oscillates, the integral of the angular spectrum, which is cor-
related to the field intensity at that point will be low [43].

For the second layer retrieval, consider the observation at an intermediate 
position between the dipole pairs, such as the position B in Figure 5.12(a). 
From this position, the four dipoles effectively appear to be two dipoles that 
are oriented in opposite directions to each other. Therefore, one can retrieve 
a logical ONE at one position following the analysis shown in Section 5.2.1 
In fact, as shown by the solid curve in Figure 5.12(b), the angular spectrum 
involving relatively low spatial-frequency components shows a single peak, 
indicating that the electric field in the xz-plane is localized to the degree 
determined by its spectral width, so that a logical ONE is retrievable at posi-
tion B. Meanwhile, the angular spectrum observed at position A2 shown in 
Figure 5.12(a) is identical to that observed at position A1, meaning that the 
electric field at A2 is also at a low level.

To summarize these mechanisms, a logical level of ONE in the second 
layer can be retrieved even though the two items of information retrieved in 
the first layer are both ZEROs; therefore an unscalable hierarchy is achieved. 
The principle here is that the fine structure of the dipoles cannot have an 
effect at coarser layers, but the coarse structure does have an effect at coarser 
layers, which was the message of the results from Section 5.3.3.1.

As described earlier, one of the two first-layer signals, the electric field 
at A1, primarily depends on the dipole pair d(1) and d(2), and the other, 
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the electric field at A2, depends primarily on the dipole pair d(3) and d(4). 
The second-layer signal is determined by all of those dipoles. Concerning 
such a hierarchical mechanism, it was shown that a total of eight differ-
ent signal combinations were achieved by appropriately orienting the four 
dipoles [40].

Numerical simulations were performed based on finite-difference time-
domain methods to see how they agree with the theoretical analysis based on 
the angular spectrum. Four silver nanoparticles (radius of 15 nm) containing 
a virtual oscillating light source were assumed in order to simulate dipole 
arrays. Their positions are shown in Figure 5.12(c). The first and the second 
layers were located 40 nm and 80 nm away from the dipole plane, respectively. 
The operating wavelength was 488 nm. The electric fields obtained at A1, A2 
and B agree with the combinations of the first and the second layer signals 
to be retrieved, as shown in Figure 5.12(c). As another unscalable hierarchy 
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example, Figure 5.12(d) represents a situation where logical ONEs are obtained 
at the first-layer, whereas logical ZERO is obtained at the second layer.

To summarize this subsection, a theoretical analysis of the hierarchy in optical 
near-field interactions is represented based on an angular spectrum representa-
tion of electric fields. Based on the analysis, design, or synthesis of a hierarchy 
is also presented by appropriately orienting multiple electric dipoles. The hier-
archical nature of optical near-fields is not simply an averaging process, but the 
optical near-field amplitudes in each scale could be independently configured.

One remark here is that an array of dipoles and nanoscale virtual light 
sources are assumed in discussing hierarchical properties in optical near-
fields. Such models are well suited for demonstrating the fundamentals of the 
hierarchical nature. Experimentally, however, it is difficult, if not impossible, 
to directly manipulate the orientations in this way. Therefore, physically rea-
sonable equivalents to an array of electric dipoles having designated orienta-
tions will be needed, for instance, by using QDs or engineering the shapes of 
metal nanostructures, as shown later in Section 5.3.4, so that they effectively 
act as an array of induced dipoles when illuminated with a plane wave.

5.3.4	 Hierarchy Plus Localized Energy Dissipation: Traceable Memory

The hierarchical nature could be further exploited by combining other 
physical mechanisms in nanophotonics. As one of such example, one of 
the hierarchical layers can be associated with energy dissipation processes. 
Specifically, a two-layer system is analyzed in this subsection, where (i) at 
smaller scale, called Layer 1, the system should exhibit a unique response, 
and (ii) at a larger scale, called Layer 2, the system should output two dif-
ferent signals. Such a hierarchical response can be applied to functions like 
traceability of optical memory in combination with a localized energy dis-
sipation process at Layer 1. Optical access to this memory will be automati-
cally recorded because of energy dissipation occurring locally in Layer 1, 
while at the same time, information will be read out based on the Layer 2 
behavior [45]. Therefore, such hierarchy enables traceability of optical mem-
ory, which will be important for the security (confidentiality is ensured) 
and management of digital content.

5.3.4.1	 Localized Energy Dissipation

As one of the basic principles of the system, localized energy dissipation is 
applied to recording a memory access. There are several physical principles 
involved in achieving this function by using optical near-field interactions.

The first one is based on the generation of a strong electric-field because 
of excitation of a plasmon induced in a metal nanostructure [46, 47, 48, 49]. 
Here, assume that an electric-field-sensitive material is placed at a position 
where the strong electric-field will be generated. Now, if a beam of light is 
irradiated, that optical access excites a plasmon and the induced strong elec-
tric-field will cause a physical change in the material. In other words, optical 
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access to the memory is recorded though a plasmon excitation. For example, 
it is well-known that irradiating a bow-tie-shaped metal nanostructure hav-
ing a small gap between two wedge-shaped metallic plates generates an opti-
cal near-field between the two apexes because of the interaction of charges 
concentrated at those points. Therefore, by placing an electric-field-sensitive 
material near the gap, an optical access to this structure will be recorded as 
a physical change in the material. Possible materials include AgOx film, in 
which Ag particles are selectively decomposed at positions where the tem-
perature is above the threshold level by optical accesses [50].

Other than engineered metal nanostructures, there is another physical sys-
tem for localized energy dissipation: a QD system where optical excitations 
are transferred irreversibly via optical near-field interactions, which has been 
discussed in Section 5.2.2.2. In a system where a larger QD is surrounded by 
smaller QDs, a configuration known as a nanophotonic fountain [19, 20], exci-
tons generated in the smaller QDs are transferred to the larger one. Therefore, 
by placing a material which absorbs the dissipated energy from the largest dot, 
a certain physical change occurs, and the system thus possesses the capability 
of recording the energy flow event.

Here, there are two points to note. The first is on the issue of how one 
would know if the memory was accessed or not. This should be discussed 
based on the detailed characteristics of the material used, for instance, the 
AgOx film mentioned earlier. Because it might not be needed to retrieve such 
trace information itself bit-by-bit, the physical change accompanying traces 
should be associated with macroscopically observable signals, such as trans-
mission, reflection, and diffraction patterns, and so forth.

The second point is about the storage density. With metal nanostructures, 
a single bit occupies a rather large area, namely, about 400 nm × 100 nm in 
the example shown later, with a corresponding storage density comparable 
to actual optical storage technologies such as Blu-Ray [51]. By contrast, with 
QDs, significantly higher integration density will be obtained. Neverthe-
less, what should be emphasized are the unique physical attributes of opti-
cal near-fields, namely, hierarchy and localized energy dissipation, allowing 
qualitatively novel functions, rather than for quantitatively improving the 
storage density. Therefore, potential applications include, as mentioned in 
Section 5.3.1, security-related applications where qualitative metrics such as 
confidentiality are prioritized.

5.3.4.2	 Engineering Shape of Metal Nanostructures for Hierarchy

We now focus on shape-engineering of metal nanostructures to achieve the 
hierarchy required for traceable memory [52]. Here, two types of shapes are 
assumed. The first one (Shape I) has two triangular metal plates aligned in 
the same direction; and the other one (Shape II) has them facing each other, as 
shown in Figure 5.13(a). The metal was gold, the gap between the two apexes 
was 50 nm, the horizontal length of one triangular plate was 173 nm, the 
angle at the apex was 30 degree, and the thickness was 30 nm. An incident 
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uniform plane wave with a wavelength of 680 nm was assumed for input 
light. The polarization was parallel to the x axis in Figure 5.13(b).

Layer 1 is associated with the scale around the gap of the triangles, and 
Layer 2 is associated with the scale covering both of the triangles, as shown 
in Figure 5.13(a).

Regarding the optical response at Layer 1, as shown in Figure 5.13(b), the 
electric field near the surface (1 nm away from the metal surface) shows an 
intensity nearly five orders of magnitude higher than the surrounding area. It 
should also be noted that nearly comparable electric-field enhancements are 
observed near the apexes of Shapes I and II, which are respectively denoted 
by the squares and circles in Figure 5.13(b).

By contrast, Shapes I and II exhibit different responses at Layer 2. As shown 
in Figure 5.13(c), Shape I exhibits larger scattering cross-section compared to 
Shape II. This indicates that a digital output is retrievable by observing the 
scattering from the entire structure (Layer 2), where, for example, digital 1 
and 0 are respectively associated with Shape I and Shape II.

In order to experimentally demonstrate the principle, Shapes I and II were 
fabricated in gold metal plates on a glass substrate by a liftoff technique using 
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electron-beam lithography. A near-field optical microscope in an illumination 
collection setup was used with an apertured fiber probe having a diameter 
of 530 nm, as shown in Figure 5.14(a). The light source used was a laser diode 
with an operating wavelength of 690 nm. The distance between the substrate 
and the probe was maintained at 450 nm. Figure 5.14(b) shows the electric 
field intensity depending on the shape of the metal plates, where the Shape 
I series exhibited larger values compared to the Shape II series, as expected. 
The insets in Figure 5.14(b) are SEM pictures of each sample, where the hori-
zontal length of a single triangle ranged from about 300 to 400 nm.

To summarize this subsection, hierarchical optical responses are discussed 
in association with localized energy dissipations to achieve traceability of 
information. Shape-engineering of metal nanostructures is also demon-
strated for achieving such functionalities.

5.4 Summary and Discussion

In this chapter, fundamentals for nanophotonic systems are presented along with 
two principal physical features of nanophotonics: one is optical excitation transfer, 
and the other is hierarchy in optical near-field interactions. Both of these physical 
features originate from light-matter interactions on the nanometer scale.

Regarding optical excitation transfer, its implications to digital signal 
processing are shown from the viewpoint of its unique physical features. 
Computational architectures such as memory-based architectures are also 
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discussed. Fundamental basic functionalities, such as global summation or 
interconnects, have been demonstrated. Also, concerning the environmental 
factors, signal transfer processes involving optical near-field interactions are 
significantly different in their associated physical scale for energy dissipa-
tion compared to conventional wired devices. In this regard, higher tamper 
resistance of nanophotonic devices is presented.

Hierarchy in optical near-field interactions is also discussed. Physical funda-
mentals are described using dipole-dipole interactions and angular spectrum 
representations of optical near-fields. Energy dissipation processes, which are 
also key processes in optical excitation transfer, can be combined with hierar-
chy for some applications. Hierarchical memory systems, including scalable and 
unscalable information retrieval, and traceable memory systems are presented.

The high spatial density of nanophotonics, thanks to the absence of the 
diffraction limit of light, is certainly one important aspect in nanophotonics; 
however, as discussed in this chapter, light-matter interactions on the nano-
meter scale can achieve qualitatively novel functions for system applications. 
In fact, the semiconductor technology roadmap raises the following five 
points for emerging research devices beyond CMOS information process-
ing [53]: (1) Computational state variable(s) other than electron charge alone; 
(2) nonthermal equilibrium systems; (3) novel energy transfer interactions; 
(4) nanoscale thermal management, and (5) sublithographic manufacturing 
processes. It should be noted that all of those points are explicitly or poten-
tially related to nanophotonics. Further exploration and attempts to exploit 
nanophotonics for future devices and systems will certainly be exciting.
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Appendix A
Projection Operator

We briefly outline what the projection operator is and what kind of properties 
it has. When one considers an interacting system such as a system consisting 
of an isolated quantum system and electromagnetic field, the Hamiltonian 
operator Ĥ  for the total system is represented as a sum of Ĥ0  and V̂ as

	
ˆ ˆ ˆ ,H H V= +0 	 (A1)

where Ĥ0 describes the isolated system while V̂ represents the interaction. If 
eigenstates and eigenvalues of the Hamiltonian Ĥ are written as |ψ j 〉 and Ej, 
respectively, the following Schrödinger equation holds:

	
ˆ | | ,H Ej j jψ ψ〉 = 〉 	 (A2)

where the suffix j is used for specifying quantum number to distinguish 
each eigenstate. In a similar way let us denote eigenstates of the Hamiltonian 
Ĥ0  as |φ j 〉 . Then we define a projection operator P as

	

P j j

j

N

= 〉〈
=
∑| |,φ φ

1 	
(A3)

where N is an arbitrary integer, but it is preferable to be a small number in 
practice. Acting the projection operator on an arbitrary state | ,ψ 〉 we obtain

	

P j j

j

N

| | |ψ ψ〉 = 〉〈 〉
=
∑ φ φ

1

.	 (A4)

From this relation it follows that the projection operator transforms the arbi-
trary state |ψ〉  into the P space span by the eigenstate |φ j 〉 . We have defined 
the projection operator based on steady states of the Schrödinger equation. 
Readers who are interested in the time dependent approach of the projection 
operator method are referred to Refs. [14–19].

Using the projection operator P, we can derive an effective operator Ôeff of 
an arbitrary operator Ô  that corresponds to a physical observable. In order 
to perform the calculation, let us begin with some elementary and useful 
properties of the projection operator. Becausee the eigenstate |φ j 〉  is ortho-
normalized, the projection operator P  satisfies the following relation:

	 P P P P= =† , .2 	 (A5)
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The complimentary operator Q given by

	 Q P= −1 	 (A6a)

reads

	 Q Q Q Q= =† , .2 	 (A6b)

Any state in the P space is orthogonal to any state in the Q space, and thus 
we have

	 PQ QP= = 0. 	 (A7)

Noticing that |φ j 〉 is an eigenstate of Ĥ0 , the commutation between the pro-
jection operator and Ĥ0  should be zero as follows:

	
[ , ˆ ] ˆ ˆ ,P H PH H P0 0 0 0= − = 	 (A8a)

	
[ , ˆ ] ˆ ˆ .Q H QH H Q0 0 0 0= − = 	 (A8b)

C9721_A001.indd   200 4/28/08   2:36:26 PM

© 2008 by Taylor & Francis Group, LLC



201

Appendix B
Effective Operator and Effective Interaction

Dividing the eigenstates |ψ j 〉  into two groups, we define | ( )ψ j
1 〉  in the P 

space and | ( )ψ j
2 〉  in the Q space as follows:

	

ψ ψ

ψ ψ

j j

j j

P

Q

( )

( )

| ,

| .

1

2

= 〉

= 〉







	 (B1a)

Then let us obtain a set of equations for | ( )ψ j
1 〉  and | ( )ψ j

2 〉 . From Eq. (A6a) in 
Appendix A we have

	
| ,( ) ( )ψ ψ ψj j jP Q〉 = +1 2

	
(B2)

and from Eqs. (A1) and (A2)

	 ( ˆ )| ˆ | ,E H Vj j j− 〉 = 〉0 ψ ψ 	 (B3)

is derived. Inserting Eq. (B2) into Eq. (B3), it reads

	
( ˆ ) ( ˆ ) ˆ ˆ( ) ( ) ( )E H P E H Q VP VQj j j j j− + − = +0

1
0

2 1ψ ψ ψ ψ jj
( ) .2 	 (B4)

Operating P from the left side on Eq. (B4) and using Eqs. (A5), (A7), and 
(A8), one can obtain

	
( ˆ ) ˆ ˆ .( ) ( ) ( )E H P PVP PVQj j j j− = +0

1 1 2ψ ψ ψ 	 (B5)

Similarly operating Q from the left side on Eq. (B4), it can be rewritten as

	
( ˆ ) ˆ ˆ .( ) ( ) ( )E H Q QVP QVQj j j j− = +0

2 1 2ψ ψ ψ 	 (B6)

From Eq. (B6), it is possible to formally express Q j| ( )ψ 2 〉  by P j| ( )ψ 1 〉  as

	

Q E H QV QVP

E H

j j j

j

ψ ψ( ) ( )( ˆ ˆ ) ˆ

{( ˆ )[

2
0

1 1

0 1

= − −

= − −

−

(( ˆ ) ˆ ]} ˆ

ˆ( ˆ ) ˆ

( )E H QV QVP

J E H QV

j j

j

−

= −

− −

−

0
1 1 1

0
1

ψ

PP jψ
( ) ,1 	 (B7)

(B1b)
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where the operator Ĵ  is defined by

	
ˆ [ ( ˆ ) ˆ ] .J E H QVj= − − − −1 0

1 1
	 (B8)

When one substitutes Eq. (B7) into the second term on the right-hand side in 
Eq. (B5), one obtains the equation for P j| ( )ψ 1 〉 

as follows:

	

( ˆ ) ˆ ˆ ˆ( ˆ ) ˆ( ) ( )E H P PVP PVJ E H QVj j j j− = + − −
0

1 1
0

1ψ ψ PP

PVJ J E H QV P

PV

j

j j

ψ

ψ

( )

( )ˆ ˆ{ˆ ( ˆ ) ˆ }

ˆ

1

1
0

1 1= + −

=

− −

ˆ̂ .( )JP jψ
1

	 (B9)

By contrast, if Eq. (B7) is inserted into Eq. (B2), then we have the equation 
for |ψ j 〉  as

	

| ˆ( ˆ ) ˆ

ˆ{ˆ (

( ) ( )ψ ψ ψj j j jP J E H QVP

J J

〉 = + −

= +

−

−

1
0

1 1

1 EE H QV P

JP

j j

j

−

=

−ˆ ) ˆ }

ˆ .

( )

( )

0
1 1

1

ψ

ψ

	 (B10)

Noticing the normalization condition for |ψ j 〉  and | ,( )ψ j
1 〉 it is possible to 

rewrite Eq. (B10):

	
| ˆ ( ˆ ˆ ) .† / ( )ψ ψj jJP PJ JP〉 = −1 2 1 	 (B11)

Because|ψ j 〉 has been expressed in terms of | ( )ψ j
1 〉 , one can obtain an effec-

tive operator Ôeff from the following relation [5,6,20]:

	
〈 〉 =ψ ψ ψ ψi j i jO O| ˆ | ˆ .( ) ( )1 1

eff 	 (B12)

Substituting Eq. (B11) into the left-hand side of Eq. (B12) and comparing it 
with the right-hand side, we can get

	
ˆ ( ˆ ˆ ) ( ˆ ˆ ˆ )( ˆ ˆ )† / † † /O PJ JP PJ OJP PJ JPeff = − −1 2 1 2.. 	 (B13)

If V̂  is taken as ˆ ,O then an effective interaction operator V̂eff is written as

	
ˆ ( ˆ ˆ ) ( ˆ ˆ ˆ )( ˆ ˆ )† / † † /V PJ JP PJ VJP PJ JPeff = − −1 2 1 2.. 	 (B14)
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This is what we are searching for. As is expected, V̂eff  operates only on any 
states in the P space. Once the bare interaction V̂  is given, it only remains to 
obtain the unknown operator Ĵ .

In order to obtain an explicit form of the operator Ĵ let us consider an oper-
ator relation [ˆ, ˆ ]J H P0  and operate it on the state |ψ j 〉 . This yields

	

[ˆ, ˆ ] | (ˆ ˆ ˆ ˆ) |

{( ˆ )ˆ

J H P JH H J P

E H

j j

j

0 0 0

0

ψ ψ〉 = − 〉

= − JJ J E H Pj j− − 〉ˆ( ˆ )} | .0 ψ
	 (B15)

We replace the first term ( ˆ )E Hj − 0
in Eq. (B15) by ˆ ,V which gives

	 [ˆ, ˆ ] | ˆ ˆ | ˆ( ˆ ) | .J H P VJP J E H Pj j j j0 0ψ ψ ψ〉 = 〉 − − 〉 	 (B16)

By using Eqs. (B5) and (B7), the second term of Eq. (B16) can be rewritten as

	

ˆ( ˆ ) | ˆ( ˆ )

ˆ ˆ

( )

(

J E H P J E H P

J PVP

j j j j

j

− 〉 = −

=

0 0
1

1

ψ ψ

ψ )) ( )

( )

ˆ

ˆ ˆ ˆ( ˆ ) ˆ

+{ }
= + − −

PVQ

JPV P J E H QVP

j

j j

ψ

ψ

2

1
0

1 ψψ

ψ

j

j jJPVJ J E H QV P

( )

( )ˆ ˆ ˆ ˆ ( ˆ ) ˆ .

1

1
0

1 1

{ }
= + −{ }− −

	 (B17)

Making use of Eq. (B8) and noting that P Pj j| | ,( )ψ ψ1 〉 = 〉 we can rewrite  
Eq. (B16) as

	 [ˆ, ˆ ] | ˆ ˆ | ˆ ˆ ˆ | .J H P VJP JPVJPj j j0 ψ ψ ψ〉 = 〉 − 〉 	 (B18)

Therefore, we have for the operator Ĵ

	 [ ˆ, ˆ ] ˆ ˆ ˆ ˆ ˆ ,J H P VJP JPVJP0 = − 	 (B19)

where all operators involved are known except ˆ.J
In order to solve Eq. (B19) perturbatively, let us assume

	

ˆ ˆ ,( )J g Jn n

n

=
=

∞

∑
0

	 (B20)

where the nth term ˆ( )J n  contains n V̂ s and ˆ( )J P0 = . Substituting Eq. (B20) 
into Eq. (19) and equating terms of order gn  on both sides, we successively 
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obtain ˆ , ˆ , , ˆ( ) ( ) ( )J J J n1 2 � . For example, noticing the identity

	

Q J H P QVJ P QJ PVJ P

QV

[ˆ , ˆ ] ˆ ˆ ˆ ˆ ˆ

ˆ

( ) ( ) ( ) ( )1
0

0 0 0= −

= PP,
	 (B21)

we take the matrix element of Eq. (B21) with |ψ j 〉 ;

	

〈 〉 = −( )
=

ψ ψ ψ ψi j i P Q jQ J H P QJ E E P| [ˆ , ˆ ] | ˆ( ) ( )1
0

1 0 0

〈〈 〉ψ ψi jQVP| ˆ | , 	 (B22)

where we used the eigenvalues EP
0  and EQ

0  of the Hamiltonian Ĥ0  in the P 
space and Q  space, respectively. From Eq. (B22), ˆ( )J 1  is obtained as follows:

	
ˆ ˆ .( )J QV E E PP Q

1 0 0
1

= −( )− 	 (B23)

Higher orders of ˆ( )J n  are successively given in a similar way. Whenever 
one improves the approximation of Ĵ , one can examine the higher-order 
effects originating in the Q space. These procedures correspond to how to 
obtain many-body Green’s functions for matter systems, or Green’s func-
tions for photons “dressed with matter excitations ”[21].
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Appendix C
Elementary Excitation Mode 
and Electronic Polarization

The concept of elementary excitations or quasi-particles has been discussed 
for a long time [22–27], and it is valuable for description of excited states, 
complex behavior, or dynamics of a many-body system. Excited states of a 
many-body system are considered as a collection of certain fundamental 
excited states that we call the elementary excitation. As a prerequisite, there 
must be a well-defined excitation energy whose value should be larger than 
the width of the relevant energy level. Then the relation between momentum �
p  and energy E  of the elementary excitation, that is, E E p= ( ),

�
is referred to 

as the dispersion relation.
Phonons, as quanta of normal modes of crystal vibration, are well known 

as an example of the elementary excitation modes in a solid. The motion is 
collective, which means that the total number of phonons is independent of 
the number of crystal lattice. The momentum of the elementary excitation is �

�
�

p k= in terms of the wave vector 
�
k  of normal vibration, not the mechani-

cal momentum of individual crystal lattice. The energy of the elementary 
excitation is also given by the angular frequencyω of the normal vibration 
as E = �ω.

As another example of the elementary excitations, we have plasmons, 
which correspond to collective motion of electron density in interacting elec-
tron gas; polarons are quasi-particles originated from the coupling between 
conduction electrons and optical phonons; and magnons corresponding to 
collective modes of spin density waves. Excitons are also well known, and 
describe the elementary excitation related to an electron-hole pair in a solid. 
As a limiting case, Frenkel excitons and Wannier excitons are frequently dis-
cussed. When the distance between the electron and hole in an exciton (Bohr 
radius of the exciton) is smaller than the atomic distance in the crystal, it is 
called a Frenkel exciton; Wannier excitons correspond to the opposite case, 
in which the Bohr radius of the exciton is relatively larger than the lattice 
constant of the crystal.

Let us consider the light-matter interaction, on the basis of the exciton 
concept. Incident photons interact with matter, and produce the successive 
creation and annihilation of excitons and photons in matter, that is, an elec-
tronic polarization field. This process indicates a new steady state with a new 
dispersion relation and energy because of the photon-exciton interaction. 
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Normal modes, or elementary excitation modes for this coupled oscillation 
are called polaritons. In particular, they are called exciton polaritons because 
of the occurrence of the mixed states of photons and excitons. The situation 
is analogous to the case in which two coupled oscillations with angular fre-
quenciesω1 andω2 produce new normal oscillations with angular frequen-
cies Ω1  and Ω2. Dressed atom states in an atom-photon interacting system 
[28] are conceptually similar to the normal modes of the photon and elec-
tronic polarization field, or exciton polaritons as quasi-particles.

Rewriting the Hamiltonian for a photon-electron interacting system in 
terms of excitons, one can obtain the following Hamiltonian describing exci-
ton polaritons:

	

ˆ ˆ ˆ ˆ ˆ (ˆ ˆ† †H a a b b D ak k k
k

k k k k= + + +∑� � �� � �
�

� � � �ω ε aa b b
k k k

kk
− −+∑∑ � �

��

† †)(ˆ ˆ ). 	 (C1)

Here the first and second terms correspond to the Hamiltonians for free pho-
tons and free excitons, respectively, and the third term describes the photon-
exciton interaction, whose coupling strength is �D. The explicit expression 
for �D is given from Eqs. (9), (10), and (11) in Section 2.1. Energies caused by 
zero-point oscillation are suppressed in Eq. (C1). Creation and annihilation 
operators for photons are denoted by ˆ†a

k
�  and ˆ ,ak

� while those for excitons are 
designated by ˆ†b

k
�  and ˆ .bk

� In the rewriting process, we define the creation and 
annihilation operators of excitons to be

	

ˆ ˆ ˆ ,

ˆ ˆ ˆ ,

†
,

†
,

,
†

,

b c c

b c c

l l c l v

l l v l c

� � �

� � �

=

=






	 (C2)

where we use the operator ˆ
,cl v

� that annihilates an electron in the valence band 
v within an atom at the lattice site 

�
l , and its Hermitian conjugate operator ˆ

,
†c
l v
�  

as well as the operator ˆ
,

†c
l c
� that creates an electron in the conduction band c

within an atom at the lattice site 
�
l , and its Hermitian conjugate operator ˆ .,c

l c
�

According to the conventional method, in addition, we introduce the 
operators

	

ˆ ˆ ,

ˆ ˆ† †

b
N

e b

b
N

e b

k
ik l

l
l

k
ik l

l

�
� �

�
�

�
� �

�

=

=

− ⋅

⋅

∑1

1
,,

�
l
∑













	 (C3)

in the momentum representation. Here the total number of lattice sites is 
assumed to be N in the crystal considered.

Once the Hamiltonian for exciton polaritons is given by Eq. (C1), one 
can obtain eigenstates and eigenenergies of exciton polaritons, or the 
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dispersion relation. For simplicity, we adopt the rotating wave approxima-
tion and neglect terms, ˆ ˆ† †a b

k k−
� �  and ˆ ˆa bk k

� �
− , which create or annihilate both a 

photon and an exciton at the same time, and consider the following ˆ :Hk
�

	

ˆ ˆ ,

ˆ ( ˆ ˆ ˆ ˆ† †

H H

H a a b b

k
k

k k k k k k k

=

= +

∑ �
�

� � � � � � �� ω ε )) (ˆ ˆ ˆ ˆ ).† †+ +� � � � �D b a a b
k k k k

	 (C4)

We next introduce the creation and annihilation operators of exciton polari-
tons as ˆ , ˆ† †ξ ξ1 2 , and ˆ , ˆ ,ξ ξ1 2  corresponding to new eigenfrequenciesΩ Ω� �

k k, ,, ,1 2
respectively. The Hamiltonian Ĥk

�  is assumed to be diagonalized in terms of 
ˆ , ˆξ ξ1 2 , and rewrite Eq. (C4) as

	

ˆ ( ˆ ˆ ˆ ˆ ) (ˆ , ˆ
,

†
,

† †H bk k k k
� � � �� �= + =Ω Ω1 1 1 2 2 2ξ ξ ξ ξ aa A

b

a

a b b a b

k
k

k

k k

�
�

�

� � ��

†

†

)
ˆ

ˆ

( ˆ ˆ ˆ










= +11 12 kk k k k k ka a a b a a a† † †ˆ ˆ ˆ ˆ ˆ ),� � � � �+ +21 22 	 (C5)

where A  is the 2 by 2 matrix whose elements are given by

	
A

a a

a a

D

D
k

k

=





=






11 12

21 22

ε
ω

�

�
. 	 (C6)

Applying unitary transformation U U U, ( †i.e., )= −1

	

ˆ

ˆ

ˆ

ˆ
b

a
U U

u u

u
k

k

�

�








 =













=
ξ

ξ
1

2

11 12with
221 22u







, 	 (C7)

to Eq. (C5), we have

	

� �� �
�

�
(ˆ , ˆ )

ˆ

ˆ
( ˆ , ˆ )† † † †b a A

b

a
U

k k
k

k








 = ξ ξ1 2

††
ˆ

ˆ
.AU

ξ

ξ
1

2











 	 (C8)

Since U AU U AU† = −1  is diagonalized, we put

	
U AU

k

k

− =








 ≡1 1

2

0

0

Ω

Ω
Λ

�

�

,

,

    , 	 (C9)

and obtain AU U= Λ , which reduces in terms of components ( , )j = 1 2  to

	

ε

ω

� �

� �

k k j

k k j

j

j

D

D

u

u

−

−














=

Ω

Ω
,

,

.
1

2
0 	 (C10)
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This immediately gives the eigenvalue equation

	 ( )( ) ,Ω Ω− − − =ε ω� �
k k D2 0 	 (C11)

and the eigenenergies of exciton polaritons are

	

� ��
� � � �

Ωk j
k k k k D

,

( )
.=

+
±

− +











ε ω ε ω
2

4

2

2 2 	 (C12)

Equation (C12) provides the new dispersion relation that we are looking for. 
Using the dispersion relation of photons as ω �

k ck= with k k=| |,
�

we can plot 
the eigenenergies of exciton polariton as a function of k, as shown in Figure 
C.1. Here, for simplicity, we approximate the exciton dispersion as ε � �k = Ω,
independent of k.

0 k

Ω

Ωk

ωk = ck

Figure C.1
Dispersion curve of an exciton polariton schematically drawn as a function of k. For simplicity, 
the exciton dispersion is approximated as εk

r h= Ω,  independent of k.
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From Eq. (C10) and the unitarity of U, we have for the components of the 
eigenvectors

	

u
D

u

u u j

j
k k j

j

j j

2 1

1
2

2
2 1 1 2

= −
−

+ = =









ε � �Ω , ,

, ( , )

	 (C13)

and thus it reads

	

1 1
2

1
2+

−
















=

ε � �
k k j

jD
u

Ω , . 	 (C14)

Finally, the eigenvectors of exciton polaritons are given by

	

u
D

u

j
k k j

j

1

2 1 2

2

1= +
−

















= −

−
ε � �Ω ,

/

,

εε ε� � � �
k k j k k j

D D

−





+

−














Ω Ω, ,1
2


















−1 2/

.

	 (C15)

New steady states for exciton polaritons can be described by Eqs. (C12) and 
(C15).
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Appendix D
Minimal Coupling and Multipolar  
Hamiltonians

The “bare interaction” must be specified in order to obtain a more explicit 
expression of the effective interaction. There are two ways to describe the 
interaction between an electromagnetic field and a charged particle. One is to 
use the minimal coupling Hamiltonian, and the other is to employ the mul-
tipolar Hamiltonian. These two Hamiltonians are related to each other by a 
unitary transformation, and there are, in principle, no problems regardless 
of which is adopted [29–31]. However, it should be noted that the complexity 
of description depends on each problem: it may be easier for the minimal 
coupling Hamiltonian formalism to describe one problem, and more diffi-
cult to handle another. In this appendix, we briefly describe each Hamilto-
nian to show the equivalence of both Hamiltonians, as well as advantages 
and disadvantages of each Hamiltonian.

Minimal Coupling Hamiltonian

We can derive the minimal coupling Hamiltonian for a charged particle, 
that is, the electromagnetic interaction with a charged particle, by impos-
ing the local gauge invariance on the Hamiltonian describing free particle 
motion [14,29]. The minimal coupling Hamiltonian is defined such that the 
Schrödinger equation is not changed even if a wave function ψ ( , )

�
r t is trans-

formed by the phase transformation χ( , )
�
r t  as

	 ′ =ψ χ ψ( , ) exp[ ( , )] ( , ),
� � �
r t i r t r t 	 (D1)

and if vector potential 
� �
A r t( , )  and scalar potential U r t( , )

�
 are transformed by 

the following gauge transformation

	

� � � � � �

� �

′ = + ∇

′ =

A r t A r t
c
e

r t

U r t U

( , ) ( , ) ( , ),

( , ) (

χ

rr t
e t

r t, ) ( , ).− ∂
∂










� �
χ

	 (D2)
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Here � and e are the Planck constant divided by 2π and the electric charge 
of the particle. Let us simply assume the electromagnetic fields to be classi-
cal in this appendix. In order to satisfy this requirement, it follows that the 
Hamiltonian must be

	
′ = − ′




+ ′H

m
p

e
c

A r t eU r t
1

2

2� � � �
( , ) ( , ), 	 (D3)

where the mass and the momentum of the particle are denoted by m and 
�
p  

respectively. For confirmation, Eqs. (D1), (D2), and (D3) are substituted into 
the Schrödinger equation:

	
i

t
r t H r t�
� �∂

∂
′ = ′ ′ψ ψ( , ) ( , ). 	 (D4)

By noting that the momentum 
�
p  should be an operator, − ∇i�  it follows that 

the left-hand side of Eq. (D4) reads

	
− ∂

∂
+�

�
�

�
�

�
exp[ ( , )]

( , )
( , ) exp[ (i r t

r t
t

r t i iχ χ ψ χ rr t
r t
t

, )]
( , )

.
∂
∂
ψ

�
	 (D5)

By contrast, the right-hand side of Eq. (D4) can be rewritten as

1
2

2

m
i

e
c

A r t
c
e

r t i− ∇ − + ∇{ }





�
� � � �

( , ) ( , ) expχ χχ ψ

χ

( , ) ( , )

( , ) ( , )

� �

� � �

r t r t

e U r t
e t

r t

[ ]

+ − ∂
∂









[ ]

= − ∇ − −

exp ( , ) ( , )

( , )

i r t r t

m
i

e
c

A r t

χ ψ
� �

�
� �1

2
��

� �
�

� �
∇




⋅ − ∇ −χ χ( , ) exp[ ( , )] ( ,r t i r t i

e
c

A r tt r t

i r t eU r t r

) ( , )

exp[ ( , )] ( , ) ( ,







+

ψ

χ ψ

�

� � �
tt i r t

r t
t

r t

i

) exp ( , )
( , )

( , )

exp[ (

− [ ] ∂ ∂

=

�
�

�
�

χ χ ψ

χ
��

�
� � �

r t
m

i
e
c

A r t eU r t, )] ( , ) ( , )
1

2

2

− ∇ −




+













− [ ] ∂ ∂

ψ

χ χ ψ

( , )

exp ( , )
( , )

(

�

�
�

�

r t

i r t
r t
t

��
r t, ).

	

		

(D6)

Here we used the following relation

	 − ∇ = −i i r t r t i r t i�
� � �

{exp[ ( , )] ( , )} exp[ ( , )](χ ψ χ �� �
� �

∇ + ∇χ ψ( , )) ( , ).r t r t 	 (D7)
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Therefore, we can leave the Schrödinger equation unchanged as

	

i
t

r t H r t

H
m

i
e
c

A r t

�
� �

�
� �

∂
∂

=

= − ∇ −

ψ ψ( , ) ( , ),

( , )
1

2 


+

2

eU r t( , ).
�

	 (D8)

In other words, the relevant Hamiltonian is obtained by formally adding 
eU r t( , )

�
 and replacing 

�
p  by 

� � �
p e c A r t− ( / ) ( , )  in the Hamiltonian for a free 

particle. From Eq. (D8), the interaction Hamiltonian for the electromagnetic 
field and the charged particle consists of two parts:

	
H

e
mc

p A r t H
e
mc

A r t1 2

2

2
2

2
= − ⋅ =

� � � � �
( , ), ( , ). 	 (D9)

Advantages of this form of the Hamiltonian are that it can easily describe 
relativistic covariance and is firmly rooted in gauge theory [32,33]. However, 
it has the disadvantage that exact description including the retardation is 
cumbersome in the Coulomb gauge (∇⋅ =

�
A 0 ), where the transversality of 

light is considered to be important in order to handle the interaction between 
light and matter as a many-body system.

Multipolar Hamiltonian

Here we discuss another form of the light-matter interaction via a unitary 
transformation of the minimal coupling Hamiltonian, which removes the 
disadvantages mentioned ealier. The multipolar Hamiltonian has a simple 
form without the static Coulomb interaction, and can exactly describe the 
retardation effects by exchanging only transverse photons, up to the 

�
A2  

term in the minimal coupling Hamiltonian [31].
Let us consider a charged-particle system confined in a microscopic area, 

and hereinafter call it a molecule. Electric neutrality of the molecule is 
assumed, and thus it may be an atom or a molecule as a physical entity. In the 
following, we choose a two-molecule system as an example, and look for an 
appropriate Hamiltonian. When the wavelength of electromagnetic waves 
is much greater than the molecular dimension, the vector potential 

� �
A R( )  at 

the center position 
�
R  of a molecule is the same as 

� �
A q( ) , independent of the 

position 
�
q  of an electric charge in the molecule:

	
� � � �
A q A R( ) ( )= 	 (D10)

From Eq. (D10), it follows that 
� �
B A= ∇ × = 0 , and thus we can neglect the 

interaction between the particle and the magnetic field. Moreover the electric 
dipole interaction, for simplicity, is taken into account, that is, the magnetic 
dipole and higher multipoles are neglected. We assume in addition that the 
electron exchange interaction is also negligible. Then the Lagrangian L for 
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the system, consisting of three parts Lmol , Lrad , and Lint , can be written as

	

L L L L

L
m q

V

= + +

= −


∑

mol rad int

mol

,

( )
( )α α

α

ζ ζ
�� 2

2







=







 − ∇ ×




=
∑
ζ

π

1

2

2

21
8

,

( )L
A
c

Arad

�� �









= ⋅ −

∫ d r

L
e
c

q A R V

3 ,

( ) ( )int inter
�� � �
α ζζ

ααζ
∑∑

=1

2

,

	 (D11)

where the index ζ  is used for distinguishing the molecules 1 and 2, and α  
used to specify a charged particle in a molecule. The energy of the charged 
particles with mass mα  and velocity 

��qα  in the Coulomb potential V( )ζ  is 
denoted by Lmol , while Lrad  represents the energy of the electromagnetic 
field in free space. The third term in the Lagrangian shows the interaction 
between the charge and the electromagnetic field and the Coulomb interac-
tion Vinter  between molecules 1 and 2, which is given by

	
V

R
eRinter = ⋅ − ⋅ ⋅1

1 2 3 1 2
3

{ ( ) ( ) ( ( ) )( ( )
� � � � � �
µ µ µ µ eeR)}. 	 (D12)

Here R R R R= = −| | | |
� � �

1 2 denotes the distance between the centers of molecules 
1 and 2, and 

�
eR  is 

�
R R/ , the unit vector in the direction of 

�
R . The elec-

tric dipole moments of molecules 1 and 2 are designated by 
�
µ( )1  and �

µ( )2  
respectively.

In order to simplify the interaction Hamiltonian without changing the 
equations of motion, let us perform the Power-Zienau-Woolley transforma-
tion [29] on the original Lagrangian L :

	
L L

c
d
dt

P r A r d rmult = − ⋅⊥∫1 3
� � � �

( ) ( ) , 	 (D13)

where 
� �
P r⊥( )  is the transverse component of the polarization density 

� �
P r( ); 

this means that transverse photons can only contribute to the second term in 
Eq. (D13). The polarization density 

� �
P r( )  is

	

� � � � � � � �
P r e q R r R q R( ) ( ) ( ( ))

,

= − − − −∫α ζ ζ α ζ
ζ α

δ λ
0

1

∑∑

∑= −

− − ⋅∇ +

d

e q R

q R

λ

ζ α
α ζ

α ζ

,

( )

!
{( ) }

!
{(

� �

� �
1

1
2

1
3

�� �
�

� �
q R r Rα ζ ζδ− ⋅∇ −





−) } ( ),2 	 (D14)
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and only the electric dipole term is retained:

	

� � � � � �

� � �

P r e q R r R

r R

( ) ( ) ( )

( ) (

,

= − −

= −

∑ α ζ ζ
ζ α

δ

µ δ1 11 22) ( ) ( ).+ −
� � �
µ δ r R 	 (D15)

Note that the current density 
� �
j r( )  is

	

� � �� � �
j r eq r R( ) ( ),

,

= −∑ α ζ
ζ α

δ 	 (D16)

and the transverse component of the current density is related to the trans-
verse component of the polarization density as follows:

	

� �
� �

j r
dP r

dt
⊥

⊥
=( )

( )
. 	 (D17)

Using Eqs. (D16) and (D17), we can rewrite the interaction Lagrangian Lint  as

	
L

c
j r A r d r V

c
dP r

int inter= ⋅ − =⊥
⊥

∫1 13
� � � �

� �
( ) ( )

( )
ddt

A r d r V∫ ⋅ −
� �

( ) ,3
inter 	 (D18)

and thus Lmult  given by Eq. (D13) becomes

	

L L
c

dP r
dt

A r d r
c

P rmult = − ⋅ − ⋅
⊥

⊥∫∫1 13

� � � � � �( )
( ) ( )

��� �

� � �� �

A r d r

L L
c

P r A r d r

( )

( ) ( )

3

31= + − ⋅⊥∫mol rad −−Vinter . 	 (D19)

Here recall the definition of the momentum 
�
pα  conjugate to 

�
qα , and 

� �
Π( )r  to � �

A r( ) ,

	

�
�� ��

��

� �

p
L
q

L
q

m q

r
L

α
α α

α α= ∂
∂

= ∂
∂

=

= ∂

mult mol ,

( )Π mmult rad

∂
= ∂

∂
− ∂

∂
⊥�� � �� � �� �

�

A r

L

A r A r c
P

( ) ( ) ( )
(

1 �� �� �

�� � � �

r A r d r

c
A r

c
P r

) ( )

( ) ( )

⋅

= − = −

∫
⊥

3

2

1
4

1 1
4π ππ

π
c

E r P r{ ( ) ( )}.
� � � �⊥ ⊥+ 4 	 (D20)

Because we have the relation between the electric field 
� �
E r( ) and the electric 

displacement 
� �
D r( ) , those transverse components also satisfy

	
� � � � � �
D r E r P r⊥ ⊥ ⊥= +( ) ( ) ( ),4π 	 (D21)

and thus the momentum 
� �
Π( )r  can be rewritten as

	

� � � �
Π( ) ( ).r

c
D r= − ⊥1

4π
	 (D22)
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By putting them together, canonical transformation of the Lagrangian Lmult  
gives a new Hamiltonian Hmult

	

H p q r A r d r Lmult mu= ⋅ + ⋅ −∫� �� � � �� �
α αζ ζ( ) ( ) ( ) ( )Π 3

llt

ζ α

α

αα

ζ ζ
π

π

,

( )
( ) [(

∑

∑= +


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



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
+

�
p
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V

2

2
1

8
4 cc r A r d r

c P r

� � � �

� �

Π( )) ( ( )) ]

( )

2 2 3

4

+ ∇ ×{ }
+ ⋅

∫∑
⊥

ζ

π
�� � � �
Π( ) | ( )| .r d r P r d r V3 2 32+ +⊥∫∫ π inter

	

(D23)

It is possible to simplify Eq. (D23) by separating 2 2 3π | ( )|
� �
P r d r⊥∫  into two 

parts: inter- and intramolecular. Let us consider the intermolecular part:

	
2 1 2

3π
� � � �
P r P r d r⊥ ⊥⋅∫ ( ) ( ) . 	 (D24)

Noting

	

� � � � � �

� � � �

�

�

P r P r P r

P r P r

2 2 2

1 2

( ) ( ) ( ),

( ) ( )

= +

⋅

⊥

⊥ == 0, 	 (D25)

and

	
� � � � � � � � � ��P r P r P r P r P1 2 1 2 2
⊥ ⊥ ⊥ ⊥⋅ = ⋅ +( ) ( ) ( ) { ( ) (rr P r P r)} ( ) ( ),= ⋅⊥

� � � �
1 2

	 (D26)

we rewrite Eq. (D24) as follows:

	

4 41 2
3

1 2π π
� � � � � � � �
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� � � �
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� � � �
µ µ µ (( ( ) )},

� �
µ 2 ⋅ eR 	 (D27)

where we used Eq. (D15) in the first line, and the following identities for the 
Diracδ function and theδ -dyadics, δij r� �

( ) and δij r⊥( )
�

, in the third line:

	

δ δ δ δ

δ δ

ij ij ij

ij ij

r r r

r

( ) ( ) ( ),
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� � �

� �
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⊥

⊥ rr e e ik r d r

r

ki kj

i j
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( )

ˆ ˆ exp( )= − ⋅

= ∇ ∇

∫1
2

1
4

3
3

π

π

� �





 = − −1

4
3

3π
δ

r
e eij ri rj( ˆ ˆ ). 	 (D28)
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Here the subscripts i and j refer to Cartesian components, as usual. Because 
the exchange of the subscripts 1 and 2 gives the same result as Eq. (D27), one 
can derive

	
2 01 2

3π
� � � �
P r P r d r V⊥ ⊥⋅ + =∫ ( ) ( ) .inter 	 (D29)

Therefore, we can only take care of the intramolecular part of 2
2

3π | ( )|
� �
P r d r⊥∫  

and have the simplified version of Hmult as

	

H
p

m
V P r d rmult = + +






⊥∫∑

� � �α

α
ζ

α

ζ ζ π
2 2

3

2
2

( )
( ) ( )









+ + ∇ ×

∑

∫
ζ

π
π1

8
4 2 2 3[( ( )) ( ( )) ]c r A r d r

� � � �
Π{{ }

+ ⋅⊥∫4 3πc P r r d r
� � � �

( ) ( ) ,Π 	 (D30)

where each line represents the charged particle motion in each molecule, 
free electro- magnetic field, and the interaction, respectively. Because we can 
expand the polarization density in terms of 2� multipoles ( l = 1 2 3, , ,�), as 
shown in Eq. (D14), we call Hmult the multipolar Hamiltonian. The interac-
tion part can be more explicitly written as

	

4 3 3πc P r r d r P r D r d r
� � � � � � � �⊥ ⊥ ⊥⋅ = − ⋅ =∫ ∫( ) ( ) ( ) ( )Π −− ⋅

= − ⋅ +

⊥

⊥

∫
� � � �

� � � �

P r D r d r

D R

( ) ( )

{ ( ) ( ) ( )

3

11 2µ µ ⋅⋅ ⊥
� �
D R( )},2

	

(D31)

with the help of Eqs. (D15) and (D22). When the considered system is quan-
tized, quantities such as 

�
µ( )i  and 

� �
D R ii
⊥ =( ), ( , )1 2  should be replaced by the 

corresponding operators,

	
− ⋅ + ⋅{ }⊥ ⊥� � � � � �ˆ( ) ˆ ( ) ˆ( ) ˆ ( ) ,µ µ1 21 2D R D R 	 (D32)

yielding the quantized multipolar Hamiltonian.
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Appendix E
Transformation from Photon 
Base to Polariton Base

In this appendix, we derive Eqs. (10) and (11) in the text, diagonalizing an 
exciton-photon interacting system without the rotating wave approximation. 
Suppose that the Hamiltonian of the system as

	

ˆ ˆ , ˆ ˆ ˆ ˆ ˆ ˆ ˆ† †H H H a a b b C bk

k

k k k k k k k≡ = + − +∑ −� � �ω Ω i bb a ak k k
† †ˆ ˆ( ) −( )−

	
(E1)

with creation and annihilation operators of a photon with energy of �ωk , ˆ†a
k
� 

and ˆ†a
k
� , and those of an exciton with energy of �Ω, ˆ†b

k
�  and b̂

k
�. The exciton-

photon coupling is denoted by i�C. We define an exciton-polariton operator 

ξ̂k as

	
ˆ ˆ ˆ ˆ ˆ† †ξk k k k k k k k kW a y a X b Z b= + + +− − 	

(E2)

and its hermitian conjugate ˆ†ξk, and for simplicity assume that all the opera-
tors obey the boson commutation relation. Here W y X Zk k k k, , , and are the 
expansion coefficients. The Hamiltonian should be diagonalized in the form 
of ˆ ˆ†ξ ξk k, and it follows that

	 Hk k k k= �Ω ˆ ˆ ,†ξ ξ 	 (E3)

and

	

1 1
i

d
dt

Hk
k k k

ˆ
ˆ , ˆ ˆ .

ξ ξ ξ= 



 = −�

Ω
	

(E4)

Substituting Eq. (E2) into Eq. (E4), the left-hand side is written as

	

W da
dt

y da
dt

X db
dt

Z db
dt

k k k k k k k k

i i i i
ˆ ˆ ˆ ˆ† †
+ + +− − ,,

	
(E5)

and the right-hand side reads

	
− + + +( )− −Ωk k k k k k k k kW a y a X b Z bˆ ˆ ˆ ˆ .† †

	
(E6)
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Using the equations of motion as

	

1 1
i

i
da
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(E7)

we can rewrite Eq. (E5) as follows:

	

− − +( )
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(E8)

Because the operators are linearly independent, it follows from Eqs. (E6) 
and (E8) that we have
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(E9)

The conditions that the coefficients Wk, Xk, yk, and Z are not zero, lead us to 
have

	 det( ) , ,M = −( ) −( ) =0 42 2 2 2 2or Ω Ω Ω Ωk k k kCω ω 	 (E10)

as an eigenvalue equation. By setting E k k( ) = �Ω ,  and Em = �Ω  Eq. (E10) 
can be rewritten as

	 ( ( ) ( ) ) ( ) .E k E k E C Ek m k m
2 2 2 2 24− −( ) =� �ω ω 	 (E11)
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In order to determine the coefficients Wk, Xk, yk, and Zk, we then express 
Xk, yk, and Zk in terms of Wk from Eq. (E9).

	
y

E k
E k

W X
E k E E k
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k
k k
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W Z
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X
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2 �

= −
+  		

		  (E12)

The boson commutation relation, [ ˆ , ˆ ]ξ ξk k
ν = 1  gives the following constraint

	 | | | | | | | | .W X y Zk k k k
2 2 2 2 1+ − − = 	 (E13)

Using Eqs. (E11), (E12), and (E13), we finally obtain
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(E14)

Corresponding to two eigenvalues of Eq. (E11), E k( )( ),±  we classify exciton-
polariton operator and expansion coefficients by superscripts ( )± such as 
ˆ , ˆ ,( ) ( )ξ ξk k
± ±  and Wk

( ).±  Then Eq. (E2) are rewritten as follows:
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(E15)

which can be inversely transformed as
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After the superscripts ( )±  are abbreviated, then we have
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which are substituted into the photon operators in 
� �ˆ

( )D r⊥ . Using Eqs. (E12) 
and (E14), we finally obtain

	
K k e k f k eik r
α α λ

λ

µ α( ) ( ( )) ( )
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(E18)

with
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(E19)

which are Eqs. (10) and (11) to be derived.
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