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Phonons in nanostructures

This book focuses on the theory of phonon interactions in nanoscale structures
with particular emphasis on modern electronic and optoelectronic devices.

The continuing progress in the fabrication of semiconductor nanostructures with
lower dimensional features has led to devices with enhanced functionality and
even to novel devices with new operating principles. The critical role of phonon
effects in such semiconductor devices is well known. There is therefore a
pressing need for a greater awareness and understanding of confined phonon
effects. A key goal of this book is to describe tractable models of confined
phonons and how these are applied to calculations of basic properties and
phenomena of semiconductor heterostructures.

The level of presentation is appropriate for undergraduate and graduate students
in physics and engineering with some background in quantum mechanics and
solid state physics or devices. A basic understanding of electromagnetism and
classical acoustics is assumed.



Preface

This book describes a major aspect of the effort to understand nanostructures,
namely the study of phonons and phonon-mediated effects in structures with
nanoscale dimensional confinement in one or more spatial dimensions. The neces-
sity for and the timing of this book stem from the enormous advances made in the
field of nanoscience during the last few decades.

Indeed, nanoscience continues to advance at a dramatic pace and is making
revolutionary contributions in diverse fields, including electronics, optoelectronics,
quantum electronics, materials science, chemistry, and biology. The technologies
needed to fabricate nanoscale structures and devices are advancing rapidly. These
technologies have made possible the design and study of a vast array of novel
devices, structures and systems confined dimensionally on the scale of 10 nanome-
ters or less in one or more dimensions. Moreover, nanotechnology is continuing
to mature rapidly and will, no doubt, lead to further revolutionary breakthroughs
like those exemplified by quantum-dot semiconductor lasers operating at room
temperature, inter subband multiple quantum-well semiconductor lasers, quantum-
wire semiconductor lasers, double-barrier quantum-well diodes operating in the
terahertz frequency range, single-electron transistors, single-electron metal-oxide-
semiconductor memories operating at room temperature, transistors based on carbon
nanotubes, and semiconductor nanocrystals used for fluorescent biological labels,
just to name a few!

The seminal works of Esaki and Tsu (1970) and others on the semiconductor
super lattice stimulated a vast international research effort to understand the fabrica-
tion and electronic properties of superlattices, quantum wells, quantum wires, and
quantum dots. This early work led to truly revolutionary advances in nanofabrication
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technology and made it possible to realize band-engineering and atomic-level
structural tailoring not envisioned previously except through the molecular and
atomic systems found in nature. Furthermore, the continuing reduction of dimen-
sional features in electronic and optoelectronic devices coupled with revolutionary
advances in semiconductor growth and processing technologies have opened many
avenues for increasing the performance levels and functionalities of electronic and
optoelectronic devices. Likewise, the discovery of the buckyball by Kroto et al.
(1985) and the carbon nanotube by Iijima (1991) led to an intense worldwide
program to understand the properties of these nanostructures.

During the last decade there has been a steady effort to understand the optical
and acoustic phonons in nanostructures such as the semiconductor superlattice,
quantum wires, and carbon nanotubes. The central theme of this book is the
description of the optical and acoustic phonons in these nanostructures. It deals
with the properties of phonons in isotropic, cubic, and hexagonal crystal structures
and places particular emphasis on the two dominant structures underlying modern
semiconductor electronics and optoelectronics - zincblende and wiirtzite. In view
of the successes of continuum models in describing optical phonons (Fasol et al.,
1988) and acoustic phonons (Seyler and Wybourne, 1992) in dimensionally confined
structures, the principal theoretical descriptions presented in this book are based
on the so-called dielectric continuum model of optical phonons and the elastic
continuum model of acoustic phonons. Many of the derivations are given for the
case of optical phonons in wiirtzite crystals, since the less complicated case for
zincblende crystals may then be recovered by taking the dielectric constants along
the c-axis and perpendicular to the c-axis to be equal.

As a preliminary to describing the dispersion relations and mode structures for
optical and acoustic phonons in nanostructures, phonon amplitudes are quantized in
terms of the harmonic oscillator approximation, and anharmonic effects leading to
phonon decay are described in terms of the dominant phonon decay channels. These
dielectric and elastic continuum models are applied to describe the deformation-
potential, Frohlich, and piezoelectric interactions in a variety of nanostructures
including quantum wells, quantum wires and quantum dots. Finally, this book
describes how the dimensional confinement of phonons in nanostructures leads to
modifications in the electronic, optical, acoustic, and superconducting properties of
selected devices and structures including intersubband quantum-well semiconductor
lasers, double-barrier quantum-well diodes, thin-film superconductors, and the thin-
walled cylindrical structures found in biological structures known as microtubulin.

The authors wish to acknowledge professional colleagues, friends and family
members without whose contributions and sacrifices this work would not have been
undertaken or completed. The authors are indebted to Dr C.1. (Jim) Chang, who is
both the Director of the US Army Research Office (ARO) and the Deputy Director
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and Dr John Lyons, the current director and most recent past director of the US Army
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Chapter 1

Phonons in nanostructures

There are no such things as applied sciences, only applications of
sciences.
Louis Pasteur, 1872

1.1 Phonon effects: fundamental limits on carrier
mobilities and dynamical processes

The importance of phonons and their interactions in bulk materials is well known to
those working in the fields of solid-state physics, solid-state electronics, optoelec-
tronics, heat transport, quantum electronics, and superconductivity.

As an example, carrier mobilities and dynamical processes in polar semiconduc-
tors, such as gallium arsenide, are in many cases determined by the interaction of
longitudinal optical (LO) phonons with charge carriers. Consider carrier transport
in gallium arsenide. For gallium arsenide crystals with low densities of impurities
and defects, steady state electron velocities in the presence of an external electric
field are determined predominantly by the rate at which the electrons emit LO
phonons. More specifically, an electron in such a polar semiconductor will accelerate
in response to the external electric field until the electron's energy is large enough for
the electron to emit an LO phonon. When the electron's energy reaches the threshold
for LO phonon emission - 36 me V in the case of gallium arsenide - there is a
significant probability that it will emit an LO phonon as a result of its interaction
with LO phonons. Of course, the electron will continue to gain energy from the
electric field.

In the steady state, the processes of electron energy loss by LO phonon emission
and electron energy gain from the electric field will come into balance and the
electron will propagate through the semiconductor with a velocity known as the
saturation velocity. As is well known, experimental values for this saturated drift
velocity generally fall in the range 107 em s-l to 108 em s-l. For gallium arsenide
this velocity is about 2 x 107 em s-l and for indium antimonide 6 x 107 em s-l.
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For both these polar semiconductors, the process of LO phonon emission plays a
major role in determining the value of the saturation velocity. In non-polar materials
such as Si, which has a saturation velocity of about 107 em s", the deformation-
potential interaction results in electron energy loss through the emission of phonons.
(In Chapter 5 both the interaction between polar-optical-phonons and electrons -
known as the Frohlich interaction - and the deformation-potential interaction will
be defined mathematically.)

Clearly, in all these cases, the electron mobility will be influenced strongly by the
interaction of the electrons with phonons. The saturation velocity of the carriers in
a semiconductor provides a measure of how fast a microelectronic device fabricated
from this semiconductor will operate. Indeed, the minimum time for the carriers to
travel through the active region of the device is given approximately by the length
of the device - that is, the length of the so-called gate - divided by the saturation
velocity. Evidently, the practical switching time of such a microelectronic device
will be limited by the saturation velocity and it is clear, therefore, that phonons play
a major role in the fundamental and practical limits of such microelectronic devices.
For modern integrated circuits, a factor of two reduction in the gate length can be
achieved in many cases only through building a new fabrication facility. In some
cases, such a building project might cost a billion dollars or more. The importance
of phonons in microelectronics is clear!

A second example of the importance of carrier-phonon interactions in modern
semiconductor devices is given by the dynamics of carrier capture in the active
quantum-well region of a polar semiconductor quantum-well laser. Consider the
case where a current of electrons is injected over a barrier into the quantum-well
region of such a laser. For the laser to operate, an electron must lose enough energy
to be 'captured' by the quasi-bound state which it must occupy to participate in
the lasing process. For many quantum-well semiconductor lasers this means that
the electron must lose an energy of the order of a 100 me V or more. The energy
loss rate of a carrier - also known as the thermalization rate of the carrier - in
a polar-semiconductor quantum well is determined by both the rate at which the
carrier's energy is lost by optical-phonon emission and the rate at which the carrier
gains energy from optical-phonon absorption. This latter rate can be significant
in quantum wells since the phonons emitted by energetic carriers can accumulate
in these structures. Since the phonon densities in many dimensionally confined
semiconductor devices are typically well above those of the equilibrium phonon
population, there is an appreciable probability that these non-equilibrium - or 'hot'
- phonons will be reabsorbed. Clearly, the net loss of energy by an electron in such
a situation depends on the rates for both phonon absorption and phonon emission.
Moreover, the lifetimes of the optical phonons are also important in determining the
total energy loss rate for such carriers. Indeed, as will be discussed in Chapter 6, the
longitudinal optical (LO) phonons in GaAs and many other polar materials decay
into acoustic phonons through the Klemens' channel. Furthermore, over a wide
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range of temperatures and phonon wavevectors, the lifetimes of longitudinal optical
phonons in GaAs vary from a few picoseconds to about 10 ps (Bhatt et al., 1994).
(Typical lifetimes for other polar semiconductors are also of this magnitude.) As
a result of the Klemens' channel, the 'hot' phonons decay into acoustic phonons in
times of the order of 10 ps. The LO phonons undergoing decay into acoustic phonons
are not available for absorption by the electrons and as a result of the Klemens'
channel the electron thermalization is more rapid than it would be otherwise; this
phenomenon is referred to as the 'hot-phonon-bottleneck effect'.

The electron thermalization time is an important parameter for semiconductor
quantum-well lasers because it determines the minimum time needed to switch the
laser from an 'on' state to an 'off' state; this occurs as a result of modulating the
electron current that leads to lasing. Since the hot-phonon population frequently
decays on a time scale roughly given by the LO phonon decay rate (Das Sarma
et al., 1992), a rough estimate of the electron thermalization time - and therefore
the minimum time needed to switch the laser from an 'on' state to an 'off' state -
is of the order of about 10 ps. In fact, typical modulation frequencies for gallium
arsenide quantum-well lasers are about 30 GHz. The modulation of the laser at
significantly higher frequencies will be limited by the carrier thermalization time
and ultimately by the lifetime of the LO phonon. The importance of the phonon in
modern optoelectronics is clear.

The importance of phonons in superconductors is well known. Indeed, the
Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity is based on the
formation of bosons from pairs of electrons - known as Cooper pairs - bound
through the mediating interaction produced by phonons. Many of the theories
describing the so-called high-critical-temperature superconductors are not based on
phonon-mediated Cooper pairs, but the importance of phonons in many supercon-
ductors is of little doubt. Likewise, it is generally recognized that acoustic phonon
interactions determine the thermal properties of materials.

These examples illustrate the pervasive role of phonons in bulk materials.
Nanotechnology is providing an ever increasing number of devices and structures
having one, or more than one, dimension less than or equal to about 100 angstroms.
The question naturally arises as to the effect of dimensional confinement on the
properties on the phonons in such nanostructures as well as the properties of the
phonon interactions in nanostructures. The central theme of this book is the descrip-
tion of the optical and acoustic phonons, and their interactions, in nanostructures.

1.2 Tailoring phonon interactions in devices with
nanostructure components

Phonon interactions are altered unavoidably by the effects of dimensional confine-
ment on the phonon modes in nanostructures. These effects exhibit some similarities



4 1 Phonons in nanostructures

to those for an electron confined in a quantum well. Consider the well-known
wavefunction of an electron in a infinitely deep quantum well, of width Lz in the
z-direction. The energy eigenstates \lin (z) may be taken as plane-wave states in the
directions parallel to the heterointerfaces and as bound states in an infinitely deep
quantum well in the z-direction:

(Ll)

where rll and kll are the position vector and wavevector components in a plane
parallel to the interfaces, kz = nit / Lz, and n = 1, 2, 3, . .. labels the energy
eigenstates, whose energies are

(1.2)

A is the area of the heterointerface over which the electron wavefunction is
normalized. Clearly, a major effect of dimensional confinement in the z-direction
is that the z-component of the bulk continuum wavevector is restricted to integral
multiples of it / Lz. Stated in another way, the phase space is restricted.

As will be explained in detail in Chapter 7, the dimensional confinement of
phonons results in similar restrictions in the phase space of the phonon wavevector
q. Indeed, we shall show that the wavevectors of the optical phonons in a dielectric
layer of thickness Lz are given by qz = nit / Lz (Fuchs and Kliewer, 1965) in analogy
to the case of an electron in an infinitely deep quantum well. In fact, Fasol et al.
(1988) used Raman scattering techniques to show that the wavevectors qz = nit / Lz
of optical phonons confined in a ten-monolayer-thick AIAs/GaAs/AIAs quantum
well are so sensitive to changes in Lz that a one-monolayer change in the thickness
of the quantum well is readily detectable as a change in qz ! These early experimental
studies of Fasol et al. (1988) demonstrated not only that phonons are confined in
nanostructures but also that the measured phonon wavevectors are well described by
relatively simple continuum models of phonon confinement.

Since dimensional confinement of phonons restricts the phase space of the
phonons, it is certain that carrier-phonon interactions in nanostructures will be
modified by phonon confinement. As we shall see in Chapter 7, the so-called di-
electric and elastic continuum models of phonons in nanostructures may be applied
to describe the deformation-potential, Frohlich, and piezoelectric interactions in a
variety of nanostructures including quantum wells, quantum wires, and quantum
dots. These interactions playa dominant role in determining the electronic, optical
and acoustic properties of materials (Mitin et al., 1999; Dutta and Stroscio, 1998b;
Dutta and Stroscio, 2000); it is clearly desirable for models of the properties
of nanostructures to be based on an understanding of how the above-mentioned
interactions change as a result of dimensional confinement. To this end, Chapters
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8, 9 and 10 of this book describe how the dimensional confinement of phonons in
nanostructures leads to modifications in the electronic, optical, acoustic, and su-
perconducting properties of selected devices and structures, including intersubband
quantum-well semiconductor lasers, double-barrier quantum-well diodes, thin-film
superconductors, and the thin-walled cylindrical structures found in the biological
structures known as microtubulin. Chapters 8, 9, and 10 also provide analyses of the
role of collective effects and non-equilibrium phonons in determining hot-carrier
energy loss in polar quantum wires as well as the use of metal-semiconductor
structures to tailor carrier-phonon interactions in nanostructures. Moreover, Chapter
10 describes how confined phonons playa critical role in determining the properties
of electronic, optical, and superconducting devices containing nanostructures as
essential elements. Examples of such phonon effects in nanoscale devices include:
phonon effects in inter subband lasers; the effect of confined phonons on the gain
of inter subband lasers; the contribution of confined phonons to the valley current in
double-barrier quantum-well structures; phonon-enhanced population inversion in
asymmetric double-barrier quantum-well lasers; and confined phonon effects in thin
film superconductors.



Chapter 2

Phonons in bulk cubic crystals

The Creator, if He exists, has a special preference for beetles.
J.B.S. Haldane, 1951

2.1 Cubic structure

Crystals with cubic structure are of major importance in the fields of electronics and
optoelectronics. Indeed, zincblende crystals such as silicon, germanium, and gallium
arsenide may be regarded as two face-centered cubic (fcc) lattices displaced relative
to each other by a vector (aj4, aj4, aj4), where a is the size of the smallest unit of
the fcc structure. Figure 2.1 shows a lattice with the zincblende structure.

A major portion of this book will deal with phonons in cubic crystals. In
addition, we will describe the phonons in so-called isotropic media, which are
related mathematically to cubic media as explained in detail in Section 7.2. The
remaining portions of this book will deal with crystals of wurtzite structure, defined
in Chapter 3. More specifically, the primary focus of this book concerns phonons
in crystalline structures that are dimensionally confined in one, two, or three
dimensions. Such one-, two-, and three-dimensional confinement is realized in
quantum wells, quantum wires, and quantum dots, respectively. As a preliminary
to considering phonons in dimensionally confined structures, the foundational case
of phonons in bulk structures will be treated. The reader desiring to supplement this
chapter with additional information on the basic properties of phonons in bulk cubic
materials will find excellent extended treatments in a number of texts including
Blakemore (1985), Ferry (1991), Hess (1999), Kittel (1976), Omar (1975), and
Singh (1993).

2.2 Ionic bonding - polar semiconductors

As is well known, the crystal structure of silicon is the zincblende structure shown
in Figure 2.1. The covalent bonding in silicon does not result in any net transfer
of charge between silicon atoms. More specifically, the atoms on the two displaced

6



2.3 Linear-chain model and macroscopic models 7

face-centered cubic (fcc) lattices depicted in Figure 2.1 have no excess or deficit
of charge relative to the neutral situation. This changes dramatically for polar
semiconductors like gallium arsenide, since here the ionic bonding results in charge
transfer from the Group V arsenic atoms to the Group III gallium atoms: Since
Group V atoms have five electrons in the outer shell and Group III atoms have
three electrons in the outer shell, it is not surprising that the gallium sites acquire
a net negative charge and the arsenic sites a net positive charge. In binary polar
semiconductors, the two atoms participating in the ionic bonding carry opposite
charges, e* and -e*, respectively, as a result of the redistribution of the charge
associated with polar bonding. In polar materials such ionic bonding is characterized
by values of e* within an order of magnitude of unity. In the remaining sections of
this chapter, it will become clear that e* is related to the readily measurable or known
ionic masses, phonon optical frequencies, and high-frequency dielectric constant of
the polar semiconductor.

2.3 Linear-chain model and macroscopic models

The linear-chain model of a one-dimensional diatomic crystal is based upon a system
of two atoms with masses, m and M, placed along a one-dimensional chain as
depicted in Figure 2.2. As for a diatomic lattice, the masses are situated alternately
along the chain and their separation is a. On such a chain the displacement of
one atom from its equilibrium position will perturb the positions of its neighboring
atoms.

Figure 2.1. Zincblende
crystal. The white spheres
and black spheres lie on
different fcc lattices.

Figure 2.2. One-dimensional linear-chain representation of a diatomic lattice.
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In the simple linear-chain model considered in this section, it is assumed that
only nearest neighbors are coupled and that the interaction between these atoms is
described by Hooke's law; the spring constant a is taken to be that of a harmonic
oscillator. This model describes many of the basic properties of a diatomic lattice.
However, as will become clear in Chapter 6, it is essential to supplement the so-
called 'harmonic' interactions with anharmonic interactions in order to describe the
important process of phonon decay.

2.3.1 Dispersion relations for high-frequency and
low -frequency modes

To model the normal modes of this system of masses, the atomic displacements
along the direction of the chain - the so-called longitudinal displacements of each
of the two types of atoms - are taken to be

(2.1)

and

U - A ei[(2r+l)qa-wt]2r+l - 2 (2.2)

where q is the phonon wavevector and co is its frequency. In the nearest-neighbor
approximation, these longitudinal displacements satisfy

m(d2u2r/dt2) = -a(U2r - U2r-l) - a(U2r - U2r+l)

(2.3)

and

M(d2U2r+l/dt2) = -a(U2r+l - U2r) - a(U2r+l - U2r+2)

= a (U2r+2 + U2r - 2U2r+l). (2.4)

The signs in the four terms on the right-hand sides of these equations are
determined by considering the relative displacements of neighboring atoms. For
example, if the positive displacement of U2r is greater than that of U2r-l there is
a restoring force -a(U2r+l - U2r). Hence

(2.5)

and

-MW2A2 = aAl(eiqa + e-iqa) - 2aA2.

Eliminating Al and A2,

(2.6)

w2 = a (~ + ~) ± a [ (~ + ~r__4_s~_nM_2_q_a]1/2

This relationship between frequency and wavevector is commonly called a dis-
persion relation. The higher-frequency solution is known as the optical mode

(2.7)
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since, for many semiconductors, its frequency is in the terahertz range, which
happens to coincide with the infrared portion of the electromagnetic spectrum.
The lower-frequency solution is known as the acoustic mode. More precisely, since
only longitudinal displacements have been modeled, these two solutions correspond
to the longitudinal optical (LO) and longitudinal acoustic (LA) modes of the
linear-chain lattice. Clearly, the displacements along this chain can be described
in terms of wavevectors q in the range from -n /2a to it /2a. From the solution
for w, it is evident that over this Brillouin zone the LO modes have a maximum
frequency [2a (l / m + 1/ M)] 1/2 at the center of the Brillouin zone and a minimum
frequency (2a / m) 1/2 at the edge of the Brillouin zone. Likewise, the LA modes have
a maximum frequency (2a/ M) 1/2 at the edge of the Brillouin zone and a minimum
frequency equal to zero at the center of the Brillouin zone.

In polar semiconductors, the masses m and M carry opposite charges, e* and
-e*, respectively, as a result of the redistribution of the charge associated with
polar bonding. In polar materials such ionic bonding is characterized by values of
e* equal to 1, to an order-of-magnitude. When there is an electric field E present
in the semiconductor, it is necessary to augment the previous force equation with
terms describing the interaction with the charge. In the long-wavelength limit of the
electric field E, the force equations then become

-mw2U2r = m(d2u2r/dt2) = a(U2r+l + U2r-l - 2U2r) + e* E

= a(ei2qa + I)U2r-l - 2au2r + e* E (2.8)

and

-MW2U2r+l = M(d2u2r+I!dt2) = a(U2r+2 + U2r - 2U2r+l) - e* E

= a(l + e-i2qa)U2r+2 - 2au2r+l - e* E. (2.9)

Regarding the phonon displacements, in the long-wavelength limit there is no
need to distinguish between the different sites for a given mass type since all atoms
of the same mass are displaced by the same amount. In this limit, q ---+ O. Denoting
the displacements on even-numbered sites by U 1 and those on odd-numbered sites
by U2, in the long-wavelength limit the force equations reduce to

(2.10)

and

(2.11)

Adding these equations demonstrates that -mw2ul - Mw2u2 = 0 and it is clear
that mUI = -MU2; thus

(2.12)
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and

(2.13)

accordingly,

(2.14)

and

(2.15)

where w6 = 2et (l Im + 11M) is the resonant frequency squared, in the absence of
Coulomb effects; that is, for e* = O.The role of e* in shifting the phonon frequency
will be discussed further in the next section.

Clearly, the electric polarization P produced by such a polar diatomic lattice is
given by

(2.16)

where u = Ul - U2, N is the number of pairs per unit volume, and e* is as
defined previously. This equation may be rewritten to show that it describes a driven
oscillator:

2 2 *(1 1)(wo - co )u = e m + M E. (2.17)

2.3.2 Displacement patterns for phonons

As discussed in subsection 2.3.1, in the limit q --+ 0 the displacements, Ul and U2,

of the optical modes satisfy -mul = MU2 and the amplitudes of the two types of
mass have opposite signs. That is, for the optical modes the atoms vibrate out of
phase, and so with their center of mass fixed. For the acoustic modes, the maximum
frequency is (2et IM) 1/2. This maximum frequency occurs at the zone edge so that,
near the center of the zone, co is much less than (2et IM) 1/2. From subsection 2.3.1,
the ratio A21 Al may be expressed as

A2 2et cosqa 2et - mw2

Al 2et - Mw2 - Za cos qa '
(2.18)

and it is clear that the ratio of the displacement amplitudes is approximately equal
to unity for acoustic phonons near the center of the Brillouin zone. Thus, in contrast
to the optical modes, the acoustic modes are characterized by in-phase motion of
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the different masses m and M. Typical mode patterns for zone-center acoustic
and optical modes are depicted in Figures 2.3(a), (b). The transverse modes are
illustrated here since the longitudinal modes are more difficult to depict graphically.
The higher-frequency optical modes involve out-of-plane oscillations of adjacent
ions, while the lower-frequency acoustic modes are characterized by motion of
adjacent ions on the same sinusoidal curve.

2.3.3 Polaritons

In the presence of a transverse electric field, transverse optical (TO) phonons of
a polar medium couple strongly to the electric field. When the wavevectors and
frequencies of the electric field are in resonance with those of the TO phonon, a
coupled phonon-photon field is necessary to describe the system. The quantum of
this coupled field is known as the polariton. The analysis of subsection 2.3.1 may
be generalized to apply to the case of transverse displacements. In particular, for a
transverse field E, the oscillator equation takes the form

Ne*2 ( 1 1 )(wia _(2)P = -- - + - E,
E(OO) m M

(2.19)

where w6 of subsection 2.3.1 has been designated wia = 2a(llm + 11M) since
the resonant frequency in the absence of Coulomb effects, e*2 = 0, corresponds to

u

1 • •
(a) • •-- • • •

q • •• • •
U • • •
1 •(b) -- • • •

q • •
• • •

Figure 2.3. Transverse displacements of heavy ions (large disks) and light ions
(small disks) for (a) transverse acoustic modes, and (b) transverse optical modes
propagating in the q-direction.
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the transverse optical frequency. As will become apparent later in this section, the
LO phonon frequency squared differs from the TO phonon frequency squared by an
amount proportional to e*2.

According to the electromagnetic wave equation, a2Djat2 = c2V2E, where
D = E +4n P, the dispersion relation describing the coupling of the field E of the
electromagnetic wave to the electric polarization P of the TO phonon is

(2.20)

or, alternatively,

(2.21)

where waves of the form ei(qr-wt) have been assumed. The driven oscillator
equation and the electromagnetic wave equation have a joint solution when the
determinant of the coefficients of the fields E and P vanishes,

=0 (2.22)

At q = 0, there are two roots: W = 0 and

2 2 N e*2 ( 1 1 ) 2
W = wTO +4n-- - + - = wLO.

E(OO) m M
(2.23)

The dielectric function E (r») is then given by

D(w) 4n Pe(w) 4n pew)
E(W) = E(w) = 1+ E(w) + E(w)

_ 1+ 4_n_P._e_(W_) + __ 4_n N_e*_2 (~ + ~)
- E(w) (wio - (2) E(OO) m M'

(2.24)

where the polarization due to the electronic contribution, P; (oi), has been included
as well as the polarization associated with the ionic contribution, P (w ).

As is customary, the dielectric constant due to the electronic response is denoted
by

4n Pe(w)
E(OO) == 1+ ---,

E(w)
(2.25)

and it follows that

4n N e*2 ( 1 1 )
E(W) = E(OO) + 2 - + - .

(wTQ - (2) E(OO) m M
(2.26)

The so-called static dielectric constant E (0) is then given by



2.3 Linear-chain model and macroscopic models 13

4n N e*2 ( 1 1 )E(O) = E(OO) + -2--- - + - .
WTO E(OO) m M

From these last two results it follows straightforwardly that

[E(O) - E(oo)]wfo
E(W) = E(OO) + 2 2

(WTO - W )

dO) - E(OO)
= E(OO) + 2 2 .

l-w /wTO

From electromagnetic theory it is known that the dielectric function E (r») must
vanish for any longitudinal electromagnetic disturbance to propagate. Accordingly,
the frequency of the LO phonons, WLO, must be such that E(WLO) = 0; from the last
equation, this condition implies that

(2.27)

(2.28)

E(O) - E(OO)
E(WLQ) = 0 = E(OO) + 2 2

1 - wLO/wTO
(2.29)

or, equivalently,

WLO = [ E(0) ] 1/2 WTO. (2.30)
E(OO)

It then follows that

or alternatively

E(W) w£o - w2

E(OO) - wfo - w2·

In the special case where W = 0, this relation reduces to the celebrated Lyddane-
Sachs-Teller relationship

(2.32)

E(O) w£o
E(OO) - wfo·

When W = WLO the dielectric constant vanishes, E(WLO) = 0; as stated above,
this condition is familiar from electro magnetics as a requirement for the propagation

(2.33)
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of a longitudinal electromagnetic wave. That is, a longitudinal electromagnetic wave
propagates only at frequencies where the dielectric constant vanishes; accordingly,
WLo is identified as the frequency of the LO phonon. From the relation

Ne*2 ( 1 1 )w~'O+4n-- - + - = wlo,
E(OO) m M

it follows that WTO = WLO for zone-center phonons in materials with e* = 0;
this is just as observed in non-polar materials such as silicon. In polar materials
such as GaAs there is a gap between WTO and WLO, associated with the Coulomb
energy density arising from e*. When W = WTO, E(WTO) -1 = 0 and the po le in E(W)

reflects the fact that electromagnetic waves with the frequency of the TO phonon are
absorbed. Throughoutthe interval (WTO, WLO), E (r») is negative and electromagnetic
waves do not propagate.

2.3.4 Macroscopic theory of polar modes in cubic crystals

As was apparent in subsections 2.3.1 and 2.3.3, polar-optical phonon vibrations
produce electric fields and electric polarization fields that may be described in
terms of Maxwell's equations and the driven-oscillator equations. Loudon (1964)
advocated a model of optical phonons based on these macroscopic fields that has
had great utility in describing the properties of optical phonons in so-called uniaxial
crystals such as wiirtzite crystals. The Loudon model for uniaxial crystals will be
developed more fully in Chapters 3 and 7. In this section, the concepts underlying
the Loudon model will be discussed in the context of cubic crystals.

From the pair of Maxwell's equations,

1 an
VxE+-- =0

c at and
laD

V x B - -- =J,
c at (2.34)

it follows that

1a(v x B) 1 a2D
V x (V x E) + ---- = V(V· E) - V2E+ -- = 0, (2.35)

c at c2 a2t
where the source current, J, has been taken to equal zero. Then since V . D
V . E + 4nV . P = 4np = 0, it follows that

1 a2E 1 a2p
-4nV(V· P) - V2E + -- +4n-- = O.

c2 a2t c2 a2t
(2.36)

Assuming that P and E both have spatial and time dependences of the form
ei (q-r-wt), this last result takes the form

-4n[q(q. P) - w2pjc2]
E = --------.

q2 _ w2jc2
(2.37)
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The condition q . P = 0 corresponds to the transverse wave; in this case,

-4nw2p jc2
E=----.q2 _ w2jc2

From Appendix A, E and P are also related through

(2.38)

P = _1 1[E(O) - E(oo)lwfo + [E(OO) - ll) E;
4n w2 - w2TO

(2.39)

thus

[E(O) - E(oo)lwfo
2 _ 2 + [E(OO) - l ],

WTO W
(2.40)

or, equivalently,

(2.41)

For longitudinal waves, q. P = q P, so that q = (q j P)P, and it follows that

4nw2p jc2 4nq Pq
E = ---- - ----

q2 _ w2jc2 q2 _ w2jc2

4nw2p jc2 4nq2p
q2 _ w2jc2 q2 _ w2jc2

= q2 _4:2 j c2 (:: - q2) P
= -4nP. (2.42)

Then

P = _1 1[E(O) - E(oo)lwfo + [E(OO) - ll) E
4n w2 - w2TO

= -I [dO) - E(oo)lwfo + [E(OO) - ll) P
w2 -w2TO

(2.43)

or, equivalently,

W = wTO [ E(O) ]1/2 = wLO,
E(OO)

and the Lyddane-Sachs- Teller relation is recovered once again! In Chapter 3, we
shall return to the Loudon model to describe uniaxial crystals of the wiirtzite type.



Chapter 3

Phonons in bulk wiirtzite crystals

Next when I cast mine eyes and see that brave vibration, each
way free; 0 how that glittering taketh me.
Robert Herrick, 1648

3.1 Basic properties of phonons in wiirtzite structure

The GaAlN-based semiconductor structures are of great interest in the electronics
and optoelectronics communities because they possess large electronic bandgaps
suitable for fabricating semiconductor lasers with wavelengths in the blue and
ultraviolet as well as electronic devices designed to work at elevated operating
temperatures. These III-V nitrides occur in both zincblende and wiirtzite structures.
In this chapter, the wiirtzite structures will be considered rather than the zincblende
structures, since the treatment of the phonons in these wiirtzite structures is more
complicated than for the zincblendes. Throughout the remainder of this book,
phonon effects in nanostructures will be considered for both the zincblendes and
wiirtzites. This chapter focuses on the basic properties of phonons in bulk wiirtzite
structures as a foundation for subsequent discussions on phonons in wiirtzite
nanostructures.

The crystalline structure of a wiirtzite material is depicted in Figure 3.1. As in
the zincblendes, the bonding is tetrahedral. The wiirtzite structure may be generated
from the zincblende structure by rotating adjacent tetrahedra about their common
bonding axis by an angle of 60 degrees with respect to each other. As illustrated in
Figure 3.1, wiirtzite structures have four atoms per unit cell.

The total number of normal vibrational modes for a unit cell with s atoms in
the basis is 3s. As for cubic materials, in the long-wavelength limit there are three
acoustic modes, one longitudinal and two transverse. Thus, the total number of
optical modes in the long-wavelength limit is 3s - 3. These optical modes must,
of course, appear with a ratio of transverse to longitudinal optical modes of two.

16
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The numbers of the various long-wavelength modes are summarized in Table 3.1.
For the zincblende case, s = 2 and there are six modes: one LA, two TA, one

La and two TO. For the wurtzite case, s = 4 and there are 12 modes: one LA,
two TA, three La and six TO. In the long-wavelength limit the acoustic modes are
simple translational modes. The optical modes for a wurtzite structure are depicted
in Figure 3.2.

From Figure 3.2 it is clear that the A 1 and E 1 modes will produce large electric
polarization fields when the bonding is ionic. Such large polarization fields result
in strong carrier-optical-phonon scattering. These phonon modes are known as
infrared active. As we shall see in Chapter 5, the fields associated with these infrared
modes may be derived from a potential describing the carrier-phonon interaction of

Figure 3.1. Unit cell of the
hexagonal wiirtzite crystal.

Table 3.1. Phonon modes associated with a unit cell
having s atoms in the basis.

Type of mode Number of modes

Longitudinal acoustic (LA)
Transverse acoustic (TA)
All acoustic modes
Longitudinal optical (LO)
Transverse optical (TO)
All optical modes
All modes

1
2
3

s - 1
2s - 2
3s - 3

3s
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such modes. In Chapter 5, this carrier-phonon interaction potential will be identified
as the Frohlich interaction. The dispersion relations for the 12 phonon modes of the
wurtzite structure are depicted in Figure 3.3.

The low-frequency behavior of these modes near the r point makes it apparent
that three of these 12 modes are acoustic modes. This behavior is, of course,
consistent with the number of acoustic modes identified in Table 3.1.

3.2 Loudon model of uniaxial crystals

As discussed in subsection 2.3.4, Loudon (1964) advanced a model for uniaxial
crystals that provides a useful description of the longitudinal optical phonons in
wurtzite crystals. In Loudon's model of uniaxial crystals such as GaN or AIN, the
angle between the c-axis and q is denoted bye, and the isotropic dielectric constant
of the cubic case is replaced by dielectric constants for the directions parallel and
perpendicular to the c-axis, Ell ((J)) and E .L ((J)) respectively. That is,

z z z, ,
x x x

z z z

•••

-0 0-

x x x

Figure 3.2. Optical phonons in wfutzite structure. From Gorczyca et al. (1995),
American Physical Society, with permission.
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o
E-l(W)

o
(3.1)

with

and
2 2

W - WLO II
EII(W) = Ell (00) 2 _ 2 ' ,

W wTO,11
(3.2)

as required by the Lyddane-Sachs- Teller relation. The c-axis is frequently taken to
be in the z-direction and the dielectric constant is then sometimes labeled by the
z -coordinate; that is, Ell (w) = EZ (w ). Figure 3.4 depicts the two dielectric constants
for GaN as well as those for AIN.

In such a uniaxial crystal, there are two types of phonon wave: (a) ordinary waves
where for any e both the electric field E and the polarization P are perpendicular
to the c-axis and q simultaneously, and (b) extraordinary waves, for which the
orientation of E and P with respect to q and the c-axis is more complicated. As
discussed in subsection 2.3.4, the ordinary wave has E, symmetry, is transverse,
and is polarized in the .I-plane, There are two extraordinary waves, one associated
with the .Lpolarized vibrations and having Al symmetry and the other associated
with II-polarized vibrations and having El symmetry. For e = 0, one of these modes
is the A 1(La) mode and the other is the E 1(TO) mode. As e varies between 0 and
it /2, these modes evolve to the Al (TO) and E, (TO) modes respectively. For values
of e intermediate between 0 and it /2 they are mixed and do not have purely La or

r [110] K M [100] r [001] A
100

80 -

>'C) 60 -g
;>,
bJJ
[)

40 -0~

20

0
Reduced wavevector

Figure 3.3. Phonon dispersion curves for GaN crystal of wiirtzite structure. From
Nipko et at. (1998), American Institute of Physics, with permission.
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TO character or Al or £1 symmetry (Loudon, 1964). For wurtzite structures at the
r point, it will be obvious in Chapter 7 that only three of the nine optical phonon
modes, the Al (Z) and £1 (X, Y) modes, produce significant carrier-optical-phonon
scattering rates. These are the so-called infrared-active modes. For the case of
wurtzite structures, Loudon's model of uniaxial crystals is based upon generalizing
Huang's equations, equations (A.8) and (A.9) of Appendix A, and the relationship
of subsection 2.3.4, equation (2.43). Specifically, for each of these equations there
is a set of two more equations, one in terms of quantities along the c-axis and the
other in terms of quantities perpendicular to the c-axis:

(3.3)

(3.4)

(3.5)

(3.6)

30

20
=0.p
o 10=<B
o·5
o 0(\)

a3a

__ ELl (GaN)

••••••• E1z (GaN)

_._ En (AIN)

---- En (AIN)

-20 o

...•.....,....,-
,'.-:t'~
,~

"'1"tt,.
1I
It

II
I.

I'

-10

200 400 600 800 1000 1200

Phonon frequency (em -I )

Figure 3.4. Dielectric constants for GaN, <t.L (GaN) and Elz(GaN), and for AlN,
En (AlN) and E2z(AlN). From Lee et al. (1998), American Physical Society, with
permission.



3.2 Loudon model of uniaxial crystals 21

-47T[ql..(q· P) - w2p l../c2]
El.. - ----------- q2_w2/c2 '

-47T[qll(q. P) - w2PII/c2]
Ell = q2 _ w2/c2

(3.7)

(3.8)

Eliminating "l.. and "II in the first four of these equations yields

1 1[El..(O) - cl(OO)]Wfo .L )
Pl..=- 2 2' +[El..(oo)-l] Ej

47T WTO,l.. - W

1
=-Al..El..

47T
(3.9)

and

(3.10)

where Al.. and All may be written as

(3.11)

(3.12)

upon using the Lyddane-Sachs- Teller relations

[
El..(O) ]1/2

WTO,l.. El..(oo) = WLO,l.. and [ ]

1/2Ell(0)
wTO,11 -- = wLO,II'

Ell(00)
(3.13)

For the ordinary wave, Ell = 0, PII = 0, and q . P = 0, so that the derivation of
subsection 2.3.4 now gives

Wfo,l.. El..(O) - W2El..(00)
2 2WTO,l.. - W

(3.14)

For the ordinary mode it also follows that "II ="l.. = O.
For the extraordinary wave, q .L = q sin e and q II= q cos e, where e is the angle

between q and the c-axis. Then, it follows that

q . P = (q sin e, q cos e) . (P l.., PII) = q P .L sin e + q PII cos e. (3.15)

Thus,
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(3.16)

In the limit where retardation effects are neglected, c --+ 00 and it follows that

-47T[q1..(q· P) - W2P1../c2] . 2 .
E1..= 2 22 --+-47T(P1..Sm e+PlIsmecose)

q - W [c

= -sin2eA1..E1.. -sinecoseAIIEII' (3.17)

and

-47T[qll(q. P) - w2PII/c2]
Ell - ---------- --+ -47T(P1.. sine cos e + PII cos ' e)- q2 _ w2/c2

= - sin e cos e A1..E1.. - cos ' e AIIEII. (3.18)

These equations may be written as

(
1 + sin2 e A1..
sine cos e A1..

sine cos e All

1+ cos- e All ) ( ~~ ) = 0, (3.19)

and it follows that the condition for non-trivial solutions to exist is

wt - w2
+ 0.11 E (00) cos2 o

2 2 II
WTO.II-W

= E1..(W) sin2 o + EII(w) cos2 o = 0 (3.20)

or equivalently

(3.21)

Since the high-frequency electronic response of a medium should not depend
strongly on the crystalline structure, it is usually assumed (Loudon, 1964) that
E1..(00) R:! Ell (00). Thus

2 2 2 2
WLO 1.. - W . 2 e wLO II - W 2 e 0----- sm + . cos =

2 2 2 2WTO.1.. - W WTO•II - W
(3.22)

or equivalently

4 (2 2) 2 2 2 2 2 2 . 2 0W - wI + w2 W + WTO.1..WLO.II cos e + WLO.1..WTO.II sm e = ,
(3.23)
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where

2 2 . 28 2 28wI = wTO.11SIll + wTO.-l COS ,

2 2 28 2 . 28w2 = WLo,11cos + wLO,-l SIll .

When IWTO,II-WTO,-ll isverymuchlessthanwLO,II-wTO,11 andwLo,-l-WTO,-l
this equation has roots

(3.24)

(3.25)

where

(W2 _ w2 ) (w2 _ w2 )
A 2(8) 2 LO,II LO,-l TO,II TO,-l. 28 28csco = 2 2 SIll COS ;

w2 - wI
(3.26)

thus

2 2 ·2 2 2
W = WTO,IISIll 8 + WTO,-lcos 8

(wlo II- wlo -l)(wfo II- wfo -l) . 2 2
, , , , SIll 8 cos 8

w2 _ w2
2 I

~2 ·2 2 2
~ WTO, IISIll 8 + WTO, .L cos 8 (3.27)

and

2 2 2 2 ·2
W = WLo,11COS 8 + WLo,-l SIll 8

(wlo II- wlo -l)(wfo II- wfo -l) . 2 2+ ' , , , SIll 8 cos 8
w2 _w2

2 I
~ 2 2 2 . 2~ WLo,11COS 8 + WLo,-l SIll 8. (3.28)

3.3 Application of Loudon model to III-V nitrides

The conditions IWTO,II-WTO,-ll « WIo,11 - WTo,11and IWTO,II-WTO,-ll «
WLO,-l - WTO,-l are satisfied reasonably well for a number of wurtzite materials
including the III-V nitrides. Indeed, for GaN, E(OO) = 5.26, WLO,-l = 743 cm ",
wLO,11= 735 cm ", WTO,-l = 561 cm ", and wTO,11= 533 cm-l (Azuhata
et al., 1995). For AIN, E(OO) = 5.26, WLO,-l = 916 cm ", wLO,11= 893 cm ",
WTO,-l = 673 cm ", and wTO,11= 660 cm-l (Perlin et al., 1993). For these and
other wiirtzite crystals (Hayes and Loudon, 1978), Table 3.2 summarizes the various
frequency differences appearing in the previously stated frequency conditions.

As is clear from Table 3.2, the inequalities assumed in Section 3.2 are reasonably
well satisfied for both GaN and AIN as well as for the other materials listed. The
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infrared-active modes in these III-V nitrides are the Al (LO), Al (TO), E, (LO), and
El(TO) modes and the frequencies associated with these modes, WAj(LO), WAj(TO),

WEj(LO), and WEj(TO) are given by wLO,II, wTO,II, WLO,-l, and WTO,-l, respectively.
Let us consider the case of GaN in more detail. From the results of Section 3.2, it
follows immediately that

E .L sin e cos e A II

Ell 1+ sirr' e A-l

sine cos e All

cos? e All

sine
(3.29)---,

case

and

Wio,11 - w
2

[E-l(O) - E-l(oo)] 1/2 (WTO,-l) e;
wio,-l - w2 Ell(0) - Ell(00) wTO,11 Ell

wiO,11 - w
2

[E-l(O) - E-l(oo)] 1/2 (WTO,-l) sine
wio,-l - w2 Ell(0) - Ell(00) WTO, II cas e .

Since q = (q -l, qll) = (q sin e, q cos e), the first of these relations illustrates the
fact that Ell q, as expected from q2E = -4nq(q . P); this last equality follows from
V· (E+4n P) = O. The ratio U -l/ U II may be estimated for GaN for the transverse-like

d . h 2 2 . 2e 2 2erna es, WIt W = WTO,IISIll + WTO,-l cos , as

U-l [E-l(O) - E-l(oo)] 1/2 (WTO -l) case case
~ = - Ell(0) - Ell(00) WT;,II sine R:! -0.95 sine' (3.31)

and for the longitudinal-like modes, with w2 = w£O,11 cos2 e + w£O,-l sin2 e, as

U-l wio,11 - w
2

[E-l(O) - E-l(oo)] 1/2 (WTO,-l) sine
ull wio,-l-w2 EII(O)-EII(oo) wTO,11 case

wio,11 - w£o (E-l(O) - E-l(oo)) 1/2 [WTO,-l] sine
= wio,-l - w£o Ell(0) - Ell(00) WTO,II case

sine= 1.07 --,
case

U-l

(3.30)

(3.32)

Table 3.2. Difference frequencies in em -1 for GaN and AlN as well
as for other wurtzite crystals.

Wiirtzite lw-ro,11- WTo,-l1 WLO,II- WTO, II WLO,-l - w-ro,-l

GaN 27 211 186
AlN 59 279 243
AgI 0 18 18
BeO 44 403 375
CdS 9 71 64
ZnO 33 199 178
ZnS 0 76 76
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where wla is taken to be equal to both wla", and wla,-l since wla", R:! wla,-l.
The properties of uniaxial crystals derived in this section and in Section 3.2 will

be used extensively in Chapter 7 to determine the Frohlich potentials in wurtzite
nanostructures.



Chapter 4

Raman properties of bulk phonons

When you measure what you are speaking about and express it
in numbers, you know something about it; but when you
cannot measure it, when you cannot express it in numbers, your
knowledge is of a meagre and unsatisfactory kind; it may be the
beginning of knowledge but you have scarcely in your thoughts
advanced to the stage of science, whatever the matter may be.
Lord Kelvin, 1889

4.1 Measurements of dispersion relations for bulk
samples

This chapter deals with the application of Raman scattering techniques to measure
basic properties of phonons in dimensionally confined systems. It is, however,
appropriate at this point to emphasize that non-Raman techniques such as neutron
scattering (Waugh and Dolling, 1963) have been used for many years to determine
the phonon dispersion relations for bulk semiconductors. Indeed, for thermal
neutrons the de Broglie wavelengths are comparable to the phonon wavelengths.
For bulk samples, neutron scattering cross sections are large enough to facilitate
the measurement of phonon dispersion relations. This is generally not the case for
quantum wells, quantum wires, and quantum dots, where Raman and micro- Raman
techniques are needed to make accurate measurements of dispersion relations
in structures of such small volume. Further comparisons of neutron and Raman
scattering measurements of phonon dispersion relations are found in Section 7.5.

4.2 Raman scattering for bulk zincblende and wiirtzite
structures

Raman scattering has been a very effective experimental technique for observing
phonons; it involves measuring the frequency shift between the incident and

26
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scattered photons. It is a three-step process: the incident photon of frequency Wi

is absorbed; the intermediate electronic state which is thus formed interacts with
phonons or other elementary excitations of energy via several mechanisms, creating
or annihilating them; finally, the scattered photon, of different energy ws, is emitted.
Energy and momentum are conserved and are given by the following equations:

hco, = hco, ± liQ,

k, = k, ±q.

(4.1)

(4.2)

Since the momenta of the incident and scattered photons are small compared with
the reciprocal lattice vectors, only excitations with q c:::' 0 take part in the Raman
process illustrated in Figure 4.1. In the case of Raman scattering in semiconductors,
the absorption of photons gives rise to electron-hole pairs; hence the intensity of the
Raman scattering and the resonances reflect the underlying electronic structure of
the material. The Raman intensity, I (Wi), is given by

l(w') ex w41e Ts 12~ 1 _
ISS I ft (Ea -liWi)(EfJ -liws)

(4.3)

where the Wi and Ws are the frequencies of the incoming photon and of the
scattered photon respectively, Ea and E fJ are the energies of the intermediate states,
T the Raman tensor, and e, and e, are the incident and scattered polarization
vectors. The summation is over all possible intermediate states. In general, for
semiconductors there may be the following real intermediate states: Bloch states,
which form the conduction or valence bands, exciton states and in-gap impurity
states. In equation (4.3), the second factor gives the Raman selection rules, which
come about from symmetry considerations of the interactions involved in a Raman
process. The selection rules are conveniently summarized in the form of Raman
tensors. These selection rules are essential tools for determining crystal orientation
and quality.

Details of the theoretical description of Raman scattering and these effects in
the vicinity of the critical points of the semiconductor are given in excellent books
and reviews elsewhere (Loudon, 1964; Hayes and Loudon, 1978; Cardona, 1975;
Cardona and Guntherodt, 1982a, b, 1984, 1989, 1991) and will not be repeated here.

q Figure 4.1. Diagrammatic
representation of the Raman
process. The broken line
represents the phonon, the
wavy lines represent the
photons, and the dotted line
represents the electronic
state.
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Instead we will summarize key results in zincblende and wiirtzite crystals both for
the bulk case and, in Chapter 7, for quantum wells and superlattices. While first-rate
articles and book chapters exist for the results of the zincblende structures, the work
on the nitrides, with their wiirtzite structure, is more recent and hence in this book
we will cover the latter results in more detail.

4.2.1 Zincblende structures

The features that can be observed in a Raman experiment for particular values of
incident and scattered polarization can be determined from the symmetry properties
of the second-order susceptibility for the excitation concerned as well as from the
spatial symmetry of the scattering medium. The cubic zincblende structure has
a space-group symmetry Tl, and there is one three-fold Raman active mode of
the T2 representation. The optic mode is polar so that the macroscopic field lifts
the degeneracy, producing a non-degenerate longitudinal mode that is at a higher
frequency than the two transverse modes. The allowed light-scattering symmetries,
as indicated by the second-order susceptibilities for the zincblende structure are
given below by appropriate matrices for the tensor T in the T2 representation:

R(x) mode,

R(y) mode, (4.4)

d

o
o

R(z) mode.

Raman scattering has been used now for several decades as a characterization
tool in understanding, for example, crystal structure and quality, impurity content,
strain, interface disorder, and the effects of alloying and sample preparation. Much
work has been done in this class of cubic zincblende crystals since the first laser
measurements of Hobden and Russell (1964) in zincblende GaP. The prototypical
system that has been studied extensively is GaAs, and comprehensive reviews
are available (Loudon and Hayes, 1978; Cardona, 1975; Cardona and Giintherodt,
1982a, b, 1984, 1989, 1991). Frequencies of the LO and TO modes, WLQ and WTO

respectively, for some of these systems are listed in Table 4.1.
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4.2.2 Wiirtzite structures
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In the last several years Raman scattering has also contributed a great deal to the
advances in understanding of the 111-V nitride materials. The wealth of experiments
and information collected over the past 25 years on the GaAs-based material systems
is now starting to be duplicated in the nitride system, albeit somewhat slowly, as the
growth techniques and material systems continue to improve.

GaN-, AIN- and InN-based materials are highly stable in the hexagonal wurtzite
structure although they can be grown in the zincblende phase and unintentional
phase separation and coexistence may occur. The wurtzite crystal structure belongs
to the space group ctv and group theory predicts zone-center optical modes are
AI, 2Bl, El and 2E2. The Al and El modes and the two E2 modes are Raman
active while the B modes are silent. The A and E modes are polar, resulting in
a splitting of the LO and the TO modes (Hayes and Loudon, 1978). The Raman
tensors for the wurtzite structure are as follows:

(4.5)

o
-f
o

E2 mode.
-f
o
o

The vibrational modes in wurtzite structures are given in Figure 3.3. Details of the
frequencies are given in Table 4.2.

Table 4.1. Frequencies in em -1 of the
LO and TO modes for zincblende crystals.

AIN
GaAs
GaN
GaP
InP
ZnS

902
292
740
403
345
352

655
269
554
367
304
271
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Following some early work (Manchon et al., 1970; Lemos et al., 1972; Burns
et al., 1973) there has been a number of more recent experiments (Murugkar et al.,
1995; Cingolani et al., 1986; Azuhata et al., 1995) identifying the Raman modes
in these nitride materials. The early work was mainly on crystals in the form of
needles and platelets and the more recent work has been on epitaxial layers grown
on sapphire, on 6H -SiC, and on ZnO as well as some more unusual substrates. Table
4.2 gives the Raman modes as well as the scattering geometry in which they were
observed in the experiments of Azuhata et al. (1995). Experiments on AIN and InN
crystallites and films, particularly for the latter material, are more scarce, reflecting
the difficulties in achieving good growth qualities for these materials. In uniaxial
materials, when the long-range electrostatic field interactions of the polar phonons
dominate the short-range field of the vibrational force constants, phonons of mixed
symmetry can be observed (Loudon, 1964) under specific conditions of propagation
direction and polarization. They have been seen in the case of AIN (Bergman et al.,
1999).

4.3 Lifetimes in zincblende and wiirtzite crystals

Phonon-carrier interactions have an impact on semiconductor device performance
and, hence, a knowledge of the phonon lifetimes is important. Phonon lifetimes
demonstrate the effects of anharmonic interactions as well as scattering via point
defects and impurities. Anharmonic interactions (Klemens, 1958; Klemens, 1966;
Borer et al., 1971; Debernardi, 1998; Menendez and Cardona, 1984; Ridley, 1996)
include the decay of phonons into other normal modes with the conservation of
energy and momentum. For a three-phonon decay process, a phonon of frequency
WI and wavevector qi decays into two phonons of frequencies W2 and W3, with
wavevectors q2 and q3 respectively, such that WI = W2 + W3 and qi = q2+ q3·

The investigation of the dynamical behavior of the vibrational modes provides a
direct measure of the electron-phonon interaction. The measurement of the decay

Table 4.2. Frequencies in em -1 of the vibrational
modes in some wurtzite structures.

WAIN wedS WOaN WlnN WZnO

E[ 252 44 144 1012
E2 660 252 569 495 4372
A[(TO) 614 228 533 380
A[(LO) 893 305 735 596 574
E[(TO) 673 235 561 407
E[(LO) 916 305 743 583
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of the optical modes, which involves the anharmonic effects mentioned previously,
will be discussed here. Other processes that give experimental information on the
electron-phonon interaction include the generation of optical phonons by high-
energy carriers, intervalley scattering between different minima in the conduction
band, and carrier-carrier scattering; these are reported by Kash and Tsang (1991)
for the prototypical system of GaAs.

Measurements of phonon linewidths for Raman and infrared measurements in
GaAs, ZnSe, and GaP give phonon lifetimes of 2-10 ps (von der Linde, 1980;
Menendez and Cardona, 1984). For systems that are not far from equilibrium, the
lifetimes of the phonons can be described by anharmonic processes. The decay of
an optical phonon is frequently via pairs of acoustic phonons or via one acoustic
phonon and one optical phonon of appropriate energies and momenta (Cowley,
1963; Klemens, 1966). The first measurements with continuous-wave pumping
(Shah et al., 1970) of highly non-equilibrium LO phonons in GaAs yielded estimates
of LO-phonon lifetimes of approximately 5 ps at room temperature. This was
consistent with values obtained from linewidth studies. von der Linde (1980) used
time-resolved Raman scattering to obtain directly the time decay of non-equilibrium
LO phonons. They obtained a value of 7 ps for GaAs LO phonons at 77 K.
Subsequent experiments by Kash et al. (1985) led to the conclusion that the LO
phonon lifetime in GaAs was limited by its anharmonic decay into two acoustic
phonons.

Kash et al. (1987, 1988) and Tsen and Morkoc (1988a, b) used time-resolved
Raman scattering for the alloy system AIGaAs. The results for the lifetimes are
similar to those for pure GaAs; here, though, the phonon linewidths are broadened
owing to the disorder of the alloys and these inhomogeneous broadening effects need
to be considered. Secondly, although the dispersion relations of AlAs are different
from those of GaAs there is a similarity in decay times that is interesting and
unexpected. Tsen (1992) and Tsen et al. (1989) reported on the use of time-resolved
Raman studies of non-equilibrium LO phonons in GaAs-based structures.

Tsen et al. (1996, 1997, 1998) have studied the electron-phonon interactions in
GaN of wurtzite structure via picosecond and sub-picosecond Raman spectroscopy.
Results on undoped GaN with an electron density of n = 5 x 1016 cm-3 showed
that the relaxation mechanism of the hot electrons is via the emission of LO phonons
and that the Frohlich interaction is much stronger than the deformation-potential
interaction in that material. The measured lifetime was found to be 3 ps at 300 K and
5 ps at 5-25 K (Tsen et al., 1996, 1997, 1998). The electron-LO-phonon scattering
rate was seen to be an order of magnitude larger than that for GaAs and was
attributed to the much larger ionicity in GaN. These experiments also indicated that
the longitudinal phonons decay into a TO and an LO phonon or two TO phonons.

Raman investigations of phonon lifetimes have been reported by Bergman et al.
(1999) in GaN, AIN, and ZnO wiirtzite crystals. These lifetimes were obtained
from measured Raman linewidths using the uncertainty relation, after correcting
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for instrument broadening (Di Bartolo, 1969). These results demonstrate that the Ei
mode has a lifetime of 10 ps, an order of magnitude greater than that of the Ei,
EI(TO), Al (TO) and Al (LO) modes. This result was found to be true for samples
of high-quality GaN, AIN, ZnO as well as for AIN with a high level of impurities.
An explanation of the relative long lifetime of the Ei phonons was given in terms
of factors including energy conservation constraints, density of final states, and
anharmonic interaction coefficients. The Ei mode lies at the lowest energy of the
optical phonon modes in the wurtzite dispersion curves (Nipko et al., 1998; Nipko
and Loong, 1998; Hewat, 1970) and only the acoustic phonons provide channels of
decay. At the zone edges, the acoustic phonons are equal to or larger than those of
the Ei mode. Thus, for energy conservation to hold, the Ei phonons have to decay
to acoustic phonons at the zone center, where their density is low.

4.4 Ternary alloys

The phonons of the ternary alloys ABxCI-x formed from the binaries AB and AC
crystals in the III-Vas well as the II -VI semiconductors have been studied for some
time (Chang and Mitra, 1968). The III-nitrides have been studied more recently and
the alloys of the wurtzite materials show some interesting features (Hayashi et al.,
1991; Behr et al., 1997; Cros et al., 1997; Demangeot et al., 1998; Wisniewski
et al., 1998). The ABxCI-x mixed crystals of the zincblende materials fall into
two main groups when classified according to the characteristics of the phonons.
These two classes are generally referred to as one-mode or two-mode behavior,
where 'one-mode' refers to the situation where the frequency of the AB phonons
gradually approaches the frequency of the AC phonons as the x-value of the alloy
increases. In the two-mode situation, the phonon frequencies are distinct and in
the limit of x = 0 (1) the AC (AB) phonon frequency is a local mode in the
AB (AC) crystal. Intermediate behavior has also been observed for certain crystals
(Lucovski and Chen, 1970). While there is no general agreement, several criteria
for phonon-mode behavior based on the mass differences of the atoms have been
proposed (Chang and Mitra, 1968). Typically, when the frequencies of the phonons
in the AB and the AC binary crystals are very different a two-mode behavior is
expected; otherwise, a one-mode behavior is seen. There is more uncertainty as well
as a smaller number of reports in the case of the wurtzite nitrides. Hayashi et al.
(1991) reported studies on AIGaN wurtzite films in the range 0 < x < 0.15. The
E2, EI (TO), EI (LO) and Al (TO) modes were investigated and, in the composition
range studied, one-mode behavior was observed. Similar results were obtained by
Behr et al. (1997) in a narrow composition range. The E2 mode was seen to be
unaffected by a change in composition. Cros et al. (1997) studied the AIGaN alloys
over the whole concentration range. They concluded that the E2 mode exhibits
two-mode character, while the Al (LO) mode is one-mode; the results for the
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A2 (TO) mode were inconclusive. Studies by Demangeot et al. (1998) concluded that
the AI(LO), AI(TO), and EI(TO) modes all exhibit one-mode behavior. However,
infrared reflectance experiments indicate that the E 1(TO) mode displays two-mode
behavior (Wisniewski et al., 1998).

Yu et al. (1998) extended the modified random-element isodisplacement model
developed for zincblende structures by including the additional phonon modes and
the anisotropy of the wurtzite structure. According to this model, the Eland the
Al phonon modes should show one-mode behavior. In zincblende AIGaN crystals,
the results of Harima et al. (1999) indicate that the LO-phonon shows one-mode
behavior while the TO mode shows two-mode behavior.

Raman experiments using two ultraviolet wavelengths were performed by Alex-
son et al. (2000) on InGaN in the range 0 < x < 0.5. They investigated the Al and
the E2 phonons. These studies show a one-mode behavior of the Al (LO) phonon
while the E2 phonon demonstrates a two-mode characteristic.

The fact that the E2 mode behaves differently from the EI and Al modes is
not surprising, when one considers the specific atoms giving rise to the vibrations.
This in fact emerges from experiments on GaN wiirtzite films from natural GaN as
well as from GaN containing the isotope I5N reported by Zhang et al. (1997). All
the Al and the EI modes observed in the I5N isotope were seen to shift to lower
frequencies. Niether the Ei nor Ei mode showed a similar shift; the Ei mode was
essentially unaffected by the different isotopic mass. The authors thus concluded
that the Ei vibration is due to the motion of the Ga atoms, which are heavy, alone
and, thus, that there is no frequency response to an isotropic change in the nitrogen
mass, which is considerably lighter.

4.5 Coupled plasmon-phonon modes

A coupling of the LO phonons to the plasma oscillations of the free carriers -
these oscillations are known as plasmons - occurs when an appreciable free-carrier
concentration is present in a polar semiconductor. These coupled phonon-plasmon
modes may be observed by Raman scattering, so providing information about the
free-carrier density of a given sample.

The free electrons scatter light weakly, although in solids the effect is enhanced
by band structure effects. Detailed accounts are provided by Platzman and Wolff
(1973), Yafet (1966), and Klein (1975). Mooradian and Wright (1966) made the
first observation of plasmons in n-GaAs using a Nd:YAG laser. These results
demonstrated the coupling between the LO phonon and the plasmon via the
interaction of the longitudinal electric fields produced by each of these excitations.
Other systems for which plasmon-phonon scattering has been observed include
zincblende structures such as InSb, GaP, and InAs (Hon and Faust, 1973; Patel and
Slusher, 1968). Various wiirtzite crystals have been investigated, for example CdS
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(Scott et al., 1969), SiC (Klein et al., 1972) and, more recently, the nitrides discussed
in the next paragraph.

Here, we summarize the experimental Raman scattering results of phonon-
plasmon coupled modes in GaN, which as grown tends to be an n-type material
(Edgar, 1994); a higher carrier concentration is achieved via intentionally doping
the material. Due to this fairly high carrier concentration, the plasmons in GaN
are considered to be overdamped, similarly to those in SiC (Klein et al., 1972).
Experiments by Kozawa et al. (1998) in GaN films with a relatively low concentra-
tion of carriers show a broadening and a weakening of the intensity of the Raman
features as well as a shift to higher frequencies. The carrier concentrations obtained
by fitting the Raman line shape as in Klein et al. (1972), Hon and Faust (1973), and
Irmer et al. (1983) give values similar to those obtained from Hall measurements
(Kozawa et al., 1998). Other experiments on GaN to study these effects at lower
free-carrier concentrations have been carried out by Wetzel et al. (1996) and Ponce
et al. (1996) and show similar results. Kirillov et al. (1996) studied the effect on
the Raman modes in the high-carrier-concentration limit. This study found that with
these higher carrier concentrations the Raman features corresponding to the upper
branch of the phonon-plasmon coupled modes are too broad to extract meaningful
information. Demangeot et al. (1997) carried out a study of the lower branch of
the coupled phonon-plasmon mode for GaN for higher carrier concentrations. The
broad Raman peak observed could be fitted by the models referenced above (Klein
et al., 1972; Hon and Faust, 1973).



Chapter 5

Occupation number representation

Oh mighty-mouthed inventor of harmonies.
Alfred, Lord Tennyson, 1863

5.1 Phonon mode amplitudes and occupation numbers

In the study of carrier-phonon interactions in nanostructures it is convenient to
use the so-called phonon-number-occupation basis. In this basis the phonon system
is modeled by the Hamiltonian for a simple harmonic oscillator. Specifically, the
familiar conjugate variables of position and momentum are replaced by creation
and annihilation operators. These creation and annihilation operators act on states
each having a given number of phonons. In particular, the creation operator acting
on a state of nq phonons of wavevector q increases the number of phonons to nq + 1
and the phonon annihilation operator acting on a state of nq phonons of wavevector
q decreases the number of phonons to nq - 1.

In some applications - such as those involving the ground state of a Bose-
Einstein condensation - the creation and annihilation operators are essential to
describing the physical properties of the system. However, in the applications
considered in this book, these operators are used merely as a convenient way of
keeping track of the number of phonons before and after a carrier-phonon scattering
event; they do not introduce new physics. Nevertheless, it is important to understand
these operators since they are used widely by the semiconductor community in
modeling the electronic and optical properties of bulk semiconductors as well as
nanostructures.

The Hamiltonian describing the harmonic oscillator associated with a phonon
mode of wavevector q is

35
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(5.1)

where m is the mass of the oscillator, wq is the frequency of the phonon, uq is the
displacement associated with it, and Pq is its momentum. Introducing the operators,
aq and aJ,

fff-W
q

.~aq = --uq + I ---Pq
2h 2hmwq

(5.2)

and

(5.3)

it is straightforward to show that

(5.4)

Here the commutator [uq, Pq] == UqPq - PqUq = ih, from the properties of the
quantum mechanical operators "« and Pa- Thus

(5.5)

Since the energy of a quantum-mechanical harmonic oscillator is hwq(nq + 1),
where nq is the number of phonons having wavevector q, it is clear that Nq =
aJaq operating on an eigenstate of Nq phonons INq} has eigenvalue Nq. That
is, NqlNq} = nqINq}. Moreover, by calculating aqaJ in the same manner used
to derive an expression for aJaq, it follows that aqaJ - aJaq = [aq, aJ] = 1,
[aq, Nq] = aqaJaq - aJaqaq = [aq, aJ]aq = aq and [aJ, Nq] = aJaJaq
t t t[ t] taqaqaq = aq aq, aq = -aq.

Accordingly,

(5.6)

and

(5.7)

Thus, aJ acting on INq} gives a new eigenstate with eigenvalue increased by 1
and aq acting on IN q} gives a new eigenstate with eigenvalue decreased by 1; that
is,
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(5.8)

and

(5.9)

where the eigenvalues are consistent with the relation Nq INq) = nq INq) with Nq =
aJ aq. The eigenstates IN q) are orthonormal, so that

(5.10)

where isN' N is the Kronecker delta function.
q' q

Thus, the only non-zero matrix elements of aJ are those that couple states (N~ I
and INq) for which N~ = Nq + 1:

(5.11 )

Likewise,

(5.12)

The phonon occupation number nq may be determined at a temperature T from
the relation (E) = nwq(nq + 1), where the average energy (E) is calculated for the
case where the eigenenergies are those of a harmonic oscillator, En = nWq (n + 1).
Then taking the weighting factor to be the Boltzmann factor f(En) = e-En/ kBT,
we find that

(5.13)

where the sums are over all n from 0 to 00. Then

(E) = (L nwqne-nWqn/kBT) / (L e-nWqn/kBT) + n~q

= (Lnwqnxn) / (Lxn) + n~q, (5.14)

(E) = (nwqx d: Lxn) / (Lxn) + n~q
x/O - x)2 nWq-nw ----+-

- q I/O - x) 2
nwqx nWq

=--+-I-x 2
nWq nWq

e-nWq/kBT - 1 + 2' (5.15)
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and it follows that

1
n -------

q - e-!iwq/kBT - l' (5.16)

which is known as the Bose-Einstein distribution. Equations (5.10)-(5.12) and
(5.16) are used frequently in calculating carrier-phonon scattering rates in nano-
structures. Such calculations will be the subject of following chapters. In these
calculations the carrier wavefunctions and the phonon eigenstates are written as
products to express the total wavefunctions for the system of carriers and phonons.
When matrix elements are evaluated between the final and initial states of the
system, the phonon eigenstates and the phonon operators are grouped together since
they commute with the carrier wavefunctions and operations. Thus, carrier and
phonon matrix elements always appear as products and are evaluated separately.
This procedure will be illustrated in Chapters 8, 9, and 10. In Sections 5.2-5.4
we will relate the phonon displacement amplitudes to the interaction Hamiltonians
describing the dominant carrier-phonon interaction processes. In these calculations
and those of Chapters 8, 9, and 10 it will be convenient to express the normal-mode
phonon displacement "« in terms of the phonon creation and annihilation operators,
aJ and aq respectively. By adding equations (5.11) and (5.12) it will be seen readily
that

(5.17)

In calculations of carrier-phonon scattering probabilities, the normal-mode
phonon displacement utr) will appear in various linear forms in the Hamiltonians
entering the matrix elements being evaluated. In evaluating these matrix elements,
it will be important to keep track of not only the phonon occupation numbers nq

emerging from the phonon matrix elements but also the necessary conservation of
momentum and energy for each scattering process. In these matrix elements either
phonon creation or phonon absorption will take place but not both; therefore, as is
manifest from equations (5.11) and (5.12), only one of the two terms appearing in
equation (5.17) will contribute to the process under consideration.

utr) is, of course, a Fourier series over the modes uq. In phonon absorption pro-
cesses the phonon appears as an incoming wave and the factor ei(q.r-wI) multiplies
the amplitudes associated with the phonon fields. Likewise, in phonon emission
processes the phonon appears as an outgoing wave and the factor ei(-q.r-wI) mul-
tiplies the amplitudes associated with the phonon fields. These factors are essential
in ensuring proper conservation of momentum and energy and it is convenient to
include them along with the associated creation or annihilation operator. Indeed,
they appear naturally in the Fourier decomposition of tr(r).

Moreover, each incoming or outgoing phonon will be associated with a unit
polarization vector; these unit polarization vectors will be denoted by eq.i for
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incoming waves and by eq* . for outgoing waves. The factor e-iwt is common to,J
both incoming and outgoing phonons and it is generally included - along with
factors of E j n associated with the carrier phases - in the integral over time that
appears in the Fermi golden rule. As a means of including the phase factors to
ensure proper accounting of energy and momentum as well as the appropriate unit
polarization vectors, (5.17) will now be written as a sum over all wavevectors q; the
appropriate non-temporal phase factors appear as multipliers of the corresponding
phonon operators:

u(r) = _1_ "\' "\' J n (a eiq.re . + at e-iq.re* .)!J\i L .L 2mw q q,J q q,J
V IV q J=I,2,3 q

= _1_ "\' "\' J n e .(a + a! ) eiq.r == "\' u(q) eiq.r.0V L .L 2mw q,J q q L
q J=I,2,3 q q (5.18)

where q is summed over all wavevectors in the Brillouin zone and N is the
number of unit cells in the sample. Chapter 7 will treat the role of dimensional
confinement in modifying the optical and acoustic phonon modes in nanostructures.
Two major modifications result: the phase space is restricted and the plane-wave
nature of the phonon is modified. Both of these effects will be treated by appropriate
modifications of equation (5.18): the changes in the phase space due to dimensional
confinement will be addressed by modifying the sum over q and the dimensional
confinement of the plane wave will be described by introducing suitable envelope
functions. Equations (5.8)-(5.18) will find many applications here and in Chapters
8,9 and 10.

The factor Jnj2mwq in the final expression for u(r) ensures that the desired
Hamiltonian is consistent with the phonon mode amplitude. It is convenient in
practical calculations ofu(r) to cast the amplitude constraints implied by [uq, Pq] =
in in the form of an integral:

f u*(r)u(r)d3r = L: L: _n_ 1 eq . eql f e-i(q'-q).rd3r
q q' 2Nm .jWqWql

1 n--L:- (5.19)- nm q 2wq'

where n = N j V and the integral is performed through use of the identity
f e:' (q'-q)·r d3r = V Dq .e': For a single mode q, the so-called phonon normalization
condition then becomes

![y'llinu*(r)]. [y'llinu(r)]d3r = ~.
2wq

In terms of u( q), the normalization condition is then

n 1
[y'llinu*(q)] . [y'llinu(q)] = --.

2wq V

(5.20)

(5.21)
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In the literature, quantized fields - such as the displacement field urr) - are
expressed in terms of aq and aJ in a number of different ways. Indeed, it is possible
to perform canonical transformations that essentially exchange the roles of "« and
Pa- Specifically, from the definitions of aq and aJ in terms of "« and Pq, it follows
that

and P~ = -iJ n (a' - a't),
mWq 2mwq q q

(5.22)

where the primes have been added in preparation for the following substitutions:
a~ --+ -iaq and a~t --+ +iaJ. With these substitutions it follows that

U' --+ ~
q mWq

and P~-- --+ -u .mw qq
(5.23)

Thus, the canonical transformation a~ --+ -iaq has the result that the roles of
"« and Pq / mWq are interchanged. Clearly, this canonical transformation leaves
the harmonic-oscillator Hamiltonian unchanged. This is, of course, true for this
Hamiltonian whether expressed in terms of uq and Pq or in terms of aq and aJ.
As a result of this canonical transformation, the quantized fields - such as the
displacement field utr) - may be expressed in terms of aq and aJ in a number
of different ways. Indeed, the literature testifies to the fact that all the different
forms are used widely. Evidently, factors of ±i as multipliers of aq and aJ do
not change the matrix element of any such field times its complex conjugate, since
(±i)(±i)* = 1; thus, quantum-mechanical transition rates are not affected by this
transformation, as should clearly be the case. There is one other invariance that
is used frequently to rewrite fields expressed in terms of aq and aJ in the most
convenient form for a particular application. Namely, in expressions where a sum
or integral over positive and negative values of q is present, substitutions of the
type aqeiq-r --+ a_qe-iq-r leave the expression unchanged if all other multiplicative
factors contain even powers of q. Again, the quantum-mechanical transition rates
are not affected by such a change of variable.

5.2 Polar-optical phonons: Frohlich interaction

One of the most important carrier-phonon scattering mechanisms in semiconductors
occurs when charge carriers interact with the electric polarization, per), produced
by the relative displacement of positive and negative ions. In low-defect polar semi-
conductors such as GaAs, InP, and GaN, carrier scattering in polar semiconductors
at room temperature is dominated by this polar-optical-phonon (POP) scattering
mechanism. The POP-carrier interaction is referred to as the Frohlich interaction,
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after H. Frohlich, who formulated the first qualitatively correct formal description.
In this book, the potential energy associated with the Frohlich interaction will be
denoted by ¢Fr(r). Clearly the polarization P associated with polar-optical phonons
and the potential energy associated with the Frohlich interaction, ¢Fr(r), are related
by

V2¢Fr(r) = 4neV . per). (5.24)

In terms of the phonon creation and annihilation operators of Section 5.1, per)
may be written as

L f d3q. t .per) = r --(a ezq·re . +a e-zq·re* .)
~ . (2n)3 q q,J q q,J

J=1,2,3

(5.25)

where eq,j represents the polarization vector associated with per) and q is the
phonon wavevector; then, it follows that

Consider the case of a polar crystal with two atoms per unit cell, such as GaAs.
Clearly, the dominant contribution to per) results from the phonon modes in which
the normal distance between the planes of positive and negative charge varies. Such
modes are obviously the LO modes since in the case of LO modes eq,j is parallel
to q. However, TO phonons produce displacements of the planes of charge such
that they remain at fixed distances from each other; that is, the charge planes 'slide'
by each other but the normal distance between planes of opposite charge does not
change. So, TO modes make negligible contributions to per). For TO phonons,
eq,j . q = O. Accordingly,

4nV . per) = 4ni~ f d
3
q (a eiq.rq - at e-iq.rq)

(2n)3 q q ,
(5.27)

and the potential energy associated with the Frohlich interaction, ¢Fr(r), is given by

f d3q 1 . t·
HF = An-. (r) = -An iet: ---(a ezq.r - a e-zq.r)

r 'Yt'r ~ (2n)3q q q , (5.28)

where ¢Fr(r), has been denoted by HFr, the Frohlich interaction Hamiltonian since
¢Fr(r) is the only term contributing to it.

The dependence of ¢Fr(r) on «:' is familiar from the Coulomb interaction; the
coupling constant ~ remains to be determined.
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From subsection 2.3.3, the electric polarization per)may be written as

Ne*
per)= --uq(r)

E(oo)

= Ne* _1 L L
E(oo) ~ q i=1,2,3

li

2(~)WLOm+M
x (a eiq.re . + at e-iq.re* .)q q,] q q,] , (5.29)

where the division by E(00) accounts for screening, and the normal-mode expression
(5.18) has been used for u(r). By noticing that

(5.30)

and by comparing expressions (5.25) and (5.29), it follows that

Ne* 1
~=--

E(oo) ~

li

2(~)WLOm+M

(5.31)

However, from (2.26) evaluated for co = wo, it follows that

N e*2 (1 1) w2
- w2___ + __ LO TO

E(00)2 m M - 4nE(00)

2 [ 2 ]_ wLO _1 l_wTO
- 4n E(oo) E(oo) wlo

2 [ ]
_ wLO _1 1_
- 4n E(oo) E(O) ,

(5.32)

so that

Ne* 1
~=--

E(oo) ~

li

2(~)WLOm+M

li wlo [1 1 ]
2WLO 4n E(oo) - E(O) ,

(5.33)

and

= -i 2ne
2
liWLo [_1 1_]L .!..(a eiq.r _ at e-iq.r). (5.34)
V E(oo) dO) q q q q
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5.3 Acoustic phonons and deformation-potential
interaction

The deformation-potential interaction arises from local changes in the crystal's en-
ergy bands arising from the lattice distortion created by a phonon. The deformation-
potential interaction, introduced by Bardeen and Shockley, is one of the most
important interactions in modern semiconductor devices and it has its origin in
the displacements caused by phonons. Indeed, the displacements associated with
a phonon set up a strain field in the crystal. In the simple case of a one-dimensional
lattice, the energy of the conduction band, Ee, or the energy of the valence band,
E v, will change by an amount

Ee,v = Ee,v(a) - Ee,v(a + u), (5.35)

where a is the lattice constant and u is the displacement produced by the phonon
mode. Since a » u, it follows that

L.Ee,v(a) = (dEe,v(a)jda)u. (5.36)

Thus the phonon displacement field u produces a local change in the band energy;
the energy associated with the change is known as the deformation potential and
it represents one of the major scattering mechanisms in non-polar semiconductors.
Indeed, the deformation-potential interaction is a dominant source of electron energy
loss in silicon-based electronic devices. The three-dimensional generalization of
L.Ee, v is

L.Ee,v(a) = (dEe,v(a)jdV)L.V, (5.37)

where V is a volume element and L.V is the change in the volume element due to
the phonon field. For an isotropic medium L.Vj V = V . u and the last expression
becomes,

L.Ee,v(a) = V(dEe,v(a)jdV)V· u, (5.38)

which is usually written as

H~~~ = L.Ee,v(a) = E~'vV . u. (5.39)

The superscripts on H~~~and E~'v are necessary since the deformation potential
for electrons is different from that for holes. Chapter 9 provides a discussion of the
case where the medium is not assumed to be isotropic.

5.4 Piezoelectric interaction

The piezoelectric interaction occurs in all polar crystals lacking an inversion
symmetry. In the general case, the application of an external strain to a piezoelectric
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crystal will produce a macroscopic polarization as a result of the displacements
of ions. Thus an acoustic phonon mode will drive a macroscopic polarization in
a piezoelectric crystal. In rectangular coordinates, the polarization created by the
piezoelectric interaction in cubic crystals, including zincblende crystals, may be
written as

p = gex4(awjay + avjaz), -!ex4(aujaz + awjax), -!ex4(aujay + avjax)},
(5.40)

where ex4 is the piezoelectric coupling constant and, as will be described in
Section 7.2, the factors multiplying ex4 are the components of the strain tensor
that contribute to the piezoelectric polarization in a zincblende crystal. As with
the Frohlich and deformation-potential interactions, phonons play an essential role
in producing piezoelectric interactions. Piezoelectric interactions will be discussed
further in Chapter 9.



Chapter 6

Anharmonic coupling of phonons

With a name like yours, you might be any shape almost.
Lewis Carroll, Through the Looking Glass, 1872

6.1 Non-parabolic terms in the crystal potential for
ionically bonded atoms

The crystal potential may be expanded in powers of the displacements of the ions
from their equilibrium positions to yield a sum over quadratic and higher-order
terms. The quadratic terms, of course, represent the harmonic modes considered
at length in Chapter 5. The cubic and higher-order terms, containing products of
three or more displacements, are generally known as the anharmonic terms. These
anharmonic terms lead to modifications of the harmonic modes in the quadratic
approximation of the harmonic oscillator. Indeed, while the harmonic approximation
may be used to describe the phonon dispersion relations it cannot describe the decay
of phonon modes: the anharmonic interaction is necessary to describe the decay of
a phonon into other phonons. The leading term in the anharmonic interaction is the
cubic term and it may be written as

1 1, 1 ,I II ,IIH ',I 'I, II 'II = --P(q, j; q ,j ; q ,j )uq iUql j'Uqll i": (6.1)q,J,q,J ,q ,J ~ , , ,

where q, q I, and q II are the phonon wavevectors and j, i'. and j II designate the
polarizations of the phonon modes participating in the anharmonic interaction. N
is the number of unit cells in the crystal, and P(q, j; e'<i', q", j") describes the
anharmonic coupling. The normal process where q - q' - q" = 0 is taken into
account in this analysis but the umklapp process where q - q' - q" = b i- 0
is ignored since the normal process is expected to dominate for small phonon
wavevectors. From Section 5.1, the displacement is given by

45
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u(r) = _1_ ~ ~ y?;;(a eiq.re '+ ate-iq.re* ,)!J\i L L 2mw' q q,J q q,J
V IV q j=I,2,3 q,J

1
= 0V L ,L Uq,j (6.2)

q J=I,2,3

and, accordingly, the normal-mode coordinates Uq,j are

~

' t'zq·rA -zq·rA*
Uq,j = (aqe eq,j + aqe eq J)'2mw ' ,q,J

(6.3)

where, as defined in Chapter 5, the unit polarization vectors are denoted by eq,j

for incoming waves and by eq* , for outgoing waves, and the phonon creation and
,J

annihilation operators are given by aJ and aq, respectively.

6.2 Klemens' channel for the decay process LO ---+ LA(1)
+ LA(2)

Klemens (1966) considered the anharmonic decay of an optical phonon into two
longitudinal acoustic phonons, LA(1) and LA(2). The Klemens channel, LO --+
LA(1) + LA(2), is now recognized as the dominant LO phonon decay channel in
a number of cubic crystals including GaAs (Tsen, 1992). For the Klemens channel,

I 1/
qLQ = qLA(I) + qLA(2)'

W·· I I d 1/ 1/ h h .. ..ntmg q = qLO, q = qLA(I)' an q = qLA(2)' t e an armoruc mteraction IS

(6.4)

The Klemens process is depicted in Figure 6.1 for bulk GaAs.

(6.5)

E

q

Figure 6.1. Decay of a
near-zone-center LO phonon
into two acoustic phonons
for idealized dispersion
curves (thick lines). The
arrows begin at the energy
and wavevector of the initial
LO phonon and terminate at
the final state LA phonon
energies and wavevectors.
Momentum and energy are
both conserved in this
process.
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To determine P (q, s', q") it is necessary to characterize the anharmonic cou-
pling. Direct measurement of the anharmonic potential is difficult and few ab initio
calculations have been undertaken (Tua and Mahan, 1982; Tua, 1981). Keating
(1966) used the theory of elasticity and exploited the relationship between the
third-order elastic coefficients and the anharmonic terms of the crystal potential to
determine P(q, e'. q").

The theory of elasticity will be discussed further in Chapter 7 as the basis
for a continuum model for acoustic phonons. Bhatt et al. (1994) used Keating's
approach to estimate P(q, s', q") as the strain energy density Ua associated with
the anharmonic third-order potential. They gave expressions for Ua in terms of the
third-order elastic constants and the linear components of the strain variables. Ua

is related to a Griineisen constant and is treated frequently as a parameter. Herein,
P (q, s', q") will be denoted as ti;

6.3 LOphonon lifetime in bulk cubic materials

For the Klemens channel, LO --+ LA(l) + LA(2), the Fermi golden rule predicts a
transition rate

(6.6)

where the matrix element satisfies

(6.7)

and, as derived in Section 5.1, the Bose-Einstein occupation number is given by

1
nq = e-!iwq/kBT _ 1· (6.8)

To calculate the net rate of phonon decay through the Klemens channel it is
necessary to consider not only the decay rate r but also the generation rate for the
reverse process, G. The total loss rate for the LO phonons is then given by - r + G.
Writing r as I" nq (nql + 1) (nqll + 1) it follows that G is given by I" (nq + 1)nqrnqll

and the inverse lifetime takes the form (Bhatt et al., 1994; Klemens, 1966; Ferry,
1991)

(6.9)
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In the general case the sum over final states must include a sum over t' and j"
as well. Bhatt et al. (1994) applied this result to calculate the lifetime of the bulk
LO phonon in GaAs as a function of temperature and as a function of phonon
wavevector along the (100) and (111) directions at selected temperatures; these
results are shown in Figures 6.2 and 6.3.

6.4 Phonon lifetime effects in carrier relaxation

The energy loss rate of a carrier in a polar semiconductor is determined by both
the rate at which the carrier's energy is lost by phonon emission and the rate at
which the carrier gains energy from phonon absorption. This latter rate can be
significant in dimensionally confined structures - such as quantum-well lasers -
since the phonons emitted by energetic carriers can accumulate in these structures.
Indeed, the phonon densities in dimensionally confined semiconductor devices may
well be above those of the equilibrium phonon population and there is a large
probability that these non-equilibrium phonons will be reabsorbed. The net loss
of energy by a carrier - also known as the carrier relaxation rate - depends on
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Figure 6.2. LO phonon lifetime in GaAs as a function of temperature. From Bhatt
et al. (1994), American Institute of Physics, with permission.
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the rates for both phonon absorption and emission. Clearly, the lifetimes of the
optical phonons are important in determining the total energy loss rate for such
carriers. As discussed in the last section, the LO phonons in GaAs and many
other polar materials decay into acoustic phonons through the Klemens channel.
Over a wide range of temperatures and phonon wavevectors, the lifetimes of LO
phonons in GaAs vary from a few picoseconds to about 10 ps (Bhatt et al., 1994), as
illustrated by Figures 6.2 and 6.3. Longitudinal-optical phonon lifetimes for other
polar semiconductors are also of this magnitude. As a result of the Klemens channel,
the 'hot' LO phonons decay into acoustic phonons in times of the order of lOps.
These LO phonons undergoing decay into acoustic phonons are not available for
absorption by the carriers and, as a result of the Klemens channel, the carrier energy
relaxation rate is influenced strongly by the LO phonon lifetime. Indeed, it follows
that the time required to modulate a semiconductor quantum-well laser through
the switching of the electronic current being used to pump the laser is limited by
the time it takes the carrier to thermalize in the active quantum-well region of the
laser.
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Figure 6.3. Wavevector dependence of the lifetime of bulk LO phonons in GaAs for
wavevectors along the (100) (squares) and (111) (circles) directions at 77 K (upper
set of points) and 300 K (lower set of points). From Bhatt et al. (1994), American
Institute of Physics, with permission.
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Moreover, this thermalization time of carriers in a polar semiconductor quantum
well such as in GaAs is determined by the LO phonon emission rate minus the
LO phonon absorption rate. Since there is generally a large probability that such
non-equilibium LO phonons in the quantum well will be reabsorbed, the net rate of
carrier energy loss is reduced considerably from the thermalization rate that could
be achieved if the carrier lost energy through the sequential emission of LO phonons
without reabsorption. This effect is referred to frequently as the phonon bottleneck.
In fact, the thermalization times of semiconductor quantum-well lasers are generally
tens of picoseconds - in accord with the LO phonon lifetime - and not the fractions
of picoseconds characteristic of the carrier-LO-phonon emission times for many
polar semiconductors over a wide range of carrier energies. To reduce the phonon-
bottleneck effect in quantum-well lasers, Zhang et al. (1996) conceived the tunneling
injection laser, in which the carrier tunnels into the active region of the quantum-well
laser with energies only one or two times the LO-phonon energy. As a result of
this ingenious design, the carriers can thermalize by emitting only one or two LO
phonons and the probability of significant LO phonon absorption is reduced greatly.
These tunneling injection lasers have intrinsic switching speeds close to 100 GHz,
which is several times faster than for the semiconductor quantum-well lasers, where
the carriers have to be captured and thermalize in quantum wells having well depths
several times the LO phonon energy. The phonon-bottleneck effect will be discussed
further in subsection 8.3.4 in connection with carrier energy loss in quantum wires
and in Section 10.1 on intersubband lasers.

6.5 Anharmonic effects in wiirtzite structures: the Ridley
channel

Longitudinal-optical phonon decay in GaN cannot proceed by the Klemens' channel
since the LO phonon energy is more than twice the energy of any of the available
acoustic phonons. Ridley (1996) observed that a four-phonon decay process would
be much slower than the rates typical of polar semiconductors and proposed that a
three-phonon decay channel where the LO phonon decays into a TO phonon and an
LA phonon is possible. The Ridley channel, LO --+ TO + LA, competes with the
channel LO --+ TO + TA but it is expected that the Ridley channel will dominate,
owing to symmetry considerations (Ridley, 1996). Through an analysis similar to
that presented in Sections 6.1-6.3, Ridley showed that the net rate of annihilation of
LO phonons via the Ridley channel in GaN is given by

r2
3

3 nWTQ(WLO - WTQ)
2nPLOWLO VLA

x [n(WTQ) + n(WLo - WTQ) + 1], (6.10)
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where PLo is the reduced-mass density, VLA is the group velocity, and qLA is the LA
wavevector associated with the LA frequency WLO - WTO; see also Ridley and Gupta
(1991). By taking r R:! 108 cm-1 as for GaAs, Ridley obtained a zero-temperature
rate of 5.0 x 1011 s-l. A full understanding of phonon decay in the wide-bandgap
III-V nitride materials is yet to be obtained. However, it is likely that the optical-
phonon lifetimes in the III-V nitrides will play an important role in the design of
electronic and optoelectronic devices fabricated from them. The Raman analysis of
anharmonic phonon decay rates given in Chapter 4 provides essential information
for the systematic design of such devices.



Chapter 7

Continuum models for phonons

There is not a single thing, however small, in the world that
does not depend on something that is higher. .. for everything
is interdependent.
Zohar, Kabbalah, Book 1, 156b

7.1 Dielectric continuum model ofphonons

The dielectric continuum model of optical phonons in polar materials is based on
the concept that the associated lattice vibrations produce an electric polarization
per) that is describable in terms of the equations of electrostatics for a medium
of dielectric constant E(W) (Fuchs and Kliewer, 1965, 1966a, b, c; Engelman and
Ruppin, 1968a, b, c; Ruppin and Engelman, 1970; Licari and Evrard, 1977; Wendler,
1985; Mori and Ando, 1989). The volume of the structure is assumed to be L3

(- L/2 ::::x, y, z ::::+L/2) with periodic boundary conditions. The potential <p(r)
associated with per) is given by (Kim and Stroscio, 1990)

V2<p(r) = 4nV . per) (7.1)

and the electric field E(r) is given by

E(r) = -V <p(r). (7.2)

Moreover, E(r) and per), in medium n are related through the dielectric suscepti-
bility, xn(w):

per) = xn(w)E(r) (7.3)

where

Xn(W) = [En(W) - 1]j4n. (7.4)

Using the results of Chapter 5, the Lyddane-Sachs- Teller relation for medium n
may be written as

52
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(7.5)

for a binary polar semiconductor AB and as

w2 _ w2 w2 _ w2

( ) _ () LO,n,a LO,n,b
En W - En 00 2 2'

W2 - W W2 - WTO,n,a TO,n,b

(7.6)

for a ternary polar material AyBl-yC, where the subscript a denotes frequencies
associated with the dipole pairs AC and the subscript b denotes frequencies
associated with the dipole pairs BC. As in subsection 2.3.1, the displacement field is
related to the fields E(r) and per) through the driven oscillator equation and through
the effective charge, e~ : for a binary medium n,

-f.LnW2Un(r) = -f.LnW6nUn(r) + e~Elocal(r),

per) = nne~Un(r) + nnanElocal(r),
(7.7)

where nn is the number of unit cells in region n, f.Ln = mnMn/(mn + Mn) is the
reduced mass and an is the electronic polarizability per unit cell and where, by the
Lorentz relation,

4n
Elocal(r) = E(r) + 3P(r). (7.8)

Within the virtual-crystal model, for the dipole pairs AC (BC) in a ternary medium
m, we have

-f.Lm,a(b)W
2
Um,a(b)(r) = -f.LmW6m,a(b)Um,a(b)(r) + e~,a(b)Elocal(r),

(7.9)
per) = nm[ye~,aum,a(r) + (l - y)e~,bum,b(r)] + nmamElocal(r).

An alternative and useful form of these equations for the case of a binary material
results straightforwardly from the relations of Appendix A. Indeed, it is shown in
Appendix A, equations (A.8) and (A.9), for a diatomic polar material that

ii = -wiou + (_V_) 1/2 JE(O) - E(OO) wTOE,
4n f.LN

P = (_f.LN_) 1/2 JE(0) _ E(00) WTOU + [_E(_00_)_-_1] E.
4nV 4n

(7.10)

In the first equation it has been assumed that ii has a general form for the
time dependence and may not be simply sinusoidal in co, As will become evident,
this pair of equations is well suited as the basis for an alternative method for
performing the calculations of subsection 7.3.1. Moreover, it provides a convenient
starting point for the derivation of the macroscopic equations describing optical
phonons in polar uniaxial materials (Loudon, 1964). Uniaxial materials such as
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the hexagonal wiirtzite structures GaN, AIN, and GaxAh-xN have relatively wide
bandgaps and are suited for high-temperature electronics and short-wavelength
optoelectronic devices. Loudon (1964) introduced a useful model for describing
the macroscopic equations of a uniaxial polar crystal by introducing one dielectric
constant associated with the direction parallel to the c-axis, Ell, and another dielectric
constant associated with the direction perpendicular to the c-axis, E-i. In Loudon's
model a separate set of Huang-Born equations is necessary for the phonon mode
displacements parallel to the c-axis, ulI, and perpendicular to it, U-i. For a medium
denoted by n it then follows straightforwardly that

"-i n = -wT
2
0 ,nU-i n + r-v JE(Oh n - E(ooh n WTO .L nE-i n-, ,~" y~ , ""

P J tLn
N ° + [E(OOh,n - I JE.L,» = 47TV JE( h,n - E(ooh,n WTO,-i,nU-i,n 47T -i,n,

(

w2 _ w
2

)
E-i,n(W) = E-i,n(OO) 2 ~o,-i,n,

W - WTO, .L, n
(7.11)

and

Of course, in Loudon's model these six equations must be supplemented by the
following three equations of electrostatics for the case where there is no free charge:

E(r) = -\l¢(r),

D(r) = E(r) + 47TP(r)

= E-i (w)E-i (r)p + Ell(w)EII (r)z,

\l. D(r) = 0,

(7.13)

where z and p are the unit vectors in the II and .L directions respectively.
In the first and third of this set of nine equations, it has been assumed that "-i,n

and "lI,n have a general form of the dependence and may not be simply sinusoidal
in w; the assumption of sinusoidal time dependence made in Appendix A was not
necessary and simply by replacing -w2u by ii it is straightforward to rederive the
results of Appendix A without assuming a sinusoidal time dependence.

The above set of nine equations provides a convenient basis for describing
carrier-optical-phonon scattering in wiirtzite crystals. Indeed, using the relations for
the displacement perpendicular (parallel) to the c-axis,
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(7.14)

which follow from the results of Section 5.1, and defining

¢(rhCll) = L ¢(qhCllle;q·r
q

E(rhclll = -V¢(rhClll = -iqL¢(qhCllle;q·r,
q

(7.15)

(7.16)

it follows, by taking m = !-Ln, w2 = w~ and assuming a sinusoidal dependence for
urr, t), that (Lee et al., 1997)

with q.l = q sin e, where e is the angle between q and the c-axis, which is taken as
the z-axis. Moreover, qll = q cos e and eq

2.l + eq
2 . II= 1. Hence,J, ,J,

(7.18)

so that

(~::) (aq + a!q)2

21 [dOh - E(ooh] wio.l . 2 ) 2= -q ( 2 2)2' sin e ¢ (q),
W .l, TO - Wq

21 [E(O)II - E(OO)II] wio II 2) 2
-q ( 2 2)2' cos o ¢ (q),

WTO, II - Wq
(7.19)

and

.~ t 2 2 2 2¢(q) = -ly ~(aq + a_q) (WTO,.l - Wq)(WTO,1I - Wq)

x {[E(Oh - E(ooh]wio,.l (wio,11 - w~)2 sirr' e
2 2 2 2 2} -1/2+ [E(O)II - E(OO)II]WTO,II (WTO,.l - Wq) cos e . (7.20)
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Thus

In the isotropic case, E (w ) .L = E (w ) II and this result must reduce to the
expression, (5.34), obtained in Section 5.2 for the interaction Hamiltonian de-
scribing the carrier-LO-phonon interactions. Indeed, since the general form of the
Lyddane-Sachs- Teller relation implies that

w~'O- wlo [1 1 ] 1/2

WTQy'E(O) - E(OO) = -wLO E(OO) - E(O) ,
(7.22)

the Hamiltonian for the uniaxial case reduces to (5.34) upon taking E(wh = E(w)11
and wq = WLO.

7.2 Elastic continuum model ofphonons

As will become clear, the elastic continuum model of acoustic phonons provides
an adequate description of acoustic phonons for nanostructures having confined
dimensions of about two atomic mono layers. A simple and illustrative application
of the elastic continuum model is found in the case of a longitudinal acoustic mode
propagating in a quasi-one-dimensional structure. Consider an element dx located
along this structure between x and x+dx. Let u(x, t) be the elastic displacement at x
along the axis of the one-dimensional structure; that is, u (x, t) describes the uniform
longitudinal displacement of the element dx. In the elastic continuum model the
dynamics of the mass-containing element, dx, are described in terms of Newton's
laws. Indeed, defining the strain as e = dujdx and the stress, T(x), as the force per
unit area in the quasi-one-dimensional structure of area A, it follows from Hooke's
law that

T = Ye, (7.23)

where Y is a proportionality constant known as Young's modulus. The force
equation describing the dynamics of the element dx of density p(x) is given by
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Newton's second law:

a2u(x, t)
p(x)A dx 2 = [T(x + dx) - T(x)]A,at

where pA dx is the mass associated with the element dx and a2u/at2. By Hooke's
law

(7.24)

(aT) (ae) (a
2
u)T(x + dx) - T(x) = ~ dx = Y ax dx = Y ax2 dx , (7.25)

and it follows that

a2u _ (P(X)) a2u
ax2 - y at2· (7.26)

Seeking solutions of this one-dimensional wave equation of the form u (x) =
~ ei (qx-wt), where q = 2n / A and co is the angular frequency of the wave, it follows
that the dispersion relation for the longitudinal acoustic (LA) mode is pw2 = yq2

or co = uiq, where VI = y'Y/ p. The longitudinal sound speed, VI, has typical values
(3-5) x lOs em s-l and for p = 4 g cm-3 it follows that Y must have an order of
magnitude of 1012 g em s-2.

The three-dimensional generalization of these results may be accomplished
through the replacements (Auld, 1973) u(x) --+ u(x, y, z) = (u, V, w) and T =
Ye --+ T = C : S with T, = cij S]. In this generalization, Young's modulus is
replaced by a 6 x 6 matrix of elastic constants Cij; T is replaced by a six-component
object Ti; e is replaced by a six-component object S]. For the cubic, zincblende, and
wurtzite crystals the most general form of the stress-strain relation, Iij = cun Su,
where i, i. I, k run over x, y, z, may be represented by T, = cij Sj . In this last result,
i and j run over the integers 1-6; 1 == xx, 2 == yy, 3 == zz, 4 == yz or zy, 5 == xz or
zx, and 6 == xy or yx. The resulting forms for Sj are

au av
Sl = Sxx = -, S2 = Syy = -,

ax ay

1 (aw av)
S4 = SyZ = SZy = 2" ay + az '

s, = s., = s.; = ~(au + aw),
2 az ax

S6 = Sxy = Syx = ~(au + ~).
2 ay ax

(7.27)

For T, the forms are

r, = Txx, T2 = Tyy, T3 = t.;
T4 = TyZ = TZy, Ts = r., = r.; T6 = r., = r.;

For the elastic energy to be single valued Cij Cji, and it follows that only
21 distinct elements are necessary to define the 6 x 6 matrix Cij. Nanostructures

(7.28)
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of widespread interest in modern electronics and optoelectronics are generally
fabricated from zincblende and wiirtzite crystals. For cubic crystals, including
zincblende crystals, the matrix Cij is of the form

Cn Cl2 Cl2 0 0 0
Cl2 Cn Cl2 0 0 0
Cl2 GI2 cn 0 0 0

(7.29)
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 C44

and for wiirtzite crystals Cij is of the form

cn GI2 Cl3 0 0 0
Cl2 Cn Cl3 0 0 0
Cl3 Cl3 C33 0 0 0

(7.30)
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 (cn - cl2)j2

For a cubic medium such as the zincblende crystal, only three independent elastic
constants, cn, Cl2, and C44, are needed to specify all the cij. For an isotropic cubic
medium Cl2 = Cn - 2C44, and only two constants A and f-L are necessary to define
the cij:

[L = C44 = C55 = C66 = ~(cn - Cl2),

A + 2f-L = cn = C22 = C33·

(7.31)

The constants A and f-L are known as Lame's constants. Thus, in the cubic case three
independent constants replace Y: cn, which relates the compressive stress to the
strain along the same direction, [100]; C44, which relates the shear stress and the
strain in the same direction; and Cl2, which relates the compressive stress in one
direction and the strain in another direction.

For the isotropic case, it follows that

r., = A(Sxx + Syy + Szz) + 2f-LSxx = At::. + 2f-LSxx,

Tyy = A(Sxx + Syy + SZZ) + 2f-LSyy = At::. + 2f-LSyy,

Tzz = A(Sxx + Syy + Szz) + 2f-LSzz = At::. + 2f-LSzz,
(7.32)

where t::. = aujax + av jay + o u: jaz represents the dilatation of the medium.
Then, it is straightforward to show that the three-dimensional generalization of
p(x)a2ujat2 = Ya2ujax2 = aT jax is given by the equations
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a2U sr.; sr.; aTzx at::. 2
p- = -- + -- + - = (A+f.L)- +f.LV u,at2 ax ay az ax

a2v aTxy aTyy aTZy at::. 2
p- = -- + -- + - = (A+f.L)- +f.LV v,at2 ax ay az ay

a2w sr., aTyz aTzz at::. 2
p- = - + - + - = (A+f.L)- +f.LV w,at2 ax ay az az

where, as usual,

(7.33)

a2 a2 a2
V2=_+_+_.ax2 ay2 az2

Two alternative forms of the three-dimensional force equations are encountered
frequently in the literature. The first of these is derived by writing the components
of u(x, y, z) = (UI, U2, U3) as Ua, a = 1,2,3; it then follows that the three force
equations may be rewritten as

a2ua aTafJ
p- - - (7.35)at2 - arfJ '

(7.34)

where

(7.36)

In these equations, the subscripts a and f3 run over 1, 2, 3 (corresponding to
x, y, z). A repeated index in a term implies summation. DafJ is the Kronecker
delta function. In a second alternative form the three force equations are written
straightforwardly as the single vector equation

a2u 2 2 2 2at2 = Ct V u + (Cl - ct) grad t::., (7.37)

where it is now clear that

t::. = V . u = div u. (7.38)

Here, Ct and ci are the transverse and longitudinal sound speeds and we have

2 A 2 A + 2f.L
ct = - and cl = ---. (7.39)

p P

In physical acoustics the solutions for the displacement fields are frequently
specified in terms of two potential functions, a scalar potential ¢ and a vector
potential \11 = (Wx, Wy, Wz), through

a¢ awx awy
U = - + -- - --,ax ay az

a¢ awx awzv = - + - - -, (7.40)ay az ax
a¢ awy awxw=-+-----,az ax ay
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where ¢ and Wi, i = x, y, z, satisfy

2 A + 2f-L
Cz =---,

P
(7.41)

i =x,y,z, 2 Act =-
p

The scalar potential ¢ corresponds to the 'irrotational' part of the solution and
the vector potential corresponds to any remaining 'rotational' fields. In the literature
the irrotational solutions are also referred to as the longitudinal, compressional, or
dilatational solutions. Moreover, seismologists frequently refer to these solutions as
P waves. Likewise, the rotational vector-potential solutions based on Wi are iden-
tified as transverse, shear, distortional, or equivoluminal solutions. In seismology
these solutions are commonly identified as S waves.

Herein, the irrotational solutions will generally be referred to as longitudinal
modes and the corresponding sound speed will be denoted by ci. Likewise, the
rotational fields will be denoted as transverse modes and the associated sound speed
will be denoted by Ct. The principal interest in this book is on using the longitudinal
and transverse solutions of the elastic continuum model to describe the longitudinal
acoustic (LA) and transverse acoustic (TA) phonons in nanostructures. Hence,
the notation adopted herein is that corresponding most naturally to the solid-state
community's descriptions of phonons as longitudinal and transverse.

Every year, experimental observations of acoustic modes in nanostructures are
being reported in the literature in increasing numbers. Examples of such experi-
mental studies include the works of Nabity and Wybourne (1990a, b), Seyler and
Wybourne (1992), and Sun et al. (1999). Wybourne and his coworkers report
measurements of confined acoustic phonons in very thin metallic foils and wires
on dielectric substrates. Sun et al. (1999) presented data on folded acoustic modes
in semiconductor superlattices. In view of such observations, Section 7.6 presents
extensions of the elastic continuum theory of this section to the case of acoustic
modes in dimensionally confined structures and Chapter 9 focuses on carrier-
acoustic-phonon scattering rates in both bulk materials and dimensionally confined
nanostructures.

7.3 Optical modes in dimensionally confined structures

The dielectric continuum model has been applied to describe the properties of
dimensionally confined optical phonons in many electronic and optoelectronics
devices fabricated from semiconductor nanostructures (Dutta and Stroscio, 1998,
2000; Mitin et al., 1999). These include quantum wells, superlattices, quantum
wires, and quantum dots. To illustrate the basic features of the dielectric continuum
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model of optical phonons, the case of confinement in just one dimension - as
in a quantum well or superlattice - is considered first. In addition, the dielectric
continuum model will be compared with other continuum models, including the
hydrodynamic model and the reformulated dielectric continuum model. These
models predict different sets of confined optical phonon modes but each model
predicts the same carrier-phonon scattering rate as long as it includes a com-
plete set of orthogonal phonon modes (Nash, 1992). Following a comparison
of these models, a microscopic treatment of confined phonon modes will be
discussed.

7.3.1 Dielectric continuum model for slab modes:
normalization of interface modes

The dielectric continuum model predicts a set of confined optical phonon modes
commonly referred to as the slab modes. These slab modes may be determined by
applying the dielectric continuum model and by imposing electrostatic boundary
conditions at each heterointerface. The normal-mode frequencies and orthogonal
confined phonon modes are obtained through the simultaneous solution of the
equations arising from the dielectric continuum model, subject to the boundary con-
ditions that the potential, <P(r) and the normal component of D (r) are continuous at
each heterointerface. Taking the heterointerfaces to be normal to the z-direction, the
electrostatic potential <Pi(r) in the region R, = (z,, Zi+1) and its two-dimensional
Fourier transform <Pi(q, z) are related by

<Pi(r) = L<Pi(q, z) e-iq
-
p

,

q

(7.42)

where p == (x, y) and q is the two-dimensional wavevector in the xy-plane, that is,
q = qxx + qyy, where x and yare unit vectors. Then

Ei(r) = -V<Pi(r) = LEi(q,z)e-iq-P,
q

Pier) = Xi (W)Ei(r) = LPi(q,z)e-iq-P.
q

(7.43)

Following the concepts of Section 5.1, the mode normalization condition requires
that the energy of a phonon of mode q is nwq; for the case of a single interface at
z = 0 separating two layers nand m, this condition is
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iOO

L2[J(ILnnn)Un(q,z)]*' [J(ILnnn)Un(q,z)]dz

+ y L: L2[J(ILmnm)Um,a(q, z)]*' [J(ILmnm)Um,a(q, z)]dz

+ (1- y) L: L2[J(ILmnm)Um,b(q, -r [J(ILmnm)Um,b(q, z)]dz

li
(7.44)

To illustrate the normalization procedure, let us consider one of the classes of
optical phonon modes existing for this one-heterointerface structure. The wave
equations for the fields of relevance here admit both oscillating and exponential
solutions. In particular, let us consider the solutions having an exponential character.
For these modes, known as the interface (IF) modes, we take

<p(r) = L<p(q, z) e-iq.p = Lce-qlzle-iq.p
q q

(7.45)

so that

Ei (q, z) = {

Pi(q,Z) = {

c(iqe-qZq - qe-qZz)
c(iqeqZq + qeqZz)

xic(iqe-qZq - qe-qZz)
xic(iqeqZq + qeqZz)

z ::::0,
z ::::0,

z ::::0,
z ::::o.

(7.46)

xy

AB

z
region 1 region 2

Figure 7.1. A ternary-binary structure. From Kim and Stroscio (1990), American
Institute of Physics, with permission.
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where q is the unit vector specifying the direction of q == (qx, qy). Let material n

be a binary layer filling the space z ::::0, region 1, and material m be a ternary layer
filling the space z ::::0, region 2, as illustrated in Figure 7.1. Then, for the right-hand
medium, material 1, using the notation of Appendix B, it follows that

-/-L1W2Ul(q, z) = -/-L1W61Ul(q, z) + erElocal(r),

* f-Ll(w61 - (2)
Pl(q, z) = nlenUl(q, z) + nJC:q * Ul(q, z)

e1

*[ alf-Ll(w61 - (
2
)]= nlel 1+ er2 ur (q, z)

= xlc(iqe-qZq - qe-qZz);

(7.47)

thus

xlc(iqe-qZq - qeqZz)
01 (q, z) == ------------.

nler[l + alf-Ll(w61 - (2)jer2]
(7.48)

For material 2, there are two driven-oscillator equations, one for the AC pair,
denoted by a, and one for the BC pair, denoted by b:

-f-L~,a(b)W2U2,a(b)(q, z) = -f-L2,a(b)W62,a(b)U2,a(b)(Q, z)

+ e~,a(b)Elocal(Q, z), (7.49)

and the electric polarization in the virtual-crystal approximation is

Then

*e2,a(b)
U2,a(b)(q, z) = 2 2

f-L2,a(b)(W02,a(b) - co )

x2c(iqeqZq + qeqZz)x------------------
[

ye*2 (l - y)e*2 ].n 2a + 2b +a
2 2 2 2 2 2

f-L2,a(W02,a - w) f-L2,b(w02,b - co )
(7.51)
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where the integral in the first term has been performed using

100

dz(iqe-qZq - qe-qZz)* . (iqe-qZq - qe-qZz) = 100

dz 2q2e-2qZ = «.
(7.53)

and the second and third integrals have been performed using

10 dz(iqeqZq + qeqZz)* . (iqeqZq + qeqZz) = [00 dz 2q2e-2qZ = q.
-00 Jo (7.54)

Thus the normalization constant c is determined. It is convenient to rewrite this
expression using conditions derived by Wendler (1985). These conditions are
discussed in Appendix B. The conditions that are useful at this point in our derivation
are

(7.55)

(j)2
plasma,n

84'(l + 'j"7TnnC¥n)(l - 'j"7TnnC¥n)

Here the subscript n represents either material I or material 2. In these relations, the
plasma frequency squared, (j)~lasma,n' is given by
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2 4 *2 /Wplasma,n,a(b) = nnnen,a(b) f-Ln,a(b)· (7.56)

As may be verified algebraically, the Lyddane-Sachs- Teller relations of subsec-
tion 2.3.3 are satisfied by these frequencies (Wendler, 1985).

With these results of Wendler, a straightforward but lengthy derivation yields

c = _ [~(8nw)]1/2 [aEl(W) + aE2(W)]-1/2
2w L2q aw aw

= _(4nh)1/2 [aEl(W) + aE2(W)]-1/2
L2q aw aw

(7.57)

Thus,

(7.58)

where, as discussed previously,

(
W

2
- w£o I)

EI(W) = EI(oo) 2 _ 2' ,
W WTO,1

(
w2 w

2
) (W

2
w

2
)( ) = () - LO,2,a - LO,2,b

E2 W E2 00 2 2·
w2 - W w2 - WTO,2,a TO,2,b

(7.59)

Finally, multiplying <p(r) by -e and introducing aq and aJ, according to the
procedure described in Section 5.1, the interaction Hamiltonian for the interface
(IF) optical phonon mode may be written as (Kim and Stroscio, 1990)

_ ~(4ne2h)1/2 [aEI(W) aE2(W)]-1/2 -qlzl iq·p tH1F - LJ -2- --- + --- e e (aq + a_q),
q L q oca oca

(7.60)

where eq,j and e~,j of equation (6.2) have been taken as unit vectors in the
longitudinal direction, since the IF phonon modes considered here are longitudinal
optical (LO) phonons. The dispersion relation for this optical phonon mode is
given from the requirement that the normal components of the electric displacement
field be continuous at z = 0, that is, E2(W)E2,zlz=o = EI(W)EI,zlz=o. From this
condition, it follows immediately that the frequencies of the IF optical phonons must
satisfy EI(W) + E2(W) = O.

This result is similar to that for a bulk semiconductor, where the optical phonon
frequencies must satisfy E (r») = O. Moreover, since this is the condition necessary
for the propagation of any longitudinal electromagnetic disturbance, it was expected
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that the frequencies of longitudinal optical phonons should satisfy this dispersion
relation.

In the case of the two-region, single-heterointerface structure, the IF longitudinal
optical phonon frequencies depend on both fl(W) and f2(W). Therefore, the IF
optical phonon mode is a joint mode of both materials. Indeed, the electrostatic
phonon potential for this mode falls off exponentially with distance from the
heterointerface in both materials and, of course, the IF phonon electrostatic potential
has only one common value at the interface. Hence, such an IF optical phonon mode
must have one common electrostatic phonon potential throughout the two-region
heterostructure. It is therefore not surprising that the frequency of such an interface
LO phonon mode depends on the dielectric constants of both materials. Clearly,
the IF optical phonon mode described by H1F is a joint mode of both materials. In
general, IF optical phonon modes are joint modes of all the materials in a given
heterostructure. This property is manifest throughout this book.

Clearly, the IF optical phonon modes do not form a complete set of optical
phonon modes for the case of two semi-infinite regions joined at a single hetero-
interface. Indeed, these IF modes vanish exponentially as [z] --+ 00 and it is
clear that bulk-like optical phonons must exist in regions significantly removed
from the heterointerface. These additional modes are known as half-space modes.
For a structure with a single heterointerface these half-space modes have been
given by Mori and Ando (1989) for the case where the two semi-infinite regions
are composed of binary semiconductors. Mori and Ando also gave the full set
of optical phonon modes for double-heterointerface structures, where one type of
binary semiconductor layer with interface planes situated at -a /2 and +a /2 is
bounded by two semi-infinite regions of a different binary semiconductor. Appendix
C provides a summary of the phonon modes of the double-heterointerface structure
for three models, the slab modes of the dielectric continuum model with electrostatic
boundary conditions, as in Mori and Ando (1989), and two other models discussed
widely in the literature. Appendix C also discusses Raman measurements useful
in understanding the behavior of these modes (Sood et al., 1985). The modes
arising from the second and third models are known as the guided modes and the
reformulated (or Huang-Zhu) modes. As discussed in Appendix C, all these sets
of phonon modes predict the same intrasubband and intersubband scattering rates
provided that each set is composed of a complete, orthogonal set of phonon modes.

7.3.2 Electron-phonon interaction for slab modes

Here, it is instructive to consider an earlier - and intuitively very appealing -
theory of electron-phonon interactions in a dielectric slab given by Licari and
Evrard (1977). In this theory, a single dielectric slab of infinite extent in the x- and
y-directions is situated with its faces at -a and +a and with its surface bounded by
a vacuum in the regions with [z] ::::a. Within this dielectric slab V . D = 0, where,
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as usual, D(r) = f(w)E(r) = E(r) + 4nP(r); feW) is the dielectric constant of
the slab and per) is the electric polarization associated with the optical phonons
in the slab. Defining a scalar potential through E(r) = -V¢(r) and, since the
system is translationally invariant in the xy-plane, taking ¢(r) to be of the form
¢(r) = ¢(z) eiqrp, where p = (x, y) and qll = (qx, qy), it follows that

(7.61)

where q~ = q; + q;. This equation is satisfied when feW) = 0 or when (a2 fa2z -
q~)¢(z) = O. As shown previously, from the general form of feW) - as given for
example in Appendix A - and the Lydanne-Sachs- Teller relation, the condition
feW) = 0 is satisfied for a single-material system when W = WLO.In this case an
arbitrary function, ¢(z), is a solution of the wave equation; Licari and Evrard took
this solution (as did Fuchs and Kliewer, 1965, and Kliewer and Fuchs, 1966a, b) to
be of the form

¢(z) = L(¢lsinqzz+¢2cosqzZ),
qz

(7.62)

inside the slab i.e., in the range (-a, +a). Outside the slab, where e = 1, the

solutions have the form ¢ (z) = ¢± eXP(±j q; + q; z), where the positive sign
applies for z ::::-a and the negative sign applies for z ::::+a. The constants ¢1,
¢2, ¢+, and ¢_ are determined by the usual boundary conditions that the tangential
component of E and the normal component of D are continuous at z = ±a. From
these conditions it is seen that ¢± = 0 and it is thus clear that for this mode
¢ (z), E(r), and D(r) are zero in the regions surrounding the slab; in particular ¢ (z)
vanishes at the surfaces of the layer, where z = ±a. For z in the range (-a, +a),
the boundary conditions may be satisfied by taking either ¢1 = 0 or ¢2 = 0, so that
there are two solutions corresponding to the two polarization vectors:

¢2· ( m.it .rnr: mn)P~(r) = __ ezqrP i iqlla cos -z - z- sin-z
4na 2a 2 2a

m = 1,3,5, ... ,

¢1· ( m.it .rnr: mn)
P::(r) = __ ezqrP i iqlla sin -z + z- cos-z

4na 2a 2 2a

(7.63)

m = 2,4,6, ... ,

where z is the unit vector in the z-direction. Of course, V . D(r) = 0 implies that
V2¢ (r) = -V· E(r) = +4n V .per). These standing modes are now widely known
as the confined optical phonon modes in a slab. They exist for m running from 1 to
some maximum number N2a; the values of m must terminate at N2a, the number of
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unit cells in thickness 2a, since the continuum model adopted here must fail when
the number of half-wavelengths in 2a becomes equal to or greater than the number
of unit cells in the same thickness.

The remaining solution corresponds to the case where E (r») i- 0 inside the slab

As before, when [z] :::: a, the solution is ¢(z) = ¢± exp(±Jq; + q;z). The
boundary conditions then restrict the modes to the forms

(7.64)

where gil is the unit two-dimensional wavevector. These last two modes describe the
so-called IF optical phonon modes in the polar semiconductor slab of thickness 2a.
The boundary conditions imply that the frequencies for these modes are solutions of

1+ E(W) J--- = ±exp(-2 q; + q;a),
1 - E(W)

(7.65)

which, using E(w) = E((0) + [E (0) - E(00)]j (1 - w2 / wio)' may be written as

2 2 [E(O)+I]=f[E(O)-I]exp(-Jq;+q;a)
W± = WTO ~__ ,

[E(oo) + 1] =f [E(oo) -l]exp(-Jq; +q;a)
(7.66)

where the plus sign corresponds to the even mode, the minus sign to the odd mode.
As pointed out by Licari and Evrard (1977), this continuum model is capable

of predicting both the confined LO phonons and the interface IF optical phonons
because for both of these modes there exists a polarization charge density. In
particular, both pi = -V· P, the volume charge density, and (5' = -p. n, the
surface charge density, contribute to the confined LO modes; here, n is the unit
vector normal to the surface and pointing into the vacuum. For the IF modes, only
(5' makes a contribution. Clearly, in this model the polarization charge acts as the
source of the fields associated with these phonon modes. Transverse modes are not
predicted by this continuum approach since for such modes V . P = 0 and P . n = O.

Licari and Evrard (1977) used this model to study the effects of electronic
polarizability on the phonon modes and they derive conditions for the slab which
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are equivalent to Wendler's conditions for the two-layer system described in Ap-
pendix B. Licari and Evrard also used their model to construct the normalized polar-
ization eigenvectors and frequencies for the phonon modes of the dielectric slab.
Moreover, they constructed the Hamiltonian for the electron-polar-optical-phonon
interaction and showed that the correct harmonic oscillator energy is recovered when
the eigenvectors of the slab are used to evaluate the Hamiltonian; in particular, it
can be shown that the normal modes are consistent with the harmonic oscillator
energy of Section 5.1. Finally, Licari and Evrard presented a very enlightening
physical derivation of the electron-phonon interaction Hamiltonian for a slab by
applying boundary conditions to the electron-phonon interaction Hamiltonian for
a bulk semiconductor. Specifically, starting with expression for the bulk Frohlich
interaction, which we take as the expression (5.34) derived in Section 5.2,

.{2ne2
hWLO[ I I ]}1/2~ I t -iq.rHPr = -I ---- -- - -- L -(a +a_ )e
V E(OO) E(O) q q q q

'L{2ne2
hWLO[ I I ]}1/2 t -iq.r= -I ---- -- - -- (a + a ) e

q V q2 E(OO) E(O) q-q

= -i L Vq(aq + a!q) e-iq.r, (7.67)
q

Licari and Evrard took q = (qll' qz) and split the sum over q into a sum over qll and
a sum over qz > 0:

(7.68)

Then, using eie = cos e + i sine to write e±iqzZ in terms of sines and cosines,

HPr = J2 L Vqe-iqll·r
qll,qz>o

X {cos qzz[a+(qll) + ate -qll)] + sin qzz [a_ (qll) + a! (-qll)]),

(7.69)

where

-i
a_(qll) = y'2(aqll,qZ - aqVqJ·

(7.70)

The operators at (-qll) and a! (-qll) are given by taking the adjoints. These oper-
ators describe phonons which propagate as plane waves in the x- and y-directions
but as standing modes in the z-direction. Indeed, since qz = mst /2a the Frohlich
Hamiltonian for the two-dimensional slab takes the form
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_!4ne2nwLO [1 1 ]) 1/2 ~ -iq.rHPr- ---- ----- Le II
V E(OO) E(O) q

II

{
~ cos(mn/2a)z t

X L [2 + 2 + ( /2 )2]1/2 [am+(qll) + am+( -qll)]
m=I,3,5... qx qy mit a

~ sin(mn /2a )z t}
+ L [2+ 2+( /2 )2]1/2[am-(qll)+am-(-qll)] .

m=2,4,6... qx qy m.it a
(7.71)

This Hamiltonian vanishes for z = ±a, as it must since the Frohlich interaction
Hamiltonian is given by -e¢, as explained in Section 5.2, and since ¢(±a) = 0 for
the potential describing the fields associated with phonon modes in the dielectric
slab. This heuristic derivation makes manifest the fact that the confined phonon
modes in the slab located between -a and +a are standing modes with an integer
number of half-wavelengths confined within the slab. This Hamiltonian does not
contain the contributions of the IF optical phonons in the slab since it satisfies only
the boundary conditions for the confined optical phonon modes at z = ±a, namely
Hpr(a) = -e¢(±a) = O. As shown by Licari and Evrard (1977), the Frohlich
interaction Hamiltonian for the IF optical phonon modes in the dielectric slab is

{
2ne2nwTo } 1/2

HPr=- L2 [E(O) - E(OO)]

1/2
. (Sinh2 /q; + q2a) rs:»

X L e-1qll"r V y e -yqx+qya
qll J~qx-2-+-q-;-

X {G+(Jq; + q;, zl)[ao+(qll) + a6+(-qll)]

+ G_(Jq; + q;, zl)[ao-(qll) + a6-(-qll)]}, (7.72)

where

and
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In the result (7.72) the phonon creation and annihilation operators are not
summed over m; since there are just two IF optical phonon modes, the subscript
m on the creation and annihilation operators for the confined optical phonon modes
is replaced by 0 and the plus sign in the subscript corresponds to the even mode
while the minus sign corresponds to the odd mode. The modes discussed by Licari
and Evrard are recognized as the optical modes of a double-interface heterostructure
in the special case where E = 1 outside the region bounded by the two heteroint-
erfaces. As mentioned previously, Appendix C compares the three frequently used
complete sets of optical phonon modes for a double-interface heterostructure for
the case where all the material layers are polar semiconductors. As may be seen
straightforwardly, the modes considered by Licari and Evrard correspond to the slab
modes derived with electrostatic boundary condition for the special cases where the
quantum well is bounded by a vacuum, so that E = 1.

7.3.3 Slab modes in confined wiirtzite structures

The so-called slab modes for dimensionally confined wiirtzite semiconductor
structures have been derived using an extension of Loudon's model of uniaxial
semiconductors, which was introduced in Chapter 3. The normalization condition
of Chapter 5 must be modified to take into account the fact that for uniaxial
semiconductor crystals there are separate equations governing "-t,n and "11,n, where,
as in subsection 7.3.2, the subscripts denote the components normal and parallel
to the c-axis of a uniaxial semiconductor with materials properties associated with
those of a medium n.

For such a medium, the normalization condition of Section 5.1 for a single mode
q (with wq = w) becomes

(7.75)

where f-Ln denotes the reduced mass and, as in Section 5.1, nn
defining

Nn/V. Then,

"-t,II(r)= L"-t,II(q)eiq
.
r
,

q

(7.76)

it follows that

1
2 1 12 n 1Iy'nnf-Ln"-t,n(q) + y'nnf-Ln"lI,n(q) = 2w V' (7.77)

provides the necessary generalization to the case of a uniaxial crystal. From
Section 7.1, the equations governing "-t,n and "lI,n may be written as

(7.78)
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where the time dependence of each displacement has been assumed to be of the form
eiwt. Then, it follows that

l~nn!LnUl..,n(r)12 + l~nn!LnUII,n(r)12

= _1 [E(Oh,n - E(ooh,n]WfO,l..,n IE 12
4 ( 2 2)2 l..,n
tt WTO,l..,n - W

_1 (E(O)II,n - E(OO)II,n)Wfo,lI,n IE 12
+ 4n: (w2 _ (2)2 lI,n·

TO,II,n

However, from the generalized Lyddane-Sachs- Teller relation, subsection 2.3.3,it
is known that

(7.79)

(7.80)

and it follows that

1 aE(whCll),n

2w oca
[E(OhCll),n - E(oohCll),n] 2- ----------W- (w2 _ (2)2 TO,l..(II),n'

TO,l..(II),n
(7.81)

so that

l~nn!LnUl..,n(r)12 + l~nn!LnUII,n(r)12

= _1 _1 aE(wh,n IEl.. nl2 + _1 _1 aE(w)lI,n IE n12.
4n: 2w aw ' 4n: 2w aw II,

(7.82)

Using this identity, the normalization condition becomes

f (-4~-2~_aE_(_;w_h_,_nIEl..,n 12+ -4~-2~_aE_~_w~_II_,nIEII,n 12) dr = -2:'

(7.83)

As discussed in Section 7.3, the normalization condition for the case where there is
dimensional confinement in only the z-direction is then

f L2 (_1 _1 _aE_(W_)_l.._,nIEl.. 12+ _1 _1 _aE_(_w)_II_,nIEII 12) dz __ Yt
4n: 2w oca ,n 4n: 2w oca ,n - 2w'

(7.84)

where co = wq and L2 = LxLy. It should be noted that this integral is of the same
form as (7.44). As for the zincblende case, the electron-optical-phonon Hamiltonian
is then given by

H1F= -e L<p(g, z) eiq'P(aq + a~q),
q

(7.85)

where the potential, <p(g, z), is associated with El..,n and EII,n. The form of
normalization (7.84) is particularly convenient for optical modes in the dielectric
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continuum model since the phonons may be described in terms of the associated
electric fields and potentials (Kim and Stroscio, 1990; Lee et al., 1998; Komirenko
et al., 2000a).

In this subsection, the quantization condition for a uniaxial crystal will be
applied to determine the electron-optical-phonon interaction Hamiltonian for in-
terface phonons in a single-heterointerface structure. Appendix D summarizes the
electron-optical-phonon interaction Hamiltonians for all the optical phonon modes
in single- and double-heterointerface uniaxial crystals for the case where the c-axis
is perpendicular to the heterointerface(s).

As an illustration, consider the interface optical mode in a wurtzite structure
composed of two semi-infinite regions separated by a single heterointerface situated
at z = O. The c-axis is taken to be normal to the heterointerface. In the region
z < 0 the dielectric functions are E(whCll),2 and in the region z > 0 they
are E(whCll),I. Each of the four functions, E(whCll),I(2) obeys the generalized
Lyddane-Sachs- Teller relation; in particular, each is less than zero for frequencies
selected from one range of interest from among the four ranges WTO,-l(II),1(2) <
W < WLO,-l(II),1(2). In addition, for WLO,-l(II),1(2) < W < WTO,-l(II),1(2), it is clear
that E(whCll),I(2) > 0 for the range corresponding to the one dielectric function of
interest. For each of these four ranges, the positivity or negativity properties are as
for zincblende crystals.

However, for uniaxial crystals the products E(wh,IE(W)II,1 and E(Wh,2E(w)II,2

may be either positive or negative since, for a material n, E(wh,n and E(w)lI,n may
have different signs depending on the overlap of the two regions WTO,-l,n < W <
WLO,-l,n and wTO,II,n < W < wLO,II,n·

For binary zincblende heterostructures such as GaAs/ AlAs, the IF modes exist
for the frequencies in the two ranges WTO,AIAs < W < WLO,AIAs and WTO,GaAs <
W < WLO,GaAs. Since these two ranges do not overlap, the frequency condition
for the existence of IF modes in such zincblende heterostructures is typified by
EGaAs (W)EAIAs (r») < 0 for all allowed IF mode frequencies co, Such a simple
characterization is not possible for uniaxial crystals.

As will become obvious, this situation leads to significant differences in the
optical phonon modes in wurtzite and zincblende structures. For the zincblende case

{
A K2Z

A.( ) = iq·p e
'P rex Be-KjZ

z<O
z>O

(7.86)

and in the absence of free charge V . D = 0 so that

E(W)II,IKf - E(wh,lq2 = 0

E(W)II,2Ki - E(wh,2q2 = 0

E(W)II,IE(wh,1 > 0,

E(W)II,2E(wh,2 > O.
(7.87)

From the continuity of the tangential component of the electric field at z = 0, it then
follows that A = B. From the continuity of the normal component of the electric



74 7 Continuum models for phonons

displacement at z = 0, EII,2K2A= -EII,IKIB; thus EII,IKI + EII,2K2= 0 must be
satisfied in the allowed range of IF modes, which corresponds to the frequencies
satisfying EII,I(W)EII,2(W)< O. However,

2 E(wh,l 2
KI = q

E(W)II,1

2 E(wh,2 2
K2 = q

E(W)II,2

(7.88)

so that

(7.89)

Accordingly,

-jE(wh,IE(W)II,1 + jE(Wh,2E(W)II,2 = 0

+jE(wh,IE(W)II,1 - jE(Wh,2E(W)II,2 = 0

E(W)II,I < 0 and E(W)II,2> 0,

E(W)II,I > 0 and E(W)II,2< 0,
(7.90)

¢(r) = ¢oeiq,p x {

= ¢oeiq,p x I
AeK2Z z < 0
Be-KjZ z > 0

(7.91)
exp(jE(Wh,2/E(W)II,2 qz)

exp( -jE(wh,I/E(W)II,1 qz)

z<O

z > O.

Now Ej and Ell are given by the appropriate gradients of ¢o, and the integrals

needed to calculate the normalization condition are related to IE-l,n 12and IEII,n12

through

1
0 I 12 - 2 21

0
2K2Z _ q2 2 _ 1 E(wh,2 2E-l,2 dz - ¢oq e dz - -¢o - - --- q¢o,-00 -00 2K2 2 E(W)II,2

1
00 100 12 2 2 -2KjZ KI 2IEII,11 dz = ¢OKI e dz = -¢o =-
o 0 2 2

E(wh,l 2
---q¢o·
E(w)II,1

(7.92)
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Then we have

1 h
L22w_f (1 1 aE(wh,n 1 12 1 1 aE(w)lI,n 1 12)- ----- El.. n + ----- Ell n dz

47T Zco aw ' 47T Zco aw '
1 1 fO aE(wh,2 1 12 1 1 100

aE(wh,1 1 12=-- ---E1..2 dz+-- ---El..I dz
47T 2w -00 aw ' 47T 2w ° aw '

1 1 fO aE(W)II,2 1 12 1 1 100
aE(W)II,1 1 12+-- ---EII2 dz+-- ---EIII dz

47T 2w -00 aW ' 47T 2w ° aW '
= _1__ 1_~ [(aEl..,l!L + aEII,1 KI) + (aEl..,2!L + aEII,2 K2)] cP5,

47T 2w 2 aw KI aw q aw K2 aw q
(7.93)

and it follows that

cP5 = 47Th 3. [(aEl..,l!L + aEII,1 KI) + (aEl..,2!L + aEII,2 K2)]-1
L2 q oca KI oca q oca K2 oca q

and
(7.94)

HIP = L -(e<I>(q, z)) e;q-P(aq + a!q)
q

~ J 47Te
2

h -I 1/2= ~ ~(2q )
q

x [(aEl..,I!L+ aEII,IKI) + (aEl..,2!L+ aEII,2K2)]-1/2
aw KI aw q aw K2 aw q

x e;q-P(a + at )
q -q

x 1 e-./E(wh,tlE(w)lI,1qZ

e./E(wh,2/E(w)II,2QZ

z > 0,
(7.95)

z < 0,

which may be written in an alternative form by use of the relation

21 a: (.jE(wh,IE(W)II,1 - .jE(wh,2E(W) 11,2) 1

= [(aEl..,l!L + aEII,1 KI) + (aEl..,2!L + aEII,2 K2)].
aw KI aw q aw K2 aw q

The dispersion relation for the modes described by this Hamiltonian is given by the
condition, JE(Wh,IE(w)II,1 = JE(Wh,2E(w)II,2 resulting from the requirements
that the tangential component of the electric field as well as the normal component
of the displacement field be continuous at the heterointerface. A similar analysis for
the case of a structure with two heterointerfaces is given in Appendix D (Komirenko
et al., 1999), where the dispersion of polar optical phonons in wiirtzite quantum
wells is considered at length. G1eize et al. (1999) have extended Komirenko's results

(7.96)
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to the case of wurtzite superlattices. For the specific case of a GaN/ AIN superlattice
with the c-axis normal to the heterointerfaces and with a superlattice period, d, as
shown in Figure 7.2, the requirement of periodicity and the boundary conditions
imposed on the fields for the quantum-well case lead to dispersion relations of the
form

(7.97)

the anti symmetric modes and

(7.98)

for the symmetric modes. In these dispersion relations we have

Yl(W) = q.lJE(wh,I/E(W)II,l,

al(w) = sign[E(w)II,IlJE(wh,lE(w)lI,l,

a2(w) = sign[E(w)II,2lJE(wh,2E(w)II,2.

The dispersion relations (7.97), (7.98) are depicted in Figures 7.3 and 7.4 for the
AIN(5 nm)/GaN(5 nm) superlattice along with quasi-confined modes. In the limit
q.ld --+ 00, these dispersion relations reduce to the condition JE(wh,lE(W)II,l =
JE(Wh,2E(w)II,2, as they must since in the short-wavelength limit the frequencies
of these modes cannot depend on d and, in fact, should be given by the dispersion
relation for a single heterointerface between GaN and AIN.

Let us consider in more detail the Hamiltonian for the single-heterointerface
structure. For the case when E(wh,l = E(w)lI,l and E(wh,2 = E(W)II,2, q2
Kf = Ki and the Hamiltonian reduces to

(7.99)

H1F= L
q

(7.100)

GaN AIN GaN AIN GaN

I -I -
z=o

z

••••
d

Figure 7.2. Wurtzite superlattice considered by G1eize et at. (1999). From G1eize
et al. (1999). American Physical Society, with permission.
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which can be recognized as the Hamiltonian for the IF optical phonon modes in a
zincblende single-heterointerface system.

In this subsection the interface optical phonon modes in a single-heterointerface
wurtzite structure have been normalized to construct the Frohlich-like electron-
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Figure 7.3. Dispersion of interface and quasi-confined modes for an infinite and
un strained AlN(5 nm)/GaN(5 nm) superlattice in the transverse optical (TO)
frequency range. The shaded areas depict the bands for all values of Qz,
-:rr j d < Qz < n j d, lying in the first Brillouin zone of the superlattice: - --,
Qz = 0; --, Qz = n jd. The SCi) and the ASCi) are the symmetric and
anti symmetric modes with respect to the middle plane of any layer. j = 1 for GaN
and j = 2 for AlN. The quasi-confined modes are identified by their order m, an
integer following a comma. From Gleize et al. (1999), American Physical Society,
with permission.
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optical-phonon interaction Hamiltonian HIF. Appendix D provides a summary of all
the optical phonon modes in single- and double-heterointerface wurtzite structures
based on the macroscopic dielectric continuum model and Loudon's model for
uniaxial crystals.
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Figure 7.4. Dispersion of interface and quasi-confined modes for an infinite and
unstrained AlN(5 nm)/GaN(5 nm) superlattice in the longitudinal optical (LO)
frequency range. The shaded areas depict the bands for all values of Qz,
-:rrjd < Qz < it f d , lying in the first Brillouin zone of the superlattice: ---,
Qz = 0; --, Qz = n jd. The SCi) and the ASCi) are the symmetric and
antisymmetric modes with respect to the middle plane of any layer. j = 1 for GaN
and j = 2 for AlN. The quasi-confined modes are identified by their order m, an
integer following a comma. From Gleize et al. (1999), American Physical Society,
with permission.
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7.3.4 Transfer matrix model for multi-heterointerface
structures

Yu et al. (1997) derived a very useful set of normalization conditions for het-
erostructures containing multiple parallel heterointerfaces separating different semi-
conductor layers. These normalization conditions are essential for examining the
optical phonon band structure in superlattices and they provide the basis for rela-
tively straightforward calculations of the normalization factors for heterostructures
containing just a few heterointerfaces. Since translational invariance holds in the
two-dimensional planes parallel to the heterointerfaces, the electrostatic potential
describing the carrier-optical-phonon interaction in each region R, = (z. , Zi+l) is
denoted by <Pi (r) and is taken to be of the form

<Pi (r) = Le-iq.p <Pi (q, z)
q

(7.101)

with

(7.102)

where the z-axis is taken to be normal to the heterointerfaces and where, as usual,
p = (x, y) and q denote the position and wavevector in two dimensions. c; _ and c; +
are the relative amplitudes of the exponentially decaying and growing potentials,
respectively, in layer i; as will become clear, these relative amplitudes are related
through a transfer matrix. Figure 7.5 depicts a generic potential <Pi (z) for regions
Ro, R 1, . .. , Rn.

According to the electrostatic boundary conditions the electrostatic poten-
tial <Pi (q, z) and the normal component of the electric displacement, EiEi =

-~~--~_·········I··········

Z1 Z3 Z·n-1 Z·n

R-
1

Figure 7.5. A possible generic potential for regions Ro, R 1, ... , Rn. From Yu et al.
(1997), American Institute Physics, with permission.
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-Ei a<Pi(q, z)/az, must be continuous at each heterointerface; thus, at the hetero-
interface located at z.,

and
a<Pi(q, Zi) a<Pi-1(q, Zi)

E'---- = Ei-1-----, az az
(7.103)

are the boundary conditions at the heterointerface separating regions R, -1 =
(Zi-1, Zi) and R, = (z., Zi+1). Yu et al. (1997) wrote these results in matrix form by
defining

(

C,_ )
C, =

C,+
and

(7.104)

so that

(7.105)

Then with the matrix Co for region Ro, the column vector C, and therefore
the electrostatic potential <Pi(q, Zi) can be determined in any region through the
sequence

(7.106)

where the transfer matrix relating R, -1 and R, is given by

Clearly, the electrostatic potential for an n-interface heterostructure, <P(q, Zi), is
given by joining the solutions <Pi(q, z) for each region:

Moreover, in each region E(w) and E(00) are related through the generalized
Lyddane-Sachs- Teller relations, subsection 2.3.3 and Section 7.1. For interface
optical phonons, the potentials must decrease exponentially as Z --+ ±oo so that,
for an n-region heterostructure, Cn+ = 0 and Co- = O. Thus, the dispersion relation
for this interface mode is obtained by setting the (2, 2) component of the transfer
matrix equal to zero; that is,

(7.107)

The number of interface optical phonon modes may be determined by examining
the dispersion relation obtained in this way; indeed, since a given Qi is proportional
to Ei (r») Ei-I (w ), and since for a heterostructure with n interfaces C, is the product
of n Q-matrices and Co, it follows that for a system with binary layers only the
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dispersion relation goes as (w2)2n. Thus, for such an n-interface structure with only
binary layers, there are 2n interface optical phonons. By extending this argument,
it follows that such a heterostructure with alternating layers of binary and ternary
semiconductors has 3n interface optical phonon modes, since each ternary layer has
two binary-like optical phonon modes.

The normalization condition for these modes is a straightforward generalization
of the normalization condition for optical phonon modes in simple heterostructures,
namely,

(7.108)

To normalize the optical phonon modes of such multiple heterointerface struc-
tures, it is convenient to take

(7.109)

where q and z are the unit vectors for q and the z-direction respectively. Then, for
R, it follows from our previous expression relating the displacement to the electric
polarization that

(7.110)

(7.111)

Generalizing our previous expression for Pi (q, z) to the corresponding result for
layer i,
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Thus

Pi(q,Z) = Xi(w)Ei(q,Z)
e** Lnie, 2 + ruca

fL(W - (2)

[

, Oi ] Ei (q, Z),
4 e*

l-'j"JT nier . 2' 2 +niCYi
fL,(WOi - W )

(7.113)

and it follows that

IfLiniui(q,z)12

q21<pi(q, z)12 + la<Pi(q, z)/ad

! *[1 CYifLi(W6i-W2)])-2= fLini rue, + 2
e*,

[nier :r 2 + niCYi]2
fLi (WOi - W )

x---------------

!1-1JT [nier . 2
er

2 + niCYi])2
fL, (WOi - W )

e*2 ! 4 [e*2 ] )-2= n, ' -1 + -JT nn ' + CYi
(W6i - (2)2 3 fLi (w6i - (2)

= _1_ w~i [_(W2 _ (2) + ~w~i ]-2
4 (1 4n )2 0, 1 4n 'JT - TnnCYn - TnnCYn

where as defined previously W~i = 4JT ni er
2

/ fLi is the plasma frequency squared.

Finally, using the expressions for wlo,i' w~'O,i' and Ei (00) given in Appendix B,
equation (B.1S), we have

(7.114)

IfLiniUi(q,z)12

(q2 1<Pi(q, z) 12+ 1a <Pi~:' z) 1

2
)

1 w2 _w2

( )
LO,i TO,i= -Ei 00-----

4JT (w2_w2 .)2
TO"

1 aEi (z»)
----
4JT 2w aw

(7.115)

and

~_1 _1aEi(W) r dZ!q21<Pi(q,Z)12+la<Pi(q'Z)12j n
~ 4JT 2w oca JR; az - 2wL2·

(7.116)

Thus, for a phonon potential of the form

<Pi(q, z) = A(c;_e-qZ + c;+e+qZ) = AllJi (q, z), (7.117)
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the normalization constant A is given by

(
n ) 1/2 ( 1 1 aEi (z»)

A = 2w L 2 L 4n: 2w ----a;;;-,
{I 1 a'l1 ( ) 1

2
)) -1/2

X JR; dz q2IWi(q,z)12+ 'a:'z ,

(7.118)

and so the Hamiltonian is

HIP = e<I>i(r) = e L e-iq·P<I>i (q, z)(a~q + aq)
q

= e L e-iq.p A Wi (q, z)(a~q + aq).
q

(7.119)

The utility of this formulation is illustrated by its application for heterostructures
with known phonon modes. Consider the interface optical phonons for the case
of two semi-infinite semiconductor regions joined at a single interface at z = o.
Clearly, Wo(q, z) = co_e+qZ = e+qz for z ::::0 and WI (q, z) = cl_e-qz = e-qz for
z ::::O. Then

( 4n:n )1/2[ 1 aEo(w) fO 2 +2qzA - -- ----- dz2q e
- 2wL2 Zco aw -00

1 aEI(W)100 2_2qZ]-1/2+--- dz2q e
2w aw 0

= (4n:n )1/2 {_I q[aEo(W) + aEI(W)]}-1/2,
2wL2 2w aw aw

(7.120)

so that

HIF= L
q

which is identical to the result obtained previously.
A second illustrative example is given by the case of a layer of one material

situated in the region from z = -d 12 to z = +d 12 and bounded by two semi-infinite
regions of another material; for example, we might consider a GaAs quantum well
of thickness d embedded in AlAs barriers; the center of the quantum well is at
z = O. For this case, the phonon potential must decrease exponentially for z --+ ±oo
and the phonon potential in the quantum well must be a combination of increasing
and decreasing exponentials. Consider the case where the phonon potential in the
quantum well is even. Let the dielectric constant in the quantum well be EI (r») and
that of the barriers be EO (r»). Since the barriers are taken to be the same material,
E2(W) = EO(W). Then, it is clear that Wo(q, z) = e+q(z+dI2) for z :::: -dI2,
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'h(q, z) = (coshqz)j(coshqdj2) for [z] < dj2, and W2(q, z) = e-q(z-d/2) for
z ::::d j2 define an admissible envelope for the phonon potential. It follows that

[( law (q z) 1
2

) J-d
/
2

JRa dz q2IWo(q, z)12 + °az' = -00 dz2q2e2QZeqd = q,

L
1

dz Iq21W1 (q, z)12 + I aW1a~' z) 1

2

)

J+d/2 coslr' qz + sinlr' qz= dz q2 2 = 2q tanhqdj2,
-d/2 cosh qdj2

[ dz lq2IW2(q, z)12 + I aW2(q, z) 1

2
) = [00 dz2q2e-2QZeQd = q,

JR2 aZ Jd/2

(7.122)

and, accordingly,

(
47Th )1/2 [ 1 aEo(w) 1 aE1(W) qd]-1/2

A= -- ---2q+----2qtanh-
2wL2 2w oca 2w oca 2

(7.123)

so that for the symmetric case

HIF,S = L
q

47Te2hL -2 fl; -iq·p t
aEo(w) aEl (w) "2e fs(q, z)(a_Q + aQ),
-- + -- tanhqdj2 q

aw aw
(7.124)

where fs(q, z) = Wi (q, z). The dispersion relation for this optical phonon mode is
given from the requirement that the normal components of the electric displacement
field be continuous at the heterointerfaces. At z = -dj2, Eo(w)Eo,z Iz=-d/2 =
E1(w)E1,z Iz=-d/2'

From this condition it follows immediately that the frequencies of the IF optical
phonons must satisfy EO(W) + E1 (r») tanhqdj2 = O. This same dispersion relation is
obtained from the continuity of the normal component of the electric displacement
field at z = d j2. Recall that in a bulk semiconductor the optical phonon frequencies
must satisfy E (r») = 0; indeed, since this is the condition necessary for the
propagation of any longitudinal electromagnetic disturbance, it is expected that
the frequencies of longitudinal optical phonons should be given by this dispersion
relation.

In the case of a two-material, double-heterointerface structure, the IF longitudinal
optical phonon frequencies depend on both EO (w) and E 1 (w ). The expression for
HIP,s is identical to that of Kim and Stroscio (1990) and can be rewritten to be in
the form given by Mori and Ando (1989). The mode described by this Hamiltonian
is the symmetric IF optical phonon for the quantum well being considered. As a



7.3 Optical modes in dimensionally confined structures 85

final example, if Wo(q, z) _e+q(z+d/2) for z < -dj2, Wl(q, z)
(sinhqz)j(sinhqdj2) for [z] < dj2, and W2(q, z) = e-q(z-d/2) for z :::: dj2, it
follows that for the anti symmetric case

HIF,A = L
q

(7.125)

where !A(q, z) = Wi(q, z). As before, the dispersion relation for this mode follows
from the requirement that the normal component of the electric displacement field
be continuous at the heterointerface. In this case, EO(W) + El(w)cothqdj2 = O.
This result reproduces the Hamiltonian derived by Kim and Stroscio (1990) for the
anti symmetric IF optical phonon of the quantum-well system in question.

The transfer-matrix approach of Yu et al. (1997) may be used to gain insights
into the nature of phonons in superlattices. Indeed, application of the transfer
matrix method to a multiple-barrier AIAs/GaAs structure, Figure 7.6(a), leads to
the dispersion relations such as those depicted in Figure 7.7 for various AIAs/GaAs
heterostructures.

As will become evident in Chapter 10, the five-interface heterostructure of Figure
7.6(b) is of importance in narrow-well semiconductor lasers. The transfer-matrix
method of Yu et al. (1997) may be applied to determine the IF phonon dispersion
relations and the associated IF phonon potentials. For the case where the two
barriers in Figure 7.6(b) are Alo.6Gao.4As and the shallow barrier to the far left is
Alo.25Gao.75As, the dispersion relations are as in Figure 7.8 and the five AlAs-like
interface modes are as shown in Figure 7.9. As discussed previously, there are in
total 15 IF modes in such a five-interface binary-ternary heterostructure. Indeed, as

(a) (b)
Figure 7.6. Potential profiles for (a) a multiple-barrier AlAs/GaAs heterostructure
and for (b) a five-interface asymmetric heterostructure. From Yu et al. (1997),
American Institute of Physics, with permission.
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Figure 7.7. Longitudinal optical IF phonon dispersion relations for (a) one-barrier,
(b) two-barrier, (c) three-barrier, (d) four-barrier structures of the type shown in
Figure 7.6(a). From Yu et al. (1997), American Institute of Physics, with permission.
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Figure 7.8. Dispersion relations for the 15 interface modes in a five-interface
AlAs/GaAs heterostructure. From Yu et al. (1997), American Institute of Physics,
with permission.
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deduced previously, such an n-interface structure with alternating layers of binary
and ternary semiconductors has 3n IF optical phonon modes.

The transfer-matrix approach of Yu et al. (1997) is also useful in understanding
the IF phonons in the double-barrier heterostructures discussed widely in connection
with new types of electronic diodes and transistors. As will be discussed in Chapter
10, the so-called valley current in such double-barrier structures is due in large
measure to phonon-assisted tunneling. Consider Figure 7.10, which depicts the
potential profile for a typical double-barrier heterostructure. The Frohlich interaction
Hamiltonian and the dispersion for a heterostructure of the generic type shown in
Figure 7.10 was derived by Mori et al. (1992) and by Kim et al. (1992) without the
benefit of the transfer-matrix method of Yu et al. These results may be summarized
as follows:

HIF,S = L (4n:e2liL -2)1/2
q

X [aEI (w) (tanh qdl + a2) + aE2(W) (b2 + c2)(1 _ e-2qd2)]-1/2
aw \: 2 aw

x (le-;qp(a t + a )y 2q -q q

ae-q(z-dt/2-d2)

be-q(z-dt/2) + ceq(z-dt/2-d2)

x (cosh qz) I (cosh qdIl2)
beq(z+dt/2) + ce-q(z+dt/2+d2)
aeq(z+dt/2+d2)

dIl2 + d2 :s z.
dIl2 :s z :s 2 + da,

[z] :s dIl2,

-dIl2 - d2 :s z :s -dIl2,

z :s -dIl2 - d2

(7.126)

is the Frohlich interaction Hamiltonian for the symmetric LO phonon interface
modes, and

HIF,A = L (4n:e2liL -2)1/2
q

x [aEI (w) (coth qdl + a2) + aE2(W) (b2 + c2)(l _ e-2qd2)] -1/2
aw 2 aw

x !fe-;q"p(a!q + aq)

ae-q(z-dt/2-d2)

be-q(z-dt/2) + ceq(z-dt/2-d2)

x (sinh qz) I(sinh qd, 12)
_beq(z+dt/2) _ ce-q(z+dt/2+d2)

_aeq(z+dt/2+d2)

dl/2 + da :s z.
d1/2:s z:s 2+d2,
[z] :s d1/2,
-d1/2 - da :s z :s -dI/2,

z :s -d1/2 - d:

is the Frohlich interaction Hamiltonian for the anti symmetric modes.

(7.127)
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Figure 7.9. The phonon potentials for the five AlAs-like interface phonon modes of
Figure 7.8. The line codes used in Figure 7.8 are employed here also to indicate
which phonon potentials correspond to which. From Yu et al. (1997), American
Institute of Physics, with permission.
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z=O
z-

Figure 7.10. Potential profile for a double-barrier heterostructure with a quantum
well of thickness d] and dielectric constant E], and barriers of thickness d2 and
dielectric constant E2. The growth direction is taken to be the z-direction. From Kim
et at. (1992), American Institute of Physics, with permission.
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For the symmetric modes,

E] qd].
a = coshqd2 + - tanh - smhqd2,

E2 2

b = ~ (1 - :: tanh q~] ),

1 d ( E] qd])c = -eq
2 1 + - tanh - ,2 E2 2

(7.128)

and the dispersion relation is given by

0= (1 ± {l- [(2 tanh qd2)/(1 +tanhqd]/2)]2tanhqd]/2V/2)

x E](1 + tanhqd]/2)/(2 tanhqd2) + E2. (7.129)

The anti symmetric modes a, b, c and the dispersion relation are obtained from these
results by substituting cothqdI!2 for tanhqdI!2.

The dispersion relations determined by Kim et al. (1992) are displayed in
Figures 7.11 and 7.12 for the case of a 60-angstrom-wide GaAs quantum well
with 60-angstrom-wide AlAs barriers. There are four symmetric (S) and four
anti symmetric (A) IF optical phonon modes for this heterostructure. The AlAs-like
modes are denoted by the subscript 2 and the GaAs-like modes by the subscript 1.
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Figure 7.11. Dispersion relation for the four symmetric (S) LO phonon interface
modes for the heterostructure shown in Figure 7.10 for the case of a
60-angstrom-wide GaAs quantum well with 60-angstrom-wide AlAs barriers. From
Kim et al. (1992), American Institute of Physics, with permission.
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The ± subscripts are used to distinguish the two different roots of the dispersion
relation for each of the modes.

As will become clear in Chapter 10 the interface LO phonon modes contribute
significantly to the valley current in such a double-barrier quantum-well structure.
There it will be explained how the mode labeled by WS2- in Figure 7.11 makes
a major contribution to the valley current in certain double-barrier quantum-well
structures, through phonon-assisted tunneling of carriers into the quantum well.

7.4 Comparison of continuum and microscopic models
forphonons

The dielectric continuum model of optical phonons has been compared with the
microscopic theories by many authors, including Rucker et al. (1992), Molinari
et al. (1992), Molinari et al. (1993), Bhatt et al. (1993a), and Lee et al. (1995).
In view of the variety of continuum models of dimensionally confined phonons, as
discussed in Appendix C, there has been a clear motivation to perform microscopic
calculations in order to understand the properties of phonons in nanostructures.
These microscopic models have included both ab initio models (Molinari et al.,
1992) and simplified microscopic models based on empirical lattice force constants
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Figure 7.12. Dispersion for the four antisymmetric (A) LO phonon interface modes
for the heterostructure shown in Figure 7.10 for the case of a 60-angstrom-wide
GaAs quantum well with 60-angstrom-wide AlAs barriers. From Kim et al. (1992),
American Institute of Physics, with permission.
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(Bhatt et al., 1995). Molinari et al. (1993) applied a microscopic model to calculate
the atomic displacement amplitudes and the Frohlich potentials for quantum wells
and quantum wires. These calculations show that none of the macroscopic models -
including the so-called 'slab' model- gives a completely accurate representation of
the microscopic situation. However, as discussed in Appendix C the intersubband
and intrasubband scattering rates computed with the phonon modes of all these
models are in good agreement as long as the macroscopic model selected is
based on a complete set of orthogonal modes. Further discussions concerning the
comparisons of these macroscopic models are given in Appendix C. In this section,
the intersubband and intrasubband scattering rates calculated with slab modes will
be compared with the results of the microscopic models (Bhatt et al., 1993a). Figure
7.13 presents a comparison of the scattering rates for intersubband and intrasubband
electron-phonon scattering for a GaAs quantum well embedded in AlAs barriers.
For well widths in the 2 to 10 nanometer range and for a temperature of 300 K,
the scattering rates calculated from the microscopic model (Bhatt et al., 1993a) and
from the slab modes are in excellent agreement for an electron energy of 50 me V.
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Figure 7.13. Intrasubband (1 ---+ 1) and intersubband (2---+1) scattering rates as a
function of quantum-well width at a temperature of 300 K and for an electron energy
of 50 me V: solid line, microscopic theory; dots, macroscopic theory. From Bhatt
et al. (1993a), American Physical Society, with permission.
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For the specific case of a 2o-monolayer-wide GaAs quantum well embedded
in AlAs, Figure 7.14 presents a comparison of the scattering rates at 300 K for
(a) intrasubband (l --+ 1) and (b) intersubband (2 --+ 1) electron-optical-phonon
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transitions for three different types of phonon model: macroscopic models with slab
modes (solid lines), the ab initio model (broken and dotted lines) of Molinari et al.
(1992), and a microscopic model (Bhatt et al., 1993a) with empirical force constants
(broken lines). These results indicated that the slab model and the simplified
microscopic model provide good approximations to the scattering rates predicted
by the fully microscopic model.

7.5 Comparison of dielectric continuum model
predictions with results of Raman measurements

Chapters 8 and 10 will survey numerous examples on the applications of dimen-
sionally confined phonon modes of the dielectric continuum model. In the present
section, selected Raman measurements of optical phonon modes in dimensionally
confined polar semiconductors are discussed, since these measurements illuminate
the properties of such modes.

Figure 7.15 depicts Raman spectra taken at 15 K for GaAsN/AIAsN quantum-
well heterostructures with thicknesses of N = 10 ± 1 monolayers, for three different
laser energies: (a) EL = 1.933 eV, (b) EL = 1.973 eV, and (c) EL = 2.410 eV
(Fasol et al., 1988). In cases (a) and (b) the measurements were made in the z(xx)z
polarization configuration and for case (c) the polarization configuration was z (x y)z.
The peaks on the various spectra are denoted by ION, 8N, 6N, 6N-l, 5N, 5N-l, 4N,
4N-l, 3N, 2N, and IN. This notation is used to identify the L04 mode - confined
mode with n = 4 - in a quantum well with N monolayers as the 4N peak. Likewise,
the peak associated with the L04 mode in a quantum well with N - 1 monolayers is
identified by 4N-l. A remarkable feature of Figure 7.15 is that the confined-phonon
wavevectors, qz = n.it/ Lz, for n = 4, 5, and 6 are sensitive to even a one-monolayer
fluctuation in the thickness of the GaAs quantum well. Moreover, Fasol et al. (1988)
showed that the change in qz corresponds to changing L, from 10 monolayers to
9 mono layers. These observations indicate that the phonons in AIAs/GaAs/ AlAs
quantum-well heterostructures are confined very strongly at the heterointerfaces.
This result is expected on the basis of the dielectric continuum model, since the LO
phonon energies differ substantially for the two materials; the LO phonon modes in
AlAs at zone center have energies of about 50 me V while those of GaAs are about
36 meY.

One of the major predictions of the dielectric continuum model of optical phonon
modes is the existence of IF optical phonons which are joint modes of the two or
more heterostructure materials and which have frequencies characteristic of their
individual optical phonon modes. A recent example of the Raman analysis of such
an interface mode - and the first known for a wiirtzite heterostructure - is provided
by Dutta et al. (2000). In these measurements, the IF modes were observed for
GaN/AIN wiirtzite superlattices, as shown in Figure 7.16 for a 20-period GaN(9



94 7 Continuum models for phonons

nm)/AIN(8.5 nm) superlattice (lower curve) and a 40-period GaN(3 nm)/AIN(3
nm) superlattice (upper curve). In both cases, the wavelength of the incident laser
radiation is 244 nm.

The second case, with the narrower wells, is characterized by a broader Raman
peak as expected (Komirenko et al., 1999; Gleize et al., 1999). Moreover, the
energies and asymmetries of the IF modes are as expected from the dielectric
continuum model, as is clear by comparison with Figure D.2 of Appendix D.

The superperiodicity of the multilayered structures lowers the crystal symmetry
and increases the size of the unit cell so that it includes more atoms per cell. The
effect on the Raman properties is to allow more modes to exist and perhaps to
allow optically inactive modes to become active. For instance, in the zincblende
structure, for heterostructures grown in the [001] direction, the crystal symmetry
is lowered from Td to D2d and the Al mode, previously inactive, becomes active.
Similar behavior has been predicted by group-theory analysis (Kitaev et al., 1998)
in wiirtzite (GaN)m (AIN)n superlattices, in cases where the Raman-active modes

Figure 7.15. Raman spectra2N taken at 15 K for
GaAsN/AlAsN

4N quantum-well
heterostrnctures with

---- 'N thicknesses of N = 10 ± 1
r/J.•.... mono layers for three.•....
l=: different laser energies: (a)
:::l EL = 1.933 eV, (b).e EL = 1.973 eV, and (c)
ro EL = 2.410 eV. The peaks--- in the spectra are denoted by;;>...•.... nN and nN-I, where n.•....
o: represents the nth confinedl=:
11) mode for the quantum well..•....
l=: In this case, there are only.•....

two quantum-welll=:ro thicknesses, N = 10
S mono layers and N - 1 = 9ro [ monolayers. From Fasol0:::

et al. (1988), American
Physical Society, with
permission.
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vary non-monotonically with the increase in supercell size. The material quality in
these structures, however, is not good enough yet for these effects to be observed
experimentally.

Resonant Raman studies on (AlGa)N/GaN quantum wells have allowed the
observation of the Al (LO) phonons in the quantum wells (Behr et al., 1997; Gleize
et al., 2000), but the observation of a series of confined phonons similar to those
observed in the zincblende structures has yet to be made in the wurtzite nitride
system.

The first really significant observation of the impact of heterostructures on light
scattering was the observation of doublets in the acoustic phonons in superlattices
by Colvard et al. (1980). A number of other studies on different materials have since
been done. These have been reviewed extensively by Jusserand and Cardona (1991).
As yet no similar observations have been reported for the wurtzite nitride system,
although recently Goppert et al. (1998) have reported that confined optical and
folded acoustic phonons have been observed in the wiirtzite CdSe/CdS superlattices.

As a final example of where Raman measurements provide insights into the prop-
erties of confined optical phonon modes in polar semiconductor heterostructures,

500 600 700 800
Raman shift (cm ')

900 1000

Figure 7.16. Raman spectra for a 20-period GaN(9 nm)/AIN(8.5 nm) wiirtzite
superlattice (lower line) and a 40-period GaN(3 nm)/AlN(3 nm) wiirtzite superlattice
(upper line). The incident laser wavelength was 244 nm. From Dutta et al. (2000), to
be published.
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Figure 7.17 (Fasol et al., 1988) illustrates that the confined phonon energies and
wavevectors for superlattices and quantum wells fall on the dispersion curve (solid
line) measured by neutron scattering at 10 K for bulk GaAs (Richter and Strauch,
1987). The neutron scattering data are in agreement with the earlier results of Waugh
and Dolling (1963).

The Raman data in Figure 7.17 are from works as follows: circles, Klein (1986);
diagonal crosses, Worlock (1985); squares, Castro and Cardona (1987); diamonds,
Colvard et al. (1980); and upright crosses, Sood et al. (1985), Jusserand and Paguet
(1986), and Sood et al. (1986).

The agreement between the Raman and neutron scattering measurements is
extremely enlightening. These results tell us - at least for the GaAs/ AlAs system -
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Figure 7.17. Comparison of LO phonon energies and wavevectors determined by
Raman scattering with those of neutron scattering (solid line). See text for references
to the works summarized in this figure. From Fasol et al. (1988), American Physical
Society, with permission.
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that phonon confinement effects serve to restrict the phase space of the phonons but
not to alter substantially the basic energy-wavevector relationship for the phonons.
This may be understood by considering the dominant role of the nearest-neighbor
coupling of adjacent ions in a polar semiconductor. Indeed, the presence of a hetero-
interface will not influence the local LO phonon frequency in the region between two
ions located about two or more mono layers away from the heterointerface. Thus, the
basic energy-wavevector relationship - the dispersion relationship - is expected to
be approximately that of the bulk phonons. The phase space, however, is altered
dramatically by the effects of dimensional confinement: only wavevectors corre-
sponding to multiples of half-wavelengths, as discussed previously, are allowed.

7.6 Continuum model for acoustic modes in
dimensionally confined structures

In this section, the elastic continuum model of Section 7.2 is applied to the analysis
of acoustic phonon modes in a variety of nanostructures. The acoustic phonon
amplitudes and dispersion relations are determined for free-standing layers as well
as for double-interface structures. In addition, the acoustic phonon modes are
analyzed for both rectangular and cylindrical wires. For the case of hollow wires,
the acoustic phonon modes are applied to the analysis of acoustic disturbances in
the microtubulin structures found in many biological systems. Finally, the elastic
continuum model is applied to describe acoustic phonon modes in quantum wires.

7.6.1 Acoustic phonons in a free-standing and
unconstrained layer

The acoustic phonons in a free-standing and unconstrained layer illustrate key fea-
tures of the confined modes in dimensionally confined structures. Such free-standing
layers are referred to occasionally as free-standing quantum wells in the case when
the layer is thin enough for quantum confinement to modify the properties of the
electron de Broglie waves in the layer. From Section 7.2 the three force equations
(7.33) describing the amplitudes of the phonon displacements may be written as the
vector equation

(7.130)

where

f::.=V·u=divu, Cf = ('A + 2f-L)/ P, and C; = f-L/ p.
(7.131)

Let us consider a slab of width a and free standing in space with unconstrained
surfaces at z = ±a /2. At such surfaces the material displacements are unrestricted
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but the normal components of the stress tensor - the traction force - must vanish;
with the expressions for stress given in Section 7.2 it follows that at z = ±a /2
(Bannov et al., 1994a, b, 1995),

(auy auz)
Ty,z = f-L ~ + ay = 0, (7.132)

Taking the displacement eigenmodes to be of the form

(7.133)

the force equations reduce to an eigenvalue problem

(7.134)

where

2 d2
2 2 0 2 2. d

Ct -2 - <«; (Cl - Ct)lqx-
dz dz

D= 0 2 d2
2 2 0Ct -2 - <«:dz

2 2. d 0 2 d2
2 2

(Cl - Ct )lqx- CI-2 - ctqx
dz dz

(7.135)

with boundary conditions corresponding to zero traction force at z = ±a /2

duy
-- =0,

dz
and

(7.136)

As discussed in Appendix A, it is convenient to consider the quantity w =
JPu; for acoustic modes the quantity p replaces .j f-LN / V, which applies for
optical modes, f-L being the reduced mass. Accordingly, let us take the orthogonal
eigenvectors for these modes to satisfy

n i- m. (7.137)

From classical acoustics (Auld, 1973) it is known that the problem at hand admits
to three types of solution: shear waves, dilatational waves, and flexural waves. First,
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consider the shear waves. For these modes, the only component of the displacement
is parallel to the surfaces z = ±a /2; taking this non-zero component to be in the
y-direction, we have u, (qll ' z) = (0, Uy, 0) with

Uy = {C~sqz,nz
smqz,nz

for n = 0,2,4, .
for n = 1, 3, 5, .

(7.138)

and qz,n = nit / a. These transverse modes are designated as rotational modes. The
frequency-wavevector relation for these shear waves is

(7.139)

Clearly, these shear modes have wavelengths such that an integral number n of
half wavelengths fits into the confinement region of length a. In nanoscale crystalline
layers the number of half-wavelengths n is limited to the number of unit cells in the
thickness a. Thus, for an elemental semiconductor layer with Nm monolayers in the
thickness a, n takes on integer values from 0 to Nm.

The second class of solutions is associated with so-called dilatational modes.
These dilatational modes are irrotational modes and they are associated with
compressional distortions of the medium. The compressional character of these
modes leads to local changes in the volume of the medium. They have two non-zero
components: u, (qll ' z) = (ux, 0, Uz) with

(7.140)

where qZ and qt are solutions of

tanqta/2 4q;qzqt
tanqza/2 (q; - ql)2'

cf(q; + ql) = c;(q; + q;).

(7.141)

For each value of qx this pair of equations has either pure imaginary or real
solutions, denoted by qZ,n(qx) and qt,n(qx); here, the label n is used to denote the
different branches of the solutions qZ,n (qx) and qt, n (qx). The dilatational modes have
frequencies Wn satisfying

(7.142)

Numerical solutions of these dispersion relations were given by Bannov et al. (1995)
for a 100-fmgstrom-wide GaAs slab under the assumption that ci = 5.7 X 105 em s-l
and Ct = 3.35 x 105 em s-l.
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Finally, the third class of solutions is referred to as the flexural modes. These
flexural modes are of the form un(qll, z) = (ux, 0, uz) with

(7.143)

qZ and qt being determined as solutions of the pair of equations

tanqzaj2 4q;qzqt
tanqtaj2 (q; - ql)2'

2( 2 2) 2( 2 2)Cz q; + qz = Ct q; + qt .

(7.144)

Just as for the dilatational modes, this pair of equations for the flexural modes admits
solutions of the form qZ,n (qx) and qt,n (qx), where n labels the different branches of
the solutions. These modes are normalized, according to the procedures of Section
5.1, in terms of wn(qll, z) instead of un(qll, z) since, as mentioned above, the
considerations of Appendix A make it clear that it is convenient to use Wn = y'Pun:

(7.145)

This last result is, of course, consistent with the normalization condition of subsec-
tion 7.3.1,

f L2 dz{y'I"U1u(q, z)}*· {y'I"U1u(q, z)} = _Yt_;
2w (q)

(7.146)

this equivalence follows straightforwardly by noting that qll q and by taking
P = un, as is appropriate since the mass density P is clearly the appropriate quantity
for acoustic modes.

7.6.2 Acoustic phonons in double-interface
heterostructures

Wendler and Grigoryan (1988) considered the acoustic phonon modes supported by
an isotropic slab of density PI and width a bounded at z = ±aj2 by semi-infinite
embedding materials of density P2. The slab of width a is taken to have transverse
and longitudinal sound speeds CIl and Cll respectively. The sound speeds of the two
identical embedding materials are taken to be Ct2 and CZ2respectively. According to
the cardinal boundary conditions of classical acoustics, the material displacements
u and the normal components of the stress tensor 7;3, also known as the traction
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force, must be continuous at z = ±a/2. The Young's modulus, Ea, and the Poisson
ratio, Va, for medium a may be expressed in terms of the Lame constants as

!-La (3Aa + 2 !-La )
Ea=------

Aa + !-La
and

Aa
Va=----

2(Aa + !-La)
(7.147)

where a = 1 for the slab and a = 2 for the embedding materials. Then, the inverse
relations are

s;»;
Aa=-------

(1 - 2va)(1 + va)
and (7.148)

and it follows that

and
Aa

Va = ----. (7.149)
2(Aa + !-La)

Writing the displacement field U as the sum of its longitudinal part, ur, satisfying
V x Uz = 0, and its transverse part, u., satisfying V . u, = 0, it follows from the
wave equation (7.130) of subsection 7.6.1 that

and (7.150)

where

and (7.151)

Following Wendler and Grigoryan (1988), the media are assumed to be isotropic
and, without loss of generality, we may consider acoustic modes propagating in
the x-direction with wavevector qll. Wendler and Grigoryan (1988) classified the
acoustic modes for such an embedded quantum well as symmetric shear vertical
waves, anti symmetric shear vertical waves, symmetric shear horizontal waves, and
anti symmetric shear horizontal waves. Defining u(z) through the relationship

U(x, y, z) = u(z)· exp [i(qllx - wt)], (7.152)

it is possible to consider all the acoustic phonons as belonging to two classes of
waves: shear vertical (SV) modes with two non-zero components,

(7.153)

and shear horizontal (SH) modes with

tr(z) = (0, U2(Z), 0). (7.154)

As in subsection 7.6.1, the symmetric modes satisfy

Ul(Z) = Ul(-Z), U3(Z) = -U3(-Z), (7.155)
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and the anti symmetric modes satisfy

UZ(Z) = -uz( -z), U3(Z) = U3( -z). (7.156)

The localized modes for the embedded slab under consideration must satisfy the
boundary conditions

ufz) Iz=±oo = O. (7.157)

Then from the wave equations for the displacements, the symmetric shear vertical
(SSY) modes must have the form

{

A~ exp (-r/l2Z) + B~ exp (-T/tzz)

uf (z) = Af cosh niv: + Bf cosh nn:
A~ exp T/IZZ + B~ exp T/tZZ

u~(Z) =

, [T/IZ s qll s ]I -Az exp (-T/IZZ) + -Bz exp (-T/tzz)
qll T/tZ

, (T/ll AS '00 qll BS '00 )I - 1 Sl T/llZ - - 1 Sl T/tlZ
qll T/tl

'(T/IZ S qll S )I -Az exp (T/IZZ) - -Bz exp (T/tZZ)
qll T/tZ

and the anti symmetric shear vertical (ASY) modes have the form

{
A1 exp (-T/IZZ) + Bf exp (-T/tzz)

u1(z) = A1siOOT/llZ+B1siOOT/tlZ

-A1 exp T/IZZ - Bf exp T/tZZ

, [T/IZ A qll A ]I -Az exp (-T/IZZ) + -Bz exp (-T/tZZ)
qll T/tZ

,( nn A qll A )I --AI cosh nrj z - -BI cosh n.j z
qll T/tl

, (T/IZ A qll A )I -Az exp T/IZZ - -Bz exp T/tZZ
qll T/tZ

The functions m« and T/ta are defined by

Z > a12,

al2 > Z > -aI2,

Z < -aI2,

Z > a12,

al2 > Z > -aI2,

Z < -aI2.

(7.158)

Z > a12,

al2 > Z > -aI2,

Z < -aI2,

Z > a12,

al2 > Z > -aI2,

Z < -aI2.

(7.159)

_ (z Z z) I/Zttt« - qll - (J) Icia (7.160)

where a = 1 for the slab and a = 2 for the embedding materials. The conditions
ttt« = 0 and T/ta = 0 are again recognized as the bulk dispersion relations for
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medium a for the longitudinal and transverse acoustic modes, respectively. From
the definitions of the stress, Ii}, and strain, Sij, of Section 7.2, it follows that for
medium a

T(a) = ~ [sea) + Va (Sl(al) + S2(a2)+ S3(a3))8iJ'].lJ 1+ Va lJ 1 - 2va
(7.161)

From the expressions (7.158) and (7.159) for uf (z), u~ (z), ut (z), and uf(z) it then
follows that

(a) 2 2 Sea)
Tn = PaCta 13 '

T(a) -023 - ,

T(a) ( 2 2 )S(a) 2 Sea)
33 = Pa cZa - Cta 11 + PaCZa 33 .

(7.162)

Requiring that r;~a) and u be continuous at z ± al2 yields four equations. The
determinant of these equations, detdmn, then yields the dispersion relations for the
SSV modes. In dmn, m and n take on the the values 1,2,3, and 4, and the dmn are
given by

(
rll2a)

dll = exp -2 '
nn a

d13 = - cosh 2'

. rlll a
d23 = - '711 sinh --,

2

(7.163)

For the ASV modes, the corresponding elements dmn are given in terms of these
results by making the replacements cosh ==+ sinh, d14 --+ -d14, d24 --+ -d24, d31 --+
-d31, d32 --+ -d32, d33 --+ -d33, and d44 --+ -d44. As in Wendler and Grigoryan
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(1988), Ai,A, A;,A, Bf,A, and Bf,A are then given in terms of the new elements
dmn by

1 -d14 d12 dB
AS,A _ --- -d24 d22 d231 -

detdmn
-d34 d32 d33

1 dl1 d12 -d14
AS,A _ --- d21 d22 -d242 -

detdmn
d31 d32 -d34

1 dl1 -d14 dB
BS,A _ --- d21 -d24 d231 -

detdmn
d31 -d34 d33

and

BS,A - 12 - ,

(7.164)

(7.165)

where in detdmn m and n take on the values 1,2, and 3.
The SSV modes are of special interest because they possess a non-zero defor-

mation potential. They will be considered further in Chapter lOin connection with
the radiation of coherent acoustic phonons from an electron current in an embedded
layer. The shear horizontal (SH) modes may be determined by a derivation analo-
gous to that for the SV modes (Wendler and Grigoryan, 1988) and take the form

{

D~ exp (-T/t2Z)

u~ (z) = Dr cos etlZ

D~ exp T/t2Z

for the SSH modes and

{

Df exp (-T/t2Z)

uf(z) = Dt sinetlZ

- Df exp T/t2Z

Z > a12,

al2 > Z > -aI2,

Z < -a12

(7.166)

Z > a12,

al2 > Z > -aI2,

Z < -aI2,

(7.167)

for the ASH modes, where

etl = (w2 le;l - q~) = iT/tL

By procedures analogous to those for the SSV modes, it follows that the
dispersion relation for the SSH modes is given by

(7.168)

(7.169)



7.6 Continuum model for acoustic modes in dimensionally confined structures 105

The dispersion relation for the ASH modes is given by

PI C;I etl etl a
2 + tan - = 0, (7.170)

P2Ctl'lt2 2
and the amplitude coefficients for the displacement fields are given by

S A S '1t2a etl a A '1t2a . etl a
DI = DI = 1, D2 = exp -2- cos 2' D2 = exp -2- SIll 2·

(7.171)
The SH modes are seen to exist only in the region w2 / c;2 < q~ < w2 / c;l.

Wendler and Grigoryan (1988), see also Mitin et al. (1999), classified the
localized acoustic modes in a symmetrical embedded layer in terms of the regions
in the wqll-plane. They found that localized acoustic modes exist in this structure
provided that Ctl < Ct2, Cll, CZ2. These localized modes propagate along the layer
and decay outside the layer. For such a symmetrical embedded layer, Wendler
and Grigoryan (1988) give many numerical results for the dispersion relations
and mode amplitudes for the localized symmetric shear vertical waves (SSVWs),
anti symmetric shear vertical waves (ASVWs), symmetric shear horizontal waves
(SSHWs), and anti symmetric shear horizontal waves (ASHWs). As mentioned
previously, the SV modes will be considered further in Chapter 10 in connection
with the radiation of coherent acoustic phonons from an electron current in an
embedded layer.

7.6.3 Acoustic phonons in rectangular quantum wires
The classical compressional acoustic modes in free-standing rods with rectangular
cross sections have been examined experimentally (Morse, 1948) and theoretically
(Morse, 1949, 1950). The solutions obtained by Morse are based on the elastic
continuum model as well as on the approximation method of separation of variables.
As illustrated previously, these classical elastic continuum solutions provide the
basis for describing the compressional - that is, the longitudinal - phonon modes
in a nanoscale quantum wire with a rectangular cross section. For cross-sectional
dimensions with aspect ratios of approximately two or greater, Morse (1948,
1949, 1950) found that these solutions provide simple and accurate analytical
expressions in agreement with the experimentally observed modes over a wide
range of conditions. Consider a free-standing rectangular rod of infinite length in
the z-direction with an x-directed height 2a and a width 2d in the y-direction, as
shown in Figure 7.18.

Taking the origin of the coordinates in the geometric center of the of the
xy-plane, the acoustic mode displacements determined by Morse are given by
u(x, y, z) = (UI, VI, WI), where

UI = u(x, y) eiy(z-ct), VI = vex, y) eiy(z-ct), WI = w(x, y) eiy(z-ct).

(7.172)
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Here c is the phase velocity and y is the wavevector in the z-direction. Morse
considered the wave equations

(7.173)

by writing solutions in the form of a product of trigonometric functions:

¢ ex {SinqIX}{SinhIY},
cosqlx COShlY

(7.174)

where

2 2 h2qz = qi + I and (7.175)

The boundary conditions at x = ±a and Y = ±d are taken as

r., = 0, t.; = 0, Tzx = 0 at x = ±a,

Tyy = 0, r., = 0, Tzy = 0 at Y = ±d.
(7.176)

These boundary conditions cannot be satisfied completely. Morse adopted a simple
approach to satisfying them. Specifically, he noted that the simplest way to attempt
to meet such conditions is to make the stress components factor into products of
functions of x and y. This is possible if either qi = q: or hI = ha.

The approximate separation-of-variables solution given by Morse for the com-
pressional modes in the case where h = hI = ha is

+8

x

-8

-d +d

Figure 7.18. Rectangular
quantum wire of width 2d in
the y-direction and height 2a
in the x-direction. From Yu
et al. (1994), American
Physical Society.

y
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u = (A sinqlx + B sinq2x) cos hy,

V = (:1 Acosqlx + ccosq2X) sinhy,

w = i [-!'-A cos qix + ~(q2B + hC) cos q2X] cos hy,
ql Y

(7.177)

where

(7.178)

P is the density of the elastic medium, and the longitudinal and transverse sound
speeds are given by

and Ct = Jf-L/p. (7.179)

The modes associated with this case are known as the 'thickness modes', as
designated by Morse, who showed that h = hI = h2 leads to an adequate
description of the experimentally determined modes when d ::::2a (Morse, 1948).
Using the expressions (7.177) for u, V, and w to evaluate Txx = Tyx = Tzx = 0 at
x = ±a, it follows that

(
2h sinqla h sinq2a in sinq2a )0)_(y2 + h2 - q?) cos qia 2qlq2 cos q2a 0

2(h2 + y2) sinqla (y2 + h2 - q?) sin q2a 0

=0. (7.180)

The dispersion relation for q: i- 0 is given by the expression resulting from the
condition that the determinant of the coefficients vanishes, that is,

4qlq2(h2 + y2)
(h2 + y2 _ q?Y ,

(7.181)

which is similar to the dispersion relation for a free-standing layer discussed in
subsection 7.6.1. For calculating the acoustic phonon frequencies as functions of
the wavevector, y, it is convenient to rewrite this dispersion relation as

tan(nJx2 _1/12)

tan(nJEX2 _1/12)

41/12Jx2 -1/12JEX2 _1/12

(21/12 - X2)2
(7.182)

where X2 and 1/12 are related to ql and q: through ql = (n/a)JEx2 _1/12, q: =
(n / a)J X2 - 1/12and in accordance with w~ = CZ (y2 +h2 +qr) and w~ = Ct (y2 +
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h2+qi), where s = (ctlCZ)2 = (1- 2cy)/(2- 2cy). Defining s = ay In and recalling
that wy = cy, it follows that

x2 = s2 (:J2
= (;)2 y2 (:J2

= (;)2 (:r,
1jr2 = s2 + (~r= (;) 2 (y2 + h2),

y2 = (~)2 1jr2 _ h2 = (~) [1jr2 - (~r]
(7.183)

with r = ald.
Solving (7.180) for Band C in terms of A, it follows that

UI = A(sinqlx + c¥ sinq2x) cos hy eiy(z-ct),

VI= A (:1 cos qix + f3 cos q2X) sin hy eiy(z-ct),

WI = iA [-~ cos qix + 2. (q2c¥ + h(3) cos q2X] cos hy eiy(z-ct),
ql y

(7.184)

where

(7.185)

The remaining constant A is determined by quantizing the phonon amplitude
according to

1 ja jd n-- dx dy (u*u + v*v + w*w) = ---,
4ad -a -d 2M Wy

(7.186)

where wy is the angular frequency of the mode with wavevector y. Performing the
indicated integrations, it follows that
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(7.187)

with

h(h, d) = d (1 + Si~:;d) h(h, d) = 2d - fl(h, d),

sin(qi - q2)a sin(qi + q2)a
gl(ql,q2,a) = ---- - + '

qi - in qi in
sin(qi - q2)a sin(qi + q2)a

g2(ql, q2, a) = ---- + -----.
qi - q: qi + q:

(7.188)

It is convenient to define a new normalization constant By, through

A2 = 21z = A2- y.
MWyBy

(7.189)

As discussed by Morse, h must be chosen to satisfy the boundary condition on
the stress components at y = ±d, that is, Tyy = Txy = Tzy = O. This can be
accomplished for d 2: 2a since in this case Txy and Tzy become negligible; with
Tyy = 0 this implies that

hd = (n + ~)7T, n=0,1,2, .... (7.190)

The principal propagation mode has no nodal surfaces parallel to the length of
the quantum wire; this corresponds to the case n = O. Morse found close agreement
between theory and experiment for a id = 1/8 and as expected less agreement
for a id = 1/2. In addition to the 'thickness modes' another set of modes was
observed experimentally by Morse (1948, 1950). These modes are known as 'width
modes' and are determined by a procedure used to analyze the 'thickness modes'.
Specifically, Morse took qi = q: = q and obtained a set of equations similar to
those for UI, VI, and WI but with x and y interchanged. By imposing the boundary
conditions at y = ±d, the 'width modes' were found to have a dispersion relation
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identical in form to that for the 'thickness modes.' The dispersion curves for selected
acoustic modes are shown in Figure 7.19 for a 28.3 A x 56.6 A GaAs quantum wire
and in Figure 7.20 for a 50 A x 200 A GaAs quantum wire.

For carriers at the non-degenerate r point in band a, E"Ck), the deformation-
potential interaction Hamiltonian Hdef is given in terms of the displacement operator
uCr) by

Hdef = E'1V . uCr). (7.191)

At such a symmetry point, only the irrotational - that is, the longitudinal - compo-
nents of utr) contribute to Hdef. Accordingly, only the the potential ¢ contributes
to Hdef. Since there are multiple modes for a given value of n, another index, m,
is needed to describe the phonon spectrum at each value of y. For the case of a
quantum wire, the quantization of the acoustic phonons may be performed by taking

uCr) = ~ L [uCy,x,y)ay +c.c.]eiyZ
,

Y L n,m,y
(7.192)

where the components of uCy, x, y) = Cu, v, w) were normalized previously over
the area 4ad. The deformation potential is then given by

a _ E'1 ~ (au av . ) i y;Hdef - IT LJ [an,mCY) + an,mC -y)] ax + a + tyw e ,
y L n,m,y Y

(7.193)
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Figure 7.19. The six lowest-order (m = 1,2, ... ,6) width modes (solid lines) and
thickness modes (broken lines) for a 28.3 A x 56.6 A GaAs quantum wire. From Yu
et al. (1994), American Physical Society, with permission.
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and, upon applying the Fermi golden rule, these combinations lead to conditions
enforcing the conservation of energy.

The Hamiltonian is independent of time. In Chapters 8 and 9, such time-
independent carrier-phonon Hamiltonians will be used in applying the Fermi golden
rule to calculate carrier-phonon scattering rates. The carrier-phonon interaction also
has a time dependence of the form eiwyl, where wy is the phonon frequency. As will
become obvious in Chapters 8 and 9, such time-dependent factors are combined
with the time-independent factors of carrier wavefunctions. Since

av (h2
)- = A - cos qix + f3 cos q2x cos h.y ;

ay q1

-iyw = A [ - ~: cosq1X + (q2Ci + h(3) cosQ2X] coshy,

(7.194)

it follows that

(
au av ) ( h

2
y2)- + - +iyw = A Q1 + - + - cosQ1xcoshy

ax ay Q1 Q1

= A :1 (Qr + h2 + y2) cos qix cceh.y

W= A+cosQ1xcoshy
CzQ1

(7.195)

and, accordingly,

Ect

Hdef= );- LA ~y cosQ1xcoshy[an,m(y)+an,m(-y)]eiyz.
y L n,m,y Cz Q1

(7.196)

In Chapter 8 this expression for the deformation-potential interaction will be used to
calculate electron-acoustic-phonon scattering rates for a rectangular quantum wire.

7.6.4 Acoustic phonons in cylindrical structures

The acoustic phonons in a cylindrical waveguide and in a cylindrical shell il-
lustrate key features of the confined modes in dimensionally confined structures.
The cylindrical waveguide is of obvious practical importance. Furthermore, the
cylindrical shell is of interest because it approximates a single-walled buckytube
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and also because it resembles the microtubuline structure found in many parts
of the human body. As discussed previously in this section and in Section 7.3,
the elastic continuum model provides an approximate description of the acoustic
phonon modes in such dimensionally confined nanostructures. The force equations
for a cylindrical elastic medium may be written as (Auld, 1973; Sirenko et al., 1995)

a2Ur et.; 1 st.; et., t.; - Tqxp
p-- = - + --- + - + ---at2 ar r acp az r

(7.197)

where the axis of the cylinder is oriented along the z-direction, cp is the azimuthal
angle, and r is the radial coordinate of the cylindrical structure. As before, the stress
tensor T is related to the strain tensor S through the Hooke's law relationship

(7.198)

in this stress-strain relation, A and f-L are the Lame constants. Alternatively, these
force equations are frequently written in the form

10
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6Phonon waveveetor (10 cm ')
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Figure 7.20. The six lowest-order (m = 1,2, ... ,6) width modes (solid lines) and
thickness modes (broken lines) for a 50 A x 200 A GaAs quantum wire. From Yu
et al. (1994), American Physical Society, with permission.
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.. a [ aUker, t)]p(r)Ui (r, t) = - Aijkz(r)--- ,
aXj axz

(7.199)

where the elastic stiffness tensor for a particular isotropic medium is expressed as

(7.200)

These equations are more complicated than their counterparts in rectilinear co-
ordinates, Section 7.2. Indeed, the additional complexity of the force equations
in cylindrical coordinates is a direct consequence of the fact that in curvilinear
coordinates the basis vectors are coordinate dependent.

Consider the acoustic phonon modes in a cylindrical waveguide of radius a
embedded in an elastic medium. Both of these media are taken to be isotropic. From
the normalization procedures of Section 5.1, the modes are normalized in terms
of w instead of u since the considerations of Appendix A make it clear that it is
convenient to use w = JPu; the displacement operator u(r) is then given by

u(r) = L
q,mn

n [ ( ) + * ( ) t ] imtp-s-i qr] aWmn q r amn q wmn _q r amn _q e .2Lpwmn (q) , , , ,

(7.201)

The quantum number n labels modes with the same m and q in the set Wmn,q(r),
where q represents the z-component of the wavevector qz. In determining the
normalization constants for the normal modes Wmn,q (r), it is convenient to write

w (r) = w (r) eimcp+iqz/a = 1 u(r) eimcp+iqz/amn,q mn,q ~ ,
yna~N

(7.202)

where u(r) is the classical displacement given by the elastic continuum model and
the normalization constant N is then determined by the normalization condition

f d2r p(r)w~,m,q(r) . Wnl,ml,ql(r) = Dn,m,q;nl,ml,ql, (7.203)

and q == aq-:
Let the density and Lame constants of the cylindrical waveguide be PI, Al

and !-LI respectively, and those of the surrounding material be P2, A2 and !-L2. The
general solution of the classical elastic continuum equations for such a cylindrical
structure may be written (Beltzer, 1988; Stroscio et al., 1996) in terms of three scalar
potentials ¢, 1/1, and X as

(7.204)

where ez is a unit vector along the z-direction. The second and third terms in this
last result correspond to the usual irrotational contribution to u, expressed as a sum
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of two mutually normal vectors. The potentials ¢, 1/1, and X satisfy scalar wave
equations with longitudinal and transverse sound speeds given by

and (7.205)

the subscript ~ takes on the value I to designate the material parameters of the
cylinder and the subscript 2 to designate those of the surrounding material. Solutions
of the classical elastic continuum equations are sought with vibration frequency w,
wavevector qz = q Ia, and azimuthal quantum number m. Seeking acoustic modes
confined near the cylindrical waveguide, the scalar potentials for r < a are taken to
be

(7.206)

Outside the cylindrical waveguide, where r > a, the solutions are taken to be

(7.207)

where kz,t and KZ are defined by

k2 2 2 2 2
Z,t = q - co a ICU,t)! and 2 2 2 2 2

KZ,t = W a ICU,t)2 - q (7.208)

and the bll etc. are normalization constants, to be determined. In the expressions for
¢, 1/1, and X, it is assumed that kf,t > 0 and Kf,t > 0, since confined acoustic modes
are desired. Substituting these potentials into the general expression for u it follows
that

(7.209)

for r < a and
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for r > a. By applying the boundary conditions of continuity of displacement and
continuity of the normal components of the stress tensor at r = a, it follows that

(7.211)

where B~ = [bn, Bt~, bt~]T and where the 'displacement' matrices U~ are evaluated
at r = a and are given by

( -~~~ :~
-qg~ 0

qY~ )
-mqn ;
kt~n

(7.212)

the matrices F~ are given by

-mqy~
(k;~ - 2m2)n + 2Y~

2mq(n - Y~)

where k{z,t)~=l = k~Z,t)' k~Z,t)~=2 = -K{z,t)' gl = 1m (kz), Gl = k; 1/n (kz), Yl =
1m (kt), Yl = ktl/n (Kt), g2 = Km (kz), G2 = KZK;'" (KZ), Y2 = Km (Kt), and
Y2 = KtK;"'(Kt). From the components of uo-), ur(r), ucp(r), and uz(r), it is
then straightforward to construct Wmn,q(r) and u(r). The case where m = 0 is
of practical interest and leads to relatively simple results. Specifically, for m =
0, submatrices of the 6 x 6 matrix decouple into matrices representing distinct
axisymmetric torsional and radial-axial modes. For the axisymmetric torsional
modes the dispersion relation is given by

(7.214)

and the components of the normal modes are given by

ui; = 0,
1 {Kl «v,(ktr fa)

Wcp = .Jna2Ncp h(kt)Kl(Ktrfa)
r < a,

Wz = 0,
r > a,

(7.215)

where the normalization condition gives

Ncp = PIKr(Kt)[ll(kt) - lo(kt)h(kt)]

+ P211(kt)[(Ko(Kt)K2(Kt) - Kr(Kt)]. (7.216)
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For the axisymmetric radial-axial modes, the dispersion relation is defined by

( Q11 Q12) ( :~: ) = 0,
Q21 Q22 b2Z

b2t

with A = q2 - kf, B = q2 + Kf, and

Q11 = (=;~~~:;-:t;:(~;~t)),
Q12 = ( KIKI (KZ) qKtKI (Kt) )

qKO(KZ) K?Ko(Kt) ,

(7.217)

Q ( 2tLlqkzh (kz) tL2kt(q2 - k;)h (kt)
21 = tL][Alo(kz) + 2kzh (kz)] 2tLlqkt[h (kt) - ktlo(kt)]

),
-2/L2qKzKI (KZ) -2/L2Kt(K? + q2)KI (KZ) ).

-tL2[BKo(kz) + 2KZKI(kz)] -/L2qKt[l(kt) + Ktlo(kt)]
Q22 = (

(7.218)

The components of the normal modes are given by

. 1 Ibllkz h (kzr ja) + btlqkt h (ktr ja)

t ui; = .Jna2Nrz bZ2KzKI(Kzrja) + bt2qKtKI(Ktrja)

r < a,
r > a,

Wcp = 0,

1 IbllqlO(kzrja) - btlk; lo(ktrja)

-W
z = .Jna2Nrz bZ2qKo(Kzrja) + bt2K;Ko(Ktrja)

r < a,
r > a.

(7.219)

For the axisymmetric radial-axial modes, the normalization condition requires
that

N,.z = PI (bit {q2[lJ(kz) + ll(kz)] + kf[ll(kz) - lo(kz)h (kz)]}

+ bitk;{k;[lJ(kt) + ll(kt)] + q2[ll(kt) - lo(kt)h(kt)]}

- 4bllbltqktlo(kz)h (kt))

+ P2(b~z{q2[Kl(Kz) - K6(KZ)] + Kf[Ko(KZ)K2(KZ) - Kl(Kz)]}

+ b~tK?{K?[Kl(Kt) - K6(Kt)] + q2[Ko(Kt)K2(Kt) - Kl(Kt)]}

- 4b2Zb2tqKtKo(Kt)K I(Kt)). (7.220)

As for the case of rectangular quantum wires, subsection 7.6.3, for carriers at
the non-degenerate r point in band a, E" (k), the deformation-potential interaction
Hamiltonian Hdef is given in terms of the displacement operator u(r) by
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H%ef= EfV ·o(r). (7.221)

Again, at such a symmetry point only the irrotational - that is, the longitudinal
- components of urr) contribute to H%ef.Accordingly, only the the potential ¢,
(7.204), contributes to H%ef. Indeed, from the normalized components wmn,q(r)

(7.202), oCr) is obtained readily and by using the relation V2¢ = -(w/cZ)2¢ it
follows that

HOi = _EOi ~ [wmn(Q)]2
clef 1 L ac

q,mn Z

['" ( ) + ",* ( ) t ] imip-s-i qr] aX '¥mn,q r amn,q '¥mn,-q r amn,-q e ,

li

2n:LpN Wmn (q)

(7.222)

the potential <Pmn,q(r) being given by

r < a,
(7.223)

r > a.

Let us consider the case of a thin cylindrical shell. For a cylindrical shell, the
boundary conditions on the inner and outer surfaces are

(7.224)

where P represents an external pressure that would be present, for example, in the
case where the cylindrical shell is in contact with a liquid, TfLV is the stress tensor,
and n ; is the normal to the surface of the shell. In particular, P = ±P in er and

out

n = =fer where er is the unit vector in the r-direction. The subscripts 'in' and 'out'
are alternatives. For a cylindrical shell of infinite length in the z-direction and of
thickness h and radius R such that h «R, the boundary conditions are

Trr IR'fh/2 = Pin.
out

(7.225)

Assuming that all quantities except Trr are nearly constant with respect to rover
the interval from R - h /2 to R + h /2, it is possible to show that

Tcpcp Pin- Pant-- + ---- = PUr,
R h

(7.226)

1 aTcpz aTzz ..--- + -- = pUz·R acp az

These results follow straightforwardly by integrating the right- and left-hand sides
of each force equation over the interval from R - h /2 to R + h /2, invoking the
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boundary conditions in the radial force equation, and cancelling factors of h. From
the stress-strain relation (7.198), it follows that

Tcpcp= (A + 2f-L)Scpcp+ A(Szz + Srr),

Tcpz = 2f-LScpz,

Tzz = (A + 2f-L)Szz + A (Scpcp+ Srr),

Trr = (A + 2f-L)Szz + A(Scpcp + Szz)

=0.

(7.227)

These stress-strain relations then imply that

(7.228)

The Young's modulus E and the Poisson ratio lJ may be expressed in terms of the
Lame constants as

E = _f-L_(3_A_+_2_f-L_)
A+f-L

and (7.229)

Then the inverse relations are

ElJ
A=-----

(1 - 2lJ)(1 + v)
and

E
f-L=2(1+lJ) (7.230)

and it follows that

E
A + f-L = ------

2(1 - 2lJ)(1 + v)
and

A
lJ=---

2(A + f-L)
(7.231)

Using these stress-strain relations and eliminating the Lame constants in favor of
Young's modulus and the Poisson ratio, the force equations may be written as

E (S S) Pin-Pont ..
R(1_lJ2) cpcp+lJ zz + h =pUr,

E a E a
R(1 - lJ2) acp (Scpcp+ lJSzz) + 1+ lJ acp Scpz = pUcp,

E a E a
R(1 + v) acp Scpz+ 1_ lJ2 az (Szz + lJScp¢) = pUz·

(7.232)

Then using the relations (Auld, 1973)
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1 (aucp )Scpcp= - -- + Ur ,
r acp

and
1 ou ; aucp

Scpz = -- + --,
r acp az

(7.233)

the force equations may be written as

ur + ucp,cp lJUz,z P ii;
R2 -~+R = c2'

ur,cp + ucp,cpcp 1 - lJ 1+ lJ Ucp
R2 + lRucp,zz + lRuz,cpz = ~'

lJUr,z 1+ lJ 1 - lJ UzR + lRucp,cpz + 2R2 uz,cpcp+ uz,zz = c2'

(7.234)

the thin-plate longitudinal sound speed squared, c2, and the dimensionless pressure
P are defined by

2 Ec =----
p(l - lJ2)

and R (1 - lJ2)
P= h -E- (Pin-Pont)· (7.235)

These equations have been used (Sirenko et al., 1995) to describe the free
vibrations of a thin shell and the vibrations of such a shell immersed in liquid. For
the case of a free shell, P = 0 and solutions are taken to have the form

(7.236)

where the dimensionless wavevector in the z-direction, q, and the dimensionless
frequency [2 are defined by

and
wR

[2=-.
c

(7.237)

Then the force equations yield

o 0 0 on2
ic; -lmccp -llJqcz = 1.0 c-,

2 2 2me; - m Ccp- lJ_q Ccp- v.i.mqc ; = -[2 Ccp,

2 2lJqcr - lJ+mqccp - lJ_m Cz = -[2 Cz

(7.238)

or

m
[22 _ m2 _lJ_q2

-lJ+mq

=0.

(7.239)

The dispersion relation is then given by
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detD = m
m

[22 _ m2 _ lJ_q2

-lJ+mq

lJq

-lJ+mq

[22 - lJ_m2 - lJq2

=0.
lJq

(7.240)

Hence

[26 _ [(lJ_ + 1)(m2 + q2) + 1][24

+ [(m2 + lJ_q2)(lJ_m2 + q2) + Cl + lJ_)(m2 + q2)

- lJ2q2 _ m2 _ lJ~m2q2][22 - lJ-Cl - lJ2)q4 = 0 (7.241)

or

(7.242)

where

A = lJ-Cl + lJ2),

B = lJ_([22 - 1)([22 - lJ_m2) + ([22 - 1)([22 - m2)

+ 2lJlJ+m2 + lJ2([22 - m2) + lJ~m2([22 - 1) - lJ_m4,

C = ([22 - m2 _ 1)([22 _ lJ_m2)[22.

(7.243)

Let us examine these solutions for three several special cases:
imuthal modes with m = 0, small q, and large q.

For the modes with m = 0,

symmetric az-

(7.244)

For c, = Cz = 0, the pure torsional mode has frequency

(7.245a)

In addition, for Cop = 0 it follows that two coupled radial-longitudinal modes have
frequencies

[2;ad-long == ( [2~I~O)
2

= Hq2 + 1 ± J (q2 - 1)2 + 4lJ2]. (7.245b)

For small q, the q --+ 0 limit yields

(7.246)

For Cz = 0, the two torsional-radial modes have frequencies [2torsional-radial,a
"I - ~ 2 1 d"" "- "III - 0 I dditi "' - - 0.om - m + an .OtorslOnal-radlal,b= .om - . n a itron, lor Cr - Cz - ,
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it follows that the longitudinal mode has frequency Qlongitudinal == Q~ = ~m.
Since Q~I R:!0 was obtained in the lowest order in q it is necessary to find the first

non-vanishing term. For m = 0, by making the assumption that (Q~I=O)2 = aq2
and collecting terms up to order q4 in the dispersion equation, it follows that

(7.247)

One of the roots of this equation, a = u.,; corresponds to the mode Q~=o' and
another root, a = 1 - lJ2, implies that Q~I=O R:! ~q. For the case where

m i- 0, by making the assumption (Q~I)2 = aq" and collecting terms up to q4 in
the dispersion relation, it follows that

(7.248)

so that a = (l - lJ2)j(m4 + m2) and Q~I R:! J(l- lJ2)j(m2 + 1)(q2jm). In the
limit of large q the leading terms of the dispersion relation imply that

(7.249)

or making the guess Q2 --+ aq2, it follows that

(7.250)

so that al = 1, a: = lJ_, and a3 = O. The result a3 = 0 is inconsistent with
the initial guess, so solutions are of the form Q2 --+ constant. Then from the last
two terms of the dispersion relation, with leading fourth power of q, it follows that
lJ_q4Q2 - u.; (l - lJ2)q4 R:! 0, and Q2 --+ 1 - lJ2. Convenient interpolation formulae
between the small-q and large-q solutions are given by

Q~(q) c:::' Jq2 + m2 + 1,

Q~(q) c:::' JlJ_(q2 +m2),

QIII (q) c:::' ~_q_
m=O 1+ q'

2
Q~I(q) c:::' ~ q _

m.,lm2+1+q2

(7.251)

In the axisymmetric case with m = 0 the I, II, and III modes correspond to pure
radial, torsional, and longitudinal modes respectively. When m i- 0, the radial
and torsional modes are coupled. In the limit where q » m + 1 the asymptotic
expressions do not depend on m; indeed, in this limit Q~ (q) c:::' q, Q~ (q) c:::' ~q,
and Q~I(q) c:::' ~. Analysis of the coefficients c-, cop, and Cz (Sirenko et al.,
1996a, b) reveals that in the limit of large q the I, II, and III modes correspond to
pure longitudinal, torsional, and radial vibrations, respectively.
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The case of a cylindrical shell immersed in fluid was considered by Markus
(1988) and solved numerically by Sirenko et al. (1996b). In this case, p i- 0 and the
dispersion relation takes the form

detD = m
m

[22 _ m2 _ lJ_q2

-lJ+mq

lJq

-lJ+mq

[22 - lJ_m2 - lJq2

=0,
lJq

(7.252)

where the term describing the coupling between the shell and the fluid is given by

a [Im(Q) Km(Q)]
WmQ = Q I/n(Q) - K/n(Q) . (7.253)

Here

(7.254)

Sf being the sound speed in the fluid and

(7.255)

In the case of a thin cylindrical shell immersed in fluid, interface modes in the fluid
are localized near the cylindrical surface and correspond to the region Q2 > O. In
the case where co > sfqz the acoustic disturbances are radiated from the cylindrical
shell. Indeed, the wqz-plane is divided into two regions by the curve co > sfqz. As
just indicated, the region defined by Q2 > 0, or co < sfqz, is the region where
interface modes are localized on the scale of Rj Q from the cylindrical shell. When
co > sfqz, Q2 < 0 and the relation

makes manifest the radiation of cylindrical waves from the cylindrical shell into the
region surrounding it, since the Hankel function of the first kind, H~l), represents
outgoing cylindrical waves.

The case of a cylindrical shell immersed in fluid was solved numerically by
Sirenko et al. (1996b) in order to model the vibrational behavior of microtubules
(MTs) immersed in water. These microtubules are of great interest in biology as
they are present in many biological structures including cytoskeleton and eukariotic
cells. In these numerical calculations, the inner and outer radii of the MTs are taken
to be 11.5 nm and 14.2 nm respectively, the length of the MTs is taken to be 8 nm,
their mass is taken to be 1.83 x 10-19 g, the Poisson ratio, u, is taken to be 0.3, and
the Young's modulus is taken to be 0.5±0.1 GPa. These parameters give a thin-plate
longitudinal sound speed c of 610 m s-l and a density of 1.47 g cm-3. The sound
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speed and density of water are taken to be 1.50 km s-l and 1 g em -3. The calculated
dispersion relations, Q~ (q ), for m = 1, 2, and 3 are shown in Figures 7.21, 7.22,
and 7.23, respectively.

From Figures 7.21-7.23, it is apparent that for qz »mj R the mode frequencies
of the immersed MTs tend to those of the free-standing MTs and do not depend on
m. These modes are seen to have maximum frequencies of the order of tens of GHz.
Moreover, the sound speeds of the axisymmetric acoustic modes are in the range
200-600 m s-l.

Sirenko et al. (l996b) also considered the dynamical behavior of cytoskeletal
filaments, by using the elastic continuum model to determine the mode structure
for the vibrations of a solid cylinder. Particular attention was given to (a) the
axisymmetric torsional mode, (b) the axisymmetric radial-longitudinal mode, and
(c) the flexural mode, as depicted in Figure 7.24.

3

>2
os:::
(1)

:J
C"
(1)
11-
U.

_-T'--

o~ 1 2
Wavevector

3

Figure 7.21. Dispersion relations Q~ for m = 1 modes of the MT sample discussed
in the text. I, pure longitudinal; II, torsional; III, radial. The frequency is in units of
Q = toR] c and q = qzR. Q = 1 yields co = 7.6 GHz for the parameters given in the
text. The dotted line separating the regions of interface and radiated waves
corresponds to the condition co = sfqz, as discussed in the text. The solid and broken
lines correspond to MTs immersed in water and free standing respectively. From
Sirenko et al. (1996a), American Physical Society, with permission.
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7.6.5 Acoustic phonons in quantum dots
In quantum dots, phonons and carriers alike are modified as a result of abrupt
changes in the material properties at the interface between the quantum dot and
the surrounding material. Indeed, carrier wavefunctions are modified as a result of
the variations in the electron and hole band energies near the boundaries of the
quantum dot. In the case of acoustic phonons, the changes in elastic properties near
the quantum-dot boundaries lead to modifications in the displacement amplitudes.
The acoustic phonon modes for spherical quantum dots and for quantum dots
with rectangular-face confinement have been considered previously (Stroscio et al.,
1994). For the case of a free-standing spherical quantum dot, the quantization of the
acoustic phonons may be performed by taking

1
u(r) = !AT I)u(q, r)aq + c.c.],

vN q
(7.256)

and normalizing the acoustic phonon Fourier amplitude, u(q, r, cp, z), according to

3

o~ 1 2

Wavevector
3

Figure 7.22. Dispersion relations Q~ for m = 2 modes of the MT sample discussed
in the text. I, pure longitudinal; II, torsional; III, radial. The frequency Q is in units
of co Ri«: and q = q-R, Q = 1 yields co = 7.6 GHz for the parameters given in the
text. The dotted line separating the regions of interface and radiated waves
corresponds to the condition co = sfqz, as discussed in the text. The solid and broken
lines correspond to MTs immersed in water and free standing respectively. From
Sirenko et al. (l996a), American Physical Society, with permission.
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3 12n
in la

li--3 dsp de sine dr r2u(q, r, e, cp) . u*(q, r, e, cp) = --.
47Ta 0 0 0 2Mwq

(7.257)

Here, a is the radius of the quantum dot, N is the number of unit cells in the
normalization volume V, aq is the phonon annihilation operator, q is the phonon
wavevector, wq is the angular frequency of the phonon mode, M is the mass of the
ions in the unit cell, and r, e, ¢ are the usual spherical coordinates. For a quantum
dot with rectangular faces the normalization condition for the acoustic phonon mode
amplitude is given by

I jal2 jbl2 jC/2 li- dx dy dzu(q, x, y, z)· u*(q, x, y, z) = --.
abc -a12 -b12 -c/2 2M wq

(7.258)
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Figure 7.23. Dispersion relations Q~ for m = 3 modes of the MT sample discussed
in the text. I, pure longitudinal; II, torsional; III, radial. The frequency is in units of
Q = toR] c and q = qzR. Q = 1 yields co = 7.6 GHz for the parameters given in the
text. The dotted line separating the regions of interface and radiated waves
corresponds to the condition co = sfqz, as discussed in the text. The solid and broken
lines correspond to MT immersed in water and free standing, respectively. From
Sirenko et al. (1996a), American Physical Society, with permission.
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The classical acoustic modes in an isotropic elastic medium have been analyzed
previously, and many of the most useful known results summarized, by Auld (1973).
The lowest-order pure-compressional mode is referred to frequently as the breathing
mode. The displacement field associated with this lowest order compressional mode
of a sphere of radius a is given by

u(q, r) = ryiI (w~r) e-iwql, (7.259)

where y is the normalization constant, r is the unit vector in the radial direction, i,
is the spherical Bessel function of order unity, i,(x) = sin x] x2 - cos x/x, wq is the
mode frequency, and the longitudinal sound speed ci is equal to J('A + 2f-L)/p. The
frequency for a free-standing sphere is determined by the condition that the normal
component of the traction force at the surface of the sphere vanishes; that is, Trr = 0
at r = a:

[ d2 . (wqr) 2'A d . (wqr)J('A+2f-L)-2JO - +--Jo - =0,dr ci r dr CZ r=a
(7.260)

where fo (x) = sin x Ix is the spherical Bessel function of order zero. This last result
implies that

(7.261)

The normalization condition for this lowest-order breathing mode is

(a)

(b)

(c)

Figure 7.24. Schematic
illustrations of the
displacement fields of (a) the
axisymmetric torsional
mode, (b) the axisymmetric
radial-longitudinal mode,
and (c) the flexural mode for
a solid elastic cylinder. From
Sirenko et al. (1996b),
American Physical Society,
with permission.
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3y21wl Ii--=-:3 dr r2 fr(r) = --,
wI 0 2Mwq

with WI representing the quantity wqajcz. This integral may be performed analyti-
cally and it follows that

(7.262)

(7.263)

where the second-order spherical Bessel function, h (x), is defined by h (x) =
[(3jx3) - Cljx)] sinx - (3jx2) cosx. The lowest-order breathing and torsional
modes for a spherical quantum dot are shown in Figure 7.25.

The lowest-order torsional mode - a pure shear mode - of an free-standing
isotropic spherical quantum dot may be determined from the known elastic-
continuum solution for the lowest-order classical pure shear mode of an isotropic
elastic medium (Auld, 1973):

(a)

(b)

I
2a

1

Figure 7.25. Lowest-order
(a) breathing mode and (b)
torsional mode in a spherical
quantum dot. From Stroscio
et al. (1994), American
Institute of Physics, with
permission.

I
2a

1
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u(q, r, 8) = ijn cos 8 i,(wc~r) e-iwqt, (7.264)

where IjJ is the unit vector in the q>-direction, r is the normalization constant to
be determined from the phonon normalization condition, and the transverse sound
speed of the shear wave is given by Ct = .j f-L/ p. This mode is depicted in Figure
7 .25(b). The normalization condition for this mode is

r21Wt n
-=3 dr -? ff(r) = --,
Wt 0 2Mwq

(7.265)

with Wt = wqa / Ct. Thus, the normalization constant r may be evaluated in terms of
the same integral used to calculate y; indeed,

(7.266)

Following the same procedure as for the breathing mode, it follows that the
dispersion relation for the lowest-order torsional mode is

(
wqa) 3wqa/ct

tan 0 = 3 - (wqa/ct)2· (7.267)

Krauss and Wise (1997) have recently observed the coherent acoustic phonons in
spherical quantum dots. The damping of the lowest-order acoustic phonon modes
observed by Krauss and Wise has been described in terms of the elastic continuum
model by Stroscio and Dutta (1999).

McSkimin (1944) gave approximate classical flexural thickness modes for a
structure with rectangular faces. The structure considered in this section has faces
joining each other at right angles, and the faces in the xy-, yz-, and xz-planes are
rectangles such that the width of the structure - in the x-direction - is a, the height
of the structure - in the y-direction - is b, and the length of the structure - in the
z -direction - is c. The approximate flexural thickness modes given by McSkimin are

u(x, y, z) = A sin mx (sin 11Y + a sin 12Y + f3 sinl3Y) cos nr,

[
-II ala f3(m2+n2) ]

vex, Y, z) = A cosmx - COSilY - - cosl2Y + ----- cosl3Y cosnz,
m m 13m

[
n a(m2+12) f3n ]

w(x,y,z)=Acosmx -sin11Y- 2 sinI2y+-sinI3Y sinnz,
m nm m

(7.268)

where a and f3 are determined by applying desired boundary conditions on two
sets of rectangular faces. The discrete mode indices for the x- and z-dimensions
are labeled by m and n respectively. For the y-dimension, the mode index for the
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irrotational, or longitudinal, part of the mode is II, and 12 and 13 correspond to the
indices for the rotational parts of the mode. As will become clear, the deformation
potential depends only on II, as expected. Indeed, it follows that

au av aw
"'-(x, Y, z) = - +- +-

ax ay az

(
12 n2 )=Acosmx msinllY+ ~ sin1lY+ m sinllY cosnz.(7.269)

The flexural acoustic modes of McSkimin are used in this section to illustrate the
quantization of modes for such a structure. Obviously, these modes do not form a
complete set. Indeed, in addition to compressional modes there are flexural modes
corresponding to the width and length modes. The normalization condition for
McSkimin's flexural thickness modes,

1 jal2 jbl2 jC/2 n- dx dy dz (uu* + vv* + ww*) = --,
abe -a12 -b12 -c/2 2M co

(7.270)

reduces to

-1-1 htm, aj2) !I (n, ej2)[!Z(l1, bj2) + 2agl (ll,12,bj2)
abe

+ 2,8gl (ll, 13,bj2) + a2 !z(l2, bj2) + 2a,8gl (l2, 13,bj2) +,82 !z(l3, bj2)]

[
q 2al112

+!l (m, aj2)!1 (n, ej2) 2!1 (ll, bj2) + -2-g2(l1, 12,bj2)
m m

2,811(m2 + n2) a21i 2a,812(m2 + n2)
--13-m-2--g2(l1, 13,bj2) + -m-2 !I(l2, bj2) - 1

3
m2

2,82(m2 + n2) ]
xg2(l2,13,bj2)+ 2 !1(l3,bj2)

13m2

[
n2 2an(m2 + 12)

+!I(m,aj2)!z(n,ej2) 2!Z(l1,bj2)- 2 2 gl(l1,12,bj2)
m nm

2,8n2 a2(m2 + Ii)
+-2-gl(l1,13,bj2)+ 2 2 !Z(l2,bj2)

m nm
2a,8n(m2 + 12) ,82n2] )

- 2 2 gl (l2, 13,bj2) + -2-!z(l3, bj2)
nm m

n
2Mw'

(7.271)

where
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1+a
/
2 a ( Sinha)h(h,aI2) = dycos2hy=- 1+-- ,

-a/2 2 ha

1+a/2
h(h, a12) = dy sirr' hy = a - h (h, aI2),

-a/2

1+b/2
gl (li, Ii, b12) = dy sin Ii y sin Ii y

-b/2

sin(li - li)b 12 sin(li + li)b 12
t, -Ii t, + Ii

1+b/2
s: (li, Ii, b12) = dy cos Ii Ycos Ii Y

-b/2

sin(li - li)b 12 sin(li + li)b 12= ----+ ----.
t, -Ii t, + Ii

(7.272)

The deformation potential for these flexural thickness modes has an especially
simple form at a non-degenerate r-point, namely,

Hdef = E1/':,(X, y, z)

= ~ ~ [~ (m2 + l~ + n2
) (cos mx sin 11Y cos nz) aq + c.c.].

(7.273)

In fact, the spatially dependent terms in Hdef do not depend on a and f3.



Chapter 8

Carrier-LO- phonon scattering

Beauty is Nature's brag, and must be shown in courts, at feasts,
and high solemnities where most may wonder at the
workmanship.
John Milton, 1637

8.1 Frohlich potential for LOphonons in bulk
zincblende and wiirtzite structures

In this section, the Fermi golden rule and the dielectric continuum model of optical
phonons are applied to determine the electron-LO-phonon scattering rates in bulk
zincblende and bulk wiirtzite structures.

8.1.1 Scattering rates in bulk zincblende semiconductors
A transition rate for electron-LO-phonon scattering may be estimated by calculating
the transition rate predicted by the Fermi golden rule for the perturbation Hamilto-
nian HFr of Section 5.2. According to the Fermi golden rule, the transition rate for
emission or absorption, s{e,a}(k, k'), from an initial electron state [k) and an initial

phonon state 1Nq + 1 ± 1) - denoted by 1k, Nq + 1 ± 1) - to a final electron state

(k'i and a final phonon state (Nq + 1 ± 11- denoted by (k', Nq + 1 ± 11- per unit
time per unit volume is given by

2n 1 1

2
S{e,a}(k, k') = hL M{e,a}(q) 8(E(k') - E(k) ± Ytw),

q

(8.1)

where

(8.2)

In these expressions, the positive and negative signs are chosen to select the de-
sired initial and final phonon states. In the case of phonon emission, the final phonon

131
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state contains one phonon more than the initial phonon state; accordingly, the initial

and final states are selected to be [k, Nq) and (kl
, Nq + ~± ~I respectively. For

phonon absorption processes the initial and final states are chosen in a similar
manner. In the energy-conserving delta function in s{e,a}(k, k'), the upper sign
corresponds to phonon emission and the lower sign to phonon absorption. In this
expression, the electron and phonon states represent different spaces so the 'product'
[k) INq) == [k, Nq); that is, calculating the matrix elements of electron states involves
only integration over coordinate space and calculating matrix elements of phonon
states involves only taking matrix elements of the phonon creation and annihilation
operators as in Section 5.1. Clearly these two types of matrix element may be
calculated independently of each other. For this reason, the 'product' [k) INq) ==
[k, Nq) should not cause any confusion. The phonon states are as defined in Section
5.1 and the Frohlich Hamiltonian is that of Section 5.2,

HPr = -i 2ne2
nWLo [1 1 ] ~ 1( iqr t -iq.r)---- ----- L-ae -ae
V E(OO) dO) q q q q

~c . t·= L _(aqezq.r - aqe-Zq.r),
q q

(8.3)

where

C =-i 2ne2
nWLo [_1 1_].
V E(OO) E(O)

(8.4)

The electron states are plane-wave states normalized in the volume V,

and (k'l = e-ik'.r /JV. (8.5)

The matrix element, M{ e, a) (q), is then given by

where the phonon matrix elements have been evaluated using the expressions of
Section 5.1; in particular,

and

In (8.6) the upper signs correspond to phonon emission and the lower signs to
phonon absorption. The integral over the factor e-ik'.r+ik.r=r=iq.r / V is, of course,
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dimensionless and contributes a delta function that depends on the quantity
k' - k ± q. Hence, it follows that the final state electron wavevector, k', is related to
the initial state electron wavevector k and the phonon wavevector q by k' = k -F q.

The case where k = k' + q corresponds to an electron of wavevector k in the
initial state and an electron and phonon in the final state with wavevectors k' and q
respectively. That is, this case represents phonon emission or phonon creation.

For the remaining case, k + q = k' and it is clear that the final state represents
an electron of wavevector k' and that the initial state is composed of an electron and
phonon with wavevectors k and q respectively. Clearly, this case represents phonon
absorption or phonon annihilation. The two conditions k = k' + q and k + q = k'
are equivalent to momentum conservation, since the product of each wavevector
times h is the momentum of the particle in question. The integral over the factor
exp( -ik' . r + ik . r -F i q . r) / Y may be written as a Kronecker delta function
requiring k' - k ± q = 0 or it may be expressed as y-18(k' - k ± q). Then it
follows that

2 f d
3

ICl
2

~ IM{e,a}(q)1 = -q---(n + 1 ± 1)8(k' - k ± q)L (27T)3 q2 q 2 2
q

_IC_I_
2
__ l_(n + 1 ± 1)

47Th2Ik-k'12 q 2 2'
(8.8)

where

2 27T2 [1 1]
ICI = -ye hco E(OO) - E(O) . (8.9)

In evaluating the integral over q it has been assumed that the frequency of the
phonon mode, wq, is independent of q and is equal to the zone-center phonon
frequency, wq. This is a good approximation for many materials. For example,
in GaAs the LO phonon frequency varies by about 10% over the entire Brillouin
zone. Moreover, since the largest contributions to the integral occur near the zone
center - as a result of the q -I dependence in the integrand - the approximation that
wq = WIo causes little error in the value of the integral in question.

Accordingly, the transition rate s{e,a} (k, k') is given by

ICl2 I
S{e,a}(k, k') = -----(n + 1± 1)8(E(k') - E(k) ± hw)

47Th2 [k _ k'I2 q 2 2

1Cl2 I ( 1 1) ,=--22 nq+2:±2: 8(E(k)-E(k)±hw),
47Th q

(8.10)

where q 2 = 1 q 1
2 and the delta function expresses the conservation of energy, E (k') -

E (k) = =fhw, the upper sign representing phonon emission and the lower sign
representing phonon absorption. The Iql-2 dependence in s{e,a}(k, k') is the same
as that appearing in the Coulomb interaction. Accordingly, it is anticipated that finite
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scattering rates will be obtained only if screening is treated properly. Therefore,
sle,a}(k, k') is rewritten as

where qo is a cut-off parameter introduced to represent the effect of screening of
the Coulomb-like interaction. The final scattering rate will be calculated in the limit
qo ---+ O.

The total, three-dimensional, scattering rate, l/r~ria} (k), associated with

S~ria}(k, k') results from integrating S~ria}(k, k') over q and multiplying by the
volume of the heterostructure, V:

(8.12)

The integral over cp contributes a factor of 2n since there is no cp-dependence in the
problem at hand. In performing the integration over 8 it is necessary to consider the
fact that the argument of the delta function depends on 8. By assuming parabolic
carrier bands and considering the case where the initial carrier wavevector is k and
the carrier mass is m, the argument of the delta function may be rewritten as follows:

E(k') - E(k) ± hco = E(k T q) - E(k) ± hco
n2(k T q)2 n2(k)2---- - -- ± hco

2m 2m
n2

= - [(k')2 - (k)2] ± hco
2m
n2

= _(q2 T 2qkcos8) ± hco,
2m

(8.13)

The integral over 8 is now performed by use of the relation

f g(8) Ig(8)8[f(8) - a]dy = -- ,
dfld8 8=80

(8.14)

where 80 is determined by f(80) = a. Then, taking

n2
f(8) = T

2m
(2qkcos8), (8.15)

it follows by letting u = cos 8 that
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r: (112
)10 de sin o 8 2m (q2 'f 2qk cos e) ± hco

/

1 (tt2 tt2 )= du 8 -('f2qku) + _q2 ± hco
-1 2m 2m

m
= 'ftt2qk'

so that

(8.16)

(8.17)

We consider the ranges of q associated with emission and absorption, {q~!n' q~lx}
and {q:~, q~lx} respectively. The range of q is determined by

2 2mw
q - 2qkcose ± -tt- = 0, (8.18)

where the upper sign corresponds to emission and the lower sign to absorption. The
roots of this equation are

and

Hence, by taking cos e = ± 1, the minimum and maximum values are found:

{e) {e) -( J 2 (2mw){qmin' qmax} - k - k - -tt- ,

{a} {a} _( 2 (2mw){qmin' qmax} - k + -tt- - k,

Then the total scattering rate may be written as

(8.19)

(8.20)

(8.21)

(8.22)

(8.23)
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where the relation

(8.24)

with

(8.25)

has been used to replace lel2 by a, The scattering rate, l/r~ria} (k), may be evaluated
analytically through use of the identity

q~} 3 1 [ {e,a}2 + 2 2 {e,a}2 _ {e,a}2 ]
d q - 1 qmax qo + qo qmin qmaxq - n -lle,a} (q2 + q2)2 - 2 q{e,a}2 + q2 2 ( {e,a}2 + 2) ( {e,a}2 + 2) .

qIIlm 0 nun 0 qmax qo qmin qo

(8.26)

Ignoring the terms of O(q5) it follows that

(8.27)

Finally, in the limit as qo ---+ 0

1 CiW 1)2mw k + Jk2 - 2mw/li--- = - - -- (n + 1) In --~=======
riria}(k) 2 k li q k - Jk2 - 2mw/li

+ _CiW_~ )_2m_W_nq In _J-;=-k=2=+=_2_m==w=/=li_+_k.
2 k li Jk2 - 2mw/li - k

(8.28)

8.1.2 Scattering rates in bulk wiirtzite semiconductors

The Frohlich interaction Hamiltonian given in Section 7.1 for a polar uniaxial (VA)
crystal may be written as



8.1 Frohlich potential for LOphonons in bulk zincblende and wiirtzite structures 137

Hf!/ = L(-e)¢(q) e;q·r(aq + a!q) (8.29)
q

_ .~ )2ne2h 1 iqr t 2 2 2 2
- I 7 Y W

q
-qe (aq + a_q)(w 1.., TO - Wq)(WTO, II - Wq)

X {[E(Oh - E(ooh]wl,TO(who - w~)2 sin2 e
2 2 2 2 2} -1/2+ [E(O)II - E(oo)II]WlI,To(W 1..,TO - Wq) cos e_.~l 4ne2hy-1 )1/2 1 iq-r t

- I L ------------- -e (aq + a: ),
q (ajaw)[E(wh sin2e + E(w)1I cos2e] q q

(8.30)

where

2 2
W - W 1.. LO

E1..CW) = E1..Coo) 2 2' ,
W - W 1.., TO

(8.31)

and e is the angle between the phonon wavevector q and the c-axis. Moreover, from
Section 3.2, equation (3.21),

(8.32)

As was discussed in Section 3.2, the high-frequency electronic response of a
medium should not depend strongly on the crystalline structures; it is usually
assumed (Loudon, 1964) that E1..Coo) R:! Ell Coo). Thus

2 2 2 2
WLO 1.. - W . 2 e WLO II - W 2 e 0
----- sm + ' cos =

2 2 2 2WTO, 1.. - W WTO, II - W
(8.33)

or, equivalently,

4 C 2 2) 2 2 2 2 2 2 . 2 0W - WI + W2 W + WTO,1..WLO, II cos e + WLO, 1..WTO, II sm e =
(8.34)

where

2 2 ·2 2 2
WI = WTO,II sm e+WTO,1..cos e,

2 2 2 2 ·2
W2 = WLO, II cos e + WLO,1.. sm e.

(8.35)

In Section 3.2 it was shown that when IWTO,II - WTo,1..1 « WIO,II - WTO,II and
WLO,1.. - WTO,1.. this equation has roots

(8.36)

where
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(W2 - w2 ) (w2 - w2 )
A 2(8) 2 LO,II LO,l- TO,II TO,l-, 28 28csco = 2 2 SIll COS ;

w2 - WI
(8.37)

thus, one root is

2 2 2 ·2 2 2QTO = W = WTO,IISIll 8 + WTO,l- cos 8

(W[o II - W[o l-)(wfo II - wfo l-) . 2 2
, , , , SIll 8 cos 8

w2 _ w2
2 1

~ 2 . 2 2 2~ WTO,IISIll 8 + WTO,.L cos 8 (8.38)

and the other root is

2 2 2 2 2 ·2QLO = W = WLo,11COS 8 + WLO,l- SIll 8

(W[o II - W[o l-)(wfo II - wfo l-) . 2 2+ ' , , , SIll 8 cos 8
w2_w2

2 1
~2 2 2 ·2~ WLo,1ICOS 8 + WLO,l- SIll 8. (8.39)

The inequalities assumed for the derivation of Qfo and Q[o are satisfied for the
parameters of both GaN and AlN as may be verified from the numerical values of
the parameters given in Section 3.3. For the case of GaN, the dependence for the
phonon frequencies on 8 is shown in Figure 8.1 for these infrared-active phonons. 8
is the angle between the phonon wavevector q and the c-axis.

As in subsection 8.1.1, the transition rate for electron-optical-phonon scattering
may be estimated by calculating the transition rate predicted by the Fermi golden
rule for the perturbation Hamiltonian, H?/. According to the Fermi golden rule, the
transition rate, stAal (k, k'), from an initial electron state [k) and an initial phonon

800

LO-like

Figure 8.1. Angular
dependence of the phonon
frequencies co for LO-like
and TO-like infrared-active
phonons in GaN. () is the
angle between the phonon
wavevector q and the c-axis.
From Lee et at. (1997),
American Physical Society,
with permission.
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8 600
TO
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500 a 45
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state INq + ~± ~)- denoted by Ik, Nq + ~± ~)- to a final electron state (k'i and

a final phonon state (Nq + ~± ~I-denoted by (k', Nq + ~± ~I-per unit time
per unit volume is given by

StAa}(k, k') = 2: L IMtAa}(q)1

2
8(E(k') - E(k) ± hw),

q

(8.40)

where

(8.41)

As in subsection 8.1.1, the electron states are plane-wave states normalized in
volume V,

and (k'i = e-ik'.r1#. (8.42)

For w2 = Q~'O, the matrix element, 1 MtAa), TO (q) 1

2
, is then given by (Lee et al.,

1997)

1 M{;Aa},TO (q)1

2

2 ( 2 2)2 . 2 e 2 e2ne h wJ..,TO- W11,TO sm cos

V q2QTO [EJ..(O) - EJ..(oo)] Wl,TO cos2e + [Ell(0) - Ell(00)] who sin2 o
x (nq + 1± 1)· (8.43)

This matrix element does not vanish, in general, since the TO-like mode is in reality
not a pure TO mode in a uniaxial material. In the limit of an isotropic material,
WJ..,TO = wll,TO and the transverse matrix element vanishes. Likewise, for w2

Q£o' the matrix element 1 MtAaJ,LO(q)1

2
is given by

1

{e,a},LO 1
2 2ne2h [ sin

2 oMUA (q) = --- ----------
Vq2QLO [I/EJ..(oo) -I/EJ..(O)]wl,LO

cos2 e ]-1
+ [I/EII(oo) -I/EII(O)]who

x (nq + 1± D· (8.44)

In the isotropic limit, WJ..,LO = wll,LO and the longitudinal matrix element reduces
to

1

{e a} LO 1
2 2ne2

hWLO 1 1MUA' (q) = V
q

2 [I/EJ..(oo) -I/EJ..(O)] (nq + 2 ± 2)· (8.45)

Numerical evaluation of IMql = 1 Mt'l(q)1

2
indicates that the LO-like and TO-

like contributions to the absorption matrix element for bulk GaN are as shown in
Figure 8.2.
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The scattering rates for La-like and TO-like phonons have been evaluated
numerically by Lee et al. (1997) for two cases: as a function of the incident angle of
the electron with respect to the c-axis, 8k, for an initial electron energy of 0.3 eV; and
for 8k = 0 and 8k = it /2, for a range of electron energies. These results are depicted
in Figures 8.3 and 8.4. In Figure 8.3 the scattering rates for emission and absorption
of La-like and TO-like phonons are presented as a function of the incident angle of
the electron with respect to the c-axis, 8k, for an initial electron energy of 0.3 eV. In
Figure 8.4 the scattering rates for La-like and TO-like absorption are presented for
a range of incident electron energies for 8k = 0 and 8k = it /2.

8.2 Frohlich potential in quantum wells

The Frohlich interaction Hamiltonian of equation (5.34) in Section 5.2 describes
the carrier-polar-optical-phonon interaction in the bulk. As discussed in subsec-
tion 7.3.2, the Frohlich Hamiltonian for the two-dimensional slab takes the form
(7.71). Moreover, the Frohlich interaction Hamiltonian for the IF optical phonon
modes in the dielectric slab is given by equation (7.72). The interaction Hamiltoni-
ans of subsection 7.3.1 describe the Frohlich potential for a two-dimensional slab
bounded by regions with E = 1, as discussed by Licari and Evrard (1977).

In this section, the Hamiltonians describing carrier-polar-optical-phonon in-
teractions will be used to calculate carrier-Lo-phonon scattering rates in the
approximation of the Fermi golden rule.

LO-Iike
en
:!:::
c
::::l
.0 0.5•....
~

cr
~

TO-like

0
0 45 90

Angle 8 (deg)

Figure 8.2. Matrix element
IMq I for optical phonon
absorption as a function of ()
for GaN. () is the angle
between the phonon
wavevector q and the c-axis.
From Lee et al. (1997),
American Physical Society,
with permission.
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8.2.1 Scattering rates in zincblende quantum-well
structures

A particularly simple treatment of carrier-LO-phonon interactions in quantum-well
structures is possible when the carrier confinement is considered in the limit of an
infinitely deep confining potential for electrons - known as the so-called extreme
quantum limit - and the phonons are taken to be bulk phonons. In this case the
calculation of subsection 8.1.1 must be modified to account for the confinement
of the charge carriers. As in subsection 8.1.1, the transition rate for electron-LO-
phonon scattering may be estimated by calculating the transition rate predicted by
the Fermi golden rule for the perturbation Hamiltonian HFr of Section 5.2. However,
the carrier states are now those of an infinitely deep quantum well. According to the
Fermi golden rule, the transition rate, SJria} (k, k'), from an initial electron state

Ik2D) and an initial phonon state INq + ~± ~)- denoted by Ik2D, Nq + ~+ ~)-
to a final electron state (k;D I and a final phonon state (N q + ~± ~1- denoted by

(k;D' Nq + ~± ~1- per unit time per unit heterostructure area A, is given by

I

emission LO-like

absorption LO-Iike

emission TO-like

absorption TO-like

I

o 9045
Angle 8k (deg)

Figure 8.3. Scattering rates for emission and absorption of LO-like and TO-like
phonons as a function of the incident angle of the electron with respect to the c-axis,
()k, for an initial electron energy of 0.3 eV. From Lee et al. (1997), American
Physical Society, with permission.
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SJria}(k, k') = 2: z= I MJria}(q)1

2
8(E(k') - E(k) ± hw),

q

(8.46)

where

(8.47)

In these expressions, the positive and negative signs are chosen to select the
desired initial and final phonon states. In the case of phonon emission, the final
phonon state contains one phonon more than the initial phonon state; accordingly,

the initial and final states are selected to be Ik2D, Nq) and (k;D' Nq + ~± ~I
respectively. For phonon absorption processes, the initial and final states are chosen
in a comparable manner. In the energy-conserving delta function in s{e,a) (k, k'), the
upper sign corresponds to phonon emission and the lower sign to phonon absorption.
As in subsection 8.1.1, the electron and phonon states represent different spaces, so
we have Ik2D) INq) == Ik2D, Nq). The phonon states are as defined in Section 5.1
and the Frohlich Hamiltonian is given by equation (5.34),

z=c . t·H - - (a ezq.r - a e-zq.r)Fr- q q ,
q q

(8.48)

LO-like

----- ------ -------------
TO-like

0.0 0.2 0.4 0.6
Energy (eV)

0.8 1.0

Figure 8.4. Scattering rates for LO-like and TO-like absorption are presented for a
range of incident electron energies for ()k = 0 (solid line) and ()k = n /2 (broken
line). From Lee et al. (1997), American Physical Society, with permission.
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where

C =-i 2ne2nWLO [_1 1_].
V E(OO) E(O)

(8.49)

The electron states are taken as plane waves in the directions parallel to the
heterointerfaces and as the ground state of an electron in an infinitely deep quantum
well in the z-direction (Leburton, 1984),

and

where A is the area of the heterointerface over which the electron wavefunction is
normalized.

Following the procedures of subsection 8.1.1, the matrix element MJria} (q) is
then given by

(8.51)

where F(qzLz) is defined as

(8.52)

Then, following the procedure of subsection 8.1.1, it follows that

(8.53)

where

2 2n2 [1 1]ICI = -ye hco E(OO) - E(O) , (8.54)

and
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with

G(S) = [1 - e-2S]/2S and (8.56)

As in subsection 8.1.1, it has been assumed that the frequency of the phonon mode,
wq, is independent of q and is equal to the zone-center phonon frequency, wq.

The total scattering rate, I/r~ria} (kll), associated with S~ria}(kll, kll) results from

integrating S~ria}(kll ' kll) over qll and multiplying by the area of the heterostructure,
V2D:

I
{e,a} (k )r2D II

ICl2LzV2D( 1 1)
4n2n n« + '2 ± '2

x f d¢ f dqll hD(qll, Lz)(J(E(kll T qll) - E(kll) ± nw).

(8.57)

To evaluate this integral, it is necessary to consider the argument of the delta
function. By assuming parabolic carrier bands and considering the case where a
carrier of wavevector kll and mass m emits a phonon of wavevector qll, so that the
final carrier wavevector is kll = kll - qll, it follows that

E(kll T qll) - E(kll) ± hco

n2(kll _ qll)2 n2n2 n2(kll)2 n2n2
----- + -- - --- - -- ± hco

2m 2mL~ 2m 2mL~

n2
I 2 2= 2m [(kll) - (kll) ] ± hco

n2
= _[(qll)2 _ 2qllkll cos o] ± hco,

2m

where ¢ is the angle between kll and qll, the ground state energy for the carrier
is n2n2 /(2mL~), and qll and kll represent the absolute magnitudes of qll and kll
respectively. The argument of the delta function vanishes when

(8.58)

2 Zmco
qll - 2qllkll cos¢ ± -n- = 0, (8.59)

where the upper sign corresponds to emission and the lower sign to absorption. The
roots of this equation are
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{e) _ 2 2 (2mW)qll± - kll COS¢ ± kll cos ¢ - -h- , (8.60)

and

{a} _ 2 2 (2mW)qll± - -kll cos ¢ ± kll cos ¢ + -h- . (8.61)

Both roots of q11~are allowed for ¢ when it is in the range 0 < ¢ < ¢max, where

¢max = arccos .jhwl E with E = h2k~ 12m but with q11~forbidden. For the case of
emission,

(8.62)

f dy g(y)8(f(y) - a) = d~;L Iy=yo'

where Yo is determined by !(Yo) = a. Then, taking

!(qll) = ~~ (q112-2qllkIlCOS¢),

it follows that

d!(qll) h2
-- = - (2qll - 2kll cos¢)

dqll 2m

_ h
2

2 2 (2mw)- ±-;; kll cos ¢ - -h- .

With these results, it follows that

1

ii~(E)

_ ceca l¢max ho(q!11(E, ¢))q!11(E, ¢) + 120 (q!,
e
2(E, ¢))q!l

e
2(E, ¢)

- - (nq + 1) d¢ ------~--=--=--=--=--=--=-,=-,=-==-----,
n: 0 J(Elhw)cos2¢-1

(8.66)

(8.63)

(8.64)

(8.65)

and by an analogous derivation (Leburton, 1984),

1 _ aco 17f ho(q!I~(E, ¢))q!I~(E, ¢)
{} - -nq d¢ --- __-_-_-_-_-_-_-_-_-_-_--,

i2~ (E) it 0 J(Elhw)cos2¢ + 1
(8.67)

where

a__ 1 _e
2 [_1 __1]

- 2hw .j~hl=2-m-w E(OO) E(O)·
(8.68)
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8.2.2 Scattering rates in wiirtzite quantum wells

Komirenko et al. (2000a) have calculated energy-dependent electron scattering
rates for electron-LO-phonon scattering in wiirtzite quantum wells. The Frohlich
potential used to calculate these scattering rates (Komirenko et al., 1999; Lee et al.,
1998) is based on the Hamiltonians given in Appendix D and on the Loudon model
of uniaxial crystals. In these calculations the Fermi golden rule is used to calculate
the scattering rate for GaN free-standing quantum wells and for GaN quantum wells
embedded in AIN. In all cases the c-axis is normal to the heterointerfaces and the
GaN quantum wells are 50 angstroms wide. The interacting electrons are restricted
to energies close to the r point and only the lowest subband is considered. Figures
8.5 and 8.6 present the scattering rates calculated for bulk GaN, for a free-standing
GaN quantum well, and for an AIN/GaN/ AIN quantum well. Figure 8.5 depicts the
total electron-optical-phonon scattering rates in bulk GaN and a free-standing GaN
quantum well as functions of the electron energy, Ei; over a range of 0 to about
500 me V; this figure also presents the angular dependence of the scattering rate
for bulk GaN crystals. Figure 8.6 depicts the total scattering rate as a function of
the electron energy Ek over a range of 0 to 400 meV for a free-standing quantum
well and a GaN quantum well embedded in AIN; this figure also indicates the
contributions of the confined modes and the interface modes.

These results illustrate clearly the importance of including the effects of dimen-
sional confinement in calculating the electron-optical-phonon scattering rates in
dimensionally confined wiirtzite semiconductor structures.

8.3 Scattering of carriers by LO phonons in quantum
wires

In this section, scattering rates for the scattering of charge carriers by LO phonons
in quantum wires are calculated in the approximation of the Fermi golden rule.

8.3.1 Scattering rate for bulk LO phonon modes in
quantum wires

A particularly simple treatment of carrier-LO-phonon interactions in quantum-wire
structures is possible when the phonons are taken to be bulk phonons and the carrier
confinement is considered in the limit of an infinitely deep confining potential
for electrons, the so-called extreme quantum limit. In this case the calculation of
subsection 8.1.1 must be modified to account for the confinement of the charge
carriers. As in Sections 8.1.1 and 8.3.1, the transition rate for electron-LO-phonon
scattering may be estimated by calculating the transition rate predicted by the Fermi
golden rule for the perturbation Hamiltonian, HFr, of Section 5.2. However, the
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carrier states are now those of an infinitely deep quantum well. According to the
Fermi golden rule, the transition rate, S~ria} (k, k'), from an initial electron state

Ikm) and an initial phonon state INq + ~± ~)- denoted by Ikm, Nq + ~± ~)-

to a final electron state (k~D I and a final phonon state (Nq + ~+ ~1- denoted by

(k~D' Nq + ~+ ~1- per unit time per unit heterostructure area A is given by

S~ria}(k, k') = 2: L IM~ria}(q)12 8(E(k') - E(k) ± hw),
q

(8.69)

where

(8.70)

emission, La-like

-----------------------------------

absorption, La-like

emission, TO-like---------- ---------

absorption, TO-like
---------------

1010

0.0 0.2 0.4

1012

0.0 02 0.4

Figure 8.5. Main figure: total electron-optic al-phonon scattering rates in bulk GaN
(thin lines) and in a free-standing GaN quantum well (thick solid line) as functions
of the electron energy Ek over a range of 0 to about 500 meV. Scattering rates at
three particular angles for bulk GaN crystals are shown as follows: thin solid lines,
()k = 7T /2; thin dotted lines, ()k = 7T / 4; thin broken lines, ()k = O. The broken and
dotted line indicates the scattering rate calculated for confined electrons and bulk
phonons.

Inset: the LO-like and TO-like emission and absorption rates in bulk GaN for
three different angles: solid lines, ()k = 7T /2; dotted lines, ()k = 7T / 4; broken lines,
()k = O. From Komirenko et al. (2000a), American Physical Society, with
permission.
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In these expressions, the positive and negative signs are chosen to select the desired
initial and final phonon states. In the case of phonon emission, the final phonon
state contains one phonon more than the initial phonon state; accordingly, the

initial and final states are selected to be IkID, Nq + 1 ± 1) and (k~D' Nq + 1 ± 11
respectively. For phonon absorption processes the initial and final states are chosen
in similar manner. In the energy-conserving delta function in s{e,a) (k, k'), the upper
sign corresponds to phonon emission and the lower sign corresponds to phonon
absorption. As in subsection 8.1.1, the electron and phonon states represent different
spaces, so that we have IkID) INq) == IkID, Nq). Again, the phonon states are as
defined in Section 5.1 and the Frohlich Hamiltonian is given by equation (5.34) of
Section 5.2,

I:c . t·H - - (a ezq.r - a e-zq.r)Fr- q q ,
q q

(8.71)

where

-------------------------------
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Figure 8.6. Total electron-optical-phonon scattering rates calculated for a
free-standing GaN quantum well (broken line) and an AlN/GaN/AlN quantum well
(solid line) as functions of the electron energy Ek over a range of 0 to about
400 meY.

Inset: the scattering rates for confined modes (line with circles) and for interface
modes for the AlN/GaN/AlN structure (solid line) as well as for the free-standing
GaN quantum well (broken line). From Komirenko et al. (2000a), American
Physical Society, with permission.
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C =-i 2ne2/zWLO [_1 1_].
V E(OO) E(O)

(8.72)

The electron states are taken as plane-wave states along the quantum-wire axis,
taken here as the x-axis, and as the ground states of an electron in an infinitely deep
quantum wire in the y- and z-directions (Leburton, 1984),

eikxx Hi (. ny
) /I; (. nz)Ikm) = -- -- Slll- - Slll- ,v7:: Ly t., t., t., (8.73)

and

(8.74)

where L, is the length in the x-direction over which the free-electron wavefunction
is normalized and Ly and Lz are the height and the width of the quantum wire; it is
assumed that t.,» t.; t.;

Following the procedures of subsection 8.1.1, the matrix element, M~ria} (q ), is
then given by

(8.75)

(8.76)

(8.77)

where
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2 2n 2 [1 1 ]lei = -e hco-- - -
V E(OO) E(O)

(8.78)

and

(8.79)

which has been evaluated numerically (Leburton, 1984).
As in subsection 8.1.1, it has been assumed that the frequency of the phonon

mode is independent of q and equal to the zone-center phonon frequency, wq.

8.3.2 Scattering rate for confined La phonon modes in
quantum wires

The bulk Frohlich interaction Hamiltonian, H~?,of Section 5.2 may be used to
derive straightforwardly the Frohlich interaction Hamiltonian for a one-dimensional
quantum wire, HJ?, by an analysis similar to that of subsection 7.3.2, where
the Frohlich interaction Hamiltonian for a quantum well, HJ?, was obtained
from H~?by imposing the boundary condition that H~?(x, y, z) I

Z
=Lz/2 = O. In

particular, the analysis of subsection 7.3.2 may be extended by applying not just
the boundary condition H~?(x, y, Z)I

Z
=Lz/2 = 0 but also the boundary condition

H~?(x, y, z) I y=L
y
/2 = O. Starting with the canonical form of the bulk Frohlich

interaction Hamiltonian,

3D 2ne2
nWLO [1 1 ] ~ 1 t -iqor

HFr = - V E(OO) - E(O) ~ q(aq + a_q) e , (8.80)

we write the sum over q as a sum over positive values of qz in equation (8.84):

(8.81)

where

2ne2nWLO [_1 1_].Vq=- ----
V E(OO) E(O)

(8.82)

Then, defining

-i
a_(qll) = y'2(aqlloqZ - a_qlloqJ,

(8.83)

with
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(8.84)

expanding e±iqyy and e±iqzz, and taking qy = ±mn/Ly and qz = ±mn/Lz to
enforce the electromagnetic boundary conditions that the confined phonon modes
vanish at y = ±Ly/2 and z = ±Lzl2, leads to the result (Stroscio, 1989)

HID
Fr

= 2e/ ~ e-
iqxx L=t;,5, ...n=fr5, ..~mnCOSm~y cos n:zz [A+(qx)+ + A~( -qx)+J

~ ~ mst y . nst : t
+ L L Amncos--sm--[A+(qx)_+A+(-qx)-J

m=1,3,5,...n=2,4,6,... Ly Lz

~ ~ mst y nst : t
+ L L Amnsin--cos--[A_(qx)++A_(-qx)+J

m=2,4,6,...n=1,3,5,... Ly Lz

(8.85)

where

(8.86)

and

, { 2n e2 [1 1 ]} 1/2
a = ----y-Ytw E(OO) - E(O) (8.87)

Equation (8.85) may be written more compactly as (Campos et al., 1992),

00 00

HJ? = 2a' L e-iqxx L L~m(Y)~n(Y)Amnf:3mn,
qx m=l n=l

(8.88)

where

Amn(qx) = 1[( _1)m+1a(qx, 'lv- qz) + a(qx, 'lv- -qz)

+ (-It+ma(qx, -qy, qz) + (-It+1a(qx, -qy, -qz)J, (8.90)
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(
nrct it )

~n(t) = sin - + -8nt; 2
(8.91)

with 8n = 1 for odd nand 8n = 0 for even n.
The Hamiltonian (8.88) includes contributions only from the confined modes of

the dielectric continuum model with electrostatic boundary conditions - also known
as the slab modes. The interface and half-space modes are not included and must be
considered separately. For calculations based on the guided modes, the contributions
to the Hamiltonian in the interior of the quantum wire may be written in terms of
the Hamiltonian for the slab modes by taking

(

nit t it )
~n(t) = cos - + -8n .t., 2

(8.92)

Of course, it is necessary to augment this expression with terms contammg
the evanescent contributions of the guided modes in the regions surrounding the
quantum wire. In the present account, scattering rates will be calculated within the
dielectric continuum model with electrostatic boundary conditions. As discussed in
Appendix C, intrasubband and intersubband transitions rates are the same in either
the slab or guided models as long as complete sets of orthogonal phonon modes are
used in performing the calculation.

As in the previous subsection, the transition rate, siria} (k, k'), from an ini-

tial electron state IkID) and an initial phonon state 1 Nq + 1± 1) - denoted

by IhD, Nq + 1 ± 1) - to a final electron state (k~DIand a final phonon state

(Nq + 1 + 11- denoted by (k~D' Nq + 1 + 11- per unit time per unit length, L,
is given by

siria}(k, k') = 2: L IM~ria}(q)12 8(E(k') - E(k) ± hw),
q

(8.93)

where

M~ria}(q) = (k~D'Nq + 1 + 11HJ? IkID, Nq + 1 ± 1)·
The electron wavefunction is taken to be

(8.94)

eikxXjf( ny)!t( nz)IkID) = -- -- cos- - cos- ,~ t., t.; t.; t.; (8.95)

within the finitely long quantum wire with cross-sectional area defined by -Ly <
Y < Ly/2, -Lz < z < Lz/2 and is taken to vanish outside this region. In this
so-called extreme quantum limit, the electron energy for the ground state is

(8.96)
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Then the procedures of the last subsection lead straightforwardly to

(8.97)

where Amn is given in (8.96) and where (Stroscio, 1989)

jLy/2 dy jLzl2 dz 2 ny 2 n :
Pmn = -- --cos -cos -

-Ly/2 Lyj2 -Lzl2 Lzl2 Ly Lz
mit y nst :

cos--cos-
Ly Lz

mny . nnz
cos--sm-t., t.,
. mny nnz
sm--cos-

Ly Lz
. mny . nnz
sm--sm--t., t.,

x (8.98)

The four expressions for Pmn correspond to the four terms of (8.85). The numerical
values for the dominant values of Pmn are: Pl1 = (8 j3n)2, P13 = P31 =
(lj5)Pl1, P15 = P51 = -(lj35)(8j3n)2, P33 = (lj25)(8j3n)2, P35 = P53 =
-(lj175)(8j3n)2, and P55 = (lj1225)(8j3n)2. The transition rate is then given
by

where

(8.100)

Figure 8.7 provides numerical values for Im(qx, Ly, Lz) for wires with selected
cross-sectional dimensions.

Rewriting the argument of the delta function 8(E(kx ±qx) - E(kx) ±hw) through
the use of

(8.101)

where

[ (
2m*w)]1/2

q~.a) = ek;± k; - E -h- (8.102)
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with E = 1for emission and E = -1 for absorption, it follows that

( )
( {e,a}) ( {e,a})1 _ aw n + 1+ E 110 q+ + 110 q-

riria}(kx)-2n q 2 .jEjliw-E'

with

a __ 1 -=e
2 [_1 __1]

- Zhco .jlij2mw E(OO) E(O)'

(8.103)

(8.104)

8.3.3 Scattering rate for interface-LO phonon modes

The Frohlich interaction Hamiltonian, HrW, associated with the interface phonons in
rectangular polar-semiconductor quantum wires has been derived analytically using
an approximation method (Stroscio et al., 1990; Kim et al., 1991) involving the
separation of variables (Marcatili, 1969) and has been treated exactly by the use
of numerical techniques (Knipp and Reinecke, 1992). As a result, it is known that
the approximate separation-of-variables approach fails to predict so-called 'corner'
modes considered by Knipp and Reinecke - the well-known 'corner' problem.
Unlike the confined optical phonon modes of the last subsection, the interface modes
do not vanish on the interfaces of the quantum wire. Therefore, it is clear that
difficulties will be encountered in the vicinity of the corners when attempting to have
consistent boundary conditions on adjacent sides of the quantum wire. Nevertheless,

1
0.1 0.2 0.5 1 2 4

Qx = ~ 2:'(J) qx

Figure 8.7. Numerical
values for lro(qx, Ly, Lz)
for wires with selected
cross-sectional dimensions
defined by the four pairs
(Ly/Lo, Lz/Lo) =
(1, 1), (2,2), (3, 3), (4,4),
where La = [1i/(2m*w)]1/2.
The solid and broken lines
represent results obtained for
bulk phonons and for the
lowest-order confined modes
respectively.
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the approximate solution based on separation of variables will be presented since
it provides physical insight into the nature of the interface modes. Subsequent to
deriving the IF modes in this approximation, the exact treatment of Knipp and
Reinecke (1992) will be presented and the corner modes discovered by Knipp and
Reinecke will be described.

Taking the quantum wire to have infinite extent in the x-direction, the electrostatic
potential, <p(r), may be written as a one-dimensional Fourier transform:

<p(r) = L<p(qx, y, z) e-iqxx.
qx

(8.105)

Then

E(r) = -\leper) = LE(qx,y,z)e-iqxx,
qx

(8.106)
per) = x(w)E(r) = LP(qx, y, z) e-iqxx.

qx

The normalization condition is given in terms of u, (qx, y, z) by

(8.107)

where the subscript i refers to a general material region i. From the results of
subsection 7.3.4 for a quantum well, it is clear that

I w2 _w2
( )

LO,i TO,i= -Ei 00-----
4n (w2 _ w2 .)2

TO"

I aEi(W)
----
4n Zco aw '

holds for the case of a quantum wire and it follows that

(8.108)

~ I I aEi(W)~ (2. 2 la<Pi(qx,y'Z)1
2j nLJ-4 -2 -a- dz qxl<p,(qx,y,z)1 + a -2'.'L'

i n sco co R, Z ~

(8.109)

where the sum over i is over the two material regions in the problem at hand: i = I
inside and i = 2 outside the quantum wire. The Frohlich interaction Hamiltonian,
HrW, is then given by

HrW = -e L<p(qx, y, z) e-iqxX[ArF(qx) + AiF( -qx)],
qx

(8.110)

where ArF(qx) and AiF( -qx) are the annihilation and creation operators for the
appropriate IF-phonon modes of the quantum wire and where in the separation-of-
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variables approximation <I>(qx, Y, z) has the form

C coshay coshj3y
cosh a Ly /2 cosh j3Lz/2

C coshay etJLz/2e-tJlzl
coshaLy/2

CeaLy/2e-alyl coshj3y
coshj3Lz/2

C eaLy/2 e-alyletJLz/2 e-tJ1z1

for the symmetric IF mode and

sinh ay sinh j3y
+C sinhaLy/2 sinhj3Lz/2

sinh(ay) tJL /2 -tJlzl=fC -----e z e
sinh(aLy/2)

C aLy/2 -alyl sinh (j3y)-F e e -----
sinh(j3Lz/2)

±C eaLy/2 e -alyl etJLz/2 e -tJlzl

IYI :::: Ly/2, [z] :::: Lz/2,

IYI :::: Ly/2, [z] :::: Lz/2,

IYI :::: Ly/2, [z] :::: Lz/2,

IYI :::: Ly/2, [z] :::: Lz/2,
(8.111)

IYI :::: Ly/2, [z] :::: Lz/2,

IYI :::: Ly/2, [z] :::: Lz/2,

IYI :::: Ly/2, [z] :::: Lz/2,

IYI :::: Ly/2, [z] :::: Lz/2,
(8.112)

for the anti symmetric IF modes; in these potentials, a and j3 satisfy the relation

(8.113)

and in (8.112) the plus sign is taken when yz > 0 and the minus sign when
yz < O. As usual, the dispersion relations are obtained by imposing the boundary
conditions. For the symmetric solution this dispersion relation is

(8.114)

and for the anti symmetric mode the dispersion relation is

(8.115)

where

(8.116)

must also be satisfied for both modes. These dispersion relations are of the same
forms as those for a quantum well, as is expected since the separation-of-variables
approximation has been assumed thus far in this treatment of the optical phonons
in quantum wires. The numerical solutions for these dispersion relations are
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depicted in Figure 8.8 for the case where Ly = Lz = d. In this figure the
dispersion relations are given for a GaAs quantum wire in two cases: a free-
standing quantum wire having frequencies »s.] and WA,f for the symmetric and
anti symmetric interface modes respectively, and a GaAs quantum wire embedded
in AlAs having frequencies for the symmetric and anti symmetric interface modes
of wS,± and WA,± respectively. The subscripts ± designate the high-frequency
(+) and low-frequency (-) modes for both the symmetric and antisymmetric
cases.

so.o -,-,
<, C1) •.•.--~~~~=~----------------,.... ••••• C1)A+

/
/45.0

->CI)

E->-
Co)
c 40.0
CI):::scr
CD•..
~

35.0

R (J)A_

f5i-=-:-:::(J)=s-=---------------------------------------~--- ---

30.0

0.0 2.0 4.0 6.0 8.0 10.0

Figure 8.8. Frequency versus wavevector for the IF optical phonons of a
free-standing GaAs quantum wire having frequencies ws.] and wA,f for the
symmetric and antisymmetric interface modes respectively, and a GaAs quantum
wire embedded in AlAs having frequencies wS,± and wA,± for the symmetric and
anti symmetric interface modes respectively. The subscripts ± designate the
high-frequency (+) and low-frequency (-) modes for both the symmetric and
anti symmetric cases. From Kim et at. (1991), American Institute of Physics, with
permission.
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The normalization condition leads to the following equation in terms of the
normalization constant, C, for the symmetric mode:

li 1 2 W[o 1 - Wfo 1 ( «t., f3Lz)-24n-L- C- =El(oo) 2' 2 ' cosh--cosh--
2w W - wTO,1 2 2

[
a2 (Lz ' sinh o L, sinhf3Lz)x - - sinh o L, + -------

2 a af3

f32 (Ly , sinh o L, sinhf3Lz)]+ - - sinh f3Lz + -------
2 f3 af3

w2 _ w2 ( aL)-2
+ ( ) LO,2 TO,2 h y

E2 00 2 2 cos --
W - wTO,2 2

x [a2 (Sin~;Ly ) + f32 (Sin~;Ly + ~ ) ]

w
2

w
2

( f3L )-2+ ( ) LO,2 - TO,2 h z
E2 00 2 2 cos --

W - wTO,2 2

x [a2 (sin~;Lz + ~z ) + f32 (Sin~;Ly ) ]

W[0,2 - wfo,2 [2 (a2 + (32) ]+ E2(00) 2 2 ---- .
W - WTO,2 af3

(8.117)

A similar expression may be derived straightforwardly for the anti symmetric mode.
As in the previous subsection, the transition rate, S~ri~k(k,k'), from an ini-

tial electron state Ikm) and an initial phonon state I~q+ 1± 1) - denoted

by IhD, Nq + 1± 1) - to a final electron state (k~DIand a final phonon state

(N q + 1+ 11- denoted by (k~D' N q + 1+ 11- per unit time per unit heterostruc-
ture area A is given by

S~ri~Ik(k,k') = 2: L IM~~(~(qx)12 8(E(k') - E(k) ± liw),
q

M~ri~~(qx) = (k~D' Nq + 1 + -! 1 HI~D Ikm, Nq + -! ± -!).
The electron wavefunction and the electron energy for the ground state are as
given in the last subsection. Then the procedures of the last subsection lead
straightforwardly to the equation

(8.118)

(8.119)

(8.120)

with E = 1 for emission and E = -1 for absorption,
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[ (
2m*w)]1/2

q~,a) = Ekx ± k; - E -n- (8.121)

and

II 1 e2
a = ----_-_-_-_-_-

2nw .,!n /2mw
(8.122)

Furthermore,

(2n)2 ( L) 2 2
lID,IF = --2- -- C P; '

w 4n
(8.123)

where

1
Ps == ---------

cosh «t.,/2 cosh f3Lzl2

fLy/2 dy fLzl2 dz 2 ny 2 n :
x -- --cos -cos -

-Ly/2 Ly/2 -Lzl2 Lzl2 Ly L,

x cosh ay cosh f3z

cosh aLy/2 cosh f3Lzl2

4 sinh(aLy /2) sinh (f3Lzl2)
x ----------------

af3LyLz [(aLy/2n)2 + 1] [(f3Lzl2n)2 + 1] (8.124)

Only the symmetric mode contributes to the scattering rate for the ground state
electronic wavefunction in the extreme quantum limit.

The scattering rate l/r~ri~~(kx) has the same form as l/r~ria}(kx), (8.103), of
the last subsection. Indeed, ~ and a" differ only by the factor [c1 (00) - c1 (0)],
and lID is replaced by lID,IF. Otherwise the expressions are identical. Therefore, it
follows that the scattering rate due to both confined optical phonons and interface
optical phonons is given by

1 II ( 1 ) 1 ({e,a}) 1 ({e,a})____ _ aWn + ---±....:.. wire q+ + wire q-
r{e,a}(k) - 2n q 2 .,!E/nw-E '

WIre x

(8.125)

where

lwire = [_1_ - _1_] lID + lID IF.
E(oo) E(O) ,

(8.126)
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The electron-optical-phonon scattering rates for emission and absorption for se-
lected phonon modes are displayed in Figure 8.9 for a 40 A x 40 A GaAs quantum
wire embedded in AlAs. The interface phonons are labeled as SO (surface-optical)
modes and the confined phonons are labeled simply as LO modes.

The one-dimensional density-of-states peaks are prominent features of the curves
representing the phonon emission rates. The electrons are in the ground states in the
y- and z-directions. The maximum scattering rates for SO-phonon emission occur
at the energies of the symmetric high- frequency interface mode (about 50 me V) and
the symmetric low-frequency interface mode (about 33 meV).

Knipp and Reinecke (1992) examined the accuracy of using the separation-
of-variables approximation to the dielectric continuum model for calculating the
Frohlich potential of the interface optical phonons in quantum wires. They consid-

____ SO,f (emi)
------

SO,f (abs) __-----.-

...••..
-·-._LO (erni)...•..•.....•.....

--.---. ..---------

SO (emi)
-...•..-.
LO (ab~'-'-

SO (abs)

o 20 40 60 80 100

Electron energy Ex (meV)

Figure 8.9. The electron-optical-phonon scattering rates for emission and
absorption for selected phonon modes for a 40 A x 40 A GaAs quantum wire
embedded in AlAs. The interface phonons are labeled as SO (surface-optical) modes
and the confined phonons are labeled simply as LO modes. From Kim et al. (1991),
American Institute of Physics, with permission.
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ered a variety of wire geometries, as illustrated by the cross-sectional areas of Figure
8.10.

As indicated in Figure 8.10, the material inside the quantum wire has dielectric
constant fleW) and the surrounding material has dielectric constant f2eW). For the
cases of quantum wires with circular and elliptical cross sections these workers
obtained elegant analytical results. For quantum wires with nearly rectangular cross
sections having rounded corners they used numerical techniques to determine the
Frohlich potentials.

An interesting feature of the calculations of Knipp and Reinecke is the localiza-
tion of interface modes near the corners of the nearly rectangular quantum wires in
the vicinity of the rounded corners, as illustrated in Figure 8.11. In Figure 8.11 the
Frohlich potential in the plane of the quantum wire - denoted by ¢- is depicted for
the mode of highest azimuthal symmetry em = 0) for a quantum wire with Rt r = 2
and for a corner curvature a = r /10. The Frohlich potential shown in Figure 8.11
represents the case where q r = 2.

The Frohlich potential in the plane of an elliptical quantum wire with R / r = 2
is shown in Figure 8.12. The potential shown in Figure 8.12 is again the Frohlich
potential for the mode of highest azimuthal symmetry em = 0), with qr = 2. The
potential is enhanced in the regions near the vertices of the rectangle into which the
ellipse fits.
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Figure 8.10. Cross sections considered by Knipp and Reinecke (1992). The
long-broken line represents an elliptical cross section. The shorter broken line
designates a cross section that is basically elliptical but has flattened sides. The solid
and dotted lines (visible at the corners) represent 'rectangles' with rounded corners.
The geometrical parameters Rand r are as indicated in this figure. From Knipp and
Reinecke (1992), American Physical Society, with permission.
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8.3.4 Collective effects and non-equilibrium phonons in
polar quantum wires

Campos et al. (1992) and Das Sarma et al. (1992) considered the influence of
collective carrier screening on carrier-optical-phonon scattering in quantum wires.
Since the Frohlich Hamiltonian represents the interaction between a carrier and the
fields produced by polar optical phonons, it is clear that the screening of such a
Coulomb-like interaction by carriers is possible.

To estimate the magnitude of such a collective screening of the Frohlich inter-
action, Campos et al. and Das Sarma et al. calculated the power loss per carrier
caused by carrier-optical-phonon interactions in a GaAs quantum wire for the case
where dynamical screening, phonon confinement, and the presence of the so-called
'hot-phonon' effect are all taken into account. The energy loss rate of a carrier in
such a polar-semiconductor quantum wire is determined by both the rate at which
the carrier's energy is lost by phonon emission and the rate at which the carrier gains

Figure 8.11. Interface modes in a nearly rectangular quantum wire. The Frohlich
potential r/Jin the plane of the quantum wire is depicted for the mode of highest
azimuthal symmetry (m = 0) for a quantum wire with Rf r = 2 and for a corner
curvature a = r/lO; qr = 2. From Knipp and Reinecke (1992), American Physical
Society, with permission.
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energy from phonon absorption. This latter rate can be significant in quantum wires
and quantum wells, since the phonons emitted by energetic carriers can accumulate
in these structures. Indeed, the phonon densities in many dimensionally confined
semiconductor devices are typically well above those of the equilibrium phonon
population and there is an appreciable probability that these non-equilibrium - or
'hot' - phonons will be reabsorbed. The net loss of energy by a carrier in such a
situation depends on the rates for both phonon absorption and emission.

The lifetimes of the optical phonons are also important in determining the total
energy loss rate for such carriers. As discussed in Chapter 6, the longitudinal optical
(La) phonons in GaAs and in many other polar materials decay into acoustic
phonons through the Klemens' channel. Over a wide range of temperatures and
phonon wavevectors, the lifetimes of these longitudinal optical phonons in GaAs
vary from a few picoseconds to about 10 ps (Bhatt et al., 1994). Typical lifetimes for
other polar semiconductors are also of this magnitude. The La phonons undergoing
decay into acoustic phonons are not available for absorption by the carriers and,

Figure 8.12. The Frohlich potential in the plane of an elliptical quantum wire with
R] r = 2. This potential was derived analytically by Knipp and Reinecke (1992) for
the mode of highest azimuthal symmetry (m = 0), with qr = 2. From Knipp and
Reinecke (1992), American Physical Society, with permission.
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as a result of the Klemens' channel, the carrier energy loss is more rapid than it
would be otherwise; this phenomenon is referred to as the 'hot-phonon-bottleneck'
effect. In fact, the numerical calculations of Campos et al. and Das Sarma et al. for
a 50 A x 50 A GaAs quantum wire indicate, over a temperature range from 50 K to
300 K, for wire dimensions from 50 A x 50 A to 500 A x 500 A, and for a linear
density range of 104 to 106 cm ", that the hot-phonon-bottleneck effect changes the
net power loss by an order of magnitude or more while the effect of carrier screening
results in a change of only, roughly, a factor of two.

Figure 8.13 illustrates these findings for the case of a linear charge density of
106 cm-1 (Campos et al., 1992). The power loss P per carrier is given as a function
of the inverse electron temperature for both the slab modes and the guided modes.
The curve of highest power loss (long-broken line) is calculated for the slab modes
with no screening effects. The thinner solid line represents the power loss with
screening effects included for a phonon decay time Tphonon of a ps; the thicker solid
line represents the power loss with screening effects included for a phonon decay
time Tphonon of 7 ps. For the case of the guided modes, the unscreened power loss
function is represented by the broken-and-dotted line, and the screened power loss
functions for Tphonon = a ps and Tphonon = 7 ps are represented by the thinner and
thicker short-broken lines respectively.
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Figure 8.13. Results of Campos et al. for a 50 A x 50 A GaAs quantum wire for the
case of a linear charge density of 106 ern -1. The power loss per carrier is given as a
function of the inverse electron temperature. The curve of highest power loss
(long-broken line) is calculated for the slab modes with no screening effects. For the
guided modes, the un screened power loss function is represented by the
broken-and-dotted line and the screened power loss functions for Tphonon = 0 ps and
Tphonon = 7 ps are represented by the thinner and thicker short-broken lines
respectively. From Campos et al. (1992), American Physical Society, with
permission.
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Thus while dynamical screening effects can be noticeable the effects of the
hot-photon bottleneck can lead to a change of an order of magnitude or more in the
carrier energy loss rates associated with carrier-LO-photon scattering in quantum
wires. The screening calculations of Campos et al. (1992) and Das Sarma et al.
(1992) involve non-trivial numerical calculations. For additional information on
dynamical screening and hot-phonon effects the reader is referred to these papers.

8.3.5 Reduction of interface-phonon scattering rates in
metal-semicond uctor structures

The first calculations of carrier-LO-phonon scattering rates in quantum wires made
of polar semiconductors (Stroscio et al., 1990; Kim et al., 1991) revealed that
the scattering of carriers with interface optical phonon modes dominates over
the scattering associated with confined and half-space phonons. As a means of
reducing the unwanted inelastic scattering caused by the interface LO phonons in
semiconductor quantum wires, it was suggested (Stroscio et al., 1992) that the large
carrier-LO-phonon scattering caused by interface phonons could be eliminated by
encapsulation of the quantum wire in a metal. This proposal is of little use for most
metal-semiconductor systems, but such a metal-semiconductor interface would lead
to a depletion of the semiconductor when the cross-sectional dimensions - Ly and
Lz - of the quantum wire are small enough (i.e., less than about «:' = 1/0.02 A)
for the scattering rate due to interface phonons to be appreciable.

However, in some metal-semiconductor systems, such as the InAs-AI system,
the Fermi level is pinned so that there is no depletion of carriers in the semiconductor
but an accumulation of carriers near the metal-semiconductor interface. In cases
where the semiconductor is not depleted, quantum wires with Ly, Lz ;S «:' =
1/0.02 A will exhibit large carrier-LO-interface phonon scattering rates detrimental
to high-mobility transport.

To reduce these effects, the interface optical phonons may indeed be modified or
practically eliminated through the use of metal boundaries at the semiconductor
interfaces. The highly mobile carriers in a metal generally screen electric fields
and these fields penetrate only very short distances, of order 8, into the metal; 8
is known as the Thomas-Fermi screening length and is generally of the order of an
angstrom or so. The significance of this strong screening of electric fields near the
metal-semiconductor interface is that the phonon potential ¢ must vanish near the
interface. In such a situation, it is clear that both the symmetric and anti symmetric
interface optical phonons will have very small amplitudes in quantum-wire and in
quantum-well structures.

To estimate the magnitude of this reduction, Bhatt et al. (1993a) consid-
ered a metal-semiconductor-semiconductor (MSS) double-heterointerface structure
with the metal-semiconductor interface at z = -d and the semiconductor-
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semiconductor interface at z
potential is of the form

d. For this heterostructure, the interface phonon

{

Aez/8

¢(r) = ¢oeiq-p x Beqz + Ce-qz
e-q(z-d)

z < -d,
[z] < d ,

z > d,
(8.127)

where the constants A, B, and C as well as the dispersion relation for the mode
are determined by the conditions that ¢i and Eia¢i Iaz are continuous at the
two heterointerfaces. It is straightforward to show by imposing these boundary
conditions that

[ ( ) ( )]

-1
A - eqd _E_1_ 1+ ~

- E1 - E2 q8E1 '

1 _ d ( E2)B = -e q 1 - - ,2 E1

1 d ( E2)C = -eq 1+-2 E1

(8.128)

and that the dispersion relation is

E1 - E2 e-2qd (q8E1 - Em) _ 1 = O.
E1 + E2 q8E1 + Em

In these results, the dielectric function of the metal is given by

(8.129)

o}r2

Em = 1 - P 2 2'
l-wr

(8.130)

where wp is the plasma frequency for the carriers in the metal and r is the dielectric
relaxation time for the carriers in the metal.

Since the ratio I A IB I is a measure of the amplitude of the IF optical phonon
mode in the metal and since

IA 1= __ 2__ « 1,
B 1+ Emlq8E1

(8.131)

for typical metal-semiconductor structures, it follows that the fields associated
with the IF optical phonon mode are damped dramatically by electron screening
as it enters the metal. Thus, to a very good approximation, ¢(r) = 0 at a
metal-semiconductor interface. Indeed, numerical calculations (Bhatt et al., 1993a)
show that IAIBI is in the range 4 x 10-3_10-8 when 8 is in the range 1-10
A and q = 0.01 A-I. Since the IF optical phonon modes, in general, have
non-zero amplitudes at heterointerfaces, it follows that these modes do not satisfy
the boundary condition ¢(r) = O. Accordingly, these results imply that the IF
modes suffer dramatic reductions in amplitude when semiconductor-semiconductor
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heterostructures are replaced with metal-semiconductor structures. Indeed, for the
metal-semiconductor-metal (MSM) structure of Figure 8.14, it follows trivially that
the optical phonon potentials should vanish at both z = 0 and z = d.

Clearly, neither the symmetric nor the anti symmetric optical phonon modes
can satisfy these conditions. The MSM structure of Figure 8.14 does, however,
support confined LO phonons. It is straightforward to extend these conclusions
to the case of a semiconductor quantum wire embedded in a metal. In closing
we note that Constantinou (1993) also considered the reduction of IF optical
phonon mode amplitudes in metal-semiconductor systems. The concept of using
a metal-semiconductor interface to reduce electron-interface-phonon interactions
in quantum wires was considered further by Dutta et al. (1993).

8.4 Scattering of carriers and LO phonons in quantum
dots

As discussed in Sections 5.2 and 7.1, the Frohlich Hamiltonian for a bulk polar
semiconductor may be written as

H(3D) _ ~ £ ( _ t ) iq-rFr - L...J aq a_q e ,
q Iql

(8.132)

where

C =-i 2ne2nWLO [_1 1_].
V E(OO) E(O)

(8.133)

Consider a quantum dot with the geometry of a free-standing cube each of whose
sides is of length L (de la Cruz et al., 1993). Then by writing the sum over q as a

metal GaAs metal

I
o

I
d

••
z

Figure 8.14. A metal-semiconductor-metal heterostructure in which the
metal-semiconductor interfaces are at z = 0 and z = d. Interface LO phonon modes
are not present in such a structure since the LO phonon potential vanishes at each
metal-semiconductor interface. From Bhatt et al. (l993a), American Institute of
Physics, with permission.
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sum over positive values of qx, qy, and qz, expanding the exponentials in a manner
similar to that for a free-standing quantum wire (Stroscio, 1989), and requiring that
qx = ±mn/L, qy = ±nn/L, and qz = ±pn /L, so that the Frohlich potential
vanishes on the faces of the box, it follows that the Frohlich Hamiltonian for the
quantum box must have the form

H~~D) = 23/2C {L L L (3(m, n, p)
m=I,3", n=I,3", p=I,3",

mit x nit y p it ; [ t ]
x cos -- cos -- cos -- A++ (q)+ + A++ (-q)+

L L L
~ ~ ~ mit x nit y p it ;

+ L L L {3(m,n,p)sinTcosTcosT
m=2,4", n=I,3", p=I,3",

X [A+_(q)++A~_(-q)+J
~ ~ ~ mit x nit y p it ;

+ L L L (3(m,n,p)cosTsinTcosT
m=I,3", n=2,4", p=I,3",

X [A_+(q)+ + A~+( -q)+ ]
~ ~ ~ mit x nit y p it ;

+ L L L {3(m,n,p)sinTsinTcosT
m=2,4", n=2,4", p=I,3",

X [A __ (q)++A~_(-q)+J

~ ~ ~ mit x nsty p it ;
+ L L L (3(m,n,p)cosTcosTsinT

m=I,3", n=I,3", p=2,4",

X [A++(q)_ + A~+( -q)_ ]

~ ~ ~ mit x nit y p it ;
+ L L L (3(m,n,p)sinTcosTsinT

m=2,4", n=I,3", p=2,4",

X [A+_(q)_ + A~_( -q)_ ]

~ ~ ~ mit x nit y p it ;
+ L L L (3(m,n,p)cosTsinTsinT

m=I,3", n=2,4", p=2,4",

X [A_+(q)_ + A~+( -q)_ ]

~ ~ ~ mit x nit y p it ;
+ L L L {3(m,n,p)sinTsinTsinT

m=2,4", n=2,4", p=2,4",

(8.134)

where

[
mst 2 nit 2 ptt 2] 1/2

(3(m, n, p) = (L) + (L) + (L) , (8.135)
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and where the phonon annihilation operators for the zero-dimensional confined
modes are

1
A++(q)± = y'2 [A+(qx)± + A+( -qx)±],

-i
A+_(q)± = y'2 [A+(qx)± - A+( -qx)±],

1
A_+(q)± = y'2 [A_(qx)± + A_( -qx)±],

-i
A __ (q) __ = y'2 [A_(qx)± - A_( -qx)±].

(8.136)

The operators A±(qx)± can be written in terms of the annihilation operator for a
three-dimensional semiconductor, in a manner analogous to that employed for the
quantum wire (Stroscio, 1989), through use of the relations

1
A+(qx)± = y'2 [a±(qx, qy) + a±(qx, -qy)],

-i
A_(qx)± = y'2 [a±(qx, qy) - a±(qx, -qy)],

(8.137)

(8.138)

For the case of a GaAs quantum dot in vacuum, the electron energy levels are
generally separated by more than the typical longitudinal optical phonon energy,
nWLO, unless the dimensions of the dot are such that L is greater than several
hundred angstroms. Phonon confinement effects are generally not significant for
such large confinement lengths. Specifically, for such a GaAs quantum 'box' the
confined phonons and the interface phonons have energies within a few me V of the
bulk phonon energy, 36 me V. In the case where the quantum dot is embedded, in, say,
AlAs, there would be interface phonons with energies close to 50 me V but even these
energies are small compared to typical separations between electron energy states
unless the length L is several hundred angstroms or more. For holes, the de Broglie
wavelength is considerably shorter and energy level separations are smaller than
for the case of electrons. Accordingly, for transitions involving holes the quantum
'box' may be small enough for phonon confinement effects to be significant. It will
be instructive to summarize key features of the calculation of de la Cruz (1993)
because it illustrates the general procedure within the effective-mass approximation
and the Fermi golden rule approximation (Appendix E).
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For a 'box' in vacuum with infinitely high potential barriers at its boundaries,
defined by - L/2 ::::x, y, z ::::L/2, the carrier wavefunctions are represented by

" ti2 iit x jny Lit ;
II ) I) = - cos -- cos -- cos -, , L L L L '

ti2 iit x jny l.n :
Ii)' I) = - sin -- sin -- sin -, , L L L L '

for odd i, i. I,
(8.139)

for even i, i. I.

The carrier eigenenergies for this system in the effective-mass approximation, with
effective mass m *, are given by

(8.140)

The transition probability given by the Fermi golden rule is then

{e a} 2n 1 {e a} 1

2
W' =- M' 8(E'1 "l'-£- 'l±nWLO)n 1 ,J , l,J, , (8.141)

with

M{e,a} - (i' )'' I'· N + 1± 1IH(ODll i)' I' N + 1± 1)-",q 2 2 Fr ",q 2 2 (8.142)

where, as discussed several times previously, the signs are chosen to describe
the desired phonon process. The energy-conservation constraint required by the
8-function may be expressed as

(8.143)

For the system under consideration, non-zero matrix elements correspond to tran-
sitions between states of the same parity. Accordingly, the transitions corresponding
to the smallest quantum boxes are those between the 11, 1, 1) states and states where
the carrier quantum numbers, i',}', I' and i, i. I, are selected from 1,3, and 5.
For these latter states, all the degenerate states for a given set of carrier quantum
numbers are denoted by {Ii, i. I)}. The transition probabilities for a selection of
such transitions were calculated by de la Cruz (1993) for GaAs at room temperature.
These probabilities are summarized in Table 8.1, where, in the case of emission, the
carrier transition occurs between the indicated set of degenerate states {Ii, i. I)} and
the 11, 1, 1) state. Likewise, for the case of absorption, the initial state is the 11, 1, 1)
state and the final state is indicated by the specific set {I i, i. I) } corresponding to the
transition.
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Table 8.1. Transition probabilities W for LO phonon emission and absorption
resulting from the Frohlich interaction in a GaAs quantum box of side L at room
temperatnre. The II, I, I) state is the final state in emission and the initial state in
absorption.

L (nm) Wemission Initial states
(x 1013 s-I)

Wabsorption Final states
(x1012 s-I)

352
498
610
610
704
787
863

1056

2.51 {13, 1, I)}
1.71 {13,3,1)}
1.02 {13, 3, 3)}
1.69 {15,1,1)}
1.20 {ll,3,5)}
0.81 {15,3,3)}
0.91 {15,5,1)}
0.86 {15, 5, 5)}

5.77 {13, 1, I)}
3.93 {13, 3, I)}
2.33 {13, 3, 3)}
3.88 {15, 1, I)}
2.76 {ll,3,5)}
1.86 {15, 3, 3)}
2.09 {15, 5, I)}
1.56 {15,5,5)}



Chapter 9

Carrier-acoustic- phonon scattering

o praise ye the Lord, all things that give sound, each jubilant
chord re-echo around; Loud organs, his glory tell in deep tone
and, sweet harp, the story of what he hath done.
Henry Williams Baker, 1875

9.1 Carrier-acoustic-phonon scattering in bulk
zincblende structures

In this section the strain tensor introduced in Section 7.2 will be related to both the
deformation-potential interaction and the piezoelectric interaction.

9.1.1 Deformation -potential scattering in bulk zincblende
structures

The deformation-potential interaction of Section 5.3 applies to the case of an
isotropic medium. In the general case of a carrier band with energy ECL (k), the
deformation potential depends on the strain tensor and the deformation-potential
constant, E~vl' must also be represented as a second-rank tensor; accordingly,

H = Estrained(k) _ Ennpert(k) = ECL S
CL,def CL CL fLvl fLV' (9.1)

where SfLV is the strain tensor defined in Section 7.2, (7.27), and the deformation
potential is the difference in the energy of band a when strain is present, E;;trained(k),

and the energy of band a when there is no strain, E~npert(k). Since the phonon field is
always present, the case where there is no strain is unphysical; it corresponds to the
situation where there is no deformation potential. For cubic crystals and for carriers
experiencing a spherically symmetric energy surface, symmetry considerations
make it evident that the crystalline potential should be proportional to V V/ V, as
in Section 5.3. This conclusion holds for carriers at a non-degenerate r point but

172
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not for the cases of other symmetry points such as the X or L points. Accordingly,
for the case of a cubic crystal and for carriers at the r point,

Ha,def = E'1VV IV = E'1V . u, (9.2)

or, in the notation of Section 7.2,

Ha,def = E'1 L., (9.3)

since here L. = V· u. Consider an acoustic mode of wavevector q and a displacement
field which varies as e-iq.r. Then L.(r) =V . u = -iq· u and it follows that
longitudinal acoustic (LA) but not transverse acoustic (TA) modes lead to non-zero
values of Ha,def. However, for cubic crystals with carriers at energy minima at other
symmetry points - such as X or L points - E~v1 does not reduce to a scalar but
instead takes the form

(9.4)

where the minimum is on an axis along the unit vector 1. For this more general case,
the E'11 term contributes to the deformation potential and, in general, the TA and
optical phonons produce deformation potentials leading to intravalley processes.

9.1.2 Piezoelectric scattering in bulk semiconductor
structures

As described in Section 5.4, piezoelectric scattering results from the interaction of
carriers with the macroscopic piezoelectric polarization produced by strain fields, in
polar crystals lacking an inversion symmetry. These strain fields may be generated
either externally as, for example, by a mismatch between the lattice constants in
pseudomorphic systems, or internally, as by an acoustic phonon. In the notation of
Section 7.2, the piezoelectric polarization of the cubic crystal, considered in Section
5.4 takes the general form

(9.5)

where SfLV is the strain tensor and eA,!," is the generalized tensor describing the

piezoelectric coupling of the polarization, ptezo
, to the strain field SfLu- In practice,

the components of eA,!," may be determined through knowledge of the strain and
electromagnetic fields and the static dielectric constant, EffL' via the relation

(9.6)

As described previously (Vogl, 1980), eA,!," is manifestly a bulk quantity. In
general, PA and EA depend on the geometry of the crystal structure but the
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components of eA,!'v are bulk-like quantities determined by the local electronic
structure of the crystal.

The piezoelectric interaction may be modeled in terms of the interaction of
carriers with the macroscopic electric potential produced by the piezoelectric field.
To calculate this potential for a bulk semiconductor, the phonon displacement is
taken to vary as e-iq.r, and it follows that V . u = iq . u. In a region without free
charges V . D = O. Hence, applying qA to

DA = 47TeA,!'vSfLV + EffLEfL

it follows that

(9.7)

qAEffLEfL = -4nqAeA,!'vSfLV' (9.8)

For the phonon displacement field under consideration, SfLV = ~i (qfLuv + uvqfL)

and, by defining the potential associated with the piezoelectric potential through
_iqVpiezo(q) = E, it follows that

Vpiezo( ) _ 4 qAeA,!'vqfL
q - it ° u..:

qAEAfLqfL
(9.9)

For isotropic, cubic, trigonal, tetragonal, and hexagonal structures qAEffLqfL reduces

to relatively simple expressions since in these cases EffLmay be represented as a
3 x 3 matrix with all non-diagonal elements equal to zero. For cubic structures,
qAEffLqfL reduces to EOq. q since the three diagonal elements of EffLare all equal to
EO.

For non-cubic crystals it is convenient to use the tensor notation of Section 7.2 to
determine pt

ezo from pt
ezo = eA,!'v SfLV' As in Section 7.2, SfLV may be represented

as a six-element vector, pt
ezo is a three-element vector, and eA,fLV is a 3 x 6 matrix;

for zincblende structures (Auld, 1973), the 3 x 6 matrix is

0 0 0 ex4 0 ,,:J0 0 0 ex4

0 0 0 0

and for wiirtzite crystals this matrix takes the form

Ul 0 0 0 ex5 n0 0 ex5 0
ex2 ex3 0 0

(9.10)

(9.11 )

9.2 Carrier-acoustic-phonon scattering in
two-dimensional structures

For a single band and for a non-degenerate r point the results of subsection 9.1.1
reduce to
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(9.12)

and with the expression for the quantized displacement derived in (7.145), Section
7.6 (Bannov, 1995), it follows that

Hdef = £1 L 2 li (an,q + a~,_q)V. [Wn(qll' z) eiqll"rll]
qll,n 2L Pwn(qll)

= L eiqll"rllr(qll' n, z)(an,q + a~,_q) (9.13)
qll,n

where

(9.14)

9.3 Carrier-acoustic-phonon scattering in quantum
wires

In this section electron-acoustic-phonon scattering rates will be considered for two
different quantum-wire geometries, cylindrical and rectangular. In both cases, the
scattering rates will be calculated by applying the Fermi golden rule and by treating
the acoustic phonon modes as modes of an elastic continuum with the normalization
condition of Chapter 7.

9.3.1 Cylindrical wires

For the case of a cylindrical quantum wire, the quantization of the acoustic phonons
may be performed by taking

1
u(r) = !AT L[u(q, r)aq + c.c.]

yN q
(9.15)

and by normalizing the acoustic phonon Fourier amplitude, u(q, r, cp, z), according
to

1 12
JT: la li

-2 dip dr ru(q, r, cp, z) . u*(q, r, cp, z) = --.
it a 0 0 2Mwq

(9.16)

Here a is the radius of the quantum wire, N is the number of unit cells in the
normalization volume V, aq is the phonon annihilation operator, q is the phonon
wavevector, wq is the angular frequency of the phonon mode, M is the mass of the
ions in the unit cell, and r, cp, z are the usual cylindrical coordinates. As discussed
in Chapter 7, the elastic continuum model provides an adequate description of such
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a quantum wire as long as the diameter of the quantum wire is several times larger
than the linear dimension of the unit cell. Within the elastic continuum model, the
equation describing the acoustic phonon modes is (Yu et al., 1996)

a2u
P-2 = C44 V2u + (C12 + C44)V(V . u)at

(9.17)

where c* = Cl1 - C12 - 2C44. For the isotropic case of Section 7.6, c* = Cl1 - C12-

2C44 = 0, and

a2u 2Pati = C44 V U + (C44 - Cl1)V(V . u)

= pC;V2u + p(cf - c;)V(V. u), (9.18)

or, equivalently,

a2u 2 2at2 = Cz V(V . u) - Ct V x V xu, (9.19)

where ci = y'Cl1/ p is the sound speed for longitudinal acoustic waves and Ct =
y'C44/ p is the sound speed for transverse acoustic waves. In considering the acoustic
phonon modes in a cylinder it is convenient to introduce two equivalent quantities,
the Young's modulus velocity Vo and the Poisson ratio (J, through

Co = CZ and (9.20)

In this subsection, the electron-acoustic-phonon scattering rate is evaluated for
an isotropic, cylindrical quantum wire. From subsection 9.1.1, the deformation-
potential interaction for non-degenerate carriers at a r point may be written as
Hdef = E 1V . u. In this case, only longitudinal acoustic modes contribute to the
scattering rate. As discussed by Auld (1973), the classical longitudinal modes for an
isotropic cylindrical structure have no azimuthal components and are of the form

ur(r,z) = {:r[BJo(qzr)+AJo(qtr)]}ei(qZ-wt),

uz(r, z) = i {q B Jo(qzr) _ ~2 AJo(qtr) } ei(qZ-wt),

(9.21)

where q is the z-component of the wavevector, (J) is the angular frequency, and Jo is
the lowest-order Bessel function of the first kind, and where qz and qt are given by

22 (J) 2
qz,t = -2--q

VZ,t
(9.22)
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We define dimensionless velocities, wavevectors, and frequencies by dividing by Co,
qo = it j a, and Wo = qoco respectively. That is, we take CZ,I = CZ,Ij Co, q = q j qo =
q(ajn), and OJ= wjwo = w(ajnco). Upon evaluating

1 12
JT: la n--2 dip dr r[ur(r, z)u;(r, z) + uz(r, z)u;(r, z)] = --,

it a 0 0 2Mwq

(9.23)

expressing u(r) in terms of u( q, r), and assuming Hdef = E 1V . u it follows that

(9.24)

where

here j3 = B j A.
In classical acoustics (Auld, 1973), there are two particularly simple types

of boundary condition. They are referred to frequently as the cardinal boundary
conditions and are the free-surface boundary condition (PSBC) and the clamped-
surface boundary condition (CSBC). In the free-surface boundary condition, at the
boundary between the cylindrical wire and the vacuum the normal components of
the stress tensor are zero and the displacement is unrestricted. In the clamped-surface
boundary condition, at the boundary between the cylindrical wire and the vacuum
the normal components of the stress tensor are unrestricted and the displacement is
zero. The dispersion relation for the free-surface boundary condition is then given
by

(-2 -2)'T'(- ) 2-2(-2 -2) 4-2-2'T'(- ) 0q - ql z ] qtr: - qz q + ql + q qz z ] q.r: = , (9.26)

and the dispersion relation for the clamped-surface boundary condition is given by

(9.27)
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where

Ti(x) = xJo(x)/h(x). (9.28)

For the free-surface boundary condition f3 is given by

f3 - _ riter? - ii}) h ((jIlT)
- 2(j2(jZ h({jzlT)'

(9.29)

and for the clamped-surface boundary condition f3 is given by

(9.30)

The electron-acoustic-phonon scattering rates may be evaluated straightfor-
wardly, in the limit where electrons are assumed to be confined in the cylinder by an
infinite potential at its surface. In this case (Wang and Lei, 1994)

eikz

Ik) = /T1/!(r,8),
yLZ

(9.31)

where

1 (XO

)1/!(r,8) = 0 Jo _lr ,
J7T"Y1 a a

(9.32)

X~ being the position of the first zero of Jo(x) and Yf being equal to J: (X~); Lv
the length of the cylinder, is assumed to be much larger than a. The energy of the
ground state electron energy is [(nk)2 + (X~/a)2]j2m*, where m" is the electron's
effective mass. Then it follows that the matrix element of the deformation potential,
Hdef, takes the form

MAe,a) = (e, »; + 1+ 1EI Hdef Ik, Nn)

~ a 2 2
= E1r2iiM%~f3n(q +qz)

x F(qza)J n; + 1+ 1ELkl+k-EQ' (9.33)

where Nn is the phonon occupation number of Section 5.1, E = 1, -1 in the cases
of phonon emission and absorption respectively and F is given by

[1 2
Fn(t) = Jo dxx IJo(X~x)1 Jo(tx). (9.34)

Then, assuming the Fermi golden rule,
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__1_= _2n IMle,a}12 8(E(k') _ E(k) + Eftw)
rle,a}(k) n n

~ n m* IEI12

- L;;: IYPI4n2 p

1 1 [(-le,a}) (-le,a})]
X -----=42 hCn q; + hCn q: ,

cocl a
(9.35)

with

I (-) l,Bn(q)12 1- 131D (- )12 (N I I)
ICn q = ISn(q)1 wn i'n qir: n + '2 + '2E

1
X

(q + k) - (Em*coajnn)(dwjdq)
(9.36)

From energy- and momentum-conservation conditions it follows that q~,a} is the
solution of (n2 j2m*)(q2 ± 2qk) - ehco = 0; accordingly, the plus sign is taken for
forward scattering and the negative sign for backward scattering. As usual, n labels
the quantized acoustic phonon modes.

For the piezoelectric scattering of carriers in a cylindrical quantum wire, the
normalization procedure is of course the same as that for scattering by a deformation
potential but the interaction Hamiltonian is based on the interaction potential of
subsection 9.1.2. For cubic materials this piezoelectric interaction potential takes
the form

(9.37)

In cylindrical coordinates the piezoelectric tensor of subsection 9.1.2 takes the form
(Auld, 1973)

o 0
o 0

-2ex4B(ep) 0

ex4A(ep)
-2ex4B(ep)

o

2ex4B(ep)
ex4A(ep)

o

where A(ep) = cos- ep - sin2 ep and B(ep) = cosep sin e. Moreover, the polarization
vector P and strain components Sv are given by

(9.39)

and
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ou.;
SI = Srr =-,ar

aUzS3 = Szz =-,aZ (9.40)
ou : ou ;

Ss = 2Srz = 2Szr = - +-,
az ar
1 ou.; auep Uep

S6 = 2Srep = 2Sepr = - - + - - -.
r acp ar r

Accordingly, the relation P = eS implies that (Stroscio and Kim, 1993)

PI = 2ex4(cos2 cp - sirr' cp)Szep + 4ex4 coscp sin e Srv

P2 = -4ex4 cos cp sin cp Szep + 2ex4( cos2 cp - sirr' cp)Srv

P3 = 2ex4 cos cp sin cp (Srr - Sepep)+ 2ex4( cos ' cp - sirr' cp)Srep.

From classical acoustic theory, the lowest-order azimuthally symmetric torsional
mode of a cylindrical structure of radius a has the form (Auld, 1973)

(9.41)

(9.42)

where Vt = (C44/p)I/2 and y is a normalization factor to be determined. The
solutions for a free-standing cylindrical structure satisfy the boundary condition of
vanishing stress components on the surface of the cylinder. That is, the vibrational
modes are such that the cylinder undergoes distortions until there is no remaining
force on its surface to cause additional distortion. For such a case the displacement
field on the surface of the cylinder is unrestricted. For the case of a free-standing
structure, the displacement field of lowest-order azimuthally symmetric torsional
mode is characterized by vanishing u; and Uz and q = qz = w/Vt. For a wire of
radius a and length L the classical solution for this mode is found by requiring the
zcp-component of the stress to be zero at the ends of the cylinder located at z = 0
and z = L, so that the classical mode is given by

fini " lJrr
U mte wire = r'r cos-ep L z,

where lJrr / L = W / Vt and y' is the normalization constant. The normalization
condition,

(9.43)

1 lL 12
JT: la

Pi.--2- dz dip dr ru(q, r, cp, z) . u*(q, r, cp, z) = --,
it a L 0 0 0 2Mwq

(9.44)

yields

finite wi ~2 lJrrU rute wire = --- - rcos -z.
ep 2Mwqa L

(9.45)
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Strictly speaking, this case of a quantum wire of finite length also corresponds to
a quantum dot since dimensional confinement is considered in all three dimensions.
For a quantum wire of infinite length the normalization introduced at the beginning
of this section requires the condition

y = ~(_1z_)1/2,
a MWq

(9.46)

so that

fini " ~l . /umte wrre = ---re-ZU)/ VI.

'P M wq a
(9.47)

These normalized displacement fields determine the components of S and, therefore,
P; and the piezoelectric interaction potential vpiezo (q) is thus determined for the
lowest-order azimuthally symmetric torsional modes of quantum wires and cylindri-
cal quantum wires of finite length. As illustrated for the deformation potential, the
carrier-acoustic-phonon scattering rate may be estimated by perturbation theory. In
particular, the Fermi golden rule of Appendix E provides a convenient formalism
for such calculations.

9.3.2 Rectangular wires

The calculation of the carrier-acoustic-phonon scattering rate in a rectangular quan-
tum wire proceeds along the lines of the analogous calculation of subsection 9.3.1
for a cylindrical quantum wire. The deformation-potential interaction for acoustic
phonons interacting with carriers in a rectangular quantum wire was derived in
subsection 7.6.3, (7.196), where it was shown that

with

2 21z
Ay=---,

MWyBy

hd = (n + ~)n,

(9.49)

n=O,I,2, ....

In the extreme quantum limit where the carriers are assumed to be confined within
the rectangular boundaries of the quantum wire by an infinitely high potential, the
carrier wavefunction is

1 it x ny i k ;
1/Jk(X, y, z) = Ik) = r::-::J cos - cos -e ,

-Jad 2a 2d
(9.50)
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and the ground-state carrier eigenenergy is

(9.51)

To estimate the carrier-acoustic-phonon scattering rate, it is necessary to evaluate
the matrix element of the deformation-potential interaction. This matrix element is
given by

MAe,a} = (e, »; + 1+ 1EI Hdeflk, Nn)

Err w2 .
= i- L A+(k'lcosq1xcoshye'YZlk)

v L n,m,y Cz q1

x (N + 1+ 1EI [an,m(Y) + an,m(-y)]IN)

Err w2 I
= _1 L A+-Ok-kl+yvT- n,m,y Cz q1 ad

x fa dxcos2 nx cosq1xfd dycos2 ny cos (hy)
-a 2a -d 2d

x (N + 1+ 1EI [an,m(Y) + an,m(-y)]IN)

Err 2 2 . I= _1 L A wy n smq1a

vT- n,m,y cfQ1 Q1a(n2 - Qra2) n(n + 1) [I - (n + 1)2J
X (N + 1+ 1EI [an,m(Y) + an,m(-y)]IN)

Err 2 2· ( )= _1 L A wy n sm Q1a

vT- n,m,y cfQ1 Q1a(n2 - Qra2)

I (1 1) 1/2
X 1 [ 1 2J n + 2 ± 2 Ok-k'±y' (9.52)

n(n + 2) 1- (n + 2)

We have used

(9.53)

and

lid 2 ny n2 sinhd
d -d dy cos 2d cos hy = hd(n2 _ h2d2)

1

n(n + i) [1 - (n + i)2J'
(9.54)

As usual the plus signs in the phonon-occupancy and momentum-conservation terms
correspond to phonon absorption and the negative signs to phonon emission. Then
the scattering rate predicted by the Fermi golden rule is given by
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(9.55)

where the sum over y has been converted to an integral, n is the Bose-Einstein
occupation number for the acoustic phonons, and L is the normalization length.
Yu et al. (1994) evaluated this deformation-potential scattering rate numerically for
GaAs quantum wires at 77 K for three different cross sections, 28.3 A x 56.6 A,
100 A x 200 A, and 50 A x 200 A. The results of these numerical calculations

Q)-co...
0>
l::: --.----- .......
Q)--coo

(J)

~---------------------

o 105 15 3020 25 35

Electron energy (meV)

Figure 9.1. Deformation-potential emission and absorption scattering rates for bulk
and confined acoustic phonons in a 28.3 A x 56.6 A GaAs quantum wire at 77 K.
Confined modes: ••• , emission; -. --. --. -, absorption. Bulk modes:
--0--0--0-, emission; - 0--0 --0 -, absorption. Energy thresholds for the width
modes are at 0.03,2.36,2.55,4.90,7.30, and 7.40 mcV, Energy thresholds for
thickness modes are at 2.06,4.44,5.90,9.87,14.5, and 15.1 meV. One-dimensional
density-of-states peaks are evident in the emission rate for the quantum wire. From
Yu et al. (1994), American Physical Society, with permission.
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are shown in Figures 9.1, 9.2, and 9.3 respectively. In each of these cases the
acoustic phonon emission and absorption rates are shown for the GaAs quantum
wire and for bulk GaAs. The distinct one-dimensional density-of-states peaks are
evident for the case of phonon emission in each of the quantum-wire structures.
These peaks occur at the threshold electron energy for the emission of one of the
various width or thickness modes. The peak magnitudes of the scattering rates
in these quantum wires suggest that carrier-acoustic-phonon scattering via the
deformation potential is significant in quantum-wire elements of nanoscale devices.
The calculations of Yu et al. (1994) are based on the assumption that the wires
have perfectly uniform cross sections. In envisioned practical situations it is unlikely
that the dimensional tolerances associated with the cross-sectional areas will be
small enough to realize subatomic dimensional control. It is thus unlikely that the
measured one-dimensional density-of-states peaks will be as pronounced as they are
in Figures 9.1, 9.2, and 9.3.

...
:§ 1011
coo

(J)

--- --.----..--.----- .
Ql•...
co...

------~-----------D

o 5 10 15 20 25 30 35

Electron energy (meV)

Figure 9.2. Deformation-potential emission and absorption scattering rates for bulk
and confined acoustic phonons in a 100 A x 200 A GaAs quantum wire at 77 K.
Confined modes: ••• , emission; -. --. --. -, absorption. Bulk modes:
---0---0---0-, emission; - 0- -0 - -0 -, absorption. Energy thresholds for the confined
modes are at 0.03,0.65,0.75,1.39,2.06, and 2.12 mcV, Energy thresholds for the
bulk modes are at 0.59, 1.26, 1.68,2.80,4.11, and 4.28 mcV, One-dimensional
density-of-states peaks are evident in the emission rate for the quantum wire. From
Yu et al. (1994), American Physical Society, with permission.
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Figure 9.3. Deformation-potential emission and absorption scattering rates for bulk
and confined acoustic phonons in a 50 A x 200 A GaAs quantum wire at 77 K.
Confined modes: ••• , emission; -. --. --. -, absorption. Bulk modes:
---0---0--0-, emission; - 0 - -0 - -0 -, absorption. Energy thresholds for the confined
modes are at 0.03,0.65,0.75, 1.39,2.06, and 2.12 mcV, Energy thresholds for the
bulk modes are at 0.61,2.58,3.05,5.56,8.24, and 8.43 mcV, One-dimensional
density-of-states peaks are evident in the emission rate for the quantum wire. From
Yu et al. (1994), American Physical Society, with permission.



Chapter 10

Recent developments

Nothing is too wonderful to be true, if it is consistent with the
laws of nature, and in such things as these, experiment is the
best test of such consistency.
Michael Faraday, 1849

10.1 Phonon effects in intersubband lasers

The effects of dimensional confinement on optical phonons, phonon-assisted elec-
tron intersubband transition rates (Teng et al., 1998), and gain (Kisin et al.,
1997) have been evaluated in a series of studies on semiconductor lasers.
Many of the novel semiconductor lasers - such as the tunneling injection laser
and the quantum cascade laser - contain quantum wells with confinement di-
mensions of about 50 A or less. An example of such a semiconductor laser
structure is given in Figure 10.1. In this laser, the conduction band is engi-
neered so that the upper and lower energy levels are E3 and E2 respectively,
with a third level, E 1, such that phonon-assisted tunneling from level E2 to
level E 1 is promoted. The IF optical phonons are of special importance in
such heterostructures. Two properties of the IF optical phonons account for
their special significance (Stroscio, 1996) in narrow-well semiconductor lasers:
(a) in narrow wells the interface phonons have appreciable interaction poten-
tials throughout the quantum well since, as was demonstrated in Chapter 7,
the interface optical phonons have potentials near the heterointerfaces of the
form ce-qlzle-iq.p, where, for example, q has values of very roughly 0.02
A -1 for a typical intrasubband transition in GaAs; and (b) the energies asso-
ciated with phonon-assisted processes in these heterostructures can be substan-
tially different from those in semiconductor lasers without significant dimen-
sional confinement, since the interface phonons may have frequencies wq which
are significantly different from those of the other phonons in the quantum
well.

186
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As an example, optical phonon (LO) transitions play an especially important
role in novel intersubband lasers operating at infrared wavelengths, since selected
intersubband transition rates are critical to establishing and maintaining a popu-
lation inversion. In many specific cases, such lasers (Faist et al., 1996a, b; Zhang
et al., 1996) can be designed only if quantum-well regions have thicknesses as
small as 25-50 A. In such polar-semiconductor structures, the dominant electron
energy relaxation processes are due to the electron-LO-phonon interaction. In this
subsection these processes will be considered and their role in the operation of novel
semiconductor lasers will be examined.

Teng et al. (1998) determined the optical phonon (LO) modes and the electron-
LO-phonon intersubband transition rates due to the electron-LO-phonon interac-
tions in two generic heterostructures similar to the regions where phonon-induced
transitions occur in a variety of dimensionally confined semiconductor lasers. These
structures are depicted in Figure 10.2, where materials 1, 2, and 3 are GaAs,
Alo.2sGao.7sAs and Alo.4Gao.6As respectively.

The heterostructure of Figure 1O.2(a) has three interfaces and an asymmetrical
potential profile. Figure 1O.2(b) is a four-interface structure with a symmetrical
potential. The dielectric constants of regions 1,2, and 3 are taken as f1(W), f2(W),
and f3 (r») respectively. The dielectric continuum model of optical phonons, Sections
7.1 and 7.3 and Appendix C, leads immediately to the following LO phonon
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Figure 10.1. Step quantum-well laser with narrow quantum wells.
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potentials: in polar material 1, where i = 2, the confined LO modes are given by

{

mst
cos ---;;-z ,

¢(z) ex
. mn
sm-z,

a

m = 1,3,5, ...

uo.t:
m = 2, 4, 6, ...

a
[z] <-.

2

The confined LO modes in polar material 2, where i = 1, are given by

1

'lmit ( b +a)cos-- z+-- ,
b-a 4

¢ (z) ex
'lmit ( b +a)sin-- z+ -- ,
b-a 4

m = 1,3,5, ...

m = 2, 4, 6, ...

b a
-- < z < --.2 2 (10.2)

i=O i-1 i=2 i=3

material 3 material 2 material 1 material 3

-b/2 -a/2 o a/2 U2

(a)

- ...

i =0 i=1 i =2 i=3 i=4

material 3 material 2 material 1 material 2 material 3
-U2 -b/2 -a/2 0 a/2 b/2 U2

(b)
Figure 10.2. Two generic heterostructures common to dimensionally confined
semiconductor lasers. Materials 1,2, and 3 are GaAs, Alo.25Gao.75As and
Alo.4Gao.6As respectively. Structure (a) has an asymmetrical potential profile and
structure (b) a symmetrical potential profile. From Teng et al. (1998), American
Institute of Physics, with permission.



10.1 Phonon effects in intersubband lasers 189

For the half-space LO modes in polar material 3, where i = 0, 3,

{

Zmst ( b)
sinT z+"2 '

¢(z) ex
Zmst ( a)smT z-"2 '

m=1,2,3, ...
bz <--- 2

(10.3)
a

z > -.-2
Moreover, the interface LO phonon modes are as given in subsection 7.3.4 and have
the form

m=1,2,3, ...

(10.4)

where the values of C:± are determined by the boundary conditions:

¢1(q,z=-L/2)=0 ==}

¢3(q, z = L/2) = 0 ==}

cs_ = 0,

c~+ = 0,

¢i (q, Zi) = ¢i-I (q, Zi),

a¢i (q, Zi) a¢i-I(q, Zi)
Ei = Ei-Iaz az

where L is taken to be large compared with other dimension scales in the system, and
Zi designates the z-coordinate at the location of the heterointerface between regions i
and i-I. The conditions on the continuity of the potential and the continuity of the
normal component of the electric displacement may be used to relate recursively
the non-zero coefficients C:± to the dielectric constants of the various materials
composing the heterostructure. The boundary condition at Z = L/2 requires that
c~+ = 0 and the dispersion relation for the interface modes for the heterostructure
of Figure 1O.2(a) is

0= _1_ [(E3 - Ej)(Ej + E2)(E2 - E3) e-q(a+b)
Ej E2E3

+ (E3 - Ej)(Ej - E2)(E2 + E3) e-2qa

+ (E3 + Ej)(Ej - E2)(E2 - E3) e-q(b-a)

+ (E3 + Ej)(Ej + E2)(E2 + E3)],

(10.5)

(10.6)

where the generalized Lyddane-Sachs- Teller relationship is used to write En (r») in
terms of En(00), equations (7.5), (7.6); for binary materials,

W2 _ w2

En(W)=En(OO) 2_ ~o,n,
W wTO,n

and for ternary materials of the form AyBI_YC

(
w2 w

2
) (W2

w
2

)( ) = () - LO,n,a - LO,n,b
En W En 00 2 2'

W2 - W W2 - WTO,n,a TO,n,b

where, as discussed in Section 7.1, the subscript a denotes frequencies associated
with the dipole pairs AC and the subscript b denotes frequencies associated with

(10.7)

(10.8)



190 10 Recent developments

the dipole pairs Be. The condition that c~+(r») = 0 is met for 10 frequencies
and, accordingly, there are 10 interface modes: six of these correspond to GaAs-like
modes with energies in the range of 32 to 37 me V and four are AlAs-like modes with
energies close to 46 me V. The dispersion relations for these 10 modes are shown in
Figure 10.3.

As in Teng et al. (1998), the dielectric constant is taken as

E(OO) = 10.89 - 2.73x, (10.9)

where x represents the content of the Al in AlxGa1_xAs. The phonon energies used
in determining these dispersion relations are given in Table 10.1.

For the structure of Figure 1O.2(b), the boundary condition determines that
c~+/cS+ = 0 and the dispersion relations for the interface modes - as determined
by the previously described iteration procedure - are given by
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Wavevector (qa)
Figure 10.3. Dispersion relations for the interface LO phonon modes of the
structure depicted in Figure 1O.2(a). From Teng et al. (1998), American Institute of
Physics, with permission.
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0= _1_2- [-(E3 - E2)2(EI + E2)2e2qb - 2(Ej - Ei)(Ei - Ef) eq(a+b)
EIE2E3

+ (Ej - Ei)2(E2 - EI)2e2q(b-a) + 2(Ej - Ei)(Ei - Ef) eq(b-a)

- (E3 + E2)2(E2 - EI)2e2qa +(E3 + E2)2(EI + E2)2]'

(10.10)

The 14 solutions of this equation correspond to six GaAs-like interface modes and
eight AlAs-like interface modes. The potentials for the six GaAs-like modes are
plotted in Figure 10.4 for qa = 0.5.

These LO phonon modes are either symmetric or antisymmetric, as is to be
expected from the symmetry of the heterostructure. They must still be normalized.
The normalization condition of subsection 7.3.4, equation (7.116),

~_l _1aEi(W) 1d (2 <p 2 la<Pi(q'z)12j __ Yt_L..,..4 2 a z q I ,(q,z)1 + a - 2 L2'
i n sco W R; Z W

(10.11)

provides the necessary condition to determine the normalization constant for each
mode. Applying this condition leads to the following normalized LO phonon
potentials: in polar material 1, where i = 2, the confined LO modes are given by

¢(z) = [
4nYt 1 ]1/2 [ 1 ]1/2

L2 aEi (w)jaw q2 + (mtt ja)2

m = 1,3,5, ...

m = 2, 4, 6, ...

a
[z] < 2' (10.12)

In polar material 2 where i = 1, the confined LO modes are given by

Table 10.1. Values of phonon energies adopted for these calculations.

Phonon energy GaAs AlAs AlxGal-xAs
(meV)

!iwLO,a 36.25 36.25 - 6.55x + 1.79x2

!iwLO,b 50.09 44.63 + 8.78x - 3.32x2

!iwTO,a 33.29 33.29 - O.64x - 1.16x2

!iwTO,b 44.88 44.63 + 0.55x - 0.30x2
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¢(z) = [4nh 1 ]1/2{ 1 }1/2
L2 aEi(W)/aW q2+[2mn/(b-a)J2

1/2/ cos 2mn (Z + b + a)

x (b ~ a) . '; ( b : a )
Slil-- Z+--

b-a 4
b a

-- < Z < --.2 2
For the half-space LO modes in polar material 3, where i = 0, 3,

¢(z) = [4nh 1 ]1/2 [ 1 ]1/2
L2 aEi(W)/aW q2+(2mn/L)2

m=1,3,5, ...

m = 2, 4, 6, ...

(10.13)

m=1,2,3, ...
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Z <--- 2

m=1,2,3, ...
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Z> -.- 2
(10.14)
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Figure 10.4. Potential profiles for the six GaAs-1ike interface LO phonon modes for
the structure of Figure lO.2(b). The mode frequencies are (1) 35.86 meV, (2) 34.91
meV, (3) 34.26 meV, (4) 34.01 meV, (5) 33.17 meV, and (6) 33.07 meY. From Teng
et al. (1998), American Institute of Physics, with permission.
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As in subsection 7.3.4, the interface LO phonon mode potentials are of the form,
equations (7.117), (7.118),

(10.15)

where the normalization constant A is given by

(
n )1/2( 1 1 aE;(W)1A - -- ----- dz

- 2wL2 ~ 47T 2w aw R;

1
2)) -1/2

X q21'l1; (q, z)12 + I a'l1;~:, z) I (10.16)

Finally, from subsection 7.3.4, equation (7.119),

HIP = e<I>;(r) = e L e-;q·P<I>; (q, z)(a~q + aq)
q

= e L e-;q·p A'l1; (q, z)(a~q + aq).
q

(10.17)

For a particular phonon mode j the Frohlich interaction Hamiltonian is given by

H, = e(/J}(r) = e L e-;q·p <Pj (r) (a~q + aq)
q

(10.18)

and, from Section 8.1,

Sl~~~}(k,k') = 2: L IMl~~~}(q)12 8(E(k') + En' - E(k) - En ± nw),
q

(10.19)

with

(10.20)

where the initial and final energies each have been written as a sum of the in-plane
and subband energies, E(k) + En and E(k') + En' respectively; E(k) = n2k2/2m.
Since the in-plane energy associated with the two-dimensional wavevector k has
been separated from the subband energy, the subscript 2D of Section 8.1 has been
omitted. Phonon-assisted transitions between the initial and final carrier states are
depicted in Figure lOS

Teng et al. (1998) solved the Schrodinger equation numerically to determine
the electron wavefunctions, for selected phonon modes, needed to evaluate the
matrix elements for phonon-assisted transitions. These have focused on the emission
process to gain insights into phonon-assisted processes of importance in narrow-well
semiconductor lasers. As expected (Stroscio, 1996), their results show that the
half-space modes and confined LO modes yield phonon-assisted rates that are small
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relative to those associated with the interface LO phonon modes. Moreover, it is
found that certain interface modes make contributions about an order of magnitude
larger than most of the remaining interface LO phonon modes. Figure 10.6 shows the
transition rate for the dominant phonon-assisted transition in the symmetric structure
of Figure 1O.2(b). This maximum transition is associated with the emission of the
antisymmetric interface longitudinal optical phonon mode having an energy close to

(a) E

(b) E

hro

Figure 10.5. Phonon-
assisted transitions between
states In, k) and In', k'). (a)
An emission event, between
the state In, k) (upper plane)
and the state In, k' = k - q)
(lower plane). (b) An
absorption event between
In, k) (lower plane) and
In, k' = k + q) (upper
plane). The potential
function is parabolic in the
wavevector. From Teng et at.
(1998), American Institute of
Physics, with permission.
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50 me V. As is apparent from Figure 10.6, the rate is substantially larger than the rate
associated with the emission of a bulk phonon. Clearly, in the design of narrow-well
semiconductor lasers it is essential that the interface modes be considered. The usual
approximation of treating the phonons as bulk phonons is inadequate.

10.2 Effect of confined phonons on gain of intersubband
lasers

In the previous section, it was demonstrated that it is essential to take into account
the spectrum of dimensionally confined phonon modes in nanostructure-based
intersubband semiconductor lasers. In the present section, it will be shown that the
gain of an intersubband narrow-well semiconductor laser can be modeled accurately
only if the realistic heterostructure phonon spectrum is taken into account (Kisin
et al., 1997). The system considered in calculating the gain of an intersubband
quantum-well laser is an AlxGal-xAs/GaAs/AlxGal-xAs double-heterostructure
of width a. The electron wavefunctions and dispersion relations for this system
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Figure 10.6. For the symmetric structure of Figure lO.2(b), the maximum transition
rates for the anti symmetric interface mode and the bulk mode are depicted as
functions of the difference E2 - E 1 between the final and initial energies.
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are modeled (Kisin et al., 1997) with a four-band Kane model. The electronic
wavefunctions (Gorfinkel et al., 1996) for the states in subband n are taken to be

(10.21)

where, as defined previously, p = (x, y) and S is the area of the heterostructure. For
intersubband lasers - such as the quantum-cascade laser - involving only transitions
in the conduction band, the four-component Kane wavefunction envelopes, 1/J~n),

may be described simply in terms of scalar wavefunctions. For the lowest subband,
n = 1,

[z] < a12,

[z] > a12,
(10.22)

with

(10.23)

For the second subband, n = 2,

[z] < a12,

[z] > a12,
(10.24)

with

(10.25)

Here Ewn and Ebn are the energies for the nth subband of the well and the barrier
measured with respect to the valence band in each material. For these approximate
wavefunctions, it is clear that phonon-assisted transitions from the second to the low-
est subband will involve only the antisymmetric interface phonons, the odd-parity
confined phonon modes, and barrier modes. However, intrasubband phonon-assisted
transitions will include contributions from the symmetric interface phonons, the
even-parity confined phonon modes, and barrier modes. As will become apparent,
such phonon-assisted processes have line-broadening effects that exert a major
influence on the gain of the laser. Moreover, it will become apparent that the
energy dependence of the line broadening resulting from the energy spectrum of
the phonons also plays a significant role in determining the properties of the gain of
the laser.

Subband energy dispersion curves for 60-fmgstrom-wide and 100-fmgstrom-wide
quantum wells are depicted in Figure 10.7 along with examples of intersubband and
intrasubband phonon-assisted processes; in Figure 10.7, x = 0.3 and the conduction
band and valence band off-sets are !"i.e = 300 me V and A, = 150 me V respectively.
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The phonon spectrum used in the calculation of the intersubband optical gain
in the quantum-well system under consideration includes the symmetric interface
modes, the anti symmetric interface modes, the two lowest-order confined modes,
and the half-space modes, which are referred to as the barrier modes in this
section. The Frohlich interaction Hamiltonians used here are those of the dielectric
continuum model with electrostatic boundary conditions, as discussed in Chapter 7
and in Appendix C.

These modes may be obtained straightforwardly from the modes for the double-
heterojunction, uniaxial structure of Appendix D by taking the limit where both
f(wh and f(w)11 are equal to feW). Figures 1O.8(a), (b) and 1O.9(a), (b) depict
the contributing scattering rates (Kisin et al., 1997) for the scalar wavefunctions
presented previously and for the phonon modes of the dielectric continuum model
with electrostatic boundary conditions.

In calculating these results, the parameters have been selected as follows: x =
0.4, !"i.e = 300 me V, !"i.v = 200 me V, and a = 60 A. The energy spectrum of Figure
1O.8(a) illustrates clearly that there are several distinct thresholds.

---
1 2 3

ka
4 5 6

Figure 10.7. Energy dispersion curves for 60-angstrom-wide (solid lines) and
l Ou-angstrom-wide (broken lines) A10.3Gao.7As/GaAs/Alo.3 GaO.7As quantum
wells. Typical intersubband and intrasubband transitions are shown for both quantum
wells. The energy gap for the GaAs well, Eg(GaAs), is taken as 1.4 eV and the ratio
of the effective mass to the electron mass is taken as 0.067 for GaAs. From Kisin
et al. (1997), American Institute of Physics, with permission.
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Figure 10.8. (a) Intrasubband scattering rates in the second subband as a function of
the electron energy in the second subband. The high- and low-frequency symmetric
interface LO phonon modes, the confined modes, and the barrier modes are labeled
by is -t-, is -, c and b respectively. (b) Intersubband scattering rates from the second
to the lowest subband as a function of the electron energy in the second subband.
The high- and low-frequency anti symmetric interface LO phonon modes, the
confined modes, and the barrier modes are labeled by ia-l-, ia-, c and b respectively.
From Kisin et al. (1997), American Institute of Physics, with permission.
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Figure 10.9. (a) Intrasubband scattering rates in the lowest subband as a function of
well thickness. The initial electron energy in the first subband is 60 meY. (b)
Intersubband scattering rates for transitions from the second to the first subband as a
function of well thickness. The initial electron energy in the second subband is
10 meV. From Kisin et al. (1997), American Institute of Physics, with permission.
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The optical gain spectrum g(Q) for intersubband transitions between the second
and the lowest subband (Gelmont et al., 1996; Gorfinkel et al., 1996) is given by

g(Q) = 4nn2e2 121212
Q [00 de T

s
(Q) e-s/ kETe (1 _ h),

/iacJE(oo)kBTe Ja [:
where the line-shape function is defined by

(10.26)

WeE)
Ts(Q) = [Q _ Qs]2 + [W(E)]2'

(10.27)

the transition energy is related to the energy difference /iQa between the subbands
at k = 0 by

(10.28)

and the ratio of distribution functions, 11Ih, is given by

j: = :: :: exp [k;Te (
1 - ::) 1

for the simplified case of parabolic bands with effective masses m 1 and m2; n 1 and
n2 are the areal electron concentrations of the two subbands. The broadening term
in the denominator of Ts (Q), [W (E)]2, is related to the phonon-assisted scattering
rate, 1IT(E), as well as to other scattering rates such as electron-plasmon scattering.
The rate associated with phonon-assisted scattering processes generally dominates
over the rates for other scattering processes (Kisin et al., 1997) and is the only rate
considered herein. Room-temperature gain spectra for a second subband electron
concentration of 1011 cm-2 are shown in Figures 10.10 and 10.11.

It is clear from these gain curves that the effects of dimensional confinement
of the phonons play a role in determining the optical gain of a narrow-well
intersubband laser. This is especially evident in Figure 1O.1O(b), where gain curves
based on the full spectrum of dimensionally confined phonon modes and on bulk
phonons only are dramatically different and, in fact, have opposite signs over an
appreciable range of photon energies. To understand this result, it is useful to
consider the steady state condition expressing the conservation of particle flow:

(10.29)

n2 nl
- = Wl2n2 =-.
T12 Tout

(10.30)

This shows that the ratio of the subband populations in equilibrium depends directly
on the ratio of the intersubband transition rate and the escape rate from the lower
subband. Indeed, if the escape rate is decreased from the value consistent with this
equilibrium condition then the population inversion is not expected to be maintained
and the gain will become negative. For the parameters used in calculating the results
of Figure 10.1 O(b), Tl2 = 0.56 ps and it is now clear why the gain curves for Tout =
0.55 ps are so sensitive to the energy spectrum of the phonon modes.
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Figure 10.10. Optical gain in cm-1 for different rates of electron escape, Tout, from
the lowest subband: (a) Tout is 0.4 ps and 0.6 ps; (b) Tout is 0.55 ps. The broken lines
are calculated assuming that only bulk GaAs LO phonons contribute; the
broken-and-dotted lines assuming that only bulk GaAlAs phonons contribute. The
solid lines are calculated from the full spectrum of dimensionally confined phonon
modes. From Kisin et al. (1997), American Institute of Physics, with permission.
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10.3 Phonon contribution to valley current in
double-barrier structures

Turley and Teitworth (1991a, b, 1992) and Turley et al. (1993) performed consis-
tent experimental and theoretical investigations of the effect of phonon-assisted
tunneling in GaAs/ AlAs double-barrier structures. The experiments of Turley
and Teitsworth provided observations of tunneling currents and magnetotunneling
spectra indicating that a major part of the valley current in certain GaAs/ AlAs
double-barrier quantum wells is due to phonon-assisted tunneling. These experi-
ments also present clear evidence that the symmetric interface phonon mode makes
a dominant contribution to the phonon-assisted tunneling current in these devices.
The dominance of the interface mode is consistent with early calculations suggesting
that the symmetric interface modes would play an important role in carrier transport
in short-period GaAs/AIAs superlattices (Stroscio et al., 1991a) and it is also
consistent with the results of the last two sections on narrow-well intersubband semi-
conductor lasers. The results of Turley and Teitsworth provided early systematic
studies demonstrating that the technologically important valley current in certain
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Figure 10.11. Optical gain in ern-1 for two different sets of phonon modes: broken
lines, all phonon modes are included; solid lines, all modes but the barrier mode are
included. Results are given for three different values of the electron escape rate, Tout:

(a) 0.4 ps; (b) 0.5 ps; (c) 0.6 ps. From Kisin et at. (1997), American Institute of
Physics, with permission.
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double-barrier resonant tunneling devices (DBRTDs) is, in fact, due partially to
phonon-assisted tunneling. This is an important conclusion since DBRTDs have
been the subject of intense study for almost two decades because of their perceived
potential for playing a major role in new generations of high-performance electronic
devices. Moreover, the careful and systematic results of Turley and Teitsworth
demonstrate convincingly the utility of the dielectric continuum model of confined
phonons.

Current-voltage measurements at 4.2 K by Turley et al. (1993) are shown in
Figure 10.12. The double-barrier structure in this case was an 80-angstrom-wide
GaAs quantum well with a 33-angstrom-wide AlAs emitter barrier and a 45-
angstrom-wide AlAs collector barrier. All these layers are nominally undoped. In
Figure 10.12 the principal resonant tunneling peak is at about 0.54 volts and a
distinct phonon-assisted tunneling peak is seen at about 0.81 volts.

The magnetotransport experiments of Turley et al. provided even more revealing
data. Figures 10. 13(a), (b) depict measured magnetic field versus applied voltage
diagrams. The two 'Landau fans' converge at 0.67 volts and at 0.81 volts. Moreover,
Figure 10.14 features two straight vertical lines to which other lines converge at
-0.45 volts and -0.52 volts. By calibrating their experimental voltage scale, Turley
et al. (1993) related the electronic energy scale l:i.Ez and the applied voltage V
through the relation V = al:i.Ez, where a = 5.49 ± 0.15 V/eV, and concluded
that the Landau fans converging at 0.67 volts in Figures 10. 13(a), (b) correspond to
confined LO phonon modes with energies in the range 36.0 ± 0.9 meV, Likewise,
the Landau fans converging at 0.81 volts in Figures 1O.13(a), (b) as well as that

-1.0 -0.5 0.0 0.5
Applied voltage (V)

1.0

Figure 10.12. Measured current-voltage curve at 4.2 K for a double-barrier
structure with an 80-angstrom-wide GaAs quantum well having a 33-angstrom-wide
AlAs emitter barrier and a 45-angstrom-wide AlAs collector barrier. The principal
tunneling peak is at about 0.54 volts and a strong phonon-assisted tunneling peak
occurs at 0.81 volts. From Turley et al. (1993), American Physical Society, with
permission.
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converging at -0.45 volts in Figure 10.14 correspond to symmetric interface modes
with energies in the range 50.3 ± 1.3 meV, In both cases the expected phonon
energies fall well within the error bars of Turley et al. (1993). The remaining Landau
fan, converging at -0.52 in Figure 10.14, corresponds to emission of phonons with
a changed Landau-level index.

Phonon emission processes have been observed in the measured currents in other
double-barrier-based heterostructures (Choi et al., 1990; Choi et al., 1996) albeit at
scales where dimensional confinement is not expected to lead to modifications in the
phonon modes. In particular, Choi et al. (1990) determined the current transfer ratio
and its derivative r,

a = Ie/h,
r = da/dVE,

(10.31)

(10.32)

at 4.2 K. Here Ie is the collector current, IE is the emitter current, and VE is the
bias voltage for the heterostructure shown in Figure 10.15.

The structure of Figure 10.15 consists of a 1000-angstrom-wide GaAs emit-
ter with n-type doping of 2 x 1017 em -3, an undoped 120-angstrom-wide
Alo.3sGao.6sAs injection barrier, a 1520-angstrom-wide GaAs base doped at 2 x
1017 cm-3, an undoped 165-angstrom-wide Alo.2sGao.7sAs analyzer, and a 1000-
angstrom-wide gallium arsenide collector doped at 2 x 1017 cm-3. Figure 10.16
presents the experimental and theoretical values of the transfer ratio and its deriva-
tive as functions of VE.

The dominant peaks are at VI and V2 and the peaks associated with phonon
emission are the subsidiary peaks at VP1 and VP2. These subsidiary peaks are
separated by the LO phonon energy in GaAs - Ytwo = 36 me V - as expected.
In separate experiments, Choi et al. (1996) determined the hot-electron distribution
peE), in a regime where both phonon emission and plasmon emission are important.
The heterostructure used in these experiments consisted of a GaAs emitter layer, an
AIGaAs injection barrier, a 1500-angstrom-wide GaAs base doped at 2 x 1017 cm-3,
a double-barrier filter with a bandpass at 280 me V, and a GaAs collector. This
structure and the theoretical and experimental electron energy distributions peE)
are shown in Figure 10.17. The initial injected electron distribution is taken to be
Gaussian and to have a width of 22 me Y. The injection energy is taken to be e 1 Ve I.

The experimental photocurrent transfer ratio ap, as a function of emitter voltage
Ve, for the heterostructure shown in Figure 10.17 is presented in Figure 10.18 as a
solid line. The theoretical contributions for plasmon emission, phonon emission, and
both phonon and plasmon emission are designated by triangles, crosses, and circles
respectively. The difference between the theoretical and experimental contributions
at high Ve is due to the non-linear relation between the injection energy and Ve.

Based on these experimental and theoretical results, Choi et al. (1996) concluded
that phonon emission dominates when the base doping density is less than 3.3 x
1017 em -3. For higher doping densities, plasmon emission becomes more important.
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lOA Phonon-enhanced population inversion in
asymmetric double-barrier quantum-well lasers

Phonon-assisted interwell electronic transitions have been explored as a means of
rapidly depopulating the lower laser level in intersubband semiconductor lasers
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Figure 10.13. Magnetic field versus applied voltage: (a) full-field range; (b)
low-field range. The heterostructure is a double-barrier structure with an
80-angstrom-wide GaAs quantum well having a 33-angstrom-wide AlAs emitter
barrier and a 45-angstrom-wide AlAs collector barrier. From Turley et al. (1993),
American Physical Society, with permission.
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(Faist et al., 1996a, b; Gmachl et al., 1998; Stroscio, 1996; Stroscio et al., 1999).
This fast depopulation promotes the lasing in intersubband lasers. Phonon-assisted
depopulation rates can be enhanced in asymmetric double-quantum-well het-
erostructures if the subband being depopulated is degenerate with a second subband
in the wider quantum well, as shown in Figure 10.19 (Stroscio et al., 1999).
The double-well active region of the AIAs/GaAs heterostructure depicted in this
figure is designed so that the lower carrier state A 1 of well A is depopulated
by phonon-assisted transitions to state B 1 of well B. As will be demonstrated,
these phonon-assisted transitions are enhanced greatly when levels A 1 and Blare
degenerate.

The interwell transition rate between states A 1 and B 1 is enhanced when Al
and B2 are nearly degenerate, as is illustrated by Figures 10.20 and 10.21. This
effect is associated primarily with an enhancement in the overlap between the
final and initial state wavefunctions involved in the phonon-assisted transition. In
Figure 10.20 the interwell transition rate is shown as a function of al for three
different models of the optical phonon modes participating in the phonon-assisted
transitions. The broken curve (a) is calculated with the Fermi golden rule, assuming
that only the bulk GaAs phonon with an energy of 36 me V participates in the
phonon-assisted transitions between states A 1 and B 1. Likewise, the broken curve
(b) is calculated with the Fermi golden rule, assuming that only the bulk AlAs
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Figure 10.14. Magnetic field versus applied voltage: reverse bias diagram. The
heterostructure is a double-barrier structure with an 80-angstrom-wide GaAs
quantum well having a 33-angstrom-wide AlAs emitter barrier and a
45-angstrom-wide AlAs collector barrier. From Turley et al. (1993), American
Physical Society, with permission.
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phonon with an energy of 51 meV participates in the phonon-assisted transitions
between states A 1 and B 1. The remaining curve (solid line) is calculated with the
Fermi golden rule, using the full spectrum of optical phonon modes as discussed in
Chapter 7 and in Sections 10.1 and 10.2. The features on the solid curve between
the thresholds for curves (a) and (b) are due to interface modes in the nominal
reststrahlen band.

The peak values of the interwell phonon-assisted transition rates for conditions
of near degeneracy of energy levels Al and B2 are shown in Figure 10.21 for a
series of values of the width a3 of the wider well. For a3 = 18 nm it is clear that the
interwell transition rate is enhanced by about an order of magnitude as a result of the
increased overlap of the final and initial electronic wavefunctions near conditions of
degeneracy between levels A 1 and B2.

In summary, the phonon-assisted transition rate Tout for the intersubband laser
structure of Figure 10.19 is enhanced significantly when the heterostructure is
engineered so that there is a near degeneracy between states A 1 and B2. In this
case, the combination of band structure engineering and phonon engineering leads

E
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~ I--------E C2~--------E;
peE)

E B c
Figure 10.15. Band structure of the device studied by Choi et al. (1990) under a
bias VE. The energy distribution of the current, the so-called hot-electron
distribution pee), is shown in the barrier region B. The current emerging from the
emitter E is IE and the current at the collector C is indicated by Ir . The states E~
(n = 1, 2, 3, 4) are resonant states created in the barrier. E F is the Fermi energy and
E p is the energy of the emitted phonon. fu and fLare the effective 'upper' and
'lower' contributions to the half-width of the energy distribution after phonon
emission. From Choi et al. (1990), American Physical Society, with permission.
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to a significant favorable enhancement in the expected population inversion for the
double-well intersubband laser.

10.5 Confined-phonon effects in thin film
superconductors

It has been recognized for a number of years that the dimensional confinement of
carriers in thin film supeconductors leads to modification of the superconducting
energy gap !"i. and the critical temperature T; (Blatt and Thompson, 1963; Thompson
and Blatt, 1963; Yu et al., 1976). In particular, it has been understood that size-
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Figure 10.16. Transfer ratio a (smooth curve) and its derivative (peaked curve) as
functions of VE: (a) experimental values and (b) theoretical values. The subsidiary
peaks at V PI and V P2 are due to phonon emission. The arrows show the current
directions. From Choi et al. (1990), American Physical Society, with permission.
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quantization effects are manifest, as a function of the film thickness d, each time
one of the two-dimensional subband energy levels En (d) passes through the Fermi
level as the film thickness is varied. Moreover, the Bardeen-Cooper-Schrieffer
(BCS) theory of superconductivity is based on the formation of Cooper pairs whose
binding energy is determined by the phonon-mediated pairing of electrons. Thus,
it is reasonable to expect that the effects of phonon confinement play a role in
determining the characteristics of thin film superconductors. Hwang et al. (2000)
have recently investigated this possibility within the context of the BCS theory for
thin films, by replacing the bulk phonon by the spectrum of confined phonons for the
thin film. These results of Hwang et al. are expected to reveal selective qualitative
features associated with phonon confinement in thin film superconductors but
are not complete enough to give rigorous qualitative predictions. Only selected
qualitative features are expected, since the calculations assume infinitely high
electronic barriers at the interfaces of the thin film and since the interface phonon
modes are not included in the spectrum of phonon modes. Figure 10.22 shows the
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Figure 10.17. (a) Theoretical and (b) experimental electron energy distribution
peE) for the heterostructure described previously and shown in the inset. The arrow
in the inset shows the current direction. The theoretical electron energy distributions
peE) are shown at 0 A, 600 A, and 1500 A from the point of injection. The
experimental curve for peE) was obtained at Ve = -0.3 V. From Choi et al. (1996),
American Institute of Physics, with permission.
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superconducting transition temperature T; for a thin film with an electron density
n = 2 x 1022 cm-3 as a function of the film thickness, d. The Debye energy,
hco D, is taken to be 100 K. In this figure the broken line represents the results of
Blatt and Thompson (1963) and Thompson and Blatt (1963); these results were
obtained for the case where the electrons are treated as dimensionally confined
but only bulk phonons are considered. The solid line represents the results of
Hwang et al. (2000) where the BCS prediction for the superconducting transition
temperature T; is modified to take into account both electron confinement and
phonon confinement.

The results of Hwang et al. (2000) demonstrate that phonon confinement effects
play a role in the superconducting properties of thin film superconductors. The
conclusion was expected since thin film superconductors may be as thin as several
tens of angstroms and since the binding energy of the phonon-mediated Cooper pairs
is determined by the electron-phonon interaction. For films with thicknesses in the
range shown in Figure 10.22 it is reasonable to expect that the interface phonons
will also play an important role in determining selective properties of thin film
superconductors.
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Figure 10.18. Experimental results for the photocurrent transfer ratio a are shown
as a solid curve. The theoretical results for plasmon emission, phonon emission, and
both phonon and plasmon emission are designated by triangles, crosses, and circles
respectively. The difference between the theoretical and experimental contributions
at high Ve is due to the non-linear relation between the injection energy and Ve.

From Choi et al. (1996), American Institute of Physics, with permission.
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Figure 10.19. (a) Double-well active region of an AIAs/GaAs heterostructure
designed so that the lower quasi-bound carrier state Al of well A is depopulated by
phonon-assisted transitions to state B 1 of well B. The lasing transition is highlighted
by the outlined arrow. Diagram (b) depicts the energies in me V, £3, £2, and £1 of
the AI, B2, and B 1 subbands respectively as functions of the width in nm, ai, of the
narrow well. The barrier thickness a2 and the width of the wider well a3 are 2 nm
and 10 nm respectively. The lifetimes Til, T22, T21, and Tout are respectively the
intrasubband transition rates for the first and second subbands in well A, the
intersubband transition rate for the second subband in well A, and the escape rate
from state A 1 to state B 1. The lifetime Tout should be short compared with T2l in
order to maintain a population inversion between A2 and A 1. From Stroscio et al.
(1999), American Institute of Physics, with permission.
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10.6 Generation of acoustic phonons in quantum-well
structures

Komirenko et al. (2000b) have calculated the rate of generation of high-frequency
confined acoustic phonons via the deformation-potential interaction between drift-
ing electrons and the confined acoustic phonon modes in a quantum well. These
authors predict that the drifting electrons cause strong Cerenkov-like generation
of confined acoustic phonons and that they determine the gain coefficient for
this process as a function of the phonon frequency and parameters describing the
quantum-well structure. A gain coefficient of several hundred cm-1 is predicted for
a p-doped, lO-nm-wide Si/SiGe/Si quantum well.

To determine the rate of confined acoustic phonon generation, it is necessary to
calculate the electron-confined-acoustic-phonon scattering rates in the Si/SiGe/Si
quantum well. The carriers interact with acoustic phonons via the deformation-
potential interaction, H~~~,of Section 5.3, equation (5.39):
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Figure 10.20. Interwell transition rates as a function of a1 for phonon-assisted
transitions between Al and Bl, as calculated by the Fermi golden rule for three
different models of the optical phonons participating in the phonon-assisted process:
the broken curve (a) assumes that only bulk GaAs phonons participate; the broken
curve (b) assumes that only bulk AlAs phonons participate; and the solid curve
includes the effects of the full spectrum of optical phonon modes for the
heterostructure. As in Figure 10.19, a2 = 2 nm and a3 = 10 nm. From Stroscio et at.

(1999), American Institute of Physics, with permission.
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Figure 10.21. Peak values of the interwell phonon-assisted transition rates for
conditions of near-degeneracy of energy levels A 1 and B2 for a series of values of
the width a3 of the wider well. The curves corresponding to a3 = 10 nm show the
relative contributions of the confined phonons (broken curve) and interface phonons
(dotted curve). The bold broken line with a minimum at about 8.5 nm is the rate of
non-radiative intrawell intersubband transitions, ljrl2, for the case where
a3 = 18 nm. From Stroscio et al. (1999), American Institute of Physics, with
permission.

Figure 10.22. Superconducting
critical temperature T; for a
thin film with an electron
density n = 2 x 1022 cm-3,
as a function of the film
thickness d. The solid line
denotes the result for
confined slab phonons and
the broken line represents
the corresponding result for
bulk phonons. The Debye
temperature, nWD, is taken
to be 100 K. From Hwang
et al. (2000), American
Physical Society, with
permission.
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(10.33)

where, as discussed in subsection 7.6.1,

(10.34)

These modes are normalized according to the procedures of Section 5.1 but in terms
of Wn (gil, z) instead of u, (gil, z), since the considerations of Appendix A make it
clear that it is convenient to use Wn = JPun; un(gll, z) == Un,qll is obtained from
the mode amplitudes of subsection 7.6.2 by dividing by exp [i (gil . rll - wqll t) ],
since this factor is included separately in the above equation for u(r) and in
the energy-conserving delta function in the Fermi golden rule. Clearly, transverse
modes do not contribute to the deformation potential. Two of the types of mode
in Section 7.2 contain longitudinal components: the dilatational modes and the
flexural modes. The dilatational modes are irrotational and they are associated
with compressional distortions of the medium; the compressional character of
these modes leads to local changes in the volume of the medium. As discussed
in subsection 7.6.2, Wendler and Grigoryan (1988) derived the localized acoustic
modes for an embedded quantum well. For a symmetric quantum well, the electrons
couple via the deformation potential to the symmetric shear vertical (SSV) confined
acoustic modes. The quantum-well heterostructure and the lowest-order SSV mode
are depicted in Figures 1O.23(a), (b).

v -----
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Figure 10.23. (a) Quantum-well heterostructure and (b) distribution of
displacement components U1 and U3 for the SSV mode, for conditions corresponding
to those of maximum amplification, as defined in Figure 10.24. v is the drift velocity
of the electron. From Komirenko et al. (2000b), American Institute of Physics, with
permission.
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The electronic wavefunction for the lowest two-dimensional subband of the layer
is given by

1
'hll (p, z) = JS exp(rk] . p)x(z), (10.35)

where kll is the two-dimensional wavevector and, as defined previously, p == (x, y).
Only this lowest electronic subband is taken to be occupied. Then, the probability
of transitions between electronic states kll and kll due to the emission or absorption
of a confined phonon of band nand wavevector gil is given by

(±) I I ) - 2n 2 ( 1 1)P (kll, kll n, gil - h IM(q)1 nn,qll + '2 ± '2 8kxH,k,,8ky,k~

X 8 (E(kll) - E(kll) T nWn,q)
x F(kll) [I - F(kll) l (10.36)

where

e: 100

M(q) = ~ V . Un,qX2(z)dz,
K (q) -00

(10.37)

nn,qll is the phonon occupation number of mode {n, gil}, K
el (q) is the electron

permittivity described in Appendix F (Bastard, 1988; Komirenko et al., 2000b),
F(kll) = F(kx, ky) is the electron distribution function, and q = Iglll. Appendix
F provides a derivation of Kel(q) based on the Lindhart method as applied to a
two-dimensional electron gas (Bastard, 1988).

To determine the net rate of generation of localized acoustic phonons, Komirenko
et al. (2000b) considered

dnn,qll _ (+) (-)----;jt - Yn,qll (1 + nn,qll) - Yn,qll nn,qll - J'3n,qll nn,qll ' (10.38)

where the y~XIare determined by calculating the total rates of absorption and
emission of phonons for mode {n, gil} and J'3n,qll represents phonon losses such
as non-electronic phonon absorption or anharmonic phonon decay. Defining the
phonon increment by

- (+) (-)
Yn,qll = Yn,qll - Yn,qll ' (10.39)

it follows that

(10.40)

where m * is the effective mass and

100 ( mt co 1 )I(±)(q) = dky F (signq) n,qll ± -q, ky .
-00 nlql 2

(10.41)
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For the case where an external electric field causes the electrons to drift with
a velocity Vdr- taking the electron distribution function to be a drifted Fermi
distribution FF, we have

F(kx, ky) = FF (kx - :*Vdr, ky). (10.42)

It then follows that CYn,qll = Yn,qll/ Vg > 0 if the electron drift velocity exceeds the
confined phonon phase velocity, Vdr > wn,q/lql, where the phonon group velocity
Vg = dWn,q/dq. This condition is the same as the criterion for Cerenkov emission.
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Figure 10.24. Dimensionless phonon amplification coefficient ajamax versus
phonon frequency wjwQ for the two lowest SSV phonon branches. T = 50,100,
150, and 200 K; the larger the value of T, the lower the value of a.
amax = 290 em -1, wQ = 110 GHz. The values of Wj WQ and q d for the maxima of a
are depicted in the inset for T = 50 K. From Komirenko et al. (2000b), American
Institute of Physics, with permission.
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Komirenko et al. (2000b) evaluated CYn,qll for a p-doped, Si/SiGe/Si quantum well 10
nm thick, for the two lowest SSV phonon branches. The amplification coefficients
for these phonon branches are shown in Figure 10.24 for temperatures T of 50, 100,
150, and 200 K. In these numerical results, the hole density is taken as 1012 cm-2,

the drift velocity is given by Vdr = 2.5 CIl and CIl = 3.4 X 105 em s-l for the SiGe
layer.

The amplification coefficient for this p-doped Si/SiGe/Si quantum well is seen
to be of the order of tens to hundreds of em -1 for confined modes in the sub- THz
frequency range.



Chapter 11

Concluding considerations

Now there is one outstandingly important fact regarding
Spaceship Earth, and that is that no instruction book came with
it.
R. Buckminster Fuller, Operating Manual for SpaceshipEarth, 1969

11.1 Pervasive role ofphonons in modern solid-state
devices

As illustrated throughout this book, phonon effects are pervasive in modern solid-
state devices. As is illustrated by the many examples for Chapters 7-10, the
importance of these effects is usually at least as great for dimensionally confined
structures as for bulk structures. Indeed, in Chapter 7 the effects of dimensional
confinement were seen to be important even for biological structures! In this case,
a cylindrical shell immersed in a fluid (Sirenko et al., 1996b) was used to model
the vibrational behavior of microtubules (MTs) immersed in water. In addition,
the examples of Chapters 7 and 9 illustrate that the elastic continuum model
provides an accurate description of acoustic phonons in dimensionally confined
structures of many geometries including thin films, nanowires with rectangular and
circular cross sections, and a variety of dot-like structures. These structures will
inevitably be pervasive as elements of nanoscale structures mimicking the well
known and larger microelectromechanical structures. Indeed, Cleland and Roukes
(1996) reported a technique for fabricating nanometer-scale mechanical structures
from bulk, single-crystal Si substrates. As another example of acoustic phonon
effects in dimensionally confined structures, it was recently predicted theoretically
that Cerenkov-like effects lead to the generation of high-frequency confined acoustic
phonons in quantum wells (Komirenko et al., 2000b); see Section 10.6.

In Chapter 8, values of carrier-optical-phonon scattering rates calculated for a
variety of dimensionally confined semiconductor structures were found to exceed
1013 s-l. Clearly, such rates are among the largest encountered in such structures
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and in many cases dominate over all other scattering mechanisms. It is well
known that these relatively large carrier-phonon interactions play a major role
in determining carrier mobilities (Ferry, 1991; Mitin et al., 1999). In Chapter
10, phonons in dimensionally confined structures were seen to make a dominant
contribution to the valley current in specific double-barrier quantum-well structures
(Turley et al., 1993) and the properties of thin film superconductors were shown
to depend on the spectrum of confined phonons for sufficiently thin films (Hwang
et al., 2000).

Moreover, it was shown in Chapter 10 that dimensional confinement of phonons
in intersubband semiconductor lasers changes the laser gain (Kisin et al., 1997,
1998a, b) and leads to enhanced population inversions in some asymmetric double-
barrier quantum-well lasers (Stroscio et al., 1999). Indeed, Educato et al. (1993),
Julien et al. (1995), Wang et al. (1996a, b), and Gauthier-Lafaye et al. (1997)
have examined optically pumped intersubband scattering in coupled quantum-well
lasers. These same authors have shown that interface-phonon-assisted transitions
are important in such structures. Such results illustrate the importance of phonon
confinement effects in intersubband lasers. As discussed in Chapter 10, the proper
treatment of optical phonon confinement in optical systems such as intersubband
semiconductor lasers depends critically on the detailed energy spectrum of the
phonons. This is also true for a number of novel current-injection semiconductor
intersubband lasers (Sun et al., 1993; Zhang et al., 1996; Sung et al., 1996; Faist
et al., 1996a, b), as is illustrated by the calculations of Stroscio (1996) and Kisin
et al. (1997, 1998a, b).

11.2 Future trends: phonon effects in nanostructures and
phonon engineering

In this section, some speculative observations concerning phonons in nanostructures
are made as a guide to potentially fruitful avenues of research on dimensionally
confined phonons. In predicting future developments in the fields of phonon effects
in nanostructures and phonon engineering, it is instructive to consider emerging in-
ternational efforts for both nanostructures and bulk structures. Indeed, novel phonon
effects in bulk materials are likely to have counterparts in nanostructures. Progress
in femtosecond lasers and ultrafast spectroscopy and the continued development of
novel techniques for fabricating nanostructures such as quantum dots (Empedocles,
1996) have been the basis for experimental observations of coherent oscillations
of acoustic phonons in superlattices (Sun et al., 1999), damped spherical acoustic
breathing modes in quantum dots (Krauss and Wise, 1997, see the supporting
analysis of Stroscio and Dutta, 1999), optical phonons near the surface of bulk GaAs
(Cho et al., 1990), optical phonons in Ge (Pfeifer et al., 1992), and the excitation of
coherent phonons in Sb, Bi, Te, and Th03 (Cheng et al., 1991). Coherent phonon
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effects are likely to represent one of the future trends in in nanostructures as well
as in phonon engineering. Potz and Shroeder (1999) pointed to the potential for
achieving coherent control in atoms, molecules, and semiconductors.

Phonon engineering in nanostructures is likely to be a future avenue for
device-related research and development. Indeed, the ability to model the phonon
modes in dimensionally confined structures has been the basis for efforts to design
nanostructures such that the resulting carrier and phonon states are tailored to yield
dissipative and scattering mechanisms different from those of the corresponding
bulk structures. Sakaki (1989) analyzed theoretically the electronic structure of
quantum-wire superlattices and coupled quantum-box arrays with the purpose of
engineering the electron energy subbands in such a way that carrier-optical-phonon
scattering is suppressed. As another example, the use of metal-semiconductor
heterointerfaces to reduce carrier-interface-phonon scattering rates (Stroscio et al.,
1992) represented one of the first approaches to phonon engineering in nanos-
tructures. Indeed, the first calculations of carrier-LO-phonon scattering rates in
polar-semiconductor quantum wires (Stroscio et al., 1990; Kim et al., 1991) revealed
that the scattering of carriers with interface optical phonon modes dominates over
the scattering associated with confined and half-space phonons. As a means of
reducing the unwanted inelastic scattering caused by the interface LO phonons
in semiconductor quantum wires, it was suggested (Stroscio et al., 1992) that the
large carrier-LO-phonon scattering caused by interface phonons could be eliminated
by the encapsulation of the quantum wire in a metal. In a related example of
phonon engineering, Leburton (1997) modeled dissipation- and scattering-time
engineering in heterostructure-based quantum devices. Indeed, Leburton and his
collaborators - Educato et al. (1993), Julien et al. (1995), Wang et al. (1996a, b),
and Gauthier-Lafaye et al. (1997) - have exploited such effects in optically pumped
inter subband scattering in coupled quantum-well lasers. Clearly, efforts in phonon
engineering will be one of the future research trends based on the theories of
confined phonons presented in this book.
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Appendix A: Huang-Born theory

Huang (1951) and Born and Huang (1954) took the most general form of the
microscopic theory of diatomic polar crystals to be described by a pair of equations
relating w, E, and P,

w = aw+bE and P = dw+ cEo (A.l)

Born and Huang showed that d equals b as a result of energy conservation. In (A. 1),
w = J f-LN/ V u; U, u; N, and V are the relative displacement of the two ions, the
reduced mass of the ion pair, the number of unit cells in the crystal, and the volume
of the crystal respectively. Assuming a time dependence e-iwt and eliminating w
from these equations yields the relation

P = (c + b
2

2 ) E.
-a - w

(A.2)

Since D = E +4nP = E(w)E, (A.2) may be rewritten as

4nb2
E(W) = 1+4nc+ 2.

-a - W
(A.3)

From the generalized Lyddane-Sachs- Teller relation given in subsection 2.3.3,
(2.32), it is clear that
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W[O - W2 [(wio - (2) + (W[O - wio)]
E(W) = E(oo) 2 2 = E(oo) 2 2

wTO - W wTO - W

W2 j W2 - 1= E(oo) + E(oo) LO TO
1 _ W2 jw2TO

dO) - E(oo)= E(oo) + E(oo) 2 2 . (AA)
1 - W j wTO

Comparing the relation (A.3) of Born and Huang with that based in the Lyddane-
Sachs-Teller equation, it is evident that

E(oo) - 1
c=----

4n
2a = -wTO' and [

E(O) - E(00)]1/2
b = ----- WTo.

4n
(A.5)

Thus, the pair of equations in (A.l) and (A.2) put forth by Huang and Born may
be written as

2 2 [E (0) - E(00) ] 1/2
(WTO - W )w = 4n wToE (A.6)

and

[
E(0) - E(00) ] 1/2 E(00) - 1

P= ----- WTOW + ----E.
4n 4n

(A.7)

Re-introducing the relative displacement u these equations become

(V) 1/2
(wio - (2)u = -- JE(O) - E(oo)wTOE,

4n f-LN
(A.8)

and

(
f-LN ) 1/2 E(00) - 1

P = -- JE(O) - E(oo)WTOU + ---E.
4nV 4n

(A.9)

Appendix B: Wendler's theory

Wendler (1985) formulated a theory for the carrier-optic al-phonon interactions in
dielectric bilayer systems that includes the effect of the electronic polarizability on
the phonon eigenmodes and their frequencies. Wendler's model predicts several
relations that are useful in calculations of carrier-optical-phonon interactions in
dimensionally confined systems. As in subsection 2.3.1, the displacement field in
Wendler's model is related to the fields E(r) and per) through the driven oscillator
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equation and through the effective charge, e~ : for a binary medium labeled by
subscript n,

-ILnw2Un(r) = -ILnw6nUn(r) + e~Elocal(r),

per) = nne~un(r) + nnanElocal(r),

(B.I)

(B.2)

where ILn = mnMn/(mn + Mn) is the reduced mass, an is the electronic polariz-
ability per unit cell and where by the Lorentz relation

4n
Elocal(r) = E(r) + -per).

3
(B.3)

Here, Elocal(r) is the local electric field associated with the optical modes acting
on the electron shells of the ions. From Poisson's equation,

~<p(r, t) = _4nQtotal(r, t), (BA)

where Qtotal(r, t) includes both bulk and surface polarization charge density; using
the Green's function approach Wendler took a solution to Poisson's equation of the
form

~f 3, a I ,<p(r, t) = - L..J d r ---PfJ(r , t).
fJ arfJ [r - r']

(B.5)

Then, with Ea(r, t) = -a<p(r, t)/ara and with the Lorentz equation (B.3), it
follows that

local 4n
Ea (r, t) = :3(An - AOn)Pa (r, t)

+4n Lf d3r' rafJ(r - r')PfJ(r', t),
fJ

(B.6)

where the Green's tensor is given by

afJ , I a2 Ir (r-r) = -------.
4n araarfJ [r - r']

By assuming that per, t) depends sinusoidally on time, Wendler showed that

(B.7)

where

4 2 2
An = it co /wplasma,n' 4 2 2

AOn = nWOn/wplasma,n' (B.9)

and the plasma frequency squared, w~lasma,n'is given by
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2 4 *2 /Wplasma,n,a(b) = nnnen,a(b) f-Ln,a(b)0
(BolO)

By defining a two-dimensional Fourier transform for the electrostatic fields of the
form

( 1 ) 100

2 iq rper) = - d qlle II" IIP(gll, ri),
2n -00

with rll in the plane of the heterointerface of the bilayer system, Wendler showed
that

(Boll)

(Bo12)

where
An - AOn<Pn = --------

1- nnCYn(An - AOn)
(Bol3)

and

(Bo14)

with
1e~/2 = _

1 - nnCYn (An - AOn)

Moreover, the Green's function approach
conditions:

(BoIS)

of Wendler yields several useful

nnCYn
En(OO) = 1+4n 4 '

1 - 3nnnCYn

2 2 2 2 1
wLO n = Wo n + 3wplasma n 8 '

" , 1+3nnnCYn

(Bo16)

where n represents either material 1 or material 20 As may be verified alge-
braically, the Lyddane-Sachs- Teller relations of subsection 20303 are satisfied by
the frequencies in (Bo16) (Wendler, 1985)0 Wendler's treatment of the effect of
dielectric polarizability provides the basis for many works on optical phonons in
dimensionally confined systems. The utility of Wendler's solution is illustrated in
Chapter 70
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Appendix C:Optical phonon modes in
double- heterointerface structures

Nash (1992) made an extremely important contribution to the field of phonons in
nanostructures by showing that intrasubband and intersubband electron-phonon
scattering rates are independent of the basis set used to describe the confined
polar-optical phonons in a semiconductor slab. Comas et al. (1997) also formulated
a model for treating both the mechanical and electrostatic fields associated with
phonons in heterogeneous semiconductor structures.

In particular, Nash showed that the so-called slab modes derived with electrostatic
boundary conditions, the guided modes derived with mechanical boundary condi-
tions, and the reformulated slab modes of Huang and Zhu (1988) all predict the same
scattering rates as long as each set of modes is orthogonal and complete. Moreover,
Nash's analysis resolved the long-standing controversy over whether the normal
modes satisfy mechanical or electromagnetic boundary conditions; specifically,
Nash shows that the mechanical boundary conditions apply to w = JPu (where
u is the relative displacement of the ion pairs and p is the reduced mass per unit
volume as discussed in Appendix A) and its derivatives, and the electromagnetic
boundary conditions apply to <I>and D. Furthermore, Nash showed that both types of
boundary condition are necessary to obtain the normal modes of the heterostructure.
Nash considered a Lagrangian density, for a polar material, of the form (Born and
Huang, 1954),

law aw I 2I: = --. - - -w w· w
2 at at 2 TO

I I~ aWk aWl+ -E(OO)'Y<I>· 'Y<I> - yw· 'Y<I> + - L Zijkl----,
87T 2 ijkl aTj aTi

(C.l)

where

[
I ]1/2

Y = 47T E(OO)(W~o - wio)

{I} 1/2
= 47T [E(O) - E(OO)] WTO

E(OO) { [I I ]}1/2
= ~WLO 47T E(OO) - E(O) (C.2)

and where the displacement is described in terms of w = JPu for the same reasons
as in Appendix A. As will become apparent, it is convenient to define

1 47T {[ 1 1 ]} 1/2
(j = E(OO) Y = WLo 47T E(OO) - E(O) (C.3)

In the Lagrangian density (C.l), the first term is the kinetic energy, the second
term is the potential energy of the lattice due to short-range forces, the third term
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is due to the potential energy of the macroscopic electric field in the absence of
ionic motion, the fourth term is the potential energy associated with the coupling
of the lattice to the macroscopic electric field, and the fifth term represents the
quadratic dispersion associated with the short-range forces between ions, for the
case of isotropic dispersion, Zijkl = ADijDkl + BDikDjl + CDi/Djk.

The Euler-Lagrange equations derived by Nash from the variations of wand <I>
to describe the optical phonon modes in a slab situated between z = 0 and z = d

are

(C.4)

and

V· [E(OO)V<I> -4nyf(z)w] = 0 (C.5)

respectively. In these equations, y is as given in (C.2) and fez) = 8(z) - 8(d - z),
8 being the Heaviside step function. Following Nash, w is written as the gradient
of a mechanical potential X, w = -V X. The second of these equations is Poisson's
equation,

V· [E(OO)V<I>] = 4nyV[f(z)w] = -4nyV2x - 4nyV f(z)Vx, (C.6)

or

1
---V· [E(OO)V<I>]

E(OO)

= 4ny [V2x _ aX I D(Z - d + 1]) + ax I D(Z -1])],
E(OO) az z=d az z=o

where the last two terms on the right-hand side of (C.7) arise from the surface
polarization charge due to the discontinuity of the z-component of w. In these
results, w is taken to be normalized as described previously. That is, these modes
are normalized (according to the procedures of Section 5.1) in terms of Wm (qll, z)
instead of Um (qll, z), since the considerations of Appendix A make it clear that it is
convenient to use Wm = y'Pum:

(C.7)

(C.8)

Here the subscript m is retained to remind us that this result holds for a general
medium m. This last result is, of course, consistent with the normalization condition
of subsection 7.3.1, (7.44),

(C.9)
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this equivalence follows straightforwardly by noting that qll = q. As discussed in
Chapters Sand 7, the interaction potential for these normalized modes is

<pm(r) = L<pm(q, z) e-iq-p.
q

(C.lO)

Solutions of the form w = -V X satisfying these Euler-Lagrange equations are

(C.II)

and

(C.12)

for 0 < z < d, with f-L = A + B + C and Bo a constant. For solutions outside the
slab, <P satisfies Poisson's equation. As discussed previously, the fields for a slab
exhibit translational invariance in the direction normal to the surface of the slab;
accordingly, X (r) = X (z) eiq-p and <P(r) = ¢(z) eiq-p, where q and p are as defined
previously. Thus, for q i- 0 it follows that Bo = O. Then the last two equations may
be written as

(C.l3)

and

I 2 2 2 d2 X (z)
¢(z) = -(WTQ - W - uq )x(z) + f-L-

d
2 '

Y z
(C.14)

respectively. Nash has applied the methods used in analyzing the Sturm-Liouville
equation to show that the normal-mode solutions for the slab must satisfy the
following boundary conditions:

<P<P' = 0 at z = ±oo (C.IS)

and

Wx = Wy = W~ = 0 or

(C.16)
at z = 0 and d.

Again taking w = -V X, the equations (C.16) reduce to

X = X" = 0 and X' =0 (C.l7)

respectively.
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At this point it is instructive to consider each of the commonly used sets of
normal modes and to compare the boundary conditions they satisfy with those
obtained within the context of the Sturm-Liouville equation. Nash took k~q =
(wla - (2)j(f-L - q2) in the fourth-order equation for X (z) to define the fourth-order
eigenvalue equation

(::2 + k~q) (::2 - q2) Xnq(Z) = 0,

where k~q is the eigenvalue of Xnq(Z) and where the subscripts nq identify different
members of the basis set. As usual, q is the wavevector in the xy-plane and n is
here an integer used to distinguish different modes having the same value of q. It
is this equation that Nash uses to generate complete sets of orthonormal functions
representing the phonon modes. As discussed in Chapter 7, the orthogonality
relation for the normal modes is

(C.18)

f d3rw,,(r) . wtJ(r) = 0

where a and fJ each denote the set of quantum numbers nq. Recalling that
w = -V X and that X (r) = X (z) eiq-p this orthogonality relation may be written

for a i- fJ, (C.19)

as

* I r 2 * dX:q dXn1ql
Xnq· Xn'q' = 2d Jo dzq Xnq(Z)· Xn1ql(Z) + T~·

The various sets of confined and interface optical phonon modes, which have
been discussed in the literature include the so-called slab modes that satisfy the
electrostatic boundary conditions, the Huang-Zhu modes, which are based on a
reformulation of the slab modes, and the so-called guided modes, which satisfy
mechanical boundary conditions. For the slab modes,

(C.20)

_ (n+l)rrz
Xnq(Z) = SIll d ;

the boundary conditions on Xnq(Z) at Z = 0 and d are Xnq = X~q = 0 and it is
necessary to include the interface modes to obtain a complete set of modes. The
electrostatic potentials for these modes, <Pnq, are given by

(C.21)

4rry
<Pnq = ---Xnq(Z).

E(OO)

The normal modes satisfying <P<P'= 0 at Z = ±oo and X = X" = 0 at Z = 0 and d

are the slab modes.
For the modified Huang-Zhu modes given by Nash,

(C.22)

Icos f-Lnqrrz' j d + Dnq cosh q z'
Xnq (z) =

sin f-Lnqrrz' j d + Dnq sinh q z'
n even,

(C.23)
n odd;
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the boundary conditions on Xnq (z) at z = 0 and dare Xnq = X~q = 0 and it is
necessary to include the interface modes to obtain a complete set of modes. The
Huang-Zhu (H-Z) modes have been defined to satisfy these boundary conditions
at the interfaces since the available microscopic calculations exhibit this behavior.
In practice, the boundary conditions Xnq = X~q = 0 are satisfied by selecting the
necessary values of Dnq and f-Lnq. The H-Z modes are referred to frequently as
the reformulated slab modes and also as the reformulated modes of the dielectric
continuum model (with electromagnetic boundary conditions). Huang and Zhu
(1988) showed that the modes of the dispersionless microscopic theory at small q
are approximated well by these reformulated slab modes. The electrostatic potentials
for these modes, <Pnq, are given by

4ny
<Pnq = ---Xnq(Z). (C.24)

E(oo)

For the guided modes,
nnz

Xnq(Z) = cos T; (C.25)

the boundary conditions on Xnq (z) at z = 0 and d are again X~q = X~q = 0 and, as
pointed out by Nash, it is not necessary to include the interface modes to obtain a
complete set of modes. The electrostatic potentials for these modes, <Pnq, are given
by

4ny Icosnnz/d - e-qd/2coshq(z - d/2)

<P
nq = - E(00) cos nit z/ d + e-qd/2 sinh q (z - d /2)

n even,

n odd.
(C.26)

While these guided modes satisfy X~q = 0 at the interfaces, in agreement with the
q = 0 modes observed in Raman backscatter experiments (Sood et al., 1985), they
do not satisfy the conditions that Xnq (z) = 0 at z = 0 and d. Unlike the slab and H-Z
modes, the guided modes have non-zero exponentially decreasing values outside the
slab: <Pnq(z) = <Pnq(O) eqz for z < 0 and <Pnq(z) = <Pnq(O) eq(d-z) for z > d.

Finally, the interface modes that satisfy V2 X = 0 are given by

sinhq(z - d/2) coshq(z - d/2)
XIF,lq(Z) = sinhqd/2 and XIF,2q(Z) = coshqd/2 .

(C.27)

These expressions are consistent with those derived in Chapter 7; as argued there,
the IF optical phonon mode potentials decrease exponentially with distance from the
slab; that is, as eqz for z < 0 and as eq(d-z) for z > d.

Characterizing the interaction potential for the region m, <Pm (q, z), in terms of the
quantum numbers nand q for that region it follows for each of the sets of complete,
normalized modes that the interaction Hamiltonian is

HFr = -e<P (r) = -e L<Pnq(q, z) e-iq.p.
nq

(C.28)
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Clearly, of the three commonly used sets of phonon modes, only the slab modes
satisfy the conditions that <I><I>'= 0 at z = ±oo and Xnq = X~q = 0 at z = 0 and
d. The alternative set of boundary conditions, <I><I>'= 0 at z = ±oo and X~q = 0 at
z = 0 and d, is not satisfied by any of the commonly used sets of phonon modes. As
argued by Nash (1992), the Euler-Lagrange equations, (CA) and (C.5) are satisfied
in each material layer and provide the basis for determining the so-called connection
rules at each heterointerface. In the dispersionless limit the Lagrangian density does
not contain terms with spatial derivatives of wand, accordingly, the significance of
mechanical boundary conditions is unclear in this case.

For this reason, Nash examined the Euler-Lagrange equations at the heteroin-
terfaces for the case where the modes have non-zero dispersion, as described by
the Lagrangian density of (C.l). In this case, the connection rules may be seen
to be that wjp1/2, <I>,and the z-components of the electric displacement vectors,
Dz = (1j4n)E(00)<I>' - YWz, are continuous at the heterointerfaces. Thus in
the dispersive continuum model there is no contradiction in applying mechanical
boundary conditions to wand w' and at the same time applying electromagnetic
boundary conditions to <I>and D. Indeed, both types of boundary condition must be
invoked to derive the full set of normal modes.

As an illustration leading to an appreciation of the importance of Nash's con-
tribution to the understanding of the boundary conditions for the system at hand,
it is instructive to oversimplify the current analysis artificially by considering the
equation

E(oo)V<I> - 4nyw = O. (C.29)

The left-hand side of this equation appears in the Euler-Lagrange equation obtained
from variation of <I>in the Lagrangian density: V . [E(00) V <I>- 4n yw] = O.Clearly,
this simplified equation is not sufficient to describe the system fully but it is in
fact the equation assumed in the mechanical models to derive longitudinal modes
for the construction of normal modes. Let us consider (C.29) and show that it in
fact gives the correct Frohlich interaction Hamiltonian for electron-polar-optical-
phonon interactions, as derived in Section 5.1. Substituting the expression for y in
terms of WLQ, E(O), and E(oo), it follows immediately that

{ [
1 1 ]} 1/2

V<I>= wLQ 4n E(oo) - E(O) w. (C.30)

Then using the expression of Appendix A, w = .j f-LN j Vu, and the normalized
displacement of Section 5.1 for the case where wq = WLO and only the longitudinal
polarization contributes, it follows immediately that
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(C.31)

Then, using the result that V<I>= -iq<I> and multiplying <I>by -e to obtain the
Hamiltonian, it follows that

2ne2
/zWLO [1 1 ] ~ 1 ( iq-r t -iq.r)--------- L...J-ae -ae
V E( 00 ) E(0) q q q q ,

(C.32)

which is precisely the result obtained in Section 5.2. Thus, the simplified result,
E(00) V <I>- 4n yw = 0, gives the correct three-dimensional Frohlich interac-
tion Hamiltonian. However, this successful derivation does not justify the use of
E(oo)V<I> - 4nyw = 0 instead of V . [E(oo)V<I> - 4nyw] = 0 in analyzing the
boundary conditions for the phonon modes in a slab. Indeed, as argued by Nash
(1992) the longitudinal waves obtained from this simplified equation do not provide
sufficient degrees of freedom for the mechanical and electromagnetic boundary
conditions to be satisfied simultaneously.

The understanding gained through Nash's paper (1992) has been critical in
sorting out the correct approaches for calculating carrier-optical-phonon scattering
rates in dimensionally confined structures. Of course, the key feature of such cal-
culations is selecting a complete, orthogonal set of phonon modes. Notwithstanding
the situation that only slab modes satisfy the desired boundary conditions, Nash
demonstrated by explicit calculations that any of the three sets of complete and
orthogonal modes - slab modes plus IF modes, H-Z modes plus IF modes, and
guided modes - may be used as a basis set for determining the intrasubband and
intersubband electron-phonon scattering rates. Nash showed for a quantum well of
width d that

e2 L IV I<I>nq(Z)I iW ex W~q f d2q 2
1

n1 (q)n]' (q) in (q),
q q

where the form factor, in (q), is given by

(C.33)

1 1

2 2q wLO
in(q) = f dz nO (z)f3<I>nq(Z) d * ( ) () 2 '

Xnq Z Xn'q' Z Wnq
(C.34)

and where
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Ii) = 1J!o(Z,i)1J!j (p, i), If) = 1J!o(z,f)1J!j (p, f),

nj(q) = f d2pexp(-iq. p)nj(p),

nj (p) = 1J!t(p, f)1J!j (p, i), no(z) = 1J!~(z, f)1J!o(z, i).

(C.35)

Thus, for a given in-plane momentum transfer q the form factor in (q) describes
the probability that an electron will scatter from the initial subband Ii) to the
final subband If) as a result of interaction with phonons of branch, n. The
explicit numerical calculations of Nash (1992) showed that the form factors in (q)

corresponding to the three sets of complete and orthogonal modes - slab modes plus
IF modes, H-Z modes plus IF modes, and guided modes - are identical. This result
is evident from Figure C.I for the case of intrasubband transitions and Figure C.2
for the case of intersubband transitions.

(a)

o (b)

0.5

qd

Figure C.l. Form factors
fn (q) for intrasubband
scattering for optical modes
in a quantum well as
functions of qd for three
different cases: (a) slab
modes, (b) reformulated slab
modes, and (c) guided
modes. The labels 1,2, and
00 designate the
lowest-order mode, the
second-order mode, and the
infinite sum over all modes.
(d) depicts the total form
factor for bulk modes, f B ,
as well as that for the
interface modes, f I;
i'" = fB + fl. From Nash
(1992), American Physical
Society, with permission.
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These results indicate that any of the three sets of complete and orthogonal
modes for a semiconductor layer mentioned above may be used to calculate
electron-phonon scattering for the nearly degenerate longitudinal optical phonon
modes in the layer. The key point is that the modes of each of the three sets must be
complete and orthonormal. This result explains why the relatively simple modes of
the so-called slab model may be used to perform such a scattering-rate calculation
even though these modes are not the normal modes of a heterolayer.

As further proof of the validity of this approach, Nash showed that it is possible
to perform unitary transformations between the slab modes plus IF modes, the H-Z
modes plus IF modes, and the guided modes. These calculations demonstrate that
it is essential to include the IF optical phonon modes in the set of modes for the

Figure C.2. Form factors
fn(q) for intersubband
scattering for optical modes
in a quantum well as
functions of qd for three
different cases: (a) slab
modes, (b) reformulated slab
modes, and (c) guided
modes. For a description of
the labels, see the caption to
the previous figure. From
Nash (1992), American
Physical Society, with

:g permission.-

(a)

U'l•...
o-..u
~ (c)
E

~
0.1

CD
1

6 8 10
Qd
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slab model - also known as the dielectric continuum model with electromagnetic
boundary conditions - and the Huang-Zhu models. Moreover, it is essential that the
IF modes are not included in the set of guided modes; this set of guided modes
is complete without the IF modes. Indeed, the guided modes explicitly include
IF-like exponentially decaying components outside the slab, unlike the slab and H-Z
modes. The dielectric continuum model with electromagnetic boundary conditions
leads to a convenient set of modes - the slab modes plus the interface modes -
for making relatively simple calculations of electron-phonon scattering rates in the
case where it is not necessary to account for the dispersion of the confined modes,
also referred to as the bulk-like modes in a slab. For GaAs and AlAs the total
dispersion over the entire Brillouin zone is only a few me V and it follows that
in typical carrier-transport calculations - including those of solid-state electronic
devices with dimensionally confined structures - it is not necessary to consider this
dispersion. As is evident in Chapter 10, it is necessary to consider energy differences

(a)
slab

(h)
guided

(c)
HZ

(d)
microscopic

confined

Uz .. ~ ..... ~.- .~ ... -f~~·~J-
V o.~ ..o o.~_ ..~ .. ~

Uz 0 °V'" 0 o~... .or\Ji". -t~\:..:./~.t-
V ··AJ··· "V'" ..~ ...~

.ol:'--/~ .. ...~ ...
. .

Uz "'T··fI··_·":·_~·.:J;.
V .~. .~ . ~

interface

.,~o .. ..~.o
.

Uz -1:••~~•...~r•. r..
••••.• +

V .1'-1'. .1--4. ~

Figure C.3. The z-component of the atomic displacement, uz, and the
corresponding potential V for each of the modes reported by Rucker et al. (1991,
1992). The optical modes are presented for a 56 A (00 I)-oriented GaAs quantum
well surrounded by two AlAs layers. The confined modes of highest frequency and
the two interface modes are displayed from top to bottom in order of decreasing
phonon frequency for each type of mode. The heterointerfaces are designated by the
vertical bars and the phonon wavevectors are qz = 0 for the modes displayed in the
upper half of the figure and qll = 0.15 A -1 for the modes displayed in the lower half
of the figure. From Rucker et al. (1991, 1992), American Physical Society, with
permission.
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as small as a few me V when modeling optoelectronic devices such as semiconductor
quantum-well lasers.

In closing this appendix, it is extremely enlightening to consider a graphical
comparison of the various macroscopic and microscopic optical phonon modes in
two-dimensional heterostructures. Rucker et al. (1992) made direct comparisons
of the slab, guided, and H-Z modes with the modes calculated with an ab initio
microscopic model. Figure C.3 presents the z-component of the atomic displace-
ment, Uz, as well as the corresponding potential, V, for each of these modes as
reported by Rucker et al. (1991, 1992). The optical modes are presented for a
56 A (OOl)-oriented GaAs quantum well surrounded by two AlAs layers. The
heterointerfaces are designated by the vertical bars and the phonon wavevectors

IFl IF2

2

1

0

~
~ -1·8
;::l

..ci
•....-.:s
~...,
I::
ill...,

100...

0

-1

-40 -20 0 20 40 60

Z (A)

Figure C.4. Detailed comparison of potentials for the high-frequency symmetric
(IFl) and antisymmetric (IF2) interface modes, as calculated via both macroscopic
and microscopic models for q = (qx, 0, 0), where qx = 0.05 A -1 for the modes
displayed in the upper half of the figure and qx = 0.15 A -1 for the modes displayed
in the lower half of the figure. The broken-and-dotted and solid lines represent the
potentials derived from the macroscopic model and from the microscopic model
respectively. As expected, the agreement between the macroscopic and microscopic
calculations is excellent. From Riicker et al. (1992), American Physical Society, with
permission.
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are taken to be qz = 0 and qll = 0.15 A-I. Figure CA presents a detailed
comparison of potentials for the interface modes as calculated via both macroscopic
and microscopic models. As expected, the agreement between the macroscopic and
microscopic calculations is excellent (Rucker et al., 1992).

Appendix D: Optical phonon modes in single- and
double-heterointerface wiirtzite structures

In subsection 7.3.1 the interface optical phonon modes for a single-heterointerface
wurtzite structure were derived on the basis of the dielectric continuum model and
Loudon's model for uniaxial crystals. In this appendix, all the optical phonon modes
in single- and double-heterointerface wurtzite-like uniaxial structures are formulated
on the basis of the Loudon model and the dielectric continuum model (Lee et al.,
1998). These structures are depicted in Figures D.l(a), (b) respectively.

D.I Single-heterointerface uniaxial structures

First consider the half-space (HS) modes of a heterostructure with a single interface
separating two semi-infinite polar-semiconductor regions. The c-axis is taken to be
normal to the heterointerface. In the region where z < 0 the dielectric constants are
E(whCll),2 and in the region where z > 0 the dielectric constants are E(whCll),l.
The half-space modes behave like the normal bulk modes as z --+ ±oo and they

material 2
E2 (00)

materiall
E1 (00)

Figure D.l. (a) The basic
single-he teroin terface
structure and (b) the basic
double- heterointerface
structure. From Lee et al.
(1998), American Physical

Z --+ Society, with permission.o
(a)

material 1 material 1 material 2
E2 (00) E1 (00) E2 (00)

-d/2 o d/2

(b)
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satisfy the electrostatic boundary conditions at z = O. Consider the case in which an
optical phonon mode propagates into region 2 from region 1 as depicted in Figure
Dl(a). The wavevector in region 1is denoted by (q, q1, II)and the angle between this
wavevector and the z-axis is 81. When the allowed frequencies in region 1 do not
overlap with the allowed frequencies of region 2, it follows that E(r») 11,2E(r») .r.z > 0
and the modes in region 2 decay exponentially. Following an analysis similar to that
of subsection 7.3.1,. IAcosql11Z+Bsinqlllz¢(r) = e,q·p x ' ,

CeK2Z

z > 0,

z < 0,
(D.l)

and in the absence of free charge, V . D = 0 so that

E(W)II,lq~,l + E(wh,lq2 = 0

E(W)II,2Ki - E(wh,2q2 = 0

E(w)lI,lE(wh,l > 0,

E(W)II,2E(wh,2 > O.
(D.2)

From the continuity of the tangential component of the electric field at z = 0 it
then follows that A = C. From the continuity of the normal component of the
electric displacement at z = 0, EII,lqll,lB = EII,2K2C;thus, C = !:qB with .0,,1=
EII,lkl.ll/(EII,2K2). Thus

z > 0,

z < O.
(D.3)

Now Ej and Ell are given by the appropriate gradients of ¢o. The normalization
condition of subsection 7.3.3,

_1 ~ = f {_I _1 aE(wh,n IE 12 _1 _1 aE(w)lI,n IE 12} d
L22w 4n 2w oca .L,» + 4n 2w oca lI,n z ,

(DA)

may be calculated in terms of IE-i,n 1

2 and IEII,n1

2 through

where the normalization length L in the z-direction is defined over the region
(- L 12, + L 12) and where the limit L 12 --+ 00 will be taken at a later stage of
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the calculation. Evidently, in the limit L/2 --+ 00 the exponentially decaying mode
in region 2 makes a negligible contribution to the normalization integrals. Thus, it
follows that

2 _ 47TYt 4 (aE-l,l 2 aEII,l 2 )-1
cPo - V 1+ ~i a;;;-q + ~q1,ll , (D.7)

and that

xl EII,lqll,lcosqll,lZ+EII,2K2sinqll,lZ

EII,lQIl,leK2Z

Z > 0,
(D.8)

Z < 0,

where the summation is taken only over values of QII,l consistent with the condition
E(W)II,2E(wh,2 > O. The case in which an optical phonon mode propagates into
region 1 from region 2 may be treated in the same manner.

The angular dependence of the phonon frequencies in wurtzite heterostructures
leads to the situation - in contrast to the typical case for zincblende heterostructures
- where there is an overlap in the allowed phonon frequencies in adjacent material
regions. This situation leads to the occurence of modes that propagate across the
heterointerface. Consider an optical phonon incident on region 2 from region 1. In
this case, the phonon will propagate in region 2 if the phonon frequency in region 1,
w, is such that E(W)II,2E(wh,2 < O. As before, the allowed frequencies in region 1
are the solutions of E(W)II,lQ~,l + E(wh,lQ2 = 0 or QIl,l = J-E(wh,I!E(W)II,lQ.
If E(W)II,2E(wh,2 < 0, there exists a real solution for QII,2which satisfies

(D.9)

or

-E(wh 2
---'-Q=

E(W)II,2
(D. 10)

Writing the phonon potential as

Z > 0,
Z < 0,

(D.ll)

it follows that continuity of the tangential component of the electric field at the
heterointerface leads to A + B = C and continuity of the normal component of the
electric displacement at the heterointerface results in the condition
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(A - B)1"i.2 = C where

Eliminating B from these two conditions, it follows that 2A = (1 + 1"i.21) C so that
C = 2AI"i.2/(1+ 1"i.2)and B = A(1"i.2 - 1)/(1+ 1"i.2). Then

Z > 0,
(D.12)

Z < o.

Once again, the normalization condition of subsection 7.3.1,

_1 ~ = f {_I _1 aE(wh,n IE 1
2 _1 _1 aE(w)lI,n IE 1

2} d
L22w 4n 2w oca .L,» + 4n 2w oca II,n Z,

(D.13)

may be calculated in terms of IE-l,n 1

2 and IEII,n 1

2 through

(D.14)

These normalization integrals determine the propagating (PR) optical phonon modes
in a single-heterointerface wiirtzite structure. The corresponding electron-optical-
phonon interaction Hamiltonians are:

HtR = L L (4ne2liL -3) 1/2
q qt,11

X [a: ({E-l,1(w)q2 + EII,l(W)qr,lI} + {l *+ 2})r1/2

. t j2cosql,llZ Z > 0,x e,q·p (aq + a_q)
2COS(q2,IIZ) Z < 0,

(D.15)

for the quasi-symmetric modes and
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HA = L L (47Te2hL -3) 1/2
q qt,11

X [a: {[El..,1(w)q2 + EII,I(w)q~,II]E~,2qi,ll} + {l *+ 2}r
l
/
2

. t 1 EII,2q2,11sinql,llZ Z > 0,
x e,q·p (aq + a_q) .

EII,lql,ll smq2,IIZ Z < 0,

for the quasi-antisymmetric modes (Lee et al., 1998).

(D.16)

D.2 Double-heterointerface uniaxial structures
First consider the interface modes of a uniaxial polar-semiconductor heterostructure
consisting of a layer of material 1, of thickness d, bounded by two semi-infinite
regions of material 2 occupying the regions Z < -d j2 and Z > d j2. The c-axis
is taken to be normal to the heterointerfaces. In the region [z] < dj2 the dielectric
constants are E(whCll),1 and in the semi-infinite regions [z] > dj2 the dielectric
constants are E(whCll),2, as depicted in Figure D.l(b). As for the zincblende case
discussed in Chapter 7, the potential ¢(r) is taken to be of the form

{

CeK2(Z+d/2)

¢(r) = eiq.p x A cosh KIZ + B sinh KIZ
De-K2(Z-d/2)

Z < -dj2,
[z] < dj2,
Z > dj2.

(D. 17)

In the absence of free charge, V . D = 0 so that the dispersion relations in the
two material regions are

E(w)II,IK~ - E(wh,lq2 = 0

E(W)II,2Ki - E(wh,2q2 = 0

E(W)II,IE(wh,1 > 0,

E(W)II,2E(wh,2 > 0,
(D.18)

so it follows that KI = .jE(Wh,ljE(w)II,1 q and K2 = .jE(Wh,2jE(w)II,2 q. The
continuity of the tangential component of the electric field at the heterointerfaces is
satisfied if

C = A coshKldj2 - B sinhKldj2 Z = -dj2, (D.19)

and

D = A coshKldj2 + B sinhKldj2 Z = dj2. (D.20)

Likewise, the continuity of the normal component of electric displacement at the
heterointerfaces is satisfied if

Z = -dj2,
(D.21)
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and

Eliminating C and D from these equations, it follows that

E(W)II,2K2(AcoshK]dj2 - B sinh K]dj2)

= E(w)II,]K](-A sinhK]dj2 + B coshK]dj2)

and

-E(W)II,2K2(A coshK]dj2 + B sinhK]dj2)

= E(w)II,]K](A sinhK]dj2 + B coshK]dj2).

Accordingly, the condition for a non-trivial solution is

[E(W)II,]K]sinhK]dj2 + E(W)II,2K2coshK]dj2] = O.
[E(w)II,]K] coshK]dj2 + E(W)II,2K2sinhK]dj2]

Clearly, two cases are possible. The case where

corresponds to B = 0, with the results that

C=D=4>o and
_ C 4>0.A - ---- - ----,

cosh K] d j2 cosh K] d j2

hence, the potential is symmetric and

_eK2(Z+d/2)

(cosh K]Z) j (cosh K] d j2)
e-K2(Z-d/2)

The case where

corresponds to A = 0 with the results that

Z < -dj2,

[z] < dj2,

z > dj2.

-C = D = 4>0 and
_ D 4>0.B - ---- - ----,

sinhK]dj2 sinhK]dj2

hence, the potential is anti symmetric and

z < -dj2,

[z] < dj2,

z > dj2.

24]

z = -dj2.
(D.22)

(D.23)

(D.24)

(D.25)

(D.26)

(D.27)

(D.28)

(D.29)

(D.30)

(D.31)
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Once again, the normalization condition of subsection 7.3.1,

_1 ~ _ f _1 _1 aE(wh,n IE 12 _1 _1 aE(w)lI,n IE 12 d
L22w - 4n 2w oca .l.,» + 4n 2w oca II,n Z,

(D.32)

may be calculated in terms of the appropriate integrals of IE.i., n 1

2 = q 2
1 ¢(z) 1

2 and

IEII,n 1

2 = la¢ (z)/azI2. For the symmetric case, these integrals are

I fd/2= ¢5Kf 2 sinh 2(KIZ)dz
cosh (KI d /2) -d/2

2¢5Kf (I . KId KId d)
= cosh? Kld/2 2KI sinh 2 cosh 2 - '4.

(D.33)

For the anti symmetric case, these integrals are

I fd/2= ¢5q2. 2 sinh 2(KIZ)dz
sinh (Kld/2) -d/2

2¢5q2 [I . (KId) KId d]= ----- -- sinh - cosh - - -
sinh 2(Kld/2) 2KI 2 2 4'
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1 fd/2= cP5Kf----- cosh2Klzdz
sinh 2(Kld/2) -d/2

2cP5Kf (1 . KId KId d)=---- -smh-cosh-+- .
sinh 2Kld/2 2KI 2 2 4

(D.34)

It then follows that the carrier-optical-phonon interaction Hamiltonian for the
symmetric modes is

Hfj, = ~ 4n:e2liL -2 { a:LJEl...I Ell.!tanh(J El...!/ Ell.!qd /2) _ ~El...2EII.2]} -1/2

I cosh(JEl...!/EII.lqZ)
1 ~-- [z] < d/2,

x --e;q'P(aq + a!q) cosh(JEl..,I/EII,lqd/2) (D.35)
~

e-~E~,2/ElI,2q(lzl-d/2) [z] > d/2,

where the frequency is the solution of the transcendental equation

(D.36)

with the range of frequencies determined by EII,IEII,2 < 0 and, as discussed
previously, El..,IEII,1> 0 and El..,2EII,2> O. For the anti symmetric mode,

Hff, = ~ 4n:e2liL -2 {a:[~El..'IEII'1 coth(JEl..,I/EII,lqd/2) _ ~El..'2EII'2]} -1/2

x _l_e;q,p(a + at )
~ q -q

I sinh(JEl..,I/EII,lqZ)

x sinh(JEl..,I/EII,lqd/2)

sgn(z) e-~E~,2/ElI,2q(lzl-d/2)

[z] < d/2,
(D.37)

[z] > d/2,

where the frequency is determined by

The dispersion relations for these interface modes are displayed in Figure D.2 for a
wiirtzite AlN/GaN/ AIN heterostructure having a quantum well of thickness d.
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For the symmetric confined modes in the double-heterointerface structure the
potential, ¢(r), is taken to be of the form

{

cosqll,ldl2 eK2(Z+d/2)

¢(r) = ¢oeiq,p x cosqll,lz
cos qll,Id 12 e-K2(Z-d/2)

Z < -dI2,
[z] < d12,
z > d12.

(D.38)

In the absence of free charge, V . D = 0 so that the dispersion relations in the
two material regions are

E(W)II,lq~,l - E(wh,lq2 = 0

E(W)II,2q~,2 - E(wh,2q2 = 0

E(w)lI,lE(wh,l < 0 for [z] < d12,

E(W)II,2E(wh,2 > 0 for [z] > d12.
(D.39)

Clearly, the continuity of the tangential component of the electric field at the
heterointerfaces is ensured by the choice of ¢(r). The continuity of the normal com-
ponent of the electric displacement at the heterointerfaces leads to the requirement
that

(DAO)

Once again, the normalization condition of subsection 7.3.1,

1000

900

800

700

600

500 a 1 2 3 4 5 6

Wavevector (qd)
Figure D.2. Interface phonon dispersion relations for an AlN/GaN/AlN
double-interface heterostructure with interfaces separated by a distance d. From Lee
et at. (1998), American Physical Society, with permission,
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_1 ~ _ f _1 _1 aE(wh,n IE 12 _1 _1 aE(w)lI,n IE 12 d
L22w - 4n 2w oca .l.,» + 4n 2w oca II,n Z,

(D.41)

may be calculated in terms of the appropriate integrals of IE-i,nI2 = q21¢(z)12 and

IEII,n 1

2 = la¢(z)/azI2. For the symmetric case, these integrals are

(D.42)

and

(D.43)

thus

I li I I 2 {[ aE(wh,1 2 aE(w)II,1 2 ] d
L2 -2w-= -4n--2w-¢O --aw--q + --aw--qll,1 "2

[
aE(Wh,1 q2 aE(w)II,1 ]. qll,ld qll,ld+ ---- - ---qll 1 sm -- cos--

aw qll,l aw' 2 2

+ [aE(Wh,2 q2 + aE(W)1I.2K2] cos2 ql,lld)
aw K2 aw 2

I I 2 {[aE(Wh,1 2 aE(w)II,1 2 ] dais qll,ld}= -4n--2w-¢o --aw--q + --aw--qll,1 "2 - 2q-aw-cos -2-

I I 2 { a [ 2 2 ] dais qll,ld}= -4n--2w-¢o -aw- E(wh,lq + E(w)II,lqll,1 "2 - 2q-aw-cos -2- ,

(D.44)

where is (r») is defined by

(D.45)
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Thus,

2 2{ a [ 2 2 ] dais qilid }-l¢o = 4nnL - - E(wh lq + E(w)11lqll 1 - - 2q- cos -' -aw' "2 oca 2
(D.46)

and

[z] < d/2,
(D.47)

z > d/2,

where the discrete confined wavevectors ql,m are determined from

Is (r») is evaluated at the discrete values of qll,1, qm, 1, and

2mn/d < qm,l < 2(m + l)n/d. (D.48)

As defined previously K2 = JE(W h,2/E(w)II,2 q. Through an analogous derivation,
it follows for the anti symmetric modes that

Ht = L L eiq-p (aq + a!q)
q m

2{ a [ 2 2 ] dx 4nnL - aw E(wh,lq + E(w)lI,lqm,l "2
a d}-1/2

-2q awla(w) sin qm21

1
sinql,mZ

x sgn(z) sinqm,ld/2e-K2(z-d/2)

[z] < d/2,
(D.49)

z > d/2,

where

V qll,ldla(w) = sgn[E(w)II,IJ -E(wh,lE(W)II,l cos -2-

+ sgn[E(w)II,2JVE(wh,2E(w)II,2 sin qll;,ld (D.50)

and where the discrete confined wavevectors q 1,m are determined from

(D.5I)

with 2(m - l)n/d < qm,l < 2(m + l)n/d and K2 = JE(Wh,2/E(w)II,2q.
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The half-space modes in a double-heterointerface structure may be considered
usefully in terms of symmetric and anti symmetric modes since such a heterostruc-
ture is symmetric about z = O. For the symmetric modes take

¢(r) = eiq.p

1
A cos[qll, I (z + d/2)] - B sin[qll,1 (z + d/2)] z < -d/2,

x C cosh xj z [z] < d/2,
A cos[qll, I (z - d/2)] + B sin[qll,1 (z - d/2)] z > d/2.

Then, continuity of the tangential component of the electric field at the heteroin-
terfaces yields A = C cosh KId /2 and continuity of the normal component of
the electric displacement at the heterointerfaces requires that E(W)II,2qll,2B =
E(W)II,IK2CsinhKld/2. Since V·D = 0 it follows that E(W)II,2q~,2+E(wh,2q2 = O.
Defining .0..3 = E(W)II,2qll,2/E(w)II,IKI it follows that A = B.0..3cothKld/2. Then,
with B == ¢o,

¢(r) = ¢oeiq.p

1
- sin[qll, I (z + d/2)] + .0..3coth Kld/2 cos[qll, I (z + d/2)]

x .0..3 (cosh Klz)/(sinh Kld/2)
sin[qll,1 (z - d/2)] + .0..3 cothKld/2 cos[qll, I (z - d/2)]

or

{

{sin[qll,1 (lz] - d/2)]
¢(r) = ¢oeiq.p x +.0..3 cothKld/2cos[qll,I(lzl - d/2)J}

.0..3 (cosh KIZ) / (sinh KId /2)

For the anti symmetric modes take

. {-ACOS[qll,I(Z+d/2)]+Bsin[qll,I(Z+d/2)]
¢(r) = e,q·p x C sinh xj z

A cos[qll, I (z - d/2)] + B sin[qll, I (z - d/2)]

(D.52)

z < d/2,
[z] < d/2,
z > d/2,

(D.53)

[z] > -d/2,
[z] < d/2.

(D.54)

z < -d/2,
[z] < d/2,
z > d/2.

(D.55)

Then, continuity of the tangential component of the electric field at the heteroin-
terfaces yields A = C sinhKld/2 and continuity of the normal component of
the electric displacement at the heterointerfaces requires that E(W)II,2qll,2B =
E(W)II,IKICcoshKld/2. Thus, it follows that A = B.0..3tanhKld/2. Then, with

B == ¢o,

¢(r) = ¢oeiq.p

1
sin[qll,2(Z + d/2)] - .0..3 tanh Kld/2 cos[qll,2(Z + d/2)]

x .0..3 sinhKlz/(coshKld/2)
sin[qll,2(Z - d/2)] +.0..3 tanh Kld/2 cos[qll,2(z - d/2)]

z < -d/2,
[z] < d/2,
z > d/2,

(D.56)
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or

¢(r) = ¢oeiq.p

Isgn(z){sin[qll,2(lzl - d/2)]
x +.6..3 tanhKld/2cos[qll,2(lzl - d/2)J}

.6..3(sinh KIz) / (cosh KId /2)
[z] > -d/2,
[z] < d/2.

(D.57)

Once again, the normalization condition of subsection 7.3.1,

_1 ~ _ f _1 _1 aE(wh,n IE 12 _1 _1 aE(w)lI,n IE 12d
L22w - 47T 2w oca .l.,» + 47T 2w oca lI,n z,

(D.58)

may be calculated in terms of the appropriate integrals of IE .i., n 12= q 2
I ¢ (z) 1

2 and

IEII,n12= la¢ (z)/azI2. For the symmetric case, the integrals that make contributions
in the limit L -----+ 00 are

lL/2 1 L
IE-i,212 dz = ¢1Jq2- (1 +.6..~ coth2 Kld/2)) -,

sr: 2 2

lL/2 1 L
IEII,21

2
dz = ¢1Jq~ 2- [1 +.6..~ coth2(Kld/2)] -.

sr: ' 2 2

(D.59)

For the antisymmetric case, the integrals that make contributions in the limit L --+
00 are

Thus

2 _ 47Tn [aE(Wh,2 2 aE(wh,2 2 ]-1
¢o - V x 2 aw q + aw qll,2

x 1(l + .6..~coth2 Kld/2)-1 symmetric case,
(l + .6..~tanh2 Kld/2)-1 antisymmetric case.

(D.6l)

The interaction Hamiltonian for the symmetric HS modes is then

H~s = L L 47Te2nL -3 [a: (E-i,2 sin2 e2 + EII,2cos2 e2)] -1/2 eiq.p (aq + a~q)
q qll,2

~(2 2 )-1/2( 2 2· 2 2 2 2 )-1/2x -n q + qll,2 EII,IKIsinh Kld/2 + EII,2qll,2cosh Kld/2

I{EII,IKIsinhKld/2sin[qll,2(lzl - d/2)]

x + EII,2QII,2coshKld/2cos[QII,2(lzl - d/2)]} [z] > d/2,

EII,2QIl,2cosh xj z [z] < d/2,

(D.62)
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where the sum is over qll,2 and is taken only over those values (D.62) such that
E(r») 11,1E(wh,1 > O. Likewise, the interaction Hamiltonian for the anti symmetric
HS modes is

[
a ]-1/2

Htfs = L L 4n:e2liL -3 aw (El..,2 sin2e 2 + EII,2COs2e2) e;q·P(aq + a~q)
q qll,2

x.j2(q2 + q~,2)-1/2(E~,1 Kf cosh2 K1d/2 + E~,2q~,2 sinh2 K1d/2)-1/2

Isgn(z) {Eu, 1K1 coshK1d/2sin[qll,2(lzl - d/2)]

x + EII,2qll,2sinhK1d/2cos[qll,2(lzl - d/2)J}

EII,2qll,2sinh K1Z

[z] > d/2,

[z] < d/2.
(D.63)

The interaction Hamiltonians for the propagating (PR) modes may be obtained
straightforwardly from those of the HS modes by making the substitution K1 --+
iqll,l. Indeed, this substitution results in A, = -i.0..~ with

.0..' _ E(W)II,2qll,2
3- ,

E(w)lI,lqll,l
COShK1Z --+ cosqll,lZ,

sinh xj z --+ i sinqll,lZ, (D. 64)

cothK1d/2 --+ -i cotqll,ld/2,

tanhK1d/2 --+ -i tanqll,ld/2.

The interaction Hamiltonian for the symmetric PR modes is then

HtR = L L 4n:e2liL -3 [a: (El..,2q2 + EII,2q~,2)r1
/
2

e;q·P(aq + a~q)
q qll,2

r:;( 2 2 . 2 2 2 2 ) -1/2xv2 EII,lqll,l sin qll,ld/2 + EII,2qll,2cos QIl,ld/2

I{EII,2QII,2cos Qll,1d/2 cos[QII,2 (lz] - d /2)]

x - EII,lQIl,l sinQIl,ld/2sin[QII,2(lzl - d/2)J}

EII,2QIl,2cos Qll,lz
[z] > d/2,

[z] < d/2,
(D.65)

where the sum is over QIl,2 and is taken only over these values such that
E(r») 11,1E(wh,1 < O. Likewise, the interaction Hamiltonian for the anti symmetric
PR modes is

[
a ]-1/2HtR = L L 4n:e2liL -3 aw (El..,2Q2 + EII,2Q~,2) e;q·P(aq + a~q)

q qll,2

r:;( 2 2 2 2 2 . 2 ) -1/2xv2 EII,lQII,l cos QIl,ld/2 + EII,2QIl,2sin QIl,ld/2

Isgn(z){EII,2QIl,2 sinQIl,ld/2cos[QIl,2(lzl - d/2)]

x + EII,lQIl,l cos QIl,ld/2 sin[QIl,2(lzl - d/2)J}

EII,2QIl,2sin Qll,lz
[z] > d/2, (D.66)
[z] < d/2.
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Appendix E: Fermi golden rule

The Fermi golden rule provides a convenient perturbative result for estimating
carrier-phonon scattering rates. In calculating these rates in solids it is in fact usually
possible to treat the carrier-phonon interactions as perturbations to the Hamiltonian
describing the system in the absence of phonon interactions. Taking the unperturbed
system to be described by the Hamiltonian H and the carrier-phonon interaction
Hamiltonian to be He_p(t), the wavefunction of the system, 1/J (x, t), obeys

n a1/J(x, t)
[H + He-p (t)]1/J (x, t) = -i-a-t-' (E.1)

where a one-dimensional system is considered for the sake of simplicity. The final
result for the Fermi golden rule will be independent of the assumption that the
system is one dimensional. Taking the wavefunction to be of the form

1/J(x, t) = Lcn(t)¢n(x) e-iEnt/li,
n

(E.2)

where ¢n (x) is the eigenstate of the unperturbed system with quantum number n, it
follows that,

n

+ LCn(t)e-iEnt/IiHc_p(t)¢n(X) (E.3)
n

and

_~_a_1/J_(x_,_t_)= _~ L _dc_n_(t_)¢n(x) .v-»
I at I n dt

+ LCn(t)En¢n(x)e-iEnt/li.
n

(EA)

Thus, without approximation,

Since the spectrum of eigenstates ¢n for a quantum mechanical system is complete,
(¢ml¢n) = 8mn. Thus, upon multiplying both sides of the last equation by ¢:;, and
integrating over x, it follows that

(E.6)

Now if it is assumed that the system is initially in state n, so that Cn (0) = 1 and all
other Cm (0) are zero, the time evolution of state m is approximated by
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(E.7)

In the case where He_p(t) is a step function in time,

(E.8)

or

(E.9)

In the case of nearly degenerate states En c:::' Em, and where the transition from
state n is to a dense group of final states centered around Em, the probability of a
transition, 1 em (t) 1

2, takes the form

1En+J'..E/2 sin2[(E E)t/(2li)]
P = dEp(E) l(cPm IHe-pl cPnW __ n_- _

En-f..E/2 [(En - E)/2]2

21En+J'..E/2 sin2[(En - E)t/(2li)]
c:::' 4p(E) l(cPm IHe-pl cPn)1 dE 2' (E.lO)

En-J'..E/2 (En - E)

where the last result follows since pee) l(cPm I He-p I cPn)12 varies slowly with energy
relative to [sin2(En - E)t/(2li)]/(En - E)2. Taking x = (E - En)t/(2li),

2t 21tJ'..E/4h sin2x
P = -pee) l(cPm IHe-pl cPn)1 dx -2 .

li -tJ'..E/4h x
(E.II)

In the limit of large t,

2n 2
P --+ t;p(E) l(cPm IHe-pl cPn)1 t; (E.12)

the transition rate is given by

dP 2n 2
- = -pee) l(cPm IHe-pl cPn)1 .dt li

(E.l3)

This result is one of the expressions known as the Fermi golden rule.
An alternative form of the Fermi golden rule is obtained by returning to the case

of a transition between two specific states (n and m), by taking the limit of large t,

2 2lit»-=---
Wmn Em - En

(E.14)

and using the relation

sirr' Wmn t /2 2n li
----2- --+ 2n8(wmnt) = --8(liwmn)

(Wmn t /2) t
(E.15)
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for t » 2 j Wmn; it then follows that for t » 2 j Wmn

(E.16)

In the case where Hc-p is associated with a phonon field and thus has a harmonic
time dependence, e±iwphonon/, the derivation of the last result is modified by replacing
Wmn by Wmn =fWphonon, the upper sign corresponds to phonon emission and the lower
sign is associated with phonon absorption; thus,

(E.17)

This form of the Fermi golden rule is used throughout this book. Although the
derivation of the Fermi golden rule is based on the assumption that t » 2jwmn,

there are many instances for nanoscale devices where this condition is not met.
Indeed, for nanoscale devices, transit times are frequently 0.1 ps or less and energy
differences are a few to tens of meV so that 2jwmn c:::' 0.1 ps. Hence, t R:! 2jwmn

and t » 2 j Wmn is not satisfied. Nevertheless, the Fermi golden rule is used
routinely in such situations and there are few cases where its failure to yield
a reasonable approximation has been demonstrated convincingly. Moreover, the
alternative means of making non-perturbative calculations such as those based on
the Feynman path integral (Register, et al., 1988; Komirenko, et al., 2000c) are so
computationally intense that they are rarely used in practice.

Appendix F:Screening effects in a two-dimensional
electron gas

In this appendix, the role of screening is examined by the Lindhart method for
the case of a two-dimensional electron gas (Bastard, 1988). The phonon field is
taken to give rise to a potential epphonon(r). In general, this potential will induce
a charge distribution pindnced(r), which produces a potential, epindnced(r). The
total electrostatic potential is then the sum of that produced by the phonon field,
epphonon(r), and that associated with the induced charge density, epindnced(r):

eptotal(r) = epphonon(r) + epindnced(r). (El)

Thus, the total interaction potential energy, V (r), is the sum of that associated
with the phonons in the absence of the Coulomb screening, _eepphonon(r), and that
induced by the Coulomb screening effects, _eepindnced(r):

VCr) = _e[epphonon(r) + epindnced(r)] = _eeptotal(r). (E2)
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Taking this interaction to be a perturbation to the Hamiltonian of the carrier-phonon
system without phonon interactions or screening, Ha, it follows from Appendix E
that

in dCdi(t) = I)Pi IVI ¢k) q(t) e-i(Ei-Ek-liw)tjlieyt,
t k

where the time-dependent carrier-phonon interaction with screening effects in-
cluded is taken as

(F.3)

(FA)

As in Appendix E, the system is assumed to be initially in state I¢k); then

indci(t) = (¢i IVI ¢k)e-i(Ei-Ek-liw)tjlieyt,
dt

(F.5)

and

Ci(t) ~ -~(¢i IVI¢k)/t dte-i(Ei-Ek-liw)tjlieyt
n -00

(¢i IV I ¢k) e-i(Ei-Ek-liw)tjli .
Ei - Ek - hco - i Y

(F. 6)

The unperturbed wavefunction is taken to be that of a two-dimensional electron gas
in the lowest subband,

A. (r t) __ 1_ () eikop-iEktjli
'Yk , - ~XI Z , (F.7)

where S is the area of the two-dimensional electron gas, Xl (z) describes the
dependence of the wavefunction normal to the xy-plane of translational invariance,
and eikop is the wavefunction for a plane wave in the xy-plane with p = (x, y) and
k = (kx, ky). The perturbed wavefunction is then given by

'l1k(r, t) = ~XI (z) eikop-iEktjli

ik' p

+ I ()~ (¢k'IVI¢k) e 0 -i(Ek+liw)tjli-Xl z L--------e
~ k' Ek' - Ek + hco + i Y

+ I ()~ (¢k'IV*I¢k)eik'OP -i(Ek-liw)tjli
-Xl z L 0 e ,
~ k' Ek' - Ek - hco + I Y

(F.8)

where

v = Ve-iwt+yt + V* eiwt+yt,

(¢k,lVl¢k) == f d2pe-ik'oPVeikoP,

(¢k' IV*I ¢k)* == (¢k,lVl¢k).

(F.9)
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The induced charge density is then proportional to the difference of the probability
densities of the perturbed and unperturbed wavefunctions, multiplied by the Fermi-
Dirac distribution function Fk:

(EIO)

where -e is the charge of a single carrier and the factor of two is introduced since
there are two spin states for every electronic quantum state. Thus,

. x2(z) 1 (k'lVlk) ei(k'-k)'Pe-iwt
plnduced(r) = -2e L _1_ L .

k S k' Ek - Ee + hco + I Y

(k'lVlk)* e-i(k'-k)'Peiwt

+L .
k' Ek - Ee + hco - ly

(k' IV* Ik) ei (k'-k)-p eiwt

+ ~ Ek - Ee - nw + i Y

(k' IV*I k)* e-i(k'-k)'Pe-iwt)
+L------- Fk

k' Ek - Ee -nw - iy

= _2eXf(Z) 1 (k'lVlk) ei(k'-k).p

S f; Ek - Ee + nw + i Y

(k' 1V*lk)* e-i(k'-k).P) _'+ -------- e t cot Fk + C.C.
Ek - Ee -nw - iy

= _2eXf(Z) L (k'lVlk) ei(k'-k)-p Fk' - Fk .' (Ell)
S k.k/ Ek - Ee + hco + I Y

Defining q = k' - k, noting that the matrix element (k'iV I k) depends on the modulus
of k' - k, and defining V (lk' - kl) == (k'lVlk), it follows that

pinduced(r) = _2eXf(Z) L V(lk' _ kl) ei(k'-k).p Fk, - Fk .
S k,k' Ek - Ee + hco + ly

(EI2)

or, alternatively,

pinduced(r) = _2eXf(Z) L L V(lql) eiq-p Fk+q - Fk .
S k q Ek - Ek+q + nWq + I Y

= eXf(z) L V(lql) eiq
.
p A(q, w), (El3)

q

where
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2 ~ Fk+q - Fk
A(q, w) == -- L..J -------.

S k Ek - Ek+q + nWq + i y
(EI4)

A( q, w) represents the polarization of the two-dimensional electron gas. More-
over, pinduced(r) is equivalent to the two-dimensional Fourier expansion of
pinduced(q, z) = eXf(Z) V (lql)eA(q, w). For the potential we have

. f dp'dz pinduced(r')
<t>lnduced(r) = 47T ---;::=======

J(p - pl)2 + (z - ZI)2
= L<t>induced(q, z) eiq.p.

q

(EI5)

Then

(<t>indUCed(q)) = -A(q, w) (<t>total(q)) C(q), (EI6)

where the expectation values are of the form

(<t>indUCed(q)) = f dz Xf(z) <t>induced(q, Z), (EI7)

and

f f dpeiq.p'
C(q) = 47Te dzd.z' Xf(z)xf(z') -_------------------.

vi pl2 + (z - ZI)2
(EI8)

The identity

__1_ = 27T L ..!:..eiq·(p-p')e-qlz-z'l,
[r - r'l S q q

(EI9)

may be used to write C (q) as follows:

1
C(q) = 87T2e-G(q),

q
(E20)

where

G(q) = f dzdz' xf(z)xf(z')e-q1z-z'l.

Noting that (<t>induced(q)) = (<t>total(q)) - (<t>phonon(q)), it follows that

(<t>total(q)) _ (<t>PhonOn(q)) = -A(q, w) (<t>total(q)) C(q),

(E21)

(E22)

so that

(<t>total(q)) = (<t>PhonOn(q)) 1[1 - A(q, w)C(q)]

= (<t>Phonon(q) ) IKel (q), (E23)
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where the electron permittivity, Kel(q), is given by

Kel(q) = I - A(q, w)C(q)

8JT2e= I - --G(q)A(q, w).
q

(F.24)

In Section 10.6, this expression for the electron permittivity, Kel(q), is used to take
into account the effect of electron screening.
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in nanostructures, 39, 56, 60
in quantum dots, 124
in quantum-well structures, 212
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in thin metallic foils, 60
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anharmonic coupling, of phonons, 45
anharmonic effects, in wilrtzite structures, 50
anharmonic interactions, 8, 30, 46
anharmonic phonon decay, 215
anharmonic terms, 45
anharmonic third-order potential, 47
annihilation operators, 35
antisymmetric radial-axial modes, 115, 116
antisymmetric shear vertical modes, 102
antisymmetric torsional mode, 123

Bardeen-Cooper-Schrieffer theory of
superconductivity, 3

binary polar semiconductor, 53
binary semiconductor layer, 66
Brillouin zone, 9
Boltzmann factor, 37
Bose-Einstein condensation, 35
Bose-Einstein distribution, 38
Bose-Einstein occupation number, 47
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bulk dispersion relations, 102
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canonical transformation, 40
carrier concentrations, 34
carrier mobilities, 219
carrier-optical-phonon interaction, 79
carrier-phonon scattering, 35
carrier relaxation, 48
carrier wavefunctions, 38
Cerenkov emission, 216
Cerenkov-like generation, 212
classical acoustics, 177
clamped-surface boundary condition, 177
coherent phonons, 219
compressional solutions, 60
conduction bands, 27
confined-phonon effects, in thin film

superconductors, 208
continuum models of phonons, 52
corner modes, in rectangular quantum wire, 154
Coulomb interaction, 41
coupled radial-longitudinal modes, 120
creation operators, 35
critical points in semiconductors, 27
current transfer ratio, 204
cylindrical quantum wire, 175
cylindrical shell, 112
cylindrical shell, immersed in fluid, 122
cylindrical waveguide, 112
cytoskeletal filaments, 123
crystal symmetry, 95
cubic crystals, 6

damped spherical acoustic modes, 219
decay of phonons, 30, 49
deformation potential constant, 172
deformation potential interaction, 31, 43, 110

in rectangular quantum wire, 181
deformation potential scattering, in bulk zincblende

structures, 172
diatomic lattice, 7
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dielectric function, 13
dielectric polarizability, 224
dilatation, of medium, 58
dilatational modes, 99
dilatational solutions, 60
dilatational waves, 98
dimensional confinement, 39
dispersion curves, in wiirtzites 32, 77, 78
dispersion relations, 8, 26
displacement, 8
displacement eigenrnodes, 98
displacement field, quantized, 40
dissipative mechanisms, 220
distortional solutions, 60
double-barrier heterostructure, 88
drifted Fermi distribution, 216
driven-oscillator equation, 14, 63
dynamical screening, in polar quantum wires, 162,

165

E) mode, 17
effective charge, 53
elastic continuum model, 56, 176
elastic continuum theory, 60
elasticity, theory of, 47
electron-acoustic-phonon scattering

in cylindrical quantum wire, 176
in rectangular quantum wire, 112

electron permittivity, 215
electron-phonon interaction, 30

for slab modes, 66
electronic polarizability, 68
electrostatic boundary conditions, 66, 79, 152
energy-conserving delta function, 142
energy loss rate, 48
energy-wavevector relationship, 97
equivoluminal solutions, 60
Euler-Lagrange equations, 226
excitonic states, 27
extraordinary waves, 19

face-centered cubic lattices, 7
femtosecond lasers, 219
Fermi golden rule, 39, 47
flexural modes, 100, 123
flexural thickness acoustic modes, in quantum dot,

128
flexural waves, 98
folded acoustic modes, in semiconductor

superlattices, 60
force equations, 59, 118
Fourier decomposition, 38
free-standing cylindrical structure, 180
free-surface boundary condition, 177
form factor, 232
Frohlich Hamiltonian, for two-dimensional slab, 69
Frohlich interaction, 31, 40
Frohlich interaction Hamiltonian, 41

for polar uniaxial crystal, 136
for quantum box, 168
for two-dimensional slab, 140

gain in intersubband laser, 195, 219
Griineisen constant, 47
guided modes, 225

half-space optical phonon modes, 152
Hamiltonian for harmonic oscillator, 35
harmonic interactions, 8
harmonic modes, 45
harmonic oscillator, 35
hexagonal wiirtzite structures, 53
high-temperature electronics, 54
Hooke's law, 8, 56
hot electron distribution, 204
hot-phonon-bottleneck effect, 164
hot phonon decay, 3
hot phonons, in polar quantum wires, 163
Huang-Born equations, 20, 54, 221
Huang-Zhu modes, 66, 228

impurity, 28
in-gap, 27

inhomogeneous broadening effects, 31
infrared-active modes, 20
infrared-active phonons, 138

La-like, 138
TO-like, 138

interface disorder, 28
interface modes

for optical phonons, 66, 68, 80, 83, 152
in slab, 61
optical phonon interaction Hamiltonian, 65

intersubband lasers, 196, 219
intersubband scattering rates, 91
intrasubband transition rates, 187
interwell phonon-assisted transition, 207
intrasubband scattering rates, 91
inversion symmetry, 43
ionic bonding, 7
irrotational solutions, 60
isotopic mass, 33
isotropic medium, 43

Kane wavefunction, 196
Klemens' channel, 2, 46, 163

Lagrangian density, 225, 230
Lames constants, 58, 101, 118
Landau fans, 203
lifetimes, longitudinal optical phonons, 3, 49
linear-chain model, 7
localized acoustic modes, 214
longitudinal acoustic mode, 9, 17
longitudinal electromagnetic disturbance, 66
longitudinal electromagnetic wave, 14
longitudinal optical mode, 9, 17
longitudinal solutions, 60
longitudinal sound speed, 57, 59

in thin plate, 119
Loudon model, 14, 15,23,54
Lyddane-Sachs- Teller relation, 13, 15,52, 80, 221

macroscopic theory of polar modes, 14
magneto tunneling spectra, 202
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micro-Raman techniques, 26
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mode normalization condition, 61
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33

nanometer-scale mechanical structures, 218
neutron scattering measurements, 96
non-equilibrium phonons, 31, 48, 162, 163
normal-mode phonon displacement, 38
normal vibrational modes, 16
normalization condition, 81, 226

occupation number representation, 35
one-mode behavior, 32
optical phonons

in nanostructures, 39
in wtirtzite structures, 18

ordinary waves, 19

periodic boundary conditions, 52
phonon-assisted electron intersubband transition
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phonon-assisted transition, 207
phonon-assisted tunneling, 202
phonon-assisted tunneling peak, 203
phonon bottleneck, 50

in quantum-well lasers, 50
phonon decay, in nitride materials, 51
phonon decay time, 164
phonon eigenstates, 38
phonon emission, 204
phonon engineering, 219
phonon-enhanced population inversion, 205
phonon lifetimes, 30
phonon linewidths, 31
phonon matrix elements, 38
phonon occupation number, 37, 38, 215
phonon operators, 38
phonon potential, 82
photocurrent transfer ratio, 204
picosecond Raman spectroscopy, 31
piezoelectric coupling, 173
piezoelectric crystal, 44
piezoelectric interaction, 43
piezoelectric interaction potential, 179, 181
piezoelectric polarization, 44, 173
piezoelectric scattering, in bulk semiconductor

structures, 173
plasma frequency, 82
plasmon emission, 204
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Poisson ratio, 10 1, 118
Poisson's equation, 227
polar-optical phonons, 40
polar semiconductors, 7
polaritons, 11
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polarization vector, 38
population inversion, 205
power loss, 164
pure torsional mode, 120

quantum-box arrays, 220
quantum-cascade laser, 196
quantum-well laser, 2
quantum-wire superlattices, 220
quantum wires, with circular and elliptical cross

sections, 161

Raman-active modes, 95
Raman analysis, of anharmonic phonon decay, 51
Raman experiments, at ultraviolet wavelengths, 33
Raman scattering, 4, 26
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in bulk wiirtzite structures, 26

Raman scattering measurements, 66, 93, 95
Raman techniques, 26
Raman tensor, 26
reduced- mass density, 51
reformulated dielectric continuum model, 61
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