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PREFACE

The Les Houches summer school of July 2004 devoted to “Nanophysics: Co-
herence and Transport” can be viewed as a continuation of the series devoted
to condensed matter physics. It began with “Ill Condensed Matter” (1978), fol-
lowed by “Chance and Matter” (1986) and by “Mesoscopic Quantum Physics”
(1994). The aim of the present session was to review the some of the main de-
velopments that took place over the last decade, with an eye towards new open
directions in the field of mesoscopic and nanoscopic physics.

The developments of nanofabrication in the past years have enabled the design
of electronic systems, that exhibit spectacular signatures of quantum coherence.
Experimental results gave rise to numerous initially unexpected (and at times
theoretically unresolved) surprises.

Nanofabricated quantum wires and dots containing a small number of elec-
trons are ideal experimental playgrounds for probing electron-electron interac-
tions and their interplay with disorder. Going down to even smaller scales, mole-
cules such as carbon nanotubes, fullerenes or hydrogen molecules can now be
inserted in nanocircuits. Measurements of transport through a single chain of
atoms have been performed as well. Much progress has also been made in the
design and fabrication of superconducting and hybrid nanostructures, be they
normal/superconductor or ferromagnetic/superconductor. Quantum coherence is
then no longer that of individual electronic states, but rather that of a supercon-
ducting wavefunction of a macroscopic number of Cooper pairs condensed in the
same quantum mechanical state. Beyond the study of linear response regime, the
physics of non-equilibrium transport (including non-linear transport, rectification
of a high frequency electric field as well as shot noise) has received much atten-
tion, with significant experimental and theoretical insights. All these quantities
exhibit very specific signatures of the quantum nature of transport which cannot
be obtained from basic conductance measurements.

Participants in the School were exposed to the basic concepts and analytical
tools needed to understand this new physics. This was presented in a series of
theoretical fundamental courses, in parallel with more phenomenological ones
where physics was discussed in a less formal way and illustrated by numerous
experimental examples.
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Preface

Dmitri Maslov gave a long series of lectures emphasizing the importance of
electron-electron interactions in one-dimensional quantum transport. Starting
from the Fermi liquid description of transport, he showed that electron-electron
interactions, whose signature shows up already at higher dimensions, dominate
the physics of transport in 1D. Technical aspects concerning the subtleties in-
volved in the re-summation of perturbative diagrammatic expansions, the renor-
malisation group in 1D and bosonisation were all discussed in great detail. Em-
phasis was given to the underlying physics. Particular attention was given to the
various signatures of interactions in the physical world, including the density of
energy states as well as the electric and thermal conductances of 1D wires and
their specific sensitivity to the presence of reservoirs or tunneling barriers. This
last important point was also treated in detail in the seminar of Igor Lerner. Con-
crete illustrations of these concepts were given in the seminars of Amir Yacoby
on cleaved-edge semiconducting quantum wires and of Reinhold Egger on car-
bon nanotubes which various physical properties were also reviewed by Christian
Schoenenberger whereas Alik Kasumov focused on their superconducting prop-
erties (both intrinsic and proximity induced.)

Electron-electron interactions are also responsible for the spectacular trans-
port properties of 2D electron systems confined at the interface between GaAs
and GaAlAs in a doped heterostructure, giving rise in particular to the fractional
quantum Hall effect at a strong magnetic field. Specifically, the course of Jim
Eisenstein was devoted to recent experiments in double layer systems addressing
(depending on the strength of the inter-layer coupling) the physics of Coulomb
drag or the formation of a completely coherent state involving strong tunnel-
ing between the two layers. This spectacular formation of a macroscopic Bose–
Einstein condensate of excitons was demonstrated and discussed in the semi-
nar of Ady Stern. Boris Shklovskii presented interesting extensions of the con-
cepts of Coulomb interactions and screening to the physics of biological mole-
cules.

The description of transport and noise out of equilibrium in nanoscale elec-
tronic systems has received growing attention in recent years, proving to be an
efficient diagnostic tool (experimental and theoretical) in characterizing disorder,
interactions and correlations in electronic systems. The course of Alex Kamenev
reviewed the theoretical tools (Keldysh theory combined with a non-linear sigma
model field theory) required for an efficient treatment of this physics.

Following similar lines Vladimir Kravstov focused on the perturbative aspects
of real time Keldysh theory, specifically addressing non-linear ac transport in
mesoscopic systems. He made the connection between high frequency rectifica-
tion of an Aharonov Bohm ring and dephasing in the presence of an ac electric
field or a non-equilibrium noise. He also showed that energy absorption gives
rise to localization in energy space (dynamic localization).
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Non-equilibrium shot noise in conductors contains inter alia specific signa-
tures of the quantum statistics of the charge carriers involved. This was discussed
in detail by Thierry Martin in various physical contexts, covering both ballistic
and diffusive conductors and showing that in certain strongly interacting systems
shot noise constitutes a unique tool to characterize fractional charge excitations.
Special emphasis was put on noise in hybrid superconducting/normal devices and
multi-terminal structures where signatures of the entanglement of quantum states
can be revealed. Bertrand Reulet demonstrated the possibility to measure higher
moments of noise which contain different information from that included in the
commonly discussed second moment. It turns out that such higher moments de-
pend in a non-trivial way on the electromagnetic environment at hand.

The course of Frank Hekking described the physics of Andreev reflection at
Normal/Superconductor interfaces which produces rich sub-gap energy depen-
dent features, both in transport and noise through hybrid nanostructures. These
strongly depend on the nature of the barrier at the NS interface and on dis-
order on the normal side, giving rise to long-range coherent scattering. The
more recently investigated Ferromagnetic/Superconducting hybrid systems, also
presented in the seminar of Marco Aprili, lead to new spectacular phenomena
with oscillations of the phase of the superconducting order parameter in the
ferromagnetic region and the possibility to makeπ junctions. The seminar of
Michael Feigelman also showed how Andreev scattering on small superconduct-
ing particles can strongly affect quantum transport in a 2D disordered metallic
plane.

Leonid Glazmann gave a review of electronic transport through quantum dots
in the Coulomb blockade regime. He started from the physics of resonant tunnel-
ing and its treatment within the simple-minded picture of the addition spectrum.
Attention was given to the role of fundamental symmetries and interactions char-
acterising dots weakly coupled to reservoirs. He went on to investigate more
subtle limits, first an off-resonance scenario giving rise to cotunneling (inelas-
tic or elastic at very low temperature), and then, as the effective dot-lead cou-
pling increases, Kondo physics comes into play. Here the magnetic moment
involving the highest occupied energy level of the dot combines into a coherent
many-body state with the electrons in the reservoirs. There is a broad spectrum
of signatures of Kondo physics on the conductance of the dot as a function of
temperature and magnetic field. This course was complemented by seminars
of Klaus Ensslin on spectroscopy experiments on quantum dots, Yigal Meir on
Kondo physics in quantum point contacts and Juergen Koenig on the possibility
to observe Fano-like resonances in quantum dots as well as relating dephasing to
spin-flip processes.

The course of Dan Ralph, devoted to tunneling measurements of individual
quantum states in metallic nanostructures, also constituted a beautiful illustration
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Preface

of these concepts with a particular emphasis on spin effects and superconductivity
in nanoparticles, going to the limit of single-molecule transistors.

Atomic point contacts both in the normal and superconducting states consti-
tute the ultimate object for the investigation of quantum transport and requires
both specific experimental techniques and theoretical concepts as presented in
the course of Jan van Ruitenbeek and Alfredo Levy Yeyati. The notion of con-
ductance channels for a single atom determines the physical properties of these
atomic-sized conductors out of equilibrium such as shot noise and superconduct-
ing sub-gap structures.

Finally, the lectures of Daniel Estève were devoted to one of the great promises
of nanophysics– the possibility to realize solid state quantum bits (in the context
of quantum computation) by coherent manipulation of charge, flux or spin vari-
ables in a nanocircuit. Selecting the right observables, and controlling the sources
of decoherence by designing an optimum electromagnetic environment, are out-
standing problems in the field. The crucial question of dephasing by an electro-
magnetic environment was also addressed in the seminar of Joe Imry. Adding
to this broad spectrum of lectures were the seminars by Rosario Fazio and Yuriy
Makhlin, who addressed the possibility to investigate and control types of topo-
logical Berry phase factors in qubits.

These lectures were complemented by informal sessions or tutorials organized
on the spot by the lecturers, as well as by a number of seminars and poster ses-
sions given by the students. They contributed by their unabated enthusiasm and
curiosity to the great atmosphere of the school.

The summer school and the present volume have been made possible by the fi-
nancial support of the following institutions, whose contribution is gratefully ac-
knowledged:
-The “Marie Curie Conferences and Training Course” program of the European
Union through the Consortium of European Physics School (CEPS).
-The “Advanced Scientific Institute” program of the Scientific and Environmen-
tal Affairs division of NATO.
-The “Lifelong learning” program of the Centre National de la Recherche Scien-
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Abstract

Some aspects of physics on interacting fermions in 1D are discussed in a tutorial-
like manner. We begin by showing that the non-analytic corrections to the Fermi-
liquid forms of thermodynamic quantities result from essentially 1D collisions
embedded into a higher-dimensional phase space. The role of these collisions
increases progressively as dimensionality is reduced and, finally, they lead to a
breakdown of the Fermi liquid in 1D. An exact solution of the Tomonaga-Luttinger
model, based on exact Ward identities, is reviewed in the fermionic language. Tun-
neling in a 1D interacting systems is discussed first in terms of the scattering theory
for interacting fermions and then via bosonization. Universality of conductance
quantization in disorder-free quantum wires is discussed along with the breakdown
of this universality in the spin-incoherent case. A difference between charge (uni-
versal) and thermal (non-universal) conductances is explained in terms of Fabry-
Perrot resonances of charge plasmons.

1. Introduction

The theory of interacting fermions in one dimension (1D) has survived several
metamorphoses. From what seemed to be a purely mathematical exercise up until
the 60s, it had evolved into a practical tool for predicting and describing phenom-
ena in conducting polymers and organic compounds–which werethe1D systems
of the 70s. Beginning from the early 90s, when the progress in nanofabrication
led to creation of artificial 1D structures–quantum wires and carbon nanotubes,
the theory of 1D systems started its expansion into the domain of mesoscopics;
this trend promises to continue in the future. Given that there is already quite
a few excellent reviews and books on the subject [1–10]. I should probably be-
gin with an explanation as to what makes this review different from the others.
First of all, it is not a review but–being almost a verbatim transcript of the lec-
tures given at the 2004 Summer School in Les Houches–rather a tutorial on some
(and definitely not all) aspects of 1D physics. A typical review on the subject
starts with describing the Fermi Liquid (FL) in higher dimensions with an aim of
emphasizing the differences between the FL and its 1D counter-part –Luttinger
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Liquid (LL). My goal–if defined only after the manuscript was written–was rather
to highlight thesimilaritiesbetween higher-D and 1D systems. The progress in
understanding of 1D systems has been facilitated tremendously and advanced to
a greater detail, as compared to higher dimensions, by the availability of exact or
asymptotically exact methods (Bethe Ansatz, bosonization, conformal field the-
ory), which typically do not work too well above 1D. The downside part of this
progress is that 1D effects, being studied by specifically 1D methods, look some-
what special and not obviously related to higher dimensions. Actually, this is
not true. Many effects that are viewed as hallmarks of 1D physics,e.g.,the sup-
pression of the tunneling conductance by the electron-electron interaction and
the infrared catastrophe, do have higher-D counter-parts and stem from essen-
tially the same physics. For example, scattering at Friedel oscillations caused
by tunneling barriers and impurities is responsible for zero-bias tunneling anom-
alies in all dimensions [11, 16]. The difference is in the magnitude of the effect
but not in its qualitative nature. Following the tradition, I also start with the FL
in Sec. 2, but the main message of this Section is that the difference between
D = 1 andD > 1 is not all that dramatic. In particular, it is shown that the
well-known non-analytic corrections to the FL forms of thermodynamic quan-
tities (such as a venerableT 3 ln T -correction to the linear-in-T specific heat in
3D) stem from rare events of essentially 1D collisions embedded into a higher-
dimensional phase space. In this approach, the difference betweenD = 1 and
D > 1 is quantitative rather than qualitative: as the dimensionality goes down,
the phase space has difficulties suppressing the small-angle and 2kF−scattering
events, which are responsible for non-analyticities. The crucial point when these
events go out of control and start to dominate the physics happens to be in 1D.
This theme is continued in Sec. 5, where scattering from a single impurity em-
bedded into a 1D system is analyzed in the fermionic language, following the
work by Yue, Matveev, Glazman [11]. The drawback of this approach–the per-
turbative treatment of the interaction–is compensated by the clarity of underlying
physics. Another feature which makes these notes different from the rest of the
literature in the field is that the description goes in terms of the original fermi-
ons for quite a while (Secs. 2 through 5), whereas the weapon of choice of all
1D studies–bosonization– is invoked only at a later stage (Sec. 6 and beyond).
The rationale–again, a post-factum one–is two-fold. First, 1D systems in a meso-
scopic environment–which are the main real-life application discussed here– are
invariably coupled to the outside world via leads, gates, etc. As the outside world
is inhabited by real fermions, it is sometimes easier to think of,e.g., both the
interior and exterior a quantum wire coupled to reservoirs in terms of the same
elementary quasi-particles. Second, after 40 years or so of bosonization, what
could have been studied within a model of fermions withlinearizeddispersion
and not too strong interaction–and this is when bosonization works–was probably
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studied. (As all statements of this kind, this is one is also an exaggeration.) The
last couple of years are characterized by a growing interest in either the effects
that do not occur in a model with linearized dispersion,e.g.,Coulomb drag due
to small-momentum transfers [17], energy relaxation, and phase breaking [18]
(the last two phenomena also require three-body processes in 1D) or situations
when strong Coulomb repulsion does not permit linearization of the spectrum at
any energies [19, 20, 21]. Experiment seems to indicate that the Coulomb re-
pulsion is strong in most systems of interest, thus the beginning of studies of a
truly strongly-coupled regime is quite timely. Once the assumption of the linear
spectrum is abandoned, the beauty of a bosonized description is by and large lost,
and one might as well come back to original fermions. Sec. 6 is devoted to trans-
port in quantum wires, mostly in the absence of impurities. The universality of
conductance quantization is explained in some detail, and is followed by a brief
discussion of the recent result by Matveev [19], who showed that incoherence in
the spin sector leads to a breakdown of the universality at higher temperatures
(Sec. 7.4). Also, a difference in charge (universal) and thermal (non-universal)
transport–emphasized by Fazio, Hekking, and Khmelnitskii [22]– in addressed in
Sec. 7.5. What is missing is a discussion of transport in a disordered (as opposed
to a single-impurity) case. However, this canonically difficult subject, which in-
volves an interplay between localization and interaction, is perhaps not ready
for a tutorial-like discussion at the moment. (For a recent development on this
subject, see Ref. [18].)

Even a brief inspection of these notes will show that the choice between mak-
ing them comprehensive or self-contained was made for the latter. It is quite easy
to see what is missing: there is no discussion of lattice effects, bosonization is
introduced without Klein factors, he sine-Gordon model is not treated properly,
chiral Luttinger liquids are not discussed at all, and the list goes on. The discus-
sion of the experiment is scarce and perfunctory. However, the few subjects that
are discussed are provided with quite a detailed–perhaps somewhat excessively
detailed– treatment, so that a reader may not feel a need to consult the reference
list too often. For the same reason, the notes also cover such canonical procedures
as the perturbative renormalization group in the fermionic language (Sec. 4) and
elementary bosonization (Sec. 6), which are discussed in many other sources and
a reader already familiar with the subject is encouraged to skip them.

Also, a relatively small number of references (about one per page on average)
indicates once again that this isnot a review. The choice of cited papers is sub-
jective and the reference list in no way pretends to represent a comprehensive
bibliography to the field. My apologies in advance to those whose contributions
to the field I have failed to acknowledge here.

� = kB = 1 through out the notes, unless specified otherwise.
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2. Non-Fermi liquid features of Fermi liquids: 1D physics in higher dimen-
sions

One often hears the statement that, by and large, a Fermi liquid (FL) is just a
Fermi gas of weakly interacting quasi-particles; the only difference being the
renormalization of the essential parameters (effective mass,g− factor) by the in-
teractions. What is missing here is that the similarity between the FL and Fermi
gas holds only for leading terms in the expansion of the thermodynamic quan-
tities (specific heatC(T ), spin susceptibilityχs , etc.) in the energy (tempera-
ture) or spatial (momentum) scales. Next-to-leading terms, although subleading,
are singular (non-analytic) and, upon a closer inspection, reveal a rich physics
of essentially 1D scattering processes, embedded into a high-dimensional phase
space.

In this chapter, I will discuss the difference between “normal” processes which
lead to the leading, FL forms of thermodynamic quantities and “rare”, 1D pro-
cesses which are responsible for the non-analytic behavior. We will see that
the role of these rare processes increases as the dimensionality is reduced and,
eventually, the rare processes become the norm in 1D, where the FL breaks down.

In a Fermi gas, thermodynamic quantities form regular, analytic series as func-
tion of either temperature,T , or the inverse spatial scale (bosonic momentumq)
of an inhomogeneous magnetic field. ForT ≪ EF , whereEF is the Fermi
energy, andq ≪ kF , wherekF is the Fermi momentum, we have

C(T )/T = γ + aT 2 + bT 4 + . . . ; (2.1a)

χs (T , q = 0) = χ0
s (0)+ cT 2 + dT 4 + . . . ; (2.1b)

χs (T = 0, q) = χ0
s (0)+ eq2 + f q4 + . . . , (2.1c)

whereγ is the Sommerfeld constant,χ0
s is the static, zero-temperature spin sus-

ceptibility (which is finite in the Fermi gas), anda . . . f are some constants.
Even powers ofT occur because of the approximate particle-hole symmetry of
the Fermi function around the Fermi energy and even powers ofq arise because
of the analyticity requirement1.

Our knowledge of the interacting systems comes from two sources. For a
system with repulsive interactions, one can assume that as long as the strength
of the interaction does not exceed some critical value, none of the symmetries

1The expressions presented above are valid in all dimensions, except forD = 2 with quadratic
dispersion. There, because the density of states (DoS) does not depend on energy, the leading correc-
tion to theγ T− term inC(T ) is exponential inEF /T andχs does not depend onq for q ≤ 2kF .
However, this anomaly is removed as soon as we take into account a finite bandwidth of the electron
spectrum, upon which the universal (T 2n andq2n) behavior of the series is restored.



Fundamental aspects of electron correlations and quantum transport 9

(translational invariance, time-reversal, spin-rotation, etc.), inherent to the orig-
inal Fermi gas, are broken. In this range, the FL theory is supposed to work.
However, the FL theory is an asymptotically low-energy theory by construction,
and it is really suitable only for extracting the leading terms, corresponding to
the first terms in the Fermi-gas expressions (2.1a-2.1c). Indeed, the free energy
of a FL as an ensemble of quasi-particles interacting in a pair-wise manner can
be written as [25]

F − F0 =
∑

k

(ǫk − µ) δnk +
1

2

∑

k,k′
fk,k′δnkδnk′ +O

(
δn3
k

)
, (2.2)

whereF0 is the ground state energy,δnk is the deviation of the fermion occu-
pation number from its ground-state value, andfk,k′ is the Landau interaction
function. Asδnk is of the order ofT/EF , the free energy is at most quadratic
in T , and therefore the correspondingC(T ) is at most linear inT . Consequently,
the FL theory–at least, in the conventional formulation–claims only that

C∗(T )/T = γ ∗;
χ∗s (T , q) = χ∗s (0) ,

whereγ ∗ andχ∗s (0) differ from the corresponding Fermi-gas values, and does
not say anything about higher-order terms2.

Higher-order terms inT or q can be obtained within microscopic models
which specify particular interaction and, if an exact solution is impossible–which
is always the case in higher dimensions– employ some kind of a perturbation the-
ory. Such an approach is complementary to the FL: the former nominally works
for weak interactions3 but at arbitrary temperatures, whereas FL works both
for weak and strong interactions, up to some critical value corresponding to an
instability of some kind,e.g., a ferromagnetic transition, but only in the low-
temperature limit. In the{temperature, interaction} plane, the validity regions of
these two approaches are two strips running along two axes (Fig. 1). For weak
interactions and at low temperatures, the regions should overlap.

Microscopic models (Fermi gas with weak repulsion, Coulomb gas in the
high-density limit, electron-phonon interaction, paramagnon model, etc.) show
that the higher-order terms in the specific heat and spin susceptibility are non-
analytic functions ofT andq [26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38].

2Strictly speaking, non-analytic terms inC(T ) can be obtained from the free energy (2.2) by
taking into account the temperature dependence of the quasi-particle spectrum, see Ref. [29]b.

3Some results of the perturbation theory can be rigorously extended to an infinite order in the
interaction, and most of them can be guaranteed to hold even if the interactions are not weak.
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Fig. 1. Combined “diagram of knowledge”. x-axis: energy scale (given by temperatureT , bosonic
momentumQ, magnetic fieldH ) in appropriate units. y-axis: interaction strength. Fermi liquid
works for not necessarily weak interactions but smaller than the critical value for an instability of
the ground state (grey dot) but at the lowest energy scales. Microscopic models work for weak
interactions but an arbitrary energy scale.

For example,

C(T )/T = γ3 − α3T
2 ln T (3D); (2.3a)

C(T )/T = γ2 − α2T (2D); (2.3b)

χs (q) = χs(0)+ β3q
2 ln q−1 (3D); (2.3c)

χs (q) = χs(0)+ β2 |q| (2D), (2.3d)

where all coefficients are positive for the case of repulsive electron-electron in-
teraction4. Recently, it has been shown that in 2D one can go beyond the per-
turbation theory and to express the coefficients of the non-analytic terms via an
exact scattering amplitude of quasi-particles in the FL.

As seen from Eqs. (2.3a-2.3d), the non-analyticities become stronger as the
dimensionality is reduced. The strongest non-analyticity occurs in 1D, where–at

4Notice that not only the functional forms but also thesign of the q− dependent term in the
spin susceptibility is different for free and interacting systems. “Wrong” sign of theq− dependent
corrections has far-reaching consequences for quantum critical phenomena. For example, it precludes
a possibility of a second-order, homogeneous quantum ferromagnetic phase transition in an itinerant
system [39]. What is possible is either a first-order transition or ordering at finiteq (spin-density
wave). In 1D, a homogeneous magnetized state is forbidden anyhow by the Lieb-Mattis theorem [46]
which states that the ground state of 1D fermions interacting via spin-independent, but otherwise
arbitrary forces, is non-magnetic. One could speculate that the non-analyticities in higher dimensions
indicate an existence of a higher-D version of the Lieb-Mattis theorem.
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least as long as single-particle properties are concerned–the FL breaks down:

C(T )/T = γ1 + α1 ln T (1D);

χ (q) = χ0 + β1 ln |q| (1D).

It turns out that the evolution of the non-analytic behavior with the dimen-
sionality reflects an increasing role of special, almost 1D scattering processes in
higher dimensions. Thus non-analyticities in higher dimensions can be viewed
as precursors of 1D physics forD > 1.

It is easier to start with the non-analytic behavior of a single-particle property–
self-energy, which can be related to the thermodynamic quantities via standard
means [23] (see also appendix A). Within the Fermi liquid,

Re�R (ε, k) = −Aε + Bξk + . . . (2.4a)

−Im�R (ε, k) = C(ε2 + π2T 2)+ . . . (2.4b)

Expressions (2.4a) and (2.4b) are equivalent to two statements: i) quasi-particles
have a finite effective mass near the Fermi level

m∗ = m0
A+ 1

B + 1
,

and ii) damping of quasiparticles is weak: the level width is much smaller than
the typical quasi-particle energy

Ŵ = −2Im�R (ε, k) ∝ max
{
|ε|2 , T 2}≪ |ε| , T .

Landau’s argument for theε2 (or T 2) behavior of Im�R relies on the Fermi
statistics of quasiparticles and on the assumption that the effective interaction is
screened at large distances [23]. It requires two conditions. One condition is ob-
vious: the temperature has to be much smaller than the degeneracy temperature
TF = kF v∗F , wherev∗F is the renormalized Fermi velocity. The other condition
is less obvious: it requires inter-particle scattering to be dominated by processes
with large (generically, of orderkF ) momentum transfers. Once these two con-
ditions are satisfied, the self-energy assumes a universal form, Eqs. (2.4a) and
(2.4b),regardless of a specific type of the interaction (e-e, e-ph) and dimension-
ality. To see this, let’s have a look at Im�R (ε, k) due to the interaction with
some “boson” (Fig. 2).



12 D.L. Maslov

Fig. 2. Self-energy to first order in the interaction with a dynamic bosonic field.

The wavy line in Fig.2 can be,e.g.,a dynamic Coulomb interaction, phonon
propagator, etc. On the mass shell (ε = ξk) atT = 0 and forε > 0, we have5

Im�R (ε) = − 2

(2π)D+1

∫ ε

0
dω

∫
ddqImGR (ε − ω, k − q) ImV R (ω,q) .

(2.5)
The constraint on energy transfers (0< ω < ε) is a direct manifestation of
the Pauli principle which limits the number of accessible energy levels. In real
space and time,V (r, t) is a propagator of some field which has a classical limit
(when the occupation numbers of all modes are large). Therefore,V (r, t) is a
real function, hence ImV is an odd function ofω. I will make this fact explicit
writing ImV as

ImV R (ω, q) = ωW (|ω| , q) .
Now, suppose that we integrate overq and the result does not depend onω. Then
we immediately get

−Im�R (ε) ∼ C
∫ ε

0
dωω ∼ Cε2,

whereC is the result of theq− integration which contains all the information
about the interaction. Once we got theε2-form for Im�R (ε), the ε-term in
Re�R (ε) follows immediately from the Kramers-Kronig transformation, and we
have a Fermi-liquid form of the self-energy regardless of a particular interaction

5To get Eq. (2.5), you can start with the Matsubara form of diagram Fig. 2, convert the Matsubara
sums into the contour integrals, use the dispersion relation

DR(ε) = 1

π

∫ ∞

−∞
dε′

ImDR
(
ε′
)

ε′ − ε − i0+ ,

which is valid for any retarded function, and take the limitT → 0.
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and dimensionality. Thus a sufficient condition for the Fermi liquid is thesepa-
rability of the frequency and momentum integrations, which can only happen if
the energy and momentum transfers are decoupled.

Now, what is the condition for separability? As a function ofq, W has at
least two characteristic scales. One is provided by the internal structure of the
interaction (screening wavevector for the Coulomb potential, Debye wavevector
for electron-phonon interaction, etc.) or bykF , whichever is smaller. This scale
(let’s call itQ) does not depend onω. Moreover, as|ω| is bounded from above
by ε, and we are interested in the limitε → 0, one can safely assume thatQ ≫
|ω| /vF . The role ofQ is just to guarantee the convergence of the momentum
integral in the ultraviolet, that is, to ensure that forq ≫ Q the integrand falls
off rapidly enough. Any physical interaction will have this property as larger
momentum transfer will have smaller weight. The other scale is|ω| /vF . Now,
let’s summarize this by re-writing ImV in the following scaling form

ImV R (ω, q) = ω 1

QD
U

( |ω|
vFQ

,
q

Q

)
,

whereU is a dimensionless function, and I have extractedQ−D just to keep the
units right.

In the perturbation theory, the Green’s function in (2.5) is a free one. Assum-
ing free-electron spectrumξk = (k2 − k2

F )/2m,

ImGR
(
ε − ω, �k − �q

)
= −πδ

(
ε − ω − ξk + �vk · �q − q2/2m

)
.

On the mass shell,

ImGR
(
ε − ω, �k − �q

)
|ε=ξk = −πδ

(
ω − �vk · �q + q2/2m

)
.

The argument of the delta-function simply expresses the energy and momentum
conservation for a processε→ ε−ω, �k→ �k− �q. The angular integral involves
only the delta-function. For anyD, this integral gives

〈δ (. . . )〉� =
1

vF q
AD

(
ω + q2/2m

vF q

)
,

where I have replacedvk by vF because all the action takes place near the Fermi
surface. ForD = 3 andD = 2,

A3 (x) = 2θ(1− |x|);

A2 (x) = 2θ (1− |x|)√
1− x2

.
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The constraint on the argument ofAD is purely geometric: the magnitude of the
cosine of the angle between�k and�q has to be less then one. For power-counting
purposes, functionAD has a dimensionality of 1. Therefore, its only role is to
provide a lower cut-off for the momentum integral. Then, by power counting

Im�R (ε) ∼ 1

vFQD

∫ ε

0
dωω

∫

q≥|ω|/vF
dqqD−2U

( |ω|
vF q

,
q

Q

)
. (2.6)

Now, if the integral overq is dominated byq ∼ Q and is convergent in thein-
frared, one can putω = 0 in this integral. After this step, the integrals overω and
q decouple. Theω− integral givesε2 regardless of the nature of the interaction
and dimensionality whereas theq− integral supplies a prefactor which entails all
the details of the interaction

Im�R (ε) = CD
ε2

vFQ
.

For example, for a screened Coulomb interaction in the weak-coupling (high-
density) limitQ = κ, whereκ is the screening wavevector, we have in 3D

−Im�R (ε) = π2

64

κ

kF

ε2

EF
.

Now we can formulate a sufficient (but not necessary) condition for the Fermi-
liquid behavior. It will occur whenever if kinematics of scattering is such that
typical momentum transfers are determined by same internal and, what is crucial,
ω− independent scale, whereas energy transfers are of order of the quasi-particle
energy (or temperature). Excluding special situations, such as the high-density
limit of the Coulomb interaction,Q is generically of order of the ultraviolet range
of the problem∼ kF . In other words, isotropic scattering guarantees aε2-behav-
ior. Small-angle scattering with typical angles of orderε/vF ≪ Q ≪ kF gives
this behavior as well.

Theε2− result seems to be quite general under the assumptions made. When
and why these assumptions are violated?

A long-range interaction, associated with small-angle scattering, is known to
destroy the FL. For example, transverse long-range (current-current [44] or gauge
[45]) interactions, which–unlike the Coulomb one–are not screened by electrons,
lead to the breakdown of the Fermi liquid. However, the current-current inter-
action is of the relativistic origin and hence does the trick only at relativistically
small energy scales, whereas the gauge interaction occurs only under special cir-
cumstances, such as near half-filling or for composite fermions. What about a
generic case when nothing of this kind happens? It turns out that even if the
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Fig. 3. a) and b) Non-trivial second order diagrams for the self-energy. c) Same diagrams as in a)
and b) re-drawn as a single “sunrise” diagram. d) Diagrams relevant for non-analytic terms in the
self-energy. e) Kinematics of scattering in a polarization bubble: the dynamic part� ∝ ω/vF q

comes from the processes in which the internal fermionic momentum (�p) is almost perpendicular to
the external bosonic one (�q).

bare interaction is of the most benign form,e.g., a delta-function in real space,
there are deviations from a (perceived) FL behavior. These deviations get ampli-
fied as the system dimensionality is lowered, and, eventually, lead to a complete
breakdown of the FL in 1D.

A formal reason for the deviation from the FL-behavior is that the argument
which lead us to theε2-term is good only in the leading order inω/qvF . Recall
that the angular integration gives usq−1 factors in all dimensions, and, to arrive
at theε2 result we putω = 0 in functionsAD andU. If we want to get a next
term inε, then we need to expandU andA in ω. Had such expansions generated
regular series, Im�R would have also formed regular series inε2: Im�R =
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aε2 + bε4 + cε6 + . . . . However, each factor ofω comes withq−1, so that no
matter how high the dimensionality is, at some order ofω/vF q we are bound to
have an infrared divergence.

2.1. Long-range effective interaction

Let’s look at the simplest case of a point-like interaction. A frequency depen-
dence of the self-energy arises already at the second order. At this order, two
diagrams in Fig. 3 are of interest to us. For a contact interaction, diagram b) is
just -1/2 of a) (which can be seen by integrating over the fermionic momentum�p
first), so we will lump them together. Two given fermions interact via polarizing
the medium consisting of other fermions. Hence, the effective interaction at the
second order is just proportional to the polarization bubble, which shows how
polarizable the medium is

ImV R(ω, q) = −U2Im�R(ω, q).

Let’s focus on small angle-scattering first:q ≪ 2kF . It turns out that in all
three dimensions, the bubble has a similar form (see Appendix A for an explicit
derivation of this result)

−Im�R(ω, q) = νD
ω

vF q
BD

(
ω

vF q

)
, (2.7)

whereνD = aDmkD−2
F is the DoS inD dimensions [a3 = (2π)−2, a2 = (2π)−1,

a1 = 1/2π ] andBD is a dimensionless function, whose main role is to impose
a constraintω ≤ vF q in 2D and 3D andω = vF q in 1D. Eq.(2.7) entails the
physics ofLandau damping.The constraint arises because collective excitations–
charge- and spin-density waves– decay into particle-hole pairs. Decay occurs
only if bosonic momentum and frequency (q andω) are within the particle-hole
continuum (cf. Fig. 4). ForD > 1, the boundary of the continuum for smallω
andq isω = vF q, hence the decay takes place ifω < vF q. The rest of Eq. (2.7)
can be understood by dimensional analysis. Indeed,�R is the retarded density-
density correlation function; hence, by the same argument we applied to ImV R,

its imaginary part must be odd inω. For q ≪ kF , the only combination of units
of frequency isvF q, and the frequency enters asω/vF q. Finally, a factorνD
makes the overall units right. In 1D, the difference is that the continuum shrinks
to a single lineω = vF q, hence decay of collective excitations is possible only
on this line. In 3D, functionB3 is simply aθ− function

Im�R(ω, q) = −ν3
ω

vF q
θ (q − |ω/vF |) .
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Fig. 4. Particle-hole continua forD > 1 (left) andD = 1 (right). For the 1D case, only half of the
continuum (q > 0) is shown.

Next-to-leading term in the expansion of Im�R in ε comes from retaining the
lower limit in the momentum integral in Eq. (2.6), upon which we get

−Im�R ∼ U2mkF

∫ ε

0
dω

∫ Q∼kF

ω/vF

dqq2 1

vF q

ω

vF q

∼ U2mkF

v2
F

∫ ε

0
dωω


 kF︸︷︷︸

FL

− ω

vF︸︷︷︸
beyond FL




∼ aε2 − b |ε|3 .

The first term in the square brackets is the FL contribution that comes from
q ∼ Q. The second term is a correction to the FL coming fromq ∼ ω/vF .

Thus, contrary to a naive expectation an expansion inε is non-analytic.The frac-
tion of phase space for small-angle scattering is small–most of the self-energy
comes from large-angle scattering events (q ∼ Q); but we already start to see the
importance of the small-angle processes. Applying Kramers-Kronig transforma-
tion to a non-analytic part (|ε|3) in Im�R, we get a corresponding non-analytic
contribution to the real part as

(
Re�R

)
non−an∝ ε

3 ln |ε| .
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Fig. 5. Kinematics of scattering. a) “Any-angle” scattering. Momentum transferQ is of order of the
intrinsic scale of the interaction,�, and is independent of the energy transfer,�, which is of order of
the initial energyω. This process contributes regular terms to the self-energy. b) Dynamic forward
scattering:Q ∼ |ω|/vF . c) Dynamic backscattering:|Q− 2kF | ∼ |ω|/vF . Processes b) and c) are
responsible for the non-analytic terms in the self-energy.

Correspondingly, specific heat which, by power counting, is obtained from Re�R

by replacing eachε by T , also acquires a non-analytic term6

C(T ) = γ3T + β3T
3 ln T .

This is the familiarT 3 ln T term, observed both in He3 [40] and metals [41]
(mostly, heavy-fermion materials)7.

6One has to be careful with the argument, as a general relation betweenC(T ) and the single-
particle Green’s function [23] involves the self-energy on the mass shell. In 3D, the contribution
to � from forward scattering, as defined in Fig. 6, vanishes on the mass shell; hence there is no
contribution toC(T ) [50]. The non-analytic part ofC(T ) is related to the backscattering part of the
self-energy (scattering of fermions with small total momentum), which remains finite on the mass
shell. That forward scattering does not contribute to non-analyticities in thermodynamics is a general
property of all dimensions, which can be understood on the basis of gauge-invariance [42].

7The T 3 ln T -term in the specific heat coming from the electron-electron interactions is often
referred in the literature as the “spin-fluctuation” or “paramagnon” contribution [27, 28] Whereas it
is true that this term is enhanced in the vicinity of a ferromagnetic (Stoner) instability, it exists even
far way from any critical point and arises already at the second order in the interaction [29].
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In 2D, the situation is more dramatic. Theq− integral diverges now logarith-
mically in the infrared:

−Im�R (ω) ∼ U2

v2
F

m

∫ ε

0
dωω

∫ ∼kF

∼|ω|/vF

dq

q

∼ U2

vF
mε2 ln

EF

|ε| ,

Now, dynamic forward-scattering (with transfersq ∼ ω/vF ) is not a perturbation
anymore: on the contrary, theε dependence of Im�R is dominated by forward
scattering (theε2 ln |ε|-term is larger than the “any-angle”ε2-contribution). Cor-
respondingly, the real part acquires a non-analytic term Re� ∝ ε |ε|, and the
specific heat behaves as8

C(T ) = γ2T − β2T
2.

A non-analyticT 2-term in the specific heat has been observed in recent experi-
ments on monolayers of He3 adsorbed on solid substrate [43]9.

Finally, in 1D the same power-counting argument leads to Im�R ∝ |ε| and
Re�R ∝ ε ln |ε| 10. Correspondingly, the “correction” to the specific heat be-
haves asT ln T and is larger than the leading,T− term. This is the ultimate case
of dynamic forward scattering, whose precursors we have already seen in higher
dimensions11.

8Again, only processes with small total momentum contribute.
9If a T 2 term inC(T ) does not fit your definition of non-analyticity, you have to recall that the

right quantity to look at is the ratioC(T )/T . Analytic behavior corresponds to seriesC(T )/T =
γ + δT 2 + σT 4 + . . . . whereas we have aT 2 ln T andT terms as the leading order corrections to
Sommerfeld constantγ for D = 3 andD = 2, correspondingly.

10Special care is required in 1D as in the perturbation theory one gets a strong divergence in the
self-energy corresponding to interactions of fermions of the same chirality (Fig. 8a,c). This point will
be discussed in more detail in Section 2.3 (along with a weaker but nonetheless singularity in 2D).
For now, let focus on a regular part of the self-energy corresponding to the interaction of fermions of
opposite chirality (Fig. 8b).

11Bosonization predicts thatC(T ) of a fermionic system is the same as that of 1D bosons, which
scales asT for D = 1 [10]. This is true only for spinless fermions, in which case bosonisation
provides an asymptotically exact solution. For electrons with spins, the bosonized theory is of the
sine-Gordon type with the non-Gaussian (cosφ) term coming from the backscattering of fermions of
opposite spins. Even if this term is marginally irrelevant and flows down to zero at the lowest ener-
gies, at intermediate energies it results in a multiplicative lnT factor inC(T ) and a ln max{q, T ,H }
correction to the spin susceptibility (whereH is the magnetic length, and units are such thatq, T ,

andH have the units of energy). The difference between the non-analyticities inD > 1 andD = 1
is that the former occurs already at the second order in the interaction, whereas the latter start only at
third order. Naive power-counting breaks down in 1D because the coefficient in front ofT ln T term
in C(T ) vanishes at the second order, and one has to go to third order. In the sine-Gordon model,
the third order in the interaction is quite natural: indeed, one has to calculate the correlation function
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Even if the bare interaction is point-like, the effective one contains a long-
range part at finite frequencies. Indeed, the non-analytic parts of� andC(T )
come from the region of smallq, and hence large distances. Already to the
second order inU , the effective interactioñU = U2�(ω, q) is proportional to
thedynamicpolarization bubble of the electron gas,�(ω, q). In all dimensions,
Im�R is universal and singular inq for |ω| /vF ≪ q ≪ kF

Im�R (ω, q) ∼ νD
ω

vF |q|
.

Although the effective interaction is indeed screened atq → 0 –and this is
why the FL survives even if the bare interaction has a long-range tail–it has a
slowly decaying tail in the intermediate range ofq. In real space,̃U(r) behaves
asω/rD−1 at distancesk−1

F ≪ r ≪ vF /|ω|.
Thus, we have the same singular behavior of the bubble, and the results for

the self-energy differ only because the phase volumeqD is more effective in
suppressing the singularity in higher dimensions than in lower ones.

There is one more special interval ofq : q ≈ 2kF , i.e., Kohn anomaly. Usu-
ally, the Kohn anomaly is associated with the 2kF - on-analyticity of thestatic
bubble and its most familiar manifestation is the Friedel oscillation in electron
density produced by a static impurity (discussed later on). Here, the static Kohn
anomaly is of no interest for us as we are dealing with dynamic processes. How-
ever, the dynamic bubble is also singular near 2kF . For example, in 2D,

Im�R (q ≈ 2kF , ω) ∝
ω√

kF (2kF − q)
θ (2kF − q) .

Because of the one-sided singularity in Im�R as a function ofq (divergent deriv-
ative), the 2kF−effective interaction oscillates and falls off as a power law in real
space. By power counting, if a static Friedel oscillation falls off as sin 2kF r/r

D ,
then the dynamic one behaves as

Ũ ∝ ω sin 2kF r

r(D−1)/2
.

Dynamic Kohn anomaly results in the same kind of non-analyticity in the self-
energy (and thermodynamics) as the forward scattering. The “dangerous” range
of q now is |q − 2kF | ∼ ω/vF–“dynamic backscattering”. It is remarkable that
the non-analytic term in the self-energy is sensitive only to strictly forward or
backscattering events, whereas processes with intermediate momentum transfers
contribute only to analytic part of the self-energy. To see this, we perform the
analysis of kinematics in the next section.

of the cosφ term, which already contains two factors of the interaction; the third factor occurs by
expanding the exponent to leading (first) order. For more details, see [47],[48],[49].
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Fig. 6. Scattering processes responsible for divergent and/or non-analytic corrections to the self-
energy in 2D. a) “Forward scattering”–an analog of the “g4”-process in 1D. All four fermionic
momenta are close to each other. b) Backscattering–an analog of the “g2”-process in 1D. The net
momentum before and after collision is small. Initial momenta are close to final ones. Although the
momentum transfer in such a process is small, we still refer to this process as “backscattering” (see
the discussion in the main text). c) 2kF− scattering.

2.2. 1D kinematics in higher dimensions

The similarity between non-FL behavior in 1D and non-analytic features in higher
dimensions occurs already at the level of kinematics. Namely, one can make a
rather strong statement:the non-analytic terms in the self-energy in higher di-
mensions result from essentially 1D scattering processes.Let’s come back to
self-energy diagram 3a. In general, integrations over fermionic momentum�p
and bosonic�q are independent of each other: one can first integrate over (�p, ε),
forming a bubble, and then integrate over (�q, ω). Generically,�p spans the entire
Fermi surface. However, the non-analytic features in� come not from generic
but very specific�p which are close to either to�k or to−�k.

Let’s focus on the 2D case. Theε2 ln |ε| term results from the product of
two q−1-singularities: one is from the angular average of ImG and the other one
from the dynamic,ω/vF q, part of the bubble. In Appendix A, it is shown that
theω/vF q singularity in the bubble comes from the region where�p is almost
perpendicular to�q. Similarly, the angular averaging of ImG also pins the angle
between�k and�q to almost 90◦.

ImGR(ε − ω, �k − �q) = −πδ
(
ε − ω − qvF cosθ ′

)
→

cosθ ′ = ε − ω
vF q

∼ ω

vF q
≪ 1→ θ ′ ≈ π/2.

As �p and�k are almost perpendicular to the same vector (�q), they are either almost
parallel or anti-parallel to each other. In terms of a symmetrized (“sunrise”) self-
energy (cf. Fig. 3), it means that either all three internal momenta are parallel to
the external one or one of the internal one is parallel to the external whereas the
other two are anti-parallel12. Thus we have three almost 1D processes:

12In 3D, conditions�p ⊥ �q and �k ⊥ �q mean only that�p and �k lie in the same plane. However,
it is still possible to show that for a closed diagram,e.g., thermodynamic potential,�p and �k are
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• all four momenta (two initial and two final) are almost parallel to each other;
• the total momentum of the fermionic pair is near zero, whereas the transferred

momentum is small;
• the total momentum of the fermionic pair is near zero, whereas the transferred

momentum is near 2kF .
These are precisely the same 1D processes we are going to deal with in the

next Section–the only difference is that in 2D, trajectories do have some angular
spread, which is of order|ω| /EF . The first one is known as “g4” (meaning: all
four momenta are in the same direction) and the other one as “g2” (meaning: two
out of four momenta are in the same direction). Both of these processes are of
the forward-scattering type as the transferred momentum is small. In 1D, these
processes correspond to scattering of fermions of same (g4) or opposite chirality
(g2). The last (2kF ) process is known “g1” in 1D.

It turns out (see next Section) that of these two processes, theg2-one and
2kF− ones are directly responsible for theε2 ln ε behavior. Theg4-process leads
to a mass-shell singularity in the self-energy both in 1D and 2D, discussed in the
next section, but does not affect the thermodynamics, so we will leave it for now.

What about a 2kF− scattering? Suppose electron�k scatters into−�k emitting
an electron-hole pair of momentum 2�k. In general, 2�k of the e-h pair may consist
of any two fermionic momenta which differ by 2�k : �p and �p + 2�k. But since
|2�k| ≈ 2kF , the components of the e-h pair will be on the Fermi surface only if
�p ≈ −�k and �p+ 2�k ≈ �k. Only in this case does the effective interaction –bubble
have a non-analytic form at finite frequency. Thus 2kF -scattering is also of the
1D nature forD > 1.

What we have said above, can be summarized in the following pictorial way.
Suppose we follow the trajectories of two fermions, as shown in Fig. 7. There
are several types of scattering processes. First, there is a “any-angle” scattering
which, in our particular example, occurs at a third fermion whose trajectory is not
shown. This scattering contributes regular, FL terms both to the self-energy and
thermodynamics. Second, there are dynamic forward-scattering events, when
q ∼ |ω| /vF . These arenot 1D processes, as fermionic trajectories enter the
interaction region at an arbitrary angle to each other. In 3D, a third order in
such processes results in the non-analytic behavior ofC(T )–this is the origin of
the “paramagnon” anomaly inC(T ). In 2D, dynamic forward scattering does
not lead to non-analyticity. Finally, there are processes, marked by “g1”, “ g2”,

either parallel or anti-parallel to each other. Hence, the non-analytic term inC(T ) also comes from
the 1D processes. In addition, there are dynamic forward scattering events (marked with a star in
Fig. 7) which, although not being 1D in nature, do lead to a non-analyticity in 3D. Thus, theT 3 ln T
anomaly inC(T ) comes from both 1D and non-1D processes [50]. The difference is that the former
start already at the second order in the interaction whereas the latter occur only at the third order. In
2D, the entireT− term inC(T ) comes from the 1D processes.
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Fig. 7. Typical trajectories of two interacting fermions. Explosion: “any-angle” scattering at a third
fermion (not shown) which leads to a regular (FL) contribution. Five-corner star: dynamic forward
scatteringq ∼ |ω|/vF . This process contributes to non-analyticity in 3D (to third order in the inter-
action) but not in 2D. Four-corner star: 1D dynamic forward and backscattering events, contributing
to non-analyticities both in 3D and 2D.

and “g4”, when electrons conspire to align their initial momenta so that they are
either parallel or antiparallel to each other. These processes determine the non-
analytic parts of� and thermodynamics in 2D (and also, formally, forD < 2).
A crossover betweenD > 1 andD = 1 occurs when all other processes butg1,

g2, andg4 are eliminated by a geometrical constraint.
We see that for non-analytic terms in the self-energy (and thermodynamics),

large-angle scattering does not matter. Everything is determined by essentially
1D processes. As a result, if the bare interaction has someq dependence, only
two Fourier components matter:U(0) andU(2kF ). For example, in 2D

Im�R (ε) ∝
[
U2 (0)+ U2 (2kF )− U(0)U(2kF )

]
ε2 ln |ε| ;

Re�R (ω) ∝
[
U2 (0)+ U2 (2kF )− U(0)U(2kF )

]
ε |ε| ;

C(T )/T = γ ∗ − a
[
U2 (0)+ U2 (2kF )− U(0)U(2kF )

]
T ;

χs(Q, T ) = χ∗s (0)+ bU2 (2kF )max{vFQ,T } ;

wherea andb are coefficients. These perturbative results can be generalized for
the Fermi-liquid case, when the interaction is not necessarily weak. Then the
leading, analytic parts ofC(T ) andχs are determined by the angular harmonics
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of theLandau interaction function

F̂
(
�p, �p′

)
= Fs (θ) Î + Fa (θ) �σ · �σ ′,

whereθ is the angle between�p and �p′. In particular,

γ ∗ = γ0 (1+ 〈cosθFs〉) ;

χ∗s (0) = χ0
s

1+ 〈cosθFs〉
1+ 〈Fa〉

,

whereγ0 andχ0
s are the corresponding quantities for the Fermi gas. Because of

the angular averaging, the FL part is rather insensitive to the details of the in-
teraction. As genericallyFs andFa are regular functions ofθ, the whole Fermi
surface contributes to the FL renormalizations. VerticesU(0) andU(2kF ), oc-
curring in the perturbative expressions, are replaced byscattering amplitudeat
angleθ = π

Â
(
�p, �p′

)
= As (θ) Î + Aa (θ) �σ · �σ ′,

Beyond the perturbation theory [37],

C(T )/T = γ ∗ − ā
[
A2
s (π)+ 3A2

a (π)
]
T ;

χs(Q, T ) = χ∗s (0)+ b̄A2
a (π)max{vFQ,T } .

Non-analytic parts are not subject to angular averaging and are sensitive to a
detailed behavior ofAs,a nearθ = π.

2.3. Infrared catastrophe

2.3.1. 1D
By now, it is well-known that the FL breaks down in 1D and an attempt to ap-
ply the perturbation theory to 1D problem results in singularities. Let’s see what
precisely goes wrong in1D. I begin with considering the interaction of fermions
of opposite chirality, as in diagram Fig. 8b. Physically, a right-moving fermion
emits (and then re-absorbs) left-moving quanta of density excitations (same for
left-moving fermion emitting/absorbing right-moving quanta). Now, instead of
the order-of-magnitude estimate (2.7), which is good in all dimensions but only
for power-counting purposes, I am going to use an exact expression for the bub-
ble, Eq. (B.4), formed by left-moving fermions. We have

−Im�R+− (ε) ∼ U2ν1

∫ ε

0
dω

∫
dqImGR+ (ε − ω,p − q) Im�R−

∼ U2ν1

∫ ε

0
dω

∫
dqδ (ε − ω + vF q) (ω/vF ) δ (ω + vF q)

∼ g2 |ε| ,
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Fig. 8. Self-energy in 1D.± refer to right (left)-moving fermions.

whereg ≡ U/vF is the dimensionless coupling constant. The corresponding real
part behaves asε ln |ε| . What we got is bad, as Im�R scales withε in the same
way as the energy of a free excitation above the Fermi level and Re�R increases
faster thanε (which means that the effective mass depends onε as ln|ε|), but not
too bad because, as long asU/vF ≪ 1, the breakdown of the quasi-particle pic-
ture occurs only at exponentially small energy scales:ε � EF exp(−(vF /U)2).
Now, let’s look at scattering of fermions of the same chirality. This time I choose
to be away from the mass shell.

−Im�R++ ∝
∫ ε

0
dω

∫
dq δ (ε − ω − vF (k − q))︸ ︷︷ ︸

ImGR+

ωδ (ω − vF q)︸ ︷︷ ︸
Im�R+

(2.8)

= ε2δ (ε − vF k) . (2.9)

It is not difficult to see that the full (complex) self-energy is simply

�R++ ∝ − ε2

ε − vF k + i0+
. (2.10)

On the mass shell (ε = vF k) we have a strong–delta-function–singularity. This
anomaly was discovered by Bychkov, Gor’kov, and Dzyaloshinskii back in the
60s [52], who called it the “infrared catastrophe”. Indeed, it is similar to an
infrared catastrophe in QED, where an electron can emit an infinite number of
soft photons. Likewise, since we have linearized the spectrum, a 1D fermion
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can emit an infinite number of soft bosons: quanta of charge- and spin-density
excitations. The point is that in 1D there is a perfect match between momentum
and energy conservations for a process of emission (or absorption) of a boson
with energy and momentum related byω = vF q :

k′ = k − q
ε′ = ε − ω = vF k − vF q = vF (k − q) .

On the mass-shell, the energy and momentum conservations are equivalent. Imag-
ine that you want to find a probability of certain scattering process using a Fermi
Golden rule. Then you have a product of twoδ− functions: one reflecting the
momentum and other energy conservation. But if the arguments of the delta-
functions are the same, you have an essential singularity: a square of the delta-
function. As a result, the corresponding probability diverges.

A pole in the self-energy [Eq. (2.10)] indicates an essentially non-perturbative
and 1D effect: spin-charge separation. Indeed, substituting Eq. (2.10) we get
two poles corresponding to excitations propagating with velocitiesvF (1± g)
(recall thatg ≪ 1). This peculiar feature is confirmed by an exact solution (see
Section 3): already theg4−interaction leads to a spin-charge separation (but not
to anomalous scaling). What we did not get quite right is that the velocities of
both–spin- and charge-modes–are modified by the interactions. In fact, the exact
solution shows that the velocity of the spin-mode remains equal tovF , whereas
the velocity of the charge mode is modified.

Obviously, there is no spin-charge separation for spinless electrons. Indeed, in
this case diagram Fig. 8a does not have an additional factor of two as compared to
Fig. 8c (but is still of opposite sign), so that the forward-scattering parts of these
two diagrams cancel each other. As a result, there is no infrared catastrophe for
spinless fermions.

2.3.2. 2D
What we considered in the previous section sounds like an essentially 1D effect.
However, a similar effect exists also in 2D (more generally, for 1≤ D ≤ 2). This
emphasizes once again that the difference betweenD = 1 andD > 1 is not as
dramatic as it seems.

In 2D, the self-energy also diverges on the mass shell, if one linearizes the
electron’s spectrum, albeit the divergence is weaker than in 1D–to second order,
it is logarithmic13. The origin of the divergence can be traced back to the form of
the polarization bubble at small momentum transfer, Eq. (A.1). Integrating over

13In 3D, there is no mass-shell singularity to any order of the perturbation theory.
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the angle in 2D, we get

Im�R(ω, q) = −
( m

2π

) ω√
(vF q)

2 − ω2
θ (vF q − |ω|) . (2.11)

Im�R(ω, q) has a square-root singularity at the boundary of the particle-hole
continuum,i.e., at ω = vF q. (This is a threshold singularity of the van Hove
type–the band of soft electron-hole pairs is terminated atω = vF q, but the spec-
tral weight of the pairs is peaked at the band edge.) On the other hand, expanding
ǫk+q in GR(ε + ω, k+q) asξk+q = ξk + vF q cosθ and integrating overθ , we
obtain another square-root singularity

∫
dθ ImGR = −2π

[
(vF q)

2 − (ε + ω − ξk)2
]−1/2

. (2.12)

On the mass shell (ω = ξk), the arguments of the square roots in Eqs. (2.11) and
(2.12) coincide, and the integral overq diverges logarithmically. The resulting
contribution to Im�R diverges on the mass shell (ε = ξk) [53, 54, 55],[34],[37]

Im�Rg4
(ε, k) = − u

2

8π

ε2

EF
ln

EF

|ε − ξk|
,

where� ≡ ε − ξk and u ≡ mU/2π. The process responsible for the log-
singularity is the “g4” process in Fig. 6. On the other hand,g2 andg1 processes
give a contribution which is finite on the mass shell

Im�Rg1+g2
(ε, k) = − u

2

4π

ε2

EF
ln

EF

|ε + ξk|
.

(a divergence atε = −ξk is spurious and is removed by going beyond the log-
accuracy [34],[37]). We see therefore that the familiar form of the self-energy
in 2D [ε2 ln |ε|), see Ref. [56]] is valid only on the Fermi surface(ξk = 0). The
logarithmic singularity in Im�R on the mass shell is eliminated by retaining the
finite curvature of single-particle spectrum (which amounts to keeping theq2/2m
term in ξ�k+�q). This brings in a new scaleε2/EF . The emerging singularity in

(2.3.2) is regularized at|ε − ξk| ∼ ε2/EF and theε2 ln |ε| behavior is restored.
However, higher orders diverge as power-laws and finite curvature does not help
to regularize them. This means that–in contrast to 3D–the perturbation theory
must be re-summed even for an infinitesimally weak interaction. Once this is
done, the singularities are removed. Re-summation also help to understand the
reason for the problems in the perturbation theory. In fact, what we were try-
ing to do was to take into account a non-perturbative effect–an interaction with
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the zero-sound mode–via a perturbation theory. Once all orders are re-summed,
the zero-sound mode splits off the continuum boundary–now it is a propagating
mode with velocityc > vF . This splitting is what regularizes the divergences.
The resulting state is essentially a FL: the leading term in� behaves asε2 ln |ε| .
However, some non-perturbative features remain: for example, the spectral func-
tion exhibits a second peak away from the mass shell corresponding to the emis-
sion of the zero-sound waves by fermions. A two-peak structure of the spectral
function is reminiscent of the spin-charge separation, although we do not really
have a spin-charge separation here: in contrast to the 1D case, the spin-density
collective mode lies within the continuum and is damped by the particle-hole
pairs.

3. Dzyaloshinskii-Larkin solution of the Tomonaga-Luttinger model

3.1. Hamiltonian, anomalous commutators, and conservation laws

In the Tomonaga-Luttinger model [57],[58] one considers a system of 1D spin-
1/2 fermions with a linearized dispersion. Only forward scattering of left- and
right-moving fermions is taken into account (g2 andg4− processes), whereas
backscattering is neglected. This last assumption means that the interaction po-
tential is of sufficiently long-range so thatU (2kF ) ≪ U (0). [We will come
back to this condition later.] Coupling between fermions of the same chirality
(g4) is assumed to be different from coupling between fermions of different chi-
rality (g2). If the original Hamiltonian contains only density-density interaction,
theng2 = g4. A difference betweeng2 andg4 leads to an unphysical (within
this model) current-current interaction. We will keepg2 �= g4, however, at the
intermediate steps of the calculations as it helps to elucidate certain points. At
the end, one can makeg2 equal tog4 without any penalty. In addition, in some
physical situations,g2 �= g4

14. In what follows I will follow the original paper
by Dzyaloshinskii and Larkin (DL) [59] and a paper by Metzner and di Castro
[60], where the Ward identity used by Dzyaloshinskii and Larkin is derived in a
detailed way.

The Hamiltonian of the model is written as

H = H0 +Hint;
Hint ≡ H2 +H4,

14For example, Coulomb interaction between the electrons at the edges of a finite-width Hall bar
(in the Integer Quantum Hall Effect regime) has this feature: electrons of the same chirality are
situated on the same edge, whereas electrons of different chirality are on opposite edges; hence the
matrix elements for theg2− andg4- interactions are different.
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where
H0 = vF

∑

k,σ

k
(
a

†
+,σ (k)a+,σ (k)− a†

−,σ (k)a−,σ (k)
)

is the Hamiltonian of free fermions (± denote right/left moving fermions andσ
is the spin projection) and

H2 = g2

L

∑

q

∑

σ,σ ′
ρ+,σ (q) ρ−,σ ′ (−q) ;

H4 = g4

2L

∑

q

∑

σ,σ ′
ρ+,σ (q) ρ+,σ ′ (−q)+ ρ−,σ (q) ρ−,σ ′ (−q) ,

with
ρ±,σ =

∑

k

a
†
±,σ (k + q) a±,σ (k) .

To avoid additional complications, I assume that the interaction is spin-indepen-
dent. To simplify the notations and to emphasize the similarity with of our model
QED, I will setvF to unity in this section.

Introducing the chiral charge- and spin densities as

ρc± = ρ±,↑ + ρ±,↓;
ρs± = ρ±,↑ − ρ±,↓,

and total charge density and current as

ρc = ρc+ + ρc−;
j c = ρc+ − ρc−,

the interaction part of the Hamiltonian can be represented as

Hint =
∑

q

1

2
(g2 + g4) ρ

c (q) ρc (−q)+ 1

2
(g4 − g2) j

c (q) j c (−q) . (3.1)

As we have already said, forg2 = g4, the interaction is of a pure density-density
type. Notice also that the spin density and current drop out of the Hamiltonian–
this is to be expected for a spin-invariant interaction. To make a link with QED,
let us introduce Minkowski currentjµ with µ = 0,1 so thatj0 = ρc (=j0) and
j1 = j c (=-j1). Then the interaction can be written as a 4-product of Minkowski
currents in a Lorentz-invariant form

Hint =
∑

q

gµνjνj
ν,



30 D.L. Maslov

where

g00 = 1

2
(g2 + g4) ;

g11 = 1

2
(g4 − g2) ;

g01 = g10 = 0. (3.2)

In what follows, we will need the following anomalous commutators
[
ρ±,σ (q) ,H0

]
= ±qρ±,σ (q) ;

[
ρ±,σ (q) ,H2

]
= ± g2

2π
qρ∓,σ (q) ;

[
ρ±,σ (q) ,H4

]
= ± g4

2π
qρ±,σ (q) .

The derivation of these commutation relations can be found in a number of stan-
dard sources [61, 10] and I will not present it here. Adding up the commutators,
we get

[
ρ±,σ ,H

]
=

[
ρ±,σ ,H0 +H2 +H4

]

= ±qρ±,σ ±
g2

2π
qρc∓ ±

g4

2π
qρc±

Adding up equations for spin-up and -down fermions, we obtain
[
ρc±,,H

]
= ±qρc± ±

g2

π
qρc∓ ±

g4

π
qρc±.

Finally, adding up the± components yields

i∂tρ
c =

[
ρc,H

]
= vcqj c (3.3)

where

vc ≡ 1+ g4 − g2

π
(recall thatvF = 1). Eq. (3.3) is a continuity equation reflecting charge conser-
vation. As if we did not have enough new notations, here is another one

Qµ = (ω, q)
and

Qµ = (ω, vcq) .
In these notations and after a Fourier transform in time, the continuity equations
can be written as

Qµj
µ = 0.

The same relation for free particles reads

Qµj
µ = 0.



Fundamental aspects of electron correlations and quantum transport 31

Fig. 9. a) Three-leg correlatorK. b) Vertex part�.

3.2. Reducible and irreducible vertices

Now, construct a mixed (fermion-boson) correlator

K
µ
±,σ

(
k, q|t, t1, t ′1

)
= −〈Tjµ (q, t) a±,σ (k, t1) a†

±,σ (k + q, t1)〉, (3.4)

whereµ = 0,1 and

j0 = ρc+ + ρc−
j1 = ρc+ − ρc−

Kµ is an analog of the three-leg vertex in QED, except that in QED the “boson”
is theµ− the component of the photon field

QED : Kµ = −〈TAµaā〉.

A diagrammatic representation ofKµ is a three-particle (one boson and two
fermions) diagram (cf. Fig. 9a).

The diagrams with self-energy insertions to solid lines simply renormalize the
Green’s functions. Absorbing these renormalizations, we single out the vertex
part, re-writingKµ as

Kµ = G2�µ. (3.5)
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Fig. 10. Relation between vertices� andŴ.

Notice that there are as many vertex parts as there are bosonic degrees of free-
dom. In (3+1) QED,�0 is ascalar vertex and�µ=1,2,3 are the components of
the vectorvertex. Diagrams representing�µ are shown in Fig. 9b. These se-
ries can be re-arranged further by separating thephoton-irreduciblevertex part,
Ŵµ. A photon-irreducible part is obtained by separating the corrections to the
bosonic line, i.e., taking into account polarization. Vertices�µ andŴµ are re-
lated via a kind of Dyson equation, which is simpler than the usual Dyson in a
sense that there is no�µ on the right-hand-side. Diagrammatically, this rela-
tion is represented by Fig.10 where a shaded bubble is an exact (renormalized)
current-current correlation function

Aµν (q, t) = − i
V
〈jµ (q, t) jµ (−q,0)〉.

Algebraically, equation in Fig.10 says

�
µ
±,σ = Ŵµ±,σ + AµνgµλŴλ±,σ . (3.6)

(We remind the reader that indices±, σ simply specify the fermionic flavor
which is not mixed in our approximation of forward-scattering and spin-inde-
pendent forces, so all relations are applicable to each individual flavor.) The
coupling constantsgµν relate currents to densities. According to Eqs. (3.1) and
(3.2), densities couple to densities and currents to currents with no cross terms.
Opening the matrix product in Eq. (3.6), we obtain

�
µ
i = Ŵ

µ
i + Aµ0g00Ŵ

0 + Aµ1g11Ŵ
1. (3.7)

3.3. Ward identities

A Ward identity for vertex�µ is obtained by applyingi∂t toKµ in Eq. (3.4) and
using the continuity equation (3.4)15. Performing this operations and Fourier

15When differentiating, recall that theT− product can be represented by step-functions in time
which, upon differentiating, yield delta-functions.
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transforming in time, we obtain

QµK
µ
i (K,Q) = Gi (K)−Gi (K +Q) ,

wherei denotes the branch

i ≡ ±, σ.

Recalling Eq. (3.5), we see that the Ward identity takes a form

Qµ�
µ
i (K,Q) = G−1

i (K +Q)−G−1
i (K) , (3.8)

which is identical to a corresponding identity in QED. For those who like to see
things not masked by fancy notations, here is Eq. (3.8) in an explicit form

ω�0
i (ε, k;ω, q)− vcq�1

i (ε, k;ω, q) = G−1
i (ε + ω, k + q)−G−1

i (ε, k) .

(3.9)
Notice that Eqs. (3.8,3.9) containrenormalizedvelocity vc. In what follows,
we will actually need a Ward identity not for�µ but for the photon-irreducible
vertexŴµ. This one is obtained by deriving the continuity equation for 4-current
correlation functionAµν . To this end, one appliesi∂t toA0ν and uses continuity
equation (3.3), which yields16

QµA
µν = 2

π
qδν,1. (3.11)

Now, we form a scalar product betweenQµ and Eq. (3.7), using continuity
equation forAµν (3.11). This brings us to

Qµ�
µ
i = QµAµ,

16To get this result, recall the form of the anomalous density-density commutator

[jµ (q) , jν (−q)] = ǫµν 2

π
qL,

whereǫ00 = ǫ11 = 0, ǫ01 = −ǫ10 = 1. Now open theT− product inA0ν and applyi∂t

i∂tA
0ν (q, t) = − i

V
(i∂t ) 〈θ (t) j0 (q, t) jν (−q, 0)+ θ (−t) jν (−q, 0) j0 (q, t)〉

= 1

V
δ (t) [j0 (q,0) , jν (−q, 0)] + vaqA1ν = 2

q

π
δν,1 + vaqA1ν . (3.10)

In 4-notations, (3.10) is equivalent to (3.11).
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where

Qµ�
µ
i = Qµ

(
Ŵ
µ
i + Aµ0g00Ŵ

0
i + Aµ1g11Ŵ

1
i

)

= QµŴ
µ
i +QµA

µ0

︸ ︷︷ ︸
=0

g00Ŵ
0
i +QµA

µ1

︸ ︷︷ ︸
=2q/π

g11Ŵ
1
i

= ωŴ0
i − vc︸︷︷︸

=1+(g4−g2)/π

qŴ1
i +

2q

π

1

2

g4 − g2

π
Ŵ1
i

= ωŴ0
i − qŴ1

i = QµŴµ.
Finally, the Ward identity for photon-irreducible vertex is

QµŴ
µ = G−1

i (K +Q)−G−1
i (K) . (3.12)

It is remarkable that the left-hand-side of Eq. (3.12) containsbareFermi velocity
(= 1) instead of the renormalized one. This is true even if we allowed for spin-
dependent interaction in the Hamiltonian.

It seems that we have not achieved much, as the conservation law was simply
cast into a different form. However, in our 1D problem with a linearized spec-
trum a further progress can be made because the current and density (for given
chirality) are just the same quantity (up to an overall Fermi velocity which we
put to unity anyhow):

Ŵ1
±,σ = ±Ŵ0

±,σ
Therefore, we have a closed relation between just one vertex and Green’s func-
tions. Suppressing the 4-vector indexµ, we get the Ward identity for the density
vertex

Ŵ0
±,σ (K,Q) =

G−1
±,σ (K +Q)−G−1

±,σ (K)
ω ∓ q . (3.13)

This is the identity that we need to proceed further with the Dzyaloshinskii-
Larkin solution of the Tomonaga-Luttinger problem. Notice that (3.13) contains
fully interacting Green’s functions.

3.4. Effective interaction

Effective interaction is obtained by collecting polarization corrections to the bare
one. Diagrammatically, this procedure is described by the Dyson equation, rep-
resented in Fig.11. The interaction and polarization bubble are matrices with
components

V̂ =
(
V++ V+−
V+− V++

)
, V̂0 =

(
g4 g2
g2 g4

)
, �̂ =

(
�+ 0
0 �−

)
,
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Fig. 11. Dyson equation for the effective interaction. Solid line: Green’s function of a right-moving
fermion. Dashed line: Green’s function of a left-moving fermion. Single wavy line: bare interaction
of fermions of the same chirality; spiral line: same for the fermions of opposite chirality. Double
wavy and spiral lines represent the renormalized interactions.

where we used an obvious symmetryV++ = V−−, V+− = V−+. The Dyson
equation in the matrix form reads

V̂ = V̂0 + V̂0�̂V̂ ,

or, in components,

V++ = g4 + g4�+V++ + g2�−V+−;
V+− = g2 + g2�−V++ + g4�−V+−. (3.14)

Bubbles in these equations arefully renormalizedones,i.e., they are built on
exact Green’s functions and contain a vertex (hatched corner):

�± (ω, q) = −2i
∫ ∫

dkdε

(2π)2
G± (ε + ω, k + q)G± (ε, k) Ŵ0

± (ε, k;ω, q) .

Now we use the Ward identity forŴ0
± (3.13) to get17

�± (ω, q) = −2i
1

ω ∓ q

∫ ∫
dkdε

(2π)2
[
G± (ε, k)−G± (ε + ω, k + q)

]
.

(3.15)
Eq. (3.15) looks exactly the same as afree bubble [cf. Eq. (B.1)] except that
it contains exact rather than free Green’s functions. Because we managed to

17I skipped over a subtlety related to the infinitesimal imaginary partsi0+in the denominator.
Works the same way. If you are unhappy with this, imagine that we work with Matsubara frequencies.
Then there are noi0+s whatsoever.
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transform the product of two Green’s functions into a difference, frequency inte-
gration in Eq. (3.15) can be performed term by term yieldingexactmomentum
distribution functionsn± (k) andn± (k + q) :

�± (ω, q) =
1

ω ∓ q

∫ ∫
dk

π

[
n±(k)− n±(k + q)

]
. (3.16)

It seems that we have not achieved much so far. Indeed, we traded one un-
known quantity (�±) for another (n±). Both of them include the interaction to
all orders and without any further simplification we are stuck. In fact, we have
already made an important simplification: when specifying the model, we as-
sumed only forward scattering. This means that the interaction is sufficiently
long-range in real space so that backscattering can be neglected. Equivalently, in
the momentum space it means that our interaction operates only in a narrow win-
dow of widthq0 near the Fermi points,±kF . Thus the states far away from the
Fermi points are not affected by the interaction. The momentum integral in (3.16)
comes from regions far away from the Fermi surface where unknown functions
n± can be approximated by free Fermi steps. This approximation is good as long
asq0 ≪ kF . The solution is going to be exact only in a sense that there will be no
constraints on the amplitude of the interaction (parametersg2 andg4) but not its
range18. Now we understand better why the title of the paper by Dzyaloshinskii
and Larkin [59] is “Correlation functions for a one-dimensional Fermi system
with long-rangeinteraction (Tomonaga model)”19.

With this simplification, the momentum integration proceeds in the same way
as for free fermions (see Appendix B) with the resultthat the fully interacting
bubbles are the same as free ones

�± (ω, q) = �0
± (ω, q) = ± 1

π

q

ω − q + i0+sgnω
. (3.17)

This is a truly remarkable result which is a cornerstone for the DL solution20.

18In higher dimensions, we have a familiar problem of the Coulomb potential. Because it’s a
power-law potential, one cannot separate it into “amplitude” and “range”. There is in fact a sin-
gle dimensionless parameter,rs , which must be small for the perturbation theory–Random Phase
Approximation–to work. Oncers ≪ 1, we have two things: the screened potential is simultaneously
small and long-ranged. The Tomonaga-Luttinger model unties these two things: the interaction is
assumed to be long-ranged but not necessarily small.

19What seemed to be just a matter of mathematical convenience in the 50 and 60s, turns out to be
quite a realistic case these days. If a wire of widtha is located at distanced to the metallic gate, the
Coulomb potential between electrons in the wire is screened by their images in the gate. Typically,
d ≫ a. A simple exercise in electrostatics shows that in this caseU(0) is larger thanU(2kF ) by large
factor ln(d/a) [62].

20In QED, this statement is known as Furry theorem (W. H. Furry, 1937).
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Fig. 12. Dyson equation for the self-energy.

Because our bubbles were effectively “liberated” from the interaction effects,
system (3.14) is equivalent to what we would have obtained from the Random
Phase Approximation (RPA). It turns out that RPA isasymptoticallyexact in 1D
in the limit q0/kF → 0. Solving the 2 by 2 system, we obtain for the effective
interaction

V++ (ω, q) = (ω − q)
g4 (ω + q)+

(
g2

4 − g2
2

)
q/π

ω2 − u2q2 + i0+ ,

where21

u =

√

1+ 2g4

π
+ g

2
4 − g2

2

π
.

Forg4 = g2 ≡ g,

V++ (ω, q) = g
ω2 − q2

ω2 − u2q2 + i0+ . (3.18)

3.5. Dyson equation for the Green’s function

Dyson equation for right-moving fermions reads

�+ (P ) = i
∫
d2Q

(2π)2
G+ (P −Q)V++ (Q)Ŵ0

+ (P,Q) .

Diagrammatically, this equation is shown in Fig. 12. For linear dispersion,

�± (ε, p) = ε ∓ p −G−1
± (ε, p)

21Notice that as long asg4 �= g2, the left-right symmetry is broken, i.e., the potential is not
symmetric with respect toq →−q.
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Substituting this relation back into the Dyson equations, we obtain

(ε − p)G+ (ε, p) = 1+ i
∫ ∫

dωdq

(2π)2
G+ (ε, p)G+ (ε − ω,p − q)

×V++ (ω, q) Ŵ0
+ (ε, p;ω, q) .

Using the Ward identity (3.13), we get

(ε − p +�0)G+ (ε, p) = 1+ i
∫ ∫

dωdq

(2π)2
G+ (ε, p)G+ (ε − ω,p − q)

×V++ (ω, q)
ω − q

[
G−1
+ (ε, p)−G−1

+ (ε − ω,p − q)
]

= 1+ i
∫ ∫

dωdq

(2π)2
G+ (ε − ω,p − q)

V++ (ω, q)
ω − q +G+ (ε, p)× const,

where

const= i
∫ ∫

dωdq

(2π)2
V++ (ω, q)
ω − q .

A constant term can always be absorbed into�, which simply results in a shift
of the chemical potential. We are free to choose this shift in such a way that
const=0, so that the Dyson equation reduces to

(ε − p)G+ (ε, p) = 1+ i
∫ ∫

dωdq

(2π)2
G+ (ε − ω,p − q)

V++ (ω, q)
ω − q . (3.19)

Notice that Eq. (3.19) is an integral equation with a difference kernel, which
can be reduced to a differential equation forG. Before we demonstrate how it is
done, let’s have a brief look at a case when there is no coupling between left- and
right-moving fermions:g2 = 0. In this case,

V++ (ω, q) = π
(w − 1) (ω − q)
ω − wq + i0+ ,

where
w = 1+ g4/π.

Eq. (3.19) takes the form

(ε − p)G+ (ε, p) = 1+ i (w − 1)
∫ ∫

dωdq

4π

G+ (ε − ω,p − q)
ω − wq + i0+ .

This equation is satisfied by the following function

G+ (ε, p) =
1√

ε − p + i0+
√
ε − wp + i0+

. (3.20)
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This is an example of a non-Fermi-liquid behavior: the pole of a freeG splits
into the product of two branch cuts, one peaked on the mass shell of free fermi-
ons (ε = p) and another one at the renormalized mass shell (ε = wp). As left-
and right movers are totally decoupled in this problem, the same result would
have been obtained for two separate subsystems of left- and right movers. For
example, Eq. (3.20) predicts that an edge state of anintegerquantum Hall system
is not a Fermi liquid, if spins are not yet polarized by the magnetic field [63]. The
same procedure for a spinless system would give us a pole-likeG with a renor-
malized Fermi velocity. The non-Fermi-liquid behavior described by Eq. (3.20)
is rather subtle: it exists only if bothε andp are finite. In the limiting case of
p = 0 (tunneling DoS) we are back to a free-fermion behaviorG(ε,0) = ε−1.

Also, theε− integral of Eq. (3.19) gives a step-like distribution function in mo-
mentum space. The spectral function, however, is characteristically non-FL-like:
instead of delta-function peak we have a whole region|p| < |ε| < w |p| in which
ImG is finite. At the edges of this interval ImG has square-root singularities.

3.6. Solution for the caseg2 = g4

Substituting the effective interaction (3.18) into Dyson equation (3.19), we obtain

(ε − p)G+ (ε, p) = 1+ i
∫
dωdq

4π2
G(ε − ω,p − q) g (q) ω + q

ω2 − u2q2
,

where
u =

√
1+ 2g/π.

Notice that the constantg is replaced by a momentum-dependent interaction,
g (q). The reason is that without such a replacement the integral diverges at
the upper limit. Here, the assumption of a cut-off in the interaction becomes
important again. Transforming back to real time and space

G(x, t) =
∫ ∫

dεdp

(2π)2
G(ε, p) ei(px−εt),

we obtain the Dyson equation in a differential form

(
∂

∂t
+ ∂

∂x

)
G(x, t) = P (x, t)G (x, t)− iδ (x)δ(t) , (3.21)

where

P (x, t) = 1

4π2

∫ ∫
dωdqei(qx−ωt)g (q)

ω + q
ω2 − u2q2 + i0+ . (3.22)
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The integral forP diverges ifg is constant. To ensure convergence, we will
approximateg (q) = ge−|q|/q0. An actual form of the cut-off function is not
important as long as we are interested in such times and spatial intervals such
thatx, t ≫ q−1

0 . The integral overω is solved by closing the contour around the
poles of the denominatorω = ±u |q|

(
1+ i0+

)
. For t > 0, we need to choose

the one with Imω < 0. Doing so, we obtain
∫
dω

2π
· · · = i sgnq + u

2u
ei(qx−u|qt |).

Solving the remainingq− integral, we obtain forP (x, t)

P (x, t) = g

4πu

(
u+ 1

x − ut + i/q0
− u− 1

x + ut + i/q0

)
.

For t < 0, one needs to changeq0 →−q0 in the last formula.
The delta-function term can be viewed as a boundary condition

G(x,0+)−G(x,0−) = −iδ (x) . (3.23)

Once the functionP (x, t) is known, Eq. (3.21) is trivially solved in terms of new
variablesr = x − t, s = x + t. For example, fort > 0

G+ (r, t > 0) = G0 (x, t) f> (r) exp

[
i

∫ s

r

ds′P
(
r, s′

)]
, (3.24)

where functionf>(r) is determined by the analytic properties ofG as a function
of ε. Substituting result forP (x, t) into Eq. (3.24), we get

G+ (x, t > 0)

= 1

2π
G0 (x, t) f> (x − t)

(
x − t + i/q0

x − ut + i/q0

)α+1/2(
x − t − i/q0

x + ut − i/q0

)α
.

where

α = (u− 1)2

8u
. (3.25)

Formula fort < 0 is obtained by choosing another functionf< and replacing
q0 → −q0. Functionsf>,< are determined from the analytic properties. First of
all, recall that

G0 (x, t) =
1

x − t + isgnt0+
.

From this form, we see that althoughG0 is notan analytic function oft for anyt,
it is analytic for Ret > 0 in the right lower quadrant (Imt < 0) and for Ret < 0
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in the upper left quadrant (Imt > 0). The interaction cannot change analytic
properties of a Green’s function hence we should expect the same properties to
hold for full G 22.

From the boundary condition (3.23), it follows that

f> (x) = f< (x)
andf (0) = 0.

Analyzing different factors in the formula forG, we see that only the term
(x − t ∓ i/q0)

α does not satisfy the required analyticity property. This term is
eliminated by choosing functionf (x) as

f (x) =
(
q2

0x
2 + 1

)−α
.

Finally, the result forG takes the form

G+ (x, t) = 1

2π

1

x − t + isgnt0+

(
x − t + iγ
x − ut + iγ

)1/2

× 1[
q2

0 (x − ut + iγ ) (x + ut − iγ )
]α ,

whereγ = sgnt/q0. It seems somewhat redundant to keep two different damp-
ing terms (isgnt0+ andγ ) in the same equation. However, these terms contain
different physical scales. Indeed,isgnt0+ enters a free Green’s function and 0+

there has to be understood as the limit of the inverse system size. On the other
hand,γ contains a cut-off of the interaction. Obviously,|γ | ≫ 1/L → 0+ for
a realistic situation. The difference between the two cutoffs becomes important
for the momentum distribution function and tunneling DoS, discussed in the next
Section.

22Indeed, this property follows immediately from the Lehmann representation forG

G(x, t) = −i
∑

ν

|Mν0|2 eipνxe−i(Eν−E0)t , for t > 0;

= i
∑

ν

|Mν0|2 e−ipνxei(Eν−E0)t , for t < 0,

whereMν0 are the matrix elements between the ground state and stateν with energyEν > E0. The
required property simply follows from the condition for convergence of the sum.
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3.7. Physical properties

3.7.1. Momentum distribution
Having an exact form of the Green’s function, we can now calculate the momen-
tum distribution of,e.g.,right-moving fermions:

n+ (p) = −i
∫ ∞

−∞
dxe−ipxG+

(
x, t → 0+

)

= − i

2π

∫ ∞

−∞
dx

e−ipx

x + i0+
1[

q2
0x

2 + 1
]α

= − i

2π

∫ ∞

−∞
dxe−ipx

[
P

1

x
− iπδ (x)

]
1[

q2
0x

2 + 1
]α

= 1

2
− 1

π
sgnp

∫ ∞

0
dx

sin|p| x
x

1[
q2

0x
2 + 1

]α ,

We are interested in the behavior atp → 0 (which means|p| ≪ q0). The final
result forn+ (p) depends on whetherα is larger or smaller than 1/2 [59, 64].
• Forα < 1/2 (“weak interaction”), one cannot expand sinpx in x because the

resulting integral diverges atx = ∞. Instead, rescalepx → y

n+ (p) =
1

2
− 1

π

∫ ∞

0
dy

siny

y

1[
(q0/p)

2 y2 + 1
]α

and neglect 1 in the denominator. This gives

n+ (p) =
1

2
+ C1

( |p|
q0

)2α

sgnp (3.26)

where

C1 =
sinπα

π
Ŵ (−2α) .

Notice thatn+ (p) is finite (= 1/2) atp = 0, although its derivative is singular.
We should be able to recover the Fermi-gas step atp = 0 by settingα = 0 in
(3.26). Indeed,

lim
α→0

C1 = α
1

−2α
= −1

2

and

n (p) = 1− sgnp

2
,
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which is just the Fermi-gas result. Notice also that23 there is nothing special
about the limitα→ 0. Indeed, constantC1 has a regular expansion inα

C1 = −1

2
− γ a + . . .

and factor(|p| /q0)
2α can be expanded for finitep and smallα as

(|p| /q0)
2α = 1+ 2α ln |p| /q0.

To leading order inα, we obtain

n+ (p) =
1

2
− sgnp

1

2
[1+ 2α ln |p| /q0] = n0 (p)− αsgnp ln |p| /q0,

which is a perfectly regular inα (but logarithmically divergent atp → 0) be-
havior. Once again, it is not surprising: despite the fact that the results for a 1D
system differ dramatically from that for the Fermi gas, they are stillperturbative,
i.e., analytic,in the coupling constant.
• For α > 1/2 (“strong interaction”), it is safe to expand sinpx and the result

is

n+ (p) =
1

2
− C2p/q0,

where

C1 =
1

2
√
π

Ŵ (α − 1/2)

Ŵ (α)
.

In this case, no remains of a jump at the Fermi point is present inn+ (p) which
is a regular, linear function nearp = 0.
• Finally, α = 1/2 is a special case, where expansion inp results in a log-

divergent integral. To log-accuracy

n+ (p) =
1

2
− 1

π

p

q0
ln
q0

|p| .

In general,n (p) is some hypergeometric function ofp/q0 which decays
rapidly for p ≫ q0 and approaches 1 forp ≪ −q0. A posteriori, this justi-
fies the replacement of exactn (p) by its free form in the Dyson equation.

23Contrary to some statements in the literature.
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3.7.2. Tunneling density of states
Now we turn to the tunneling DoS

N (ε) = − 1

π
ImGR (ε, x = 0) .

Recalling that [23]

GR (ε) = G(ε) , for ε > 0;
= G∗ (ε) , for ε < 0,

we see that
ImGR (ε,0) = sgnεImG(ε,0)

and

N (ε) = − 1

π
sgnεImG(0, ε)

= − 1

π
sgnε

[∫
dteiεtG(0, t)−

∫
dte−iεtG∗ (0, t)

]

= − 1

π
sgnε

[∫
dteiεt

{
G(0, t)−G∗ (0,−t)

}]

For t →∞,
G (0, t) = const

(−t)1+2α

and
G(0, t)−G∗ (−t)

is an odd function oft. Thus

N (ε) = − 1

π
sgnεImG(0, ε)

= − 1

π
sgnε

1

2i

[∫
dteiεtG(0, t)−

∫
dte−iεtG∗ (0, t)

]

= − 1

π
sgnε

[∫ ∞

0
dt sinεt

{
G(0, t)−G∗ (0,−t)

}]

∝ sgnε
∫ ∞

0
dt

sinεt

t1+2α
.

The integral is obviously convergent forα < 1/2. In this case,

Ns (ε) ∝ |ε|2α .
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which means that the local tunneling DoS is suppressed at the Fermi level. Actu-
ally, the exponent forα > 1/2 is the same, however, the prefactor is a different
function ofα [65].

The DoS in Eq. (3.7.2) with exponent 2α, whereα is given by Eq. (3.25)
corresponds to tunneling into the “bulk” of a 1D system,i.e., when the tunneling
contact–with a tip of an STM or another carbon nanotube crossing the first one–
is far away from its ends. In the next Section, we will analyze tunneling into an
edge of a 1D conductor, which is characterized by a different exponent,α′.

4. Renormalization group for interacting fermions

The Tomonaga-Luttinger model can be solved exactly as it was done in the previ-
ous Section– only in the absence of backscattering. Backscattering can be treated
via the Renormalization Group (RG) procedure. This treatment is standard by
now and discussed in a number of sources [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. For the
sake of completeness, I present here a short derivation of the RG equations. A
reader familiar with the procedure can skip this Section and go directly to Sec. 5,
where these equations will be used in the context of a single-impurity problem.

An exact solution of the previous Section is parameterized by two coupling
constants,g2 andg4, which are equal to their bare values. In the RG language,
it means that these couplings do not flow. Let’s see if this is indeed the case. In
what follows, I will neglect theg4− processes, as their effect on the flow of other
couplings is trivial, and, for the sake of simplicity, consider a spin-independent
interaction. To second order, the renormalization of theg2− coupling is ac-
counted for by two diagrams: diagrams a) and b) of Fig. 13.

Diagram a) is a correction tog2 in the particle-particle channel. The correc-
tion tog2 is given by

(
g
(2)
2

)
a
= g2

2

(2π)2

∫
dq

∫
dωG+ (iε1 + iω, k1 + q)G− (iε2 − iω, k2 − q) .

Without a loss of generality, one can choose all momenta to be on the Fermi
“surface”: k1 = k2 = k3 = k4 = 0. Chooseq > 0 (the other choiceq < 0 will
simply double the result)

(
g
(2)
2

)
a

= g2
2

(2π)2

∫
dq

∫
dωG+ (iε1 + iω, q)G− (iε2 − iω,−q)

= g2
2

(2π)2

∫ �/2

0
dq

∫
dω

1

i (ε1 + ω)− q
1

i (ε2 − ω)− q

= 2πig2
2

(2π)2

∫ �/2

0
dq

1

ε1 + ε2 + ω + 2iq
= g2

2

4π
ln

i�

ε1 + ε2
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Adding the result up with the (identical)q < 0 contribution, we find

(
g
(2)
2

)
a
= g2

2

2π
ln

i�

ε1 + ε2
.

Diagram b) is a correction tog2 in the particle-hole channel:

(
g
(2)
2

)
b

= g2
2

(2π)2

∫
dq

∫
dωG+ (iε1 + iω, q)G− (iε4 + iω, q)

= g2
2

(2π)2

∫ �/2

0
dq

∫
dω

1

i (ε1 + ω)− q
1

i (ε4 + ω)+ q

= − 2πi

(2π)2
g2

2

∫ �/2d

0
q

1

ε1 − ε4 + ω + 2iq
= − g

2
2

4π
ln

i�

ε1 − ε4
.

As in the previous case, the final result is:

(
g
(2)
2

)
b
= − g

2
2

2π
ln

i�

ε1 − ε4
.

If we sum only the Cooper ladders, adding up more vertical interaction lines
to diagram a), the full vertex becomes

Ŵpp =
g2

1+ g2 ln i�
ε1+ε2

.

(To keep track of the signs, one needs to recall that in Matsubara frequencies each
interaction line comes with the minus sign from the expansion of theS−matrix.)
The resulting vertex blows up for attractive interaction (g2 < 0) asε1+ ε2 → 0,
which is nothing more than a Cooper instability.

Likewise, untwisting the crossed lines in diagram b) and adding more interac-
tion lines, we get the particle-hole vertex

Ŵph =
g2

1− g2 ln i�
ε1−ε4

.

This vertex has an instability for repulsive interaction (g2 > 0). In fact, none of
these instabilities occur. To see this, add up the results of diagrams a) and b)

(
g
(2)
2

)
a+b

= g2
2

2π

[
ln

i�

ε1 + ε2
− ln

i�

ε1 − ε4

]
= g2

2

2π
ln
ε1 − ε4
ε1 + ε2

.

In the RG, one changes the cut-off and follow the corresponding evolution of the
couplings. As the cut-off dependence cancelled out in the result for(g

(2)
2 )a+b,

couplingg2 remains invariant under the RG flow.
Backscattering generates additional diagrams: diagrams c)-f) in Fig.13.



Fundamental aspects of electron correlations and quantum transport 47

Fig. 13. Second order diagrams for couplingsg2 (solid wavy line) andg1 (dashed wavy line). Straight
solid and dashed lines correspond to Green’s functions of right- and left moving fermions, corre-
spondingly.

Diagram c) describes repeated backscattering in the particle-particle channel,
which is equivalent to forward scattering. Therefore, this diagram gives a correc-
tion to g2− coupling. Using the relation betweenG±, i.e.,G± = − (G∓)∗ , we
find

(
g
(2)
2

)
c

= g2
1

(2π)2

∫
dq

∫
dωG− (iε1 + iω, q)G+ (iε4 + iω, q)

= g2
1

(2π)2

[∫
dq

∫
dωG+ (iε1 + iω, q)G− (iε4 + iω, q)

]∗
.

The last integral is the same as for(g(2)2 )a . Thus,

(
g
(2)
2

)
c
= g2

1

g2
2

[
dg
(1)
2

]∗
= g2

1

2π
ln

−i�
ε1 + ε2

.

The rest of the diagrams provide corrections tog1.
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Diagram d1) is the same as diagram a) except for the prefactor being equal
to g1g2: (

g
(2)
1

)
d1
= g1g2

2π
ln

i�

ε1 + ε2
Diagram d2) is a complex-conjugate of diagram d1). The sum of diagrams

d1) and d2) is equal to
(
g
(2)
1

)
d1+d2

= g1g2

2π
ln

i�

ε1 + ε2
+ g1g2

2π
ln

−i�
ε1 + ε2

= g1g2

π
ln

�

ε1 + ε2
.

Diagrams e)is a polarization correction to the bareg1−coupling:
(
g
(2)
1

)
e
= −︸︷︷︸

fermionic loop

g2
1�2kF (ω = ε1 − ε2, q = 0) .

Using Eq. (B.8), we obtain
(
g
(2)
1

)
e
= Ns

2π
g2

1 ln
�

|ε1 − ε2|
,

whereNs is the degeneracy factor (=2 for spin 1/2 fermions, occupying a single
valley in the momentum space).

Diagram f1) is the same as the bubble insertion, except for no - sign, no
degeneracy factor (Ns) factor, and the overall coefficient isg1g2:

(
g
(2)
1

)
f 1
= − 1

2π
g1g2 ln

�

|ε1 − ε2|
.

Diagram f2) is equal to f1). Their sum
(
g
(2)
1

)
f 1+f 2

= − 1

π
g1g2 ln

�

|ε1 − ε2|
Collecting all contributions together, we obtain

−Ŵ2 = −g2 +
(
g
(2)
2

)
a
+
(
g
(2)
2

)
b
+
(
g
(2)
2

)
c
;

Ŵ2 = g2−
g2

2

2π
ln

i�

ε1 + ε2
+ g2

2

2π
ln

i�

ε1 − ε4︸ ︷︷ ︸
cancel out in the RG sense

− g
2
1

2π
ln

−i�
ε1 + ε2

;

−Ŵ1 = −g1 +
(
g
(2)
2

)
d
+
(
g
(2)
2

)
e
+
(
g
(2)
2

)
f
;

Ŵ1 = g1 −
g1g2

π
ln

�

ε1 + ε2
− Ns

2π
g2

1 ln
�

|ε1 − ε2|
+ 1

π
g1g2 ln

�

|ε1 − ε2|
.
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Second and fourth terms inŴ1 also cancel out in the RG sense. Changing the
cut-off from� to�+ d �, we obtain two differential equations

dŴ2

dl
= −Ŵ

2
1

2π
; (4.1)

dŴ1

dl
= −Ns

Ŵ2
1

2π
, (4.2)

wherel = ln�.We see that a quantity

Ŵ̄ = Ŵ2 −
1

Ns
Ŵ1 = const= g2 −

1

Ns
g1. (4.3)

is invariant under RG flow, therefore its value can be obtained by substituting the
bare values of the coupling constants (g2 andg1) into (4.3). The RG-invariant
combination is then

Ŵ̄ = g2 −
1

Ns
g1. (4.4)

For spinless electrons (Ns = 1),

Ŵ̄ = Ŵ2 − Ŵ1 = U (0)− U (2kF ) .
This last result can be understood just in terms of the Pauli principle. Indeed,
the anti-symmetrized vertex for spinless electrons is obtained by switching the
outgoing legs of the diagram (p1, p2 → p3, p4). To first order,

Ŵ (p1, p2;p3, p4) = U (p1 − p3)− U (p1 − p4) .

Choosingp3 = p1−q andp4 = p2+q, we obtain [recall thatU (q) = U (−q)]
Ŵ (p1, p2|q) = U (q)− U(p1 − p2 − q).

One of the incoming fermions is a right mover (p1 = pF ) and the other one is a
left mover (p2 = −pF ). As q is small compared topF , we obtain

Ŵ (p1, p2|q) = U (0)− U(2kF ).
In fact, for spinless electronsg2 andg1 processes are indistinguishable24 as we
do not know whether the right-moving electron in the final state is a right-mover

24That does not mean that backscattering is unimportant! It comes with a different scattering
amplitudeU (2kF ). In fact, it is only backscattering which guarantees that the Pauli principle is
satisfied, namely, for a contact interaction, whenU (0) = U (2kF ), we must get back to a Fermi gas
as fermions are not allowed to occupy the same position in space and hence they cannot interact via
contact forced. Our invariant combinationU (0)−U (2kF ) obviously satisfies this criterion. We will
see that bosonization does have a problem with respecting the Pauli principle, and it takes some effort
to recover it.
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of the initial state, which experienced forward scattering, or the left-mover of the
initial state, which experienced backscattering. A proper way to treat the case of
spinless fermions is to include backscattering into Dzyaloshinskii-Larkin scheme
from the very beginning, re-write the Hamiltonian in terms offorward scattering
with invariant couplingŴ̄, and proceed with the solution. All the results will then
be expressed in terms ofŴ̄ rather than ofg2.

Solving the equation forŴ1, gives on scaleε

Ŵ1 =
1

(g1)
−1 + Ns

2π ln�/ε
. (4.5)

At low energies,Ŵ1 renormalizes to zero (Ŵ∗1 = Ŵ1 (l = ∞) = 0), if the inter-
action is repulsive, and blows up atε = � exp(−1/|g1|), if the interaction is
attractive. CouplingŴ2 also flows to a new value which can be read off from
Eq. (4.4)

Ŵ∗2 = g2 −
1

Ns
g1.

Roughly speaking,g1 is not important for repulsive interaction as the effective
low-energy theory will look like a theory with forward scattering only. This does
not really mean, however, that one can consider a fixed point as a new problem
in which backscattering is absent, and apply our exact solution to this problem.
Instead, one should calculate observables, derive the RG equations for flows, and
use current values of coupling constants in these RG equations. An example of
this procedure will be given in the next Section, where we will see that the flow
of Ŵ1 provides additional renormalization of the transmission coefficient in an
interacting system.

Assigning different coupling constants to the interaction of fermions of par-
allel (g1||) and anti-parallel (g1⊥) spins, one could see that the coupling which
diverges for attractive interaction is in factg1⊥. This clarifies the nature of the
gap that RG hints at (in fact, a perturbative RG can at most just give a hint): it is a
spin gap. This becomes obvious in the bosonization technique, as the instability
occurs in the spin-sector of the theory. An exact solution by Luther and Emery
[66] for a special case of attractive interaction confirms this prediction.

5. Single impurity in a 1D system: scattering theory for interacting
fermions

A single impurity or tunneling barrier placed in a 1D Fermi gas reduces the con-
ductance from its universal value–e2/h per spin orientation–to

G = Ns
e2

h
|t0|2, (5.1)
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wheret0 is the transmission amplitude. The interaction renormalizes the bare
transmission amplitude, making the conductance depend on the characteristic
energy scale (temperature or applied bias), which is observed as a zero-bias
anomaly in tunneling. This effect is not really a unique property of 1D: in
higher dimensions, zero-bias anomalies in both dirty and clean (ballistic) regimes
[67, 12, 13, 14] as well as the interaction correction to the conductivity [67, 15],
stem from the same physics, namely, scattering of electrons from Friedel oscil-
lations produced by tunneling barriers or impurities. 1D is special in the mag-
nitude of the effect: the conductance varies significantly already on the energy
scale comparable to the Fermi energy, whereas in higher dimensions the effect
of the interaction is either small at all energies or becomes significant only at
low energies (below some scale which is much smaller thanEF as long as the
parameterkF l, wherel is the elastic mean free path, is large). The 1D zero-
bias anomaly is described quite simply in a bosonized language [68], which does
not require the interaction to be weak. We will use this description in Sec.6.
However, in this Section I will choose another description–via the scattering the-
ory for fermions rather than bosons–developed by Matveev, Yue, and Glazman
[11]. Although this approach is perturbative in the interaction, it elucidates the
underlying mechanism of the zero-bias anomaly and allows for an extension to
higher-dimensional case (which was done for the case of tunneling in Ref. [12]
and transport in Ref. [15]).

5.1. First-order interaction correction to the transmission coefficient

In this section we consider a 1D system ofspinlessfermions with a tunneling
barrier located atx = 0 [11]. For the sake of simplicity, I assume that the barrier
is symmetric, so that transmission and reflection amplitude for the waves coming
from the left and right are the same. Also, I assume that e-e interaction is present
only to the right of the barrier, whereas to the left we have a Fermi gas. Such
a situation models a setup when a tunneling contact separates a 1D interacting
system (quantum wire or carbon nanotube) and a “good metal”, in which inter-
actions can be neglected. We also assume that the interaction potentialU (x)

is sufficiently short-ranged, so thatU (0) is finite and one can neglect over-the-
barrier interaction. However,U (0) �= U (2kF ) (otherwise, spinless electrons
would not interact at all25).

25For a contact potential (which leads toU (0) = U (2kF )), the four-fermion interaction for the
spinless case reduces to[�† (0)]2�2 (0). By Pauli principle,[�† (0)]2 = �2 (0) = 0, so that the
interaction is absent.
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The wave function of the free problem for a right-moving state is:

ψ0
k (x) = 1√

L

(
eikx + r0e−ikx

)
, x < 0; (5.2)

= 1√
L
t0e
ikx, x > 0.

For a left-moving state:

ψ0
−k (x) = 1√

L

(
e−ikx + r0eikx

)
, x > 0;

= 1√
L
t0e

−ikx, x < 0. (5.3)

Herek =
√

2mE > 0. To begin with, we consider a high barrier:|t0| ≪ 1, r0 ≈
−1. Then the free wavefunction reduces to

ψ0
k (x) = 2i√

L
sinkx, x < 0 (incoming from the left+reflected); (5.4)

= 1√
L
t0e
ikx, x > 0 (transmitted left→ right); (5.5)

ψ0
−k (x) = 1√

L
t0e

−ikx, x < 0 (transmitted right→ left); (5.6)

= − 2i√
L

sinkx, x > 0 (incoming from the right+reflected).(5.7)

The barrier causes the Friedel oscillation in the electron density on both sides of
the barrier. The interaction is treated perturbatively, via finding the corrections to
the transmission coefficient due to additional scattering at the potential produced
by the Friedel oscillation. Diagrammatically, the corrections to the Green’s func-
tion are described by the diagrams in Fig.14, where a) represents the Hartree and
b) the exchange (Fock) contributions, correspondingly. Compared to the text-
book case, though, the solid lines in these diagrams are the Green’s functions
composed of the exact eigenstates in the presence of the barrier (but no interac-
tion). Because the barrier breaks translational invariance, these Green’s functions
are not translationally invariant as well. I emphasized this fact by drawing the di-
agrams in real space, as opposed to the momentum -space representation. Notice
also that the Hartree diagram is usually discarded in textbooks because a bubble
there corresponds to the total charge density (density of electrons minus that of
ions), which is equal to zero in a translationally invariant and neutral system.
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Fig. 14. Correction to the Green’s function: exact with respect to the barrier and first order in the
interaction

However, what we have in our case is thelocal density of electrons at some dis-
tance from the barrier. Friedel oscillation is a relatively short-range phenomenon
(the period of the oscillation is comparable to the electron wavelength), and it is
possible to violate the charge neutrality locally on such a scale. As a result, the
Hartree correction is not zero.

To first-order in the interaction, an equivalent way of solving the problem is
to find a correction to the wave-function, rather than the Green’s function, in
the Hartree-Fock method. The electron wave-function which includes both the
barrier potential and the electron-electron interaction is

ψk(x) = ψ0
k (x)+

∫ ∞

0
dx′G>0 (x,x

′, E)

×
∫ ∞

0
dx′′[VH (x′′)δ(x′ − x′′)+ Vex(x′, x′′)]ψ0

k (x
′′), (5.8)

whereG>0 is the Green’s function of free electrons on the right semi-line,E

is the full energy of an electron,VH andVex are the Hartree and the exchange
potentials. The Hartree potential is

VH (x) =
∫
dx′U(x − x′)δn(x′) (5.9)

whereδn(x) = n(x) − n0 is the deviation of the electron density from its uni-
form value (in the absence of the potential) andU(x) is the interaction potential.
Hartree interaction is a direct interaction with the modulation of the electron den-
sity produced by the Friedel oscillation. For a high barrier, which is essentially
equivalent to a hard-wall boundary condition, the electron density is

n(x) = 4
∫ kF

0

dk

2π
sin2(kx) = n0

(
1− sin 2kF x

2kF x

)
→ (5.10)

δn (x) = − sin(2kF x) /2πx (5.11)
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wheren0 = kF /π is the density of electrons. Then,

VH (x) = − 1

2π

∫ ∞

0
dx′U(x − x′)sin 2kF x′

x′
. (5.12)

Notice that although the bare interaction is short-range, the effective interaction
has a slowly-decaying tail due to the Friedel oscillation. (The integral goes over
only for positive values ofx′ because electrons interact only there.)

The exchange potential is equal to

Vex(x, x) = −U(x − x′)
[ ∫ kF

0

dk

2π

[
ψ0
k (x

′)
]∗
ψ0
k (x)

+
∫ kF

0

dk

2π

[
ψ0
−k(x

′)
]∗
ψ0
−k(x)

]
. (5.13)

Since we assumed that electrons interact only if they are located to the right of
the barrier, the integral in (5.8) runs only overx, x′ > 0 and the Green’s function
is a Green’s function on a semi-line. The wave-function in (5.8) needs to be
evaluated atx →∞, which means that we will only need an asymptotic form of
the Green’s function far away from the barrier. This form is constructed by the
method of images

G>0 (x, x
′, E) = G0(x, x

′, E)−G0(x,−x′, E), (5.14)

where

G0
(
x, x′, E

)
= 1

ivk
eik|x−x′|

is the free Green’s function on a line withk =
√

2mE andvk = k/m. Coordinate
x′ is confined to the barrier, whereasx →∞, thusx > x′ and

G>0 (x, x
′, E) = − 2

vk
sin(kx′)eikx .

5.1.1. Hartree interaction
Our goalis to present the correction to the wave-function for electrons incoming
from x < 0 tox > 0 in the form

ψk − ψ0
k =

1√
L
δteikx, (5.15)

whereδt is the interaction correction to the transmission coefficient. Substituting
(5.15) into (5.8), we obtain for the Hartree contribution tot

δtH

t0
= − 2

vF

∫ ∞

0
dx sinkxeikxVH (x),
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where one can replacevk → vF in all non-oscillatory factors. For a delta-
function potential,U (x) = Uδ (x)

VH (x) = − U
2π

sin 2kF x

x
. (5.16)

However, theδ− function potential is not good enough for us, because it will
be cancelled by the exchange contribution. Friedel oscillation arises due to
backscattering. With a little more effort, one can show thatU in the last for-
mula is replaced byU (2kF ):26

VH (x) = −U (2kF )
2π

sin 2kF x

x
.

Substituting this intoδt/t yields

δtH

t0
= U(2kF )

πvF

∫ ∞

0
dx sin(kx) eikx

sin 2kF x

x

= U(2kF )

πvF

∫ ∞

0
dx

1

2i

(
e2ikx − 1︸︷︷︸ regular correction to Imt

)

×sin 2kF x

x
= U(2kF )

πvF

∫ ∞

0
dx

1

2i
e2ikx

sin 2kF x

x
= U(2kF )

2πvF

×
∫ ∞

0
dx

(
sin 2kx + i−1 cos 2kx︸ ︷︷ ︸ yet another regular correction

)

×sin 2kF x

x
= U(2kF )

2πvF

∫ ∞

0
dx sin 2kx

sin 2kF x

x

= U(2kF )

4πvF
ln
k + kF
|k − kF |

≈ α′2kF ln
kF

|k − kF |
,

where

α′2kF =
g1

4πvF
,

andg1 = U (2kF ). In deriving the final result, I discarded all terms that are
regular in the limitk→ kF .

26Notice that the sign of the Hartree interaction is attractive near the barrier (assuming the sign of
the e-e interaction is repulsive at 2kF ): for x → 0, VH (x) → −U (2kF ) kF /π. The reason is that
the depletion of electron density near the barrier means that the positive background is uncompen-
sated. As a result, electrons areattractedto the barrier and transmission isenhancedby the Hartree
interaction.
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5.1.2. Exchange
Now bothx andx′ > 0. We need to select the largest wave-function,i.e., such
that does not involve a small transmitted component. Obviously, this is only
possible fork < 0 (second term in (5.13)) andψ0

−k, given by (5.7). Substituting
the free wave-functions into the equation for the exchange interaction, we get

Vex(x, x
′) = −U(x − x′)ρ(x, x′), (5.17)

where the 1D density-matrix is

ρ(x, x′) = 4
∫ kF

0

dk

2π
sin(kx) sin(kx′) (5.18)

= 2
∫ kF

0

dkx

2π

[
cosk(x − x′)− cosk(x + x′)

]
(5.19)

= · · · − sinkF (x + x′)
π(x + x′) , (5.20)

where. . . stand for the term which depends onx−x′. This term does not lead to
the log-divergence inδt and will be dropped27. Forx = x′,we get the correction
to the densityδn (x), as we should.

Correction to the transmission coefficient

δtex/t0 = − 2

πvF

∫ ∞

0
dx′

∫ ∞

0
dx′′U(x′ − x′′) sinkx′eikx

′′ sinkF (x′ + x′′)
x′ + x′′ .

(5.21)
After a little manipulation with trigonometric functions, which involves dropping
of the terms depending only onx − x′, we arrive at

δtex

t0
= − 1

4π2vF

∫ +∞

0

dq

q
U(q)

∫ ∞

0

dx+
x+

(5.22)

×{sin 2(k − kF + q)x+ − sin 2(k − kF − q)x+}, (5.23)

where

x+ = x′ + x′′
2

. (5.24)

Integral overx+ provides a lower cut-off for theq− integral
∫ +∞

0

dx+
x+

{sin 2(k − kF + q)x+ − sin 2(k − kF − q)x+} (5.25)

= π

2
sgn(q + k − kF )+

π

2
sgn(q − k + kF ) (5.26)

= πθ(q − |k − kF |). (5.27)
27Notice that the important part of the exchange potential isrepulsivenear the barrier. This means

that electrons are repelled from the barrier and transmission is suppressed.
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Now
δtex

t0
= − 1

4πvF

∫ +∞

|k−kF |

dq

q
U(q). (5.28)

As U (q) is finite atq → 0 28, one can takeU (q) out of the integral atq = 0
(denotingU (0) = g2)

δtex

t0
≈ − 1

4πvF
g2

∫ q0

|k−kF |

dq

q
= −α′0 ln

q0

|k − kF |
.

Combining the exchange and Hartree corrections together (in doing so we choose
the smallest upper cut-offs for the log which we assume to be inverse interaction
range,q0), we get

δt = −t0α′ ln
q0

|k − kF |
, (5.29)

where

α′ = α′0 − α′2kF =
g2 − g1

4πvF
; asymmetric geometry. (5.30)

It can be shown in a similar manner that if we had interacting regions onboth
sides of the barrier, the result forα′ would be double of that in Eq. (5.30).

α′ = α′0 − α′2kF =
g2 − g1

2πvF
; symmetric geometry. (5.31)

The sign of the correction tot depends on the sign ofg2−g1 = U (0)−U (2kF ).
Notice that transmission isenhanced,if U (2kF ) > U(0). Usually, this behavior
is associated with attraction. We see, however, that even if the interaction is
repulsive at allq but U (2kF ) > U(0), it works effectively as an attraction.
The caseU (2kF ) > U(0) is not a very realistic one, at least not in a situation
when electrons interact only among themselves. Other degrees of freedom,e.g.,
phonons, must be involved to give a preference to 2kF− scattering.

5.2. Renormalization group

It is tempting to think that the first-order in interaction correction tot0 in Eq. (5.30)
is just an expansion of the scaling formt ∝ |k − kF |α

′
. A poor-man RG indeed

28If U(q) has a strong dependence onq for q → 0 (which is the case for a bare Coulomb potential
U (q) ∝ ln q), this dependence affects the resulting dependence of the transmission coefficient on
energy|k − kF |, i.e., on the temperature and/or bias. Instead of a familiar power-law scaling of the
tunneling conductance for the short-range interaction, the conductance falls off with energy faster
than any power law for the bare Coulomb potential.
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shows that this is the case. Near the Fermi level,k−kF = (E − EF ) /vF = ε/vF
so that the first-order correction tot is

t1 = t0
(

1− α′ ln W0

|ε|

)
,

whereW0 = q0vF is the effective bandwidth. The meaning of this bandwidth
is that the states at±W0 from the Fermi level (=0) are not affected by the inter-
action. For|ε| = W0, t1 = t0. Suppose that we want to reduce to bandwidth
W0 → W1 < W0 and findt at |ε| = W1

t1 = t0
(

1− α′ ln W0

W1

)
.

It is of crucial importance here that coefficientα′ (which will become the tun-
neling exponent in the scaling form we are about to get) is proportional to the
RG-invariantcombinationU (0) − U (2kF ) = g2 − g1 for spinless electrons.
This means thatα′ is to be treated as a constant under the RG flow. Repeating
this procedure usingt, found at the previous stage instead of a baret0, n times,
we get

tn+1 = tn
(

1− α′ ln Wn

Wn+1

)
.

The renormalization process is to be stopped when bandwidth coincides with the
physical energy|ε| , at whicht is measured. In the continuum limit (tn+1 − tn =
dt;Wn+1 = Wn − dW), this equation reduces to a differential one

dt

t
= α′

dW

W
dt

d lnW
= α′t

Integrating fromt (ε) to t0 (and, correspondingly, fromW = |ε| toW = W0) we
obtain

t (ε) = t0 (|ε| /W0)
α′ .

5.3. Electrons with spins

Now let’s introduce the spin. The effect will be more interesting than just mul-
tiplying the result for the tunneling conductance by a factor of two (which is
all what happens for non-interacting electrons.) To keep things general, I will
assume an arbitrary “spin” (which may involve other degrees of freedom) degen-
eracyNs and putNs = 2 at the end. In this section we will exploit the result of
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Sec. 4 stating the backscattering amplitude flows under RG. This flow affects the
renormalization of the transmission coefficient at low energies.

Repeating the steps for the first-order correction tot, including spin is easy–
one just have to realize that the Hartree correction is multiplied byNs (as the
polarization bubble involves summation over all isospin components, it is simply
multiplied by a factor ofNs). On the contrary, the exchange interaction is possi-
ble only between electrons of the same spin, so there areNs identical exchange
potentials for every spin component. I am going to discuss the strong barrier case
first in the symmetric geometry. Then, taking into account what we have just said
about the factor ofNs, we can replace the result for spinless electrons (5.30) by

α′ → α′ = α′0 −Nsα′2kF =
g2 −Nsg1

4πvF
. (5.32)

(and similarly for the symmetric geometry of the tunneling experiment). Corre-
spondingly, the correction to the transmission coefficient (for a given spin pro-
jection) changes to

tσ = t0
(
1− α′ lnW/ |ε|

)
.

The tunneling conductance is found from the Landauer formula

G = e2

h

Ns∑

σ=1

|tσ |2 ,

where, as the barrier is spin-invariant, the sum simply amounts to multiplying the
result for a given spin component byNs . Now, the result in Eq. (5.32) seems to be
interesting, as the 2kF contribution gets a boost. IfNsU (2kF ) > U (0), we have
in increase of the barrier transparency. It does not seem too hard to satisfy this
condition. For example, it is satisfied already for the delta-function potential29

andNs = 2. However, as opposed to the spinless case,α′ is not an RG-invariant
but flows under renormalizations. Let’s splitα′ into an RG-invariant part (4.4)
and the rest

α′ = 1

4πvF

[
U (0)− 1

Ns
U (2kF )

]
− 1

4πvF

N2
s − 1

Ns
U (2kF )

= α′s −
1

4πvF

N2
s − 1

Ns
g1,

where

α′s =
1

4πvF

(
g2 −

1

Ns
g1

)
= Ŵ̄

4πvF
. (5.33)

29As now electrons have spins, they are allowed to be at the same point in space and interact.
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The condition for the tunneling exponent to be negative is more restrictive that it
seemed to be:g1 > Nsg2. It is not hard to see that the RG equation fortσ now
changes to

dt

dl
= −t

(
α′s −

1

4πvF

N2
s − 1

Ns
Ŵ1 (l)

)
, (5.34)

whereŴ1 (l) is given by

Ŵ1 =
1

(g1)
−1 + Ns

2π l
.

Integrating (5.34), we find

tσ = t0
(

1+ Nsg1

4πvF
ln
W

|ε|

)βs
(|ε| /W)α′s ,

where

βs =
N2
s − 1

N2
s

.

In particular, forNs = 2, we get

tσ = t0
(

1+ g1

2πvF
ln
W

|ε|

)3/4

(|ε| /W)α′s .

and conductance

G = G0

(
1+ g1

2πvF
ln
W

|ε|

)3/2

(|ε| /W)2α′s , (5.35)

whereG0 is the conductance for the free case. Thus the flow of the backscatter-
ing amplitude results in a multiplicative log-renormalization of the transmission
coefficient. One can check the first-order result is reproduced if expand the RG
result to the first log.

An interesting feature of this result is that it predictsthreepossible types of
behavior of the conductance as function of energy.

1. weak backscattering:
α′ > 0→ g1 < g2/Ns .

In this regime already the first-order correction corresponds to suppression of
the conductance, which decreases monotonically as the energy goes down.

2. intermediate backscattering:

α′ > 0 butα′s < 0→ g2/Ns < g1 < Nsg2.
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In this regime, the first-order correction enhances the transparency, but the RG
result shows that the forε → 0, the transmission goes to zero. It means that
at higher energies, when the RG has not set in yet, the conductance increases
as the energy goes down, but at lower energies the conductance decreases.
The dependence ofG (ε) on ε is non-monotonic–there is a maximum at the
intermediate energies.

3. strong backscattering:
α′s < 0→ g1 > Nsg2.

In this regime, tunneling exponentα′s is negative and the conductance in-
creases as the energy goes down.

5.4. Comparison of bulk and edge tunneling exponents

Tunneling into the bulk of a 1D system is described by the density of states ob-
tained,e.g., in the DL solution of the Tomonaga-Luttinger model (no backscat-
tering). The “bulk” tunneling exponent is equal to

2α = (u− 1)2

4u
,

where
u =

√
1+ 2g2/πvF .

In this Section, we considered tunneling into the edge for weak interaction and
found that the conductance scales with exponent 2α′s (5.33). To compare the two
exponents, we need to expand the DL exponent for weak interaction

2α = g2
2

4π2vF
.

Forg1 = 0, the edge exponent is

2α′s =
1

2πvF
g2.

We see that for weak coupling tunneling into the edge is stronger affected by the
interaction than tunneling into the bulk: the former effect starts at the first order
in the interaction whereas the latter starts at the second order. This difference has
a simple physical reason which is general for all dimensions. In a translationally
invariant system, the shape of the Green’s function is modified in a non-trivial
way only starting at the second order. For example, the imaginary part of the
self-energy (decay of quasi-particles) occur only at the second order. The first-
order corrections lead only to a shift in the chemical potential and, if the potential
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is of a finite-range, to a renormalization of the effective mass. If the translational
invariance is broken, non-trivial changes in the Green’s function occur already
at the first order in the interaction. That tunneling into the bulk and edge are
characterized by different exponents is also true in the strong-coupling case (cf.
Sec. 6). As the relation between the bulk and edge exponents is known for an
arbitrary coupling, one can eliminate the unknown strength of interaction and
express one exponent via the other. Knowing one exponent from the experiment,
one can check if the observed value of the second exponent agrees with the data.
This cross-check was cleverly used in the interpretation of the experiments on
single-wall carbon nanotubes [70, 71].

6. Bosonization solution

Bosonization procedure in described in a number of books and reviews [1]-[10].
Without repeating all standard manipulations, I will only emphasize the main
steps in this Section, focusing on a couple of subtle points not usually discussed
in the literature. A reader familiar with bosonization may safely skip the first
part of this Section, and go directly to Secs. 6.1.5 and 6.2.1, where tunneling
exponents are calculated. Some technical details of the bosonization procedure
are presented in Appendix C. As in Sec. 3,vF = 1 in this Section, unless
specified otherwise.

6.1. Spinless fermions

6.1.1. Bosonized Hamiltonian
We start from a Hamiltonian of interacting fermions without spin

H = 1

L

∑

p,k,q

ξka
†
kak +

1

2L2

∑

p,k,q

Vqa
†
p−qa

†
k+qakap.

The interacting part of the Hamiltonian can be re-written using chiral densities

ρ± (q) =
∑

p≷0

a
†
p−q/2ap+q/2

as

Hint = g2
1

L

∑

q

ρ+ (q) ρ− (−q)+
g4

2

1

L

∑

q

ρ+ (q) ρ+ (−q)+ ρ− (q) ρ− (−q) .

The interacting part is in the already bosonized form. For a linearized dispersion

ξk = |k| − kF ,
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it is also possible to express the free part via densities. To check this, let’s assume
thatH0 can indeed be written as

H0 =
1

L

∑

q

Aq
[
ρ+ (q) ρ+ (−q)+ ρ− (q) ρ− (−q)

]
,

whereAq is some unknown function. Commuteρ+ with H0, making use of the
anomalous commutator

[
ρ+ (q) , ρ+ (−q)

]
= qL/2π :

[
ρ+ (q) ,H0

]
= 1

L

∑

q ′
Aq ′

[
ρ+ (q) , ρ+

(
q ′
)
ρ+(−q ′)

]

= Aqρ+ (q)
q

π
.

On the other hand, the same commutator can be calculated directly in a model
with linearized spectrum, using only fermionic anticommutation relations. This
gives [

ρ+ (q) ,H0
]
= qρ+ (q) .

Comparing the two results, we see that

Aq = π

and thus

H0 = π
1

L

∑

q

ρ+ (q) ρ+ (−q)+ ρ− (q) ρ− (−q) .

Combining the free and interacting parts of the Hamiltonian, we obtain

H = π
1

L

(
1+ g4

2π

)∑

q

{ρ+ (q) ρ+ (−q)+ ρ− (q) ρ− (−q)}

+ π 1

L
g2

∑

q

ρ+ (q) ρ− (−q) .

Notice that if only theg4− interaction is present, the system remains free but the
Fermi velocity changes.

It is convenient to expand the density operators over the normal modes

ρ+ (x) =
∑

q>0

√
|q|

2πL

(
bqe

iqx + b†
qe
−iqx) ;

ρ− (x) =
∑

q<0

√
|q|

2πL

(
bqe

iqx + b†
qe
−iqx) .
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One can readily make sure that density operators defined in this way reproduce
the correct commutation relations, given that[bq , b†

q ′ ] = δq,q ′ . In terms of these
operators, the Hamiltonian reduces to

H = π
(
1+ g4

2π

)∑

q>0

q
{
b†
qbq + b†

−qb−q
}
+ πg2

∑

q

q
(
b†
qb

†
−q + bqb−q

)
.

Introducing new bosons via a Bogoliubov transformation

c†q = coshθqbq + sinhθqb
†
−q;

c
†
−q = coshθqb

†
−q + sinhθqbq

and choosingθq so that the Hamiltonian becomes diagonal,i.e.,

tanh 2θq =
g2/2π

1+ g4/2π
,

we obtain

H = 1

L

∑

q

ωqc
†
qcq ,

where
ωq = u |q| ,

and30

u =
[(

1+ g4

2π

)2
−
( g2

2π

)2
]1/2

. (6.2)

For the spinless case, backscattering can be absorbed into forward scattering.
The resulting expression for the renormalized velocity for the caseg2 = g4 �= g1
is (cf. Appendix C.3)

u =
√

1+ g2 − g1

2π
.

30Let’s now introduce backscattering. Since for spinless fermions backscattering is just an ex-
change process to forward scattering of fermions of opposite chirality (think of a diagram where
you have right and left lines coming in and then interchange them at the exit), the only effect of
backscattering is to replaceg2 → g2 − g1. (cf. discussion in Sec. 4). Instead of (6.2), we then have

u =
[(

1+ g4

2π

)2
−
(
g2 − g1

2π

)2
]1/2

. (6.1)

Now, consider a delta-function interaction, wheng1 = g2 = g4. Pauli principle says that we
should get back to the Fermi gas in this case. However,u still differs from unity (Fermi velocity) and
thus our result violates the Pauli principle. See Appendix C.3 for a resolution of the paradox.
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6.1.2. Bosonization of fermionic operators
The�− operators of right/left movers can be represented as

�± (x) =
1√
2πa

e±2πi
∫ x
−∞ ρ±(x

′)dx′ , (6.3)

wherea is the ultraviolet cut-off in real space. Using the commutation relations
for ρ±, one can show that the (anti) commutation relations

{
�± (x) ,�

†
±(x

′)
}
= δ(x − x′)

are satisfied.
The argument of the exponential can be re-written as two bosonic fields

�± (x) = 1√
2πa

e±i
√
πϕ±(x); (6.4)

ϕ± (x) = ϕ (x)∓ ϑ (x) .

Equating exponents in (6.3) and (6.4), we obtain

√
π [ϕ (x)− ϑ (x)] = 2π

∫ x

−∞
dx′ρ+(x′) (6.5)

= 2π
∑

q>0

√
|q|

2πL

1

iq

(
bqe

iqx − b†
qe
−iqx) ;

√
π [ϕ (x)+ ϑ (x)] = 2π

∫ x

−∞
dx′ρ−(x′) (6.6)

= 2π
∑

q<0

√
|q|

2πL

1

iq

(
bqe

iqx − b†
qe
−iqx) .

Solving forϕ (x) andϑ (x) gives

ϕ (x) = −i
∑

−∞<q<∞

1√
2 |q|Lsgnq

(
bqe

iqx − b†
qe
−iqx) ; (6.7)

ϑ (x) = i
∑

−∞<q<∞

1√
2 |q|L

(
eiqxbq − b†

qe
−iqx) . (6.8)

Using (6.7) and (6.8), one can prove thatϕ (x) and ∂xϑ (x) satisfy canonical
commutation relations between coordinate and momentum (cf. Appendix C.2.1)

[
ϕ (x) , ∂x′ϑ(x

′)
]
= iδ(x − x′). (6.9)
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Using Eqs. (6.5) and (6.6), we obtain the density and current as the gradients of
the bosonic fields

ϕ (x) = √
π

∫ x

−∞
dx′

(
ρ+(x′)+ ρ−(x′)

)
= √

π

∫ x

−∞
dx′ρ(x′)→

ρ (x) = 1√
π
∂xϕ;

ϑ (x) = −√π
∫ x

−∞
dx′

(
ρ+(x′)+ ρ−(x′)

)
= −√π

∫ x

−∞
dx′j (x′)→

j (x) = − 1√
π
∂xϑ (x) .

The continuity equation,
∂tρ + ∂xj = 0

relates the Heisenberg fieldsϕ (x, t) andϑ (x, t)

∂tϕ = ∂xϑ.

The current can be also found as

j (x, t) = − 1√
π
∂tϕ (x, t) .

We will use this relation later. ExpressingH in the real space viaρ±

H = π
∫
dx

[
ρ2
+ + ρ2

−
]
+ g4

2

∫
dx

[
ρ2
+ + ρ2

−
]
+ g2

∫
dxρ+ρ−

and using the relations

ρ± = 1

2
√
π
(∂xϕ ∓ ∂xϑ) ,

we obtain a canonical form ofH in terms of the bosonic fields

H = 1

2

∫
dx

[
(∂xϕ)

2 + (∂xϑ)2
]
+ g2 + g4

4π

∫
dx (∂xϕ)

2

+g2 − g4

4π

∫
dx (∂xϑ)

2

= 1

2

∫
dx

[ u
K
(∂xϕ)

2 + uK (∂xϑ)
2
]
, (6.10)
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where31

u =
√(

1+ g4

2π

)2
−
( g2

2π

)2
; K =

√√√√1+ g4−g2
2π

1+ g4+g2
2π

. (6.11)

Forg4 = g2 ≡ g, we have

u =
√

1+ g/π; K = 1√
1+ g/π . (6.12)

Notice that in this caseuK = 1. This is important: in the next Section, we will
see that this product renormalizes the Drude weight (and the persistent current).
Neither of these quantities are supposed to be affected by the interactions, as the
Galilean invariance remains intact. We see that it is indeed the case in our model.

If backscattering is present (butg2 = g4), the parameters change to (cf. Ap-
pendix C.3)

u =
√

1+ g2 − g1

π
; (6.13)

K = 1√
1+ (g2 − g1) /π

. (6.14)

Had we started with another microscopic model,e.g., with fermions on a lattice
but away from half-filling, the effective low-energy theory would have also been
described by Hamiltonian (6.10) albeit with different–and, in general, unknown–
parametersu andK. The term “Luttinger liquid” (LL) [69] refers to a universal
Hamiltonian of type (6.10), which describes the low-energy properties of many
seemingly different systems. In that sense, the LL is a 1D analog of higher-
dimensional Fermi liquids, which also encapture the low-energy properties of a
large class of fermionic systems, while encoding the quantitative differences in
their high-energy properties by a relatively small set of parameters.

6.1.3. Attractive interaction
What happens for the case of an attractive interaction,g < 0? Formally, for
g < −π (or g2 − g1 < π), u2 in Eqs. (6.12,6.13) is negative, which seems to
suggest some kind of an instability. Actually, this is not the case [59], as a 1D
system of spinless fermions does not have any phase transitions even atT = 0.
All it means that the interacting system is a liquid rather than a gas,i.e., it does

31As we have already seen in Sec. 3, a difference betweeng2 andg4 leads to the current-current
interaction in the Hamiltonian. In the bosonized form, this interaction is the(g2 − g4) (∂xϑ)

2 term
in the first line of Eq. (6.10).
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not require external pressure to mantain its volume. An equilibrium value of the
density is fixed by given ambient pressure. To see this, restore the Fermi velocity
vF = πn/m, wheren is the density

u2 = v2
F

(
1+ g

πvF

)
=
(πn
m

)2
+ ng
m

(6.15)

and recall the thermodynamic relation

u2 = m−1∂P/∂n, (6.16)

whereP is the pressure. Integrating (6.16) with the boundary conditionP (n = 0)
= 0, we obtain the constituency relation

P =
(π
m

)2 n3

3
+ g

2m
n2.

For g < 0, there is a metastable region of negative pressure. This means that if
the ambient pressure is equal to zero, the thermodynamically stable value of the
density is given by the non-zero root of the equationP (n) = 0, by

n∗ = 3

2π2
|g|m.

The square of the sound velocity at this density is positive:

(
u∗
)2 = 3

4π2
g2.

The Fermi velocity atn = n∗ is

v∗F = πn∗/m = 3

2π2
|g|

and parameterK

K = v∗F
u∗

=
√

3

π

is a universal number, independent of the interaction.

6.1.4. Lagrangian formulation
In what follows, it will be more convenient to work in the Lagrangian rather the
Hamiltonian formulation (and also in complex time). A switch from the Hamil-
tonian to Lagrangian formulation is done via the usual canonical transformation

S =
∫
dx

∫
dt (q̇p −H (p, q)) , (6.17)
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whereH is the Hamiltonian density defined such that

H =
∫
dxH

andq andp are the canonical coordinate and momentum, correspondingly. Ac-
cording to commutation relation (6.9),

q = ϕ p = ∂xϑ. (6.18)

Performing a Wick rotation,t →−iτ, we reduce the quantum-mechanical prob-
lem into a statistical-mechanics one with the partition function

Z =
∫
Dϕ

∫
Dϑe−SE ,

where the Euclidian action

SE =
∫
dτ

∫
dx

[
1

2

u

K
(∂xϕ)

2 + 1

2
uK (∂xϑ)

2 − i∂τϕ∂xϑ
]
.

In a Fourier-transformed form

SE =
∫
d2k

[
1

2

u

K
q2ϕ�kϕ−�k +

1

2
uKϑ�kϑ−�k + iqωϕ�kϑ−�k

]
,

where�k ≡ (q, ω). If one needs only an average composed of fields of one type
(ϕ or ϑ), then the other field can be integrated out. This leads to two equivalent
forms of the action

Sϕ = 1

2K

∫
d2k

[
1

u
ω2 + uq2

]
ϕ�kϕ−�k (6.19a)

= 1

2K

∫
dx

∫
dτ

[
1

u
(∂τϕ)

2 + (∂xϕ)2
]
; (6.19b)

Sϑ = K

2

∫
d2k

[
1

u
ω2 + uq2

]
ϑ�kϑ−�k (6.19c)

= K

2

∫
dx

∫
dτ

[
1

u
(∂τϑ)

2 + (∂xϑ)2
]
. (6.19d)

In calculating certain correlation functions,e.g., the fermionic Green’s func-
tion, one also needs a cross-correlator〈ϕϑ〉. This one is computed by keeping
bothϕ andϑ in the action.
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It is convenient to re-write the action in the matrix form

SE =
1

2

∫
d2kη̂

†
�kD̂

−1η̂�k,

where

η̂�k =
(
ϕ�k
ϑ�k

)

and the inverse matrix of propagators

D̂−1 =
(
q2uK iqω

iqω q2 u
K

)
.

Inverting the matrix, we obtain

D̂ = 1

u2q2 + ω2

(
uK −iω/q

−iω/q u
K

)
.

The space-time propagators can be found by performing the Fourier transforms
of D̂. For diagonal terms, one really does not need to do it, as it is obvious
from (6.19a) and (6.19c) that these propagators just coincide with that of a 2D
Laplace’s equations. Recalling that the potential of a line charge is a log-function
of the distance, we obtain

�(z) = 〈ϕ (z) ϕ (0)− ϕ2 (0)〉 = K

4π
ln

a2

x2 + (u |τ | + a)2
,

 (z) = 〈ϑ (z) ϑ (0)− ϑ2 (0)〉 = 1

4πK
ln

a2

x2 + (u |τ | + a)2

wherea is “lattice constant”,z ≡ (x, τ ), andx2 + u2τ2 ≫ a2 32. These are
the two correlation functions we will need the most. In addition, there is also an
off-diagonal propagator

!(z) = 〈ϕ (z) ϑ (0)− ϕ (0) ϑ (0)〉 = 〈ϑ (z) ϕ (0)− ϑ (0) ϕ (0)〉
=

∫
d2k

(
ei
�k·�z − 1

)
〈ϕ�kϑ−�k〉 = −i

∫
d2k

(
ei
�k·�z − 1

) ω/q

u2q2 + ω2
.

32A non-symmetric appearance of the cut-off with respect to time and space coordinates reflect an
asymmetric way the sums over bosonic momenta and frequencies were cut. We adopted a standard
procedure in which the sum of overq is regularized by exp(− |k| a), whereas the frequency sum is
unlimited. Other choices of regularization are possible.
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!(z) depends only on the ratiox/uτ and thus does not change the power-count-
ing. To see this, introduce polar coordinatesq = k cosα/u, ω = sinα, x =
(z/u) cosβ, andτ = z sinβ. Then

!(x, τ) = −i
∫

d2k

(2π)2

(
ei(qx−ωτ) − 1

) ω/q

u2q2 + ω2

= −i 1

(2π)2

∫ ∞

0

dk

k

∫ 2π

0
dα

(
eik cos(α+β) − 1

)
tanα.

The resulting integral is a function of onlyβ = tan−1 (x/uτ).

6.1.5. Correlation functions
Now we can calculate various correlation functions, including the Green’s func-
tion.

Non-time-ordered Green’s function for right movers:

G+ (x, τ ) = −〈T Bτ ψ+ (x, τ ) ψ†
+ (0,0)〉 (6.20)

= 1

2πa
〈T Bτ ei

√
π(ϕ(1)−ϑ(1))e−i

√
π(ϕ(0)−ϑ(0))〉,

where(1) ≡ (x, τ ) and(0) ≡ (x = 0, τ = 0), and whereT Bτ is a bosonic time-
ordering operator33. I will use the well-known result, valid for an average of
the product of the exponentials of gaussian fields (see books by Tsvelik [6] or
Giamarchi [10] for a derivation)

〈Tτ�j eiAj γ (zj )〉 = δ∑
j Aj ,0 × e

−∑
k>j AjAk〈Tτ γ (zj )γ (zk)〉e−

1
2

∑
k A

2
k〈γ 2(zj )〉.

(6.21)
[Eq. (6.21) is essentially a field-theoretical analog of the probability theory result
for the average ofeiAγ , whereγ is a Gaussian random variable.] For example,
in the average

Av (z) = 〈Tτ ei
√
πϕ(z)e−i

√
πϕ(0)〉

A1 =
√
π , A2 = −√π and

Av (z) = eπ〈Tτ
[
ϕ(z)γ (0)−ϕ2(0)

]
〉 =

(
a2

x2 + (u |τ | + a)2
)1/4K

.

33Surely, it is not a conventional definition of the Green’s function, but it is easier to work with this
one for now, and restore the fermionicTτ product at the end.
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Similarly, with the help of (6.21), Eq. (6.20) reduces to

G+ (x, τ )

= 1

2πa
eπ〈ϕ(1)ϕ(0)−ϕ

2(0)〉τ eπ〈ϑ(1)ϑ(0)−ϑ
2(0)〉τ e−2〈ϕ(1)ϑ(0)−ϕ(0)ϑ(0)〉τ

= 1

2πa
eπ�(x,τ)eπ (x,τ)e−2!(x,τ)

= 1

2πa

(
a2

x2 + (u |τ | + a)2
)K+K−1

4

eif (x/uτ), (6.22)

where〈. . . 〉τ stands for a time-ordered product and where I used that in a trans-
lationally invariant and equilibrium system〈ϕ2 (0)〉 = 〈ϕ2 (1)〉 (same forϑ).
Functionf (x/uτ) is a phase factor which does not effect the power-counting.

Bulk tunneling DoS Forx = 0,

G (0, τ ) ∝ τ−K+K
−1

2 .

By power-counting,

ν (ε) ∝ |ε|K+K
−1

2 −1 = |ε| (K−1)2

2K . (6.23)

This is an analog of the DL result for the spinless case.

Edge tunneling DoS In a tunneling experiment, one effectively measures the
local DoS at the sample’s surface. In a correlated electron system, the boundary
condition affects the wavefunction over a long (exceeding the electron wave-
length) distance from the surface. Therefore, the surface DoS differs signifi-
cantly from the “bulk” one. If a tunneling barrier is high, then–to leading order
in transmission– the DoS can be found via imposing a hard-wall boundary con-
dition. The presence of the surface (boundary) can be taken into account by
imposing the boundary conditions on the number current

j (x = 0, τ ) = − 1

i
√
π
∂τϕ = 0. (6.24)

at x = 0. This means thatϕ is pinnedat the boundary,i.e., it takes some time-
independent value. In the gradient-invariant theory, we can always choose this
constant to be zero. Thus,

ϕ (0, τ ) = 0.
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This suggests that the local correlator�(0, τ ) = 0, and the long-time behavior
of the Green’s function in Eq. (6.22) is determined only by the correlator of the
ϑ fields. If the boundary would not have affected this correlation, we would have
arrived at

G
(
x = x′ = 0, τ

)
∝ exp(π (x = 0, τ )) ∝ 1

|τ |1/2K
. (wrong)

But then we have a problem, as Eq. (wrong) does not reproduce the free-fermion

behavior forK = 1. Consequently, the DoS at the edgeνe (ε) ∝ |ε| 1
2K−1 would

have not reproduced the free behavior either. What went wrong is that we pinned
one field but forgot the other one is canonical conjugate to the first one. By
the uncertainty principle, fixing the “coordinate” (ϕ) increases the uncertainty
in the “momentum” (ϑ)–and vice versa. Thus, fluctuations ofϑ fields should
increase. A rigorous solution to this problem is to change the fermionic basis
from the plane waves to the solutions of the Schrodinger equation with the hard-
wall boundary condition and to bosonize in this basis. This was done by Eggert
and Affleck [74] and Fabrizio and Gogolin [75], [9]. Here I will give an heuristic
argument based on a simple image construction, which leads to the same result.

Eq. (6.24) translates into the boundary conditions for the bosonic propagators:

�e(x, x
′, τ ) = 0; ∂x,x′ e(x, x′, ω) = 0, (6.25)

for x, x′ = 0, where subindexe denotes the correlators in a semi-infinite system.
Since�e and e satisfy the Laplace’s equation, we can view these propagators
as potentials produced by some fictitious charges. Then,�e and e can be con-
structed from the propagators of an infinite sample by the method of images:

�e(x, x
′, τ ) = �(x − x′, τ )−�(x + x′, τ );

 e(x, x
′, τ ) =  (x − x′, τ )+ (x + x′, τ ).

Forx = x′,
�e(0,0, τ ) = 0;  e (0,0, τ ) = 2 (0, τ ) . (6.26)

Hence, pinning theϕ field enhances the rms fluctuations of theϑ field by a factor
of two. This leads us to

G+ (0,0, τ ) ∝ exp(π�e (0,0, τ )) exp(π e (0,0, τ ))

= exp(2π e (0, τ )) ∝ exp

(
2π

2πK
ln
a

|τ |

)
∝ |τ |−1/K .

Consequently, the DOS becomes

νe (ε) ∝ |ε|K−1−1 . (6.27)
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This result by Kane and Fisher [68] initiated the new (and still continuing) surge
of interest to 1D systems (in terms of the impurity scattering time, this result was
obtained earlier in Refs. [72, 73]). For tunneling from a contact with energy-
independent DoS (“Fermi liquid”) into a 1D system, the tunneling conductance
scales asνe (ε)

G(ε) ∝ νe(ε) ∝ |ε|K−1−1 .

Now we see that the free-fermion behavior is correctly reproduced forK = 1.

Expanding the tunneling exponentK−1−1 with parameterK from Eq. (6.14)
for the weak-coupling case gives

K−1 − 1≈ g2 − g1

2πvF
.

This is the same result as the weak-coupling tunneling exponent (5.30) obtained
in Sec. 5 via the scattering theory for interacting fermions.

Where do the “bulk” and “edge” forms of DoS match? Consider an object
G(x = x′, ε). At the boundary, the DoS is of the “edge” form (6.27). Far
away from the boundary, the Green’s function does not depend onx andν(ε)
acquires a “bulk” form (6.23). As a function ofx, G(x = x′, ε) varies on the
scale≃ u/|ε| and the crossover between two limiting forms ofν occurs on this
scale. Choosing the energy in a tunneling experiment,i.e., temperature or bias–
whichever is larger, determines how far from the boundary one should go in order
to see a change in the scaling behavior.

6.2. Fermions with spin

For fermions with spin, each component of the fermionic operator is bosonized
separately

ψ±,σ =
1√
2πa

exp
[
±i√π (ϕσ ∓ ϑσ )

]
.

Indexσ of the bosonic field does not mean that bosons acquired spin. We simply
have more bosonic fields. Charge and spin densities and currents are related to
the derivatives of the bosonic fields
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ρ±,σ = 1

2
√
π

(
ϕ′σ ∓ ϑ ′σ

)
ρσ = ρ+,σ + ρ−,σ =

1√
π
ϕ′σ ;

jσ = ρ+,σ − ρ−,σ =
1√
π
ϑ ′σ ;

ρc = ρ↑ + ρ↓ =
1√
π

(
ϕ′↑ + ϕ′↓

)
=
√

2

π
ϕ′c

ρs = ρ↑ − ρ↓ =
1√
π

(
ϕ′↑ − ϕ′↓

)
=
√

2

π
ϕ′s;

jc = j↑ + j↓ =
1√
π

(
ϑ ′↑ + ϑ ′↓

)
=
√

2

π
ϑ ′c;

js = j↑ − j↓ =
1√
π

(
ϑ ′↑ − ϑ ′↓

)
=
√

2

π
ϑ ′s,

where′ denotes∂x and where the charge and spin bosons are defined as

ϕc,s =
ϕ↑ ± ϕ↓√

2
; ϑc,s =

ϑ↑ ± ϑ↓√
2

. (6.28)

I assume that the interaction is spin-invariant, i.e., couplings of↑↑ and↑↓ fermi-
ons are the same. Substituting the relations between charge- and spin-densities
into the Hamiltonian, one arrives at the familiar bosonized Hamiltonian which
consists of totally independent charge and spin parts

H = Hc +Hs;
Hc = 1

2

∫
dx
uc

Kc
(∂xφc)

2 + ucKc (∂xθc)2 ;

Hs = 1

2

∫
dx
us

Ks
(∂xφs)

2 + usKs (∂xθs)2

+ 2g1

(2πa)2

∫
dx cos

(√
8πφσ

)
. (6.29)

Parameters of the Gaussian parts are related to the microscopic parameters of the
original Hamiltonian

uc =
(
1+ g1

2π

)1/2
(

1+ 4g2 − g1

2π

)1/2

; Kc =
(

1+ g1/2π

1+ (4g2 − g1) /2π

)1/2

;

us =
(

1−
( g1

2π

)2
)1/2

; Ks =
(

1+ g1/2π

1− g1/2π

)1/2

.
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Notice thatKc < 1 forg1 < 2g2 (“repulsion”) andKc > 1 forg1 > 2g2 (“attrac-
tion”). The boundaries for “repulsive” and “attractive” behaviors coincide with
those obtained when studying tunneling of interacting electrons. The velocity of
the charge part forg1 = 0 coincides with that found in the DL solution (Sec. 3)

uc =
(

1+ 2g2

π

)1/2

.

Scaling dimension of the backscattering term in the spin part can be read off
from the correlation function

1

a4
〈ei

√
8πφσ (z)e−i

√
8πφs 〉

= 1

a4
exp

(
8πKs

4π
ln
a2

z2

)
= 1

a4

(
a

|z|

)4Ks
∝ a4(Ks−1).

If we allowed for different coupling constants between electrons of different spin
orientations, then the coefficient in front of the cos term would have beeng1⊥.
ForKs > 1, the operator scales down to zero asa → 0, whereas forKs < 1, it
blows up signaling an instability: a spin-gap phase.

The RG-flow of the spin-part is described by the Berezinskii-Kosterlitz-
Thouless phase diagram. The fixed-point value ofg∗1 = 0 for K∗

s > 1. In the
weak coupling limit, the RG reduces to a single equation forg1, which we have
derived in the fermionic language in Sec. 4

dg1

dl
= −g2

1 → g1 =
1

(
g0

1

)−1 + l
, (6.30)

6.2.1. Tunneling density of states
The procedure of finding the scaling behavior for the DoS reduces to a simple
trick.
• Take the free Green’s function and split it formally into spin and charge parts

G(x, t) = 1

x − t =
1

(x − t)1/2
1

(x − t)1/2
.

• In an interacting system, 1/2 in the charge part is replaced by(Kc +K−1
c )/4

and in the spin-part by(Ks + K−1
s )/4. If the spin-rotational invariance is pre-

served, then the spin exponent remains equal to 1/2.
• Takex = 0

G(t) ∝ 1

t (Kc+K
−1
c )/4+1/2
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and read off the scaling behavior of the DoS

ν (ε) ∝ |ε|
(
Kc+K−1

c

)
/4−1/2 = |ε|

(Kc−1)2

4Kc = |ε|
(uc−1)2

4uc .

Comparing this result forg1 = 0 with that by DL (Sect. 3), we see that the
bosonization solution gives the same result as the fermionic one.
• For tunneling into the edge, removeKc, which comes from the correlator
〈ϕϕ〉 pinned by the boundary, and multiplyK−1

c , which comes from〈ϑϑ〉, by a
factor of 2. This gives

Ge (t) ∝
1

tK
−1
c /2+1/2

and
G ∝ νe (ε) ∝ |ε| 1

2

(
K−1
c −1

)
.

ExpandingKc back in the interaction

Kc =
(

1+ g1/2π

1+ (4g2 − g1) /2π

)1/2

≈ 1− g2 − (1/2)g1

π
,

we obtain the weak-coupling limit for the tunneling exponent

(1/2)

(
1/Kc − 1≈ g2 − (1/2)g1

2π

)
.

This coincides with the result obtained in the fermionic language (Sec. 5). What
was missed in a bosonization solution is a multiplicative log-renormalization,
present in Eq. (5.35). This is because we evaluatedG at the fixed point, where
g∗1 = 0, rather then derived an independent RG equation for the flow of the
conductance. This procedure should bring in the log-factors (cf. Ref. [73] where
these factors were obtained for the impurity scattering time).

7. Transport in quantum wires

7.1. Conductivity and conductance

7.1.1. Galilean invariance
Interactions between electrons cannot change the response to an electric field in
a Galilean-invariant system–the electric field couples only to the center-of-mass
whose motion is not affected by the inter-electron interaction. This property is
reproduced by the bosonized theory provided that the productuK = 1 (= vF in
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dimensional form.) To see this, combine the Heisenberg equation of motion for
densityρ (spinless fermions) with the continuity equation:

∂tρ = i[H, ρ] = −∂xj. (7.1)

Calculating the commutator in Eq. (7.1) with the help of Eq. (6.9), we identify
the current operator as

∂tρ = uK√
π
∂2
xϑ = −∂x

(
− uK√

π
∂xϑ

)
→

j = − uK√
π
∂xϑ .

The current is not affected by the interaction as long asuK = 1.

7.1.2. Kubo formula for conductivity
The Kubo formula relates the conductivity, a response function to an electric field
at finiteω andq, to the current-current correlation function

σ (ω, q) = 1

iω

[
−e

2

π
+ 〈JJ 〉Rqω

]
, (7.2)

where I usedn = kF /π andkF /m = vF = 1 in our units.
Electric current for electrons(e > 0)

J = −ej = e√
π
∂xϑ.

In complex time,

〈JJ 〉Rx,τ =
(
e√
π

)2 (
−∂2

x

)
〈ϑϑ〉x,τ →

〈JJ 〉Rq,ωm = e2

π
q2〈ϑϑ〉q,ωm

= e2

π
− e

2

π

ω2
m

ω2
m + u2q2

= e2

π
+ 〈J̃ J̃ 〉q,ωm . (7.3)

The first term in (7.3) cancels the diamagnetic response in (7.2). Continuing
analytically to real frequencies, we find

σ (ω, q) = 1

iω
〈J̃ J̃ 〉q,ωm→−iω+δ = −e

2

π

1

iω

−ω2

− (ω + iδ)2m + u2q2

= i
e2

π

ω

ω2 − u2q2 + isgnωδ
. (7.4)
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Consequently, the dissipative conductivity is equal to

Reσ (ω, q) = −e
2

π
ωIm

1

ω2 − u2q2 + isgnωδ

= e2

2
[δ (ω − uq)+ δ (ω + uq)] . (7.5)

7.1.3. Drude conductivity
In a macroscopic system, one is accustomed to take the limitq → 0 first: this cor-
responds to applying a spatially uniform but time-dependent electric field [61].
(For the lack of a better name, I will refer to the conductivity obtained in this way
as to theDrude conductivity). The Drude conductivity in our case is the same as
for the Fermi gas as the charge velocity drops of the result

Reσ (ω,0) = e2δ (ω)

or, restoring the units,

Reσ (ω,0) = e2vF

�
δ (ω) .

All it means that when a static electric field is applied to a continuous system of
either free or interacting electrons, the center-of-mass moves with an acceleration
and there is no linear response, as there is no “friction” that can balance the
electric force.

For electrons with spins, the electrical current is related only to the charge
component of theϑ− field:

Jc = −ejc = e
√

2

π
∂xϑc,

where againucKc = 1. Because of the
√

2 factor in the current, the conductivity
is by a factor of two different from that in the spinless case

Reσ (ω,0) = 2e2vF
�

δ (ω) .

(Notice, however, that at fixed densityvF is by a factor of 2 smaller.)

7.1.4. Landauer conductivity
Let’s consider now the opposite order of limits, corresponding to a situation when
a static electric field is applied over a part of the infinite wire. (Again, for the lack
of a better name, I will refer to this conductivity as toLandauer conductivity.)
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The electric field might as well be non-uniform; the only constraint we are going
to use is that the integral ∫

dxE (x) ,

equal to the applied voltage, is finite. The induced current (which in 1D coincides
with the current density) is given by

J (t, x) =
∫
dx′

∫
dt ′σ

(
t − t ′; x, x′

)
E(t ′, x′)

=
∫
dx′

∫
dω

2π
e−iωtσ(ω; x, x′)E(ω, x′).

In linear response, the conductivity is defined in the absence of the field. As such,
it is still a property of a translationally invariant system and depends thus only on
x − x′. This allows one to switch to Fourier transforms

J (t, x) =
∫
dx′

∫
dω

2π

∫
dq

2π
eiq(x−x

′)e−iωtσ (ω, q)E(ω, x′). (7.6)

Now use the fact that the applied field is static:E (x, ω) = 2πδ (ω)E0 (x) (upon
which thet-dependence of the current disappears, as it should be in the steady
state)

J (x) =
∫
dx′

∫
dq

2π
eiq(x−x

′)σ (0, q)E0(x
′). (7.7)

From (7.5),

σ (0, q) = 1

u
e2δ (q) = Ke2δ (q) , (7.8)

whereuK = 1 was used again. Substituting (7.8) into (7.7), we see that thex−
dependence of the current also disappears

J = Ke2

2π

∫
dx′E0(x

′) = Ke2

2π
V.

ConductanceG = J/V is given by

G = Ke2

2π
,

or, restoring the units,

G = K e
2

h
. (7.9)
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For electrons with spin, a similar consideration gives

G = Kc
2e2

h
. (7.10)

We see that the conductance is renormalized by the interactions from it universal
value given by the Landauer formula for an ideal wire [68].

7.2. Dissipation in a contactless measurement

What kind of an experiment Eqs. (7.9) and (7.10) correspond to?
Suppose that we connect a wire of lengthL to an external resistor and place

the whole circuit into a resonator [78]. Now, we apply anacelectric fieldE (x, t)
of frequencyω0 and parallel to a segment of the wire of lengthLE ≪ L, and
measure the losses in the resonator. The external resistor takes care of energy
dissipation: as the wire is ballistic (also in a sense that electrons travel through
the wire without emitting phonons), the Joule heat can be generated only outside
the wire. Dissipated energy, averaged over many periods of the field, is given by

Q̇ = −
∫
dx〈J (x, t) E (x, t)〉.

For a monochromatic field,E (x, t) = E0 (x) cosω0t and after averaging over
many periods of oscillations, we obtain

Q̇ = −
∫
dx

∫
dx′Reσ(ω0; x, x′)E0 (x)E0(x

′).

Now, choose the frequency in such a way that

LE ≪
u

ω0
≪ L, (7.11)

whereu is the velocity of the charge mode in the wire. Because the wavelength
of the charge excitations at frequencyω0–acoustic plasmons– is much shorter
than the distance to contacts (L), the conductivity is essentially the same as for
an infinite wire and depends only onx−x′. Performing partial Fourier transform
in Eq. (7.5), we find

Reσ (ω, x) = e2

2πu
cos(ωx/u) = e2

2π
K cos(ωx/u) , (7.12)

so that

Q̇ = −1

2

e2

2π
K

∫
dx

∫
dx′ cos

[
ω0(x − x′)/u

]
E0 (x)E0(x

′).
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On the other hand, because|x, x′| ≤ LE ≪ u/ω0, the cosine can be replaced by
unity, and

Q̇ = − e
2

2π
KV 2 ≡ −GV 2,

or

G = e
2

2π
K.

Therefore, dissipation in a contactless measurements under the conditions spec-
ified by Eq. (7.11) corresponds to a renormalized conductance. To the best of
my knowledge, this experiment has not been performed. A typical (two-probe)
transport measurement is done by applying the current and measuring the volt-
age drop between the reservoirs. In this case, the measured conductance does
not correspond to Eqs. (7.9,7.10) but is rather given simply bye2/h per spin
projection–regardless of the interaction in the wire[79],[80],[81]. This result is
discussed in the next Section.

7.3. Conductance of a wire attached to reservoirs

The reason why the two-terminal conductance is not renormalized by the inter-
actions within the wire is very simple. For the Fermi-gas case, the conductance
of e2/h per channel is actually not the conductance of wire itself–a disorder-free
wire by itself does not provide any resistance to the current. In a four-probe mea-
surement, when the voltage and current are applied to and measured in different
contacts, the conductance of a disorder-free wire is, in fact, infinite. However, in
a two-probe measurement, the voltage and current contacts are the same. Finite
resistance comes only from scattering of electrons from the boundary regions,
connecting wide reservoirs to the narrow wire [82, 83], as shown in Fig.15a).
The universal value ofe2/h is approached in the limit of an adiabatic (smooth on
the scale of the electron wavelength) connection between the reservoirs and the
wire [84] 34. As the resistance comes from the regionsexterior to the wire, the
interactionwithin the wire is not going to modify thee2/h− result. Another way
to think about it is to notice that the renormalized conductance (7.9,7.10) can be
interpreted as a manifestation of a fractional chargee∗ =

√
K(
√
Kc), associated

with the excitations in a 1D system. However, the current coming from,e.g.,the
left reservoir is carried by integer charges, and as all these charges get eventually
transmitted through the wire, the current collected in the right reservoir is carried
again by integer charges. Fractional charges is a transient phenomena which, in

34Accidentally, the actual constraint on the adiabaticity of the connection is rather soft–it is enough
to require the radius of curvature of the transition region be just comparable to, rather than much larger
than, the electron wavelength [84].
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Fig. 15. a) A Luttinger-liquid (LL) wire attached to Fermi-liquid (FL) reservoirs. b) same for a single
impurity within the wire.

principle, can be observed in anacconductance or noise measurements but not in
adcexperiment. In the rest of this Section, these arguments will be substantiated
with some simple calculations.

7.3.1. Inhomogeneous Luttinger-liquid model
An actual system consists of two Fermi-liquid reservoirs connected via a
Luttinger-liquid (LL) wire and, due to the presence of the reservoirs, is not one-
dimensional. In theinhomogeneous Luttinger-liquid model,the actual system
is replaced by an effective 1D system, which is an infinite LL with inhomoge-
neous interaction parameterK(x) (cf. Fig. 16). The actual reservoirs are higher
(D = 2 or 3) systems, where the effect of the interaction can be disregarded.
Consequently, the reservoirs are modeled but one-dimensional free conductors
with KL = 1. In between,K (x) goes through some variation. Similarly, the
charge velocity is equal to the Fermi one in the reservoirs and varies withx in
the middle of the system. The potential difference applied to the system pro-
duces some distribution of the electric field in the wire whose particular shape is
irrelevant in thedc linear-response limit.

7.3.2. Elastic-string analogy
The (real-time) bosonic action for a spinless LL is

S = 1

2

∫
d2x

1

K(x)

{
u(x)(∂xϕ)

2 − 1

u(x)
(∂tϕ)

2
}
. (7.13)
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Fig. 16. Inhomogeneous Luttinger-liquid model.

The density of the electrons (minus the background density) and the (number)
current are given by

ρ = ∂xϕ/
√
π, j = −∂tϕ/

√
π. (7.14)

The interaction with an external electromagnetic fieldAµ is described by

Sint =
e

2
√
π

∫
d2x {A0∂xϕ − A1∂tϕ} , (7.15)

so that the equation of motion forϕ is

∂t

(
1

Ku
∂tϕ

)
− ∂x

( u
K
∂xϕ

)
= e√

π�
E(x, t), (7.16)

whereE = −∂xA0+∂tA1 is the electric field. We assume that the electric field is
switched on att = 0, so thatE(x, t) = 0 for t < 0 andE(x, t) = E(x) for t ≥ 0.
The problem reduces now to determining the profile of an infinite elastic string
under the external force. In this language,ϕ(x, t) is the transverse displacement
of the string at pointx and at timet , while the number currentj = −∂tϕ/

√
π is

proportional to the transverse velocity of the string.
To develop some intuition into the solution of Eq. (7.16), we first solve it in the

homogeneous case, whenK =const,u =const, andE(x) =const for|x| ≤ L/2,
and is equal to zero otherwise. In this case, the solution of Eq. (7.16) fort > L/u,
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Fig. 17. a) Solution of the wave equation in the homogeneous case fort = 5L/u. b) Schematic
solution in the inhomogeneous case fort ≫ L/u.

is

ϕ(x, t) = KeV

2
√
π
×





t − x2+L2/4
Lu

for |x| ≤ L/2;
t − |x|/u for L/2≤ |x| ≤ ut − L/2

u
2L

(
t − |x|−L/2

u

)2 for ut − L/2≤ |x| ≤ ut + L/2
0, for |x| ≥ ut + L/2,

whereV = EL is the total voltage drop. This solution is depicted in Fig. 17a.
The profile of the string consists of two segments (I and II in Fig. 17a) whose

widths, equal to(ut−L), grow with time, and of three segments (III, IV and V in
Fig. 17a) whose widths are constant in time and equal toL. In segments I and II,
the profile of the stringϕ(x, t) is linear inx, and therefore, being the solution of
the wave equation, also int ; in segments III-V, the profile is parabolic. Outside
segments IV and V, the string is not perturbed yet, andϕ(x, t) = 0. As time
goes on, the larger and larger part of the profile becomes linear. For late times,
the pulse produced by the force spreads outwards with velocityu, involving the
yet unperturbed parts of the string in motion; simultaneously, in all but narrow
segments in the middle and at the leading edges of the pulse, the string moves
upwards with thet- andx-independent “velocity”∂tϕ = KeV/2

√
π . In terms

of the original transport problem, it means that the charge currentJ = −ej
is constant outside the wire (but not too close to the edges of the regions of
where the electron density is not yet perturbed by the electric field) and given by
J = Ke2V/h. Therefore, the conductance (per spin orientation) isG = Ke2/h.
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We now turn to the inhomogeneous case. As in the previous case, the profile
consists of several characteristic segments (cf. Fig. 17b). In segments III-V, the
profile is affected by the inhomogeneities inK(x), u(x), andE(x) and depends
on the particular choice of thex-dependences in all these quantities. In segments
I and II however, the profile, being the solution of the free wave equation, is
again linear inx (and in t). Requiring the slopes of the string be equal and
opposite in segments I and II (which is consistent with the condition of the current
conservation), the solution in these regions can be written asϕ(x, t) = A(t −
|x|/uL). The constantA can be found by integrating Eq. (7.16) between two
symmetric points±a, chosen outside the wire

−
∫ +a

−a
dx∂x

( u
K
∂xϕ

)
= e√

π

∫ +a

−a
dxE(x) = eV√

π
. (7.17)

Outside the wire,K(x) = KL andu(x) = uL , thusA = KLeV/2
√
π�. Calculat-

ing the current, we getG = KLe
2/h and, recalling thatKL = 1, we finally arrive

at G = e2/h. Thus, the conductance is not renormalized by the interactions in
the wire.

7.3.3. Kubo formula for a wire attached to reservoirs
The Kubo formula for a translationally non-invariant system can be written as

σ(ω; x, x′)

= − e2

iπω
δ(x − x′)

+ e2

iπω

{∫
d(τ − τ ′)eiωmτ 〈Tτ ∂τϕ(x, τ )∂τ ′ϕ(x′, τ ′)〉

}
|iωm→ω+iδ.

The diamagnetic contribution is cancelled by a delta-function term, which is ob-
tained when integrating by parts in the time-ordered product [85, 10]. Having
this in mind, I will re-write the conductivity via the Fourier transform of theϕϕ-
correlator without theT− product

σ(ω; x, x′) = i e
2

πω
ω2
m�ωm(x, x

′)|iωm→ω+iδ.

For a translationally invariant case, this reduces back to Eq. (7.4). Now,K (x)

andu (x) depend on position. The propagator of theϕ fields satisfy the wave
equation (or a Laplace’s equation as we are dealing with the imaginary time)

[
ω2
m

u (x)K (x)
− ∂x

(
u (x)

K (x)
∂x

)]
�ωm(x, x

′) = δ(x − x′). (7.18)
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In a model of step-like variation ofK (x) andu (x) (K = KW andu = uW
within the wire andK = KL = 1 andu = uL = 1 outside the wire), Eq.
(7.18) is complemented by the following boundary conditions: 1)�ωm(x, x

′)
is continuous atx = ±L/2, 2) u (x)K (x) ∂x�ωm(x, x

′) is continuous atx =
±L/2; but 3) undergoes a jump of unit height atx = x′. Solution of this problem
is totally equivalent to finding a potential of a point charge located somewhere
in a sandwich-like system, consisting of three insulators with different dielectric
constants. Two of these layers are semi-infinite and the third one (in the middle)
is of finite thickness. “Potential”�ωm(x, x

′) can be found in a general form for
arbitraryx, x′. The expression for the current

J (t, x) =
∫
dx′

∫
dω

2π
σ(ω; x, x′)E(ω, x′),

x′ is within the wire; hence we need to know�ωm(x, x
′) only for−L/2 ≤ x′ ≤

L/2. In a steady-state regime, one is free to measure the current through any
cross-section; let’s choosex also within the wire. As we are interested in the
limit ω → 0, when the plasmon wavelength is larger than the wire length, we
can putx = x′. In the interval−L/2 < x = x′ < L/2 the solution of the
Laplace’s equation is

�ωm (x, x) =
KW

2 |ωm|
+ KW

2 |ωm|
κ2
−e

−L/Lω + κ+κ− cosh(2x/Lω)

eL/Lωκ2
+ − e−L/Lωκ2

−
, (7.19)

whereLω = uW / |ωm| , uW is the charge velocity within the wire, and

κ± = K−1
W −K−1

L .

Lettingωm in (7.19) to zero (and thusLω to∞), we find that

�ω (x, x) =
KL

2iω
= 1

2iω
,

as by our assumptionKL = 1. This result is true for anyx, x′ within the wire for
ω→ 0

�ω(x, x
′) = 1

2iω
, for − L/2< x, x′ < L/2.

The Luttinger-liquid parameters of the wire drop out from the answer. Thedc
conductivity reduces to its free value

σ(ω→ 0; x, x′) = e2

2π
,
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and, consequently, the conductance

G = e2

h

is not renormalized by the interaction. The same consideration for electrons with
spins gives

G = 2e2

h
(7.20)

7.3.4. Experiment

Most of the experiments on quantum wires indeed show that the conductance is
quantizated in units of 2e2/h at relatively high temperatures35,36. At lower
temperatures, the conductance decreases beyond the universal value and also
plateaux exhibit some structure as a function of the gate voltage [89]. This can
be interpreted as the effect of residual disorder: as was discussed in Secs. 5,6
transmission decreases at lower energy scales. An effect of single impurity in a
quantum wire will be largely insensitive to the presence of reservoirs: as long as
the transmission coefficient for an impurity is much smaller than one, the largest
voltage drops occurs near the impurity rather than at the contacts to the wire. One
can show that the scaling of the conductance with energy is determined by the in-
teraction parameterK insidethe wire [90], in a contrast to the disorder-free case
when onlyK outside the wire matters. Also, the mesoscopic conductance fluctu-
ations increase as the temperature goes down (the theory predicts that this effect
is enhanced by the interaction [91]). As one is dealing here with a crossover
regime from scattering at a single impurity to that at many impurities, a quanti-
tative analysis of the temperature dependences is difficult; another complication
arises from the finite-length of the wire which cuts-off the scaling with tempera-
ture and voltage. In addition, at higher temperatures the first (and sometimes the
second) quantization plateau exhibits a well-defined step at about 0.7× 2e2/h
[92, 93, 94, 95, 96, 97]. This “0.7” feature is not likely to result from spurious
impurity scattering but rather reveals some interesting physics beyond what has
been discussed so far in this review. Although the “0.7” feature deserves a review
on its own, I will come back to this subject briefly in the next Section.

35However, it has been observed recently that the conductance of carbon nanotubes is quantized in
units ofe2/h –as opposed to 4e2/h, predicted by the non-interacting theory for this case [86].

36A special case of a non-universal conductance quantization is very long wires grown by cleaved-
edge overgrowth technique [87] can be attributed to a non-trivial coupling between the wire and 2D
reservoirs [88], characteristic for these systems.
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7.4. Spin component of the conductance

As we have shown in the previous sections, the Luttinger-liquid models predicts
that conductance of a disorder-free wire is given bye2/h per channel at any tem-
perature. Also, thanks to spin-charge separation, spin degrees of freedom do not
play an essential role in charge transport except for giving an overall factor of
two to the conductance. These two results hold as long as the Luttinger-liquid
model is a good description for interacting electrons in the wire. When does this
model break down? If the interaction is strong, electrons form almost a periodic
1D structure: quasi-Wigner crystal. The exchange energy of almost localized
electrons is exponentially small and, correspondingly, the spin velocity is small
too: us ≪ uc. The Luttinger-liquid model should work for energies (tempera-
tures) much smaller than the smallest of the two (spin and charge) bandwidth
T ≪ uskF ≪ uckF , when both spin- and charge degrees of freedom are coher-
ent. Thespin-incoherent regime, i.e., uskF ≪ T ≪ uckF , has attracted con-
siderable interest recently [19, 20, 21], and was shown to spoil the conductance
quantization in integer multiples of 2e2/h [19] at temperatures larger than the
spin bandwidth (uskF ). In what follows, I present a short summary of Ref. [19].

In a quasi-Wigner-crystal regime, a reasonable starting point for describing
the spin sector is the Heisenberg model

Hs = Jex

∑

l

�Sl · �Sl+1,

where spins are localized at “lattice sites” corresponding to positions of electrons.
Because the Lieb-Mattis theorem [46] forbids ferromagnetic ordering in 1D, the
sign of the exchange interaction must be antiferromagnetic:Jex > 0. Assuming
that electrons are well localized at distancesa = 1/n from each other,Jex can be
estimated in the WKB approximation:Jex ∼ EF exp

(
−c/√aBn

)
, wherec ∼ 1

andaB is the Bohr radius. A spin-1/2 chain is then mapped onto a Hubbard
1/2-filled model of spinless fermions via the Jordan-Wigner transormation

Sz (l) = a
†
l al − 1/2;

Sx (l)+ iSy (l) = a
†
l exp


iπ

l−1∑

Jex=1

a
†
Jex
aJex




with the result

Hs = −Jex

2

∑[
c

†
l+1cl +H.c.

]
+ Jex

∑
: c†l cl − 1/2 :: c†l+1cl − 1/2 : .
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The spinless Hubbard model can be bosonized

Hs =
1

2

∫
dx
u

K
(∂xφ)

2 + uK (∂xθ)2 +
aJex

(2πa)2
cos

(√
16πφ

)
. (7.21)

A comparison to the Bethe Ansatz solution of the Hubbard model at half-filling
enables one to identify the parameters of the spinless LL with the microscopic
parameters of the spin-1/2 chain. In particular, for an isotropic spin chain (Jx =
Jy = Jz)

u = π

2
Jexa; K = 1/2. (7.22)

Comparing the spin-part of the Hamiltonian of the original LL model, Eq. (6.29)
with that of the spinless LL, Eq. (7.21), one notices that they the same upon the
following mapping

φ = 1√
2
φs; θ =

√
2θs;

us

Ks
= u

2K
; usKs = 2uK, (7.23)

or
us = u =

π

2
Jexa; Ks = 2K = 1. (7.24)

As Jex is exponentially small, so is the spin bandwidth. Therefore, the Luttinger-
liquid description is valid only at very low temperatures.

A translationally invariant LL still possesses spin-charge separation. However,
this is no longer true for a wire connected to non-interacting leads. To understand
this point, let’s come back to the inhomogeneous LL model (cf. Sec. 7.3.1),
where the electron density changes from a higher value in the leads to a lower
value within the wire. BecauseJex depends on the local density, it is modulated
along the wire, and its minimum value is at the middle of the wire. In the leads,
we have a non-interacting system, whereJex ∼ EF ≫ T .However, in the middle
of the wire spins are incoherent, ifJmin

ex ≪ T . Thus a spin part of the electron
incoming from the lead at energyT above the Fermi level cannot propagate freely
through the wire because the spin band narrows down: it works as if there is a
barrier for spin excitations in the wire. Although charge plasmons propagate
freely, backscattering of spin plasmons leads to additional dissipation, and thus
to additional resistance. The total resistance of the wire consists now of two parts

R = Rc + Rs .

The charge part,Rc, is due to propagation of charge plasmons. Since the charge
part is still described by the LL model, our previous result for universal con-
ductance, Eq. (7.20), still holds andRc = G−1 = h/2e2. For T ≪ Jmin

ex , only
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athermal spin plasmons, with energies exceeding the width of the spin band, con-
tribute toRs . The number of such plasmons is exponentially small, hence

Rs ∝ exp
(
−Jmin

ex /T
)
,

and total conductanceG = (Rc + Rs)−1 is exponentially close to 2e2/h. At high
temperatures

(
T ≫ Jmin

ex

)
, almost all spin plasmons are reflected by the wire.

ThenRs ∼ Rc ∼ h/e2, and the conductance differ substantially from its univer-
sal value. This qualitative picture can be confirmed in a particular simple case of
theXY− model for the spin-chain. In this case,Rs can be calculated explicitly
[19] with the result

Rs =
h

2e2
1

exp
(
Jmin

ex /T
)
+ 1

and, consequently, the conductance is equal to

G = 2e2/h

1+
[
exp

(
Jmin

ex /T
)
+ 1

]−1
.

For T → 0, G approaches the universal value of 2e2/h. For T ≫ Jmin
ex , G ap-

proaches anotherT -independent limit, equal to(2/3)2e2/h. The actual number
in the high-temperature limit of the conductance is model-dependent (it is dif-
ferent, for example, for an isotropic spin-chain), but the main result,i.e., the
non-universality of conductance quantization at higher temperatures, survives.

As it was mentioned in Sec. 7.3.4, the experiment shows that there is a shoul-
der in the conductance preceding the first quantization plateau at a fractional
value of about 0.7×2e2/h. Surprisingly, this “0.7 feature” is more pronounced
at higher temperatures, and theT - dependence of this feature was reported to be
of an activated type [94]. The magnetic field transforms the “0.7 feature” into a
fully developed quantization plateau ate2/h, which is to be expected in a fully
polarized, and thus spinless, regime. The sensitivity to the magnetic field hints
at the spin origin of the effect, and a significant theoretical effort was invested
in understanding how spins can explain the observed phenomena. Although the
effect, described in this Section, does have all qualitative characteristics of the
observed “0.7 feature”, it is not clear at the moment whether this feature indeed
corresponds to the spin-incoherent regime. Other explanations of the “0.7 fea-
ture” have been suggested (most prominently, the Kondo physics is believed to
be involved [98, 97]), but a further discussion of this point goes beyond the scope
of these notes.
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7.5. Thermal conductance: Fabry-Perrot resonances of plasmons

There is an important difference between charge and thermal (electronic) con-
ductances [22]. As we have just shown, the charge conductance is equal toe2/h

regardless of interaction in the wire. This means that the transmission coefficient
of electrons is equal to unity. The effect of the temperature on the charge con-
ductance is the same as for a non-interacting, perfectly transmitting wire: at finite
temperature, not only the lowest but also higher subbands of transverse quanti-
zation are populated, and the quantization plateaux are smeared. However, this
effect is exponentially small for temperatures smaller than either the Fermi en-
ergy,EF , or the difference between the Fermi energy and the threshold of the
next subband of transverse quantization,�; whichever is smaller.

Thermal current is carried not by electrons but bosonic excitations: acoustic
plasmons. In contrast to electrons, plasmons get reflected at the boundary be-
tween the reservoirs and the wire due to the mismatch of charge velocities (this
reflection happens even for an adiabatically smooth transition). From the plas-
mon’s point-of-view, a wire coupled to reservoirs represents a Fabry-Perrot in-
terferometer. Interference of plasmon waves scattered from the opposite ends of
the wire result in an oscillatory dependence of the transmission coefficient on the
frequency with a period, given by the travel time of plasmons through the wire

2πωL = L/uW .

As long asλF ≪ L, this period is long:ωL ≪ EF . The difference between
charge and heat transport is that the chemical potential of plasmons is equal to
zero, and thus the characteristic scale for frequency is set byT . Therefore, the
thermal conductance varies with the temperature on a scaleT ≃ ωL.

Suppose that a small temperature differenceδT is maintained between the
reservoirs, connected by a quantum wire. As the Hamiltonian of an interacting
system is diagonalized of terms of plasmons, plasmons modes are decoupled and
contribute to the energy flux independently. Then the thermally averaged energy
current,i.e., the thermal current can be found via a Landauer-like argument

JT =
∫ ∞

0

dω

2π
ω |t (ω)|2

(
nL

(
ω

T + δT

)
− nR

(ω
T

))
,

wherenL,R (ω/T ) are the Bose distribution functions in the reservoirs. Expand-
ing in smallδT , we obtain the thermal conductance

GT =
JT

δT
= 1

8πT 2

∫ ∞

0
dω

ω2

sinh2ω/2T
|t (ω)|2 . (7.25)
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For a free system,|t (ω)|2 = 1 andGT = πT/6. The charge and thermal con-
ductances of a free system obey the Wiedemann-Franz law

GT

T G
= L0 =

π2

3e2
, (7.26)

whereL0 is the Lorentz number. This means that charge and energy are carried
by the same excitations. This is not so in a Luttinger liquid.

For an interacting system, relation (7.26) holds in the limit ofT → 0. The
characteristic scale for frequencies in integral (7.25) is determined byT . For
T ≪ ωL, one can substituteω = 0 into |t (ω)|2 . Regardless of the interaction
strength,|t (0)|2 = 1: a Fabry-Perrot interferometer becomes transparent in the
long wavelength limit. ForT � ωL, the result forGT depends on how the charge
velocity varies along the wire, and is thus non-universal. On the other hand, the
charge conductance is universal. Therefore, their ratio is non-universal and the
Wiedemann-Franz law is violated.

In a step-like model of Sec. 7.3.1, the transmission coefficient of plasmons is
equal to

|t (ω)|2 = 1

1+ (K2−1)
2

4K2 sin2 ω
ωL

.

Obviously,|t (0)|2 = 1 regardless ofK, an agreement with what was said above.
ForT ≪ ωL, the Lorentz number is close to the universal value ofπ2/3e2. For
T ≫ ωL, the oscillations of|t (ω)|2 become very fast, so that|t (ω)|2 can be
replaced by its averaged value

〈|t (ω)|2〉 =
∫ ωL

0

dω

ωL
|t (ω)|2 = 2K

K2 + 1
.

The thermal conductance increases linearly withT , so thatL0 approaches a con-
stant but a non-universal value

L|T≫ωL =
2K

K2 + 1
L0 < L0. (7.27)

As the Lorentz number varies with temperature in between two limits specified
by Eqs. (7.26) and (7.27), the Wiedemann-Franz law is violated.
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Appendix A. Polarization bubble for small q in arbitrary dimensionality

The polarization bubble in Matsubara frequencies and atT = 0 is given by

�(iω, q) = Ns

(2π)D+1

∫ ∫
dDpdεG (iε + iω, �p + �q)G (iε, p)

= Ns

(2π)D+1

∫ ∫
dDpdε

1

iω − ξ �p+�q + ξ �p
×
[
G(iε + iω, �p + �q)−G(iε, p)

]

= Ns

(2π)D+1

∫
dDp

f (| �p + �q|)− f (p)
iω − ξ �p+�q + ξ �p

,

wheref is the Fermi function. Expanding in�q, and switching from the integra-
tion overdDp to dξ, we obtain

�(iω, q) = −NsνD
(

1−
∫
d�

�D

iω

iω − vF q cosθ

)
.

where�D = 4π (3D),= 2π (2D) ,= 2 (1D) andνD is the DoS inD dimensions
per one of theNs isospin components. For D=1, the integral over� is understood
as a sum of terms with cosθ = ±1. It is obvious already this form that the small
q−form of the bubble depends on the combinationω/vF q for anyD. The final
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result depends on the dimensionality. Performing analytic continuation to real
frequenciesiω→ ω + i0+, we obtain

�R (ω, q) = −NsνD
(

1−
∫
d�

�D

ω

ω − vF q cosθ + i0

)
.

Taking the imaginary part

Im�R (ω, q) = −πNsνDω
∫
d�

�D
δ (ω − vF q cosθ) . (A.1)

From here
cosθ = ω/vF q

which means thatθ ≈ π/2 for ω ≪ vF q. Thus, the fermionic momentum�p is
almost perpendicular to the bosonic one,�q, in this limit.

Appendix B. Polarization bubble in 1D

Appendix B.1. Smallq

Free time-ordered (causal) Green’s function in 1D is equal to

G0
± (ε, k) =

1

ε − ξ±k + i0+sgnξ±k
,

where
ξ±k = ±vF (k ∓ kF ) ,

and± signs correspond to right/left moving fermions. We will be measuring the
momenta from the corresponding Fermi points. For +branch:k − kF → k and
for -branch:k + kF → k. Consequently,

G0
± (ε, k) =

1

ε ∓ vF k + i0+sgnk
.

I assumeNs− fold degeneracy (Ns = 2 for electrons with spin,Ns = 1 for
spinless electrons), so that

�± (ω, q) = − i

(2π)2
Ns

∫
dε

∫
dkG0

± (ε + ω, k + q)G0
± (ε, k) .
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Calculate,e.g.,�+:

�+ (ω, q)

= − i

(2π)2
Ns

∫
dε

∫
dk

1

ε + ω − vF (k + q)+ i0+sgn(k + q)

× 1

ε − vF k + i0+sgnk

= − i

(2π)2
Ns

∫
dε

∫
dk

1

ω − vF q + i0+sgn(k + q)− i0+sgnk
(B.1)

×
[
G0
+ (ε, k)−G0

+ (ε + ω, k + q)
]
. (B.2)

The integral of the Green’s over the frequency gives a Fermi distribution func-
tion [23]

n+ (k) = −i
∫
dε

2π
G0
+ (ε, k) .

For free fermions,
n+ (k) = θ (−k)

Now,

�0
+ (ω, q) = Ns

2π

∫
dk

1

ω − vF q + i0+sgn(k + q)− i0+sgnk
× [θ (−k)− θ (−k − q)] .

The integral is not equal to zero only if the arguments of theθ -functions are of
the opposite signs. Consider different situations.

1) k > 0; k + q < 0→ 0< k < −q → q < 0. In this case,

�0
+ (ω, q) =

Ns

2π

q

ω − vF q − i0+
, q < 0;

2) k < 0, k + q > 0→−q < k < 0→ q > 0

�0
+ (ω, q) =

Ns

2π

q

ω − vF q + i0+
, q > 0.

Combining the results forq > 0 andq < 0 together,

�0
+ (ω, q) =

Ns

2π

q

ω − vF q + i0+sgnq
. (B.3)

Similarly,

�0
− (ω, q) = −Ns

2π

q

ω − vF q + i0+sgnω
. (B.4)
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The total bubble

�0 (ω, q) = �0
+ (ω, q)+�0

− (ω, q) =
Ns

π

vF q
2

ω2 − v2
F q

2 + i0+
. (B.5)

In what follows, we will also need the retarded and advanced form of the
bubble. These forms can easily be obtained by repeating the calculation above in
Matsubara frequencies and analytically continuingiωm → ω+ i0. Even simpler,
one can use the general relation between time-ordered and retarded propagators
[23] (which works equally well for fermionic and bosonic quantities)

�R± (ω, q) = �± (ω, q) , for ω > 0

= �∗
± (ω, q) , for ω < 0.

Using Eqs. (B.3) and (B.4) we obtain

�R± (ω, q) = ±Ns
2π

q

ω − vF q + i0+
(B.6)

and

�R (ω, q) = Ns

π

vF q
2

ω2 − v2
F q

2 + i0+sgnω

= Ns

π

vF q
2

(ω + i0+)2 − v2
F q

2
. (B.7)

Appendix B.2.q near2kF

We will also need the 2kF bubble. This time, I choose to do the calculation in
Matsubara frequencies:

�2kF (iω, q) = Ns

(2π)2

∫
dk

∫
dεG+ (iε + iω, k + q)G− (iε, k)

= − Ns

(2π)2

∫
dk

∫
dε

1

ε + ω + i (k + q)
1

ε − ik .

Poles inε1 = ik andε2 = −i (k + q)−ω have to be on different sides of the real
axis, otherwise the integral is equal to zero. Chooseq > 0. Then this condition
is satisfied in two intervals ofk: k > 0 and−�/2 < k < −q, where� is the
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ultraviolet cut-off

�2kF = − iNs
2π

[∫ �/2

0
dk −

∫ −q

−�/2
dk

]
1

ω + 2ivF k + ivF q

= −Ns
4π

[
ln

i�vF

ω + ivF q
− ln

ω − ivF q
−i�vF

]

= −Ns
4π

ln
�2v2

F

ω2 + vF q2
. (B.8)

Because the result depends onq2 there is no need for a separate calculation for
the caseq < 0.

Appendix C. Some details of bosonization procedure

Appendix C.1. Anomalous commutators

ρ (q) =
∑

p

a
†
p−q/2ap+q/2 = ρ+ + ρ−;

ρ± =
∑

p>0(p<0)

a
†
p−q/2ap+q/2.

The operators of full density commute. The operators of left-right densities have
non-trivial commutators. For example, let us calculate[ρ+(q), ρ+(q ′)]

C++(q, q ′) =
[
ρ+ (q) , ρ+(q ′)

]
=

∑

p>0,k>0

[
a

†
p−q/2ap+q/2, a

†
k−q ′/2ak+q ′/2

]

=
∑

p>0,k>0




a
†
p−q/2 ap+q/2a

†
k−q ′/2︸ ︷︷ ︸

=δp+q/2,k−q′/2−a†
k−q′/2ap+q/2

ak+q ′/2

−a†
k−q ′/2 ak+q ′/2a

†
p−q/2︸ ︷︷ ︸

=δk+q′/2,p−q/2−a†
p−q/2ak+q′/2

ap+q/2



.

The firstδ− function means thatk = p + q/2+ q ′/2 > 0 and the second one
thatk = p − q/2− q ′/2.

C++(q, q ′) =
∑

p>0

a
†
p−q/2ap+q/2+q ′ϑ

(
p + q/2+ q ′/2

)

− a†
p−q/2−q ′ap+q/2θ

(
p − q/2− q ′/2

)

−
[
f (q, q ′)− f (q ′, q)

]
,
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where

f (q, q ′) =
∑

p,k>0

a
†
p−q/2a

†
k−q ′/2ap+q/2ak+q ′/2

=
∑

p,k>0

a†
pa

†
kap+qak+q ′

It is easy to show thatf (q, q ′) = f (q ′, q). Indeed,

f (q ′, q) =
∑

p,k>0

a†
pa

†
kap−q ′ak+q

= re− labelling k←→ p=
∑

p,k>0

a
†
ka

†
pak−q ′ap+q

= anticommuting=
∑

p,k>0

a†
pa

†
kap+qak+q ′ = f (q, q ′).

Thus

C++(q, q ′) =
∑

p>0

a
†
p−q/2ap+q/2+q ′θ

(
p + q/2+ q ′/2

)

− a†
p−q/2−q ′ap+q/2θ

(
p − q/2− q ′/2

)
.

Introduce a new momentum

Q = q + q ′
2

.

In the first sum, shiftp + q ′/2→ p and in the second sum shiftp − q ′/2→ p.

Then

C++ (q,2Q− q) =
∑

p>0

a
†
p−Qap+Q [θ (p + q/2)− θ (p − q/2)]

=
∑

p>−q/2
a

†
p−Qap+Q −

∑

p>q/2

a
†
p−Qap+Q

If the main contribution to the sum is given by the states which lie either deep
below or far above the Fermi levels, then the quantum fluctuations in the occu-
pancy of these states are small, and the operatorsa

†
p−Qap+Q can be replaced by

their expectation values〈a†
π−Qap+Q〉 = δQ,0np = δQ,0θ (pF − p). Doing this,
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we find

C++ (q,2Q− q) = δQ,0




pF∑

p>−q/2
−

pF∑

p>q/2




= δQ,0
L

2π

(∫ pF

−q/2
dp −

∫ pF

q/2
dp

)
= δQ,0

qL

2π
.

Therefore,

[ρ+ (q), ρ+(−q)] =
qL

2π
, spinless. (C.1)

The same procedure for fermions with spin gives

[ρ+,σ (q), ρ+,σ ′(−q)] = δσσ ′
qL

2π
,with spin.

Similarly,

[ρ−,σ (q), ρ−,σ ′(−q)] = −δσσ ′
qL

2π
,with spin.

and
[ρ+,σ (q), ρ−,σ (−q)] = 0.

Combining these results together

[
ρα,σ (q) , ρα′,σ ′ (−q)

]
= αδα,α′δσ,σ ′

qL

2π
,

whereα = ± is the chirality index. For full charge density and current, it means
that

[
ρc (q) , ρc (−q)

]
=

[
ρc+ (q)+ ρc− (q) , ρc+ (−q)+ ρc− (−q)

]

= qV

2π
+ qV

2π
− qV

2π
− qV

2π
= 0.

Similarly, [
j c (q) , j c (−q)

]
= 0,

whereas [
ρc (q) , j c (−q)

]
= qV

2π
+qV

2π
+qV

2π
+qV

2π
= 2

π
qL.

In 4-notations,

[jµ (q) , j ν (−q)] = ǫµν 2

π
qL,

whereǫ00 = ǫ11 = 0, ǫ01 = −ǫ10 = 1.
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Appendix C.2. Bosonic operators

Let’s check that the representation of density operators via standard bosonic op-
erators does reproduce commutation relation for density. Expand the density
operators over the normal modes

ρ+ (x) = 1

L

∑

q>0

Aq
(
bqe

iqx + b†
qe
−iqx) ;

ρ− (x) = 1

L

∑

q<0

Aq
(
bqe

iqx + b†
qe
−iqx) ,

where, without a loss of generality,Aq can be chosen real and even function of
q. Fourier transformingρ+ (x)

ρ+ (q) =
∫ ∞

−∞
dxe−iqx

1

L

∑

q ′>0

Aq ′
(
bq ′e

iq ′x + b†
q ′e

−iq ′x
)
, (C.2)

= Aq

(
θ (q) bq + θ (−q) b†

−q
)
.

Chooseq > 0 and substitute (C.2) into the commutation relation

[
ρ+ (q) , ρ+ (−q)

]
= A2

q

[
bq , b

†
q

]
= A2

q =
qL

2π
→

Aq =
√
qL

2π
.

Appendix C.2.1. Commutation relations for bosonic fieldsϕ andϑ
Using

ϕ (x) = −i
∑

−∞<q<∞

1√
2 |q|Lsgnq

(
bqe

iqx − b†
qe
−iqx) ;

ϑ (x) = i
∑

−∞<q<∞

1√
2 |q|L

(
eiqxbq − b†

qe
−iqx) ;

ϑ ′ (x) = −
∑

−∞<q<∞

1√
2 |q|Lq

(
eiqxbq + b†

qe
−iqx) ,
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we find

[
ϕ (x) , ϑ ′ (x)

]
= i

∑

q,q ′

1√
2 |q|L

1√
2 |q|′ L

∣∣q ′
∣∣

×
[
bqe

iqx − b†
qe
−iqx, bq ′eiq

′x′ − b†
q ′e
iq ′x′

]

︸ ︷︷ ︸
=2δq,−q′

= i
1

L

∑

q

eiq(x−x
′) = iδ(x − x′).

Appendix C.3. Problem with backscattering

As it was pointed out in the main text, straightforward bosonization of the Hamil-
tonian for the spinless case encounters a problem if one tries to account for
backscattering. As backscattering (g1) is just an exchange process to forward
scattering of fermions of opposite chiralities (g2), the Luttinger liquid parameters
with g1 �= 0 should be obtained from those withg1 = 0 by a simple replacement:
g2 → g2−g1.However, if we do this, we cannot satisfy the Pauli principle which
says that for a contact interaction, wheng2 = g4 = g1, all the interaction effects
should disappear. Indeed, Eqs. (6.2) and (6.11) foru andK, correspondingly,
change to

u2 =
(
1+ g4

2π

)2
−
(
g2 − g1

2π

)2

;

K2 = 1+ g4−g2+g1
2π

1+ g4+g2−g1
2π

.

For contact interaction, wheng2 = g4 = g1, we get

u2 =
(
1+ g

2π

)2
�= 1

K = 1.

The charge velocity is different from 1. In addition, the productuK is renormal-
ized from unity–this is also a problem, as it means that the current operator is
renormalized by the interactions. How to fix this problem? Ref. [76] shows how
to arrive at the expressions foru andK which satisfy all necessary constraints
just on the basis on Galilean invariance and dimensional analysis. Ref. [77] ar-
rives at the same result by using a careful point-splitting of the operators. Here, I
present the method of Ref. [77].
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Recall that the density operator, represented in terms of bosonic fields, con-
tains not only the lowest harmonic (q → 0), corresponding to long-wavelength
excitations, but also harmonics oscillating atq = 2kF , 4kF , etc. Indeed, taking
into account only the 2kF− oscillations, we have

ρ (x) =
(
ψ

†
+ (x) e

−ikF x + ψ†
− (x) e

ikF x
) (
ψ+ (x) eikF x + ψ− (x) e−ikF x

)

= ψ
†
+ (x)ψ+ (x)+ ψ†

− (x)ψ− (x)+ e−2ikF xψ
†
+ (x) ψ− (x)+H.c.

The first term in this equation has to be treated using the point-splitting proce-
dure, because it involves two fermionic operators at the same point. The result is
an infinite constant,ρ0, which is just a uniform density, plus the gradient term.
The 2kF -component can be bosonized without a problem, as it involves products
of different fermions. The result is

ρ (x)− ρ0 =
1√
π
∂xϕ +

1

2πα
exp

[
2
√
πϕ + 2kF x

]
+H.c.

Using this expression for the interaction part ofH, we have

Hint = 1

2

∫
dx

∫
dx′V (x − x′) [ρ (x)− ρ0]

[
ρ(x′)− ρ0

]

= HF +HB ,

where the forward and backscattering parts of the Hamiltonian are given by

HF = 1

2π

∫
dx

∫
dx′V (x − x′)∂xϕ∂x′ϕ;

HB = 1

2

(
1

2πa

)2 ∫
dx

∫
dx′V (x − x′)

×
{
exp

[
2i
√
πϕ (x)

]
exp

[
−2i

√
πϕ(x′)

]
e2ikF (x−x

′) +H.c
}
.

InHB , we neglected the terms that oscillate withx, x′,andx+ x′,, and kept only
those terms that oscillate withx−x′. As our potential is sufficiently short-ranged,
the oscillations of the first group of terms will average out, whereas the second
group will survive. Introducing new coordinates

R ≡ x + x′
2

;
r ≡ x − x′,
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and assuming that|R| ≫ |r| , the forward-scattering part of the Hamiltonian
reduces to

HF =
1

2π

∫
dR (∂Rϕ)

2
∫
drV (r) = V (0)

2π

∫
dR (∂Rϕ)

2 .

The product of the two exponentials needs to be evaluated with care. Applying
the Baker-Hausdorff identity

eAeB =: eA+B : e〈AB− 1
2A

2− 1
2B

2〉,

we get

exp
[
2i
√
πϕ (x)

]
exp

[
−2i

√
πϕ(x′)

]

= exp
[
2i
√
π
(
ϕ (x)− ϕ(x′)

)]
exp[4π〈ϕ(x − x′)ϕ (0)− ϕ2 (0)],

Using the expression for the free bosonic propagator

〈ϕ(x − x′)ϕ (0)− ϕ2 (0)] = 1

4π
ln

a2

(x − x′)2 ,

and expanding inr = x − x′ under the normal-ordering sign, we obtain

exp
[
2i
√
πϕ (x)

]
exp

[
−2i

√
πϕ(x′)

]
= −1

2
4π (∂Rϕ)

2 r2a
2

r2
= −2π (∂Rϕ)

2 a2.

(While expanding, we neglected the first derivative ofϕ which can be always
eliminated by choosing appropriate boundary condition.)HB reduces to

HB = −1

2

(
1

2πa

)2

2πa2
∫
dR (∂Rϕ)

2
∫
drV (r) 2 cos 2kF r

= − 1

2π

∫
dR (∂Rϕ)

2
∫
drV (r) cos 2kF r

= −V (2kF )
2π

∫
dR (∂Rϕ)

2 .

Therefore, the bosonized form of the total Hamiltonian

Hint =
V (0)− V (2kF )

2π

∫
dR (∂Rϕ)

2

manifestly obeys the Pauli principle. The Luttinger-liquid parameters are now
given by

u =
√

1+ V (0)− V (2kF )
2π

; K = 1√
1+ V (0)−V (2kF )

2π

.
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1. Introduction

The Tomonaga-Luttinger model [1–3] of one-dimensional (1D) strongly corre-
lated electrons gives a striking example of non-Fermi-liquid behaviour [4–6].
Since the seminal paper by Haldane [6], where the notion of the Luttinger liq-
uid (LL) was coined and fundamentals of a modern bosonization technique were
formulated, this model and its various modifications remain at the focus of in-
terest in research in strongly correlated systems. Without diminishing the role
of standard theoretical methods, such as diagrammatic techniques or the renor-
malization group approach, one can say that the bosonization methods constitute
the most powerful theoretical tool for strongly correlated 1D systems. All these
methods, and in particular the ‘canonical’ operator bosonization, where the cre-
ation and annihilation operators of electrons are explicitly represented in terms
of Bose operators and a 4-fermionic Hamiltonian is eventually diagonalized in
the bosonic representation, are described by Dmitrii Maslov in lecture notes pub-
lished in this volume.

The standard operator bosonization is one of the most elegant methods de-
veloped in theoretical physics. However, by its very formulation it seems both
limited to and specific for one-dimensional physics. A subject of this seminar
is to demonstrate the existence and usefulness of an alternative way to bosonize
1D interacting electrons, called the ’functional bosonization’. It is based on the
Hubbard-Stratonovich decoupling of the four-fermion interaction – a typical way
to “bosonize” a fermionic system in higher-dimensional problems. This method
was elaborated in different ways in a set of papers [7–11]. In this seminar, we
will describe such a functional method in the form similar to that developed ear-
lier [10,11] for the treatment of the pure LL as well as a single-impurity problem
in the Luttinger model. However, we will employ here the Keldysh technique
(see for reviews [12]) rather than the Matsubara one used in [10,11].

The essence of the method is to eliminate a mixed fermion-boson term in the
action (resulted from the Hubbard-Stratonovich decoupling) by a gauge transfor-
mation. Such a procedure is exact for the pure 1D Luttinger model and gives a
convenient starting point for including a single backscattering impurity.

The problem of a single impurity in the LL has been actively investigated by
many authors. [13–20] One of the main results of these considerations [13, 14,
18–20] was the suppression at low temperatures of the local density of states
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(TDoS) at the impurity siteand at a distance from the impurity [11] and the
related suppression of the conductance [13, 14] and the X ray edge singularity
[18–20]. Another prominent result was the dependence of the Friedel oscillations
[9,15,16] on the distance from the impurity.

In this seminar, we will only briefly outline only the most important results
for the one-impurity problem in the Tomonaga-Luttinger model, while giving a
slightly more detailed description of the functional bosonization in the Keldysh
technique that was not previously published. For simplicity, we will only ad-
dress a single-mode Tomonaga-Luttinger model, with one species of right- and
left-moving electrons, thus omitting spin indices and considering eventually the
simplest linearized model of a single-valley parabolic electron band. We will also
skip over a physical introduction, referring the reader to lecture notes by Dmitrii
Maslov published in this volume.

2. Functional integral representation

Within the limitations outlined above, the most generic Hamiltonian of interact-
ing 1D electrons in the presence of an external scattering potentialv(x) can be
written as

Ĥ =
∫

dxψ̂†
[
− ∂

2
x

2m
− εF + v(x)

]
ψ̂(x)

+ 1

2

∫
dxdx′ψ̂†(x)ψ̂†(x′)V0(x − x′)ψ̂(x′)ψ̂(x), (2.1)

whereV0(x−x′) is a bare electron-electron interaction. The observable quantities
to be calculated with this Hamiltonian are the tunneling density of states (TDoS)
and the current as a linear response to an applied field characterised by the vector
potentialA(x, t). We will give the results for the TDoS at the end of this presen-
tation, but will mainly describe techniques for calculating the currentj (x, t). It
can be written with the help of the Kubo formula in terms of the current-current
correlation function thermally averaged (〈. . .〉0) in the equilibrium Gibbs ensem-
ble:

j (x, t) = i
t∫

−∞
dt ′

∫
dx′

〈[
ĵ (x, t), ĵ (x′, t ′)

]〉
0
A(x′, t ′)− ne

2

m
A(x, t), (2.2)

where the current operator is defined in the standard way (in the unitsh̄ = 1 here
and elsewhere):

ĵ (x, t) = − ie
2m
ψ̂†(x, t)∂xψ̂(x, t)+ h.c. (2.3)
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The Kubo formula can be rewritten in Keldysh techniques by defining the contour
CK which runs from−∞ to the observation timet along the upper bank of the
cut along the real time axis in the complex time plane and then returns to−∞
along the lower cut:

j (x, t) = i
∫

CK

dt ′
∫

dx′
〈
TK ĵ (x, t)ĵ (x

′, t ′)
〉
0
A(x′, t ′)− ne

2

m
A(x, t). (2.4)

Here we have introduced the chronological operatorTK which time-orders the
operators in a descending order along the contourCK (with all the times on the
lower cut considered as later times as compared to those on the upper cut). Al-
though the current operators are bilinear in Fermi-operators, for future usage we
assume in the standard way that the Fermi-operators anticommute underTK , as-
suming additionally that at equal timeŝψ†(t) is taken at an infinitesimally later
moment thanψ̂(t). Such an agreement is consistent with the definition of the
current (Eq. 2.3). In what follows, we will choose a more general contour (the
Keldysh contour), running from minus to plus infinity above the cut and returning
below the cut. In the operator language, such an extension of the contour corre-
sponds to the insertion of extra evolution operators: having not been coupled to
the observables (the current operator in our case), such evolution operators above
and below the cut simply cancel each other.

Now, any expression written as the chronological operator average can be
straightforwardly represented as a functional integral over the fields defined on
the contour of the time ordering. We introduce the action,

S[ψ̄, ψ] =
∫

CK

dt
{
iψ̄∂tψ −H [ψ̄, ψ]

}
, (2.5)

where the last term is the normal ordered Hamiltonian withψ̂† → ψ̄ andψ̂ →
ψ , whereψ̄ andψ are the anticommuting Fermi fields. Then, the linear response
current of Eq. (2.4) takes the form

j (x, t) = i
∫

CK

dt ′
∫

dx′
〈
j̃ (x, t)j̃ (x′, t ′)

〉
A(x′, t ′)− ne

2

m
A(x, t), (2.6)

where the brackets stand for the functional integral

〈. . .〉 =
∫

Dψ̄ Dψ (. . .)eiS[ψ̄,ψ], (2.7)

and the current field is defined by

j̃ (x, t) = e

2mi
ψ̄(x, t)∂xψ(x, t)+ c.c.
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3. The effective action for the Tomonaga-Luttinger Model

For free electrons, the plane waves basis is natural. Assuming that the scatter-
ing by impurities and electron-electron interaction involve energy scales much
smaller than the Fermi energy, the plane wave basis presents a natural starting
point. Therefore we may assume that the main contribution to the functional
integral above comes from the fields representing separately right-moving and
left-moving electrons

ψ(x, t) ≈ ψR(x, t) eipF x + ψL(x, t) e−ipF x (3.1)

whereψR,L are smooth on thep−1
F scale. Such a separation is the essence of the

Tomonaga-Luttinger model, and corresponds to the linearization of the initially
parabolic electron band. The right- and left-moving electrons can be transformed
into another due to backscattering processes. We shall neglect such processes
due to the electron-electron interaction, thus keeping only the small momentum
transfer part of interaction,V (q ≪ 2pF ). This part of interaction is non-trivial
by itself as it breaks the Fermi Liquid theory in 1D. On the other hand we will
keep only backscattering in the impurity potentialv(x) since small-momentum
elastic scattering does not result in any qualitative change in the Luttinger Liquid
behavior.

Now we make the substitution (3.1) neglecting higher order derivatives of
smooth functions and discarding integrals over fast oscillating terms. After some
straightforward manipulations we come to the action for the Tomonaga-Luttinger
model:

ST L = S0 + Sint. (3.2)

The first term describes free electrons in the presence of the external scattering
potential (which can also be changing in time):

S0 =
∫

dxdt �†(x, t)

(
i∂R v(x, t)

v̄(x, t) i∂L

)
�(x, t). (3.3)

We have assumed (here and below) that all the time integrations are performed
along the Keldysh contour, and introduced the following notations:

� =
(
ψR
ψL

)
, �† =

(
ψ̄R ψ̄L

)
, ∂R/L ≡ ∂t ± vF ∂x . (3.4)

The second term in Eq. (3.2) gives the interaction part of the action

Sint =
i

2

∫
dxdx′dt n(x, t)V0(x − x′)n(x′, t),

(
n ≡ �†�

)
. (3.5)
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4. The bosonized action for free electrons

Before dealing with interacting electrons, we convert the action (3.3) for free
electron in the presence of the impurity potential into the action in terms of
bosonic fields.

Expanding in the impurity strength, we integrate over the fermion fields using
the Wick theorem:

Z0 =
∞∑

n=0

(−1)n

(n!)2
∫

dnzdnz′
[
n∏

k=1

v(zk)v̄(z
′
k)

]
detgL(zi, z

′
j )detgR(z

′
i, zj ).

(4.1)

We have introduced the notationz = (x, t) and defined the Green functions of
left- and right-moving electrons as follows:

∂ηgη(z, z
′) = δ(x − x′)δ(t − t ′), (η ≡ R,L). (4.2)

Their explicit form is

gR/L(z, z
′) = − T

2vF

1

sinhπT
[
(t − t ′)∓ x−x′

vF

] . (4.3)

These Green functions are defined on the Keldysh contour, so that each of them
is the matrix

g ≡ −i
〈
ψ(t)ψ̄(t ′)

〉
=
(
g++ g<

g> g−−

)
, (4.4)

where the time arguments of both the fields ing++ andg−− are, respectively, on
the upper or lower parts of the contour, while ing<(>) the first (second) argument
is on the upper part and the second (first) is on the lower. We should recall at this
point that the functional average (2.7), invoked in the definition (4.4), automati-
cally arranges for the time ordering along the Keldysh contour. The components
of g are not independent, obeying the usual relationg++ + g−− = g< + g>.
In what follows, we will perform the standard Keldysh rotation, reducing all the
appropriate matrices to the triangular form with the Keldysh component (gK =
g< − g>) in the upper right corner, and the retarded and advanced components
(gr = (ga)∗ = g++ − g<) on the main diagonal (see, e.g., ref. [12]). Then,
without writing this explicitly, we shall assume that the time arguments belong-
ing to the upper and lower branch of the contour have, respectively, positive and
negative infinitesimal shift into the complex plane. Note finally that in the equi-
librium case presented here the (Fourier transform of the) Keldysh component
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is related to the (Fourier transforms of the) retarded and advanced ones via the
Fermi distribution functionfε(T ) as follows:

gK(ε) =
(
1− 2fε(T )

)(
gr(ε)− ga(ε)

)
. (4.5)

The same relations are valid for other Green’s functions to be considered so
that, wherever this does not involve an ambiguity, we will give only the re-
tarded/advanced components in the explicit form assuming that the expression
like Eq. (4.5) is valid for the Keldysh component.

To calculate the partition function in Eq. (4.1) we use the Cauchy identity [21]:

det
1

sinh(zi − z′j )
= (−1)n+1

∏

i<j

sinh(zi − zj ) sinh(zi − zj )
∏

i,j

sinh(zi − z′j )
. (4.6)

It reduces Eq. (4.1) for the partition function to the following one:

Z0 =
∞∑

n=0

1

(n!)2
(
T

2vF

)2n∫
dnz dnz′

[
n∏

k=1

v(zk)v̄(z
′
k)

] ∏
i<j s(zi−zj )s(z′i−z′j )∏

i,j s(zi−z′j )
(4.7)

with

s(z− z′) ≡ sinhπT

(
t − t ′ − x − x

′

vF

)
sinhπT

(
t − t ′ + x − x

′

vF

)
(4.8)

Introducing

iG0(z− z′) = − ln s(z− z′) (4.9)

one can write

Z0 =
∞∑

n=0

1

(n!)2
(
T

2vF

)2n∫
dnz dnz′

{ n∏

k=1

v(zk)v̄(z
′
k)

× exp
[
−i

∑

i<j

[
G0(zi − zj )+G0(z

′
i − z′j )

]
+ i

∑

i,j

G0(zi − z′j )
]}

(4.10)

This is a partition function of the Coulomb gas with the logarithmic interaction
and it can be represented as the functional integral over the bosonic fieldϕ(x, t):

Z0 =
∫
Dϕ eiS0[ϕ] exp

{
α

∫
dz
[
ve−iϕ + c.c.

]}
, (4.11)
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Here the free bosonic actionS0[ϕ] is defined in terms of the Green’s functionG0
of Eq. (4.9) as follows

S0[ϕ] =
1

2

∫
dzdz′ϕ(z)G−1

0 (z− z′)ϕ(z′), (4.12)

while the Fourier transform of the retarded/advanced components ofG0(z) is
given by (withω± ≡ ω ± i0)

G
r/a

0 (q, ω) = 4πvF
ω2
± − v2

F q
2
. (4.13)

The constantα in Eq. (4.11) absorbs an ill defined value ofG0(x, t) at x = 0,
t=0. We use the ultra-violet cutoff which corresponds to the scale of orderεF :

α = T

2vF
e
i
2G0(0) ≃ εF

2πvF
.

Thus, we have cast the original free fermion problem into that of interact-
ing bosons, represented by the partition function (4.11). The interaction be-
tween bosons, i.e. the second term in the exponent in Eq. (4.11) comes from the
backscattering impurity term in the original fermionic problem. The Gaussian
action for noninteracting bosons, Eq. (4.12), can be explicitly written in thex - t
representation in the standard form

S0 [ϕ] = 1

8πvF

∫
dz

[
(∂tϕ)

2 − v2
F (∂xϕ)

2] , (4.14)

although Eq. (4.12) is no less convenient, especially for the generalisation for
the interaction. The main advantage of the bosonization, either in standard or
functional form, is that including the quadric electron-electron interaction does
not substantially change the free action.

5. Gauging out the interaction

The first step in dealing with the interaction term (3.5) in the action is to perform
the Hubbard-Stratonovich transformation which can be symbolically written as

exp
{
iSint[ψ̄, ψ]

}
=
∫

Dφ exp

{
i

2
φV −1

0 φ + φ�†�

}
. (5.1)
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Note that the auxiliary ‘Hubbard-Stratonovich’ (HS) bosonic fieldφ here is dif-
ferent from the fieldϕ in Eqs. (4.14) and (4.11). Substituting this representation
into the full action (3.2), we bring the partition function to the following form:

Z =
∫

DφD�†D� eiS0[φ]+iS[�,φ]. (5.2)

The actionS[�,φ] for fermions interacting with the HS field is given by

S[�,φ] =
∫

dz�†(z)

(
i∂R + φ v(z)

v̄(z) i∂L + φ

)
�(x, t). (5.3)

To cast this integral into a form identical to that of the previous section we apply
the local gauge transformation,

ψη(z) ≡ ψη(x, t)→ ψη(x, t) e
iθη(x,t) with ∂ηθη(x, t) = φ(x, t), (5.4)

which removes the bosonic fieldφ from the diagonal part of the action (5.3) but at
a cost: the off-diagonal terms are rotated with the factors e±iθ , and the Jacobian
of the transformationJ changes the quadratic inφ part of the action. Let us now
deal with this bosonic part of the action.

It is shown in Appendix A that the JacobianJ of the gauge transformation
(5.4) can be represented as

ln J [φ] = i

2

∫
dzdz′φ(z)�(z, z′) φ(z′). (5.5)

The polarization operator� is given in the random phase approximation (RPA)
by

� =
∑

η=R,L
�η, �η(z− z′) = igη(z− z′)gη(z′ − z), (5.6)

wheregη(x − x′, t − t ′) is the free electron Green function given by Eq. (4.3).
It is well known that the RPA is exact for the Luttinger Liquid [4]. Note that we
give in Appendix A a very simple and straightforward proof of this.

The Jacobian gives an additional quadratic inφ contribution to the action that
should be added to the quadratic term in Eq. (5.1). This results in the free bosonic
action with the kernel corresponding to the screened interaction:

S[φ] = 1

2

∫
dzdz′φ(z)V −1(z− z′)φ(z′), V −1 = V −1

0 +�. (5.7)

The above expression should be understood in the operator sense:V and� are
the operators whose kernels are defined with the proper time and spatial depen-
dence on the Keldysh contour.
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Using the expressions for the retarded and advanced components ofgη (with
ε± = ε ± i0),

g
r/a
R (q, ε) = i (ε± − vF q)−1 , g

r/a
L (q, ε) = i (ε± + vF q)−1 , (5.8)

one finds the appropriate components of the polarisation operator,

�
r/a
R (q, ω) = − 1

2π

vF q

ω± − vF q
, �

r/a
L (q, ω) =

1

2π

vF q

ω± + vF q
,

and thus the total polarisation operator as

�r/a(q, ω) = − 1

π

vF q
2

(ω±)2 − v2
F q

2
. (5.9)

Assuming that the Fourier transform of the forward-scattering pair interaction
only weakly depends on momentum, i.e.V0(q≪ 2pF) ≈ const≡ V̄ , and sub-
stituting Eq. (5.9) into the free bosonic action (5.7), one finds the components of
the free HS bosonic propagator as follows:

V r/a(q, ω) = ω2
± − v2

F q
2

ω2
± − v2q2

V̄ ,

(5.10)
VK(q, ω) = tanh

( ω
2T

) [
V R(q, ω)− V A(q, ω)

]
.

Here we introduced the renormalized velocityv which defines the effective cou-
pling constant g:

v2 ≡ v2
F +

vF V̄

π
, g ≡ vF

v
. (5.11)

Therefore, the gauge transformation (5.4) reduces the action in (5.2) to

S = S[θ ] + S[�†, �; θ ]. (5.12)

Its fermionic part is given by

S[�†, �; θ ] =
∫

dz�†(z)

(
i∂R v e−iθ

v̄ eiθ i∂L

)
�(z) (5.13)

with θ = θR − θL, while its bosonic partS[θ ] is defined via the fieldφ by
Eqs. (5.7), (5.10) and (5.11). It is convenient to write it explicitly as an integral
over the fieldθ , which is straightforward sinceθ is linearly related to the field
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φ as in Eq. (5.4). Thus we arrive at the following explicit expression forS[θ ] in
Eq. (5.12):

S[θ ] = 1

2

∫
dz dz′θ(z)G−1

B (z− z′)θ(z′). (5.14)

The Gaussian kernel of this interaction,GB , can be represented as

GB = G−G0, (5.15)

whereG0 is defined by Eqs. (4.9) and (4.13), whileG has the standard trian-
gular matrix structure in Keldysh space, with the Fourier transform of its re-
tarded/advanced component given by

Gr/a(q, ω) = 4πvf
ω2
± − v2q2

, (5.16)

i.e. it differs fromG0 only by substitutingv for vF in the denominator.
The effective action (5.12) is quadratic in fermionic fields which can now

be easily integrated out. Before doing so, let us stress that the representation of
Eqs. (5.12)–(5.14) seems to be more convenient for some problems than the fully
bosonized action.

To perform the fermionic integration, we note that the fermionic part of the
action, Eq. (5.13), differs from that of the free electrons, Eq. (3.3), only by the
substitutionv → v e−iθ . Therefore, repeating the same procedure as in the pre-
vious section, we represent this part of the action with the help of the bosonic
field ϕ so that the full action in Eq. (5.12) goes (in symbolical notations) to

S[ϕ, θ ] = 1

2
θG−1

B θ +
1

2
ϕG−1

0 ϕ + α
[
ve−i(ϕ+θ) + c.c.

]

Introducing the new bosonic field, ≡ θ + ϕ, and noting again the relation
(5.15) we arrive at the standard fully bosonized action:

S[ ] = 1

2

∫
dz dz′ (z)G−1(z− z′) (z′)+ α

∫
dz

[
v(z)e−i (z) + c.c.

]
.

(5.17)

6. Tunnelling density of states near a single impurity

As an application of the formalism developed above we consider a single impu-
rity in the Luttinger Liquid characterised by the following local time-independent
potential:

v(x) = λvF δ(x) (6.1)
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whereλ is the dimensionless impurity strength. The potential (6.1) should be
substituted into the action (5.17). Then one can integrate out the fields with
x �= 0 which results in the local action in terms of (t) ≡  (x=0, t):

Simp =
1

2

∫

CK

dtdt ′ (t)G−1
imp(t − t ′) (t ′)+ 2iαλvF

∫

CK

dt cos (t) (6.2)

where the Fourier transform of the retarded/advanced components of the Gaussian
kernel are given by

G
r/a

imp(ω) =
∫

dq

2π

4πvF
ω2
± − v2q2

= −ig 2π

ω ± i0 (6.3)

We now employ the self-consistent harmonic approximation (see, e.g., [22,
23]), i.e. substitute the impurity cos term with the quadratic one:

i2avFλ
∫

dt cos (t)→− i
2
�

∫
dt  2(t)

The coefficient� is to be found from the condition that this substitution is opti-
mal,

∂

∂�

[
2avFλ 〈cos 〉 − 1

2
�
〈
 2〉

]
= 0, (6.4)

where the averages are taken with the effective action symbolically represented
as

Seff =
1

2
 
(
G−1

imp +�
)
 . (6.5)

Solving self-consistently Eq. (6.4) with the action (6.5) (which involves preserv-
ing the proper analytical structure, causing� to be of the standard matrix struc-
ture in the Keldysh space) one finds with logarithmic accuracy:

�r/a = ±εF
(
avF

εF
λ

) 1
1−g

≃ ±εF λ
1

1−g . (6.6)

Until now we have omitted any source terms while making transformations
between different representations of the partition function. As we explained in
Section 2, using the functional representation of the current (and thus conduc-
tance) as an example, in order to generate observable quantities (e.g., TDoS or
conductance) all the transformations should be done with the source fields. In-
cluding the source terms does not bring any principal difficulties but makes the
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transformations more cumbersome. Therefore, we do not describe such trans-
formations in the framework of this seminar presentation. Instead, we simply
present the results for the tunnelling density of states [following from the long
time asymptotics of the full electron Green function calculated in the SCHA with
the bosonized action (5.12)] as a function of the distance from the impurity. We
refer the reader interested in detail to our previous publication [11] (albeit for the
Matsubara rather than the Keldysh functional integrals).

We present the explicit expressions for the TDoS smoothed over a length scale
much larger thanp−1

F
in three different regions:

ν(x, ε) ∼





ε̃
1
g
−1
�
− 1

2

(
1
g
−g

)

, x̃ ≪ �−1 ≪ ε̃−1 (a)

ε̃
1
g
−1
x̃

1
2

(
1
g
−g

)

, �−1 ≪ x̃ ≪ ε̃−1 (b)

ε̃
1
2

(
1
g
+g

)
−1
, min(x̃, �−1)≫ ε̃−1 (c)

(6.7)

The regions of different behavior of the tunneling density of states are sketched in
the figure. There and in Eq. (6.7),x̃ ≡ gpF|x|, ε̃ ≡ ε/εF, and the renormalized
impurity strength� is given by Eq. (6.6). Equation (6.7a) describes the TDoS
in the vicinity of the impurity, in full correspondence with the original results of
Kane and Fisher [13] obtained for the TDoS atx = 0, i.e. exactly at the impu-
rity. In addition, we have established here the TDoS dependence on the impurity
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strength� ≡ λ
1

1−g . The region of applicability of Eq. (6.7a) corresponds to the
diagonally hatched region in Fig. 1. Equation (6.7c) gives the TDoS at very large
distances from the impurity. As expected, it coincides with a well-known result
for the TDoS in the homogenous Luttinger liquid. Its region of applicability is
horizontally hatched in Fig. 1. In the intermediate region, vertically hatched in
Fig. 1, the TDoS depends both on the energy and the distance from the impurity.
This analytic dependence given by Eq. (6.7b) describes the crossover from the
impurity-induced dip in the TDoS to the bulk behavior. Finally, the unhatched
region forε̃ < α corresponds to small energies,ε < T , where the energy depen-
dence saturates (byε→ T ) in all the three lines of Eq. (6.7).

In conclusion, we have demonstrated how to develop the formalism of boso-
nization based on the functional integral representation of observable quantities
within the Keldysh formalism. We have derived in this way the fully bosonized
action for the interacting electrons in the presence of the scattering potential given
by Eq. (5.17), and illustrated its usage on the example of the TDoS on a single im-
purity, Eq. (6.7). Let us stress finally that the intermediate representation of Eqs.
(5.12)–(5.14), which still contains the part quadratic in fermion fields appears to
be more convenient for some problems than the fully bosonized action.
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Appendix A. Jacobian of the gauge transformation

The Jacobian of the gauge transformation (5.4) can be defined asJ = JRJL with

Jη[φ] =
∫
Dψ e−

∫
dz ψ̄[∂η−iφ]ψ

∫
Dψ e−

∫
dz ψ̄∂ηψ

= eTr ln[1−igηφ] , (A.1)

where the Green functions of non-interacting right- or left-moving electrons,
obeying∂ηgη = Î , are given by Eq. (4.3). Note that in the matrix components
g<(t) andg>(t) the time argument should be understood, respectively, ast ± i0.
The exponent in Eq. (A.1) can be represented as infinite series in the HS-fieldφ:

ln Jη[φ] = −
∞∑

n=1

in

n! Tr
[
gηφ

]n (A.2)
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The n-th order term inφ is proportional to the loopŴηn with n external lines
corresponding toφ’s, each loop being built of then Green functionsgη:

Tr
[
gηφ

]n ∝
∫ [ n∏

i=1

dzi φ(zi)

]
Ŵn (z1; ...; zn) , (A.3)

where then-th order vertex is given by

Ŵn (z1; ...; zn) =
n∏

i=1

gη (zi; zi+1) ,
(
zn+1 = z1

)
.

Introducing the new variablesξ = e
2πT

[
x
vF
−t

]

, one represents the Green func-
tions of Eq. (4.3) as

gR(ξ1, ξ2) ∝
√
ξ1ξ2

ξ1 − ξ2
so that the vertex becomes

Ŵn (ξ1; ...; ξn) ∝ γn (ξ1; ...; ξn)
n∏

i=1

ξi, γn =
n∏

i=1

1

ξi − ξi+1
, (A.4)

with the boundary conditionξn+1 = ξ1. Since only the symmetric part of the
vertex contributes to the integral (A.3), we may symmetrizeγn:

γn �−→
AN (ξ1; ...; ξn)∏
i<j

(
ξi − ξj

) , (A.5)

whereAN is an absolutely antisymmetric polynomial of theN -th order which
depends onn variables. A simple power counting givesN = n(n − 3)/2 while
the possible minimal order of such a polynomial isNmin = n(n + 1)/2. This is
not self-contradictory forn = 1 andn = 2 only. All other terms must therefore
be equal to zero. The term withn = 1 is cancelled due to electroneutrality. The
only non-vanishing vertex then is the one with two legs:

ln Jη [φ] = i

2

∫
dzdz′ φ(z)�η(z; z′)φ(z′), (A.6)

where

�η(z; z′) = igη(z− z′)gη(z′ − z). (A.7)
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1. Introduction

This manuscript is the written companion to lectures presented at Les Houches
in the summer of 2004. The intention is to introduce young scientists to some
of the fascinating physics of two-dimensional electrons at high magnetic fields.
With two Nobel prizes to its credit already, this topic surely rates as one of the
most important in contemporary physics. The field is, of course, huge. I cannot
hope, nor did I attempt, to do justice to more than a tiny fraction of it. My choice
of topics on which to concentrate is highly personal and should not be taken as a
judgment on what is most interesting or important in the field. They are simply
the things that I like, sort of understand, and have worked very hard on over the
last several years.

Section 2 is an overview of the field. It is divided into two main parts. The first
aims to give a pedestrian description of those aspects of two-dimensional electron
systems at high field that we understand pretty well. The basic ideas behind
integer and fractional quantization of the Hall effect in single layer 2D systems is
covered here. So is an experimentalist’s view of the so-called composite fermion
model of electron correlation in the lowest Landau level. The second part of
the section introduces the novel new physics that emerges from double layer 2D
electron systems. Bilayer systems are among my favorites and have yielded many
important results which could not have been obtained using conventional single
layer samples. Weakly coupled bilayers with large inter-layer separation have
provided direct access to otherwise hidden aspects of single layer 2D electron
systems. Strongly coupled bilayers with small layer separation support exotic
many-body states that simply do not exist in single layer systems. Bilayer 2D
electron systems were the main subject of my lectures and the remaining section
of this manuscript are devoted to their description.

Section 3 deals with the novel technique called Coulomb drag. This is a
method whereby the Coulomb interactions between two parallel 2D electron
gases can be directly observed in a straightforward resistance measurement. The
section begins with a discussion of the basic principle of Coulomb drag, how
double layer 2D systems are fabricated, and how we are able to make the sepa-
rate electrical connections to the individual layers essential to the Coulomb drag
technique. The physics of drag at zero magnetic field is then discussed in some
detail, although the focus is on the simplest cases.
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Section 4 is about tunneling between parallel 2D systems. Once again, the sec-
tion begins with a discussion of the zero magnetic field case. Even here there is
much interesting physics, which may well surprise the reader. I go into some de-
tail here because a thorough understanding of the zero field case is a prerequisite
for understanding the much more subtle phenomena observed at high magnetic
field, which are discussed at the end of the section. As with the discussion of
Coulomb drag, the focus here is on weakly-coupled layers.

Section 5 deals with strongly coupled bilayer systems. The great majority of
the discussion deals with what I think is one of the most fascinating of all low
dimensional electronic systems: A strongly-coupled bilayer electron gas at unit
total Landau level filling factor. This state, which may be equivalently viewed as
a pseudo-spin ferromagnet or a Bose condensate of excitons, beautifully connects
the fields of the quantum Hall effect, Bose condensation, and superconductivity.

2. Overview of physics in the quantum hall regime

2.1. Basics

Consider a collection of electrons confined to move in a two-dimensional plane.
In the presence of a uniform magnetic fieldB the Hamiltonian is

H = (p+ eA)2
2m

+ 1

2
gµBσ · B. (2.1)

The eigenvalues of this Hamitonian are particularly simple:

ǫN = (N + 1

2
)�ωc ± gµBB/2. (2.2)

Thus, the continuous energy spectrum present at zero magnetic field is resolved
into a ladder of discrete Landau levelsN = 0,1, . . ., each of which is further
resolved into two spin sublevels. The cyclotron frequencyωc = eB⊥/mb de-
pends on the band massmb of the electrons and the magnetic field component
B⊥ perpendicular to the 2D plane. The spin Zeeman term depends on the total
magnetic fieldB, the electrong-factor, and the Bohr magnetonµB = e�/2m0
(with m0 the bare electron mass). For 2D electrons near theŴ-point of the con-
duction band in GaAs one hasmb ≈ 0.067m0 andg ≈ −0.44. The ratio of the
bare spin splittinggµBB to the Landau level separation�ωc in a perpendicular
magnetic field is thusgmb/2m0 ≈ 1/70.

Landau levels are highly degenerate. Indeed, the number of states within each
spin-resolved sublevel iseB⊥S/h, whereS is the area of the 2D sample. AtB⊥
= 1 T, the density of electrons required to fill one spin sublevel isN0 = 2.41×
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1010cm−2, independent of the electron mass or any other sample parameters.
Note that the degeneracy of the Landau levels is equivalent to the numbernφ of
magnetic flux quantaφ0 = h/e threading the sample.

It is useful to examine the wavefunctions associated with the Landau level
states. These depend, of course, on the gauge chosen for the magnetic field.
In Landau gauge a magnetic fieldB⊥ along theẑ direction is represented by
a undirectional vector potential, e.g.A = −B⊥yx̂. In this case the problem
reduces to a modified one-dimensional simple harmonic oscillator and the (un-
normalized) wavefunctions are

ψN,k,σ = eikxφN (y − yk)χσ . (2.3)

In this equationk is a “momentum” index,yk = kℓ2 is the guiding center of
the state (withℓ = (�/eB⊥)1/2 being the so-called magnetic length), andχσ is
the spin wavefunction. The functionφN is describes the confinement of the state
about the guiding centeryk and is given by

φN (ξ) = e−ξ
2/2ℓ2HN (ξ/ℓ). (2.4)

with HN being the Hermite polynomial. In this gauge the Landau level states are
plane waves in one direction and harmonic oscillator states in the orthogonal di-
rection. Applying periodic boundary conditions in thex̂-direction over the length
Lx and restricting the guiding center to lie within 0< yk < Ly restricts the al-
lowed values ofk to 2πj/Lx with j = 1,2, . . . , LxLy/2πℓ2 = eB⊥S/h. This
explicitly demonstrates that the areal degeneracy of each Landau spin sublevel
is eB⊥/h. Note that the separation between the guiding centersyk of adjacent
k-states (i.e.�k = 2π/Lx) is �yk = 2πℓ2/Lx << ℓ. Adjacentk-states thus
overlap strongly in thêy-direction. However, since the states are extended in the
x̂-direction over the entire lengthLx , the netarea they occupy is, as expected,
2πℓ2 = h/eB⊥. Since the energies of the states are independent of the momen-
tum indexk, they carry no current along thex̂-direction.

Finally, it is also useful to write down the wavefunctions in the symmetric
gaugeA = 1

2B⊥(xŷ− yx̂). In this case the wavefunctions in the lowest (N = 0)
Landau level may be written as

ψ0,j,σ (z) = zj e−|z|
2/4χσ (2.5)

wherez = (x + iy)/ℓ is the position in the 2D plane, rendered as a complex
number. The indexj is an angular momentum and is restricted by the size of the
sample (here assumed a circle of radiusR): 0≤ j < R2/2ℓ2.
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Fig. 1. The quantized Hall effects. Each plateau in the Hall resistanceRH is accompanied by a deep
minimum in the longitudinal resistanceR. The numbers indicate the filling factor of the Landau level
spectrum. After Ref. [3].

2.2. Quantized hall effects

Figure 1 illustrates the integer [1] and fractional [2] quantized Hall effects (QHE)
as typically observed in a good quality 2D electron gas at low temperature [3].
Both the HallRH and longitudinal resistanceR are shown. The Hall resistance
(diagonal trace) rises linearly with magnetic field at low field but then develops
a complex series of plateaus at higher field. These plateaus, which are precisely
flat, occur whenRH = (h/e2)/(p/q) with p andq integers. Meanwhile, the
longitudinal resistanceR exhibits regular oscillations at low field. At higher
fields these oscillations become more intricate and in many casesR appears to
vanish altogether. As the figure makes clear, there is a one-to-one correspondence
between deep minima, or zeroes, inR and plateaus inRH . Note that the broader
the plateau inRH , the deeper the minimum inR.

The carrier concentrationNs of the 2D electron gas in Fig. 1 may be deter-
mined either from the slope of the Hall resistanceRH at low field or from the
Shubnikov-de Haas oscillations in the longitudinal resistanceR. In the latter
case, the formation of Landau levels modulates the density of states and essen-
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tially every observable in the 2D gas oscillates periodically in 1/B. In Fig. 1
Ns ≈ 2.3× 1011cm−2.

2.2.1. Integer QHE
The ratio of the electron densityNs to the Landau level degeneracyN0 is known
as thefilling factor: ν = Ns/N0 = hNs/eB. The filling factor provides a mea-
sure of how many Landau levels are occupied at low temperatures. In Fig. 1, the
Hall plateau nearB ≈ 10T, whereRH = h/e2, corresponds to complete filling
of just one spin-resolved Landau level, i.e.ν ≈ 1. Similarly, nearB = 5 T there
is a plateau atRH = h/2e2. In this case two Landau levels (both spin subbands
of the lowestN = 0 orbital level) are filled andν ≈ 2. And so on. Integer
quantized Hall plateaus are thus associated with the filling of an integer number
of Landau levels.

The deep minimum in the longitudinal resistanceR associated with each
plateau inRH implies the existence of an energy gap� in the system. At
low temperatures dissipation, and thus longitudinal resistance, is suppressed if
kBT << �. In the case of theeven integer QHE states this gap is dominated by
the splitting�ωc between Landau levels with orbital indicesN andN + 1. This
splitting can be quite large, around 20 K atB = 1 T. This is generally consistent
with estimates of the splitting based upon measurements of the temperature de-
pendence of the longitudinal resistance,R. For theodd integer QHE states the
situation is more interesting. The relevant single particle gap is now the Zeeman
splitting gµBB between spin sublevels of a given orbital Landau level. This is
a very small energy, about 0.3K atB = 1 T. Remarkably, however, the temper-
ature dependent resistance for theRH = h/e2 QHE again suggests an energy
gap in the 10-20 K range [4]. The reason for this is that the true cost of flipping
a spin in the 2D electron gas at high magnetic fields is dominated by electron-
electron interaction effects, not the simple Zeeman energy. In fact, the nature of
the charged excitations of the system atν = 1 are strange topological objects
known as skyrmions.

If the magnetic field is adjusted so that the filling factor is an exact integer
ν = j , we can expect the classical Hall resistance to assume the magic value:
RH = B/eNs = B/eνN0 = h/je2. While interesting, this is clearlynot the
entire explanation for the QHE: any deviation of the magnetic field from the value
producingν = j will change the Hall resistance from the specialh/je2 value.
Additional physics must be responsible for the pinning ofRH to the quantized
value over a finite range of magnetic fields. This new physics involves disorder in
the 2D system and can be most easily understood in terms of the so-called edge
state picture.

In the bulk of a 2D electron system the Landau energy levelsǫN are indepen-
dent of position. Near the boundary, however, the forces which keep electrons
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Fig. 2. Schematic illustration of Landau levels in a finite 2D electron system. Solid dots indicate
occupied states in the lowest Landau level. Current is carried only by those states near the edge of
the sample. Anetcurrent flows only when the chemical potentials at the two edges are different.

in the sample require the Landau levels to move up in energy. This situation is
depicted in Fig. 2 where the two lowest Landau levels (ignoring spin) are dis-
played as a function of positiony across a bar-shaped sample. At each side of
the sample the Landau bands move up in energy. If we choose the Landau gauge
used in Eq. 2.3 then the lowest Landau level eigenstates are plane waves in the
x̂-direction (perpendicular to the page) and gaussians inŷ-direction centered at
yk. Of course, near the boundary this description is not exact, but so long as
the potential confining the electrons in the sample is slowly-varying on the scale
of the magnetic lengthℓ, it is accurate enough. In Fig. 2 the magnetic field is
high enough that in the bulk theN = 0 LL is fully occupied and theN = 1 LL
is empty. The solid dots are meant to indicate the guiding centersyk of those
states which are occupied. The open dots represent empty states. With no current
flowing through the sample all states below a uniform chemical potential (dashed
line) would be filled.

As already mentioned, if the Landau level is independent of position (and
thus of wavevectork), the eigenstates carry no current. This is obvious since
∂ǫN/∂k = 0. Hence the states in the bulk of the sample are carrying no current.
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Near the edges of the sample the Landau level is not independent of position and
∂ǫN/∂k �= 0. States in these regions do carry current. In fact, the electrical
current carried in thêx-direction by a singlek-state in any Landau level is just
ik = (e/�Lx)∂ǫN/∂k = (eℓ2/�Lx)∂ǫN/∂yk = [∂ǫN/∂yk]/BLx , with Lx the
length of the sample in thêx-direction. From this it is clear that the states on the
right side of Fig. 2 carry current into the page while states on the left side carry
current out of the page. It is also clear that in equilibrium, when allk-states up
to a common chemical potential are occupied, there is nonet current. This is
true regardless of the precise shape of the edges or whether disorder makes the
Landau level fluctuate in the bulk. To achieve a net current a non-equilibrium
situation must be established. In the figure there is a different chemical potential
µ on the right and left side of the sample, withµR > µL. The net current is just

I =
∑

occ.

ik =
∫
Lxdyk

2πℓ2

∂ǫN/∂yk

BLx
= e

h
(µR − µL) =

e2

h
VH . (2.6)

In arriving at this expression we have used the fact that the spatial separation
between the guiding centers of adjacentk-states is�yk = 2πℓ2/Lx and that
the Hall voltageVH = (µR − µL)/e. Thus, we find that the Hall resistance of
the sample under the conditions shown in Fig. 2 is preciselyh/e2. (This is the
expected value, since we have ignored the spin of the electron in this derivation.)

But does Eq. 2.6 really imply quantization of the Hall resistance? Suppose
the magnetic field were changed by a small amount,δB. The degeneracy of the
Landau levels changes and the Fermi level will move. In the situation depicted
in Fig. 2 the edges of the sample create a small but finite density of states at the
Fermi level. Thus, ifδB is small enough, the picture shown in the figure will
not change qualitatively and the Hall resistance will remain atRH = h/e2. This
establishes the quantization of the Hall effect.

In reality, of course, it is not the tiny density of states at the edge of the sample
which produces the broad Hall plateaus seen in real samples. Crudely speaking,
the edge regions are only about one magnetic length wide. In a macroscopic
Hall bar of widthLy = 1 mm this would lead to very narrow plateaus indeed:
δB/B ∼ ℓ/Ly ∼ 10−5. Disorder in the 2D system (hills and valleys in the poten-
tial landscape in which the electron move) are much more effective in producing
a large density of states in the gaps between Landau levels. If the potential is
smooth enough these hills and valleys are surrounded by edge channels as well,
but as long as they do not provide a “connection” from one side of the sample
to the other they do not destroy the Hall quantization. That disorder is key to
the width of the Hall plateaus is clearly proven by experiments: As samples have
become cleaner and cleaner, the widths of quantized Hall plateaus have steadily
shrunk.
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2.2.2. Fractional QHE
Two ingredients are necessary for Hall quantization and vanishing longitudinal
resistance, an energy gap and disorder. The gaps between Landau levels (and
their spin sublevels) exhaust all possibleinteger QHE states. So then where
does a plateau atRH = 3h/e2, which appears when the lowest Landau level
is ν = 1/3 filled, come from? The only possibility is electron-electron interac-
tions.

To understand what is going on atν = 1/3 let us first return toν = 1 where
all states in the lowest spin sublevel of the lowest Landau level are occupied.
Assuming that the gap to the upper spin branch is sufficiently large, the wave-
function of the many-electron state is simply a Slater determinant constructed
out of all possible states in the lowest Landau level. In the symmetric gauge this
is

�(z1, z2, . . . , zn) =

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
z1 z2 · · · zn
z21 z22 · · · z2n
...

...
. . .

...

zn−1
1 zn−1

2 · · · zn−1
n

∣∣∣∣∣∣∣∣∣∣∣

× exp
[
−

n∑

j=1

|zj |2
4

]
(2.7)

wheren is the number of electrons in the system. Atν = 1, of course,n = nφ ,
the number of magnetic flux quanta present. In Eq. 2.7 the spin wavefunction has
been omitted for simplicity; all spins are assumed to point along the magnetic
field direction. The determinant in Eq. 2.7 is a van der Monde determinant, thus
allowing� to be re-written as

�(z1, z2, . . . , zn) =
∏

i<j

(zi − zj ) exp
[
−

n∑

k=1

|zj |2
4

]
. (2.8)

Written in this fashion it is obvious that� is odd under the interchange of any
two electrons as it must be. If we imagine holding fixedn− 1 electrons and then
examine the dependence of� on the coordinate of the one remaining electron,
we see that� vanishes whenever the remaining electron is at the same position
as one of the fixed electrons. This is required by the Pauli principle, but it is
obviously also sensible from the perspective of lowering the net Coulomb energy
of the system.

Now considerν = 1/3. In this casenφ = 3n, and there are three times as
many states in the lowest Landau level as electrons. It is no longer possible to
construct a unique Slater determinant. Let us again focus on just one of the many
electrons. This electron lies in the lowest Landau level, so taken alone the most
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general possible wavefunction it could have would be of the form

ψ(z1) =
nφ−1∑

j=0

ajz
j

1 exp

(−|z1|2
4

)
(2.9)

with theaj some unknown coefficients. The sum in Eq. 2.8 is a complex polyno-
mial in z = x+iy of ordernφ−1, and therefore hasnφ−1 zeroes in the complex
plane. The Pauli principle requires thatn − 1 of these zeroes coincide with the
positions of the remaining electrons in the system. Henceψ may be factored

ψ(z1) = (z1 − z2)(z1 − z3) . . . (z1 − zn)P (z1) exp
(−|z1|2

4

)
(2.10)

whereP(z1) is a polynomial of ordernφ − n. The question is now what to do
with the zeroes ofP(z1). Having satisfied the Pauli principle, the only remaining
consideration is to minimize the Coulomb repulsion between electrons by keep-
ing them as far apart as possible. Laughlin’s great insight was to realize how
to do this: The “unused” zeroes ofP(z1) should be positioned on top of all the
remaining electrons. There are just enough (in the thermodynamic limit) to add
two more zeroes per particle. In other words,P(z1) is chosen so that

ψ(z1) = (z1 − z2)3(z1 − z3)3 . . . (z1 − zn)3 exp
(−|z1|2

4

)
. (2.11)

With this choiceψ(z1) vanishes as thecube of the separation between between
electrons, thereby greatly reducing the Coulomb energy. From this point it easy
to construct the Laughlin wavefunction for all the electrons in the system

�(z1, z2, . . . , zn) =
∏

i<j

(zi − zj )3 exp
[
−

n∑

j=1

|zj |2
4

]
. (2.12)

This wavefunction is odd under exchange of any pair of electrons and corre-
sponds to filling factorν = 1/3. Notice that the argument used to construct�

would not have workedatν = 1/2, for it would have led to a wavefunction even
under particle exchange. This is comforting because there is no fractional QHE
state atν = 1/2 in a single layer 2DES.

If the filling factor is not preciselyν = 1/3 the commensurability between flux
quanta and particles is lost and there are either too many or too few zeroes around.
If, for example,nφ = 3n+1 there is a single unattached zero in�. All electrons
will avoid this spot. It is, in fact, aquasi-holeand costs a finite amount of energy
to produce. Similarly, ifnφ = 3n − 1 aquasi-electronis present, again costing
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a finite energy to produce. These quasiparticles are the lowest lying excitations
of theν = 1/3 Laughlin liquid and they are separated by an energy gap from the
ground state. The cost to produce a single quasi-electron/quasi-hole pair is close
to � = 0.1e2/ǫℓ. This energy gap is essential for the existence of a quantized
Hall effect.

The quasi-particles of the Laughlin liquid have charge±e/3. This is at least
plausible on the basis of flux counting. If each electron has three flux quanta at-
tached to it in the ground state, then the charge associated with a single unattached
flux line ought to be+e/3.

2.2.3. Composite fermions
Laughlin’s argument is readily generalized to fractional QHE states atν = 1/m,
with m odd. In fact, Laughlin predicted the existence of theν = 1/5 prior to its
experimental discovery. If we assume that particle-hole symmetry exists within
each spin-split Landau level then FQHE states atν = 1− 1/m (e.g. ν = 2/3)
can be understood asν = 1/m states of holes. But what about theν = 2/5 state
which is plainly evident in Fig. 1? Indeed, the sequences of states atν = 2/5,
3/7, 4/9,. . . and their particle-hole conjugates atν = 3/5, 4/7, 5/9,. . . all need
explanation.

Jain has argued that these states, and much of the phenomenology of the
FQHE are best understood in terms of a so-called composite fermion model.
The idea is based upon the application of a Chern-Simons singular gauge trans-
formation. The roots of this approach go back a long way and many investigators
have played significant roles. I direct the interested reader to the excellent review
chapters by Jain and Halperin in Ref. [5] and the references cited therein.

In the simplest case, composite fermions (CF’s) are constructed by attaching
two fictitious flux quanta to each electron in the lowest Landau level. This flux at-
tachment is done via a gauge transformation and thus has no effect on the physics
of the system. It is not at all cleara priori that the transformation is a useful one.
The many-body problem is no more soluble than it was to begin with, but the
hope is that the lowest-order approximate solution to the transformed problem is
both easy to construct and subsumes much of the complexity due to the strong
and non-perturbative Coulomb interactions between electrons. A good analogy
is to Landau Fermi liquid theory of the interacting electron gas in a metal. In
that case the lowest order approximation is a non-interacting gas of quasiparti-
cles. The quasiparticles are in 1:1 correspondence with the orginal electrons but
have modified physical attributes such as a different effective mass andg-factor.
Interactions between the quasiparticles are included at higher order and are hope-
fully relatively weak. Composite fermion theory performs a similar trick for 2D
electrons in the lowest Landau level.
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The fictitious flux quanta are attached with their fictitious magnetic field di-
rected opposite to the applied external magnetic field. At the mean-field level the
effective magnetic fieldB∗ experienced by each composite fermion is the exter-
nal fieldB plus the fictitious field of all the other composite fermions. Hence
B∗ = B − 2φ0Ns , whereφ0 = h/e is the flux quantum andNs is the areal
density of electrons. The Landau level filling factor for the original electrons is
ν = n/nφ = Ns/N0. For the CF’s the situation is different. The Landau level de-
generacy for CF’s isNCF0 = eB∗/h and so their filling factor isνCF = Ns/NCF0 .
Comparing these we get

1

νCF
= 1

ν
− 2 (2.13)

Suppose now that the magnetic field is adjusted so that the CF’s fill upj CF Lan-
dau levels,i.e. νCF = j . According to Eq. 2.13 this occurs whenν = j/(2j+1),
or the sequenceν = 1/3, 2/5, 3/7, etc. This is the main sequence of observed
FQHE states, at least forν < 1/2. Allowing νCF to be−j (corresponding to
negativeB∗) we find that the samej values occur whenν = 2/3, 3/5, 4/7, etc.,
giving us the main sequence of FQHE states for 1> ν > 1/2. The fractional
QHE of electrons seems to correspond to theintegerQHE of composite fermions.

The situation of greatest interest in these lectures occurs whenB∗ = 0, i.e.
when the physical electrons fill up one-half of the states in the lowest Landau
level. If the mean field picture is at all close to the truth, this situation corresponds
to a strange new kind of Fermi sea. This is quite subtle, for remember that the first
thing a big magnetic field does to the Fermi sea of real electrons is to destroy the
Fermi surface and create Landau levels. CF theory amounts to the reconstruction,
via electron-electron interactions, of a Fermi surface atν = 1/2. There will once
again be a Fermi wavevector (

√
2 larger owing to spin polarization), and an effec-

tive mass, determined not by band structure but by Coulomb interactions alone.
Although the discussion of CF’s that I have given here amounts to little more

than numerology, the theory has experienced several spectacular successes in
relation to experiment. The most dramatic of these concerns theν = 1/2 state.
Surface acoustic wave studies by Willett,et al. [6] and transport experiments in
anti-dot arrays by Kang,et al. [7] have very clearly demonstrated, among other
things, that in the vicinity ofν = 1/2 the quasiparticles in the system (the CF’s)
move in semi-classical cyclotron orbits whose radii diverge asν → 1/2. At
half-filling composite fermions move in straight lines, in spite of the very large
magnetic field present.

2.3. Double layer systems

The preceding section dealt with the simplest and best understood aspects of
quantum Hall physics in single layer 2D electron systems. We now turn to the
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Fig. 3. Quantized Hall effect in a double layer 2D electron system. The states atνT = 1 and
νT = 1/2 both disappear if the layers are too far apart.

main focus of these lectures, double layer 2D systems. Obviously, if the separa-
tion between the layers in a bilayer system is large, the two layers are independent
and exhibit the same physics as single layers. Such weakly coupled bilayer sys-
tems are interesting nonetheless as they provide unique access to various phys-
ical parameters of the individual layers which are difficult if not impossible to
reach experimentally using conventional single layer systems. In spite of this, it
is strongly coupled bilayer systems which capture the most attention since they
have been found to exhibit collective phases which do not exist at all in single
layer 2D electron gases.

Figure 3 illustrates two intrinsically bilayer fractional quantized Hall phases
as observed in 1992 using a sample consisting of two nearly identical 2D electron
gases residing in 18 nm GaAs quantum wells separated by a 3 nm AlAs barrier
layer [8]. Narrow plateaus in the Hall resistance are seen atRH = h/e2 and
RH = 2h/e2 and deep minima in the longitudinal resistance accompany them.
These QHE features are labeled by thetotal Landau level filling factorsνT = 1
andνT = 1/2, respectively. The total filling factor is determined by the total
electron densityNT in the double layer system. HenceνT = ν1+ν2, with ν1 and
ν2 being the individual layer filling factors. For the balanced bilayer sample used
in the figureν1 = ν2 = νT /2. Therefore, the Hall plateau atRH = h/e2 occurs
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when each individual layer is atν1 = ν2 = 1/2 and the plateau atRH = 2h/e2

occurs atν1 = ν2 = 1/4. As Fig. 1 clearly shows, no quantized Hall effect is
observed atν = 1/2 in a single layer. Though not apparent in Fig. 1, no single
layer QHE is observed atν = 1/4 either [9]. The QHE states atνT = 1 and
1/2 shown in Fig. 3 must therefore exist by virtue of couplings between the two
layers in the sample. In the case of theνT = 1/2 state the ground state of the
bilayer 2D system is believed to be well described with a generalized Laughin
wavefunction first introduced by Halperin [10]

� ∼
∏

i<j

(zi − zj )3
∏

k<l

(wk − wl)3
∏

m<n

(zm − wn) (2.14)

where the ubiquitous gaussian factors have been omitted for simplicity. In Eq.
2.14z andw represent the coordinates of electrons in the two layers. The first
and second factors in this wavefunction are reminiscent of those in the Laughlin
wavefunction for theν = 1/3 state given in Eq. 2.12. These factors embody
the intra-layer correlations in the system and ensure that electrons avoid their
neighbors in the same layer. The final factor,(zm − wn), is new. This factor
imposesinter-layer correlations and keeps electrons in opposite layers away from
one another. Notice, however, that the smaller exponent on this last factor means
that inter-layer repulsion is less important than intra-layer repulsion in bilayers
atνT = 1/2. Without the last factor in Eq. 2.14 each layer would be atν = 1/3.
The last factor introduces quasi-holes into each layer. The number of quasi-holes
in either layer is just the numbern = nT /2 of electrons in the other layer. The
quasi-holes in either layer are, in effect, bound to the electrons in the opposite
layer.

As interesting as theνT = 1/2 FQHE in bilayers is, it pales in comparison to
theνT = 1 state. Here the wavefunction may be written as

� ∼
∏

i<j

(zi − zj )
∏

k<l

(wk − wl)
∏

m<n

(zm − wn). (2.15)

This state possesses a remarkable broken symmetry, spontaneous inter-layer
phase coherence, which is responsible for several truly dramatic effects. Per-
haps surprisingly, the collective electronic state represented by Eq. 2.15 may be
viewed as a Bose-Einstein condensate of inter-layer excitons. The final chapter
of this manuscript is devoted to the description of the still unfolding story of this
new phase of matter.
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3. Coulomb drag between parallel 2D electron gases

3.1. Basic concept

A current flowing in one low-dimensional electron system can exert a frictional
force on a similar conducting system which is electrically isolated from it, but
relatively nearby. This drag force is due to an exchange of electronic momen-
tum between the two systems. In the simplest case, known as Coulomb drag,
momentum exchange results from direct Coulomb scattering of the electrons in
one conductor off of those in the other. Other processes, such as virtual phonon
mediated electron-electron scattering can also contribute.

Normally this effect is unobservably small. For example, two thin metal films,
of aluminum say, can not be placed close enough together for the Coulomb drag
force to be detected. The reason for this is simple: bulk three-dimensional metals
have an extremely small screening length, of order 0.05 nm. If the two films
are separated by more than this distance, their charge distributions appear to be
completely smooth and inter-film electron-electron scattering events are heavily
suppressed.

The situation is quite different in low-dimensional electron systems in semi-
conductor heterostructures. In GaAs the screening length for conduction band
electrons in two dimensions is 5 nm, a relatively large number. It is easy to create
a double quantum well structure in which two two-dimensional electron gases
are separated by a distance on this order. Provided that independent electrical
contacts can be established to each of the 2D systems, Coulomb drag can be de-
tected as a voltageVD appearing in one of the layers when currentI is driven
through the other. This effect, predicted by Pogrebinsky [11] in 1978 and first
observed by Gramila,et al. [12] in 1991, has proven to be extremely useful for
the study of two-dimensional electron systems.

The usefulness of the Coulomb drag technique stems from the fact that it
allows a direct determination of an electron-electron scattering rate via a sim-
ple resistance measurement. A simple one-dimensional force-balance argument,
within the Drude model of conduction, is sufficient to see how this works. The
forcesF1 andF2 on electrons in layers 1 and 2 (here assumed to contain identical
two-dimensional electron gases of densityNs) are:

F1 = −eE1 −mv1

(
1

τt
+ 1

τD

)
+mv2/τD

F2 = −eE2 −mv2

(
1

τt
+ 1

τD

)
+mv1/τD. (3.1)

In these equationsτt is the transport scattering time, including all momentum
relaxation processesexceptthose which transfer momentum between the layers.
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Such inter-layer processes are included in the force balance equations via the
drag relaxation timeτD. In a steady state where a currentI1 flows in layer 1 but
no current flows in layer 2, a voltage develops in layer 2 solely because of these
inter-layer momentum transfer processes. Along a bar of widthW and lengthL,
the drag voltageVD in layer 2 is:

VD = E2L = − L
W

m

Nse2τD
I1 = − L

W
ρDI1 = −RDI1. (3.2)

This is a simple yet remarkable result. It demonstrates that the drag resistance
RD (and resistivityρD) dependsonly on the inter-layer momentum relaxation
rate,τD−1. Momentum loss to phonons or impurities does not enter. Normally,
of course, electron-electron scattering processes are not detectable (at the Drude
level) in the ordinary resistance of a metal because they conserve the net momen-
tum of the electron gas. In fact, however, when two conductors are in close prox-
imity to one another, their individual resistances do depend upon the electron-
electron processes which exchange momentum between them. This is usually a
very tiny effect and is swamped by the loss of momentum to phonons and impu-
rities. In contrast, the above equations demonstrate that the transresistanceRD
between the two conductors dependsonly on the inter-layer momentum relax-
ation time.

Note the sign of the drag effect. In a double layer electron system, the drag
voltage is opposite in sign to the resistive voltage drop (proportional toE1) in
the current-carrying layer. In a bilayer electron-hole system [13] the sign is re-
versed. In both cases the sign of the drag reflects the fact that carriers in the drag
layer are swept along in the same direction as the carriers in the drive layer are
moving. In steady state the drag electric fieldE2 cancels this input of momen-
tum.

The drag scattering timeτD reflects all processes in which momentum lost by
one layer is exactly picked up by the other. Direct Coulomb scattering of elec-
trons in opposite layers is the simplest such process. Electron-phonon scatter-
ing can also contribute, provided the phonon emitted by one layer is absorbed
by the other. But even without phonons, Coulomb drag itself contains both
simple electron-electron scattering and more complex plasmon-assisted scatter-
ing processes. Although there have been interesting experimental and theoret-
ical studies of phonon and plasmon-assisted drag, we will focus here on sim-
ple electron-electron Coulomb drag only. Not surprisingly, improvements to the
Drude picture of conduction in low dimensional conductors have consequences
for Coulomb drag. These higher-order effects, including weak-localization and
diffusion corrections to the electron-electron interaction are also beyond our
present scope.
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3.2. Experimental

Modern crystal growth techniques, such as molecular beam epitaxy, allow the
creation of bilayer 2D electron systems in which the two layers are separated by
∼10 nm. For example, much of the data which we will describe below was ob-
tained using a double layer system consisting of two 18 nm GaAs quantum wells
separated by a 10 nm Ga0.1Al0.9As barrier layer. Doping via Siδ-layers∼200
nm above and below the double quantum well populates the ground electric sub-
band of each well with a 2DES having a density aroundNs = 5.5× 1010 cm−2.
At low temperatures the mobility of each 2DES is approximately 106 cm2/Vs,
corresponding to a transport scattering timeτt of about 40 ps.

In order to make a drag measurement, separate electrical contacts to the indi-
vidual 2D layers must be established. We solved this problem in 1990 using a
localized selective depletion technique [14]. The basic idea is simple: an elec-
trostatic gate is used to cut through one, but not both, of the 2D layers in the
vicinity of a conventional ohmic contact which itself connects to both 2D lay-
ers. The gate, of course, is nothing more than a thin metal film (we use alu-
minum) evaporated on the surface of the sample. If the gate “surrounds” the
contact, all current entering or leaving the contact must pass the gate. Apply-
ing a voltage (relative to the 2DES) to a gate deposited on the sample “front”
surface can be used to deplete the top 2DES in the region under the gate. In
this situation the ohmic contact “sees” the rest of the sample only via the lower
2D layer. Similarly, a gate on the back surface of the sample can be used to
deplete the bottom 2DES and thus provide independent connection to the top
2DES. In order to attain reasonable lateral definition of the back gate deple-
tion fields, we thin our samples from the back side to a total thickness of about
∼ 50µm. Still better lateral definition can be achieved via the so-called EBASE
technique [15].

Coulomb drag measurements are usually made with the 2DES layers confined
laterally within a bar-shaped mesa. Figure 5 contains a schematic diagram of
a generic drag sample, showing both the mesa and the various gates and ohmic
contacts. Five ohmic contacts are shown, as are some of the relevant gates. Two
of the contacts (1 and 2) are used to drive an ac current through the bottom 2D
layer, while two more (3 and 4) are used to detect the drag voltage drop in the top
2D layer. The drive current is supplied via an isolation transformer and the fifth
ohmic contact is often used to define ground potential in the drive layer. The drag
voltage itself is detected with a low noise, high input impedance preamplifier.
The drag layer can also be referenced to ground via a large resistance. Although
not shown in the figure, top and backside gates covering the central portion of the
mesa are usually present. These gates allow for measuring drag as a function of
density in the two layers.
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Fig. 4. Typical geometry for Coulomb drag measurement. Contacts 1-4 are used to inject current into
one layer and measure the voltage across the other. Contact 5 can be used to locally ground one 2D
layer. Gates used for establishing independent layer contact are shown.

Coulomb drag resistances are often quite small; Gramila,et al. worked in
the m� regime [12]. Numerous spurious effects easily spoil the measurement
of such a small effect. For example, inter-layer tunneling must be small enough
that direct leakage of current from the drive to the drag layer is unimportant.
In the sample described above, the 10 nm Ga0.1Al0.9As barrier layer presents a
tunnel resistance of typically 30 M� in a 40× 400µm mesa. This is more than
adequate at zero magnetic field. Another important spurious signal derives from
the inter-layer capacitance, which is on the order of 100 pF in typical devices.
Although capacitive coupling occurs 90◦ out of phase with the true drag voltage,
it is generally difficult to set the phase of the lock-in measurement accurately
enough to completely eliminate this problem. For this reason, low frequencies (2
- 13 Hz) are employed.

3.3. Elementary theory of Coulomb drag

MacDonald [12], and subsequently Jauho and Smith [16], developed the first
theories of Coulomb drag directly appropriate to bilayer 2D electron systems
in double quantum well heterostructures. In their very similar approaches, a
linearized Boltzmann equation theory results in the following expression for the
drag resistivityρD between two identical 2D electron systems:

ρD = �2

2π2e2N2
s kBT

∫ ∞

0
qdq

∫ ∞

0
dω q2|eφ(q)|2 [Imχ(q, ω)]2

sinh2(�ω/kBT )
. (3.3)
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In this formulaNs is the density of the individual 2D layers,T the tempera-
ture,q the momentum transfer,φ(q) the Fourier transformed screened inter-layer
Coulomb interaction,ω the energy transfer, and Imχ(q, ω) the electron gas sus-
ceptibility.

The interaction potentialφ(q), and the degree to which it is screened, is of
crucial importance in determining the drag scattering rate. Consider a test charge
Q in one (infinitely thin) 2D electron layer and the Coulomb potential it produces
in a second, parallel layer a distanced away. In the absence of screening this po-
tential is justφ(q) = Qe−qd/2ǫq, with ǫ = κǫ0 the dielectric constant of the
host material. The large wave-vector components ofφ(q) are thus exponentially
suppressed by the finite layer separation. This implies that drag will be domi-
nated by scattering events with momentum transfersq < 1/d. Now, if we allow
screening (at the Thomas-Fermi level) of the test charge, but only by charges in
thesamelayer, we getφ(q) = Qe−qd/2ǫ(q + qT F ) whereqT F = m∗e2/2πǫ�2

is the Thomas-Fermi screening wave-vector. Screening, therefore, reduces the
impact of smallq processes and so suppresses drag. However, we must also al-
low for screening of our test charge by electrons in the adjacent layer. We now
get the more complicated result:

φ(q) = Q

2ǫ

qe−qd

(q + qT F )2 − q2
T F e

−2qd
. (3.4)

For a rough approximation we assumeqd << 1 and expand the exponentials to
obtainφ(q) ≈ Q/2ǫ(q + qsc), with qsc = 2qT F (1+ qT F d) > 2qT F . Thus,
the second layer more than doubles the screening-induced suppression ofφ(q).
Since 1/qT F ≈ 5 nm in GaAs, and the layer separationd in typical samples
is 30 nm,qsc ≈ 14qT F . As φ(q) enters squared in the expression forρD,
the additional screening by the second layer suppresses the drag by roughly two
orders of magnitude.

The susceptibility function Imχ(q, ω) is, in effect, the phase space available
for a scattering process of energy�ω and momentum transfer�q. At zero temper-
ature and for�ωmuch less than the Fermi energyEF of the 2D gases, Imχ(q, ω)
scales asω/q for smallq and asω/

√
q − 2kF for q approaching 2kF . These di-

vergences inq lead to well-known logarithmic divergences in the temperature
dependence of the quasiparticle lifetime in two dimensions [17]. In Coulomb
drag, however, theq = 0 divergence is eliminated by theq2 factor in the in-
tegrand, this factor arising from the 1 - cosθ weighting over scattering angleθ
essential in evaluating the momentum relaxation time. The backward scattering
divergence atq = 2kF remains, but so long askF d >> 1 its importance is slight
owing to the exponential fall-off of the potentialφ(q) for q > 1/d.

In general, Eq. 3.3 must be solved numerically. However, for two identical
infinitely thin 2D electron systems at very low temperatures (T << TF ) and
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large inter-layer separation (so that bothkF d andqT F d are>> 1), an analytic
result can be obtained [16]:

ρD = h

e2

ζ(3)π

32

k2
BT

2

E2
F k

2
F q

2
T F d

4
. (3.5)

This equation has several notable features. First, the drag resistivity is propor-
tional toT 2 at low temperatures. This is not unexpected; the joint phase space for
inelastic inter-layer scattering processes is dominated by thekBT thermal smear-
ing of both Fermi surfaces. Second, the drag scales with layer separation asd−4;
two of these powers ofd arise from the enhanced screening in double layer sys-
tems and two more come from the restriction of momentum transfers toq < 1/d
and theq2 ∼ 1 − cosθ weighting over scattering angle. Third, the predicted
ρD varies with density asN−3

s in Eq. 3.5. Finally, observe thatρD does not
depend upon effective mass; the linear dependence ofqT F onm∗ is cancelled by
the 1/m∗ scaling ofEF at constant density. Thus, at this level of approximation
bilayer electron and bilayer hole systems at the same temperature, density, and
layer separation ought to exhibit the same drag resistance.

3.4. Comparison between theory and experiment

Early Coulomb drag studies in bilayer 2D electron systems [12] were not per-
formed in a regime where direct Coulomb scattering adequately described the
momentum relaxation rate. Momentum transfer via virtual phonon exchange
was substantial in the early experiments [12, 18] and by now a well-developed
theory of this contribution to drag exists [19]. More recently, Kellogg, et al. [20]
have measured drag in a bilayer electron sample in which, owing to its small
layer separation and low density, direct Coulomb scattering dominates the drag at
low temperatures. Figure 5 shows the temperature dependence ofρD in a sample
consisting of two 18 nm GaAs quantum wells separated by a 10 nm Al0.9Ga0.1As
barrier. For the data shown the bilayer is balanced, i.e. has equal electron density
Ns in the two layers.

While Fig. 5 shows thatρD is roughly quadratic in temperature, closer inspec-
tion reveals slight deviations: The dotted curve is a simple least-squares fit of the
Ns = 3.1× 1010cm−2 data toρD = AT 2. More importantly, the dashed curve
in Fig. 5 gives the prediction of Eq. 3.5 for the same density data set; the theory
falls short of the data by a factor of about 6 at this density. We find that this large
discrepancy remains even after direct numerical integration of Eq. 3.3 is em-
ployed to account for finite layer thickness, finiteT/TF , and the fact thatkF d is
not large compared to unity [20, 21]. Our calculations, however, assume only the
simplest static Thomas-Fermi screening of the inter-layer Coulomb interaction.
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Fig. 5. Drag resistivityvs. temperature for six different layer densitiesNs , labeled in units of
1010cm−2. The dotted line is a least-squares fit of theNs = 3.1× 1010cm−2 data toρD = AT 2.
The dashed line is the drag resistance predicted by Eq. 3.5 for the same density. After Ref. [20].

The discrepancy between the static screening theory and the experimentally
measured drag resistance grows steadily as the density is reduced. Figure 6
shows the density dependence of the drag atT = 1 K and 4 K. The solid lines,
which qualitatively capture the density dependence, are proportional toN−4

s . The
dashed lines represent Eq. 3.5 and itsN−3

s density dependence.
More sophisticated theoretical calculations [22, 23] go beyond the random

phase approximation to include higher order many-body effects on Coulomb
drag. Such corrections generally become more important as the density is re-
duced and the dimensionless parameterrs = a−1

0 (πNs)
−1/2 grows. Giving the

interparticle separation in units of the semiconductor Bohr radiusa0, the parame-
ter rs also gives the ratio of the mean Coulomb interaction energy to the Fermi
kinetic energy. For the data in Fig. 6,rs ranges from about 1.8 up to 4.2 at the
lowest densities. It is thus not surprising that higher-order many-body effects are
quantitatively important in these data. Indeed, Yurtserver, et al. [22] find quite
good agreement with the data in Fig. 6.

Finally, we remark that for the data in Figs. 5 and 6, the parameterkF d ranges
from about 2.2 down to 0.9. This means that backward scattering cannot be ig-
nored. As mention above, the singularity in Imχ(q, ω) at q = 2kF leads to log-
arithmic corrections to the temperature dependence of the drag. In fact, we find
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Fig. 6. Drag resistivityvs.density atT = 4 K (triangles) andT = 1 K (solid circles). The upper and
lower dashed lines represent Eq. 3.5 atT = 4 K and 1 K, respectively. Adapted from Ref. [20].

that the data in Fig. 5 can be very well fit by a function of the formAT 2ln(T /T0).
While suggestive, however, such subtle temperature dependences are a poor way
to prove the importance of backward scattering processes. Nonetheless, Kellogg,
et al. demonstrated convincingly that such events do indeed dominate at low tem-
peratures. Their method involved a careful study of the dependence of the drag
on densitydifferencebetween the two layers. The interested reader is referred to
the original publication [20] for the details.

4. Tunneling between parallel two-dimensional electron gases

We now turn to the study of inter-layer tunneling. As in the previous section,
we will here confine our attention to the case in which the two layers are only
very weakly coupled by Coulomb interactions. Drag and tunneling in strongly
coupled bilayers will be discussed in the final section of these notes.

Tunneling between two ordinary metals is quite simple. If a voltageV is
imposed between the metals, the tunneling current will be:

I ∼
∫
dEP (E)NL(E − eV )NR(E)[fL(E − eV )− fR(E)] (4.1)
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whereP(E) is the probability of tunneling through the barrier separating the
metals,NL andNR are the densities of states of the metals on the left and right,
respectively, andfL andfR are the associated Fermi functions. For small volt-
ages (so thatP(E) may be taken as a constant) one has:

I ∼ PNL(EFL)NR(EFR)eV = const.× V. (4.2)

In other words, a normal metal tunnel junction behaves ohmically; current is
proportional to voltage.

4.1. Ideal 2D-2D tunneling

Tunneling between 2D electron gases confined to quantum wells separated by a
barrier layer is very different than 3D-3D tunneling. The energy of an electron
in either well will be of the formǫ = E0,(L,R) + �2k2/2m, whereE0,(L,R) is
the bound state energy in the left or right quantum well. If the barrier is smooth,
the in-plane momentum�k will be conserved upon tunneling. Energy conserva-
tion then implies thatE0,L = E0,R in any tunneling event [24]. Hence, 2D-2D
tunneling is sharply resonant: An electron can tunnel only when the initial and
final subband energy levels in the two quantum wells line up precisely. This re-
markable fact is independent of temperature and the Fermi energy (i.e. density)
of the electrons in either well. Figure 7 gives a typical example of the resonant
nature of 2D-2D tunneling. The width of the observed resonance is about 0.3
meV, which is less than 10% of the Fermi energy of the 2D electron gases in the
quantum wells. In a conventional 3D-3D tunnel junction the conductancedI/dV

is independent of voltage over a wide range.
A straight-forward application of Fermi’s Golden Rule for the tunneling cur-

rent flowing between two weakly-coupled ideal 2D systems gives

I = 2eπ

�

∑

k,σ

∑

k′,σ ′
|t |2δk,k′δσ,σ ′δ(ǫR,k − ǫL,k′)(fR,k − fL,k′) (4.3)

where the hopping matrix element|t | has been assumed to be energy, momentum,
and spin independent. Measuring the energiesǫR,k andǫL,k′ relative to single
reference point (for example, the bottom of the right quantum well) allows us to
re-write the delta function on energy asδ(ǫR,k − ǫL,k′) = δ(ξk − ξk′ + E0,R −
E0,L) = δ(ξk − ξk′ +EF,L −EF,R + eV ), with ξk ≡ �2k2/2m being the kinetic
energy andEF,L andEF,R the Fermi energies of the 2DES’s in the left and right
quantum wells. Summing overk′, σ ′ andσ , and replacing the remaining sum on
k by an integral overξ yields:

I = 2eπ

�
|t |2ρSδ(EF,L − EF,R + eV )

∫ ∞

0
(fR,k − fL,k)dξ (4.4)
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Fig. 7. Typical 2D-2D tunnel resonance at zero magnetic field. Tunneling conductancedI/dV is
plotted against inter-layer voltageV at T = 1.75 K. Sample consists of two 20 nm quantum wells,
each containing a 2DES with densityNS ≈ 1.5× 1011cm−2, separated by a 17.5 nm Al0.3Ga0.7As
barrier layer. Dashed line represents 3D - 3D result.

whereS is the area of the sample andρ = m/π�2 is the density of states of the 2D
systems, including both spin states. So long as the temperature is much less than
the Fermi temperatures of the two 2D systems, the integral is justEF,R − EF,L.
By virtue of the delta function, then, we have:

I = 2π |t |2e
2

�
SρV δ(EF,L − EF,R + eV ) (4.5)

Not surprisingly, the tunnel current is proportional to|t |2 andS, the area of the
sample. It is also makes sense that the current is proportional toρV because
this is number of states available to tunnel [25]. The delta function, however,
is striking and implies that 2D-2D tunneling is singular. Note that the argument
EF,L − EF,R + eV of the delta function is, atany temperature, exactly equal
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to E0,R − E0,L, the gap between the subband energy levels in the two quantum
wells. Hence, elastic, momentum-conserving 2D-2D tunneling can only occur
between two precisely aligned quantum well energy levels [26].

4.2. Lifetime broadening

The resonant character of 2D-2D tunneling results from two-dimensionality and
the conservation of momentum parallel to the 2D planes. Figure 7 reveals that
although sharp, real 2D-2D tunnel resonances have a finite width. In many cases
this width is a result of scattering. Put another way, the momentum eigenstates
used above to determine the tunnel current do not possess an infinite lifetime in
real samples. In order to incorporate this fact we introduce the electron spectral
function,A(E, k). This function gives the probability density for a momentum
statek to have energyE. In the treatment given above, the implicit assumption
was thatA(E, k) = δ(E − ξk). In general,A(E, k) is quite complex, containing
features due to independent quasiparticle states as well as structure associated
with the interacting many-body aspects (e.g. collective modes) of the electron
gas. For simplicity, we shall assume thatA(E, k) depends onE and k only
through the combinationE − ξk + EF , whereE now is measured relative to
the Fermi level. This assumption amounts, in effect, to assuming that all the
spectral weight lies in the vicinity of the non-interacting single electron state.
The generalization of Eq. 4.4 reads

I = 2π |t |2 e
�
Sρ

∫ ∞

0
dξ

∫ ∞

−∞
dE AR(E − ξ + EF,R)

×AL(E − ξ + EF,L + eV )(fR(E)− fL(E + eV )) (4.6)

Assuming the spectral functions consist of a single peak centered atE = ξ −EF
with width γ much less thanEF , we can extend the lower integration limit onξ
to−∞. Introducing the variablex = E − ξ + EF,R we get

I = 2π |t |2e
2

�
SρV

∫ ∞

−∞
dx AR(x)AL(x + EF,L − EF,R + eV ) (4.7)

where, once again, the integral over the Fermi functions yielded a factoreV . This
equation shows that the current-voltage characteristic of a 2D-2D tunnel junction
directly measures the convolution of the electronic spectral functions in the two
layers.

The spectral functionsAL,R are often assumed to be lorentzian:A(x) =
(γ /2π)(x2 + γ 2/4), with γ representing the lifetime broadeningγ = �/τ of
the quasiparticles. In this case Eq. 4.7 becomes

I = 2|t |2e
2

�
SρV

Ŵ

(V − V0)2 + Ŵ2
(4.8)
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with Ŵ = (γR + γL)/2e andeV0 = EF,R−EF,L. Hence, the ratioF(V ) ≡ I/V
(not to be confused with the differential conductancedI/dV plotted in Fig. 7)
is also a lorentzian, with half-width at half-maximumŴ equal to the average
lifetime broadening�/τ in the two layers.

Tunneling spectra like that in Fig. 7 have been used to quantitatively determine
the lifetime of quasiparticle states [27] at zero magnetic field. At low temperature
the tunneling linewidth is dominated by the scattering of electrons off of the sta-
tic disorder potential in the sample, but at higher temperatures electron-electron
scattering dominates. Complementary to the Coulomb drag measurement dis-
cussed previously, the tunneling experiment measures theintra-layer scattering
rate rather than the inter-layer one. The experiments [27] revealed that early cal-
culations of thee − e rate [28] severely underestimated the rate. More recent
calculations have corrected errors in the earlier ones and have achieved good
agreement with experiment, especially when higher order many-body effects are
included [29, 30].

4.3. 2D-2D tunneling in a perpendicular magnetic field

When a large magnetic field is applied perpendicular to the 2D plane the inter-
layer tunneling conductance is drastically modified. Figure 8 shows data from a
weakly-coupled bilayer sample structurally identical to the one used in Fig. 7.
The sharp tunnel resonance observed atB = 0 is replaced, at high magnetic
field, by a very broad spectrum. Perhaps the most notable feature present in the
high field data is the wide region of heavily suppressed tunneling conductance
surrounding zero inter-layer voltage [31].

The high field data shown in Fig. 8 suggest the presence of a gap in the density
of states, centered at zero energy. Gaps are of course present in the 2DES energy
spectrum at high fields when the system is in an integer or fractional quantized
Hall state. Remarkably, however, theB = 13 T data shown correspond, roughly,
to Landau level fillingν = 1/2 in the individual 2D layers. At this filling no
quantized Hall state exists (the layer separation is much too large to support the
strongly correlatedνT = 1/2 + 1/2 = 1 excitonic QHE state (mentioned in
section 2.3 and the subject of section 5) and the electronic energy spectrum is
gapless.

In the absence of electron-electron interactions, Landau levels are sharp. Tun-
neling between two disorder-free non-interacting 2D electron gases at high field
ought to be sharply resonant, just like atB = 0. The very broad spectrum shown
in Fig. 8 therefore suggests that either disorder or interactions are very impor-
tant at high field. Disorder can be discounted since the low temperatureB = 0
tunnel resonance, whichis dominated by disorder, is so much narrower than the
high field spectrum. Thus, electron-electron interactions must somehow be re-
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Fig. 8. Low temperature tunneling conductance at zero magnetic field andB = 13 T in a weakly-
coupled double layer 2DES sample. After Ref. [31].

sponsible for the high field behavior. In particular, the strong suppression of the
tunneling conductance around zero bias must be an interaction effect.

The suppression of the zero-bias tunneling conductance shown in Fig. 8 is
a generic phenomenon at high magnetic fields. It occurs over wide swaths of
magnetic field, and is largely indifferent to the presence or absence of quantized
Hall states. The tunneling conductance at zero bias vanishes as the temperature
is reduced, in an essentially thermally activated manner [31].

The main features of 2D-2D tunneling at high perpendicular magnetic field
are by now fairly well understood [32, 33, 34, 35]. The strong suppression of
the zero bias conductance reflects the presence of apseudo-gap pinned to the
Fermi level. Tunneling injects, essentially instantaneously, an electron into the
2DES. Even if the system is thermodynamically gapless, theN + 1 particle state
so suddenly created will be a highly excited one. Low energyN + 1 particle
states may exist, but tunneling cannot connect to them in the time available. The
strong correlations in the electron gas mean that many electrons must adjust their
positions to relax the charge defect created by tunneling. The time required to
do this is vastly enhanced by the magnetic field which effectively bottles up the
charge defect, converting its natural radial relaxation into a vortex-like motion
by virtue of the Lorentz force. Crudely speaking, the minimum energy required
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Fig. 9. Tunneling current-voltage characteristics in two double layer 2D electron gas samples whose
only structural difference is the thickness of the tunnel barrier; 17.5 nm for the solid trace and 34 nm
for the dashed trace. The dashed curve has been vertically scaled by a factor of 3.6. After Ref. [36].

to tunnel into a 2DES of densityNs at high field is the mean Coulomb energy
between electrons:e2N1/2

s /ǫ ∼ e2/ǫℓ, with ℓ = (�/eB)1/2 the magnetic length.
This is quite consistent with experiment [31].

The suppression of the zero bias 2D-2D tunneling conductance at high mag-
netic field represents the convolution of two single layer effects. The Coulombic
energy cost associated with the injection of an electron into one layer adds to
the similar penalty incurred when that electron is first extracted from the other
layer. Unless the two layers are quite close together, inter-layer Coulomb in-
teractions are of only limited importance. To a rough approximation, the main
effect of inter-layer interactions is to reduce the net Coulomb barrier to tunnel-
ing. This reduction may be thought of as an excitonic interaction, whereby an
electron which has just tunneled into one layer is attracted to the hole left behind
in the other layer. The very slow relaxation of charge defects at high magnetic
fields render this final-state exciton much more readily observable than the anal-
ogous effect in ordinary tunnel junctions at zero magnetic field. Figure 9 shows
one experimental manifestation of this effect. The figure shows current-voltage
characteristics (I vs. V , not dI/dV vs. V ) at B = 8 T for two samples with
the same electron density (Ns = 1.5 × 1011cm−2) and quantum well widths
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(20 nm), but different tunnel barrier thicknesses: 17.5 nm for the solid curve,
34 nm for the dashed curve. The data suggest that the Coulomb pseudo-gap is
larger in the sample with the thicker barrier. This is the expected result since
the energy gain due to the formation of an inter-layer exciton ought to scale in-
versely with the separation between the layers. A more quantitative study of
this effect, based on careful analysis of both the barrier thickness and electron
density dependence of the tunnel spectrum, has confirmed this excitonic pic-
ture [36]. For the sample in Fig. 9, the effective excitonic “binding” energy is
aboutVex ≈ −1.4 meV.

5. Strongly-coupled bilayer 2D electron systems and excitonic superfluidity

As explained in section 2.3, double layer 2D electron systems with small inter-
layer separation support novel collective phases which do not exist in the in-
dividual layers. The prototypical examples are the quantized Hall effect states
occurring at total Landau level filling fractionsνT = 1 andνT = 1/2. For
balanced (i.e. equal density) bilayer systems these two states correspond to indi-
vidual layer filling fractionsν1 = ν2 = 1/2 and 1/4, respectively. No quantized
Hall states have ever been observed at these fillings in single layer 2D systems.

For the remainder of these lectures we shall concentrate on the caseνT = 1.
The bilayer QHE phase which develops at this filling is particularly interesting. It
possesses a remarkable broken symmetry known as spontaneous interlayer phase
coherence and may be viewed equivalently as a pseudospin ferromagnet or a
Bose condensate of interlayer excitons. Exciton condensation has been sought
for over 40 years, largely in optically-generated electron-hole plasmas. Oddly
enough, theνT = 1 quantum Hall state in bilayer 2D electron systems turns out
to be the first realization of this long-sought phenomenon.

5.1. Introduction

Equation 2.15 illustrates a specific Laughlin-like wavefunction which embodies
the electron correlations present in the QHE phase atνT = 1. In this wavefunc-
tion thez andw variables represent the (complex) coordinates of electrons in two
distinguishable layers. In fact, Eq. 2.15 represents a quantum state in which the
numbers,n1 andn2, of electrons in each 2D layer, are good quantum numbers.
Indeed, Eq. 2.15 is incompatible with any tunneling between the layers for such
tunneling will always render the number of electrons in each layer uncertain (of
course the total number of electrons in the bilayer remains fixed). While this line
of argument may lead one to think that tunneling will destroy theνT = 1 QHE,
quite the opposite is true.
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If electron-electron interactions can be ignored, tunneling alone will establish
a QHE atνT = 1. Tunneling hybridizes the degenerate individual quantum well
states into symmetric and antisymmetric combinations which are split in energy
by an amount�SAS . If the temperature is sufficiently low, and disorder is not too
severe, then�SAS provides the energy gap needed for a QHE. In this case the
ground state of the bilayer electron system is simply a single filled Landau level
of symmetric state electrons [37]. If this was the only mechanism for producing
a bilayer QHE atνT = 1, it would not garner much attention.

Coulomb interactions, both intra-layer and inter-layer, fundamentally change
the picture. It is now known, in both experiment and theory, that theνT = 1
QHE survives in the limit ofzero tunneling. The situation is crudely analogous
to theν = 1 QHE in single layers, where an (exchange-induced) energy gap
persists even in the limit of zero Zeeman energy. There is, however, a crucial
difference between the two cases. In single layers all pairs of electrons, regardless
of their spin, experience the same Coulomb repulsive force. In theνT = 1
bilayer however, electrons in opposite layers repel one another less strongly (for
a given in-plane separation) than do electrons in the same layer. This reduced
symmetry of the Coulomb interaction in bilayers has fundamental consequences.
Most obvious among these is the existence of a quantum phase transition whereby
the QHE energy gaps vanishes above a critical layer separation.

The collapse of odd-integer QHE states in bilayer 2D electron systems at large
layer separation was first observed by Boebinger,et al. [38] in strongly tunneling
samples. Subsequently, Murphy,et al [39] demonstrated that theνT = 1 QHE
persists in the zero tunneling limit if the layer separation is small enough. A very
crude, yet informative, model for this behavior is as follows. Consider the ener-
getics of just two electrons in a double layer system. Let the layer separation be
d and the in-plane separation between the electrons beR. Consider two situa-
tions, one where both electrons are in identical symmetric linear combinations of
individual layer eigenstates and one in which the two electrons are localized in
opposite layers. The former case is representative of the QHE phase in which the
total system consists of one filled Landau level of symmetric electrons, while the
latter case represents two independent half-filled Landau levels with no QHE. In
the first case we may think of each electron as consisting of two particles, each of
chargee/2, connected by a rigid rod of lengthd. Roughly speaking, the energy
of a pair of such electrons is

U1 =
e2

2

(
1

R
+ 1√

R2 + d2

)
−�SAS + Uex (5.1)

whereUex is an intra-layer exchange energy. Being negative, and of order
−e2/ǫR, Uex enhances the stability of this configuration. In contrast, the energy
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of the second configuration has no tunneling term and no intra-layer exchange:

U2 =
e2√

R2 + d2
. (5.2)

The difference in energy between the two configurations is thus

U2 − U1 =
e2

2

(
1√

R2 + d2
− 1

R

)
+�SAS − Uex . (5.3)

The first term on the right of this equation is always negative. Thus, in the ab-
sence of tunneling and exchange the non-QHE phase is always favored in this
model. With tunneling (but not exchange) the situation changes: The QHE phase
will be favored, provided�SAS is large enough for a givend. Note however,
that in the absence of exchange the criticald vanishes as�SAS → 0. Exchange
qualitatively changes this, with the QHE phase stabilized even at zero tunneling,
providedd/R is small enough [40].

Figure 10 presents the empirical phase diagram for theνT = 1 QHE in bilayer
2D electron systems [39]. Each symbol represents a different sample whose tun-
neling strength�SAS (in units of the Coulomb energye2/ǫℓ) and layer separation
d (in units of the magnetic lengthℓ) serve as coordinates. Solid symbols repre-
sent samples which do exihibit a QHE atνT = 1, while open symbols represent
samples which do not. The solid line is guide to the eye, approximating the loca-
tion of the phase boundary. Most importantly, the phase boundary intersects the
�SAS = 0 axis at a non-zero value ofd/ℓ.

5.2. Quantum hall ferromagnetism

The layer degree of freedom of electrons in double layer structures is conve-
niently encoded using a pseudospin observable,τ . Electrons definitely in one
layer are pseudospin “up” while electrons definitely in the other layer are pseudo-
spin “down”. The algebra of pseudospin is identical to that of ordinary spin. The
up and down pseudospin states are taken as eigenstates ofτz and are written as
| ↑〉 and| ↓〉, respectively. Using this notation we may re-write the wavefunction
for the bilayer QHE state atνT = 1 given in Eq. 2.15:

�(z1, z2, . . . , zn) =
∏

i<j

(zi − zj ) S| ↑↑ . . . ↑,↓↓ . . . ↓〉. (5.4)

In this equationzi covers the coordinates of all electrons in the system, irrespec-
tive of which layer they are in. The pseudospin ket vector representsn1 elec-
trons definitely in one layer andn2 electrons definitely in the other layer, with
n = n1 + n2. S is the symmetrization operator, needed here because the spatial
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Fig. 10. Empirically determined phase diagram for theνT = 1 QHE in bilayer 2D electron systems.
Solid dots represent samples which exhibit a QHE atνT = 1 while open dots represent samples
which do not. Solid line is a guide to the eye. After Ref. [39].

part of the wavefunction is completely antisymmetric. The ubiquitous gaussian
factors have been omitted for clarity, as has the real spin part of the wavefunc-
tion [37].

The wavefunction in Eq. 5.4 is an eigenstate of both total pseudospinT 2 and
its z-componentTz =

∑
i τi,z with eigenvalue(n1 − n2)/2 (which vanishes in

a balanced bilayer 2DES). With a definite number of particles in each layer, this
wavefunction is not a good choice when interlayer tunneling is present, for then
the layer index of each electron is uncertain. Tunneling is adds a termHt =
−(�SAS/2)Tx to the Hamiltonian, explicitly breaking its otherwise perfectxy-
symmetry. The tunneling energy is minimized when electrons are in symmetric
bilayer states,(| ↑〉 + | ↓〉)/

√
2. In this case Eq. 5.4 is replaced by

�(z1, z2, . . . , zn) =
∏

i<j

(zi − zj )
∏

i

1√
2
(| ↑〉 + | ↓〉)i . (5.5)

Eq. 5.5 is also a maximally polarized eigenstate of the total pseudospinT 2.
However, unlike Eq. 5.4, Eq. 5.5 is not an eigenstate ofTz, but is instead an
eigenstate ofTx with eiqenvaluen/2. In the absence of tunneling both states
have the same energy, being members of a large multiplet of degenerate states
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which, in a balanced bilayer system, have zero expectation value forTz. Indeed,
this multiplet of states is encompassed by a generalization of Eq. 5.5:

�(z1, z2, . . . , zn) =
∏

i<j

(zi − zj )
∏

i

1√
2
(| ↑〉 + eiφ | ↓〉)i . (5.6)

In this equation every electron has its pseudospin lying in thexy-plane, inclined
by the same angleφ with respect to thex-axis.

The analogy to ordinary ferromagnetism is now clear. The bilayer electron
system, at small layer separation, is in a state in which all electrons are polarized
in pseudospin space. As in an ordinary ferromagnet, this polarization is driven
by the exchange energy. In the absence of tunneling the polarization is sponta-
neous. Crudely speaking, the energy gap to the lowest-lying (charged) excitation
in the system is equal to the exchange energy cost of flipping an electron from
a symmetric to an antisymmetric pseudospin state. Tunneling explicitly breaks
thexy-symmetry of the system and favors the pseudospin lying along thex-axis.
This increases the symmetric/antisymmetric energy gap and thereby strengthens
the quantized Hall effect in the system.

The above wavefunctions are all eigenstates of total pseudospin. This is in fact
appropriate only in the limit of vanishing layer separation where the Coulomb
interaction is pseudospin invariant. At finite layer separation total pseudospin
is not a good quantum number and is subject to quantum fluctuations. If the
layer separation is sufficiently small, these fluctuations are weak and do not de-
stroy the energy gap necessary for the QHE. In this case the main effect of the
layer separation is to keep the pseudospin close to thexy-plane, thereby reduc-
ing the capacitive energy penalty of having more electrons in one layer than in
the other [41]. As the layer separation increases, the quantum fluctuations of
the pseudospin become more severe, eventually leading to the destruction of the
QHE. This is the phase transition qualitatively discussed in the preceding section.

The elementary excitations of theνT = 1 bilayer QHE state may be intuitively
understood in the ferromagnetism picture. In the absence of tunneling, the Gold-
stone theorem implies the existence of a collective mode whose energy vanishes
at zero wavevector. This neutral mode, which involves spatio-temporal oscilla-
tions of the phaseφ, is analogous to spin waves in an ordinary ferromagnet. Here
the finite layer separation leads to a linear dispersionω ∝ q, of the pseudospin
waves at smallq [42]. At larger wavevector, the mode is expected to exhibit a
roton minimum in its dispersion.

The charged excitations in the system are expected to be quite intricate. Vortex-
like structures in theφ field, known as merons and anti-merons, carry both topo-
logical and real charge (±e/2). Meron/anti-meron pairs with total chargee are
expected to dominate dissipative electrical transport at low temperatures. In-
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deed, in the absence of tunneling, these vortex pairs are expected to unbind in a
Kosterlitz-Thouless phase transition. Although not yet clearly observed in any
experiment, such a finite temperature transition is unique among quantum Hall
systems.

An early experiment by Murphy,et al. [39] provided impetus for the develop-
ment of the ferromagnetism model. Murphy observed a dramatic anomaly in the
measured charge gap of theνT = 1 QHE when a small in-plane magnetic field
componentB|| was applied. The gap was found to drop rapidly for very smallB||
and then level off. This was very surprising and suggested the existence of a hith-
erto unknown phase transition. Almost immediately, Yang,et al. [43] developed
an explanation for this behavior based upon a commensurate-incommensurate
textural phase transition in the pseudospin fieldφ. In Yang’s model, theνT = 1
QHE state takes on spiral pseudospin texture at smallB|| in order to maintain
the energetic advantage of interlayer tunneling. The spiraling, however, costs ex-
change energy owing to the gradient inφ. At a criticalB|| this cost becomes too
large and a phase transition to a new QHE phase occurs where the pseudospin
is once again uniform. The predicted values of the criticalB|| were found to be
in reasonable agreement with experiment. The initial drop in the energy gap at
smallB|| suggests that the pseudospin field is coherent over distances approach-
ing 1 µm, much larger than the mean separation between electrons. Details of
both Murphy’s experiment, Yang’s model, and the quantum Hall ferromagnetism
picture in general can be found in chapters 2 and 5 of Ref. [5].

5.3. Tunneling and interlayer phase coherence atνT = 1

Beyond the basic observation that a QHE develops atνT = 1 in closely-spaced
bilayers and the discovery of a curious dependence of the energy gap on in-plane
magnetic field, early experiments offered little direct evidence for the sponta-
neous interlayer phase coherence embodied in Eq. 5.6. According to theory,
Coulomb interactions alone are sufficient to force the electrons in the system
to assume identical quantum states possessing maximally uncertain layer index,
even when the bare tunneling matrix elements are arbitrarily small. In effect,
these interactions renormalize the single-particle tunnel splitting from essentially
zero to a value comparable to the mean Coulomb energy in the system, thereby
spontaneously imposing interlayer quantum phase coherence. From this perspec-
tive, it is clear that interlayer tunneling measurements of the type described in
section 4 should be very interesting.

Figure 11 displays a series of low temperature tunneling conductance charac-
teristics in a balanced bilayer 2DES atνT = 1. The sample once again consists of
two 18 nm GaAs quantum wells separated by a 10 nm Al0.9Ga0.1As barrier layer.
In each panel the total electron densityNT is different (having been set by gates),
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Fig. 11. Tunneling conductance characteristics atνT = 1 in a variable density bilayer 2D electron
system. For the total densities shown, the effective layer separations ared/ℓ = 2.3, 1.84, 1.78, and
1.63, in panels A through D, respectively. After Ref. [44].

but the magnetic field is adjusted to maintainνT = 1. Thus, the different densi-
ties correspond to different effective layer separations, ranging fromd/ℓ = 2.3
atNT = 10.9× 1010cm−2 down tod/ℓ = 1.63 atNT = 5.4× 1010cm−2. The
single-particle tunnel splitting�SAS in this sample is estimated to be only about
100µK, roughly one million times smaller than the mean Coulomb energye2/ǫℓ

atνT = 1.
In panel A of Fig. 11 the density is so high that the bilayer system is not in

the QHE phase and the layers are behaving essentially independently. The tunnel
spectrum displays the familiar conductance suppression around zero interlayer
bias that is discussed in section 4.3. In panel B the density is lower and the zero
bias suppression is weakened. This weakening is a result of both the reduced
Coulomb repulsion between electrons in the individual layers and the stronger
excitonic attraction between a tunneled electron and the hole it leaves behind.
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Qualitatively, however, the spectra in panels A and B are similar. The data in
panel C are different; a small peak in the tunneling conductance has appeared at
zero bias. Reducing the density (and thusd/ℓ) further causes this peak to grow
dramatically, soon becoming the dominant feature in the spectrum.

Detailed studies of the zero bias peak in the tunneling conductance reveal
several important facts. First, the peak is clearly aνT = 1 effect. Small changes
of the magnetic field destroy it and restore the suppression effect. Furthermore,
the conductance peak and the QHE both seem to develop at the same critical
layer separation, neard/ℓ ≈ 1.83 in this sample, strongly suggesting that both
phenomena reflect the same quantum phase transition. Although theνT = 1
tunneling peak qualitatively resembles the simple tunnel resonances seen at zero
magnetic field, several features sharply distinguish the two effects. For example,
while small antisymmetric changes in the density of the two layers (N1 → (NT +
δN)/2, N2 → (NT − δN)/2) shift the voltage location of the resonances seen
atB = 0, theνT = 1 peak remains locked atV = 0 [45]. In sharp contrast to
zero field tunnel resonances, both the widthŴ and heightG(0) of the νT = 1
peak exhibit a strong temperature dependence down to the lowest temperatures.
Recent experiments have revealed peak widths belowŴ = 2µV at T ∼ 25 mK,
roughly 40 times smaller than that seen atB = 0 in the same sample. Similarly,
the heightG(0) of the νT = 1 peak exceeds that seen atB = 0 by more than
two orders of magnitude. These results demonstrate tunneling peak atνT = 1 is
not governed by the simple single-particle effects operative atB = 0, but instead
reflects a deeply collective phenomenon.

What is the physical origin of the giant tunneling peak atνT = 1? What
occurs at small layer separation that overcomes the near-universal tendency for
interlayer tunneling at high magnetic field to be heavily suppressed? Although a
quantitative answer to these questions has proven elusive [46, 62, 48], the quali-
tative explanation is clear: the enhanced zero bias tunneling is a direct manifesta-
tion of spontaneous interlayer phase coherence which lies at root of the strongly
correlatedνT = 1 quantum fluid. The suppression effect ordinarily observed in
high field tunneling results from the fact that an electron attempting to tunnel in
arrives wholly uncorrelated with the strongly correlated electrons already present
in the layer. There is insufficient time available for the necessarily large number
of electrons to reconfigure themselves in order to allow the newcomer to enter at
low energy. Instead, a electron can be rapidly injected only if its energy, supplied
by the the interlayer voltageV , is large enough to simply shoulder aside nearby
electrons. AtνT = 1 this is not the case. Electrons in the system are strongly
correlated with their neighbors inboth layers. An electron attempting to tunnel
is guaranteed that no disturbance will be created by its entry. Indeed, as Eqs. 5.5
and 5.6 make clear, electrons in the condensed phase are uncertain as to which
layer they are in in the first place. These wavefunctions make clear that if an
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electron is found definitely in one layer it is necessarily true that a hole exists in
the opposite layer at the same location.

The zero bias tunneling peak observed atνT = 1 is a direct indication that
a low energy collective mode exists in the system. This mode is the Goldstone
mode of the pseudo-ferromagnetic ground state. In the presence of a small in-
terlayer tunneling matrix element (always present in real samples) the Goldstone
mode actually acquires a tiny gap at zero wavevectorq. This gap allows the
mode to transfer charge between the two layers atq = 0 and thereby influence
the conductance. In effect, the collective mode ensures that may electrons tunnel
simultaneously. Indeed, a major challenge for theory is to understand why the
tunneling conductance at zero bias is notinfinite and the bilayer semiconductor
device actually a Josephson junction [46, 62, 48].

The expected linear dispersion of the Goldstone mode has in fact been ob-
served in experiment. By applying a small in-plane magnetic field component
B||, interlayer tunneling characteristics become sensitive to spectral features at
the non-zero wavevectorq = eB||d/�. If there is a collective mode which dis-
perses linearly with wavevector,ω = cq, then some feature should be detected
in the tunnel spectrum at voltageeV = �cq = ceB||d. Spielman,et al. [49]
observed weak satellites (see Fig. 12) in the tunneling conductance spectrum and
from them determined the collective mode velocity to be aboutc ≈ 14 km/sec,
in good agreement with theory. The weakness of the features, and the persistence
of a substantial zero bias peak out toB|| ∼ 0.6 T are puzzling facts and suggest
that disorder plays an important role in limiting the pseudospin coherence length
in the bilayer system.

5.4. Excitonic superfluidity atνT = 1

Perhaps the most dramatic prediction about the coherentνT = 1 bilayer QHE
phase is that of counter-flow superfluidity [50, 51]. While this new dissipation-
less mode of transport may be understood completely within the ferromagnetism
picture (for the supercurrents then correspond to dissipationless pseudo-spin cur-
rents), a more intuitive understanding can be achieved via the exciton condensa-
tion point of view [52]. In second-quantized notation the ground state given in
Eq. 5.6 is written

� =
∏

k

1√
2
(c

†
k,T + eiφc

†
k,B)|0〉 (5.7)

where the product is over all single-particle momentum statesk in the lowest
Landau level andc†k,T andc†k,B create electrons with momentumk in the top and
bottom layers, respectively. The ket|0〉 is the vacuum state, here representing
empty conduction band Landau levels in each layer. If, however, one starts with
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Fig. 12. Tunnel spectra atνT = 1 andT = 25 mK in the strongly coupled phase atd/ℓ = 1.61, as a
function of in-plane magnetic field. Inset shows expanded views of low energy region atB|| = 0.07,
0.11, 0.15, 0.24, and 0.35T (bottom to top). Dots indication positions of satellite resonances. After
Ref. [49].

a vacuum state|0′〉 consisting of no electrons in the bottom layer and a single
filled Landau level in the top layer then we can re-write Eq. 5.7 as

� =
∏

k

1√
2
(1+ eiφc†k,Bck,T )|0′〉. (5.8)

In this equation the operatorc†k,Bck,T creates an electron-hole pair, with the elec-
tron in the bottom layer and the hole in the top layer. The wavefunction is very
similar to the standard BCS wavefunction describing conventional superconduc-
tors, only the “Cooper pairs” in the present case are charge neutral excitons. The
“coherence factors”uk andvk essential to BCS theory are here equal to 1/

√
2, in-

dependent ofk. In an ordinary superconductor pairing occurs only in the vicinty
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of the Fermi surface; in our case the non-interacting system consists of disper-
sionless Landau levels and thus allk states are treated on the same footing.

It is apparent from Eq. 5.8 that the ground state of a closely-spaced bilayer 2D
electron system may be viewed as a BCS-like condensate of interlayer excitons.
As in a superconductor, the language of Bose condensation may also be used,
bearing in mind that the heavily overlapping fermionic pairs (here an electron
and hole) are far from being point-like bosons [53].

Exciton condensation in semiconductors has been part of the literature for 40
years, the first concrete suggestions appearing shortly after the advent of BCS
theory [54]. Since that time herculean efforts have been made in order to find
such a novel state of matter, almost entirely using optically-generated electron-
hole pairs. Recent research has concentrated on optically-generated indirect ex-
citons in coupled quantum wells, and several interesting observations have been
made [55, 56]. Nevertheless, clear signatures of excitonic Bose condensation in
such systems have remained elusive.

In our case the valence band is, in effect, replaced by a single filled Landau
level in one of the layers and the conduction band is the empty lowest Landau
level in the other layer. Optical excitation is not needed since these two bands
are degenerate to begin with. The excitons here do not optically recombine, thus
eliminating the most serious obstacle to establishing a cold gas of excitons in
equilibrium.

The collective mode spectrum studied experimentally by tunneling is rooted
in the stiffness of the system against spatial variations in the phaseφ. This stiff-
ness is due to the exchange energy cost of having nearby pseudospins not ex-
actly parallel. While these collective modes transport nonet electrical charge
through the system, they do involve the motion of excitons. A uniform phase
gradient,∇φ = const., corresponds to a uniform flow of excitons with velocity
vex = ρs∇φ/(�NT ), whereρs ∼ 0.5K is the pseudospin stiffness [43]. In an
ideal sample at temperatures below the Kosterlitz-Thouless transition, the lack of
unpaired vortices makes it very difficult to relax such currents and superfluidity
should result [57].

5.5. Detecting excitonic superfluidity

Excitonic currents, whether superfluid or not, present an interesting experimental
challenge. Lacking charge, how does one excite and detect such currents? The
answer to this is simple in principle: A uniform flow of excitons in a bilayer
systems implies the existence ofcounterflowingelectrical currents in the individ-
ual layers. Thus, if equal but opposite currents are driven through the bilayer at
νT = 1, and the layer separation is sufficiently small, these currents will be car-
ried by excitons in the condensate rather than by independent charged excitations
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Fig. 13. Schematic diagram of sample geometry for counterflow transport measurements. Solid and
dashed lines indicate current flow in different layers. After Ref. [58].

in the individual layers. If this is the case, such an experiment ought to reveal
clear signs of the expected superfluidity.

The ability to make separate electrical connections to the individual layers has
allowed us to make exactly this measurement. Fig. 13 depicts the experimental
arrangement. Current is driven into the sample at contact 1 and is restricted to
just one of the layers using appropriate gates (not shown). This current, indicated
by the solid line, flows through the body of the device and exits via contact 2. The
current is then sent back through the device in the other 2D layer, using contacts
3 and 4, as indicated by the dashed line [59]. Obviously, this current can be made
to run in the same direction as that in the first layer or, for counterflow, in the
opposite direction. Contacts 5,6 and 7 allow for measuring the longitudinal and
Hall voltages that develop under counterflow or parallel flow conditions. Most
importantly, these voltage probes are connected to one layer or the other,not
both.

The most important results of these experiments are shown in Fig. 14. The
solid and dotted lines are the Hall (Rxy) and longitudinal (Rxx) resistances (volt-
ages divided by current in one layer), respectively, in the counterflow configura-
tion. Over most of the magnetic field range these resistances reveal the ordinary
signatures of the quantum Hall effect: plateaus inRxy and deep minima or zeroes
in Rxx . At these magnetic fields the two layers are effectively independent and
the observed resistances reflect the familiar quantum Hall physics of the layer to
which the voltage probes are connected; the current flowing in the adjacent layer
having no effect.

For the sample used in Fig. 14νT = 1 occurs atB ≈ 2.0 T. Given that the
center-to-center quantum well separation in the sample is 28 nm, the effective
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Fig. 14. Vanishing Hall (solid) and longitudinal (dotted) resistances atνT = 1 atT = 30 mK and
d/ℓ = 1.54 in a bilayer 2D electron system.

layer separation at this magnetic field isd/ℓ = 1.54. At this d/ℓ the bilayer
2DES is well within the excitonic (or pseudo-ferromagnetic) phase and the two
layers are strongly coupled. Counterflowing electrical currents in the system
ought to be transported by excitons. The data in Fig. 14 strongly support this:
The Hall resistanceRxy measured in one layer (it does not matter which one) has
fallen to nearly zero. At the same time, the longitudinal resistanceRxx is also es-
sentially zero. This is a remarkable result! A semiconducting system containing
a low density of electrons displays no Hall effect in spite of the presence of a large
magnetic field. Exciton transport naturally explains this; the net Lorentz force on
these neutral particles is zero, the force on the electron exactly cancelling that on
the hole.

The vanishing of all components of the resistivity tensor measured in counter-
flow strongly suggests a type of superfluidity, or counter-current superconductiv-
ity, is present. To study this more carefully, the full temperature dependence of
bothRxy andRxx were measured. From these the longitudinal conductivityσxx
could be determined. Figure 15 displays these results, for both counterflow and
conventional parallel flow through the two layers [58].

For parallel flow, Fig. 15 reveals the expected behavior.Rxy is essentially con-
stant and equal to 2h/e2 [60]. Rxx vanishes asT → 0 owing to the presence of an
energy gap for charged excitations. Parallel currents, of course, cannot be carried
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Fig. 15. Temperature dependence of longitudinal and Hall resistances in parallel and counterflow at

νT = 1. Panel c shows the deduced conductivitiesσ
||
xx andσCFxx . After Ref. [58].

by the excitonic condensate, but must instead be transported (in edge channels)
by these excitations. SinceRxy remains constant, the longitudinal conductivity

σ
||
xx vanishes in the low temperature limit. This is the ordinary QHE result.

In counterflowbothRxx andRxy appear to vanish at low temperature. The
computed conductivityσCFxx risessteadily as the temperature falls. Indeed, at
the lowest temperatures the counterflow conductivity has significantly exceeded
the very high conductivity the 2D electron systems in this sample exhibit at zero
magnetic field!

The vanishing Hall resistance in counterflow is compelling evidence that
charge neutral excitons transport the current. This is a key observation. The
fact that the conductivity of these excitons appears to diverge asT → 0, rather
than saturating as the conductivity of a normal metal would, is a strong indicator
of collective behavior of the exciton gas. On the other hand, the conductivity in
counterflow is neither infinite nor non-linear in the current. This is not the ex-
pected Kosterlitz-Thouless behavior. The origin of the excess dissipation in the
counterflow channel is a major outstanding problem for the theory of the exci-
tonic phase. Conventional wisdom suggests that there must be unpaired vortices
in the system or, equivalently, that the effective Kosterlitz-Thouless transition
temperature is zero or at least very small. The same conventional wisdom places
the blame for this slight blemish in an otherwise textbook demonstration of ex-
citonic superfluidity on the inevitable disorder in the sample. Recent theoretical
work has found strong numerical evidence for such unpaired vortices, and there
are even predictions of intriguing “Bose glass” phases in which true superfluidity
only exists atT = 0 [61, 62, 63].
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6. Conclusions

These notes have highlighted but a few of the many interesting aspects of dou-
ble layer 2D electron systems. It is my feeling that the field is as yet young and
many challenges lie ahead. On the immediate theoretical side it should be now
clear to the reader that while a good qualitative picture of the excitonic phase
at νT = 1 exists, the quantitative situation is poor. Excess dissipation in the
counterflow channel, the persistence of the Josephson-like tunneling peak to sig-
nificant in-plane magnetic field strengths, are only the most obvious outstanding
questions. BeyondνT = 1, there are several virtually unexplored directions to
pursue. AtνT = 2 an intricate array of collective phases which mix the true spin
and pseudospin degrees of freedom are expected. Very few experiments have ad-
dressed this system. AtνT = 1/3 there is the likelihood that two distinct QHE
phases exist, one possessing interlayer phase coherence and the other not, in ad-
dition to a compressible phase at large layer separation. AtνT = 1/2 Coulomb
drag experiments might be able to cleanly distinguish between the Halperin state
given in Eq. 2.14 and other possible ground state wavefunctions. And the list
goes on. Hopefully some of the students who attended the 2004 Les Houches
summer school, or otherwise came across these notes, will take up the challenge.
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1. Introduction

1.1. Motivation and outline

These lectures are devoted to the Keldysh formalism for the treatment of out–
of–equilibrium many–body systems. The name of the technique takes its origin
from the 1964 paper of L. V. Keldysh [1]. Among the earlier approaches that are
closely related to the Keldysh technique, one should mention J. Schwinger [2]
and R. P. Feynman and F. L. Vernon [3]. The classical counterparts of the Keldysh
technique are extremely useful and interesting on their own. Among them the
Wyld diagrammatic technique [4] and the Martin–Siggia–Rose method [5] for
stochastic systems.

There are a number of pedagogical presentations of the method [6–8]. The
emphasis of these notes is on the functional integration approach. It makes the
structure of the theory clearer and more transparent. The notes also cover modern
applications such as the Usadel equation and the nonlinearσ–model. Great atten-
tion is devoted to exposing connections to other techniques such as the equilib-
rium Matsubara method and the classical Langevin and Fokker-Planck equations,
as well as the Martin–Siggia–Rose technique.

The Keldysh formulation of the many–body theory is useful for the following
tasks:
• Treatment of systems that are not in thermal equilibrium (either due to the

presence of external fields, or in a transient regime) [1,6,8].
• Calculation of the full counting statistics of a quantum mechanical observable

(as opposed to an average value or correlators) [9,10].
• As an alternative to the replica and the supersymmetry methods in the theory

of disordered and glassy systems [11–15].
• Treatment of equilibrium problems, in which the Matsubara analytical con-

tinuation may prove to be cumbersome.
The outline of these lectures is as follows. The technique is introduced and ex-

plained for the simplest possible system, that of a single bosonic state (harmonic
oscillator), which is later generalized to real (phonons), or complex (atoms)
bosonic fields. Their action and Green functions are introduced in Chapter 2.
Boson interactions, the diagrammatic technique and the quantum kinetic equa-
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tion are treated in Chapter 3. Chapter 4 is devoted to a bosonic particle in contact
with a dissipative environment (bath). This example is used to establish con-
nections with the classical methods (Langevin and Fokker–Planck) as well as
with the quantum equilibrium technique (Matsubara). Fermions and fermion–
boson systems are treated in Chapter 5. Covered topics include the random phase
approximation and the quantum kinetic equation. Non–interacting fermions in
the presence of quenched disorder are treated in Chapter 6 with the help of the
Keldysh non-linearσ -model.

1.2. Closed time contour

The standard construction of the zero temperature (or equilibrium) many–body
theory (see e.g. [7, 16]) involves the adiabatic switching “on” of interactions
at a distant past, and “off” at a distant future. A typical correlation function
has the form of a time ordered product of operators in the Heisenberg repre-
sentation:C(t, t ′) ≡ 〈0|T Â(t)B̂(t ′)|0〉, where|0〉 is the ground-state (or ther-
mal equilibrium state) of theinteracting Hamiltonian, Ĥ . This state is sup-
posed to be given by|0〉 = Ŝ(0,−∞)|〉0, where|〉0 is the (known) ground-state
of the non–interactingHamiltonian,Ĥ0, at t = −∞. The Ŝ–matrix operator

Ŝ(t, t ′) = eiĤ0te−iĤ (t−t
′)e−iĤ0t

′
describes the evolution due to the interaction

Hamiltonian,Ĥ − Ĥ0, and is thus responsible for the adiabatic switching “on”
of the interactions. An operator in the Heisenberg representation is given by
Â(t) = [Ŝ(t,0)]†Â(t)Ŝ(t,0) = Ŝ(0, t)Â(t)Ŝ(t,0), whereÂ(t) is the operator
in the interaction representation. As a result, the correlation function takes the
form:

C(t, t ′) = 0〈| T Ŝ(−∞,0)Ŝ(0, t)Â(t)Ŝ(t, t ′)B̂(t ′)Ŝ(t ′,0)Ŝ(0,−∞)|〉0

= 0〈| T Â(t)B̂(t ′)Ŝ(∞,−∞)|〉0
0〈| Ŝ(∞,−∞)|〉0

, (1.1)

where one employed:0〈| Ŝ(−∞,0) = e−iL 0〈| Ŝ(∞,−∞)Ŝ(−∞,0), and in-
terchanged the order of operators, which is always allowed under theT –operation
(time ordering). The idea is that, starting att = −∞ at the ground (or equi-
librium) state,|〉0, of the non–interacting system and then adiabatically switch-
ing interactions “on” and “off”, one arrives att = +∞ at the state|∞〉. The
crucial assumptionis that this state is unique, independent of the details of the
switching procedure and is again the ground–state, up to a possible phase factor:
eiL = 0〈| |∞〉 = 0〈| Ŝ(∞,−∞)|〉0.

Clearly this isnot the case out of equilibrium. Starting from some arbitrary
non–equilibrium state and then switching interactions “on” and “off”, the system
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Fig. 1. The closed time contourC. Dots on the forward and the backward branches of the contour
denote discrete time points.

evolves to some unpredictable state. The latter depends, in general, on the pecu-
liarities of the switching procedure. The entire construction sketched above fails
since we have no knowledge of the final state.

One would like, thus, to build a theory that avoids references to the state at
t = +∞. Since traces are calculated, one still needs to know the final state.
Schwinger’s suggestion is to take the final state to be exactly the same as the
initial one. The central idea is to let the quantum system evolve first in the for-
ward direction in time and then to “unwind” its evolution backwards, playing the
“movie” in the backward direction. One ends up, thus, with the need to construct
a theory with the time evolution along the two–branch contour,C, depicted on
Fig. 1. Then, no matter what the state att = +∞ is, after the backward evolu-
tion the system returns back to the known initial state. As a result, the unitary
evolution operator,̂Ut,t ′ ≡ e−iH(t−t

′), along such a closed time contour is always
a unit operator:

ÛC ≡ 1. (1.2)

In this construction there is no switching of interactions in the future. Both
switchings “on” and “off” take place in the past: “on” – at the forward branch of
the contour and “off” – at the backward one. This way the absence of information
about thet = +∞ state is bypassed. There is a price to pay for such luxury: a
doubling of degrees of freedom. Indeed at every moment of time one needs
to specify a field residing on the forward branch as well as on the backward
branch of the contour. As a result, the algebraic structure of the theory is more
complicated. The difficulties may be minimized, however, by a proper choice of
variables based on the internal symmetries of the theory.
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2. Free boson systems

2.1. Partition function

Let us consider the simplest possible many–body system: bosonic particles oc-
cupying a single quantum state with an energyω0. It is completely equivalent, of
course, to a harmonic oscillator. The secondary quantized Hamiltonian has the
form:

Ĥ = ω0 a
†a, (2.1)

wherea† anda are bosonic creation and annihilation operators with the commu-
tation relation[a, a†] = 1. Let us define the “partition function” as:

Z = Tr{ÛC ρ̂}
Tr{ρ̂} . (2.2)

If one assumes that all external fields are exactly the same on the forward and
backward branches of the contour, thenÛC = 1 and thereforeZ = 1.

The initial density matrixρ̂ = ρ̂(Ĥ ) is some operator–valued function of the
Hamiltonian. To simplify the derivations one may choose it to be the equilibrium
density matrix,ρ̂0 = exp{−β(Ĥ−µN̂)} = exp{−β(ω0−µ)a†a}. Since arbitrary
external perturbations may be switched on (and off) at a later time, the choice of
the equilibrium initial density matrix does not prevent one from treating non–
equilibrium dynamics. For the equilibrium initial density matrix:

Tr{ρ̂0} =
∞∑

n=0

e−β(ω0−µ)n = [1− ρ(ω0)]−1, (2.3)

whereρ(ω0) = e−β(ω0−µ). An important point is that, in general, Tr{ρ̂} is an
interaction– and disorder–independentconstant. Indeed, both interactions and
disorder are supposed to be switched on (and off) on the forward (backward)

Reminder: The bosonic coherent state|φ〉 (〈φ| ), parametrized by a complex numberφ,
is defined as a right (left) eigenstate of the annihilation (creation) operator:
a|φ〉 = φ|φ〉 (〈φ|a† = 〈φ|φ̄ ).
The matrix elements of anormally orderedoperator, such as the Hamiltonian, take the form
〈φ|Ĥ (a†, a)|φ′〉 = H(φ̄, φ′)〈φ|φ′〉.
The overlap between two coherent states is [17]〈φ|φ′〉 = exp{φ̄φ′}.
Since the coherent state basis is overcomplete, the trace of an operator,Â, is calculated with

the weight: Tr{Â} = π−1 ∫∫ d(ℜφ) d(ℑφ) e−|φ|2 〈φ|Â|φ〉.
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parts of the contour some time after (before)t = −∞. This constant is, therefore,
frequently omitted – it never causes a confusion.

The next step is to divide theC contour into(2N − 2) time steps of lengthδt ,
such thatt1 = t2N = −∞ andtN = tN+1 = +∞ as shown in Fig. 1. One then
inserts the resolution of unity in the coherent state overcomplete basis [17]

1=
∫∫

d(ℜφj ) d(ℑφj )
π

e−|φj |
2 |φj 〉〈φj | (2.4)

at each pointj = 1,2, . . . ,2N along the contour. For example, forN = 3 one
obtains the following sequence in the expression for Tr{ÛC ρ̂0} (read from right
to left):

〈φ6|Û−δt |φ5〉〈φ5|Û−δt |φ4〉〈φ4|1̂|φ3〉〈φ3|Û+δt |φ2〉〈φ2|Û+δt |φ1〉〈φ1|ρ̂0|φ6〉, (2.5)

whereÛ±δt is the evolution operator during the time intervalδt in the positive
(negative) time direction. Its matrix elements are given by:

〈φj+1|Û±δt |φj 〉 ≡ 〈φj+1|e∓iĤ (a
†,a)δt |φj 〉 ≈ 〈φj+1|φj 〉 e∓iH(φ̄j+1,φj )δt , (2.6)

where the last approximate equality is valid up to the linear order inδt . Ob-
viously this result is not restricted to the toy example, Eq (2.1), but holds for
any normally–orderedHamiltonian. Notice that there is no evolution operator
inserted betweentN andtN+1. Indeed, these two points are physically indistin-
guishable and thus the system does not evolve during this time interval.

Exercise:Show that〈φ|eκa†a |φ′〉 = exp
{
φ̄φ′eκ

}
.

Puttingκ = −β(ω0 − µ), one finds〈φ1|ρ̂0|φ2N 〉 = exp
{
φ̄1φ2Nρ(ω0)

}
.

Combining all such matrix elements along the contour together with the expo-
nential factors from the resolutions of unity, Eq. (2.4), one finds for the partition
function (2.2):

Z = 1

Tr{ρ0}

∫∫ 2N∏

j=1

[
d(ℜφj ) d(ℑφj )

π

]
e

i
2N∑

j,j ′=1
φ̄jG

−1
jj ′φj ′

, (2.7)
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where the 2N × 2N matrix iG−1
jj ′ stands for:

i G−1
jj ′ ≡




−1 ρ(ω0)

1−h −1
1−h −1

1 −1
1+h −1

1+h −1



, (2.8)

andh ≡ iω0δt . It is straightforward to evaluate the determinant of such a matrix

det
[
iG−1] = 1−ρ(ω0)(1−h2)N−1 ≈ 1−ρ(ω0) e

(ω0δt )
2(N−1) → 1−ρ(ω0),(2.9)

where one has used thatδ2
t N → 0 if N → ∞ (indeed, the assumption was

δtN → const). Employing Eqs. (A.1) and (2.3), one finds:

Z = det−1[iG−1
]

Tr{ρ0}
= 1, (2.10)

as it should be, of course. Notice that keeping the upper–right element of the
discrete matrix, Eq. (2.8), is crucial to maintain this normalization identity.

One may now take the limitN →∞ and formally write the partition function
in the continuous notations,φj → φ(t):

Z =
∫
Dφ̄φ e iS[φ̄,φ] =

∫
Dφ̄φ exp



i

∫

C

[
φ̄(t)G−1φ(t)

]
dt



 , (2.11)

where according to Eqs. (2.7) and (2.8) the action is given by

S[φ̄, φ] =
2N∑

j=2

[
iφ̄j

φj − φj−1

δtj
− ω0φ̄jφj−1

]
δtj +i φ̄1

(
φ1−ρ(ω0)φ2N

)
,(2.12)

whereδtj ≡ tj − tj−1 = ±δt . Thus a continuous form of the operatorG−1 is:

G−1 = i∂t − ω0. (2.13)

It is important to remember that this continuous notation is only an abbreviation
that represents the large discrete matrix, Eq. (2.8). In particular, the upper–right
element of the matrix (the last term in Eq. (2.12)), that contains the information
about the distribution function, is seemingly absent in the continuous notations.

To avoid integration along the closed time contour, it is convenient to split
the bosonic fieldφ(t) into the two componentsφ+(t) andφ−(t) that reside on
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the forward and the backward parts of the time contour correspondingly. The
continuous action may then be rewritten as

S =
∞∫

−∞
dt φ̄+(t)[i∂t − ω0]φ+(t)−

∞∫

−∞
dt φ̄−(t)[i∂t − ω0]φ−(t), (2.14)

where the relative minus sign comes from the reverse direction of the time inte-
gration on the backward part of the contour. Once again, the continuous notations
are somewhat misleading. Indeed, they create an undue impression that theφ+(t)
andφ−(t) fields are completely independent from each other. In fact, they are
connected due to the presence of the non–zero off–diagonal blocks in the discrete
matrix, Eq. (2.8).

2.2. Green functions

One would like to define the Green functions as:

G(t, t ′) = −i
∫
Dφ̄φ eiS[φ̄,φ] φ(t)φ̄(t ′) ≡ −i〈φ(t)φ̄(t ′)〉, (2.15)

where both time arguments reside somewhere on the Keldysh contour. Notice
the absence of the factorZ−1 in comparison with the analogous definition in the
equilibrium theory [17]. Indeed in the present constructionZ = 1. This seem-
ingly minor difference turns out to be the major issue in the theory of disordered
systems, Chapter 6.

According to the general property of Gaussian integrals (see Appendix A), the
Green function is the inverse of the correlator matrixG−1, Eq. (2.8), standing in
the quadratic action. Thus, one faces the unpleasant task of inverting the large
2N × 2N matrix, Eq. (2.8). It may seem more attractive to invert the differential
operator, Eq. (2.13). Such an inversion, however, is undefined due to the presence
of the zero mode (∼ e−iω0t ). The necessary regularization is provided by the
off–diagonal blocks of the discrete matrix. The goal is to develop a formalism
that avoids dealing with the large discrete matrices and refers to the continuous
notations only.

The easiest way to proceed is to recall [17] that the Green functions are traces
of time–orderedproducts of the field operators (in the Heisenberg representa-
tion), where the ordering is done along the contourC. Recalling also that the
time arguments on the backward branch are alwaysafter those on the forward,
one finds:
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〈φ+(t)φ̄−(t ′)〉 ≡ iG<(t, t ′) =
Tr{a†(t ′)a(t)ρ̂0}

Tr{ρ̂0}

= Tr{eiĤ t ′a†eiĤ (t−t
′)a e−iĤ t ρ̂0}

Tr{ρ̂0}

= e−iω0(t−t ′)

Tr{ρ̂0}

∞∑

m=0

m[ρ(ω0)]m = ne−iω0(t−t ′);

〈φ−(t)φ̄+(t ′)〉 ≡ iG>(t, t ′) =
Tr{a(t)a†(t ′)ρ̂0}

Tr{ρ̂0}

= Tr{eiĤ taeiĤ (t ′−t)a† e−iĤ t
′
ρ̂0}

Tr{ρ̂0}

= eiω0(t
′−t)

Tr{ρ̂0}

∞∑

m=0

(m+ 1)[ρ(ω0)]m = (n+ 1)e−iω0(t−t ′);

〈φ+(t)φ̄+(t ′)〉 ≡ iGT (t, t ′) =
Tr{T [a(t)a†(t ′)]ρ̂0}

Tr{ρ̂0}
(2.16)

= θ(t − t ′)iG>(t, t ′)+ θ(t ′ − t)iG<(t, t ′);

〈φ−(t)φ̄−(t ′)〉 ≡ iGT̃ (t, t ′) =
Tr{T̃ [a(t)a†(t ′)]ρ̂0}

Tr{ρ̂0}
= θ(t ′ − t)iG>(t, t ′)+ θ(t − t ′)iG<(t, t ′);

where the symbolsT and T̃ denote time–ordering and anti–time–ordering cor-
respondingly. Hereafter the time arguments reside on the open time axist ∈] −
∞,∞[. The Planck occupation numbern stands forn(ω0) ≡ ρ(ω0)/(1−ρ(ω0)).

Notice the presence of non–zero off–diagonal Green functions〈φ−φ̄+〉 and
〈φ+φ̄−〉. This is seemingly inconsistent with the continuous action, Eq. (2.14).
This is due to the presence of the off–diagonal blocks in the discrete matrix, that
are lost in the continuous notations. The existence of the off–diagonal Green
functions does not contradict to continuous notations. Indeed,[i∂t −ω0]G>,< =
0, while [i∂t − ω0]GT ,T̃ = ±δ(t − t ′). Therefore in the obvious 2× 2 matrix
notationsG−1 ◦ G = 1, as it should be. The point is that the inverse of the
operator[i∂t − ω0] is not well-defined (due to the presence of the eigenmode
(∼ exp{−iω0t}) with zero eigenvalue). A regularization must be specified and
the off-diagonal blocks of the discrete matrix do exactly this.

The θ–function in Eq. (2.16) is the usual Heaviside step function. There is
an uncertainty, however, regarding its value at coinciding time arguments. To
resolve it, one needs to refer to the discrete representation one last time. Since
the fieldsφ̄ always appear one time stepδt after the fieldsφ on the Keldysh
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contour, cf. Eq. (2.6), the proper convention is:

GT (t, t) = GT̃ (t, t) = G<(t, t) = n. (2.17)

Obviously not all four Green functions defined above are independent. Indeed, a
direct inspection shows that fort �= t ′:

GT +GT̃ = G> +G<. (2.18)

One would like therefore to perform a linear transformation of the fields to benefit
explicitly from this relation. This is achieved by the Keldysh rotation.

2.3. Keldysh rotation

Define new fields as

φcl(t) =
1√
2

(
φ+(t)+ φ−(t)

)
; φq(t) =

1√
2

(
φ+(t)− φ−(t)

)
(2.19)

with the analogous transformation for the conjugated fields. The subscripts“cl”
and“q” stand for theclassicaland thequantumcomponents of the fields corre-
spondingly. The rationale for these notations will become clear shortly. First, a
simple algebraic manipulation of Eq. (2.16) shows that

−i〈φα(t)φ̄β(t ′)〉 ≡ Ĝαβ =
(
GK(t, t ′) GR(t, t ′)
GA(t, t ′) 0

)
, (2.20)

where hereafterα, β = (cl, q). The cancellation of the(q, q) element of this ma-
trix is a manifestation of identity (2.18). SuperscriptsR,A andK stand for the
retarded, advancedandKeldyshcomponents of the Green function correspond-
ingly. These three Green functions are the fundamental objects of the Keldysh
technique. They are defined as

GR(t, t ′) = 1

2

(
GT −GT̃ −G< +G>

)
= θ(t − t ′)(G> −G<);

GA(t, t ′) = 1

2

(
GT −GT̃ +G< −G>

)
= θ(t ′ − t)(G< −G>); (2.21)

GK(t, t ′) = 1

2

(
GT +GT̃ +G> +G<

)
= G< +G>.

In the discrete representation each of these three Green functions is repre-
sented by anN × N matrix. Since bothG< andG> are, by definition, anti-
Hermitian (cf. Eq. (2.16)), Eq. (2.21) implies:

GA =
[
GR

]†
GK = −[GK ]†, (2.22)
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Fig. 2. Graphic representation ofGR , GA, andGK correspondingly. The full line represents the
classical field component,φcl , while the dashed line – the quantum component,φq .

where the Hermitian conjugation includes complex conjugation, as well as trans-
position of the time arguments. The retarded (advanced) Green function is a
lower (upper) triangular matrix. Due to the algebra of triangular matrices, a prod-
uct of any number of upper (lower) triangular matrices is again an upper (lower)
triangular matrix. This leads to the simple rule:

GR1 ◦GR2 ◦ . . . ◦GRl = GR ;
GA1 ◦GA2 ◦ . . . ◦GAl = GA , (2.23)

where the circular multiplication signs are understood as integrations over inter-
mediate times (discrete matrix multiplication). At coinciding time arguments,
one finds (cf. Eqs. (2.17) and (2.21)):

GR(t, t)+GA(t, t) = 0. (2.24)

Although in the discrete representation bothGR andGA do contain non–zero
(pure imaginary, due to Eqs. (2.22), (2.24)) main diagonals (otherwise the matrix
Ĝ is not invertible), the proper continuous convention is:θ(0) = 0. The point
is that in any diagrammatic calculation,GR(t, t) andGA(t, t) always come in
symmetric combinations and cancel each other due to Eq. (2.24). It is thus a
convenient and noncontradictory agreement to takeθ(0) = 0.

It is useful to introduce graphic representations for the three Green functions.
To this end, let us denote the classical component of the field by a full line and
the quantum component by a dashed line. Then the retarded Green function is
represented by a full-arrow-dashed line, the advanced by a dashed-arrow-full line
and the Keldysh by full-arrow-full line, see Fig. 2. Notice that the dashed-arrow-
dashed line that would represent the〈φq φ̄q〉 Green function is identically zero
due to identity (2.18). The arrow shows the direction fromφα towardsφ̄β .

For the single bosonic state (cf. Eq. (2.16)):G> = −i(n + 1)e−iω0(t−t ′) and
G< = −ine−iω0(t−t ′), wheren = n(ω0) = ρ(ω0)/(1 − ρ(ω0)) is the Planck
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occupation number (since the system is non–interacting the initial distribution
function does not evolve). Therefore:

GR(t, t ′) = −iθ(t − t ′) e−iω0(t−t ′);
GA(t, t ′) = iθ(t ′ − t) e−iω0(t−t ′); (2.25)

GK(t, t ′) = −i(1+ 2n(ω0)) e
−iω0(t−t ′).

Notice that the retarded and advanced components contain information only about
the spectrum and are independent of the occupation number, whereas the Keldysh
component does depend on it. Such a separation is common for systems that are
not too far from thermal equilibrium. Fourier transforming with respect to(t−t ′)
to the energy representation, one finds:

GR(A)(ǫ)= (ǫ − ω0 ± i0)−1; (2.26)

GK(ǫ) = (1+ 2n(ω0))(−2πi)δ(ǫ − ω0) = (1+ 2n(ǫ))(−2πi)δ(ǫ − ω0).

Therefore for the case of thermal equilibrium one notices that

GK(ǫ) = coth
ǫ

2T

(
GR(ǫ)−GA(ǫ)

)
. (2.27)

The last equation constitutes the statement of thefluctuation–dissipation theorem
(FDT). As is shown below, the FDT is a general property of thermal equilibrium
that is not restricted to the toy example considered here. It implies a rigid relation
between the response and correlation functions.

In general, it is convenient to parameterize the anti-Hermitian (see Eq. (2.22))
Keldysh Green function by a Hermitian matrixF = F †, as:

GK = GR ◦ F − F ◦GA, (2.28)

whereF = F(t ′, t ′′) and the circular multiplication sign implies integration over
the intermediate time (matrix multiplication). The Wigner transform (see below),
f (τ, ǫ), of the matrixF is referred to as the distribution function. In thermal
equilibrium:f (ǫ) = coth(ǫ/2T ).

2.4. Keldysh action and causality

The Keldysh rotation from the (φ+, φ−) field components to (φcl, φq ) consider-
ably simplifies the structure of the Green functions (cf. Eqs. (2.16) and (2.20)). It
is convenient, therefore, to write the action in terms ofφcl, φq as well. A simple
way of doing this is to apply the Keldysh rotation, Eq. (2.19), to the continu-
ous action, Eq. (2.14), written in terms ofφ+, φ−. However, as was discussed
above, the continuous action, Eq. (2.14), loses the crucial information about the
off–diagonal blocks of the discrete matrix, Eq. (2.8). To keep this information,
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one may invert the matrix of Green functions, Eq. (2.20), and use the result as the
correlator in the quadratic action. The inversion is straightforward:

Ĝ−1 =
(
GK GR

GA 0

)−1

=
(

0 [G−1]A[
G−1

]R [G−1]K
)
, (2.29)

where the three components of the inverted Green function, labelled in advance
asA,R andK, satisfy:

[
G−1]R(A)= [GR(A)]−1 = (i∂t − ω0 ± i0)δ(t − t ′); (2.30)
[
G−1]K = −[GR]−1 ◦GK ◦ [GA]−1 = [GR]−1 ◦ F − F ◦ [GA]−1,

where the parameterization (2.28) was employed in the last line. It is easy to
see that[GR]−1 and[GA]−1 are lower and upper triangular matrices correspond-
ingly, thus justifying their superscripts. The continuous notations may create the

impression that
[
G−1

]K = (2i0)F and thus may be omitted. One should remem-
ber, however, that this component is non–zero in the discrete form and therefore
it is important to acknowledge its existence (even if it is not written explicitly).

Once the correlator Eqs. (2.29), (2.30) is established, one may immediately
write down the corresponding action:

S[φcl, φq ] =
∫ ∞∫

−∞
dtdt ′ (φ̄cl, φ̄q)t

(
0 [GA]−1

[
GR

]−1 [G−1]K
)

t,t ′

(
φcl
φq

)

t ′
, (2.31)

where it is acknowledged that the correlator is, in general, a non–local function
of time. The Green functions, Eq. (2.20), follow from the Gaussian integral
with this action, by construction. Notice that the presence of[G−1]K = (2i0)F
(with a positive imaginary part) is absolutely necessary for the convergence of
the corresponding functional integral.

The structure of the Gaussian action given by Eq. (2.31) is very general and
encodes regularization of the functional integral. Since the Keldysh component
carries the information about the density matrix, there is no further need to recall
the discrete representation. The main features of this structure are:
• Thecl − cl component is zero.

This zero may be traced back to identity (2.18). It has, however, a much simpler
interpretation. It reflects the fact that for a pure classical field configuration (φq =
0) the action is zero. Indeed, in this caseφ+ = φ− and the action on the forward
part of the contour is cancelled exactly by that on the backward part. The very
general statement is, therefore, that
S[φcl, φq = 0] = 0. (2.32)
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Obviously Eq. (2.32) is not restricted to a Gaussian action.
• Thecl − q andq − cl components are mutually Hermitian conjugated upper

and lower (advanced and retarded) triangular matrices in the time representation.
This property is responsible for the causality of the response functions as well
as for protecting thecl − cl component from a perturbative renormalization (see
below).
• The q − q component is an anti-Hermitian matrix (cf. Eq. (2.22)) with a

positive–definite imaginary spectrum. It is responsible for the convergence of the
functional integral. It also keeps the information about the distribution function.

As was already mentioned, these three items are generic and reproduce them-
selves in every order of perturbation theory. For the lack of a better terminology,
we’ll refer to them as thecausality structure.

2.5. Free bosonic fields

It is a straightforward matter to generalize the entire construction to bosonic sys-
tems with more than one state. Suppose the states are labelled by an indexk,
that may be, e.g., a momentum vector. Their energies are given by a function
ωk, for exampleωk = k2/(2m), wherem is the mass of the bosonic atoms.
One introduces then a doublet of complex fields (classical and quantum) for
every statek : (φcl(t; k), φq(t; k)) and writes down the action in the form of
Eq. (2.31) including a summation over the indexk. Away from equilibrium, the
Keldysh component may be non–diagonal in the indexk: F = F(t, t ′; k, k′).
The retarded (advanced) component, on the other hand, has the simple form
[GR(A)]−1 = i∂t − ωk.

If k is momentum, it is more instructive to Fourier transform to real space
and to deal with(φcl(t; r), φq(t; r)). Introducing a combined time–space index
x = (t; r), one may write down for the action of the free complex bosonic field
(atoms):

S0 =
∫∫
dx dx′

(
φ̄cl, φ̄q

)
x

(
0 [GA]−1

[
GR

]−1 [G−1]K
)

x,x′

(
φcl
φq

)

x′
, (2.33)

where in the continuous notations

[GR(A)]−1(x, x′) = δ(x − x′)
(
i∂t ′ +

1

2m
∇2
r ′

)
, (2.34)

while in the discrete form it is a lower (upper) triangular matrix in time (not in
space). The[G−1]K component for the free field is only the regularization factor,
originating from the (time) boundary terms. It is in general non–local inx andx′,
however, being a pure boundary term it is frequently omitted. It is kept here as a
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reminder that the inversion,̂G, of the correlator matrix must possess the causality
structure, Eq. (2.20).

In an analogous way, the action of free real bosons (phonons) is (cf. Eq. (B.9)):

S0 =
∫∫
dx dx′

(
ϕcl, ϕq

)
x

(
0 [DA]−1

[
DR

]−1 [D−1]K
)

x,x′

(
ϕcl
ϕq

)

x′
, (2.35)

where

[DR(A)]−1(x, x′) = δ(x − x′)
(
− ∂ 2

t ′ + v2
s ∇ 2

r ′
)
, (2.36)

in the continuous notations. In the discrete representations[DR(A)]−1 are again
the lower (upper) triangular matrices. Here too the Keldysh component[D−1]K
is just a regularization, originating from the (time) boundary terms. It is kept in
Eq. (2.35) to emphasize the casuality structure of the real boson Green function
D̂(x, x′), analogous to Eq. (2.20):

D̂(x, x′) =
(
DK DR

DA 0

)
; DR(A)(ǫ, k) = ((ǫ ± i0)2 − v2

s k
2)−1;

DK = DR ◦ F − F ◦DA, (2.37)

whereF = F(t, t ′; r, r ′) is a symmetric distribution function matrix.

3. Collisions and kinetic equation

3.1. Interactions

The short range two–body collisions of bosonic atoms are described by the local
“four–boson” Hamiltonian:Hint = λ

∑
r a

†
r a

†
r arar , where indexr “numerates”

spatial locations. The interaction constant,λ, is related to a commonly useds–
wave scattering length,as , asλ = 4πas/m [18]. The corresponding term in the
continuous Keldysh action takes the form:

Sint = −λ
∫
dr

∫

C

dt (φ̄φ)2 = −λ
∫
dr

∞∫

−∞
dt

[
(φ̄+φ+)2 − (φ̄−φ−)2

]
. (3.1)

It is important to remember that there are no interactions in the distant past
t = −∞ (while they are present in the future,t = +∞). The interactions
are supposed to be adiabatically switched on and off on the forward and back-
ward branches correspondingly. That guarantees that the off–diagonal blocks of
the matrix, Eq. (2.8), remain intact. Interactions modify only those matrix ele-
ments of the evolution operator, Eq. (2.6), that are away fromt = −∞. It is also
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Fig. 3. Graphic representation of the two interaction vertexes of the|φ|4 theory. There are also two
conjugated vertexes with a reversed direction of all arrows.

worth remembering that in the discrete time form theφ̄ fields are taken one time
stepδt after theφ fields along the Keldysh contourC. Therefore the two terms
on the r.h.s. of the last equation should be understood as

(
φ̄+(t + δt )φ+(t)

)2 and(
φ̄−(t)φ−(t+δt )

)2 correspondingly. Performing the Keldysh rotation, Eq. (2.19),
one finds

Sint [φcl, φq ] = −λ
∞∫

−∞
dt

[
φ̄q φ̄cl(φ

2
cl + φ2

q)+ c.c.
]
, (3.2)

wherec.c. stands for the complex conjugate of the first term. The collision action,
Eq. (3.2), obviously satisfies the causality condition, Eq. (2.32). Diagrammati-
cally the action (3.2) generates two types of vertexes depicted in Fig. 3 (as well
as two complex conjugated vertexes, obtained by reversing the direction of the
arrows): one with three classical fields (full lines) and one quantum field (dashed
line) and the other with one classical field and three quantum fields.

Let us demonstrate that adding the collision term to the action does not violate
the fundamental normalizationZ = 1. To this end one may expandeiSint in pow-
ers ofλ and then average term by term with the Gaussian action, Eq. (2.33).
To show that the normalizationZ = 1 is not altered by the collisions, one
needs to show that〈Sint 〉 = 〈S 2

int 〉 = . . . = 0. Applying the Wick theo-
rem, one finds for the terms that are linear order inλ: 〈φ̄q φ̄clφ2

cl + c.c.〉 ∼[
GR(t, t) + GA(t, t)

]
GK(t, t) = 0, and〈φ̄q φ̄clφ2

q + c.c〉 = 0. The first term
vanishes due to identity (2.24), while the second one vanishes because〈φq φ̄q〉 =
0. There are two families of terms that are second order inλ. The first one
is 〈φ̄q φ̄clφ2

clφ
′
qφ

′
cl(φ̄

′
cl)

2〉 ∼ GR(t ′, t)GA(t ′, t)[GK(t, t ′)]2, while the second is

〈φ̄q φ̄clφ2
clφ

′
qφ

′
cl(φ̄

′
q)

2〉 ∼ [GR(t, t ′)]2GR(t ′, t)GA(t ′, t), whereφ′α ≡ φα(t
′).

Both of these terms are zero, becauseGR(t ′, t) ∼ θ(t ′ − t), whileGA(t ′, t) ∼
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Fig. 4. Graphic representation of the two interaction vertexes of theϕ3 theory. Notice the relative
factor of one third between them.

GR(t, t ′)∗ ∼ θ(t − t ′) and thus their product has no support1. It is easy to
see that, for exactly the same reasons, all higher order terms vanish and thus the
normalization is unmodified (at least in a perturbative expansion).

As another example, consider the real boson field, Eq. (2.35), with the cubic
nonlinearity:

Sint=
κ

6

∫
dr

∫

C

dt ϕ3= κ
6

∫
dr

∞∫

−∞
dt

[
ϕ3
+ − ϕ3

−
]
=κ

∫
dr

∞∫

−∞
dt

[
ϕ2
clϕq +

1

3
ϕ3
q

]
. (3.3)

The causality condition, Eq. (2.32), is satisfied again. Diagrammatically the cu-
bic nonlinearity generates two types of vertexes, Fig. 4: one with two classical
fields (full lines) and one quantum field (dashed line), and the other with three
quantum fields. The former vortex carries the factorκ, while the latter has a
weight ofκ/3. Notice that for a real field the direction of the lines is not speci-
fied by arrows.

Exercise:Show that there are no corrections of second order inκ to the partition function,Z = 1.
Check that the same is true for the higher orders as well.

3.2. Saddle point equations

Before developing the perturbation theory further, one has to discuss the saddle
points of the action. According to Eq. (2.32), there are no terms in the action

1Strictly speaking,GR(t ′, t) andGA(t ′, t) are both simultaneously non–zero on the diagonal:
t = t ′. The contribution of the diagonal to the integrals is, however,∼ δ2t N → 0, whenN →∞.
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that have zero power of both̄φq andφq . The same is obviously true regarding
δS/δφ̄cl and therefore one of the saddle point equations:

δS

δφ̄cl
= 0 (3.4)

may always be solved by

φq = 0, (3.5)

irrespectively of what the classical component,φcl , is. One may check that this
is indeed the case for the action given by Eqs. (2.33) plus (3.2). Under condi-
tion (3.5) the second saddle point equation takes the form:

δS

δφ̄q
=
([
GR

]−1 − λ |φcl |2
)
φcl =

(
i∂t +

∇2
r

2m
− λ |φcl |2

)
φcl = 0. (3.6)

This is the non–linear time–dependent (Gross–Pitaevskii) equation [18], that
uniquely determines the classical field configuration, provided some initial and
boundary conditions are specified.

The message is that among the possible solutions of the saddle–point equa-
tions for the Keldysh action, there is always one with a zero quantum component
and with a classical component that obeys the classical (non–linear) equations of
motion. We shall call such a saddle point –“classical” . Thanks to Eqs. (2.32)
and (3.5), the action at the classical saddle–point field configurations is identi-
cally zero. As was argued above, the perturbative expansion in small fluctua-
tions around the classical saddle point leads to a properly normalized partition
function,Z = 1. This seemingly excludes the possibility of having any other
saddle points. Yet, this conclusion is premature. The system may possess “non–
classical” saddle points – such thatφq �= 0. Such saddle points do not contribute
to the partition function (and thus do not alter the fundamental normalization,
Z = 1), however, they may contribute to the correlation functions. In general,
the action at anon–classicalsaddle point is non–zero. Its contribution is thus as-
sociated with exponentially small (or oscillatory) terms. Examples include: tun-
neling, thermal activation (considered in the next chapter), Wigner-Dyson level
statistics, etc...

Let us develop now a systematic perturbative expansion in deviations from the
classicalsaddle point. As was discussed above, it does not bring any new infor-
mation about the partition function. It does, however, provide information about
the Green functions (and thus various observables). Most notably, it generates the
kinetic equation for the distribution function. To simplify further consideration,
let us assume thatφcl = 0 is the proper solution of the classical saddle–point
equation (3.6) (i.e. there is no Bose condensate).



198 A. Kamenev

3.3. Dyson equation

The goal is to calculate thedressedGreen function, defined as:

Gαβ(t, t ′) = −i
∫
Dφ̄φ e i(S0+Sint ) φα(t)φ̄β(t ′), (3.7)

whereα, β = (cl, q) and the action is given by Eqs. (2.33) and (3.2) (or for
real bosons: Eqs. (2.35) and (3.3), withφ → ϕ). To this end one may expand
the exponent in deviations from the classical saddle point:φq ≡ 0 and (in the
simplest case)φcl = 0. The functional integration with the remaining Gaussian
action is then performed using the Wick theorem. This leads to the standard
diagrammatic series. Combining all one–particle irreducible diagrams into the
self–energy matrix̂�, one obtains:

Ĝ = Ĝ+ Ĝ ◦ �̂ ◦ Ĝ+ Ĝ ◦ �̂ ◦ Ĝ ◦ �̂ ◦ Ĝ+ . . . = Ĝ ◦
(
1̂+ �̂ ◦ Ĝ

)
, (3.8)

whereĜ is given by Eq. (2.20) and the circular multiplication sign implies inte-
grations over intermediate times and coordinates as well as a 2× 2 matrix mul-
tiplication. The only difference compared with the text–book [17] diagrammatic
expansion is the presence of the 2× 2 Keldysh matrix structure. The fact that
the series is arranged as a sequence of matrix products is of no surprise. Indeed,
the Keldysh index,α = (cl, q), is just one more index in addition to time, space,
spin, etc. Therefore, as with any other index, there is a summation (integration)
over all of its intermediate values, hence the matrix multiplication. The concrete
form of the self–energy matrix,̂�, is of course specific to the Keldysh technique
and is discussed below in some details.

Multiplying both sides of Eq. (3.8) bŷG−1 from the left, one obtains the
Dyson equation for the exact dressed Green function,Ĝ:

(
Ĝ−1 − �̂

)
◦ Ĝ = 1̂, (3.9)

where1̂ is the unit matrix. The very non–trivial feature of the Keldysh technique
is that the self energy matrix,̂�, possesses the same causality structure asĜ−1,
Eq. (2.29):

�̂ =
(

0 �A

�R �K

)
, (3.10)

where�R(A) are lower (upper) triangular matrices in the time domain, while
�K is an anti-Hermitian matrix. This fact will be demonstrated below. Since
both Ĝ−1 and�̂ have the same structure, one concludes that the dressed Green
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function, Ĝ, also possesses the causality structure, like Eq. (2.20). As a result,
the Dyson equation acquires the form:

(
0 [GA]−1 −�A[

GR
]−1 −�R −�K

)
◦
(

GK GR

GA 0

)
= 1̂, (3.11)

where one took into account that[G−1]K is a pure regularization (∼ i0F ) and
thus may be omitted in the presence of a non–zero�K . Employing the specific
form of [GR(A)]−1, Eq. (2.34), one obtains for the retarded (advanced) compo-
nents:

(
i∂t +

1

2m
∇2
r

)
GR(A) = δ(t − t ′)δ(r − r ′)+�R(A) ◦GR(A). (3.12)

Provided the self–energy component�R(A) is known (in some approximation),
Eq. (3.12) constitutes a closed equation for the retarded (advanced) component of
the dressed Green function. The latter carries the information about the spectrum
of the interacting system.

To write down the equation for the Keldysh component, it is convenient to
parameterize it asGK = GR ◦ F − F ◦ GA , whereF is a Hermitian matrix in
the time domain. The equation for the Keldysh component then takes the form:
([GR]−1−�R) ◦ (GR ◦ F− F ◦GA) = �K ◦GA . Multiplying it from the right
by ([GA]−1 −�A) and employing Eq. (3.12), one finally finds:

[
F,

(
i∂t +

1

2m
∇2
r

)]

−
= �K −

(
�R ◦ F− F ◦�A

)
, (3.13)

where the symbol[ , ]− stands for the commutator. This equation is the quan-
tum kinetic equation for the distribution matrixF. Its l.h.s. is called thekinetic
term, while the r.h.s. is thecollision integral(up to a factor). As is shown be-
low, �K has the meaning of an “incoming” term, while�R ◦ F − F ◦ �A is
an “outgoing” term. In equilibrium these two channels cancel each other (the
kinetic term vanishes) and the self-energy has the same structure as the Green
function:�K = �R ◦ F− F ◦�A. This is not the case, however, away from the
equilibrium.

3.4. Self-energy

Let us demonstrate in the case of one specific example that the self-energy matrix
�̂ indeed possesses the causality structure, Eq. (3.10). To this end, we consider
the real boson action, Eq. (2.35), with theκϕ3 nonlinearity, Eq. (3.3), and per-
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Fig. 5. Self-energy diagrams for theϕ3 theory.

form the calculations up to the second order in the parameterκ. Employing the
two vertexes of Fig. 4 one finds that:

• thecl− cl componentis given by the single diagram, depicted in Fig. 5a. The
corresponding analytic expression is
�cl−cl(t, t ′) = 4iκ2DR(t, t ′)DA(t, t ′)=0.
Indeed, the productDR(t, t ′)DA(t, t ′) has no support (see, however, the footnote
in section 3.1).
• the cl-q (advanced) componentis given by the single diagram, Fig. 5b. The

corresponding expression is:
�A(t, t ′) = 4iκ2DA(t, t ′)DK(t, t ′). (3.14)

Since�A(t, t ′) ∼ DA(t, t ′) ∼ θ(t ′ − t), it is, indeed, an advanced (upper trian-
gular) matrix. There is a combinatoric factor of 4, associated with the diagram
(4 ways of choosing external legs× 2 internal permutations× 1/(2!) for having
two identical vertexes).
• the q-cl (retarded) componentis given by the diagram of Fig. 5c:
�R(t, t ′) = 4iκ2DR(t, t ′)DK(t, t ′), (3.15)

that could be obtained, of course, by the Hermitian conjugation of Eq. (3.14) with

the help of Eq. (2.22):�R =
[
�A

]†
. Since�R(t, t ′) ∼ DR(t, t ′) ∼ θ(t − t ′), it

is, indeed, a retarded (lower triangular) matrix.
• the q-q (Keldysh) componentis given by the three diagrams, Fig. 5d–f. The

corresponding expressions are:

�K(t, t ′) = 2iκ2[DK(t, t ′)
]2+6i

(κ
3

)
κ
[
DA(t, t ′)

]2+6iκ
(κ

3

)[
DR(t, t ′)

]2

= 2iκ2
([
DK(t, t ′)

]2 +
[
DR(t, t ′)−DA(t, t ′)

]2)
, (3.16)
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where the combinatoric factors are: 2 for diagram d and 6 for e and f. In the last
equality, the fact thatGR(t, t ′)GA(t, t ′) = 0, due to the absence of support in
the time domain, has been used again. Employing Eq. (2.22), one finds�K =
−
[
�K

]†
. This completes the proof of the statement that�̂ possesses the same

structure asD̂−1. One may check that the statement holds in higher orders as
well. In Eqs. (3.14)–(3.16) one has omitted the spatial coordinates, that may be
restored in an obvious way.

Exercise:Calculate the self–energy matrix for the|φ|4 theory to second order inλ.
Show that it possesses the causality structure.

3.5. Kinetic term

To make further progress in the discussion of the kinetic equation it is convenient
to perform the Wigner transformation (WT). The WT of a distribution function
matrix, F(t, t ′; r, r ′), is a function:f(τ, ǫ; ρ, k), whereτ andρ are the “center
of mass” time and coordinate respectively. According to definition (2.28), theF
matrix appears in a product withGR − GA (or DR − DA). Since the latter is
a sharply peaked function atǫ = ωk (cf. Eq. (2.26) for free particles, while for
interacting systems this is the condition for having well-defined quasi–particles),
one frequently writesf(τ, ρ, k), understanding thatǫ = ωk.

To rewrite the kinetic term (the l.h.s. of Eq. (3.13)) in the Wigner represen-
tation, one notices that the WT ofi∂t is ǫ, while the WT of∇2

r is −k2. Then
e.g. [F,∇2

r ]− → [k2, f]− + i∇kk2∇ρ f = 2ik∇ρ f, where the commutator van-
ishes, since WT’s commute. In a similar way:[F, i∂t ]− → −i∂τ f. If there
is a scalar potentialV (r)a†

r ar in the Hamiltonian, it translates into the term
−V (φ̄clφq + φ̄qφcl) in the action and thus−V (r) is added to[GR(A)]−1. This,
in turn, brings the term−[F, V ]− to the l.h.s. of the Dyson equation (3.13), or
after the WT:iE∇kf, whereE ≡ −∇ρV is the electric field. As a result, the WT

Reminder: The Wigner transform of a matrixA(r, r ′) is defined as
a(ρ, k) ≡

∫
dr1A

(
ρ + r1

2 , ρ −
r1
2

)
eikr1.

One may show that the Wigner transform of the matrixC = A ◦ B is equal to:

c(ρ, k) =
∫∫
dr1dr2

∫∫ dk1dk2
(2π)2d

a
(
ρ + r1

2 , k + k1
)
b
(
ρ + r2

2 , k + k2
)
ei(k1r2−k2r1).

Expanding the functions under the integrals inki andri , one finds:

c(ρ, k) = a(ρ, k) b(ρ, k)+ (2i)−1
(
∇ρa∇kb − ∇ka∇ρb

)
+ . . . .
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of the Dyson equation (3.9) takes the form:
(
∂τ − vk∇ρ − E∇k

)
f(τ, ρ, k) = Icol[f], (3.17)

wherevk ≡ k/m andIcol[f] is the WT of the r.h.s. of Eq. (3.13) (timesi). This
is the kinetic equation for the distribution function.

For real bosons with the dispersion relationǫ = ωk, the kinetic term is (cf.
Eq. (2.36)): [ǫ2 − ω2

k,F]− → 2i
(
ǫ ∂τ − ωk(∇kωk)∇ρ

)
f = 2iǫ

(
∂τ − vk∇ρ

)
f,

wherevk ≡ ∇kωk is the group velocity. As a result, the kinetic equation takes
the form:

(
∂τ − vk ∇ρ

)
f(τ, ρ, k) = Icol[f], where the collision integralIcol[f] is

the WT of the r.h.s. of Eq. (3.13), divided by−2iǫ.

3.6. Collision integral

Let us discuss the collision integral, using theϕ3 theory calculations of section
3.4 as an example. To shorten the algebra, let us consider a system that is spatially
uniform and isotropic in momentum space. One, thus, focuses on the energy
relaxation only. In this case the distribution function isf(τ, ρ, k) = f(τ, ωk) =
f(τ, ǫ), where the dependence on the modulus of the momentum is substituted by
theωk = ǫ argument. Employing Eqs. (3.14)–(3.16), one finds for the WT of the
r.h.s. of Eq. (3.13)2:

�R ◦ F− F ◦�A →−2i f(τ, ǫ)
∫
dωM(τ, ǫ, ω)

(
f(τ, ǫ − ω)+ f(τ, ω)

)
;

�K →−2i
∫
dωM(τ, ǫ, ω)

(
f(τ, ǫ − ω)f(τ, ω)+ 1

)
, (3.18)

where the square of the transition matrix element is given by:

M(τ, ǫ, ω) = 2πκ2
∑

q

�d(τ, ǫ − ω; k − q)�d(τ, ω; q). (3.19)

Here�d ≡ i(dR − dA)/(2π) anddR(A)(τ, ǫ; k) is the WT of the retarded (ad-
vanced) Green function. One has substituted the dressed Green functions into
Eqs. (3.14)–(3.16) instead of the bare ones to perform a partial resummation of
the diagrammatic series. (This trick is sometimes called theself–consistent Born
approximation. It still neglects the vertex corrections.) Assuming the existence of
well defined quasi–particles at all times, one may regard�d(τ, ǫ, k) as a sharply
peaked function atǫ = ωk. In this case Eq. (3.19) simply reflects the fact that

2Only products of WT’s are retained, while all the gradient terms are neglected, in particular
DK → f (dR − dA). The energy–momentum representation is used, instead of the time–space
representation as in Eqs. (3.14)–(3.16), and in the equation for�R ◦ F − F ◦ �A one performs a
symmetrization between theω andǫ − ω arguments.
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an initial particle withǫ = ωk decays into two real (on mass-shell) particles with
energiesω = ωq andǫ − ω = ωk−q . As a result, one finally obtains for the
kinetic equation:

∂f(ǫ)
∂τ

=
∫
dω
M(ǫ, ω)

ǫ

[
f(ǫ − ω)f(ω)+ 1− f(ǫ)

(
f(ǫ − ω)+ f(ω)

)]
, (3.20)

where the time arguments are suppressed for brevity.
Due to the identity: coth(a−b) coth(b)+1= coth(a)

(
coth(a−b)+coth(b)

)
,

the collision integral is identically nullified by

f(ǫ) = coth
ǫ

2T
. (3.21)

whereT is temperature. This is the thermal equilibrium distribution function.
According to the kinetic equation (3.20), it is stable for any temperature (the latter
is determined either by an external reservoir, or, for a closed system, from the
total energy conservation). Since the equilibrium distribution obviously nullifies
the kinetic term, according to Eq. (3.13) theexactself–energy satisfies�K =
coth(ǫ/(2T ))(�R − �A). Since also the bare Green functions obey the same
relation, Eq. (2.27), one concludes that in thermal equilibrium theexactdressed
Green function satisfies:

DK = coth
ǫ

2T

(
DR − DA). (3.22)

This is the statement of thefluctuation–dissipation theorem(FDT). Its conse-
quence is that in equilibrium the Keldysh component does not contain any ad-
ditional information with respect to the retarded one. Therefore, the Keldysh
technique may be, in principle, substituted by a more compact construction – the
Matsubara method. The latter does not work, of course, away from equilibrium.

Returning to the kinetic equation (3.20), one may identify “in” and “out”
terms in the collision integral. Most clearly it is done by writing the collision
integral in terms of the occupation numbersnk, defined asf = 1 + 2n. The
expression in the square brackets on the r.h.s. of Eq. (3.20) takes the form:
4
[
nǫ−ωnω − nǫ(nǫ−ω + nω + 1)

]
. The first term:nǫ−ωnω, gives a probability

that a particle with energyǫ − ω absorbs a particle with energyω to populate a
state with energyǫ – this is the “in” term of the collision integral. It may be traced
back to the�K part of the self-energy. The second term:−nǫ(nǫ−ω + nω + 1),
says that a state with energyǫ may be depopulated either by stimulated emission
of particles with energiesǫ − ω andω, or by spontaneous emission (unity). This
is the “out” term, that may be traced back to the�R(A) contributions.

Finally, let us discuss the approximations involved in the Wigner transforma-
tions. Although Eq. (3.13) is formally exact, it is very difficult to extract any
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useful information from it. Therefore, passing to an approximate but much more
tractable form like Eqs. (3.17) or (3.20) is highly desirable. In doing so, one
has to employ the approximate form of the WT. Indeed, a formally infinite series
in ∇k∇ρ operators is truncated, usually by the first non–vanishing term. This is
a justified procedure as long asδk δρ ≫ 1, whereδk is a characteristic micro-
scopic scale of the momentum dependence off, while δρ is a characteristic scale
of its spatial variations. One may ask if there is a similar requirement in the time
domain:δǫ δτ ≫ 1, with δǫ andδτ the characteristic energy and time scale of
f respectively. Such a requirement is very demanding, since typicallyδǫ ≈ T

and at low temperature it would allow to treat only very slow processes: with
δτ ≫ 1/T . Fortunately, this is not the case. Because of the peaked structure
of �d(ǫ, k), the energy argumentǫ is locked toωk and does not have its own
dynamics as long as the peak is sharp. The actual criterion is therefore thatδǫ is
much larger than the width of the peak in�d(ǫ, k). The latter is, by definition,
the quasi–particle life–time,τqp , and therefore the condition isτqp ≫ 1/T . This
condition is indeed satisfied by many systems with interactions that are not too
strong.

4. Particle in contact with an environment

4.1. Quantum dissipative action

Consider a particle with coordinate�(t), living in a potentialU(�) and attached
to a harmonic stringϕ(t; x). The particle may represent a collective degree of
freedom, such as the phase of a Josephson junction or the charge on a quantum
dot. On the other hand, the string serves to model a dissipative environment.
The advantage of the one–dimensional string is that it is the simplest continuum
system, having a constant density of states. Due to this property it mimics, for
example, interactions with a Fermi sea. A continuous reservoir with a constant
density of states at small energies is sometimes called an “Ohmic” environment
(or bath). The environment is supposed to be in thermal equilibrium.

The Keldysh action of such a system is given by the three terms (cf. Eqs. (B.5)
and (2.35)):

Sp[�̂] =
∞∫

−∞
dt

[
−2�q

d 2�cl

dt2
− U

(
�cl +�q

)
+ U(�cl −�q)

]
;

Sstr [ϕ̂] =
∞∫

−∞
dt

∫
dx ϕ̂T D̂−1 ϕ̂; (4.1)

Sint [�̂, ϕ̂] = 2
√
γ

∞∫

−∞
dt �̂T (t) σ̂1∇x ϕ̂(t, x)

∣∣∣
x=0

,
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where we have introduced vectors of classical and quantum components, e.g.
�̂T ≡ (�cl,�q) and the string correlator,̂D−1, is the same as in Eqs. (2.35),
(2.36). The interaction term between the particle and the string is taken to be the
local product of the particle coordinate and the string stress atx = 0 (so the force
on the particle is proportional to the local stress of the string). In the time domain
the interaction is instantaneous,�(t)∇xϕ(t, x)|x=0 → �+∇ϕ+ − �−∇ϕ− on
the Keldysh contour. Transforming to the classical–quantum notations leads to:
2(�cl∇ϕq + �q∇ϕcl), that satisfies the causality condition, Eq. (2.32). In the
matrix notations it takes the form of the last line of Eq. (4.1), whereσ̂1 is the
standard Pauli matrix. The interaction constant is

√
γ .

One may now integrate out the degrees of freedom of the Gaussian string to re-
duce the problem to the particle coordinate only. According to the standard rules
of Gaussian integration (see. Appendix A), this leads to the so–called dissipative
action for the particle:

Sdiss = −γ
∫ ∞∫

−∞
dtdt ′ �̂T (t) σ̂ T1 ∇x∇x′D̂(t − t ′; x − x′)

∣∣∣
x=x′=0

σ̂1
︸ ︷︷ ︸

−L̂−1(t−t ′)

�̂(t ′). (4.2)

The straightforward matrix multiplication shows that the dissipative correlator
L̂−1 possesses the standard causality structure of the inverse Green function, e.g.
Eq. (2.29). Fourier transforming its retarded (advanced) components, one finds:

[
LR(A)(ǫ)

]−1
= −

∑

k

k2

(ǫ ± i0)2 − k2
= ± i

2
ǫ + const, (4.3)

where we putvs = 1 for brevity. Theǫ–independent constant (same forR and
A components) may be absorbed into the redefinition of the harmonic part of the
potentialU(�) = const�2 + . . . and, thus, may be omitted. In equilibrium the
Keldysh component of the correlator is set by the FDT:

[
L−1]K (ǫ) = coth

ǫ

2T

([
LR

]−1 −
[
LA

]−1
)
= iǫ coth

ǫ

2T
. (4.4)

It is an anti–Hermitian operator with a positive–definite imaginary part, rendering
convergence of the functional integral over�.

In the time representation the retarded (advanced) component of the correlator

takes a simple local form:
[
LR(A)

]−1 = ∓1
2 δ(t − t ′) ∂t ′ . On the other hand, at

low temperatures the Keldysh component is a non–local function, that may be
found by the inverse Fourier transform of Eq. (4.4):

[
L−1]K(t − t ′) = iπT 2

sinh2(πT (t − t ′))
T→∞−→ i2T δ(t − t ′). (4.5)
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Finally, for the Keldysh action of the particle connected to a string, one obtains:

S[�̂] =
∞∫

−∞
dt

[
−2�q

(
d 2�cl

dt2
+ γ

2

d�cl

dt

)
−U

(
�cl +�q

)
+U(�cl −�q)

]

+ iγ

∫ ∞∫

−∞
dt dt ′�q(t)

πT 2

sinh2(πT (t − t ′))
�q(t

′). (4.6)

This action satisfies all the causality criteria listed in section 2.4. Notice that in
the present case the Keldysh (q−q) component is not just a regularization factor,
but rather a quantum fluctuations damping term, originating from the coupling to
the string. The other manifestation of the string is the presence of the friction
term,∼ γ ∂t in theR and theA components. In equilibrium the friction coeffi-
cient and fluctuations amplitude are rigidly connected by the FDT. The quantum
dissipative action, Eq. (4.6), is a convenient playground to demonstrate various
approximations and connections to other approaches.

4.2. Saddle–point equation

Theclassicalsaddle point equation (the one that takes�q(t) = 0) has the form:

−1

2

δS[�̂]
δ�q

∣∣∣∣∣
�q=0

= d 2�cl

dt2
+ γ

2

d�cl

dt
+ ∂U(�cl)

∂�cl
= 0. (4.7)

This is the deterministic classical equation of motion. In the present case it hap-
pens to be the Newton equation with the viscous force:−(γ /2)�̇cl . This approx-
imation neglects bothquantumandthermalfluctuations.

4.3. Classical limit

One may keep the thermal fluctuations, while completely neglecting the quantum
ones. To this end it is convenient to restore the Planck constant in the action (4.6)
and then take the limit̄h → 0. For dimensional reasons, the factorh̄−1 should
stand in front of the action. To keep the part of the action responsible for the
classical equation of motion (4.7) free from the Planck constant it is convenient
to rescale the variables as:�q → h̄�q . Finally, to have temperature in energy
units, one needs to substituteT → T/h̄ in the last term of Eq. (4.6). The limit
h̄ → 0 is now straightforward: (i) one has to expandU(�cl ± h̄�q) to the first
order inh̄�q and neglect all higher order terms; (ii) in the last term of Eq. (4.6)



Many–body theory of non–equilibrium systems 207

the h̄→ 0 limit is equivalent to theT →∞ limit, see Eq. (4.5). As a result, the
classical limit of the dissipative action is:

S[�̂] = 2

∞∫

−∞
dt

[
−�q

(
d 2�cl

dt2
+ γ

2

d�cl

dt
+ ∂U(�cl)

∂�cl

)
+ iγ T �2

q

]
. (4.8)

Physically the limith̄ → 0 means that̄h�̃ ≪ T , where�̃ is a characteristic
classical frequency of the particle. This condition is necessary for the last term
of Eq. (4.6) to take the time–local form. The condition for neglecting the higher
order derivatives ofU is h̄ ≪ γ �̃2

cl , where�̃cl is a characteristic classical am-
plitude of the particle motion.

4.4. Langevin equations

One way to proceed with the classical action (4.8) is to notice that the exponent
of its last term (timesi) may be identically rewritten in the following way:

e−2γ T
∫
dt �2

q (t) =
∫
Dξ(t) e

−
∫
dt

[
1

2γ T ξ
2(t)−2iξ(t)�q (t)

]

. (4.9)

This identity is called the Hubbard–Stratonovich transformation, whileξ(t) is an
auxiliary Hubbard–Stratonovich field. The identity is proved by completing the
square in the exponent on the r.h.s., performing the Gaussian integration at every
instance of time and multiplying the results. There is a constant multiplicative
factor hidden in the integration measure,Dξ .

Exchanging the order of the functional integration overξ and�̂, one finds for
the partition function:

Z=
∫
Dξ e

− 1
2γ T

∫
dt ξ2

∫
D�cl

∫
D�q e

−2i
∫
dt �q

(
d 2�cl
dt2

+ γ2
d�cl
dt

+ ∂U(�cl )
∂�cl

−ξ
)

. (4.10)

Since the last (imaginary) exponent depends only linearly on�q(t), the integra-
tion overD�q results in theδ–function of the expression in the round brackets.
This functionalδ–function forces its argument to be zero at every moment of
time. Therefore, among all the possible trajectories�cl(t), only those that sat-
isfy the following equation contribute to the partition function:

d 2�cl

dt2
+ γ

2

d�cl

dt
+ ∂U(�cl)

∂�cl
= ξ(t) . (4.11)

This is a Newton equation with a time dependent external forceξ(t). Since the
same arguments are applicable to any correlation function of the classical fields,
e.g.〈�cl(t)�cl(t ′)〉, a solution strategy is as follows: (i) choose some realization
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of ξ(t); (ii) solve Eq. (4.11) (e.g. numerically); (iii) having its solution�cl(t),
calculate the correlation function; (iv) average the result over an ensemble of
realizations of the forceξ(t). The statistics of the latter are dictated by the weight
factor in theDξ functional integral. It states thatξ(t) is a Gaussian short–range
(white) noise with the correlators:

〈ξ(t)〉 = 0; 〈ξ(t)ξ(t ′)〉 = γ T δ(t − t ′). (4.12)

Equation (4.11) with the white noise on the r.h.s. is called the Langevin equation.
It describes classical Newtonian dynamics in the presence of stochastic thermal
fluctuations. The fact that the noise amplitude is related to the friction coefficient
γ and to the temperature is a manifestation of the FDT. The latter holds as long
as the environment (string) is at thermal equilibrium.

4.5. Martin–Siggia–Rose

In section 4.4 one derived the Langevin equation for a classical coordinate,�cl ,
from the action written in terms of�cl and another field,�q . An inverse pro-
cedure of deriving the effective action from the Langevin equation is known as
the Martin–Siggia–Rose (MSR) [5] technique. It is sketched here in the form
suggested by de-Dominicis [5].

Consider a Langevin equation:

Ô[�] = ξ(t), (4.13)

whereÔ[�] is a (non–linear) differential operator acting on the coordinate�(t)

and ξ(t) is a white noise force, specified by Eq. (4.12). Define the “partition
function” as:

Z[ξ ] =
∫
D�J [Ô] δ

(
Ô[�] − ξ(t)

)
≡ 1. (4.14)

It is identically equal to unity by virtue of the integration of theδ–function, pro-
videdJ [Ô] is the Jacobian of the operatorÔ[�]. The way to interpret Eq. (4.14)
is to discretize the time axis, introducingN–dimensional vectors�j = �(tj )

andξj = ξ(tj ). The operator takes the form:Oi = Oij�j + Ŵijk�j�k + . . .,
where a summation is taken over repeated indices. The Jacobian,J , is given
by the absolute value of the determinant of the followingN × N matrix: Jij ≡
∂Oi/∂�j = Oij + 2Ŵijk�k + . . .. It is possible to choose a proper (retarded)
regularization where theJij matrix is a lower triangular matrix with a unity main
diagonal (coming entirely from theOii = 1 term). Clearly, in this case,J = 1.
Indeed, consider, for example,̂O[�] = ∂t� −W(�). The retarded regularized
version of the Langevin equation is:�i = �i−1+ δt (W(�i−1)+ ξi−1). Clearly
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Fig. 6. a) A potential with a meta-stable minimum. b) The phase portrait of the Hamiltonian system,
Eq. (4.19). Thick lines correspond to zero energy, arrows indicate evolution direction.

in this caseJii = 1 andJi,i−1 = −1−W ′(�i−1)δt , while all other components
are zero; as a resultJ = 1.

Although the partition function (4.14) is trivial, it is clear that all the meaning-
ful observables and the correlation functions may be obtained by inserting a set of
factors:�(t)�(t ′) . . . in the functional integral, Eq. (4.14). Having this in mind,
let us proceed with the partition function. Employing the integral representation
of theδ–function with the help of an auxiliary field�(t), one obtains:

Z[ξ ] =
∫
D�

∫
D� e

−2i
∫
dt �(t)

(
ÔR[�(t)]−ξ(t)

)
, (4.15)

whereÔR stands for the retarded regularization of theÔ operator and thus one
takesJ = 1. One may average now over the white noise, Eq. (4.12), by per-
forming the Gaussian integration overξ :

Z =
∫
Dξ e

− 1
2γ T

∫
dt ξ2

Z[ξ ] =
∫
D�� e

−
∫
dt

[
2i �(t)ÔR[�(t)]+2γ T�2(t)

]

, (4.16)

The exponent is exactly the classical limit of the Keldysh action, cf. Eq. (4.8) (in-
cluding the retarded regularization of the differential operator), where� = �cl
and� = �q . The message is that the MSR action is nothing, but the classical
(high temperature) limit of the Keldysh action. The MSR technique provides a
simple way to transform from a classical stochastic problem to its proper func-
tional representation. The latter is useful for an analytical analysis. One example
is given below.

4.6. Thermal activation

Consider a particle in a meta-stable potential well, plotted in Fig. 6a. The po-
tential has a meta-stable minimum at� = 0 and a maximum at� = 1 with the
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amplitudeU0. Let us also assume that the particle’s motion is over-damped, i.e.
γ ≫

√
U ′′. In this case one may disregard the inertia term, leaving only viscous

relaxation dynamics. The classical dissipative action (4.8) takes the form:

S[�̂] = 2

∞∫

−∞
dt

[
−�q

(
γ

2

d�cl

dt
+ ∂U(�cl)

∂�cl

)
+ iγ T �2

q

]
. (4.17)

The corresponding saddle point equations are:

γ

2
�̇cl = −∂U(�cl)

∂�cl
+ 2iγ T �q; (4.18)

γ

2
�̇q = �q

∂2U(�cl)

∂�2
cl

.

These equations possess theclassicalsolution:�q(t) ≡ 0 and�cl(t) satisfies
the classical equation of motion:γ2 �̇cl = −∂U(�cl)/∂�cl . For the initial con-
dition�cl(0) < 1 the latter equation predicts the viscous relaxation towards the
minimum at�cl = 0. According to this equation, there is no possibility to es-
cape from this minimum. Therefore the classical solution of Eqs. (4.18) doesnot
describe thermal activation. Thus one has to look for another possible solution of
Eqs. (4.18), the one with�q �= 0.

To this end let us make a simple linear change of variables:�cl(t) = q(t)

and�q(t) = p(t)/(iγ ). Then the dissipative action (4.17) acquires the form of
a Hamiltonian action:

iS = −
∫
dt
(
pq̇ −H(p, q)

)
; H(p, q) ≡ 2

γ

[
−p ∂U(q)

∂q
+ Tp 2

]
,

(4.19)

where the fictitious Hamiltonian,H , is introduced3. It is straightforward to
see that in terms of the new variables the equations of motion (4.18) take the
form of the Hamilton equations:̇q = ∂H/∂p and ṗ = −∂H/∂q. One needs,
thus, to investigate the Hamiltonian system with the Hamiltonian Eq. (4.19). To
visualize it, one may plot its phase portrait, consisting of lines of constant energy
E = H(p(t), q(t)) on the(p, q) plane, Fig. 6b. The topology is determined
by the two lines of zero energy:p = 0 andTp = ∂U(q)/∂q, that intersect
at the two stationary points of the potential:q = 0 andq = 1. Thep = 0
line corresponds to the classical (without Langevin noise) dynamics (notice, that

3Amazingly, this trick of rewriting viscous (or diffusive) dynamics as a Hamiltonian one works
in a wide class of problems. The price one has to pay is the doubling of the number of degrees of
freedom: q andp in the Hamiltonian language, or “classical” and “quantum” components in the
Keldysh language.
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the action is identically zero for motion along this line) and thusq = 0 is the
stable point, whileq = 1 is the unstable one. Due to Liouville theorem, every
fixed point must have one stable and one unstable direction. Therefore, along
the “non–classical” line:p = T −1∂U(q)/∂q, the situation is reversed:q = 0 is
unstable, whileq = 1 is stable. It is now clear that to escape from the bottom
of the potential well,q = 0, the system must move along the non–classical line
of zero energy until it reaches the top of the barrier,q = 1, and then continue
to drop according to the classical equation of motion (moving along the classical
line p = 0). There is a non–zero action associated with the motion along the
non–classical line:

iS = −
∫
dt pq̇ = −

1∫

0

p(q)dq = − 1

T

1∫

0

∂U(q)

∂q
dq = − U0

T
, (4.20)

where one has used thatH = 0 along the integration trajectory. As a result, the
thermal escape probability is proportional toeiS = e−U0/T , which is nothing but
the thermal activation exponent.

4.7. Fokker-Planck equation

Another way to approach the action (4.17) is to notice that it is quadratic in�q
and therefore theD�q integration may be explicitly performed. To shorten no-
tations and emphasize the relation to the classical coordinate, we shall follow the
previous section and denote�cl(t) ≡ q(t). Performing the Gaussian integra-

tion over�q of eiS[�̂], with S[�cl,�q ] given by Eq. (4.17), one finds the action,
depending on�cl ≡ q only:

iS[q] = − 1

2γ T

∞∫

−∞
dt

(γ
2
q̇ + U ′

q

)2
. (4.21)

One may now employ the same trick that allows to pass from the Feynman
path integral to the Schrödinger equation. Namely, let us introduce the “wave
function”, P(q, t), that is a result of the functional integration ofeiS[q] over all
trajectories that at timet pass through the pointqN ≡ q. Adding one more
time step,δt , to the trajectory, one may writeP(qN , t + δt ) as an integral of
P(qN−1, t) = P(q + δq , t) overδq ≡ qN−1 − q:

P(q, t + δt ) = C
∫
dδq e

− δt
2γ T

(
γ
2
−δq
δt

+U ′q (q+δq )
)2

P(q + δq , t) (4.22)

= C
∫
dδq e

− γ
8T

δ2q
δt

[
e
δq
2T U

′
q (q+δq )− δt

2γ T

(
U ′q

)2
P(q + δq , t)

]
,
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where the factorC from the integration measure is determined by the condition:
C
∫
dδq exp

{
−γ δ2

q/(8T δt )
}
= 1. Expanding the expression in the square brack-

ets on the r.h.s. of the last equation to second order inδq and to first order inδt ,
one finds:

P(t + δt )=
(
1+

〈δ2
q〉

2T
U ′′
qq+

1

2

〈δ2
q〉

4T 2

(
U ′
q

)2− δt

2γ T

(
U ′
q

)2

)
P+

〈δ2
q〉

2T
U ′
qP

′
q

+
〈δ2
q〉
2

P ′′
qq = P(t)+ δt

(
2

γ
U ′′
qq P + 2

γ
U ′
qP

′
q +

2T

γ
P ′′
qq

)
, (4.23)

where〈δ2
q〉 ≡ C

∫
dδq exp

{
−γ δ2

q/(8T δt )
}
δ2
q = 4T δt/γ . Finally, rewriting the

last expression in the differential form, one obtains:

∂P

∂t
= 2

γ

[
∂

∂q

∂U

∂q
+ T ∂

2

∂q2

]
P = 2

γ

∂

∂q

[
∂U

∂q
P + T ∂P

∂q

]
. (4.24)

This is the Fokker–Planck (FP) equation for the evolution of the probability dis-
tribution function,P(q, t). The latter describes the probability to find the particle
at the pointq(= �) at timet . If one starts from an initially sharp (determinis-
tic) distribution: P(q,0) = δ(q − q(0)), then the first term on the r.h.s. of
the FP equation describes the viscous drift of the particle in the potentialU(q).
Indeed, in the absence of the second term (T = 0), the equation is solved by
P(q, t) = δ(q − q(t)), whereq(t) satisfies the deterministic equation of motion
(γ /2)q̇(t) = −∂U(q(t))/∂q 4. The second term describes the diffusion spread-
ing of the probability distribution due to the thermal stochastic noiseξ(t). For a
confining potentialU(q) (such thatU(±∞)→∞) the stationary solution of the
FP equation is the equilibrium Boltzmann distribution:P(q) ∼ exp{−U(q)/T }.

The FP equation may be considered as the (imaginary time) Schrödinger equa-
tion: Ṗ = ĤP, where the “Hamiltonian”,Ĥ , is nothing but the “quantized” ver-
sion of the classical Hamiltonian, introduced in the previous section, Eq. (4.19).
The “quantization” rule isp → p̂ ≡ −∂/∂q, so the canonical commutation re-
lation: [q, p̂]− = 1, holds. Notice that before applying this quantization rule,
the corresponding classical Hamiltonian must benormally ordered. Namely, the
momentump̂ should be to the left of the coordinateq, cf. Eq. (4.19). Us-

4To check this statement one may substituteP(q, t) = δ(q − q(t)) into theT = 0 FP equation:

δ′q (q − q(t))(−q̇(t)) = (2/γ )
[
U ′′qqδ(q − q(t))+ U ′qδ′q (q − q(t))

]
. Then multiplying both parts of

this equation byq and integrating overdq (by performing integration by parts), one finds:q̇(t) =
−(2/γ )U ′q (q(t)).
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ing the commutation relation, one may rewrite the quantized Hamiltonian as:
Ĥ = T p̂2 − p̂U ′

q = T
(
p̂ − U ′

q/(2T )
) (
p̂ − U ′

q/(2T )
)
− (U ′

q)
2/(4T )+ U ′′

qq/2
(we took γ /2 = 1) and perform the canonical transformation:Q = q and
P̂ = p̂ − U ′

q/(2T ). In terms of these new variables the Hamiltonian takes the

familiar form: Ĥ = T P̂ 2 + V (Q), whereV (Q) = −(U ′
Q)

2/(4T ) + U ′′
QQ/2,

while the “wave function” transforms as̃P(Q, t) = eU(Q)/(2T )P.

4.8. From Matsubara to Keldysh

In some applications it may be convenient to derive an action in the equilibrium
Matsubaratechnique and change to the Keldysh representation at a later stage to
tackle out–of–equilibrium problems. This section intends to illustrate how such
transformation may be carried out. To this end consider the following bosonic
Matsubara action:

S[�m] = γ T
∞∑

m=−∞

1

2
|ǫm||�m|2, (4.25)

where�m = �̄−m are the Matsubara components of a real bosonic field,�(τ).
Notice that due to the absolute value sign:|ǫm| �= i∂τ . In fact, in the imaginary
time representation the action (4.25) has the non–local form:

S[�] = −γ
2

∫ β∫

0

dτ dτ ′�(τ)
πT 2

sin2(πT (τ − τ ′))
�(τ ′). (4.26)

This action is frequently named after Caldeira and Leggett [19], who used it to
investigate the influence of dissipation on quantum tunneling.

To transforn to the Keldysh representation one needs to double the number
of degrees of freedom:� → �̂ = (�cl,�q)

T . Then according to the causal-
ity structure, section 2.4, the general form of the time translationally invariant

Reminder: The Matsubara technique deals with the imaginary timeτ confined to the interval
τ ∈ [0, β[ , whereβ = 1/T . All bosonic fields must be periodic in this interval:φ(τ + β) = φ(τ),
whereas the fermionic fields are antiperiodic:ψ(τ + β) = −ψ(τ).
It is convenient to introduce the discrete Fourier (Matsubara) transform, e.g.

φm =
β∫
0
dτφ(τ) e iǫmτ ,

where for bosonsǫm ≡ 2πmT , while for fermionsǫm ≡ π(2m+ 1)T andm = 0,±1, . . ..
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Keldysh action is:

S = γ
∫
dǫ

2π

(
�cl,�q

)
ǫ

(
0 [LA(ǫ)]−1

[
LR(ǫ)

]−1 [L−1]K(ǫ)

)(
�cl
�q

)

ǫ

, (4.27)

where[LR(A)(ǫ)]−1 is the analytical continuation of the Matsubara correlator
|ǫm|/2 from theupper (lower)half–plane of the imaginary variableǫm to the real
axis:−iǫm → ǫ. As a result,[LR(A)(ǫ)]−1 = ±iǫ/2. The Keldysh component
follows from the FDT:[L−1]K(ǫ) = iǫ cothǫ/(2T ), cf. Eqs. (4.3) and (4.4).
Therefore the Keldysh counterpart of the Matsubara action, Eqs. (4.25) or (4.26)
is the already familiar dissipative action, Eq. (4.6), (without the potential terms,
of course). One may now include external fields and allow the system to deviate
from the equilibrium.

4.9. Dissipative chains and membranes

Instead of dealing with a single particle connected to a bath, let us now consider
a chain or lattice of coupled particles, witheach oneconnected to a bath. To
this end, one (i) supplies a spatial index,r, to the field:�(t) → �(t; r), and
(ii) adds the harmonic interaction potential between nearest neighbors particles:
∼ (�(t, r) − �(t, r + 1))2 → (∇r�)2 in the continuous limit. By changing
to the classical–quantum components and performing the spatial integration by
parts (cf. Eq. (B.9)), the gradient term translates to:�q∇2

r�cl+�cl∇2
r�q . Thus

it modifies the retarded and advanced components of the correlator, but it does
notaffect the(q − q) Keldysh component:

[LR(A)]−1 = 1

2
δ(t − t ′) δ(r − r ′)

(
∓ ∂t ′ +D∇2

r ′
)
, (4.28)

whereD is the rigidity of the chain or the membrane. In the Fourier representa-
tion: [LR(A)(ǫ; k)]−1 = 1

2

(
± iǫ−Dk2

)
. In equilibrium the Keldysh component

is not affected by the gradient terms, and is given by Eq. (4.4) (in the real space
representation it acquires the factorδ(r − r ′)). In particular, its classical limit
is (cf. Eq. (4.5))[L−1]K = i2T δ(t − t ′)δ(r − r ′). As a result, the action of a
classical elastic chain in contact with a bath is:

S[�̂] = 2
∫
dr

∞∫

−∞
dt

[
−�q

(
�̇cl −D∇2

r�cl +
∂U(�cl)

∂�cl

)
+ i2T �2

q

]
,(4.29)

where the inertia terms have been neglected and we putγ /2= 1 for brevity.
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One may introduce now an auxiliary Hubbard–Stratonovich fieldξ(t; r) and
write the Langevin equation according to section 4.4:

�̇cl −D∇2
r�cl +

∂U(�cl)

∂�cl
= ξ(t; r), (4.30)

whereξ is a Gaussian noise:〈ξ(t; r)ξ(t ′; r ′)〉 = 2T δ(t − t ′)δ(r− r ′) with short–
range correlations.

Let us consider an elastic chain sitting in the bottom of the (r–independent)
meta-stable potential well, depicted in Fig. 6a. If a sufficiently large piece of the
chain thermally escapes from the well, it may find it favorable to slide down the
potential, pulling the entire chain out of the well. To find the shape of such an
optimally large critical domain and its action, let us change to the Hamiltonian
variables of section 4.6:q(t; r) ≡ �cl(t; r) andp(t; r) ≡ 2i�q(t; r). The action
(4.29) takes the Hamiltonian form:

iS = −
∫∫
drdt

(
pq̇−H(p, q)

)
; H ≡ −p ∂U(q)

∂q
+pD∇2

r q+Tp 2,(4.31)

and the corresponding equations of motion are:

q̇ = δH

δp
= D∇2

r q − U ′
q(q)+ 2Tp; (4.32)

ṗ =−δH
δq

= −D∇2
r p + pU ′′

qq(q).

These are complicated partial differential equations, that cannot be solved in gen-
eral. Fortunately, the shape of the optimal critical domain can be found. As was
discussed in section 4.6, the minimal action trajectory corresponds to a motion
with zero energy,H = 0. According to Eq. (4.31), this is the case if eitherp = 0
(classical zero–action trajectory), orTp = U ′

q(q)−D∇2
r q (finite–action escape

trajectory). In the latter case the equation of motion forq(t; r) takes the form
of the classical equation in the reversed time:q̇ = −D∇2

r q + U ′
q(q) = Tp .

Thanks to the last equality the equation of motion forp(t; r) is automatically
satisfied5. In the reversed time dynamics theq(t; r) = 0 configuration is un-
stable and therefore the chain develops a “tongue” that grows until it reaches the
stationary shape:

−D∇2
r q + U ′

q(q) = 0. (4.33)

5Indeed,T ṗ = ∂t q̇ = −D∇2
r q̇ + q̇U ′′qq = T (−D∇2

r p + pU ′′qq ). This non–trivial fact reflects

the existence of an accidental conservation law:H
(
p(t; r), q(t; r)

)
= 0 – locally! While from the

general principles only the total global energy has to be conserved.
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The solution of this equation gives the shape of the critical domain. Once it is
formed, it may grow further according to the classical equationq̇ = D∇2

r q −
U ′
q(q) andp = 0 with zero action. The action along the non–classical escape

trajectory, paid to form the “tongue” is (H(p, q) = 0):

−iS =
∫∫
drdt pq̇= 1

T

∫∫
drdt

(
U ′
q(q)−D∇2

r q
)
q̇

= 1

T

∫
dr
(
U(q)+ D

2
(∇rq)2

)
, (4.34)

where in the last equality an explicit integration over time is performed. The
escape action is given therefore by the static activation expression that includes
both the potential and the elastic energies. The optimal domain, Eq. (4.33), is
found by the minimization of this static action (4.34). One arrives, thus, at a ther-
modynamic Landau-type description of the first–order phase transitions. Notice
that the effective thermodynamic description appears due to the assumption that
H(p, q) = 0 and therefore that all the processes take an infinitely long time.

5. Fermions

5.1. Free fermion Keldysh action

Consider a single quantum state, with the energyǫ0. This state is populated
by spinless fermions (particles obeying the Pauli exclusion principle). In fact,
one may have either zero or one particle in this state. The secondary quantized
Hamiltonian of such a system has the form:

Ĥ = ǫ0 c†c, (5.1)

wherec† andc are fermion creation and annihilation operators of the stateǫ0.
They obey standardanticommutation relations:{c, c†}+ = 1 and {c, c}+ =
{c†, c†}+ = 0, where{, }+ stands for the anti-commutator.

One can now consider the evolution operator along the Keldysh contour,C

and the corresponding “partition function”,Z = 1, defined in exactly the same
manner as for bosonic systems: Eq. (2.2). The trace of the equilibrium density

Reminder: The fermionic coherent state|ψ〉 ≡ (1− ψc†)|0〉, parameterized by a Grassmann
numberψ (such that{ψ,ψ ′}+ = {ψ, c}+ = 0), is an eigenstate of the annihilation operator:
c|ψ〉 = ψ |ψ〉.
Similarly: 〈ψ |c† = 〈ψ |ψ̄ , whereψ̄ is another Grassmann number,unrelatedtoψ .
The matrix elements of anormally orderedoperator, such as e.g. the Hamiltonian, take the form
〈ψ |Ĥ (c†, c)|ψ ′〉 = H(ψ̄, ψ ′)〈ψ |ψ ′〉.
The overlap between any two coherent states is〈ψ |ψ ′〉 = 1+ ψ̄ψ ′ = exp{ψ̄ψ ′}.
The trace of an operator,̂A, is calculated as: Tr{Â} =

∫∫
dψ̄ dψ e−ψ̄ψ 〈−ψ |Â|ψ〉, where the

Grassmann integrals aredefinedas:
∫
dψ 1= 0 and

∫
dψ ψ = 1.
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matrix is Tr{ρ0} = 1+ ρ(ǫ0), where the two terms stand for the empty and the
singly occupied state. One divides the Keldysh contour into(2N − 2) time inter-
vals of lengthδt ∼ 1/N → 0 and introduces resolutions of unity in 2N points
alongC, Fig. (1). The only difference from the bosonic case in section 2.1 is that
now one uses a resolution of unity in thefermioniccoherent state basis [17]:

1=
∫∫

dψ̄j dψj e
−ψ̄jψj |ψj 〉〈ψj |, (5.2)

whereψ̄j andψj aremutually independentGrassmann variables. The rest of the
algebra goes through exactly as in the bosonic case, section 2.1. As a result, one
arrives at:

Z = 1

Tr{ρ0}

∫∫ 2N∏

j=1

[
dψ̄j dψj

]
e

i
2N∑

j,j ′=1
ψ̄jG

−1
jj ′ψj ′

, (5.3)

where the 2N × 2N matrixG−1
jj ′ stands for:

i G−1
jj ′ ≡




−1 −ρ(ǫ0)
1−h −1

1−h −1

1 −1
1+h −1

1+h −1



, (5.4)

andh ≡ iǫ0δt . The only difference from the bosonic case is the negative sign
before theρ(ǫ0) matrix element, originating from the minus sign in the〈−ψ2N |
coherent state in the expression for the fermionic trace. To check the normaliza-
tion, let us evaluate the determinant of such a matrix:

det
[
iG−1] = 1+ρ(ǫ0)(1−h2)N−1 ≈ 1+ρ(ǫ0) e(ǫ0δt )

2(N−1) → 1+ρ(ǫ0).(5.5)

Employing the fact that the fermionic Gaussian integral is given by the determi-
nant (unlike theinversedeterminant for bosons) of the correlation matrix, Ap-
pendix A, one finds:

Z = det
[
iG−1

]

Tr{ρ0}
= 1, (5.6)

as it should be. Once again, the upper–right element of the discrete matrix,
Eq. (5.4), is crucial to maintain the correct normalization.
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Taking the limitN → ∞ and introducing the continuous notations,ψj →
ψ(t), one obtains:

Z =
∫
Dψ̄ψ e iS[ψ̄,ψ] =

∫
Dψ̄ψ exp



i

∫

C

[
ψ̄(t)G−1ψ(t)

]
dt



 , (5.7)

where according to Eqs. (5.3) and (5.4) the action is given by

S[ψ̄, ψ]=
2N∑

j=2

[
iψ̄j

ψj − ψj−1

δtj
− ǫ0ψ̄jψj−1

]
δtj +i ψ̄1

(
ψ1+ρ(ǫ0)ψ2N

)
,(5.8)

whereδtj ≡ tj−tj−1 = ±δt . Thus the continuous form of the operatorG−1 is the
same as for bosons, Eq. (2.13):G−1 = i∂t − ǫ0. Again the upper–right element
of the discrete matrix (the last term in Eq. (5.8)), that contains information about
the distribution function, is seemingly absent in the continuous notations.

Splitting the Grassmann fieldψ(t) into the two componentsψ+(t) andψ−(t)
that reside on the forward and the backward parts of the time contour correspond-
ingly, one may rewrite the action as:

S =
∞∫

−∞
dt ψ̄+(t)[i∂t − ǫ0]ψ+(t)−

∞∫

−∞
dt ψ̄−(t)[i∂t − ǫ0]ψ−(t), (5.9)

where the dynamics ofψ+ andψ− arenot independent from each other, due to
the presence of non–zero off–diagonal blocks in the discrete matrix, Eq. (5.4).

The four fermionic Greens functions:GT (T̃ ) andG<(>) are defined in the same
way as their bosonic counterparts, Eq. (2.16):

〈ψ+(t)ψ̄−(t ′)〉 ≡ iG<(t, t ′) = −Tr{c†(t ′)c(t)ρ̂0}
Tr{ρ̂0}

= −nF e−iǫ0(t−t
′);

〈ψ−(t)ψ̄+(t ′)〉 ≡ iG>(t, t ′) =
Tr{c(t)c†(t ′)ρ̂0}

Tr{ρ̂0}
= (1− nF ) e−iǫ0(t−t

′); (5.10)

〈ψ+(t)ψ̄+(t ′)〉 ≡ iGT (t, t ′) = θ(t − t ′)iG>(t, t ′)+ θ(t ′ − t)iG<(t, t ′);
〈ψ−(t)ψ̄−(t ′)〉 ≡ iGT̃ (t, t ′) = θ(t ′ − t)iG>(t, t ′)+ θ(t − t ′)iG<(t, t ′);

The difference is in the minus sign in the expression forG<, due to the anti–
commutation relations, and the Planck occupation number is exchanged for the
Fermi one:n→ nF ≡ ρ(ǫ0)/(1+ ρ(ǫ0)). Equations (2.17) and (2.18) hold for
the fermionic Green functions as well.
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5.2. Keldysh rotation

It is customary to perform the Keldysh rotation in the fermionic case in a different
manner from the bosonic one. Define the new fields as:

ψ1(t) =
1√
2

(
ψ+(t)+ ψ−(t)

)
; ψ2(t) =

1√
2

(
ψ+(t)− ψ−(t)

)
. (5.11)

This line is exactly parallel to the bosonic one, Eq. (2.19). However, following
Larkin and Ovchinnikov [20], it is agreed that the “bar” fields transform in a
different way:

ψ̄1(t) =
1√
2

(
ψ̄+(t)− ψ̄−(t)

)
; ψ̄2(t) =

1√
2

(
ψ̄+(t)+ ψ̄−(t)

)
. (5.12)

The point is that the Grassmann fieldsψ̄ arenot conjugated toψ , but rather are
completely independent fields, that may be chosen to transform in an arbitrary
manner (as long as the transformation matrix has a non-zero determinant). No-
tice that there is no issue regarding the convergence of the integrals, since the
Grassmann integrals arealwaysconvergent. We also avoid the subscriptscl and
q, because the Grassmann variablesneverhave a classical meaning. Indeed, one
can never write a saddle–point or any other equation in terms ofψ̄, ψ rather they
must always be integrated out in some stage of the calculations.

Employing Eqs. (5.11), (5.12) along with Eq. (5.10), one finds:

−i〈ψa(t)ψ̄b(t ′)〉 ≡ Ĝab =
(

GR(t, t ′) GK(t, t ′)
0 GA(t, t ′)

)
, (5.13)

where hereaftera, b = (1,2). The presence of zero in the(2,1) element of this
matrix is a manifestation of identity (2.18). Theretarded, advancedandKeldysh

components of the Green function are expressed in terms ofGT (T̃ ) andG<(>) in
exactly the same way as their bosonic analogs, Eq. (2.21), and therefore posses
the same symmetry properties: Eqs. (2.22)–(2.24). An important consequence of
Eqs. (2.23), (2.24) is:

Tr
{
Ĝ1 ◦ Ĝ2 ◦ . . . ◦ Ĝk

}
(t, t) = 0, (5.14)

where the circular multiplication sign involves integration over the intermediate
times along with the 2× 2 matrix multiplication. The argument(t, t) states that
the first time argument of̂G1 and the last argument of̂Gk are the same.

Notice that the fermionic Green function has a different structure from its
bosonic counterpart, Eq. (2.20): the positions of theR,A andK components in
the matrix are exchanged. The reason, of course, is the different convention for
transformation of the “bar” fields. One could choose the fermionic convention
to be the same as the bosonic (butnot the other way around!), thus having the
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same structure, Eq. (2.20), for fermions as for bosons. The rationale for the
Larkin–Ovchinnikov choice, Eq. (5.13), is that the inverse Green function,Ĝ−1

and fermionic self energŷ�F have the same appearance asĜ:

Ĝ−1 =
( [

GR
]−1 [

G−1
]K

0
[
GA

]−1

)
; �̂F =

(
�RF �KF
0 �AF

)
, (5.15)

whereas in the case of bosonsĜ−1, Eq. (2.29), and̂�, Eq. (3.10), look differently
from Ĝ, Eq. (2.20). This fact gives the form Eq. (5.13), (5.15) a certain technical
advantage.

For the single fermionic state (see. Eq. (5.10)):

GR(t, t ′) = −iθ(t − t ′) e−iǫ0(t−t ′) → (ǫ − ǫ0 + i0)−1;
GA(t, t ′) = iθ(t ′ − t) e−iǫ0(t−t ′) → (ǫ − ǫ0 − i0)−1; (5.16)

GK(t, t ′) = −i(1− 2nF ) e
−iǫ0(t−t ′) → (1− 2nF (ǫ))(−2πi)δ(ǫ − ǫ0).

where the r.h.s. provides also the Fourier transforms. In thermal equilibrium, one
obtains:

GK(ǫ) = tanh
ǫ

2T

(
GR(ǫ)− GA(ǫ)

)
. (5.17)

This is the FDT for fermions. As in the case of bosons, the FDT statement
is a generic feature of an equilibrium system, not restricted to the toy model.
In general, it is convenient to parameterize the anti-Hermitian Keldysh Green
function by a Hermitian matrixF = F† as:

GK = GR ◦ F − F ◦ GA, (5.18)

The Wigner transform ofF(t, t ′) plays the role of the fermionic distribution func-
tion.

One may continue now to a system with many degrees of freedom, counted by
an indexk. To this end, one simply changes:ǫ0 → ǫk and perform summations
overk. If k is a momentum andǫk = k2/(2m), it is instructive to transform to the
real space representation:ψ(t; k)→ ψ(t; r) andǫk = k2/(2m) = −(2m)−1∇2

r .
Finally, the Keldysh action for a non–interacting gas of fermions takes the form:

S0[ψ̄, ψ] =
∫∫
dx dx′

2∑

a,b=1

ψ̄a(x)
[
Ĝ−1(x, x′)

]
ab
ψb(x

′), (5.19)

wherex = (t; r) and the matrix correlator[Ĝ−1]ab has the structure of Eq. (5.15)
with

[GR(A)(x, x′)]−1 = δ(x − x′)
(
i∂t ′ +

1

2m
∇2
r ′

)
. (5.20)
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Although in continuous notations theR and theA components look seemingly
the same, one has to remember that in the discrete time representation, they are
matrices with the structure below and above the main diagonal correspondingly.
The Keldysh component is a pure regularization, in the sense that it does not
have a continuum limit (the self-energy Keldysh component does have a non–
zero continuum representation). All this information is already properly taken
into account, however, in the structure of the Green function, Eq. (5.13).

5.3. External fields and sources

Let us introduce an external time–dependent scalar potential−V (t) defined along
the contour. It interacts with the fermions as:SV =

∫
C
dt V (t)ψ̄(t)ψ(t). Ex-

pressing it via the field components, one finds:

SV=
∞∫

−∞
dt
[
V+ψ̄+ψ+−V−ψ̄−ψ−

]
=
∞∫

−∞
dt
[
Vcl

(
ψ̄+ψ+−ψ̄−ψ−

)
+Vq

(
ψ̄+ψ++ψ̄−ψ−

)]

=
∞∫

−∞
dt

[
Vcl

(
ψ̄1ψ1 + ψ̄2ψ2

)
+Vq

(
ψ̄1ψ2 + ψ̄2ψ1

)]
, (5.21)

where theVcl and theVq components are defined in the standard way for real
bosonic fields:Vcl(q) = (V+±V−)/2. Notice that the physical fermionic density
(symmetrized over the two branches of the contour):̺ = 1

2

(
ψ̄+ψ++ψ̄−ψ−

)
is

coupled to thequantumcomponent of the source field,Vq . On the other hand,
the classical source component,Vcl , is nothing but an external physical scalar
potential, the same at the two branches.

Notations may be substantially compactified by introducing vertex gamma–
matrices:

γ̂ cl ≡
(

1 0
0 1

)
; γ̂ q ≡

(
0 1
1 0

)
. (5.22)

With the help of these definitions, the source action (5.21) may be written as:

SV =
∞∫

−∞
dt

2∑

a,b=1

[
Vcl ψ̄aγ

cl
abψb + Vq ψ̄aγ

q
abψb

]
=

∞∫

−∞
dt ˆ̄ψVα γ̂ αψ̂, (5.23)

where the summation index isα = (cl, q).
Let us define now the “generating” function as:

Z[Vcl, Vq ] ≡
〈
eiSV

〉
, (5.24)
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where the angular brackets denote the functional integration over the Grassmann
fields ψ̄ andψ with the weight ofeiS0 specified by the fermionic action (5.19).
In the absence of the quantum component,Vq = 0, the source field is the same
at both branches of the contour. Therefore, the evolution along the contour still
brings the system back to its exact initial state. Thus one expects that the classical
component alone does not change the fundamental normalization,Z = 1. As a
result:

Z[Vcl, Vq = 0] = 1. (5.25)

One may verify this statement explicitly by expanding the action in powers of
Vcl and employing the Wick theorem. For example, in the first order one finds:
Z[Vcl,0] = 1+

∫
dt Vcl(t)Tr{γ̂ clĜ(t, t)} = 1, where one uses thatγ̂ cl = 1̂ along

with Eq. (5.14). It is straightforward to see that for exactly the same reasons all
higher order terms inVcl vanish as well.

A lesson from Eq. (5.25) is that one necessarily has to introducequantum
sources (that change sign between the forward and the backward branches of the
contour). The presence of such source fields explicitly violates causality, and thus
changes the generating function. On the other hand, these fields usually do not
have a physical meaning and play only an auxiliary role. In most cases one uses
them only to generate observables by an appropriate differentiation. Indeed, as
was mentioned above, the physical density is coupled to the quantum component
of the source. In the end, one takes the quantum sources to be zero, restoring the
causality of the action. Notice that the classical component,Vcl , doesnothave to
be taken to zero.

Let us see how it works. Suppose we are interested in the average fermion
density̺ at time t in the presence of a certain physical scalar potentialVcl(t).
According to Eqs. (5.21) and (5.24) it is given by:

̺(t;Vcl) = − i
2

δ

δVq(t)
Z[Vcl, Vq ]

∣∣∣
Vq=0

. (5.26)

The problem is simplified if the external field,Vcl , is weak in some sense. Then
one may restrict oneself to the linear response, by defining the susceptibility:

�R(t, t ′) ≡ δ

δVcl(t ′)
̺(t;Vcl)

∣∣∣
Vcl=0

= − i
2

δ2Z[Vcl, Vq ]
δVcl(t ′)δVq(t)

∣∣∣∣
Vq=Vcl=0

. (5.27)

We add the subscriptR anticipating on physical grounds that the response func-
tion must beretarded(causality). We shall demonstrate it momentarily. First, let
us introduce thepolarizationmatrix as:
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�̂αβ(t, t ′) ≡ − i
2

δ2 lnZ[V̂ ]
δVβ(t ′)δVα(t)

∣∣∣∣∣
V̂=0

=
(

0 �A(t, t ′)
�R(t, t ′) �K(t, t ′)

)
. (5.28)

Due to the fundamental normalization, Eq. (5.25), the logarithm is redundant for
theR and theA components and therefore the two definitions (5.27) and (5.28)
are not in contradiction. The fact that�cl,cl = 0 is obvious from Eq. (5.25). To
evaluate the polarization matrix,̂�, consider the Gaussian action, Eq. (5.19).

Adding the source term, Eq. (5.23), one finds:S0 + SV =
∫
dt ˆ̄ψ[Ĝ−1 +

Vα γ̂
α]ψ . Integrating out the fermion fields̄̂ψ , ψ̂ according to the rules of fermi-

onic Gaussian integration, Appendix A, one obtains:

Z[V̂ ]= 1

Trρ̂0
det

{
iĜ−1+iVα γ̂ α

}
=det

{
1+Ĝ Vα γ̂

α
}
=eTr ln(1+Ĝ Vα γ̂ α), (5.29)

where one used normalization, Eq. (5.6). Notice, that the normalization is exactly
right, sinceZ[0] = 1. One may now expand ln(1+Ĝ Vα γ̂

α) to the second order in
V and then differentiate twice. As a result, one finds for the polarization matrix:

�αβ(t, t ′) = − i
2

Tr
{
γ̂ αĜ(t, t ′)γ̂ β Ĝ(t ′, t)

}
. (5.30)

Substituting the explicit form of the gamma-matrices, Eq. (5.22), and the Green
functions, Eq. (5.13), one obtains for theresponseand thecorrelation compo-
nents:

�R(A)(t, t ′)=− i
2

[
GR(A)(t, t ′)GK(t ′, t)+ GK(t, t ′)GA(R)(t ′, t)

]
; (5.31)

�K(t, t ′)=− i
2

[
GK(t, t ′)GK(t ′, t)+GR(t, t ′)GA(t ′, t)+GA(t, t ′)GR(t ′, t)

]
.

>From the first line it is obvious that�R(A)(t, t ′) is indeed a lower (upper) trian-
gular matrix in the time domain, justifying their superscripts. Moreover, from the
symmetry properties of the fermionic Green functions (same as Eq. (2.22)) one
finds:�R = [�A]† and�K = −[�K ]†. As a result, the polarization matrix,�̂,
possesses all the symmetry properties of the bosonic self-energy�̂, Eq. (3.10).

Exercise: In the stationary case:̂G(t, t ′) = Ĝ(t − t ′). Fourier transform to the energy domain and
write down expressions for̂�(ω). Assume thermal equilibrium and, using Eq. (5.17), rewrite your
results in terms ofGR(A) and the equilibrium distribution function. Show that in equilibrium the
response,�R(A)(ω), and the correlation,�K (ω), functions are related by the bosonic FDT:

�K (ω) = coth ω
2T

(
�R(ω)−�A(ω)

)
. (5.32)
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Equation (5.31) for�R constitutes the Kubo formula for the density–density
response function. In equilibrium it may be derived using the Matsubara tech-
nique. The Matsubara routine involves, however, the analytical continuation from
discrete imaginary frequencyωm to real frequencyω. This procedure may prove
to be cumbersome in specific applications. The purpose of the above discussion
is to demonstrate how the linear response problems may be compactly formu-
lated in the Keldysh language. The latter allows to circumvent the analytical
continuation and yields results directly in the real frequency domain.

5.4. Tunneling current

As a simple application of the technique, let us derive the expression for the
tunneling conductance. Our starting point is the tunneling Hamiltonian:

Ĥ =
∑

k

[
ǫ
(c)
k c

†
kck + ǫ

(d)
k d

†
k dk

]
+
∑

kk′

[
Tkk′ c

†
kdk′ + T ∗kk′ d

†
k′ck

]
, (5.33)

where the operatorsck anddk′ describe fermions in the left and right leads, while
Tkk′ are tunneling matrix elements between the two. The current operator is:

Ĵ = d
dt

∑
k c

†
kck = i[Ĥ ,

∑
k c

†
kck]− = −i∑kk′

[
Tkk′ c

†
kdk′ − T ∗kk′ d

†
k′ck

]
.

To describe the system in the Keldysh formalism, one introduces the four–

component spinor:̂̄ψk =
(
ψ̄
(c)
1k , ψ̄

(c)
2k , ψ̄

(d)
1k , ψ̄

(d)
2k

)
, a similarly one for the fields

without the bar, and the 4× 4 matrices:

Ĝk=
(
Ĝ
(c)
k 0
0 Ĝ

(d)
k

)
; T̂k,k′=

(
0 Tkk′ γ̂

cl

T ∗
kk′ γ̂

cl 0

)
; Ĵkk′=

(
0 iTkk′ γ̂

q

−iT ∗
kk′ γ̂

q 0

)
. (5.34)

In addition to the already familiar Keldysh structure the spinors and matrices
above possess the structure of the left–right space. In terms of these objects the
action and the current operator take the form:

S =
∞∫

−∞
dt

∑

kk′

ˆ̄ψk
[
δkk′ Ĝ

−1
k − T̂k,k′

]
ψ̂k′; Ĵ (t) = −

∑

kk′

ˆ̄ψk Ĵk,k′ψ̂k′ . (5.35)

The current is expressed through theγ q vertex matrix in the Keldysh space be-
cause any observable is generated by differentiation over thequantumcompo-
nent of the source field (the classical component of the source does not change
the normalization, Eq. (5.25)).

One is now in a position to calculate the average tunneling current up to the
second order in the matrix elementsTk,k′ . To this end one expands the action up
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to the first order inTk,k′ , and applies the Wick theorem:

J (t) = i
∞∫

−∞
dt ′

∑

kk′
Tr
{
Ĵkk′ Ĝk′(t, t

′)T̂k′kĜk(t ′, t)
}

(5.36)

=
∞∫

−∞
dt ′

∑

kk′
|Tkk′ |2Tr

{
γ̂ q Ĝ

(c)
k (t, t

′)γ̂ clĜ(d)
k′ (t

′, t)− γ̂ q Ĝ(d)
k′ (t, t

′)γ̂ clĜ(c)k (t
′, t)

}
=

∞∫

−∞
dt ′

∑

kk′
|Tkk′ |2

[
G
(c)R

k(t,t ′)G
(d)K

k′(t ′,t)+G
(c)K

k(t,t ′)G
(d)A

k′(t ′,t)−G
(d)R

k′(t,t ′)G
(c)K

k(t ′,t)−G
(d)K

k′(t,t ′)G
(c)A

k(t ′,t)

]
.

Now let us assume a stationary situation so that all the Green functions depend on
the time difference only. We shall also assume that each lead is in local thermal
equilibrium and thus its Green functions are related to each other via the FDT:
G
(c)K
k (ǫ) = (1− 2n(c)F (ǫ))[G

(c)R
k (ǫ)−G

(c)A
k (ǫ)]. Similarly for the “d”–lead with

a different occupation functionn(d)F (ǫ). As a result, one finds for the tunneling
current:

J=
∞∫

−∞

dǫ

π

[
n
(d)
F (ǫ)− n

(c)
F (ǫ)

]∑

kk′
|Tkk′ |2

[
G
(c)R
k − G

(c)A
k

][
G
(d)R

k′ − G
(d)A

k′
]
. (5.37)

If the current matrix elements may be considered as approximately momentum
independent:|Tkk′ |2 ≈ |T |2, the last expression is reduced to:

J = 4π |T |2
∞∫

−∞
dǫ

[
n
(c)
F (ǫ)− n

(d)
F (ǫ)

]
ν(c)(ǫ) ν(d)(ǫ), (5.38)

where the density of states (DOS) is defined as:

ν(ǫ) ≡ i

2π

∑

k

[
GRk (ǫ)− GAk (ǫ)

]
. (5.39)

5.5. Interactions

Consider a liquid of fermions that interact through instantaneous density–density
interactions:Ĥint = −1

2

∫∫
drdr ′ : ˆ̺ (r)U(r − r ′) ˆ̺ (r ′) : , where ˆ̺ (r) = c

†
r cr

is the local density operator and: . . . : stands for normal ordering. The corre-
sponding Keldysh contour action has the form:Sint = 1

2

∫
C
dt
∫∫
drdr ′U(r −
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r ′)ψ̄r ψ̄r ′ψrψr ′ . One may now perform the Hubbard–Stratonovich transforma-
tion with the help of a real boson fieldϕ(t; r), defined along the contour:

e

i
2

∫
C

dt
∫∫
drdr ′U(r−r ′)ψ̄r ψ̄r′ψrψr′=

∫
Dϕ e

i
∫
C

dt
[

1
2

∫∫
drdr ′ϕrU−1

rr′ ϕr′+
∫
drϕr ψ̄rψr

]

, (5.40)

whereU−1 is a kernel, that is inverse to the interaction potential:U−1 ◦ U =
1. One notices that the auxiliary bosonic field,ϕ, enters the fermionic action
in exactly the same manner as a scalar source field. Following Eq. (5.21), one
introducesϕcl(q) ≡ (ϕ+ ± ϕ−)/2 and rewrites the fermion–boson interaction
term asψ̄aϕαγ αabψb , where summations are assumed overa, b = (1,2) andα =
(cl, q). The free bosonic term takes the form of:1

2ϕU
−1ϕ→ ϕαU

−1σ̂
αβ
1 ϕβ .

At this stage the fermionic action is Gaussian and one may integrate out the
Grassmann variables in the same way it was done in Eq. (5.29). As a result, one
finds for the generating function, Eq. (5.24), of the interacting fermionic liquid:

Z[V̂ ] =
∫
Dϕ e

i
∞∫

−∞
dt
∫∫
drdr ′ϕ̂ U−1σ̂1ϕ̂ +Tr ln

[
1+Ĝ (Vα+ϕα)γ̂ α

]
. (5.41)

Quite generally, thus, one may reduce an interacting fermionic problem to a the-
ory of an effective non–linear bosonic field (longitudinal photons). Let us demon-
strate that this bosonic theory possesses the causality structure. To this end, one
formally expands the logarithm on the r.h.s. of Eq. (5.41). Employing Eq. (5.14)
and recalling that̂γ cl = 1̂, one notices that forϕq = Vq = 0 the bosonic action
is zero. As a result, Eq. (2.32) holds.

To proceed we shall restrict ourselves to the, so called,random phase approx-
imation (RPA). It neglects all terms in the expansion of the logarithm beyond
the second order. The second order term in the expansion is conveniently ex-
pressed through the (bare) polarization matrix�α,β (see Eq. (5.30)) of thenon–
interactingfermions. The resulting effective bosonic theory is Gaussian with the
action:

SRPA[ϕ̂, V̂ ]=
∫∞∫

−∞
dtdt ′

∫∫
drdr ′

[
ϕ̂
(
U−1σ̂1−�̂

)
ϕ̂ −2 ϕ̂�̂V̂ −V̂ �̂V̂

]
. (5.42)

One notices that the bare polarization matrix plays exactly the same role as of the
self-energy,�̂, cf. Eqs. (3.9), (3.10), in the effective bosonic theory. As a result,
the full bosonic correlator(U−1σ̂1 − �̂) possesses all the causality properties,
listed in section 2.4.
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Finally, let us evaluate thedressedpolarization matrix of the interacting fermi–
liquid in the RPA. To this end one may perform the bosonic Gaussian integra-
tion in the RPA action (5.42) to find the logarithm of the generating function:

i lnZRPA[V̂ ] = V̂
(
�̂+ �̂(U−1σ̂1 − �̂)−1�̂

)
V̂ . Finally, employing the defin-

ition of the polarization matrix, Eq. (5.28), and performing simple matrix algebra,
one finds:

�̂RPA = �̂ ◦
(
1− σ̂1U ◦ �̂

)−1
. (5.43)

It is straightforward to demonstrate that the dressed polarization matrix possesses
the same causality structure as the bare one, Eq. (5.28). For the response com-
ponent of the dressed polarization,�̂

R
RPA, the second factor on the r.h.s. of

Eq. (5.43) may be considered as a modification of the applied field,Vcl . Indeed,
cf. Eq. (5.27),̺ = �̂

R
RPA ◦ Vcl = �̂R ◦ V scrcl , where the screened external po-

tentialV scrcl is given by:V scrcl =
(
1− σ̂1U ◦ �̂R

)−1
◦Vcl . This is the RPA result

for the screening of an external scalar potential.

5.6. Kinetic equation

According to Eq. (5.30) to evaluate the bare (and thus RPA dressed, Eq. (5.43))
polarization matrix, one needs to know the fermionic Green function,Ĝ. While
it is known in equilibrium, it has to be determined self–consistently in an out–
of–equilibrium situation. To this end one employs the same idea that was used
in the bosonic theory of chapter 3. Namely, one writes down the Dyson equation
for the dressed fermionic Green function:

(
Ĝ
−1
0 − �̂F

)
◦ Ĝ = 1̂, (5.44)

where the subscript “0” indicates the bare Green function. The fermionic self-
energy,�F turns out to have the same structure asĜ−1, Eq. (5.15). Thus theR
andA components of the Dyson equation take a simple form:

(
i∂t +

1

2m
∇2
r

)
GR(A) = δ(t − t ′)δ(r − r ′)+�R(A)F ◦ GR(A). (5.45)

Employing the parameterizationGK = GR ◦F−F ◦GA , whereF is a Hermitian
matrix, along with Eq. (5.45), one rewrites the Keldysh component of the Dyson
equation as:
[
F ,

(
i∂t +

1

2m
∇2
r

)]

−
= �KF −

(
�RF ◦ F − F ◦�AF

)
= −i Icol[F]. (5.46)
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This equation is the quantum kinetic equation for the distribution matrixF . Its
l.h.s. is thekinetic term, while the r.h.s. is thecollision integralwith �KF having
the meaning of an “incoming” term and�RF ◦F −F ◦�AF that of an “outgoing”
term.

The simplest diagram for the fermionic self-energy matrix,�̂abF , is obtained
by expanding the Hubbard–Stratonovich transformed action, Eq. (5.40), to the

second order in the fermion–boson interaction vertex,ˆ̄ψaϕα γ̂ αabψ̂b, and applying
the Wick theorem for both fermion and boson fields. As a result, one finds:

�̂abF (t, t
′) =

(
γ̂ αac Ĝ

cd(t, t ′) γ̂ βdb
) 〈
ϕα(t)ϕβ(t

′)
〉
=
(
γ̂ cl Ĝ(t, t ′) γ̂ cl

)ab
iDK(t, t ′);

+
(
γ̂ cl Ĝ(t, t ′) γ̂ q

)ab
iDR(t, t ′)+

(
γ̂ q Ĝ(t, t ′) γ̂ cl

)ab
iDA(t, t ′), (5.47)

where summations over all repeated indices are understood and the spatial ar-
guments have the same general structure as the time ones. The boson Green
function is denoted as

〈
ϕα(t)ϕβ(t

′)
〉
= iDαβ(t, t ′). Finally one finds for theR,A

(i.e. (1,1) and(2,2)) andK (i.e (1,2)) components of the fermionic self-energy:

�
R(A)
F (t, t ′) = i

(
GR(A)(t, t ′)DK(t, t ′)+ GK(t, t ′)DR(A)(t, t ′)

)
; (5.48)

�KF (t, t
′) = i

(
GK(t, t ′)DK(t, t ′)+ GR(t, t ′)DR(t, t ′)+ GA(t, t ′)DA(t, t ′)

)

= i
(
GK(t, t ′)DK(t ′, t)+

(
GR(t, t ′)− GA(t, t ′)

)(
DR(t, t ′)−DA(t, t ′)

))
,

where in the last equality one had used thatGR(A)(t, t ′)DA(R)(t, t ′) = 0, since
these expressions have no support in the time domain (see, however, the foot-
note in section 3.1). For the same reason:�21

F (t, t
′) = i

(
GA(t, t ′)DR(t, t ′) +

GR(t, t ′)DA(t, t ′)
)
= 0. As expected, the retarded and advanced components are

lower and upper triangular matrices correspondingly, with�R = [�A]†, while
�K = −[�K ]†. Notice the close resemblance of expressions (5.48) to their
bosonic counterparts, Eqs. (3.14)–(3.16).

If one understands the bosonic Green function,D̂, as the bareinstantaneous
interaction potential (i.e.DR = DA = U(r − r ′)δ(t − t ′) andDK = 0), one
finds:�RF = �AF = iUGK(t, t)δ(t − t ′) and�KF = 0. In this approximation the
r.h.s. of the kinetic equation (5.46) vanishes (sinceF is a symmetric matrix) and
so there is no collisional relaxation. Thus one has to employ an approximation
for D̂ that contains some retardation. The simplest and most convenient one is
the RPA, whereD̂ = (U−1σ̂1 − �̂)−1, cf. Eq. (5.42), with a matrix�̂ that is
non–local in time. This relation may be rewritten as the Dyson equation forD̂,
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namely(U−1σ̂1− �̂) ◦ D̂ = 1̂. One may easily solve it for the three components
of D̂ and write them in the following way:

DR(A) = DR ◦
(
U−1 −�A(R)

)
◦DA; DK = DR ◦�K ◦DA. (5.49)

Performing the Wigner transform following sections 3.5, 3.6, the kinetic term
(the l.h.s. of Eq. (5.46)) is exactly the same as for the complex boson case (one
has to take into account the gradient terms to obtain a non–zero result for the WT
of the commutator). The result is (cf. Eq. (3.17)):

(
∂τ − vk∇ρ − E∇k

)
fF(τ, ρ, k) = Icol[fF], (5.50)

wherevk = ∂kǫk, E is an external electric field and the collision integral,Icol , is
i times the WT of the r.h.s. of Eq. (5.46). On the r.h.s. one may keep only the
leading terms (without the gradients). One also employs a parameterization of the
Keldysh component of the fermionic Green function through the corresponding
distribution function:GK → gK = fF(gR − gA), wherefF(τ, ρ, k) is the WT
of F . Assuming, for brevity, a spatially uniform and momentum isotropic case,
one may restrict oneself tofF(τ, ǫk) = fF(τ, ǫ). As a result, one finds for the
collision integral:

Icol[fF(ǫ)]= i
∫
dω

∑

q

DR(ω, q)DA(ω, q)�g(ǫ − ω, k − q) (5.51)

×
[(
�R −�A

) (
1− fF(ǫ − ω)fF(ǫ)

)
−�K

(
fF(ǫ)− fF(ǫ − ω)

)]
,

where�αβ = �αβ(ω, q), while the time index,τ , is suppressed for brevity and
the notation

�g(ǫ, k) ≡
i

2π

(
gR(ǫ, k)− gA(ǫ, k)

)
(5.52)

is introduced. For free fermions�g(ǫ, k) = δ(ǫ− ǫk). At this stage one may ob-
serve that if the bosonic system is at equilibrium:�K = coth(ω/2T )

[
�R −�A

]
,

then the fermionic collision integral is nullified by:

fF(ǫ) = tanh
ǫ

2T
. (5.53)

Indeed, 1− tanh(b− a) tanh(b) = coth(a)
(

tanh(b)− tanh(b− a)
)
. One should

take into account, however, that the bosonic degrees of freedom arenot indepen-
dent from the fermionic ones. Namely, components of the polarization matrix�̂
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are expressed through the fermionic Green functions according to Eq. (5.31). In
the WT representation these relations take the form:

�R −�A= iπ
∫
dǫ′

∑

k′
�g(ǫ

′, k′)�g(ǫ
′ − ω, k′ − q)

[
fF(ǫ′ − ω)− fF(ǫ′)

]
;

�K(ω, q) = iπ
∫
dǫ′

∑

k′
�g(ǫ

′, k′)�g(ǫ
′−ω, k′−q)

[
fF(ǫ′−ω)fF(ǫ′)− 1

]
.

(5.54)

Due to the same trigonometric identity the equilibrium argument can be made
self-consistent: if the fermionic system is in equilibrium, Eq. (5.53), then com-
ponents of�̂ satisfy the bosonic FDT, Eq. (3.22).

One may substitute now Eqs. (5.54) into Eq. (5.51) to write down the closed
kinetic equation for the fermionic distribution function. Most conveniently it is
done in terms of the occupation numbers, defined asfF ≡ 1− 2n 6:

∂nǫ
∂τ

=
∫∫
dωdǫ′M

[
nǫ′nǫ−ω(1−nǫ)(1−nǫ′−ω)−nǫnǫ′−ω(1−nǫ′)(1−nǫ−ω)

]
,(5.55)

where the transition probability is given by:

M(ǫ, ω) =4π
∑

q,k′
|DR(ω, q)|2�g(ǫ − ω, k − q)�g(ǫ

′, k′)�g(ǫ
′ − ω, k′ − q).

(5.56)

Equation (5.55) is a generic kinetic equation with a “four–fermion” collisional
relaxation. The first term in the square brackets on its r.h.s. may be identified as
“in”, while the second one as “out”. Each of these terms consists of the prod-
uct of four occupation numbers, giving a probability of having two initial states
occupied and two final states empty. Forn(ǫ) given by the Fermi function the
“in” and the “out” terms cancel each other. Therefore in thermal equilibrium the
components of thedressedfermionic Green function must satisfy the FDT:

GK = tanh
ǫ

2T

(
GR − GA). (5.57)

The structure of the transmission probabilityM is illustrated in Fig. 7. The
three factors of�g enforce that all three intermediate fermionic particles must
satisfy energy–momentum conservation (stand on mass–shell), up to the quasi-
particle life–time. The real factor|DR|2 is associated with the square of the
matrix element of the screened interaction potential (in the RPA).

6To derive this expression one should add and subtractnǫnǫ′−ωnǫ′nǫ−ω in the square brackets.
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Fig. 7. Structure of the four–fermion collision integral. The full lines are fermionic Green func-
tions; the wavy lines are the RPA screened interaction potential. The fermionic loop represents the
polarization matrix,�̂(ω, q).

6. Disordered fermionic systems

6.1. Disorder averaging

We consider fermions in the field of a static (quenched) space–dependent scalar
potentialUdis(r). The potential is meant to model the effect of random static
impurities, dislocations, etc. Since one does not know the exact form of the po-
tential, the best one can hope for is to evaluate the statistical properties of various
observables, assuming some statistics forUdis(r). It is usually a reasonable guess
to prescribe a Gaussian distribution for the potential. Namely, one assumes that
the relative probability for a realization of the potential to appear in nature is
given by:

P[Udis] ∼ e−πν τ
∫
dr U2

dis(r), (6.1)

whereν is the bare fermionic DOS at the Fermi level andτ , called themean–free
time, measures the strength of the random potential.

In this chapter we concentrate on non–interacting fermions. We would like
to evaluate, say, the response function,�R, in presence of the random potential
and average it over the realizations ofUdis with the weight given by Eq. (6.1).
The crucial observation is that the response function,�R, may be defined as
variation of the generating function, Eq. (5.27), andnot the logarithmof the
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generating function. More precisely, the two definitions with, Eq. (5.28), and
without, Eq. (5.27), the logarithm coincide due to the fundamental normalization,
Eq. (5.25). This isnot the case in the equilibrium formalism, where the presence
of the logarithm (leading to the factorZ−1 after differentiation) is unavoidable
in order to have the correct normalization. Such a factorZ−1 = Z−1[Udis]
formidably complicates the averaging overUdis . Two techniques were invented
to perform the averaging: the replica trick [21] and the super-symmetry (SUSY)
[22]. The first one utilizes the observation that lnZ = limn→0(Z

n − 1)/n, to
perform calculations for an integer number,n, replicas of the same system and
taken→ 0 at the end of the calculations. The second one is based on the fact that
Z−1 of thenon–interactingfermionic system equals toZ of a bosonic system in
the same random potential. One thus introduces an additional bosonic replica
of the fermionic system at hand. Both of these ideas have serious drawbacks:
the replica technique requires analytical continuation, while the SUSY is not
applicable to interacting systems.

The Keldysh formalism provides an alternative to these two methods by insur-
ing thatZ = 1 by construction. One may thus directly perform the averaging of
the generating function, Eq. (5.24), over realizations ofUdis . Since the disorder
potential possesses only the classical component (it is exactly the same on both
branches of the contour), it is coupled only toγ̂ cl = 1̂. The disorder–dependent
term in the averaged generating function has the form:

∫
DUdis e

−
∫
dr

[
πντU2

dis (r)−iUdis(r)
∞∫

−∞
dt ˆ̄ψ t γ̂ cl ψ̂t

]

(6.2)

= e
− 1

4πντ

∫
dr
∫∞∫
−∞
dtdt ′ (ψ̄at ψ

a
t )
(
ψ̄b
t ′ψ

b
t ′
)

,

wherea, b = 1,2, and there is a summation over repeated indices. One can
rearrange the expression in the exponent on the r.h.s. of the last equation as(
ψ̄at ψ

a
t

) (
ψ̄b
t ′ψ

b
t ′
)
= −

(
ψ̄at ψ

b
t ′
) (
ψ̄b
t ′ψ

a
t

)
7 and then use the Hubbard–Stratonovich

matrix field,Q̂ = Qab
t,t ′(r):

e

1
4πντ

∫
dr
∫∞∫
−∞
dtdt ′

(
ψ̄at ψ

b
t ′
)(
ψ̄b
t ′ψ

a
t

)

=
∫
DQ̂ e

−
∫
dr

[
πν
4τ Tr{Q̂◦Q̂}− i

2τ

∫∞∫
−∞
dtdt ′Qab

t,t ′ ψ̄
b
t ′ψ

a
t

]

, (6.3)

where the spatial coordinate,r, is suppressed in botĥQ andψ̂ . At this stage the
averageaction becomes quadratic in the Grassmann variables and they may be
integrated out leading to the determinant of the corresponding quadratic form:

7The minus sign originates from commuting the Grassmann numbers.
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Ĝ
−1
0 + Vα γ̂ α + i

2τ Q̂. All the matrices here should be understood as having a
2×2 Keldysh structure along with anN ×N structure in discrete time. One thus
finds for thedisorder averagedgenerating function:

Z[V̂ ] =
∫
DQ̂ e iS[Q̂;V̂ ], (6.4)

where

iS[Q̂; V̂ ] = −πν
4τ

∫
dr Tr{Q̂2} + Tr ln

[
Ĝ
−1
0 + i

2τ
Q̂+ Vα γ̂ α

]
. (6.5)

As a result, one has traded the initial functional integral over the static field
Udis(r) for the functional integral over the dynamic matrix field̂Qt,t ′(r). At
first glance, it does not strike as a terribly bright idea. Nevertheless, there is a
great simplification hidden in this procedure. The point is that the disorder po-
tential, beingδ–correlated, is a rapidly oscillating function. On the other hand, as
one will see below, thêQ–matrix field is a slow (both in space and time) function.
Thus it represents the truemacroscopic(or hydrodynamic) degrees of freedom
of the system, that happen to be the diffusively propagating modes.

6.2. Non–linearσ–model

To execute this program, one first looks for the stationary configurations of the
action (6.5). Taking the variation over̂Qt,t ′(r), one obtains:

Q̂
t,t ′(r) =

i

πν

[
Ĝ
−1
0 + i

2τ
Q̂
]−1

∣∣∣∣
t,t ′;r,r

, (6.6)

whereQ̂ denotes a stationary configuration of the fluctuating fieldQ̂. For the
purpose of finding the stationary configurations one has omitted the small source
field, V̂ . It is important to notice that the spatially non–local operator

[
Ĝ
−1
0 +

i
2τ Q̂

]−1
(t, t ′; r, r ′) on the r.h.s. is taken at coinciding spatial pointsr ′ = r.

The strategy is to find first a spatially uniform and time–translationally invari-
ant solution of Eq. (6.6):Q̂

t−t ′ , and then consider space and time–dependent
deviations from such a solution. This strategy is adopted from the theory of
magnetic systems, where one first finds the uniform static magnetized configu-
rations and then treats spin–waves as smooth perturbations on top of such static
uniform solutions. From the structure of Eq. (6.6) one expects that the saddle–
point configurationQ̂ possesses the same structure as the fermionic self–energy,
Eq. (5.15) (more accurately, one expects that among the possible saddle points
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there is a “classical” one, that satisfies the causality structure, Eq. (5.15)). One
looks, therefore, for a solution of Eq. (6.6) in the form of:

Q̂
ǫ
≡ �̂ǫ =

(
�Rǫ �Kǫ
0 �Aǫ

)
. (6.7)

Substituting this expression in Eq. (6.6), one finds

�R(A)ǫ = i

πν

1
[
G
R(A)
0

]−1
+ i

2τ�
R(A)
ǫ

∣∣∣∣∣∣∣
r,r

= i

πν

∑

k

1

ǫ−ξk+ i
2τ�

R(A)
ǫ

= ±1, (6.8)

whereξk ≡ k2/(2m) − µ and one adopts
∑
k . . . = ν

∫
dξk . . ., whereν is the

DOS at the Fermi surface. The summation over momentum appears because the
matrix on the r.h.s. is taken at coinciding spatial points. The signs are chosen so
as to respect causality: the retarded (advanced) Green function is analytic in the
entire upper (lower) half-plane of complex energyǫ. One has also assumed that
1/(2τ)≪ µ. The Keldysh component, as always, may be parameterized through
a Hermitian distribution function matrix:�K = �R ◦F−F ◦�A = 2Fǫ , where
the distribution functionFǫ is not fixed by the saddle point equation (6.6) and
must be determined through the boundary conditions. As a result one obtains:

�̂ǫ =
(

1 2Fǫ
0 −1

)
. (6.9)

Transforming back to the time representation, one obtains�
R(A)

t−t ′ = ±δ(t − t ′ ∓
0), where∓0 indicates that theδ–function is shifted below (above) the main
diagonal,t = t ′. As a result, Tr�̂ǫ = 0 andS[�̂] = 0, as it should be, of course,
for any purelyclassicalfield configuration, Eq. (6.7). There is, however, a wider
class of configurations, that leave the action (6.5) invariant (zero). Indeed, any
field configuration of the form:

Q̂ = T̂ ◦ �̂ ◦ T̂ −1, (6.10)

whereT̂t,t ′(r) = T̂t−t ′ , and thus commutes witĥG0, obviously does not change
the action (6.5). This is the zero–mode Goldstone manifold. The standard way
to introduce the massless modes (“spin–waves”) is to allow the deformation ma-
trices T̂ to be slow functions oft + t ′ andr. Thus the expression (6.10) para-
meterizes the soft modes manifold of the fieldQ̂. One may thus restrict oneself
only to the field configurations given by Eq. (6.10) and disregard all others (mas-
sive modes). An equivalent way to characterize this manifold is by the condition
(cf. Eq. (6.9)):

Q̂2 = 1̂. (6.11)
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Our goal now is to derive an action for the soft–mode field configurations
given by Eqs. (6.10) or (6.11). To this end one substitutesQ̂ = T̂ ◦ �̂ ◦ T̂ −1

into Eq. (6.5) and cyclically permutes thêT matrices under the trace sign. This
way one arrives at̂T −1 ◦ Ĝ−1

0 ◦ T̂ = Ĝ
−1
0 + T̂ −1 ◦ [Ĝ−1

0 , T̂ ]− = Ĝ
−1
0 + iT̂ −1 ◦

[∂t + vF∇r , T̂ ]−, where one has linearized the dispersion relation near the Fermi
surfacek2/(2m) − µ ≈ vF k → ivF∇r . As a result, the desired action has the
form:

iS[Q̂] = Tr ln
[
1+ iĜT̂ −1[∂t , T̂ ]− + iĜT̂ −1[vF∇r , T̂ ]−

]
, (6.12)

whereĜ is theimpurity dressedGreen function, defined as:(Ĝ−1
0 + i

2τ �̂)Ĝ = 1̂.
For practical calculations it is convenient to write it as:

Ĝǫ(k)=
(
GRǫ (k) GKǫ (k)

0 GAǫ (k)

)
= 1

2

(
GRǫ (k) [1̂+ �̂ǫ] + GAǫ (k) [1̂− �̂ǫ]

)
, (6.13)

with

GR(A)ǫ (k) = (ǫ − ξk ± i/(2τ))−1 ; (6.14)

GKǫ (k) = GRǫ (k)Fǫ − Fǫ G
A
ǫ (k).

Notice that
∑
k Ĝǫ(k) = −iπν �̂ǫ and

∑
k G

R
ǫ (k)G

A
ǫ (k) = 2πντ , while the

other combinations vanish:
∑
k G

R
ǫ (k)G

R
ǫ (k) =

∑
k G

A
ǫ (k)G

A
ǫ (k) = 0, due to the

complexξk–plane integration.
One can now expand the logarithm in Eq. (6.12) to the first order in the∂t term

and to the second order in the∇r term (the first order term in∇r vanishes due
to the angular integration) and evaluate traces using Eq. (6.14). For the∂t term
one finds:πν Tr{�̂T̂ −1[∂t , T̂ ]−} = πν Tr{∂tQ̂}, where one used that Tr{∂t�̂} =
0. For the∇r term, one finds:−1

4πνDTr{(∇rQ̂)2}, whereD ≡ v2
F τ/d is the

diffusion constant andd is the spatial dimensionality8. Finally, one finds for the
action of the soft–mode configurations [14]:

S[Q̂]= iπν
∫
dr Tr

{
1

4
D
(
∇rQ̂(r)

)2− ∂tQ̂(r)−iVα γ̂ αQ̂(r)−
i

π
V̂ T σ̂1V

}
, (6.15)

where the trace is performed over the 2× 2 Keldysh structure as well as over
theN × N time structure. In the last expression we have restored the source
term from Eq. (6.5). The last term,̂V T σ̂1V is the static compressibility of the
electron gas. It originates from the second order expansion of Eq. (6.5) inV̂ ,

8One uses thatvF = k/m and
∑
k G
R
ǫ (k)

k
mGAǫ (k)

k
m = 2πντv2

F
/d = 2πνD, while the

correspondingR − R and A − A terms vanish. Employing Eq. (6.13), one then arrives at
1
4 Tr{[1̂+ �̂ǫ ](T̂ −1∇r T̂ )[1̂− �̂ǫ ](T̂ −1∇r T̂ )} = − 1

8 Tr{(∇r (T̂ �̂ǫ T̂ −1))2} = − 1
8 Tr{(∇r Q̂)2}.
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while keeping the high energy part of theGRGR andGAGA terms. Despite of
the simple appearance, the action (6.15) is highly non–linear due to the condition
Q̂2 = 1. The theory specified by Eqs. (6.11) and (6.15) is called thematrix non–
linear σ–model(NLσM). The name came from the theory of magnetism, where
the unit–lengthvector, σ(r), represents a local (classical) spin, that may rotate
over the sphereσ 2 = 1.

6.3. Usadel equation

Our goal is to investigate the physical consequences of the NLσM. As a first step,
one wants to determine the most probable (stationary) configuration,Q̂

t,t ′(r), on
the soft–modes manifold, Eq. (6.11). To this end one parameterizes deviations

from Q̂
t,t ′(r) asQ̂ = T̂ ◦ Q̂ ◦ T̂ −1 and chooseŝT = eŴ , whereŴt,t ′(r) is

the generator of rotations. Expanding to the first order inŴ, one finds:Q̂ =
Q̂+ [Ŵ◦, Q̂]−. One may now substitute such âQ–matrix into the action (6.15)

and require that the term linear in̂W vanishes. This leads to the saddle–point
equation forQ̂. For the first term in the curly brackets on the r.h.s. of Eq. (6.15)

one obtains:12 Tr{Ŵ ◦∇rD
(
∇rQ̂◦Q̂−Q̂◦∇rQ̂

)
} = −Tr{Ŵ ◦∇rD

(
Q̂◦∇rQ̂

)
},

where one employed that∇rQ̂◦Q̂+Q̂◦∇rQ̂ = 0, sinceQ̂
2 = 1̂. For the second

term one finds: Tr{Ŵt,t ′
(
∂t ′+∂t

)
Q̂
t ′,t }. It is written more compactly in the energy

representation, where∂t →−iǫ, and thus the second term is:−iTr{Ŵ◦[ǫ, Q̂]−}.
Demanding that the linear term in̂W vanish, one finds:

∇r
(
DQ̂ ◦ ∇rQ̂

)
+ i[ǫ, Q̂]− = 0. (6.16)

This is the Usadel equation for the stationaryQ̂–matrix, that must also satisfy

Q̂
2 = 1̂. In the time representationi[ǫ, Q̂]− →−{∂t , Q̂}+.
If one looks for a solution of the Usadel equation (6.16) in the subspace of

“classical” (having the causality structure) configurations, then the condition

Q̂
2 = 1̂ restricts the possible solutions tô�, Eq. (6.9) (with a yet unspecified

distribution matrixFt,t ′(r)). Therefore, in the non–superconducting case the Us-
adel equation is reduced to a single equation for the distribution matrixFt,t ′(r).
It contains much more information for the superconducting case (i.e. it also de-
termines the local energy spectrum and superconducting phase). Substituting
Eq. (6.9) into the Usadel equation (6.16), one finds:

∇r
(
D∇rF

)
+ i[ǫ,F]− = 0. (6.17)
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Finally, performing the time Wigner transform,Ft,t ′(r) → fF(τ, ǫ; r), as ex-
plained in section 3.5, one obtains:

∇r
(
D∇r fF

)
− ∂τ fF = 0. (6.18)

This is the kinetic equation for the fermionic distribution functionfF(τ, ǫ; r) of
the disordered system. It happens to be the diffusion equation. Notice, that it is
the same equation for any energyǫ and different energies do not “talk” to each
other (in the adiabatic case, where the WT works). This is a feature of non–
interacting systems. In the presence of interactions, the equation acquires the
collision integral on the r.h.s. that mixes different energies between themselves.
It is worth mentioning that elastic scattering does not show up in the collision
integral. It was already fully taken into account in the derivation of the Usadel
equation and went into the diffusion term,D∇2

r .
As an example, let us consider a disordered one–dimensional wire of lengthL

[23], attached to two leads, that are kept at different voltages. There is a stationary
current passing through the wire. We look for the space dependent distribution
function, fF(ǫ; r), that satisfiesD∇2

r fF = 0 in a stationary setup (for a space
independent diffusion constant,D). As a result,

fF(ǫ; r) = fL(ǫ)+ (fR(ǫ)− fL(ǫ))
r

L
, (6.19)

wherefL(R)(ǫ) are the distribution functions of the left and right leads. The
distribution function inside the wire interpolates the two distributions linearly.
At low temperatures it looks like a two–step function, where the energy separa-
tion between the steps is the applied voltage,eV , while the height depends on
position. Such a distribution was measured in a beautiful experiment [23]. Com-
paring equation (6.18) with the continuity equation, one notices that the current
(at a given energyǫ) is given byJ (ǫ) = D∇r fF = D (fR(ǫ)− fL(ǫ)) /L. And
thus the total current isJ = e∑k J (ǫ) = e νDL

∫
dǫ (fR(ǫ)− fL(ǫ)) = e2 νDL V .

This is the Drude conductivity:σD = e2νD.

6.4. Fluctuations

Our next goal is to consider fluctuations near the stationary solution,Q̂
t,t ′(r).

We restrict ourselves to the soft–mode fluctuations that satisfyQ̂2 = 1 only, and
neglect all massive modes that stay outside this manifold. As was already stated
above these fluctuations of thêQ–matrix may be parameterized as

Q̂ = e−W ◦ Q̂ ◦ eW . (6.20)
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The part ofW that commutes withQ̂ does not generate any fluctuations, there-

fore one restrictsW to satisfy:W◦Q̂+Q̂◦W = 0. SinceQ̂may be diagonalized
according to:

Q̂ =
(

1 2F
0 −1

)
=
(

1 F

0 −1

)
◦
(

1 0
0 −1

)
◦
(

1 F

0 −1

)
, (6.21)

any generatorW that anticommutes witĥQ may be parameterized as

W=
(

1 F

0 −1

)
◦
(

0 w

w 0

)
◦
(

1 F

0 −1

)
=
(
F ◦ w F ◦ w ◦ F − w
−w −w ◦ F

)
, (6.22)

wherewt,t ′(r) andwt,t ′(r) are arbitrary Hermitian matrices in time space. One,
thus, understands the functional integration overQ̂ as an integration over Her-
mitian w andw. The physical meaning ofw is a deviation of the fermionic
distribution function,F , from its stationary value. At the same time,w has no
classical interpretation. To a large extent it plays the role of the quantum coun-
terpart ofw, that appears only as the internal line in the diagrams.

One may now expand the action, Eqs. (6.15), in powers ofw andw. SinceQ̂
was chosen to be a stationary point, the expansion starts from the second order.
In a spatially uniform case one obtains:

iS(2)[W]=2πν
∫
dr

∫∫
dǫ1dǫ2

4π2
wǫ1ǫ2(r)

[
−D∇2

r + i(ǫ1 − ǫ2)
]
wǫ2ǫ1(r). (6.23)

The quadratic form is diagonalized by transforming to the momentum represen-
tation. As a result, the propagator of smallQ̂–matrix fluctuations is given by:

〈
wǫ2ǫ1(q)wǫ3ǫ4(−q)

〉
W
= − 1

2πν

δǫ1ǫ3δǫ2ǫ4

Dq2 + iω ≡ −δǫ1ǫ3δǫ2ǫ4
2πν

D(ω, q) , (6.24)

whereω ≡ ǫ1 − ǫ2 and the objectD(ω, q) = D(ǫ1 − ǫ2, q) = (Dq2 +
i(ǫ1 − ǫ2))−1 is called adiffuson. It is an advanced (retarded) function of its
first (second) energy argument,ǫ1(2), (or correspondinglyt1(2)). The higher or-
der terms of the action’s expansion describe non–linear interactions of the dif-
fusons with vertices calledHikami boxes. These non–linear terms are respon-
sible for the localization corrections. If the distribution functionF is spatially
non–uniform, there is an additional term in the quadratic actioniS̃(2)[W] =
−2πνDTr{w∇rFw∇rF}. This term generates non–zero correlations of the type
〈ww〉 and is actually necessary for the convergence of the functional integral
overw andw. In the spatially uniform case, such a convergence term is pure
regularization (the situation that was already encountered before).
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One can now derive the linear density response to the applied scalar potential.
According to the general expression, Eq. (5.28), the retarded response is given
by

�R(t, t ′; r, r ′) = − i
2

δ2Z[V̂ ]
δVcl(t ′; r ′)δVq(t; r)

∣∣∣∣∣
V̂=0

= νδt,t ′δr,r ′ +
i

2
(πν)2

〈
Tr{γ̂ qQt,t (r)}Tr{γ̂ clQt ′,t ′(r ′)}

〉
, (6.25)

where the angular brackets stand for the averaging over the action (6.15). In the
Fourier representation the last expression takes the form:

�R(ω; q)=ν+ i
2
(πν)2

∫∫
dǫdǫ′

(2π)2
〈
Tr{γ̂ qQǫ,ǫ+ω(q)}Tr{γ̂ clQǫ′+ω,ǫ′(−q)}

〉
. (6.26)

Employing Eq. (6.22), one finds the linear inW terms:

Tr{γ̂ qQǫ,ǫ+ω(q)}∼2
(
Fǫwǫ,ǫ+ω(q)− wǫ,ǫ+ω(q)Fǫ+ω

)
; (6.27)

Tr{γ̂ clQǫ′+ω,ǫ′(q)}∼2
(
Fǫ′+ωwǫ′+ω,ǫ′(q)Fǫ′ − wǫ′+ω,ǫ′(q)+ wǫ′+ω,ǫ′(q)

)
.

For a spatially uniform distribution〈ww〉 = 0 and only the last term of the last
expression contributes to the correlator. The result is:

�R(ω; q) = ν + i

2
(πν)24

∫
dǫ

2π
(Fǫ − Fǫ+ω)

〈
wǫ′+ω,ǫ′(−q)wǫ,ǫ+ω(q)

〉

= ν

[
1+ iω

Dq2 − iω

]
= ν Dq2

Dq2 − iω , (6.28)

where we have used the fact that for any reasonable fermionic distributionF±∞ =
±1 and therefore

∫
dǫ(Fǫ −Fǫ+ω) = −2ω. The fact that�(ω,0) = 0 is a con-

sequence of the particle number conservation. One has obtained the diffusion
form of the density–density response function. Also notice that this function is
indeed retarded (analytic in the upper half–plane of complexω), as it should be.
The current–current response function,KR(ω; q)may be obtained using the con-
tinuity equationqj + ω̺ = 0 and isKR(ω; q) = ω2�R(ω; q)/q2. As a result
the conductivity is given by

σ(ω; q) = e2

iω
KR(ω; q) = e2νD −iω

Dq2 − iω . (6.29)

In the uniform limitq → 0, one obtains the Drude result:σ(ω; 0) = e2νD.
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6.5. Spectral statistics

Consider a piece of disordered metal of sizeL such thatL≫ l, wherel ≡ vF τ is
the elastic mean free path. The spectrum of the Schrödinger equation consists of
a discrete set of levels,ǫn, that may be characterized by thesample–specificDOS,
ν(ǫ) ∼ ∑

n δ(ǫ − ǫn). This quantity fluctuates wildly and usually cannot (and
need not) be calculated analytically. One may average it over the realizations of
disorder to obtain a mean DOS:ν(ǫ). The latter is a smooth function of energy
on the scale of the Fermi energy and thus at low temperature may be taken as
a constantν(ǫF ) ≡ ν. This is exactly the DOS that was used in the previous
sections.

One may wonder how to sense fluctuations of the sample–specific DOSν(ǫ)

and, in particular, a given spectrum at one energyǫ is correlated with itself at
another energyǫ′. To answer this question one may calculate the spectral corre-
lation function:

R(ǫ, ǫ′) ≡ ν(ǫ)ν(ǫ′)− ν2. (6.30)

This function was calculated in the seminal paper of Altshuler and Shklovskii
[24] in 1986. Here we derive it using the Keldysh NLσM.

The DOS isν(ǫ)= i∑k(G
R
k (ǫ)−GAk (ǫ))/(2π)= (〈ψ1ψ̄1〉−〈ψ2ψ̄2〉)/(2π) =

− ˆ̄ψσ̂3ψ̂/(2π), where the angular brackets denote quantum (as opposed to dis-
order) averaging and the indices are in Keldysh space. To generate the DOS at

any given energy one adds a source term−
∫
dǫ/(2π)Jǫ

∫
dr ˆ̄ψǫ(r)σ̂3ψ̂ǫ(r) =

−
∫∫
dtdt ′

∫
dr ˆ̄ψ t (r)Jt−t ′ σ̂3ψ̂t ′(r) to the fermionic action. Then the DOS is ob-

tained byν(ǫ) = δZ[J ]/δJǫ . After averaging over disorder and changing to the
Q̂–matrix representation in exactly the same manner as above, the source term
is translated toπν

∫
dǫ/(2π)Jǫ

∫
drTr{Q̂ǫ,ǫ(r)σ̂3}. The derivation is the same

as the derivation of Eq. (6.15). It is now clear thatν(ǫ) = 1
2ν〈Tr{Q̂ǫ,ǫ σ̂3}〉Q.

SubstitutingQ̂ǫ,ǫ = �̂ǫ one findsν(ǫ) = ν, as it should be, of course. It is
also easy to check that the fluctuations around�̂ do not change the result (all the
fluctuation diagrams cancel due to the causality constraints). We are now in the
position to calculate the correlation function:

R(ǫ, ǫ′) ≡ δ2Z[J ]
δJǫδJǫ′

− ν2 = ν2
[

1

4
〈Tr{Q̂ǫ,ǫ σ̂3}Tr{Q̂ǫ′,ǫ′ σ̂3}〉Q − 1

]
. (6.31)

Employing the parameterization of Eqs. (6.20)–(6.22), one finds up to the second
order inW :

Tr{Q̂σ̂3} = 2[1+ F ◦ w + w ◦ F + w ◦ w + w ◦ w] . (6.32)
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Since〈ww〉 = 0, the only non–vanishing terms contributing to Eq. (6.31) are
those with now andw at all (they cancelν2 term) and those of the type〈wwww〉.
Collecting the latter terms one finds:

R(ǫ, ǫ′) (6.33)

= ν2
∫
dr

∫∫
dǫ1dǫ2

4π2

〈
(wǫ,ǫ1wǫ1,ǫ+wǫ,ǫ1wǫ1,ǫ)(wǫ′,ǫ2wǫ2,ǫ′+wǫ′,ǫ2wǫ2,ǫ′)

〉
Q
.

Finally, performing the Wick contractions according to Eq. (6.24) and taking into
account that

∫
dǫ1D

2(ǫ − ǫ1; q) = 0, due to the integration of a function that is
analytic in the entire upper half–plane ofǫ1, one finds:

R(ǫ, ǫ′) = 1

(2π)2
∑

q

[
D2(ǫ − ǫ′; q)+D2(ǫ′ − ǫ; q)

]
, (6.34)

where theq–summation stands for a summation over the discrete modes of the
diffusionoperatorD∇2

r with the zero current (zero derivative) at the boundary of
the metal. This is the result of Altshuler and Shklovskii for the unitary symmetry
class. Notice that the correlation function depends on the energy differenceω =
ǫ − ǫ′ only.

For a small energy differenceω < ET houless ≡ D/L2 only the lowest ho-
mogenous mode,q = 0, of the diffusion operator (the so called zero–mode)
may be retained and thus:R(ω) = −1/(2π2ω2). This is the universal ran-
dom matrix result. The negative correlations mean energy levels’ repulsion. No-
tice that the correlations decay very slowly – as the inverse square of the en-
ergy distance. One may notice that the true random matrix resultRRMT (ω) =
−(1− cos(2πω/δ))/(2π2ω2), whereδ is the mean level spacing, contains also
an oscillatory function of the energy difference. These oscillations reflect dis-
creteness of the underlying energy spectrum. Theycannotbe found by the per-
turbation theory in small fluctuations near the�̂ “point”. However, they may be
recovered once additional stationary points (not possessing the causality struc-
ture) are taken into account [25]. The saddle–point method and perturbation
theory work as long asω > δ. Currently it is not known how to work with the
Keldysh NLσM atω < δ.

In the opposite limit,ω > ET houless , the summation over modes may be
replaced by an integration and thusR(ω) = −cd/ω2−d/2, wherecd is a posi-
tive dimensionality dependent constant. This algebraic decay of the correlations
is reflected by many experimentally observable phenomena generally known as
mesoscopic fluctuations.

The purpose of these notes is to give the reader a general perspective of the
Keldysh formalism, its structure, guiding principles, its strength and its limita-
tions. Due to space limitations, I could not include many topics of contemporary
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research interests into this introductory course. I hope to fulfill some of the gaps
on future occasions.

I am indebted to V. Lebedev, Y. Gefen, A. Andreev, A. I. Larkin, M. Feigel-
man, L. Glazman, I. Ussishkin, M. Rokni and many others for numerous discus-
sions that shaped these notes. I am sincerely grateful to the school organizers for
their invitation. The work was supported by the A.P. Sloan foundation and the
NSF grant DMR–0405212.

Appendix A. Gaussian integration

For any complexN × N matrix Aij , wherei, j = 1, . . . N , such that all its
eigenvalues,λi , have a positive real part:ℜλi > 0, the following statement
holds:

Z[J ]=
∫ ∞∫

−∞

N∏

j=1

dℜzjdℑzj
π

e
−
N∑
ij

z̄iAij zj+
N∑
j

[
z̄jJj+J̄j zj

]

= e
N∑
ij

J̄i (A
−1)ijJj

detA
, (A.1)

whereJj is an arbitrary complex vector. To prove it, one may start from a Her-
mitian matrix, that is diagonalized by a unitary transformation:A = U†�U ,
where� = diag{λj }. The identity is then easily proven by a change of vari-
ables (with unit Jacobian) towi = Uijzj . Finally, one notices that the r.h.s. of
Eq. (A.1) is an analytic function of bothℜAij andℑAij . Therefore, one may
continue them analytically to the complex plane to reach an arbitrary complex
matrixAij . The identity (A.1) is thus valid as long as the integral on its l.h.s. is
well defined, that is all the eigenvalues ofAij have a positive real part.

The Wick theorem deals with the average value of a stringza1 . . . zak z̄b1 . . . z̄bk

weighted with the factor exp

{
−
N∑
ij

z̄iAijzj

}
. The theorem states that this av-

erage is given by the sum of all possible products of pair-wise averages. For
example,

〈za z̄b〉 ≡
1

Z[0]
δ2Z[J ]
δJ̄aδJb

∣∣∣∣
J=0

=
(
A−1)

ab
; (A.2)

〈
za1za2 z̄b1 z̄b2

〉
≡ 1

Z[0]
δ4Z[J ]

δJ̄a1J̄a2δJb1Jb2

∣∣∣∣
J=0

=A−1
a1b1
A−1
a2b2

+ A−1
a1b2
A−1
a2b1
, (A.3)

etc.
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The Gaussian identity for integration over real variables has the form:

Z[J ] =
∞∫

−∞

N∏

j=1

dxj√
π
e
−
N∑
ij

xiAij xj+2
N∑
j

xjJj

= e

N∑
ij

Ji (A
−1)ijJj

√
detA

, (A.4)

whereA is asymmetriccomplex matrix with all its eigenvalues having a positive
real part. The proof is similar to the proof in the case of complex variables: one
starts from a real symmetric matrix, that may be diagonalized by an orthogonal
transformation. The identity (A.4) is then easily proved by the change of vari-
ables. Finally, one may analytically continue the r.h.s. (as long as the integral is
well defined) from a real symmetric matrixAij , to acomplex symmetricone.

For an integration over two sets ofindependentGrassmann variables,ξ̄j and
ξj , wherej = 1,2, . . . , N , the Gaussian identity is valid forany invertiblecom-
plex matrixA:

Z[χ̄ , χ] (A.5)

=
∫∫ N∏

j=1

dξ̄jdξj e
−
N∑
ij

ξ̄iAij ξj+
N∑
j

[
ξ̄jχj+χ̄j ξj

]

= detA e

N∑
ij

χ̄i (A
−1)ijχj

.

Hereχ̄j andχj are two additional mutually independent (and independent from
ξ̄j andξj ) sets of Grassmann numbers. The proof may be obtained by e.g. brute
force expansion of the exponential factors, while noticing that only terms that
are linear inall 2N variablesξ̄j and ξj are non–zero. The Wick theorem is
formulated in the same manner as for the bosonic case, with the exception that
every combination is multiplied by the parity of the corresponding permutation.
E.g. the first term on the r.h.s. of Eq. (A.3) comes with a minus sign.

Appendix B. Single particle quantum mechanics

The simplest many–body system of a single bosonic state (considered in Chap-
ter 2) is of course equivalent to a single–particle harmonic oscillator. To make
this connection explicit, consider the Keldysh contour action Eq. (2.11) with the
correlator Eq. (2.13) written in terms of the complex fieldφ(t). The latter may
be parameterized by its real and imaginary parts as:

φ(t) = 1√
2ω0

(
p(t)− i ω0 q(t)

)
;

φ̄(t) = 1√
2ω0

(
p(t)+ i ω0 q(t)

)
. (B.1)
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In terms of the real fieldsp(t) andq(t) the action, Eq. (2.11), takes the form:

S[p, q] =
∫

C

dt

[
p q̇ − 1

2

(
p2 + ω2

0q
2)
]
, (B.2)

where the full time derivatives ofp2, q2 andp q were omitted, since they con-
tribute only to the boundary terms, not written explicitly in the continuous nota-
tion (they have to be kept for proper regularization). Equation (B.2) is nothing
but the action of the quantum harmonic oscillator in the Hamiltonian form. One
may perform the Gaussian integration over thep(t) field to obtain:

S[q] =
∫

C

dt

[
1

2
q̇2 − ω

2
0

2
q2

]
. (B.3)

This is the Feynman Lagrangian action of the harmonic oscillator, written on the
Keldysh contour. It may be generalized for an arbitrary single particle potential
U(q):

S[q(t)] =
∫

C

dt

[
1

2

(
q̇(t)

)2 − U
(
q(t)

)]
. (B.4)

One may split theq(t) field into two components:q+(t) andq−(t), resid-
ing on the forward and backward branches of the contour, and then perform the
Keldysh rotation:q± = qcl ± qq . In terms of these fields the action takes the
form:

S[qcl, qq ] =
∞∫

−∞
dt

[
−2qq

d 2qcl

dt2
− U

(
qcl + qq

)
+ U(qcl − qq)

]
, (B.5)

where integration by parts was performed in the termq̇q q̇cl . This is the Keldysh
form of the Feynman path integral. The omitted boundary terms provide a con-
vergence factor of the form∼ i0q2

q .
If the fluctuations of the quantum componentqq(t) are regarded as small, one

may expand the potential to the first order and find for the action:

S[qcl, qq ] =
∞∫

−∞
dt

[
−2qq

(
d 2qcl

dt2
+ ∂U (qcl)

∂qcl

)
+ i0q2

q +O(q3
q )

]
. (B.6)
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In this limit the integration over the quantum component,qq , may be explic-
itly performed, leading to a functionalδ–function of the expression in the round
brackets. Thisδ–function enforces the classical Newtonian dynamics ofqcl :

d 2qcl

dt2
= −∂U (qcl)

∂qcl
. (B.7)

For this reason the symmetric (over forward and backward branches) part of the
Keldysh field is called the classical component. The quantum mechanical infor-
mation is contained in the higher order terms inqq , omitted in Eq. (B.6). Notice,
that for the harmonic oscillator potential the terms denoted asO(q3

q ) are absent
identically. The quantum (semiclassical) information resides, thus, in the con-
vergence term,i0q2

q , as well as in the retarded regularization of thed 2/(dt2)

operator in Eq. (B.6).
One may generalize the single particle quantum mechanics onto a chain (or

lattice) of harmonically coupled particles by assigning an indexr to particle co-

ordinates:qr(t), and adding the spring potential energy:v
2
s

2 (qr+1(t) − qr(t))2.
Changing to spatially continuous notations:ϕ(t; r) ≡ qr(t), one finds for the
Keldysh action of the real (phonon) field:

S[ϕ] =
∫
dr

∫

C

dt

[
1

2
ϕ̇ 2 − v

2
s

2
(∇rϕ)2 − U

(
ϕ
)]
, (B.8)

where the constantvs has the meaning of the sound velocity. Finally, splitting
the field into(ϕ+, ϕ−) components and performing the Keldysh transformation:
ϕ± = ϕcl ± ϕq , and integrating by parts, one obtains:

S[ϕ+, ϕ−]=
∫
dr

∞∫

−∞
dt

[
2ϕq

(
v2
s ∇2

r − ∂2
t

)
ϕcl−U(ϕcl+ϕq)+U(ϕcl−ϕq)

]
. (B.9)

According to the general structure of the Keldysh theory the differential operator
on the r.h.s.,

(
− ∂2

t + v2
s ∇2

r

)
, should be understood as the retarded one. This

means it is a lower triangular matrix in the time domain. Actually, one may
symmetrize the action by performing the integration by parts, and write it as:
ϕq
(
− ∂2

t + v2
s ∇2

r

)R
ϕcl + ϕcl

(
− ∂2

t + v2
s ∇2

r

)A
ϕq .
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1. Introduction

Over the last two decades theory and experiment on quantum disordered and
chaotic systems have been an extremely successful field of research. The mile-
stones on this route were:
• Weak Anderson localization in disordered metals
• Universal conductance fluctuations
• Application of random matrix theory to quantum disordered and chaotic sys-

tems
However the mainstream of research was so far limited tolinear response of
quantum systems where the kinetic and thermodynamic properties are calculated
essentially at equilibrium. The main goal of this course is to develop a theory
of nonlinearresponse to a time-dependent perturbation in the same way as the
theory of Anderson localization and mesoscopic phenomena. It will require an
extension of existing methods tonon-equilibrium phenomena.

The four lectures will include the following topics:
• Perturbative theory of weak Anderson localization
• Keldysh formulation of nonlinear response theory
• Mesoscopic rings under AC pumping and quantum rectification
• Theory of weak dynamic localization in quantum dots

2. Weak Anderson localization in disordered systems

In this section we consider the main steps in the calculus of weak localization
theory [1, 2]. The main object to study is the frequency-dependent conductivity

σαβ(ω) =
∫ +∞

−∞

dε

4πω
[f (ε)− f (ε − ω)] (2.1)

×
∫
drdr ′

V ol
〈ev̂α(GR −GA)r ,r ′;ε ev̂β(GR −GA)r ′,r ;ε−ω〉

whereGR/Ar ′,r ;ε are retarded (advanced) electron Green’s functions,f (ε) is the
Fermi energy distribution function and̂vα is the velocity operator. One can con-
vince oneself using the representation in terms of exact eigenfunctions�n(r) and

251
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exact eigenvaluesEn

G
R/A

r ′,r ;ε =
∑

n

�n(r)�∗
n(r

′)
ε − En ± i0

(2.2)

that Eq. (2.1) reduces to a familiar Fermi Golden rule expression:

σαβ(ω) = 2π
∑

En>Em

〈n|Jα|m〉〈m|Jβ |n〉 δ(En − Em − ω)
fEm − fEn
En − Em

(2.3)

Eq. (2.2) is convenient to prove exact identities but is useless for practical calcu-
lus. In disordered systems with the momentum relaxation timeτ the following
expression for the disorder averaged Green’s function is very useful:

〈GR/A〉ε =
1

ε − ξp ± i
2τ

. (2.4)

whereξp = ε(p)−EF is related with the electron dispersion lawε(p) relative the
Fermi energyEF . In what follows we will assumeξ = ξp depending only on|p|.
Thenξ and the unit vector of the direction of electron momentumn constitute
convenient variables of integration overp:

∫
...dp →

∫
ν(ξ)dξ

∫
dn... (2.5)

For a typical metal withEF far from the band edges and the energy scale of
interestε << EF the density of statesν(ξ) can be approximated by a constant
ν = ν(0) at the Fermi level and the integration overξ can be extended over the
entire real axis(−∞,+∞).

2.1. Drude approximation

The simplest diagrams for the frequency-dependent conductivity are shown in
Fig. 1. The diagrams Fig. 1a,b are given by the integrals

∫
dn vαvβ

∫ +∞

−∞

dξ

(ε − ξ ± i
2τ )(ε − ω − ξ ± i

2τ )
= 0 (2.6)

wherevα ≈ vFnα.
It is important that the integral overξ is the pole integral with all poles in

the same complex half-plane. This is why such integrals are equal to zero. In
contrast to that, the diagrams of Fig. 1c,d that contain both retarded (GR) and ad-
vanced (GA) Green’s functions correspond to a similar integral with poles lying
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Fig. 1. Diagrams for the Drude conductivity.

in differenthalf-planes ofξ . Such an integral overξ can be done immediately
using the residue theorem:

∫ +∞

−∞

dξ

(ε − ξ ± i
2τ )(ε − ω − ξ ∓ i

2τ )
= 2πτ

(1− iωτ) . (2.7)

The angular integral is trivial:
∫
dn vαvβ = v2

F

δαβ

d
, (2.8)

whered is the dimensionality of space.
Now all we need to computeσαβ using the simplest diagrams of Fig. 1 is the

identity:
∫ +∞

−∞
[f (ε)− f (ε − ω)] dε = −ω. (2.9)

This identity holds for all functionsf (ε) obeying the Fermi boundary conditions
f (ε)→ 0 atε→+∞ andf (ε)→ 1 atε→−∞.

The result of the calculations is the Drude conductivity:

σ
(D)
αβ = e2νD0

1+ (ωτ)2 δαβ , (2.10)

whereD0 = v2
F τ/d is the diffusion coefficient.

2.2. Beyond Drude approximation

The diagrams that were not included in the Drude approximation of Fig. 1 con-
tain cross-correlationsbetween the exact electron Green’s functionsGR and
GA which arise because both of them see thesamerandom impurity potential
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U(r). We make the simplest approximation of this potential as being the random
Gaussian field with zero mean value and zero-range correlation function:

〈U(r)U(r ′)〉 = δ(r − r ′)
2πντ

. (2.11)

The simplest diagrams beyond the Drude approximation are the ladder series
shown in Fig. 2. The dotted lines in these diagrams represent the momentum

Fig. 2. Ladder diagrams.

Fourier transform of correlation function〈U(r)U(r ′)〉which is a constant 1/2πντ
independent of the momentum transferp− p′. This makes the quantitiesvα and
v′β completely independent of each other. Then the angular integration

∫
dn vα = 0 (2.12)

results in vanishing of all the ladder diagrams of Fig. 2.

Fig. 3. The first of the “fan” diagrams.
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The next diagram with cross correlations contains an intersection of dotted
lines (see Fig. 3). In contrast to a diagram with two parallel dotted lines where
all integrations over momenta are independent, here the momentum conservation
imposes a constraint:

p+ p′ = p1 + p2. (2.13)

At the same time the form Eq. (2.4) of the averaged Green’s function suggests
that the main contribution to the momentum integration is given by momenta
confined inside a ring of radiuspF and width 1/ℓ ≪ pF whereℓ is the elastic
mean free pathℓ = vF τ [see Fig. 4a]. The constraint Eq. (2.13) implies that not

Fig. 4. Regions that make the main contribution to momentum integrals.

only p but also−p+ p1 + p2 = p′ should be inside a narrow ring [see Fig. 4b].
Thus the effective region ofp integration is anintersectionof two narrow rings
which volume is reduced by a large factor of(pF ℓ) compared to an unconstrained
case.

2.3. Weak localization correction

The lesson one learns from the above example is that any intersection of dotted
lines in systems with dimensionality greater than one brings about a small para-
meter 1/(pF ℓ). However this does not mean that all such diagrams should be
neglected. As a matter of fact they contain an important new physics ofquantum
coherencethat changes completely the behavior of low dimensional systems with
d = 1,2 at small enough frequenciesω leading to the phenomenon of Anderson
localization.



256 V.E. Kravtsov

For this to happen there should be something that compensates for the small
factor 1/(pF ℓ). We will see that this is a large return probability of a random
walker or a particle randomly scattered off impurities in low-dimensional sys-
tems. On the formal level the corresponding diagrams are just the multiple scat-
tering “fan” diagrams shown in Fig. 5. Using momentum conservation, one can

Fig. 5. Infinite series of “fan” diagrams.

see that such diagrams have only one constraint of the type Eq. (2.13) indepen-
dently of the number of dotted lines. This statement becomes especially clear if
one rewrites the fan series in a form Fig. 5b which contains a ladder series with
all dotted lines parallel to each other and only one intersection of solid lines rep-
resenting the electron Green’s functions. It is this ladder series called Cooperon,
which describes quantum interference, that leads to Anderson localization.

To make connection between random walks (or diffusion) in space and a quan-
tum correction to conductivity and to see how a compensation of the small pa-
rameter 1/(pF ℓ) occurs we compute the CooperonC(k, ω) for a small value of
p1+p2 = k [see Fig. 6.]. This series is nothing but a geometric progression with

Fig. 6. Summation of the ladder series for a Cooperon.

the first term

�0 = 1

(2πντ)2

∫
dpGRε (p)G

A
ε−ω(−p+ k) (2.14)
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and the denominatorq = 2πντ�0. Thus we have

C(k, ω) = �0

1− q . (2.15)

To compute�0 we write

�0 =
ν

(2πντ)2

∫
dn

∫ +∞

−∞

dξ

(ε − ξ + i
2τ )(ε − ω − ξ + vFnk − i

2τ )
. (2.16)

In Eq. (2.16) we used an approximationξ−p+k ≈ ξp − vFnk which is valid as
long as|k| ≪ pF . The pole integral in Eq. (2.16) can be done immediately with
the result:

q =
∫
dn

1

1− iωτ + iℓnk
. (2.17)

One can see a remarkable property of Eq. (2.17): the denominator of the geomet-
ric series Eq. (2.15) is equal to 1 in the limitωτ, |k|ℓ → 0. At finite but small
ωτ, |k|ℓ≪ 1 one can expand the denominator of Eq. (2.17) to obtain:

q ≈ 1+ iωτ − ℓ2k2/d; C(k, ω) ≈ 1

2πντ2

1

D0k2 − iω . (2.18)

We immediately recognize an inverse diffusion operator inC(k, ω) which is di-
vergent at smallω andk. This divergence is the cause of all the peculiar quantum-
coherence phenomena in systems of dimensionalityd ≤ 2.

In particular the quantum correction to conductivity given by the diagram of
Fig. 5 can be written as:

δσαβ =
σ (D)

2πνD0
× 1

V ol

∑

k

Ŵαβ C(k, ω). (2.19)

whereŴαβ is the “Hikami box” shown in Fig. 7. Its analytic expression is given
by:

∫
dp vα(p)vβ(−p+ k)GRε (p)G

A
ε−ω(p)G

R
ε (−p+ k)GAε−ω(−p+ k). (2.20)

In the limit ωτ ≪ 1 and|k|ℓ ≪ 1 one can setω = k = 0 in Eq. (2.20). Then
v(−p+k) = −v(p) = −vFn and after the pole integration overξ and the angular
integration overn we obtain forŴαβ :

−
∫
dn v2

Fnαnβ

∫ +∞

−∞

ν dξ

(ε − ξ + i
2τ )

2(ε − ξ − i
2τ )

2
= −4πντ2D0. (2.21)
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Fig. 7. The diagram representation for the Hikami box (a) and for the quantum correction to conduc-
tivity (b).

Finally using Eq. (2.19) we get:

σ(ω) = σ (D)
(

1− 1

πν

1

V ol
ℜ
∑

k

1

D0k2 − iω

)
. (2.22)

This is the celebrated formula for weak Anderson localization. One can see that
the quantum correction is given by the sum over momenta of the diffusion prop-
agator, that is, it is proportional to thereturn probabilityat a time∼ 1/ω for a
random walker in thed-dimensional space. A remarkable property of random
walks in low-dimensional space is that the return probability increases with time.
That is why the quantum correction to conductivity increases with decreasing
the frequencyω as 1/

√
ω in a quasi-one dimensional wire and as log(1/ω) in a

two-dimensional disordered metal.
The structure of Eq. (2.22) suggests a qualitative picture of weak Anderson

localization. It is an interference of two trajectories with a loop that contains tra-
jectories with opposite directions [Fig. 8]. Although the phase that corresponds
to each trajectory is large and random, the phasedifferencebetween them is zero
because of the time-reversal invariance. As a result they can interfere contruc-
tively and amount to a creation of arandom standing wavewhich is the paradigm
of Anderson localization.

3. Non-linear response to a time-dependent perturbation

In this section we review the main steps of the Keldysh formalism [3, 4, 5] which
are necessary to describe a quantum system of non-interacting electrons subject
to external time-dependent perturbationV̂ (t).
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Fig. 8. Two interfering trajectories with loops.

3.1. General structure of nonlinear response function

The matrix Keldysh Green’s function

G =
(
GR GK

0 GA

)
(3.1)

contains – besides familiar retarded and advanced Green’s functionsG11 = GR
and G22 = GA – also the third, Keldysh functionG12 = GK . The latter is
the only one needed to compute an expectation value of any operatorÔ both in
equilibrium and beyond:

O = −iT r(ÔGK). (3.2)

The retarded and advanced Green’s functions appear only at the intermediate
stage to make it possible to write down Dyson equations in the matrix form. It is
of principal importance that the componentG21 is zero. One can show that this
is a consequence of causality [6]. In equilibrium there is a relationship between
GK andGR/A. It reads:

GKε = (GR −GA)ε tanh
( ε

2T

)
. (3.3)
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As without time-dependent perturbation the system is in equilibrium, the corre-
sponding componentsGR/A0,ε andGK0,ε of the matrix Keldysh Green’s function
obey the relationship Eq. (3.3).

In the presence of the perturbation one can write the Dyson equation:

G = G0 +G0V̂G, (3.4)

where the operator ofexternaltime-dependent perturbation̂V(t) is proportional
to a unit matrix in the Keldysh space. The structure of perturbation series forGK

Fig. 9. The diagram representation of the “anomalous” term in the Keldysh function.

that corresponds to Eq. (3.4) is as follows:

GK = G12
0 +G11

0 V̂ G
12
0 +G12

0 V̂ G
22
0 +G11

0 V̂ ...G
11
0 V̂ G

12
0 V̂ G

22
0 ...G

22
0 +...(3.5)

As G21
0 = 0 andG12

0 = (GR0 − GA0 ) tanh(ε/2T ) each term of the perturba-
tion series Eq. (3.5) is a string of successiveGR0 functions followed by a string
of GA0 functions with only one switching point between them where the factor
tanh(ε/2T ) is attached to. For the same reason the componentsGR andGA are
the series that contain onlyGR0 orGA0 , respectively:

GR/A = GR/A0 +GR/A0 V̂ G
R/A

0 +GR/A0 V̂ G
R/A

0 V̂ G
R/A

0 + ... (3.6)

Using Eq. (3.6) one can replace the string ofG
R/A

0 functions in Eq. (3.5) by the

exact retarded or advanced Green’s functionGR/A
ε,ε′ that depends on two energy



Non-Linear quantum coherence effects in driven mesoscopic systems261

variables because of the breaking of translational invariance in the time domain
by a time dependent perturbation. The result is:

GKε,ε′ = GRε,ε′ tanh

(
ε′

2T

)
− tanh

( ε
2T

)
GAε,ε′ + (3.7)

+
∫
dε1

2π

∫
dω

2π
GRε,ε1V̂ (ω)G

A
ε1−ω,ε′

[
tanh

( ε1
2T

)
− tanh

(
ε1 − ω

2T

)]
.

The first two terms in Eq. (3.7) just reproduce the structure of the equilibrium
Keldysh function Eq. (3.3). The most important for us will be the last, so called
“anomalous” termGanom in Eq. (3.7) as it contains bothGR0 andGA0 functions
which makes nonzero the pole integrals overξ and allows to build a Cooperon.
This term is graphically represented in Fig. 9.

One can see that of all the vertices with a perturbation operatorV̂ one is spe-
cial: it is a switching point between the strings of retarded and advanced Green’s
functions, so calledR−A junction [6]. It is convenient to switch from the energy
to the time domain. In this representation the anomalous part ofGK reads [5, 6]:

Ganom
t,t ′ = GRt,t1G

A
t2,t

′ (V̂ (t2)− V̂ (t1)) h0(t1 − t2). (3.8)

In Eq. (3.8) we denoted the Fourier transform of tanh(ε/2T ) as:

h0(t) =
∫
dε

2π
eiεt tanh(ε/2T ) = iT

sinh(πT t)
. (3.9)

We also assume integration over repeated time variables.
The graphic representation of Eq. (3.8) is given in Fig. 10. Eqs. (3.7),(3.8)

give a general structure of nonlinear response to a time-dependent perturbation.
The main feature is the distinction between a regularV̂ vertex that connects two
Green’s functions with the same analytical properties (bothGR or bothGA) and
theR − A junction. One can see that the time variables do not match at the
R-A junction because of the attached energy distribution function, while they do
match at any regular vertex̂V .

3.2. Approximation of single photon absorption/emission

While an exact solution of the nonlinear response is a difficult task, there is an
essentially nonlinear regime where a regular solution can be found. The corre-
sponding approximation consists in expanding eachdisorder averagedretarded
or advanced Green’s function up to second order inV̂ :

〈GR/A〉 ≈ 〈GR/A0 〉 + 〈GR/A0 〉V̂ 〈GR/A0 〉 + 〈GR/A0 〉V̂ 〈GR/A0 〉V̂ 〈GR/A0 〉 (3.10)
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Fig. 10. Anomalous contribution toGK in the time domain.

Yet, since the ladder series (a Cooperon) contains aninfinite number of retarded
(advanced) Green’s functions, this approximation leads to an essentially non-
linear result that does not reduce to a finite order response function. We will
see that this approximation implies asequentialabsorption/emission of photons
rather thanmultiple-photonprocesses.

Another approximation which is similar toωτ ≪ 1 is based on the fact that
the disorder averaged Green’s function Eq. (2.4) decays exponentially in the time
domain:

〈GR/A0 〉t = ∓i θ(±t) e−itξp e−t/τ . (3.11)

Assuming that the momentum relaxation time is much shorter than the character-
istic scale (e.g. the period) of a time-dependent perturbation one can approximate
〈GR/A0 〉t by aδ-function and its derivative:

〈GR/A0 〉t ≈ δ(t) 〈GR/A0 〉ε=0 − i∂tδ(t)〈GR/A0 〉2ε=0. (3.12)

4. Quantum rectification by a mesoscopic ring

To proceed further, we need to make some assumptions about the time-dependent
perturbation and specify an observable of interest.

In this section we consider the problem of rectification of anac signalby a dis-
ordered metal. It was first considered in Ref. [10] in a single-connected geometry
where the entire effect is due to mesoscopic fluctuations. Here we focus on the
case of a quasi-one dimensional disordered metal ring pierced by a magnetic flux
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φ(t) that contains both a constant partφ and an oscillating partφac(t) [7, 8, 9].
In this case the topology of the ring and the presence of a constant magnetic flux
make it meaningful to study thedisorder-averagedrectification effect.

The time-dependent perturbation in this case is:

V̂ = −v̂x ϕ(t), ϕ(t) = 2π

L

φac(t)

φ0
, (4.1)

whereL is the circumference of the ring, andφ0 = hc/e is the flux quantum.
We assume that the ring curvature is large compared to all microscopic lengths
in the problem so that it can be replaced by quasi-one dimensional wire along the
x-axis with the twisted boundary conditions�(L) = �(0) exp[2πiφ/φ0].

To solve this problem we need to take into account the ac perturbation only in
the denominatorq of the geometric series Eq. (2.15) that determines the Cooperon.
This is because 1− q is governed bysmall correctionswith energy scale much
smaller than 1/τ . The corrections due to the ac flux perturbation are given by the
diagrams in Fig. 11. Note that, in linear in̂V corrections, one should take into
account the small momentumk whereas, in quadratic in̂V corrections,k can be
set to zero. All the corrections of Fig. 11 can be computed by doing the pole inte-
grals overξ and angular integrals overn as in the previous section. Note also that
1− q is essentially theinverseCooperon operator. For an arbitrary time depen-
dence ofϕ(t) one should replace−iω in Eq. (2.18) by the time derivative∂t1−∂t2
which cab be obtained from the second term in Eq. (3.12). Such a structure of
the time derivatives implies that the sum of time argumentst1 + t2 = t ′1 + t ′2
is conserved [see Fig. 12] which is the consequence of the constant density of
states approximation. As a result, the equation for a time-dependent Cooperon
takes the form [11, 12, 6]:

{
∂

∂η
+ D0

2
[ϕ(t + η/2)+ ϕ(t − η/2)− kx ]2

}
Ct (η, η

′; kx) (4.2)

= δ(η − η′)
2πντ2

,

where the momentumkx(φ) = km(φ) = (2π/L)(m − 2φ/φ0) is quantized ac-
cording to the twisted boundary conditions.

For completeness we give also an equation for the time-dependentdiffuson
[Fig. 13]:

{
∂

∂t
+D0 [ϕ(t + η/2)− ϕ(t − η/2)− kx ]2

}
Dη(t, t

′; kx) (4.3)

= δ(t − t ′)
2πντ2

,

wherekx = (2π/L)m is independent of the DC fluxφ.



264 V.E. Kravtsov

Fig. 11. The ac flux and time-derivative corrections to the inverse Cooperon operator.

In this case the structure of the time-derivative∂t1 + ∂t2 suggests that thedif-
ferenceof the time arguments is conservedt1 − t2 = t ′1 − t ′2.

In general the current responseI (t) to the electric fieldE(t − τ) is given by:

I (t) =
∫ ∞

0
K(t, τ )E(t − τ) dτ, (4.4)

where in our particular caseE(t) = −∂tϕ(t).
At small 1/pF ℓ the main contribution to thenonlinear response function is

the quantum coherence correction shown in Figs. 5,7. All we have to do in order
to compute this nonlinear response function is to substitute the time-dependent
Cooperon into Eq. (2.19) and take care of all the time arguments [see Fig. 14].
Namely, (i) according to Eq. (3.12) the time arguments corresponding to the be-
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Fig. 12. The time arguments in the Cooperon.

Fig. 13. The time-dependent Diffuson.

ginning and the end of any solid line representing the disorder averaged functions
〈GR/A0 〉 should be the same and (ii) the sum (difference) of “incoming times” in
the Cooperon (Diffuson) are equal to the sum (difference) of “outgoing times”
as in Figs. 12,13. Note that application of rules (i),(ii) to the diagram of Fig. 14
leads to the coinciding time argumentst1 → t2 = t − τ in the corresponding
retarded-advanced junction (see Fig. 10). This ensures fulfillment of Eq. (4.4), as
h0(t1 − t2) (V (t2)− V (t1))→ vx ∂tϕ(t − τ) ∝ E(t − τ).

The disorder averaged current response functionK(t, τ ) is equal to:

K(t, τ ) = σDτ−1e−t/τ − 4e2D0

h
C̃t−τ/2(τ,−τ), (4.5)

whereC̃t (η, η′) = (2πντ2/V ol)
∑

kx Ct (η, η
′; kx) andCt (η, η′; kx) is the so-

lution to Eq. (4.2):

2πντ2Ct (η, η
′; kx) = θ(η − η′)× (4.6)

exp

{
−D0

2

∫ η

η′
[ϕ(t + ζ/2)+ ϕ(t − ζ/2)− kx]2 dζ

}
.
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Fig. 14. Nonlinear current response function and the Cooperon.

The first term in Eq. (4.5) is just the linear response given by the diagrams
Fig. 1c,d. The second term corresponds to the quantum-coherent contribution of
Fig. 14. The fact that̃Ct−τ/2(τ,−τ) depends not only onτ but also ont makes
it possible to have dc response caused by an ac electric fieldE(t) = −∂tϕ(t).

For the particular case of a ring with a constant plus anac magnetic flux we
note that thedc response arises only fromoddterms of expansion of Eq. (4.6) in
powers of the ac perturbationϕ(t). As odd terms inϕ(t) enter in a combination
ϕ(t)kx , the dc response involves onlyodd terms inkx = km = (2π/L)(m −
2φ/φ0). If the constant magnetic fluxφ = 0 or if we neglect quantization of
momentum and do an integral overkx instead of a sum, the result for the odd
in ϕ(t) part of C̃t (η, η′) is zero. Otherwise it isperiodic in the fluxφ with the
periodφ0/2, sincekm(φ+φ0/2) = km−1(φ) and the summation is over all integer
m. We see that the dc response to the ac perturbation, or the rectification of the
ac flux by an ensemble of mesoscopic rings, is an essentially quantum, Bohm-
Aharonov-like effect. Furthermore, it isodd in the flux Bohm-Aharonov effect
that can be represented by the Fourier series:

〈Idc(φ)〉 =
∞∑

n=1

In sin

(
4πnφ

φ0

)
. (4.7)

Expression Eq. (4.7) has the same symmetry and periodicity in magnetic flux
φ as the disorder-averaged equilibrium persistent current [13, 14]. However, its
magnitude may be much larger (in the grand-canonical ensemble considered here
the disorder-averaged persistent current is strictly zero).

Applying the Poisson summation trick

∑

m

f (m− φ) =
∫
dx f (x − φ)

∑

m

δ(x −m) = (4.8)

=
∫
dx f (x − φ)

∑

n

e2πinx =
∑

n

e2πinφ
∫
dx e2πinx f (x)
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to Eq. (4.6) one obtains

In =
4ieD0

πL

∫ ∞

0
dτ C

(n)
t (τ )∂tϕ(t − τ/2), (4.9)

where the overline means averaging over timet and

C
(n)
t (τ ) =

√
τD

4πτ
e−

n2τD
4τ einS1[ϕ] e−τS2[ϕ]. (4.10)

HereτD = L2/D0 is the time needed for a diffusing particle to go around the
ring, andS1,2 are defined as follows:

S1[ϕ] = 2L

[
1

τ

∫ t+τ/2

t−τ/2
ϕ(t1) dt1

]
≡ 2L 〈ϕt1〉t;τ , (4.11)

S2[ϕ] = 2D0
[
〈ϕ2
t1
〉t;τ + 〈ϕt1ϕ2t−t1〉t;τ − 2〈ϕt1〉2t;τ

]
. (4.12)

Eqs. (4.10)-(4.12) are valid for an arbitrary time-dependence ofϕ(t). However,
they take the simplest form for a noise-like ac flux with a small correlation time
τ0 ≪ τD (but we assumeτ0 ≫ τ ). In this case the second and the third terms
in Eq. (4.12) can be neglected and the first term reduces to aconstantthat deter-
mines thedephasing timecaused by ac noise:

1

τϕ
= 2D0ϕ2(t). (4.13)

Then the time averaging in Eq. (4.9) reduces to

−i∂tϕ(t − τ/2)exp

{
in

τ
2L

∫ t+τ/2

t−τ/2
ϕ(t1) dt1

}
= n

τ
2Lϕ2(t). (4.14)

Since the time-average of the total time-derivative is zero, we can transfer the dif-
ferentiation to the exponent. For the case of a white-noise ac flux only the lower
limit of integration in the exponent should be differentiated, the quantity〈ϕt1〉t;τ
being set to zero afterwards. The remaining integral overτ is done exactly:

∫ ∞

0

dτ

τ3/2
exp

[
−n

2τD

4τ
− τ

τϕ

]
= 2

√
π

n
√
τD
e−n

√
τD/τϕ (4.15)

Finally we arrive at a remarkably simple result for the disorder-averaged dc cur-
rent generated in mesoscopic rings by a white-noise ac perturbation [9]:

In = − 4

π

(
e

τϕ

)
exp

[
−n L
Lϕ

]
, (4.16)
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Fig. 15. The dependence ofI1 on the ac powerP = ϕ2(t) for a white-noise (a) and harmonic (b)
perturbation.

where thedephasing lengthis equal to:

1

L2
ϕ

= 1

D0τϕ
= 2ϕ2(t). (4.17)

It follows from Eq. (4.16) that the weak ac white noise produces a net dc current
in an ensemble of mesoscopic rings which is of the order ofe/τϕ whereτϕ is
the dephasing time produced by the same ac noise. At an ac power large enough
to produce a dephasing length smaller than the circumference of a ring times
the winding numbern, the destructive effect of ac perturbation prevails and the
currentIn decreases exponentially [see Fig. 15].

Note that the tail of the dependenceIn on the ac power is very sensitive to
the correlations in the ac perturbation at different times. For instance, in the
case of harmonic perturbation whereϕ(t) has an infinite range time-correlations,
the current decreases very slowly, only as the inverse square-root of the ac power
[7]. We will see later on that this is related with the phenomenon ofno-dephasing
points.

5. Diffusion in the energy space

In this section we apply the Keldysh formalism outlined above to the problem of
heatingby external time-dependent perturbation. The main object to study will
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be thenon-equilibriumelectron energy distribution function:

f (ε; t) = 1

2
− 1

2

∫
dη ht (η) e

−iεη (5.1)

which is related to the Keldysh functionGK(t, t ′) ≡ V ol−1
∫
dd r GK(t, t ′; r , r)

at coincident space variables (averaged over volume):

GK(t + η/2, t − η/2) = −2πiν ht (η). (5.2)

Eqs. (5.1), (5.2) generalize Eq. (3.3) to the case of non-equilibrium, time-depen-
dent energy distribution function. The total energyE(t) of the electron system
can be expressed in terms off (ε, t):

E(t) = ν V ol
∫
dε ε [f (ε, t)− θ(−ε)] + const. (5.3)

Then the time-dependentabsorption rateW(t) = ∂tE(t) is given by:

W(t) = −V ol
2

lim
η→0

∂t ∂ηG
K
(
t + η

2
, t − η

2

)
= iπ

δ
lim
η→0

∂t ∂η ht (η), (5.4)

whereδ = (ν V ol)−1 is the mean separation between electron energy levels
(mean level spacing).

For tutorial reasons we consider in this section a specific model system de-
scribed by the Hamiltonian:

Ĥ = ε(p̂)+ U(r)+ V (r) ϕ(t), (5.5)

where not onlyU(r) given by Eq. (2.11) but also the perturbation potentialV (r)
is a Gaussian random field which is statistically independent ofU(r) and is de-
scribed by the correlation function:

〈V (r)V (r ′)〉 = Ŵ

πν
δ(r − r ′). (5.6)

This model is the simplest example of apotential ac sourcein contrast to theflux
ac sourceconsidered in the previous section. In the low-frequencyωτD ≪ 1
and the modestly low ac intensityŴτ ≪ 1 limits, this model is equivalent to the
random matrix theory(RMT) with the time-dependent Hamiltonian [6, 12]:

ĤRMT = Ĥ0 + V̂ ϕ(t), (5.7)
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where bothĤ0 andV̂ are random real-symmetricN ×N matrices from the inde-
pendent Gaussian Orthogonal Ensembles described by the correlation functions
〈(H0)nm〉 = 〈Vnm〉 = 0:

〈(H0)nm(H0)n′m′〉 = N(δ/π)2 [δnn′δmm′ + δnm′δmn′ ], (5.8)

〈VnmVn′m′〉 = (Ŵδ/π) [δnn′δmm′ + δnm′δmn′ ],

with δ = 1/(ν V ol) being the mean level spacing.
In this RMT limit all the disordered and chaotic systems described by a real,

spin-rotational invariant Hamiltonian are believed to have a universal behavior in
the limitL,N →∞ which is characterized by only two parametersδ andŴ and
one dimensionless functionϕ(t).

Let us first consider the disorder-averagedGK in the non-crossing approxima-
tion. Since there are no vector vertices in the present model, the ladder diagrams
(Loose Diffuson) similar to Fig. 2 make the main contribution. The correspond-
ing diagrams are shown in Fig. 16 where the wavy line describes the〈VV 〉 cor-
relator, Eq. (5.6). The condition

Ŵτ ≪ 1 (5.9)

allows to keep only the linear in̂V term in the expansion Eq. (3.10) for the
〈GR/A〉 function attached to the RA-junction. Note that the diagrams Fig. 16a,b
have opposite signs because

∫
dξ (ξ ± i/2τ)−1 = ∓πi. The result of calculation

of both diagrams is:

δGK = (2πντ)2(iπν)(Ŵ/πν)Dη(t, t
′) (5.10)

× [ϕ(t ′ + η/2)− ϕ(t ′ − η/2)]2 h0(η).

so that

ht (η) =
(
1− D̃η(t, t ′) Ŵ [ϕ(t ′ + η/2)− ϕ(t ′ − η/2)]2

)
h0(η), (5.11)

where the integration overt ′ is assumed;h0(η) is determined by Eq. (3.9), and
D̃η(t, t

′) = 2πντ2Dη(t, t
′; k = 0) is given by Eq. (4.3) withD0 → Ŵ. Using

this equation, one can check thatht (η) obeys the equation:
{
∂t + Ŵ [ϕ(t + η/2)− ϕ(t − η/2)]2} ht (η) = 0. (5.12)

This allows to give an explicit solution forht (η):

ht (η) = h0(η) exp

{
−Ŵ

∫ t

0
[ϕ(ζ + η/2)− ϕ(ζ − η/2)]2 dζ

}
(5.13)
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Fig. 16. The Loose Diffuson diagrams for the absorption rate: the dotted lines represent the〈UU〉
correlation function while the wavy line corresponds to the〈VV 〉 correlator.

Note that a nontrivial dynamics ofht (η) and that off (ε; t) is hidden in the
exponential factor which is a purely classical object. The Fermi statistics of
electrons considered here is taken into account by an initial distributionh0(η). At
ηω ≪ 1 whereω is the typical frequency of oscillations inϕ(t), or equivalently
at the energy resolutionδε ≫ ω, one can approximateϕ(ζ+η/2)−ϕ(ζ−η/2) ≈
(∂tϕ) η. Then the exponent in Eq. (5.13) reduces to exp

[
−t Ŵ (∂tϕ)2 η2

]
which

corresponds to Eq. (5.12) of the form:

{
∂t +DE η2} ht (η) = 0,

{
∂t −DE ∂2

ε

}
f (ε, t) = 0. (5.14)

In this approximation we come to the diffusion equation for the energy distribu-
tion function with the energy diffusion coefficient:

DE = Ŵ(∂tϕ)2 ∼ Ŵ ω2. (5.15)
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For a harmonic perturbationϕ(t) = cos(ωt) the form of energy diffusion co-
efficient allows a simple interpretation. This is a random walk in the energy
space due to a sequential absorption or emission of photons with the energyh̄ω.
Then the size of an elementary step is±h̄ω and the rate of making steps isŴ/h̄.
Now it is clear that the condition Eq. (5.9), that allows to use the approxima-
tion Eq. (3.10), has the physical meaning of a condition to absorb/emitat most
one photon during the time of elastic mean free path. The opposite condition
would mean that many photons can be absorbed/emitted during the timeτ which
implies inelastic processes being stronger than the elastic ones.

Using the diffusion equation we express∂tht (η) = −DE η2 ht (η). Then
Eq. (5.4) gives for the net absorption rate:

W(t) = −iπ (DE/δ) lim
η→0

∂η(η
2ht (η)). (5.16)

It is important that

ht ≈
i

πη
, η→ 0. (5.17)

for all ht (η) corresponding to the Fermi-like energy distribution functionf (ε; t)
< 1 with f (ε → +∞; t) = 0, f (ε → −∞; t) = 1. Thus the existence of the
Fermi sea makes the net absorption rate non-zero despite the diffusion character
of the energy distribution dynamics:

W(t) = W0 =
DE

δ
. (5.18)

6. Quantum correction to absorption rate

We see that the non-crossing, or zero-loop, approximation leads to the classical
picture of a time-independent absorption rate, the so calledOhmic absorption.
This is in line with the fact established below that the same approximation leads
to the classical Drude conductivity. Let us go beyond and consider the diagrams
for GK that contain one crossing or one Cooperon loop. Different ways of pre-
senting such a diagram are shown in Fig. 17. This is essentially the same fan
diagram with the Loose Diffuson attached to it. However, because the pertur-
bation does not contain a vector vertex, one should take special care about the
Hikami box. It is shown in Fig. 18. Here a new element – besides the correlation
between twoV̂ vertices that first appeared in Fig. 16– is the dotted line installed
between two retarded or two advanced Green’s functions. The rules of such an
installation are (i) non-crossing of dotted-dotted and dotted-wavy lines and (ii)
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Fig. 17. Diagrams for weak dynamic localization.

the presence of both retarded and advanced functions in each “cell” separated
by dotted or wavy lines (otherwise theξ -integral is zero). One can see that the
sum of three diagrams in Fig. 18a-c and in Fig. 18d-f are zero. The remaining
diagrams Fig. 18g and Fig. 18h have opposite signs so that the R-A junction and
the V̂ (t) vertices (denoted by an open circle in Fig. 18) that appear as the first
term of expansion of〈GR/A〉 compose a combination

Ŵ (ϕ(t ′ + η/2)− ϕ(t ′ − η/2)) (ϕ(t ′ − t1)− ϕ(t ′ − t1 − η)) h0(η) (6.1)

≈ Ŵ ∂t ′ϕ(t
′) ∂t ′ϕ(t ′ − t1) η2h0(η).

The contribution to the absorption rate that comes from the diagram of Fig. 17
is computed with the help of Eq. (5.4). The limit limη→0 ∂ηη

2h0(η) results in a
universal constanti/π , and the time derivative∂t of the Loose Diffuson gives a
δ(t − t ′) function in the leading order in̂V . So we obtain a quantum correction
to the absorption rate [15]:

δW(t)

W0
= Ŵδ

πDE

∫ t

0
∂tϕ(t)∂tϕ(t − t1) C̃t−t1/2(t1,−t1) dt1. (6.2)

where the limits of integration are fixed by an assumption that a time-dependent
perturbation has been switched on att = 0;Ct (η, η′; k) is the Cooperon, and

C̃t (η, η
′) = (2πντ2)

1

V ol

∑

k

Ct (η, η
′; k). (6.3)
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Fig. 18. Hikami box for a scalar vertex.

Here we have to make some remarks. Eq. (6.2) is general and gives the first
quantum correction to the absorption rate in a disordered or chaotic system of
any geometry. However, the quantitỹCt (η, η′) depends on the type of pertur-
bation and on the system geometry. For a closed system of finite volumeV ol

there always exists a regime where the geometry of the system does not play
any role. This is the limit where the typical frequencyω of perturbation is much
smaller than the so called Thouless energyET h. In disordered systems where
the electronic transport is diffusive, the Thouless energy coincides with the gap
between thezero diffusion modethat corresponds tok = 0 and the first mode of
dimensional quantization that corresponds tok ∼ 2π/L, whereL is thelargest
of the system sizes. In this case it is of the order of the inverse diffusion time
ET h ∼ 1/τD. For such small frequencies one can neglect the higher modes with
nonzero values ofk and consider the zero diffusion mode withk = 0 that always
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exists in closed systems. In thiszero-mode, or ergodiclimit the actual shape of
the system does not matter at all. One can show that this is exactly the limit
where the results obtained using the Hamiltonian Eq. (5.5) are equivalent to the
results obtained starting from the random matrix theory Eq. (5.7).

However, even in the ergodic limit the results for the Cooperon depend on the
topologyof the system. The equation for the Cooperon Eq. (4.2) that corresponds
to thenon-simply connectedtopology of a ring and aglobal vector-potentialper-
turbation differs from that for the scalar potential perturbations with local corre-
lations in space described by Eqs. (5.5),(5.6).

To see the difference we re-derive the Cooperon for the case of a scalar po-
tential perturbation. The corresponding diagrams analogous to those shown in
Fig. 11 for the case of the global vector-potential perturbation are given in Fig. 19.
As a result of calculation of the correspondingξ -integrals we obtain an equation

Fig. 19. The ac scalar potential corrections to the inverse Cooperon.

(in the ergodic limitk=0):

{
2
∂

∂η
+ Ŵ [ϕ(t + η/2)− ϕ(t − η/2)]2

}
C̃t (η, η

′) = 2δ(η − η′). (6.4)

This equation contains thedifferenceϕ(t + η/2)−ϕ(t − η/2) instead of the sum
in Eq. (4.2). One can show [6] that the time-dependent random matrix theory
that reproduces the Cooperon with the sumϕ(t +η/2)+ϕ(t −η/2) corresponds
to the random perturbation matrix̂V which is pure imaginaryanti-symmetric,
rather than real symmetric as in Eq. (5.7).

The corresponding equation for a time-dependent Diffuson appears to be the
same as Eq. (4.3):

{
∂

∂t
+ Ŵ [ϕ(t + η/2)− ϕ(t − η/2)]2

}
D̃η(t, t

′) = δ(t − t ′). (6.5)
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To complete the solution Eq. (6.2) we give a solution to Eq. (6.4) which is valid
for anarbitrary time dependence ofϕ(t):

C̃t (η, η
′) = θ(η − η′) exp

{
−Ŵ

2

∫ η

η′
[ϕ(t + ζ/2)− ϕ(t − ζ/2)]2 dζ

}
. (6.6)

7. Weak dynamic localization and no-dephasing points

In this section we concentrate on theoscillatingtime dependence of perturbation
with ϕ(t) = 0 andϕ2(t) = 1. The simplest example is that of awhite-noisewith
ϕ(t)ϕ(t ′) = 0 for t �= t ′. Then Eq. (6.6) takes the form:

C̃t (η, η
′) = θ(η − η′) exp

[
−Ŵ (η − η′)

]
. (7.1)

The negative exponential factor describesdephasingby a white noise perturba-
tion. Because of the factor∂tϕ(t)∂tϕ(t − t1) the effective range of integration
in Eq. (6.2) is of the order of the correlation timeτ0 ≪ 1/Ŵ. This makes the
correction to the absorption rate vanishδW(t)/W0 → 0 in the white-noise limit
τ0 → 0.

Let us now consider the simplest example of aninfinite− range time corre-
lations. This is the case of a harmonic perturbationϕ(t) = cos(ωt). Then for
ω|η − η′| ≫ 1 the Cooperon takes again the form Eq. (7.1) but with thetime-
dependentdephasing rate:

Ŵt = Ŵ sin2ωt (7.2)

One can see that there are certain timesωtn = πn (n = integer) where the
dephasing rate is zero. We will refer to these pointstn asno-dephasingpoints
[16].

This remarkable phenomenon is generic to harmonic perturbation and is also
present for the case of an ac vector-potential considered in the previous section.
Its physical meaning is quite simple. Consider again a pair of electron trajectories
with a closed loop shown in Fig. 8. In the presence of a time-dependent vector-
potentialA(t) the phase difference between these two trajectories is no longer
zero but a random quantity:

δ� =
∫ T

0
A(t ′) [v1(t

′)− v2(t
′)] dt ′, (7.3)

wherev1,2(t) are electron velocities at a timet andT is the time it takes for
an electron to make a loop (the traversing time). For loops with the opposite
directions of traversingv1(t

′) = −v2(T − t ′) [see Fig. 20]. Then we obtain
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Fig. 20. Trajectories with loops traversed in opposite directions and synchronization.

δ� =
∫ T /2

−T /2
[A(T /2+ t ′)+ A(T /2− t ′)] v1(t

′ + T /2) dt ′ (7.4)

Now assuming the period of oscillations ofA(t) to be large compared to the
velocity correlation timeτ we obtain after averaging overv1:

〈(δ�)2〉 = D0

∫ T /2

−T /2
[A(T /2+ t ′)+ A(T /2− t ′)]2 dt ′. (7.5)

We see that in the presence of a harmonic vector-potentialA(t) ∝ sinωt the
phase differenceδ� = 0 vanishes forall the loop trajectories with the traversing
time equal to the integer period of the time-dependent perturbation:

T = 2πn

ω
, n = 1,2,3... (7.6)

Such loop trajectories with the traversing timesynchronizedwith the period of
perturbation play a crucial role in all the quantum coherence (interference) phe-
nomena in disordered and chaotic systems (their effect on the universal conduc-
tance fluctuations has been studied in Ref. [16]). Any periodic in time pertur-
bation leads to aselection of trajectories: for strong enough perturbation all tra-
jectories that do not obey Eq. (7.6) do not interfere because of the random phase
differenceδ�≫ 1.
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In the particular case of the quantum corrections to the energy absorption rate
Eq. (6.2) the time-dependent Cooperon

C̃t−t1/2(t1,−t1) = exp
[
−2t1Ŵt−t1/2

]
(7.7)

is small everywhere except in the vicinity of no-dephasing points

ωt
(n)
1 = 2ωt − 2πn, n = 0,±1,±2... (7.8)

ForŴt1 ∼ Ŵt ≫ 1 one can expandŴt−t1/2 ≈ (ω/2)2Ŵ (t1− t (n)1 )2 in the vicinity

of no-dephasing points, do the Gaussian integration overζ = (t1 − t (n)1 ) and put

t1 = t (n)1 elsewhere. In particular∂tϕ(t − t (n)1 ) = −∂tϕ(t). Then we arrive at:

δW(t)

W0
= − δ

π
(2 sin2ωt)

∑

n

∫ +∞

−∞
dζ e−DEζ

2t
(n)
1 . (7.9)

Replacing
∑
n by the integral(ω/2π)

∫ t
0 dt1 and averaging over time intervals

much larger than 2π/ω we finally get:

W(t)

W0
= 1− δω

π

∫ t

0
dt1

∫ +∞

−∞

dζ

2π
e−DEζ

2t1 = 1−
√
t

t∗
, (7.10)

where

t∗ =
π3Ŵ

2δ2
. (7.11)

We have obtained a remarkable result that the absolute value of the quantum
correction to the absorption rate grows with time. This is the consequence of
the existence of no-dephasing points, as otherwise the exponentially decaying
Cooperon would lead to a saturation of the integral overt1 in Eq. (6.2) at large
times t . The negative sign of the correction implies that the absorption rate, or
energy diffusion coefficient decreases with time. This phenomenon can be called
“weak dynamic localization” in full analogy with the weak Anderson localization
when the diffusion coefficient in space decreases with the system size. It has been
first discovered [17, 18, 19] for a simple quantum system – quantum rotor subject
to the periodicδ-function perturbation. Att ∼ t∗ the quantum correction is of
the order of the classical ohmic absorption, and we can expect strongdynamic
localization to occur.

Eq. (7.10) suggests a more precise relationship between the dynamic local-
ization for a quantum system in the ergodic (zero-dimensional) limit subject to a
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harmonic perturbation and the Anderson localization in aquasi-one dimensional
disordered wire. We observe that

∂tW(t) ∝
∫ +∞

−∞

dζ

2π
eDEζ

2 t (7.12)

=
∫ ∞

−∞

dω′

2π
e−iω

′t
∫ +∞

−∞

dζ

2π

1

DEζ 2 − iω′ .

At the same time, according to Eq. (2.22), the correction to the (complex) fre-
quency dependent conductivity of an infinite quasi-one dimensional wire is pro-
portional to:

δσ (ω) =
∫ +∞

−∞

dk

2π

1

D0k2 − iω . (7.13)

We see that the deviation from the no-dephasing pointsζ = t1 − t (n)1 is an ana-
logue of the momentumk. Then with a suitable choice of a time and frequency
scale one obtains:

W(t)

W0
=
∫ +∞

−∞

dω′

2π

e−iω
′t

(−iω′ + 0)

(
σ(ω′)
σ0

)
. (7.14)

Note that Eq. (7.14) is non-trivial as it establishes a relationship between an es-
sentially non-equilibrium property of a zero-dimensional system and an equilib-
rium property of a quasi-one dimensional system.

This relationship can be proven for any diagram with an arbitrary number of
Diffuson-Cooperon loops (for the case of two loops see Ref. [20]) and we con-
jecture that it isexactin the ergodic (or random matrix) regime fortŴ, tω ≫ 1.

Eq. (7.14) helps to establish a character of decay of the absorption rateW(t)

for t ≫ t∗. To this end we recall the Mott-Berezinskii formula for the frequency-
dependent conductivity in the localized regime [21]:

σ(ω) ∝ ω2 ln2ω. (7.15)

Then using Eq. (7.14) one obtains the corresponding absorption rateW(t) at
t ≫ t∗:

W(t) ∝ ln t

t2
. (7.16)
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Fig. 21. Time dependence of the absorption rate.

8. Conclusion and open questions

The goal of this course was to give a unified picture and a unified theoretical
tool to consider different quantum coherence effects in disordered metals. The
unified picture is that of interference of electron trajectories with loops traversed
in opposite directions. The corresponding theoretical machinery is the Diffuson-
Cooperon diagrammatic technique. We have demonstrated that even the first
quantum correction diagram with the Cooperon loop can describe such different
and nontrivial phenomena as weak Anderson localization, quantum rectification
and dynamic localization in energy space. We did not try to give a review of the
development in the field but rather to concentrate on a few important examples
and to demonstrate how the machinery works in different cases. That is why
many related issues have not been discussed and the corresponding works have
not been cited properly. We apologize for that.

There are few a open problems that are related with the main subjects of this
school and in our opinion warrant a study. This is first of all a unified theory of
energy absorption where both the Zener transitions picture [22] and the sequential
photon absorption picture are incorporated. The suitable theoretical tool for that
is believed to be a nonlinear sigma-model in the Keldysh representation derived
in Refs. [15]. The perturbative treatment of this field theory reproduces the dia-
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grammatic technique discussed in this course, and the non-perturbative consider-
ation in the regionŴ,ω < δ should give the results obtained in the framework of
the Zener transitions picture.

Another possible direction is the role of interactions in the quantum recti-
fication and dynamic localization. Some of the interaction effects in dynamic
localization have been recently considered in Refs. [23, 24, 25] using the Fermi
Golden Rule approximation. However, an interesting regime of localization in
the Fock space [26], where the Fermi Golden Rule does not apply, is awaiting an
investigation.
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1. Introduction

When one applies a constant bias voltage to a conductor, a stationary current is
typically established. However, if one carefully analyzes this current, one discov-
ers that it has a time dependence: there are some fluctuations around the average
value (Fig. 1). One of the ways to characterize these fluctuations is to compute
the current-current correlation function and to calculate its Fourier transform: the
noise. The information thus obtained characterizes the amplitude of the devia-
tions with respect to the average value, as well as the frequency of occurrence of
such fluctuations.

Fig. 1. The current as a function of time undergoes fluctuation around an average value, the height of
the “waves” and their frequency are characterized by the noise.

Within the last decade and a half, there has been a resurgence of interest in the
study of noise in mesoscopic devices, both experimentally and theoretically. In
a general sense, noise occurs because the transport of electrons has a stochastic
nature. Noise can arise in classical and quantum transport as well, but here we
will deal mostly with quantum noise. Noise in solid state devices can have differ-
ent origins: there is 1/f noise [1] which is believed to arise from fluctuations in
the resistance of the sample due to the motion of impurities [2] and background
charges. This course does not deal at all with 1/f noise. The noise I am about
to describe considers the device/conductor as having no inelastic effects: a prob-
ability of transmission, or a hopping matrix element characterizes it for instance.
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Typically in experiments, one cannot dissociate 1/f noise from this “other” noise
contribution. 1/f noise can obviously not be avoided in low frequency measure-
ments, so experimentalists typically perform measurements in the kHz to MHz
range, sometimes higher.

If the sample considered is small enough that dephasing and inelastic effects
can be neglected, equilibrium (thermal) noise and excess noise can be completely
described in terms of the elastic scattering properties of the sample. This is the
regime of mesoscopic physics, which is now described in several textbooks [3].
As mentioned above, noise arises as a consequence of random processes gov-
erning the transport of electrons. Here, there are two sources randomness: first,
electrons incident on the sample occupy a given energy state with a probability
given by the Fermi–Dirac distribution function. Secondly, electrons can be trans-
mitted across the sample or reflected in the same reservoir they came from, with
a probability given by the quantum mechanical transmission/ reflection coeffi-
cients.

Equilibrium noise refers to the case where no bias voltage is applied between
the leads connected to the sample, where thermal agitation alone allows the elec-
trons close to the Fermi level to tunnel through the sample [4]. Equilibrium noise
is related to the conductance of the sample via the Johnson–Nyquist formula [5].
In the presence of a bias, in the classical regime, we expect to recover the full
shot noise, a noise proportional to the average current. Shot noise was predicted
by Schottky [6] and was observed in vacuum diodes [7].

If the sample is to be described quantum mechanically, a calculation of the
noise should include statistical effects such as the Pauli principle: an electron
which is successfully transmitted cannot occupy the same state as another elec-
tron incident from the opposite side, which is reflected by the potential barrier.
The importance of the statistics of the charge carriers is a novelty in mesoscopic
physics. After all, many experiments in mesoscopic physics – with electrons as
carriers – have a direct optical analog if we interchange the carriers with photons.
The conductance steps experiment [8] which shows the transverse quantization of
the electron wave function is an example: this experiment has been successfully
completed with photons [9]. Universal conductance fluctuations in mesoscopic
wires and rings [10, 11] also has an analog when one shines a laser on white paint
or cold atoms as one studies the retrodiffusion peak or the speckle pattern which
is generated [12]. In contrast to these examples, a noise measurement makes a
distinction between fermions and bosons.

Many approaches have been proposed to calculate noise. Some are quasi–
classical. Others use a formulation of non-equilibrium thermodynamics based
on the concept of reservoirs, introduced for the conductance formula [13]. Here,
we shall begin with an intuitive picture [14, 15, 16], where the current passing
through the device is a superposition of pulses, or electrons wave packets, which
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can be transmitted or reflected. We shall then proceed with scattering theory, and
conclude with calculations of noise with the Keldysh formalism for a strongly
correlated system.

The scattering approach based on operator averages [17, 18, 19] will be de-
scribed in detail, because it allows to describe systematically more complex sit-
uations where the sample is connected to several leads. It also allows a general-
ization to finite frequency noise and to conductors which have an interface with
a superconductor. Superconductors will be studied not only for their own sake,
but also because they provide a natural source of entangled electrons. Noise cor-
relation measurements can in principle be used to test quantum mechanical non-
locality. Starting from a microscopic Hamiltonian, one can use non-equilibrium
formulations of field theory and thermodynamics [20] to compute the current, as
well as the noise [21, 22, 23]. There are few systems in mesoscopic physics where
the role of electronic interactions on the noise can be probed easily. Coulomb in-
teraction give most of us a considerable headache, or considerable excitement.
One dimensional systems are special, in the sense that they can be handled some-
what exactly. In the tunneling regime only, I will discuss the noise properties of
Luttinger liquids, using the illustration of edge channels in the fractional quantum
Hall effect. Even the lowest order tunneling calculation brings out an interesting
result: the identification of anomalous, fractional charges via the Schottky for-
mula.

Noise also enters in dephasing and decoherence processes, for instance, when
a quantum dot with a sharp level is coupled electrostatically to the electrons
which transit in a nearby wire [24].

Throughout the course, we will consider conductors which are connected to
several terminals because one can build fermionic analogs of optical devices for
photons [25].

Finally, I mention that there are some excellent publications providing reviews
on noise. One book on fluctuations in solids is available [26], and describes many
aspects of the noise – such as the Langevin approach – which I will not discuss
here. Another is the very complete review article of Y. Blanter and M. Büttiker
[27], which was used here in some sections. To some extent, this course will be
complementary to these materials because it will present the Keldysh approach
to noise in Luttinger liquids, and because it will discuss to which extent noise
correlations can be probed to discuss the issue of entanglement.

2. Poissonian noise

Walter Schottky pioneered the field in 1918 by calculating the noise of a source of
particles emitted in an independent manner [6]. Letτ be the mean time separating
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two tunneling events. In quantum and classical transport, we are dealing with
situations where many particle are transmitted from one lead to another. Consider
now the probabilityPN (t) for havingN tunneling events during timet . This
follows the probability law:

PN (t) =
tN

τN N !e
−t/τ . (2.1)

This can be proved as follows. The probability ofN tunneling events can be
expressed in terms of the probability to haveN − 1 tunneling events:

PN (t + dt) = PN−1(t)
dt

τ
+ PN (t)

(
1− dt

τ

)
(2.2)

which leads (after multiplying by exp(t/τ )) to

d

d(t/τ)
�N = �N−1, (2.3)

where�N ≡ PN exp(t/τ ). The solution by induction is clearly

�N = (t/τ )N�0/N ! (2.4)

Since the solution forP0 is given by:

dP0

dt
= −1

τ
P0, P0 = exp(−t/τ ), (2.5)

one finally obtains the above result forPN (t), which can be expressed in turn as
a function of the mean number of particles transmitted duringt .

PN (t) =
〈N〉N
N ! e

−〈N〉. (2.6)

To show this, one considers the characteristic function of the distribution:

φ =
∑

N

eiλN (t/τ )N

N ! e−t/τ = e(t/τ )(eiλ−1). (2.7)

The characteristic function gives the average number of particle transmitted when
differentiating it respect toλ once (and settingλ = 0), and the variance when
differentiating withλ twice. We thus get:

〈N〉 = t/τ, 〈N2〉 − 〈N〉2 = 〈N〉. (2.8)
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This has a fundamental consequence on the noise characteristic of a tunnel junc-
tion. The current is given by

〈I 〉 = e〈N〉/t = e/τ. (2.9)

The noise is proportional to the variance of the number of transmitted particles.
The final result for the spectral density of noise is:

S = 2e2(〈N2〉 − 〈N〉2)/t = 2e〈I 〉. (2.10)

This formula has the benefit that it applies to any tunneling situation. It applies
to electrons tunneling between two metallic electrodes, but also to “strange” qua-
siparticles of the quantum Hall effect tunneling between two edge states. Below
we shall illustrate this fact in discussing the detection of the quasiparticle charge.
This formula will serve also as a point of comparison with the quantum noise
derivations which apply to mesoscopic conductors.

3. The wave packet approach

We consider first a one dimensional sample connected to a source and a drain.
The results presented here were first described in [28, 17] with other methods.
The quantity we wish to calculate is the time correlation in the current:

C(t) = 1

T

∫ T

0
dt ′ 〈I (t ′)I (t + t ′)〉. (3.1)

The spectral density of noiseS(ω) is related to the above quantity by a simple
Fourier transform. The measurement frequencies which we consider here are
low enough compared to the inverse of the time associated with the transfer of an
electron from source to drain [29] and allow to neglect the self inductance of the
sample. Using the Fourier representation for the current, this yields:

S(ω) = lim
T→∞

2

T
〈|I (ω)|2〉, (3.2)

where the angular brackets denote some kind of average over electrons occu-
pation factors. The wave packet approach views the current passing across the
sample as a superposition of clocked pulses [16]:I (t) = ∑

n j (t − nτ)gn. In
this expression,j (t) is the current associated with a given pulse andgn is an oc-
cupation factor which takes a value 1 if an electron has been transferred from the
left side to the right side of the sample,−1 if the electron was transferred from
right to left, and 0 when no electron is transferred at all. The quantum mechanics
necessary to calculate the noise is hidden ingn. The wave packets representing
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Fig. 2. The Landauer philosophy of quantum transport. Electrons travel as wave packets emitted from
reservoirs (right and left). Reservoirs do not have the same chemical potential because of an applied
bias. Thermal fluctuations (waves) exist in the reservoirs. The superposition of two electrons in the
same scattering state cannot occur because of the Pauli principle.

the electrons are separated in time, but can overlap in space. An example of wave
packet construction can be obtained if we consider states limited to a small en-
ergy interval�E [16]: choosingτ = h/�E insures that successive pulses are
orthogonal to each other. With the above definitions, the calculation of the noise
spectral density in the energy interval[E − �E/2, E + �E/2] reduces to the
calculation of the fluctuation in the occupation factors:

S(ω = 0) = 2�Ee2

πh̄
(〈g2〉 − 〈g〉2), (3.3)

where we have dropped the indexn in gn because all pulses contribute to the
noise in the same fashion. Also, note that we have subtracted the average current
in order to isolate the fluctuations. The calculation of the spectral density of noise
is thus directly related to the statistics of the current pulses.

To obtain the correlator〈g2〉 − 〈g〉2, we consider all possible pulse histories:
first consider the case where two electrons are incident on the sample from op-
posite sides. In this situation,g = 0 because there will be no current if the two
electrons are both reflected or both transmitted, and the situation where one elec-
tron is reflected and the other is transmitted is forbidden by the Pauli principle;
two electrons (with the same spin) cannot occupy the same wave packet state.
Secondly, there is the straightforward situation where both incident states are
empty, withg = 0. The other possibilities whereg = 0 follow if an electron is
reflected from one side, when no electron was incident from the other side. In fact
the only possibilities to have a current through the sample are when an electron
incident from the right (left) is transmitted while no electron was present on the
other side, giving the resultg = 1 (g = −1) with respective weightf1(1− f2)T

or f2(1− f1)T . f1 (f2) is the Fermi–Dirac distribution associated with the left
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(right) reservoir, andT is the transmission probability. We therefore obtain:

〈g2〉 − 〈g〉2 = T (f1 + f2 − 2f1f2)− (f1 − f2)
2T 2. (3.4)

A note of caution here. By removing “by hand” the two processes in which
the Pauli principle is violated, it looks as if the total probability for having either
both electrons reflected or both electrons transmitted does not add up to one:
from our argument it seems that this probability is equal toT 2 + (1− T )2. In
reality, there is no such problem if one considers a wave function for incoming
and outgoing states which is anti-symmetrized (as it should be). The processes
where electrons are both reflected and both transmitted are not distinguishable,
and their amplitudes should be added before taking the square modulus to get the
total probability. Using the unitarity property of the S–matrix, one then obtain
that this probability is indeed one. Summing now over all energy intervals, we
thus obtain the total excess noise:

S(ω = 0) = 4e2

h

∫
dE T (E)[f1(1− f1)+ f2(1− f2)]

+4e2

h

∫
dE T (E)[1− T (E)](f1 − f2)

2. (3.5)

In the absence of bias or at high temperatures (|µ1 − µ2| ≪ kB ), the two
first terms on the right hand side dominate. The dependence on the distribution
functionsfi(1− fi) is typical of calculations of fluctuations in thermal equilib-
rium. Using the relationfi(1− fi) = −kB ∂fi/∂E, we recover the Johnson
Nyquist [5] formula for thermal equilibrium noise [14]:

S(ω = 0) = 4
2e2T

h
kB = 4GkB , (3.6)

whereG is the Landauer conductance of the mesoscopic circuit. In the opposite
limit, |µ1−µ2| ≫ kB , we get a contribution which looks like shot noise, except
that it is reduced by a factor 1− T :

S(ω = 0) = 2e〈I 〉(1− T ), (3.7)

which is called reduced shot noise or quantum shot noise. At this point, it is
useful to define the Fano factor as the ratio between the zero frequency shot
noise divided by the Poisson noise:

F ≡ S(ω = 0)

2e〈I 〉 , (3.8)

which is equal to 1− T in the present case. In the limit of poor transmission,
T ≪ 1, and we recover the full shot noise. For highly transmissive channels,



294 T. Martin

T ∼ 1, and we can think of the reduction of shot noise as being the noise con-
tribution associated with the poor transmission of holes across the sample. Be-
cause of the Pauli principle, a full stream of electrons which is transmitted with
unit probability does not contribute to noise. Note that this is the effect seen
qualitatively in point contact experiments [30, 31]. In the intermediate regime
|µ1 − µ2| ≃ kB , there is no clear separation between the thermal and the re-
duced shot noise contribution.

4. Generalization to the multi–channel case

We now turn to the more complex situation where each lead connected to the
sample has several channels. Our concern in this case is the role of channel mix-
ing: an outgoing channel on the right side collects electrons from all incoming
channels transmitted from the left and all reflected channels on the right. We
therefore expect that wave packets from these different incoming channels will
interfere with each other. To avoid the issue of interference between channels and
treat the system as a superposition of one dimensional contributions, we must find
a wave packet representation where the mixing between channels is absent.

This representation is obtained by using a decomposition of the S– matrix
describing the sample. Let us assume for simplicity that both leads have the
same number of channelsM. The S–matrix is then a block matrix containing
fourM byM sub-matrices describing the reflection from the right (left) side,s22
(s11), and the transmission from left to right (right to left),s12 (s21):

S=
(

s11 s12
s21 s22

)
. (4.1)

From the unitarity of the S–matrix, which follows from current conservation, it
is possible to write the sub-matrices in terms of two diagonal matrices and four
unitary matrices:

s11 = −iV1R1/2U
†
1, s12 = V1T1/2U

†
2, (4.2)

s21 = V2T1/2U
†
1, s22 = −iV2R1/2U

†
2, (4.3)

whereR1/2 andT1/2 are real diagonal matrices with diagonal elementsR
1/2
α and

T
1/2
α such thatTα + Rα = 1. Rα (Tα) are the eigenvalues of the matricess†

11s11

(s†
21s21). U1, U2, V1, V2 are unitary transformations on the eigenchannels.
Using the unitary transformations, we can now choose a new basis of incom-

ing and outgoing states on the left and the right side of the sample:U1 (V1) is
the unitary transformation used to represent the incoming (outgoing) states on
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the left side, whileU2 (V2) is the unitary transformation used to represent the in-
coming (outgoing) states on the right side of the sample. The effective S–matrix
obtained in this new basis is thus a block matrix of four diagonal matrices. This
corresponds to a situation where no mixing between channels occurs, effectively
a superposition of one-dimensional (2× 2) S–matrices which are totally decou-
pled (see Fig. 3). This is precisely the form which was assumed by Lesovik [17]

Fig. 3. A multichannel, two-terminal conductor mixes all channels in general (left). In the eigen-
channel representation, it behaves like a set of one channel conductors which are decoupled from
each other (right).

for the adiabatic point contact. The absence of correlations between the different
incoming and outgoing wave packets allows us to write the noise as a superposi-
tion of one dimensional contributions:

S(ω = 0) = 4e2

h

∫
dE

∑

α

Tα(E)[f1(1− f1)+ f2(1− f2)]

+4e2

h

∫
dE

∑

α

Tα(E)[1− Tα(E)](f1 − f2)
2. (4.4)

This expression can be cast in terms of the block elements of the initial S–matrix
using the properties of the trace,

∑
α T

n
α = T r[(s†

21s21)
n]. In experiments using

break junctions, theT ′αs can actually be measured [32, 33]: they bear the name
of “mesoscopic pin code”.

5. Scattering approach based on operator averages

The method depicted in the previous section has an intuitive character because
one is able to see directly the effects of the statistics when computing the noise. It
can also be generalized to treat multi-terminal conductors. In contrast, in this sec-
tion we adopt a more systematic procedure, which is due to G. Lesovik. This ap-
proach was generalized to multichannel, multi-terminal conductors in Ref. [19].
Here we chose to describe it because it allows to discuss noise correlations in the
most straightforward way.



296 T. Martin

The philosophy of this method goes as follows. The reservoirs connected
to the sample are macroscopic quantities. In a situation where electronic trans-
port occurs, the chemical potential of each reservoir is only modified in a minor
manner. One is thus tempted to apply equilibrium thermodynamics to quantities
(operators) which involve only a given reservoir. This approach has the advan-
tage that thermodynamical averages of operators can be computed in a systematic
manner.

5.1. Average current

This is a classic result which can be found in Refs. [13, 34]. For simplicity, I
will choose a situation where the conductor is connected to an arbitrary number
of leads, but each lead connected to the sample has only one incoming/outgoing
channel. The generalization for leads containing many channels gives additional
algebra.

The current operator for terminalm reads in the usual way:

Im(xm) =
h̄e

2mi

∑

σ

(
ψ†
mσ (rm)

∂ψmσ (rm)
∂xm

− ∂ψ
†
mσ (rm)
∂xm

ψmσ (rm)

)
.

(5.1)

Herexm is the coordinate in terminalm andψ†
mσ is the creation operator for a

particle with spinσ in terminalm. In the following we shall consider conductors
which transmit/reflect both spin species with the same amplitudes, and which do
not scatter one spin into another along the way. In our calculations, this amounts
to ignoring the spin index on the fermion operators and replacing the sum over
spin by a factor 2. Spin indices will be restored in the discussion of mesoscopic
superconductivity for obvious reasons. The fermion annihilation operator is ex-
pressed in terms of the scattering properties of the sample:

ψm(rm) =
∑

n

∫
dkm√

2π

√
km

kn
(δmne

ikmxm + smne−ikmxm)cn(kn). (5.2)

smn is the scattering matrix amplitude for a state incident fromn and transmitted
into m. cm(km) is the annihilation operator for a scattering state incident from
m. Momentum integrals are readily transformed into energy integrals with the
substitution

∫
dkm → m

∫
dE/h̄2km. Substituting the fermion operator in the

expression for the current operator, we get:

Im(xm) =
∫
dE

∫
dE′

∑

nn′
Mm(E,E

′, n, n′)c†n(kn)cn′(kn′), (5.3)
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whereMm(E,E′, n, n′) is the current matrix element, which depends on position
in general. In fact, it is the sum of two distinct contributions:

Mm(E,E
′, n, n′) = M�k

m (E,E
′, n, n′)+M�k

m (E,E
′, n, n′), (5.4)

which are defined as:

M�k
m (E,E

′, n, n′) = em

2πh̄3

(
km(E)km(E

′)
kn(E)kn′(E′)

)1/2

(k−1
m (E)+ k−1

m (E
′)),

(e−i(km(E)−km(E
′))xmδmnδmn′

−ei(km(E)−km(E′))xms∗mn(E)smn′(E′)) (5.5)

M�k
m (E,E

′, n, n′) = em

2πh̄3

(
km(E)km(E

′)
kn(E)kn′(E′)

)1/2

(k−1
m (E)− k−1

m (E
′))

(−e−i(km(E)+km(E′))xmsmn′(E′)δmn
+ei(km(E)+km(E′))xms∗mn(E)δmn′). (5.6)

The current depends on the position where it is measured. This is quite unfor-
tunate. Whether this is true or not depends on the working assumptions of our
model. Here we anticipate a few results.
• When computing the average current, as our model does not take into account

inelastic processes we get a delta function of energy andM�k
m (E,E

′, n, n′) = 0.
As a result the average stationary current is constant.
• When computing the noise at zero frequency, the same thing will happen.

The time integration will yield the desired delta function in energy. The zero
frequency noise does not depend on where it is measured.
• When considering finite frequency noise, the termM�k

m (E,E
′, n, n′) will

once again be dropped out, “most of the time”. Indeed, the typical frequencies
of interest range from 0 to, say, a feweV/h̄ in mesoscopic experiments. Yet in
practical situations, the biaseV is assumed to be much smaller than the chemical
potentialµn of the reservoirs. Because most relevant momenta happen in the
vicinity of the chemical potential within a feweV/h̄, this implies that the mo-
mentakm(E) andkm(E′) are rather close. One then obtains aM�k

m (E,E
′, n, n′)

with virtually no oscillations and aM�k
m (E,E

′, n, n′) which oscillates rapidly
with a wavelengthπ/kF . The latter contribution has a smaller amplitude.
• About the wave vector dependences ofMm(E,E′, n, n′). When calculating

current or charge fluctuations at zero frequencies or at frequencies of the order
of the bias voltageeV/h̄, at the end of the day the factors containing these wave
vectors cancel out in the expression of the current or noise. This is again due to
the fact thatµm ≫ eV .



298 T. Martin

• The question of whether such oscillations are real or not depends on how
the current is measured. We can reasonably expect that a current measurement
implicitly implies an average over many Fermi wavelengths along the wire. This
is the case, for instance in a Gedanken experiment where the current is detected
via the magnetic field it creates. In this case it is clear that onlyM�k

m (E,E
′, n, n′)

survives.
• On the other hand, care must be taken when considering the density operator
ρ(x, t) = �†(x, t)�(x, t). This operator is related to the current operator via the
continuity equation:∂tρ + ∂xJx = 0. The density operator in frequency space
can therefore be obtained either directly from�(x), or alternatively by taking
derivatives of the current matrix elements. The oscillating contribution of the
density operator has a matrix element of the order:
ρ�k(xm, ω) ∼ (k−1

m (E)+ k−1
m (E

′))(km(E)− km(E′)) (5.7)
while the 2kF contribution behaves like:
ρ�k(xm, ω) ∼ (k−1

m (E)− k−1
m (E

′))(km(E)+ km(E′)). (5.8)
As a result, they have the same order of magnitude. This is important when
considering the issue of dephasing in a quantum dot close to a fluctuating cur-
rent [24].

We now neglect the 2kF oscillating terms and proceed. In order to compute
the average current, it is necessary to consider the average:

〈c†n(k(E), t)cn′(k(E′), t)〉 = h̄2k(E)

m
fn(E) δ(E − E′)δnn′ . (5.9)

fn(E) is the Fermi-Dirac/Bose-Einstein distribution function associated with ter-
minal n whose chemical potential isµn: fn(E) = 1/[exp(β(E − µn)) ± 1].
Consequently,

〈Im〉 = 2e

h

∫
dE

(
fm(E)−

∑

n

s∗mn(E)smn(E)fn(E)

)
.

By virtue of the unitarity of the scattering matrix, the average current becomes

〈Im〉 = 2e

h

∑

n

∫
dE |smn(E)|2 (fm(E)− fn(E)) , (5.10)

where|smn(E)|2 is the transmission probability from reservoirn to reservoirm.
Eq. (5.10) is the Landauer formula, generalized to many channels and many
terminals in Refs. [34].
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5.2. Noise and noise correlations

The noise is defined in terms of current operators as:

Smn(ω) = lim
T→+∞

2

T

∫ T/2

−T/2
dt

∫ +∞

−∞
dt ′eiωt

′[〈Im(t)In(t + t ′)〉

−〈Im〉〈In〉
]
. (5.11)

This definition will be justified in the finite frequency noise section. Whenm =
n, Smm corresponds to the (autocorrelation) noise in terminalm. Whenm andn
differ, Smn corresponds to the noise cross-correlations betweenm andn.

The calculation of noise involves productsIm(t)In(t + t ′) of two current op-
erators. It therefore involves grand canonical averages of four fermion operators,
which can be computed with Wick’s theorem:

〈c†p1
(k(E1), t)cp2(k(E2), t)c

†
p3
(k(E3), t + t ′)cp4(k(E4), t + t ′)〉 =

h̄4k(E1)k(E3)

m2
fp1(E1)fp3(E3)δp1p2δp3p4δ(E1 − E2)δ(E3 − E4)

+ h̄
4k(E1)k(E2)

m2
fp1(E1)(1∓ fp2(E3))δp1p4δp2p3

× δ(E1 − E4)δ(E3 − E2)e
−i(E1−E2)t

′/h̄. (5.12)

The first term represents the product of the average currents, while in the second
termf (1∓f ), “−” corresponds to fermionic statistics, while the “+”corresponds
to bosonic statistics. In the expression for the noise, only the irreducible current
operator contributes, and the integral over time gives a delta function in energy
(one of the energy integrals drops out). One gets the general expression for the
finite frequency noise for fermions [27]:

Smn(ω) =
4e2

h

∫
dE

∑

pp′
(δmpδmp′ − s∗mp(E)smp′(E − h̄ω))

×(δnp′δnp − s∗np′(E − h̄ω)snp(E))
×fp(E)(1− fp′(E − h̄ω)). (5.13)

Below, we discuss a few examples.

5.3. Zero frequency noise in a two terminal conductor

5.3.1. General case
We can recover the result previously derived from the wave packet approach. We
emphasize that these results were first derived with the present approach [17].
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Consider a conductor connected to two terminals (L et R). Considering only
autocorrelation noise (m = n) and settingω = 0 in Eq. (5.13), we get:

SLL(ω = 0) = 4e2

h

∫
dE

[
T (E)2 [fL(1∓ fL)+ fR(1∓ fR)]

+ T (E)(1− T (E)) [fL(1∓ fR)+ fR(1∓ fL)]
]
,

= 4e2

h

Nc∑

α=1

∫
dE

[
T (E) [fL(1∓ fL)+ fR(1∓ fR)]

±T (E)(1− T (E))(fL − fR)2
]
. (5.14)

The result of Eq. (3.5) is thus generalized to describe fermions or bosons. These
expressions, and the corresponding limits where the voltage is larger than the
temperature (shot noise) or inversely when the temperature dominates (Johnson
noise) have already been discussed.

5.3.2. Transition between the two noise regimes
In both limits for the noise, it was assumed for simplicity that the transmission
probability did not depend significantly on energy. This is justified in practice
if T (dT /dE)−1 ≫ eV , which can be reached by choosing both a sufficiently
small voltage bias, and choosing the chemical potentials such that there are no
resonances in transmission within this energy interval. In this situation, the inte-
grals over the two finite temperature Fermi functions can be performed.

Furthermore, although the single channel results are instructive to order the
fundamental features of quantum noise, it is useful to provide now the general
results for conductors containing several channels. Using the eigenvalues of the
transmission matrix, one obtains [16]:

SLL(0) = 4e2

h

[
2kB 

∑

α

T 2
α

+eV coth

(
eV

2kB 

)∑

α

Tα(1− Tα)
]
. (5.15)

Of interest for tunneling situations is the case where all eigenvalues are small
compared to 1. Terms proportional toT 2

α are then neglected. Eq. (5.15) becomes:

SLL(0) = 2e〈I 〉 coth

(
eV

2kB 

)
. (5.16)
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Fig. 4. Noise reduction factor versus conductance at zero magnetic field (filled triangles) and at
H = 0.23T (open triangles), from Ref. [36]. Predictions with (without) channel mixing correspond
to the dashed (dotted) curve.

5.4. Noise reduction in various systems

Noise reduction in a point contact was observed in semiconductor point contacts
[35, 36]. For a single channel sample, the noise has a peak for transmission 1/2, a
peak which was detected in [35], and subsequent oscillations are observed as the
number of channels increases. A quantitative analysis of the 1− T noise reduc-
tion was performed by the Saclay group [36]. Their data is displayed in Fig. 4.
Noise reduction was subsequently observed in atomic point contacts [37, 38] us-
ing break junctions.

The 1−T reduction of shot noise can be also observed in various mesoscopic
systems, other than ballistic. It is most explicit in point contact experiment and
break junctions experiment because one can tune the system in order to have the
controlled opening of the first few conduction channels. But what happens in
other systems such as cavities and multi-channel conductors?

5.4.1. Double barrier structures
Double barrier structures are interesting because there exists specific energies
where the transmission probability approaches unity. Inside the well, one has
quasi-bound states whenever the phase accumulated in a round trip equals 2π .
The approximate energy dependence of the transmission coefficient for energies
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close to thenth resonance corresponds to a Breit-Wigner formula:

T (E) = T maxn

Ŵ2
n/4

(E − En)2 + Ŵ2
n/4
, T maxn = 4

ŴLnŴRn

(ŴLn + ŴRn)2
, (5.17)

whereŴLn andŴRn are escape rates to the left and right. If the width of the indi-
vidual levels are small compared to the resonance spacing, the total transmission
coefficient is given by a sum of such transmission coefficients. Inserting this in
the zero frequency result for the current and for the noise, one obtains current
and noise contributions coming from the resonant level located in between the
chemical potentials on the left and on the right. Of particular interest is the case
of a single resonance:

〈I 〉 = e

h̄

ŴLŴR

ŴL + ŴR
, (5.18)

S = 2e
(Ŵ2
L + Ŵ2

R)

(ŴL + ŴR)2
〈I 〉 = e〈I 〉, (5.19)

where the last equality in Eq. (5.19) applies when the barriers are symmetric,
giving a Fano factor 1/2. Note that this approach assumes a quantum mechanical
coherent treatment of transport. It is remarkable that the 1/2 reduction can also
be derived when transport is incoherent, using a master equation approach [39].

5.4.2. Noise in a diffusive conductor
The diffusive regime can be reached with the scattering approach. This point has
been already emphasized in a previous les Houches summer school [40]. Until
the late 1980’s, results on diffusive metals where mainly obtained using diagram-
matic techniques. Ensemble averages of non-equilibrium transport properties can
also be reached using the scattering approach. Random matrix theory allows to
study both the spectrum of quantum dots and the transport properties of meso-
scopic conductors. A thorough review exist on this topic [41].

Consider a two-dimensional conductor whose transverse dimensionW is
larger than the Fermi wavelength:W ≫ λF . The number of transverse chan-
nels isN⊥ ∼ WkF /π ≫ 1. When disorder is included in this wire, mixing
occurs between these channels: a mean free pathl separates each elastic scatter-
ing event. When the wire is in the diffusive regime, i.e. the Fermi wavelength
λF ≪ l, there are many collisions with impurities within the length of the sam-
ple l ≪ L, while L < Lφ , the phase coherence length of the sample. Due to
disorder, electron states are localized within a lengthLξ = N⊥l. In order to be
in the metallic regime,L≪ Lξ .
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In quantum transport, the conductance of a diffusive metal is given by the
Drude formula〈G〉 = (n e2τ/m)(W/L). At the same time, this conductance can
be identified with a Landauer conductance formula averaged over disorder:

〈G〉 = 2e2

h
〈
∑

n

Tn〉 =
2e2

h
N⊥〈T 〉. (5.20)

Identification with the Drude formula yields〈T 〉 = l/L ≪ 1, where the mean
free path has been multiplied by a numerical factor (this point is explained in
Ref. [41]). One could think that this implies that all channels have a low trans-
mission: in the diffusive regime, the mean free path is much smaller than the
sample length. For the noise, this would then give a Poissonian regime. On the
other hand, it is known that classical conductors exhibit no shot noise. Should
the same be true for a mesoscopic conductor? The answer is that both statements
are incorrect. The noise of a diffusive conductor exhibits neither full shot noise
nor zero shot noise. The result is in between. The probability distribution of
transmission eigenvalues is bimodal:

P(T ) = (l/2L)[T
√

1− T ]−1. (5.21)

There is a fractionl/L of open channels while all other channels have exponen-
tially small transmission (closed channels). Consider now the noise, averaged
over impurities:

〈S(ω = 0)〉 = 4e3

h
N⊥〈T (1− T )〉V. (5.22)

The random matrix theory average yields [42]〈T (1− T )〉 = l/3L, so that the
Fano factor isF = 1/3. This result has a universal character: it does not depend
of the sample characteristics. It should also be noted that it can be recovered
using alternative approaches, such as the Boltzmann-Langevin semi-classical ap-
proach [43, 44]. This shot noise reduction was probed experimentally in small
metallic wires [45]. A careful tuning of the experimental parameters (changing
the wire length and the geometry of the contacts) allowed to make a distinction
between this disorder-induced shot noise reduction (1/3), and the

√
3/4 reduc-

tion associated with hot electrons.

5.4.3. Noise reduction in chaotic cavities
Chaotic cavities were studied by two groups [46, 47], under the assumption that
the scattering matrix belongs to the so called Dyson circular ensemble. This is a
class of random matrices which differs from the diffusive case, and the probabil-
ity distribution for transmission eigenvalues is given by:

P(T ) = 1/[π
√
T (1− T )]. (5.23)



304 T. Martin

This universal distribution has the property that〈T 〉 = 1/2 and〈T (1−T )〉 = 1/8,
so that the Fano factor is 1/4. This result applies to open cavities, connected sym-
metrically (same number of channels) to a source and drain. It is nevertheless
possible [49] to treat cavities with arbitrary connections to the reservoirs, which
allows to recover the 1/2 suppression in the limit of cavities with tunneling bar-
riers. The shot noise reduction in chaotic cavities was observed in gated two
dimensional electron gases [48], where it was possible to analyze the effect of
the asymmetry of the device (number of incoming/outgoing channels connected
to the cavity).

6. Noise correlations at zero frequency

6.1. General considerations

It is interesting to look at how the current in one lead can be correlated to the
current in another lead. Let us focus on zero frequency noise correlations for
fermions, at zero temperature. In this case, the Fermi factors enforce in Eq.
(5.13) that the contribution fromp = p′ vanishes. The remaining contribution
has matrix elementsMm(E, p, p′) ∼ s∗mpsmp′ , because the delta function term
drops out. The correlation then reads:

Smn(ω = 0) = 2e2

h

∑

pp′

∫
dE s∗mpsmp′s

∗
np′snpfp(E)(1− fp′(E). (6.1)

The contributionp = p′ has been kept in the sums, although it vanishes, for
later convenience. From this expression it is clear that the noise autocorrelation
m = n is always positive, simply because scattering amplitudes occur next to
their hermitian conjugates.

On the other hand, ifm �= n, the correlations are negative. The unitarity of
the S matrix implies in this case

∑
p smps

∗
np = 0, so that the terms linear in the

Fermi functions drop out:

Smn(ω = 0) = −2e2

h

∫
dE

∣∣∣∣∣
∑

p

snps
∗
mpfp(E)

∣∣∣∣∣

2

. (6.2)

To measure the cross correlations betweenm andn, one could imagine fabri-
cating a new lead “m+ n” (assuming that bothm andn are at the same chemical
potential), and measuring the autocorrelation noiseS(m+n)(m+n). The cross cor-
relation is then obtained by subtracting the autocorrelation of each sub-lead, and
dividing by two:

S(m+n)(ω = 0) = Sm(ω = 0)+ Sn(ω = 0)+ 2Smn(ω = 0). (6.3)
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This prescription was used in the wave packet approach to analyze the Hanbury-
Brown and Twiss correlations for fermions [16], which are discussed below.

6.2. Noise correlations in a Y–shaped structure

In 1953, Hanbury–Brown and Twiss performed several experiments [25] where
two detectors at different locations collected photons emitted from a light source.
Their initial motivation was to measure the size of a distant star. This experi-
ment was followed by another one where the source was replaced by a mercury
arc lamp with filters. The filters insured that the light was essentially monochro-
matic, but the source was thermal. A semi-transparent mirror split the beam in
two components, which were fed to two photo-multiplier tubes. The correlations
between the two detectors were measured as a function of the distance separat-
ing the detectors, and were found to be always positive. The experiment was
subsequently explained to be a consequence of the bunching effect of photons.
Because the light source was thermal, several photons on average occupied the
same transverse states of the beams, so the detection of one or several photons in
one arm of the beam was typically accompanied by the detection of photons in
the other arm.

This measurement, which can be considered one of the first in the field of
quantum optics, can thus be viewed as a check that photons are indistinguishable
particles which obey Bose–Einstein statistics. It turns out that this result is also
fully consistent with a classical electromagnetism description: the photon bunch-
ing effect can be explained as a consequence of the superposition principle for
light applied to noisy sources, because the superposition principle follows from
Bose Einstein statistics.

Nowadays, low flux light sources – which are used for quantum communica-
tion purposes – can be produced such that photons are emitted one by one. The
resulting correlation signal is then negative because the detection of a photon in
one arm means that no photon is present in the other arm. This is in fact what
happens for electrons.

It has been suggested by many authors that the analog experiment for fermions
should be performed [50]. In this way the Fermi Dirac statistics of electrons could
be diagnosed directly from measuring the noise correlations of fermions passing
through a beam splitter. Because of the Pauli principle, two electrons cannot
occupy the same transverse state. The correlations should then be negative. For
technical reasons – the difficulty to achieve a dense beam of electrons in vacuum
– the experiment proved quite difficult to achieve. However, it was suggested [16]
that a similar experiment could be performed for fermions in nanostructures.

Consider a three terminal conductor, a “Y junction”. Electrons are injected
from terminal 3, which has a higher chemical potential than terminals 1 and 2,
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Fig. 5. The Hanbury-Brown and Twiss experiment.

Fig. 6. Illustration of the bunching effect for bosons, and of the anti-bunching effect for electrons in
a Hanbury-Brown and Twiss geometry.

where the correlations are measured. Here we focus on zero frequency noise (set-
tingω = 0 in Eq. (5.13)). For simplicity we choose to work at zero temperature.
The autocorrelation noise becomes:

Smm = 4e2

h

∑

p �=p′
|smp|2|smp′ |2fp(E)(1− fp′(E)).

Assuming thatµ1 = µ2, the voltage bias is theneV = µ3 − µ1,2. and the au-
tocorrelation becomesS11 = (4e2/h)eV T13(1− T13), and similarly for terminal
2. On the other hand, the correlations between 1 and 2 yield:

S12 = = −4e2

h
eV |s13|2|s23|2. (6.4)

A natural way to summarize these results is to normalize the correlations by the
square root of the product of the two autocorrelations:

S12/
√
S11S22 = −

√
T13T23/

√
(1− T13)(1− T23), (6.5)
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whereT13 andT23 are the transmission probabilities from 3 to 1 and 2. The
correlations are therefore negative regardless of the transmission of the sample.
Quantitative agreement with experiments has been found in the late nineties in
two separate experiments. A first experiment [51] designed the electron analog
of a beam splitter using a thin metallic gate on a two dimensional electron gas. A
second experiment was carried out in the quantum Hall effect regime [52]: a point
contact located in the middle of the Hall bar then plays the role of a controllable
beam splitter, as the incoming edge state is split into two outgoing edge states at
its location. Recently, negative noise correlations have been observed in electron
field emission experiments [53].

7. Finite frequency noise

7.1. Which correlator is measured?

Finite frequency noise is the subject of a debate. What is actually measured in a
finite frequency noise measurements? The current operator is indeed an hermitian
operator, but the product of two current operators evaluated at different times is
not hermitian. If one takes the wisdom from classical text books [54], one is told
that when one is faced with the product of two hermitian operators, one should
symmetrize the result in order to get a real, measurable quantity. This procedure
has led to a formal definition of finite frequency noise [27]:

Ssym(ω) =
∫ +∞

−∞
dt eiωt 〈〈I (t)I (0)+ I (0)I (t)〉〉. (7.1)

(the double bracket means the product of averaged current has been subtracted
out). At the same time, one can define two unsymmetrized correlators:

S+(ω) = 2
∫ +∞

−∞
dt eiωt 〈〈I (0)I (t)〉〉. (7.2)

S−(ω) = 2
∫ +∞

−∞
dt eiωt 〈〈I (t)I (0)〉〉. (7.3)

Here,P(i) is the probability distribution for initial states. The factor two has been
added to be consistent with the Schottky relation. Note that in these expressions,
the time dependence is specified by the Heisenberg picture. Assuming that one
knows the initial (ground) states|i〉 and the final states|f 〉, one concludes that:

S+(ω) = 4π
∑

if

|〈f |I (0)|i〉|2P(i)δ(ω + Ef − Ei). (7.4)

S−(ω) = 4π
∑

if

|〈f |I (0)|i〉|2P(i)δ(ω + Ei − Ef ). (7.5)
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Therefore, inS+(ω) (in S−(ω)), positive (negative) frequencies correspond to an
emission rate from the mesoscopic device, while negative (positive) frequencies
correspond to an absorption rate. Since one does not expect to be able to extract
energy from the ground state of this device, one concludes that the physically
relevant frequencies forS+(ω) (for S−(ω)) areω > 0 (ω < 0).

7.2. Noise measurement scenarios

In ref. [55], the authors argue that one has to specify a measurement procedure in
order to decide which noise correlator is measured. In their proposal (Fig. 7a), the
noise is measured by coupling the mesoscopic circuit (the antenna) inductively
to a LC circuit (the detector). By measuring the fluctuations of the charge on the
capacitor, one obtains a measurement of the current-current fluctuations which
is weighted by Bose-Einstein factors, evaluated at the resonant frequencyω =
1/
√
LC of the circuit:

〈〈Q2(0)〉〉 = K[S+(ω)(Nω + 1)− S−(ω)Nω], (7.6)

whereK is a constant which depends on the way the two circuits (antenna and
detector) are coupled and the double brackets imply that one measures the excess
charge fluctuations.Nω are bosonic occupation factors for the quantized LC cir-
cuit. It is therefore a mixture of the two unsymmetrized noise correlators which
is measured in this case. This point has been reemphasized recently [56].

Fig. 7. Schematic description of noise measurement setups.A (antenna) is the mesoscopic circuit to
be measured, whileD is the detector circuit. a) inductive coupling with anLC circuit. b) capacitive
coupling with a double dot.

Another proposal considers [57] a capacitive coupling between the meso-
scopic circuit and the detector circuit (Fig. 7b). The detector circuit consists
of a double dot system embedded in a circuit where current is measured. Each
dot is coupled to each side of the mesoscopic device: current fluctuations in this
antenna circuit are translated into voltage fluctuations – thus phase fluctuations –
between the two dots. Indeed, it is understood since the early nineties that in
nano-junctions, the phase is the canonical conjugate of the charge in the junction.
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The Fermi golden rule calculation of the current across the junction needs to be
revisited in order to take into account the effect of the environment. This is the
so-calledP(E) theory of the dynamical Coulomb blockade [58].P(E) is the
probability distribution for inelastic scattering: it is equal to a delta function for
a low impedance environment. In the general case it is specified as follows:

P(ǫ) = h−1
∫ +∞

−∞
exp

[
J (t)+ i ǫ

h̄
t

]
dt. (7.7)

Here,J (t) is the (unsymmetrized) correlation function of the phase. In the pro-
posal of Ref. [57], the impedance environment coupled to the double dot does
not only consist of the leads connected to these dots (these leads are assumed
to be massive and well conducting): the environment is the mesoscopic circuit
itself. Lettingǫ denote the level separation between the two dots, a DC inelastic
current can circulate in the detection circuit only if the frequencyω = ǫ/h̄ is
provided by the mesoscopic circuit (antenna). The inelastic current is then given
by

ID(ǫ) =
e

h̄
T 2
c P(ǫ), (7.8)

whereTc is the tunnel amplitude between the dots. InP(ǫ), the phase correla-
tor J (t) contains the trans-impedanceZtrans(ω) connecting the detector and the
antenna circuit, as well as the unsymmetrized noise:

J (t) = e2

2h̄2

∫ +∞

−∞

|Ztrans(ω)|2
ω2

S−(ω)(e−iωt − 1). (7.9)

Under the assumption of a low impedance coupling, the inelastic current be-
comes:

ID(ǫ) ≃ 2π2κ2T
2
c

e

S−(ǫ/h̄)
ǫ

. (7.10)

Here,κ depends on the parameters (capacitances, resistors,...) of both circuits.
Given that the energy spacing between the dots can be controlled by a gate volt-
age, the measurement ofID provides a direct measurement of the noise – non-
symmetrized – of the mesoscopic device.

This general philosophy has been tested recently by the same group, who
measured [59] the high frequency noise of a Josephson junction using another
device – a superconductor-insulator-superconductor junction – as a detector: in
this system, quasiparticle tunneling in the SIS junction can occur only if it is
assisted by the frequency provided by the antenna.
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7.3. Finite frequency noise in point contacts

Concerning the finite frequency noise, results are better illustrated by choosing
the zero temperature case, and keeping once again the assumption that the trans-
mission amplitudes are constant. In this case, only the last term in Eq. (5.13)
contributes, and one obtains the result [60, 17]:

S+(ω) = 4e2

h
T (1− T ) (eV − h̄ω)  (eV − h̄ω). (7.11)

The noise decreases linearly with frequency untileV = h̄ω, and vanishes be-
yond that. The noise therefore contains a singularity: its derivative diverges at
this point. Properly speaking, the above result is different from that of the first
calculation of finite frequency noise [60], where the noise expression was sym-
metrized with respect to the two time arguments. It coincides only at theω = 0
point, and in the location of the singularity. This singularity was first detected
in a photo-assisted transport measurement, using a metallic wire in the diffusive
regime [61]. Photon-assisted shot noise is briefly discussed in the conclusion as
an alternative to finite frequency noise measurements.

In what follows, when talking about finite frequency noise in superconducting–
normal metal junctions, the unsymmetrized correlatorS+(ω) will always be con-
sidered.

8. Noise in normal metal-superconducting junctions

Before mesoscopic physics was born, superconductors already displayed a vari-
ety of phase coherent phenomena, such as the Josephson effect. Scientists began
wondering what would happen if a piece of coherent, normal metal, was put in
contact with a superconductor. The phenomenon of Andreev reflection [62, 63] –
where an electron incident from a normal metal on a boundary with a supercon-
ductor is reflected as a hole (Fig. 8), now has its share of importance in meso-
scopic physics. In electron language, Andreev reflection also corresponds to the
absorption of two electrons and transfer as a Cooper pair in the superconduc-
tor. Here we analyze the noise of normal metal–superconductor junctions. Such
junctions bear strong similarities with two terminal normal conductors, except
that there are two types of carriers. Whereas charge is not conserved in an An-
dreev process, energy is conserved because the two normal electrons incident on
the superconductor – one above the Fermi level and the other one symmetrically
below – have the total energy for the creation of a Cooper pair, which is the su-
perconductor chemical potential. An NS junction can be viewed as the electronic
analog of a phase conjugation mirror in optics. Finally, spin is also conserved
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at the boundary: the electron and its reflected hole have opposite spin, because
in the electron picture, the two electrons entering the superconductor do so as a
singlet pair because of the s wave symmetry of the superconductor. This fact will
be important later on when discussing entanglement.

Fig. 8. Left, normal reflection: an electron is reflected as an electron, and parallel momentum is
conserved. Right, Andreev reflection: an electron is reflected as a hole whose momentum is exactly
opposite of that of the electron. A charge 2e is absorbed in the superconductor as a Cooper pair.

8.1. Bogolubov transformation and Andreev current

Consider a situation where a superconductor is connected to several normal metal
leads, in turn connected to reservoirs with chemical potentialsµm. For simplicity,
we assume each lead to carry only one single transverse channel. All energies in
the leads are measured with respect to the superconductor chemical potentialµS .
To describe transport from the point of view of scattering theory, the Bogolubov
de Gennes theory of inhomogeneous superconductors [63, 64, 65] is best suited.

The starting point is the mean field Hamiltonian of Bogolubov which de-
scribes a system of fermions subject to a scalar potential and an attractive inter-
action. This latter interaction contains in principle two creation operators as well
as two annihilation operators, making it a difficult problem to solve. Bogolubov
had the originality to propose an effective Hamiltonian which does not conserve
particles [65]. This Hamiltonian is diagonalized by the Bogolubov transforma-
tion:

ψiσ (x) =
∑

jβ

∫
dk√
2π

[
ui j β(x)γj β ↑(k)− σv∗i j β(x)γ+j β ↓(k)

]
. (8.1)

The stateui j β (vi j β ) corresponds to the wave function of a electron-like (hole-
like) quasiparticle in terminali injected from terminalj as a quasiparticleβ
(β = e, h). γ (k) et γ †(k) are fermionic quasiparticle operators. As before it
will be convenient to switch to energy integrals with the substitution

∫
dk =

∫
dE/

√
h̄v
j
e,h(E), i.e., electrons and holes do not have the same velocities. The
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corresponding Hamiltonian has a diagonal form:

Heff =
∑

jβσ

∫ +∞

0
dE E γ+j β σ (E)γj β σ (E), (8.2)

provided that the electron and hole wave functions satisfy:





Eui j β =
(
− h̄

2

2m

∂2

∂x2
− µS + V (x)

)
ui j β +�(x)vi j β ,

Evijβ = −
(
− h̄

2

2m

∂2

∂x2
− µS + V (x)

)
vi j β +�∗(x)ui j β .

(8.3)

In principle, these equations need to be solved self-consistently since the gap
parameter depends onui j β andvi j β . In most applications however, the gap is
assumed to be a step-like function describing an abrupt transition from a super-
conductor to a normal metal lead. On the normal metal side, the Bogolubov-de
Gennes equations (8.3) can be solved easily assuming plane wave solutions for
normal electrons and holes. For a given energyE, the corresponding wave num-
bers arekNe = √

2m(µS + E)/h̄ and kNh = √
2m(µS − E)/h̄. We are now

dealing with an S-matrix which can either convert electrons from terminalj to
terminali, or electrons into holes in these terminals:

ui j β(x) = δi,j δe,βe
ikNe x + sijeβ

√√√√ k
j
β

kNe
e−ik

N
e x, (8.4)

vi j β(x) = δi,j δh,βe
−ikNh x + sijhβ

√√√√ k
j
β

kNh

eik
N
h x . (8.5)

A particular aspect of this formalism is that electrons and holes have opposite
momenta.sijαβ is the amplitude for getting a particleα in terminali given that
a particleβ was incident fromj . In comparison to the previous section, the spin
index has to be restored in the definition of the current operator:

Ii(x) = eh̄

2mivF

1

2πh̄

∫ +∞

0
dE1

∫ +∞

0
dE2

∑

mnσ

[(
u∗im∂xuin − (∂xu∗im)uin

)
γ †
mσγnσ

−
(
u∗im∂xv

∗
in − (∂xu∗im)v∗in

)
σ γ †

mσγ
†
n−σ
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−
(
vim∂xuin − (∂xvim)uin

)
σ γm−σγnσ

+
(
vim∂xv

∗
in − (∂xvim)v∗in

)
γm−σγ

†
n−σ

]
. (8.6)

In order to avoid the proliferation of indices, we chose to replace sums overj

(terminal number) andβ (electron or hole) by a single indexm. Expressions
containingm n also have an energy dependenceE1 (E2). In the following calcu-
lations, the energy dependence of the wave numbers is neglected for simplicity.
As before, this is justified by the fact that all chemical potentials (normal leads
and superconductors) are large compared to the applied biases. Note that un-
like the normal metal case, the current operator does not conserve quasiparticles.
The evaluation of the average current implies the computation of the average
〈γ †
mσ (E1)γnσ (E2)〉 = fjα(E1)δmnδ(E1 − E2). The distribution functionfm de-

pends on which type of particle is considered: it is the Fermi Dirac distribution
for electrons in a normal leadfm(e)(E) = 1/[1 + eβ(E−µj )]; for holes in the
same lead it represents the probability for a state with energy−E to be empty
fm(h)(E) = 1− fm(e)(−E) = 1/[1+ eβ(E+µm)]; for electron or hole-like quasi-
particles in the superconductor, it is simplyfS(E) = 1/[1+ eβE]. The average
current in leadi becomes:

〈Ii(x)〉 = e

2πmivF

∫ +∞

0
dE

∑

m

[(
u∗im∂xuim − (∂xu∗im)uim

)
fm

+
(
vim∂xv

∗
im − (∂xvim)v∗im

)
(1− fm)

]
. (8.7)

For a single channel normal conductor connected to a superconductor, the An-
dreev regime implies that the applied bias is much smaller than the supercon-
ducting gap, so that no quasiparticles can be excited in the transport process. It
is also assumed that the scattering amplitudes have a weak energy dependence
within the range of energies specified by the bias voltage. Using the unitarity of
the S–matrix one obtains:

〈I 〉 = 4e2

h
RA V, (8.8)

whereRA = |s11he|2 is the Andreev reflection probability. The conductance of
a normal metal-superconductor junction in then doubled [66, 67] because of the
transfer of two electron charges. Indeed, this result could have been guessed from
a simple extension of the Landauer formula to NS situations.
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8.2. Noise in normal metal–superconductor junctions

For the Andreev regime, in a single NS junction, noise can be calculated indeed
using the wave packet approach [68], with the following substitutions from the
normal metal case, Eq. (5.14):
• the transmission probability is replaced by the Andreev reflection probability:
T → RA.
• The transfered charge is 2e.
• Electrons have a Fermi distributionf (E − eV ), whereas holes have a Fermi

distributionf (E + eV ).
• Although electrons with spinσ are converted into holes with spin−σ , the

spin index is ignored, which is justified if the normal lead is non-magnetic. Here
the spin only provides a factor two.
Using the general “wave packet” formula for the two terminal noise of normal
conductors, one readily obtains:

S(0) = 8e2

h

∫
dE

[
RA(E)(1− RA(E))(f (E − eV )− f (E + eV ))2

+RA(E)[f (E − eV )(1− f (E − eV ))
+f (E + eV )(1− f (E + eV ))]] , (8.9)

which (with the same standard assumptions) yields immediately the two known
limits. For a voltage dominated junctioneV ≫ kB ,

S(0) = 16e3

h
RA(1− RA)V ≡ 4e〈I 〉(1− RA), (8.10)

while in a temperature dominated regime

S(0) = 16e2

h
RAkB ≡ 4GNSkB , (8.11)

with GNS the conductance of the NS junction, and one recovers the fluctuation
dissipation theorem.

One now needs a general description which can treat finite frequencies, and
above gap processes, (when for instance an electron is transfered into the su-
perconductor as an electron quasiparticle). The scattering formalism based on
operator averages is thus used.

In order to guess the different contributions for the noise correlator, consider
the expression forIi(x, t)Ij (x, t + t ′). It is a product of four quasiparticle cre-
ation/annihilation operators. It will have non-zero average only if twoγ are
paired with twoγ †. The same is true for the noise in normal metal conductors.
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Here, however, electron-like and hole-like contributions will occur, but the cur-
rent operator of Eq. (8.6) also contains terms proportional toγ γ andγ †γ † which
contribute to the noise. To compute the average〈Ii(x, t)Ij (x, t + t ′)〉, it is useful
to introduce the following matrix elements:

Aimjn(E,E
′, t) = ujn(E

′, t)∂xu∗im(E, t)− u∗im(E, t)∂xujn(E′, t),
Bimjn(E,E

′, t) = v∗jn(E
′, t)∂xvim(E, t)− vim(E, t)∂xv∗jn(E′, t),

Cimjn(E,E
′, t) = ujn(E

′, t)∂xvim(E, t)− vim(E, t)∂xujn(E′, t).

The two first matrix elements involve products of either particle or hole wave

Fig. 9. Noise as a function of frequency. Left, full line: the noise (in units ofe〈I 〉(1− RA))in an
NS junction has a singularity atω = 2eV/h̄. Left, dashed line: noise (in units ofe〈I 〉(1− T )) for
a junction between two normal metals with a singularity ath̄ω = eV . Right: noise in a Josephson
junction, which presents a peak at the Josephson frequency. The line-width is due to radiation effects.

functions. Compared to the normal case, the last one,Cimjn(E,E
′, t) is novel,

because it involves a mixture of electrons and holes. It will be important in the
derivation of the finite frequency spectrum of noise correlations. Computing the
grand canonical averages, one obtains the difference〈Ii(t)Ij (t + t ′)〉 − 〈Ii〉〈Ij 〉,
and the Fourier transform is performed in order to compute the noise. The inte-
gration overt ′ gives a delta function in energy as before. Note that because we
are assuming positive frequencies, terms proportional to(1−fm)(1−fn) vanish.
The noise cross-correlations have the general form:

Sij (ω) = e2h̄2

m2v2
F

1

2πh̄

∫ +∞

0
dE

∑

m,n{
 (E + h̄ω)fm(E + h̄ω)(1− fn(E))

×
(
Aimin(E + h̄ω,E)+ B∗imin(E + h̄ω,E)

)

×
(
A∗jmjn(E + h̄ω,E)+ Bjmjn(E + h̄ω,E)

)
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+ (h̄ω − E)fm(h̄ω − E)fn(E)C∗imjn(h̄ω − E,E, t)

×
[
Cjnim(E, h̄ω − E)+ Cimjn(h̄ω − E,E)

]}
. (8.12)

Terms proportional tofnfm or (1 − fn)(1 − fm) disappear at zero frequency,
because of the energy requirements. The zero frequency limit can thus be written
in a concise form [69, 70, 27]:

Sij (0) = e2h̄2

m2v2
F

1

2πh̄

∫ +∞

0
dE

∑

m,n

fm(E)(1− fn(E))

×
(
Aimin(E,E)+ B∗imin(E,E)

)

×
(
A∗jmjn(E,E)+ Bjmjn(E,E)

)
(8.13)

8.3. Noise in a single NS junction

From Eq. (8.12), choosing zero temperature and using the expressions ofAmn,
Bmn andCmn, one has to consider separately the three frequency intervalsh̄ω <

eV , eV < h̄ω < 2eV and h̄ω > 2eV . The first two intervals give a noise
contribution, whereas the last one yieldsS(ω) = 0. Particularly puzzling is the
fact that one needs to separate two regimes in frequency, whereas it is expected
that the frequencyeV = h̄ω should not show any particular features in the noise.

8.3.1. Below gap regime
First consider the case whereeV ≪ �. We also assume the scattering amplitudes
to be independent on energy (this turns out to be a justified assumption in BTK
model which we discuss shortly). One then obtains [71, 72]:

S(ω) = 8e2

h
(2eV − h̄ω)RA(1− RA) (2eV − h̄ω). (8.14)

Just as in the normal case, the noise decreases linearly with frequency, and van-
ishes beyond the Josephson frequencyωJ = 2eV/h̄ (left of Fig. 9). There is
thus a singularity in the noise at that particular frequency. This result should be
compared first to the normal case [60, 17], yet it should also be compared to the
pioneering work on the Josephson junction [73, 74].

In the purely normal case (Fig. 10, center), wave functions have a time de-
pendenceψ1,2 ∼ exp[−iµ1,2t/h̄], so whereas the resulting current is stationary,
finite frequency noise contains the productψ1ψ

∗
2 which gives rise to the singu-

larity at |µ2 − µ1|/h̄ = eV/h̄.
In the purely superconducting case (Fig. 10, right) a constant applied bias

generates an oscillating current.ψ1,2 ∼ exp[−i2µS1,2t/h̄], so the order parame-
ter oscillates as 2(µS1 − µS2), whereµS1 andµS2 are the chemical potentials of
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the two superconductors. The noise characteristic has a peak at the Josephson
frequency whose line-width was first computed in the sixties [74].

Turning back to the case of an hybrid NS junction, because here the bias is
smaller than the gap, the Andreev process is the only process available to trans-
fer charge, which allows Cooper pairs to be transmitted in or emitted from the
superconductor. An electron incident from the normal side with energyµS + eV
gets paired with another electron with energyµS − eV , thus this second electron
corresponds to a hole atµS − eV . Both electrons have a total energy 2µS , which
corresponds to the formation of a Cooper pair. The incoming electron wave func-
tion oscillates asψe ∼ exp[−i(µS + eV )t/h̄], whereas the hole wave function
oscillates asψh ∼ exp[−i(µS − eV )t/h̄] (figure 10 left). The noise therefore
involves the productψeψ∗h which oscillates at the Josephson frequency, thus giv-
ing rise to the singularity in the noise derivative. This can be considered as an
analog of the Josephson effect observed in a single superconductor adjacent to a
normal metal, but only in the noise.

Fig. 10. Energy diagrams for three different types of junctions: left, normal metal (µN ) connected to
a superconductor (µS ); center, 2 normal metals with chemical potentialsµ1 etµ2; right, 2 supercon-
ductors (Josephson junction), with chemical potentialsµS1 andµS2.

8.3.2. Diffusive NS junctions
We have seen that the zero frequency shot noise of a tunnel junction is doubled
[68, 28, 75, 76]. It is also interesting to consider a junction between a diffusive
normal metal on one side, in perfect contact with a superconductor. The junction
contains many channels, yet one can also find an eigenchannel representation
in which the noise is expressed as a linear superposition of independent single-
channel junctions. Consider here current and shot noise at zero temperature:

〈I 〉 = 4e2

h

∑

n

RAn , (8.15)

S(ω = 0) = 16e2

h

∑

n

RAn(1− RAn). (8.16)
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In order to compute the quantity〈RAn(1− RAn)〉 using random matrix theory,
a specific model for the NS junction has to be chosen. A natural choice [41]
consists of a normal disordered region separated from a perfect Andreev inter-
face. Because the ideal Andreev interface does not mix the eigenchannels, the
Andreev reflection eigenvalues can be expressed in terms of the transmission
eigenvalues of the normal metal scattering matrix which models the disordered
region: RAn = T 2

n /(2− Tn)2. The noise can in turn be expressed in terms of
these eigenvalues:

S(ω = 0) = 64e2

h

∑

n

T 2
n (1− Tn)
(2− Tn)4

. (8.17)

Note that channels with either high or low transmission do not contribute to the
shot noise. First, assume that all channels have the same transmission probability
Ŵ. Ŵ represents the transparency per mode of the NS interface, but no mixing is
assumed between the modes. The noise can be written in this case as:

S = 8(1− Ŵ)
(2− Ŵ)2 (2e〈I 〉). (8.18)

For Ŵ ≪ 1, one obtains a Poissonian noise of uncorrelated charges 2e. This
means that the shot noise is doubled compared to the normal tunnel barrier shot
noise result. Next, one considers a disordered normal region with an ideal in-
terface. The averages over transmission eigenvalues are computed using random
matrix theory:

S(ω = 0) = 2

3
(2e〈I 〉), (8.19)

thus giving a 2/3 reduction for the disordered NS interface.
The shot noise of normal metal–superconducting junctions has been studied

in several challenging experiments. For diffusive samples, the 2/3 reduction was
observed indirectly in S-N-S junctions [77]. Indeed, when the propagation in
the normal region between the two superconductor interface is incoherent, one
expects the noise signal to be associated to that of two NS junctions in series. If,
on the other hand, one considers coherent propagation in the normal region, one
has to take into account the effect of multiple Andreev reflections [78], a topic
which is not treated here but rather mentioned in the conclusion.

Single NS junctions were first probed separately both in low frequency noise
measurements [79] and also in photo-assisted transport measurements [80]. Al-
though in both cases the metal on the normal side was diffusive, thus giving a 2/3
reduction rather than an enhancement of the noise by a factor 2, these experiments
were the first to identify the charge 2e associated with the Andreev process. The
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“true” doubling of shot noise as described in the beginning of this section was
measured experimentally only recently in normal-metal superconducting tunnel
junctions containing an insulating barrier at the interface [81].

Fig. 11. Noise in an NS junction as a function of frequency, with a barrier with intermediate trans-
parency (Z = 1), see text. The applied bias is lower than the gap (from bottom to top,eV = 0.5�
andeV = 0.8�). The behavior for low biases is essentially linear, see Eq. (8.14).

8.3.3. Near and above gap regime
To establish predictions on the noise characteristic of a single NS junction when
the voltage bias lies in the vicinity of the gap, it is necessary to specify a concrete
model for the junction. A generic model was introduced by Blonder, Tinkham
and Klapwijk (BTK) [82]: it has the advantage that the energy dependent scatter-
ing amplitudes can be derived using connection formulas from the Bogolubov-de
Gennes equations. In particular, it allows to monitor the crossover from below
gap to above gap regime. At the location of the junction, there is a superposition
between a scalar delta function potential and a gap potential. The scalar potential
acts on electrons or holes, and represents either a potential barrier or mimics the
presence of disorder. The gap parameter is assumed to be a step function:

VB(x) = VBδ(x), with VB = Zh̄2kF /m, (8.20)

�(x) = � (x). (8.21)

Z is the parameter which controls the transparency of the junction.Z ≫ 1
corresponds to an opaque barrier.

In the preceding section, we assumed that the scattering amplitude had a weak
energy dependence. These assumptions can be tested with the BTK model. Fig.
11 displays the finite frequency noise for a bias which is half the gap and for
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a bias which approaches the gap, assuming an intermediate value of the trans-
parencyZ = 1. In the first case, we are very close to the ideal case of energy in-
dependent scattering amplitudes, while in the second case the linear dependency
gets slightly distorted.

More interesting for the present model is the analysis of the noise when the
bias voltage exceeds the gap. The scattering amplitudes were computed [82].
Inserting these in the energy integrals, the finite frequency noise now displays
additional features (singularities) atω = (eV − �)/h̄, ω = 2�/h̄, ω = (eV +
�)/h̄, in addition to the existing singularity atωJ . These frequency scales can
be identified on the energy diagram of Fig. 13.

Fig. 12. Noise in an NS junction as a function of frequency, with a barrier with intermediate trans-
parency (Z = 1), for biases below and above the gapeV = 0.8�, eV = 1.3�, eV = 1.9�.

• Andreev reflection is still present. It leads to a singularity atωJ = 2eV/h̄.
• Electrons can be transmitted as electron-like quasiparticles, involving wave

functionsψN,e ∼ exp[−i(µS + eV )t/h̄] andψS,e ∼ exp[−i(µS +�)t/h̄], thus
a singularity atω = (eV − �)/h̄ (likewise for holes transmitted as hole-like
quasiparticles).
• Electrons from the normal side can be transmitted as hole-like quasiparticles

(Andreev transmission) with associated wave functionsψN,e ∼ exp[−i(µS +
eV )t/h̄] andψS,h ∼ exp[−i(µS − �)t/h̄], giving a singularity atω = (eV +
�)/h̄ (likewise for holes incident from the normal side being transmitted as
electron-like quasiparticles in the superconductor).
• Andreev reflection also occurs for electron (hole) quasiparticles incident from

the superconductors, reflected as holes (electrons) quasiparticles. Wave function
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are thenψS,e ∼ exp[−i(µS+�)t/h̄] andψS,h ∼ exp[−i(µS−�)t/h̄], yielding
a singularity at 2ω = �/h̄.
An extreme limit is the case where� ≪ eV . Transport is then fully dominated
by the transfer of electrons and holes into quasiparticles, with a typical chargee

because Andreev reflection is not as important as before. We indeed recover (not
shown) a noise characteristic similar to Fig. 9 (dashed line) with an abrupt change
of slope atωJ /2 = eV/h̄ characteristic of a normal metal junction. Finally, we
mention that finite temperatures smear out all the structures in the finite frequency
noise.

Fig. 13. Energy diagram of an NS junction when a bias is applied above the gap. Energy spacings
in the frequency noise can be identified with the different processes: Andreev reflection (from either
side), transmission of quasiparticles, and Andreev transmission.

8.4. Hanbury-Brown and Twiss experiment with a superconducting source of
electrons

In this section, noise correlations are computed in a device which consists of two
normal metal terminals (terminal 1 and 2, see Fig. 14) connected to an NS junc-
tion. The normal side of the NS junction is labelled 3, while the superconducting
side is labelled 4. A junction playing the role of a beam splitter joins 1, 2 and 3.
Let c+i e (c−i e) label the state of an electron incident in (coming out from) termi-
nal i. Likewise, incoming (outgoing) holes are labelledc−i h (c+i h) (see Fig. 14).
A scattering matrixS (describing both the beam splitter and the NS boundary)
connects incoming states to outgoing states:




c−1e
c+1h
c−2e
c+2h
c−4e
c+4h



= S




c+1e
c−1h
c+2e
c−2h
c+4e
c−4h



. (8.22)
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The noise correlations can be computed from the previous section, Eq. (8.13).
In the limit of zero temperature, they can be shown to contain two contributions.
The first one describes pure Andreev processes (involving one lead or both leads),
while the second one involves above gap processes:

S12(0) = 2e2

h

∫ eV

0
dE

[∑

ij

(
s∗1iees1jeh − s∗1ihes1jhh

)

×
(
s∗2jehs2iee − s∗2jhhs2ihe

)

+
∑

iγ

(
s∗1iees14eγ − s∗1ihes14hγ

)

×
(
s∗24eγ s2iee − s∗24hγ s2ihe

)]
, (8.23)

wherei, j = 1,2 andγ = e, h. However, the sign of correlations cannot be
determined uniquely from Eq. (8.23). In the regime where electron-like and
hole- like quasiparticles are transmitted in the normal terminals, one expects that
the noise correlation will be negative because this situation is quite similar to the
fermionic Hanbury-Brown and Twiss experiments. But what about the sub-gap
regime? Does it sustain positive or negative correlations? Here a minimal model
is chosen to describe the combination of the beam splitter and the NS junction,
using a Fabry-Pérot analogy (Fig. 14).

Fig. 14. Two normal terminals (1 and 2) are connected by a beam splitter (BS), itself connected to a
superconductor (4) via a normal region (3).

8.4.1. S–matrix for the beam splitter
The electron part of theS matrix for the beam splitter only connects the states:



c−1e
c−2e
c−3e


 = SBSe



c+1e
c+2e
c+3e


 . (8.24)
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A simple version for this matrixSBSe , which is symmetric between 1 and 2, and
whose elements are real, has been used profusely in mesoscopic physics transport
problems [83, 84]:

SBSe =




a b
√
ε

b a
√
ε√

ε
√
ε −(a + b)


 , (8.25)

with this choice, the beam splitterS matrix depends on only one parameter. Its
unitarity imposes thata =

(√
1− 2ε − 1

)
/2, b =

(√
1− 2ε + 1

)
/2 where

ε ∈ [0,1/2]. ε ≪ 1/2 means that the connection from 3 to 1 and 2 is opaque,
whereas the opposite regime means a highly transparent connection to 1 and 2.
Holes have similar scattering properties:



c+1h
c+2h
c+3h


 = SBSh



c−1h
c−2h
c−3h


 . (8.26)

This choice for the beam splitter does not couple electron and holes: the super-
conductor boundary does that. The hole and the electron beam splitter S–matrix
are related bySBSh(E) = S∗BSe(−E) (in the absence of magnetic field). When
one assumes thatε does not depend on energy, both matrices are the same.

Fig. 15. Noise correlations between the two normal terminals (normalized to the autocorrelation noise
in 1 or 2 forε = 1/2) as a function of the beam splitter transparencyε. Correlations can either be
positive or negative.
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Fig. 16. (reverse) Andreev reflection emits pairs of electrons on the normal side. Correlations tend to
be positive when the two electrons of the same pair go into opposite leads.

8.4.2. Sub-gap regime
WheneV ≪ �, Andreev reflection is the only transport process at the NS bound-
ary, and is described by the matrix [67]:

(
c+3e
c−3h

)
=
(

0 γ

γ 0

)(
c−3e
c+3h

)
, (8.27)

whereγ = e−i arccos(E/�). At the same time,s14αβ = s24αβ = 0 (αβ = e, h).
Combining theS matrix of the beam splitter and that of the NS boundary, and
definingx =

√
1− 2ε, we obtain the elements of theS matrix of the combined

system:

s11ee=s11hh=s22ee=s22hh = (x − 1)(1+ γ 2x)

2(1− γ 2x2)
, (8.28)

s21ee=s21hh=s12ee=s12hh = (x + 1)(1− γ 2x)

2(1− γ 2x2)
, (8.29)

s11eh=s21eh = s12eh=s22eh=s11he=s21he=s12he=s22he

= γ (1− x)(1+ x)
2(1− γ 2x2)

. (8.30)

Since all energies are much smaller than the gap, we further simplifyγ → −i.
Because the amplitudes do not depend on energy, the energy integral in Eq. (8.23)
is performed and one obtains [72, 85]:

S12(0) =
2e2

h
eV

ε2

2(1− ε)4
(
−ε2 − 2ε + 1

)
. (8.31)

Noise correlations vanish atε = 0, which corresponds to a two terminal junc-
tion between 1 et 2.S12 also vanishes whenε =

√
2− 1. It is convenient to

normalizeS12 (for arbitraryε) with the autocorrelation noise in 1 or 2 computed
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at ε = 1/2 (see Fig. 15). Correlations arepositiveif 0 < ε <
√

2− 1 and nega-
tive for

√
2−1< ǫ < 1/2. Minimal negative correlations (−1) are reached when

the connection to 1 and 2 is optimal: this is the signature of a purely fermionic
system. Eq. (8.31) predicts a maximum in the positive correlations atǫ = 1/3.

Fig. 17. Noise correlations between 1 and 2 (same normalization as before) as a function ofε. The
NS junction is described within the BTK model, assuming a highly transparent barrier at the NS
interface (Z = 0.1). Top to bottom,eV/� = 0.5, 0.95, 1.2, 1.8.

Negative correlations correspond to Cooper pairs being distributed as a whole
in the right or in the left arm.

Positive correlations have a simple interpretation. When a hole is reflected as
an electron, this process can also be understood as a Cooper pair being emitted as
two correlated electrons on the normal side [86]. It turns out that for an opaque
beam splitter, the two electrons prefer to end up in opposite leads, giving a posi-
tive signal. This process is called the crossed Andreev process [87]. Other work,
including full counting statistics approaches, describes in detail [88] why opaque
barriers tend to favor positive correlations.

8.4.3. Near and above gap regime
The BTK model is chosen to describe the NS interface, in order to have the
energy dependence of the scattering matrix elements. The integrals in Eq. (8.23)
are computed numerically. As a first check, for a transparent interface (Z = 0.1)
and a weak bias, one recovers the results of the previous section (see Fig. 17),
except that the noise correlations do not quite reach the minimal value−1 for
ε = 1/2, because of the presence of the barrier at the interface.
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Fig. 18. Noise correlations between terminals 1 and 2 for a barrier withZ = 1 (same biases as in
Fig. 17).

Note that noise correlations shift to negative values as one further increases
the gap. For voltages beyond the gap, positive correlations disappear completely:
the system behaves like a normal metal junction.

What happens next if the NS interface has an appreciable Schottky barrier?
In Fig. 18, we consider a barrier withZ = 1, and the noise correlations change
drastically: for small bias, the correlations are positive for all values ofε. This
could be the regime where the positive correlations - in a fermionic system - are
most likely to be observed. The presence of an oxide barrier reduces current flow
at the junction, and thus a compromise has to be reached between signal detection
and experimental conditions (opaque barrier) for observing the effect. For higher
biases (par exampleeV = 0.95�), one can monitor oscillations between positive
and negative correlations. Yet, above the gap, the results are unchanged with
respect to the high transparency case, as the correlations have a fermionic nature.

A number of approaches have shown the possibility of positive noise cross
correlations in normal metal forks [89, 88].

9. Noise and entanglement

In quantum mechanics, a two-particle state is said to be entangled if a measure-
ment on the state of one of the particles affects the outcome of the measurement
of the state of the other particle. A celebrated example is the spin singlet:

�12〉 =
1√
2
(| ↑1,↓2〉| − | ↓1,↑2〉) (9.1)



Noise in mesoscopic physics 327

Entanglement is a crucial ingredient in most information processing schemes for
quantum computation or for quantum communication. Here, we enquire whether
entangled states of electrons can be generated in the vicinity of an s–wave super-
conductor, on the normal metal side.

9.1. Filtering spin/energy in superconducting forks

In the description of NS junction, we found that both positive and negative noise
correlations were possible. Applying spin or energy filters to the normal arms
1 and 2 (Fig. 19), it is possible to generate positive correlations only [90]. For
electrons emanating from a superconductor, it is possible to project either the
spin or the energy with an appropriate filter, without perturbing the entanglement
of the remaining degree of freedom (energy or spin). Energy filters, which are

Fig. 19. Normal-metal–superconductor (NS) junction with normal-metal leads arranged in a fork
geometry. (a) Without filters, entangled pairs of quasi-particles (Cooper pairs) injected in N3 prop-
agate into leads N1 or N2 either as a whole or one by one. The ferromagnetic filters in setup (b)
separates the entangled spins, while the energy filters in (c) separate electron and hole quasi-particles.

more appropriate towards a comparison with photon experiments, will have reso-
nant energies symmetric above and below the superconductor chemical potential
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which serve to select electrons (holes) in leads 1(2). The positive correlation
signal then reads:

S12(0) =
e2

h

∑

ζ

∫ e|V |

0
dεT Aζ (ε)[1− T Aζ (ε)], (9.2)

where the indexζ = h, σ,2 (h,−σ,2), (σ =↑,↓) identifies the incoming hole
state for energy filters (positive energy electrons with arbitrary spin are injected
in lead 1 here).ζ = h,↑,1 (h,↓,2) applies for spin filters (spin up electrons
– with positive energy – emerging from the superconductor are selected in lead
1). T Aζ is then the corresponding (reverse) crossed-Andreev reflection probabil-
ity for each type of setup: the energy (spin) degree of freedom is frozen, whereas
the spin (energy) degree of freedom is unspecified.eV < 0 insures that the elec-
trons of a Cooper pair from the superconductor are emitted into the leads without
suffering from the Pauli exclusion principle. Moreover, because of such filters,
the propagation of a Cooper pair as a whole in a given lead is prohibited. Note
the similarity with the quantum noise suppression mentioned above. This is no
accident: by adding constraints to our system, it has become a two terminal de-
vice, such that the noise correlations between the two arms are identical to the
noise in one arm:S11(ω = 0) = S12(ω = 0). The positive correlation and the
perfect locking between the auto and cross correlations provide a serious symp-
tom of entanglement. One can speculate that the wave function which describes
the two-electron state in the case of spin filters reads:

|�spin
ε,σ 〉 =

1√
2
(|ε, σ ;−ε,−σ 〉 − | − ε, σ ; ε,−σ 〉) , (9.3)

where the first (second) argument in|φ1;φ2〉 refers to the quasi-particle state in
lead 1 (2) evaluated behind the filters,ε is the energy andσ is a spin index. Note
that by projecting the spin degrees of freedom in each lead, the spin entanglement
is destroyed, but energy degrees of freedom are still entangled, and can help to
provide a measurement of quantum mechanical non-locality. A measurement of
energyε in lead 1 (with a quantum dot) projects the wave function so that the
energy−ε has to occur in lead 2. On the other hand, energy filters do preserve
spin entanglement, and are appropriate to make a Bell test (see below). In this
case the two-electron wave function takes the form:

|�energy
ε,σ 〉 = 1√

2
(|ε, σ ;−ε,−σ 〉 − |ε,−σ ;−ε, σ 〉) . (9.4)

Electrons emanating from the energy filters (coherent quantum dots) could be an-
alyzed provided that a measurement can be performed on the spin of the outgoing
electrons with ferromagnetic leads.
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9.2. Tunneling approach to entanglement

We recall a perturbative argument due to the Basel group [91] which supports
the claim that two electrons originating from the same Cooper pair are entangled.
Consider a system composed of two quantum dots (energiesE1,2) next to a su-
perconductor. This system, called the entangler, was connected to two normal
metal leads in Ref. [91], but for simplicity here we ignore these because we want
to address what wave function is obtained when two electrons are transfered from
the superconductor into the two dots.

An energy diagram is depicted in Fig. 20. The electron states in the supercon-
ductor are specified by the BCS wave function|�BCS〉 =

∏
k(uk+vkc†k↑c

†
−k↓)|0〉.

Note that here one considers true electron creation operators, whereas previously
we considered electron like and hole like quasiparticle operators. Tunneling to
the dots is described by a single electron hopping Hamiltonian:

HT =
∑

kjσ

tjkc
†
jσ ckσ + h.c., (9.5)

wherec†kσ creates an electron with spinσ , andj = 1,2. Now let us assume that
the transfer Hamiltonian acts on a single Cooper pair.

Fig. 20. Transfer of a Cooper pair on two quantum energy levelsE1,2 with a finite widthŴ1,2.
The superconductor is located on the right hand side. The transfer of a Cooper pair gives an entan-
gled state in the dots because it implies the creation and destruction of the same quasiparticle in the
superconductor. The source drain voltageeV for measuring noise correlations is indicated.

Using the T-matrix to lowest (2nd) order, the wave function contribution of
the two particle state with one electron in each dot and the superconductor back
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in its ground state reads:

|δ�12〉 = HT
1

iη −H0
HT |�BCS〉

= [c†1↑c
†
2↓ − c

†
1↓c

†
2↑]

∑

jk

vkukt1kt2k

iη − Ek − Ej
|�BCS〉, (9.6)

whereEk is the energy of a Bogolubov quasiparticle. The state of Eq. (9.6) has
entangled spin degrees of freedom. This is clearly a result of the spin preserving
tunneling Hamiltonian. Given the nature of the correlated electron state in the
superconductor in terms of Cooper pairs,HT can only produce singlet states in
the dots.

9.3. Bell inequalities with electrons

In photon experiments, entanglement is identified by a violation of Bell inequal-
ities – which are obtained with a hidden variable theory. But in the case of pho-
tons, the Bell inequalities have been tested using photo-detectors measuring coin-
cidence rates [92]. Counting quasi-particles one-by-one in coincidence measure-
ments is difficult to achieve in solid-state systems where stationary currents and
noise are the natural observables. Here, the Bell inequalities are re-formulated in
terms of current-current cross-correlators (noise correlations) [93].

Note that the connection between noise correlations and entanglement has
been pointed out in Ref. [94]. This works considers two beams of particles,
which may be entangled or not, incident on a beam splitter. The noise (and noise
correlations) at the output of the beam splitter bears a clear signature of the state
of the two beams. An incoming singlet state leads to an enhancement of the
noise (bunching effect), whhereas a triplet state leads to a noise reduction (anti-
bunching). The measurement of the Fano factor thus allows to make a distinction
between singlet/triplet entanglement and two beams of independent (classical)
particles.

Because Bell inequalities tests allow to further quantify the degree of entan-
glement, we choose to operate this diagnosis in the context of electronic quan-
tum transport [95]. In order to derive Bell inequalities, we consider that a source
provides two streams of particles (labeled 1 and 2) as in Fig. 21a injecting quasi-
particles into two arms labelled by indices 1 and 2. Filter Fd

1(2) are transparent
for electrons spin-polarized along the directiona(b).

Assuming separability and locality [96] the density matrix for joint events in
the leadsα, β is chosen to be:

ρ =
∫
dλf (λ)ρα(λ)⊗ ρβ(λ), (9.7)
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Fig. 21. a) Schematic setup for the measurement of Bell inequalities: a source emits particles into
leads 1 and 2. The detector measures the correlation between beams labelled with odd and even
numbers. Filters Fd1(2) select the spin: particles with polarization along the direction±a(±b) are

transmitted through filter Fd1(2) into lead 5 and 3 (6 and 4). b) Solid state implementation, with

superconducting source emitting Cooper pairs into the leads. Filters Fe
1,2 (e.g., Fabry-Perot double

barrier structures or quantum dots) prevent Cooper pairs from entering a single lead. Ferromagnets
with orientations±a, ± b play the role of the filters Fd1(2) in a); they are transparent for electrons
with spin aligned along their magnetization axis.

where the lead indexα is even andβ is odd (or vice-versa); the distribution
functionf (λ) is positive. ρα(λ) are standard density matrices for a given lead,
which are Hermitian. The total density matrixρ is the most general density
matrix one can built for the source/detector system assuming no entanglement
and only local correlations.

Consider an example of the solid-state analog of the Bell device where the
particle source is a superconductor in Fig. 21b. The chemical potential of the
superconductor is larger than that of the leads, which means that electrons are
flowing out of the superconductor. Two normal leads 1 and 2 are attached to
it in a fork geometry [90, 91] and the filters Fe

1,2 enforce the energy splitting

of the injected pairs. Fd1,2-filters play the role of spin-selective beam-splitters in
the detector. Quasi-particles injected into lead 1 and spin-polarized along the
magnetizationa enter the ferromagnet 5 and contribute to the currentI5, while
quasi-particles with the opposite polarization contribute to the currentI3.

Consider the current operatorIα(t) in leadα = 1, . . . ,6 (see Fig. 21) and the
associated particle number operatorNα(t, τ ) =

∫ t+τ
t

Iα(t
′)dt ′. Particle-number
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correlators are defined as:

〈Nα(t, τ )Nβ(t, τ )〉ρ =
∫
dλf (λ)〈Nα(t, τ )〉λ〈Nβ(t, τ )〉λ, (9.8)

with indicesα/β odd/even or even/odd. The average〈Nα(t, τ )〉λ depends on the
state of the system in the interval[t, t + τ ]. An average over large time periods
is introduced in addition to averaging overλ, e.g.,

〈Nα(τ )Nβ(τ )〉 ≡
1

2T

∫ T

−T
dt〈Nα(t, τ )Nβ(t, τ )〉ρ, (9.9)

whereT/τ → ∞ (a similar definition applies to〈Nα(τ )〉). Particle number
fluctuations are written asδNα(t, τ ) ≡ Nα(t, τ )−〈Nα(τ )〉. Letx, x′, y, y′, X, Y
be real numbers such that:

|x/X|, |x′/X|, |y/Y |, |y′/Y | < 1. (9.10)

Then−2XY ≤ xy − xy′ + x′y + x′y′ ≤ 2XY . Define accordingly:

x = 〈N5(t, τ )〉λ − 〈N3(t, τ )〉λ, (9.11)

x′ = 〈N5′(t, τ )〉λ − 〈N3′(t, τ )〉λ, (9.12)

y = 〈N6(t, τ )〉λ − 〈N4(t, τ )〉λ, (9.13)

y′ = 〈N6′(t, τ )〉λ − 〈N4′(t, τ )〉λ, (9.14)

where the subscripts with a ‘prime’ indicate a different direction of spin-selection
in the detector’s filter (e.g., leta denote the direction of the electron spins in lead
5 (−a in lead 3), then the subscript 5′ means that the electron spins in lead 5
are polarized alonga′ (along−a′ in the lead 3). The quantitiesX, Y are defined
as

X = 〈N5(t, τ )〉λ + 〈N3(t, τ )〉λ
= 〈N5′(t, τ )〉λ + 〈N3′(t, τ )〉λ
= 〈N1(t, τ )〉λ, (9.15)

Y = 〈N6(t, τ )〉λ + 〈N4(t, τ )〉λ
= 〈N6′(t, τ )〉λ + 〈N4′(t, τ )〉λ
= 〈N2(t, τ )〉λ; (9.16)
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The Bell inequality follows after appropriate averaging:

|F(a,b)− F(a,b′)+ F(a′,b)+ F(a′,b′)| ≤ 2, (9.17)

F(a,b) = 〈[N1(a, t)−N1(−a, t)][N2(b, t)−N2(−b, t)]〉
〈[N1(a, t)+N1(−a, t)][N2(b, t)+N2(−b, t)]〉 , (9.18)

with a,b the polarizations of the filters F1(2) (electrons spin-polarized alonga
(b) can go through filter F1(2) from lead 1(2) into lead 5(6)). This is the quantity
we want to test, using a quantum mechanical theory of electron transport. Here
it will be written in terms of noise correlators, as particle number correlators at
equal time can be expressed in general as a function of the finite frequency noise
cross-correlations. The correlator〈Nα(τ )Nβ(τ )〉 includes both reducible and ir-
reducible parts. The irreducible correlator〈δNα(τ )δNβ(τ )〉 can be expressed
through the shot noise powerSαβ(ω) = 2

∫
dτeiωτ 〈δIα(τ )δIβ(0)〉,

〈δNα(τ )δNβ(τ )〉 =
∫ ∞

−∞

dω

2π
Sαβ(ω)

4 sin2 (ωτ/2)

ω2
. (9.19)

In the limit of large times, sin2(ωτ/2)/(ω/2)2 → 2πτδ(ω), and therefore:

〈Nα(τ )Nβ(τ )〉 ≈ 〈Iα〉〈Iβ〉τ2 + τSαβ(ω = 0) (9.20)

where〈Iα〉 is the average current in the leadα, andSαβ denotes the shot noise.
One then gets:

F(a,b) = S56− S54− S36+ S34+�−
S56+ S54+ S36+ S34+�+

, (9.21)

where�± = τ(〈I5〉 ± 〈I3〉)(〈I6〉 ± 〈I4〉) comes from the reducible part of
the number correlators (the average number product). For a symmetric device,
�− = 0.

So far we have only provided a dictionary from the number correlator lan-
guage used in optical measurements to the stationary quantities encountered in
nanophysics. We have provided absolutely no specific description of the physics
which governs this beam splitter device. The test of the Bell inequality (9.17)
requires information about the dependence of the noise on the mutual orienta-
tions of the magnetizations±a and±b of the ferromagnetic spin-filters. In the
tunneling limit one finds the noise:

Sαβ = e sin2
(
θαβ

2

)∫ |eV |

0
dεT A(ε), (9.22)

which integral also represents the current in a given lead (we have dropped the
subscript inT A(ε) assuming the two channels are symmetric). Hereα = 3,5,
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β = 4,6 or vice versa;θαβ denotes the angle between the magnetization of leads
α andβ, e.g., cos(θ56) = a · b, and cos(θ54) = a · (−b). Below, we need
configurations with different settingsa andb and we define the angleθab ≡ θ56.
V is the bias of the superconductor.

The�-terms in Eq. (9.21) can be dropped if〈Iα〉τ ≪ 1, α = 3, . . . ,6, which
corresponds to the assumption that only one Cooper pair is present on average.
The resulting Bell inequalities Eqs. (9.17)-(9.21) then depend neither onτ nor
on the average current but only on the shot-noise, andF = − cos(θab); the left
hand side of Eq. (9.17) has a maximum whenθab = θa′b = θa′b′ = π/4 and
θab′ = 3θab. With this choice of angles the Bell inequality Eq. (9.17) isviolated,
thus pointing to the nonlocal correlations between electrons in the leads 1,2 [see
Fig. 21(b)].

If the filters have a widthŴ the current is of ordereT AŴ/h and the condition
for neglecting the reducible correlators becomesτ ≪ h̄/ŴT A. On the other
hand, in order to insure that no electron exchange between 1 and 2 one requires
τ ≪ τtr/T

A (τtr is the time of flight from detector 1 to 2). The conditions for
Bell inequality violation require very small currents, because of the specification
that only one entangled pair at a time is in the system. Yet it is necessary to
probe noise cross correlations of these same small currents. The noise experi-
ments which we propose here are closely related to coincidence measurements in
quantum optics [92].

If we allow the filters to have a finite line width, which could reach the energy
splitting of the pair, the violation of Bell inequality can still occur, although vio-
lation is not maximal. Moreover, when the source of electron is a normal source,
our treatment has to be revised. The low frequency noise approximation relating
the number operators to the current operator breaks down at short times. Ref.
[97] shows in fact that entanglement can exist in ballistic forks. It is also possi-
ble to violate Bell inequalities if the normal source itself, composed of quantum
dots as suggested in Ref. [98, 99], could generate entangled electron states as the
result of electron-electron interactions.

Spin entanglement from superconducting source of electrons relies on the
controlled fabrication of an entangler [91] or a superconducting beam-splitter
with filters. Since the work of Ref. [93], other proposals for entanglement
have been proposed, which avoid using spin. Electron-hole entanglement for
a Hall bar with a point contact [100] exploits the fact that an electron, which
can occupy either one of two edge channels, can either be reflected or transmit-
ted. Unitary transformations between the two outgoing channels play the role
of current measurement in arbitrary spin directions. Orbital entanglement using
electrons emitted from two superconductors has been suggested in Ref. [101].
The electron-hole proposal of Ref. [100] has also been revisited using two dis-
tinct electron sources in a Hanbury-Brown and Twiss geometry together with
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additional beam splitters for detection, resulting in a concrete experimental pro-
posal [102].

10. Noise in Luttinger liquids

In the previous sections, the noise was computed essentially in non-interacting
systems. Granted, a superconductor depends crucially on the attractive interac-
tions between electrons. Yet, the description of the NS boundary is like that of a
normal mesoscopic conductor with electron and hole channels which get mixed.
Now we want the noise in a system with repulsive interactions. There are many
possibilities for doing that. One could consider transport through quantum dots
where double occupancy of a dot costs a charging energy [39]. Alternatively one
could consider to treat interactions in a mesoscopic conductor using perturbative
many body techniques.

Instead we chose a situation where the interactions provide a genuine depar-
ture from single electron physics. The standard credo about interactions in con-
densed matter systems is the Fermi liquid picture. In two and three dimensions,
it has been known for a long time that the quasiparticle picture holds: the el-
ementary excitations of a system of interacting fermions resemble the original
electrons. The excitations are named quasiparticles because their dynamics can
be described in a similar manner as electrons, except for the fact that their mass
is renormalized and that these quasiparticles have a finite lifetime. Perturbation
theory, when done carefully in such systems, works rather well.

It is therefore more of a challenge to turn to the case of one dimensional sys-
tems where the Fermi liquid picture breaks down. Indeed, whereas in 2 and 3 di-
mensions the distribution function retains a step at the Fermi level, interactions in
a one dimensional system render the distribution function continuous, with only
an infinite derivative at the Fermi energy [103]. But the most important feature of
a one dimensional system is that the nature of the excitations changes drastically
compared to its higher dimensional counterparts [104]. The excitations do not re-
semble electrons in any way: they consist of collective electron–hole excitations
of the whole Fermi sea.

Luttinger liquid theory gives an account of the special properties of one-
dimensional conductors [105]. For transport through an isolated impurity, the
effect of interactions leads to a phase diagram [106]: in the presence of repulsive
interactions, a weak impurity renders the wire insulating, whereas for positive
interactions even a strong impurity is transparent.

The “easiest” type of Luttinger liquid arises on the boundaries of a sample
which is put in the quantum Hall regime: a two dimensional electron gas (2DEG)
under a high magnetic field. A classical description of such a system tells us that
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the electrons move along the edges, subject to the so called�E × �B drift. In
mesoscopic physics, the electric field�E comes from the confining electrostatic
potential on the edges of the sample. Consider first a system of non-interacting
electrons in the quantum regime (low temperature, high magnetic field). For an
infinite sample, the quantum mechanical description gives the so called Landau
levels, which are separated by the energyh̄ωc, with ωc = eB/mc the cyclotron
frequency. Each Landau level has a degeneracyND = Nφ , with Nφ = BS/φ0
the number of flux tubes which can be fitted in a sample with areaS. Given a
magnetic fieldB one defines the filling factorν as the ratio between the total
number of electrons and the number of flux tubes, or equivalently the fraction
of the Landau levels which are filled. In the integer quantum Hall effect [107],
the Landau energy spectrum allows to explain the quantification of the Hall re-
sistance and the simultaneous vanishing of the longitudinal resistance when the
magnetic field is varied (or, equivalently when the density of electrons is varied).

What happens when one considers confinement? Landau levels bend upwards
along the edges. So if one has adjusted the Fermi level of the system exactly
between two landau levels, the highest populated states are precisely there. These
are the quantum analogs of the classical skipping orbits. A very important feature
is that they have a chiral character: they move only in one direction on one side
of the sample, and in the opposite direction on the other side. This edge state
description has allowed to explain in a rather intuitive manner the physics of the
integer quantum Hall effect [34].

Interactions complicate things in a substantial manner, especially if one in-
creases the magnetic field. When the lowest Landau level becomes partially
filled, one reaches the fractional Hall effect regime [108, 109] (FQHE). The many
body wave function for the electrons is such that it minimizes the effect of inter-
action. The Hall resistance exhibits plateaus,RH = h/νe2 when the inverse
of the filling factor is an odd integer. Spectacular effects follow. The excita-
tion spectrum of this fractional quantum Hall fluid has a gap. The quasiparticles
have a fractional charge, and if one exchanges the position of two such objects,
the phase is neither 0 (bosons) norπ (electrons) - quasiparticles have fractional
statistics.

Here, we want to know what happens at the edge. There are several arguments
which justify the action which we shall use below. One of them relies on field
theory arguments: starting from the fact that one is dealing with a gaped system,
and effective action can be derived for the fluctuating electromagnetic field. If
one now considers a finite fractional quantum Hall fluid with boundaries, one
finds out that a boundary term must be added in order to preserve gauge invari-
ance. This term turns out to generate the dynamics of the edge excitations. Here
however, I will use a more intuitive argument to describe the edges called the
hydrodynamic approach.
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Fig. 22. Fractional quantum hole droplet. Excitations propagate along the edge.

10.1. Edge states in the fractional quantum Hall effect

The Hamiltonian which describes the edge modes is simply an electrostatic term:
[110]

H = 1

2

∫ L

0
V (x)eρ(x)dx, (10.1)

with x a curvilinear coordinate along the edge andV (x) the confining potential.
This potential is related to the confining electric field asE = −∇V ∼ ∂yV , with
y the coordinate perpendicular to the edge.E andB are related because the drift
velocity is given by|�v| = c| �E × �B|/B2. The electrostatic potential can then be
expressed in terms of the lateral displacement of the quantum Hall fluidh(x),
which is also expressed in terms of the linear charge densityρ(x):

V (x) = Eh(x) = (vB/c)(ρ(x)/ns). (10.2)

Inserting this in the Hamiltonian, we find the remarkable property that the Hamil-
tonian is quadratic in the density. At this point it is useful to use the definition
of the flux quantumφ0 = hc/e in order to eliminate the 2D electron densityns
from the problem in favor of the filling factorν.

H = 1

2

hv

ν

∫ L

0
ρ2(x) dx. (10.3)

So far we have used a purely classical argument. In order to obtain a quantum
mechanical description, we need to impose quantification rules. First, it is con-
venient to transform this Hamiltonian into Fourier space using:

ρ(x) = 1√
L

∑

k

e−ikxρk, (10.4)

H = 1

2

vh

ν

∑

k

ρkρ−k. (10.5)
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Quantification requires first to identify a set of canonical conjugate variablesqk
andpk which satisfy Hamilton’s equations. Identifyingqk = ρk, one obtains

ṗk = −∂H
∂ρk

= −1

2

vh

ν
2ρ−k. (10.6)

The continuity equation for this chiral density readsρ̇−k = −vikρ−k. Integrating
over time, one thus get the canonical conjugate:

pk = −i h
ν

ρ−k
k
. (10.7)

Quantification is achieved by imposing the commutation relation

[qk, pk′ ] = ih̄ δkk′ . (10.8)

Note that this is exactly the same procedure as one uses for phonons in conven-
tional condensed matter physics. Replacingpk by its expression in Eq. (10.7),
one gets the Kac-Moody commutation relations:

[ρk, ρk′ ] = − νk
2π
δk′−k. (10.9)

Computing the commutator of the Hamiltonian with the density yields

[H, ρk′ ] = vh̄k′ρk′, (10.10)

and one sees that the Heisenberg evolution equationih̄ρk = [H, ρk] gives the
continuity equation. We now turn to the definition of the electron operator. Be-
causeρ(x) is the charge density, we expect the electron creation operator to sat-
isfy

[ρ(x′), ψ†(x)] = δ(x − x′)ψ†(x), (10.11)

which is equivalent to saying that the measurement of the electronic density on a
state on whichψ†(x) is acting tells us that an electron has been added. This is the
same commutation relation one uses in the derivation of the raising and lowering
operators. For later purposes, the Luttinger bosonic field is introduced:

φ(x) = π√
ν

1√
L

∑

k

i
e−a|k|/2

k
e−ikxρk. (10.12)

Here the factora takes the meaning of a spatial cutoff similar to that used in
non-chiral Luttinger liquids. It insures the convergence of the integral. What is
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important about this definition is that the derivative ofφ is proportional to the
density:

∂φ

∂x
= π√

ν
ρ(x). (10.13)

This allows to re-express the Hamiltonian in terms ofφ [111]:

H = h̄v

π

∫ L

0
(
∂φ

∂x
)2dx. (10.14)

The form of the electron operators is found by an analogy with the properties of
canonical conjugate variablesp(x) andq(x):

[p(x), q(x ′)] = −iδ(x − x′)→ [p(x), eiq(x′)] = δ(x − x′)eiq(x). (10.15)

Next, one can identifyp asρ andq asφ/
√
ν. Using the Kac-Moody commuta-

tion relations:[ρ(x′), ν−1/2φ(x)] = −iδ(x−x′) and comparing with the relation
(10.15) and the definition (10.11), the annihilation operator takes the form:

ψ(x) = 1√
2πa

e−ikxe
i 1√
ν
φ(x)
, (10.16)

with eikx giving the phase accumulated along the edge. This operator obviously
depends on the filling factor. Fermion operators are known to anti-commute, so
what are the constraints on this filling factor in order to insure anti-commutation
relations{ψ(x), ψ(x′)} = 0. The anti-commutator can be computed using the

Baker-Campbell-Hausdorff formula:eAeB = eA+B− [A,B]
2 which is only true of

the commutator is ac-number. One thus needs the commutation relation of the
bosonic field:

[φ(x), φ(x ′)] = −iπsgn(x − x′). (10.17)

The two products of fermionic operators is then:

ψ(x)ψ(x′) = 1

(2πa)2
eik(x+x

′)e
i 1√
ν
φ(x)+φ(x′)

e
iπ
2ν sgn(x−x′). (10.18)

So one concludes that:

ψ(x)ψ(x′) = e±i
π
ν ψ(x′)ψ(x). (10.19)

In order to insure anti-commutation relations, one needs to setν = 1/m with m
an odd integer. This conclusion is consistent with the assumption that in the bulk,
one is dealing with a fractional quantum Hall fluid.
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In order to obtain information on the dynamics of electrons (or of fractional
quasiparticles), one needs to specify the bosonic Green’s function. It is thus
convenient to derive the action for this bosonic field. The Lagrangian is ob-
tained from a Legendre transformation on the Hamiltonian, taking as canonical
conjugate variablesφ(x) and−i(h̄/π)∂xφ in accordance with the Kac-Moody
relations. The Euclidean action then reads:

SE = − h̄
π

∫
dτ

∫
dx [∂xφ (v∂x + i∂τ ) φ]. (10.20)

The operator which is implicit in this quadratic action allows to define the Green’s
functionG(x, τ) = 〈Tτφ(x, τ )φ(0,0)〉 – the correlation function of the bosonic
field. This Green’s function is defined by the differential equation:

(i∂τ + v∂x)∂xG(x, τ) = 2πδ(x)δ(τ ). (10.21)

The solution of this equation is obtained by setting−∂xG = f , and using the
complex variablesz = x/v + iτ et z̄ = x/v − iτ . The equation forf becomes:

∂z̄f = vπδ(x)δ(τ ). (10.22)

From two dimensional electrostatics, it can be justified thatf (z) = 1/z. Yet,
one is dealing here with the thermal Green’s function, which must be a periodic
function ofτ with periodβ, so a periodic extension off (z) is given:

f (z+ iβ) = f (z) = 1

z
+
∑

n�=0

1

z− inβ = π

vβ
coth

(
π
z

β

)
. (10.23)

The thermal Green’s function is subsequently obtained by integrating overx:

G(x, τ) = − ln

[
sinh

(
π
x/v + iτ
β

)]
. (10.24)

10.2. Transport between two quantum Hall edges

The noise has been computed for a single point contact [112, 110, 113]. It is
typically achieved by placing metallic gates on top of the 2DEG and applying a
potential to deplete the electron gas underneath the gates (Fig. 23). By varying
the gate potential, one can switch from a weak backscattering situation, where
the Hall liquid remains in one piece, to a strong backscattering situation where
the Hall fluid is split into two. In the former case, the entities which tunnel are
edge quasiparticle excitations. In the latter case, the general convention is to
say that in between the two fluids, only electrons can tunnel, because nothing
can “dress” these electrons into strange quasiparticles like in the previous case.
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Here we will focus mostly on the weak backscattering case, because this is the
situation where the physics of FQHE quasiparticles is most obvious. Anyway,
the description of the strong backscattering case can be readily obtained using a
duality transformation.

Fig. 23. Quantum transport in a quantum Hall bar: a) in the presence of a weak constriction, the
quantum hall fluid stays as a whole (shaded area) and quasiparticles tunnel. b) the case of strong
backscattering, where the quantum Hall fluid is broken in two and electrons tunnel between the two
fluids.

The tunneling Hamiltonian describing the coupling between the two edges
L andR is like a tight binding term, where for convenience we use a compact
notation [58] to describe the two hermitian conjugate parts:

Hint =
∑

ε=±

[
Ŵ0�

†
R�L

]ε
with





[
Ŵ0�

†
R�L

]+
= Ŵ0�

†
R�L[

Ŵ0�
†
R�L

]−
= Ŵ∗0�

†
L�R

(10.25)

Where the quasiparticle operators have the form:

�R(L)(t) =
MR(L)√

2πa
ei
√
νφR(L)(t). (10.26)

The spatial cutoff is defined asa = vτ0, τ0 is the temporal cutoff.MR(L) is
a Klein factor, which insures the proper statistical properties: indeed the fact
that the fermion operator is an exponential of a boson field does guarantee proper
exchange statistics on a given edge, but not for electrons which belong to different
edges. A derivation of the properties of Klein factors for the quasiparticle fields in
the FQHE can be found in Ref. [114]. Nevertheless, for problems involving only
two edges, it turns out to be irrelevant and it will be omitted. The quasiparticles
are, in a sense, the 1/ν root of the electron operators.

In scattering theory, the bias voltage was included by choosing appropriately
the chemical potentials of the reservoirs, which enter in the energy representation
of the Green’s functions for the leads. Here it is more difficult, because the
Green’s function are defined in real time, and the density of states of FQHE
quasiparticles diverges at the Fermi level. The trick is to proceed with a gauge
transformation. Starting from a gauge where the electric field is solely described
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by the scalar potential,A = 0, we proceed to a gauge transformation such that
the new scalar potential is zero:





V ′ = V − 1
c
∂tχ = 0

�A′ = �A+ ∇χ �= 0

� ′
i = ei

e∗χi
h̄c �i , e∗ = νe

so∇χ = �A′ (10.27)

For a constant potential along the edges, the gauge functionχ depends only on
time, and�χ =

∫ R
L
�A′. �dl = cV0t . Because we are dealing with quasiparticle

transfer weanticipate that the quasiparticle charge ise∗ = νe. Upon gauge
transforming the quasiparticle operators, the tunneling amplitude becomes:

Ŵ0 → Ŵ0e
iω0t , (10.28)

whereω0 = e∗V0. From this expression, the backscattering current operator is
derived from the Heisenberg equation of motion for the density, or alternatively
by calculatingIB(t) = −c∂HB(t)/∂χ(t):

IB(t) = ie∗Ŵ0

∑

ε

εeiεω0t [�†
R(t)�L(t)](ε). (10.29)

10.3. Keldysh digest for tunneling

In many body physics, it is convenient to work with a Wick’s theorem (or one of
its generalizations) in order to compute products of fermion and boson operators.
It is encountered when one considers averages of Heisenberg operators ordered
in time, and one is faced with the problem of translating this into interaction rep-
resentation products. The problem with the Heisenberg representation is that the
operators contains the “difficult” part (the interaction part) of the Hamiltonian.
Consider the ground state average of a time-ordered product of Heisenberg oper-
ators:

〈AH (t0)BH (t1)CH (t2)DH (t3) . . .〉 with t0 > t1 > t2 > t3 > . . . (10.30)

When translating to the interaction representation, the evolution operator reads:

S(t, t ′) = T̂ exp

{
−i

∫ t

t ′
dt ′′Hint (t ′′)

}
, (10.31)

all operators such asHint becomeeiH0tHinte
−iH0t [115] in this language. The

product of ordered operators then becomes:

〈S(−∞,+∞)T̂ (AI (t0)BI (t1)CI (t2)DI (t3) . . . S(+∞,−∞))〉, (10.32)
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whereT̂ is the time ordering operator. When the system is at zero temperature or
in equilibrium, the ground state (or thermal) expectation of this S–matrix is just a
phase factor, because one assumes that the perturbation is turned on adiabatically.
This means that〈S(+∞,−∞)〉 = eiγ . One is therefore left with a T–product
which is easily computed with the help of Wick’s theorem.

However, if the system is out of equilibrium, one cannot a priori use the Wick
theorem to compute the average: the S-matrix in front of the T–product spoils
everything because particles are being transfered from one reservoir to the other,
and the ground state att = +∞ does not look like anything like the ground
state att = −∞ (both are no longer related by a phase factor). To remedy this
problem, Keldysh proposed to invent a new contour, which goes fromt = −∞ to
t = +∞ and back tot = −∞, and a corresponding new time ordering operator
T̂K . Because times on the lower contour are “larger” than times on the upper
contour, the product of operators can be written as:

〈T̂K(AI (t0)BI (t1)CI (t2)DI (t3) . . . S(−∞,−∞))〉, (10.33)

where the integral over the Keldysh contourK goes from−∞ to+∞ and then
back to−∞. Note that in general, the times appearing in the operator product
AI (t0)BI (t1)CI (t2)DI (t3) can be located either on the upper or on the lower
contour. The Green’s function associated with the two-branches Keldysh contour
is therefore a 2× 2 matrix:

G̃(t − t ′) =
(
G̃++(t − t ′) G̃+−(t − t ′)
G̃−+(t − t ′) G̃−−(t − t ′)

)

=
(
G̃−+(|t − t ′|) G̃−+(t ′ − t)
G̃−+(t − t ′) G̃−+(−|t − t ′|)

)
, (10.34)

whereG̃−+(t) can be computed from the thermal Green’s function using a Wick
rotation. Often one redefines the Green’s function by subtracting from the initial
Green’s function its equal time arguments (see below).

Fig. 24. The two-branches of the Keldysh contour.
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10.4. Backscattering current

For the calculation of an operator which involves a single time argument, it does
not matter on which branch of the Keldysh contour we assign the time. We
therefore chose a symmetric combination:

〈IB(t)〉 =
1

2

∑

η

〈T̂K{IB(tη)e−i
∫
K dt1HB (t1)}〉. (10.35)

To lowest order in the tunnel amplitudeŴ0, we have:

〈IB(t)〉 = e∗Ŵ2
0

2

∑

ηη1εε1

εη1

∫ +∞

−∞
dt1e

iεω0t+iε1ω0t1

× 〈T̂K {[�†
R(t

η)�L(t
η)](ε)[�†

R(t
η1
1 )�L(t

η1
1 )](ε1)}〉. (10.36)

The correlator is different from zero only whenε1 = −ε. This amounts to saying
that quasiparticles are conserved in the tunneling process. The sum overε gives,
after inserting the chiral bosonic fieldφR(L):

〈IB(t)〉 = e∗Ŵ2
0M

2
RM

2
L

8π2a2

∑
ηη1
η1

∫ +∞
−∞ dt1

×
(
eiω0(t−t1)〈T̂K {e−i

√
νφR(t

η)ei
√
νφL(t

η)e−i
√
νφL(t

η1
1 )ei

√
νφR(t

η1
1 )}〉

− e−iω0(t−t1)〈T̂K{e−i
√
νφL(t

η)ei
√
νφR(t

η)e−i
√
νφR(t

η1
1 )ei

√
νφL(t

η1
1 )}〉

)
.

(10.37)

We useM2
R(L) = 1, and introduce the chiral Green’s function of the bosonic

field G̃ηη
′
(t − t ′) = 〈T̂K {φR(L)(tη)φR(L)(t ′η

′
)}〉 − 1

2〈T̂K{φR(L)(tη)2}〉 −
1
2〈T̂K{φR(L)(t ′

η′
)2}〉 which does not depend on the chiralityR(L). We obtain

the expression for the backscattering current:

〈IB(t)〉 =
ie∗Ŵ2

0

4π2a2

∑

ηη1

η1

∫ +∞

−∞
dt1 sin(ω0(t − t1))e2νG̃

ηη1(t−t1). (10.38)

Because the Green’s functioñGηη is an even function (see Eq. (10.34)), the con-
tributionsη = η1 vanish. We perform the change of variables:τ = t − t1 with
dτ = −dt1, then:

〈IB(t)〉 = − ie
∗Ŵ2

0

4π2a2

∑

η

η

∫ +∞

−∞
dτ sin(ω0τ)e

2νG̃η−η(τ ). (10.39)
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At zero temperature, the off-diagonal Keldysh Green’s function isG̃η−η(τ ) =
− ln(1− iηvF τ/a). Thus, we have:

〈IB(t)〉 = − ie
∗Ŵ2

0

4π2a2

∑

η

η

∫ +∞

−∞
dτ

sin(ω0τ)

(1− iητvF /a)2ν
. (10.40)

Performing the integration, we obtain the final result:

〈IB(t)〉 =
e∗Ŵ2

0

2πa2Ŵ(2ν)

(
a

vF

)2ν

sgn(ω0)|ω0|2ν−1, (10.41)

whereŴ is the gamma function.
On the other hand, at finite temperatures, the Green’s function is given by:

G̃η−η(τ ) = − ln

(
sinh

(
π

β
(ητ + iτ0)

)
/ sinh

(
iπτ0

β

))
, (10.42)

whereτ0 = a/vF . The average current is then given by the integral:

〈IB(t)〉 = − ie
∗Ŵ2

0

4π2a2

∑

η

η

∫ +∞

−∞
dτ sin(ω0τ)




sinh
(
iπτ0
β

)

sinh
(
π
β
(ητ + iτ0)

)




2ν

.

(10.43)

The change of variablest = −τ − iητ0 + iηβ/2 with dt = −dτ is operated.
The time integral now runs in the complex plane from−∞− iητ0 + iηβ/2 to
+∞− iητ0 + iηβ/2. We can bring is back to−∞ to +∞ provided that there
are no poles in the integrand, encountered when changing the contour. The poles
are located at integer values ofiπ andiπ/2: for this reason the presence of the
cutoff is crucial. Depending on the sign ofη, one is always allowed to deform
the contour to the real axis. The integral becomes:

〈IB(t)〉 =
e∗Ŵ2

0

2π2a2

(
πτ0

β

)2ν

sinh

(
ω0β

2

)∫ +∞

−∞
dt

cos(ω0t)

cosh2ν
(
πt
β

) . (10.44)

The integral can be computed analytically:

〈IB(t)〉 = e∗Ŵ2
0

2π2a2Ŵ(2ν)

(
a

vF

)2ν (2π

β

)2ν−1

× sinh

(
ω0β

2

) ∣∣∣∣Ŵ
(
ν + i ω0β

2π

)∣∣∣∣
2

. (10.45)
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10.5. Poissonian noise in the quantum Hall effect

Using the symmetric combination of the noise correlators (we are interested in
zero frequency noise):

S(t, t ′) = 〈IB(t)IB(t ′)〉 + 〈IB(t ′)IB(t)〉 − 2〈IB(t)〉〈IB(t ′)〉
=

∑

η

〈T̂K{IB(tη)IB(t ′−η)e−i
∫
K dt1HB (t1)}〉 − 2〈IB〉2,

(10.46)

to lowest order in the tunnel amplitudeŴ0, it is not even necessary to expand the
Keldysh evolution operator because the current itself containsŴ0.

S(t, t ′) = −e∗2Ŵ2
0

∑

ηεε′
εε′eiεω0teiε

′ω0t
′

× 〈T̂K{[�†
R(t

η)�L(t
η)](ε)[�†

R(t
′−η)�L(t ′−η)](ε

′)}〉.
(10.47)

The correlator is different from zero only whenε′ = −ε. Such correlators have
already been calculated for the current:

S(t, t ′) = e∗2Ŵ2
0

2π2a2

∑

η

cos(ω0(t − t ′))e2νG
η−η(t−t ′) = S(t − t ′). (10.48)

From this expression, the Fourier transform at zero frequency is computed, first
at zero temperature:

S(ω = 0) = e∗2Ŵ2
0

2π2a2

∑

η

∫ +∞

−∞
dt cos(ω0t)e

2νGη−η(t)

= e∗2Ŵ2
0

2πa2Ŵ(2ν)

(
a

vF

)2ν

|ω0|2ν−1. (10.49)

The Schottky relation applies, with a fractional chargee∗ = νe:
S(ω = 0) = 2e∗|〈IB(t)〉|. (10.50)

At finite temperature, the noise is given by the integral:

S(ω = 0) = e∗2Ŵ2
0

2π2a2

∑

η

∫ +∞

−∞
dτ cos(ω0τ)




sinh
(
iπτ0
β

)

sinh
(
π
β
(ητ + iτ0)

)




2ν

.

(10.51)
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Performing the same change of variables as for the current, this leads to:

S(ω = 0) = e∗2Ŵ2
0

π2a2

(
πτ0

β

)2ν

cosh

(
ω0β

2

)∫ +∞

−∞
dt

cos(ω0t)

cosh2ν
(
πt
β

) . (10.52)

Performing the integral:

S(ω = 0) = e∗2Ŵ2
0

π2a2Ŵ(2ν)

(
a

vF

)2ν (2π

β

)2ν−1

× cosh

(
ω0β

2

) ∣∣∣∣Ŵ
(
ν + i ω0β

2π

)∣∣∣∣
2

. (10.53)

The shot/thermal noise crossover is recovered in the tunneling limit:

S(ω = 0) = 2e∗|〈IB〉| coth(ω0β/2). (10.54)

Fig. 25. Tunneling current noise atν = 1/3 versus backscattering currentIB (filled circles), from
Ref. [116]. Data is taken at temperaturekB = 25mK, and the gate voltage is adjusted so as to
make a weak constriction. Open circles take into account an empirical(1−T ) reduction factor. Inset:
same data taken in the integer quantum Hall regime, including the reduction factor.

The above theoretical predictions have been verified in remarkable point con-
tact experiments at filling factor 1/3 in Saclay and at the Weizmann institute. Ref.
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[116] was performed at low temperatures in the shot noise dominated regime,
while Ref. [117] used a fit to the thermal-shot noise crossover curve to identify
the fractional charge. The data of Ref. [116] is displayed in Fig. 25, and shows
consistent agreement with the charge 1/3 for a weak constriction. Subsequently,
the Heiblum group also measured the fractional chargee∗ = e/5 at filling factor
ν = 2/5 [118].

Experiments have also been performed in the strong backscattering regime,
that is when the point contact splits the quantum Hall bar into two separate Lut-
tinger liquids. The present calculation can be adapted to treat the tunneling of
electrons instead of that of quasiparticles. This is achieved using the duality
transformationν → 1/ν and by replacing the anomalous chargee∗ = νe by the
bare electron charge in the tunneling amplitude. On the experimental side, early
reports suggested that the entities which tunnel are bare electrons, because they
tunnel in a medium (vacuum) where Luttinger liquid collective excitations are
absent.

There is now evidence that the noise deviates from the Poissonian noise of
electrons. The noise at sufficiently low temperatures has been found to be super-
poissonian [119], with an effective charge 2e or 4e suggesting that electrons tun-
nel in bunches. The data is displayed in Fig. 26. There is no clear theoretical
explanation of this phenomenon so far.

On the theoretical side, an exact solution for both the current and the noise was
found using the Bethe Ansatz solution of the boundary Sine-Gordon model [120].
It bridges the gap between the weak and the strong backscattering regimes. This
work has also been extended to finite temperature [121], and careful comparison
between theory and experiment has been motivated recently [122]. Noise at finite
frequency has been computed in chiral Luttinger liquids using both perturbative
techniques and using the exact solution atν = 1/2 [113]. The noise displays a
singularity at the “Josephson” frequencye∗V/h̄.

A Hanbury-Brown and Twiss proposal has been made to detect the statistics
of the edge state quasiparticle in the quantum Hall effect [123]. Indeed, the
quasiparticle fields obey fractional statistics, and a noise correlation measurement
necessarily provides information on statistics. The geometry consists of three
edge states (one injector and two detectors) which can exchange quasiparticles
by tunneling through the fractional Hall fluid. To leading order in the tunnel
amplitudes, one finds the zero-frequency noise correlations:

S̃12(0) = (e∗2|ω0|/π)T r1 T r2R(ν), (10.55)

where the renormalized transmission probabilities:

T rl = (τ0|ω0|)2ν−2 [τ0Ŵl/h̄a]
2 /Ŵ(2ν), (10.56)
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Fig. 26. Right: Current voltage characteristics of a pinched quantum Hall bar, which displays the
zero bias anomaly associated with electron tunneling, from Ref. [119]. Left: shot noise versus
current at high (top) and low temperature (bottom,kB < 32mK). The low temperature data fits a
super-oissonian noise formulaS = 2(2e)I .

correspond to that of a non interacting system atν = 1. Except for some universal
constants, the functionR(ν) can be measured experimentally by dividing the
noise correlations by the product of the two tunneling currents. By comparing the
noise correlations with those of a non-interacting system (R(1) = −1), one finds
that the noise correlations remain negative atν = 1/3 although their absolute
value is substantially reduced: there is less anti-bunching is a correlated electron
HBT experiment. For lower filling factors, the noise correlations are found to be
positive, but this remains a puzzle because perturbation theory is less controlled
for ν < 1/3.

In the last few years, experiments studied the effect of depleting the edge state
incoming on a point contact [124]. These experiments use a three edge state
geometry as in Ref. [123]. Another point contact is in the path of this edge state
in order to achieve dilution. If the former point contact is tuned as an opaque
barrier, one normally expects poissonian noise from electrons. But because the
edge state is dilute, quasiparticles seem to bunch together when tunneling. A
noise diagnosis reveals that the effective charge predicted by Schottky’s relation
is in reality lower than the electron charge. These findings do not seem to find an
appropriate theoretical explanation at this time [125].
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Fig. 27. Left: Hanbury-Brown and Twiss geometry with three edge states; quasiparticles are injected
from 3 into 1 and 2 with tunnel hoppingsŴ1 andŴ2. Right: normalized noise correlations as a
function of filling factor; for comparison, the non-interacting value isR(1) = −1.

10.6. Effective charges in quantum wires

As mentioned above, the chiral Luttinger liquids of the FQHE are an excellent
test-bed for probing the role of interactions in noise. In a one dimensional quan-
tum wire [105], the Luttinger liquid is non-chiral: interaction between right and
left going electrons are effective over the whole length of the wire: the notion of a
backscattering current is ambiguous. Nevertheless, non–chiral Luttinger liquids
also have underlying chiral fields [126]. Such chiral fields correspond to excita-
tions with anomalous (non-integer) charge, which have eluded detection so far.
Here we briefly mention how shot noise measurements can provide information
on such anomalous charges.

Fig. 28. Schematic configuration of the nanotube–STM device: electrons are injected from the tip at
x = 0: current is measured at both nanotube ends, which are set to the ground.

Carbon nanotubes, given the appropriate helicity, can have a metallic behav-
ior. Due to their one-dimensional character, they are good candidates to probe



Noise in mesoscopic physics 351

Luttinger liquid behavior. Fig. 28 depicts a carbon nanotube with both ends
grounded, but electrons are injected in the bulk of the tube with an STM tip.
When electrons tunnel on the nanotube, they are not welcome because the ex-
citations of this nanotube do not resemble electrons. This has been illustrated
in tunneling density of states experiments [127]. The transport properties at the
tunneling junction and in the nanotube can be computed using a Luttinger model
for the nanotube, together with a perturbative treatment of the junction in the
Keldysh formalism [128]. The tunneling electrons give rise to right and left
moving quasiparticle excitations which carry chargeQ+ = (1 + Kc+)/2 and
Q− = (1 − Kc+)/2, whereKc+ < 1 is the Luttinger liquid interaction para-
meter (in the absence of interactions or, equivalently, when the interactions in
the nanotube are fully screened by a substrate,Kc+ = 1). If the tunneling is
purely local (say atx = 0), there is as much chance thatQ+ will propagate to the
right whileQ− propagates to the left than the opposite. The state of the outgoing
quasiparticle excitations is entangled between these two configurations.

How can one identify the anomalous charges of quasiparticle excitations? By
performing a Hanbury-Brown and Twiss analysis of transport. Because bare elec-
trons tunnel from the STM tip to the nanotube, the Schottky relation with charge
e holds for the tunneling current and the tunneling noise:

ST = 2e〈IT 〉. (10.57)

However, non-integer charges are found when calculating the autocorrelation
noiseSρ(x, x, ω = 0) on one side (say,x > 0) of the nanotube together with
the cross correlationsSρ(x,−x, ω = 0) between the two sides of the nanotube:

S(x, x, ω = 0) = [1+ (Kc+)2]e |〈Iρ(x)〉| ∼ (Q2
+ +Q2

−), (10.58)

S(x,−x, ω = 0) = −[1− (Kc+)2]e |〈Iρ(x)〉| ∼ Q+Q−. (10.59)

where〈Iρ(x)〉 is the average charge current at locationx in the nanotube. Note
that the cross correlations of Eq. (10.59) are negative because we have chosen
a different convention from Sec. 6: there the noise is measured away from the
junction between the three probes. We conclude that the noise correlations are
positive, which makes sense because excitations are propagating in both direc-
tions away from the junction.

The above considerations apply for an infinite nanotube, without a description
of the contacts connected to the nanotube. It is known that the presence of such
contacts (modeled by an inhomogeneous Luttinger liquid withKc+ = 1 in the
contacts) leads to an absence of the renormalization of the transport properties
[129] at zero frequency. Because of multiple reflections of the quasiparticles at
the interface, the zero frequency noise cross correlations vanish atω = 0 due to
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Fig. 29. Finite frequency noise correlations for a nanotube connected to leads. a) case whereτL =
14τV ; b) case whereτL = τV .

the presence of leads. In order to retrieve information about anomalous charges,
it is thus necessary to compute the finite frequency cross-correlations [130].

The result is depicted in Fig. 29. There are two competing time scales:
τL = L/2vc+, the traveling time needed for Luttinger liquid excitations to reach
the leads, andτV = h̄/eV , the time spread of the electron wave packet when
the bias voltage between the tip and the nanotube isV . WhenτL ≫ τV (Fig.
29a), quasiparticle excitations undergo multiple bounces on the nanotube/contact
interfaces, giving rise to multiple peaks in the autocorrelation noise. In the op-
posite case, the width of the tunneling electron wave packet is so large that there
is only one maximum (Fig. 29b). To identify anomalous charges, one should
specify τV , and the frequency should be tuned so thatωτL is an odd multiple
of π/2 (condition for a maximum). Then, one can measure experimentally the
ratio |Sx,−x/Sx,x | = (1−K4

c+)/(1+K4
c+) in order to extract the chiral charges

Q± = (1 ± Kc+)/2. Note that alternative finite frequency noise proposals to
measure the anomalous charges in a Luttinger liquid with contacts have appeared
recently in the literature [131].

11. Conclusions

The physics of noise in nanostructures is now one of the many exciting fields of
mesoscopic physics. A motivation for this is the fact that compared to a current
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measurement, additional information can be extracted from the noise. Noise has
been computed and measured experimentally in a variety of systems which are
not all described in this review. For additional approaches for calculating the
noise, readers are directed towards articles and reviews. The few examples of
noise calculations presented in this course apply to situations where noise can
either be characterized via scattering theory or, for the case of a Luttinger liquid,
via perturbation theory in the tunneling Hamiltonian. Although this is a rather
restrictive framework, these two situations can apply to a variety of nanodevices,
possibly containing hybrid ferromagnetic or superconducting components.

An example is the Keldysh calculation of noise in junctions between two su-
perconductors, a geometry which allows the multiple Andreev reflection (MAR)
process [78]. It has been computed in various regimes, including point contacts
[132, 133], and junctions with diffusive metals [134, 135]. In such situations,
the noise acts as a diagnosis which allows to pinpoint the total charge which
is transfered through the junction. This charge displays plateaus as a function
of applied bias, as the latter fixes the number of reflections between the super-
conductors. Shot noise experiments were first performed using SIS junctions,
where the enhancement of shot noise due to MAR was attributed to the presence
of pinholes in the insulating junction [136]. More recently, noise experiments
were performed using a more controlled geometry, using either superconducting
point contacts for the ballistic regime [33] or in the diffusive regime. In the latter
case, the regime of incoherent MAR was first investigated [137, 138]. In a recent
work, it was shown that both the incoherent and the coherent MAR regime could
be probed in disordered junctions with the same experiment by tuning the bias
voltage above and below the Thouless energy [139].

There exists a connection between noise and the dynamical Coulomb block-
ade, which has been established using the Keldysh formalism [140]. It is well
understood [58] that when an electron tunnels through a single junction, the elec-
tromagnetic environment surrounding the junction has to be reorganized. If the
tunnel junction is in series with a large impedance, this causes a zero bias anom-
aly in the current voltage characteristics. For highly transparent barriers, this
zero bias anomaly vanishes exactly in the same way as the 1− T suppression
of shot noise, and the connection between dynamical Coulomb blockade can be
understood within a perturbation theory resummation scheme.

Another generalization includes the discussion of noise in non-stationary sit-
uations, for instance when an AC bias is superposed to the DC voltage bias:
photo-assisted shot noise was computed for a two terminal scatterer [141] and
measured experimentally in diffusive metals [61], in normal metal superconduct-
ing junctions [80, 71], as well as in point contacts [142]. Photo-assisted shot
noise provides an alternative way for measuring the effective charge of carriers.
It has been recently computed in the context of the FQHE [143]. To some ex-
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tent, a measurement of photo-assisted shot noise performed at zero frequency can
play the same role as a measurement of high frequency noise: the AC modulation
imposed in the leads plays the role of a probing frequency.

Noise measurements are typically hard measurements because one is dealing
with a very small current or a small voltage signal, which needs to be “squared”,
and it is difficult to isolate the wanted noise from the unwanted one. The ratio of
theory to experimental noise publications is still a bit too large. Yet experimental
detection is making fast progress. Conventional noise apparatus, which convert
a quantum measurement to a classical signal using for instance cold amplifiers
continues to be improved. On the other hand, new measurement techniques use
a noise detector which is part of the same chip as the device to be measured
[57]. In such situations, it will be necessary to analyze what is the effect of the
back-action of the measuring device on the circuit to be measured.

On the theoretical side, while the interest in computing noise remains at a high
level, there is an ongoing effort to study the higher moments of the current, and
the generating function of all irreducible moments. This sub-field bears the name
of full counting statistics and was pioneered in the context of scattering theory in
Refs. [144], but it is now generalized to a variety of systems. We refer the reader
to the final chapters of Ref. [145], see also Ref. reuletlect. Developments in this
field include superconductor-hybrid systems as well as Luttinger liquids [147].
A nice seminar was presented during the les Houches school on this topic by A.
Braggio, who applies full counting statistics to transport in quantum dots.

As discussed in the section on entanglement, more and more analogies can be
found between nano-electronic and quantum optics, because both fields exploit
the measurement of two-particle (or more) correlations. Bell inequality test al-
low to convince oneself that entanglement is at work in nano-devices. This has
motivated several efforts to exploit this entanglement in a teleportation scenario.
The entangler [91] can be used both as a generator of singlet pairs as well as a
detector of such pairs, and Ref. [148] describes a cell which teleports the state of
an electron spin in a quantum dot to another electron in another quantum dot. The
electron-hole entanglement scenario of Ref. [100] also gave rise to a teleporta-
tion proposal [149]. Interestingly, in order to control the output of such quantum
information proposals, it is necessary to analyze many-particle correlations – or
generalized noise – at the input and at the output of such devices.

Finally, I would like to emphasize that this course is the result of an ongo-
ing effort over the years, and I wish to thank all my collaborators on noise since
the early 1990’s. Foremost, I should mention the role played by Rolf Landauer,
who introduced me to noise. I am very much indebted to Gordey Lesovik, for
his input and collaborations. Next I would like to thank my close associates in
Marseille: Julien Torres who started his thesis working on NS junctions; Ines
Safi, for her passage here working on the FQHE; my present collaborators Ade-
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line Crepieux who provided latex notes on Luttinger liquids and who kindly read
the manuscript; Nikolai Chtchelkatchev, for his contribution on Bell inequalities;
and Marjorie Creux for her nice Masters thesis on edge states physics.
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1. Introduction

Transport studies provide a powerful tool for investigating electronic properties
of a conductor. TheI (V ) characteristic (or the differential resistanceRdiff =
dV/dI ) contains partial information on the mechanisms responsible for con-
duction. A much more complete description of transport in the steady state,
and further information on the conduction mechanisms, is given by the proba-
bility distribution of the currentP , which describes both the dc currentI (V )
and the fluctuations. Indeed, even with a fixed voltageV applied,I (t) fluctu-
ates, due to the discreteness of the charge carriers, the probabilistic character of
scattering and the fluctuations of the population of energy levels at finite temper-
atureT [1].

The current fluctuations are characterized by the moments of the probability
distributionP of order two and higher. Experimentally, the average overP is
obtained by time averaging. Thus, the average current is the dc currentI =
〈I (t)〉, where〈.〉 denotes time average. The second moment (the variance) ofP ,〈
i2
〉
, measures the amplitude of the current fluctuations, withi(t) = I (t)−I . The

third moment
〈
i3
〉

(the skewness) measures the asymmetry of the fluctuations.
Gaussian noiseP(i) ∝ exp(−αi2) is symmetric, so it has no third moment.
The existence of the third moment is related to the breaking of time reversal
symmetry by the dc current; at zero bias,I = 0 and positive and negative current
fluctuations are equivalent, so

〈
i3
〉
= 0.

In this article we present simple approaches to the calculation ofP(i) in a
tunnel junction, and to the effect of the environment on noise measurements in
terms of the modification ofP . We do not provide rigorous calculations, but
simple considerations that bear the essential ingredients of the phenomena. We
also discuss the effect of a finite measurement bandwidth. We report experi-
mental results of the first measurement of the third moment of voltage fluc-
tuations in tunnel junctions, from room temperature down to 50mK. Then we
discuss extensions of those measurements to finite frequencies and to the study
of other systems. We show the first data of the third moment in the regime
where the frequency is larger than the temperature. Finally we discuss a new
quantity, the “noise thermal impedance”, which links the second and third mo-
ment.
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2. The probability distribution P(i)

2.1. A simple model for a tunnel junction

Let us consider a single channel tunnel junction of transmission probabilityt .
For t ≪ 1, the tunneling events are rare and well separated. Thus one can con-
sider a timeτ small enough such that there is at most one event duringτ . The
transport properties of the junction are given by the ratesŴ+ andŴ− at which the
electrons cross the barrier from left to right or vice-versa. One electron crossing
the junction during a timeτ corresponds to a current pulse duringτ of average
intensity ı̄ = e/τ . The probability forn electrons to cross the barrier duringτ
from left to right, giving rise to a currentnı̄ is:




P(0) = 1− (Ŵ+ + Ŵ−)τ
P (±ı̄) = Ŵ±τ
P (nı̄) = 0 for n > 1

(2.1)

Quantum mechanics enter in the calculation of the rates whereas the statistical
mechanics of the junction is given by the probabilityP(i). We deduce thepth

moment of the distribution of the current:
〈
Ip
〉
=

∑

n=±1

P(nı̄)(nı̄)p = ı̄p(Ŵ+ + (−1)pŴ−)τ (2.2)

Thus, all the odd moments are proportional to the dc currentI = 〈I 〉 = e(Ŵ+ −
Ŵ−), and all the even moments are proportional to the second one

〈
I2
〉
= e2(Ŵ++

Ŵ−)τ . The values ofŴ± are determined by Ohm’s lawI = e(Ŵ+ − Ŵ−) =
GV and the detailed balanceŴ+/Ŵ− = exp(eV/kBT ). In particular at zero
temperature andV > 0,Ŵ− = 0, which gives

〈
I2
〉
= eIτ−1

One generally considers the moments of thecurrent fluctuations,Mp = 〈ip〉
with i(t) = I (t)− 〈I 〉. One has for the first moments:

M2 =
〈
i2
〉
=
〈
I2
〉
− I2

M3 =
〈
i3
〉
=
〈
I3
〉
− 3I

〈
I2
〉
+ 2I3 (2.3)

Since〈Ip〉 ∝ t for all p, one has for a tunnel junction witht ≪ 1, 〈ip〉 ≃ 〈Ip〉 to
leading order int . In particular,M3 = e2Iτ−2. This result is valid even for the
multichannel case and after integrating over energy [2]. It is remarkable thatM3
is totally temperature independent, in contrast withM2, for which the fluctuation-
dissipation theorem impliesM2 ∝ T at equilibrium. As expected,M3 is an odd
function of the dc current and is zero forV = 0.

One usually also defines thecumulantsCp of current fluctuations (often noted
〈〈Ip〉〉). They are related to the moments through the Fourier transform ofP
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χ(q) = ∑
n P(nı̄)expiqn. The series expansion ofχ gives the moments,

whereas the series expansion of lnχ give the cumulants. For a Gaussian dis-
tribution, lnχ is a second degree polynomial, and thus all the cumulants of order
≥ 3 are zero. The cumulants measure the non-gaussian part of the noise. TheCp
are linear combinations of products of theMp. For example,

C3 = M3

C4 = M4 − 3M2
2

(2.4)

2.2. Noise in Fourier space

In the previous paragraph we used a simple model to calculate the probability
of current fluctuations. Experimentally, the averaging procedure is usually done
by integrating the desired quantity over time. However, the fluctuating current
i(t) contains Fourier components up to very high frequency which are usually
not accessible experimentally. Thus, one rather measures thespectral densityof
the fluctuations around a certain frequencies. We introduce the spectral densi-
ties associated with thepth moment of the current fluctuationsSIp , expressed in
Ap/Hzp−1. SIp depends onp − 1 frequenciesf1 . . . fp−1. However, it is con-
venient to expressSIp as a function ofp frequencies such that the sum of all the
frequencies is zero. Introducing the Fourier componentsi(f ) of the current, one
has, for a classical current:

SIp (f1, . . . , fp−1) =
〈
i(f1) . . . i(fp)

〉
δ(f1 + . . . fp) (2.5)

In quantum mechanics, the current operators taken at different times do not com-
mute; nor do they in Fourier space, and the question of how the operators have to
be ordered is crucial [2,3].

In the case of the second moment, one hasSI2(f ) = 〈i(f )i(−f )〉 =
〈
|i(f )|2

〉
.

It measures the power emitted by the sample at the frequencyf within a band-
width of 1Hz. This is what a spectrum analyzer measures. Comparing this ex-
pression with the one we have calculated for

〈
δI2

〉
, one sees thatτ−1 roughly

represents the full bandwidth of the current fluctuations.
Experimentally, the current emitted by the sample runs through a series of

cables, filters and amplifiers before being detected (this can be avoided by an
on-chip detection [14]). Thus, the measured quantity is a filtered currentj (f ) =
i(f )g(f ) whereg(f ) describes the filter function of the detection.

One is often interested in the total power emitted by the sample in a certain
bandwidth. This is obtained by measuring the DC signal after squaringj (t), i.e.∫
j2(t)dt . This quantity is related toSI2 through:
〈
j2
〉
=
∫
j2(t)dt =

∫ ∫ +∞
−∞ g(f1)g(f2) 〈i(f1)i(f2)〉 δ(f1 + f2)

=
∫
|g(f )|2SI2(f )df

(2.6)
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It is remarkable that the frequency-dependent phase shift introduced byg(f ) has
no influence, in agreement with the fact thatSI2 has the meaning of a power. If
the detection bandwidth extends fromF1 toF2, i.e.,g(f ) = 1 forF1 < |f | < F2
andg(f ) = 0 otherwise, and ifSI2 is frequency independent betweenF1 andF2,
then the total noise is given by

〈
j2
〉
= 2SI2(F2 − F1).

Let us consider nowSI3, which depends on two frequenciesf1 andf2. The
third moment of the measured currentj (t) is given by:

〈
j3〉 =

∫
j3(t)dt =

∫∫∫
g(f1)g(f2)g(f3)SI3(f1, f2)δ(f1 + f2 + f3) (2.7)

We see that now the phase ofg(f ) matters. More precisely,SI3 measures how
three Fourier components of the current can beat together to give a non-zero
result, i.e., it measures the phase correlations between these three Fourier com-
ponents. With the same hypothesis as before, for a detection betweenF1 and
F2, one now has

〈
j3
〉
= 3SI3(F2 − 2F1)

2 if F2 > 2F1 and
〈
j3
〉
= 0 otherwise.

This shows how important it is to make a broadband measurement. This unusual
dependence of the result onF1 andF2 comes from the fact that the lowest fre-
quency being the sum of two others is 2F1 whereas the maximum frequency one
can subtract to that in order to have a DC signal isF2. As we show below, we
have experimentally confirmed this unusual dependence of

〈
j3
〉
onF1 andF2, see

fig. 1.

2.3. Consequences

Each moment of the distribution is affected in a different way by the finite band-
width of the measurement. As a consequence, even if the case where the mo-
ments are supposed to be frequency-independent, the probabilityP(i) measured
within a finite bandwidthB depends onB. In particular, the higher moments,
which are more sensitive to rare events (current spikes) are washed out by the fi-
nite bandwidth, since the spikes are broadened by the filtering. In the case where
the moments are frequency-dependent (like the diffusive wire, [4]), the notion of
counting statistics itself has to be taken with care.

3. Effect of the environment

Up till now we have considered the bias voltageV and the temperatureT to be
fixed, time-independent, external parameters. In practice, it is very hard to per-
fectly voltage-bias a sample at any frequency. The temperature of the sample is
generally fixed by a connection to reservoirs, and thus the temperature is fixed
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Fig. 1. Effect of the finite bandwidth on the measurement of
〈
δV 3

〉
. Each point corresponds to a

different value of the frequenciesF1 andF2, as indicated in the plot. The data shown here correspond
to sample B atT = 77 K. (from Ref. [12]).

only at the ends of the sample. IfV or T fluctuate, the probabilityP(i) is modi-
fied. Let us callP(i;V, T ) the probability distribution of the current fluctuations
around the dc currentI when the sample is perfectly biased at voltageV and kept
at fixed temperatureT (as considered before), and̃P (i) the probability distribu-
tion in the presence of an environment.R is the sample’s resistance, taken to be
independent ofT andV .

3.1. Imperfect voltage bias

If the sample is biased by a voltageV through an impedanceZ, the dc voltage
across the sample isVs = VR/(R + Z). However, the current fluctuations in
the sample flowing through the external impedance induce voltage fluctuations
across the sample, given by:

δVs(t) = −
∫ +∞

−∞
Z(f )i(f )e2iπf tdf (3.1)

Consequently, the probability distribution of the fluctuations is modified. This
can be taken into account if the fluctuations are slow enough that the distribution
P(i) follows the voltage fluctuations. Under this assumption one has:

P̃ (i) = P(i;Vs + δVs, T ) (3.2)
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Supposing that the fluctuations are small (δVs ≪ Vs, kBT ), one can Taylor ex-
pandP0 as:

P̃ (i) ≃ P(i;Vs, T )+ δVs
∂P

∂Vs
+ ... (3.3)

One deduces the moments of the distribution (to first order inδVs) for a frequency-
independentZ:

M̃n(V , T ) = Mn(Vs, T )− Z
∂Mn+1(Vs, T )

∂Vs
(3.4)

This equation shows that the environmental correction to the moment of order
n is related to the next moment of the sample perfectly voltage biased. It is a
simplified version of the relation derived in refs. [5, 6]. Let us now apply the
previous relation to the first moments.

3.1.1. dc current: dynamical Coulomb blockade
Forn = 1 one gets a correction to the dc current given by:

〈i〉 = −
∫ +∞

−∞
Z(f )

∂M2(f )

∂Vs
df (3.5)

This is nothing but the environmental Coulomb blockade (within a factor 2) [7,8].
The bandwidth involved inM2 is the intrinsic bandwidth of the sample, limited
by the RC time, and not the detection bandwidth.

3.1.2. The second moment
Since the intrinsic third moment of a tunnel junction is linear in the applied volt-
age, to lowest order the imperfect voltage bias affects the second moment only
by a constant term. There are however second order corrections [9].

3.1.3. The third moment
Similarly one obtains [10]:

M̃3 = M3 + 3ZM2
∂M2

∂Vs
(3.6)

It is clear that the environmental correction to the third moment and the dynam-
ical Coulomb blockade share the same physical origin, i.e. electron-electron in-
teractions. However, since the third cumulant is a small quantity, the corrections
can be as large as the intrinsic contribution, especially in a low impedance sample
such as the one we have measured.
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Fig. 2. Measurement of the spectral density of the third moment of voltage fluctuations,
S
V 3(eV/kBT ) for sample A at T=4.2 K (solid lines). A0: no ac excitation (same as Fig. 4). A1:

with an ac excitation at frequency�/2π such that cos 2��t = +1; A2: cos 2��t = −1; A3: no ac
excitation but a 63� resistor in parallel with the sample. The dashed lines corresponds to fits with
Eq. (3.8). (from Ref. [12]).

3.1.4. Effect of an external fluctuating voltage
We consider in this paragraph the effect of an external source of noisei0(t) in
parallel with the external impedanceZ. This noise could be due to the Johnson
noise ofZ, to backaction of the current detector (e.g. the current noise of an am-
plifier), or an applied signal. The total current contains nowi0, and its moments
involve correlations betweeni0 andi. For the third moment, an additional term
appears due toi0:

〈
i0i

2
〉
≃ Z

〈
i20

〉
(∂M2/∂Vs). Our measurements verified the two

effects of the environment (feedback and external noise) on the third moment,
see fig. 2.

3.1.5. Voltage vs. current fluctuations
Instead of applying a voltage and measurig a current, one often prefers to ap-
ply a current and measure voltage fluctuations across the sample. The first two
moments ofVS andi are related through:

VS = RDI
〈
δV 2
S

〉
= R2

D

(
M2 +

〈
i20

〉) (3.7)
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with RD = RZ/(R + Z). The situation is different for the third moment, for
which we have [11,12]:

〈
δV 3
S

〉
= −R3

DM3 + 3R4
D

〈
i20
〉 ∂M2

∂VS
+ 3R4

DM
0
2
∂M2

∂VS
(3.8)

We have confirmed this relation experimentally, see fig.2.

3.2. Imperfect thermalization

Let us suppose now that the sample is perfectly voltage biased, but that its temper-
atureTs can fluctuate, because there is a finite thermal impedanceGth between
the sample and the reservoir. If the sample is biased at a finite voltageV , its
average temperature might be different from the reservoir’s temperature. Since
the current flowing through the sample fluctuates, the Joule powerPJ dissipated
in the sample fluctuates as well, which induces temperature fluctuations. One
has:δTs = G−1

th δPJ = G−1
th iV . Since the probability distributionP(i) depends

on temperature, the temperature fluctuations modify in turn the current fluctua-
tions. Thisthermalfeedback is similar to theelectronicfeedback of the previous
section. Thus, one has:

P̃ (i) = P(i;V, Ts + δTs) ≃ P(i;V, Ts)+ δTs
∂P

∂Ts
+ ... (3.9)

This results in the following equation for the moments:

M̃n(V , T ) = Mn(V , Ts)+G−1
th V

∂Mn+1

∂Ts
(3.10)

Note thatGth is in fact complex, temperature- and frequency dependent.
Similarly to the case of imperfect voltage bias, the dc current and the third

moment are affected by this feedback. One obtains a relative correction to the
conductanceδG/G ∝ kB/C with C the heat capacitance of the sample. This
correction is small, but diverges at low temperature. To our knowledge, this had
never been predicted before.

For the third moment one obtains:

M̃3 = M3 + 6VG−1
th M2

∂M2

∂T
(3.11)

In the case of a diffusive wire whose length is much longer than the electron-
electron inelastic length, a local temperature can be defined. We designateT

the (voltage-dependent) average temperature of the sample. In the absence of
electron-phonon interactions, the electrical and thermal conductances are related
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Fig. 3. Schematics of the experimental setup. (from Ref. [12])

through the Wiedemann-Franz law,Gth ∝ GT (G = R−1), from which we
deduce:

M̃3 = M3 + αe2IB2 (3.12)

with α a numerical coefficient, andB the thermal bandwidth,B ∼ τ−1
D in a dif-

fusive system. This result corresponds to the calculation of ref. [4] in the hot
electron regime. We understand that at frequencies larger than the inverse of
the diffusion timeτD, the thermal conductance drops, and so does the thermal
correction. The result of ref. [4], that the third moment vanishes at such frequen-
cies, seems to imply thatM3 = 0. It might be an artifact of our oversimplified
calculation.

Another interesting case is the SNS structure (a normal metal wire between
two superconducting reservoirs), for which the cooling is due to electron-phonon
interaction and not electron out-diffusion. This out-diffusion is suppressed ex-
ponentially at low temperature due to the superconducting gap of the reservoirs.
The vanishing electron-phonon thermal conductance should lead to a divergence
of the spectral density of the third moment, but the bandwidth also shrinks with
loweringT .

4. Principle of the experiment

We will not discuss in full detail the experiment performed to measure the third
moment of the voltage fluctuations in tunnel junctions. Those details can be
found in refs [12,13].

4.1. Possible methods

We present three methods that could be used to measure the non-Gaussian part
of the noise. First, the simplest idea is to digitize in real time the voltage across
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the sample, and make histograms of the values. This method is very direct, but
suffers from its limitations in bandwidthB. It is very difficult to acquire data
with enough dynamics very fast and to treat them in real time. SinceM3 ∝ B2,
the small bandwidth severely limits this method. No such measurement has been
reported yet.

A second point of view is to put the priority on the bandwidth. That is the
method we have chosen. Then it is very hard to treat the signal digitally, and
we use analog mixers to compute the third power ofi(t), and average with the
help of a low pass filter. We have implemented this method with a bandwidth
of 1 GHz. This method is versatile, it works at any temperature and for many
different kinds of samples; the main limitation comes from the necessity to have
a sample’s resistance close to 50� to ensure good coupling with the microwave
circuits. The drawback of the method is the care needed to separate the real signal
from any non-linearity due to the mixers and amplifiers.

Finally, another possibility, which offers huge bandwidth and great sensitiv-
ity is to couple the sample to an on-chip mesoscopic detector. This has been
successfully realized to measureSV 2 [14]. One could even have access to the
full statistics of the current [15]. The drawback of this method is the theoretical
difficulty of extracting the intrinsic behavior of the sample when it is strongly
coupled to another mesoscopic system [16].

4.2. Experimental setup

We have measured the third moment of the voltage fluctuations across a tunnel
junction, by measuringδV 3(t) in real time (see Fig. 3). For simplicity, we note
V and δV the dc voltage and the voltage fluctuationsacross the sample. The
sample is dc current biased through a bias tee. The noise emitted by the sample
is coupled out to an rf amplifier through a capacitor so that only the ac part of
the current is amplified. The resistance of the sample is close to 50�, and
thus is well matched to the coaxial cable and amplifier. After amplification at
room temperature the signal is separated into four equal branches, each of which
carries a signal proportional toδV (t). A mixer multiplies two of the branches,
giving δV 2(t); a second mixer multiplies this result with another branch. The
output of the second mixer,δV 3(t), is then low pass filtered, to give a signal
D proportional toSV 3, where the constant of proportionality depends on mixer
gains and frequency bandwidth. The last branch is connected to a square-law
crystal detector, which produces a voltageX proportional to the the rf power
it receives: the noise of the sample

〈
δV 2

〉
plus the noise of the amplifiers. This

detection scheme has the advantage of the large bandwidth it provides (∼ 1 GHz),
which is crucial for the measurement. Due to the imperfections of the mixers,D

contains some contribution ofX. Those contributions, even inI , are removed by
calculating(D(I)−D(−I )) ∝ SV 3.
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Fig. 4. Measurement ofS
V 3(eV/kBT ) for sample A (solid line). The dashed line corresponds to the

best fit with Eq. (3.8). The dash dotted line corresponds to the perfect bias voltage contribution and
the dotted lines to the effect of the environment. (from Ref. [13])

5. Experimental results

5.1. Third moment vs. voltage and temperature

SV 3(eV/kBT ) for sample A atT = 4.2K is shown in Fig. 4; these data were
averaged for 12 days.SV 3(eV/kBT ) for sample B atT = 4.2K (top),T = 77K
(middle) andT = 290K (bottom) is shown in Fig. 5. The averaging time for
each trace was 16 hours. These results are clearly different from the voltage
bias result (the dash-dotted line in Fig. 4). However, all our data are very well
fitted by Eq. (3.8) which takes into account the effect of the environment (see
the dashed lines of Fig. 4 and 5). The environment of the sample is made of the
amplifier, the bias tee, the coaxial cable (∼ 2 m long except at room temperature,
where it is very short) and the sample holder. It is characterized by its impedance
Z, that we suppose is real and frequency-independent (i.e., we model it by a
resistorR0 of the order of 50�), and a noise temperatureT ∗0 (the latter does not
correspond to the real noise temperature of the environment, see below). Figs. 4
and 5 show the best fits to the theory, Eq. (3.8), for all our data. The four curves
lead toR0 = 42 �, a very reasonable value for microwave components, and in
agreement with the fact that the electromagnetic environment was identical for
the two samples.

We have measured directly the noise emitted by the room temperature am-
plifier; we find T0 ∼ 100 K. This is in disagreement with the parametersT ∗0
deduced from the fit of the data, but is well explained by the finite propagation
time along the coaxial cable between the sample and the amplifier.
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Fig. 5. Measurement ofS
V 3(eV/kBT ) for sample B (solid lines). The dashed lines corresponds to

the best fit with Eq. (3.8). (from Ref. [13]).

5.2. Effect of the detection bandwidth

A powerful check thatD really measuresSV 3 is given by varying the bandwidth.
The scaling ofSV 3 with F1 andF2 (SV 3 ∝ (F2 − 2F1)

2 if F2 > 2F1 and 0
otherwise) is characteristic of the measurement of a third order moment. We do
not know of any experimental artifact that has such behavior.F1 andF2 are varied
by inserting filters before the splitter. As can be seen in Fig. 1, our measurement
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follows the dependence on(F2 − 2F1)
2, which cannot be cast into a function

of (F2 − F1). Each point on the curve of Fig. 1 corresponds to a full
〈
δV 3(I )

〉

measurement (see figures 4 and 5).

6. Effect of the environment

In order to demonstrate more explicitly the influence of the environment onSV 3

we have modified the parametersT0 andR0 of the environment and measured the
effect onSV 3.
T0 is a measure of the current fluctuations emitted by the environment towards

the sample. Its influence onSV 3 is through the correlator
〈
i2i0

〉
. This correlator

does not requirei0 to be a randomly fluctuating quantity in order not to vanish.
So we can modify it by adding a signalA sin�t to i0 (with�within the detection
bandwidth). That way we have been able to modifyT ∗0 without changingR0, as
shown on Fig. 2. The current correlator involved inT ∗0 contains interference
between the current sent to the sample and what comes back after 2�t , with�t
the propagation time along the coaxial cable between the source and the sample.
This correlator∼ 〈i0(t)i0(t − 2�t)〉 oscillates Vs.�t like cos 2��t , and thus
one can enhance (curve A1 as compared to A0 in Fig. 2) or decreaseT ∗0 , and even
make it negative (Fig. 2, A2). The curves A0–A2 are all parallel at high voltage,
as expected, since the impedance of the environment remains unchanged;R0 =
42� is the same for the fit of the three curves.

Second, by adding a 63� resistor in parallel with the sample (without the
added ac excitation) we have been able to change the resistance of the environ-
mentR0, and thus the high voltage slope ofSV 3. The fit of curve A3 gives
R0 = 24.8 �, in excellent agreement with the expected value of 25.2 � (63 �
in parallel with 42�). The apparent negativeT ∗0 comes from the negative sign
of the reflection coefficient of a wave on the sample in parallel with the extra
resistor.

7. Perspectives

7.1. Quantum regime

We have chosen to discuss the statistics of the current fluctuations with a classical
point of view. This seems enough to explain the properties we have shown until
now. However, there are situations that need to be treated quantum mechanically,
in particular, when the frequency is greater than voltage and/or temperature. It
has been calculated that the third cumulant for a tunnel junction should be com-
pletely frequency independent [17]. This is in sharp contrast with the fact that
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Fig. 6. (a) Setup for the measurement ofS
V 3(0, f̄ ). The sample, bias tee and amplifiers have been

omitted, see Fig. 1. (b) Measurement ofS
V 3(0, f̄ ∼ 1.5GHz) on sample A atT = 4.2K and

T = 50mK.

the second momentSI2 is different forh̄ω > eV , due to the fact than no photon
of energy greater thaneV can be emitted. A picture of the third moment (and
higher) in terms of photons is still missing. The effect of the environment, which
involvesSI2, might also be different at high frequency. In particular, the distinc-
tion between emission and absorption might be relevant. For example, the zero
point fluctuation of the voltage might modulate the noise, but not be detected,
and thus some of the effect of the environment might vanish.

We illustrate this discussion by the first measurement of the third moment
of voltage fluctuationsSV 3(0, f ) across a tunnel junction (sample A) at finite
frequencyf with hf > kBT . In order to perform such a measurement we have
constructed the setup of Fig. 6a. The signalδV (t) is split into two frequency
bands, LF=]0, f3] (dc excluded) and HF=[f1, f2]. The voltage is squared in the
HF band (left branch of Fig. 3a) with a high speed tunnel diode, then low-pass
filtered with a cutofff3. Thus one has products of the formi(f )i(−f ′) at the
end of the HF branch. This result is multiplied by a mixer to the LF branch,
then low-pass filtered to get a dc signal. This signal corresponds toSV 3(0, f̄ ) if
(f2 − f1) andf3 are small enough, with̄f ∼ (f1 + f2)/2. f1 andf2 can be
varied by changing the various filters.

The measurement of sample A atT = 4.2 K and T = 50 mK with the
new setup operating in the LF=10-200MHz and HF=1-2.4 GHz bandwidths is
presented in Fig. 6b. We find subtle but interpretable new results. The fit of these
data with eq. (3.8) leads toR0 = 40� andT ∗0 (T = 4.2K) = −0.4K. The slope
of SV 3 at high voltage is found to be temperature independent, like it is between
300 K and 4.2 K (see Fig. 5). The negativeT ∗0 comes from the Johnson noise
of the 12� contact resistance. The current fluctuations emitted by the contact
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Fig. 7. Measurement ofS
V 3(0, f̄ ∼ 5GHz) on sample A atT = 380mK (i.e.,hf̄ /kBT ∼ 0.6 and

T = 50mK (i.e.,hf̄ /kBT ∼ 5).

result in currents of opposite signs running through the sample and the amplifier.
As a consequence, the contact contributes toT ∗0 with a negative sign. Since we
use in this new setup a cryogenic amplifier with low noise temperatureT0, and
since the Johnson noise of the contact is not affected by the propagation time,
its contribution dominatesT ∗0 at 4.2K. We indeed observe a sign reversal ofT ∗0
when cooling the sample below 1 K, since the noise of the amplifier dominates
at low enough temperature (see Figs. 6 and 7). The non-linear behavior at low
voltage at T=4.2 K is similar to the one observed at room temperature with the
previous setup, see Fig. 5, i.e. when the noise emitted by the sample is larger
than the noise emitted by the amplifier, revealing the contribution of the feedback
of the environment.

In Fig. 7 we present the result forhf̄ < kBT andhf̄ > kBT . Those are
obtained with an HF bandwidth HF=4.5-5.5 GHz (5G Hz∼= 250 mK). The slope
at high voltage has changed whereas it was temperature independent up to 290
K. In the regimehf̄ > kBT the slope at high voltage is zero, as if only the term〈
i0i

2
〉

remained. Further experiments are required to see if this is a coincidence
for the particular values ofT or f . It is however clear that the result is different
in the two regimes.

7.2. Noise thermal impedance

In the treatment of the effect of an external source of noise on the probability
P(i) we have supposed thatP responds instantaneously to the external voltage
fluctuations. In fact one may ask how fast canP(i) react. We exemplify this
discussion in the case of the second momentSI2 of a diffusive wire.
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Fig. 8. |dS
V 2/dV |2 renormalized to its value at low frequency, versus measurement frequency

For a macroscopic wire,SI2 = 4kBTG is the equilibrium Johnson noise. A
small voltage variationδV ≪ V induces a variation of the Joule power dissi-
pated in the sample,δPJ = 2GV δV which in turn induces a variation of the
temperatureδT = G−1

th δPJ . This will take place as long as the time scale of
the variations is much smaller than the thermalization time of the wire. For a
phonon-cooled wire (L ≫ Le−ph with Le−ph the electron-phonon length) this
time will be the electron-phonon interaction time. For a wire in the hot electron-
diffusion cooled regime (Le−ph ≫ L ≫ Le−e with Le−e the electron-electron
inelastic length), the thermalization is obtained by hot electrons leaving the sam-
ple, which occurs at a time scale given by the diffusion time. For a short wire
(Le−e ≫ L), no thermalization occurs within the electron gas. The noise emitted
by the sample depends on the distribution function of the electrons in the wire,
whose dynamics is diffusive. Therefore, the relevant time scale in this regime of
elastic transport is again set by the diffusion time. Note that in this regime the
temperature is no longer defined, neither is the thermal impedance. However, one
can define a “noise thermal impedance” that extends the definition of the usual
thermal impedance to cover any case [18]. The noise thermal impedance clearly
determines the electrical effect of the environment at finite frequency. According
to our simple calculation of the thermal effect of the environment, it also deter-
minesSI3 in the hot electron regime. The elastic case is less clear, but should be
qualitatively the same [4].

In order to illustrate the noise thermal impedance, we show a preliminary
measurement ofdSV 2/dV at high frequency in a 100µm long diffusive Au wire,
see Fig.8. The sample is biased byI (t) = Idc + δI cosωt with δI ≪ Idc.
ω is varied between 100kHz and 100MHz. With a setup similar to the one of
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Fig. 6a, we detect how much the rms amplitude of the noise, measured by the
diode, oscillates at frequencyω, which is similar to the measurement ofSV 3 in
the presence of an external excitation. One clearly sees in the figure the cut-off at
10MHz, which probably corresponds to the electron-phonon time in the sample
at T = 4.2K. The curve can be well fitted by a Lorentzian, as expected, from
which we deduceτe−ph = 16ns. Diffusion cooling would have led to a cut-off
frequency of∼ 800kHz. A study for different length at various temperatures is
in progress.

7.3. Conclusion

In this article we have chosen to give simplified pictures of more complicated
phenomena. We hope this will encourage the reader to go through more de-
tailed literature. We have shown experimental evidence of the existence of non-
gaussian shot noise. As we have sketched in the last section, this is not the end
of the story, and we hope to motivate the emergence of new experiments in this
domain.
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1. Introduction

This chapter is devoted to some aspects of electronic transport inhybrid struc-
tures, containing a superconductor (S) connected to normal (N) metallic or to
ferromagnetic (F) electrodes. We focus on properties associated with so-called
subgap conditions, i.e., temperature and applied voltages are smaller than the
superconducting gap�.

Interest in hybrid systems containing superconductors goes back to the pio-
neering experimental work on tunnel junctions between a superconductor and a
normal metal by Giaever in 1960 [1]. A milestone was achieved by Andreev [2],
who discovered in 1964 the phenomenon now known asAndreev reflection. This
discovery marked the start of an enormous activity dealing with subgap trans-
port in NS hybrid structures. An important highlight was the development of the
Bogoliubov-de Gennes formalism[3] that provides an adequate description of in-
homogeneous systems in general and systems with NS interfaces in particular.
Based on this formalism, Blonder, Tinkham, and Klapwijk (BTK) [4] formu-
lated a transport theory that successfully describes subgap conductance across
NS interfaces as long as these interfaces are macroscopically sized. Miniaturiza-
tion of devices during the eighties lead to interest in mesoscopic NS interfaces,
where low-energy properties are known to be sensitive todisorder-induced in-
terference phenomena. Indeed, experiments done on diffusive NS systems in
the early nineties reported significant deviations from the standard BTK-type
of behavior. The associatedzero-bias anomaliesare relatively well-understood
nowadays, with the development of powerful theoretical tools like scattering the-
ory [5], quasi-classical non-equilibrium Green function techniques [6, 7, 8, 9, 10]
and circuit theory [11, 12].

In these lecture notes, we will illustrate the peculiar behavior of subgap trans-
port in mesoscopic diffusive NS hybrid systems focussing ontunnel junctions.
Apart from being of experimental relevance, the main reason for studying tun-
nel junctions is that they are amenable to relatively simple calculations using
perturbation theory in combination with standard Green function techniques for
disordered metals. Specifically, we obtain the subgap current and conductance at
small but finite voltage and temperature in a simple, closed form, that enables a
direct physical interpretation [13]. This is in contrast to the aforementioned more
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elaborate techniques [5, 10, 11, 12] that are either restricted to zero energy only,
or are too complicated to be discussed in simple terms.

We will start our considerations with junctions between N and S in theclean
limit, which means that the effects of impurity scattering will be ignored. Then
we will turn our attention to thediffusive limitand see that subgap transport is
very sensitive to disorder-induced interference effects. We also considercurrent
noise in the subgap regime, and show that it is affected by the same phenom-
enon. Finally, we discussmulti-probe hybrid structuresinvolving ferromagnetic
electrodes and show that additional correlated tunnelling processes must be taken
into account to describe transport.

Despite the considerable amount of work on the Josephson effect in meso-
scopic hybrid systems of the SNS or SFS type, we will not treat such systems in
these notes. The reader is referred to a recent review for details [14].

2. NS junctions in the clean limit

2.1. Single particle tunnelling in a tunnel junction

2.1.1. Introduction
Tunnelling in hybrid systems has been known for many years already to be a sen-
sitive tool enabling one to probe the energy-dependence of thedensity of states
(DoS). Combining an ordinary normal metal, whose DoS is approximately con-
stant close to the Fermi level, with an electrode whose DoS is energy-dependent
(e.g., due to the presence of interactions), yields non trivial tunnel current-voltage
(I -V ) characteristics. A careful analysis of these characteristics and in particular
of thedifferential conductancedI/dV enables one to obtain information on the
energy-dependent DoS. In 1960, Giaever [1] pioneered this technique, measuring
theI -V characteristics of a tunnel junction between a normal metal and a super-
conductor (NIS junction). As temperature was decreased below the gap, the usual
linear characteristics found at high temperatures became non-linear, developing
a gap at low voltages. Giaever thus confirmed the energy-dependent density of
states as predicted by the microscopic theory of superconductivity [15, 16]. It is
instructive to analyze the NIS junction in some detail as a starting point of our
study of hybrid systems.

2.1.2. Tunnel Hamiltonian
In order to describe the physics of NIS junctions, we will mainly make use of the
tunnel Hamiltonian formalism, introduced in Ref. [17]. For a textbook treatment,
see,e.g., [18]. In this formalism, the total Hamiltonian of the junction is written
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as the sum of three parts,Ĥ = ĤL+ĤR+ĤT , whereĤi with i = L,R describes
the left and right electrode, respectively, andĤT is thetunnel Hamiltonian

ĤT =
∑

k,p,σ,σ ′
tk,p;σ,σ ′ â

†
k,σ b̂p,σ ′ + t∗k,p;σ,σ ′ b̂

†
p,σ ′ âk,σ . (2.1)

The operator̂a†
k,σ (âk,σ ) creates (annihilates) an electron with quantum numberk

and spinσ in the left electrode, similarly for̂b† (b̂) in the right electrode. Hence,
the first term on the r.h.s. of Eq. (2.1) describes tunnelling from the right to the
left electrode, the second term tunnelling from left to right. The creation and an-
nihilation operators obey the usual fermionic anticommutation rules. The ampli-
tudetk,p;σ,σ ′ is associated with the tunnel probability. Throughout these lectures
we will assume spin to be conserved during tunnelling, hence the amplitude is
independent of the spin indices. In this Section, for simplicity, we furthermore
ignore the dependence oft on quantum numbersk andp and puttk,p = t0. This
dependence will be restored below in Section 3, however, when we discuss the
diffusive limit.

2.1.3. Perturbation theory: golden rule
In order to find theI -V characteristics of the junction, we use perturbation theory.
According to Fermi’s golden rule, the rate for tunnelling from a statek, σ in the
left electrode to a statep, σ in the right electrode can be written as

Ŵk,σ→p,σ =
2π

h̄
|t0|2fL(ǫk)[1− fR(ǫp)]δ(ǫk − ǫp). (2.2)

Here,fi(ǫ) = [eβ(ǫ−µi ) + 1]−1 is the Fermi function for electrodei = L,R

kept at electrochemical potentialµi and temperatureT (we defined the inverse
temperatureβ = 1/kBT ). The presence of the Fermi functions ensures that
tunnelling only occurs if the initial state inL is occupied and the final state in
R is empty. Theδ-function imposes energy conservation during tunnelling. The
energiesǫk constitute the continuous single particle spectrum of the electrodes.

We proceed by calculating the total rateŴ = ŴL→R−ŴR→L, whereŴL→R =∑
k,p,σ

Ŵk,σ→p,σ , and similarly forŴR→L. In the present, non-magnetic case the

sum over spin yields just a factor of two. Finally, we change variablesξk = ǫk −
µL, ξp = ǫp−µR, thus measuring energies with respect to the chemical potential
of each electrode. Replacing the sums overk by an integral over the continuous
spectrum,

∑
k,(p)

. . .→
∫
dξNL,(R)(ξ) . . ., whereNL(R)(ξ) is the density of states



390 F.W.J. Hekking

(DoS)per spinper unit energy of the left (right) electrode, we obtain

Ŵ = 4π |t0|2
h̄

∫
dξ1dξ2NL(ξ1)NR(ξ2)[f (ξ1)− f (ξ2)]δ(ξ1 − ξ2 + eV )

= 4π |t0|2
h̄

∫
dξNL(ξ)NR(ξ + eV )[f (ξ)− f (ξ + eV )], (2.3)

whereeV is the electrochemical potential difference between the left and right
electrode.

The total electric current is then given byI = eŴ. Let us consider two cases
of general interest:

NIN junction. If both electrodes are ordinary normal metals, the DoSN(ξ) can
be considered as a constant, equal to the valueN0 at the Fermi energy. Integration
over energy in (2.3) is straightforward. One finds that theI -V characteristic is
linear and given byININ = GT V , where

GT =
4π

h̄
e2|t0|2N2

0 (2.4)

is the normal state tunnel conductance of the junction.

NIS junction. If one electrode is superconducting with a gap�, characterized
by the standard BCS DoS

NBCS(ξ) =
{
N0

|ξ |√
ξ2−�2

for |ξ | > �;
0 otherwise,

(2.5)

we find

INIS =
GT

e

∫

|ξ |>�

dξ
|ξ |√
ξ2 −�2

[f (ξ)− f (ξ + eV )]. (2.6)

We see that theI -V characteristics are strongly nonlinear. The differential con-
ductance is given by

GNIS =
dINIS

dV
= GT

4kBT

∫

|ξ |>�

dξ
|ξ |√
ξ2 −�2

1

cosh2[β(ξ + eV )/2]
. (2.7)

At zero temperature, this reduces to

GNIS =
{
GT

|eV |√
(eV )2−�2

for |eV | > �;
0 otherwise,

(2.8)
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Fig. 1. Dimensionless zero-temperature tunnel conductanceG = GNIS/GT , as a function of voltage
eV/�.

hence this quantity is directly proportional to the superconducting DoS (2.5).
In Fig. 1 we plot the zero-temperature differential conductance as a function of
voltage. Note in particular the absence of a single particle contribution to the
differential conductance for voltageseV < �. This is directly related to the
absence of quasi-particle states with energies below the gap in a superconductor.

2.1.4. Higher order processes
As we have seen above, a perturbation calculation up to ordert20 yields zero
tunnel conductance at energies smaller than the superconducting gap�. Single
particle transport is not possible below the gap since single quasiparticle states
are not available in the superconducting electrode. Technically speaking this
means that higher order tunnel processes should be considered. The next order
pertains to transferring two particles at a time. This possibility was considered
in 1969 by Wilkins [19]. Indeed, as we will detail in Section 3 below, an order
t40 calculation yields the transfer of electron pairs from the normal metal into the
superconductor. This process is possible below the gap, as the two electrons from
N can form a Cooper pair in S, hence this process will not suffer from the absence
of final states.

In fact, the two-electron tunnelling process across an NIS junction corre-
sponds to the tunnel limit of the well-knownAndreev reflection process[2] that
occurs in NS junctions with a clean interface. Below we will analyze Andreev
reflection in more detail. In particular, we will treat Andreev reflection in the
framework of so-calledBogoliubov-de Gennes theory[3], which was worked out
for NS interfaces by Blonder, Tinkham and Klapwijk (BTK) [4]. The BTK ap-
proach enables one to treat arbitrary scattering at the NS interface. However,
BTK theory does not take disorder in the electrodes into account. As we will see
in Section 3 disorder plays a crucial role, and strongly influences subgap trans-
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port in NS hybrid systems. We will investigate these issues in particular in the
tunnel limit.

2.2. Bogoliubov-de Gennes equations

2.2.1. BCS Hamiltonian and diagonalization
The starting point for the analysis developed by Bogoliubov and de Gennes [3]
is the mean-field BCS Hamiltonian, which can be written as

ĤBCS =
∑
σ

∫
d3r�̂†

σ (�r)
[

1
2m

(
h̄
i
∇ − e

c
�A(�r)

)2
+ U(�r)− µ

]
�̂σ (�r)

+
∫
d3r[�(�r)�̂†

↑(�r)�̂
†
↓(�r)+�∗(�r)�̂↓(�r)�̂↑(�r)]. (2.9)

Here,m is the electron mass,�A(�r) is the vector potential,U(�r) an external po-
tential andµ the chemical potential. The space-dependent gap is determined by
the self-consistency equation

�(�r) = −g(�r)〈�̂↓(�r)�̂↑(�r)〉, (2.10)

whereg(�r) is the interaction constant characterizing the attractive interaction
between electrons. It depends on position�r, changing from its maximum value
deep within superconducting regions tog = 0 in normal metallic parts. The
fermionic field operators obey the usual anticommutation relations like,e.g.,

{�̂σ (�r), �̂†
σ ′(�r ′)}+ = δσ,σ ′δ(�r − �r ′). (2.11)

We now diagonalizeĤBCS with the help of theBogoliubov transformation

�̂↑(�r) =
∑

k

uk(�r)γ̂k,↑ − v∗k (�r)γ̂ †
k,↓; (2.12)

�̂↓(�r) =
∑

k

uk(�r)γ̂k,↓ + v∗k (�r)γ̂ †
k,↑, (2.13)

with new fermionic operatorŝγ , γ̂ †. According to this transformation, an elec-
tronic excitation can be annihilated either by annihilating aBogoliubov quasi-
particle of the same spin or by creating one with opposite spin. The Bogoliubov
transformation leads todiagonalizationof the BCS Hamiltonian,

ĤBCS →
∑

k,σ

Ek γ̂
†
k,σ γ̂k,σ , (2.14)
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under the condition thatu, v satisfy the so-calledBogoliubov-de Gennes equa-
tions,

H0(�r)u(�r)+�(�r)v(�r) = Eu(�r); (2.15)

−H ∗
0 (�r)v(�r)+�∗(�r)u(�r) = Ev(�r), (2.16)

with H0(�r) = 1
2m [ h̄i ∇ − e

c
�A(�r)]2 + U(�r) − µ. These equations determine the

eigenfunctionsu, v and eigenenergiesE > 0 corresponding to the excitations of
the superconductor for given potentials�A(�r) andU(�r).

2.2.2. Simple examples
For simplicity, we work out the Bogoliubov-de Gennes (BdG) equations for
a clean, one-dimensional geometry�r → x, without applied fields, such that
U(x) = �A(x) = 0.

Normal metal. In a normal metal we haveg = 0, hence� = 0. The BdG
equations therefore reduce to the simple set

−
[
h̄2

2m

d2

dx2
+ µ

]
u(�r) = Eu(�r); (2.17)

[
h̄2

2m

d2

dx2
+ µ

]
v(�r) = Ev(�r). (2.18)

The excitations are plane wave solutionsu(x) = e±ik+x andv(x) = e±ik−x ,
where

k± =
√

2m(µ± E)/h̄. (2.19)

The spectrum is continuous. Defining the Fermi wave vectorkF =
√

2mµ/h̄,
we see that the wave vectork+ > kF , i.e. the excitationu is outside the Fermi
sea; we refer to it as a particle-like excitation. Similarly,k− < kF corresponds
to a hole-like excitationv within the Fermi sea. Thus in total there are four types
of excitations: right- and left-moving particlese±ik+x and holese∓ik−x , where
the upper (lower) sign corresponds to right- (left-) movers. Note that holes are
time-reversed particles and thus movein opposite direction. This can be seen
explicitly by calculating the group velocityvg,± for particles and holes from
Eq. (2.19), thereby showing that for holesvg,− ∼ dE/dk− ∼ −k−.
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Superconducting metal.In a uniform superconducting metal, we haveg =
const �= 0, hence�(�r) = � = |�|eiφ , whereφ is thesuperconducting phase.
The BdG equations therefore form acoupled set

−
[
h̄2

2m

d2

dx2
+ µ

]
u(�r)+�v(�r) = Eu(�r); (2.20)

[
h̄2

2m

d2

dx2
+ µ

]
v(�r)+�∗u(�r) = Ev(�r). (2.21)

We find again four plane wave solutions for right- and left-moving particles and

holes,u(x) ∼ v(x) ∼ e±iλ±x whereλ± =
√

2m(µ±
√
E2 − |�|2)/h̄ (upper

sign corresponds to particle, lower sign to hole). One immediately sees that
there are two cases to be distinguished:E > |�| andE < |�|. The first case
corresponds to excitations with an energy larger than the gap. Their wave vector
is purely real, thus these excitations correspond to extended states throughout the
superconductor. The second case leads to wave vectors with anonzero imaginary
part, ℑm [λ] ∼

√
|�|2 − E2/h̄vF . In other words, such excitationsdecayover

a length scale 1/ℑm [λ]. The smallest value of this length is obtained at the
Fermi level (E = 0) and equals theclean superconducting coherence length
ξS = h̄vF /|�|. There are no extended state excitations with energiesE less than
|�|.

We introduce amplitudesu0 andv0 such that

u2
0 = 1− v2

0 =
1

2

(
1+

√
E2 − |�|2
E

)
. (2.22)

Note that these amplitudes are complex for energies below the gap. The particle-
like excitations can then be written as

ψp(x) =
(
u0
v0

)
e±iλ+x, (2.23)

and similarly for hole-like ones

ψh(x) =
(
v0
u0

)
e∓iλ−x, (2.24)

where the upper (lower) sign in the exponentials corresponds to right- (left-) mov-
ing excitations.
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Fig. 2. NS interface as discussed in the text.

2.2.3. NS interface
We now turn to the discussion of the NS interface, as depicted in Fig. 2. We
follow Ref. [4], and assume the gap�(x) to vary as a step function:�(x) =
� (x), with� real. This step function approximation implies in particular that
we ignore spatial variations of the gap on the superconducting side induced by
the presence of the interface with the normal metal (so-calledinverse proximity
effect). In addition, scattering may be present at the interface, represented by a
non-vanishing potential energyU(x) in the BdG equations. We thus can consider
an incoming particle-like excitation,

ψinc(x) =
(

1
0

)
eik+x, (2.25)

that can be reflected either as a hole or as a particle,

ψref l(x) = a
(

0
1

)
eik−x + b

(
1
0

)
e−ik+x, (2.26)

or transmitted as a particle or a hole,

ψtrans(x) = c
(
u0
v0

)
eiλ+x + d

(
v0
u0

)
e−iλ−x . (2.27)

The coefficientsa, b, c, d depend on the scattering at the interface and will be
determined in some cases below.
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Clean interface. A clean interface is one at which no backscattering occurs,
thus we setU(x) = 0. Matching the solutions at the interface we find the follow-
ing relations

1+ b = cu0 + du0, a = cv0 + du0,

(1− b)k+ = cu0λ+ − dv0λ−, k−a = cv0λ+ − du0λ−. (2.28)

Making thequasi-classical approximationk+ ≃ k− ≃ λ+ ≃ λ− ≃ kF , we
immediately findb = d = 0, a = v0/u0, c = 1/u0.

We thus see that, both forE > � andE < �, the normal reflection probabil-
ity B = |b|2 = 0 for a clean interface. However, the particle can bereflected as
a hole, with probabilityA = |a2| = |v0/u0|2. This probability is 1 forE < �.
Moreover, due to the complex nature ofu0 andv0 at energies below the gap, the
phase of the amplitudea is nonzero and given byφa = arccosE/�. The max-
imum value of this phaseφa = π/2 is found forE = 0, and it decreases with
increasingE. At the gapE = �, the phaseφa = 0. For energies above the gap
we findA = (E −

√
E2 −�2)/(E +

√
E2 −�2), the phaseφa remains 0. The

probability to be reflected as a hole decreases with energy and tends to zero for
E ≫ �.

The group velocity and the wave vector of a hole-like excitation have opposite
sign, therefore the current carried by a reflected hole in the normal electrode is
directedtowardsthe interface. The total transmission associated to the particle
flux is therefore given by 1− B(E) + A(E). Thehole reflection channel below
the gap thus increases current: for A = 1 andB = 0 for each incoming particle
there is a reflected hole and thus effectively two particles enter the supercon-
ductor, decaying eventually into a Cooper pair. This corresponds to theAndreev
reflection process. Above the gap,A = B = 0, only usual particle transmission
occurs with unity transmission.

Effect of scattering at the interface.Still following the paper by Blonder, Tin-
kham and Klapwijk [4] we model scattering at the interface with the help of aδ-
function barrier located atx = 0, thus puttingU(x) = U0δ(x) in the BdG equa-
tions. The effect of this barrier can be conveniently expressed with the help of the
dimensionless parameterZ = mU0/h̄

2kF that measures the barrier strength with
respect to the Fermi energy. Matching the wave functions at the interface yields
the four coefficientsa, b, c, d and the related probabilitiesA,B,C,D. For de-
tailed calculations and results we refer the reader to Ref. [4]. In order to illustrate
the general trend, we plot the behavior ofA(E) andB(E) as a function of energy
E for various values of the parameterZ in Fig. 3. If scattering at the interface is
weak, we find the results of the previous paragraph:B ≈ 0 at all energies and
A ≈ 1 below the gap, dropping to 0 above the gap. At energies below the gap,
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Fig. 3. Reflection coefficientsA(E) for Andreev reflection (upper panel) andB(E) for normal reflec-
tion (lower panel) as a functionE/�, for Z = 0.01, 1.0, and 2.0 (from top to bottom). Curves are
off-set for clarity.

the only reflection process is Andreev reflection. Increasing the barrier strength
increases normal backscattering thus reducing the subgap transmission, except
for a narrow region close to the gap where Andreev reflection still dominates.

I -V characteristics. In order to discuss transport, we can use the standard
Landauer-Büttiker scattering formalism[20, 21]. In this formalism, the usual,
single-channel result for current through a conductor with transmission coeffi-
cientT (E) is given by

I = e

πh̄

∫
dE[f (E)− f (E + eV )]T (E). (2.29)

The currentI flows between two reservoirs kept at electrochemical potential dif-
ferenceeV . This result can be extended to the case of a one-dimensional, single-
channel NS interface, replacing the transmission coefficientT (E) by the quantity
1− B(E)+ A(E),

INS =
e

πh̄

∫
dE[f (E)− f (E + eV )][1− B(E)+ A(E)]. (2.30)
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Fig. 4. Dimensionless zero-temperature differential conductanceG = dINS/GQdV , whereGQ =
e2/πh̄, as a function of voltageeV/�. Curves are off-set for clarity and correspond (from top to
bottom) toZ = 0.01, 1.0, and 2.0.

Here, the distribution functionf (E) refers to the normal metallic electrode. As
shown in [4], this expression can be easily generalized in the case of multichannel
contacts, as long as the channels can be added independently. This is the case,
e.g., when considering a planar tunnel barrier. For our purpose, the single channel
case is sufficient. In the zero-temperature limit, (2.30) becomes

INS =
e

πh̄

eV∫

0

dE[1− B(E)+ A(E)]. (2.31)

Therefore, the differential conductance atT = 0 becomes simplydINS/dV =
(e2/πh̄)[1+A(eV )−B(eV )]. This result is plotted in Fig. 4, for the same param-
eters as in Fig. 3. We see that for weak backscattering the subgap conductance at-
tains twice the normal state conductance: each incoming electron is accompanied
by hole reflection. Thus two charges are transferred thereby yielding a Cooper
pair in S. The doubling of the conductance with respect to the normal state
situation leads to the phenomenon known asexcess current. Upon increasing
the backscattering strength, normal back reflection becomes possible, which de-
creases the conductance. For strong back-reflection the two-particle transfer be-
comes highly improbable and the conductance drops significantly below the gap.

Experimental results that are compatible with the analysis presented here were
obtained by Blonder and Tinkham [22], measuring theI -V characteristics of
point contact junctions between copper and niobium. However, as we will see
below, experiments performed in the early nineties on mesoscopic diffusive NS
systems show significant deviations from these results. These deviations can be
understood, taking mesoscopic interference effects into account that so far have
been ignored in our analysis.
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3. Disordered NIS junctions

3.1. Introduction

In 1991, experimental work by Kastalskyet al. [23] demonstrated the existence
of a large, narrow peak at zero bias in the subgap differential conductance of a
semiconductor-based NS junction (Nb-InGaAs junction). The existence of this
peak is clearly incompatible with the BTK theory developed above. This discov-
ery therefore triggered a substantial activity, both experimentally and theoreti-
cally [24]. It was readily understood that thephase-coherent motion of particles
and holesover distancesξN = √

h̄D/max{eV, kBT } in the diffusive normal
metal is responsible for the anomaly. Much experimental work was done on sys-
tems with relatively clean interfaces,i.e., the parameterZ is not too large. A pow-
erful theoretical formalism based on quasi-classical, non-equilibrium Green’s
functions [6, 7, 8] is generally used to describe such systems [9, 10]. Unfor-
tunately, this formalism is not easily amenable to physical interpretation. How-
ever, the anomaly was also seen in tunnel systems [25, 26], which can be well
described in the framework of the tunnel Hamiltonian. Indeed, as we will see
below, the anomaly can be relatively simply obtained in this case, combining
perturbation theory with well-known methods to describe disordered metals.

As a matter of fact, it has been shown in Ref. [13], that the subgap Andreev
tunnel current is strongly affected by the coherent scattering of electrons by im-
purities near the junction region. Two electrons originating from the supercon-
ductor with a difference in energy ofǫ can propagate in the normal metal on a
length scale of the order ofξǫ =

√
h̄D/ǫ before dephasing (D being the diffu-

sion coefficient). If the relevant energy scale of the problem,i.e. the voltage bias
V and the temperatureT are sufficiently small, the resulting coherence length
ξN = √

h̄D/max{eV, kBT } is much larger than the mean free pathl. Thus at
low temperatures and voltages the electron pairs are able to “see” the spatial
layout on a length scale given byξN ≫ l. Due tomultiple scattering close to
the barrier, electron pairs attempt many times to tunnel into the superconductor
before leaving the junction region. Interference thus substantially increases the
current at low voltage bias and the resulting conductance depends strongly on the
explicit layout.

3.2. Perturbation theory for NIS junction

3.2.1. Tunnel Hamiltonian and golden rule
We start our perturbative analysis again from the tunnel Hamiltonian

ĤT =
∑

k,p,σ

tk,pâ
†
k,σ b̂p,σ + t∗k,pb̂†

p,σ âk,σ . (3.1)
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Note that as before we assume spin-independent tunnel matrix elements. How-
ever we keep the dependence on quantum numbersk andp as this enables us to
properly treat the diffusive nature of the electronic motion in the electrodes. We
will assume that̂a-operators describe the normal electrode andb̂-operators the
superconducting electrode.

Indeed, the disorder in the electrodes gives rise to a nonzero, random im-
purity potentialU(�r) which scatters electrons. In the absence of a magnetic
field, we can introduce real one-electron wave functions that obey the associated
Schrödinger equation

[
− h̄

2

2m
�+ U(�r)− µ

]
ψk(�r) = ξkψk(�r). (3.2)

We use these wave functions as a complete basis to decompose various space-
dependent quantities. For example, in order to perform the Bogoliubov trans-
formation given by Eqs. (2.12) and (2.13) in the presence of the disorder po-
tential U(�r), we use the wave functionsψk(�r) and writeuk(�r) = ukψk(�r),
vk(�r) = vkψk(�r). Assuming the gap� to be uniform and imposing the nor-
malization condition|uk|2+ |vk|2 = 1, the BdG equations (2.15) and (2.16) then

imply Ek =
√
ξ2
k + |�|2 with

|uk|2 = 1− |vk|2 =
1

2

(
1+ ξk

Ek

)
. (3.3)

We also find the useful relationukv∗k = �/2Ek which shows that the relative
phase betweenu andv∗ is just determined by the phase of the superconducting
order parameter.

Comparing the transformation defined by Eqs. (2.12) and (2.13) with the usual
decomposition

�̂σ (�r) =
∑

k

b̂k,σψk(�r) (3.4)

in terms of ordinary electronic operatorsb̂, we conclude that the Bogoliubov
transformation can also be written as

b̂p,↑ = upγ̂p,↑ − v∗pγ̂ †
p,↓; (3.5)

b̂p,↓ = upγ̂p,↓ + v∗pγ̂ †
p,↑. (3.6)

The interest of this representation is that it enables us to express the tunnel Hamil-
tonian in terms of the Bogoliubov quasiparticle operatorsγ̂ andγ̂ †.
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Let us now consider the tunnel transfer of two electrons from the normal metal
to the superconductor. This is a second order process inĤT that involves a vir-
tual state with an excitation on both sides of the barrier. There are two ways to
accomplish the second order process:
Possibility 1: As a first step, an electron with quantum numberk and spin up is
annihilated, thereby creating an excitation with spin up and quantum numberp in
the superconductor. This leads to a virtual state with energyEp − ξk. During the
second step this excitation is annihilated upon the transfer of the second electron
(quantum numberk′ and spin down). The amplitude for this process is

A1 = vpt∗k′,p
1

Ep − ξk
u∗pt

∗
k,p. (3.7)

Possibility 2: Alternatively, we can start with the transfer of the electron with
quantum numberk′ and spin down, and then transfer the electron with quantum
numberk and spin up as a second step. Here, a virtual state with energyEp − ξ ′k
is involved. The amplitude for this process is thus

A2 = vpt∗k,p
1

Ep − ξk′
u∗pt

∗
k′,p. (3.8)

The total amplitude is then given by the sumA1+A2, thereby summing over all
possible intermediate statesp,

Ak↑,k′↓ =
∑

p

t∗k,pt
∗
k′,pu

∗
pvp

[
1

Ep − ξk
+ 1

Ep − ξk′

]
. (3.9)

The total rate for tunnelling from N to S is then given by the golden rule expres-
sion

ŴN→S =
4π

h̄

∑

k,k′
|Ak↑,k′↓|2δ(ξk + ξk′ + 2eV )f (ξk)f (ξk′). (3.10)

A similar expression can be written for the opposite rateŴS→N , the total rate
ŴNIS = ŴN→S − ŴS→N .

Under subgap conditions, botheV and temperaturekBT are small compared
to the gap�. Therefore, the single particle energiesξ will be always small
compared to the gap, implying that, when evaluating the rateŴNIS , we can ap-
proximateξk, ξk′ ≪ Ep, leading to the following approximation forAk↑,k′↓:

Ak↑,k′↓ ≃
∑

p

t∗k,pt
∗
k′,p

2u∗pvp
Ep

. (3.11)
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3.2.2. Real space representation
In order to make a connection with standard diagrammatic techniques for dif-
fusive systems, as presented in the chapter by V. Kravtsov, we rewrite the above
expressions in real space coordinates. We introduce the expansion oftk,p in terms
of the complete set of wave functions for the disordered electrodes

tk,p =
∫
d3rd3r ′t (�r, �r ′)ψk(�r)ψp(�r ′). (3.12)

As a result, the amplitudeAk↑,k′↓ can be written as

Ak↑,k′↓ =
∫
d3r1d

3r2d
3r ′1d

3r ′2t
∗(�r1, �r ′1)t∗(�r2, �r ′2)×

ψk(�r1)ψk′(�r2)F ∗(�r ′1, �r ′2), (3.13)

where we defined the quantity

F(�r1, �r2) =
∑

p

2upv∗p
Ep

ψp(�r1)ψp(�r2), (3.14)

which describesanomalous propagationbetween two points�r1 and �r2 in the
superconductor. The amplitudet (�r, �r ′) describes tunnelling between points�r and
�r ′ on different sides of the barrier. We will assume that tunnelling predominantly
occurs between neighboring points at the barrier, and thust (�r, �r ′) = t (�r)δ(�r −
�r ′)δ(z). Here we assume that the barrier is planar and located atz = 0. Therefore,

Ak↑,k′↓ =
∫

barrier

d2r1d
2r2t

∗( �r1)t∗( �r2)F ∗(�r1, �r2)ψk( �r1)ψk′( �r2), (3.15)

leading to

|Ak↑,k′↓|2 =
∫

barrier

d2r1d
2r2d

2r3d
2r4t

∗( �r1)t∗( �r2)t ( �r3)t ( �r4)×

F ∗(�r1, �r2)F (�r3, �r4)ψk(�r1)ψk′(�r2)ψk(�r3)ψk′(�r4). (3.16)

Further progress can be made introducing the retarded and advanced Green’s
function

G
R,A
ξ (�r1, �r2) =

∑

k

ψk(�r1)ψk(�r2)
ξ − ξk ± iη

, (3.17)

as well as the spectral function

Kξ (�r1, �r2) =
1

2πi
[GAξ −GRξ ]. (3.18)
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Using the definition (3.17), the latter can be rewritten

Kξ (�r1, �r2) = 1

2πi

∑

k

ψk(�r1)ψk(�r2)
[

1

ξ − ξk − iη
− 1

ξ − ξk + iη

]

=
∑

k

ψk(�r1)ψk(�r2)δ(ξ − ξk). (3.19)

For later use we note that in the limit�r1 = �r2 = �r, the spectral function is given
by

Kξ (�r, �r) =
∑

k

|ψk(�r)|2δ(ξ − ξk), (3.20)

which is by definition theenergy-dependent local DoSν(�r, ξ) per spin and per
unit energy and unit volume.

We finally rewrite the anomalous propagatorF(�r1, �r2), Eq. (3.14), with the
help of the spectral functionKξ (�r1, �r2). Using the relation 2upv∗p = �/Ep, and
inserting the identity 1=

∫
dζδ(ζ − ξp), we find that

F(�r1, �r2) =
∫
dζ

�

ζ 2 + |�|2Kζ (�r1, �r2). (3.21)

Substituting the results (3.16) and (3.21) into (3.10) and inserting the identity
1=

∫
dξdξ ′δ(ξ − ξ k)δ(ξ ′ − ξk′) we can write, using representation (3.19),

ŴN→S =
4π

h̄

∫
dξdξ ′dζdζ ′f ∗�(ζ )f�(ζ

′)δ(ξ + ξ ′ + 2eV )f (ξ)f (ξ ′)×
∫

barrier

d2r1d
2r2d

2r3d
2r4t

∗( �r1)t∗( �r2)t ( �r3)t ( �r4)×

Kζ (�r1, �r2)Kζ ′(�r3, �r4)Kξ (�r1, �r3)Kξ ′(�r2, �r4), (3.22)

where we defined the functionf�(ζ ) = �/(ζ 2+|�|2). This result is represented
diagrammatically in Fig. 5. The crosses at�ri , for i = 1, . . . ,4 correspond to
tunnelling with amplitudet (�ri). The lines describe propagation on the disordered
N and S-side of the barrier and correspond to spectral functionsK. The diagram
can be evaluated by properly averaging over the disorder, as we will discuss
below.
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Fig. 5. Diagrammatic representation of two-electron tunnelling process.

3.2.3. Disorder averaging
We perform the disorder averaging in the standard way, using the following well-
known facts (see also the chapter by V. Kravtsov):
– the impurity-averaged spectral function〈Kξ (�r1, �r2)〉dis is short-ranged in space
(typical scale is the Fermi wavelengthλF ). It attains its maximum value for
�r1 ≃ �r2 = �r,

〈Kξ (�r, �r)〉dis = 〈ν(�r, ξ)〉 = ν0 (3.23)

whereν0 ≡ N0/� is the DoS per spin and per unit energy and unit volume at the
Fermi level. In other words, the density of states of a weakly disordered metal is
practically disorder independent. This result has two important consequences.

First of all, the zero-temperature normal state tunnel conductance, which can
be easily shown to be given by

GT =
4πe2

h̄

∫

barrier

d2r1d
2r2t

∗(�r1)t ( �r2)〈K0(�r1, �r2)〉2dis, (3.24)

can also be written as

GT =
∫

barrier

d2rgT (�r), (3.25)

where we defined thelocal barrier tunnel conductance

gT (�r) =
4πe2

h̄
|t (�r)|2

∫

barrier

d2r ′〈K0(�r, �r ′)〉2dis ∼
4πe2

h̄
|t (�r)|2ν2

0λ
2
F . (3.26)
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Fig. 6. Approximations discussed in the text.

Secondly, for coinciding arguments, the anomalous propagatorF reads

〈F(�r, �r)〉dis = πν0e
iφ(�r) (3.27)

where we added a (weak) dependence of the gap on�r through the superconduct-
ing phaseφ(�r). This enables one to describe,e.g., the presence of a supercurrent
or loop geometries with a magnetic flux.
– the average over impurities of the product of a retarded and advanced Green’s
functions yields

〈GRξ (�r1, �r2)GAξ ′(�r2, �r1)〉dis ≡ 2πν0Pξ−ξ ′(�r1 − �r2), (3.28)

wherePξ−ξ ′(�r1 − �r2) is the Cooperon, which satisfies the equation

−h̄D��r1Pǫ(�r1 − �r2)− iǫPǫ = δ(�r1 − �r2), (3.29)

with D the diffusion coefficient. This means that the impurity average

〈Kξ (�r1, �r2)Kξ ′(�r2, �r1)〉dis =
ν0

2π
[Pξ−ξ ′(�r1 − �r2)+ Pξ ′−ξ (�r1 − �r2)]. (3.30)

This is a long-ranged object: as can be seen from Eq. (3.29), space-dependent
diffusion occurs over a characteristic length scale|�r1−�r2| of the order of

√
h̄D/ǫ.

We are now in a position to calculate the total impurity averaged rate for trans-
fer of electrons through the NIS junction. We use the fact thatsingle impurity-
averaged lines in diagram 5 are short-ranged but averagedpairsof lines are long-
ranged. This leads us to the approximation depicted in Fig. 6. The long-ranged
contribution stems from Cooperon propagation either in N or in S. Let us compare
the spatial range of the Cooperon in N and in S. In N, the energy differenceξ−ξ ′
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is determined by the Fermi functionsf and given by max(eV, kBT ). Therefore
the range of the Cooperon is given byξN = √

h̄D/max(eV, kBT ). As to S, the
function f�(ζ ) fixes ζ ∼ �, therefore the range of the Cooperon is given by
ξS =

√
h̄D/�. Under subgap conditionskBT , eV ≪ �, and thusξN ≫ ξS .

We conclude that the contribution from diagram 6a dominates the one stemming
from 6b.

In accordance with the above statements, the total rateŴNIS = ŴN→S−ŴS→N
and hence the impurity-averaged current through the NIS junction, can be written
as

INIS = 2eŴNIS =
∫
dǫI (ǫ)[f (ǫ/2− eV )− f (ǫ/2+ eV )], (3.31)

where we defined thespectral current

I (ǫ) = h̄

8e3ν0

∫

barrier

d2r1d
2r2 cos[φ(�r1)− φ(�r2)]gT (�r1)gT (�r2)×

[Pǫ(�r1 − �r2)+ P−ǫ(�r1, �r2)]. (3.32)

We calculate the differential conductance directly from Eq. (3.31), finding

GNIS = dINIS/dV = e

4kBT

∫
dǫ

[
I (ǫ + 2eV )+ I (ǫ − 2eV )

cosh2(βǫ/4)

]
. (3.33)

These equations constitute the central results of this Section. They clearly show
the interplay between phase coherence in a superconductor and a normal metal.
The intrinsic coherence of the superconductor is reflected by the appearance of
the phase differenceφ(�r1) − φ(�r2) between tunnel points�r1 and�r2. This phase
difference plays a crucial role in the experiment [25], see also Section 3.4.3.
below. In the normal metal the two incoming electrons undergo many elastic
scattering events in the junction region, before they tunnel through the NIS in-
terface, leading to electronic interference on a length scale given byξN . These
interference effects have been taken into account by averaging in the standard
way over possible scattering events, leading to the appearance of the Cooperon
P . Therefore, subgap transport in NIS junctions not only depends on properties
of the barrier (the local tunnel conductancegT ), but also on its surroundings, over
a distanceξN , due to interference occurring on this length scale.

3.3. Example: quasi-one-dimensional diffusive wire connected to a supercon-
ductor

3.3.1. Calculation of the spectral current
In order to illustrate the implications of the results just obtained we study an
instructive example. A quasi-one-dimensional wire (lengthL and cross-section
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Seff ) is connected to a massive superconducting electrode by a point-contact
tunnel junction, placed at�r = 0. The spectral current is thus obtained by setting
�r1 = �r2 in Eq. (3.32), hence its energy dependence is determined by the behavior
of Pǫ(0,0). In order to obtain this quantity, we assume thatξN ≫ S

1/2
eff such

that diffusion is one-dimensional and we can solve the one-dimensional diffusion
equation

−h̄Dd2P/dx2
1Pǫ(x1, x2)− iǫPǫ(x1, x2) = δ(x1 − x2), (3.34)

with boundary conditiondP/dx = 0 at the barrier, indicating no current. Upon
Fourier transforming this equation we obtain the Cooperon in momentum repre-
sentation,

P(k, ǫ) = 1

h̄Dk2 − iǫ , (3.35)

which can be transformed back to yield

Pǫ(0,0) = 1

Seff

1

L

∑

k

1

h̄Dk2 − iǫ

= 1

2πSeff

∫
dk

1

h̄Dk2 − iǫ

= 1

2Seff

√
i

ǫh̄D
. (3.36)

Therefore, the spectral current is given by

I (ǫ) = h̄G2
T

8e3ν0Seff

√
1

2|ǫ|h̄D . (3.37)

3.3.2. Zero-temperature limit
At T = 0 we can easily perform the integration over energy in Eqs. (3.31) and
(3.33) with the result Eq. (3.37) to obtain, respectively

INIS =
h̄G2

T

2e2ν0Seff

V√|eV |h̄D ≡ G2
TRN (V )V, (3.38)

and

GNIS = 4eI (|2eV |) = h̄G2
T

4e2ν0Seff

1√|eV |h̄D ≡ G2
TRN (V )/2. (3.39)
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Fig. 7. Dimensionless zero-temperature differential subgap conductanceg = 2GNIS/G
2
T
Rw , as a

function of dimensionless voltageev = eV/Eth, in units of the Thouless energyEth.

Here we defined the resistanceRN (V ) ≡ ξN/(σ0Seff ) of the diffusive wire over
a lengthξN = √

h̄D/eV , using the Einstein relationσ0 = 2e2ν0D to obtain the
Drude conductivityσ0 of the metal.

The lengthξN , and hence the resistanceRN (V ), diverges forV → 0. Phys-
ically, this is due to the fact that forT , V = 0 the two tunnelling electrons
have the same energy, and thus their relative phase is conserved over infinite
distances. However, the associated low-energy divergence of the subgap conduc-
tance is spurious and will be cut naturally by either of three mechanisms. First
of all, the coherent propagation of two electrons in N is limited by decoherence
effects. Indeed, electron-electron interactions are known to induce decoherence,
and the range of Cooperon propagation is cut by the so-calleddecoherence length
Lφ [27, 28]. Second, if the lengthL of the wire is finite, this also provides a cut-
off for diffusion, as long asL < Lφ . But even if bothL andLφ were infinite, the
subgap conductance would not diverge at zero bias. In fact, since we performed
a perturbation calculation, we must impose that the subgap conductance remains
bound somehow. Indeed, perturbation theory can be shown to break down when
the differential conductance becomes of the order of the normal state tunnel con-
ductance,GNIS ∼ GT , i.e., whenRN (V ) ∼ 1/GT . A different charge transfer
regime known asreflectionless tunnellingsets in, that can only be obtained non-
perturbatively, see [5] for details.

In Fig. 7, we plot the differential conductance of the wire as a function of
voltage. We assume that the finite lengthL < Lφ and thus cuts off the phase-
coherent diffusion. Therefore, the maximum value of differential subgap conduc-
tance equalsGNIS = G2

TRw/2, whereRw = L/(σ0Seff ) is the total resistance
of the wire. The subgap conductance thus will saturate as soon asRN (V ) ∼ Rw,
i.e. for voltagesV such thateV < Eth, whereEth = h̄D/L2 is the Thouless
energy of the wire. The tunnel approach is correct as long as reflectionless tun-
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nelling can be ignored. This means thatGTRw ≪ 1, i.e., the resistance of the
wire should be much less than the normal state tunnel resistance of the barrier.

3.4. Subgap noise of a superconductor-normal-metal tunnel interface

So far we have shown that the subgap conductance through a tunnel junction be-
tween a superconductor and a normal metal is strongly affected by interference
of electron waves scattered by impurities. We conclude this Section by inves-
tigating how the same phenomenon affects thelow frequency current noise, S,
for voltagesV and temperaturesT much smaller than the superconducting gap
� [29]. More results on subgap noise in mesoscopic NS junctions can be found
in the chapter by T. Martin.

3.4.1. Current fluctuations in NS systems
The theoretical understanding of current fluctuations in mesoscopic normal metal-
superconductor (N-S) hybrid systems has recently seen important advances [30,
31, 32]. An important reason for this is the development of simple techniques
to calculate thefull counting statistics of quantum charge transfer[33, 34, 35].
In particular, the current fluctuations in a diffusive wire in good contact with a
superconductor have been calculated for any voltage and temperature below the
gap [36], taking into account the space-dependent coherent propagation in the
normal metal of electrons originating from the superconductor.

Interestingly, the case of a tunnel junction between a diffusive metal and a
superconductor has been less investigated, partially because it has only very re-
cently become possible to measure current noise in tunnel junctions [37]. The-
oretically, current noise in a NIS junction has been considered by Khlus long
ago [38], but neglecting the space-dependent coherent propagation of electrons
in the normal metal. Later, de Jong and Beenakker included coherent propaga-
tion in the normal metal at vanishing temperature and voltage [39]. The effect of
a finite voltage was studied using a numerical approach [40]. More complicated
structures with several tunnel barriers have also been considered. In some limits
these can be reduced to a single dominating NIS junction with a complex normal
region [41, 42]. Based on the results obtained above, one may expect that the
noise at finite voltage and temperature depends on the spatial layout when a tun-
nel barrier is present. Here we show indeed how the coherent diffusion of pairs
of electrons determines the subgap current noise of a NIS tunnel junction.

In particular, at equilibrium we find that ageneralized Schottky relationholds
for voltages and temperatures smaller than the superconducting gap [29]:

S(V, T ) = 4e coth(eV/T )I (V, T ). (3.40)
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As we have seen in Section 3.2 above, due to the interplay between the proximity
effect and the presence of the barrier the current voltage characteristics is both
non-universal and non-linear. However, according to Eq. (3.40), theratio F =
S/(2eI) = 2coth(eV/T ), known asFano factor, is universalas long as the
electron distribution on the normal metal is at equilibrium. In particular, for
T ≪ eV the Fano factor is 2, indicating that the elementary charge transfer is
achieved by Cooper pairs. If the normal metal is driven out of equilibrium, within
our formalismF can be calculated once the geometry is known. One finds then
that the noise and the current remain both independent of each otherandstrongly
dependent on the geometry. We discuss a realistic example inspired by [43],
where we predict strong deviations from Eq. (3.40).

3.4.2. Current noise in tunnel systems
Charge transport in low transmission tunnel systems is characterized by the fact
that subsequent events of charge transfer areuncorrelated. Therefore, tunnelling
is a stochastic process, described by Poisson statistics. To be specific, let us
assume that each tunnel event transfers a chargeq. The average number of tunnel
events per unit time from the left to right electrode isŴ+; similarly,Ŵ− for events
from right to left. The probability thatN+(−) tunnel events occur per unit time
from left to right (right to left) is then given by the Poisson distribution

P(Ni) = e−Ŵi
Ŵ
Ni
i

Ni !
, (3.41)

wherei = ±.
The currentI+(t) from left to right at timet is given by a sum over current

pulses corresponding to tunnel events from left to right at timest1, . . . tN+ ,

I+(t) = q
N+∑

n=1

δ(t − tn); (3.42)

a similar expression can be written forI−(t). The total current is given byI (t) =
I+(t)− I−(t). In order to find the average current we need to calculate

〈Ii(t)〉 =
∞∑

Ni=0

P(Ni)

∫
dt1 . . . dtNi Ii(t) = qŴi . (3.43)

We thus find that

〈I (t)〉 = q(Ŵ+ − Ŵ−), (3.44)

independent of timet .
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The noiseS(t, t ′) is defined as

S(t, t ′) = 〈I (t)I (t ′)〉 − 〈I (t)〉2. (3.45)

Tunnelling from left to right is independent of tunnelling from right to left. Thus

S(t, t ′) =
∑

i=±
〈Ii(t)Ii(t ′)〉 − 〈Ii(t)〉2. (3.46)

A straightforward calculation shows that

〈Ii(t)Ii(t ′)〉 =
∞∑

Ni=0

P(Ni)

∫
dt1 . . . dtNi Ii(t)Ii(t

′)

= q2Ŵ2
i + q2δ(t − t ′)Ŵi . (3.47)

Therefore,S is given by

S(t, t ′) = q2(Ŵ+ + Ŵ−)δ(t − t ′). (3.48)

We thus conclude that knowledge of the tunnel ratesŴi implies that not only the
average current, but also the zero-frequency noiseS ≡ S(ω = 0) = q2(Ŵ++Ŵ−)
can be immediately found.

3.4.3. Generalized Schottky relation
The results from Section 3.2 can be straightforwardly applied to our case of noise
in an NS tunnel interface under subgap conditions. Identifying the chargeq = 2e
per tunnel event and the ratesŴ+ = ŴN→S , Ŵ− = ŴS→N , we obtain immedi-
ately, using Eq. (3.10),

I = 4πe

h̄

∑

k,k′
|Ak↑,k′↓|2δ(ξk + ξk′ + 2eV )H−(ξk, ξk′), (3.49)

S = 16πe2

h̄

∑

kk′
|Ak↑,k′↓|2δ(ξk + ξk′ + 2eV )H+(ξk, ξk′), (3.50)

where

H±(ξ, ξ ′) = f (ξ)f (ξ ′)± [1− f (ξ)][1− f (ξ ′)]. (3.51)

The impurity averaging procedure can be carried through, both forI andS, as
above in Section 3.2. We thus obtain:

(
I

S

)
=
∫ ∞

−∞
dǫI (ǫ)

(
H−( ǫ2 + eV,− ǫ2 + eV )

4eH+( ǫ2 + eV,− ǫ2 + eV )

)
, (3.52)

where the spectral currentI (ǫ) is given by Eq. (3.32).
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Fig. 8. Experimental set up similar to Ref. [25]. The magnetic flux dependence of the current and
noise can be used to measure the doubling of the Fano factor with high accuracy. (From Ref. [29].)

If the normal metal is in thermal equilibrium,f (ξ) is the Fermi distribution.
In that caseH+ andH− are related to each other by the simple relation:

H+(ǫ/2+ eV,−ǫ/2+ eV )
H−(ǫ/2+ eV,−ǫ/2+ eV )

= coth

(
eV

T

)
, (3.53)

and this way we have demonstrated the validity of Eq. (3.40).
In order to emphasize the generality of Eq. (3.40) let us consider a non-trivial

example. In Ref. [25] the low-voltage anomalies due to the proximity effect have
been detected in a superconducting fork connected to a normal metal through
two tunnel junctions as shown in Fig. (8). The superconducting phase difference
φ1 − φ2 between the two NIS junctions at the ends of the fork could be tuned by
magnetic flux�, applied perpendicular to the fork. If the distance between these
junctions is less thanξN , according to Eq. (3.32) a contribution to subgap cur-
rent exists involving both junctions; moreover this contribution is proportional to
cos(φ1 − φ2) and should therefore oscillate with flux�. Indeed, it was found
experimentally that a partI (�) of the subgap current through the structure is
periodically modulated by the external magnetic field. Using Eq. (3.40) one can
predict the following noise dependence on the magnetic flux� through the ring:
S(�) = 4e coth(eV/T )I (�). Since the� dependent part is given by the coher-
ent propagation oftwo electronsbetween the two junctions anysingle particle
contribution is eliminated from the outset. This experiment could thus be used
to test accurately the validity of Eq. (3.40) and in particular the doubling of the
charge at low temperature.

If f (ξ) is not given by the equilibrium Fermi distribution, Eq. (3.53) does
not hold andS andI become independent. Indeed, the Fano factor ceases to be
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Fig. 9. Normal metallic wire (N) of lengthL, connected at positionx to a superconducting electrode
(S) via a tunnel junction. The potential difference across the wire isU , the superconductor is kept at
potentialV .

universal and gives new information on the system. The technique developed so
far enables calculation ofF also in this case, as we will now show.

3.4.4. An explicit example: a wire out of equilibrium
The results obtained so far in this Section do not crucially depend on the nor-
mal electrode being at thermal equilibrium. We therefore may well consider
the effects on transport and noise induced by anon-equilibrium distributionf
in the normal electrode. Let us consider a realistic example: In Ref. [43] the
non-equilibrium electron distribution for a small metallic wire of lengthL has
been measured by using a tunnel junction between the wire (at different posi-
tions x along the wire) and a superconductor, see also Fig. 9. In that case the
quasiparticle current was measured, but the subgap current and noise in the same
configuration could also be measured. WhenL is shorter than the inelastic mean
free path the electron distributionf (x, ξ) becomes space-dependent along the
wire and is obtained by solving the diffusion equation [43]:

f (x, ξ) = fF (ξ + eU)[1− x/L] + fF (ξ)x/L (3.54)

wherefF denotes the equilibrium Fermi distribution imposed by normal reser-
voirs at the two ends of the wire, kept at potential differenceU . The distribution
f (x, ξ) has a double discontinuity as a function ofξ atT = 0.

Since the transverse dimensionS1/2
eff of the wire is much smaller thanξN , we

can use the one-dimensional diffusion equation, as we have seen in Section 3.3.1.
Following Ref. [28] we impose the boundary condition on the propagatorP

corresponding to a good contact with a reservoir. This means thatPǫ(x1, x2)

should vanish whenx1 = 0 or L. In the dimensionless variablesu = x/L,
Eq. (3.34) becomes

d2P

du2
1

(u1, u2)+ i
ǫ

Eth
P(u1, u2) = − L

h̄DSeff
δ(u1 − u2) (3.55)
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with the boundary conditionsP(0, u2) = P(1, u2) = 0 and whereEth = h̄D/L2

is the Thouless energy of the wire. The solution can be written as a sum of a
special solution of the complete equation plus a linear combination of the two
linearly independent solutions of the homogeneous equation. The coefficients of
this combination can be chosen in such a way as to fulfill boundary conditions.
The solution reads:

P(u1, u2) =
L

2h̄DSeff z

[
e−z|u1−u2|

−e
z(u1+u2) + ez(u1+u2−2) − ez(u1−u2) − e−z(u1−u2)

e2z − 1

]
,

(3.56)

where, forǫ > 0, z = √
ǫ/Ethe

−iπ/4. We can use Eq. (3.56) to calculate the
spectral current Eq. (3.32), thereby assuming that the size of the junction is small,

I (ǫ) = G2
TL

4πe3ν0DSeff
φ(ǫ), (3.57)

where

φ(ǫ) = Re

[
sinh(zu0) sinh(z(1− u0))

z sinh(z)

]
, (3.58)

andu0 indicates the position of the junction along the wire. Introducing again the
resistance of the wireRw = L/2Seff e2Dν0 and using Eq. (3.52), the expression
for the current simplifies to

I = G2
TRw

2πe

∫
dǫ φ(ǫ)H−(ǫ/2− eV,−ǫ/2− eV ). (3.59)

The noise obeys an identical expression withH− → 4eH+. Note that in the
limit of an infinite wire the functionφ(ǫ) ∼ 1/

√
ǫ diverges at low energy, as

expected for one dimensional diffusion. Substituting Eq. (3.51) with Eq. (3.54)
into Eq. (3.59) one obtains current and noise for any temperature, voltage, and
position along the wire. Let us consider for simplicity one specific case: zero
temperature and voltage 0≤ V ≤ U/2. It is not difficult to show that in this case

I = G2
TRw

πe
φ−, and S = 4G2

TRw

π
φ+ (3.60)

with

φ± = (1− u0)

∫ 2e(U−V )

2eV
φ(ǫ)dǫ + [(1− u0)

2 ± u2
0]
∫ 2eV

0
φ(ǫ)dǫ. (3.61)
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Fig. 10. Differential Fano factorF as a function ofV/U . Different curves represent different values
of u0 going from 0 to 1 in step of 0.1 starting from the top. Departure from the value 2 or -2 is due to
the energy dependence of the tunnelling matrix element. (From Ref. [29].)

Differentiating with respect toV Eqs. (3.60) gives the differential Fano factor

F(eV ) ≡ (dS/dV )

(2e dI/dV )
. (3.62)

In our caseF is given by the following expression

F(eV ) = 2
(1− u0)φ(2eU − 2eV )− u0 (2u0 − 1)φ(2eV )

(1− u0)φ(2eU − 2eV )+ u0φ(2eV )
. (3.63)

Note that normally the Fano factor is positive since it corresponds to the (pos-
itive) current noise divided by the absolute value of the current. Thedifferential
Fano factor is then usually defined in such a way that a factor sign(I ) is im-
plicit in the definition. This makes it usually positive, since current and noise
are supposed to increase with the voltage bias. But in our case the wire is off-
equilibrium, thus the voltageV has not the usual meaning of bias voltage between
two systems at local equilibrium. Along the wire it is not even possible to define
a chemical potential, since fermions are not at equilibrium. Thus the concept of
difference of potential between the superconductor and the wire at the position of
the contact is ill-defined. The potentialV is nevertheless well-defined and can be
used to study the evolution of the conductance or of the differential noise. Clearly
the sign of the current needs not be the same as that of V. For this reason we use
the definition (3.62) as it is, without changing the sign according to the direction
of the current. This allows a more simple representation in Fig. 10.



416 F.W.J. Hekking

One should keep in mind that the change of sign has no special meaning in
this case, since increasing the voltage biasV can well decrease the current and
the noise through the SIN junction.

Let us discuss briefly some simple limiting cases of Eq. (3.63). Foru0 = 0
and 1, when the junction is at an extremity of the wire, Eq. (3.63) givesF = ±2.
This is expected from Eq. (3.40) since in this case the normal metal is actually at
equilibrium. The sign change is simply due to fact that forx = 0 the potential of
the wireU is greater than the potential of the superconducting pointV , while for
x = L the situation is reversed. For 0< u0 < 1, F is in general different from
2. An interesting point is the middle of the wireu0 = 1/2. In this case we have:

F(eV, u0 = 1/2) = 2
φ(2eU − 2eV )

φ(2eV )+ φ(2eU − 2eV )
. (3.64)

For V = U/2 we then obtainF = 1 exactly for any form ofφ(ǫ), while for
V = 0F should become very small on general grounds, since we have seen that
for ǫ → 0 the functionφ(ǫ) is expected to diverge in the infinite system.

For arbitrary values ofu0 one can see a crossover between these limiting be-
haviors. We report in Fig. 10 the results predicted by Eq. (3.63) forU = 200Eth
which is a typical value for experiments. We would like to emphasize that the
whole energy dependence seen in this plot is due to interference of electronic
waves, since it stems from theǫ-dependence ofφ(ǫ).

4. Tunnelling in a three-terminal system containing ferromagnetic metals

In this Section we will consider tunnelling in a hybrid system consisting of a
superconductor with two probe electrodes which can be either normal metals or
polarized ferromagnetic metals [44]. In particular we study transport at subgap
voltages and temperatures. Besides the Andreev pair tunnelling at each con-
tact that we discussed in Section 3, in multi-probe structures subgap transport
involvesadditional channels, which are due to coherent propagation of two par-
ticles (electrons or holes), each originating from adifferent probe electrode. The
relevant processes here areelectron co-tunnellingthrough the superconductor
and conversion into a Cooper pairof two electrons stemming from different
probes. These processes arenon-local and decay when the distance between
the pair of involved contacts is larger than the superconducting coherence length.
The conductance matrix of a three terminal hybrid structure is calculated. The
multi-probe processesenhancethe conductance of each contact. If the contacts
are magnetically polarized the contribution of the various conduction channels
can be separately detected.
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4.1. Introduction

Superconductor-normal metal (SN) contacts at the mesoscopic scale are of pri-
mary importance in view of the interplay between coherence effects in the metal
and intrinsic coherence of the superconducting condensate which is probed by
Andreev reflection [2, 4]. The situation becomes even more interesting with fer-
romagnetic metals (F). In such metals, due to short-range Coulomb repulsion,
there is an imbalance between the number of spin up and spin down electrons.
As a result, the DoS is spin-dependent, and a mismatch exists between Fermi
wave vectors for given spin:k↑(↓)F = kF ± q, whereq = Eex/h̄vF . We defined
the characteristic energy of the effect, theexchange energyEex , which is usually
large compared to�, but still small compared toEF . Single SF interfacesare not
expected to give rise to the phenomena discussed in Section 3 above. The subgap
Andreev conductance tends to be hindered by magnetic polarization [45, 46, 47]
of the F electrode, since not every electron from the spin up band can find a spin
down partner to be converted in a Cooper pair. Moreover, the characteristic scale
ξF = √

h̄D/Eex is too small to give rise to significant diffusive anomalies in
subgap transport. In this Section we therefore considermulti-terminal FS struc-
tures.

Generally, multi-terminal NS structures offer the possibility of manipulating
phase coherent transport, similarly to multi-terminal NS structures [48]. An ex-
ample is theAndreev interferometerconsisting of a mesoscopic N sample, made
of two arms connected to two S “mirrors” on one side and to a single reservoir
on the other, where electron propagation in N is sensitive to the difference of the
phase of the two superconductors. In general the two SN contacts are separated
by a distance larger than the superconducting coherence lengthξS = h̄vF /π�.
A dual configuration, consisting of a superconductor connected to two N probe
electrodes separated by a distancesmaller thanξS (see Fig. 11a), with twoin-
dependentreservoirs, was considered in Ref. [49, 50]. It has been proposed
that correlations between the N probes could be established across the super-
conductor, by a process where two electronseach originating from a different
N electrode, are converted in a Cooper pair. Recently, it has been shown that
such correlations could be used to buildentangled states of electrons[51, 52].
If the probe electrodes are ferromagnetic, the conductance due to thesecrossed
Andreev(CA) processes is sensitive to the relative magnetic polarization, being
maximal for opposite polarization of the F probes [50].

Here, we investigate in detail the dependence of the conductance on the dis-
tance between the probes and on their spin polarization. We consider a three-
terminal device A/S/B (see Fig. 11a) where S is an s-wave superconductor and the
electrodes A and B can be either normal or ferromagnetic metals. We study the
linear conductance matrix at subgap temperature and voltageskBT , eVi ≪ �.
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Then, as we have seen, no single electron channel is left and all the relevant
channels involve simultaneous (on a time∼ h̄/�) tunnelling of two electrons or
holes (Fig. 11b): (a) single-contact Andreev reflection (2A and 2B), where two
electrons, both originating from the same electrode, A or B, are converted in a
Cooper pair giving rise to the currentsG2AVA andG2BVB ; (b) CA processes,
where two electrons, each originating from adifferent A/B electrode are con-
verted into a Cooper pair, with associated currentGCA(VA+VB) from each A/B
probe to S; (c) cotunnelling (EC), which is easily visualized in the tunnelling
limit [53] as processes in which, for instance, an electron from A tunnels to B via
a virtual state in S; EC processes yield a current from A to B,GEC(VB − VA).
Then the subgap currents can be presented in a matrix form

(
IA

IB

)
=

(
G2A +GCA +GEC GCA −GEC
GCA −GEC G2B +GCA +GEC

) (
VA

VB

)
. (4.1)

The multi-contact processes, CA and EC, increase the “diagonal” conductances
dIA/dVA, dIB/dVB and give rise to off-diagonal termsdIA/dVB , dIB/dVA,
i.e., the current at probe A (B) depends also on the voltage at probe B (A).
The generalization of Eq. (4.1) to more complicated structures (see Fig. 11c)
is straightforward.

For illustrative purposes we calculate the conductance matrix for contacts be-
ing tunnel junctions. The single-junction conductancesG2A andG2B were cal-
culated above in Section 3. Here we find that EC and CA conductances depend
on the relative position�R of the contacts, vanishing exponentially for| �R| ≫ ξ .
For multichannel tunnel junctions they are found to depend on propagation in S
in a way which is sensitive to the geometry of the sample. This is due to interfer-
ence effects between different channels, which, as we have seen, also play a role
in determining the single-junction NS conductances. In multichannel junctions
with normal A/B electrodes we findGCA = GEC , thus the off-diagonal terms in
the conductance matrix Eq. (4.1) vanish. This symmetry is broken if A/B are po-
larized ferromagnetic metals. IndeedGEC is suppressed if A and B have opposite
polarization, because EC processes preserve the spin of the involved electron (in
absence of any magnetic scattering whatsoever) and take advantage from parallel
A/B polarization. On the other hand CA tunnelling is suppressed for parallel A/B
polarization since it is difficult to find two partner electrons with opposite spin
to pair up. Then if magnetically polarized probes are used, off-diagonal conduc-
tances in Eq. (4.1) are non vanishing, due to the presence of unbalanced CA and
EC processes, for inter-contact distance| �R| ∼ ξ .
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Fig. 11. (a) Schematics of the three-terminal A/S/B device; (b) diagrammatic representation of the
processes leading to subgap conductance: single-contact two-particle tunnelling (2A and 2B), elastic
cotunnelling (EC), which probes the normal Green’s function (full lines) ofS and “crossed Andreev”
(CA), which probes the anomalous propagator (dashed line); (c) a simple experimental design for
measuring the excess EC and CA currents: various electrodes (A,B,C,D,E) allow to probe different
distances�Rij . (From Ref. [44].)

4.2. Co-tunnelling and crossed Andreev tunnelling rates

4.2.1. Tunnel Hamiltonian
We describe contacts in the tunnelling regime by standard tunnel Hamiltonians

ĤTA =
∑

kpσ

tAkp â
†
kσ b̂pσ + t

(A)∗
kp b̂†

pσ âkσ ; (4.2)

ĤT B =
∑

pqσ

tBpq b̂
†
pσ âqσ + t (B)∗pq â†

qσ b̂pσ , (4.3)

wheretAkp andtBqp are matrix elements between single electron statesk in A, p in

S andq in B. Quasiparticle states in S are defined as usual by operatorsγ̂ andγ̂ †

via the transformation (3.5) and (3.6).
We now classify processes which appear in perturbation theory inĤT i . Single

electron processes are absent in the subgap regime. In lowest non-vanishing or-
der we have to consider only “elastic” processes, where the quasiparticle created
in the intermediate state is destroyed [53]. “Inelastic” processes leave an excita-
tion of energy∼ � in the superconductor, so under subgap conditions they can
be neglected. The relevant processes, represented in Fig. 11b, are single-contact
Andreev reflection in the tunnelling limit (2A and 2B), see Section 3, CA tun-
nelling, and “elastic” cotunnelling [53], wherethe sameelectron tunnels at once
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from A to B (B to A). One notices that EC and CA are non-local probes of elec-
tron propagation in the superconductor[49]. This is apparent if one considers the
gedanken case of single channel tunnel junctions, where the size of the contacts
is dA, dB ∼ λF , the Fermi wavelength. EC probes the “normal” propagator in
the superconductor whereas CA processes probe theanomalouspropagator (see
Fig. 11b) and both processes are exponentially suppressed forR ≫ ξ .

4.2.2. Calculation of spin-dependent tunnel rates
We now turn to the calculation of the spin dependent tunnel rates, using Fermi’s
golden rule. We consider electrodesA andB which can be magnetically polar-
ized (parallel or antiparallel) along the same axis, resulting in different spectral
properties. We neglect here the influence of ferromagnetic electrodes on the su-
perconductor’s spectrum. This a reasonable assumption for small tunnel contacts
on a massive superconductor. In this case, the inverse proximity effect should
not be too serious,e.g., superconductivity is not destroyed in the contact vicinity.
This is in contrast with Ref. [54] where a sandwich geometry is considered, and
where conduction above the gap is studied.

By proceeding along the lines of Section 3 and writing the EC rateAσ → Bσ

as

ŴσA→B = 2π

h̄

∫
dǫdǫ′dζdζ ′ δ(ǫ − ǫ′) f (ǫ − eVA) [1− f (ǫ′ − eVB)]

FEC(ζ, ǫ) FEC(ζ
′, ǫ′) !σEC(ǫ − eVA, ǫ′ − eVB , ζ, ζ ′), (4.4)

wheref (ǫ) is the Fermi function, FEC(ζ, ǫ) = (ζ +ǫ)/(ζ 2+�2−ǫ2) contains
information on energies of virtual quasiparticles inS. The rate for CA processes,
(Aσ,B − σ)→ S, is given by a similar expression

ŴσAB→S = 2π

h̄

∫
dǫdǫ′dζdζ ′ δ(ǫ + ǫ′) f (ǫ − eVA) f (ǫ′ − eVB)

FCA(ζ, ǫ) FCA(ζ
′, ǫ′) !σCA(ǫ − eVA, ǫ′ − eVB , ζ, ζ ′), (4.5)

where FCA(ζ, ǫ) = �/(ζ 2 + �2 − ǫ2). Information about propagation in
the specific geometry is contained in the functions!(ǫ, ǫ′, ζ, ζ ′). Here we give
the explicit expression for planar uniform tunnel junctions and local tunnelling,
t (�r, �r ′) = t δ(z) δ(�r − �r ′). In this Section, we consider the case ofballistic
propagationof plane wave states. The generalization to diffusive conductors can
be made following Section 3, this was done in Ref. [55]. The functions!EC and
!CA can be expressed as

!σEC(ǫ, ǫ
′, ζ, ζ ′) = |tAtB |2 ×∫

A

d�r1d�r2
∫

B

d�r3d�r4 JσA(12, ǫ) JσS(31, ζ ) JσS(24, ζ ′) JσB(43, ǫ′); (4.6)
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!σCA(ǫ, ǫ
′, ζ, ζ ′) = |tAtB |2 ×∫

A

d�r1d�r2
∫

B

d�r3d�r4 JσA(12, ǫ) KσS(31, ζ )K∗σ
S (24, ζ ′) J−σB (43, ǫ′), (4.7)

where the spectral functions are denoted J, K and defined as in Section 3,e.g.,
JσA(12, ω) ≡ JσA(�r1,�r2, ω) = ∑

k δ(ω − ǫkσ ) ψkσ (�r1)ψ∗kσ (�r2), KσS(31, ω) ≡
KσA(�r3,�r1, ω) = ∑

k δ(ω − ǫkσ ) ψ−k−σ (�r3)ψkσ (�r1). The space integrals in
Eqs. (4.6) and (4.7) run on the contact surfaces. The diagrammatic representation
is given in Fig. 11b.

At low temperature and voltages the main contribution to the rates (4.4) and
(4.5) is due to electrons close to the Fermi level in theA/B probes,ǫ = ±ǫ′ ≈ 0,
and the leading dependence of the rates on the voltages comes from the Fermi
functions. One can put!(ǫ, ǫ′, ζ, ζ ′) ≈ !(0,0, ζ, ζ ′) and perform theǫ and
ǫ′ integrations in Eqs. (4.4) and (4.5). AtT = 0 this givesIσEC = eŴσA→B =
GσEC(VB − VA) andIσCA = 2eŴσAB→S = 2GσCA(VA + VB), which define the
spin-dependent conductances.

4.2.3. Spin-dependent conductance matrix
Single channel junctions.It is instructive to consider firstsingle channel junc-
tions (dA, dB ∼ λF ). The conductances are calculated by putting�r1 = �r2,
�r3 = �r4, �r1 − �r3 = �R in Eqs. (4.6) and (4.7). By performing theζ and ζ ′

integrations the result is obtained

(
GσEC

GσCA

)
≈ 2π3e2

h̄
|tAd2

A|2 |tBd2
B |2 ν2

Sν
σ
A ×

e−2R/πξ

(kSR)2

(
νσB cos2(kSR)

ν−σB sin2(kSR)

)
, (4.8)

wherekS andνS are the Fermi wave vector and the normal state DoS of the super-
conductor. Propagation in the superconductor is characterized by factors which
depend on| �R|, are periodic with periodπ/kS and are suppressed for| �R| ≫ ξ .
The magnetic polarization ofA/B electrodes enters only via the spin-dependent
DoSνσA,B , assuming thatνσA,B = νA,B(±µeh) whereνA,B(ξ) is the normal state
DoS at energyξ in absence of magnetism,h = Eex/µe is the exchange field
(µe being the magnetic moment of the electron), and∓ sign stands for spinσ
(anti)parallel to the magnetization. If the DoS for minority spin can be neglected,
then for parallel (antiparallel) polarized contacts only EC (CA) processes will
yield a conductance.
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Multichannel junctions. For the more realistic case ofmultichannel tunnel junc-
tions, interference between different channels has to be considered. This has been
studied in Section 3 for single contact processes (A1 andA2) in aNS tunnel junc-
tion, which probe propagation in thenormalelectrode (it is in general diffusive
and depends on the geometry). As for EC and CA, we notice that in clean su-
perconductors the single particle propagator is rapidly oscillating (∼ kS), so it
would average out on a lengthξ ≪ 1/kS in multichannel junctions. This is not
the case for two-particle propagators involved in EC and CA processes, as we
show explicitly below by considering a specific geometry.

At this stage one could assume that the overall conductance is given by in-
dependent single-channel contributions, start from Eq. (4.8) and argue that the
factors cos2(kSR) and sin2(kSR) are averaged over distances∼ dA, dB . The re-
sulting expressions for the EC and CA conductances would be nearly identical
yielding, in the special case of normalA/B electrodes,GEC = GCA. This con-
clusion turns out to be correct, even if the actual expression for the conductances
involves interference between different channels. To show that we start the cal-
culation from Eqs. (4.6) and (4.7), accounting also for different spin-dependent
Fermi wave vectorskσA (kσB ) of theA (B) electrode andkS . We perform the coor-
dinate integrations, and at this stage it becomes apparent that the terms leading to
the special dependence cos2(kSR) and sin2(kSR) drop out. Because of interfer-
ence between different channels, the result depends on the geometry and on the
mismatch between the spin-dependent Fermi wave vectors. The simplest case is
a geometry with the two junctions belonging to the same plane (see Fig. 11a),
where the results depend on the distanceR > dA, dB ,

(
GσEC

GσCA

)
≈ h

8e2
FσA G

σ
A

(
FσB G

σ
B

F
−σ
B G−σ

B

)
e−2R/πξ

(kSR)2
. (4.9)

Here the factorsFσA,B contain information on the geometry andGσA,B are the
spin-dependent one-electron conductances for each junction (S being in the nor-
mal state), for instance

GσA ≈ 4πe2

h̄
νσAνS

| tA |2 S

kσAkS
F(κ2

A,

√
kSk

σ
AdA) (4.10)

whereκA,B = (kσA,B/kS)
1/2 andS is the area of the junction. Here the single

junction geometry factor is given by

F(κ2, y) = 2π
∫ y

0
(dx/x) sin(κx) sin(x/κ) (4.11)
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and the two-junction factors in Eq. (4.9) are,e.g.,

FA = [F(κ2
A,

√
kSkAdA)]−1 ×

ℜe
∫ 2π

0
dθ [1− eikSdA(κ

2
A+cosθ)]/(κ2

A + cosθ) (4.12)

for the geometry we consider. It is important to point out only some general prop-
erty. Forκ = 1 the factorF(1, y) ∝ ln y depends weakly [56] on the reduced
sizey; the factorsFA,B are even more weakly dependent ony and substantially
of order one. A slight asymmetryκ �= 1 makes all the factorsF independent on
the size of the junctions, ifdA, dB are large enough,y|κ − κ−1| ≫ 1. Still FA,B
are of order one, so EC and CA processes determine an appreciable conductance.

4.3. Discussion

We can now discuss the full conductance matrix in equation (4.1) by defining the
total EC and CA conductivitiesGEC = GσEC +G−σ

EC andGCA = GσCA +G−σ
CA.

The EC and CA conductances appear both in the diagonal and in the off-diagonal
conductance matrix elements in Eq. (4.1).

4.3.1. Nonmagnetic probes
Let us first consider the case of non magnetic contacts, where we can drop the
spin dependence. For multichannel contacts Eq. (4.9) shows thatGEC = GCA ,
so the off diagonal conductancesvanish. Coherent tunnelling processes involv-
ing two distant contacts enter only in the diagonal terms, and provide an extra
contribution with respect to the standard Andreev conductancesG2A andG2B .
The extra current depends on the distanceR between the two contacts. A sim-
ple setup where theR dependence of the extra current can be studied is shown
in Fig. 11c (alternatively one may use a STM tip as a mobile contact). Another
signature of CA and EC processes can be found if one considers contacts of very
different transparency, say|tA| ≫ |tB |. In this caseG2A ∝ |tA|4 dominates
GEC + GCA ∝ |tA|2|tB |2, which itself is much larger thanG2B ≈ |tB |4.
Thus the conductance at the less transparent probe (lower right diagonal element
in Eq. (4.9)) is given byGEC + GCA, so it is essentially due to two-contact
processes: if we bias contactB a current will flow because of correlations of
superconductive nature with contactA. If R < ξ , the crossed conductances are
still affected by the factor(kSR)−2 which can be very small [52]. This problem
can be partially overcome for instance by choosing one contact A to be of size
dA >> ξ or even a semi-infinite interface.
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4.3.2. Spin-polarized probes
Let us now consider the case of spin polarized probes. As it is apparent from
Eq. (4.9)GEC �= GCA so the off diagonal elements in the conductance matrix,
Eq. (4.1), are finite and the current in one contact can be manipulated by the
voltage bias of the other contact. The sign of this effect depends on the mutual
polarization of the electrodes. This generalizes the result of Ref. [50]. More
specifically, spin polarization enters in two ways in the result (4.8) and (4.9):
first, in the spin-dependent densities of states; second, in the shift of the Fermi
momentakσA,B , which modifies the factorsF in Eq. (4.9). To fix the ideas, let us
for simplicity neglect the latter and concentrate on the effect of the DoS. Defining

the contact polarizationsPA,B =
νσA,B−ν−σA,B
νσA,B+ν−σA,B

, one simply finds thatGEC is propor-

tional to(1+PAPB) andGCA to (1−PAPB). Therefore the off-diagonal conduc-
tance is roughly proportional to(−PAPB). This shows a striking consequence of
the competition between cotunnelling and crossed Andreev processes, via their
spin-dependence: non only the amplitude, but also the sign of the conductances
can be controlled by spin polarizations. In the extreme case of parallel complete
polarizations the only possible process is cotunnelling, withIA = −IB , while for
antiparallel polarization crossed Andreev tunnelling prevails, withIA = IB .

So far we have discussed the zero-temperature case. Direct generalization to
finite temperature leads formally to a divergence of the tunnelling rate. It is due to
the finite, though very small (∝ e−�/T ), probability of exciting an electron from
A(B) to a quasiparticle state in S, and to the divergence of the quasiparticle DoS
in S. The divergence in the rates disappears if the latter is rounded off at�. The
EC and CA conductances acquire an additional contribution∝ e−�/T ln(�/Ŵ)
whereŴ is a scale related to the mechanism of broadening of the quasiparticle
levels in the superconductor.

In the present Section we have demonstrated the non-local character of cotun-
nelling and Andreev reflections on a superconductor and we have also studied
the role of magnetic polarization. We have discussed possible schemes to detect
these effects in devices with three or more terminals. A recent experiment [57]
obtained results that are consistent with the predictions made above. Further
theoretical analysis would require the self-consistent analysis of the mutual ef-
fects of superconductivity, diffusive propagation and ferromagnetism in the hy-
brid system. For both high and low transparency contacts, propagation in the
specific geometry has to be taken into account.
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Abstract

We review mechanisms of low-temperature electronic transport through a quan-
tum dot weakly coupled to two conducting leads. Transport in this case is domi-
nated by electron-electron interaction. At temperatures moderately lower than the
charging energy of the dot, the linear conductance is suppressed by the Coulomb
blockade. Upon further lowering of the temperature, however, the conductance may
start to increase again due to the Kondo effect. We concentrate on lateral quantum
dot systems and discuss the conductance in a broad temperature range, which in-
cludes the Kondo regime.

1. Introduction

In quantum dot devices [1] a small droplet of electron liquid, or just a few elec-
trons are confined to a finite region of space. The dot can be attached by tun-
neling junctions to massive electrodes to allow electronic transport across the
system. The conductance of such a device is determined by the number of elec-
trons on the dotN , which in turn is controlled by varying the potential on the
gate - an auxiliary electrode capacitively coupled to the dot [1]. At sufficiently
low temperatures,N is an integer at almost any gate voltageVg. Exceptions
are narrow intervals ofVg in which an addition of a single electron to the dot
does not change much the electrostatic energy of the system. Such a degeneracy
between different charge states of the dot allows for an activationless electron
transfer through it, whereas for all other values ofVg the activation energy for
the conductanceG across the dot is finite. The resulting oscillatory dependence
G(Vg) is the hallmark of the Coulomb blockade phenomenon [1]. The contrast
between the low- and high-conductance regions (Coulomb blockade valleys and
peaks, respectively) gets sharper at lower temperatures. The pattern of periodic
oscillations in theG vs.Vg dependence is observed down to the lowest attainable
temperatures in experiments on tunneling through small metallic islands [2].

Conductance through quantum dots formed in semiconductor heterostructures
exhibits a richer behavior [1]. In larger dots (in the case of GaAs heterostructures,
such dots may contain hundreds of electrons), the fluctuations of the heights of
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the Coulomb blockade peaks become apparent already at moderately low tem-
peratures. Characteristic of mesoscopic phenomena, the heights are sensitive to
the shape of a dot and to the magnetic flux threading it. The separation in gate
voltage between the Coulomb blockade peaks, and the conductance in the valleys
also exhibit mesoscopic fluctuations. However, the pattern of sharp conductance
peaks separating the low-conductance valleys of theG(Vg) dependence persists.
Smaller quantum dots (containing few tens of electrons in the case of GaAs) show
yet another feature [4]: in some Coulomb blockade valleys the dependenceG(T )

is not monotonic and has a minimum at a finite temperature. This minimum is
similar in origin [5] to the well-known non-monotonic temperature dependence
of the resistivity of a metal containing magnetic impurities [6] – theKondo ef-
fect. Typically, the valleys with anomalous temperature dependence correspond
to an odd number of electrons in the dot. In an ideal case, the low-temperature
conductance in such a valley is of the order of conductance at peaks surround-
ing it. Thus, at low temperatures the two adjacent peaks merge to form a broad
maximum.

The number of electrons on the dot is a well-defined quantity as long as
the conductances of the junctions connecting the dot to the electrodes is small
compared to the conductance quantume2/h. In quantum dot devices formed
in semiconductor heterostructures the conductances of junctions can be tuned
continuously. With the increase of the conductances, the periodic pattern in
G(Vg) dependence gradually gives way to mesoscopic conductance fluctuations.
Yet, electron-electron interaction still affects the transport through the device. A
strongly asymmetric quantum dot device with one junction weakly conducting,
while another completely open, provides a good example of that [7, 8, 9]. The
differential conductance across the device in this case exhibits zero-bias anomaly
i.e. suppression at low bias. Clearly, Coulomb blockade is not an isolated phe-
nomenon, but is closely related to interaction-induced anomalies of electronic
transport and thermodynamics in higher dimensions [3].

The emphasis of these lectures is on the Kondo effect in quantum dots. We
will concentrate on the so-calledlateral quantum dot systems[1, 4], formed by
gate depletion of a two-dimensional electron gas at the interface between two
semiconductors. These devices offer the highest degree of tunability, yet allow
for relatively simple theoretical treatment. At the same time, many of the results
presented below are directly applicable to other systems as well, including ver-
tical quantum dots [10, 11, 12], Coulomb-blockaded carbon nanotubes [12, 13],
single-molecule transistors [14], and magnetic atoms on metallic surfaces [15].

The Kondo effect emerges at relatively low temperature, and we will follow
the evolution of the conductance upon reduction of temperature. On the way to
Kondo effect, we encounter also the phenomena of Coulomb blockade and of
mesoscopic conductance fluctuations.



Low-temperature transport through a quantum dot 433

2. Model of a lateral quantum dot system

The Hamiltonian of interacting electrons confined to a quantum dot has the fol-
lowing general form,

Hdot =
∑

s

∑

ij

hijd
†
isdjs +

1

2

∑

ss′

∑

ijkl

hijkld
†
isd

†
js′dks′dls . (2.1)

Here an operatord†
is creates an electron with spins in the orbital stateφi(r) (the

wave functions are normalized according to
∫
drφ∗i (r)φj (r) = δij ); hij = h∗ji

is an Hermitian matrix describing the single-particle part of the Hamiltonian.
The matrix elementshijkl depend on the potentialU(r − r

′) of electron-electron
interaction,

hijkl =
∫
dr dr ′φ∗i (r)φ

∗
j (r

′)U(r − r
′)φk (r

′)φl (r). (2.2)

The Hamiltonian (2.1) can be simplified further provided that the quasiparticle
spectrum is not degenerate near the Fermi level, that the Fermi-liquid theory
is applicable to the description of the dot, and that the dot is in the metallic
conduction regime. The first of these conditions is satisfied if the dot has no
spatial symmetries, which implies also that the motion of quasiparticles within
the dot is chaotic.

The second condition is met if the electron-electron interaction within the dot
is not too strong, i.e. the gas parameterrs is small,

rs = (kF a0)
−1 � 1, a0 = κ�2/e2m∗ (2.3)

HerekF is the Fermi wave vector,a0 is the effective Bohr radius,κ is the dielec-
tric constant of the material, andm∗ is the quasiparticle effective mass.

The third condition requires the ratio of the Thouless energyET to the mean
single-particle level spacingδE to be large [16],

g = ET /δE ≫ 1. (2.4)

For a ballistic two-dimensional dot of linear sizeL the Thouless energyET is of
the order of�vF /L, whereas the level spacing can be estimated as

δE ∼ �vF kF /N ∼ �
2/m∗L2. (2.5)

HerevF is the Fermi velocity andN ∼ (kFL)2 is the number of electrons in the
dot. Therefore,

g ∼ kFL ∼
√
N, (2.6)
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so that having a large number of electronsN ≫ 1 in the dot guarantees that the
condition Eq. (2.4) is satisfied.

Under the conditions (2.3), (2.4) theRandom Matrix Theory(for a review see,
e.g., [17, 18, 19, 20]) is a good starting point for the description of non-interacting
quasiparticles within the energy strip of widthET about the Fermi level [16]. The
matrix elementshij in Eq. (2.1) belong to a Gaussian ensemble [19, 20]. Since
the matrix elements do not depend on spin, each eigenvalueǫn of the matrix
hij represents a spin-degenerate energy level. The spacingsǫn+1 − ǫn between
consecutive levels obey the Wigner-Dyson statistics [19]; the mean level spacing
〈ǫn+1 − ǫn〉 = δE.

We now discuss the second term in the Hamiltonian (2.1), which describes
electron-electron interaction. It turns out [21, 22, 23] that the vast majority of
matrix elementshijkl are small. Indeed, in the lowest order in 1/g ≪ 1, the
wave functionsφi(r) are Gaussian random variables with zero mean, statistically
independent of each other and of the corresponding energy levels [24]:

φ∗i (r)φj (r
′) = δij

A
F(|r − r

′|), φi(r)φj (r ′) =
δβ,1δij

A
F(|r − r

′|). (2.7)

HereA ∼ L2 is the area of the dot, and the functionF is given by

F(r) ∼ 〈exp(ik · r)〉FS. (2.8)

where〈. . .〉FS stands for the average over the Fermi surface|k| = kF . In two
dimensions, the functionF(r) decreases withr asF ∝ (kF r)−1/2 at kF r ≫ 1,
and saturates toF ∼ 1 atkF r ≪ 1.

The parameterβ in Eq. (2.7) distinguishes between the presence(β = 1) or
absence(β = 2) of time-reversal symmetry. The symmetry breaking is driven
by the orbital effect of the magnetic field and is characterised by the parameter

χ = (�/�0)
√
g,

where� is the magnetic flux threading the dot and�0 = hc/e is the flux quan-
tum, so that the limitsχ ≪ 1 andχ ≫ 1 correspond to, respectively,β = 1 and
β = 2. Note that in the case of a magnetic fieldH⊥ applied perpendicular to the
plane of the dot, the crossover (atχ ∼ 1) between the two regimes occurs at such
weak field that the corresponding Zeeman energyB is negligible1.

After averaging with the help of Eqs. (2.7)-(2.8), the matrix elements (2.2)
take the form

hijkl =
(
2EC + ES/2

)
δilδjk + ESδikδj l +�

(
2/β − 1

)
δij δkl .

1For example, in the experiments [25] the crossover takes place atH⊥ ∼ 10mT . The Zeeman en-
ergy in such a fieldB ∼ 2.5mK, which is by an order of magnitude lower than the base temperature
in the measurements.
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We substitute this expression into Hamiltonian (2.1), and rearrange the sum over
the spin indices with the help of the identity

2δs1s2δs′1s′2 = δs1s′1δs′2s2 + σs1s
′
1
· σs′2s2, (2.9)

whereσ = (σ x, σ y, σ z) are the Pauli matrices. This results in a remarkably
simple form [22, 23]

Hint = ECN̂2 − ESŜ2 +�
(
2/β − 1

)
T̂ †T̂ (2.10)

of the interaction part of the Hamiltonian of the dot. Here

N̂ =
∑

ns

d†
nsdns, Ŝ=

∑

nss′
d†
ns

σss′

2
d
ns′ T̂ =

∑

n

d
†
n↑d

†
n↓ (2.11)

are the operators of the total number of electrons in the dot, of the dot’s spin,
and the “pair creation” operator corresponding to the interaction in the Cooper
channel.

Fig. 1. Equivalent circuit for a quantum dot connected to two leads by tunnel junctions and capaci-
tively coupled to the gate electrode. The total capacitance of the dotC = CL + CR + Cg .

The first term in Eq. (2.10) represents the electrostatic energy. In the conven-
tional equivalent circuit picture, see Fig. 1, the charging energyEC is related to
the total capacitanceC of the dot,EC = e2/2C. For a mesoscopic (kFL ≫ 1)
conductor, the charging energy is large compared to the mean level spacingδE.
Indeed, using the estimatesC ∼ κL and Eqs. (2.3) and (2.5), we find

EC/δE ∼ L/a0 ∼ rs
√
N. (2.12)

Except in the exotic case of an extremely weak interaction, this ratio is large
for N ≫ 1; for the smallest quantum dots formed in GaAs heterostructures,
EC/δE ∼ 10 [4]. Note that Eqs. (2.4), (2.6), and (2.12) imply that

ET /EC ∼ 1/rs � 1,
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which justifies the use of RMT for the description of single-particle states with
energies|ǫn| � EC , relevant for Coulomb blockade.

The second term in Eq. (2.10) describes the intra-dot exchange interaction,
with the exchange energyES given by

ES =
∫
dr dr ′U(r − r

′)F 2(|r − r
′|). (2.13)

In the case of a long-range interaction the potentialU here should properly
account for the screening [23]. Forrs ≪ 1 the exchange energy can be esti-
mated with logarithmic accuracy by substitutingU(r) = (e2/κr)θ(a0 − r) into
Eq. (2.13) (here we took into account that the screening length in two dimensions
coincides with the Bohr radiusa0), which yields

ES ∼ rs ln (1/rS) δE ≪ δE. (2.14)

The estimate Eq. (2.14) is valid only forrs ≪ 1. However, the ratioES/δE
remains small for the experimentally relevant2 valuers ∼ 1 as long as the Stoner
criterion for the absence of itinerant magnetism [26] is satisfied. This guarantees
the absence of a macroscopic (proportional toN ) magnetization of a dot in the
ground state [22].

The third term in Eq. (2.10), representing interaction in the Cooper channel,
is renormalized by higher-order corrections arising due to virtual transitions to
states outside the energy strip of the widthET about the Fermi level. For attrac-
tive interaction (� < 0) the renormalization enhances the interaction, eventually
leading to the superconducting instability and formation of a gap�� in the elec-
tronic spectrum. Properties of very small(�� ∼ δE) superconducting grains
are reviewed in, e.g., [27]; for properties of larger grains(�� ∼ EC) see [28].
Here we concentrate on the repulsive interaction(� > 0), in which case� is
very small,

� ∼ δE

ln(ǫF /ET )
∼ δE

lnN
≪ δE.

This estimate accounts for the logarithmic renormalization of� when the high-
energy cutoff is reduced from the Fermi energyǫF down to the Thouless energy
ET [23]. In addition, if time-reversal symmetry is lifted(β = 2) then the third
term in Eq. (2.10) is zero to start with. Accordingly, hereinafter we neglect this
term altogether by setting� = 0.

Obviously, the interaction part of the Hamiltonian, Eq. (2.10), is invariant
with respect to a change of the basis of single-particle statesφi(r). Choosing the

2For GaAs (m∗ ≈ 0.07me, κ ≈ 13) the effective Bohr radiusa0 ≈ 10 nm, whereas a typical
density of the two-dimensional electron gas,n ∼ 1011 cm−2 [4], corresponds tokF =

√
2πn ∼

106 cm−1. This giveskF a0 ∼ 1.
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basis in which the first term in Eq. (2.1) is diagonal, we arrive at theuniversal
Hamiltonian[22, 23],

Hdot =
∑

ns

ǫnd
†
nsdns + EC

(
N̂ −N0

)2 − ESŜ2. (2.15)

We included in Eq. (2.15) the effect of the capacitive coupling to the gate elec-
trode: the dimensionless parameterN0 is proportional to the gate voltage,

N0 = CgVg/e,

whereCg is the capacitance between the dot and the gate, see Fig. 1. The relative
magnitude of fully off-diagonal interaction terms in Eq. (2.1) (corresponding to
hijkl with all four indices different), not included in Eq. (2.15), is of the order of
1/g ∼ N−1/2 ≪ 1. Partially diagonal terms (two out of four indices coincide)
are larger, of the order of

√
1/g ∼ N−1/4, but still are assumed to be negligible

sinceN ≫ 1.
As discussed above, in this limit the energy scales involved in Eq. (2.15) form

a well-defined hierarchy
ES ≪ δE ≪ EC . (2.16)

If all the single-particle energy levelsǫn were equidistant, then the spinS of an
even-N state would be zero, while an odd-N state would haveS = 1/2. However,
the level spacings are random. If the spacing between the highest occupied level
and the lowest unoccupied one is accidentally small, then the gain in exchange
energy associated with the formation of a higher-spin state, may be sufficient to
overcome the loss of kinetic energy (cf. the Hund’s rule in quantum mechanics).
ForES ≪ δE such deviations from the simple even-odd periodicity are rare [22,
29, 30]. This is why the last term in Eq. (2.15) is often neglected. Eq. (2.15)
then reduces to the Hamiltonian of theConstant Interaction Model, widely used
in the analysis of experimental data [1]. Finally, it should be emphasized that the
SU(2)–invariant Hamiltonian (2.15) describes a dot in the absence of the spin-
orbit interaction, which would destroy this symmetry.

Electron transport through the dot occurs via two dot-lead junctions. In a
typical geometry, the confining potential forming a lateral quantum dot varies
smoothly on the scale of the Fermi wavelength. Hence, the point contacts con-
necting the quantum dot to the leads act essentially as electronic waveguides.
Potentials on the gates control the waveguide width, and, therefore, the number
of electronic modes the waveguide support: by making the waveguide narrower
one pinches the propagating modes off one-by-one. Each such mode contributes
2e2/h to the conductance of a contact. Coulomb blockade develops when the
conductances of the contacts are small compared to 2e2/h, i.e. when the very
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last propagating mode approaches its pinch-off [31, 32]. Accordingly, in the
Coulomb blockade regime each dot-lead junction in a lateral quantum dot sys-
tem supports only a single electronic mode [33].

As discussed below, forEC ≫ δE the characteristic energy scale relevant to
the Kondo effect, the Kondo temperatureTK , is small compared to the mean level
spacing:TK ≪ δE. This separation of the energy scales allows us to simplify
the problem even further by assuming that the conductances of the dot-lead junc-
tions are small. This assumption will not affect the properties of the system in
the Kondo regime. At the same time, it justifies the use of the tunneling Hamil-
tonian to describe the coupling between the dot and the leads. The microscopic
Hamiltonian of the system can then be written as a sum of three distinct terms,

H = Hleads+Hdot+Htunneling, (2.17)

which describe free electrons in the leads, isolated quantum dot, and tunneling
between the dot and the leads, respectively. The second term in Eq. (2.17), the
Hamiltonian of the dotHdot, is given by Eq. (2.15). We treat the leads as reser-
voirs of free electrons with continuous spectraξk, characterized by constant den-
sity of statesν, equal for both leads. Moreover, since the typical energiesω � EC
of electrons participating in transport through a quantum dot in the Coulomb
blockade regime are small compared to the Fermi energy of the electron gas in
the leads, the spectraξk can be linearized near the Fermi level,ξk = vF k; here
k is measured fromkF . With only one electronic mode per junction taken into
account, the first and the third terms in Eq. (2.17) have the form

Hleads=
∑

αks

ξk c
†
αkscαks, ξk = −ξ−k, (2.18)

Htunneling=
∑

αkns

t
αn
c

†
αksdns + H.c. (2.19)

Heretαn are tunneling matrix elements (tunneling amplitudes) “connecting” the
staten in the dot with the statek in the leadα (α = R,L for the right/left lead).

Tunneling leads to a broadening of discrete levels in the dot. The widthŴαn
that leveln acquires due to escape of an electron to leadα is given by

Ŵαn = πν
∣∣t2αn

∣∣ (2.20)

Randomness of single-particle states in the dot translates into a randomness of the
tunneling amplitudes. Indeed, the amplitudes depend on the values of the electron
wave functions at pointsrα of the contacts,tαn ∝ φn(rα). For kF |rL − rR| ∼
kFL ≫ 1 the tunneling amplitudes [and, therefore, the widths (2.20)] in the
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left and right junctions are statistically independent of each other. Moreover, the
amplitudes to different energy levels are also uncorrelated, see Eq. (2.7):

t∗
αn
t
α′n′ =

Ŵα

πν
δαα′δnn′ , t

αn
t
α′n′ =

Ŵα

πν
δβ,1δαα′δnn′ , (2.21)

The average valueŴα = Ŵαn of the width is related to the conductance of the
corresponding dot-lead junction

Gα =
4e2

�

Ŵα

δE
. (2.22)

In the regime of strong Coulomb blockade(Gα ≪ e2/h), the widths are small
compared to the level spacing,Ŵα ≪ δE, so that discrete levels in the dot are
well defined. Note that statistical fluctuations of the widthsŴαn are large, and the
corresponding distribution function is not Gaussian. Indeed, using Eqs. (2.20)
and (2.21) it is straightforward [19, 20] to show that

P(γ ) = δ (γ − Ŵαn/Ŵα) =





e−γ /2√
2πγ

, β = 1

e−γ , β = 2

(2.23)

This expression is known as the Porter-Thomas distribution [34].

3. Thermally-activated conduction

At high temperatures,T ≫ EC , charging energy is negligible compared to the
thermal energy of electrons. Therefore the conductance of the device in this
regimeG∞ is not affected by charging and, independently of the gate voltage, is
given by

1

G∞
= 1

GL
+ 1

GR
. (3.1)

Dependence onN0 develops at lower temperatures,T � EC . It turns out that the
conductance is suppressed for all gate voltages except narrow regions (Coulomb
blockade peaks) around half-integer values ofN0. We will demonstrate this now
using the method of rate equations [35, 36].

3.1. Onset of Coulomb blockade oscillations

We start with the regime of relatively high temperatures,

δE ≪ T ≪ EC, (3.2)
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and assume that the gate voltage is tuned sufficiently close to one of the points of
charge degeneracy,

|N0 −N∗
0 | � T/EC (3.3)

(hereN∗
0 is a half-integer number).

Condition (3.2) enables us to treat the discrete single-particle levels within the
dot as a continuum with a density of states 1/δE. Condition 3.3, on the other
hand, allows us to take into account only two charge states of the dot which are
almost degenerate in the vicinity of the Coulomb blockade peak. ForN0 close
toN∗

0 these are states|0〉 with N = N∗
0 − 1/2 electrons on the dot, and state|1〉

with N = N∗
0 +1/2 electrons. According to Eqs. (2.15) and (3.3), the difference

of electrostatic energies of these states (the energy cost to add an electron to the
dot) is

E+(N0) = E|1〉 − E|0〉 = 2EC(N
∗
0 −N0) � T . (3.4)

In addition to the constraints (3.2) and (3.3), we assume here that the inelastic
electron relaxation rate within the dot 1/τǫ is large compared to the escape rates
Ŵα/�. In other words, transitions between discrete levels in the dot occur before
the electron escapes to the leads3. Under this assumption the tunnelings across
the two junctions can be treated independently of each other (this is known as
sequential tunnelingapproximation).

With the help of the Fermi golden rule the currentIα from the leadα into the
dot can be written as

Iα = e
2π

�

∑

kns

∣∣t2αn
∣∣ δ(ξk + eVα − ǫn − E+) (3.5)

×
{
P0f (ξk)[1− f (ǫn)] − P1f (ǫn)[1− f (ξk)]

}
.

HerePi is the probability to find the dot in the charge states|i〉 (i = 0,1),
f (ω) = [exp(ω/T )+ 1]−1 is the Fermi function, andVα is the electric potential
on the leadα, see Fig. 1. In writing Eq. (3.5) we assumed that the distribution
functionsf (ξk) andf (ǫn) are not perturbed. This is well justified provided that
the relaxation rate 1/τǫ exceeds the rate∼ G∞|VL − VR|/e at which electrons
pass through the dot. Replacing the summations overn andk in Eq. (3.5) by
integrations over the corresponding continua, and making use of Eqs. (2.20) and
(2.22), we find

Iα =
Gα

e

[
P0F(E+ − eVα)− P1F(eVα − E+)

]
, F (ω) = ω

eω/T − 1
. (3.6)

3Note that a finite inelastic relaxation rate requires inclusion of mechanisms beyond the
model Eq. (2.15), e.g., electron-phonon collisions.
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In the steady state, the currents across the two junctions satisfy

I = IL = −IR. (3.7)

Equations (3.6) and (3.7), supplemented by the obvious normalization condition
P0 + P1 = 1, allow one to find the probabilitiesPi and the current across the
dot I in response to the applied biasV = VL − VR. This yields for the linear
conductance across the dot [35]

G = lim
V→0

dI/dV = G∞
EC(N0 −N∗

0 )/T

sinh[2EC(N0 −N∗
0 )/T ]

. (3.8)

HereN0 = N∗
0 corresponds to the Coulomb blockade peak. At each peak, the

conductance equals half of its high-temperature valueG∞, see Eq. (3.1). On the
contrary, in theCoulomb blockade valleys(N0 �= N∗

0 ), the conductance falls off
exponentially with the decrease of temperature, and all the valleys behave exactly
the same way. Note that the sequential tunneling approximation disregards any
interference phenomena for electrons passing through the dot. Accordingly, the
result Eq. (3.8) is insensitive to a weak magnetic field.

3.2. Coulomb blockade peaks at low temperature

At temperatures below the single-particle level spacing in the dotδE, the ac-
tivation energy for electron transport equals the difference between the ground
state energies of the Hamiltonian (2.15) corresponding to two subsequent (in-
teger) eigenvalues ofN . Obviously, this difference includes, in addition to the
electrostatic contributionE+(N0), see Eq. (3.4), also a finite (and random) level
spacing. As a result, the distance inN0 between adjacent Coulomb blockade
peaks is no longer 1, but contains a small fluctuating contribution of the order
of δE/EC . Mesoscopic fluctuations of spacings between the peaks are still the
subject of significant disagreement between theory and experiments. We will not
consider these fluctuations here (see [18] for a recent review), and discuss only
the heights of the peaks.

We concentrate on the temperature interval

Ŵα ≪ T ≪ δE, (3.9)

which extends to lower temperatures the regime considered in the previous sec-
tion, see Eq. (3.2), and on values of gate voltages tuned to the vicinity of the
Coulomb blockade peak, see Eq. (3.3). Just as above, the latter condition al-
lows us to neglect all charge states except the two with the lowest energy,|0〉
and |1〉. Due to the second inequality in Eq. (3.9), the thermal broadening of
single-particle energy levels in the dot can be neglected, and the states|0〉 and
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|1〉 coincide with the ground states of the Hamiltonian (2.15) with, respectively,
N = N∗

0 − 1/2 andN = N∗
0 + 1/2 electrons in the dot. To be definite, consider

the case when
N∗

0 = N + 1/2 (3.10)

with N an even integer; for simplicity, we also neglect the exchange term in
Eq. (2.15). Then|0〉 (with an even number of electronsN ) is the state in which
all single particle levels below the Fermi level(n < 0) are doubly occupied.
This state is, obviously, non-degenerate. The state|1〉 differs from |0〉 by the
addition of a single electron on the Fermi leveln = 0. The extra electron may
be in two possible spin states, hence|1〉 is doubly degenerate; we denote the
two components of|1〉 by |s〉 with s =↑,↓. As discussed below, the degeneracy
eventually gives rise to the Kondo effect. However, atT ≫ Ŵα [see Eq. (3.9)] the
quantum coherence associated with the onset of the Kondo effect is not important,
and the rate equations approach can still be used to study the transport across the
dot [36].

Applying the Fermi golden rule, we write the contribution of electrons with
spins to the electric currentIαs from leadα to the dot as

Iαs = e
2π

�

∣∣t2α0

∣∣∑

k

δ (ξk + eVα − ǫ0 − E+)
{
P0f (ξk)− Ps [1− f (ξk)]

}

We now neglectǫ0 as it is small compared toE+ (thereby neglecting the meso-
scopic fluctuations of the position of the Coulomb blockade peak) and replace
the summation overk by an integration. This yields

Iαs =
2e

�
Ŵα0

{
P0f (E+ − eVα)− Psf (eVα − E+)

}
. (3.11)

In the steady state the currentsIαs satisfy

ILs = −IRs = I/2 (3.12)

(here we took into account the fact that both projections of spin contribute equally
to the total electric currentI across the dot). Solution of Eqs. (3.11) and (3.12)
subject to the normalization conditionP0 + P↑ + P↓ = 1 results in [23]

G = 4e2

�

ŴL0ŴR0

ŴL0 + ŴR0

[ −df/dω
1+ f (ω)

]

ω=E+(N0)

. (3.13)

The case of oddN in Eq. (3.10) is also described by Eq. (3.13) after replacement
E+(N0)→−E+(N0).
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There are several differences between Eq. (3.13) and the corresponding ex-
pression Eq. (3.8) valid in the temperature range (3.2). First of all, the maximum
of the conductance Eq. (3.13) occurs at the gate voltage slightly (by an amount
of the order ofT/EC) off the degeneracy pointN0 = N∗

0 , and, more importantly,
the shape of the peak is not symmetric about the maximum. This asymmetry is
due to correlations in transport of electrons with opposite spins through a single
discrete level in the dot. In its maximum, the function (3.13) takes value

Gpeak∼
e2

h

ŴL0ŴR0

ŴL0 + ŴR0

1

T
. (3.14)

Note that Eqs. (3.13) and (3.14) depend on the widthsŴα0 of the energy level
n = 0 rather than on the averagesŴα over many levels in the dot, as in Eq. (3.8).
As already discussed in Sec. 2, the widthsŴα0 are related to the values of the
electron wave functions at the position of the dot-lead contacts, and, therefore, are
random. Accordingly, the heightsGpeakof the Coulomb blockade peaks exhibit
strong mesoscopic fluctuations. In view of Eq. (2.23), the distribution function
of Gpeak, see Eq. (3.14), is expected to be broad and strongly non-Gaussian,
as well as very sensitive to the magnetic flux threading the dot. This is indeed
confirmed by calculations [37, 38] and agrees with experimental data [25, 39].
The expression for the distribution function is rather cumbersome and we will
not reproduce it here, referring the reader to the original papers [37, 38] and
reviews [18, 20, 23]) instead.

An order-of-magnitude estimate of the average height of the peak can be ob-
tained by replacingŴα0 in Eq. (3.14) byŴα, see Eq. (2.22), which yields

Gpeak∼ G∞
δE

T
. (3.15)

This is by a factorδE/T larger than the corresponding figureGpeak= G∞/2 for
the temperature range (3.2), and may even approach the unitary limit(∼ e2/h)
at the lower end of the temperature interval (3.9). Interestingly, breaking of time-
reversal symmetry results in an increase of the average conductance [23]. This
increase is analogous to negative magnetoresistance due to weak localization in
bulk systems [40], with the same physics involved.

4. Activationless transport through a blockaded quantum dot

According to the rate equations theory [35], at low temperatures,T ≪ EC , con-
duction through the dot is exponentially suppressed in the Coulomb blockade val-
leys. This suppression occurs because the process of electron transport through
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the dot involves areal transitionto the state in which the charge of the dot dif-
fers bye from the thermodynamically most probable value. The probability of
such fluctuation is proportional to exp

(
−EC |N0 −N∗

0 |/T
)
, which explains the

conductance suppression, see Eq. (3.7). Going beyond lowest-order perturba-
tion theory in conductances of the dot-leads junctionsGα allows one to consider
processes in which states of the dot with a “wrong” charge participate in the
tunneling process asvirtual states. The existence of these higher-order contri-
butions to the tunneling conductance was envisioned already in 1968 by Giaever
and Zeller [41]. The first quantitative theory of this effect, however, was devel-
oped much later [42].

The leading contributions to the activationless transport, according to [42],
are provided by the processes ofinelastic and elastic co-tunneling. Unlike the
sequential tunneling, in the co-tunneling mechanism, the events of electron tun-
neling from one of the leads into the dot, and tunneling from the dot to the other
lead occur as a single quantum process.

4.1. Inelastic co-tunneling

In the inelastic co-tunneling mechanism, an electron tunnels from a lead into one
of the vacant single-particle levels in the dot, while it is an electron occupying
some other level that tunnels out of the dot, see Fig. 2(a). As a result, transfer
of chargee between the leads is accompanied by a simultaneous creation of an
electron-hole pair in the dot.

Fig. 2. Examples of the co-tunneling processes.
(a) inelastic co-tunneling: transferring of an electron between the leads leaves behind an electron-hole
pair in the dot; (b) elastic co-tunneling; (c) elastic co-tunneling with a flip of spin.

Here we will estimate the contribution of the inelastic co-tunneling to the con-
ductance deep in the Coulomb blockade valley, i.e. at almost integerN0. Con-
sider an electron that tunnels into the dot from the leadL. If the energyω of
the electron relative to the Fermi level is small compared to the charging energy,
ω ≪ EC , then the energy of the virtual state involved in the co-tunneling process
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is close toEC . The amplitude of the inelastic transition via this virtual state to
the leadR is then given by

An,m =
t∗
Ln
tRm

EC
. (4.1)

The initial state of this transition has an extra electron in the single-particle state
k in the leadL, while the final state has an extra electron in the statek′ in the lead
R and an electron-hole pair in the dot (staten is occupied, statem is empty). The
conductance is proportional to the sum of probabilities of all such processes,

Gin ∼
e2

h

∑

n,m

ν2
∣∣A2
n,m

∣∣ ∼ e2

h

1

E2
C

∑

n,m

ŴLnŴRm, (4.2)

where we made use of Eq. (2.20). Now we estimate how many terms contribute
to the sum in (4.2). Given the energy of the initial stateω, the number of available
final states can be found from the phase space argument, familiar from the calcu-
lation of the quasiparticle lifetime in the Fermi liquid theory [43]. Forω ≫ δE

the energies of the statesn andm lie within a strip of the width∼ ω/δE about
the Fermi level. The total number of the final states contributing to the sum in
Eq. (4.2) is then of the order of(ω/δE)2. Since the typical value ofω is T , the
average value of the inelastic co-tunneling contribution to the conductance can
be estimated as

Gin ∼
(
T

δE

)2
e2

h

ŴLŴR

E2
C

.

Using now Eq. (2.22), we find [42]

Gin ∼
GLGR

e2/h

(
T

EC

)2

. (4.3)

The terms entering the sum in Eq. (4.2) are random and uncorrelated. As it
follows from Eq. (2.23), fluctuation of each term in the sum is of the order of its
average value. This leads to the estimate for the fluctuationδGin = Gin − Gin
of the inelastic co-tunneling contribution to the conductance

δG2
in ∼

(
T

δE

)2
(
e2

h

ŴLŴR

E2
C

)2

∼
(
δE

T

)2 (
Gin

)2
. (4.4)

Accordingly, fluctuation ofGin is small compared to its average.
A comparison of Eq. (4.3) with the result of the rate equations theory (3.8)

shows that inelastic co-tunneling overcomes the thermally-activated hopping at
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moderately low temperatures

T � Tin = EC
[
ln

(
e2/h

GL +GR

)]−1

. (4.5)

The smallest energy of an electron-hole pair is of the order ofδE. At tempera-
tures below this threshold the inelastic co-tunneling contribution is exponentially
suppressed. It turns out, however, that even at much higher temperatures this
mechanism becomes less effective than the elastic co-tunneling.

4.2. Elastic co-tunneling

In the process of elastic co-tunneling, transfer of charge between the leads is not
accompanied by the creation of an electron-hole pair in the dot. In other words,
occupation numbers of single-particle energy levels in the dot in the initial and
final states of the co-tunneling process are exactly the same, see Fig. 2(b). Close
to the middle of the Coulomb blockade valley (at almost integerN0) the average
number of electrons on the dot,N ≈ N0, is also an integer. Both addition and
removal of a single electron costEC in electrostatic energy, see Eq. (2.15). The
amplitude of the elastic co-tunneling process in which an electron is transfered
from leadL to leadR can then be written as

Ael =
∑

n

t∗LntRn
sign(ǫn)

EC + |ǫn|
(4.6)

The two types of contributions to the amplitudeAel are associated with the virtual
creation of either an electron if the leveln is empty (ǫn > 0), or of a hole if the
level is occupied (ǫn < 0); the relative sign difference between the two types of
contributions originates in the fermionic commutation relations.

As discussed in Sec. 2, the tunneling amplitudestαn entering Eq. (4.6) are
Gaussian random variables with zero mean and variances given by Eq. (2.21). It
is then easy to see that the second moment of the amplitude Eq. (4.6) is given by

∣∣A2
el

∣∣ = ŴLŴR

(πν)2

∑

n

(
EC + |ǫn|

)−2
.

Since forEC ≫ δE the number of terms making significant contribution to the
sum overn here is large, and since the sum is converging, one can replace the
summation by an integral which yields

∣∣A2
el

∣∣ ≈ ŴLŴR

(πν)2

1

ECδE
. (4.7)



Low-temperature transport through a quantum dot 447

Substitution of this expression into

Gel =
4πe2ν2

�

∣∣A2
el

∣∣ (4.8)

and making use of Eq. (2.22) gives [42]

Gel ∼
GLGR

e2/h

δE

EC
. (4.9)

for the average value of the elastic co-tunneling contribution to the conductance.
This result is easily generalized to gate voltages tuned away from the middle

of the Coulomb blockade valley. The corresponding expression reads

Gel ∼
GLGR

e2/h

δE

EC

(
1

N0 −N∗
0
+ 1

N∗
0 −N0 + 1

)
. (4.10)

and is valid whenN0 is not too close to the degeneracy pointsN0 = N∗
0 and

N0 = N∗
0 + 1 (N∗

0 is a half-integer number):

min
{∣∣N0 −N∗

0

∣∣ ,
∣∣N0 −N∗

0 − 1
∣∣}≫ δE/EC

Comparison of Eq. (4.9) with Eq. (4.3) shows that the elastic co-tunneling
mechanism dominates electron transport already at temperatures

T � Tel =
√
ECδE, (4.11)

which may exceed significantly the level spacing. However, as we will see shortly
below, mesoscopic fluctuations ofGel are strong [44], of the order of its average
value. Therefore, althoughGel is always positive, see Eq. (4.10), the sample-
specific value ofGel for a given gate voltage may vanish.

The key to understanding the statistical properties of the elastic co-tunneling
contribution to the conductance is provided by the observation that there are
many (∼ EC/δE ≫ 1) terms making significant contribution to the ampli-
tude Eq. (4.6). All these terms are random and statistically independent of each
other. The central limit theorem then suggests that the distribution ofAel is
Gaussian [23], and, therefore, is completely characterised by the first two statis-
tical moments,

Ael = A∗el, AelAel = A∗elA
∗
el = δβ,1AelA∗el (4.12)

with A∗elAel given by Eq. (4.7). This can be proven by explicit consideration of
higher moments. For example,

∣∣A4
el

∣∣ = 2
(
AelA

∗
el

)2
+
∣∣∣AelAel

∣∣∣
2
+ δ

∣∣A4
el

∣∣. (4.13)
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The non-Gaussian correction here,δ
∣∣A4
el

∣∣ ∼
∣∣A2
el

∣∣ (δE/EC), is by a factor of
δE/EC ≪ 1 smaller than the main (Gaussian) contribution.

It follows from Eqs. (4.8), (4.12), and (4.13) that the fluctuation of the con-
ductanceδGel = Gel −Gel satisfies

δG2
el =

2

β

(
Gel

)2
. (4.14)

Note that breaking of time reversal symmetry reduces the fluctuations by a factor
of 2, similar to conductance fluctuations in bulk systems, whereas the average
conductance (4.10) is not affected by the magnetic field.

It is clear from Eq. (4.14) that the fluctuations of the conductance are of the
order of the conductance itself, despite naive expectations that the large number
of the contributing states results in self-averaging. The reason is that one has to
add amplitudes, rather than probabilities, in order to compute the conductance.
Because the fluctuations of the conductance are large, its distribution function is
not Gaussian. Given the statistics (4.12) of the amplitudes, it is not quite sur-
prising that the distribution ofGel normalized to its average coincides with the
Porter-Thomas distribution (2.23). This result was obtained first in [44] by a
different (and more general) method.

Finally, it is interesting to compare the elastic co-tunneling contribution to
the conductance fluctuations Eq. (4.14) with that of inelastic co-tunneling, see
Eq. (4.4). Even though the inelastic co-tunneling is the main conduction mecha-
nism atT � Tel , see Eq. (4.11), elastic co-tunneling dominates the fluctuations
of the conductance throughout the Coulomb blockade regimeT � EC .

5. Kondo regime in transport through a quantum dot

In the above discussion of the elastic co-tunneling we made the tacit assump-
tion that all single-particle levels in the dot are either empty or doubly occupied.
This, however, is not the case when the dot has a non-zero spin in the ground
state. A dot with an odd number of electrons, for example, would necessarily
have a half-integer spinS. In the most important case ofS = 1/2 the top-most
occupied single-particle level is filled by a single electron and is spin-degenerate.
This opens a possibility of a co-tunneling process in which the transfer of an
electron between the leads is accompanied by a flip of the electron’s spin with
simultaneous flip of the spin on the dot, see Fig. 2(c).

The amplitude of such a process, calculated in the fourth order in tunneling
matrix elements, diverges logarithmically when the energyω of an incoming
electron approaches 0. Sinceω ∼ T , the logarithmic singularity in the trans-
mission amplitude translates into a dramatic enhancement of the conductanceG
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across the dot at low temperatures:G may reach values as high as the quantum
limit 2e2/h [45, 46]. This conductance enhancement is not really a surprise. In-
deed, in the spin-flip co-tunneling process a quantum dot with oddN behaves as
anS = 1/2 magnetic impurity embedded into a tunneling barrier separating two
massive conductors [47]. It is known [48] since the mid-60’s that the presence
of such impurities leads to zero-bias anomalies in tunneling conductance [49],
which are adequately explained [50, 51] in the context of the Kondo effect [6].

5.1. Effective low-energy Hamiltonian

At energies well below the threshold� ∼ δE for intra-dot excitations the tran-
sitions within the(2S + 1)-fold degenerate ground state manifold of a dot can
be conveniently described by a spin operatorS. The form of theeffective Hamil-
toniandescribing the interaction of the dot with conduction electrons in the leads
is then dictated by SU(2) symmetry4,

Heff =
∑

αks

ξk c
†
αkscαks +

∑

αα′
Jαα′(sα′α · S) (5.1)

with sαα′ =
∑
kk′ss′ c

†
αks(σss′/2) cα′k′s′ . The sum overk in Eq. (5.1) is restricted

to |ξk| < �. The exchange amplitudesJ
αα′ form a 2× 2 Hermitian matrixĴ .

The matrix has two real eigenvalues, the exchange constantsJ1 andJ2 (hereafter
we assume thatJ1 ≥ J2). By an appropriate rotation in theR − L space the
Hamiltonian (5.2) can then be brought into the form

Heff =
∑

γ ks

ξkψ
†
γ ksψγ ks +

∑

γ

Jγ (sγ · S). (5.2)

Here the operatorsψγ are certain linear combinations of the original operators
cR,L describing electrons in the leads, and

sγ =
∑

kk′ss′
ψ

†
γ ks

σss′

2
ψ
γ k′s′

is the local spin density of itinerant electrons in the “channel”γ = 1,2.
Symmetry alone is not sufficient to determine the exchange constantsJγ ; their

evaluation must rely upon a microscopic model. Here we briefly outline the
derivation [33, 52, 53] of Eq. (5.1) for a generic model of a quantum dot system
discussed in Section 2 above. For simplicity, we will assume that the gate voltage

4In writing Eq. (5.1) we omitted the potential scattering terms associated with the usual elastic
co-tunneling. This approximation is well justified when the conductances of the dot-lead junctions
are small,Gα ≪ e2/h, in which caseGel is also very small, see Eq. (4.7).
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N0 is tuned to the middle of the Coulomb blockade valley. The tunneling (2.19)
mixes the state withN = N0 electrons on the dot with states havingN ± 1
electrons. The electrostatic energies of these states are high(∼ EC), hence the
transitionsN → N ± 1 are virtual, and can be taken into account perturbatively
in the second order in tunneling amplitudes [54].

For the Hamiltonian (2.15) the occupations of single-particle energy levels are
good quantum numbers. Therefore, the amplitudeJαα′ can be written as a sum
of partial amplitudes,

Jαα′ =
∑

n

J nαα′ . (5.3)

Each term in the sum here corresponds to a process in which an electron or a
hole is created virtually on the leveln in the dot, cf. Eq. (4.6). ForGα ≪ e2/h

andES ≪ δE the main contribution to the sum in Eq. (5.3) comes from singly-
occupied energy levels in the dot. A dot with spinS has 2S such levels near the
Fermi level (hereafter we assign indicesn = −S, . . . , n = S to these levels),
each carrying a spinS/2S, and contributing

J nαα′ =
λn

EC
t∗αntα′n, λn = 2/S, |n| ≤ S (5.4)

to the exchange amplitude in Eq. (5.1). This yields

Jαα′ ≈
∑

|n|≤S
J nαα′ . (5.5)

It follows from Equations (5.3) and (5.4) that

trĴ = 1

EC

∑

n

λn
(
|t2Ln| + |t2Rn|

)
. (5.6)

By restricting the sum overn here to|n| ≤ S, as in Eq. (5.5), and taking into
account that allλn in Eq. (5.4) are positive, we findJ1+ J2 > 0. Similarly, from

detĴ = 1

2E2
C

∑

m,n

λmλn|D2
mn|, Dmn = det

(
tLm tRm
tLn tRn

)
(5.7)

and Equations (5.4) and (5.5), it follows thatJ1J2 > 0 for S > 1/2. Indeed, in
this case the sum in Eq. (5.7) contains at least one contribution withm �= n; all
such contributions are positive. Thus, both exchange constantsJ1,2 > 0 if the
dot’s spinS exceeds 1/2 [33]. The peculiarities of the Kondo effect in quantum
dots with large spin are discussed in Section 5.7 below.
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We now turn to the most common case ofS = 1/2 on the dot [4]. The ground
state of such a dot has only one singly-occupied energy level(n = 0), so that
detĴ ≈ 0, see Eqs. (5.5) and (5.7). Accordingly, one of the exchange constants
vanishes,

J2 ≈ 0, (5.8)

while the remaining one,J1 = trĴ , is positive. Equation (5.8) resulted, of course,
from the approximation made in Eq. (5.5). For the model (2.15) the leading cor-
rection to Eq. (5.5) originates in the co-tunneling processes with an intermediate
state containing an extra electron (or an extra hole) on one of the empty (doubly-
occupied) levels. Such a contribution arises because the spin on the leveln is
not conserved by the Hamiltonian (2.15), unlike the corresponding occupation
number. Straightforward calculation [52] yields the partial amplitude in the form
of Eq. (5.4), but with

λn = − 2ECES
(EC + |ǫn|)2

, n �= 0.

Unless the tunneling amplitudestα0 to the only singly-occupied level in the
dot are anomalously small, the corresponding correction

δJαα′ =
∑

n�=0

J nαα′ (5.9)

to the exchange amplitude (5.5) is small,

∣∣∣∣
δJαα′

Jαα′

∣∣∣∣ ∼
ES

δE
≪ 1,

see Eq. (2.16). To obtain this estimate, we assumed that all tunneling amplitudes
tαn are of the same order of magnitude, and replaced the sum overn in Eq. (5.9)
by an integral. A similar estimate yields the leading contribution to detĴ ,

detĴ ≈ 1

E2
C

∑

n

λ0λn|D2
0n| ∼ −ES

δE

(
trĴ

)2
,

or
J2/J1 ∼ −ES/δE. (5.10)

According to Eq. (5.10), the exchange constantJ2 is negative [55], and its
absolute value is small compared toJ1. Hence, Eq. (5.8) is indeed an excellent
approximation for large chaotic dots with spinS = 1/2 as long as the intra-dot



452 L.I. Glazman and M. Pustilnik

exchange interaction remains weak5, i.e. forES ≪ δE. Note that corrections
to the universal Hamiltonian (2.15) also result in finite values of both exchange
constants,|J2| ∼ J1N

−1/2, and become important for small dots withN �
10 [46]. Although this may significantly affect the conductance across the system
in the weak coupling regimeT � TK , it does not lead to qualitative changes in
the results forS = 1/2 on the dot, as the channel with the smaller exchange
constant decouples at low energies [56], see also Section 5.7 below. With this
caveat, we adopt the approximation (5.8) in our description of the Kondo effect
in quantum dots with spinS = 1/2. Accordingly, the effective Hamiltonian of
the system (5.2) assumes the “block-diagonal” form

Heff = H1 +H2 (5.11)

H1 =
∑

ks

ξkψ
†
1ksψ1ks + J (s1 · S) (5.12)

H2 =
∑

ks

ξkψ
†
2ksψ2ks (5.13)

with J = trĴ > 0.
To get an idea about the physics of the Kondo model (see [57] for recent

reviews), let us first replace the fermion field operators1 in Eq. (5.12) by a single-
particle spin-1/2 operatorS1. The ground state of the resulting Hamiltonian of
two spins

H̃ = J (S1 · S)

is obviously a singlet. The excited state (a triplet) is separated from the ground
state by the energy gapJ1. This separation can be interpreted as the binding en-
ergy of the singlet. UnlikeS1 in this simple example, the operators1 in Eq. (5.12)
is merely a spin density of the conduction electrons at the site of the “magnetic
impurity”. Because conduction electrons are freely moving in space, it is hard
for the impurity to “capture” an electron and form a singlet. Yet, even a weak
local exchange interaction suffices to form a singlet ground state [58, 59]. How-
ever, the characteristic energy (an analogue of the binding energy) for this singlet
is given not by the exchange constantJ , but by the so-called Kondo tempera-
ture

TK ∼ �exp(−1/νJ ). (5.14)

5Equation (5.8) holds identically for the Anderson impurity model [51] frequently employed to
study transport through quantum dots. In that model a quantum dot is described by a single en-
ergy level, which formally corresponds to the infinite level spacing limitδE → ∞ of the Hamil-
tonian (2.15).
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Using� ∼ δE and Equations (5.6) and (2.22), one obtains from Eq. (5.14) the
estimate

ln

(
δE

TK

)
∼ 1

νJ
∼ e2/h

GL +GR
EC

δE
. (5.15)

SinceGα ≪ e2/h andEC ≫ δE, the r.h.s. of Eq. (5.15) is a product of two
large parameters. Therefore, the Kondo temperatureTK is small compared to the
mean level spacing,

TK ≪ δE. (5.16)

It is this separation of the energy scales that justifies the use of the effective
low-energy Hamiltonian (5.1), (5.2) for the description of the Kondo effect in
a quantum dot system. The inequality (5.16) remains valid even if the conduc-
tances of the dot-leads junctionsGα are of the order of 2e2/h. However, in this
case the estimate (5.15) is no longer applicable [60].

In our model, see Equations (5.11)-(5.13), one of the channels(ψ2) of con-
duction electrons completely decouples from the dot, while theψ1-particles are
described by the standard single-channel antiferromagnetic Kondo model [6, 57].
Therefore, the thermodynamic properties of a quantum dot in the Kondo regime
are identical to those of the conventional Kondo problem for a single magnetic
impurity in a bulk metal; thermodynamics of the latter model is fully studied [61].
However, all the experiments addressing the Kondo effect in quantum dots test
their transport properties rather than their thermodynamics. The electron current
operator is not diagonal in the(ψ1, ψ2) representation, and the contributions of
these two sub-systems to the conductance are not additive. Below we relate the
linear conductance and, in some special case, the non-linear differential conduc-
tance as well, to the t-matrix of the conventional Kondo problem.

5.2. Linear response

The linear conductance can be calculated from the Kubo formula

G = lim
ω→0

1

�ω

∫ ∞

0
dt eiωt

〈[
Î (t), Î (0)

]〉
, (5.17)

where the current operatorÎ is given by

Î = d

dt

e

2

(
N̂R − N̂L

)
, N̂α =

∑

ks

c
†
αkscαks (5.18)

HereN̂α is the operator of the total number of electrons in the leadα. Evaluation
of the linear conductance proceeds similarly to the calculation of the impurity
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contribution to the resistivity of dilute magnetic alloys (see, e.g., [62]). In order
to take full advantage of the decomposition (5.11)-(5.13), we rewriteÎ in terms
of the operatorsψ1,2. These operators are related to the original operatorscR,L
representing the electrons in the right and left leads via

(
ψ1ks
ψ2ks

)
=
(

cosθ0 sinθ0
− sinθ0 cosθ0

)(
cRks
cLks

)
. (5.19)

The rotation matrix here is the same one that diagonalizes matrixĴ of the ex-
change amplitudes in Eq. (5.1); the rotation angleθ0 satisfies the equation tanθ0 =
|tL0/tR0|. With the help of Eq. (5.19) we obtain

N̂R − N̂L = cos(2θ0)
(
N̂1 − N̂2

)
− sin(2θ0)

∑

ks

(
ψ

†
1ksψ2ks + H.c.

)
(5.20)

The current operator̂I entering the Kubo formula (5.17) is to be calculated with
the equilibrium Hamiltonian (5.11)-(5.13). Since bothN̂1 andN̂2 commute with
Heff, the first term in Eq. (5.20) makes no contribution toÎ . When the sec-
ond term in Eq. (5.20) is substituted into Eq. (5.18) and then into the Kubo for-
mula (5.17), the result, after integration by parts, can be expressed via 2-particle
correlation functions such as

〈
ψ

†
1(t)ψ2(t)ψ

†
2(0)ψ1(0)

〉
(see Appendix B of [63]

for further details about this calculation). Due to the block-diagonal structure
of Heff, see Eq. (5.11), these correlation functions factorize into products of the
single-particle correlation functions describing the (free)ψ2-particles and the (in-
teracting)ψ1-particles. The result of the evaluation of the Kubo formula can then
be written as

G = G0

∫
dω

(
− df
dω

)
1

2

∑

s

[
−πν Im Ts(ω)

]
. (5.21)

Here

G0 =
2e2

h
sin2(2θ0) =

2e2

h

4|t2L0t
2
R0|(

|t2L0| + |t2R0|
)2
, (5.22)

f (ω) is the Fermi function, andTs(ω) is the t-matrix for the Kondo model (5.12).
The t-matrix is related to the exact retarded Green function of theψ1-particles in
the conventional way,

Gks,k′s(ω) = G0
k(ω)+G0

k(ω)Ts(ω)G
0
k′(ω), G0

k = (ω − ξk + i0)−1.

HereGks,k′s(ω) is the Fourier transform ofGks,k′s(t) = −iθ(t)
〈{
ψ1ks(t), ψ

†
1k′s

}〉
,

where〈. . .〉 stands for the thermodynamic averaging with Hamiltonian (5.12). In
writing Eq. (5.21) we took into account the conservation of the total spin (which
implies thatGks,k′s′ = δss′Gks,k′s , and the fact that the interaction in Eq. (5.12) is
local (which in turn means that the t-matrix is independent ofk andk′).
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5.3. Weak coupling regime:TK ≪ T ≪ δE

When the exchange term in the Hamiltonian (5.12) is treated perturbatively, the
main contribution to the t-matrix comes from the transitions of the type [64]

|ks, σ 〉 →
∣∣k′s′, σ ′

〉
. (5.23)

Here the state|ks, σ 〉 has an extra electron with spins in the orbital statek
whereas the dot is in the spin stateσ . By SU(2) symmetry, the amplitude of
the transition (5.23) satisfies

A|k′s′,σ ′〉←|ks,σ 〉 = A(ω)
1

4
(σs′s · σσ ′σ ) (5.24)

Note that the amplitude is independent ofk, k′ because the interaction is local.
However, it may depend onω due to retardation effects.

The transition (5.23) iselastic in the sense that the number of quasiparticles
in the final state of the transition is the same as that in the initial state (in other
words, the transition (5.23) is not accompanied by the production of electron-
hole pairs). Therefore, the imaginary part of the t-matrix can be calculated with
the help of the optical theorem [65], which yields

−πν Im Ts =
1

2

∑

σ

∑

s′σ ′

∣∣∣πν A2
|k′s′,σ ′〉←|ks,σ 〉

∣∣∣ . (5.25)

The factor 1/2 here accounts for the probability to have spinσ on the dot in
the initial state of the transition. Substitution of the tunneling amplitude in the
form (5.24) into Eq. (5.25), and summation over the spin indices with the help of
the identity (2.9) result in

−πν Im Ts =
3π2

16
ν2
∣∣A2(ω)

∣∣ . (5.26)

In the leading (first) order inJ one readily obtainsA(1) = J , independently of
ω. However, as discovered by Kondo [6], the second-order contributionA(2) not
only depends onω, but is logarithmically divergent asω→ 0:

A(2)(ω) = νJ 2 ln |�/ω| .

Here� is the high-energy cutoff in the Hamiltonian (5.12). It turns out [64] that
similar logarithmically divergent contributions appear in all orders of perturba-
tion theory,

νA(n)(ω) = (νJ )n
[
ln |�/ω|

]n−1
,
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resulting in a geometric series

νA(ω) =
∞∑

n=1

νA(n) = νJ
∞∑

n=0

[
νJ ln |�/ω|

]n = νJ

1− νJ ln |�/ω| .

With the help of Eq. (5.14) this can be written as

νA(ω) = 1

ln |ω/TK |
. (5.27)

Substitution of Eq. (5.27) into Eq. (5.26) and then into Eq. (5.21), and evaluation
of the integral overω with logarithmic accuracy yield for the conductance across
the dot

G = G0
3π2/16

ln2(T /TK)
, T ≫ TK . (5.28)

Equation (5.28) is the leading term of the asymptotic expansion in powers of
1/ ln(T /TK), and represents the conductance in theleading logarithmic approx-
imation.

Eq. (5.28) resulted from summing up the most-diverging contributions in all
orders of perturbation theory. It is instructive to re-derive it now in the framework
of renormalization group[66]. The idea of this approach rests on the observa-
tion that the electronic states that give a significant contribution to observable
quantities, such as conductance, are states within an interval of energies of width
ω ∼ T about the Fermi level, see Eq. (5.21). At temperatures of orderTK ,
when the Kondo effect becomes important, this interval is narrow compared to
the width of the bandD = � in which the Hamiltonian (5.12) is defined.

Consider a narrow strip of energies of widthδD ≪ D near the edge of the
band. Any transition (5.23) between a state near the Fermi level and one of the
states in the strip is associated with high (∼ D) energy deficit, and, therefore,
can only occur virtually. Obviously, virtual transitions via each of the states in
the strip result in the second-order correction∼ J 2/D to the amplitudeA(ω) of
the transition between states in the vicinity of the Fermi level. Since the strip
containsνδD electronic states, the total correction is [66]

δA ∼ νJ 2δD/D.

This correction can be accounted for by modifying the exchange constant in the
effective HamiltonianH̃eff which is defined for states within a narrower energy
band of the widthD − δD [66],

H̃eff =
∑

ks

ξkψ
†
ksψks + JD−δD(sψ · S), |ξk| < D − δD, (5.29)

JD−δD = JD + νJ 2
D

δD

D
. (5.30)
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HereJD is the exchange constant in the original Hamiltonian. Note thatH̃eff has
the same form as Eq. (5.12). This is not merely a conjecture, but can be shown
rigorously [59, 67].

The reduction of the bandwidth can be considered to be the result of a uni-
tary transformation that decouples the states near the band edges from the rest of
the band [68]. In principle, any such transformation should also affect the op-
erators that describe the observable quantities. Fortunately, this is not the case
for the problem at hand. Indeed, the angleθ0 in Eq. (5.19) is not modified by
the transformation. Therefore, the current operator and the expression for the
conductance (5.21) retain their form.

Successive reductions of the high-energy cutoffD by small stepsδD can be
viewed as a continuous process during which the initial Hamiltonian (5.12) with
D = � is transformed to an effective Hamiltonian of the same form that acts
within the band of reduced widthD ≪ �. It follows from Eq. (5.30) that the de-
pendence of the effective exchange constant onD is described by the differential
equation [66, 67]

dJD

dζ
= νJ 2

D, ζ = ln (�/D). (5.31)

With the help of Eq. (5.14), the solution of the RG equation (5.31) subject to the
initial conditionJ� = J can be cast into the form

νJD = 1

ln(D/TK)
. (5.32)

The renormalization described by Eq. (5.31) can be continued until the band-
widthD becomes of the order of the typical energy|ω| ∼ T for real transitions.
After this limit has been reached, the transition amplitudeA(ω) is calculated
in lowest (first) order of perturbation theory in the effective exchange constant
(higher order contributions are negligible forD ∼ ω),

νA(ω) = νJD∼|ω| =
1

ln |ω/TK |
Using now Eqs. (5.26) and (5.21), we recover Eq. (5.28).

5.4. Strong coupling regime:T ≪ TK

As temperature approachesTK , the leading logarithmic approximation result
Eq. (5.28) diverges. This divergence signals the failure of the approximation.
Indeed, we are considering a model with single-mode junctions between the dot
and the leads. The maximal possible conductance in this case is 2e2/h. To obtain
a more precise bound, we discuss in this section the conductance in the strong
coupling regimeT ≪ TK .
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We start with the zero-temperature limitT = 0. As discussed above, the
ground state of the Kondo model (5.12) is a singlet [58], and, accordingly, is not
degenerate. Therefore, the t-matrix of the conduction electrons interacting with
the localized spin is completely characterized by the scattering phase shiftsδs for
electrons with spins at the Fermi level. The t-matrix is then given by the standard
scattering theory expression [65]

−πν Ts(0) =
1

2i
(Ss − 1) , Ss = e2iδs , (5.33)

whereSs is the scattering matrix for electrons with spins, which for a single
channel case reduces to its eigenvalue. Substitution of Eq. (5.33) into Eq. (5.21)
yields

G(0) = G0
1

2

∑

s

sin2 δs (5.34)

for the conductance, see Eq. (5.21). The phase shifts in Eqs. (5.33), (5.34) are
obviously defined only modπ (that is,δs andδs + π are equivalent). This ambi-
guity can be removed if we set to zero the values of the phase shifts atJ = 0 in
Eq. (5.12).

In order to find the two phase shiftsδs , we need two independent relations.
The first one follows from the invariance of the Kondo Hamiltonian (5.12) under
the particle-hole transformationψks → sψ

†
−k,−s (heres = ±1 for spin-up/down

electrons). The particle-hole symmetry implies the relation for the t-matrix

Ts(ω) = −T ∗−s(−ω), (5.35)

valid at allω andT . In view of Eq. (5.33), it translates into the relation for the
phase shifts at the Fermi level (ω = 0) [69],

δ↑ + δ↓ = 0. (5.36)

The second relation follows from the requirement that the ground state of the
Hamiltonian (5.12) is a singlet [69]. In the absence of exchange (J = 0) and at
T = 0, an infinitesimally weak (with Zeeman energyB →+0) magnetic field

HB = BSz (5.37)

would polarize the dot’s spin. Since the free electron gas has zero spin in the
ground state, the total spin in a very large but finite region of spaceV surrounding
the dot coincides with the spin of the dot,〈Sz〉J=0 = −1/2. If the exchange with
the electron gas is now turned on,J > 0, a very weak field will not prevent the
formation of a singlet ground state. In this state, the total spin withinV is zero.
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Such change of the spin is possible if the numbers of spin-up and spin-down
electrons withinV have changed to compensate for the dot’s spin:δN↑− δN↓ =
1. By the Friedel sum rule,δNs are related to the scattering phase shifts at the
Fermi level,δNs = δs/π , which gives

δ↑ − δ↓ = π. (5.38)

Combining Eqs. (5.36) and (5.38), we find

δs = s
π

2
. (5.39)

Equation (5.34) then yields for the zero-temperature and zero-field conductance
across the dot [45]

G(0) = G0. (5.40)

Thus, the growth of conductance as the temperature is lowered, is limited only
by the value ofG0. This value, see Eq. (5.22), depends only on the ratio of the
tunneling amplitudes|tL0/tR0|; if |tL0| = |tR0|, then the conductance atT = 0
will reach the maximal valueG = 2e2/h allowed by quantum mechanics [45].

As explained above, screening of the dot’s spin by itinerant electrons amounts
to ±π/2 phase shifts for electrons at the Fermi level(ω = 0). However, the
phase shifts at a finiteω deviate from the unitary limit value. Such deviation is
to be expected, as the Kondo “resonance” has a finite width∼ TK . There is also
an inelastic component of scattering appearing at finiteω. Virtual transitions to
excited states, corresponding to a broken up Kondo singlet, induce a local repul-
sive interaction between itinerant electrons [69], which is the cause of inelastic
scattering. This interaction enters the fixed-point Hamiltonian, applicable when
the relevant energies are small compared to the Kondo temperatureTK . The fixed
point Hamiltonian takes a relatively simple form [69] when written in the basis
of electronic states that incorporate an extra±π/2 phase shift [see Eq. (5.39)]
compared to the original basis of Eq. (5.12). In the new basis,

Hfixed point=
∑

ks

ξkϕ
†
ksϕks −

∑

kk′s

ξk + ξk′
2πνTK

ϕ
†
ksϕk′s +

1

πν2TK
ρ↑ρ↓. (5.41)

Hereρs =
∑
kk′ :ϕ†

ksϕk′s : (the colons denote normal ordering). The form of the
last two terms on the r.h.s. of Eq. (5.41) is dictated by the particle-hole symme-
try [69]. The ratio of their coefficients is fixed by the physical requirement that
the Kondo singularity is tied to the Fermi level [69] (i.e. that the phase shifts
depend only on the distanceω to the Fermi level), while the overall coefficient
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1/TK can be viewed as a precise definition of the Kondo temperature6. Note that
by construction, the t-matrix forϕ−particlesT̃ vanishes forω = T = 0.

The second term in the r.h.s. of Eq. (5.41) describes a purely elastic scattering,
and yields a smallω−dependent phase shift [69]

δ̃(ω) = ω

TK
. (5.42)

The last term in Eq. (5.41) gives rise to an inelastic contribution toT̃ . Evaluation
of this contribution in the second order of perturbation theory (see [62, 69] for
details) results in

−πν T̃ in(ω) = i
ω2 + π2T 2

2T 2
K

. (5.43)

In order to obtain the t-matrix in the original basisTs(ω), we note that the
elastic scattering phase shifts here are obtained by simply adding±π/2 to δ̃, i.e.

δs(ω) = s
π

2
+ δ̃(ω). (5.44)

The relation betweenTs(ω) and T̃ (ω), accounting for small inelastic term̃T in,
reads

−πνTs(ω) =
1

2i

[
e2iδs (ω) − 1

]
+ e2iδs (ω)

[
−πν T̃ in(ω)

]
. (5.45)

Note that the inelastic contribution enters this expression with an extra factor of
exp(2iδs). The appearance of this factor is a direct consequence of the unitarity
of the scattering matrix in the presence of both elastic and inelastic scattering
channels, see [69]. Taking into account Eqs. (5.42), (5.43), and (5.44), we find

−πν Im Ts(ω) = 1− 3ω2 + π2T 2

2T 2
K

. (5.46)

Substitution of this expression into Eq. (5.21) then yields

G = G0
[
1− (πT /TK)2

]
, T ≪ TK . (5.47)

Accordingly, corrections to the conductance are quadratic in temperature – a typ-
ical Fermi liquid result [69]. The weak-coupling (T ≫ TK ) and the strong-
coupling (T ≪ TK ) asymptotes of the conductance have a strikingly different
structure. Nevertheless, since the Kondo effect is a crossover phenomenon rather

6With this convention the RG expression Eq. (5.14) is regarded as an estimate ofTK with loga-
rithmic accuracy.
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than a phase transition [57, 58, 59, 61], the dependenceG(T ) is a smooth and
featureless [70] function throughout the crossover regionT ∼ TK .

Finally, note that both Eqs. (5.28) and (5.47) have been obtained here for
the particle-hole symmetric model (5.12). This approximation is equivalent to
neglecting the elastic co-tunneling contribution to the conductanceGel . The as-
ymptotes (5.28), (5.47) remain valid [33] as long asGel/G0 ≪ 1. The overall
temperature dependence of the linear conductance in the middle of the Coulomb
blockade valley is sketched in Fig. 3.

Fig. 3. Sketch of the temperature dependence of the conductance in the middle of the Coulomb block-
ade valley withS = 1/2 on the dot. The numbers in brackets refer to the corresponding equations in
the text.

The fixed point Hamiltonian (5.41) also allows one to calculate the correc-
tions to zero-temperature conductance due to a finite magnetic field, which en-
ters Eq. (5.41) via a termHB =

∑
ks(s/2)B ϕ

†
ksϕks . The field polarizes the elec-

tron gas, and the operatorsρs acquire non-zero ground state expectation value
〈ρs〉 = −νBs/2. In order to calculate the phase shifts at the Fermi energy we
replaceρ↑ρ↓ in the third term in the r.h.s. (5.41) by

∑
s〈ρ−s〉ρs , andξk, ξk′ in

the second term by their values at the Fermi levelξk = −Bs/2. As a result,
Eq. (5.41) simplifies to

H =
∑

ks

(ξk +
s

2
B)ϕ

†
ksϕks +

∑

kk′s

Bs

πνTK
ρs,

from which one can read off the scattering phase shifts forϕ−particles,

δ̃s = −sB/TK .
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The phase shifts in the original basis are given by [69]

δs = s
π

2
+ δ̃s = s

(
π

2
− B

TK

)
,

cf. Eq. (5.44). Equation (5.34) then gives

G = G0
[
1− (B/TK )2

]
, B ≪ TK . (5.48)

Note that the effect of a finite magnetic field on the zero-temperature conduc-
tance is very similar to the effect of a finite temperature has on the conductance
at zero field, see Eq. (5.47). The similarity is not limited to the strong coupling
regime. Indeed, the counterpart of Eq. (5.28) reads

G = G0
π2/16

ln2(B/TK )
, B ≫ TK . (5.49)

5.5. Beyond linear response

In order to study transport through a quantum dot away from equilibrium we add
to the effective Hamiltonian (5.11)-(5.13) a term

HV =
eV

2

(
N̂L − N̂R

)
(5.50)

describing a finite voltage biasV applied between the left and right electrodes.
Here we will evaluate the current across the dot at arbitraryV but under the
simplifying assumption that the dot-lead junctions are strongly asymmetric:

GL ≪ GR.

Under this condition the angleθ0 in Eq. (5.19) is small,θ0 ≈ |tL0/tR0| ≪ 1.
Expanding Eq. (5.20) to linear order inθ0 we obtain

HV (θ0) =
eV

2

(
N̂2 − N̂1

)
+ eV θ0

∑

ks

(
ψ

†
1ksψ2ks + H.c.

)
(5.51)

The first term in the r.h.s. here can be interpreted as the voltage bias between
the reservoirs of 1 and 2 particles, cf. Eq. (5.50), while the second term has an
appearance ofk-conserving tunneling with very small (proportional toθ0 ≪ 1)
tunneling amplitude.
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Similar to Eq. (5.51), the current operatorÎ , see Eq. (5.18), splits naturally
into two parts,

Î = Î0 + δÎ ,
Î0 =

d

dt

e

2

(
N̂1 − N̂2

)
= −ie2V θ0

∑

ks

ψ
†
1ksψ2ks + H.c.,

δÎ = −e θ0
d

dt

∑

ks

ψ
†
1ksψ2ks + H.c.

It turns out thatδÎ does not contribute to the average current in the leading (sec-
ond) order inθ0 [47]. Indeed, in this order

〈δÎ 〉 = iθ2
0e

2V
d

dt

∫ t

−∞
dt ′

〈
[Ô(t), Ô(t ′)]

〉
0
, Ô =

∑

ks

ψ
†
1ksψ2ks,

where〈. . . 〉0 denotes thermodynamic averaging with the HamiltonianHeff+HV .
The thermodynamic (equilibrium) averaging is well defined here, because the
HamiltonianHeff + HV conserves separately the numbers of 1- and 2-particles.
Taking into account that〈[Ô(t), Ô(t ′)]〉0 depends only on the differenceτ =
t − t ′, we find

〈δÎ 〉 = iθ2
0e

2V
d

dt

∫ ∞

0
dτ

〈
[Ô(τ ), Ô(0)]

〉
0
= 0.

The remaining contributionI =
〈
Î0
〉

corresponds to tunneling current between
two bulk reservoirs containing 1- and 2-particles. Its evaluation follows the stan-
dard procedure [71] and yields [47]

dI

dV
= G0

1

2

∑

s

[−πν Im Ts(eV )] (5.52)

for the differential conductance across the dot at zero temperature. HereG0
coincides with the smallθ0-limit of Eq. (5.22). Using now Eqs. (5.26), (5.27),
and (5.46), we obtain

1

G0

dI

dV
=





1− 3

2

(
eV

TK

)2

, |eV | ≪ TK

3π2/16

ln2(|eV |/TK)
, |eV | ≫ TK

(5.53)
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Thus, a large voltage bias has qualitatively the same destructive effect on the
Kondo physics as the temperature does. The result Eq. (5.53) remains valid as
long asT ≪ |eV | ≪ δE. If temperature exceeds the bias,T ≫ eV , the dif-
ferential conductance coincides with the linear conductance, see Eqs. (5.28) and
(5.47) above.

5.6. Splitting of the Kondo peak in a magnetic field

According to Eq. (5.53), the differential conductance exhibits a peak at zero bias.
The very appearance of such a peak, however, does not indicate that we are deal-
ing with the Kondo effect. Indeed, even in the absence of interactions, tunneling
via a resonant level situated at the Fermi energy would also result in a zero-bias
peak indI/dV . These two situations can be distinguished by considering the
evolution of the zero-bias peak with the magnetic field. In both cases, a suffi-
ciently strong field (such that the corresponding Zeeman energyB appreciably
exceeds the peaks width) splits the zero-bias peak in two smaller ones, located at
±V ∗. In the case of conventional resonant tunneling,eV ∗ = B/2. However, if
the split peaks are of the Kondo origin, theneV ∗ ≈ B. This doubling of the dis-
tance between the split peaks is viewed by many as a hallmark of the many-body
physics associated with the Kondo effect [4].

In order to address the splitting of the zero-bias Kondo peak we add to the
Hamiltonian (5.12) a term

HB = BSz +
∑

ks

Bs

2
ψ

†
1ksψ1ks (5.54)

describing the Zeeman effect of the magnetic field7. We concentrate on the most
interesting case of

�≫ B ≫ TK . (5.55)

The first inequality here ensures that the zero-bias peak is split, while the second
one allows the development of the Kondo correlations to a certain extent. For
simplicity, we also consider here a strongly asymmetric setup, as in Section 5.5,
which allows us to use Eq. (5.52) relating the differential conductance to the
t-matrix. Note, however, that the results presented below remain qualitatively
correct even when this assumption is lifted.

7In general, a magnetic field affects both the orbital and spin parts of the electronic wave function.
However, as long as the spin of the dot remains equal to 1/2 (the opposite case is considered in the
next Section), the orbital effect of the field is unimportant. It modifies the exchange amplitudeJ and
the bandwidth� in the Hamiltonian (5.12), which may eventually alter the values ofG0 andTK in
Eq. (5.53). However, the functional form of the dependence ofdI/dV on V at a fixedB remains
intact.
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As long as the bias|eV | is small compared toB, the differential conduc-
tance approximately coincides with the linear one, see Eq. (5.49). Similarly, at
|eV | ≫ B the field has a negligible effect, anddI/dV is given by the second
line in Eq. (5.53). The presence of the field, however, significantly affects the
dependence ofdI/dV on V at |eV | ∼ B ≫ T , and it is this region which we
address here.

Clearly, forB ∼ |eV | ≫ TK the system is in the weak coupling Kondo
regime, so that the perturbative RG procedure described in Section 5.3 is an ad-
equate tool to study it. Let us suppose, for simplicity, that in the absence of
magnetic field electrons fill up the lower half of a band characterized by width
2� and constant density of statesν, see Fig. 4(a). In the presence of the field,
the energy of an itinerant electron consists of the orbital partξk and the Zeeman
energyBs/2, see the second term in Eq. (5.54). Conditionξk + Bs/2 = ǫF
cuts out different strips of orbital energies for spin-up and spin-down electrons,
see Fig. 4(b). To set the stage for the RG, it is convenient to cut the initial band
asymmetrically for spin-up and spin-down electrons. The resulting band struc-
ture, shown in Fig. 4(c), is the same for both directions of spin. Further symmetric
reductions of the band in the course of RG leave this band structure intact.

Fig. 4. The energy bands for spin-up and spin-down itinerant electrons. The solid lines denote the
boundaries of the bands, the dashed lines correspond to the Fermi energy.
(a) Band structure without Zeeman splitting; (b) same withB �= 0; (c) same after the initial asym-
metric cutting of the bands(D0 = �− B).

After the initial cutting of the band, the effective HamiltonianHeff+HB takes
the form

H =
∑

ks

ξkψ
†
ksψks + J (sψ · S)+ ηBSz. (5.56)

Herek is measured from the Fermi momentum of electrons with spins, and we
suppressed the subscript 1 in the operatorsψ1ks etc. The Hamiltonian (5.56) is
defined within a symmetric band

|ξk| < D0 = �− B ≈ �,
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see Fig. 4(c). The parameterη in (5.56) is given by

η = 1− νJ/2 (5.57)

with J the “bare” value of the exchange constant. The correction−νJ/2 in
Eq. (5.57) is nothing else but the Knight shift [72]. In a finite magnetic field,
there are more spin-down electrons than spin-up ones, see Fig. 4(b). This mis-
match results in a non-zero ground state expectation value〈sz1〉 = −νB/2 of
the operatorsz1 in Eq. (5.12). Due to the exchange interaction, this induces an
additional effective magnetic field−νJB/2 acting on the localized spin.

The form of the effective Hamiltonian (5.56) remains invariant under the RG
transformation. The evolution ofJ andµ with the reduction of the bandwidthD
is governed by the equations

dJD

dζ
= νJ 2

D, (5.58)

d ln ηD
dζ

= −1

2
(νJD)

2, (5.59)

whereζ = ln (�/D). Equation (5.58) was derived in Section 5.3 above; the
derivation of Eq. (5.59) proceeds in a similar way. It is clear from the solution of
Eq. (5.58), see Eq. (5.32), thatνJD remains small throughout the weak coupling
regimeD ≫ TK . It then follows from Eqs. (5.57) and (5.59) thatηD is of the
order of 1 in this range ofD. The renormalization described by Eqs. (5.58) and
(5.59) must be terminated atD ∼ 2B ≫ TK , so thatηBB remains smaller than
D. At this point

νJB =
1

ln(B/TK)
, (5.60)

see Eq. (5.32). Solution of Eq. (5.58) in the scaling limit8, defined as

ln(B/TK)

ln(�/TK)
≪ 1,

takes the familiar form [57]

ηB = 1− 1

2 ln(B/TK )
. (5.61)

Now we are ready to evaluate the differential conductance. The Hamiltonian
Eq. (5.56) withJ andη given by Eqs. (5.60) and (5.61) is defined in a sufficiently

8In this limit the Knight shift in Eq. (5.57) can be neglected.
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wide bandD ∼ 2B to allow for excitations with energy of the order of the Zee-
man splitting. Since the current operator remains invariant in the course of renor-
malization, the differential conductance can still be calculated from Eq. (5.52).
We start with the lowest order inνJB (Born approximation). Calculation similar
to that in Section 5.3 yields

1

G0

dI

dV
= π2/16

ln2(B/TK)

[
1+ 2θ(|eV | − ηBB)

]
. (5.62)

The main new feature of Eq. (5.62) compared to (5.53) is a threshold behavior
at |eV | = ηBB. The origin of this behavior is apparent: for|eV | > ηBB an
inelastic (spin-flip) scattering channel opens up, causing a step indI/dV .

In the absence of Zeeman splitting, going beyond the Born approximation in
the renormalized exchange amplitude Eq. (5.32) would be meaningless, as this
would exceed the accuracy of the logarithmic RG. This largely remains true here
as well, except when the bias is very close to the inelastic scattering threshold,

∣∣∣|eV | − ηBB
∣∣∣≪ B.

The existence of the threshold makes the t-matrix singular atω = ηBB; such
logarithmically divergent contribution appears in the third order inJB [50]. Re-
taining this contribution does not violate the accuracy of our approximations, and
we find

1

G0

dI

dV
= π2/16

ln2(B/TK )

[
1+ 2θ(|eV | − ηBB)

]

×
(

1+ 1

ln(B/TK )
ln

B∣∣|eV | − µB
∣∣

)
. (5.63)

We see now that the zero-bias peak in the differential conductance is indeed split
in two by the applied magnetic field. The split peaks are located at±V ∗ with

V ∗ = ηBB =
[
1− 1

2 ln(B/TK )

]
B, (5.64)

see Eq. (5.61).
Because of the logarithmic divergence in Eq. (5.63) this result needs some re-

finement. A finite temperatureT ≫ TK would of course cut the divergence [50];
this amounts to the replacement of||eV |−ηBB| under the logarithm in Eq. (5.63)
by max{||eV |−µB|, T }. This is fully similar to the cut-off of the zero-bias Kondo
singularity in the absence of the field.
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TheT = 0 case, however, is different, and turns out to be much simpler than
theB = 0 Kondo anomaly at zero bias. The logarithmic singularity in Eq. (5.63)
is brought about by the second-order inJB contribution to the scattering ampli-
tude. This contribution involves a transition to the excited(Sz = +1/2) state of
the localized spin. Unlike theB = 0 case, now such a state has a finite lifetime:
the spin of the dot may flip, exciting (a triplet) electron-hole pair of energyηBB

in the band. Such relaxation mechanism was first considered by Korringa [73].
In our case the corresponding relaxation rate is easily found with the help of the
Fermi Golden Rule,

�

τK
= π

2

ηBB

ln2(B/TK )
.

Due to the finite Korringa lifetimeτK the state responsible for the logarithmic sin-
gularity is broadened by�/τK , which cuts off the divergence [74] in Eq. (5.63).
It also smears the step-like dependence onV , which we found in the Born ap-
proximation, Eq. (5.62). As a result, the split peaks in the dependence ofdI/dV

onV are broad and low. The characteristic width of the peaks is

δV ∼ �

τK
∼ B

ln2(B/TK )
, (5.65)

and their height is given by

G(V ∗)−G(0)
G(0)

∼ ln
[
ln2(B/TK )

]

ln2(B/TK)
≪ 1. (5.66)

Here we used the short-hand notationdI/dV = G(V ). When evaluatingG(V ∗),
we replaced

∣∣|eV |−ηBB
∣∣ by �/τK in the argument of the logarithm in Eq. (5.63).

The right-hand side of Eq. (5.66) is small, and the higher-order inνJB corrections
to Eq. (5.63) are negligible.

The problem of the field-induced splitting of the Kondo peak was revisited
many times since the works of Appelbaum [50], see e.g. [75, 76, 77].

5.7. Kondo effect in quantum dots with large spin

If the dot’s spin exceeds 1/2, see Refs. [78, 79, 80], then, as discussed in Sec-
tion 5.1 above, both exchange constantsJγ in the effective Hamiltonian (5.2) are
finite and positive. This turns out to have a dramatic effect on the dependence of
the conductance in the Kondo regime on temperatureT and on Zeeman energy
B. Unlike the case ofS = 1/2 on the dot, see Fig. 3, now the dependences onT

andB arenon-monotonic:an initial increase ofG is followed by a drop when the
temperature is lowered [33, 81] atB = 0; the variation ofG with B atT = 0 is
similarly non-monotonic.
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The origin of this peculiar behavior is easier to understand by considering
theB-dependence of the zero-temperature conductance [33]. We assume that
the magnetic fieldH‖ is appliedin the planeof the dot. Such field leads to the
Zeeman splittingB of the spin states of the dot, see Eq. (5.37), but barely affects
the orbital motion of electrons.

At any finiteB the ground state of the system is not degenerate. Therefore,
the linear conductance atT = 0 can be calculated from the Landauer formula

G = e2

h

∑

s

∣∣S2
s;RL

∣∣ , (5.67)

which relatesG to the amplitude of scatteringSs;RL of an electron with spin
s from leadL to leadR. The amplitudesSs;αα′ form 2× 2 scattering matrix
Ŝs . In the basis of “channels”, see Eq. (5.2), this matrix is obviously diagonal,
and its eigenvalues exp

(
2iδγ s

)
are related to the scattering phase shiftsδγ s . The

scattering matrix in the original(R − L) basis is obtained from

Ŝs = Û†diag
{
e2iδγ s

}
Û ,

whereÛ is a matrix of a rotation by an angleθ0, see Eq. (5.19). The Landauer
formula (5.67) then yields

G = G0
1

2

∑

s

sin2 (δ1s − δ2s) , G0 =
2e2

h
sin2(2θ0), (5.68)

which generalizes the single-channel expression (5.34).
Equation (5.68) can be further simplified for a particle-hole symmetric model

(5.2). Indeed, in this case the phase shifts satisfyδγ↑ + δγ↓ = 0, cf. Eq. (5.36),
which suggests a representation

δγ s = sδγ . (5.69)

Substitution into Eq. (5.68) then results in

G = G0 sin2 (δ1 − δ2) . (5.70)

If the spinS on the dot, exceeds 1/2, then both channels of itinerant elec-
trons participate in the screening of the dot’s spin [56]. Accordingly, in the limit
B → 0 both phase shiftsδγ approach the unitary limit valueπ/2, see Fig. 5.
However, the increase of phase shifts with lowering the field is characterized
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Fig. 5. Dependence of the scattering phase shifts at the Fermi level on the magnetic field forS > 1/2
(left panel) andS = 1/2 (right panel).

by two different energy scales. These scales, the Kondo temperaturesT1 and
T2, are related to the corresponding exchange constants in the effective Hamil-
tonian (5.2),

ln

(
�

Tγ

)
∼ 1

νJγ
,

so thatT1 > T2 for J1 > J2. It is then obvious from Eq. (5.70) that the con-
ductance across the dot is small both at weak(B ≪ T2) and strong(B ≫ T1)

fields, but may become large(∼ G0) at intermediate fieldsT2 ≪ B ≪ T1, see
Fig. 6. In other words, the dependence of the zero-temperature conductance on
the magnetic field is non-monotonic.

Fig. 6. Sketch of the magnetic field dependence of the Kondo contribution to the linear conductance
at zero temperature. The conductance as a function of temperature exhibits a similar non-monotonic
dependence.

This non-monotonic dependence is in sharp contrast with the monotonic in-
crease of the conductance with lowering the field whenS = 1/2. Indeed, in the
latter case it is the channel whose coupling to the dot is the strongest that screens
the dot’s spin, while the remaining channel decouples at low energies [56], see
Fig. 5.
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The dependence of the conductance on temperatureG(T ) is very similar9 to
G(B). For example, forS = 1 one obtains [33]

G/G0 =





(πT )2
(

1

T1
− 1

T2

)2

, T ≪ T2

π2

2

[
1

ln(T /T1)
− 1

ln(T /T2)

]2

, T ≫ T1

(5.71)

The conductance reaches its maximunGmax atT ∼ √
T1T2. The value ofGmax

can be found analytically forT1 ≫ T2. ForS = 1 the result reads [33]

Gmax= G0

[
1− 3π2

ln2(T1/T2)

]
. (5.72)

Consider now a Coulomb blockade valley withN = even electrons and spin
S = 1 on the dot. In a typical situation, the dot’s spin in two neighboring valleys
(withN±1 electrons) is 1/2. Under the conditions of applicability of the approx-
imation in Eq. (5.5), there is a single non-zero exchange constantJN±1 for each
of these valleys. If the Kondo temperaturesTK are the same for both valleys with
S = 1/2, thenJN+1 = JN−1 = Jodd. Each of the two singly-occupied energy
levels in the valley withS = 1 is also singly-occupied in one of the two neigh-
boring valleys. It then follows from Eqs. (5.4)-(5.6) that the exchange constants
J1,2 for S = 1 satisfy

J1 + J2 =
1

2
(JN+1 + JN−1) = Jodd.

Since bothJ1 andJ2 are positive, this immediately implies thatJ1,2 < Jodd.
Accordingly, both Kondo temperaturesT1,2 are expected to be smaller thanTK
in the nearby valleys withS = 1/2.

This consideration, however, is not applicable when the dot is tuned to the
vicinity of the singlet-triplet transition in its ground state [11, 12, 79, 80], i.e.
when the energy gap� between the triplet ground state and the singlet excited
state of an isolated dot is small compared to the mean level spacingδE. In this
case the exchange constants in the effective Hamiltonian (5.2) should account
for additional renormalization that the system’s parameters undergo [82] when
the high-energy cutoff (the bandwidth of the effective Hamiltonian)D is reduced
from D ∼ δE down toD ∼ � ≪ δE, see also [63]. The renormalization
enhances the exchange constantsJ1,2. If the ratio�/δE is sufficiently small,
then the Kondo temperaturesT1,2 for S = 1 may become of the same order [78,

9Note, however, that〈ψ†
1(t)ψ2(t)ψ

†
2(0)ψ1(0)〉 �= 〈ψ†

1(t)ψ1(0)〉〈ψ2(t)ψ
†
2(0)〉 at finiteT . There-

fore, unlike Eq. (5.34), there is no simple generalization of Eq. (5.21) to the two-channel case.
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80], or even significantly exceed [11, 12, 79] the corresponding scaleTK for
S = 1/2.

In GaAs-based lateral quantum dot systems the value of� can be controlled
by a magnetic fieldH⊥ appliedperpendicular to the planeof the dot [79]. Be-
cause of the smallness of the effective massm∗, even a weak fieldH⊥ has a
strong orbital effect. At the same time, smallness of the quasiparticle g-factor in
GaAs ensures that the corresponding Zeeman splitting remains small [12]. The-
ory of the Kondo effect in lateral quantum dots in the vicinity of the singlet-triplet
transition was developed in [83], see also [84].

6. Concluding remarks

In the simplest form of the Kondo effect considered in these notes, a quantum
dot behaves essentially as an artificial “magnetic impurity” with spinS, coupled
via exchange interaction to two conducting leads. The details of the temperature
dependenceG(T ) of the linear conductance across the dot depend on the dot’s
spin S. In the most common case ofS = 1/2 the conductance in the Kondo
regime monotonically increases with decreasing temperature, potentially up to
the quantum limit 2e2/h. Qualitatively (although not quantitatively), this in-
crease can be understood from the Anderson impurity model in which the dot is
described by a single energy level. On the contrary, when the spin on the dot
exceeds 1/2, the conductance evolution proceeds in two stages: the conductance
first increases, and then drops again when the temperature is lowered.

In a typical experiment [4], one measures the dependence of the differen-
tial conductance on temperatureT , Zeeman energyB, and dc voltage biasV .
When one of these parameters is much larger than the other two, and is also large
compared to the Kondo temperatureTK , the differential conductance exhibits a
logarithmic dependence

1

G0

dI

dV
∝
[
ln

max{T ,B, eV }
TK

]−2

, (6.1)

characteristic of the weak coupling regime of the Kondo system, see Section 5.3.
Consider now a zero-temperature transport through a quantum dot withS = 1/2
in the presence of a strong fieldB ≫ TK . In accordance with Eq. (6.1), the
differential conductance is small compared toG0 both for eV ≪ B and for
eV ≫ B. However, the calculation in the third order of perturbation theory
in the exchange constant yields a contribution that diverges logarithmically at
eV ≈ ±B [50]. The divergence is reminiscent of the Kondo zero-bias anomaly.
However, the full development of resonance is inhibited by a finite lifetime of
the excited spin state of the dot [74]. As a result, the peak in the differential
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conductance ateV = ±µB is broader and lower than the corresponding peak at
zero bias in the absence of field, see Section 5.6.

One encounters similar effects in studies of the influence of a weak ac signal of
frequency� � TK applied to the gate electrode [85] on transport across the dot.
In close analogy with the usual photon-assisted tunneling [86], such perturbation
is expected to result in the formation of satellites [87] ateV = n�� (heren
is an integer) to the zero-bias peak in the differential conductance. Again, the
resonances responsible for the formation of the satellite peaks are limited by
finite lifetime effects [88].

Spin degeneracy is not the only possible source of the Kondo effect in quan-
tum dots. Consider, for example, a large dot connected by a single-mode junction
to a conducting lead and tuned to the vicinity of the Coulomb blockade peak [31].
If one neglects the finite level spacing in the dot, then the two almost degener-
ate charge state of the dot can be labeled by a pseudospin, while real spin plays
the part of the channel index [31, 89]. This setup turns out to be a robust realiza-
tion [31, 89] of the symmetric (i.e. having equal exchange constants) two-channel
S = 1/2 Kondo model [56]. The model results in a peculiar temperature depen-
dence of the observable quantities, which at low temperatures follow power laws
with manifestly non-Fermi-liquid fractional values of the exponents [90].

It should be emphasized that in the usual geometry consisting of two leads
attached to a Coulomb-blockaded quantum dot withS = 1/2, only the conven-
tional Fermi-liquid behavior can be observed at low temperatures. Indeed, in this
case the two exchange constants in the effective exchange Hamiltonian (5.2) are
vastly different, and their ratio is not tunable by conventional means, see the dis-
cussion in Section 5.1 above. A way around this difficulty was proposed in [91].
The key idea is to replace one of the leads in the standard configuration by a very
large quantum dot, characterized by a level spacingδE′ and a charging energy
E′C . At T ≫ δE′, particle-hole excitations within this dot are allowed, and elec-
trons in it participate in the screening of the smaller dot’s spin. At the same time,
as long asT ≪ E′C , the number of electrons in the large dot is fixed. Therefore,
the large dot provides a separate screening channel which does not mix with that
supplied by the remaining lead. In this system, the two exchange constants are
controlled by the conductances of the dot-lead and dot-dot junctions. A strat-
egy for tuning the device parameters to the critical point characterized by the
two-channel Kondo physics is discussed in [92].

Finally, we should mention that the description based on the universal Hamil-
tonian (2.15) is not applicable to large quantum dots subjected to aquantizing
magnetic fieldH⊥ [93, 94]. Such a field changes drastically the way the screening
occurs in a confined droplet of a two-dimensional electron gas [95]. The droplet
is divided into alternating domains containing compressible and incompressible
electron liquids. In the metal-like compressible regions, the screening is almost
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perfect. On the contrary, the incompressible regions behave very much like insu-
lators. In the case of lateral quantum dots, a large compressible domain is formed
near the center of the dot. The domain is surrounded by a narrow incompressible
region separating it from another compressible ring-shaped domain formed along
the edges of the dot [96]. This system can be viewed as two concentric capac-
itively coupled quantum “dots” - the core dot and the edge dot [93, 96]. When
the leads are attached to the edge dot, the measured conductance is sensitive to
its spin state: when the number of electrons in the edge dot is odd, the conduc-
tance becomes large due to the Kondo effect [93]. Changing the field causes
redistribution of electrons between the core and the edge, resulting in a striking
checkerboard-like pattern of high- and low-conductance regions [93, 94]. This
behavior persists as long as the Zeeman energy remains small compared to the
Kondo temperature. Note that compressible regions are also formed around an
antidot– a potential hill in a two-dimensional electron gas in the quantum Hall
regime [97]. Both Coulomb blockade oscillations and Kondo-like behavior were
observed in these systems [98].

The Kondo effect arises whenever a coupling to a Fermi gas induces transi-
tions within otherwise degenerate ground state multiplets of an interacting sys-
tem. Both coupling to a Fermi gas and interactions are naturally present in a
nanoscale transport experiment. At the same time, many nanostructures can be
easily tuned to the vicinity of a degeneracy point. This is why the Kondo effect
in its various forms often influences the low temperature transport in meso- and
nanoscale systems.

In these notes we reviewed the theory of the Kondo effect in transport through
quantum dots. A Coulomb-blockaded quantum dot behaves in many aspects as
an artificial “magnetic impurity” coupled via exchange interaction to two con-
ducting leads. Kondo effect in transport through such “impurity” manifests itself
by the lifting of Coulomb blockade at low temperatures, and, therefore, can be
unambiguously identified. Quantum dot systems not only offer a direct access
to transport properties of an artificial impurity, but also provide one with a broad
arsenal of tools to tweak the impurity properties, unmatched in conventional sys-
tems. The characteristic energy scale for the intra-dot excitations is much smaller
than the corresponding scale for natural magnetic impurities. This allows one to
induce degeneracies in the ground state of a dot which are more exotic than just
the spin degeneracy. This is only one out of many possible extensions of the
simple model discussed in these notes.
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Abstract
Conductance through quantum point contacts, smoothly coupled to two dimen-

sional leads, increases in units of 2e2/h. In addition, experiments on such point
contacts have highlighted an anomalous conductance plateau at 0.7(2e2/h). The
physics behind this phenomenon is explained in terms of the Kondo effect, result-
ing from the binding of an electron in the vicinity of the point contact. Among
the experimental predictions resulting from this model are a spin-polarized current,
anomalous temperature-dependent noise, and increased dephasing.

1. Introduction

A quantum point contact (QPC) is a narrow constriction in a two-dimensional
electron gas, where electrons are forced to flow through a quasi-1d section of the
sample. The conductanceG through a QPC is observed to be quantized in units
of 2e2/h (Fig. 1) [1, 2]. These steps can be understood from the Landauer con-

ductance formula,G = e2

h

∑
nσ T nσ , whereTnσ is the transmission coefficient

through then-th transverse channel (and spinσ ). Thus for adiabatic transport,
where each channel is either fully transparent or fully reflecting, the conductance
is just 2e2/h times the number of transparent channel, where the factor of 2
comes from spin degeneracy.

A surprising observation is that in addition to these integer conductance steps,
there exists an extra conductance plateau around 0.7(2e2/h), also evident in
Fig. 1, and is expanded in Fig. 2, where the magnetic field dependence of the
effect is depicted. With increasing magnetic field and the breaking of spin-
degeneracy, the Landauer formula predicts steps in units ofe2/h, namely half
of the zero field step size, which is indeed observed. Interestingly, the transition
from the 0.7 to the 0.5 plateau is continuous. It has also been observed that the ef-
fect exists only for intermediate temperatures. When the temperature is lowered
the 0.7 step gradually increases towards the 2e2/h plateau.

This phenomenon has attracted considerable experimental [3, 4, 5, 6] and the-
oretical [7, 8, 9, 10] effort. A recent experiment[11] has highlighted features
in QPC transport strongly suggestive of the Kondo effect: a zero-bias peak in
the differential conductance which splits in a magnetic field, and a crossover to
perfect transmission below a characteristic “Kondo” temperatureTK , consistent
with the peak width. A puzzling observation was the large value of the residual
conductance,G > 0.5(2e2/h), for T ≫ TK .
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Fig. 1: Demonstration of the conductance steps in quantum point contacts [1]. Note the
additional step atG ≃ 0.7× 2e2/h (inset).

Fig. 2: The anomalous step around 0.7(2e2/h) and its continuous evolution towards
0.5(2e2/h) in large magnetic fields, as expected from the Landauer formula [3].
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Fig.3: The zero bias anomaly in the first mode,[11] indicating Kondo physics.

In the next section I show that spin-density functional calculations [12] predict
the binding of an electron in the vicinity of the the QPC, thereby underscoring
the relevance of an Anderson model to the explanation of the phenomenon.[13]
The model and a perturbative approach to its solution will be introduced in the
following section. The last section will be devoted to predictions concerning the
noise in such systems.

2. Spin-density-functional calculations

An intuitive picture for the formation of a quasi-bound states is motivated by
transport across a square barrier. For a wide and tall barrier, in addition to the
exponentially increasing transparency, there are narrow transmission resonances
above the barrier. These result from multiple reflections from the edges of the
barrier, and are associated with quasi-bound states, which can play the role of
localized orbitals in an Anderson model. We present further evidence from spin-
density-functional theory (SDFT) [14] for the formation of such a local moment
(bound spin) at the center of a GaAs QPC, which supports our use of the An-
derson model. SDFT is applied within the local-density approximation [15, 16].
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The external potential consists of a clean quantum wire with a parabolic confining
potential ofV 0

wire(y) = (1/2)m∗ω2
yy

2 and a QPC potential

VQPC(x, y) = V (x)/2+m∗ [V (x)/h̄]2 y2/2, (2.1)

whereV (x) = V0/cosh2(αx), with α = ωx
√
m∗/2V0. A contour plot of the

QPC potentialVQPC(x, y) is shown in the left inset of Fig. 4(b).

Fig. 4. Results of spin-density-functional theory. (a) Self-consistent “barrier”,i.e. energy
of the bottom of the lowest 1D subband as a function of positionx in the direction of
current flow through the QPC. The electrochemical potentialµ is indicated by an arrow
on the left. In this panel, solid curves are for spin-up electrons and dashed curves are
for spin-down electrons. Left inset: transmission coefficient. Right inset: local density
of states at center of QPC. (b) 1D electron density in QPC. The solid curve gives the net
spin-up density and the dashed curve gives the spin-averaged density. Inset: contour plot
of the QPC potentialVQPC(x, y).

We solve the Kohn-Sham equations [15] using the material constants for GaAs,
m∗ = 0.067m0 andκ = 13.1. The external confinement in they-direction in the
wire is fixed byh̄ωy = 2.0 meV. The parameters for the QPC potential are taken
to beV0 = 3.0 meV andh̄ωx = 1.5 meV.
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Fig. 4(a) shows the spin-dependent, self-consistent QPC barriers atT =0.1K
obtained from SDFT [17]. Specifically, we plot the energy of the bottom of the
lowest 1D subbandǫσ (x), relative to the valueǫ0 far into the wire, for both spin-
up and spin-down. The local density of statesν(ǫ) at the center of the QPC
is shown for both spin-up and spin-down in the right inset. Fig. 4(b) shows
the average 1D electron density through the QPC and the net density of spin-
up electrons. The integrated spin-up density is 0.96 electrons. The data from
SDFT gives strong evidence for a quasi-bound state centered at the QPC: there is
a resonance in the local density of statesν(ǫ) for spin-up, with a net of one spin
bound in the vicinity of the QPC. The transmission coefficientT (ǫ) for electrons
in the lowest subband is shown in the left inset to Fig. 4(a). Transmission for
spin-up is approximately 1 over a broad range of energies above the spin-up
resonance. This implies an onset of strong hybridization at energies above the
quasi-bound state.

3. The Anderson model

Our SDFT results indicate that even an initially smooth QPC potential can pro-
duce a narrow quasi-bound state, resulting in a spin bound at the center of the
QPC. We thus model the QPC and its leads by the generalized Anderson Hamil-
tonian [18]

H =
∑

σ ;k∈L,R
εkσc†

kσckσ +
∑

σ

εσd†
σdσ + Un↑n↓

+
∑

σ ;k∈L,R
[V (1)kσ (1− nσ̄ )c

†
kσdσ + V (2)kσ nσ̄c†

kσdσ +H.c.] (3.1)

wherec†
kσ (ckσ ) creates (destroys) an electron with momentumk and spinσ in

one of the two leadsL andR, d†
σ (dσ ) creates (destroys) a spin-σ electron on “the

site”, i.e. the quasi-bound state at the center of the QPC, andnσ = d†
σdσ . The

hybridization matrix elements,V (1)kσ for transitions between 0 and 1 electrons on

the site andV (2)kσ for transitions between 1 and 2 electrons, are taken to be step-
like functions of energy, mimicking the exponentially increasing transparency
(the position of the step defines our zero of energy). Physically, we expectV

(2)
kσ <

V
(1)
kσ , as the Coulomb potential of an electron already occupying the QPC will

reduce the tunneling rate of a second electron through the bound state. In the
absence of magnetic field the two spin directions are degenerate,ε↓ = ε↑ = ε0.

For a noninteracting system, the conductanceG will be a (temperature broad-
ened) resonance of Lorentzian form, with a width proportional toV 2. If V rises
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abruptly to a large value, such that the width becomes larger thanεF − ε0, where
εF is the Fermi energy,G saturates to a value of 2e2/h. For the interacting
system, we similarly expect thehigh-temperaturecontribution from the 0↔ 1
valence fluctuations toG to saturate at 0.5(2e2/h) for εF > 0> ε0, because the
probability of an opposite spin electron occupying the site in this regime is≈ 0.5.
SinceV (2)kσ may be significantly smaller thanV (1)kσ , the contribution to the con-
ductance from the 1↔ 2 valence fluctuations may be small, untilεF ≃ ε0 + U .
However, the Kondo effect will enhance this contribution with decreasing tem-
perature, until at zero temperature the conductance will be equal to 2e2/h, due
to the Friedel sum rule [19] for the Anderson model.

To obtain a quantitative estimate of the conductance we note that the rele-
vant gate-voltage range corresponds to the Kondo regime (singly occupied site),
a fact further supported by the observation of a zero-bias peak where the conduc-
tance first becomes measurable [11], so the Kondo limit of the Anderson Hamil-
tonian should be applicable. We therefore perform a Schrieffer-Wolff transfor-
mation [20] to obtain the Kondo Hamiltonian [21, 22]

H =
∑

σ ;k∈L,R
εkσc†

kσckσ +
∑

σ,σ ′;k,k′∈L,R
(J
(1)
kk′σσ − J

(2)
kk′σσ ) c

†
kσ ck′σ

+ 2
∑

σ,σ ′,α,α′;k,k′∈L,R
(J
(1)
kk′σ σ̄ + J

(2)
kk′σ σ̄ )(c

†
kσ �σσσ ′ck′σ ′) · �S, (3.2)

J
(i)

kk′σσ ′ =
(−)i+1

4

(
V
(i)
kσ V

∗(i)
k′σ ′

εkσ − ε(i)σ
+ V

(i)
kσ V

∗(i)
k′σ ′

εk′σ ′ − ε(i)σ ′

)
,

whereε(1)σ = εσ andε(2)σ = εσ + U . The Pauli spin matrices are indicated by�σ ,
and the local spin due to the bound state is�S ≡ 1

2d†
α �σαα′dα′ .

4. Results

Following Appelbaum [23], we treat the above Kondo Hamiltonian perturba-
tively in the couplingsJ (i)

kk′σσ ′ . The differential conductance to lowest order,J 2,
is given by

G2 = 4πe2

h̄
ρL(εF )ρR(εF )

{
(J
(−)
LR )

2 + (J (+)LR )
2

×
[

3+ 2〈M〉
(

tanh
�+ eV
2kBT

+ tanh
�− eV
2kBT

)]}
(4.1)
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where, for simplicity,J (i)
kk′σσ ′ are replaced by their (magnetic-field independent)

values at the Fermi energy

J
(i)

l l′ ≡ J
(i)

kF∈l kF∈l′ σσ =
(−)i+1V 2

i

2(εF − ε(i)0 )
fFD(−εF /δ), (4.2)

where symmetric leads have been assumed, and theVi andδ are constants. The
J (i) increase in a step of the Fermi-Dirac formfFD(x) = 1/[1+ exp(x)]. We
define the combinationsJ (±)

l l′ = J
(1)
l l′ ± J

(2)
l l′ for, respectively, the direct and

exchange couplings in Eq. (2). In (4.1),� = g∗µBB is the Zeeman splitting,
〈M〉 = −(1/2) tanh(�/2kBT ) is the magnetization for the uncoupled site, and
ρL/R(ε) =

∑
k∈L/R δ(ε − εkσ ) is the single-spin electron density of states in the

leads. We assumeρ = ρL(ε) = ρR(ε).
At low temperatures the Kondo effect leads to a logarithmically diverging

contributionG3 to the differential conductance at orderJ 3, due to integrals run-
ning from the Fermi energy to either band edge. Because of the steplike in-
crease of theJ (i), the band integral forJ (1) runs down fromεF to the hybridiza-
tion step at zero, but runs up fromεF to ε0 + U for J (2). Since in the region
of interestε0 + U − εF ≫ εF , the logarithmic contribution fromJ (2) domi-
natesG3.

Fig. 5 depicts the linear-response conductance (G2 +G3). SinceG2 depends
only on the values ofJ (i)LR at εF , it is dominated byJ (1), while the Kondo en-
hancement is dominated byJ (2). As argued above, the contribution due toJ (1)

is set around 0.5(2e2/h) by construction, while the contribution due toJ (2), re-
sulting from the 1↔ 2 valence fluctuations is small at high temperature, but
grows with decreasing temperature in a form following the Kondo scaling func-
tion,F(T /TK), whereTK ≃ U exp(−1/4ρJ (2)) = U exp[(εF−ε0−U)/2ρV 2

2 ],
in agreement with the experimental observation of a Kondo temperature increas-
ing exponentially with gate voltage∼ εF . Note that in perturbation theory the
conductance is not bound by its physical limit: 2e2/h.

The dependence of conductance on magnetic field is shown in Fig. 5(b). The
Kondo logarithms inG3 are suppressed and the term inG2 that depends on〈M〉
gives a negative contribution∝ tanh2(�/2kBT )), leading to the evolution of
the 0.7 plateau towards and below 0.5. In agreement with experiment[11], the
conductance is no longer monotonically increasing with Fermi energyεF : the
energy denominator causes theJ (1) contribution toG2 to decrease, and this is no
longer compensated by an increase ofG3. Due to shortcomings of perturbation
theory the conductance at large magnetic field reduces to a value smaller than
0.5(2e2/h).



490 Y. Meir

Fig. 5: (a) Conductance at four temperatures values, as a function of Fermi energyεF .
Right inset: experimental conductance of a QPC at 4 different temperatures [11]. Center
inset: Schematic of the band structure for our Anderson model. (b) Conductance in a
magnetic field, for four values of Zeeman splitting. Inset: experimental conductance of a
QPC at different magnetic fields.[11]

Fig. 6: Differential conductancedI/dV for the Kondo model. (a)dI/dV versus bias
at different chemical potentials. For each chemical potential, curves are shown for four
different temperatures. Inset: experimental differential conductance [11]. (b)dI/dV in
different magnetic fields. Inset: experimental differential conductance at different mag-
netic fields [11]. (c) Spin conductance for several values ofεF .



Transport through quantum point contacts 491

Fig. 6(a) shows the differential conductance as a function of bias voltage, for
several values ofεF and temperatures. Even at the lowest conductances (small
εF ) there is a clear Kondo peak, as is seen in experiment (inset). Due to the sup-
pression of the Kondo effect by voltage, the large voltage traces are independent
of temperature, again in agreement with experiment. Magnetic field splits the
Kondo peak as shown in Fig. 6(b).

An important prediction of the Kondo model is that the current through a QPC
will be spin polarized if the Zeeman splitting is larger than bothkBT andkBTK
(Fig. 6(c)). The net spin conductanceGσ , is given, to second order inJ , by

Gσ =
16πe2

h̄
ρ2〈M〉

[
(J
(1)
LR)

2 − (J (2)LR)2
]
. (4.3)

Therefore, at low temperatures and in the vicinity of the 0.7(2e2/h) plateau
whereTK is small, a QPC can be an effective spin filter at weak magnetic fields
(� > kBTK , kBT ).

5. Current noise

We have presented a microscopic Anderson model, supported by spin-density-
functional theory, for transport through a quantum point contact. The anomalous
0.7(2e2/h) plateau is attributed to a high background conductance plus a Kondo
enhancement. Since the conductance consists practically of transport through
two channels, one of which opens up first, then a value of the conductance of
e2/h corresponds to one channel perfectly transmitting (T = 1) and one channel
perfectly reflecting (T = 1). Thus at that value of the conductance we predict a
strong reduction in the current shot noise (which is proportional toT (1− T ), in
contradiction with the traditional expectation of a transmission ofT = 0.5 per
channel ate2/h, and, consequently, maximal noise. As temperature is lowered,
the conductance of the second channel is enhanced by the Kondo effect, eventu-
ally giving rise to two transmitting channels, and the reduction of the noise dip
aroundG = e2/h. Preliminary calculation [26] of the Fano factor, as a function
of magnetic field, is depicted in Fig. 7, where the disappearance of the dip is
clear. Indeed such a suppression of shot noise was reported recently.[27]

6. Conclusions

The presence of bound spins in QPCs near pinch-off has potentially profound
effects on transport through quantum dots with QPCs as leads. In particular
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Fig. 7: The Fano factor, noise divided by current, as a function of the conductance for dif-
ferent magnetic fields. At high field the Kondo effect is suppressed, and the conductance
forG = e2/h is dominated by one fully transmitting channel, and zero noise. As the mag-
netic field is reduced, the Kondo effect emerges, and the the conductance atG = e2/h is
due to two transmitting channel, each withT = 1/2 and maximal noise.[26]

the leads may act as magnetic impurities, and cause the apparent saturation of
the dephasing time in transport through open semiconductor quantum dots at
low temperatures [28], and may complicate attempts to measure the spin of dot
electrons.[29]. Experimental attempts to directly probe the binding of this state
are currently underway.[30]

Acknowledgements

This work was partly sponsored by the Israel Science Foundation.

References

[1] B. J. van Weeset al., Phys. Rev. Lett.60, 848 (1988).

[2] D. A. Wharamet al., J. Phys. C21, L209 (1988).

[3] K. J. Thomaset al., Phys. Rev. Lett.77, 135 (1996); K. J. Thomaset al., Phys. Rev. B58, 4846
(1998).

[4] A. Kristensenet al., Phys. Rev. B62, 10950 (2000).

[5] D. J. Reillyet al., Phys. Rev. B63, 121311 (2001).



Transport through quantum point contacts 493

[6] S. Nuttinck et al., Jap. J. of App. Phys39, L655 (2000); K. Hashimotoet al., ibid 40, 3000
(2001).

[7] C.-K. Wang and K.-F. Berggren, Phys. Rev. B57, 4552 (1998).

[8] B. Spivak and F. Zhou,Phys. Rev. B61, 16730 (2000).

[9] H. Bruus, V. V. Cheianov, and K. Flensberg,Physica E10, 97 (2001).

[10] G. Seelig and K. A. Matveev,Phys. Rev. Lett.90, 176804 (2003); K. A. Matveev,Phys. Rev.
Lett.92, 106801 (2004).

[11] S. M. Cronenwettet al., Phys. Rev. Lett.88, 226805 (2002).

[12] K. Hirose, Y. Meir, and N. S. Wingreen,Phys. Rev. Lett.90 026804 (2003).

[13] Y. Meir, K. Hirose, and N. S. Wingreen,Phys. Rev. Lett.89 196802 (2002).

[14] P. Hohenberg and W. Kohn,Phys. Rev.136, B864 (1964).

[15] W. Kohn and L. J. Sham,Phys. Rev.140, A1133 (1965). We use the local-density approxi-
mation for the exchange-correlation energyExc =

∫
ρ(r) εxc[ρ(r )] dr , whereεxc[ρ(r)] is the

parameterized form by Tanatar and Ceperley for the two-dimensional electron gas [B. Tanatar
and D. M. Ceperley,Phys. Rev. B39, 5005 (1989)].

[16] J. Callaway and N. H. March,Solid State Phys.38, 135 (1984).

[17] The solution with broken spin-symmetry coexists with an unpolarized solution (K. Hirose, N.
S. Wingreen, and Y. Meir, in preparation). See also A. M. Bychkov, I. I. Yakimenko, and K-F
Berggren,Nanotechnology11, 318 (2000).

[18] P. W. Anderson,Phys. Rev.124, 41 (1961).

[19] D. C. Langreth,Phys. Rev.150, 516 (1966); See also T. K. Ng and P. A. Lee,Phys. Rev. Lett.
61, 1768 (1988).

[20] J. R. Schrieffer and P. A. Wolff,Phys. Rev.149, 491 (1966).

[21] J. Kondo,Prog. Th. Phys.(Kyoto) 32, 37 (1964).

[22] The parameters appearing in the Kondo Hamiltonian are not the bare parameters of the An-
derson model (3.1), but renormalized parameters after the bandwidth has been reduced toU

[F. D. M. Haldane,Phys. Rev. Lett.40, 416 (1978)].

[23] J. A. Appelbaum,Phys. Rev.154, 633 (1967). Appelbaum approximates the diverging integrals
by log(|A| + kbT ). We use log[A2 + (kbT )2] instead.

[24] R. M. Potok et al.,Phys. Rev. Lett.89, 266602 (2002).

[25] T. Morimotoet al., Appl. Phys. Lett.82, 3952 (2003).

[26] A. Golub, T Aono and Y. Meir, unpublished.

[27] N. Y. Kim et al., cond-mat/0311435; P. Rocheet al., cond-mat/0402194.

[28] D.P. Pivinet al., Phys. Rev. Lett.82, 4687 (1999); A.G. Huiberset al., Phys. Rev. Lett.83, 5090
(1999).

[29] J. A. Folket al., Phys. Scr.T 90, 26 (2001).

[30] D. Goldhaber-Gordon, private communication.



This page intentionally left blank



Course 8

TRANSPORT AT THE ATOMIC SCALE: ATOMIC AND
MOLECULAR CONTACTS

A. Levy Yeyati and J.M. van Ruitenbeek

Departamento de Física Teórica de la Materia Condensada C-V,
and Instituto Universitario de Ciencia de Materiales “Nicolás Cabrera”,

Universidad Autónoma de Madrid, E-28049 Madrid, Spain
and

Kamerlingh Onnes Laboratorium, Universiteit Leiden, Postbus 9504, NL-2300 RA Leiden,
The Netherlands

H. Bouchiat, Y. Gefen, S. Guéron, G. Montambaux and J. Dalibard, eds.
Les Houches, Session LXXXI, 2004
Nanophysics: Coherence and Transport
c© 2005 Elsevier B.V. All rights reserved

495





Contents

1. Introduction 499
2. Parity oscillations in atomic chains 500
3. Superconducting quantum point contacts 508

3.1. The Hamiltonian approach 509
3.2. Comparison to experimental results 514

4. Environmental effects 516
4.1. Classical phase diffusion 517
4.2. Dynamical Coulomb blockade 521

5. Single-molecule junctions 522
6. Concluding remarks 530
References 531

497



This page intentionally left blank



1. Introduction

Atomic and molecular contacts have a special place in the field of nanoscience.
From an application point of view they are the playground to investigate the pos-
sibilities and limitations of electronics at the very smallest size scale. From a
fundamental science point of view they are simple physical systems to test prin-
ciples of electron transport at the atomic scale. We will mostly address the fun-
damental issues in this field. Here, an important distinction can be made between
atomic and molecular contacts. While simple and reliable experimental tech-
niques are widely available for investigating single-atom contacts for nearly all
metals, single-molecule junctions have been more difficult to produce and char-
acterize reliably.

Metallic atomic-sized contacts have proven to provide a rich field of physical
phenomena, that we have recently summarized in an extensive review, written
together with Nicolás Agraït [1]. It is not our intention to rewrite the review on
this topic. Instead, we refer to Ref. [1] for a detailed presentation of the field
and mention here only the main results. The major part of this chapter will cover
work of the last two years that was not included in our previous review and some
aspects of superconducting junctions that did not receive sufficient attention at
that time and that are useful for those interested in entering the field.

For contacts between two metal electrodes formed by just a single atom, or
just a few atoms, the electron transport can be described in terms of a limited
number,N , of conduction channels, each characterized by its own transmission
probabilityτi . The conductance is given by the Landauer expression [2]

G = G0

N∑

i=1

τi,

whereG0 = 2e2/h is the quantum unit of conductance for spin-degenerate chan-
nels. The conductance is easily obtained experimentally, but does not provide
much information about the number of channels involved, other than the total
sum of their transmission probabilities. Once we have obtained the full set of
transmission probabilitiesτi , also referred to as the mesoscopic PIN code, the
junction is fully characterized. Many properties can be predicted quantitatively
once the PIN code is known, including the supercurrent [3], dynamical Coulomb
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blockade [4], shot noise [5, 6], and conductance fluctuations [7]. One of the at-
tractive points of this field is that it is actually possible to determine the PIN code
experimentally, principally through a measurement of the I-V characteristics in
the superconducting state, exploiting the information contained in the subgap
structure [8, 9]. Thus a detailed quantitative understanding of quantum transport
has been obtained. As a central result it has been shown that the number of con-
ductance channels for a single atom is determined by the number of its valence
orbitals [9]. The properties of superconducting junctions will be discussed in
Sect. 3. The role of the environment has proven to be of importance in analyz-
ing current-voltage relations, and the associated problems will be addressed in
Sect. 4.

For molecular contacts the level of sophistication of the experiments is much
less. Where atomic contacts of metals are homogenously formed out of a single
species of metallic atoms, organic molecules that are sandwiched between metal-
lic leads form an inhomogeneous system with many difficulties associated with
the formation and characterization of the interfaces. The attractive point that mo-
tivates much of this research is the wide scope of possible organic molecules that
can be studied, with functions such as diode characteristics, switching, and mem-
ory engineered into the chemical design of the molecule. Although much of the
initial optimism in this field has proven premature by the difficulties that surfaced
related to the proper characterization an analysis of the observed current-voltage
characteristics, more recently important progress has been made. These develop-
ments will be briefly summarized in Sect. 5.

One further development that we will address is associated with atomic chains
of single metal atoms. Chains of atoms have been demonstrated for Au [10,11],
Pt and Ir [12]. Several groups have predicted that atomic chains for monovalent
metals should show oscillations in the conductance with the parity of the number
of atoms forming the chain [13–15]. Such oscillations as a function of the length
of the chain have been observed, not only for gold as predicted, but also for Pt
and Ir, as will be discussed in Sect. 2.

2. Parity oscillations in atomic chains

When a metallic contact is gradually stretched to the point that only a single
atom bridges the gap one would expect that further stretching will break the
contact at this weakest spot. This is indeed what one observes for most met-
als, with the noteworthy exception of three metals: Ir, Pt and Au. The linear
bond between two atoms in a chain configuration for these metals is so strong
that, rather than breaking this bond, new atoms are pulled out of the leads into
the chain thus increasing its length. The effect has been observed directly in
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a high-resolution transmission electron microscope under ultra-high vacuum at
room temperature [10]. At low temperatures the chain formation can be inferred
from the variation of the conductance as a function of the stretching of the con-
tact [11, 12]. The latter experiments have the advantage that the chains can be
held stable over extended periods of time and their properties can be investigated
in detail. Further details on the formation of chains of atoms can be found in our
review paper [1].

As one of the interesting properties of linear chains of atoms we want to focus
in this section on oscillations of the conductance as a function of the length of
the chain. As argued above, the last plateau of conductance before rupture is
typically due to a single atom contact. The formation of an atomic wire results
from further pulling of this one-atom contact, and its length can be estimated
from the length of the last conductance plateau [11,12,16]. A histogram made of
those lengths (filled curves in Fig. 1) shows peaks separated by distances equal
to the inter-atomic spacing in the chain. These peaks correspond to the lengths
of stretching at which the atomic chain breaks, since at that point the strain to
incorporate a new atom is higher than the one needed to break the chain [17].
This implies that the number of atoms in the chain increases by one going from
one peak to the next.

For gold, a monovalent metal, both the one-atom contact and the chain have a
conductance of about 1G0 with only small deviations from this value, suggesting
that the single conductance channel has a nearly perfect coupling to the banks.
However, small changes of conductance during the pulling of the wire can be
observed [17, 18] and are suggestive of an odd-even oscillation. Small jumps in
the conductance result from changes in the connection between the chain and the
banks when new atoms are being pulled into the atomic wire. In order to un-
cover possible patterns hidden in these changes one can average many plateaus
of conductance starting from the moment that a single-atomic contact is formed
until the wire is broken. These points can be defined by a criterion, e.g. by the
conductance dropping below 1.2G0 and 0.5G0, respectively. In the upper panel
of Fig. 1 it can be seen that the thus obtained averaged conductance plateau for
gold shows an oscillatory dependence of the conductance with the length of the
wire. The amplitude of the oscillation is small and differs slightly between exper-
iments, but the period and phase are quite reproducible. In the averaged curves
of the experiment, Fig. 1, the conductance does not quite reach a maximum of
1G0. This is largely due to the averaging procedure, where for a given length
there are contributions fromn andn + 1-numbered chains and only the relative
weight of these varies. In individual traces the maxima come much closer to full
transmission. Further suppression of the maximum conductance may result from
asymmetries in the connections to the leads. The relatively small amplitude of
the oscillations is consistent with the fact that the average conductance is close
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Fig. 1. Averaged plateaus of conductance for chains of atoms of the three metals investigated: Au,
Pt, and Ir. Each of the curves are made by averaging individual traces of conductance while pulling
atomic contacts or chains. Histograms of the plateau lengths for the three metals obtained from the
the same set of data are shown by the filled curves. From Ref. [18].

to unity, implying that the contact between the chain and the banks is nearly
adiabatic. The rise above 1G0 for short lengths in Figs. 1 can be attributed to
tunneling contributions of additional channels.

Similar oscillations of even larger amplitude were observed for the other two
metals forming chains of atoms, namely Pt and Ir [18]. These d metals have up
to five channels of conductance and therefore the average plateau conductance
is expected to show a more complicated behaviour. A one-atom Pt contact has
a conductance of about 2G0 while for a Pt atomic chain it is slightly smaller,
∼ 1.5G0 [19] with variations during the pulling process that can be as large
as 0.5G0. In the averaged curves one observes oscillations similar to those for
Au, which are compared to the peak spacing in the length histogram in Fig. 1.
Ir shows a similar behaviour although somewhat less pronounced. The period-
icity p of the oscillation in the conductance for the three metals is about twice
the inter-peak distanced of their corresponding plateau-length histogram. This
behaviour agrees with an alternating odd-even evolution of the conductance with
the number of atoms.
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In addition to the oscillations for Pt and Ir, the mean conductance of the mea-
surements in Fig.1 show an unexpected slope of about 0.3–0.4G0/nm. For a
ballistic wire the conductance as a function of length is expected to be constant,
apart from the oscillatory behaviour discussed above.

Theoretical models:Even-odd oscillations are already present at the level of
simple tight-binding (TB) models. The model considered in Ref. [13] is a linear
chain containingN atoms coupled to electrodes described as a Bethe lattice of
a given coordination numberZ. The model Hamiltonian can be decomposed as
Ĥ = ĤL + ĤR + Ĥchain + V̂L + V̂R, whereĤL,R correspond to the uncoupled
electrodes,Ĥchain =

∑N
σ,i=1 vĉ

†
σ i ĉσ i+1+h.c. describes the electron states in the

isolated linear chain and̂VL,R =
∑
σ tL,R ĉ

†
σL,R ĉ1,N +h.c correspond to the cou-

pling between the chain and the outermost sites of the left and right electrodes.
Electronic and transport properties within TB models are conveniently ana-

lyzed in terms of Green function techniques. For the linear response regime and
in the non-interacting case it is sufficient to introduce the retarded and advanced
Green operators, formally defined as

Ĝr,a(ω) = lim
η→0

[
ω ± iη − Ĥ

]−1
. (2.1)

In terms of the matrix elements of̂Gr,a the transmission coefficient through
the chain is then given by the following expression

τ(EF ) = 4ŴL(EF ) ŴR(EF )
∣∣Gr1,N (EF )

∣∣2 , (2.2)

whereŴα(ω) = t2α Imgaα(ω) (with α = L,R) are the tunneling rates from the
chain to the leads. These rates are determined by both the hopping elementstα
coupling the chain to the leads and by the density of states on the outermost site
of the uncoupled electrodes, determined by Imgα. For the Bethe lattice model
we have [20]

gr,aα (ω) =
1√
ZtB


 ω ± iη

2
√
ZtB

−
√(

ω ± iη
2
√
ZtB

)2

− 1


 , (2.3)

wheretB is the hopping element within the Bethe lattice.
The transmission coefficient and the linear conductance are related by the Lan-

dauer formulaG = 2e2
h
τ(EF ). As shown in Ref. [13] the conductance of the

chain within this model exhibits an even-odd oscillation whenEF ≃ 0. This
is essentially an interference phenomenon arising from the commensurability of
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Fig. 2. Transmission through a linear chain ofN atoms coupled to electrodes represented by Bethe
lattices of coordinationZ = 4. These curves correspond tov = tB = tL = tR (see text for the
definition of parameters). The dotted lines correspond to the minimal envelope curve determined by
Eq. (2.5).

the Fermi wavelength and the lattice spacing. It is a simple exercise [21] to show
that forEF = 0 one has

τ = 4v2ŴLŴR

(v2 + ŴLŴR)2
for evenN

τ = 4ŴLŴR
(ŴL + ŴR)2

for oddN. (2.4)

This result shows that perfect transmission is robust in theoddcase as it only
requires left-right symmetry, i.e.ŴL = ŴR. In the even case it requires a more
stringent condition on the hopping elements (more preciselyv = √

ŴLŴR) which
is not necessarily fulfilled in an actual system. This elementary calculation thus
provides a simple model for the appearance of parity oscillations.

When we analyze the transmission as a function of the Fermi energy for fixed
N we observe an oscillatory behaviour, as depicted in Fig. 2 for a symmetric
case. These oscillations are bound by the maximum valueτ = 1 and a minimal
envelope curve determined by

τmin(x) =
4Ŵ2v2(1− x2)

(
v2 + Ŵ2(1− 2x2)

)2 + 4Ŵ2x2(1− x2)
, (2.5)

whereŴ = ŴL,R(0) andx = ω/2v. This envelope curve is shown in Fig. 2 as a
dotted line.

The even-odd effect has also been reported on the basis of ab-initio calcula-
tions for monovalent metals [14,15,22]. The calculations of Simet al. [15] were
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Fig. 3. Model geometry considered for the calculation of the conductance in Ref. [30]. The electrodes
are represented by semi-infinite fcc crystals grown in the (111) direction.

based on the Friedel sum rule (FSR) which relates the phase of the transmis-
sion amplitude to the charge accumulated within the chain. For a single channel
conductor the FSR states thatδQ = 2eδ(EF )/π (the factor 2 is due to spin de-
generacy) [23]. For a monovalent metal and assuming local charge neutrality this
relation implies that the Fermi energy should lie at the middle of a transmission
resonance for oddN , i.e. δ(EF ) = (2n + 1)π/2, and between two resonances
for evenN , in agreement with the simple TB calculations shown in Fig. 2. The
charge neutrality argument for explaining the observed almost perfect quantiza-
tion in monovalent one atom contacts was first introduced in Ref. [24].

Ab-initio calculations have also been presented for chains of non-monovalent
metals like C, Si and Al [25–29]. These calculations indicate that not only the
amplitude but also the actual periodicity can be extremely sensitive to the type
of atoms in the chain. For instance, for the case of Al Ref. [28] showed that the
conductance exhibits a four-atom period oscillation, which they explained using
an effective single band tight-binding model with filling factor 0.25.

In spite of these theoretical efforts, and with the exception of Au, there are not
many realistic calculations of the conductance for the actual 5d metals produc-
ing stable atomic chains. The simple explanation presented above can account
qualitatively for the behaviour in the case of Au, characterized by a full 5d band
and a nearly half-filled 6s band. However, for the case of Pt and Ir, in which the
contribution of 5d orbitals to the conductance is important there is no reason why
this simple picture should be valid.

The behaviour of the conductance for Au, Pt and Ir atomic chains was an-
alyzed in detail in Ref. [30]. They considered model geometries like the one
depicted in Fig. 3 in which the atomic chain is connected to bulk electrodes
represented by two semi-infinite fcc perfect crystals grown along the (111) di-



506 A. Levy Yeyati and J.M. van Ruitenbeek

Fig. 4. Evolution of the conductance withN for different values of the interatomic distancea (from
Ref. [30]).

rection. Using a parametrized self-consistent tight-binding model, which basi-
cally reproduces the bands around the Fermi energy for the infinite ideal chains,
they obtained the evolution of the conductance with the number of atoms in the
chain depicted in Fig. 4. This evolution is rather sensitive to the elongation,
especially in the case of Pt and Ir (for Au the conductance exhibits small ampli-
tude even-odd oscillations,∼ 0.04G0, which remain basically unaffected upon
stretching).

The main features and the differences between Au, Pt and Ir are more clearly
understood by analyzing the local density of states and the energy dependent
transmissions, shown in Fig. 5 for aN = 5 chain of these metals at an intermedi-
ate elongation. As has been shown in previous works (e.g., see Refs. [31,32]) Au
chains are characterized by a single conducting channel around the Fermi energy
with predominants character. The transmission of this channel lies close to one
and exhibits small oscillations as a function of energy resembling the behaviour
of the single band TB model discussed above.

In the case of Pt the contribution from the almost filled 5d bands becomes
important for the electronic properties at the Fermi energy. There are three con-
duction channels with significant transmission atEF: one due to the hybridization



Transport at the atomic scale: Atomic and molecular contacts 507

Fig. 5. Local density of states (LDOS) at the central atom and total transmission for Au, Pt and Ir
chains withN = 5 at an intermediate elongation. The LDOS is decomposed ins (full line) d (dotted
line) andp dashed line with the same normalization in the three cases (from Ref. [30]).

of s −pz anddz2 orbitals, and another two almost degenerate, withpx − dxz and
py − dyz character respectively (herez corresponds to the chain axis). The con-
tribution of the 5d orbitals is even more important in the case of Ir where a fourth
channel exhibits a significant transmission.

As discussed in Ref. [30] more insight into these results can be obtained by
analyzing the band structure of the infinite chains. The left panel in Fig. 6 shows
the bands around the Fermi energy for Pt obtained from ab-initio calculations.
Two main features are worth commenting on: 1) Symmetry considerations allow
to classify the bands according to the projection of the angular momentum along
the chain axis,m. 2) Close to the Fermi level there is an almost flat filled two-fold
degenerate band withdxy anddx2−y2 (m = ±2) character. The other partially
filled and more dispersing bands haves − pz − dz2 (m = 0) andpx − dxz or
py − dyz (m = ±1) character (see labels in Fig. 6).

The close connection between this band structure and the conduction channels
of the chains is realized when analyzing the evolution of the conductance and its
channel decomposition for even longer chains than in Fig. 4 (N > 8). This is
illustrated in the right panel in Fig. 6. As can be observed the decrease of the
total conductance of Pt forN < 7 − 8 corresponds actually to a long period
oscillation in the transmission of the two nearly degenerate channels associated
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Fig. 6. Left panel: band structure of the infinite Pt chain The bands are classified by the quantum
numberm corresponding to the projection of the angular momentum on the chain axis. The arrows
indicate the crossing of the Fermi level for them = 0 and them = ±1 bands. Right panel: channel
decomposition for Pt chains as a function ofN . The legends indicate the symmetry of the associated
bands in the infinite chain.

with them = ±1 bands. This period can be related to the small Fermi wave
vector of these almost filledd bands, as indicated by the arrows in the left panel
of Fig. 6. In addition, the upperm = 0 band crossing the Fermi level is close
to half-filling giving rise to the even-odd oscillatory behaviour observed in the
transmission of the channel with predominants character. The lowerm = 0
band tends to be completely filled and the corresponding channel is nearly closed
for short chains. However, one can notice a very long period oscillation in its
transmission, rising up to∼ 0.5G0, forN ∼ 13− 14.

The general rule that emerges from the above analysis is that the transmission
corresponding to each conduction channel oscillates as∼ cos2(kF,iNa) where
kF,i is the Fermi wave vector of the associated band in the infinite chain. In the
case of Pt the total conductance for short chains (N < 7− 8) exhibits an overall
decrease with superimposed even-odd oscillations in qualitative agreement with
the experimental results of Ref. [18]. For even longer chains (not yet attainable
in experiments) these calculations predict an increase of the conductance due to
the contribution of conduction channels withdxz, dyz character.

3. Superconducting quantum point contacts

Atomic sized conductors have revealed to be unique systems to test predictions
on superconducting transport in the strong quantum regime [1]. In order to under-
stand the universal behaviour observed in their superconducting transport prop-
erties in terms of the PIN code{τn} it is important to consider the large difference
between energy scales associated with superconductivity and the typical energy
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scale for the variation of the normal conductance. Thus, for instance, in the case
of Al the superconducting gap� is of the order of 180µeV, while for observ-
ing an appreciable variation in its normal conductance it is necessary to apply
a bias voltage much larger than 10 meV. One can then safely assume that nor-
mal conduction channels are not affected by the superconducting transition and
one is allowed to neglect the energy dependence in the channel transmissions
when analyzing superconducting transport. As a consequence, in setting up a
theoretical description one can concentrate on the properties of a superconduct-
ing quantum point contact (SQPC) with a single channel and with fixed trans-
missionτ and describe the experimental results as a collection of independent
channels.

3.1. The Hamiltonian approach

In the spirit of tight-binding models discussed in the previous section, the sim-
plest model describing a single channel contact with arbitrary transmission can
be written asĤ = ĤL + ĤR + ĤT , whereHL,R correspond to the left and right
electrodes (which in the superconducting case are described by the usual BCS
pairing model) that are coupled througĥHT =

∑
σ vĉ

†
Lσ ĉRσ e

iθ(t)/2+h.c., where
θ(t) = 2e/h̄

∫ t
0 V (t)dt+θ0 is the phase difference between the electrodes, which

is determined by the imposed voltage bias. The normal transmission within this
model is given byτ = 4v2W2/(W2+ v2)2, where 1/Wπ is the density of states
on the normal leads at the Fermi energy [33].

Determining the superconducting transport properties of this model requires
the use of some field theoretical techniques. One needs to combine the Nambu
formalism appropriate to describe the superconducting state [34] with the
Keldysh formalism which allows to deal with a non-equilibrium situation [35].
In the Nambu formalism one introduces spinor field operatorsψ̂i andψ̂†

i defined
as

ψ̂i =
(
ĉi↑
ĉ

†
i↓

)
and ψ̂

†
i =

(
ĉ

†
i↑ ĉi↓

)
, (3.1)

where the indicesi, j denote the left and right electrodes.
In terms of these operators the usual retarded and advanced Green functions

are given by

Gri,j (t, t
′) = −iθ(t − t ′) <

[
ψ̂i(t), ψ̂

†
j (t

′)
]
+
>

Gai,j (t, t
′) = iθ(t ′ − t) <

[
ψ̂i(t), ψ̂

†
j (t

′)
]
+
>, (3.2)
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where
[
Â, B̂

]
+

denotes the anticommutator. Notice that these quantities are now

2×2 matrices in Nambu space. For the calculation ofGr,a one needs to solve the
corresponding Dyson equationGr,a = gr,a + gr,a ◦ v ◦Gr,a , relating them to the
Green functions of uncoupled electrodesgr,a . In this equation the product◦ de-
notes integration over internal time arguments and summation over intermediate
indexes whilev denotes the hopping elements in Nambu space given by

v̂LR(t) = v
(
eiθ(t)/2 0

0 −e−iθ(t)/2
)
=
(
v̂αRL(t)

)†
. (3.3)

The local BCS Green functions are given byĝaij = ĝ
r,∗
ij = δij

(
gÎ + f σ̂x

)
,

whereg = −ω/W
√
�2 − ω2 = −ω/�f .

The retarded and advanced Green functions are not sufficient for dealing with
a general non-equilibrium situation. It is in general necessary to determine in
addition the Keldysh Green function defined as

G+−
i,j (t, t

′) = i < ψ̂
†
j (t

′)ψ̂i(t) >, (3.4)

which satisfies the equation [35]

G+− = g+− +Gr ◦ v ◦ g+− + g+− ◦ v ◦Ga +Gr ◦ v ◦ g+− ◦ v ◦Ga, (3.5)

whereg+− corresponds to the uncoupled electrodes and are determined byĝ+−ij =
δijn(ω)

(
ĝaii − ĝrii

)
, n(ω) being the Fermi distribution.

The various transport properties of the system can be expressed in terms of
these quantities. Thus, for instance, the mean current can be written as

〈
Î (t)

〉
= e

h
Tr
[
σ̂z

(
v̂LR(t)Ĝ

+−
RL (t, t)− v̂RL(t)Ĝ+−

LR (t, t)
)]
. (3.6)

Obtaining analytical results in the superconducting case is (even for this simple
model) a difficult task. The main difficulty lies in the intrinsic time dependence
of the problem whenV �= 0. In the stationary case (V = 0) the Dyson equations
for the retarded and advanced Green functions become 2× 2 algebraic equations
which can be readily solved. The main result for this case is the existence of two
bound states inside the superconducting gap with energies given by [36]

ǫ±(θ0) = ±�
√

1− τ sin2(θ0)/2. (3.7)

These are the so-called Andreev bound states, which result from multiple An-
dreev reflections (MAR) between the superconducting electrodes [37, 38]. The
position of these states depends on the stationary phase differenceθ0 and they are
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Fig. 7. Pictorial representation of the set of equations which determine the Green function compo-
nentsGn0.

the current-carrying states. In fact the Josephson current at zero temperature can
be directly evaluated as

I (θ0) =
2e

h̄

dǫ−(θ0)
dθ0

. (3.8)

When a constant bias voltage is applied we haveθ(t) = ωJt , whereωJ =
2eV/h̄ is the Josephson frequency. To obtain a more tractable form of the Dyson
equations one can perform a double Fourier transformation of the Green func-
tions. Due to the special form of the phase factors in the hopping elements, the
dependence on the two frequencies is linked byG(ω, ω′) = ∑

nGn0(ω)δ(ω −
ω′ + nωJ). A pictorial representation of the Dyson equations determining the
Fourier componentsGn0 is given in Fig. 7. In this figure we draw replicas of the
left and right electrodes labeled by an integer number which determines the num-
ber of quantaeV which are emitted or absorbed in a given tunneling process. The
horizontal lines represent the propagation inside the electrodes as an electron (full
lines) or as a hole (dashed lines). The dotted lines indicate the coupling between
electron and holes due to the anomalous propagatorf . When a quasiparticle
tunnels from left to right as an electron it absorbs an energy quantumeV , while
when it tunnels as a hole a quantum is emitted. As a result when all processes
up to infinite order inv are considered the replicas fromn = −∞ to n = ∞
are coupled like in a tight-binding one-dimensional chain with nearest-neighbour
hopping. The different componentsGn0 can be expressed as a continued fraction
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Fig. 8. Zero temperature dc currentI0 for a single channel superconducting quantum point contact
for values of the transmission ranging fromτ = 1 (top) to tunneling atτ << 1 (bottom).

in Nambu space. Thus, for instance

Ĝr00 =
[
(ĝr0)

−1 − v̂+Ĝr1v̂− − v̂−Ĝr−1v̂
+
]−1

, (3.9)

where the quantitieŝGr±n satisfy the recursive equations

Ĝr±n =
[
(ĝr±n)

−1 − v̂±Ĝr±n±1v̂
∓
]−1

for even n,

Ĝr±n =
[
(ĝr±n)

−1 − v̂∓Ĝr±n±1v̂
±
]−1

for odd n.

In the above expressionsĝrn = ĝr(ω + neV ) andv̂± = v
(
σ̂z ± Î

)
/2.

Once the componentsGn0 have been determined one can compute the mean

current as
〈
Î (V , t)

〉
= ∑

m Im(V )e
imωJt . The most interesting from the experi-

mental point of view is the dc componentI0 which can be written as [33]

I0 = −4e

h

∫
dω

∑

n=odd
ReTr

[
σ̂z

(
T̂ †
n ĝ

+−
n T̂nĝ

a
0

)]
, (3.10)

whereT̂n = v̂+Ĝan+1,0+ v̂−Ĝan−1,0. The numerical evaluation of these equations
yields the results shown in Fig. 8 forI0 at zero temperature and for a range of
values of the transmissionτ . As can be observedI0(V ) exhibits a highly non
linear behaviour. The most remarkable feature is the appearance of current steps
ateV = 2�/n. This is the so-called subgap structure which is more pronounced
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Fig. 9. Schematic representation of the Andreev states dynamics accounting for the transport proper-
ties of a SQPC in the limit of high tranmission and small bias voltage. The horizontal axis corresponds
to the phase evolution from 0 to 2π . The gray area above and below are the quasiparticle continuum
outside the superconducting gap.

in the tunnel limitτ → 0. Physically the subgap structure appears due to the oc-
currence of multiple Andreev reflection processes between the superconducting
electrodes. Associated with a MAR process of ordern, a chargene is transferred
coherently with a probability scaling asτn at low transmission. For the occur-
rence of these processes a minimum bias voltageeV = 2�/n is required, which
explains the observed jumps in the current. A rather simple expression can be
found for the current forV ∼ 2�/n in this low transmission regime [33]

I0 ≃
eπ2

h
τn

∫ −�

�−neV
dωρ(ω)ρ(ω + neV )Ŵn(ω), (3.11)

whereŴn(ω) =
∏n−1
k=1 |f (ω + keV )|2 andρ(ω) is the BCS density of states. The

scaling of the current steps withτn was first confirmed experimentally by van der
Postet al.using Nb break junctions [39].

As the transmission is increased the subgap structure becomes progressively
more rounded and eventually disappears forτ = 1. Particularly interesting is the
behaviour of the current at low bias voltage whenτ → 1 indicated in Fig. 8. In
this region the current exhibits an exponential increase with bias voltage. One can
understand this behaviour in terms of the low bias dynamics of the Andreev states
[40]. As commented above the zero bias limit is characterized by the presence
of Andreev states. Suppose that we have initially the equilibrium situation in
which only the lower Andreev stateǫ−(θ) is occupied. When a small bias voltage
is applied the state evolves adiabatically according toǫ−(ωJt) as illustrated in
Fig. 9. However, close toθ = π the gap between the lower and the upper
state gets smaller and a Landau-Zener transition can take place leading to the
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appearance of a quasiparticle current. The Landau-Zener probability is given by
p = exp[−π�(1− τ)/eV ] and in terms of this probability the mean current is
just

I0(V ) =
4e�

h
exp[−π�(1− τ)/eV ] . (3.12)

This simple expression accounts for the behaviour ofI0 at low bias and large
transmission.

3.2. Comparison to experimental results

The comparison between the theoretical predictions for a single channel SQPC
and the experimental results for one atom contacts is particularly instructive. The
top panel of Fig. 10 shows some typical results for Al one-atom contacts together
with the set of theoretical curves forI0. As can be observed, the theoretical re-
sults for one channel capture the main qualitative behaviour of the experimental

Fig. 10. Comparison of theoretical and experimental results for the dc componentI0. The symbols
in the top panel are typical I-V curves recorded on the last plateau for Al atomic contacts at 30 mK.
Three cases with similar normal conductance exhibit very different subgap structure. In the lower
panel we show the fits of one of the experimental curves using one (dotted) two (dashed) and three
channels (full curve). The corresponding sets of transmissions are given in the inset.
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I-V curves. However, if we compare theoretical and experimental curves having
the same normal conductance we see that they look very different. Moreover, we
observe that experimental results for contacts with rather similar normal conduc-
tance exhibit large differences in their subgap structure.

The reason for this discrepancy, first pointed out in [8] is that i) even for the
case of one atom contacts more than a single channel with significant transmis-
sion can be contributing to tranport and ii) the channel content or PIN code of
the three experimental curves can be rather different even when their total con-
ductance is similar. This hypothesis was confirmed by microscopic calculations
for Al atomic contacts which predict the contribution of three channels for the
one atom geometry [41]. In fact, when the theoretical results for three chan-
nels are superposed and their transmissions are varied as fitting parameters one
can reach an excellent quantitative agreement with experiments, as shown in the
lower panel of Fig.10.

Besides confirming the validity of the microscopic theory of MAR, this fitting
procedure provides a powerful tool to determine the set of transmissionsτn with
high accuracy. Since its introduction in Ref. [8], the technique has been applied to
many different materials [9,42,43] and to studying different properties of atomic
contacts in well controlled conditions [3, 6]. All these studies have confirmed
the reliability of the subgap structure analysis. Particularly remarkable are the
studies of shot noise in Ref. [6] in which the determination of the PIN code by
this technique allowed a direct comparison with the theory without any fitting
parameter.

Shot noise is one of the most peculiar features of quantum transport in meso-
scopic systems (see the contribution by T. Martin in this volume). It contains
information both on the charge of the quasiparticles that are transferred and on
their quantum correlations [44]. In the case of superconducting quantum point
contacts shot noise studies offer new insight about the MAR mechanism. The
quantity of interest is now the noise spectral density defined as

S(ω) = h̄
∫
dteiωt

〈[
δÎ (t), δÎ (0)

]
+

〉
, (3.13)

whereδÎ (t) = Î (t) −
〈
Î (t)

〉
. The noise spectrum can be evaluated using the

Keldysh-Nambu Green function techniques discussed above [45, 46]. Although
we are not going to discuss this issue in detail let us just point out the more
remarkable prediction of the theory, which is the quantization of the effective
charge in the tunnel limit. This quantity is defined asQ∗ = S(0)/2I0. In a normal
tunnel junctionQ∗ is just the electron charge. However, when the electrodes are
superconducting the current in the subgap region is due to MAR processes in
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Fig. 11. Effective chargeQ∗ = S(0)/2I0 as a function of the inverse reduced voltage for a super-
conducting Al one-atom contact. The dashed line is the prediction of the theory for the tunnel limit.
The experimental data (dots) are for a contact with PIN code{0.40, 0.27, 0.03}. The full line is the
prediction of the microscopic theory for this set of transmission values.

which n quasiparticles are transferred coherently and this is reflected in the fact
thatQ∗ → ne, wheren = [1+ 2�/V ], whenτ → 0 [45].

The experimental test of these predictions were provided by the work of Cron
et al. [6]. Their results for the effective charge are shown in Fig. 11 together with
the theoretical calculations. Although these results do not correspond to a very
poorly transmitted channel (τ ∼ 0.4), one can already observe a tendency to a
staircase behaviour as the bias voltage is reduced.

4. Environmental effects

A basic assumption in most theoretical descriptions of transport in atomic-sized
conductors is that the nanoscale system can be ideally voltage biased, i.e. it can
be connected directly to an ideal voltage source fixing a well defined chemical
potential difference between the left and the right leads. The leads are thus as-
sumed to behave as ideal electron reservoirs. An actual experimental situation
can certainly deviate from this idealized picture. Our nanoscale device is always
embedded in a macroscopic circuit which is determined mainly by the geometry
of the metallic leads in the close vicinity of the atomic conductor. The actual
situation would be more accurately described as illustrated in Fig. 12 in which
the embedding circuit is characterized by a macroscopic impedanceZ(ω). An
important ingredient to be taken into account is the effective capacitanceC as-
sociated with the atomic size conductor itself. Being a nanoscale object this
capacitance can be rather small which could result in the appearance of observ-
able charging effects whene2/C ≫ kT . In this section we briefly discuss how
these environmental effects are manifested in different transport properties.
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Fig. 12. Schematic representation of a typical circuit for transport measurements in atomic-sized
conductors.

The theoretical description of these effects requires to analyze the influence
on the transport properties of the fluctuations in the phase difference across the
atomic conductor induced by the macroscopic impedance. One can distinguish
betweenclassicalandquantumeffects depending on the nature of these fluctu-
ations. Thus, for sufficiently high temperatures, when charging effects are neg-
ligible, only thermal fluctuations have to be considered. These fluctuations have
an important effect on the Josephson current, reducing strongly its maximum
value from the theoretically predicted result, Eq. (3.8), which explains the quasi-
absence of a supercurrent branch in many experiments. On the other hand, when
the charging energye2/C is comparable to, or larger than,kT and the series im-
pedance is not negligible compared toh/e2 quantum fluctuations in the phase
start to play an important role. This leads to a phenomenon calleddynamical
Coulomb blockade, i.e. a suppression of the current at low bias, which can be ob-
served in normal atomic size conductors when the embedding circuit is designed
in order to satisfy the above mentioned conditions.

4.1. Classical phase diffusion

To analyze the influence of thermal fluctuations on the Josephson current in su-
perconducting atomic size contacts one can generalize the so-called resistively
and capacitively shunted junction (RCSJ) model, traditionally used in the context
of tunnel junctions [47]. The starting point of this approach is to write down a
Langevin equation for the phase difference across the contact taking into account
the non-sinuoidal behavior of the current-phase relation at high transmissions.
This has been done in Refs. [3] and [48]. In the latter reference the model was
generalized to include also the effect of a microwave field in order to study the
influence of thermal fluctuations on the so-called Shapiro steps.
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Within the RCSJ model the parallel combination of the atomic contact with
a shunting resistanceR and a capacitanceC is current polarized by a current
sourceIb. The atomic contact is characterized by its current-phase relationI (θ).
Current conservation then implies

Ib = C
dv

dt
+ I (θ)+ v

R
+ L(t), (4.1)

whereL(t) is the Johnson-Nyquist noise produced by dissipation in the resis-
tance. The voltage across the contact and the phase are related byv = φ0θ̇ ,
whereφ0 = h̄/2e is the reduced flux quantum. Equation (4.1) is completely
analogous to the one describing the motion of a brownian particle in a potential
U(θ), determined by

U(θ) = φ0θIb − φ0

∫ θ

0
I (θ)dθ. (4.2)

When the capacitance is negligible (overdamped regime) the problem can be
translated into the study of the distribution functionσ(θ, t) for the phase across
the contact, which satisfies a Smoluchowski equation [49]

dσ

dt
= R

φ2
0

∂

∂θ

[
−∂U
∂θ

+ T ∂σ
∂θ

]
. (4.3)

This equation can be written asdσ
dt
+ ∂w

∂θ
= 0, wherew = R

φ2
0

[
− ∂U
∂θ
+ T ∂σ

∂θ

]
.

This quantity can thus be interpreted as a probability current which must be re-
lated toσ byw = σv/φ0. From this relation one can obtain the mean voltage〈v〉
across the contact as a function of the biasing currentIb. Extracting the current-
voltage charateristic from the Smoluchowski equation is particularly simple for
the case of a constant dc bias. In this case the stationary solutionσ(θ) does
not depend on time andw is just a constant. The equation can then be easily
integrated yielding

σ(θ) = wφ2
0

T R

f (θ)

f (2π)− f (0)

[
f (2π)

2π∫
θ

dθ
f (θ)

+ f (0)
θ∫
0

dθ
f (θ)

]
, (4.4)

wheref (θ) = exp [−U(θ)/T ]. The normalization condition
∫ 2π

0 dθσ(θ) = 1
then determinesw and hence〈v〉.

The supercurrent branch in superconducting atomic-sized contacts was ana-
lyzed experimentally in Ref. [3] using Al microfabricated break junctions. In or-
der to have good control of the thermal and quantum fluctuations they designed an
on-chip dissipative environment with small resistors of known value placed close
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Fig. 13. Micrograph of the experimental setup used in Ref. [3] to study the supercurrent in an atomic
contact. Each probe contains a AuCu resistor (thin lines of 10µm length) and a large capacitor with
the metallic substrate. The left inset shows a close-up of the microfabricated MCBJ and the right
inset illustrates the equivalent circuit.

to the atomic contact, as illustrated in Fig. 13. With the appropriate choice of
the environment parameters the current-voltage curve becomes hysteretic, which
allows the measurement of the supercurrent and the quasi-particle branch for the
same contact. The advantage is that this permits the determination of the PIN
code by the subgap structure analysis as discussed in the previous section. A typ-
ical current voltage characteristic for this set-up is depicted in Fig. 14. The inset
in this figure shows a blow-up of the supercurrent branch together with the result
obtained from the Smoluchowski equation for the corresponding set of parame-
ters. As can be observed the threshold orswitchingcurrent,IS , at which the jump
from the supercurrent branch to the quasiparticle current branch takes place lies
very close to the maximum in the current-voltage characteristic predicted by the
RCSJ model. This value is very sensitive to thermal fluctuations and decreases
with increasing temperatures as illustrated by the results shown in Fig. 15. The
experimental results forIS for different sets{τn} are in excellent agreement with
the theoretical values except for contacts having an almost perfectly transmitted
channel (with transmissions between 0.95 and 1.0). In this case it is found that
the switching current is less sensitive to thermal fluctuations than predicted by
the theoretical model. This discrepancy was attributed in Ref. [3] to the con-
tribution due to Landau Zener transitions between Andreev states, not included
in the above description. The development of a unified theory including classi-
cal phase diffusion and transitions between Andreev states constitutes one of the
open problems in the theory of superconducting quantum point contacts.
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Fig. 14. Typical current-voltage characteristic for the set up of Fig. 13 at 17 mK. A jump from the
supercurrent branch near zero voltage to the finite voltage dissipative branch is observed. The inset
shows a blow-up of the supercurrent branch for another contact at a larger temperature together with
a fit using the Smoluchowski equation (4.3) for the corresponding set of parameters.

Fig. 15. Experimental (open symbols) and theoretical (lines) results for the switching current ob-
tained in Ref. [3]. The results correspond to one atom contacts with different channel content.
(▽) {τi} = {0.21, 0.07, 0.07}. From the fit a zero-temperature supercurrent ofI0 = 8.0± 0.1 nA
is obtained. (♦) {τi } = {0.52, 0.26, 0.26}, I0 = 25.3 ± 0.4 nA. (◦) {τi } = {0.925, 0.02, 0.02},
I0 = 33.4± 0.4 nA. (△) {τi } = {0.95, 0.09, 0.09, 0.09}, I0 = 38.8± 0.2 nA. (open squares){τi } =
{0.998, 0.09, 0.09, 0.09}, I0 = 44.2±0.9 nA. The full lines are the predictions of the Smoluchowski
equation (4.3) while the dotted lines are the results of a numerical simulation of the circuit equation
(4.1) allowing for Landau-Zener transitions between Andreev states. From [3].
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4.2. Dynamical Coulomb blockade

Dynamical Coulomb blockade (DCB) in ultra-small tunnel junctions was exten-
sively analyzed in the early 90’s. The basic theory for describing this effect in
tunnel junctions is calledP(E)-theory. Within this theory the electromagnetic
environment of the junction is described as a set ofLC circuits in the spirit of
Caldeira-Legget model for quantum dissipation [50]. One can in principle de-
scribe any impedanceZ(ω) as a continuous distribution of harmonic oscillators
which are coupled to the tunneling electrons. The tunneling then becomes an
inelastic process: the electron can only tunnel if it can excite a mode in the envi-
ronment. This necessarily reduces the current because there is a reduction in the
phase space available for the final electron states. The name of the theory is due
to the fact that the current is determined by a certain functionP(E) giving the
probability of exciting a mode of energyE.
P(E)−theory is somewhat equivalent to the Fermi golden rule, i.e. lowest or-

der perturbation theory in the coupling between the leads. This theory is clearly
insufficient for describing the case of an atomic contact of arbitrary transmis-
sion. DCB in a normal QPC coupled to a macroscopic impedance was analyzed
in Refs. [51, 52]. In Ref. [52] it was shown that there is a close connection be-
tween DCB and shot noise in these types of systems. The starting point of their
theoretical analysis is again the simple model Hamiltonian of Sect. 3.1 which is
modified to include the coupling to the environment. This is done by introduc-
ing an additional phase factor�̂e = exp[iθ̂ ] in the hopping term, wherêθ is the
phase operator which is a conjugate variable of the chargeQ̂ between the leads,
i.e. [θ̂ , Q̂] = ie. The phase factor̂�e then acts as a translation operator which
shifts the charge between the leads by one each time an electron tunnels. The
modified hopping term then readsHT =

∑
σ vĉ

†
Lσ ĉRσ �̂e + h.c..

The information characterizing the electromagnetic environment is contained

in the phase correlation functionJ (t) =
〈
θ̂ (t)θ̂ (0)

〉
−
〈
θ̂2
〉
, which is related to the

total impedanceZt (ω) by J (t) = G0
∫
dωReZt (ω)(eiωt − 1)/ω [53]. Here the

total impedance is the parallel combination ofZ(ω) and the contact capacitance,

i.eZt (ω) =
(
Z(ω)−1 + iωC

)−1
.

In Ref [52] the blockade in the current within this model was calculated using
Keldysh formalism. However, in the limit of weak coupling with the environ-
ment (i.e.Z ≪ h/e2) the relation between DCB and noise can be obtained by
more conventional methods [54]. To lowest order inJ (t) the current blockade is
given by [54]

〈
δÎ
〉
= − 1

2e2

∫
dωJ (ω)

∫
dω′sign(ω − ω′)∂SI

∂V
(ω′, V ), (4.5)

whereSI (ω, V ) denotes the current noise spectrum of the QPC.
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For a QPC at low frequencies and zero temperatureSI = 2eG0
∑
n τn(1−

τn)(eV − h̄ω)θ(eV − h̄ω) (see the chapter on noise by T. Martin in this volume)
and Eq. (4.5) yields

δG

G
= −G0

∑
n τn(1− τn)∑

n τn

∫ ∞

eV

dω
ReZt (ω)

ω
. (4.6)

It should be noted that the correction to the conductance is affected by the
same reduction factor that applies for shot noise. In the simple but realistic case
for which the impedance is composed by the resistanceR of the leads embedding
the contact in parallel with the capacitanceC of the contact itself, the blockade
in the conductance reduces to

δG

G
= −G0R

∑
n τn(1− τn)∑

n τn
ln

√

1+
(
h̄ωR

eV

)2

, (4.7)

whereωR = 1/RC. At finite temperature the logarithmic singularity in Eq. (4.7)
atV = 0 becomes progressively rounded. The finite temperature expression of
this equation can be found in Ref. [4].

In order to verify these predictions Cronet al. [4] fabricated an atomic con-
tact embedded in an electromagnetic environment essentially equivalent to a pure
ohmic resistor of the order of 1 k� defined by e-beam lithography. The mate-
rial chosen for both the atomic contact and the series resistor was Al, which
allowed to extract the channel decomposition or mesoscopic PIN code for the
contacts, using the subgap structure analysis in the superconducting state. The
environmental Coulomb blockade was then measured in the presence of a 0.2 T
magnetic field which brings the sample to the normal state. The results for two
contacts with very different transmissions are shown in Fig. 16. The standard
P(E)-theory is able to account for the results obtained for the contact in the left
panel, which has a single weakly transmitted channel. On the other hand, for the
contact in the right panel, with a well transmitted channel(τ ≃ 0.83) the ampli-
tude of the dip at zero bias is markedly reduced with respect to the tunnel limit
predictions (dashed line). The experimental results are in good agreement with
the predictions of Eq. (4.6) (solid line).

5. Single-molecule junctions

More recently the focus of attention in the field of transport at the atomic scale
is moving towards conducting bridges of individual molecules. As early as 1974
Aviram and Ratner [55] proposed that a molecule with donor and acceptor groups
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Fig. 16. Measured differential conductance curves of two atomic contacts (symbols referred to the
left axes,G0 being the conductance quantum), and comparison with the predictions for the dynamic
Coulomb blockade (lines, right axes, relative reduction of the conductance). Dashed lines are the
predictions for the tunnel case [53] and the full line is the prediction of the theory in [4], (Eq. (4.6)),
summing the contributions of the two channels of the contact. The wiggles and asymmetry appear-
ing on the experimental curves are reproducible conductance fluctuations due to interference effects
depending on the detailed arrangement of the atoms in the vicinity of the contact. On the left pannel,
the contact consists of a single weakly transmitting channel, and it is well described by the standard
theory of DCB valid for tunnel contacts, as expected. On the right pannel, the contact has a well
transmitting channel withτ = 0.835. In this case, the relative reduction of conductance is much
smaller than for the tunnel case and is in agreement with the predictions of Eq. (4.6).

separated by a poorly conducting spacer group might act as a diode when con-
nected between metallic electrodes. This and other ideas led to the concept of
molecular electronics: the prospect of building electronics out of organic molec-
ular components, that would ideally self-assemble into large integrated circuits.
However, the first step would be to contact a single molecule, or at least a single
monolayer. Although several initial attempts towards this goal seemed promis-
ing it has turned out to be difficult to obtain stable and reproducible results. For
self-assembled monolayers of molecules many experimental results have been in-
fluenced by defects in the monolayers. Therefore, many attempts more recently
focus on contacting single molecules only and some encouraging progress is now
being made. For a more complete recent review, see Ref. [56].

Several experimental techniques have been developed that allow measuring
single molecules. One approach is using scanning tunneling microscopes, or
conducting-tip atomic force microscopes to find and contact a desired molecule.
In order to avoid contacting many molecules in parallel the target molecules are
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often embedded at defect positions into a monolayer matrix of less conducting
alkanethiol molecules [57, 58]. As metal contacts, almost exclusively gold has
been used, in view of its low-reactive surfaces making it relatively easy to avoid
reactions with other molecules. Strong bonds to organic molecules can never-
theless be made through the use of sulfur end-groups (often referred to as the
alligator clips). Although a relatively stable junction of the molecules to a gold
sample surface can be ensured by allowing a solution of the compounds to react
over a period of many hours, the top contact is usually a weak-coupling tunnel
junction to the STM or AFM tip. By using thiol alligator clips at both ends and
binding a gold cluster to the top of the molecules Lindsay’s group has achieved
important progress in reproducibility of the measured conductance [59,60]. Nev-
ertheless, the conductance varies as a result of variations in the metal-molecule
bonding. A particularly attractive method for obtaining ensemble averaged val-
ues for the conductance of a metal-molecule-metal junction was introduced by
Tao and his group [61]. They repeatedly make and break contacts between a gold
sample surface and a gold tip by forcing the STM tip into and out of contact. This
is done at room temperature with tip and sample immersed in a solution of the
molecules of interest, that have been prepared with the proper thiol end groups.
One observes frequently occurring plateaus in the conductance traces recorded
during breaking, that were shown to be associated with the molecules. The mean
conductance for a molecular bridge configuration can then be obtained from the
position of a peak in the histogram of conductance values.

Standard microfabrication approaches are not capable of reproducibly making
electrode separations small enough that they can be bridged by a single mole-
cule. Several solutions have been demonstrated that combine microfabrication
with other tricks. One method uses electromigration of a microfabricated gold
wire on a substrate [62–64]. Prior to the experiment the wire is allowed to in-
teract with the thiol-ended molecules in solution, after which the wire is broken
by controllably sending a large current through it. The combination of Joule
heating and electron wind force breaks the wire, and it was found that the re-
sulting junction is often bridged by one, or several, of the target molecules. The
advantage of this approach is the additional experimental control parameter pro-
vided by the gate electrode that can be defined along with the wire. This method
has recently been further improved by adding mechanical control over the elec-
trode separation after breaking [65]. Other microfabrication approaches include
the low-temperature shadow-evaporation technique introduced by Kubatkinet
al. [66] and a combination with electrochemical etching/deposition as described
by Kervennicet al. [67,68].

A significant fraction of the experimental work on single molecule transport
was inspired by the paper by Reedet al. [71]. The experiment was performed us-
ing a mechanically controllable break junction device [1] working at room tem-
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Fig. 17. Current voltage characteristics, reproducibly recorded for a stable junction in a mechani-
cally controlled break junction (lower) and their numerical derivativedI/dU (upper curve). a) with
molecule1 a spatially symmetric (9,10-Bis((2’-para-mercaptophenyl)-ethinyl)-anthracene) at room
temperature, b) with molecule2 an asymmetric molecule (1,4-Bis((2’-para-mercaptophenyl)ethinyl)-
2-acetyl-amino-5-nitro-benzene) at room temperature, and c) with molecule2 at T = 30 K. From
Refs. [69,70].

perature, with the junction immersed in a solution of the organic compound of
interest. The compound they selected was benzene-1,4-dithiol that has become
the workhorse in this field of science. In the experiment the broken gold wire was
allowed to interact with molecules for a number of hours so that a self-assembled
monolayer covered the surface. Next, the junction was closed and re-opened a
number of times and current-voltage (I−V ) curves were recorded at the position
just before contact was lost completely. TheI − V curves showed some degree
of reproducibility with a fairly large energy gap feature of about 2 eV, that was
attributed to a metal-molecule-metal junction. The zero-bias conductance was of
order 109� which is one or two orders of magnitude larger than typically found
in model calculations for a benzenedithiol bridging two metal electrodes [72].

Further experiments along these lines have been performed on larger organic
molecules in the groups of Bourgoin [73] and Weber [69, 70]. In particular, the
latter showed that the symmetry of the molecules is reflected in the symmetry of
the I − V curves, see Fig. 17. Dulić et al. [74] used a photochromic molecule
that can be switched from a high-conductance state to a low-conductance state
under the influence of visible light and back under near-UV irradiation. The
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Fig. 18. Conductance curves and histograms for clean Pt, and Pt in a H2 atmosphere. The curves for
Pt in the inset and the histogram in the main panel were measured at a bias of 10 mV. The curve for
Pt with H2 in the inset was measured at 100 mV, and the histogram was obtained at 140 mV. All data
were taken at 4.2 K under cryogenic vacuum. From Ref. [75].

two states had been investigated before in detail in solution. Dulić et al. used a
lithographically fabricated break junction device to contact individual molecules
of this kind, modified to have thiol-anchoring groups. They observed switching
of the conductance of a molecule from the high-conductance state to the low-
conductance state, but the reverse step was not obtained. They present evidence
that the reverse step is suppressed as a result of the interaction of the UV light
with surface plasmons in the gold electrodes.

The early experiments aimed at probing the electronic transport properties of
individual organic molecules have shown that it is difficult to identify the number
of molecules actually contacted and that the characteristics observed vary widely
between experiments. Under such conditions it is not surprising that there is also
very little agreement with calculations. This situation forms a strong motivation
to study simple systems, that by themselves will not be useful as molecular de-
vices, but that may provide a more viable test system to identify the problems
in experiment and theory. The simplest molecule is dihydrogen, which has been
shown can be contacted between platinum electrodes [75]. The discussion of the
hydrogen experiments will occupy most of the remainder of this section.

Smitet al. [75] obtained molecular junctions of a hydrogen molecule between
platinum leads using the mechanically controllable break junction technique. The
inset to Fig. 18 shows a conductance curve for clean Pt (black) at 4.2 K, before
admitting H2 gas into the system. About 10,000 similar curves were used to
build the conductance histogram shown in the main panel (black, normalized by
the area). After introducing hydrogen gas the conductance curves were observed
to change qualitatively as illustrated by the gray curve in the inset. The dramatic
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change is most clearly brought out by the conductance histogram (gray, hatched).
Clean Pt contacts show a typical conductance of 1.5± 0.2G0 for a single-atom
contact, as can be inferred from the position and width of the first peak in the
Pt conductance histogram. Below 1G0 very few data points are recorded, since
Pt contacts tend to show an abrupt jump from the one-atom contact value into
the tunneling regime towards tunnel conductance values well below 0.1G0. In
contrast, after admitting hydrogen gas a lot of structure is found in the entire
range below 1.5G0, including a pronounced peak in the histogram near 1G0.
The research to date on this system has focussed on the molecular arrangement
responsible for this sharp peak. Clearly, many other junction configurations can
be at the origin of the large density of data points at lower conductance, but they
have not yet been studied in detail.

The interpretation of the peak at 1G0 was obtained from a combination of
measurements, including vibration spectroscopy and the analysis of conductance
fluctuations, and Density Functional Theory (DFT) calculations. Experimentally,
the vibration modes of the molecular structure were investigated by exploiting the
principle of point contact spectroscopy for contacts adjusted to sit on a plateau in
the conductance near 1G0. The principle of point contact spectroscopy is similar
to inelastic tunneling spectroscopy (IETS), but differs somewhat in a few impor-
tant details. As for IETS, the differential conductance is measured using a small
modulation superimposed on a dc bias that is slowly swept over a wide voltage
range. When the bias increases from zero and crosses a voltage corresponding
to the energy of a vibration mode in the contact,eV = h̄ω, a new channel for
electron scattering opens. For an ideal one-channel contact the only option is
backscattering since all forward propagating states are occupied. Thus, in con-
trast to IETS, to first approximation scattering by vibration modes leads to a drop
in the conductance.

Figure 19 shows examples for Pt-H2 and Pt-D2 junctions at a plateau near
1G0. The conductance is seen to drop by about 1 or 2%, symmetrically at pos-
itive and negative bias, as expected for electron-phonon scattering. The energies
are in the range 50–60 meV, well above the Debye energy of∼20 meV for Pt
metal. A high energy for a vibration mode implies that a light element is in-
volved, since the frequency is given byω = √

κ/M with κ an effective spring
constant andM the mass of the vibrating object. The proof that the spectral fea-
tures are indeed associated with hydrogen vibration modes comes from further
experiments where H2 was substituted by the heavier isotopes D2 and HD. The
positions of the peaks in the spectra ofd2I/dV 2 vary within some range between
measurements on different junctions, which can be attributed to variations in the
atomic geometry of the leads to which the molecules bind. Figure 20 shows his-
tograms for the vibration modes observed in a large number of spectra for each
of the three isotopes.



528 A. Levy Yeyati and J.M. van Ruitenbeek

Fig. 19. Differential conductance curve for a molecule of D2 contacted by Pt leads. ThedI/dV curve
(top) was recorded over 1 minute, using a standard lock-in technique with a voltage bias modulation
of 1 meV at a frequency of 700Hz. The lower curve shows the numerically obtained derivative. The
spectrum for H2 in the inset shows two phonon energies, at 48 and 62 meV. All spectra show some,
usually weak, anomalies near zero bias that can be partly due to excitation of modes in the Pt leads,
partly due to two-level systems near the contact. From Ref. [76].

Fig. 20. Distribution of vibration mode energies observed for H2, HD, and D2 between Pt electrodes,
with a bin size of 2 meV. The peaks in the distribution for H2 are marked by arrows and their widths
by error margins. These positions and widths were scaled by the expected isotope shifts,

√
2/3 for

HD and
√

1/2 for D2, from which the arrows and margins in the upper two panels have been obtained.
From Ref. [76].



Transport at the atomic scale: Atomic and molecular contacts 529

Two pronounced peaks are observed in each of the distributions, that scale
approximately as the square root of the mass of the molecules, as expected. The
two modes can often be observed together, as in the inset to Fig. 19. For D2 an
additional mode appears near 90 meV. This mode cannot easily be observed for
the other two isotopes, since the lighter HD and H2 mass shifts the mode above
100 meV where the junctions become very unstable. For a given junction with
spectra as in Fig. 19 it is often possible to stretch the contact and follow the evolu-
tion of the vibration modes. The frequencies for the two lower modes were seen
to increase with stretching, while the high mode for D2 is seen to shift downward.
This unambiguously identifies the lower two modes as transverse modes and the
higher one as a longitudinal mode for the molecule. This interpretation agrees
nearly quantitatively with DFT calculations for a configuration of a Pt-H-H-Pt
bridge in between pyramidally shaped Pt leads [76, 77]. The conductance ob-
tained in the DFT calculations [75–77] also reproduces the value of nearly 1G0
for this configuration. The number of conduction channels found in the calcu-
lations is one, which agrees with the analysis of conductance fluctuations in the
experiment of Refs. [75,78]. The fact that the conductance is carried by a single
channel demonstrates that there is indeed just a single molecule involved.

Several other DFT calculations have been performed, see e.g. Refs. [79, 80],
where the agreement is only partial. Although Cuevaset al. [80] find a similar
high value for the conductance, the molecular orbitals responsible for the trans-
port are the bonding orbitals, while Refs. [75–77] attribute the transport almost
entirely to the antibonding orbitals. This difference implies that the sign of the
charge transfer between the molecule and the metal leads differs between the
two groups of calculations. Using a slightly different approach Garciaet al. [79]
agree with Cuevaset al. on the bonding orbitals as the transport channel, but
they obtain a conductance well below 1G0. They propose an alternative atomic
arrangement to explain the high conductance for the Pt-H bridge, consisting of a
Pt-Pt-bridge with two H atoms bonded to the sides. However, this configuration
gives rise to three conductance channels, which is excluded based on the analysis
of the conductance fluctuations as discussed above. The rather strong disagree-
ment between various approaches in DFT calculations for this simple molecule
shows that there is a need for a reliable set of experimental data against which the
various methods can be tested. The hydrogen metal-molecule-metal bridge may
provide a good starting point since it is the simplest and it can be compared in
detail by virtue of the many parameters that have been obtained experimentally.

Conductance histograms recorded using Fe, Co or Ni electrodes in the pres-
ence of hydrogen also show a pronounced peak near 1G0 [81], indicating that
many transition metals may form similar single-molecule junctions. Pd also
seemed a good candidate, but Csonkaet al. [78] did not observe the same sup-
pression of conductance fluctuations as for Pt. There is an additional peak at
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0.5G0 in the conductance histogram, and it was argued that hydrogen is incor-
porated into the bulk of the Pd metal electrodes.

Going beyond the simplest molecule using similar techniques, much work is
still in progress. Preliminary results have been obtained for CO and for C2H2
between Pt electrodes [81,82].

6. Concluding remarks

In this chapter we have presented an overview of some aspects of electron trans-
port in atomic and molecular contacts. In the case of atomic contacts our fabri-
cation capabilities and theoretical understanding are reaching a level of sophis-
tication which has allowed accurate quantitative agreement between theory and
experimental results for several properties. A key ingredient in this analysis is
the concept of the mesoscopic PIN code, i.e. the set of transmission eigenvalues
which determine all transport properties within the Landauer-Büttiker picture.
The results for atomic contacts are consistent with the idea of this set being de-
termined by the valence orbital structure of each element [9]. Superconducting
transport has played a central role in these studies, providing a powerful tool to
determine the PIN code by the subgap structure analysis. Conversely, atomic
contacts have revealed themselves as an almost ideal system to verify the pre-
dictions of the microscopic theory of superconducting transport in the coherent
MAR regime, which has been developed in the last decade.

As discussed in Sect. 4 some of the observable properties are fundamentally
determined by the electromagnetic environment of the nano-junction. The com-
bination of break junctions with lithographic techniques, such as pioneered in
Refs. [3, 4], is opening the possibility to study some fundamental rules for cir-
cuits at the nanometer scale under well controlled conditions. In spite of this
recent progress the influence of environmental effects on the transport proper-
ties of atomic size conductors is an issue which still deserves further analysis,
specially regarding the superconducting state.

We have also discussed in some detail the question of the length dependence
of the conductance through a chain of atoms. Atomic chains constitute an in-
termediate step between atomic-sized contacts and molecular junctions, and it
is rather natural to ask whether the simple one-electron concepts which proved
useful to analyze the former are also valid for the latter. The results that we have
presented for the conductance oscillations as a function of the number of atoms
in the chain seem to indicate that the connection between conduction channels
and valence orbital structure remains valid. In the case of the chains the oscilla-
tions appear to be associated with the band structure around the Fermi energy of
an infinite chain.
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Finally we have summarized some developments towards the study of trans-
port across single molecules. Although the level of sophistication in this research
is still behind that of the metallic single-atom contacts significant progress has
been made. We believe that it is worthwhile to start from simple model mole-
cules and gradually work our way up to the more complicated ones. From the
simple molecules we can learn how to analyze the problem and control the level
of agreement with model calculations. The simple molecules are also simple in
the sense that they are describable completely in a one-electron picture. Electron-
electron interaction effects will gradually show up as we move towards more ex-
tended organic molecules, and the models will need to be extended to include
these effects. There are many open questions regarding the proper description
of non-equilibrium currents, on-site repulsion effects and strong electron-phonon
coupling effects. There is already a significant number of theoretical works ad-
dressing these issues, but there are not too many experiments that they can be
compared with. This poses an immediate challenge to the community of experi-
mental physicists.
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1. Why solid state quantum bits?

Solid state quantum bit circuits are a new type of electronic circuit that aim to
implement the building blocks of quantum computing processors, namely the
quantum bits or qubits. Quantum computing [1] is a breakthrough in the field
of information processing because quantum algorithms could solve some math-
ematical tasks presently considered as intractable, such as the factorisation of
large numbers, exponentially faster than classical algorithms operated on se-
quential Von Neumann computers. Among the various implementations envi-
sioned, solid state circuits have attracted a large interest because they are con-
sidered as more versatile and more easily scalable than qubits based on atoms
or ions, despite worse quantumness. The 2003 Les Houches School devoted to
Quantum Coherence and Information Processing[2] has covered many aspects
of quantum computing [3], including solid state qubits [4–7]. Superconduct-
ing circuits were in particular thoroughly discussed. Our aim is to provide in
this course a rational presentation of all solid state qubits. The course is organ-
ised as follows: we first introduce the basic concepts underlying quantum bit
circuits. We classify the solid state systems considered for implementing quan-
tum bits, starting with semiconductor circuits, in which a qubit is encoded in
the quantum state of a single particle. We then discuss superconducting circuits,
in which a qubit is encoded in the quantum state of the whole circuit. We de-
tail the case of the quantronium circuit that exemplifies the quest for quantum
coherence.

1.1. From quantum mechanics to quantum machines

Quantum Computing opened a new field in quantum mechanics, that of quan-
tum machines, and a little bit of history is useful at this point. In his seminal
work, Max Planck proved that the quantisation of energy exchanges between
matter and the radiation field yields a black-body radiation law free from the di-
vergence previously found in classical treatments, and in good agreement with
experiment. This success led to a complete revision of the concepts of physics.
It took nevertheless about fifty years to tie together the new rules of physics in
what is now called quantum mechanics. The most widely accepted interpretation
of quantum mechanics was elaborated by a group physicists around Niels Bohr
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in Copenhagen. Whereas classical physics is based on Newtonian mechanics for
the dynamics of any system, and on fields, such as the electromagnetic field de-
scribed by Maxwell’s equations, quantum mechanics is based on the evolution
of a system inside a Hilbert space associated to all its physically possible states.
For example, localised states at all points in a box form a natural basis for the
Hilbert space of a particle confined in this box. Any superposition of the basis
states is a possible physical state. The evolution inside this Hilbert space follows
a unitary operator determined by the Hamiltonian of the system. Finally, when a
measurement is performed on a system, an eigenvalue of the measured variable
(operator) is found, and the state is projected on the corresponding eigenspace.
Although these concepts seem at odds with physical laws at our scale, the quan-
tum rules do lead to the classical behavior for a system coupled to a sufficiently
complex environment. More precisely, the theory of decoherence in quantum
mechanics predicts that the entanglement between the system and its environ-
ment suppresses coherence between system states (interferences are no longer
possible), and yields probabilities for the states that can result from the evolu-
tion. Classical physics does not derive from quantum mechanics in the sense that
the state emerging from the evolution of the system coupled to its environment
is predicted only statistically. As a result, quantum physics has been mainly
considered as relevant for the description of the microscopic world, although no
distinction exists in principle between various kinds of degrees of freedom: their
underlying complexity does not come into play within the standard framework of
quantum mechanics.

This blindness explains the fifty years delay between the establishment of
quantum mechanics, and the first proposals of quantum machines in the nineteen-
eighties. On the experimental side, the investigation of quantum effects in elec-
tronic circuits carried out during the last thirty years paved the way to this con-
ceptual revolution. The question of the quantumness of a collective variable
involving a large number of microscopic particles, such as the current in a su-
perconducting circuit, was raised. The quantitative observation of quantum ef-
fects such as macroscopic quantum tunneling [8] contributed to establishing the
confidence that quantum mechanics can be brought in the realm of macroscopic
objects.

Before embarking on the description of qubits, it is worth noticing that quan-
tum machines offer a new direction to probe quantum mechanics. Recently, the
emphasis has been put on the entanglement degree rather than on the mere size of
a quantum system. Probing entanglement between states of macroscopic circuits,
or reaching quantum states with a high degree of entanglement are now major
issues in quantum physics. This is the new border, whose exploration started
by the demonstration of the violation of Bell’s inequalities for entangled pairs
of photons [9]. This research direction, confined for a long time in Byzantine
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discussions about the EPR and Schrödinger cat paradoxes, is now accesible to
experimental tests [10].

First proposals of quantum machinesCommonly accepted quantum machines
such as the laser only involve quantum mechanics at the microscopic level, atom-
field interactions in this case. A true quantum machine is a system in which
machine-state variables are ruled by quantum mechanics. One might think that
quantum machines more complex than molecules could not exist because the
interactions between any complex system and the numerous degrees of freedom
of its environment tend to drive it into the classical regime. Proposing machines
that could benefit from the quantum rules was thus a bold idea. Such propositions
appeared in the domain of processors after Deutsch and Josza showed that the
concept of algorithmic complexity is hardware dependent. More precisely, it was
proved that a simple set of unitary operations on an ensemble of coupled two level
systems, called qubits, is sufficient to perform some specific computing tasks in
a smaller number of algorithmic steps than with a classical processor [1].

Although the first problem solved “more efficiently” by a quantum algorithm
was not of great interest, it initiated great discoveries. Important results were
obtained [1], culminating with the factorisation algorithm discovered by Shor
in 1994, and with the quantum error correction codes [1] developed by Shor,
Steane, Gottesman and others around 1996. These breakthroughs should not
hide the fact that the number of quantum algorithms is rather small. But since
many problems in the same complexity class can be equivalent, solving one of
them can provide a solution to a whole class of problems. Pessimists see in this
lack of algorithms a major objection to quantum computing. Optimists point
out that simply to simulate quantum systems, it is already worthwhile to develop
quantum processors, since this task is notoriously difficult for usual computers.
A more balanced opinion might be that more theoretical breakthroughs are still
needed before quantum algorithms are really worth the effort of making quantum
processors. How large does a quantum processor need to be to perform a useful
computation? It is considered that a few tens of robust qubits would already be
sufficient for performing interesting computations. Notice that the size of the
Hilbert space of such a processor is already extremely large.

1.2. Quantum processors based on qubits

A sketch of a quantum processor based on quantum bits is shown in Fig. 1. It
consists of an array of these qubits, which are two level systems. Each qubit
is controlled independently, so that any unitary operation can be applied to it.
Qubits are coupled in a controlled way so that all the two qubit gate operations
required by algorithms can be performed. As in Boolean logic, a small set of
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Fig. 1. Sketch of a quantum processor based on qubits. Each qubit is here a robust qubit, with its
error correction circuitry. The detailed architecture of a quantum processor strongly depends on the
set of gates that can be implemented. The single two qubit gates, combined with single qubit gates,
should form a universal set of gates, able to process any quantum algorithm.

gates is sufficient to form a universal set of operations, and hence to operate a
quantum processor. A two-qubit gate is universal when, combined with a subset
of single qubit gates, it allows implemention of any unitary evolution [1]. For
instance, the control-not gate (C-NOT), which applies a not operation on qubit 2
when qubit1 is in state 1, is universal.

Criteria required for qubits Not all two level systems are suitable for imple-
menting qubits. A series of points, summarised by DiVicenzo, need to be ad-
dressed (see chapter 7 in [1]):

1) The level spectrum should be sufficiently anharmonic to provide a good
two level system.

2) An operation corresponding to a ’reset’ is needed.
3) The quantum coherence time must be sufficient for the implementation of

quantum error correction codes.
4) The qubits must be of a scalable design with a universal set of gates.
5) A high fidelity readout method is needed.
These points deserve further comments:
The requirement on the coherence is measured by the number of gate opera-

tions that can be performed with an error small enough so that error correcting
codes can be used. This requirement is extremely demanding: less than one er-
ror in 104 gate operations. Qubits rather better protected from decoherence than
those available today will be needed for this purpose.

If a readout step is performed while running the algorithm, a perfect read-
out system should provide answers with the correct probabilities, and project
the register on the state corresponding to the outcome read.The state can then
be stored for other purpose. This is the definition of a quantum non demolition
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(QND) measurement. Such a QND readout would be useful to measure quan-
tum correlations in coupled qubit circuits and to probe whether or not Bell’s
inequalities are violated as predicted by quantum mechanics like in the micro-
scopic world [9]. However, non QND readout systems could provide answers
with the correct probabilities, but fail to achieve the projection afterwards. Note
that QND readout is not essential for quantum algorithms; although the factor-
ization algorithm is often presented with intermediate projection step, it is not
necessary.

1.3. Atom and ion versus solid state qubits

On the experimental side, implementing quantum processors is a formidable task,
and no realistic scalable design presently exists. The activity has been focused
on the operation of simple systems, with at most a few qubits. Two main roads
have been followed. First, microscopic quantum systems like atoms [10] and
ions [11] have been considered. Their main advantage is their excellent quantum-
ness, but their scalability is questionable. The most advanced qubit implemen-
tation is based on ions in linear traps, coupled to their longitudinal motion [11]
and addressed optically. Although the trend is to develop atom-chips, these im-
plementations based on microscopic quantum objects still lack the flexibility of
microfabricated electronic circuits, which constitute the second main road in-
vestigated. Here, quantumness is limited by the complexity of the circuits that
always involve a macroscopic number of atoms and electrons. We describe in the
following this quest for quantumness in electronic solid state circuits.

1.4. Electronic qubits

Two main strategies based on quantum states of either single particles or of the
whole circuit, have been followed for making solid-state qubits.

In the first strategy, the quantum states are nuclear spin states, single electron
spin states, or single electron orbital states. The advantage of using microscopic
states is that their quantumness has already been probed and can be good at low
temperature. The main drawback is that qubit operations are difficult to perform
since single particles are not easily controlled and read out.

The second strategy has been developed in superconducting circuits based on
Josephson junctions, which form a kind of artificial atoms. Their Hamiltonian
can be tailored almost at will, and a direct electrical readout can be incorporated
in the circuit. On the other hand, the quantumness of these artificial atoms does
not yet compare to that of natural atoms or of spins.
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2. Qubits in semiconductor structures

Microscopic quantum states suitable for making qubits can be found in semi-
conductor nanostructures, but more exotic possibilities such as Andreev states
at a superconducting quantum point contact [12] have also been proposed. Sin-
gle particle quantum states with the best quantumness have been selected, and a
few representative approaches are described below. Two families can be distin-
guished: the first one being based on quantum states of nuclear spins, or of lo-
calised electrons, while the second one is based on propagating electronic states
(flying qubits).

2.1. Kane’s proposal: nuclear spins of P impurities in silicon

The qubits proposed by Kane are the S=1/2 nuclear spins ofP 31 impurities in
silicon [13]. Their quantumness is excellent, and rivals that of atoms in vacuum.
In the ref. [13], the author has proposed a scheme to control, couple and readout
such spins. A huge effort has been started in Australia in order to implement
this proposal sketched in Fig. 2. The qubits are controlled through the hyperfine
interaction between the nucleus of theP 31 impurity and the bound electron
around it. The effective Hamiltonian of two neighboring nucleus bound electron
spins:

H = A1σ
1nσ 1e + A2σ

1nσ 1e + Jσ 1eσ 2e,

where the subscriptsn and e refer to nuclei and bound electrons respectively.
The transition frequency of each qubit is determined by the magnetic field ap-
plied to it, and by its hyperfine couplingA controlled by the gate voltage applied
to the A gate electrode, which displaces the wavefunction of the bound electron.
Single qubit gates would be performed by using resonant pulses, like in NMR,
while two qubit gates would be performed using the J gates, which tune the ex-
change interaction between neighboring bound electrons. The readout would be
performed by transfering the information on the qubit state to the charge of a
quantum dot, which would then be read using an rf-SET. Although the feasibility
of Kane’s proposal has not yet been demonstrated, it has already yielded signif-
icant progress in high accuracy positioning of a single impurity atom inside a
nanostructure.

2.2. Electron spins in quantum dots

Using electron spins for the qubits is attractive because the spin is weakly cou-
pled to the other degrees of freedom of the circuit, and because the spin state
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Fig. 2. Kane’s proposal: nuclear spins of phosphorus impurities form the qubits.The control is pro-
vided by the hyperfine interaction with a bound electron around each impurity. Each qubit level
scheme is controlled by applying a voltage to an A gate (labelled A) electrode that displaces slightly
the wavefunction of the bound electron, and thus modifies the hyperfine interaction. Single qubit
gates are performed by applying an ac field on resonance, like in Nuclear Magnetic Resonance. The
two qubit gates are performed using the J gates (labelled J), which control the exchange interaction
between neighboring bound electrons. The exchange interaction mediates an effective interaction
between the qubits. The readout is performed by transfering the information on the qubit state to
the charge of a quantum dot (not shown), which is then read using an rf-Single Electron Transistor
(picture taken from [13].)

can be transferred to a charge state for the purpose of readout (see [14] and
refs. therein). Single qubit operations can be performed by applying resonant
magnetic fields (ESR), and two qubit gates can be obtained by controlling the
exchange interaction between two neighboring electrons in a nanostructure. The
device shown in Fig. 3 is a double dot in which the exchange interaction be-
tween the single electrons in the dots is controlled by the central gate voltage.
The readout is performed by monitoring the charge of the dot with a quantum
point contact transistor close to it. The measurement proceeds as follows: first,
the dot gate voltage is changed so that an up spin electron stays in the dot, while
a down spin electron leaves it. In that case, another up spin electron from the
reservoir can enter the dot. The detection of changes in the dot charge thus pro-
vides a measurement of the qubit state. Note that such a measurement can have a
good fidelity as required, but is not QND because the quantum state is destroyed
afterwards.
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Fig. 3. Scanning Electron Micrograph of a double dot implementing two qubits. The qubits are
based on the spin of a single electron in the ground state of each dot (disks). The two qubits are
coupled through the exchange energy between electrons, which is controlled by the central gate.
Single qubit gates are obtained by applying local resonant ac magnetic fields. Readout is performed
by monitoring each dot charge with a point contact transistor, after a sudden change of the dot gate
voltage. An electron with the up spin state stays in the dot, whereas a down spin exits, and is replaced
by an up spin electron. A change in the dot charge thus signals a down spin.(Courtesy of Lieven
Vandersypen, T.U. Delft).

2.3. Charge states in quantum dots

The occupation of a quantum dot by a single electron is not expected to pro-
vide an excellent qubit because the electron strongly interacts with the electric
field. Coherent oscillations in a semiconductor qubit circuit [15] were neverthe-
less observed by measuring the transport current in a double dot charge qubit
repeatitively excited by dc pulses, as shown in Fig. 4.

2.4. Flying qubits

Propagating electron states provide an interesting alternative to localised states.
Propagating states in wires with a small number of conduction channels have
been considered, but edge states in Quantum hall Effect structures offer a better
solution [4] . Due to the absence of back-scattering, the phase coherence time
at low temperature is indeed long: electrons propagate coherently over distances
longer than 100µm. Qubit states are encoded using electrons propagating in
opposite directions, along the opposite sides of the wires. The qubit initialisa-
tion can be performed by injecting a single electron in an edge state. As shown
in Fig. 5, single qubit gates can be obtained with a quantum point contact that
transmits or reflects incoming electrons, and two qubit gates can be obtained by
coupling edge states over a short length. The readout can be performed by de-
tecting the passage of the electrons along the wire, using a corrugated edge in
order to increase the readout time. This system is not easily scalable because of
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Fig. 4. Coherent oscillations of a single electron inside a double dot structure, as a function of the
duration of a dc pulse applied to the transport voltage. These oscillations are revealed by the average
current when the pulse is repeated at a large rate(picture taken from Hayashi et al. [15])

its topology, but is well suited for entangling pairs of electrons and measuring
their correlations.

3. Superconducting qubit circuits

The interest of using the quantum states of a whole circuit for implementing
qubits is to benefit from the wide range of Hamiltonians that can be obtained
when inductors and capacitors are combined with Josephson junctions. These
junctions are necessary because a circuit built solely from inductors and ca-
pacitors constitutes a set of harmonic modes. A Josephson junction [16] has a
Hamiltonian which is not quadratic in the electromagnetic variables, and hence
allows to obtain an anharmonic energy spectrum suitable for a qubit. Josephson
qubits can be considered as artificial macroscopic atoms, whose properties can
be tailored. The internal and coupling Hamiltonians can be controlled by apply-
ing electric or magnetic fields, and bias currents. The qubit readout can also be
performed electrically.
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Fig. 5. Single qubit gate (top) and two qubit gate (bottom) for flying qubits based on edge states in
QHE nanostructures(Courtesy of C. Glattli).

3.1. Josephson qubits

A direct derivation of the Hamiltonian can often be performed for simple circuits.
There are however systematic rules to derive the Hamiltonian of a Josephson cir-
cuit [17, 18], and different forms are possible depending on the choice of vari-
ables. When branch variables are chosen, the contribution to the Hamiltonian of
a Josephson junction in a given branch is:

h(θ) = −EJ cos(θ),

whereEJ = I0φ0 is the Josephson energy, withI0 the critical current of the
junction, andθ the superconducting phase difference between the two nodes con-
nected by the branch. The phaseθ is the conjugate of the numberN of Cooper
pairs passed across the junction. In each quantum state of the circuit, each junc-
tion is characterised by the fluctuations ofθ and ofN . Often, the circuit junctions
are either in the phase or number regimes, characterised by small and large fluc-
tuations of the phase, respectively. Qubit circuits can be classified according to
the regime to which they belong.

3.1.1. Hamiltonian of Josephson qubit circuits
In the case of a single junction, the electromagnetic Hamiltonian of the circuit
in which the junction is embedded adds to the junction Hamiltonian. The phase
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Fig. 6. Josephson qubits can be classified along an axis ranging from the phase regime to the charge
regime: the current biased large junction(a), the flux qubit (b), the quantronium charge-phase qubit
(c), the Cooper pair box with small Josephson energy (d). In the phase regime, the number of Cooper
pairs transferred across each junction has large fluctuations, whereas these fluctuations are small in
the charge regime.(Courtesy of NIST, T.U. Delft, CEA-Saclay, and Chalmers).

biased junction is in the phase regime, whereas the charge biased junction, a cir-
cuit called the Single Cooper Pair Box, can be in a charge regime, phase regime,
or intermediate charge-phase regime, depending on the circuit parameters. The
Cooper-pair box in the charge regime was the first Josephson qubit in which co-
herent behavior was demonstrated [19].

In practice, all Josephson qubits are multi junction circuits in order to tailor
the Hamiltonian, to perform the readout, and to achieve the longest possible co-
herence times. The main types of superconducting qubit circuits can be classified
along a phase to charge axis, as shown in Fig. 6. The phase qubit [20] developed
at NIST (Boulder) consists of a Josephson junction in a flux biased loop, with
two potential wells. The qubit states are two quantized levels in the first poten-
tial well, and the readout is performed by resonantly inducing the transfer to the
second well, using a monitoring SQUID to detect it. The flux qubit [21, 22] de-
veloped at T.U. Delft consists of three junctions in a loop, placed in the phase
regime. Its Hamiltonian is controlled by the flux threading the loop. The flux
qubit can be coupled in different ways to a readout SQUID. The quantronium
circuit [7,23–25], developed at CEA-Saclay is derived from the Cooper pair box,
but is operated in the intermediate charge-phase regime. A detailed descrip-
tion of all Josephson qubits, with extensive references to other works, is given
in [5–7].

3.1.2. The single Cooper pair box
The single Cooper pair box [7] consists of a single junction connected to a voltage
source across a small gate capacitor, as shown in Fig. 7. Its Hamiltonian is the
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Fig. 7. Schematic representation and electrical circuit of a Single Cooper pair box: A small super-
conducting island is connected to a voltage source across a capacitor on one side, and a Josephson
junction on the other side. In the schematic circuit, the cross in a box represents a small Josephson
junction.

sum of the Josephson Hamiltonian and of an electrostatic term:

Ĥ (Ng) = EC(N̂ −Ng)2 − EJ coŝθ , (3.1)

whereEC = (2e)2/2C� is the charging energy, andNg = CgVg/(2e) the re-
duced gate charge withVg the gate voltage. The operatorŝN and θ̂ obey the
commutation relation

[
θ̂ , N̂

]
= i. The eigenstates and eigenenergies can be an-

alytically determined, or calculated numerically using a restriction of the Hamil-
tonian in a subspace spanned by a small set of|N〉 states. They are 2e peri-
odic with the gate charge. The two lowest energy levels provide a quantum bit
because the eigenenergy spectrum is anharmonic for a wide range of parame-
ters. WhenEJ ≪ EC , the qubit states are two successive|N〉 states away from
Ng ≡ 1/2 mod[1], and symmetric and antisymmetric combinations of successive
|N〉 states in the vicinity ofNg ≡ 1/2 mod[1].

3.1.3. Survey of Cooper pair box experiments
The most direct way to probe the Cooper pair box is to measure the island
charge. Following this idea, the island charge was measured in its ground state
in 1996 [26] by capacitively coupling the box island to an electrometer based
on a Single Electron Transistor (SET) [27]. This readout method could not be
used however for time resolved experiments because its measuring time was too
long. The first Josephson qubit experiment was performed in 1999 at NEC [19],
by monitoring the current through an extra junction connected on one side to the
box island and on the other side to a voltage source. When the box gate charge
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is suddenly (i.e. non adiabatically) moved fromNg ≈ 0 toNg = 1/2, the initial
ground state|0〉 state is no longer an eigenstate, and coherent oscillations between
states take place between|0〉 and|1〉 at the qubit transition frequency. WhenNg
is suddenly moved back to its initial value≈ 0, the probability for the qubit to be
in the excited state|1〉 is conserved. The readout takes advantage of the available
energy in the upper state to transfer a Cooper pair across the readout junction.
When the experiment is repeated, the average current through the readout junc-
tion provides a measurement of the qubit state at the end of the gate charge pulse.
This method of readout provides a continuous average measurement of the box.
It proved extremely well suited to many experiments. However, it cannot provide
a single shot readout of the qubit. The evolution of qubit design was then driven
by the aim of achieving a better quantumness and a more efficient readout. Bet-
ter quantumness means a longer coherence time, with a controlled influence of
the environment to avoid decoherence. More efficient readout means single shot
readout, with a fidelity as high as possible, and ideally quantum non demolition
(QND). The quantronium operated in 2001 at Saclay was the first qubit circuit
combining a single shot readout with a long coherence time [7,23–25]. In 2003,
the charge readout of a Cooper pair box was achieved at Chalmers [29] using an
rf-SET [30], which is a SET probed at high frequency. A sample and hold charge
readout was operated in 2004 at NEC [31], with a fidelity approaching 90%. In
2004, a Cooper pair box embedded in a resonant microwave cavity was operated
at Yale [32] using the modification of the cavity transmission by the Cooper pair
box, similar to the effect of a single atom in cavity-QED experiments [10].

3.2. How to maintain quantum coherence?

When the readout circuit measures the qubit, its backaction results in full qubit
decoherence during the time needed to get the outcome, and even faster if the
readout efficiency is below the quantum limit. The readout should thus be
switched off when the qubit is operated, and switched on just at readout time.
Furthermore, even when the readout is off, the qubit is subject to decoherence,
partly due to the connection of the qubit to the readout circuitry. How could one
possibly limit the influence of the environment and of the readout even when it is
off, and to switch on the readout when needed?

Before explaining a possible strategy to circumvent this major problem, we
expose the basic concepts underlying decoherence in qubit circuits. The inter-
action between a qubit and the degrees of freedom of its environment entangles
both parties. This entanglement takes a simple form in the weak coupling regime,
which is usually the case in qubit circuits [28]. The coupling arises from the fact
that the control parameters of the qubit Hamiltonian (such asNg for the Cooper
pair box), are in fact fluctuating variables of the qubit environment.
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3.2.1. Qubit-environment coupling Hamiltonian
We callλ the set of control variables entering the Hamiltonian of a qubit. At a
given working pointλ0, the qubit space is analogous to a fictitious spin 1/2 with
σz eigenstates|0〉 and|1〉. Using the Pauli matrix representation of spin operators,
the expansion of the Hamiltonian aroundλ0 yields the coupling Hamiltonian:

ĤX = −1/2
(−→
D λ

−→·σ
) (
λ̂− λ0

)
, (3.2)

where
−→
D λ · −→σ is the restriction of −2∂̂H/∂λ to the {|0〉 , |1〉} space. This

coupling Hamiltonian determines the qubit evolution when a control parameter
is varied at the qubit transition frequency, and the coupling to decoherence noise
sources.

In the weak coupling regime, the fluctuations of the qubit environment are
characterised by the spectral density:

Sλ0(ω) =
1

2π

∫ +∞

−∞
dτ

〈(
λ̂(t)− λ0

) (
λ̂(t + τ)− λ0

)〉
exp(−iωτ) (3.3)

This spectral density is defined for positive and negativeω′s, proportional to
the number of environmental modes that can absorb and emit a quantum�ω,
respectively. In the case of the Cooper pair box, the fluctuations of the gate
chargeNg arise from the impedance of the biasing circuitry and from microscopic
charge fluctuators in the vicinity of the box island [7,25].

3.2.2. Relaxation
The decay of the longitudinal part of the density matrix in the eigenstate basis
{|0〉 , |1〉} involves|1〉 → |0〉 qubit transitions, with the energy transferred to the
environment. Such an event resets the qubit in its ground state. The decay is
exponential, with a rate:

Ŵ1 =
π

2

(
Dλ,⊥

�

)2

Sλ0(ω01). (3.4)

The symbol⊥ indicates that only transverse fluctuations at positive frequency
ω01 induce downward transitions. Upward transitions, which involveSλ0(−ω01),
occur at a negligible rate for experiments performed at temperatureskBT ≪
�ω01, provided the environment is at thermal equilibrium. The relaxation time is
thusT1 = 1/Ŵ1.



Solid state quantum bit circuits 555

3.2.3. Decoherence: relaxation + dephasing
When a coherent superpositiona |0〉 + b |1〉 is prepared, the amplitudesa and
b evolve in time, and the non diagonal part of the density matrix oscillates at
the qubit frequencyω01. The precise definition of decoherence is the decay of
this part of the density matrix. There are two distinct contributions to this de-
cay. Relaxation contributes to decoherence by an exponential damping factor
with a rateŴ1/2. Another process, called dephasing, often dominates. When
the qubit frequency�01 fluctuates, an extra phase factor exp[i�ϕ(t)] with

�ϕ(t) = Dλ,z
�

t∫
0

(̂
λ(t ′)− λ0

)
dt ′ builds up between both amplitudes, the cou-

pling coefficientDλ,z being:

Dλ,z = 〈0| ∂̂H/∂λ |0〉 − 〈1| ∂̂H/∂λ |1〉 = �∂ω01/∂λ.

Dephasing involves longitudinal fluctuations, and contributes to decoherence by
the factor:

fX(t) = 〈exp[i�ϕ(t)]〉 . (3.5)

Note that the decay of this dephasing factorfX(t) is not necessarily exponen-
tial. WhenDλ,z �= 0, and assuming a gaussian process for

(̂
λ(t ′)− λ0

)
, one finds

using a semi-classical approach:

fX(t) = exp

[
− t

2

2

(
Dλ,z

�

)2 ∫ +∞

−∞
dω Sλ0(ω)sinc2(

ωt

2
)

]
, (3.6)

A full quantum treatment of the coupling to a bath of harmonic oscillators
justifies using the quantum spectral density in the above expression [28]. When
the spectral densitySλ0(ω) is regular atω = 0, and flat at low frequencies,fX(t)

decays exponentially at long times, with a rateŴϕ ≈ π
(
Dλ,z

�

)2
Sλ0(ω ≈ 0).

When the spectral density diverges atω = 0, like for the ubiquitous 1/f noise, a
careful evaluation has to be performed [33,34].

3.2.4. The optimal working point strategy
The above considerations on decoherence yield the following requirements for
the working point of a qubit:

-In order to minimize the relaxation, the coefficientsDλ,⊥ should be small,
and ideallyDλ,⊥ = 0.

-In order to minimize dephasing, the coefficientsDλ,z ∝ ∂�01/∂λ should
be small. The optimal case is when the transition frequency is stationary with
respect to all control parameters:Dλ,z = 0. At such optimal points, the qubit is
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decoupled from its environment and from the readout circuitry in particular. This
means that the two qubit states cannot be discriminated at an optimal point. One
must therefore depart in some way from the optimal point in order to perform the
readout. The first application of the optimal working point strategy was applied
to the Cooper pair box, with the quantronium circuit [7,23,24].

4. The quantronium circuit

The quantronium circuit is derived from a Cooper pair box. Its Josephson junc-
tion is split into two junctions with respective Josephson energiesEJ (1± d)/2,
with d ∈ [0,1] a small asymmetry coefficient (see Fig. 8). The reason for split-
ting the junction into two halves is to form a loop that can be biased by a magnetic
flux �. The split box, which we first explain, has two degrees of freedom, which
can be chosen as the island phaseθ̂ and the phase differencêδ across the two box
junctions. In this circuit, the phasêδ is a mere parameterδ = �/φ0.

Fig. 8. Schematic representation of a split Cooper pair box showing its island, its two Josephson
junctions connected to form a grounded superconducting loop, its gate circuit, and its magnetic flux
bias. Bottom: Corresponding electrical drawing.
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Fig. 9. Two lowest energy levels of a split Cooper pair box having anEJ /EC ratio equal to 1, as
a function of the two external parametersNg and δ. Energies are normalized by the Cooper pair
Coulomb energy. The asymetry coefficient used here isd = 2%. The principal effect ofd is to
control the gap atNg = 1/2, δ = π .

The Hamiltonian of the split box, which depends on the two control parame-
tersNg andδ, is:

Ĥ = EC(N̂−Ng)2 − EJ cos

(
δ̂

2

)
cos(θ̂)+ dEJ sin

(
δ̂

2

)
sin(θ̂) . (4.1)

The two lowest energies of this Hamiltonian are shown in Fig. 9 as a function
of the control parameters. The interest of the loop is to provide a new variable to
probe the qubit: the loop current. The loop current is defined by the operator:

Î (Ng, δ) = (−2e)

(
−1

�

∂Ĥ

∂δ

)
.

The average loop current〈ik〉 in state|k〉 obeys a generalized Josephson relation:〈
ik(Ng, δ)

〉
=

〈
k
∣∣Î
∣∣ k
〉
= 1

ϕ0
∂Ek(Ng, δ)/∂δ . The difference between the loop

currents of the two qubit states is�i10 = 〈i1〉− 〈i0〉 = 2e∂ω10/∂δ. As expected,
the difference�i10 vanishes at an optimal point.

The variations of the qubit transition frequency with the control parameters
are shown in Fig.10. Different optimal points where all derivatives∂�01/∂λi
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Fig. 10. A: Calculated transition frequency as a function of the control parametersNg andδ for the
parametersEJ = 0.86 kBK, EC = 0.68 kBK. Three optimal points where the frequency is station-
ary, are visible. The optimal point used in the experiments is the saddle point

(
Ng = 1/2, δ = 0

)
.

B: cuts along the planesNg = 1/2 andδ = 0. Symbols: position of the resonance of the switch-
ing probability in CW excitation; lines: predictions. The lineshape at the optimal point is plotted in
inset.(Taken from Vion et al. [24]).

vanish are present. The charge difference�N10 = 〈N1〉 − 〈N0〉 also vanishes at
these points. The optimal point{Ng = 1/2, δ = 0} was first used.

4.1. Relaxation and dephasing in the quantronium

The split box is unavoidably coupled to noise sources affecting the gate charge
Ng and the phaseδ [7, 25]. The coupling to these noise sourcesDλ,⊥ andDλ,z
for relaxation and dephasing are obtained from the definition 3.2.

The coupling vectorDλ,⊥ for relaxation is:

Dλ,⊥ =
{
4EC

∣∣〈0
∣∣N̂

∣∣1
〉∣∣ ,2ϕ0

∣∣〈0
∣∣Î
∣∣1
〉∣∣} .

Relaxation can thus proceed through the charge and phase ports, but one finds
that the phase port does not contribute to relaxation atNg = 1/2 when the asym-
metry factord vanishes. Precise balancing of the box junctions is thus important
in the quantronium.
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The coupling vector for dephasing is directly related to the derivatives of the
transition frequency:

λ,z = �
(
∂ω01/∂Ng, ∂ω01/∂δ

)
.

The charge noise arises from the noise in the gate bias circuit and from the
background charge noise due to microscopic fluctuators in the vicinity of the
box tunnel junctions. This background charge noise has a 1/f spectral density
at low frequency, with a rather universal amplitude. The phase noise also has
a 1/f spectral density, but its origin in Josephson junction circuits is not well
understood and is not universal.

4.2. Readout

The full quantronium circuit, shown in the top of Fig. 11, consists of a split-
box with an extra larger junction inserted in the loop for the purpose of readout.

Fig. 11. Top: Schematic circuit of the quantronium qubit circuit. The quantronium consists of a
readout junction inserted in the loop of a split-junction Cooper pair box. When a trapezoidal current
pulse is applied, the readout junction switches to the voltage state with a larger probability for state
|1〉 than for state|0〉. Bottom right: Scanning electron picture of a quantronium sample made using
double angle shadow-mask evaporation of aluminum. Bottom left: Rabi oscillations of the switching
probability as a function of the duration of a resonant microwave pulse.
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The Hamiltonian of the whole circuit is the sum of the split-box Hamiltonian4.1
and of the Hamiltonian of a current-biased Josephson junction [7,25]. The phase
differencêδ in the split-box Hamiltonian is related to the phase difference across
the readout junction by the relation̂δ = γ̂ +�/φ0. The phasêδ is still an almost
classical variable, except at readout time, when the qubit gets entangled with the
readout junction. This readout junction can be used in different ways in order to
discriminate the qubit states, as we now show.

4.2.1. Switching readout
The simplest readout method consists in using the readout junction to perform a
measurement of the loop current after adiabatically moving away from the opti-
mal point. For this purpose, a trapezoidal readout pulse with a peak value slightly
below the readout junction critical current is applied to the circuit. Since this bias
current adds to the loop current in the readout junction, the switching of the read-
out junction to a finite voltage state can be induced with a large probability for
state|1〉 and with a small probability for state|0〉. This switching method is in
principle a single shot readout. It has been applied to the quantronium [24] and
to the flux qubit [22], with switching probability difference up to 40% and 70%,
respectively. The lack of fidelity is attributed to spurious relaxation during the
readout bias current pulse.This switching method also destroys the qubit after
measurement: this is not a QND readout.

4.2.2. AC methods for QND readout
Recently, microwave methods measuring the phase of a microwave signal re-
flected or transmitted by the circuit have been used with various superconducting
qubits in order to attempt a non destructive readout. A QND readout should also
lead to a better readout fidelity. Although correlated measurements on coupled
qubits and quantum algorithms do not require QND readout, achieving this goal
seems essential for probing quantum mechanics in macroscopic objects. In gen-
eral, with these rf methods, the working point stays, on average, at the optimal
point, and undergoes small amplitude oscillations at a frequency different than
the qubit frequency. The case of the Cooper pair box embedded in a resonant mi-
crowave cavity is an exception because the cavity frequency is comparable with
the qubit frequency [32]. Avoiding moving far away from the optimal point might
thus reduce the spurious relaxation observed with the switching method, and thus
improve the readout fidelity. These rf methods, proposed for the flux qubit [35],
the quantronium [36,37], and the Cooper pair box [38], give access to the second
derivative of the energy of each qubit state with trespect to the control parameter
that is driven. In the quantronium, this parameter is the phaseδ̂. The qubit slightly
modifies the inductance of the whole circuit [37], with opposite changes for the
two qubit states. The readout of the inductance change is obtained by measur-



Solid state quantum bit circuits 561

ing the reflected signal at a frequency slightly below the plasma frequency of the
readout junction. The discrimination between the two qubit states is furthermore
greatly helped there by the non-linear resonance of the junction and the conse-
quent dynamical transition from an in phase oscillation regime, to an out of phase
oscillation regime when the drive amplitude is increased [36].

5. Coherent control of the qubit

Coherent control of a qubit is performed by driving the control parameters of the
Hamiltonian. This evolution of the qubit state can be either adiabatic, or non
adiabatic. A slow change of the control parameters yields an adiabatic evolution
of the qubit that can be useful for some particular manipulations. Note however
that the adiabatic evolution of the ground state of a quantum system can be used
to perform certain quantum computing tasks [39]. Two types of non-adiabatic
evolutions have been performed, with dc-pulses and with resonant ac-pulses.

5.1. Ultrafast ’DC’ pulses versus resonant microwave pulses

In the dc-pulse method [19], a sudden change of the Hamiltonian is performed.
The qubit state does not in principle evolve during the change, but evolves after-
wards with the new Hamiltonian. After a controlled duration, a sudden return to
the initial working point is performed in order to measure the qubit state. In this
method, the qubit manipulation takes place at the qubit frequency, which allows
time-domain experiments even when the coherence time is very short. Its draw-
backs are its lack of versatility, and the extremely short pulse rise-time necessary
to reach the non-adiabatic regime.

In the second method, a control parameter is varied sinusoidally with a fre-
quency matching the resonance requency of the qubit. This method is more ver-
satile and more accurate than the dc pulse method, but is slower. When the gate
voltage of a Cooper pair box is modulated by a resonant microwave pulse with
amplitudeδNG, the Hamiltonian 3.2 contains a termh(t) = −2EC

〈
0
∣∣N̂

∣∣1
〉
σX,

which induces Rabi precession at frequencyωR = 2EC δNG /�
∣∣〈0

∣∣N̂
∣∣1
〉∣∣, as

shown in Fig. 12. The fictitious spin representing the qubit rotates around an axis
located in the equatorial plane of the Bloch sphere. The position of this axis is
defined by the relative phaseχ of the microwave with respect to the microwave
carrier that defines theX axis. A single resonant pulse with durationτ induces a
rotation by an angleωRτ , which manifests itself by oscillations of the switching
probability, as shown in Fig. 11. When the pulse is not resonant, the detuning
adds az component to the rotation vector.
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Fig. 12. Bloch sphere in the rotating frame. On resonance, the ac excitation corresponds to a static
magnetic field in the equatorial plane for the fictitious spin representing the qubit (thin arrow). The
angle between the field and thex axis is the phaseχ of the excitation with respect to the reference
phase that determines thex axis of the Bloch sphere.

5.2. NMR-like control of a qubit

Rabi precession, which is the basic coherent control operation, has been demon-
strated for several Josephson qubits [19,22,24,29]. More complex manipulations
inspired from NMR [40, 41, 43] have also been applied in order to perform arbi-
trary single qubit gates, and to probe decoherence processes [44,45].

Although it is possible to rotate around an out of plane axis by detuning the
microwave, it is more convenient to combine on-resonance pulses. Indeed, three
sequential rotations around two orthogonal axes, for instance thex andy axes on
the Bloch sphere, should allow to perform any desired rotation. It is thus impor-
tant to test whether or not two subsequent rotations combine as predicted. The
result is shown in Fig. 13. A two pulse sequence was also used to probe rotations
around thez axis and was performed using adiabatic pulses applied to the gate
charge or to the phase port. Indeed, varying the qubit frequency during a short
time results in an extra phase factor between the two components of the qubit,
which is equivalent to a rotation around theZ axis by an angleς =

∫
δω01(t)dt .

As discussed further below, the two pulse sequence also probes decoherence dur-
ing the free evolution of the qubit between the two pulses.

The issue of gate robustness is also extremely important because the needs of
quantum computing are extremely demanding. In NMR, composite pulse meth-
ods have been developed in order to make transformations less sensitive to pulse
imperfections [41–43]. In these methods, a single pulse is replaced by a series
of pulses that yield the same operation, but with a decreased sensitivity to pulse
imperfections. In the case of frequency detuning, a particular sequence named



Solid state quantum bit circuits 563

Fig. 13. Switching probability after twoπ/2 pulses aroundx, y, − x, or−y axes, as a function of
the delay between the pulses. The phase of the oscillating signal at the detuning frequency 50 MHz
depends as predicted for the different combinations of rotation axes. The solid lines are theoretical
fits (taken from [45]).

CORPSE (Compensation for Off-Resonance with a Pulse Sequence) has proved
to be extremely efficient [42]. The sensitivity to detuning is indeed strongly re-
duced, the error starting at fourth order in detuning instead of second order for a
single pulse. This sequence has been probed in the case of aπ rotation around
theX axis. As shown in Fig. 14, it is significantly more robust against detuning
than a singleπ pulse. This robustness was probed starting from state 0, but also
from any state with a representative vector in the YZ plane (see inset).

6. Probing qubit coherence

We discuss now decoherence during the free evolution of the qubit, which in-
duces the decay of the qubit density matrix. As explained in section 3.2.3, de-
coherence is characterised by relaxation, affecting the diagonal and off diagonal
parts of the density matrix, and by dephasing, which affects only its off diagonal
part.

6.1. Relaxation

Relaxation is readily obtained from the decay of the signal after aπ pulse, as
shown in Fig. 15. The relaxation time in the quantronium ranges from a few
hundreds of nanoseconds up to a few microseconds. These relaxation times are
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Fig. 14. Demonstration of the robustness of a composite pulse with respect to frequency detuning:
switching probability after aCORPSE π(X) sequence (disks), and after a singleπ(X) pulse (cir-
cles). The dashed line is the prediction for theCORPSE π(X) sequence, the arrow indicates the
qubit transition frequency. TheCORPSE sequence works over a larger frequency range. The Rabi
frequency was 92 MHz. Inset: oscillations of the switching probability after a single pulseθ(−X)
followed (disks) or not (circles) by aCORPSE π(X) pulse. The patterns are phase shifted byπ ,
which shows that theCORPSE sequence is indeed equivalent to aπ pulse(Taken from [45]).

Fig. 15. Decay of the switching probability of the quantronium’s readout junction as a function of the
delaytd between aπ pulse that prepares state|1〉 and the readout pulse.(Taken from [24])
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Fig. 16. Ramsey fringe experiment on a quantronium sample at the optimal point. Twoπ/2 mi-
crowave pulses slightly out of resonance and separated by a time delayt are applied to the gate, The
oscillations of the switching probability (dots) at the detuning frequency give direct access to deco-
herence. In this experiment, their decay time was 500ns, as estimated by the fit to an exponentially
decaying cosine (full line). Coherence times have been measured to be in the range 200− 500ns for
the quantronium(Quantronics group).

shorter than those calculated from the coupling to the external circuit using an es-
timated value for the asymmetry factord. Note however that the electromagnetic
properties of the circuit are difficult to evaluate at the qubit transition frequency.
Since a similar discrepancy is found in all Josephson qubits, this suggests that
qubits with a simple microwave design are preferable, and that microscopic re-
laxation channels may be present in all these circuits, as suggested by recent ex-
periments on phase qubits [46]. A confirmation of this would imply the necessity
of a better junction technology.

6.2. Decoherence during free evolution

The most direct way to probe decoherence is to perform a Ramsey fringe ex-
periment, as shown in Fig. 16, using twoπ/2 pulses slightly out of resonance.
The first pulse creates a superposition of states, with an off diagonal density ma-
trix. After a period of free evolution, during which decoherence takes place, a
second pulse transforms the off-diagonal part of the density matrix into a lon-
gitudinal component, which is measured by the subsequent readout pulse. The
decay of the obtained oscillations at the detuning frequency characterise decoher-
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Fig. 17. Coherence timesT2 andTEcho in a quantronium sample extracted from the decay of free
evolution signals. The full and dashed lines are calculated using the the spectral densities depicted by
the bottom graphs for the phase noise (left) and for the charge noise (right), respectively. (Quantronics
group).

ence. This experiment was first performed in atomic physics, and it corresponds
to the free induction decay (FID) in NMR. When the decay is not exponential, we
define the coherence time as the time corresponding to a decay factor exp(−1).
Other more sophisticated pulse methods have been developed to probe coher-
ence. When the operating point is moved away from the optimal point at which
decoherence is weak during a fraction of the delay between the two pulses of a
Ramsey sequence, the signal gives access to decoherence at this new working
point. The interest of this ’detuning’ method is to perform qubit manipulations at
the optimal working point without being hindered by strong decoherence. When
the coherence time is too short for time domain experiments, the lineshape, which
is the Fourier transform of the Ramsey signal, gives access to the coherence time.
Coherence times obtained with all these methods on a single sample away from
the optimal point in the charge and phase directions are indicated by full symbols
in Fig. 17.
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It is possible to shed further light on the decoherence processes and to fight
them using the echo technique well known in NMR [40]. An echo sequence is
a twoπ/2 pulse Ramsey sequence with aπ pulse in the middle, which causes
the phase accumulated during the second half to be subtracted from the phase ac-
cumulated during the first half. When the noise-source producing the frequency
fluctuation is static on the time scale of the pulse sequence, the echo does not
decay. The observed echo decay times, indicated by open disks in Fig. 17, thus
set constraints on the spectral density of the noise sources. In particular, these
data indicate that the charge noise is significantly smaller than expected from the
low frequency 1/f spectrum, at least in the two samples in which echo experi-
ments were performed. Bang-bang suppression of dephasing, which generalises
the echo technique, could fight decoherence more efficiently [47].

6.3. Decoherence during driven evolution

During driven evolution, the density matrix is best defined using the eigenstate
basis in the rotating frame. On resonance, these eigenstates are the states|X〉 and
|−X〉 on the Bloch sphere. As in the laboratory frame, the decay of the density
matrix involves relaxation and dephasing. The measurement of the relaxation
time can be performed using the so-called spin locking technique in NMR [40],
which allows one to measure the qubit polarisation after the preparation of the
state|X〉. The coherence time during driven evolution is easily obtained from
Rabi oscillations. Indeed, the initial state|0〉 is a coherent superposition of the
eigenstates during driven evolution since|0〉 = (|X〉 + |−X〉) /

√
2. The Rabi

signal measured after a pulse of durationt thus probes decoherence during driven
evolution. The corresponding coherence time is longer than the coherence time
during free evolution because the driving field quenches the effect of the low
frequency fluctuations that dominate dephasing during free evolution.

7. Qubit coupling schemes

Single qubit control and readout has been achieved for several Josephson qubits.
Although the control accuracy and readout fidelity do not yet meet the require-
ments for quantum computing, the demonstration on such ’working’ qubits of
logic gates is now the main goal. Presently, only a few experiments have been per-
formed on coupled qubits. A logicC− NOTgate was operated in 2003 on charge
qubits [48], but without a single shot readout. The correlations between coupled
phase qubits have been measured recently using a single-shot readout [49]. How-
ever, the entanglement between two coupled qubits has not yet been investigated
with sufficient accuracy to probe the violation of Bell inequalities predicted by
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quantum mechanics. Only such an experiment can indeed test if collective de-
grees of freedom obey quantum mechanics, and whether or not the entanglement
decays as predicted from the known decoherence processes.

7.1. Tunable versus fixed couplings

In a processor, single qubit operations have to be supplemented with two qubit
logic gate operations. During a logic gate operation, the coupling between the
two qubits has to be controlled with great accuracy. For most solid state qubits,
there is however no simple way to switch on and off the coupling and to con-
trol its amplitude. In the cases of the implementations based on P impurities in
silicon and on electrons in quantum dots, the exchange energy between two elec-
trons, which can be varied with a gate voltage, provides a tunable coupling. In
the case of the superconducting qubits, controllable coupling circuits have been
proposed, but fixed coupling Hamiltonians have been mostly considered: capac-
itive coupling for phase, charge-phase and charge qubits, and inductive coupling
for flux qubits. It is nevertheless possible to use a constant coupling Hamil-
tonian provided that the effective qubit-qubit interaction induced by this coupling
Hamiltonian is controlled by other parameters. We now discuss all these coupling
schemes.

7.2. A tunable coupling element for Josephson qubits

The simplest way to control the coupling between two Josephson qubits is to
use a Josephson junction as a tunable inductance. For small phase excursions, a
Josephson junction with phase differenceδ behaves as an effective inductance
L = ϕ0/ (I0 cosδ). Two Josephson junctions in parallel form an effective junc-
tion whose inductance can be controlled by the magnetic flux through the loop.
When an inductance is placed in a branch shared by two qubit loop circuits,
which is possible for phase, charge-phase and flux qubits, the coupling between
the two qubits is proportional to the branch inductance. Note that, in this tunable
coupling scheme, the qubits have to be moved slightly away from their optimal
working point, which deteriorates quantum coherence. The spectroscopy of two
flux qubits whose loops share a common junction has been performed [51], and
been found to be in close agreement with the predictions. In the case of two
charge-phase qubits sharing a junction in a common branch [52], the coupling
takes a longitudinal form in the qubit eigenstate basis:Hcc = −�ωC σ̂Z1σ̂Z2,
whereωC is the coupling frequency. The amplitude of the effectivez field acting
on each fictitious spin is changed proportionally to thez component of the other
spin. This coupling allows one to control the phase of each qubit, conditional
upon the state of the other one. It thus allows the implementation of the Con-
trolled Phase gate, from which the controlled notCNOTgate can be obtained.
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7.3. Fixed coupling Hamiltonian

The first demonstration of a logic gate was performed using a fixed Hamiltonian.
The system used consisted of two Cooper pair boxes with their islands connected
by a capacitanceCC . The coupling Hamiltonian is

Hcc = −ECC(N̂1 −NG1)(N̂2 −NG2) (7.1)

whereECC = −EC1EC2CC/(2e)2 is the coupling energy, smaller than the
charging energy of the Cooper pair boxes. This Hamiltonian corresponds to
changing the gate charges by(ECC/2EC1) /(N̂2 − NG2) for qubit 1, and by
(ECC/2EC2) /(N̂1 − NG1) for qubit 2. The correlations between the two qubits
predicted for this Hamiltonian have been probed, as shown in Fig. 18. A C-NOT
logic gate was operated with this circuit [48].

In the uncoupled eigenstate basis, The Hamiltonian (7.1) contains both longi-
tudinal terms of typêσZ1σ̂Z2 and transverse terms of typêσX1σ̂X2. At the double
optimal pointNG1 = NG2 = 1/2, δ1 = δ2 = 0, the Hamiltonian (7.1) is trans-
verseHCC = ��C σ̂X1σ̂X2, with �C = ECC/�

∣∣〈01N̂111
〉∣∣ ∣∣〈02

∣∣N̂2
∣∣12

〉∣∣. When
the two qubits have the same resonance frequencyω01, and when�C ≪ ω01, the
non-secular terms inHCC that do not commute with the single qubit Hamiltonian
are ineffective, and the effective Hamiltonian reduces to:

H sec
CC = (��C) (̂σ+1σ̂−2 + σ̂−1σ̂+2). (7.2)

Fig. 18. Demonstration of the correlation between two capacitively coupled charge qubits. Pulse-
induced current as a function of the Josephson energy of the control qubit. The control qubit is
prepared in a superposition of states that depends on its Josephson energyEJ1. A pulse applied on
the target qubit yields aπ rotation only when the control qubit is in state|0〉. The currents through
the two probe junctions can be anticorrelated (a) or correlated (b) whenEJ1 is varied. (Courtesy of
T. Yamamoto et al. [48], NEC, Japan).
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The evolution of the two qubits corresponds to swapping them periodically. More
precisely, a swap operation is obtained at timeπ/�C . This gate is calledISWAP
because of extra factorsi:

ISWAP|00〉 = |00〉 ; ISWAP|10〉 = −i |01〉 ;
ISWAP|01〉 = −i |10〉 ; ISWAP|11〉 = |11〉.
At time π/4�C , the evolution operator corresponds to the gate

√
ISWAP,

which is universal.

7.4. Control of the interaction mediated by a fixed Hamiltonian

The control of the qubit-qubit interaction mediated by a fixed Hamiltonian de-
pends on the form of this Hamiltonian.

For a coupling of the form 7.2, the effective interaction can be controlled by
varying the qubit frequencies since the qubits are affected only when their fre-
quency difference is smaller than�C . This tuning strategy was recently applied
to capacitively coupled phase qubits, in which the qubit frequency is directly
controlled by the bias current of the junctions [6]. The correlations predicted by
quantum mechanics between the readouts of the two qubits were observed [49].
The tuning strategy would be also well suited for coupling many qubits together
through an oscillator [28]. The virtual exchange of photons between each qubit
and the oscillator indeed yields a coupling of the form 7.2, which is efficient
only when the two qubits are tuned. This coupling scheme yields truly scalable
designs, whereas most of other schemes are limited to 1D qubit arrays, with near-
est neighbor couplings. The coupling between a qubit and a resonator has been
already demonstrated for the charge and flux qubits [32,50].

Another method proposed recently consists in maintaining the qubits out of
resonance, but in reaching an equivalent resonance condition in the presence of
resonant microwave pulses applied to each one [53]. This method is based on an
NMR protocol developed by Hartmann and Hahn in order to place two different
spin species ’on speaking terms’. In this scheme, the energy difference between
the two qubits is exchanged with the microwave fields.

The case of the longitudinal couplingHCC ∝ −�ωC σ̂Z1σ̂Z2 has not been
considered yet. Although the control of this coupling is commonly performed in
high resolution NMR, adaptation to qubits has not been attempted.

7.5. Running a simple quantum algorithm

Despite the fact that no quantum processor is yet available, running a simple
quantum algorithm in a Josephson qubit circuit is nonetheless presently within
reach. Let us consider Grover’s search algorithm, which is able to retrieve an
object amongN in

√
N algorithmic steps [1]. In the simple case of 4 objects,

it requires a single algorithmic step. Let us consider a two-qubit system{1,2}
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with anISWAPgate. The object to be retrieved is an operatorÔ taken among the
four operatorsR1Z(±π/2)R2Z(±π/2), whereRU (α) denotes a rotation around
theu axis by an angleα. A simplified version of Grover’s algorithm proceeds as
follows:

-first, a superposition of all eigenstates is prepared by applying single qubit
rotations around they axis:

|�〉 = 1/2(|00〉 + |10〉 + |01〉 + |11〉)

We assume that single qubit rotations are fast enough to neglect the effect of the
two qubit interaction during their duration.

-A single algorithm step is then applied, with the operator:

U = R1X(π/2)R2X(π/2) ISWAPÔ ISWAP.

-The stateU |�〉 is then read, and the outcome determines which operator
had been selected. For instance, the outcome|11〉 corresponds to the operator
Ô = R1Z(π/2)R2Z(π/2).

With more qubits, more sophisticated quantum manipulations and algorithms
become possible. Note in particular that teleportation is possible with 3 qubits [1].

8. Conclusions and perspectives

Many solid state qubits have been proposed, and several of them have already
demonstrated coherent evolution.

For semiconductor qubits, the coherent transfer of an electron between two
dots has been demonstrated, and other promising designs are under investigation.

For superconducting qubits, single qubit control, single-shot readout, and a
two-qubit logic gate have been achieved. Methods inspired from NMR have been
applied to qubit manipulation in order to improve its robustness, and to probe
decoherence processes. The lack of an efficient readout scheme and of robust two
qubit gates still hinders the development of the field. New QND readout schemes
are presently investigated in order to reach a higher readout fidelity. Different two
qubit gates have been proposed, but none of them is as robust as theNANDgate
used in ordinary classical processors. Currently, the coherence time, the readout
fidelity, and the gate accuracy are insufficient to envision quantum computing.
But how far from this goal are solid state qubits?

In order to use quantum error correcting codes, an error rate of the order of
10−4 for each logic gate operation is required. Presently, the gate error rates can
be estimated at about a few % for single qubit gates, and at about 20% at best
for two qubit gates. The present solid state qubits thus miss the goal by many
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orders of magnitude. When decoherence and readout errors are taken into ac-
count, quantum computing appears even more unrealistic. This is not, however,
a reason to give up because conceptual and technical breakthroughs can be ex-
pected in this rather new field, and because no fundamental objection has been
found. One should not forget that, in physics, everything which is possible is
eventually done. Furthermore, quantum circuits provide new research directions
in which fundamental questions on quantum mechanics can be addressed. The
extension of quantum entanglement out of the microscopic world, and the loca-
tion and nature of the frontier between quantum and classical worlds, are two of
these essential issues. For instance, the accurate measurement of the correlations
between two coupled qubits would indeed probe whether or not the collective
variables of qubit circuits do follow quantum mechanics.

Our feeling is that, whatever the motivation, complex quantum systems and
quantum machines are a fascinating field worth the effort.

Acknowledgements

The qubit research is a collective effort carried out by groups worldwide. We ac-
knowledge discussions with many colleagues from all these groups. We thank in
particular the participants to the european project SQUBIT, whose input has been
instrumental. The research on the Quantronium has been carried in the Quantron-
ics group at CEA-Saclay. We warmly thank all the group members and all the
visitors for maintaining a demanding but friendly research atmosphere. We thank
P. Meeson and N. Boulant for their help with the manuscript. We acknowledge
the support from the CEA, the CNRS, and of the european project SQUBIT. Last
but not least, we thank all those who contribute to make the Les Houches school
a so lively place. Teaching there is a unique experience.

References

[1] M.A. Nielsen and I.L. Chuang, ”Quantum Computation and Quantum Information” (Cambridge
University Press, Cambridge, 2000.

[2] Quantum Coherence and Information Processing, edited by D. Estève, J.M. Raimond, and J.
Dalibard (Elsevier, 2004).

[3] I. Chuang, course 1 in ref. 2.

[4] C. Glattli, course 11 in ref. 2.

[5] M.H. Devoret and J. Martinis, course 12 in ref. 2.

[6] J. Martinis, course 13 in ref. 2.

[7] D. Vion, course 14 in ref. 2.



Solid state quantum bit circuits 573

[8] M.H. Devoret, D.Estève, C. Urbina, J.M. Martinis, A.N. C leland, and J.Clarke, in ”Quantum
Tunneling in Condensed Media”, Kagan N Yu., Leggett A.J., eds. (Elsevier Science Publishers,
1992) pp. 313-345.

[9] A. Aspect, P. Grangier, and Gérard Roger, Phys. Rev. Lett49, 91 (1982).

[10] S. Haroche, course 2 in ref. 2; M. Brune, course 3 in ref. 2.

[11] R. Blatt, H. Häffner, C.F. Ross, C. Becher, and F. Schmidt-Kaler, course 5 in ref. 2; D.J.
Wineland, course 6 in ref. 2.

[12] A. Zazunov, V. S. Shumeiko, E. N. Bratus’, J. Lantz, and G. Wendin, Phys. Rev. Lett. 90,
087003 (2003).

[13] B. E. Kane, Nature.393, 133 (1998).

[14] J. M. Elzerman, R. Hanson, L. H. Willems van Beveren, B. Witkamp, J. S. Greidanus, R.
N. Schouten, S. De Franceschi, S. Tarucha, L. M. K. Vandersypen, and L.P. Kouwenhoven,
Quantum Dots: a Doorway to Nanoscale Physics, in Series: Lecture Notes in Physics,667,
Heiss, WD. (Ed.), (2005), and refs. therein.

[15] T. Hayashi, T. Fujisawa, H. D. Cheong, Y. H. Jeong, and Y. Hirayama, Phys. Rev. Lett. 91,
226804 (2003).

[16] A. Barone and G. Paternò,Physics and applications of the Josephson effect(Wiley, New York,
1982).

[17] M.H. Devoret, in ”Quantum Fluctuations”, S. Reynaud, E. Giacobino, J. Zinn-Justin, eds. (El-
sevier, Amsterdam, 1996), p.351.

[18] Guido Burkard, Roger H. Koch, and David P. DiVincenzo, Phys. Rev. B 69, 064503 (2004).

[19] Y. Nakamura, Yu. A. Pashkin and J. S. Tsai, Nature398, 786, (1999).

[20] J. M. Martinis, S. Nam, J. Aumentado, and C. Urbina, Phys. Rev. Lett. 89, 117901 (2002).

[21] J. E. Mooij, T. P. Orlando, L. Levitov, Lin Tian, Caspar H. van der Wal, and Seth Lloyd, Science
285, 1036 (1999).

[22] I. Chiorescu, Y. Nakamura, C. J. P. M. Harmans, and J. E. Mooij, Science 299, 1869 (2003).

[23] A. Cottet, D. Vion, P. Joyez, P. Aassime, D. Estève, and M.H. Devoret, Physica C367, 197
(2002).

[24] D. Vion et al., Science296, 886 (2002).

[25] A. Cottet,Implementation of a quantum bit in a superconducting circuit, PhD thesis, Université
Paris VI, (2002); www-drecam.cea.fr/drecam/spec/Pres/Quantro/.

[26] V. Bouchiat, D. Vion, P. Joyez, D. Estève and M.H. Devoret, Physica Scripta,
76, 165 (1998); V. Bouchiat, PhD thesis, Université Paris VI, (1997), www-
drecam.cea.fr/drecam/spec/Pres/Quantro/.

[27] Single Charge Tunneling, edited by H. Grabert and M. H. Devoret (Plenum Press, New York,
1992).

[28] Y. Makhlin, G. Schön and A. Shnirman, Rev. Mod. Phy,73, 357 (2001).

[29] T. Duty, D. Gunnarsson, K. Bladh, and P. Delsing, Phys. Rev.B 69, 140503 (2004).

[30] R.J. Schoelkopfet al., Science,280, 1238 (1998).

[31] O. Astafiev, Yu. A. Pashkin, Y. Nakamura, T. Yamamoto, and J. S. Tsai, Phys. Rev. Lett.93,
267007 (2004).

[32] A. Wallraff, D. Schuster,.-I.; A. Blais; L. Frunzio; R.-S. Huang,- J. Majer, S. Kumar,
S.M.Girvin, R.J. Schoelkopf, Nature431, 162 (2004); and p. 591 in ref. 2.

[33] E. Paladino, L. Faoro, G. Falci, and Rosario Fazio, Phys. Rev. Lett. 88, 228304 (2002).

[34] Y. Makhlin and A. Shnirman, Phys. Rev. Lett. 92, 178301 (2004).



574 D. Estève and D. Vion

[35] A. Lupascu, J.M.Verwijs, R.N. Schouten, C.J.P.M. Harmans, and J.E. Mooij, Phys. Rev. Lett.
93, 177006 (2004).

[36] I. Siddiqi, R. Vijay, F. Pierre, C. M. Wilson, M. Metcalfe, C. Rigetti, L. Frunzio,R.J. Schoelkopf,
M. H. Devoret, D. Vion, and D. Estève, Phys. Rev. Lett.94, 027005 (2005).

[37] I. Siddiqi, R. Vijay, F. Pierre, C. M. Wilson, M. Metcalfe, C. Rigetti, L. Frunzio, and M. H.
Devoret, Phys. Rev. Lett.93, 207002 (2004).

[38] Mika A. Sillanpää, Leif Roschier, and Pertti J. Hakonen, Phys. Rev. Lett.93, 066805 (2004).

[39] E. Fahri, J. Goldstone, S. Gutmann, and M. Sipser. Science292, 472 (2001).

[40] C.P. Slichter,Principles of Magnetic Resonance, Springer-Verlag (3rd ed: 1990).

[41] J. Jones, course 10 in ref. 2.

[42] H.K. Cummins, G. Llewellyn, and J.A. Jones, Phys. Rev. A67, 042308 (2003).

[43] L.M.K. Vandersypen and I.L. Chuang, quant-ph/0404064.

[44] D. Vion et al., Fortschritte der Physik,51, 462 (2003).

[45] Collin E., Ithier G., Aassime A., Joyez P., Vion D., Estève D. Phys. Rev. Lett.93, 157005
(2004).

[46] K. B. Cooper, Matthias Steffen, R. McDermott, R. W. Simmonds, Seongshik Oh, D. A. Hite,
D. P. Pappas, and John M. Martinis, Phys. Rev. Lett.93, 180401 (2004).

[47] G. Falci, A. D’Arrigo, A. Mastellone, and E. PaladinoPhys. Rev. A70, 040101 (2004); H.
Gutmann, F.K. Wilhelm, W.M. Kaminsky, and S. Lloyd, Quantum Information Processing, Vol.
3, 247 (2004).

[48] T. Yamamoto et al., Nature425, 941 (2003), and Yu. Pashkinet al., Nature421, 823 (2003).

[49] R. McDermott, R. W. Simmonds, Matthias Steffen, K. B. Cooper, K. Cicak, K. D. Osborn,
Seongshik Oh, D. P. Pappas, and John M. Martinis, Science307, 1299 (2005).

[50] I. Chiorescu, P. Bertet, K. Semba, Y. Nakamura, C. J. P. M. Harmans, and J. E. Mooij, Nature
431, 159 (2004).

[51] Hans Mooij, private communication.

[52] J. Q. You, Y. Nakamura, and F. Nori, Phys. Rev. B 71, 024532 (2005); J. Lantz, M. Wallquist,
V. S. Shumeiko, and G. Wendin, Phys. Rev. B70, 140507 (2004).

[53] C. Rigetti and M.H. Devoret, quant-ph/0412009.



Solid state quantum bit circuits 575



This page intentionally left blank



ABSTRACTS OF SEMINARS PRESENTED AT
THE SCHOOL

577
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The exchange field inside a ferromagnetic weak link strongly suppresses the
conventional spin singlet pairing known from bulk superconductors. However,
in 1982 it was predicted by Buzdin et al. [1] that the pair amplitude F inside
a ferromagnet in contact with a superconductor should oscillate as a function
of position. The origin of the oscillation is the energy splitting of the spin up
and spin down conduction bands in the ferromagnet, in which unconventional
Cooper pairs with nonzero total momentum are formed [2]. The oscillation pe-
riod is determined by the exchange field of the ferromagnet. Thus, by choosing
appropriate values of the exchange field and the thickness of the ferromagnetic
layer the ratio of the pair amplitude on both sides of a Josephson junction can
become negative, and with it the current through the junction [3]. Such junctions
are calledπ-junctions [4]. Aπ-junction in a superconducting loop behaves as
a phase bias generator producing a spontaneous current and hence a magnetic
flux [5]. More precisely a phase transition occurs at 2πLIc=φ0, whereL is the
loop inductance andIc the critical current. In the limit 2πLIc<φ0 the system
gains energy by minimizing its magnetic energy against the junction energy. The
system maintains a constant phase everywhere and a shift ofφ0/2 in the current-
phase relationship of the junction is expected with no current in the loop. On
the other hand, when 2πLIc>φ0 the system’s minimum energy corresponds to
that of the junction while maximizing its magnetic energy. A phase gradient is
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maintained by generating a spontaneous superconducting current, which sustains
exactly half a flux quantum,φ0/2 [6], [7]. The ground state is degenerate since
the spontaneous supercurrent can circulate clockwise and counterclockwise with
exactly the same probability. Applying a small magnetic field can lift the degen-
eracy and define an easy magnetization direction.The local magnetic flux of a Nb
loop interrupted by a 7.5nm thick PdNi thin film is measured by a micro-Hall
sensor in the ballistic limit. The device is shown in Fig. 1a [5]. Fig. 1b shows the
temperature dependence of the magnetic moment detected in the loops. Below
the Nb critical temperature the loop shows a small but clearly visible Hall signal
as the temperature of the junction is reduced in zero applied field, which results
from the magnetic flux generated by the spontaneous current. This signal is com-
pensated when cooling down in an applied magnetic field corresponding to half
a flux quantum in the loop. This data can be taken as a direct evidence for the
half integer flux quantization induced by theπ−junction.

Fig. 1. (a) Scanning electron micrograph of the sample after lift-off. The loop is placed on top of the
flux-sensitive area of the micro-Hall cross made of a GaAs/AlGaAs heterostructure.. The samples
are niobium (Nb) loops with a planar ferromagnetic palladium-nickel (PdNi) Josephson-junction.
(b). Temperature dependence of the spontaneous current. The measurements show the temperature
dependent magnetic flux produced by aπ -loop when cooling in zero field and in a magnetic field
equal to half a flux quantum in the loop [5].

The degeneracy of the ground state is probed using the device shown in fig. 2a.
Namely aπ-junction (Nb/PdNi/Nb) shorted by a superconducting weak-link [8].
In the junction either a half quantum vortex or a half quantum antivortex are spon-
taneously generated. The spontaneous supercurrent associated to such vortices
produces a phase gradient measured by a Josephson junction [9]. The ferromag-
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netic junction (source junction) and the detection junction (detector junction) are
coupled by sharing one electrode, as schematically reported in Fig. 2(a), i.e. the
top electrode of the conventional Josephson junction is simultaneously the bot-
tom electrode of the ferromagnetic one. If half a quantum vortex is spontaneously
generated in the ferromagnetic junction, the spontaneous supercurrent sustain-
ing it circulates in the common electrode producing a phase variation equal to
π/2. As a consequence, aφ0/4−shift of the diffraction pattern of the detec-
tion junction is expected. Since the detector has a higher critical temperature,
thisφ0/4−shift appears below the critical temperature of the source-junction as
shown in Fig. 2 b. When cooling down from room temperature to 2 K, the shift,
while reproducible in magnitude, becomes random in sign. This is shown in
Fig. 3 c, where the histogram for 26 cooling-down from room temperature on
different samples is plotted. The calculated gaussian distribution functions show
mean values of+0.24φ0 and−0.26φ0 with equal dispersions of±0.03φ0. The
same distribution would be expected for a magnetic mono-domain, for instance
a small magnetic nano-particle, in the presence of an anisotropy.

Fig. 2. a) Schematic section of the device: a Nb based Josephson junction (detector) is coupled
to a ferromagnetic (PdNi) junction (source) by sharing one electrode (Nb2). The closed loop indi-
cates thehalf quantum vortex location. b) Detector diffraction patterns for a source junction with
π−coupling. Measurements are taken atT = 4.2 K andT = 2 K. A φ0/4−shift of the maximum
critical current occurs at low temperature. c) Gaussian distributions (black curves) of the spontaneous
shift for 26 cool-downs from room temperature on different samples. Inset: Temperature dependence
of the spontaneous shift for the sample presented in b). The spontaneous flux appears in the ferro-
magnetic junction below the superconducting transition temperature of the source junction. The bold
markers show that no spontaneous flux is measured in 0-junctions as expected.
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ELECTRONIC TRANSPORT IN CARBON NANOTUBES

R. Egger
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In this seminar, theoretical issues pertaining to carbon nanotubes, in particular
to correlation effects in electronic transport, have been reviewed. The concept of
a Luttinger liquid can be applied to metallic single-wall nanotubes, and the field-
theoretic justification has been outlined [1]. Experimental evidence based on the
power-law form of the tunneling density of states has already been accumulated.
Additional evidence has recently been accumulated for transport in crossed nan-
otube geometries. A zero-bias anomaly in one tube has been observed which is
suppressed by a current flowing through the other nanotube. The phenomenon is
shown to be consistent with the picture of strongly correlated electrons within the
Luttinger liquid model. The most relevant coupling between the nanotubes is the
electrostatic interaction generated via crossing-induced backscattering processes.
Explicit solution of a simplified model is able to describe qualitatively the ob-
served experimental data with only one adjustable parameter [2]. The conse-
quences of disorder on transport, e.g. in multiwall nanotubes, are discussed in
some detail following Ref. [3]. In the last part of the talk, the low-energy the-
ory of superconductivity in carbon nanotube ropes has been discussed. A rope is
modelled as an array of metallic nanotubes, taking into account phonon-mediated
as well as Coulomb interactions, and arbitrary Cooper pair hopping amplitudes
(Josephson couplings) between different tubes. We use a systematic cumulant
expansion to construct the Ginzburg-Landau action including quantum fluctua-
tions. The regime of validity is carefully established, and the effect of phase slips
is assessed. Quantum phase slips are shown to cause a depression of the critical
temperatureTc below the mean-field value, and a temperature-dependent resis-
tance belowTc. The theoretical results can be compared to recent experimental
data [4] for the sub-Tc resistance, with good agreement with only one free fit
parameter [5]. Ropes of nanotubes therefore represent superconductors in the
one-dimensional limit.
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QUANTUM PHYSICS IN QUANTUM DOTS

Klaus Ensslin

ETH Zurich, 8093 Zurich, Switzerland

Quantum dots are fabricated in AlGaAs/GaAs heterostructures by AFM nano-
lithography [1-5]. In the single level regime the broadening of a quantum state
originating from the coupling of the dot to source and drain contacts is much
less than the single-particle level separation. In this regime spin pairs, i.e. the
successive population of one orbital state with spin-up and spin-down electrons
can be experimentally detected [6]. It is demonstrated that the orbital states of
quantum rings [7] reveal a magnetic field dispersion which is periodic with a
flux quantum per ring area. In this regime a detailed understanding of the orbital
properties of single-particle states in quantum rings can be obtained. This is ex-
tended to spin states, and in particular to an electric field driven singlet-triplet
transition [8]. This becomes relevant in the context of using electron spins in
quantum dots for quantum information processing. A multi-terminal dot is used
to determine the tunnel coupling of the system to each lead [9]. By placing a
quantum point contact close to a quantum dot, the charging of the dot can be
determined in a time-resolved fashion [10] using the quantum point contact as
a detector for single charge read-out. In this way the discrete energy spectrum
of the dot allows to measure the distribution function in the source contact cou-
pled to the dot. The coupling of an open phase-coherent ring located close to a
quantum dot is measured on the single electron level [11]. Electronic transport
through quantum dots is at least partially coherent. We detect the phase evolution
of a composite system consisting of a ring with a quantum dot in each of the two
arms[12]. As electrons are added to one or both of the dots the phase change of
the corresponding Aharonov-Bohm signal is measured.
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I NTERPLAY OF COULOMB AND PROXIMITY EFFECTS

IN S-I-N NANOSTRUCTURES

M.V. Feigel’man
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I discuss a number of effects which are due to the interplay and competition
between the superconductive proximity effect and Coulomb blockade in super-
conductor-insulator-metal hybrid structures. The discussed results are obtained
in collaboration with P. M. Ostrovsky and M. A. Skvortsov [2,2].

First we consider the proximity effect in a normal dot coupled to a bulk su-
perconducting reservoir by the tunnel contact with large normal conductance in
the presence of Coulomb interaction [2]. In spite of the large conductance be-
tween the dot and the lead, the Coulomb blockade effect is still possible due
to the superconducting gap in the reservoir provided that the capacitance of the
junction is sufficiently low. The proximity induced minigap is suppressed by
the Coulomb interaction. We find exact expressions for the thermodynamic and
tunneling minigaps as functions of the capacitance. The tunneling minigap in-
terpolates between its proximity-induced value in the regime of weak Coulomb
interaction and the Coulomb gap in the regime of Coulomb blockade. In the inter-
mediate case a non-universal two-step structure of the tunneling density of states
is predicted while the temperature dependence of the minigap is nonmotonic and
may even be reentrant. The charge quantization in the dot is also studied. In the
Coulomb blockade regime the charge of the grain is a step-like function of the
gate voltage while in the opposite limit the staircase is exponentially smeared.

Next, we generalize the above results for the case of S-I-N-I-S structure [2].
Namely, we study the system of two superconductors connected by a small nor-
mal grain. We consider the modification of the Josephson effect by the Coulomb
interaction on the grain. Coherent charge transport through the junction is sup-
pressed by Coulomb repulsion. An optional gate electrode may relax the charge
blocking and enhance the current leading to the single Cooper pair transistor ef-
fect. The temperature dependences of the critical current and of the minigap
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Fig. 3. Current vs. phase for the symmetric junction. The solid curve illustrates the caseEC = 0. The
other curves correspond toECδ/E

2
g0 = 0.5, 1.5, 2.5. At largeϕ charging effects are always strong

and the current is exponentially suppressed. We assumeGL = GR = 20 and log(�/Eg0) = 5.

induced in the normal grain by the proximity with the superconductor are stud-
ied. Both temperature and Coulomb interaction suppress the critical current and
the minigap but their interplay may lead to a non-monotonous and even reen-
trant temperature dependence. The Current versus phase dependence acquires a
strongly non-sinusoidal form, with the current vanishing exponentially fast as the
phase difference approachesπ , see Fig. 3.
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GEOMETRIC PHASES IN SUPERCONDUCTING
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When a quantum mechanical system undergoes an adiabatic cyclic evolution,
it acquires a geometrical phase factor in addition to the dynamical one. This
remarkable effect, found by Berry, has been demonstrated in a variety of sys-
tems [1]. Since recent years all the attention in detecting geometric phases have
been confined to microscopic systems. More recently, however, due the advances
in nanofabrication the possibility to observe geometric phases in mesoscopic sys-
tems has become an interesting possibility. Quantum dynamics has been already
observed in superconducting nanocircuits [2], therefore these systems have been
indicated as promising candidates to measure geometric interference.

The simplest configuration in which to observe the Berry phase consists of
a superconducting electron box formed by an asymmetric SQUID, pierced by a
magnetic flux� and with an applied gate voltageVx [3]. See also the course by
D. Estève in this volume. The Hamiltonian is

H = Ech(n− nx)2 − EJ(�) cos(θ − α) (1)

where

tanα = EJ1 − EJ2

EJ1 + EJ2

tan

(
π
�

�0

)
,

andEJ(�) is the effective Josephson coupling of the loop and�0 = h/2e is the
(superconducting) quantum of flux. The phase difference across the junctionθ

and the number of Cooper pairsn are canonically conjugate variables[θ, n] =
i. Both external parameters of the Hamiltonian can be controlled. The offset
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charge 2enx can be tuned by changingVx and the couplingEJ(�) depends on
�. The device operates in the regime where the Josephson couplingsEJ1(2) of the
junctions are much smaller than the charging energyEch. At temperatures much
lower thanEch, if nx varies around the value 1/2, only two charge states,n =
0,1, are important. The effective Hamiltonian is obtained by projecting Eq.(1)
on the computational Hilbert space, and readsHB = −(1/2) �B · �σ , where we
have defined the fictitious field�B ≡ (EJ(�) cosα,−EJ(�) sinα,Ech(1−2nx)).
Charging couples the system toBz whereas the Josephson term determines the
projection in thexy plane. By changingVx and� the qubit HamiltonianHB
describes a cylindroid in the parameter space{ �B}.

By means of a more complicated circuit it is also possible to obtain a degen-
erate subspace and hence to observe non-Abelian holonomies [4].

Besides the interest in itself, the detection of geometric phases in supercon-
ducting nanocircuits may have an impact in the area of solid state quantum com-
putation. Quantum computers are usually analysed in terms of qubits and gates.
In most of the implementations proposed quantum gates are realized by vary-
ing in time in a controlled way the Hamiltonian of the individual qubits as well
as their mutual coupling. An alternative design [5, 6] makes use of quantum
geometric phases, obtained by adiabatically varying the qubits’ Hamiltonian in
such a way to describe a suitably chosen closed loop in its parameter space. It
is believed that geoemtric quantum computation may be more robust to certain
type of errors. It has already been proposed that geometric computation can be
implemented with Josephson nanocircuits.

As a final remark it is worth to mention that the detection of geometric phases
is intimately related to coherent pumping of Cooper pairs [7].

Additional informations concerning work done on geometric phases in super-
conducting nanocircuits can be found in the reference list of the papers quoted
in this abstract. An important topic related to the role of the environment on
geometric interferometry is discussed by Yu. Makhlin in this Volume.
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DECOHERENCE IN DISORDERED CONDUCTORS AT L OW

TEMPERATURES , THE EFFECT OF SOFT L OCAL

EXCITATIONS

Y. Imry

The Weizmann Institute, Rehovot, Israel

The conduction electrons’ dephasing rate,τϕ , is expected to vanish with tem-
perature [2]. However, very intriguing apparent saturation of this dephasing rate
in several systems was recently reported [2] at very low temperatures. It was
demonstrated, by a direct determination of the electrons’ temperature from the
interaction conductivity correction, that the electrons were not heated in this ex-
periment. The suggestion that this represents dephasing by zero-point fluctua-
tions has generated both theoretical and experimental controversies.

We start by proving that the dephasing rate must vanish at theT → 0 limit,
unless a large ground state degeneracy exists. The thermodynamic proof employs
well-known properties of equilibrium correlators. It therefore includes most sys-
tems of relevance and it is valid for any determination ofτϕ from linear transport
measurements, because linear transport is redetermined byequilibriumcorrela-
tors. In fact, further experiments [3] demonstrate unequivocally that indeed when
strictly linear transport is used, the apparent low-temperature saturation ofτϕ is
eliminated. However, the conditions to be in the linear transport regime were
found to be more strict than hitherto expected, based just on the absence of heat-
ing of the electrons. We briefly discuss this qualitatively.

Another novel result of the experiments is that introducing heavy nonmagnetic
impurities (gold) in the samples produces, even in linear transport, a shoulder in
the dephasing rate at very low temperatures [3]. We then show theoretically
that low-lying local defects may produce a relatively large dephasing rate at low
temperatures. However, as expected, this rate in fact vanishes whenT → 0,
in agreement with the experimental observations [3]. The same low-lying local
defects may also provide the mechanism for dephasing without heating.
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Proximity induced superconductivity has emerged as one of the most efficient
tools of investigation of phase coherent transport at mesoscopic or nanoscopic
scales. Observing proximity effect in long molecular wires implies indeed not
only that these molecules are conducting and form a low-resistance contact with
the superconducting electrodes but also, which is more fundamental, that both
the thermal length and the phase coherence length are of the order of the length
of the molecules.

This is especially interesting in the case of DNA molecules where very little is
known about the nature of electronic transport. Observation of the proximity ef-
fect yields the order of magnitude of typical time- and length- scales involved in
the charge transfer mechanism along the molecules. We have performed conduc-
tivity measurements on double-stranded DNA molecules deposited by a combing
process across a submicron slit between rhenium carbon metallic contacts. Con-
duction is ohmic between room temperature and 1 K. The resistance per molecule
is less than 100 k� and varies very slowly with temperature. Below 1K, which
is the superconducting transition temperature of the contacts, we observe prox-
imity induced superconductivity. This implies in particular that DNA molecules
can be metallic down to mK temperature, and furthermore that phase coherence
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is achieved over several hundred nanometers [4]. We also emphasized the im-
portance of the interaction of DNA molecules with the underlying substrate. For
most commonly used substrates like mica or silicon oxide the interaction between
the molecule and the surface is very strong and induces a very large compression
deformation of deposited DNAs. The thickness of such compressed DNAs is
2-4 times less than the diameter (about 2nm) of native Watson-Crick B-DNA.
We confirm the insulating character of DNA on such substrates. On the other
hand when the substrate is treated (functionalized) so that deposited molecules
keep their original thickness we observe a conducting behavior, both from con-
ducting AFM and transport measurements on molecules connected to platinum
electrodes [3].

In the case of carbon nanotubes on superconducting contacts, the observation
of high supercurrents strongly suggests the existence of intrinsic superconduct-
ing fluctuations. This is corroborated by experiments on long ropes of carbon
nanotubes on normal contacts. Intrinsic superconductivity is then only observed
when the distance between the normal electrodes is large enough, otherwise su-
perconductivity is destroyed by the (inverse) proximity effect. These experiments
indicate the presence of attractive interactions in carbon nanotubes which over-
come the repulsive Coulomb interaction at low temperature and opens the way to
the investigation of superconductivity in a 1D limit never explored before. The
temperature and bias dependences of the resistance reveal the presence quantum
phase slips (QPS). A QPS is a topological vortex-like excitation of the super-
conducting phase field, which only exists in 1D superconductors. In addition
to the Tc depression, QPSs produce a finite sub-Tc resistance in addition to the
usual temperature-independent contact resistance. These observations [1], can be
compared in a quantitative way to theory [2].

We also report the first study of transport through a nanometer size molecule in
contact with superconducting electrodes and direct observation of the molecule
by high resolution transmission electron microscopy (HRTEM) (fig. 1a). As a
molecule we used a metallofullerene molecule, Gd@C82, which has a diameter
of about 1 nm. Metallofullerene molecules have the same mechanical stability as
fullerenes, but their doping by a metallic atom (in our case Gd) acting as a donor
favors charge transfer through the molecule [5].

We find that a junction containing a single metallofullerene dimer between
superconducting electrodes (fig. 1a and 1b) displays signs of proximity-induced
superconductivity. In contrast, no superconductivity remains in junctions con-
taining a cluster of dimers. These results can be understood, taking into account
multiple Andreev reflections (MAR) [6], and the spin states of Gd atoms [8]
(fig. 1 c).
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Fig. 4. (a) Actual HRTEM image of Gd@C82 molecular dimer between electrodes. (b) Schematic
picture of the molecular dimer between superconducting electrodes. The black dots symbolize the
Gd atoms inside the fullerene cage. (c) Voltage dependence of the differential resistance; The arrows
indicate MAR differential resistance peaks at voltage Vn = 2�/ne [6]. Additional peaks are due to a
Quantum Dot effect [7].
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GEOMETRIC PHASES IN DISSIPATIVE QUANTUM
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Substantial progress has been achieved recently in the studies of solid-state
quantum-coherent systems (see the course by D. Estève at this School); these
investigations were additionally motivated by the advancement of quantum in-
formation theory. In particular, recent experiments demonstrate a high level of
coherence achieved in superconducting qubits. Coherent phenomena are affected
by the environment, especially in solid-state systems due to a host of microscopic
modes. Here we discuss its influence on the Berry phase (cf. the seminar by
R. Fazio). We focus on the simplest case of a two-level system — spin-1/2 in
a slowly varying magnetic field and anisotropically coupled to an environment
(which thus produces a fluctuating field, the noise).

The dynamics can be described by the Bloch equations [1]. The Bloch-
Redfield formalism [2] is suitable for systems subject to weak short-correlated
noise [3]. For stationary field the effect of the environment on the coherent dy-
namics (the Larmor precession) amounts to relaxation of the longitudinal spin
component and the decay of the transverse spin component (phase relaxation or
dephasing), with rates denoted 1/T1 and 1/T2, respectively [4]. It is important
to note that the noise also modifies the precession frequency (the ‘Lamb shift’ of
the level splitting). If the field is varied, these rates —T1, T2, and the Lamb shift
— are modified, and one can find the corrections using the Keldysh formalism.

On one hand, the Berry phase acquired after varying the field along a closed
loop is modified by the noise. Similarly to the case of an isolated system, the
modification is of geometric origin. While the original Berry phase may be inter-
preted as the flux of a monopole at origin, the modification is given by the flux
of a quadrupole-like field [5].
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Moreover, the field’s variation modifies also the effects of the noise, giving rise
to geometricrelaxation and dephasing. Unlike the phase, these are well-defined
also for open paths [5].

For a two-level system the modifications are sensitive only to the (symme-
trized) noise correlator and may be obtained by considering a classical stochastic
field. Of special interest are the limits of slow and fast fluctutations. This consid-
eration provides simple heuristic arguments to interpret the results [5,6]. We also
discuss the conditions on the parameters for observation of the effects discussed.
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I NTERACTING ELECTRONS IN M ETAL NANOSTRUCTURES

D.C. Ralph
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In my lectures, I focused primarily on two topics: how interactions affect the
“electrons-in-a-box” states in metal nanoparticles, and how a current of spin-
polarized electrons interacting with a nanomagnet can apply a torque to the mag-
net by the direct transfer of spin angular momentum.

The spectrum of discrete electronic states inside a nanoscale metal particle
can be measured using electron tunneling if the particle is connected to electri-
cal leads in a single-electron-transistor configuration [1,2]. Measurements show
that the spectra even in simple metals like aluminum, copper, or gold cannot
be described by simple models of free, non-interacting electrons. In fact, all
of the different types of forces and interactions that affect the electrons inside
a metal affect the discrete spectrum in different ways, so that these spectra can
serve as a sensitive probe into the nature of the interactions [3]. The situation
is closely analogous to the physics of electrons in semiconductor quantum dots,
except that in metals a wider variety of different types of interactions can be
explored, including those that give rise to correlated-electron states such as su-
perconductivity and ferromagnetism. My lectures surveyed the consequences of
a number of different types of interactions. For example, spin-orbit interactions
in heavy metals can lead to a reduction of the g-factors for Zeeman spin splitting
below the free-electron value of 2, pronounced spatial anisotropies in the value
of individual g-factors as a function of the angle of the applied magnetic field,
and avoided crossings between predominantly spin-up and spin-down energy lev-
els [4–8]. When considering electron-electron interactions in metallic quantum
dots, theory suggests that the form of the interactions takes a particularly simple
form, the “Universal Hamiltonian” [9, 10]. Even relatively weak Coulomb re-
pulsion, which produces exchange interactions with strength less than the Stoner
criterion for bulk ferromagnetism, can be capable of producing electronic ground
states with non-minimal spin values in quantum dots [11–13]. Attractive effective
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electron-electron interactions in materials such as aluminum can lead to a super-
conducting ground state. Despite the fact that it is not possible to measure either
a Meissner effect or a zero-resistance state in a nanoparticle, a pair-correlated
superconducting state can still be detected through correlation-induced gaps in
the electronic spectra that are sensitive to whether the particle contains an even
or odd number of electrons and that are suppressed by spin pair breaking in an
applied magnetic field [3]. Strong repulsive Coulomb interactions lead to fer-
romagnetic electronic states, with rather complicated behavior that is affected
by magnetic anisotropy forces as well as the strong electron-electron interac-
tion [14, 15]. Some progress in understanding the strongly-correlated electronic
states inside a nanoscale ferromagnet has been achieved using both numerical
simulations [16] and effective spin Hamiltonians [17–19].

Spin-transfer torques represent a mechanism for manipulating the orientation
of the magnetic moments in small magnetic elements that does not involve a mag-
netic field. The effect originates from the fact that thin layers of ferromagnets
can act as filters for spins, producing partially spin-polarized currents. If a spin-
polarized current is incident on a ferromagnetic layer, with a spin-polarization
angle that is not collinear with the magnetic moment of the layer, then in the fil-
tering process the current can transfer spin-angular momentum to the layer, in this
way applying a torque to the layer’s magnetic moment [20–22]. This torque has
been measured in multilayered ferromagnet/normal metal/ferromagnet samples
in which a current flows perpendicular to the layers [23–25]. For samples with
a sufficiently narrow diameter, less than about 0.25 microns, the spin-transfer ef-
fect provides much stronger torques per unit current than do current-generated
magnetic fields. The response of a magnet to the spin-transfer torque can take
two forms, depending on the magnitudes of the applied magnetic field and the
current. For small fields, the spin-transfer effect can produce reversible switch-
ing, in which one sign of current drives two magnetic layers to an antiparallel
configuration, and the reversed current can drive them back parallel [25]. This
effect is of interest as a means to write information in non-volatile magnetic ran-
dom access memory elements, more efficiently than is possible using magnetic-
field writing. The second type of magnetic dynamics that can be driven by the
spin-transfer effect is steady-state precession – a DC current of spin-polarized
electrons can excite a nanomagnet into a state of dynamical equilibrium in which
the magnet precesses at GHz-scale frequencies that are tunable using either the
current or by changing the value of an external magnetic field. These oscillations
have been measured in the frequency domain [26,27] and also directly in the time
domain [28], and they are under investigation for applications such as nanoscale
oscillators and microwave sources.
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I NVERSION OF DNA CHARGE BY A POSITIVE POLYMER

AND FRACTIONALIZATION OF THE POLYMER CHARGE

B.I. Shklovskii

Theoretical Physics Institute, University of Minnesota, Minneapolis MN 55455, USA

Gene delivery requires inversion of DNA charge in order to facilitate its con-
tact with negative cell membranes and penetration inside the cytoplasm. Charge
inversion of a DNA double helix by a positively charged flexible polymer (poly-
electrolyte) is used for this purpose including trials on cancer patients. Effective-
ness of charge delivery due to complexation is known to grow thousand times.

We consider charge inversion in terms of discrete charges of DNA and concen-
trate on the worst scenario case when in the neutral state of the DNA-polyelec-
trolyte complex, matching of DNA and polyelectrolyte structure is so perfect that
all DNA charges are locally compensated by a polyelectrolyte charge, so that one
can suspect that charge inversion is impossible. We show that charge inversion
exists even in this case. When additional polyelectrolyte molecule is adsorbed
by DNA, its charge gets fractionalized into monomer charges of defects (tails
and arches) on the background of the perfectly neutralized DNA. These charges
spread all over the DNA helix eliminating the self-energy of the polyelectrolyte
molecule. This phenomenon is similar to what happens when additional electron
is added to the 1/3 filled Landau level in the fractional Hall effect (FQHE). The
charge of such an electron is known to split in three excitations with charge e/3
each.

Elimination of the self-energy of polyelectrolyte due to fractionalization is the
driving force of charge inversion. Fractionalization leads to a substantial positive
charge of DNA-polyelectrolyte complex. It was observed in electrophoresis ex-
periments.
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We show that fractionalization driven charge inversion is also possible when
polyelectrolyte is adsorbed on a surface with a two-dimensional lattice of op-
posite charges. This is the first classical example of fractionalization of charge
beyond one dimension.

References

[1] T. T. Nguyen, A. Yu. Grosberg, B. I. Shklovskii,Physics of charge inversion in chemical and
biological systems, Rev. Mod. Phys.74, 329 (2002).

[2] T. T. Nguyen, B. I. Shklovskii,Inversion of DNA charge by a positive polymer via fractionaliza-
tion of the polymer charge, Physica A310, 197 (2002).



SPIN - CHARGE SEPARATION IN QUANTUM W IRES

A. Yacoby

Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot 76100, Israel

One-dimensional (1D) electronic systems are expected to show unique trans-
port behavior as a consequence of the Coulomb interaction between carriers [1].
Unlike in two and three dimensions [2], where the Coulomb interaction affects
the transport properties only perturbatively, in 1D they completely modify the
ground state from its well-known Fermi-liquid form. The success of Landau
Fermi-liquid theory in two and three dimensions lays in its ability to lump the
complicated effects of the Coulomb interaction into the Fermi surface proper-
ties (i.e. mass and velocity) of some newly defined particles known as quasi-
particles [3]. Within this new description the quasi-particles are interacting only
weakly and, thus the underlying transport properties may still be described in
terms of single-particle physics. However, in 1D the Fermi surface is qualita-
tively altered even for weak interactions [4] and, hence, Landau Fermi-liquid
theory breaks down. Today, it is well established theoretically that the low tem-
perature transport properties of interacting 1D electron systems are described in
terms of a Luttinger-liquid (LL) rather than a Fermi-Liquid. This state is charac-
terized by strong correlated electron behavior similar to the behavior of a Wigner
crystal [5]. Of coarse, there can be no true long-range order in 1D due to the
large quantum mechanical zero-point fluctuations of the electrons. The correla-
tion functions thus decay algebraically in space and in time with exponents that
depend continuously on the interaction strength [6–9].

The validity of Fermi liquid theory in 2D and 3D assures that even in the
presence of Coulomb interaction between the electrons, the low-lying excitations
are quasi particles with charge e and spin1

2. 1D electronic systems, on the other
hand, have only collective excitations [1]. A unique property of 1D systems is
that these collective modes decouple into two kinds: collective spin modes and
collective charge modes. Coulomb interactions couple primarily to the latter,
and thus strongly influence their dispersion. Conversely, the excitation spectrum
of the spin modes is typically unaffected by interactions, and therefore remains
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similar to the non-interacting case. However, this unique excitation spectrum is
not manifested in the transport properties of clean 1D systems. Furthermore, the
decoupling of the spin and charge degrees of freedom will have only subtle effects
on the transport properties of disordered wires such as to modify the power laws
in theI − V characteristics and modify the excitation spectrum of a quantum dot
embedded in a LL.

Using momentum resolved tunneling between two clean parallel quantum
wires in a AlGaAs/GaAs heterostructure we directly measure the dispersion of
elementary excitation and follow its dependence on carrier density. A voltage
bias between the wires determines the energy of the tunneling electrons and a
magnetic field applied perpendicular to the plane formed by the two wires deter-
mines their momentum. We find clear signatures of three excitation modes in the
data: The anti symmetric charge mode of the coupled wire system and two spin
modes. The density dependence of the anti symmetric charge mode agrees well
with Luttinger liquid theory. As the density of electrons is lowered, the Coulomb
interaction is seen to become increasingly dominant leading to excitation veloc-
ities that are up to a factor of 2.5 faster than the bare Fermi velocity, determined
experimentally from the carrier density. The symmetric charge excitation also
expected from theory is however not visible in the data. The observed spin ve-
locities are found to be 25% slower than the bare Fermi velocities and depend
linearly on carrier density. Below a critical electron density the system abruptly
looses translation invariance and becomes localized. This localized phase is char-
acterized by Coulomb blockade and a broad momentum content of the many body
wave functions.
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