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Preface 

With the continuous miniaturization of electronic components over the last 50 
years we have grown accustomed to the idea of micro-electronics where transistors 
are measured in microns, and today, with the advent of transistor grid lengths of 
around 10 nanometers, we are getting used to nano-electronics. Besides, we should 
not forget about Moore’s law1, a predictive law, according to which the length of the 
transistor grid is reduced by a factor of two approximately every 18 months. 

 
The concept of nanophotonics, although not surprising, remains, however, less 

clearly understood by the scientific community than that of nano-electronics. 
Admittedly, we realize that optoelectronic components, such as the lazer diode, 
modulators and detectors developed for the needs of optical telecommunications, are 
small nowadays, but there does not exist a Moore’s law of optoelectronics and the 
most usual limit naively imagined for optics is that of wavelength, i.e. a size close to 
the micron for waves of the visible and near infrared spectrum. 

 
It is, therefore, the main objective of this work to try and give a more precise 

overview of the rapidly emerging field of nanophotonics, wherein optical fields at 
the scale of a fraction of wavelength and even mainly sub-wavelength are sought to 
be controlled and designed. 

 
In fact, if the optical “chip” does not exist in the liking of the electronic “chip”, 

photonic crystals have recently led to great hopes for large-scale integration of 
optoelectronic components. Two-dimensional photonic crystals obtained through 
periodic structuring of a planar optical waveguide, in particular, have many 
characteristics which bring them closer to electronic micro- and nanostructures. In a 
simple vision, it suffices to introduce periodicity defects at suitably selected spots 
within the crystal to obtain the desired optical components (waveguides, bending 
light, micro-resonators, filters, etc.) and to pair them up with each other to form true 

                                   
1 G. Moore, founder of INTEL. 
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photonic circuits. Admittedly, reality is more difficult than it appears, if only for the 
precision needed in the manufacturing of structures. In many cases it is considered 
lower or equal to 10 nanometers, and then all the relevance of parallels between 
nano-electronics and nanophotonics become apparent. The first two chapters are 
thus mainly dedicated to photonic crystals in planar optics, referring to other 
recently published works on the subject2, while focusing on the photonic 
components themselves, the dynamics of the photons plunged into a periodically 
structured medium and the prospect of obtaining high integration photonic circuits. 
 

On the subject of two-dimensional photonic crystals radically differing from 
planar guided optics, Chapter 3 tackles the topic of photonic crystals fibers and, 
more generally, of structured fibers. Not only is the propagation of light achieved 
then perpendicular to the plane of periodic structuring, but also the unique 
production technology is based on the first assembly performed on a macroscopic 
scale, the final micro-nano-structures obtained by a stretching process at the second 
stage. It is impressive to be able “to unravel” micro-nanophotonics over distances of 
several kilometers! From a practical standpoint, microstructured fibers and photonic 
crystal fibers open up unprecedented prospects with respect to the control of the 
propagation mode in fiber-optics and to the control of chromatic dispersion. By 
controlling optical confinement, we may also easily control the processes of 
nonlinear optics that can be developed within these fibers. 
 

Before the concepts of photonic circuit or fiber even appear, it should be 
remembered that the first studies of photonic crystals and structured materials for 
optics had been motivated, at the beginning of the 1980s, by the desire to control 
and even inhibit spontaneous emission in optoelectronic components. The largely 
conveyed emblematic image is that of the single transmitter in a uni-modal micro-
cavity, every emitted photon being in the unique electromagnetic mode of the cavity. 
That aside, for the image to become reality over time, it was initially necessary to 
control the realization of nano-transmitters in the solid state, then to know how to 
combine nano-transmitters and micro-cavities. Chapter 4, in particular, deals with 
semiconductor quantum boxes and their association to various types of optical 
micro-cavities. The chapter introduces the concepts of weak and strong coupling in 
micro-cavity, as well as giving reports on the applications to semiconductor lazers 
with a very weak threshold and to single-photon micro-nanosources required for 
quantum cryptography. 

 
Micro-nanostructuring of materials is also full of prospects for other active 

components of nonlinear optics. In fact, it is not only possible to achieve true 
engineering of the refraction index dispersion, but also to control the dispersion of 
group velocity as well as the localization of the electromagnetic field. Adapting the 
                                   
2 J-M. Lourtioz, H. Benisty, V. Berger, J-M. Gérard, D. Maystre, A. Tchelnokov, Les cristaux 
photoniques ou la lumière en cage, Collection Technique et Scientifique des 
Télécommunications, Hermès, Paris, 2003. 
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phase and group velocity of electromagnetic waves with very different frequencies 
in order to reinforce their interactions is an example of application in the case of 
second-order optical nonlinearities. Chapters 5 and 6 thus develop various aspects of 
nonlinear optics in micro- and nanostructured materials such as the second harmonic 
generation, the optical Kerr effect, the propagation of solitons or the mix of four 
degenerated waves. After a short theoretical introduction to nonlinear optics, the 
various effects are illustrated on the basis of experiments performed very recently. 

 
In Chapter 7 we openly approach the field of sub-wavelength optics with the 

analysis techniques of near optical field. The sub-λ nature stems not only from the 
distances between a point and a diffracting object, but also from fading waves whose 
space extension may be clearly lower than that of the light wavelength. Until 
recently limited to particular cases, the analysis of near fields today assumes all its 
interest with the development of nanotechnologies and optical micro-nanodevices. 
Having defined the near field concept and recalled the alternatives of microscopy in 
the near field, this chapter thus illustrates certain recent characterizations of 
semiconductor micro-components in planar integrated optics. 

 
Metallic devices involving surface or localized plasmon-polaritons are also 

choice objects for the studies of near fields, because these waves are not detectable 
in far fields. Chapter 8 is mainly dedicated to them as well as to the optical 
technique of microscopy by tunnel effect. The coupling between an optical wave 
and electric charges oscillating in a metal is a phenomenon that has been known for 
a long time and generally considered as a parasite, since it is dissipative over 
propagation lengths typically exceeding 10 microns. However, the development of 
micro-nanotechnologies allowed an unprecedented revival of the studies with the 
creation of a new set of themes known today under the name of plasmonics. The 
now-famous experiment of Ebbesen3 was one of the determinant elements of the 
renewed interest for the plasmon waves. More generally, miniaturization of metal 
structures appears a possible way of optical connections alongside photonic crystals. 

 
Of a smaller size than all the devices evoked previously, including quantum 

box nano-transmitters, nanocrystal semiconductors composed of a few hundred to a 
few thousand atoms belong to the category of nano-objects of great interest for small 
scale optics. Developed by processes different from semiconductor quantum boxes, 
nanocrystals can be incorporated into transparent matrices, as they can also be 
grafted into biological entities. Excellent candidates for the emission of “single 
photons”, they are also used as biological markers and present potential applications 
for the creation of tunable microlazers. Chapter 9 thus makes us discover the 
structures of the electronic levels and the optical properties of these nano-objects 
which, like carbon nanotubes, still remain just as attractive for the physicist. 
                                   
3 J-M. Lourtioz, H. Benisty, V. Berger, J-M. Gérard, D. Maystre and A. Chelnokov (eds.), 
Photonic Crystals: Towards Nanoscale Photonic Devices, Springer, Berlin-Heidelberg-New 
York, 2005. 
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Also dealing with small-scale objects but in a very different context, the tenth 
and final chapter of this book completes the review of nanophotonics by addressing 
the interdisciplinary topic of the nanobiophotonics. The marriage of optics and 
biology is certainly not completely new, because while electronic microscopy offers 
a nanometric solution for the study of molecular cell entities, optical techniques in 
turn allow a slightly invasive, even non-invasive, analysis of live cells. In particular, 
the chapter describes the traditional fluorescence techniques for the detection of a 
unique molecular entity as well as more recent techniques, building on the 
interactions between ultra-short optical impulses and biological environments. The 
emergent topic of nanophotonics aims more particularly at reducing the observation 
volume below the limit imposed by diffraction. The chapter shows how to achieve 
this goal using nonlinear optical effects or nanostructured photonic devices close to 
the studied biological objects. 

 
The book that we have just briefly presented was written by internationally 

recognized specialists, each in their field. Thus, it constitutes a follow-up to the first 
spring school of the CNRS on nanophotonics held in Houches (France) in June 2003 
and organized by the four coordinators of the book. It is, to our knowledge, one of 
the first times that such various and complementary aspects of nanophotonics have 
been gathered together. It would, undoubtedly, be useless to allot an exhaustive 
nature to the book, but students and scientists working in nanosciences would, 
however, still be able to find in it a rich source of information on the new fascinating 
and rapidly expanding field. 

 
Jean-Michel LOURTIOZ, 

Claude DELALANDE, 
Ariel LEVENSON, 

Hervé RIGNEAULT 



 Chapter 1 

Photonic Crystals: 
From Microphotonics to Nanophotonics 

1.1. Introduction 

The principal motivations for the emergence of photonic crystals can be 
summarized in one single word, “λ-Photonics”, which means the control of photons 
at the wavelength scale. The harnessing of light has always been central in the field 
of human endeavor: one may call to mind, for example, the destruction of the 
Roman fleet by the blazing mirrors of Archimedes at the siege of Syracuse in  
215 BC. 

Generally speaking, the harnessing of light consists of structuring the space 
where it is meant to be confined; but there are intrinsic limitations which are related 
to the undulatory nature of light and which have been formulated in the famous 
Maxwell equations of 1873, providing a consistent picture of the experimental data 
then available. These limitations lie at the heart of λ-Photonics, whose definition 
could be the control of photons within the tiniest possible space over the longest 
possible time: this implies structuring space at the wavelength scale, which is the 
sub-micron range for the optical domain. 
 
Microphotonics or Nanophotonics? 
 

The reader will have understood that the word “λ-photonics” refers simply to 
Microphotonics in the optical regime. We will use the term Microphotonics 
throughout this chapter, given that the average size of photonic structures under 
                                   
Chapter written by Pierre VIKTOROVITCH. 
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consideration is micro-metric. Yet, the size resolution to be considered for the 
design as well as for the fabrication of efficient practical photonic devices is the 
nanometer. 

The nanometric control of the size of microphotonic structures is dictated by the 
specifications which are required for the resolution (better than one nanometer) of 
the operation wavelength; these constraints may be partly relaxed by the use of 
appropriate trimming procedures for the fine adjustment of the operation wavelength 
(control of the temperature, for example). But serious consequences may arise from 
insufficient control over the size of photonic structures, such as the unwanted mutual 
coupling of optical modes, and, as a result, the loss of control of photons within a 
confined space for the time required. For example, nanometric resolution of the size 
is essential for the production of resonant photonic structures with high quality 
factors, that is whose bandwidth is in the nanometer range or below (this 
terminology will be made familiar to the non-specialist reader in the course of this 
chapter). Finally, the relevance of the nanometric scale in active devices is twofold: 
first in connection with the quantum size active material (quantum wells and 
quantum boxes), and second, given the required resolution of its spatial localization 
within the microphotonic structure, whose design is meant to result in the ad hoc 
electromagnetic environment. 

After this parenthesis, which, beyond semantic considerations, is meant to 
provide to the reader an accurate definition of the “à la mode” Micro- and 
Nanophotonics terms, let us resume with this introductory section. 

A photonic crystal is a medium whose optical index shows a periodical 
modulation with a lattice constant on the order of the operation wavelength. The 
specificity of photonic crystals inside the wider family of periodic photonic 
structures lies in the high contrast of periodic modulation (generally more than 
200%): this specific feature is central for the control of the spatio-temporal 
trajectory of photons at the scale of their wavelength and of their periodic oscillation 
duration. 

It will be shown in section 1.2 that there are a variety of ways of structuring 
space, consisting of preventing the propagation of photons along one or several 
directions, thus resulting in photonic “objects” with reduced “dimensionality” and 
with photonic properties which are strongly wavelength dependent. The new avenue 
opened up by photonic crystals lies in the range of degrees of freedom which they 
provide for the control of photon kinetics (trapping, slowing down), in terms of 
angular, spatial, temporal and wavelength resolution. 

One-dimensional photonic crystals (1DPC), which possess most of the basic 
physical properties of photonic crystals in general, will be discussed in section 1.3. 
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We will embark in section 1.4 on a short and rather frustrating trip into the elusive 
world of three-dimensional photonic crystals (3DPC). Sections 1.5 and 1.6 will 
concentrate on two-dimensional photonic crystals (2DPC), which have been the 
subject, so far, of most new applications in terms of device demonstrations: along 
these lines will be presented the essential building blocks of Integrated Photonics 
based on 2DPC, which is presently considered as the principal domain of 
applications of photonic crystals. The concepts of 2.5 D Microphotonics based on 
2DPC, which can be considered as a major extension of planar technology through 
exploitation of the third (“vertical”) dimension, will be covered in section 1.7. 

This chapter provides a vision complementary to that given in the book 
published by J. M. Lourtioz et al. (LOU 05). Concerning conceptual aspects, the 
present approach is more phenomenological and does not leave much room for 
theoretical models of photonic crystals. Particular attention is given to the changes 
induced by the photonic crystal on the spatio-temporal characteristics of photons 
immersed in the periodic medium and on similarities with phenomena observed in 
the case of more traditional structuring of space. As for application aspects, the 
present work is mainly oriented toward integrated Micro-nanophotonics: it is shown, 
in particular, how recent developments of 2DPC, along planar technological 
schemes, open the way to the production of essential building blocks for this 
purpose. 

1.2. Reminders and prerequisites1 

1.2.1. Maxwell equations 

The undulatory nature of light is expressed in terms of an electromagnetic field 
whose electrical ),( trE  and magnetic ),( trH  components, which depend on time t  
and space r  coordinates, are given by Maxwell equations. The latter can be reduced 
to the so called master equation, as expressed below (in the case of an isotropic and 
non-absorbing medium): 
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1 Section 1.2, which is a very brief and specific summary of the abundant related literature, 
does not include any specific references. 
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where ω is the pulsation, ( )rε  the dielectric function of the medium and c  the light 
velocity in vacuum. This is typically an eigenvalue/eigenvector problem. 

1.2.1.1. Optical modes 

Optical modes are the eigensolutions of Maxwell equations which correspond to 
a spatial distribution of the electromagnetic field which is stationary in the time 
scale. 

1.2.1.2. Dispersion characteristics 

These are given by the equations which relate the pulsation (eigenvalue) of 
optical modes to their propagation constants (eigenvector). 

1.2.2. A simple case: three-dimensional and homogeneous free space 

This is the simplest case, where the dielectric constant is invariant with space 
coordinates: the eigensolutions or eigenmodes of Maxwell equations are plane 
waves, with a continuous transitional symmetry. 

The magnetic field (as well as the electric field) can be expressed as follows: 

).(
0)( rki

k eHrH = ,  (3) 

where k is the wave-vector or the propagation constant, with 
λ
πnk 2= , n  is the 

optical index of the medium, and λ is the wavelength. The dispersion characteristics 
can be simply written as below: 

k
n
c=ω  

(4) 

n
c  is the phase velocity of the optical mode; in the simple case considered here of 

homogeneous free space, the phase velocity coincides with energy or group velocity 

vg dk
dω= . 
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It is shown that the density of optical modes per volume unit and per ω unit is a 
continuous function of ω and is written: 

32

32

c
n

d
dN

π
ω

ω
=  

(5) 

1.2.3. Structuring of free space and optical mode engineering 

Plane waves (eigensolutions of Maxwell equations in a homogeneous medium), 
having a theoretically infinite spatio-temporal extension, are of no practical use from 
the point of view of Microphotonics, whose definition we recall: the control of 
photons within the tiniest possible space over the longest possible time (or, at least, 
over the minimum required time interval). In other words, Microphotonics is 
nothing but optical mode engineering, or free space carving art, in such a way that 
optical modes with the appropriate spatio-temporal configuration are generated. 

Lifetime or coherency time and quality factor of an optical mode 

According to the above definition of Microphotonics, it appears natural to grant 
the optical mode a merit factor F, which quantifies the properties of the optical 
mode in terms of the ratio of time τ during which it remains under control (or its 
lifetime from the observer/user viewpoint), over the average real space volume 
which it fills during its lifetime. 

To put it differently and more precisely, the lifetime τ is the time interval when 
the user may count on a coherent mode, whose phase remains deterministic, within 
the volume where he tries to control and confine it. The merit factor can be made 

dimensionless if normalized to the ratio 3λ
T , where T is the period of oscillation and 

λ  is the wavelength in vacuum. 

VT
F

3λτ ×= , with: 

T
Q πτ2= , 

(6) 

where Q  is the traditional quality factor of the mode. 
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It can be shown, straightforwardly, that the merit factor F  of a plane wave is 

zero. Indeed, 
c

nL=τ , where n  is the optical index of the medium and L  is the 

length of the wave packet processed by the user, given that the volume SLV ×=  of 
the optical mode diverges with the section S  of the plane wave. 

The finite lifetime of the optical mode results in a spectral widening 
τ
πδω 2= . 

In the simple case of a plane wave we find: 

k
n
c

Ln
c δπδω =×= 2  

(7) 

where 
L

k πδ 2=  expresses the “de-localization” of the mode in the wave-vector or 

reciprocal space as a result of the “localization” of the plane wave along its path 
over a distance L. It may be noted that equation (7) is obtained from a simple 
differentiation of the dispersion equation (4) of the mode (plane wave here). 
Therefore, although time independent and formally applying in purely stationary 
conditions, dispersion characteristics can provide concrete information relating to 
the dynamics of optical modes; we will resume this discussion regularly throughout 
this chapter. 

Returning to the merit factor, the reader will have noticed that F  is proportional 
to the Purcell factor, which gives the relative increase of the spontaneous 
recombination rate of an active medium as a result of its coupling to the optical 
mode, as compared to the non-structured vacuum (see Chapter 4). 

1.2.4. Examples of space structuring: objects with reduced dimensionality 

Let us examine a few examples of space structuring, which aims in general at the 
production of objects with reduced dimensionality, that is where the propagation of 
photons is not free in all directions at any time. 

1.2.4.1. Two 3D sub-spaces 

The simplest example of space structuring consists of dividing 3D free space into 
two 3D sub-spaces with different optical indices 1n  and 2n , and bordered by a 
common infinite plane boundary (Figure 1.1). 
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Figure 1.1. Two 3D sub-spaces with different optical indices 

This system can still be simply described using plane wave type optical modes, 
but their propagation is bound to meet with the law of Descartes at the interface, 
which can be simply expressed in terms of the continuity of the wave-vector 
component k  parallel to the interface plane. Hence, if 12 nn ≥ , plane waves 

propagating in medium 2 are subjected to total internal reflection at the interface for 
angles of incidence lying beyond a certain limit, and are evanescent in medium 1. 
This effect can be described in terms of the so called “light-line”, which is a straight 

line whose equation can be written k
n
c
1

=ω  in )(kω  coordinates: this light-line 

delineates a cone within which ),( kω  couples are allowed inside the two media, 

which is where refractive coupling (communication) between plane waves of the 
two media is allowed (see Figure 1.2). 

In other words, the inner of the cone (defined by equation k
n
c
1

=ω ) corresponds to 

the continuum of modes which are allowed in both sub-spaces, whereas the gray zone in 
Figure 1.2 is restricted solely to optical modes of sub-space 2. 
 
 
 
 
 
 
 
 
 
 

Figure 1.2. Light line and light cone in )(kω  coordinates 
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1.2.4.2. Two-dimensional isotropic propagation: planar cavity 

Figure 1.3 shows a schematic side view of an ideal planar cavity (thickness D) 
formed between two fully reflecting and loss-less metallic plane mirrors.  
 

D

k׀׀

k⊥

 
 

Figure 1.3. Planar cavity formed between two perfect metallic plane reflectors 

Propagation is allowed along the sole directions parallel to the mirrors, with the 
propagation vector k . Unlike in 3D free space, there is no longer a continuum of 

modes in )(kω  coordinates; one observes instead a “quantification” which 

manifests itself by the discrete values of the vector 
D
pk π=⊥ , which are required in 

order to meet the conditions for phase conservation after a “vertical” round trip of 
photons. 

The general shape of the dispersion characteristics is shown in Figure 1.4. 
 
 
 

 

ω 

cp π /D 
 Zero v g 

Forbidden zone

k ׀׀  
 

Figure 1.4. General shape of dispersion characteristics  
of an ideal planar cavity 
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The reduction in dimensionality results in clear disturbances as compared to the 
biblical simplicity of the case of 3D homogeneous free space. One observes, first, a 
forbidden frequency zone where the density of modes is zero, below the pulsation 

D
cπω = . In addition, curves exhibit a minimum for 0=k ; this means that the 

propagation velocity of the energy or the group velocity vg of photons tends to zero 
(whereas the density of modes remains finite and can be expressed as in a two-
dimensional homogeneous medium): the optical wave is “stationary” and oscillates 
“vertically”. It can be shown that the merit factor F  of optical modes tends to zero, 
in a similar way to the case of plane waves in a homogeneous medium, except for 
the vicinity of 0=k , where F  tends to a finite limit which is proportional to 

D
1 2. This fact can be interpreted as the vertical confinement of photons imposed 

by mirrors resulting in a relative lateral “confinement” of optical modes, which 
cannot propagate any more for 0=k . 

1.2.4.3. One-dimensional propagation: photonic wire 

The dimensionality can be further reduced when photons are compelled to 
propagate along a single direction, for example inside an ideal loss-less metallic 
sheath (see Figure 1.5). One observes, similarly to the previous case, a forbidden 
frequency band below a cut off frequency where the group velocity tends to zero for 

0=k , and where it can be shown that, in addition, the density of modes diverges 

when the length L  of the optical wire tends to infinity. 
 
 
 
 
 
 
 
 
 
 

Figure 1.5. One-dimensional propagation in a perfect metallic sheath 

                                   
2 A full demonstration is not given here, due to limitations of space. It is based (as shown in 
the simple case of a plane wave) on the differentiation of the dispersion characteristics around 
the minimum. One finds, in particular, that the lateral extension of the optical mode during its 
lifetime τ  is written ατ≈S , where α  is the curvature (second derivative) at the extreme 
(minimum here) of the dispersion characteristics. Later in this chapter, we will comment 
extensively on the importance of the parameter α  in photonic crystals. 
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The confinement strengthening of optical modes manifests itself by a finite 
merit factor F  for finite k  ( F  is proportional to the inverse of the wire 

section S ) and by the divergence of F  for 0=k , when L  tends to infinity 

( F  is proportional to 
S
L ). 

1.2.4.4. Case of index guiding (two- or one-dimensionality) 

The guiding of photons is achieved in a more conventional way by trying to 
confine them inside material with an optical index higher than that of the 
surrounding medium: this is the principle classically applied in optical fibers. 

The dispersions characteristics of waveguided modes share some similarities 
with previous cases, but they also have notable differences. First, optical modes can 
be kept guided as far as they are fully prevented from communicating with the 
surrounding medium: their dispersion characteristics are therefore confined within 
the area located below the light-line (see Figure 1.6). Second, confinement is not as 
strong as with metallic mirrors or sheaths (an evanescent portion of the 
electromagnetic field is allowed to extend outside the high index material): the result 
of this is that the cut off phenomenon is not observed (for symmetrical guiding 
structures), nor does the group velocity vanish. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.6. Case of index guiding: light-line 

1.2.4.5. Zero-dimensionality: optical (micro)-cavity 

Propagation of photons is now prevented in all directions: they are trapped in an 
optical cavity which can only be accessed by “resonant” modes for discrete 
frequencies. The spectral density of modes tends therefore to infinity at the 
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resonance frequencies (yet, the average density of modes is finite and is not changed 
with respect to its free space value).  

 

 

Figure 1.7. Optical microcavity: the density of modes is a series 
of Dirac functions at resonance frequencies 

The merit factor of optical modes of an ideal cavity is naturally infinite, photons 
being confined in a finite volume for a theoretically infinite amount of time. In 
practice, the life of optical modes in the cavity is not infinite as a result of various 
“optical loss” processes: for example, a real metallic cavity will end up absorbing 

photons after a finite amount of time. A spectral widening 
τ

δω 1=  of the resonance 

is then observed and the density of modes τ
δω

=1  remains finite. When the optical 

“cage” is opened up to the external world, spectral widening extends in such a way 
as to overlap with the neighboring modes, and one finds again free space 3D 
continuum. 

1.2.5. Epilogue 

At the present stage, the reader should be in a comfortable position to penetrate 
the world of photonic crystals quite easily, whose basic ingredients have already 
been introduced (forbidden bands, resonance, slowing down of photons). The reader 
may be wondering why a periodic and high index contrast structuring of space 
should be at all useful in the field of photon confinement. This is the essential 
question that we will now try to address, given that the principal ingredients of the 
response can be summarized in one sentence: photonic crystals provide us with new 

Optical cavity

dN /dω 

ω 

Localized modes
and 

forbidden zones 
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degrees of freedom for the control of the kinetics (trapping, slowing down, optical 
losses) of photons, especially in terms of angular, spatial and spectral resolutions. 

1.3. 1D photonic crystals 

A one-dimensional photonic crystal is a one-dimensional virtual medium, whose 
optical index shows periodic modulation (and it should not be viewed as a real object 
with reduced dimensionality in the real 3D world, as described in section 1.2.4). 
 
 
 
 
 
 
 
 
 

Figure 1.8. 1D photonic crystal: the direction of propagation is normal to the layer plane 

This imaginary configuration corresponds approximately to the practical 
situation of a periodic layer stack whose lateral dimensions are large as compared to 
its spatial period, given that the only relevant direction of propagation is normal to 
the layer plane. 

Dielectric layer stacks have been around for quite some time and have been 
widely used and developed in optics during the last few decades to control optical 
signals. Modeling tools are available for the design of these periodic structures, 
which are based on the resolution of Maxwell equations using the so called matrix 
transfer technique (MAC 86). It consists of the determination, step by step, of the 
reflected and transmitted components of the electromagnetic field at successive 
interfaces and within different layers. The Bragg mirror is a famous example of such 
a stack layer: it consists of a periodic stack of quarter-wavelength dielectric layers, 
with a different optical index. It is found that this structure behaves like a mirror 
when operating at the configuration wavelength: reflectivity increases with the 
number of pair layers, and for a given number of layers, with the optical index 
contrast between adjacent layers. The bandwidth of the reflector also increases as a 
function of the index contrast. For an “infinite” number of pairs, there exist spectral 
bands where the propagation of photons is forbidden in the periodic medium or 
photonic band gaps (PBGs). The concept of PBG is therefore a pretty familiar one in 
the world of optics and cannot be considered as a novelty introduced by the 
promoters of the photonic crystal concept. The novelty lies instead in the new 

r1   2 ………j…………..N
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viewpoint and the novel combinations brought about when regarding periodic 
structures as photonic crystals, that is by simply considering a photonic crystal in a 
similar way to crystalline materials: this is the so called solid state physics approach, 
with its wealth of generic concepts (YAB 1987; JOH 1987; JOA 1995). 

In the following paragraphs, we will apply this approach to the analysis of 1D 
photonic crystals and will see that they possess most of the basic physical properties 
of photonic crystals in general. 

1.3.1. Bloch modes 

Eigenmodes of Maxwell equations in a periodic medium possess discrete 
periodic transitional symmetry properties. According to the Bloch theorem, these 
modes, also called Bloch modes, can be expressed as follows: 
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)(ruk  can be expanded in Fourier series: 
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where 
a

b π2=  is the base vector of the so called reciprocal lattice. 

The essential properties of Bloch modes are summarized below: 

– Two Bloch modes whose k  vector difference is 
a

m π2  ( m  is an integer) are 

equivalent: this is simply the mathematical expression of the diffraction process. As 
a result, dispersion characteristics (or photonic band structures) )(kω  can be fully 
represented in the so called first Brillouin zone (according to solid state physics 

terminology), in the k  vector range 
a

k
a

ππ ≤≤− . 

– Fourier components also express the diffraction processes induced by the 
photonic crystal’s periodic structure. It will be shown that they also hold the 
information regarding diffractive coupling properties of the relevant Bloch mode 
with other modes (for example, the “radiating” properties and loss characteristics, in 
case of coupling with the “radiation continuum”). 
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1.3.2. Dispersion characteristics of a 1D periodic medium 

1.3.2.1. Genesis and description of dispersion characteristics 
The genesis of dispersion characteristics is illustrated in Figure 1.9 below. 

 
Figure 1.9. The dispersion characteristics of optical modes in a periodic medium are widely 

determined by diffraction processes and optical mode coupling properties 

In the case of a homogeneous medium (Figure 1.9a), dispersion characteristics, 
standing for propagating and counter-propagating optical waves which ignore each 

other, are plain straight lines (equation k
n
c±=ω ). The periodic structuring of the 

medium results in diffraction processes, which express themselves in terms of 
successive discrete translations (diffraction orders: see Figure 1.9c) of dispersion 

characteristics by integer numbers (positive or negative) of 
a
π2 : the a  periodicity 

of the real space has a counterpart 
a
π2  in the reciprocal propagation vector space. 

We see from Figure 1.9c that dispersion characteristics of back and forth optical 

waves cross over at coordinates ),(),(
a

p
a

p
n
ck ππω ±= : as a consequence, 

propagating and counter-propagating waves may be coupled through diffraction 
processes. Degeneracy occurs therefore at those peculiar coordinates, since two 
modes which propagate in opposite directions are supposed to coexist yet have the 
same ),( kω  coordinates.  
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This coexistence will not survive beyond the time required for the coupling 
between modes to be completed: the degeneracy will then be raised much more 
strongly as the coupling is more efficient. This effect is called “anti-crossing”, 
resulting in the opening of a PBG (Figure 1.9d), whose width increases with the 
coupling rate (or the inverse of the coupling time), which itself increases with the 
magnitude of the periodic modulation of the optical index (periodic “corrugation”). 

 
Figure 1.10. Photonic band gap (PBG) and bandwidth of a Bragg reflector 

For example, anti-crossings occurring at coordinates ),(
aan

c ππ ± , at the first 

Brillouin zone boundaries, correspond to the case of the Bragg reflector whose 

optical period is set at 
2
λ . The PBG width corresponds to that of the reflector 

bandwidth (Figure 1.10). 
 
At the photonic band edges, dispersion characteristics exhibit extremes where the 

group velocity 
dk
dω  tends to zero. Mode coupling results there in the formation of a 

stationary optical wave, which cannot propagate. This situation is examined in more 
detail in Figure 1.11, where the electric field distributions of the stationary mode at 
the upper and lower band edges are shown. 
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Figure 1.11. Air band and dielectric band at the photonic band edges 

One may note that electromagnetic energy is concentrated principally within the 
low index material at the upper band edge, and vice versa at the lower band edge: 
this is consistent with the fact that, for a given k, photon energy decreases for 
increased optical index. The upper band is usually called the “air” band, whereas the 
lower band is called the “dielectric” band, with reference to the typical case of a 
photonic crystal where the low index material is air and the high index counterpart is 
a semiconductor dielectric.  

1.3.2.2. Density of modes along the dispersion characteristics 

It can easily be shown that, in a homogenous and one-dimensional medium with 
n  as optical index, the density of modes per length and pulsation unit is constant 

and is expressed as 
c
n

d
dN

πω
2= . In the presence of a periodic modulation of the 

optical index, this relation is simply written as follows: 

=
ω

π
d
dN

2
1/vg 

(10) 

The density of modes tends to infinity at the edges of the PBG. This is another 
manifestation of the existence of stationary waves whose slowing down results in 
the accumulation of electromagnetic energy. The density of modes is naturally zero 
inside the PBG. 
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1.3.3. Dynamics of Bloch modes 

Dispersion characteristics apply in principle to periodic structures of infinite size 
and in stationary regime. However, the time dimension underlies the previous 
analysis of dispersion characteristics, especially when it comes to the coupling 
dynamics of optical modes and to group velocity; in addition the time dimension is 
inevitable in real structures of finite size. A rigorous approach would involve 
solving time-dependent Maxwell equations; we do not intend to analyze this aspect 
in detail here: intensive work in the relevant community is needed, given the ever 
increasing modeling requirements demanded by recent developments in the field of 
Microphotonics3. We will restrict ourselves to a brief discussion of optical mode 
dynamics, based on simple analytical relations. 

1.3.3.1. Coupled mode theory 

The coupled mode theory was originally proposed by Kogelnik and Shank in 
1972 for the analysis of distributed feedback lazers (see also TAM 1988): this 
analytical theory is well suited to the modeling of microphotonic structures whose 
operation is essentially based on coupling phenomena between optical modes. Let us 
briefly recall that it is usually associated with a matrix formalism, which allows for 
the cascading of elementary building blocks in order to assemble more complex 
systems. The basic ingredients of the theory are summarized below. Coupling 
between two modes is described by a coupling constant )( 1−cmκ , which depends on 
the magnitude of the periodic structuring of the optical index and on the overlap 
integral to the electromagnetic field distributions of the two modes. κ

1=cL  is the 

coupling length: in other words, enough “time” is given for coupling to occur, 

provided that the medium size exceeds cL . Coupling time 
κ

τ
c
n

c = , where n is the 

“average” optical index of the medium. The PBG opened up by coupling between 
two modes (see section 1.3.2) is written: 

c
PBG

τ
π4≈  

(11) 

                                   
3 Note the availability of simulation tools, which make use in particular of the FDTD (Finite 
Difference Time Domain) method, which allows for the 3D simulation of finite size structures 
in the spatial, spectral and temporal domains. There is still a long way to go, however, before 
efficient design tools for microphotonic devices are available. 
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It can also been seen that, at the photonic band edges where the group velocity is 
null, the curvature α  (or second derivative of the dispersion characteristics) is 
proportional to cτ . 

1.3.3.2. Lifetime of a Bloch mode 

The concept of lifetime τ  of a Bloch mode in a 1D structure is meaningless 
unless its size L  is limited (in the absence of any other loss mechanism). This 
aspect has already been discussed in section 1.2.3: we have shown that the limited 

lifetime of the mode results in a spectral widening 
τ
πδω 2= ; we have also shown 

that it is possible to relate δω  (by differentiating the dispersion characteristics) to 

the “de-localization” of the mode in the reciprocal space 
L

k πδ 2= , which results 

from its “localization” in real space (the mode is allowed to extend over L). 

The differentiation of the dispersion characteristics around an operation point 
can be written: 

...)(
6

)(
2

32 +++= kkkvg δβδαδδω  
(12) 

It can be expressed in terms of the lifetime of the mode within the structure of 
limited size as below: 
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(13) 

We find, as expected, 
gv

L=τ , in a homogeneous medium, where the group 

velocity gv  is independent of the wavelength (and coincides with the phase 

velocity). In a structured medium and, in particular, around an extreme of the 
dispersion characteristics where the group velocity of the mode, so called slow 
Bloch mode, vanishes, it is found (limiting the series to the second order expansion): 

πα
τ

2L=  
(14) 

The lifetime of the slow Bloch mode increases as 2L  and is proportional to the 
inverse of the curvature around the extreme. Note that the smaller the curvature, or 
the stronger the coupling between optical modes giving rise to the extreme in the 
dispersion characteristics, the longer the lifetime of the resulting slow Bloch mode: 
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the curvature α  at the extreme is the relevant parameter for the description of the 
slowing down of photons within the periodic structure. 

1.3.3.3. Merit factor of a Bloch mode 

The general definition of the merit factor of an optical mode (see section 1.2.3, 
equation (6)) results in the following relations: 

g
g

n
v
cF == , 

(15) 

in linear regime, where gn  is called the group optical index, corresponding to the 

group velocity :gv  

πα
LcF = , 

(16) 

at an extreme of the dispersion characteristics where the curvature is α . 

One therefore finds that the merit factor is independent of the length of the 
structure in linear regime, whereas it increases linearly with the length at the 
extreme, steeper as the curvature at the extreme is smaller. This manifestation of the 
lateral “confinement” of the mode (although de-localized) should be familiar to the 
reader: it was discussed in section 1.2.4, concerning the behavior of optical modes in 
a planar cavity around the extremes of the dispersion characteristics (for 0=k : see 

footnote 2). Confinement is now achieved owing to the sole presence of periodic 
structuring, resulting in the existence of slow Bloch modes, enabling the build-up of 
electromagnetic energy in a confined space, over a long period of time: it manifests 
itself by a resonance in the spectral domain, arising from the presence of (slow 
Bloch) modes which are intrinsically de-localized, although efficiently confined in 
practice. 

1.3.4. The distinctive features of photonic crystals 

At the present stage and from the analysis in the previous section, although 
restricted to 1DPC, it is possible to derive the principal characteristics that make up 
the distinctive features of photonic crystals, in general. 

Let us remind ourselves that photonic crystals are strongly corrugated periodic 
structures (large magnitude of the periodic modulation of the optical index). This 
results in a strong diffractive coupling rate between optical modes and by significant 
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disturbances of the dispersion characteristics as compared to a homogeneous 
medium. These disturbances manifest themselves by the presence of: 

– large photonic band gaps (PBG); 
– flat photonic band edge extremes (where the group velocity vanishes) with low 

curvature (second derivative) 
PBG

1≈α . 

These are the basic ingredients which make photonic crystals the most 
appropriate candidates for the production of a wide variety of compact photonic 
structures. 

“De-localized” slow Bloch modes, discussed in the previous section, which lend 
themselves to the production of compact resonant structures, are one example of that 
matter. Another example was provided by the compact and highly reflective Bragg 
mirror, formed with a small number of quarter-wavelength high index contrast pairs. 

We now come to the use of 1DPC, operating in the field of PBGs, for the 
production of compact resonant structures based on “localized” optical modes. 

1.3.5. Localized defect in a photonic band gap or optical microcavity 

Ideal 1D periodic structures have been considered so far. If the “crystalline” 
periodicity is broken locally, this results in the formation of a “localized” defect 
which manifests itself as a “localized” resonant optical mode within the PBG, in 
quite the same way as a crystalline defect introduces localized defect states in the 
band gap of crystalline semiconductor material. According to optics terminology, 
the localized defect is called an optical microcavity where the corresponding 
localized optical modes are confined. A well-known example is the Bragg mirror, 
where the optical thickness of one of its pairs is changed with respect to the quarter-
wavelength configuration, as illustrated in Figure 1.12. 

Cavity modes are determined by the conditions for resonance, which can be 
expressed as: 

π
λ
π 22)2( 21

1 pDn =Φ+Φ+× , 
(17) 

where 2,1Φ  are the phases of mirror reflectivity: at resonance, photons do not 
experience any phase difference (modulo π2 ) after a round trip in the cavity. For 
Bragg mirrors whose configuration wavelength corresponds to the operation 
wavelength (around the center of the PBG), relation (17) is simply written as: 



Photonic Crystals: From Microphotonics to Nanophotonics     37 

 

12n
pD λ=  

(18) 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.12. Optical microcavity formed between two Bragg reflectors 

1.3.5.1. Donor and acceptor levels 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.13. Donor or acceptor type localized state 

Figure 1.13. Donor or acceptor type localized state 

A defect can be created, for example, by increasing the high index portion of a 
quarter-wavelength pair: this results in a shift in air band levels towards the PBG 
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and the introduction of so called donor type localized levels in the latter. When the 
low index portion of the pair is widened, the localized levels are acceptor-like, and 
originate from the dielectric band. 

1.3.5.2. Properties of cavity modes in a 1DPC 

A defect in a 1DPC is an object with 0 dimensionality in 1D space. Properties of 
localized optical modes in an 0D object have already been discussed in section 1.2.4. 
The spectral density of modes tends to infinity at resonance wavelengths; this is also 
true for the merit factor F, in the absence of any optical loss processes, which would 
limit the optical mode lifetime τ  (which is also infinite in the absence of losses). 
This is not true in practice: for example, for a cavity formed between two Bragg 
reflectors with finite thickness, optical losses arise from the escape of photons across 
the mirrors whose reflectivity R is lower than 1. The lifetime of optical cavity modes 
and their merit factor can then be expressed as:  

c
nD

R
×

−
≅

1
1τ , 

R
nF
−

≅
1

, 

(19) 

where n is the optical index of the cavity material. 

The density of modes is no more infinite at the resonance wavelength and the 
spectral response is widened as shown in Figure 1.14. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.14. Optical mode density in a cavity formed between two reflectors 
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The average density of modes is 
πc

nD  (the inverse of the free spectral range 

between two successive cavity modes) and increases with cavity size (it is constant 

and equals 
πc
n , when expressed per length unit): the number of cavity modes 

increases therefore with size, in a given spectral range. 

For 0=R , that is with no reflectors, optical mode density at resonance coincides 
with the average density of modes (which itself coincides with that of a 
homogeneous medium), and spectral widening corresponds precisely to the free 
spectral range between two cavity modes: we are back to the state continuum in 1D 
homogeneous free space. 

1.3.5.3. Fabry-Pérot type optical filter 

An optical cavity formed between two Bragg reflectors with finite thickness 
behaves like a wavelength selective filter. An incident plane wave is essentially 
reflected except for the resonant wavelength of the cavity, where it may couple with 
the cavity modes and be, at least in part, transmitted across the structure. If the latter 
is symmetrical (identical reflectors), the transmission can reach 100% at resonance 
wavelengths. The selectivity of the filter (spectral width of the transmission 
spectrum) is equal to the spectral widening δω , which is related to the finite 
lifetime of the cavity mode (see equation (19) and expression of δω , Figure 1.14). 
This type of device is usually called a Fabry-Pérot cavity filter. Filter selectivity is 
therefore controled directly by the reflectivity of the Bragg mirrors (in the absence 
of any other source of optical losses). Wavelength tuning of the filter can be 
achieved simply by changing the optical thickness of the cavity (that is its physical 
thickness and/or its optical index). Use of photonic crystal-type Bragg reflectors, 
formed with high index contrast pairs, enables the production of strongly resonant, 
yet extremely compact, structures: a limited number of quarter-wavelength pairs is 
required to produce high reflectivity Bragg mirrors (SPI 98). 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.15. Micrograph and spectral response of a tunable Fabry-Pérot filter formed with 
high index contrast air-semiconductor pairs (Collaboration LEOM-ECL-CNRS/ATMEL) 
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Figure 1.15 shows an example of a Fabry-Pérot filter, formed with high index 
contrast air/semiconductor membrane pairs. This filter can be tuned by changing the 
thickness of the air cavity layer via electrostatic actuation. As to the selectivity of 
the filter, Bragg mirrors with only two quarter-wavelength pairs are sufficient to 
achieve a spectral bandwidth of around one nanometer. 

1.3.6. 1D photonic crystal in a dielectric waveguide and waveguided Bloch modes 

A 1D photonic crystal does not actually exist, in the same way that a 1D space 
does not exist. A closer representation of the real world would be to imagine, in 3D 
real space, a 1D structuring, where one would consider the sole plane waves having 
a propagation vector along the direction normal to the iso-optical index planes. This 
implies an infinite structuring depth, which is not realistic either. An additional step 
towards reality consists of considering a 1D structuring of a 2D object in real 3D 
space. The planar dielectric waveguide, where photons are so called “index guided”, 
already presented in section 1.2.4, is a well-known example of a 2D object. If we 
now admit, as a final step in non-reality, that the lateral size of the 1D structuring is 
infinite and that the only considered propagation is parallel to the periodic index 
gradient, it is possible to represent this situation with a 1D propagation in a 2D 
world. The dispersion characteristics )(kω  of optical modes in a planar waveguide 

free of structuring were presented in Figure 1.6. In the presence of a 1D periodic 
structuring, dispersion characteristics are deeply modified, as a result of a variety of 
coupling processes which affect the propagation of optical modes in the dielectric 
waveguide. The corresponding eigen waveguided modes are also called Bloch 
modes, and their symmetry properties along the direction of propagation are similar 
to those presented in the case of an ideal 1DPC (see section 1.3.1). 

1.3.6.1. Various diffractive coupling processes between optical modes 

We observe, first, diffractive coupling between propagating and counter-
propagating waves, which may now communicate as described in section 1.3.2 in 
the case of an ideal 1DPC, and the resulting effects on dispersion characteristics 
(photonic band gap and band edge extrema, etc.). A second essential consequence of 
diffractive processes lies in the new channels opened up to waveguided modes for 
communication with radiated modes in 2D free space: this may occur as soon as the 
discrete translation of the dispersion characteristics induced by diffraction can shift 
them, at least partially, above the light-line. This can be represented by a simple 
geometrical operation consisting of the successive folding of dispersion 

characteristics around the vertical axis of equation 
a

k π±=  and, consequently, 

gathering them within the first Brillouin zone (see Figure 1.16). 
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Figure 1.16. 1D photonic crystal in a dielectric waveguide: coupling processes between 
propagating and counter-propagating waves, and between waveguided and radiated modes 

In these conditions, loss-less and pure waveguided modes correspond only to the 
portions of the dispersion characteristics lying within the triangular area (whose 
three sides are drawn in bold in Figure 1.16). For the other portions located above 
the light-line, the waveguided modes are “lossy”, which means that their lifetime in 
the waveguided state is finite: they will end up lost in the radiation continuum of the 
free 2D space. Note that the room available for ),( kω  couples corresponding to 

pure waveguided modes is much larger as the effective index of the guide is higher, 
with respect to that of free space. 

Finally, there exists a further diffractive coupling process which allows for 
communication between different order waveguided modes corresponding to 
different dispersion characteristics. These waveguided modes would otherwise 
ignore each other in a non-structured waveguide, since they represent eigen 
orthogonal solutions of Maxwell equations (applied to the uniform non-periodic 
waveguide). Two conditions should be met in order for the coupling to occur. First, 
the diffraction condition must be satisfied, that is to say that, following the 
translation of the relevant dispersion characteristics, there exists a crossing point, 
which determines the couple ),( kω  where the coupling can be achieved (Figure 

1.17). Second, symmetry conditions have to be met, in such a way that the overlap 
integral to the electromagnetic distributions of the two modes, weighted by the 
spatial distribution of the periodic index, is not zero. For example, if the optical 
index vertical distribution is even, then the sole modes with identical (even or odd) 
vertical symmetry will be able to couple each other (even modes in the example 
given in Figure 1.17). These mode coupling processes result in the opening up of 
new PBGs with new photonic band edge extrema, which do not necessarily coincide 
with the Brillouin zone boundaries, that is in the existence of slow Bloch modes at 

ω
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extrema of the dispersion characteristics which do not necessarily coincide with high 

symmetry points (
a

pk π±≠ ). 

ω

Radiation
modes

ω

Mode 3 - even

Mode 2 - odd

Mode 1- even

LL

π/a 2π/a

Light-line

k
k

 

Figure 1.17. Coupling between waveguided modes of different orders (here with the same 
even symmetry: the only crossing point where coupling is possible is shown in the circle) 

1.3.6.2. Determination of the dispersion characteristics of waveguided Bloch modes 

The reader will have concluded that the dispersion characteristics or band 
structure of a 1DPC formed in a planar waveguide are relatively complex, given 
that, in addition, one obtains different characteristics for the two TE (in plane 
electric field and transverse magnetic field) and TM (vice versa) polarizations. 

Different methods of band structure calculation are available. A simple 
approach, called the effective index method, provides satisfactory results: it consists 
of the use of an effective index for each mode (evaluated in the non-structured 
waveguide) and in the resolution of Maxwell equations in the periodically structured 
space, with the appropriate dimension (1D, for example, in the present case). 

One may also consider a more rigorous method, the so called plane-wave method 
with “supercell”, which is used frequently (VAS 02): this consists of the resolution 
of Maxwell equations in a space (here 2D), periodically paved with elementary cells 
of rectangular symmetry, which include the waveguide and a portion of the 
surrounding space: the period along the direction of propagation coincides with that 
of the PC structuring, whereas it is large enough in the normal direction to consider 
that the electromagnetic field is negligible at the boundary of the supercell. This 
method is well suited to describing waveguided modes below the light-line. 
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1.3.6.3. Lifetime and merit factor of waveguided Bloch modes: radiation optical 
losses 

The dynamics of guided Bloch modes below the light-line are very similar to 
those described in section 1.3.3 for the simple case of an ideal 1DPC: they can also 
be described using the coupled mode theory, and using dispersion characteristics. 
One may, in the same way, differentiate the dispersion characteristics in order to 
determine the mode lifetime and their merit factor as well, in a structure with a 
limited size L, thus ending up with relations (13) – (16): we remember, therefore, 
that their lifetime (their “time of flight”) within the structure is an increasing 
function of L (increases like L in linear regions of the dispersion characteristics, like 
L2 at extrema with finite curvature).  

As to Bloch modes which may couple to the radiated continuum, that is to say 
whose dispersion characteristics can be “folded” above the light-line by diffraction 
processes, their lifetime will be necessarily limited to a maximum value, which is 
their coupling time constant cτ  with radiated modes. The lifetime of Bloch modes 
“above the light-line” can then be written: 

cg τττ
111 += , 

(20) 

where 
gτ
1  is given by the general relation (13), which expresses the lifetime in 

absence of coupling with the radiated continuum. We emphasize here the radiation 
optical losses that may significantly affect PC-based devices for integrated optics, 
which are meant to operate in the waveguided regime. Another way of formalizing 
these effects is to define the minimum distance cL  which can be explored by 
photons before being lost as a result of radiation losses. One find simply cgc vL τ=  

in linear regions of the dispersion characteristics and ccL πατ=  at extrema, in the 
present case of a 1DPC formed in a planar waveguide (see equation (13)). It must be 
pointed out that around an extremum where the Bloch modes are slowed down, this 
distance can be strongly reduced in a PC, where the curvature α  at an extremum 
can be made very weak, as discussed in section 1.3.4. This remark is of major 
importance, if one considers the reverse situation where one couples radiated modes 
to waveguided modes, that is to say when one injects photons in a waveguide from 
free space via diffractive coupling: it is clear that, with a PC, this function can be 
achieved in a very compact way, unlike with traditional diffraction gratings; we will 
return to this point in more detail later in the chapter (section 1.7.1). 
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1.3.6.4. Localized defect or optical microcavity 

As in the case of an ideal 1DPC, the introduction of a defect in a 1DPC formed 
in a planar dielectric waveguide can result in an optical microcavity: it consists here 
of an object with 0 dimensionality, formed in a 1D structure (waveguided 1DPC), 
considered itself in a 2D space. A schematic view of the microcavity is shown in 
Figure 1.18, together with the corresponding dispersion characteristics: the latter are 
simply reduced to a horizontal straight line, which corresponds to the resonance 
frequency of the cavity. This results from the fact that the defect, being localized in 
real space, is de-localized in the k  vector reciprocal space and that all k  

components are available for the cavity modes: a localized defect can therefore 
potentially couple with any other mode and, in particular, with the modes of the 
radiation continuum, using the k  components corresponding to points of 

dispersion characteristics located above the light-line (Figure 1.18). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.18. Dispersion characteristics of a localized defect or of an optical cavity: there 
always exist components of the k  vector located above the light-line 

The coupling rate between the defect and another mode depends naturally on the 
distribution function of the k  Fourier components; this is true for coupling with 

radiated modes, which is determined by the proportion of the Fourier components 
located above the light-line and defining the so called radiation diagram of the 
defect. It is possible, in principle, to design a defect in such a way as to control the 
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radiation diagram4 in order, for example, to minimize the distribution of k  vectors 

above the light-line and, therefore, to reduce optical losses in free space. 

Coupling of the cavity modes with the radiation continuum tends to reduce their 
lifetime, which results in the spectral widening of their resonance. Let us return to 
the simple case of the Fabry-Pérot cavity formed between two Bragg reflectors of 
limited size (which is equivalent to creating a defect in a 1DPC with limited 
extension) – but this time in the waveguided configuration (Figure 1.19). The 

lifetime τ  of cavity modes is not only limited by the escape rate 
Rτ
1  of photons 

across the Bragg reflectors (derivable from relation (19)), but also by the coupling 

rate 
cτ

1  with the radiated modes; it is therefore given by the relation: 

cnD
cR

ττ
1)1(1 +−=  

(21) 

 
 
 
 
 
 
 

Figure 1.19. Microcavity or defect in a 1DPC, formed in a dielectric waveguide 

The structure described schematically in Figure 1.19 may also be used as an 
optical filter in waveguided configuration. The art of the designer lies in his ability 
to propose configurations where optical losses are kept to a minimum, resulting in 
strongly resonant microcavities, useful for the production of very selective filters, as 
well as for the control of spontaneous emission in an active medium. We will return 
to this point in the section devoted to 2DPC (section 1.6.2). 

                                   
4 Remember that the distribution of wave-vectors and the spatial distribution of the 
electromagnetic field relate to each other through a Fourier transformation. 

D
R R

n

a D



46     Nanophotonics 

1.3.7. Epilogue 

We have reached the end of our discussion of the basics of one-dimensional 
photonic crystals. The principal concepts which hold for photonic crystals in general 
have been presented. The extra ingredient brought about by photonic crystals with a 
dimension larger than one lies essentially in the extra control of light which they 
may provide in terms of angular resolution.  

The illustration given in Figure 1.20 provides a classic example of the limitations 
of 1D photonic crystals with respect to angular resolution: a Bragg mirror does not 
usually have the capacity to fully reflect the light in a given wavelength spectral 
range for any angle of incidence. The rest of this chapter is devoted to photonic 
crystals with dimensions larger than one, principally 2DPC (sections 1.5, 1.6 and 
1.7), after a very brief trip into the world of 3DPC (section 1.4). 
 
 
 
 
 
 
 
 
 

Figure 1.20. A limitation of Bragg mirrors: their transfer function depends on the angle of 
incidence, which usually prevents the formation of a PBG for all propagation directions 

1.4. 3D photonic crystals 

1.4.1. From dream … 

 
 
 
 
 
 
 
 
 

Figure 1.21. A 3D photonic crystal may behave as an omni-directional perfect reflector in a 
finite spectral bandwidth. As shown in the figure, there exists a range of wavelengths (cross-

hatched area) where reflectivity is uniform, for several directions of propagation 
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A 3D photonic crystal’s optical index shows high contrast periodic modulation 
along the three dimensions of space. The main consequence lies in the new 
opportunity given to the eigenstates of three dimensional space to experience strong 
mutual coupling via diffraction processes, whereas the plane waves, eigenmodes of 
the homogeneous space with continuous transitional symmetry, ignore each other. 
Here we recall all the concepts and specifications of 1DPC analyzed in detail in 
section 1.3, but this time along the three dimensions of real space. As a celebrated 
example (this is the usual way in which 3DPC is introduced, though it is very 
restrictive), a 3D PC may show a full PBG for all directions of space, which means 
that it behaves as a perfect reflector for all angles of incidence, as illustrated in 
Figure 1.21. 

The concept of 3DPC was introduced in 1987 by E. Yablonovitch (YAB 87) and 
demonstrated experimentally for the first time in the field of microwaves in a 
photonic crystal called “Yablonovite” (YAB 91). The initial motivation was to gain 
full control of the spontaneous emission of an active emitting material: for example 
it can be fully inhibited if the active material is inserted in a photonic crystal 
showing a regime of PBG in a spectral range larger than the emission spectrum of 
the material in homogeneous vacuum; the active material may also be inserted in an 
optical cavity resulting from the formation of a defect in the 3DPC (under the same 
principle as in the case of a 1DPC), and be left the limited choice of a few well 
controled (numerical and spectral characteristics) cavity modes to take care of 
radiated recombination processes. 

In the field of Micro-nanophotonics, the quest for the “grail”, motivated by new 
exciting developments in the fields of Quantum Electrodynamics and of Quantum 
Information (very low threshold lazer micro-sources, strong coupling: see Chapter 
4), consists of inserting “a quantum-box” type nano-emitter in a “photonic box” or 
microcavity, which would accept only one optical mode in the emission spectrum of 
the emitter, with a perfect spectral overlap. 

3DPC are potentially the best candidates for those purposes. Other brilliant 
applications can be contemplated, in principle, such as 3D loss-less perfect guiding 
of photons, by opening up a corridor across a forbidden zone, etc. 

1.4.2. … to reality 

The fabrication technology of 3DPC in the optical domain is extremely complex. 
The only examples of mass production of such structures can be found in nature, 
owing to the miracles (or to the 500 millions years of research) of natural 
morphogenesis. Butterfly wings provide a brilliant example of nature’s 
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achievements in this respect: their seductive colors are produced by the interaction 
between ambient light and their natural micro-structuring (Figure 1.22). 

A great deal of technological research has been devoted to the production of 
artificial 3DPC. Figure 1.23 shows a few examples of recent achievements (wood-
pile structure, inverse opal, 3D hole matrix similar to the famous “Yablonovite” etc. 
– see for example (CUI 99; LOU 05) and references therein). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.22. An example of a 3D photonic structure: butterfly wings 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.23. Examples of artificial 3DPC 

SEM view

Lin et al.

Campbell et al.

Cuisin et al.
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However, 3DPC should be considered as laboratory objects; their transformation 
into high performance photonic devices is still some way ahead. As a consequence, 
most R&D efforts have concentrated on 2DPC, which is far more promising in terms 
of practical applications, at least in the short/medium range. 

1.5. 2D photonic crystals: the basics 

A two-dimensional photonic crystal is a virtual two-dimensional medium whose 
optical index is periodically modulated: such a medium should not be confused with 
an object with a dimensionality reduced to 2, in a real world of dimension 3, as 
described in section 1.2.4. 

This imaginary situation could be illustrated approximately, for example, by a 
dielectric material dug with a periodic lattice containing deep and parallel cylindrical 
holes (the depth should be much larger than the lattice constant5), the wave 
propagation being considered solely along directions normal to the holes. 

A cross-section of such a periodic lattice, with discrete triangular transitional 
symmetry, is shown in Figure 1.24. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.24. A cross-section of a 2DPC with triangular symmetry 

                                   
5 This configuration has been realized experimentally in the so called macro-porous silicon 
approach (GRU 96; ROW 99). 
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For the rest of this chapter we will use the triangular lattice case, which is widely 
used (though not exclusively so) in practice as an illustrative example. 

Two of the three vectors )3,2,1( =ja j  in Figure 1.24 allow for a complete 
description of symmetry properties of the 2DPC in real space, and in particular of 
the permittivity of the periodic medium: 

)()( rar j εε =+  (22) 

1.5.1. Conceptual tools: Bloch modes, direct and reciprocal lattices, dispersion 
curves and surfaces 

In the following paragraphs we will use the conceptual tools we used for the 
analysis of 1DPC, now applied to 2DPC. 

1.5.1.1. Bloch modes 

Eigenmodes or solutions of Maxwell equations in a two dimensional periodic 
medium are also Bloch modes, which possess the same translational discrete 
periodic symmetry properties. Bloch theorem applies in the same way and the 
electromagnetic field is written: 
 

)()(
)()( ).(

jkk

k
rki

k

aruru
ruerH

+=
=

 with, 
(23) 

)(ruk  can therefore be written according to a Fourier expansion: 

∑=
jm

rimb
jmkk

jecru
,

,,)(  (24) 

 
where jb  is a base vector of the reciprocal lattice, described in detail in the 

following paragraphs, with 15.12
3

22 ×≈×=
aa

b j
ππ  ( a  is the modulus of the 

base vector of the direct lattice). 
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1.5.1.2. Direct and reciprocal lattices 

Figure 1.25 shows again the triangular periodic lattice in real space and its 
reciprocal representation in k  vector space. ΓΜ  and ΓΚ  stand for the two 
principal so called high symmetry directions of the lattice. 

Any vector of the reciprocal space can be projected on the base vectors and 
expressed as ∑

jm
jjbm , where jm  is an integer. 

We recall briefly the essential properties of Bloch modes, already discussed for 
1DPC, but extended this time to the case of a 2DPC: 

– Two Bloch modes whose k  vectors differ by ∑
jm

jjbm  are equivalent: this is 

the mathematical translation of two dimensional diffraction processes. 
– Fourier components (equation (24)) include the physical reality of diffraction 

processes induced by the periodic structure of the photonic crystal. They also 
contain information about the possibility of diffractive coupling with other modes as 
well as about the radiating characteristics of the mode, in case of coupling with the 
“radiated continuum” (which we will encounter again in a real 2DPC, formed in a 
planar dielectric waveguide, in section 1.5.2). 

 
 

Figure 1.25. Direct and reciprocal triangular lattices. The two so called ΓΜ  and ΓΚ  high 
symmetry directions of the crystal are shown. The first Brillouin zone is included 

 in the hexagon drawn in the reciprocal lattice. b  is the module 
of the base vector of the reciprocal lattice 
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1.5.1.3. Dispersion curves and surfaces 

It is appropriate here to speak in terms of dispersion surfaces ),()( yx kkk ωω = , real 
space being two-dimensional. In a non-structured homogeneous space, the dispersion 
surface is simply a conical surface (Figure 1.26), whose equation can be written: 

22
yx kkc +=ω , (25) 

where c is the light velocity in the homogeneous medium. 

Diffraction processes induced by high index contrast 2D periodic structuring 
affect the dispersion surfaces significantly, in the same way as in the case of 1DPC: 
one also observes the formation of photonic band gaps, whose related band edges 
coincide with low curvature extrema of surface dispersion characteristics. These 
characteristics are also the result of diffractive coupling processes between optical 
modes, induced by periodic structuring. Dispersion surfaces (or photonic band 
structures) are periodic and can be fully described (folded) within the so called first 
Brillouin zone according to Solid State Physics terminology, corresponding to the 
dark gray hexagonal surface of Figure 1.25. 
 
 
 
 
 
 
 
 
 

Figure 1.26. Conical surface dispersion of a two-dimensional homogenous medium 

There exist various simplified representations of dispersion surfaces, whose full 
3D visualization does not allow for simple extraction of essential characteristics. 

One may plot, for example, iso-frequency curves (which are plain circles with 
c
ω  

radius in a homogeneous medium), which are the cross-section of the dispersion surface 
with planes of a given ω coordinate. Iso-frequency curves are no longer isotropic, as in 
the homogeneous space, and are subject to symmetry rules dictated by the periodic 
lattice, in particular along the high symmetry directions. The group velocity is now 
written: 

ωkgv ∇= , 
(26) 

ω
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ky
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and its direction, which coincides with the direction of energy propagation, is 

normal to the iso-frequency curves. Thus, in general, phase velocity k
k

v ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
= 2

ω
ϕ  

and group velocity do not travel in the same direction. We will comment below on 
the consequences, in terms of potential applications, which may result from these 
non-conventional properties, especially around the extrema of the dispersion 
characteristics. 

Another widely used representation scheme (Figure 1.27) consists of plotting the 
dispersion characteristics along a given propagation direction of Bloch modes, 
obtained from the cross-section of dispersion surfaces with the plane defined by the 
frequency axis and the direction of propagation. This scheme is usually applied, in a 
concentrated yet partial manner, by restricting the propagation directions to the sole 
high symmetry directions ΓΜ  and ΓΚ  (JOA 95)6; for other directions (between Μ  
and K), the diagram includes only the points corresponding to the band edges or, in 
other words, corresponding to the Brillouin zone boundary (where optical waves 
propagating in opposite directions can interfere via diffractive coupling). Along high 
symmetry directions band edges show “full” extrema. This representation scheme is 
illustrated in Figure 1.27, where a full photonic band gap can be observed (for the TE 
polarization, gray area), at the first Brillouin zone boundary. 
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Figure 1.27. Partial representation of the dispersion characteristics of a 2DPC. The modules 
of the K vectors (⏐ΓM⏐ and ⏐ΓK⏐) are given at the first Brillouin zone boundary for the high 

symmetry directions (b is the module of the base vector of the reciprocal space) 

                                   
6 Note that this restriction may turn to an insufficient representation, especially in case of 
complex basic elementary structures. 
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The photonic band gap increases with the coupling rate between optical modes 
induced by the periodic structuring and, therefore, with the magnitude of its 
modulation, as already discussed in the case of 1DPC (section 1.3.2). In the case of a 
periodic array of holes in a dielectric matrix, the coupling rate increases with the 
“air” filling factor f (to the extent that the holes are fully defined and do not join); 
this is also true for the PBG as illustrated in Figure 1.28, where the band edge curves 
are shown as a function of f (the PBG area is white). Note the use of normalized 
coordinates 

λ
a , where a  is the lattice parameter of the triangular lattice, for the 

frequency, or energy, axis (JOA 95). 
 

 

Figure 1.28. Photonic band gap as a function of the hole filling factor 
(from Le Vassor D’Yerville, GES, Montpellier) 

1.5.2. 2D photonic crystal in a planar dielectric waveguide 

Let us recall that an ideal 2DPC (two-dimensional object in a two-dimensional 
world) formally has no real existence and that a representation closer to reality 
would be to imagine, in a real 3D space, a 2D structuring of the latter, where the 
only directions of propagation to be considered would be along the index “gradient 
vector”. This implies an “infinite” shape ratio of the structuring (holes), which is not 
realistic either. A last step towards reality consists of considering a 2D structuring of 
a 2D object in 3D real space (Figure 1.29): the planar dielectric waveguide where 
photons are “index guided”, that is to say vertically confined by the vertical profile 
of the optical index, already discussed in section 1.2.4 and exploited with 1DPC 
(section 1.3.6), is the well known example of a 2D object, which we will again 
examine below. 

a/
λ 

f (air %) 
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Figure 1.29. Schematic representation of a 2DPC formed in a planar dielectric waveguide 

All the concepts presented in the case of 1DPC formed in a planar dielectric 
waveguide essentially apply to 2DPC. One finds again (and again) diffractive 
coupling processes and their great impact on dispersion characteristics. Figure 1.30 
shows an example of dispersion characteristics (the coordinates are normalized) of a 
triangular 2DPC formed in dielectric membrane similar to that shown in Figure 1.29. 

The light-line discussed in detail in the case of 1DPC is now a light surface or a 

light cone which meets the equation 22
yx kkc +=ω , where c  is the light velocity in 

the surrounding homogeneous medium. In the partial representation of surface 
dispersions given in Figure 1.30, the light cone is also partially represented by the 
line which separates the radiated continuum area (gray) from the area which 
corresponds to loss-less Bloch modes (white). The dispersion characteristics of lossy 
Bloch modes (which may couple with radiated modes) are not plotted. 
 

Gap from 0.325 to 0.428

 
Figure 1.30. Dispersion characteristics of triangular 2DPC formed in a planar dielectric 

waveguide. The curves corresponding to waveguided Bloch modes below the light cone are 
solely represented (the area corresponding to the radiated continuum is shown in gray) 

Again we encounter the concepts of lifetime and merit factor of Bloch modes 
and the impact of radiation losses on the latter, already discussed in section 1.3.67. 
                                   
7 The concept of lateral extension of the Bloch mode is now translated in terms of the surface 
of the Bloch mode. For example, if one considers an operation point at an extremum of the 
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In summary, all the distinctive features and virtues of photonic crystals, already 
discussed in the simpler context of 1DPC and allowing for a fine engineering of 
optical modes, that is for their slowing down, their trapping and their spectral 
selection, using compact structures, may apply to 2DPC. The extra “dimension” 
brought by 2DPC is, however, essential: its importance lies in the considerable 
increase in degrees of freedom offered in terms of spatial and angular resolutions. 

For example, the shape of defects which can be introduced in the 2D lattice can be 
changed in an “infinite” number of ways: we will return to this particular aspect in the 
sections devoted to the building blocks of integrated photonics. Angular resolution is 
also a characteristic which becomes a virtue in 2DPC, opening the way to a wide range 
of applications, in connection for example with their non-conventional properties 
(dispersion, refraction), which manifest themselves at extremes of the dispersion 
characteristics (see for example (GRA 00)). This latter aspect is illustrated below, after 
a brief description of the so called super-prism effect. 

1.5.2.1. An example of the potential of 2DPC in terms of angular resolution: the 
super-prism effect 
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Figure 1.31. Normal refraction and super-refraction 

                                   
dispersion characteristics, where the curvature is α  and assumed isotropic, it can be shown 
easily that the maximum surface attainable by the corresponding “slow” Bloch mode is 

written cBMS ατ≈ , where 
cτ

1  is the radiation loss ratio. 
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“Normal” refraction, described in section 1.2.4, manifests itself by a deviation in 
the direction of propagation of a plane wave, when crossing the interface plane 
between two media with different optical indices 2,1n  : this deviation is dictated by 
the law of Descartes, which simply expresses the conservation of the component of 
the propagation vector parallel to the interface plane. As a result, the angle of 
incidence 1θ  of the wave originating from medium 1 is related to the angle of 
transmission 2θ  in medium 2 through the relation given in Figure 1.31. If the index 
of refraction 2,1n  of both media are weakly dependent on the frequency (weakly 
dispersive media), then the deviation angle 21 θθ −  is also weakly dependent on the 
frequency: the multicolor incident beam (white arrow) is only slightly dispersed in 
medium 2. 

If medium 2 is a 2DPC, a super-refraction or super-prism effect may manifest 
itself, in terms of a strong angular dispersion of the multicolor incident beam 
impinging onto the photonic crystal. 

This effect occurs when the “targeted” point of the dispersion characteristics of 
the 2DPC coincides with an extreme, for example the K point of the high symmetry 
direction ΓΚ , at the first Brillouin zone boundary, shown by the arrow in Figure 
1.31. All that remains to be done is to adjust, on the one hand, the central frequency 
of the incident beam to that of the K point and, in addition, its direction in such a 
way as to make the projection of the incident wave-vector along the interface 
direction (here, the ΓΚ  direction of the 2D PC) coincide with that of the ΓΚ  
vector (which corresponds to the retained direction of propagation in the 2DPC); in 
the case illustrated in Figure 1.31, this choice leads to 

2
ΓΚ≅ik . The close 

proximity of the extreme results in a strong variation rate of the wave-vector in the 
photonic crystal as a function of frequency, and, therefore, in a strong dispersion of 
its propagation direction, the module of its projection being set. This phenomenon 
may be used for an efficient spatial separation of the different wavelength 
components of the multicolor incoming beam. 

1.5.2.2. Strategies for vertical confinement in 2DPC waveguided configurations 

Two approaches are used to ensure the guiding or vertical confinement of 
photons. In the so called “substrate” approach, vertical confinement is “weak”, 
which means that the vertical structuring of the optical index is achieved by a low 
index contrast between the dielectric cladding and core layers. Typically the core 
guiding layer is a semiconductor layer (through which the 2DPC is etched), 
epitaxied onto a semiconductor substrate, with a slightly lower optical index. A 
semiconductor cladding or barrier layer (with a slightly weaker optical index than 
the substrate) may be inserted in between for a fine adjustment of the vertical 



58     Nanophotonics 

electromagnetic distribution. This is the usual configuration for classical integrated 
optoelectronics based on III–V compound semiconductors. The substrate approach 
is therefore fully compatible with the classical technology currently in use. It 
enables us to take advantage of the well controled coupling schemes between the 
devices and input-output optical fibers, owing to the relatively comfortable thickness 
(around 1–2µm, for monomode operation in the 1.5µm wavelength range) of the 
guiding or vertical confinement zone. There are drawbacks to this approach, 
however: it requires us first to control the fabrication of the holes of the 2DPC with 
a very large shape ratio; the depth of the holes must indeed exceed significantly the 
thickness of the guiding zone in such a way as to minimize optical losses in the 
semiconducting substrate (LAL 01); in addition, the large index of the cladding 
substrate results in a light line with a rather weak slope (like the inverse of the 
optical index), which leaves very little room for the pure loss-less waveguided 
modes, which are not allowed to couple with radiated modes below the light-line. In 
the so called “membrane” approach, vertical confinement is strong: guiding of light 
is achieved in a high index semiconductor membrane surrounded by low index 
cladding or barrier layers (for example an insulator such as silica, or simply air). The 
virtues and drawbacks of the substrate approach become precisely the drawbacks 
and virtues of the membrane approach: in monomode operating conditions the 
membrane is very thin – around a fraction of a µm; the result of this is that low loss 
coupling schemes with an optical fiber are not easily achievable; however, the 
positive aspect of this lies in the relaxed technological constraints for the fabrication 
of the 2DPC (holes with an approximately uniform shape ratio). In addition, one 
may rely on a “reservoir” of waveguided modes below the light-line that is far more 
comfortable than with the substrate approach. In addition, strong vertical 
confinement, leading to a reduced volume of modes, results in a substantial increase 
in their merit factor. But the essential asset of the membrane approach will be 
revealed fully in section 1.7, where 2.5D Microphotonics will be briefly discussed: 
its rationale lies in particular in the “harmony” that is clearly apparent between the 
lateral structuring (2D PC) and the vertical structuring in terms of optical index 
contrasts. We will see that this particular feature enables us to contemplate with ease 
coupling between waveguided modes and radiated modes, which is otherwise 
considered to be a problem. The membrane approach, in this respect, enables tight 
control of this coupling and its full exploitation, thus opening the way to a 
considerable widening of the functionality provided by 2DPC, no more restricted to 
2D operations but, instead, freed to the third dimension of space. 

In the rest of this chapter we will concentrate on the membrane approach, which 
lends itself to more accessible optical objects from the conceptual point of view. A 
schematic view of basic building blocks for the membrane approach is shown in 
Figure 1.32. 
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Figure 1.32. The basic building blocks of the membrane approach 

The membrane including the 2DPC may be suspended in air: this is the “ideal” 
situation from the basic study point of view. For practical applications, where the 
thermal budget should be considered carefully, bonding of the membrane on a low 
index substrate (silica for example) is to be applied. 

In the latter situation, advantage is also taken of improved mechanical stability as 
well as easier technological conditions (for the electrical contacting of the devices, 
for example). These two situations will be considered in the following sections. 

1.6. 2D photonic crystals: basic building blocks for planar integrated photonics 

1.6.1. Fabrication: a planar technological approach 

An essential advantage of photonic integrated circuits based on 2DPC lies in 
their fabrication procedure which fits with the planar technological approach, 
familiar in the world of silicon microelectronics. Without sacrificing their 
generality, results presented as illustrations in the following sections concern 
essentially the cases of InP membranes either suspended in air or bonded onto 
silica on silicon substrate.  

This latter technological approach opens up promising prospects for 
heterogeneous integration of optoelectronics devices based on III–V compound 
semiconductors with silicon microelectronic circuits. The devices are designed for 
operation wavelengths of InP and related materials, that is in the 1.5µm range. 

1.6.1.1. 2DPC formed in an InP membrane suspended in air 

The heterostructure to be suspended is epitaxied on a semi-insulating InP 
substrate. It comprises a “guiding” InP layer with half-wavelength optical thickness 
(around 250nm) and may include active layers for emission or detection (for 
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example InAsP quantum wells or InAs based quantum box layers), located at mid-
height in the InP layer. The InP layer is formed on an InGaAs sacrificial layer, 
which is eliminated in order to suspend the former, leaving a quarter-wavelength air 
gap: the elimination of the sacrificial layer is achieved by applying a wet etch 
surface micromachining procedure. The thicknesses of the sacrificial layer and 
guiding layer are chosen so as to maximize the coupling of the active layer with 
fundamental TE waveguided mode (monomode operation) and to inhibit the direct 
coupling to radiated modes. Heterostructures with quantum box layers provide a 
variety of interesting features, especially a weak absorption of the guided light 
together with a wide emission spectral range at room temperature (LET 01): these 
characteristics allow for the exploration of the modal properties of 2DPC in a wide 
spectral range (1,250–1,650nm). 

The photonic crystal is fabricated using electron beam lithography, whose 
technological steps are described in detail in Pottier et al. 1999. The lattice 
parameter of the triangular 2DPC is about 500nm, and the filling factor of the holes 
ranges from 0.35 to 0.5. 

1.6.1.2. 2DPC formed in an InP membrane bonded onto silica on silicon by 
molecular bonding 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.33. Technological steps in the molecular bonding procedure 
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Figure 1.34. SEM micrographs of various integrated microphotonic devices based on 2DPC 

The heterostructure is similar to that described above. The InP substrate, 
including the heterostructure, is bonded by the SiO2-SiO2 molecular bonding 
procedure (see (MON 01) for a complete description of the technological procedure, 
developed at CEA-LETI): a schematic view of the successive technological steps is 
presented in Figure 1.33, which also shows a view of a full wafer bonded InP 
membrane. 

The InP substrate is eliminated by selective wet etching (HCl solution). The 
sacrificial InGaAs layer is finally etched off by selective wet etching (FeCl3 
solution). The thickness of the SiO2 layer, below the heterostructure is around 
800nm, which is enough to get rid of any significant evanescent coupling of the 
waveguided modes with the silicon substrate. 

The fabrication of the 2DPC is then conducted as described previously. 

Figure 1.34 provides a restricted sampling of the extreme variety of conceivable 
micro-photonic devices based on 2DPC. In the following section, we explore the 
principal building blocks on which they are based. 

Single defect H1 Resonant cavity Hexagonal H5 Resonant cavity
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1.6.2. Localized defect in the PBG or microcavity 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.35. H2 cavity: magnetic field distribution of cavity modes (2D FDTD determination) 
and localized states introduced in the PBG 

The concept of localized defects or microcavities introduced and analyzed in 
detail in sections 1.3.5 and 1.3.6 devoted to 1DPC (ideal as well formed in a planar 
dielectric waveguide), may be extended to the case of 2DPC, as already noted in 
section 1.5.2. A local break in the periodic lattice constitutes a defect which behaves 
like a microcavity, which may trap or localize photons in space and produces 
localized states, allowed within the PBG energy range. 

The most widely investigated defects or microcavities are obtained by the 
omission of a certain number of holes in the periodic lattice, such as in the particular 
case of Hn type hexagonal shaped cavities, n standing for the number of missing 
rows per side of the hexagon. 

The case of the H2 cavity is presented in Figure 1.35: the energy levels of the 
localized states in the PBG (white zone), or cavity modes, are calculated as a 
function of the hole filling factor (“plane wave” modeling realized at GES-
Montpellier: (MON 03)); the experimental points are derived from 
photoluminescence measurements. The magnetic field distribution of two types of 
cavity modes (“whispering gallery” mode on the left side, transverse mode on the 
right side) is also shown (FDTD simulation). 
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Figure 1.36. Spectral signatures of hexagonal cavities derived 
from photoluminescence measurements 

Figure 1.36 shows the spectral distribution of the modes of hexagonal cavities 
with different sizes as derived from photoluminescence measurements: the latter is 
the manifestation of spontaneous recombination processes of the active medium, 
which is to a large extent controled by the cavity modes, whose spectral density 
dominates the total available density of optical modes; the photoluminescence 
spectrum is therefore a spectral signature of the cavity modes (see (MON 03) for 
further details). 

In the same way as in the case of cavities formed in 1DPC (section 1.3.5), we 
can observe that the number of modes in a given spectral range increases with the 
size (here the surface) of the cavity. The elementary H1 cavity (one single missing 
hole) possesses only one mode (yet doubly degenerated) in the investigated spectral 
range. 

As explained in section 1.3.6, the spectral widening δω or δλ  of the cavity 
modes is like the inverse of their lifetime τ , which is principally controled by the 
coupling rate 1/τc with the radiated continuum (if the PBG area around the cavity is 
large enough to prevent significant lateral escape of photons, which means cττ ≅ ). 
The lifetime of cavity modes varies like their quality factor Q (see equation (6)): the 
experimental values of Q reported in the literature are in the range of 102–105. The 
talented designer will have the capacity to reduce the radiation of the cavity inside 
the light cone, that is to minimize the k  vector Fourier components above the light-
line (see Figure 1.18) and therefore to produce strongly “resonant” structures with 
high quality factors. If, in addition, the large quality factor is achieved with a small 
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volume cavity (hosting therefore small volume optical modes8), then the merit factor 
F of the modes, which coincides with the Purcell factor (see also Chapter 4 in this 
book) may be very large, which is highly desirable for exacerbating the spontaneous 
recombination rate of an active medium at the resonance frequency and for 
producing low threshold lazer micro-sources. 

1.6.3. Waveguiding structures 

The operation of classical optical waveguides is based on refraction phenomena: 
the existence of waveguided modes is made possible by the total internal reflection 
processes occurring at the boundary between the guiding zone and the external 
world, thus confining optical modes whose dispersion characteristics are located 
below the light-line, as presented in section 1.2.4. Guiding structures using photonic 
crystals are based, in addition, if not exclusively, on diffraction phenomena, which 
may be exploited to channel photons within an area where the existence of modes is 
not forbidden. 
 
 
 
 
 
 
 
 
 
 

Figure 1.37. Magnetic field distribution of guided modes along a linear defect, formed by a 
missing row of holes in a triangular 2DPC (waveguide W1) 

We will concentrate on the case where the guiding structure is formed by a linear 
defect (one-dimensional structure) introduced in the 2DPC, which operates in the 
field of PBGs: this configuration has been the matter of a great number of studies 
reported in the international literature.9 

                                   
8 Note that the membrane approach is attractive, in that respect, since it allows for a weak 
vertical extension of the optical modes, as compared to the substrate approach. 
9 It is also possible to channel photons in a defect-free 2DPC, in permitted photonic bands, 
using the so called self-collimating phenomenon: this phenomenon, which is intrinsically 
diffractive, results from the non-isotropy of dispersion characteristics and from the fact that 
group velocity, which is oriented toward the propagation direction of energy, is normal to iso-
frequency curves (see section 1.5.1 and, for example, (CHI 03)). 

FDTD simulation
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The canonical example, corresponding to the case of a linear defect simply 
formed by one missing row of holes ( ΓΚ  direction in this example), is shown in 
Figure 1.37: it is a so called W1 waveguide. The magnetic field distribution of a 
waveguided mode along the guiding structure is also illustrated: it shows a 
periodicity which is naturally imposed by that of the 2DPC along the direction of 
propagation. The waveguided modes are Bloch modes with one dimension (in a 
three-dimensional world, if the 2DPC is formed in a dielectric membrane): their 
properties are very similar to those already described in section 1.3.6. Their 
dispersion characteristics are governed by the coupling processes induced by 
longitudinal 1D periodic “corrugation”, and exhibit bands where propagation is 
allowed, separated by PBG (so “mini-stop bands”: (OLI 01)), with photonic band 
edge extremes. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.38. Dispersion characteristics of a W1 waveguide (from GES, Montpellier) 

The normalized dispersion characteristics of the W1 waveguide are shown in 
Figure 1.38. The k  propagation vector is oriented along the longitudinal direction of 
the guide and is limited to the first Brillouin zone. Spatial magnetic field 
distributions are also shown at various points in the dispersion characteristics: note 
that the symmetry of the modes depends heavily on the propagation conditions and 
on the nature of the guiding processes. For example, in the linear region, which 
corresponds to the fundamental mode and to a spectral range where propagation is 
“fast” (relatively large group velocity), the “refractive” contribution to waveguiding 
is rather large, as in classical waveguides (the effective index of the guiding zone, 
which is free of holes, is larger than that of the 2DPC): the waveguided modes are 
well confined within the guide. Close to the extremes, on the other hand, where the 
modes are slowed down, the field distribution is more spread inside the 2DPC, 
where photons are not allowed to stay: the principal contribution to the guiding and 
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confinement of photons within the guide is now taken over by diffractive processes, 
which are specific to photonic crystals. 

1.6.3.1. Propagation losses in a straight waveguide 

The reader will have noted that dispersion characteristics are partly located 
above the light-line (within the light cone, light gray area in Figure 1.38), which 
indicates that guided modes may, in these conditions, couple to the radiated 
continuum, and naturally result in propagation losses: the waveguided modes are so 
called lossy modes. This is unlike optical modes confined below the light-line, 
which may, theoretically, propagate without any loss. It is therefore relevant to 
design structures where as much room as possible is left to “fast” waveguided 
modes, with large group velocity, below the light-line. The simple W1 waveguide is 
not very appropriate, in that respect. A possible improvement is illustrated in Figure 
1.39, which shows a modified W1 waveguide: it includes a row of shifted holes, 
within the core of the guiding zone! This results in a reduction in the effective index 
of the waveguided modes, leading to an increase in their energy as well as in the 
slope of the dispersion characteristics below the light-line, which turns to shift the 
fast fundamental mode below the light-line (GRI 03). 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.39. Modified W1 waveguide in order to promote fast guiding 
of photons below the light-line 

Constraining photons to the area below the light-line is necessary, but not 
sufficient in practice to ensure loss-less propagation of light: technological 
imperfections in the guide (promoting unwanted coupling with the radiated 
continuum) and the insertion of photons constitute other loss factors, which do not 
spare optical modes below the light-line. A number of theoretical and experimental 
works aimed at evaluating and minimizing losses in 2DPC-based waveguides have 
been reported recently in the literature. Here we will quote an elegant technique of 
characterization consisting of closing the two ends of guiding sections with variable 
lengths, thus forming linear cavities, whose resonant modes may be analyzed 
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spectrally (LET 01): optical losses per unit length of the guide may be derived from 
the quality factor of the cavity modes; in addition, it is possible to extract the 
dispersion characteristics of the waveguided modes from the derivation of the free 
spectral range of the cavity modes and to determine their kinetic properties (group 
velocity). 

The best results reported so far (a fraction of dB/mm) are still below the 
performances accessible to classical optoelectronic waveguides. It turns out, 
however, that in the prospect of the fabrication of very compact systems, requiring 
photons to be transported over short distances (not exceeding a few hundred µm), 
these results may already be considered to be acceptable. It must also be admitted 
that, unfortunately, these “good” results can be obtained in rather narrow spectral 
bandwidths (allowed bands for fast propagation below the light-line). 

1.6.3.2. Bends 
 
 
 
 
 
 
 
 

Figure 1.40. Conceptual representation of a bend 

Transportation of photons necessarily implies the presence of bends to give them 
a chance to reach their final destination. Let us recall that 2DPC were considered to 
be very promising, in terms of the production of ultra-compact guides and sharp 
bends, after the pioneering theoretical work published by the MIT group (JOA 95). 
A first order argument naturally leads to the idea that PBGs do not have any 
alternative other than following the corridor that is opened to them when they come 
to a bend. The reality is different, from both conceptual and practical points of view. 

A bend should indeed be viewed as a localized defect, resulting in a break in the 
one-dimensional periodic structure that constitutes the straight waveguide. It must 
be considered as a microcavity or resonator, which provides a resonant transfer of 
photons between the two sections of straight waveguides which are attached to it, as 
illustrated schematically in Figure 1.40. 

This conceptual representation of a bend is general and may apply to classical 
guiding structures. In the classical situation, a bend may be considered as a defect 

R 
1/ τ 1

ω 0 

T 
1/ τ 2

1/ τ 0
Injected
signal 



68     Nanophotonics 

breaking the continuous (and no longer periodic) translational symmetry of the 
straight waveguide. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.41. FDTD simulation of the magnetic field distribution around a bend 

If we use a modal type terminology, the bend can be considered as hosting 
localized resonant modes, which, through their coupling to the input and output 
waveguided modes, provide the transfer of the injected signal. The coupled mode 
theory may be used for a relatively simple analytical description of the structure. 
Such simulation methods as the FDTD technique allow for a precise modeling of its 
behavior. Figure 1.41 shows the magnetic field distribution, obtained by 2D FDTD 
simulation10, provoked by the presence of a 120° bend in a W1 waveguide. One 
observes that the transmission T of the input signal is strongly limited by the bend. 
In fact, a number of conditions have to be met in order to achieve a near-uniform 
transmission ratio. Let us express these conditions using the terminology of coupled 
mode theory: 

– The transmission can be achieved only within the spectral bandwidth around 
the resonant frequencies of the bend, considered as a resonant cavity: this resonance 
must be therefore the widest possible in the spectral domain, which means that the 
coupling between the cavity modes (whose lifetime τ  must be the smallest possible, 
for a maximum spectral widening) and the waveguided modes should be very strong 
(which is equivalent, in Figure 1.41, to minimizing the 1τ  and 2τ  time constants): it 
is therefore appropriate to achieve the best spectral and spatial (especially in terms 
of symmetry) overlaps between the cavity modes and the waveguided modes. 

– The 
2,1

1
τ

 coupling rates should be identical, in order to prevent the occurrence 

of a finite reflection rate of the injected signal. 

                                   
10 An ideal 2DPC is considered for this simulation. 
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– Optical losses at the bend, expressed by the ratio 
0

1
τ

 in Figure 1.41, as a result 

of cavity mode coupling with the radiated continuum, should be minimized. If not, 
the transmission is reduced not only for radiated losses, but also for the reflection. 

– It is advisable to operate in a monomode waveguided regime, to prevent the 
risk of unwanted coupling between different order orthogonal waveguided modes, 
promoted by the localized defect which is formed by the bend and resulting in extra 
reflection. 

These various conditions may be summarized by the relation below: 

2,10

211
τττ

=≤≤  
(27) 

Classical bends have the definite advantage over PC based bends that they 
“naturally” comply with and/or circumvent most of the previous conditions. 
Regarding compactness, which was argued to be a very attractive feature of PC-
based bends by the MIT group, classical high index contrast refractive microwire 
waveguides (silicon wires on silica, for example) are strong contenders to PC 
waveguides: they allow for very sharp bends (bend radius around one micron), 
without significant theoretical losses, as a result of the evanescent coupling of 
waveguided modes with the radiated continuum. 

May, therefore, PC-based waveguides be considered to be at all useful? 

1.6.3.3. The future of PC-based waveguides lies principally in the guiding of light 

2DPC-based waveguides are not well suited, in general, to photon transportation 
or to the optical transfer of information: it is more appropriate to restrict their use to 
the “smart” treatment of optical signals. It should not be forgotten that a guide 
formed in a 2DPC is itself a one-dimensional periodic structure, which behaves like 
a 1DPC: it is therefore advisable to exploit the natural virtues of photonic crystals 
which allow for tight control of the kinetics of photons, that is for their efficient 
slowing down and their trapping in a very limited space for a significant amount of 
time. It is therefore preferable to use 2DPC-based waveguides precisely under the 
conditions where they are inefficient light carriers, that is at operation points of their 
dispersion characteristics where their group velocity is limited, especially around 
extrema. 

Figure 1.42 shows a schematic representation of the general scenario that should 
be followed for the use of 2DPC-based waveguides. Compact sections of “slow” 
PC-based waveguides, which are photon storing zones where they will stay during 



70     Nanophotonics 

the time required for the optical signal process, are connected by fast, classical 
refractive waveguides. The tapering transition zone between fast and slow sections 
is essential in the design of the whole structure: it is meant to minimize insertion 
losses, which manifest themselves by unwanted reflections and coupling to the 
radiation continuum. 

 

Figure 1.42. General scenario for the use of a 2DPC-based waveguide 

This general scenario is expected in result in the production of a wide range of 
compact devices with very diverse functionality: let us mention, for example, electro- 
or thermo-optical modulators based on Mach-Zhender interferometers, when full use is 
made of the strong phase optical index dispersion or of the large group optical index, 
which occurs near an extremum of the dispersion characteristics; or efficient, although 
compact, chromatic dispersion compensation structures; or devices making the best 
use of non linear phenomena, in terms of the required input optical energy, owing to 
strong photon confinement. The list could go on. 

1.6.4. Wavelength selective transfer between two waveguides 

Wavelength Division Multiplexing is today considered to be a powerful enabler 
for the optical transfer and treatment of information, particularly for 
telecommunications applications. This approach is also meant to relax high density 
scale integration constraints in microelectronics by opening the way to the so called 
Systems On Chip, combining microelectronic and microphotonic integrated circuits. 
In this respect, the multiplexing-demultiplexing function, which consists of adding 
to or dropping from a waveguide selected wavelengths, is an essential element of 
optical signal processing. 

The principle underlying this function is presented schematically in Figure 1.43. 
It consists of the use of a mediator between two waveguides, which is meant to 
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promote the transfer of certain wavelengths from one to the other. The selected 
wavelengths are set by the intersections between the dispersion characteristics of the 
two guides with that of the mediating section. Because the waveguides are meant to 
provide “fast” transportation of photons, the mediator should have rather flat 
dispersion characteristics, in such a way that their intersections with those of the fast 
waveguides can be well defined; this means that it should operate in the regime of 
slow Bloch modes, or even trapped modes (in extreme cases). 
 
 
 
 
 
 
 
 
 

Figure 1.43. General coupling principle between two waveguides with wavelength selectivity 

One can therefore contemplate the potential importance of PC-based structures 
for that purpose. Wavelength selectivity δλ  is essentially related to the lifetime or 
stay duration τ  of optical modes in the mediator: 

δλ  proportional to 
cτττ

111

0
+=  

(28) 

cτ  is the coupling time constant of the mediator modes with fast waveguided modes 
and 0τ  is the lifetime of modes related to optical losses (for example controled by 
coupling with the radiation continuum and/or by absorption). 
 
 
 
 
 
 
 
 
 

Figure 1.44. A monomode microcavity cannot provide a directional transfer 
of wavelengths between two waveguides 
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The direction of the wavelengths’ selective coupling is another important 
characteristic of the add and drop function: it depends essentially upon the symmetry 
of the mediator modes, which take care of the wavelength transfer. In the simple 
canonical case where, for example, the mediator is formed by a monomode cavity 
(in the considered spectral range), the transfer cannot be directional, as illustrated in 
Figure 1.44. In steady state regime, the cavity mode which is generated by the 
coupling with the waveguided mode injected in the input waveguide is in turn 
coupled to both waveguides and results in counter-propagating waveguided 
components, as dictated by the symmetry of the structure and as allowed for by the 
dispersion “characteristics” of the cavity: the latter is indeed restricted to a 
monochromatic horizontal line, where all k  vectors are authorized. Consequently, 

the input signal is partly reflected in the input waveguide, and partly transmitted in 
both directions of the output waveguide11. 

The MIT group (FAN 98) proposed a solution to directional transfer based on the 
use of two degenerated cavity modes, whose symmetry properties are judiciously 
chosen, with the further condition that the coupling rates of each of these modes 
with the waveguides modes are equally balanced. These conditions are naturally met 
in the well known classical configuration where two refractive waveguides are 
resonantly coupled via a micro-disk or micro-ring type cavity (provided that the 
diameter is larger than the operation wavelength). Meeting these conditions with 
PC-based waveguides and cavities is tricky from a technological point of view, the 
size resolution being very high (to the order of one nanometer). 

Another solution based on photonic crystals, with fewer technological 
constraints, consists of the use of a mediator formed by a section of “slow” 
waveguides, which operates around an extreme of its dispersion characteristics 
(HAT 05). The resonant mode of the mediator is not localized as in a microcavity, 
but it is a “propagating” slow Bloch mode: for this mode to retain its propagating 
character, its lateral extension must remain inferior to the size of the slow waveguide 
during its time in the mediator; it would otherwise behave like a microcavity mode, 
and the directionality would be lost. The slow PC-based waveguide, used around an 
extreme of the dispersion characteristics, enables this last constraint to be overcome, 
under the best compactness conditions (see sections 1.3.3 and 1.3.4, and equation 

                                   
11 It can be shown easily, using coupled mode theory, that in the absence of an output 
waveguide, the coupling of the input waveguide with the monomode cavity results in the total 
reflection of the input signal, if optical losses are negligible. Asano et al. 2003 have used this 
configuration to extract wavelengths from a guide by using radiation optical losses of the 
cavity in free space; although attractive, this approach is not expected to result in directional 
operation (50% at most of the input signal is extracted at resonance, the remainder being 
either reflected or transmitted in the input waveguide). 
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(14)). The operation of this type of wavelength selective and directional coupling is 
illustrated in Figure 1.45, with a specific example. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.45. Wavelength selective and directional coupling between two waveguides: use is made 
of a slow Bloch mode “resonator”. The spectral response and the magnetic field distribution  

(2D FDTD simulation) corresponding to the specifically chosen example are also shown 

1.6.5. Micro-lazers 

The operation of a lazer is based on the interaction between an active light 
emitting medium and the optical modes of a photonic structure which will have been 
designed to promote their mutual coupling: the objective is to reach a threshold 
density of photons in the active medium, for the highly coherent so called stimulated 
emission to overcome the poorly coherent spontaneous emission in the active 
medium. The general approach is to design the photonic structure in such a way as 
to confine optical modes within the space occupied by the active medium. The 
reader will have realized that the intrinsic qualities of photonic crystals, analyzed in 
previous sections (see particularly sections 1.3.4 and 1.5.2), make them ideal for 
achieving the function of photon confinement in a very compact way. Let us recall 
that, in general, the lateral confinement of photons can be achieved in a 2DPC, 
either by trapping them in a localized defect or microcavity giving rise to a localized 
mode within a photonic band gap, or by slowing them down in a slow Bloch mode 
at an extreme of the dispersion characteristics. Those two approaches result in two 
classes of lazers, microcavity lazers and Bloch mode lazers. Figure 1.46 shows the 
different types of lazers, from the point of view of their operation on dispersion 
characteristics. 
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Figure 1.46. Different types of micro-lazers, as a function 
of their operation on dispersion characteristics 

In the Bloch mode lazer class12, two types of devices can be distinguished: 
– Lazers designed for in-plane emission: the operation point coincides with an 

extreme located below the light-line (the K point in the example in Figure 1.46; the 
emission is preferentially oriented toward the ΓΚ  directions in the plane). 

– Lazers designed for surface emission, that is to say in free space: the operation 
point coincides with an extreme located above the light-line (the Γ  point in the 
example of Figure 1.46), resulting in vertical emission. The operation principle of 
this type of lazer implies therefore that waveguided Bloch modes may couple to the 
radiated continuum; the coupling rate must however not be so strong as to “destroy” 
the Bloch mode resonance, that is to say, during its lifetime or its time of interaction 
with the active medium it must not be reduced to such an extent that the stimulated 
emission threshold cannot be reached. It turns out that, for reasons of symmetry, 
coupling with the radiated continuum may theoretically be forbidden at the Γ  point, 
for 2DPC with specific symmetry (triangular lattice, for example): this property 
ensures an efficient confinement of the waveguided mode within the membrane 
waveguide, whereas emission close to the vertical direction is permitted. 

1.6.5.1. Threshold power 

The threshold power of the lazer is the minimum power required for the 
stimulated emission to exactly compensate for all photon loss processes (absorption, 
optical losses). 

                                   
12 So called DFB classical lasers are also Bloch mode lasers; the novelty of 2DPC lies first in 
their compactness, as explained at length in this chapter, and, second, on the extra dimension 
that they offer. 
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For microcavity lazers, the threshold power is proportional to the volume of the 
cavity and is a decreasing function of the lifetime of the cavity mode resulting in the 
lazer effect (LET 05). The strong lateral confinement of photons which are trapped 
in the localized defect within the PBG of the 2DPC, combined with the thin vertical 
confinement provided by the membrane approach, enables the production of 
microcavities whose volume does not exceed a fraction of µm3 (for an operation 
wavelength around 1,5µm); this opens the way for the production of very low 
threshold power lazers, as far as the lifetime of the cavity mode can be kept long 
enough, or the various sources of losses can be minimized – especially the optical 
losses of the cavity.  

For Bloch mode lazers which operate at a band edge extreme, the threshold 
power is proportional to the curvature α  of the dispersion characteristics at the 
extreme (LET 05). We see, once more, that an essential quality of photonic crystals 
is to offer dispersion characteristics with very low curvature band edge extremes. 
That the threshold power is proportional to α  is a direct consequence of the fact 
that the lateral optical mode confinement is also proportional to α . Let us recall that 
the surface extension of a Bloch mode at an extreme can be written ατ≈BMS , 
where τ  is its lifetime (see section 1.5.2, footnote 4). 

1.6.5.2. Example: the case of the surface emitting Bloch mode lazer 

Experiments with the three types of micro-lazers described above have been 
reported in the international literature, following the pioneering work of the group at 
Caltech published in 1999, which concerned the production of the first microcavity 
lazer (H1 type) formed in an InP suspended membrane (PAI 99).  

Other published works may be pointed out, such as Hwang et al. 2000 on 
microcavity lazers and Ryu et al. 2002 on Bloch mode lazers. The group at the 
Ecole Centrale de Lyon has experimented with the three types of lazers, formed in 
InP membranes bonded onto silica on silicon substrate (MON 01, 02; MOU 03), 
following the technological procedure described in section 1.6.1. Bonding of the 
membrane onto silica improves the thermal budget considerably as compared to the 
configuration where the membrane is suspended in air. 

We present below, as an illustrative example, the case of surface emitting Bloch 
mode lazer (MOU 03). The photonic crystal consists of a graphite lattice (Figure 
1.47), which can be viewed as an array of H1 coupled cavities, formed in a triangular 
lattice. 
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(above the “light-line”)
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Figure 1.47. Band of a surface emitting Bloch mode lazer formed 
in a graphite type 2DPC 

This particular 2DPC exhibits band edge extremes at the Γ  point with very low 
curvature (Figure 1.47). One of these extremes is shown in the example below. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.48. Emission spectra of the surface emitting lazer formed in a graphite lattice 
2DPC, for different hole filling factors (f). The plot of the emitted power versus the pumping 

power indicates a threshold power of 40 µW for f =19% 

Emission spectra of the lazer are shown in Figure 1.48 for different hole filling 
factors f, as well as the spontaneous emission spectrum of the non-structured 
membrane. The device is optically pumped in a quasi-steady state regime and 
operates at room temperature. The peak intensity for the optimum filling factor  
(f = 19%) is larger than the spontaneous emission power by 5 orders of magnitude. 
To increase f, as might be expected, the emission peak is blue shifted as a result of a 
reduction in the effective optical index of the membrane; at the same time, the 
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emission yield drops rapidly due to a decrease in the modal gain (not shown in the 
figure). The effective threshold pumping power, for the optimized device, is very 
weak and does not exceed 40µW. The pumped area where the simulated emission 
process takes place is very limited and does not exceed 2 to 4µm in diameter: this is 
a clear demonstration of the outstanding ability of 2DPC to confine laterally slow 
Bloch modes. 

1.6.6. Epilogue 

Our trip into the world of 2D photonic crystals has come to an end; we should 
however be convinced that we have tasted some of the wide variety of landscapes 
that 2DPC has to offer, albeit restricted to a two-dimensional universe. The last 
example presented in the previous section (surface emitting lazer) opens the door to 
an even wider range of opportunities which may be accessible when freeing 2DPC 
towards the third dimension. We present these new emerging developments briefly 
in the last part of this chapter. 

1.7. Towards 2.5-dimensional Microphotonics 

1.7.1. Basic concepts 

Photonic devices based on 2DPC are principally aimed at forming the basic 
building blocks of integrated photonics and are designed for in-plane waveguided 
operation. We recall that these devices are very attractive from the point of view of 
fabrication, the technological schemes to be adopted being compatible with planar 
technological approaches. We recall also that the operation of photonic integrated 
circuits based on 2DPC may be deeply affected by optical losses resulting from 
unwanted diffractive coupling of waveguided modes with the radiation continuum. 

This problem of optical losses, which is considered as hindering the operation of 
2D photonic integrated circuits based on 2DPC, can be approached from a 
completely different perspective: instead of attempting to confine the light entirely 
within waveguide structures, 2D structures can be deliberately opened to the third 
space dimension by controling coupling between waveguided and radiation modes. 
In this approach, exploitation of the optical power is achieved by accurately tailoring 
optical radiation into free space.  

The surface emitting micro-lazer (section 1.6.5) is an example of this approach: 
coupling between waveguided modes and radiated modes is authorized, but its rate 
is controled accurately, allowing for vertical emission while retaining the strength of 
resonance and, therefore, achieving weak threshold power. This is a simple and 
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convincing illustration of a planar technological approach resulting in a photonic 
device freed from the bidimensional universe. 
 

 

Figure 1.49. Illustration of the resonant coupling between 
a waveguided mode and a radiated mode 

A major extension of planar technology has recently been proposed, through 
exploitation of the third (“vertical”) dimension by using a so called multi-layer 
approach, where lateral high index contrast patterning of layers would be combined 
with vertical 1D high index contrast patterning: here it is more appropriate to think 
in terms of “2.5 dimensional” photonic structures, in which there is interplay 
between waveguided-confined photons and radiated photons propagating through 
the planar multilayer structure (LET 03).  

A simple illustration of this approach is the use of a plain photonic crystal 
membrane as a wavelength selective transmitter/reflector: when a light is shone on 
this photonic structure, in an out-of-plane (normal or oblique) direction, resonances 
in the reflectivity spectrum can be observed.  

These resonances, so called Fano resonances (AST 99), arise from the coupling 
of external radiation to the guided modes in the structures, whenever there is a good 
match between the in-plane component of the wave-vector of the incident wave and 
the wave-vector of the guided modes (see Figure 1.49). If the lateral size of the 
illuminated membrane is infinite, the spectral width of the resonance is like the 
inverse of its lifetime τ , that is the lifetime of the waveguided mode, with cττ = , 
where cτ  is simply the coupling time constant between waveguided and radiated 

k

BI

k //

ω

  (ω, k// )



Photonic Crystals: From Microphotonics to Nanophotonics     79 

 

plane-wave modes13. In real devices, the lateral size of the illuminated area is 
limited, and the lifetime of the resonance is also controled by the lateral escape rate 

gτ
1  of the waveguided mode out of this area; this escape rate should be considered 

as a loss mechanism for devices which are designed and intended to operate 
“vertically”. In these real conditions the lifetime of the resonance is written as: 

δω
τττ

≈+=
gc

111 , 
(29) 

where δω  is the spectral widening of the resonance. The ability of high index 
contrast PC to slow down photons and to confine them laterally, especially at the 
high symmetry points (or extrema) of the dispersion characteristics, as explained a 
number of times earlier in the chapter, allows for very good control over the lateral 
escape losses and results in very compact devices. 

If we now consider a multilayer structure, the strong vertical 1D modulation of 
the optical index allows for a fine and efficient “carving” of the density and vertical 
field distribution of radiated modes, using a limited number of layers. 

In summary, 2.5D Microphotonics, combining lateral 2DPC and vertical 1DPC, 
should provide a very good control over the electromagnetic environment, that is 
over the distribution of optical modes in 3D real space and time, at a much lower 
cost than the full 3D approach in terms of technological feasibility: the technological 
schemes to be adopted are compatible with technological approaches which are 
normally describable as planar.  

This multi-layered or multi-level approach is familiar in the world of silicon 
microelectronics, when it comes, for example, to fabricating multiple levels of 
electrical interconnections; its usefulness in Microphotonics extends far beyond, 
from the viewpoint of a considerable extension of accessible functionality. 

                                   
13 Various factors contribute to the control of the coupling time constant, such as the strength 
of the periodic corrugation, and the symmetry of the waveguided mode. 
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1.7.2. Applications 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.50. 2.5D photonic structure including several InP membranes suspended 
in air, with a 2DPC formed in the top membrane (SEM view) 

It is clear that the exploitation of the third dimension should widen the domain of 
Integrated Photonics considerably. In addition to the convincing experiments with 
surface emitting micro-lazers mentioned above, other outstanding results have 
recently been published: they concern, in particular, the use of the non-linear 
response of a 2DPC, enabling the manipulation of Fano resonances and opening the 
way for new classes of compact surface addressable devices, for full optical routing 
and signal regeneration (RAI 03). 

Other areas of Photonics should take advantage of the 2.5D Microphotonics 
approach. For example, the introduction of 2DPC into MOEMS (Micro Opto Electro 
Mechanical) devices shows great promise in terms of widening the spectrum of 
(electro-mechanically actuable) optical functions, achievable with further enhanced 
compactness structures. Figure 1.50 gives an example of such a MOEMS 2.5D 
structure. These new types of photonic structures should be applied in various 
domains, including Optical Telecommunications (tunable or switchable wavelength 
selective devices, taking advantage of the extra angular resolution provided by the 
2DPC), as well as the field of optical sensors: it should be noted that the sensing 
function should be greatly enhanced, due to the fact that the resonant “portions” of 
the device, i.e. those where the electromagnetic field intensity is maximum, can be 
very close to (or even at) the surface of the device. This is in favor of an improved 
sensitivity and of an easy exploitation of so called functionalized surface sensors 
The “2.5D Microphotonics” approach also brings about a new opportunity, 
practicable in terms of technological constraints and rich in terms of extra degrees of 
liberty, to control the electromagnetic environment at the wavelength scale. It is 
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therefore the appropriate route for “physicists” looking for ad hoc configurations in 
Quantum Electrodynamics studies (coupling of active material with the 
electromagnetic field, threshold-less lazer, directional single photon sources, 
combination with near optical field studies, etc.). Let us mention, finally, the great 
potential of 2.5D Microphotonics in biological applications, in the development of 
“biophotonic chips”, which would be very efficient in terms of “photonic yield”: for 
example, the accurate control of resonant processes at the surface of photonic 
microstructures should result in a considerable increase in the collection efficiency 
of the luminescent signal emitted by fluorescent markers used in biological chips. 

1.8. General conclusion 

The flow of innovations since the late 1980s created by the introduction of the 
concept of the photonic crystal (YAB 87; JOH 87) is still rather slow, but will no 
doubt accelerate in the future to an extent which is beyond our full consciousness: it 
was simply proposed to extend the field of optics to the three dimensions of space, 
which was rather confined, yet with very successful outcomes, to the one 
dimensional world of multilayer optical structures. It is now established that the 
emergence of 3D Microphotonics based on full 3DPC will be significantly delayed, 
as a result of technological constraints. We hope that the reader will have been 
convinced that, on the other hand, 2DPC are fully engaged in the process of 
innovation and that we are experiencing, in that respect, a truly microphotonic 
revolution. We have shown that 2DPC are very promising for 2D microphotonic 
integration; there is however a lot left to be done before 2DPC devices are fully 
integrated in the world of optoelectronics, especially in connection with the 
solutions required for the control of radiation optical losses. As for so called 2.5D 
Microphotonics, where 2DPC are deliberately opened up to the third dimension of 
space, we have seen convincing demonstrations of their ability to generate, in the 
short term, a wide range of photonic devices (“killer applications”) combining 
compactness, spatial (angular) and spectral resolution, and whose fabrication meets 
the standards of planar technology, familiar to the world of microelectronics. 

It appears that the rising trajectory of photonic crystals will not be inhibited in 
the long run, provided that appropriate tools are made available for their evolution. 
In that respect, bottlenecks are still to be eliminated and important R&D will have to 
be deployed for that purpose: this is true for the modeling and design aspects 
(especially 3D), whose fast and efficient tools are yet to be built; the technological 
constraints, dictated by the necessity to control the size of the devices at the 
nanometer scale, are far from solved. From the latter point of view, it can be stated 
that we really have entered the Nanophotonic era. 
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 Chapter 2 

Bidimensional Photonic Crystals 
for Photonic Integrated Circuits 

2.1. Introduction 

Within actual Photonic Integrated Circuits (PICs), light confinement is provided 
by the index contrast that exists between different materials and according to the 
geometry of a structure. This index contrast mechanism limits the desirable PIC size 
reduction (performances are then degraded) and the integration of optical functions. 
Within the periodic environment of a Photonic Crystal (PhC), light confinement can 
be obtained based on an intentional defect included in the PhC matrix. Devices 
implementing this multiple Bragg reflection mechanism may overcome these limits 
[LOU 05].  

This chapter is an attempt to demonstrate that passive as well as active optical 
functions required in Telecoms networks can be fulfilled using PhC-based devices. 
Passive functions such as guiding, coupling and filtering as well as active functions 
such as emission and amplification are investigated here.  

These examples demonstrate that compactness and monolithic integration can 
actually be reached with PhC-based devices. For the 1.3–1.5µm Telecom 
wavelength domain, as emission is also addressed, all the structures reported here 
are fabricated on InP-based materials.  
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This chapter is divided into three sections: 
– section 2.2 introduces the concepts that underlie device design, and explains 

the various performances that are expected of applications. For more in-depth 
exploration of the concepts, the reader is referred to Chapter 1; 

– section 2.3 presents the technology required for the fabrication of 2D-PhC 
structures on InP substrate; 

– section 2.4, the largest section, details the characterization of passive and 
active operating devices. Attention is paid to spectrally resolved modal behavior, as 
well as quantitative assessment of optical performances. 

2.2. The three dimensions in space: planar waveguide perforated by a photonic 
crystal on InP substrate  

2.2.1. Vertical confinement: a planar waveguide on substrate  

For active optoelectronic functions (lasing, light amplification, fast tuning), 
buffer layers for carrier injection are required on both sides of the active layer. The 
generic vertical stack on InP substrate which is used for all the devices presented 
here is shown in Figure 2.1. The guided mode is vertically confined mainly in the 
high index layer, but spreads partly in the confinement layers, and also in the 
substrate.  

This vertical mode confinement results from the “classical” index contrast. In the 
case of a GaInAsP material layer for 1.55µm emission on InP substrate, the index 
contrast between the guiding layer and the buffer layers is reduced (∆n/n only 6%), 
leading to a large vertical extension of the guided mode. Such large spreading has 
two major consequences: 

– In order to intercept all the guided mode, holes have to be as deep as its 
vertical extension: at least 3µm. Such deep etching technology is difficult for 200nm 
diameter holes (for a PhC with an air filling factor of 35%), in the case of InP-based 
materials.  

– The PhC gap lies above the substrate light line (Figure 2.1b), so that any Bloch 
mode propagating in a defect which is located within the gap can radiate in the 
substrate; such a mode is known as a leaky mode. 

 
 



Bidimensional Photonic Crystals    

 

87 

 

Figure 2.1. A: Planar waveguide perforated with the array of holes; B: Dispersion curve for 
the 2D photonic crystal calculated by the Plane Wave Expansion Method 

But this large vertical deconfinement allows, as compared to the membrane case, 
higher coupling efficiency when light is injected from “classical” structures. This 
advantage is limited, as the in-plane confinement is still very strong in absolute 
terms. Quantitative performances and optical losses will be addressed systematically 
for any device, as a new device is relevant only if its power budget is reasonably 
mastered. 

2.2.2. In-plane confinement: intentional defects within the gap  

Let us now consider the high index heterostructure in which the PhC is 
fabricated. Here we investigate an array of holes rather than pillars, in order to 
generate a connected surface which will enable a metallic contact to be deposited for 
carrier injection. The triangular lattice gives rise to the widest gap simultaneously 
for both symmetry directions within the plane. We denote by ΓK the direction of the 
smaller period in the direct space, and by ΓM the direction of the larger period (see 
Chapter 1). The fabricated air filling factor is around 35%, leading to a photonic gap 
only for the TE polarization; TE polarization corresponds to the electric field of the 
optical mode being parallel to the layers’ plane. Intentional defects introduced 
within such a PhC matrix can support localized modes [JOA 95]. We consider here 
defects generated by missing holes. In such an arrangement, the region without holes 
has a dielectric constant larger than the PhC region, so we have to remember that for 
any design including this category of “defect” in the PhC, the multiple Bragg 
mechanism and the index contrast mechanism simultaneously confine the mode.  
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2.2.2.1. Localized defects  

Removing a few holes while following the PhC array symmetry leads to 
hexagonal cavities. We denote by H1 the smallest cavity obtained by removing a 
single hole, as each of its sides is one period long. This H1 cavity supports a pair of 
degenerate modes which is efficiently included in an out-of-plane filter [AKA 03]. 
A larger cavity, for example the H2 cavity shown in Figure 2.2a, supports a larger 
number of modes. Cavity eigenmodes are calculated by the Plane Wave Expansion 
method ([BEN 99], and Chapter 1). We plot in Figure 2.2a the H field component 
amplitude for two consecutive eigenmodes of the H2 cavity; the mode on the right 
has its H field component confined on the boundaries, looking like a whispering 
gallery mode. Such a mode will be of interest for cavity-guide in-plane coupling 
(section 2.4.1).  
 

 

Figure 2.2. A: Schematics of an H2 cavity. Absolute value of the H field amplitude for two 
consecutive eigenmodes; B: Dispersion curves for W1 and W3 guides (ff=40%) 

2.2.2.2. Linear defects  

Removing rows of holes or changing their size creates linear defects that allow 
Bloch modes to propagate within the gap. All the guides we will consider here are 
ΓK oriented, along the dense period a. They correspond to an integer number of 
missing rows, and are denoted by Wi, for i missing rows. Previous characterizations 
of PhC guides have demonstrated that ΓM oriented guides are more lossy [OLI 02b].  

Figure 2.2b displays the dispersion relation for W1 and W3 PhC guides. The 
dispersion relation plotted here corresponds to the normalized frequency u=a/λ, 
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versus k//, the in-plane k vector component along the symmetry direction chosen, 
here ΓK. The grey areas are the continuum bands. Even modes are plotted as solid 
lines, odd modes as dashed lines. These dispersion curves are in this case calculated 
using FDTD (Finite Difference Time Domain), which basically consists of a full 
calculation of the field components when discretizing Maxwell equations in both 
time and space [AGI 03]. Here we use a 2D calculation; the vertical stack is taken 
into account through an effective index [QIU 02a]. 

The W1 guide is monomode within the two wavelength domains indicated by 
braces below and above the odd mode. For light propagation, we will operate the 
W1 guide within these two domains, as it is always better to operate with a 
monomode guide to prevent mode mixing. This even mode exhibits a marked cut-
off at the Brillouin zone edge, at k// =π/a. The frequency at which this cut-off occurs 
is strongly dependent upon the air filling factor: thus, measuring the spectral 
position of this cut-off leads to an optical measurement of the filling factor.  

The W3 guide is multi-mode throughout the gap. The periodicity that exists 
along the waveguide boundaries enables, through a contra-directional mechanism, 
the coupling of two modes of the same waveguide, provided that they have the same 
symmetry. This coupling mechanism opens a mini-gap, which is shown here by 
braces in the case of the two first even modes. These mini stopbands are a specific 
signature of propagation in a PhC guide [OLI 01]. We will see in section 2.4.1 that 
the spectral width of this mini stopband enables us to estimate the quality of the 
etched holes.  

2.2.3. Losses  

As has already been pointed out, all the modes supported by defects in the 
photonic gap are above the substrate light line, so out-of-plane losses occur through 
coupling to radiation modes. The amount of loss can be calculated using 3D FDTD, 
but this calculation is very time consuming and hardly takes into account fabrication 
imperfections such as non-cylindrical holes and etched surface roughness. 

Benisty et al. proposed describing losses as a fictitious dissipation due to the air 
contained within the holes, thus adding an imaginary part to the dielectric constant 
of holes air [BEN 00]. Simulations are then performed in 2D, making their duration 
reasonable, and include an ε”. This ε” parameter is a phenomenological parameter, 
which is adjusted when comparing the simulation results to the measured 
performances. For example, the mini stopband depth and width of the W3 
fundamental mode are directly related to losses [QIU 02b]. This ε” parameter 
enables us to globally qualify the etching technology: finite hole depth, non perfect 
geometry, roughness (see section 2.4.1).  
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2.3. Technology for drilling holes on InP-based materials  

Characteristic dimensions of holes required for a photonic crystal device 
operating in the optical domain are well below the micrometer: this technological 
challenge has delayed the application of PhC in the optical domain. For InP-based 
materials having an optical index larger than 3 and operating at λ=1.55µm, the gap 
lies at reduced frequencies around u=0.26, so PhC periods are close to a=400nm. 
When the air filling factor is around 35%, the holes are around 200–250nm in 
diameter. Vertical stacks for active functions are larger than 3µm (each buffer layer 
for carrier injection has to be at least 1.5µm thick in order to limit the interaction of 
the mode optical field with the metal of the electrode). The aspect ratio of the holes 
then has to be larger than 10, and closer to 20 – a real challenge in InP-based 
materials. 

2.3.1. Mask generation  

Nanometer scale features are easily fabricated using electron beam lithography. 
This method is very versatile, and enables the position of the holes to be changed on 
demand in order to investigate new structures. When structure designs are 
established, a lithographic mask can be generated, and deep UV lithography 
(248nm, 196nm) is then successfully used [BOG 02]. The advantage of such a 
process is that it implements the fully established and highly parallel microelectronic 
lithography. 

Having investigated advanced structures, we have generated here all the patterns 
using e-beam lithography. The mask used for etching the semiconductor material is 
realized in two steps, described in Figure 2.3a: first, a dielectric layer is deposited on 
the semiconductor material (here we use SiO2), and then an electron sensitive resist 
such as PMMA (PolyMethylMetAcrylate) is spin-coated on top.  

PMMA is a positive resist. Holes are exposed. After development (the developer 
is here a solvent for the monomer which is generated when the impinging electrons 
break the polymer links), patterns are holes in the PMMA layer. This mask is then 
used to dry-etch the SiO2 layer. When holes are correctly transferred to the 
underlying SiO2 layer, the remaining PMMA is removed by plasma-ashing. This 
two-step mask generation is necessary as the PMMA resist is very fragile and is 
difficult to use for semiconductor etching (work on this area is in progress).  
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2.3.2. Dry-etching of InP-based semiconductor materials  

Generally speaking, semiconductor materials can be etched either by wet etching 
– electrophile agents are then used which reveal crystallographic planes, or by dry-
etching – which is a combination of physical and chemical etching within a plasma 
containing chemically active species and ions. Part of the etched products is 
evacuated by sublimation. Chlorine gas is commonly used for III–V materials 
plasma etching.  

Here we perform dry-etching since etching holes requires a strongly anisotropic 
process. The larger problem when etching holes versus other sub-micrometer 
features such as micro-pillars or line gratings is that it is difficult to evacuate etched 
products from the bottom of deep holes. Because sublimation of etched products 
plays an important role, InP-based materials are much harder to etch than GaAs-
based materials: in the case of GaAs, the etched products have comparable 
volatilities (Ga and As are on the same line of the periodic classification), whereas 
in the case of InP, the etched products have wildly different sublimation 
temperatures: in the case of chlorine gas, PCl3 is volatile at room temperature, while 
a temperature of 200°C must be reached to evaporate InCl3 in the same pressure 
conditions. Temperature is in this case a critical parameter of the etching process. 

Due to the easier technology for patterning GaAs-based materials, all the 
fundamental PhC investigations in the 1990s were performed on GaAs structures.  

Plasmas which are made denser than the one obtained in a classical Reactive Ion 
Etching (RIE) – Capacitive Coupled Plasma (CCP) – greatly improve the etched 
depth in the case of the geometry of the holes. These dense plasmas are generated 
either by Inductive Coupled Plasma (ICP) or by Electron Cyclotron Resonance 
(ECR).  

Another deep-etching technique combines Ion Beam Etching (IBE) with a 
chemical reaction when injecting Cl2 gas directly at the surface of the sample: this is 
then called Chemically Assisted Ion Beam Etching (CAIBE). This technique is still 
a lab technique; results presented here were obtained in the laboratory of KTH, Kista 
(Sweden). For the removal of etched products, the temperature is raised to 230°C 
[MUL 02].  

Figure 2.3b shows CAIBE etched holes deeper than 3µm. These holes are not 
perfectly cylindrical, and it is difficult to estimate the roughness of the etched 
surfaces. Optical characterization is needed to assess the air filling factor value 
correctly, and also the quality of the etched surfaces.  
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Figure 2.3. A: Mask generation in a dielectric layer using electron beam lithography; B: 
CAIBE etched holes in a GaInAsP semiconductor layer and buffer 

2.4. Modal behavior and performance of structures 

2.4.1. Passive structures  

It is very important to grasp the monomode/multimode behavior of a PhC 
waveguide in order to understand the spectral performance of more complex PhC 
structures. 

The characterization method used here is the so called end-fire method: the light 
generated by an external tunable monomode lazer is injected through a micro-lensed 
fiber in the device. Note that this device is transparent at these wavelengths. The 
polarization of the injected light is maintained under tuning. The spectrally resolved 
transmission is measured on a wavelength domain ranging from 1,410nm to 
1,590nm. Fourier transforming the transmission spectrum enables us to identify all 
the optical cavities existing within a structure, which are revealed by the 
interferences of the coherent light. The fringe contrast of each cavity is related to the 
internal optical losses and to the reflection coefficient amplitude of the two 
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reflectors that limit that cavity. We systematically use this fringe contrast 
measurement technique to characterize each cavity [TAL 03b]. 

2.4.1.1. Straight guides, taper  

2.4.1.1.1. Straight guides  

All Wi PhC waveguides, except W1, are multimode. In order to measure 
propagation losses, one must know on which mode propagation occurs. In order to 
undoubtedly inject the light on the fundamental mode of a Wi guide (and 
symmetrically collect the light exiting on the fundamental mode), each Wi is 
inserted between two deep ridge access guides which are monomode with a 
comparable modal profile. These ridges are realized during the same e-beam 
lithography step performed for the holes, thus their axes are aligned with the Wi 
guides’ axes. The Scanning Electron Microscope (SEM) picture in Figure 2.4a 
shows a top view of the ridge access guide on the left (the white area in between two 
dark lines) and a W2 ΓK waveguide on the right. The overall cavity formed by the 
input ridge waveguide + Wi + output ridge waveguide is limited by two cleaved 
facets. After calibration of propagation losses within the ridges and the reflection 
coefficient of the cleaved facets, measuring the transmission for different lengths of 
the Wi guide reveals the propagation losses within the Wi guide, and the reflection 
at the interfaces’ ridge/Wi [TAL 01].  

Figure 2.4b displays the variation of propagation losses (overall losses including 
in-plane and out-of-plane losses) versus Wi guide width, reported here through the 
number i of missing rows. Large losses in the case of W1 can be attributed to the 
strong interaction of the field with the innermost row of holes. For larger Wi, losses 
are reduced, and we can expect that losses will continuously reduce when i is 
increasing. But, the loss figure obtained for W7 is of the same order as the one 
obtained for W5. We can demonstrate (through the width of the peak in the Fourier 
Transformed spectrum) that when propagating in a W7, even when injecting on the 
fundamental mode, higher order modes are excited. So part of the light is propagated 
on these modes, which are more lossy, leading to an overall propagation loss value 
larger than that which could be expected for a propagation performed only on the 
fundamental mode. 

Following the dispersion curve of W1 (Figure 2.2b), one can see that the even 
mode is slowed down when approaching the Brillouin zone edge. In a certain 
frequency range, no transmission is possible as no mode exists, and for even smaller 
frequencies, light propagation is again achieved through the continuum of optical 
modes. The spectral position of this cut-off is strongly dependent on the air filling 
factor ff. Figure 2.4c plots this cut-off for two different ff values. This optical 
method allows the determination of ff with an accuracy better than 1% [TAL 04b].  
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Turning to the multimode W3 waveguide, we refer again to the dispersion curve 
in Figure 2.2b. Figure 2.4d displays the transmission spectrum of a W3: the 
measured transmission is shown by a solid line, an FDTD simulation without losses 
is displayed as a dashed line, and a simulation including losses through the ε” 
parameter is plotted in bold dashed lines, here ε”=0.10 [SWI 01]. The mini stopband 
observed on the transmission spectrum is a signature of this waveguide. The ε” 
parameter is a phenomenological parameter whose value is adjusted to fit the 
measured data. The smaller ε”, the lower the losses. We recall here that above the 
substrate light-line, losses always exist through coupling vertically to radiative 
modes.  

 

Figure 2.4. A: photonic crystal guide: Scanning Electron Micrograph (SEM) top view of  
a ridge access guide and a W2; B: Propagation losses versus PhC guide width, for Wi;  

C: Cut-off of W1 mode, versus ff (air filling factor); D: Mini stopband in a W3 

2.4.1.1.2. Taper  

W1 waveguide is lossy, but has the advantage of being monomode. Monomode 
waveguides are the preferred choice for Integrated Optics devices as they prevent 
mode mixing; we make this choice too, and try to use W1, but on limited sections in 
order to minimize overall cumulative propagation losses. Such large losses for the 
W1 fundamental even mode stem from strong lateral confinement: Figure 2.5 
displays the transverse modal profile of the fundamental mode of a ridge guide 
having the same confinement as the W1 mode in the refractive region. Due to this 
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strong lateral confinement, the mode is laterally squeezed, and thus is greatly 
extended vertically in the case of the low index contrast InP-material system. Such a 
modal shape is not at all well adapted to that of a classical monomode ridge 
waveguide typically 1.2 to 1.5µm wide. A W3 waveguide is wider, and its 
fundamental mode is correctly adapted to the mode of a classical ridge access guide 
[TAL 01].  

To reconcile both aspects, an original geometry has been proposed for a taper 
which adapts the fundamental mode of W3 to the fundamental mode of W1. This 
geometry is based on a continuous variation of the holes’ size and depth, thus 
adapting the mode in both directions of the transverse plane [LAL 02]. In theory, 
such a geometry enables almost 100% of the light from a W3 to a W1 to be coupled, 
provided that we are able to produce holes with a diameter as low as 70nm. 
 

 

Figure 2.5. A: Optical mode confinement in a “W1-like” environment; B: SEM top view of 
the taper, and cross view of the first hole 

Figure 2.5b displays the SEM picture of the first hole of the taper. In this 
fabrication run the diameter is 180nm and thus is still too large. Recent results have 
been obtained with a 100nm diameter hole within the taper; the coupling efficiency 
in that case is as high as 70% on a spectral domain larger than 80nm below the odd 
mode, and reflection is limited to 1% [TAL 04a]. 
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2.4.1.2. Bend, combiner  

2.4.1.2.1. Bend  

The main drawback of bends realized by index contrast is the large radius of 
curvature required for low bending losses, which leads to very extended devices. In 
the case of shorter bends (large curvature), polarization conversion also occurs 
[VAN 96]. PhC bends have the advantage of very short bends without in-plane 
losses. Being in the photonic gap, there is no possibility of coupling with in-plane 
radiation modes. The bend geometry has to be optimized to reduce and even cancel 
the reflection, which is the only in-plane mechanism that can reduce the 
transmission. Several geometries have been investigated when moving holes in the 
very corner. Partly optimized designs exist for each Wi width [OLI 02a]. But one 
should pay attention to two points: 

1) After the bend, the light has to exit just as it entered, on the fundamental 
mode; this makes it possible for bends to cascade, or for a bend to be included in a 
more complex PIC. 

2) The polarization must not have been altered. 

The bend breaks the symmetry of the crystal, so as soon as the guide is 
multimode, the bend projects the fundamental mode on all the modes supported by 
the guide [BEN 02, MEK 96]. FDTD simulation gives a clear view of a multimode 
versus a monomode propagation at the output of the bend. This multimode behavior 
is delicate to evidence from the far field pattern. 

To follow the triangular lattice geometry, bends turn at 60°, so a practical 
fabricated structure with cleaved parallel facets has to include two consecutive 
bends. We address here point 2, investigating the effect of the bend on the 
polarization state. Figure 2.6 shows SEM pictures of two cascaded bends for W3 
and W1 waveguides, again with the transmission spectra. For each PhC guide width 
an optimized geometry has been implemented: it corresponds to six holes moved in 
the case of W3, and one hole moved in the case of W1. 

The external source uses a polarization maintaining fiber with a polarization 
rejection rate higher than 17dB. The light is injected on the TE polarization, using a 
polarization maintaining fiber, and is analyzed at the output of the collecting fiber 
through a polarizer. This enables the power level at the output to be measured for 
both polarizations.  

For W3 bends, we can see in Figure 2.5a that the power level on TM is only 
10dB smaller than the one on TE: this means that part of the light injected on the TE 
polarization is now collected on TM; some polarization conversion has occurred in 
this bend. In the case of W1 bends, the measured TM level at the output is 17dB 
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lower that the TE one, which is the source rejection. No polarization conversion (or 
below 17dB) has occurred. 

In conclusion we could say that W1 is lossy, but it is monomode and no 
polarization conversion occurs in the bend, whereas W3 has lower propagation 
losses, but some polarization conversion occurs in a bend. 

  

Figure 2.6. Double bend in W1 and W3 PhC guides: on the left, optical transmitted power 
versus wavelength for both TE and TM polarizations; on the right, 

an SEM picture of each double bend 

The best bend design ideally combines a wide PhC guide, e.g. W3 in the straight 
sections (for low propagation losses), and a narrow PhC guide, e.g. W1 in the very 
bend, which does not produce polarization conversion, and excites only the 
fundamental mode of the wide guide at the exit. We have realized such a bend 
including tapers between the straight W3 sections and the W1 bend [TAL 04a].  

The FDTD simulation in Figure 2.7a shows that the light exits here on the 
fundamental mode of the W3. The fabricated structure (SEM picture in Figure 2.7b 
with the detail of the bend and the access taper) demonstrates losses as low as 1.5dB 

1 hole moved

6 holes moved 



 Nanophotonics 98 

per bend, when compared to a straight deep ridge (plotted as a dashed line), on a 
30nm wide spectral range.  

It is clear from the SEM picture that there is room for improvement in the 
fabrication – taper holes have to be as small as 70nm in diameter, as previously 
stated. Performance will consequently be improved. 

 

Figure 2.7. A: FDTD simulation (2D+ε”) of a bend including a taper; B: SEM pictures: 
general overview, and detail of the fabricated bend; C: Measured optical transmitted power – 

the straight guide is plotted as a reference 

2.4.1.2.2. Y branching combiner  

Optical signal processing will require more complicated circuits such as 
interferometers (Mach-Zhender …). A generic building-block is a combiner, in 
which at least two optical paths have to be combined (divided). 

Figure 2.8a is an SEM picture of a two-branch combiner fabricated with W1 
guides and including a taper at each input and at the output. Different geometries 
have been investigated for the combining region. The design rule followed here is to 
limit the excitation of higher order modes in the enlarged section. The best result is 
the one obtained on the structure shown on the enlarged SEM picture of the 
combining region, when adding a single hole of the same size with respect to a 
canonical design. Symmetry considerations are used to optimize this design. 
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Transmissions plotted in Figure 2.8b show that both entrances C1 and C2 have the 
same power budget, which is 3dB lower than that of a bend [TAL 04b]. This is the 
same performance as a “classical” Y junction, but for a combiner which is 100 times 
smaller (104 in area footprint). The remaining oscillations on both the C1 and C2 
spectra arise from the interference fringes due to the reflection at the cleaved facets 
which have no anti-reflective coating. The cut-off at 1,540nm is the signature of the 
W1 guide.  
 

 

Figure 2.8. A: SEM pictures of a Y combiner: general overview, and detail of the combining 
section; B: Measured transmission spectra for both entrances – 

the bend alone is plotted as a reference 

General rules for designing PhC guiding structures are based on symmetry 
considerations and modal shapes. It is not possible here to resolve the inverse 
problem as it is commonly done for 1D Bragg mirrors, where the stack of layers can 
be calculated to provide a spectral reflectance defined beforehand.  

Attempts are now made to obtain the best geometry using genetic algorithms: the 
parameters are the holes’ positions and sizes, a figure of merit is defined, and the 
algorithm produces the geometry that allows the best fit for this figure. Very little 
understanding of PhC physics is required to define such structures, though some 
optimal guiding geometries have been produced [HAK 05]. This approach is 
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probably time consuming, and is limited to guiding structures. Resonant structures, 
as we will see below, are based mainly on mode shaping. 

2.4.1.3. Filters 

Let us recall that in Wavelength Division Multiplexing (WDM) networks, 
wavelengths are typically spaced at 0.8nm intervals (100GHz at 1.55µm), or even 
lower intervals (from 50 to 25GHz). A directive filter makes it possible to add or 
drop one wavelength selected among all the transmitted wavelengths. The filter 
rejection has to be better than 25dB. These requirements can be fulfilled for a filter 
having a quality factor Q larger than 2,000. 

The designs of filters, including PhC structures, can be based on the co-
directional coupling mechanism, as in classical filters, channeling the light from 
one waveguide to another through a resonator. Specific designs implementing 
the contra-directional coupling that exists in PhC waveguides can also be 
produced.  

2.4.1.3.1. Co-directional coupling 

Before fabricating a fully-fledged filter (guide + resonator + guide), we will 
investigate a drop structure which includes a cavity coupled to a guide. We want to 
demonstrate that one wavelength, which corresponds to a resonant mode of the 
cavity, is missing after transmission. 

Figure 2.9a shows the SEM picture of an H2 cavity coupled to a W3 guide. The 
transmission spectrum, after filtering the fringes due to the overall resonator limited 
by the two cleaved facets, shows a dip at 1,440nm, and the quality factor is 200. The 
light is co-directionally coupled from the refractive mode of W3 to the whispering 
gallery mode of H2 (see section 2.2.2, Figure 2.2a).  

The filter in Figure 2.9b couples an H7 cavity to a W3 guide. The epitaxial layers 
used for this design include quantum boxes on GaAs whose luminescence is excited 
by optical pumping. In the case where the cavity is separated from the guide by two 
rows of holes, the light is extracted from the guide, with a quality factor of 800 
(spectrometer limited), through the slow mode of the mini stopband, as represented 
by the dark arrows [SMI 00].  
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Figure 2.9. A: Guide-cavity coupling through the gallery mode;  
B: Guide-cavity coupling through the slow mode of the mini stopband 

2.4.1.3.2. Contra-directional coupling  

Within a multimode PhC waveguide, the mini stopband is the result of contra-
directional coupling between two modes of this guide, through the periodicity of the 
PhC guide itself. When the design makes it possible to collect the light on the 
backward mode, this wavelength is dropped from the forward mode, over the 
spectral domain of the mini stopband. 

The structure proposed by Qiu et al. [QIU 03] includes 2 PhC guides: one is a 
W1, the other is a W0.8; both are separated by one row of holes (Figure 2.10a). 
Coupling between these two guides creates a mini stopband, visible on the 
dispersion curve. The optical spectrum measured on the collection guide (drop) is 
compared to the calculated one. Light is correctly transferred and the quality factor 
is Q=150, again limited by out-of-plane losses (device on InP substrate). 

Benisty et al. have proposed a structure based on the slow mode of the mini 
stopband of a W5 guide or similar (Figure 2.10b). This structure also includes 
quantum boxes on GaAs for characterization. Both transmissions measured on the 
incident guide (bar) and on the transferred guide (cross) are displayed as bold lines 
in Figure 2.10b; the calculated transmissions are plotted as grey lines [OLI 03]. The 
quality factor Q is 150, again limited by the out-of-plane losses.  
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All these results show that it is difficult to reach the desired Q value when 
operating on a substrate. FDTD simulations including out-of-plane losses through 
the ε” parameter clearly evidence that any efficient in-plane wavelength selective 
mechanism loses its effectiveness when including out-of-plane losses, even a low 
level of losses. On the other hand, quality factors as large as 100,000 have recently 
been reached for membrane structures on SOI material [AKA 05]. Design rules for 
efficient resonators are based on modal shape analysis taking into account the light 
cone. 

 

Figure 2.10. A: Contra-directional coupling, through the mini stopband, in the W1/W0.8 
system; B: Measured transmission of coupling through the mini stopband of W5 

2.4.2. Active structures: lazers  

PICs fulfilling all the optical functions will require active functions, such as 
emission, amplification or fast tunability obtained through carrier injection or 
biasing. Injecting carriers or biasing a deeply etched structure with holes is very 
difficult.  
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A lazer is a good example of an “active function”. The threshold current offers 
reliable information about surface recombination due to all the defects produced 
during etching, while external efficiency is related to optical losses for the lasing 
mode. One can also take advantage of the periodicity inherent in the PhC to reach 
monomode operation.  

Here we present results on full-PhC edge-emitting lazers, operating on 
continuous wave under electrical injection at room temperature.  

In the structure presented in Figure 2.11a, spectral selectivity is provided by 
coupling 40 cavities of size H7 [HAP 01], following the proposal of the so called 
CROW (Coupled Resonator Optical Waveguide) [OLI 01 and references therein]. 
Coupling such a large number of cavities ensures a very large side mode suppression 
ratio (SMSR) for the resonant mode.  

The design proposed in Figure 2.11b has no holes in the axis of the cavity. In this 
case, monomode behavior is achieved by adding another periodicity on the PhC 
matrix: one hole is added every six holes along the W5 ΓK guide. This additional 
periodicity folds the dispersion curve and allows the fundamental mode to be folded 
within the gap, to the 10th order.  

This behavior is “DFB-like”, but without losses on the other orders as they 
lie outside of the gap. This lazer also has a PhC rear mirror calculated to have its 
maximum efficiency at the lasing wavelength [LAB 99]. The measured SMSR 
was found to be 25dB, and the external efficient reached 0.17 W/A; these 
performances are comparable to devices actually implemented in optical 
networks [TAL 03a].  

These results demonstrate that PhC structures are efficient for active optical 
functions. As amplification can be obtained on the same electrical scheme, a PhC 
amplifier can be included along with a passive PhC function, leading to a full PhC-
based PIC demonstrating an overall power budget of 0dB.  
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Figure 2.11. Lasing operation of full photonic crystal lazers. A: Coupled cavity structure 
(CROW) showing a very large rejection; B: “DFB-like” lazer, showing a large rejection,  

and a large external efficiency η=0.17 

2.5. Conclusion 

This chapter has discussed several passive and active devices based on photonic 
crystals. These devices can be introduced as building blocks in Photonic Integrated 
Circuits. Substrate-based structures are found to be adequate to obtain lasing 
emission or amplification, but when resonant performances are required, the 
limitation which is inherent as a result of losses through out-of-plane radiation 
modes is not acceptable for WDM applications. 

Photonic crystals also have interesting properties outside the photonic gap, 
related to the particular curvature of dispersion bands, such as the super-prism effect 
[KOS 98] or autofocussing. 

The nanotechnology required for these devices has been intensively developed, 
and has enabled the fabrication of structures including holes with diameters smaller 
than 100nm. Investigations are currently in progress to estimate the ultimate 
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performances of PhC structures within the limits of today’s technology (lithography 
accuracy, etching quality).  
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Chapter 3 

Photonic Crystal Fibers 

3.1. Introduction   

Thanks to the great strides taken at the very beginning of the twenty-first 
century, a large number of active and passive functions (emission, reception, 
filtering, wavelength multiplexing-demultiplexing …) can be operated by means of 
photonic integrated circuits (PICs). Thus, as demonstrated in the preceding chapter, 
the necessary basic elements are now available for designing advanced integrated 
functions for high bit rate optical transmissions. However, to take full advantage of 
this progress, high quality connections with optical fibers must be achieved. The 
transmission fibers themselves must also exhibit higher and higher levels of 
performance. The connection between PICs and standard optical fibers usually 
involves a taper for adjusting the size of the mode. This is followed by a diffraction 
grating engraved in the circuit for extracting light. The measured coupling efficiency 
is higher than 25% and can potentially exceed 80% [MCN 03; TAI 03]. 

A considerable increase in the transmission bit rate into one single optical fiber 
has already been made possible, thanks to two major breakthroughs over the past 20 
years: first, since 1985, the use of fibers operating in the single mode regime in the 
spectral bandwidth of the highest transparency of silica (around 1,550nm), and 
secondly, since 1990, the all-optical amplification of spectrally multiplexed high bit 
rate signals into rare earth doped fibers.  

Nevertheless, there is still much to be done – in particular, increasing further the 
bit rate of optical communication around 1,550nm, and for many other applications 

                                   
Chapter written by Dominique PAGNOUX. 



110     Nanophotonics 

at different wavelengths, novel fibers must be designed in order to reduce, cancel or 
compensate for chromatic dispersion at the operating wavelength. Indeed, the only 
means of significantly changing chromatic dispersion is to act on the contribution of 
the guide to this parameter: this means that one must imagine fibers in which the 
confinement of the guided mode spectrally evolves in a radically different way from 
that observed in usual fibers. 

In order to meet this need, a new generation of optical fibers with specific micro 
or nano-structuration of the cladding, known under the generic designation of 
“photonic crystal fibers” (PCFs), has been conceived. As we will see below, a 
particular class of PCFs guides light by means of a photonic bandgap effect similar 
to that used in photonic crystals described in the preceding chapter. With these 
fibers, low loss propagation of light can be achieved in a hollow core provided that 
the submicrometric structuration of the cladding is perfectly controlled over long 
lengths (tens or hundreds of meters, indeed kilometers). These fibers are not 
designed to perform particular new functions, unlike PICs. Their main job is to 
provide propagation properties over long distances that cannot be obtained with 
other guides. In other words, they have a complementary role to play in the field of 
photonics. 

The history of photonic crystal fibers concretely begins in 1995, when a group of 
British researchers under the direction of Philip St J. Russell (Optical Research 
Center in Southampton, later University of Bath) decided to exploit, in the domain 
of optical fibers, the concept of photonic band gap already implemented for 
confining light in periodic bidimensional semi-conductor structures [BIR 95]. The 
sought result is a guiding effect due to a transverse Bragg resonance into the 
cladding of the fiber. In other words, it is a 2D application of the principle of Bragg 
fibers with 1D periodical cladding theoretically demonstrated by Yeh et al. in 1978 
[YEH 78]. 

The optical cladding of Bragg fibers is made of a stack of transparent layers with 
alternately high and low indices. It can efficiently confine light in the core, even if 
the index of this core is lower than the minimum index of the layers of the cladding, 
since the usual total internal reflection principle is not involved in the guiding 
mechanism [BRE 00b; FIN 99]. In particular, the core may be filled with air (hollow 
core). Obviously, the transmission bandwidth of such a fiber is limited to the 
transverse resonance bandwidth of the cladding [BRE 00a]. For a given pair of 
materials constituting the layers of the cladding, the central wavelength of the 
transmission bandwidth decreases with the thickness of the layers. For example, 
light can be guided in the near infrared (around 1,550nm) in a hollow core Bragg 
fiber whose cladding is made of 35 alternate layers of glass (As2Se3) and polymer 
(PEI) having refractive indices respectively equal to 2.82 and 1.66 at 1,550nm. In 
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order to guide light in this spectral bandwidth, the thickness of the layers must be 
equal to 270nm and 470nm respectively [KUR 04]. 

In Russell’s project, the concentric layers with alternate high and low indices 
constituting the resonant optical cladding of the Bragg fibers are replaced by a 
hexagonal or a triangular lattice of air holes running along the axis, in a pure silica 
medium (Figure 3.1).  

Because of the regular micro-structuration of the cladding, an optical wave 
launched into the core experiences a periodic modulation of the surrounding 
medium whatever the considered direction in the transverse plane. By analogy with 
photonic crystals designed to guide light into semi-conductor media, these 
microstructured fibers have been called “photonic crystal fibers”. However, this 
novel type of optical waveguide differs radically, due to the fact that the light does 
not propagate any more perpendicularly to the invariant direction of the lattice (z 
direction), but parallel with this direction. This peculiarity must be pointed out 
because photonic bandgaps in fibers made of silica and air could not exist in other 
conditions. Indeed, in the case of a wave propagating perpendicularly to the hole 
axis, one could obtain a photonic bandgap whatever the polarization only if the air 
fraction (denoted f) was higher than 0.66 and, above all, if the index contrast was at 
least equal to 2.66; that is to say if it was higher than the 1.45 index contrast existing 
between air and silica [VIL 92]. 

These requirements are considerably reduced if we consider an optical wave 
whose wave vector has a non-zero axial component β. In this case, with an index 
contrast equal to only 1.45 and a sufficient air fraction, there are bandwidths where, 
for a given value β, one cannot find any pair of transverse components (kx , ky) 
whatever the considered polarization. The propagation of an optical wave at a 
wavelength in one of these bandwidths, through the periodic structure, is thus 
impossible: these bandwidths are photonic bandgaps. Then, if a defect set into the 
structure (hole with a size different from the others, or lake of hole) allows the 
existence of a mode with a propagation constant β, this mode must remain confined 
to this defect that behaves as the optical “core” of the fiber (Figure 3.1). 
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Figure 3.1. Cross-sections of photonic crystal fibers based 
 on a triangular or hexagonal lattice of holes 

3.2. Two guiding principles in microstructured fibers 

The two main geometrical parameters of photonic crystal fibers are the diameter 
of the holes (d) and the spacing between two adjacent holes, called the “pitch” and 
denoted by Λ. These two dimensions are related to the air fraction f by f≈0.91(d/Λ)2. 
The photonic bandgaps in the cladding of a triangular lattice air/silica photonic 
crystal with a 45% air-filling fraction can be identified in Figure 3.2 by means of 
kΛ(grey zones), where k is the modulus of the wave vector in the vacuum [BIR 95]. 
These wavelengths are those likely to be guided into the core of the fiber. In the 
considered example, they exist for values of β greater than 7/Λ.  

However, it is necessary to distinguish two types of spectral bandwidths whose 
wavelengths cannot propagate into the cladding. The first one (the grey triangle on 
the right at the bottom of Figure 3.2) corresponds to wavelengths guided into the 
core by virtue of the total internal reflection principle. These wavelengths comply 
with the relation β>k0neg where neg is the effective index of the fundamental mode 
able to exist in the heterogeneous cladding whose extension is supposed to be 
infinite. neg, which for simplicity’s sake will be referred to as “cladding effective 
index”, is given by: 
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where E is the electric field; n is the index of the silica (ns) or of the medium filling 
the holes (na) depending on the considered point of the cross-section; S is the area of 
an elementary cell of this cross-section; and r is the distance to the center of the 
fiber. For these wavelengths there exists no possible refraction angle between the 
core and the cladding. In other respects, there are also four other narrow bandwidths, 
at shorter wavelengths, due to the true guiding by the Bragg resonance in the 
photonic crystal. These bandwidths are obtained for all the polarizations of the 
electromagnetic field, for values of the product kΛ comprised between 8 and 12. 
Thus, for obtaining bandwidths in the near infrared or the visible, the pitch must be 
1 to 2 µm. This means that it is far larger than that necessary in planar guided optics. 
The explanation lies once again in the fact that light propagates in the direction of 
invariance of the crystal and not following the plan of periodicity [BIR 04]. 
 

 

 

 

 

Figure 3.2. Photonic bandgaps in a triangular lattice air/silica photonic 
crystal with a 45% air-filling fraction [BIR 95] 

The very first fiber manufactured to obtain a guiding effect in an air/silica 
photonic crystal consisted of one silica rod surrounded by narrow air holes with 
somewhat different diameters (0.2 to 1µm), spaced at approximately 2.3µm 
intervals. A single mode was guided at different wavelengths from 337nm to 
1,550nm, so one could think that the attempt was successful [KNI 96]. However, 
more careful study shows that this fiber cannot exhibit photonic bandgaps because 
the air-filling fraction into the cladding is too weak. The single mode guiding 
observed over a surprisingly large bandwidth is in fact easily explained by the two 
following considerations: 

– neg, the effective index of the heterogeneous medium constituting the optical 
cladding, that is the result of a balance between the index of the air and the index of 
the silica, is necessary lower than that of the pure silica core (see section 3.4). The 
observed guiding effect is then simply due to the total internal reflection (TIR) at the 
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frontier between the cladding area and the core area whose limits are not physically 
located. The fiber behaves as a step index fiber with a numerical aperture equal to 
NA=(ns

2-neg
2)1/2. The core radius can be stated as aeq=0,64Λ: indeed, one can show 

that the propagation constants of the modes of the step index fiber described by 
these opto-geometrical parameters are very close to those of the corresponding 
modes of the microstructured fiber [BRE 00c]; 

– as the extension of the field into the holes depends heavily on the wavelength, 
one can suspect that, considering equation 1, neg do not vary conventionally with 
respect to the wavelength. For example, for wavelengths significantly longer than d 
and Λ, the field largely spreads into the holes and, in a first approximation, it can be 
considered as a plane wave propagating into a medium having its index equal to 
neg=[f.na

2 + (1-f).ns
2]1/2. On the contrary, the shorter the wavelengths, the more the 

field avoids the air holes so that the effective index of the cladding asymptotically 
tends towards that of silica, under the form [REE 02]: 
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The above relation shows that the numerical aperture proportionally decreases 
with the wavelength. The spatial normalized frequency V=k.aeq.NA, that is in fact 
the Fresnel number in one dimension associated to the guided beam divided by 2π, 
gives one an indication of the number of spatial samples in this beam, that is to say, 
of the number of modes that can be guided. V tends from lower values towards a 
limit Vlim that depends only on the ratio d/Λ (Figure 3.3). When Vlim is lower than 
the cut-off spatial frequency of the second mode (2.405 when aeq=0.64Λ), the fiber 
remains theoretically single mode whatever the wavelength [BIR 97]. This property 
can be fulfilled even with very large core fibers [KNI 98a]. However, as the 
effective index of the cladding approaches that of silica, the efficiency of the guiding 
decreases and the bend loss increases [SOR 01]. This drawback limits the single 
mode bandwidth that can actually be used. 

The non-usual spectral dependence of the effective index of the cladding, due to 
the heterogeneous nature of the medium, also strongly influences the effective index 
and the chromatic dispersion of the fundamental mode propagating into the core. By 
choosing d and Λ carefully, one can adjust the effective area of the mode over a 
large range of values. The birefringence may also be adjusted by acting on the 
symmetry of the structure. Considering these features, one can easily understand that 
microstructured fibers guiding light due to the total internal reflection principle 
exhibit attractive propagation properties, even if the well known guiding principle 
has been exploited for years in standard fibers. As we will see below, these 
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properties open the way for novel applications in very diverse domains such as 
telecommunications, metrology, spectroscopy and non-linear optics. This is the main 
reason for the intensive research that has been undertaken since 1996 in numerous 
laboratories in the industry (Corning, Lucent Technologies, Alcatel, NTT-Ibaraki 
…) and in the universities (University of Bath, ORC in Southampton (UK), TUD 
Lyngby (Denmark), IRCOM Limoges (France), University of Sydney (Australia) 
…). Bodies such as Crystal Fiber (Denmark), specially devoted to their fabrication 
and distribution, have also been created in recent years. It is natural to devote space 
to them in this chapter.  

 

 

 

 

 

 

 

 

 
Figure 3.3. Spectral dependence of the spatial normalized frequency showing that the 

microstructured fibers remain single mode whatever the wavelength 
 for weak values of the d/Λ ratio 

Before continuing, it is worth noting that the label “photonic crystal fiber”, 
wrongly attributed to the very first microstructured fiber from the University of Bath 
in 1996, has since been used in most publications to refer to the microstructured 
fibers that guide light following the total internal reflection principle. In this chapter, 
to avoid confusion, such fibers will be called “air/silica microstructured optical 
fibers” or, for simplicity’s sake, “TIR-MOFs”. The label “photonic crystal fibers” 
(PCFs) will be reserved for those guiding due to a photonic bandgap (PBG) in the 
cladding. 
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3.3. Manufacture of microstructured fibers 

The technical process generally implemented in manufacturing microstructured 
fibers (TIR-MOFs or PCFs) is quite similar to that used for conventional silica 
fibers. In both cases, the fiber is drawn at a high temperature (between 1,800 and 
2,000°C) from a preform set in a vertical furnace at the top of a drawing tower. 
However, preforms are elaborated following very different techniques. On the one 
hand, the preform of a usual fiber can be described as a pure silica rod with a 
diameter of few centimeters, in the center of which a doped silica region is 
incorporated. Due to the dopants (Al, Ge, P …) the index of the doped region is 
higher than that of the silica, and this region is intended to become the core of the 
fiber. The creation of this kind of preform necessitates the implementation of 
complex physico-chemical techniques, such as MCVD, OVD or VAD. The index 
profile of the drawn fiber is a homothetical reduction of that of the preform. 

Preforms of MOFs are obtained by carefully stacking an assembly of pure silica 
capillary tubes and rods having a diameter of about 2mm. This assembly is inserted 
into a maintaining tube that constitutes the initial preform whose diameter is a few 
centimeters (Figure 3.4a). The general arrangement of the lattice of holes in the 
preform, i.e. the number and distribution of these holes, must be maintained 
throughout the drawing process. But contrary to the case of classical fibers, the final 
cross-section of an MOF does not systematically result from a simple homothetical 
reduction of that of the preform. Numerous parameters, including the temperature of 
the furnace, the pressure inside the tubes and the speed of the drawing operation, 
have a significant influence on the shape and size of the holes in the fiber, and on 
those of the possible residual interstices between these holes (Figure 3.4b and c). 

The used methods, so called “stack and draw methods”, enable a large variety of 
MOFs to be manufactured; they are characterized by the distribution of the holes in 
the lattice (triangular or hexagonal), the dimension of the core, the air-filling fraction 
(in other words the ratio d/Λ) and the number of rings of holes. These parameters are 
chosen with respect to the targeted application. In order to obtain performing MOFs, 
the following conditions must be met:  

– very high purity silica rods and tubes, perfectly desiccated, must be used, with 
the lowest possible rugosity at the silica/air interface, to reduce propagation loss; 

– the nominal dimensions of d and Λ must be respected because the effective 
area of the guided mode, its chromatic dispersion and the birefringence are very 
sensitive to these parameters; 

– the cross-section must not be varied axially – this is absolutely vital for 
achieving low propagation losses, especially in the case of hollow core PCFs 
[VEN 02].  
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Figure 3.4.  Photographs of cross-sections: A: a preform of an MOF; B and C: an MOF 
drawn with unsuitable (b) and inadequate(c) drawing parameters 

(photographs from IRCOM) 

3.4. Modeling TIR-MOFs 

As is the case whatever the type of guide, the main goal when modeling the 
propagation of light into microstructured fibers is to determine the effective index of 
each mode together with the spatial distribution of the associated electromagnetic 
field. The chromatic dispersion is deduced from the variations in the effective index 
versus the wavelength, whereas the field distribution enables the effective area, the 
confinement loss and the splice loss to be calculated. 

3.4.1. The “effective-V model” 

With the so called “effective-V model”, one seeks at each wavelength the opto-
geometrical parameters of a step-index fiber whose propagation characteristics are 
identical to those of the studied MOF (equivalent step-index fiber) [BIR 97]. The 
index of the core of this fiber is that of pure silica, ns. The index of the cladding is 
the highest effective index associated with a mode able to propagate in the silica/air 
structure when the latter is supposed to be infinite and free from all geometrical 
defects. This mode is known as the “fundamental space filling mode”. Among the 
modes of the infinite structure, the fundamental space filling mode is the one with 
the largest part of its energy located in the silica. One calculates neg by solving the 
Maxwell equations over an elementary cell that is a rectangle whose two opposite 
angles are the centers of neighboring holes. By duplicating this cell using 
symmetries versus its edges, the whole silica/air structure is reconstituted. The 
effective indices of the modes of the MOF are very close to those of the 
corresponding modes of the equivalent step-index fiber having a core radius equal to 
0.64Λ. Thus, by replacing the MOF with its equivalent step-index fiber at each 

b) c)a) 
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wavelength, one can easily determine the spectral single mode propagation domain, 
the chromatic dispersion and the bend loss of this MOF. The effective-V model is 
very easy to implement but, as it cannot bring about distribution of the guided mode, 
it is of limited utility. 

3.4.2. Modal methods for calculating the fields 

Modal methods consist of calculating the components of the electromagnetic 
fields of the guided modes due to the resolution of the wave equation, taking into 
account the actual index profile of the fiber that is supposed to be invariant along its 
axis. Generally, vector formulations are preferred to scalar ones, which are 
acceptable only if the index difference between the core and the cladding is very low 
(weak guidance approximation). This condition is rarely respected in MOFs, 
especially those with a large air-filling fraction in the cladding. 

One method involves solving the wave equation by replacing the expressions of 
the electromagnetic field and the index profile by their decomposition over a 
properly chosen base of functions. They can be: 

– trigonometric functions (Galerkin method) [KIM 00]; 
– cosine functions for the periodic region of the index profile and Hermite-Gauss 

type localized functions for the central area and the fields [MON 99, 00]; 
– Hermite-Gauss functions exclusively for both the index profile and the fields.  

This last choice is generally the most judicious because the decrease in the field 
is suitably described by means of a minimal number of localized functions, allowing 
a quick convergence of calculations and a lower memory requirement of the 
computer. 

The finite element method is based on the resolution of the Maxwell equations at 
each node of a triangular grid previously operated over the index profile of the fiber 
[NED 86]. In order to guarantee a proper description of the fields, the regions close 
to the core where the amplitude variations are significant necessitate fine mesh 
(length of the edge of a mesh between two successive nodes <λ/5). The distant 
regions where the amplitude of the field is sufficiently weak can be described by 
means of larger meshes in order to optimize the necessary memory. This optimal 
management of the dimensions of the meshes enables us to model fibers with larger 
diameters [PEY 03a]. When modeling perfectly symmetrical MOFs, the mesh can 
only be operated over a π/6 angular sector and one can then use symmetries in order 
to reconstitute the grid over the whole fiber. This technique, which provides a grid 
with the same symmetry as the modeled structure, strongly limits the “numerical” 
birefringence [PEY 03b]. However, when modeling actual MOFs, the mesh must be 
directly operated over the whole cross-section and the symmetry of the grid is no 
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longer guaranteed. In this case, the numerical birefringence appears to be somewhat 
higher. By setting electric or magnetic short-circuits along two perpendicular radial 
directions, the electric or magnetic field respectively is cancelled along these 
directions, providing a means of choosing the direction of polarization of the studied 
mode. Moreover, by setting a real impedance along a circular contour around the 
last ring of holes, the confinement loss due to the evanescent part of the field beyond 
this limit can be calculated. The results of this evaluation cannot be considered as 
absolute because they depend upon the value of the impedance. However, when the 
real impedance is replaced by a perfect matched layer (PML) that is a virtual 
surrounding medium avoiding any reflection, the order of magnitude of the 
computed confinement loss becomes realistic [BER 94; YU 04]. The finite element 
method is somewhat difficult to implement, but it has been shown to be particularly 
reliable, especially for accurately modeling actual MOFs by taking into account their 
geometrical imperfections. 

The multipole method conceived in the 1980s is a modal method that has been 
adapted to MOFs since the year 2000 by French and Australian research groups 
(respectively at the Fresnel Institute in Marseille and at the School of Physics in 
Sydney) [KUH 02; WHI 02]. It is a rigorous vectorial method in which the field near 
a given hole (hole n°j), decomposed in the Fourier-Bessel series, is seen as the sum 
of three contributions: an incident exciting field (monochromatic plane wave), the 
field diffracted by the hole n°j and moving away from this hole, and the field 
diffracted by all the other holes towards the hole n°j. The formulation of the 
problem, too complicated to set out here, leads to a matrix system [M][B]=0, where 
[B] is the vector associated with the electromagnetic field of a mode of the structure 
and [M] is the generalized diffraction matrix of this structure. Very clear and 
didactic descriptions of this method can be found in both English and French 
[KUH 02; LOU 05]. From a practical point of view, one can recall that it could 
model any index profiles of MOF unless the circles surrounding neighboring holes 
intersect. This limitation particularly concerns PCFs with a very large air-filling 
fraction. Diffraction matrices can be calculated analytically for circular holes. For 
holes with different sections, they generally necessitate the use of complicated 
integral or differential methods and this considerably increases the computation 
time. 

There are other, less efficient, modal methods:  
– the equivalent average index method, which is a very approximate method 

consisting of replacing the considered MOF with an “equivalent” fiber with a 
revolution symmetry of its index profile [PEY 02a; RAS 03]; 

– the biorthogonal method, based on the decomposition of the fields in a set of 
plane waves, applies only to perfectly symmetrical structures [FER 99; SIL 98]. 



120     Nanophotonics 

Finally, before ending this section, mention must be made of the beam 
propagation method (BPM), which is not a modal method. Thanks to successive 
alternate incrementations of the field in the direct space and in the conjugated one, 
the evolution of the input field along the propagation axis is described. In particular, 
one can observe the setting up of the fundamental mode in a single mode fiber and 
one can also evaluate the confinement loss [FOG 02]. BPM is mainly devoted to the 
study of propagation in guides whose profiles vary along the axis, such as tapers, 
fused couplers and splices. In order to study MOFs, it is necessary to use a vectorial 
formulation because of the high index contrast existing at the silica/air interfaces. 

 
As was shown above, a large number of numerical tools are available for 

modeling the propagation into MOFs. However, one must avoid systematically 
relying on the numerical results without question because all the methods operate in 
the frame of work hypothesis and/or approximations that must be known or taken 
into account. In other words, as the authors of Chapter 2 in [LOU 05] say: “it should 
be stressed that beginners need to be extremely cautious before considering 
numerical results as valid, especially when they do not know the theoretical and 
numerical foundations of the code used for obtaining these results”. 

3.5. Main properties and applications of TIR-MOFs 

3.5.1. Single mode propagation 

The possibility of single mode propagation over a very wide range of 
wavelengths into TIR-MOFs, provided that the ratio d/Λ is lower than a limit (about 
0.35), has already been mentioned above (section 3.2). This property is of great 
interest to stellar interferometry by optical fibers which exploits the whole spectrum 
from the visible to the infrared [PEY 02b]. It also allows efficient amplification into 
rare earth doped fibers with a large active area (see section 3.5.5) [HIL 03]. 

3.5.2. Propagation loss 

In a TIR-MOF, the confinement of the guided field into the core must be 
achieved by a sufficient number of rings of holes, depending on d/Λ. If this 
condition is not fulfilled, the field can spread beyond the microstructured cladding 
and it behaves as a leaky mode with very high loss. For example, with d/Λ=0.4 
(Λ=2.3µm), the confinement loss at λ=1,550nm increases from 10-2dB/m to 10dB/m 
when the number of rings is reduced from 6 to 4 [WHI 01]. 

As with classical fibers, the bend loss of MOFs becomes significant at long 
wavelengths, because the extent of the field in the cladding area increases with λ. 
But, contrary to standard fibers, one can also note an increase in the bend loss at 
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short wavelengths because the guiding becomes too weak (see section 3.2). One can 
consider that, at short wavelengths, the loss remains negligible so long as the 
curvature radius remains very large as compared to Rc = Λ3/λ2 [BIR 97]. Thus, 
MOFs can theoretically be used over only a limited spectral range. Nevertheless, 
with standard packaging conditions, the available bandwidth is large enough to 
enable all the applications in the usual transmission windows of silica [SOR 01]. 

Other causes of loss are absorption by the silica and diffusion at the silica/air 
interfaces. Thanks to great progress in material synthesis and in fabrication 
techniques (see section 3.3), the attenuation coefficient decreased to 0.28 dB/km at 
1,550 nm at the end of 2003, very close to the current figure of 0.14 dB/km in silica 
[TAJ 03]. Even if this attenuation remains higher than that of standard fibers (about 
0.15 dB/km at 1,550nm), it is possible to use TIR-MOFs in optical links with the 
aim of taking advantage of other propagation characteristics that cannot be provided 
by classical fibers. 

3.5.3. Chromatic dispersion 

The chromatic dispersion of one mode of a guide (denoted Dc) can be expressed 
as a function of the spectral dependence of the effective index, as follows: 
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ne is the effective index of the mode, depending on the index of the core, on that 
of the cladding and on the fraction of the field respectively located in each of these 
two areas of the guide. Its spectral dependence expresses both that of the two media 
(cause of the dispersion of the material) and that of the radial extent of the field 
(from which the dispersion of the guide rises). 

In classical fibers, the dispersion of the material in the core and in the cladding is 
that of silica. It can be modified, though only a very small amount, by adding 
dopants, but this should dramatically increase the absorption in the material. Thus, 
in order to modify the chromatic dispersion of the fundamental mode – taking Dc 
into account is of interest only in the single mode regime – one can only modify the 
dispersion of the guide. This can be achieved by acting on the spectral evolution of 
the confinement via the design of a more or less complicated index profile [AUG 02; 
MEU 03]. Nevertheless, the index difference between the core and the cladding 
remains constant and this considerably limits the possibility of adjusting the 
dispersion. In particular, the dispersion can be cancelled only at wavelengths longer 
than 1,300nm and it can be flattened only over a reduced spectral bandwidth. 
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On the contrary, the index difference between the core and the cladding in MOFs 
can significantly change with the wavelength because of the strong spectral 
dependence of neg, already mentioned. One can guess that the spectral evolution of 
the confinement and, consequently, of the effective index originates from a much 
finer alchemy. Opportunities to modify the chromatic dispersion over a given 
spectral bandwidth by adjusting the opto-geometrical parameters of the fiber 
increase. But, except in certain cases, the prediction of the evolution of Dc(λ) can be 
obtained only with the calculation of ne over the whole considered bandwidth, by 
means of one of the methods mentioned above (see section 3.4). 

Flattened Dc over a wide spectral range is one of the non-conventional 
dispersion characteristics that MOFs can exhibit [FER 00]. For example, chromatic 
dispersion is lower than 1.2ps/(nm.km) from 1,000nm to 1,600nm in a fiber 
comprising 11 rings of holes where d=0.58µm and Λ=2.59µm [REE 02]. Potential 
applications are first of all optical communications based on the wavelength division 
multiplexing (WDM) technique. Nevertheless, one must stress the fact that the value 
of chromatic dispersion is particularly sensitive to very weak variations in opto-
geometrical parameters. Indeed, a discrepancy of 10nm in the holes’ diameters, or of 
100nm in the pitch, induces a significant reduction in the low dispersion spectral 
bandwidth (1,250–1,450nm in this case). The consequence is that very tight control 
of the manufacturing process is required to obtain fibers having the desired 
dispersion characteristics.  

It is also possible to cancel chromatic dispersion at wavelengths shorter than 
1,300nm in MOFs. To reach this goal, the negative (normal) dispersion of the 
material must be compensated for using a positive (abnormal) dispersion of the 
guide obtained when a large index difference between the core and the cladding 
strongly confines the field over the considered bandwidth. Thus, MOFs with their 
dispersion cancelled at short wavelengths are fibers having a large air-filling fraction 
in the cladding together with a narrow guiding area for preserving the single mode 
nature of the propagation. Chromatic dispersion can be cancelled at very short 
wavelengths, in which case dispersion of the material is considerable. For example, 
an MOF with a 0.5µm diameter core surrounded by holes 50 times larger has its 
chromatic dispersion cancelled at 560nm where the dispersion of the material still 
reaches –360 ps/(nm.km) [KNI 00].  

These applications are mainly in the field of non-linear optics because, around 
the zero dispersion wavelength, one can obtain constructive non-linear interactions 
over long lengths of fibers and consequently create appreciable effects, among 
which are the following: 

– frequency generation producing large continua in MOFs when excited with 
short pulses centered at wavelengths close to the zero dispersion wavelength 
[FEV 01; PRO 01; RAN 00; WAD 04]. A technique for generating even more 
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extended continua (from the UV to 1,700nm) is to pump the MOF with a two 
wavelength lazer, the two pumping wavelengths being situated on both sides of the 
zero dispersion wavelength of the fiber [CHA 04]. This result from a complicated 
cascade of non-linear effects involving stimulated Raman diffusion, self phase 
modulation, cross phase modulation and four wave mixing. The main applications 
are in the domains of bright wide spectrum sources for medical imaging, WDM 
systems and metrology [HOL 00]; 

– cross phase modulation used in all optical commutation systems [SHA 02a]; 
– four wave mixing for designing parametric oscillators [SHA 02b]. 

3.5.4. Birefringence 

It is well known that guides having a rotational symmetry of 2π/m<π are 
isotropic. TIR-MOFs with a perfectly organized triangular lattice of holes that have 
a π/6 symmetry of their structure abide by this rule. If we consider only the 
geometrical effects, these MOFs are then theoretically free from any birefringence 
(we recall that birefringence is defined as B=nex-ney where nex and ney are the 
effective indices of the two perpendicular polarizations of the fundamental mode) 
[STE 01]. In other words, nex and ney are theoretically identical even if the field 
distribution is made different in the two polarizations by compliance with the 
conditions of continuity at the silica/air interfaces [PEY 03b].  

Actually, the geometry of the cross-section of a MOF can never be perfectly 
symmetrical and its slight imperfections can cause notable shape birefringence. For 
giving an order of magnitude, B can reach 1.5 10-4 at 1,550nm, corresponding to a 
beat length Lb=λ/B in the order of one centimeter, if the diameter of the holes varies 
within a range of only ±1% and if their position versus their nominal location is 
shifted by ±0.5% [LIB 01]. The contribution of possible internal stress to the 
birefringence seems to be minor and is not clearly established. However, thanks to 
excellent control of the manufacturing process, one can reduce birefringence to very 
low values, corresponding to beat lengths of several tens of meters [NIE 02]. 

Due to the stack technique for manufacturing preforms, it becomes easy to 
elaborate structures having a single diametrical symmetry to induce a very high 
shape birefringence. One can deform the hexagonal shape of the core (Figure 3.5a 
and b) or conceive of an arrangement of holes with different diameters (Figure 3.5c 
and d) [MEL 03; ORT 00]. The measured birefringence is equal to a few 10-3 
(Lb<4mm at 1,550nm); that is to say it is at least as high as that of most classical 
polarization maintaining fibers (PANDA, bow tie, …). Because of their potentially 
low cost of fabrication, highly birefringent MOFs can be considered to be good 
candidates for all the applications that require operation with only one polarization, 
especially those involving techniques based on interferometry. 
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Figure 3.5. Cross-sections of highly birefringent MOF: with a non-hexagonal core  
(fibers from Alcatel (a) and Crystal Fiber (b)); involving holes with different diameters  

(fibers from Crystal Fiber (c) and Blaze Photonics (d)) 

3.5.5. Non-conventional effective areas 

Single mode propagation into TIR-MOFs is guaranteed whatever the 
wavelength, provided that the ratio d/Λ remains lower than a limit in the order of 
0.36 (see section 3.2). Thus, it can be obtained in fibers whose core diameter 2Λ is 
far larger than the wavelength. As an example, only the fundamental mode can 
propagate in a 22µm diameter core at the 458nm wavelength [KNI 98a]. But in these 
conditions, the numerical aperture is obviously very small and the propagation loss 
as well as the bend loss becomes high. The attractive feature of such fibers is that, 
for a given guided power, the power density decreases because of the large effective 
area of the mode (a few hundred µm2) and this enhances the power threshold at 
which appreciable non-linear effects appear. 

On the other hand, with a large air-filling fraction in the cladding area, one 
obtains a much higher index differential between the core and the cladding than that 
reachable in classical fibers. This makes it possible to efficiently confine, into a 
small core, a field whose effective area does not exceed a few µm2. Then, even with 
low guided power, high power density can be reached by inducing significant non-
linear Kerr effects. The applications principally deal with the frequency generation 
already mentioned in section 3.5.3 together with soliton propagation [CRI 04].  

An increase in the numerical aperture with the wavelength induces a spectral 
evolution of the effective area of the guided mode that is slower in MOFs than in 
standard fibers. By doping the core with rare earth, one can take advantage of this 
relative stability for designing efficient fiber amplifiers even if the pump and the 
signal wavelengths are very distant. Indeed, it becomes possible to obtain an optimal 
overlap of both the pump and the signal wavelengths with a somewhat extended 
doped area without affecting the single mode nature of the propagation at the two 
wavelengths. One of the main applications of this feature is erbium-doped amplifiers 
pumped at 980 nm and operating at 1,550 nm [HIL 03]. 

a) b) c) d)
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3.6. Photonic bandgap fibers 

3.6.1. Propagation in photonic bandgap fibers 

As explained in section 3.2, the propagation of light in true photonic crystal 
fibers (PCFs) is based on a transverse resonance in the cladding that makes the 
transverse propagation of light impossible at certain wavelengths; in other words, it 
is based on the existence of photonic bandgaps in the cladding. As the conditions of 
total internal reflection are no longer required, the index of the core can be lower 
than the effective index of the cladding neg. This gives an opportunity for novel 
applications than could not be implemented by other means. Indeed, the core can be 
constituted with any transparent material, in particular air or other gas, whose optical 
properties can be exploited. The general structure of a PCF is shown in Figure 3.6 
[CRE 99, SAI 03]. 

The method proposed by Pendry [PEN 94] makes it possible simply to evaluate 
the transmission bandwidth of PCFs. This finite element type method solves the 
Maxwell equations at the nodes of a square mesh of a structure, for small incidence 
angles. (A detailed description of the method can be found in [LOU 05].) In order to 
identify the photonic bandgaps and to describe the modes of the PCFs, one can also 
implement the method based on the decomposition of fields over a set of plane 
waves [BAR 99; BRO 00; POT 03], or a vectorial finite element method in which 
the edges of the elementary cells are curved for a better description of the geometry 
of the holes [SAI 03]. The main practical lesson that can be learnt from the 
simulations is that obtaining significant photonic bandgaps in silica/air fibers is 
possible only if the air-filling fraction is higher than 70% (d/Λ > 0.88). Obviously, 
the width of the bandgap for a given value of β increases with the air-filling fraction. 
For practical applications, f must exceed 80% (d/Λ > 0.95), implying that the 
cladding must be composed of very large holes separated by a narrow partition of 
silica. The use of materials with an index higher than that of silica, such as telluride 
or chalcogenide glasses whose indices in infrared are respectively in the range  
1.8–2.3 and 2.4–2.7, enables substantial bandwidths with a lower air-filling fraction 
to be created (in the order of 60%, i.e. d/Λ > 0.81) [POT 03]. As expected, the 
confinement loss of the mode is reduced as the air-filling fraction in the cladding is 
increased and as the number of rings of holes is increased. To indicate some orders 
of magnitude, it is divided by 1,000 when f increases from 73% to 80%; for f = 80%, 
it decreases from 100dB/m to 0.01dB/m when the number of rings of holes is 
increased from 4 to 12 [SAI 03]. At least, the shape of the central hole has a great 
influence on the confinement loss. It is shown that this loss is significantly reduced 
if the cross-section of the central hole is close to that depicted in Figure 3.6, instead 
of a perfect hexagon. 
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Figure 3.6. Cross-section of a hollow core PCF. A: general shape [SAI 03]; B: fiber 
manufactured at the University of Bath [CRE 99] 

The very first demonstration of guiding in a hollow core PCF, in 1998, was not 
really convincing because the holes were organized following a hexagonal matrix 
that allowed the field to spread out of the core and relocate in the silica interstices at 
the close periphery of this core [KNI 98b]. On the contrary, a triangular lattice of 
holes effectively confines the field in the hollow core [CRE 99]. The very high loss 
measured in the first manufactured PCFs (1999–2000) were essentially due to a lack 
in the axial uniformity of the fiber that randomly shifts the position of the bandgap 
along the propagation [WES 00, 01]. A second cause of loss is the coupling of light 
from the core to the silica (surface modes) that is made minimal by the use of a large 
section hollow core surrounded by a microstructured cladding with very narrow 
silica partitions [DIG 04]. The thickness of these partitions must remain smaller than 
λ/10. 

Over the course of a few years, advances in manufacturing techniques have made 
it possible to reduce propagation loss considerably [VEN 02; HAN 03; MAN 04]. 
Figure 3.7 shows the cross-section of a PCF whose propagation loss is reduced to 
less than 2dB/km over a 10nm spectral width around 1,565nm, due to scrupulous 
adherence to the above conditions. The elementary motives in the cladding have a 
3.9µm diameter and the thickness of the silica partitions is about 120nm. 

These promising results allow one to dream that, in the near future, the loss of 
hollow core PCFs will be reduced, over a large spectral range, under the 0.15 dB/km 
threshold imposed by Rayleigh diffusion in conventional fibers. In such fibers, the 
power threshold over which significant non-linear effects appear should be 100 
times higher than in usual fibers. They are obviously of great interest for the 
transmission of signals at wavelengths strongly absorbed by the silica (UV and far 
IR) and for the guiding of high power pulses without spectral distortions. 

 

b) a) 
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Figure 3.7. A: Microscope Electronic Beam picture of the cross-section of a PCF whose 
core is realized by removing the central rod and the two first rings of capillaries in the 

structure; B: spectral attenuation of this fiber [MAN 04] 

3.6.2. Some applications of photonic crystal fibers 

It is well known that very small objects (from atoms to micro-particles) can be 
trapped in the area of highest power density of a light beam and moved under the 
action of the radiation pressure of light. By launching the trapping beam into the 
hollow core of a PCF, micro-objects can be guided over a long distance in the center 
of this core, while following the curvature of the fiber, without any contact with the 
lining, and directed precisely towards the desired destination. In the first experiment 
that has proven the validity of this process, 5µm diameter polystyrene balls were 
guided by a continuous beam from an argon lazer (λ=514nm, P=80mW) over 15cm 
at a speed of 1cm/s in the center of the 20µm diameter core of a PCF (d=3–4µm, 
f=75%, attenuation=5dB/m at 514nm) [BEN 02b]. The length over which particles 
are guided can potentially exceed 100 meters in a fiber with lower attenuation, such 
as that shown in Figure 3.7. This opens up new horizons for all the applications that 
necessitate moving micro-objects to a precise location without any contact: for 
example, biology (handling of viruses and bacteria), chemistry and atomic physics. 

By filling the hollow core of a PCF with a highly non-linear gas, one can obtain 
significant effects with a very low pumping level, due to the very long lengths of 
interaction between the light and the gas along the fiber. As an example, in the core 
of a PCF filled with hydrogen under pressure, a pulsed lazer beam generates Stokes 
and anti-Stokes lines with a necessary energy in each pulse two orders of magnitude 
lower than that required by other techniques (interaction in a capillary or in the waist 
of a focused beam). With pulses of only 800 nJ/6 ns, a 30% conversion efficiency in 
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the Stokes line is measured at the output of only a few centimeters-long sample of 
PCF [BEN 02a]. 

A PCF can also guide, over several meters, femtosecond soliton pulses with a 
peak power of several megawatts. In order to achieve this, certain conditions must 
be fulfilled. First, the chromatic dispersion of the mode of the fiber must cancel at a 
wavelength close to the central wavelength of the pulse. Second, the propagation 
must operate in a material having a very low non-linear coefficient. Finally, no 
Raman effect may appear because it should quickly shift the spectrum of the pulse 
out of the transmission bandwidth of the fiber. These conditions are met in a PCF 
with a 13µm diameter core (f=94%) filled with rare gas (xenon) and with its 
chromatic dispersion cancelled at 1,425nm [OUZ 03]. Gaussian soliton pulses 
(5.5 MW/75 fs), centered at 1,470nm, have been demonstrated to be properly guided 
over a 2m length of fiber. The applications are principally in the domains of 
spectroscopy, biology and medicine. 

Finally, in order to achieve novel functions by means of fibers similar to PCFs, 
one can draw inspiration from the numerous components based on MOFs with very 
large holes filled with different media proposed by Kerbage and Eggleton (hole 
assisted fibers) [EGG 01]. Indeed, the core of a PCF can be filled with different 
liquids (liquid crystal, amplifying medium, biological medium, liquid whose optical 
properties are modified by an outer event such as the application of an electric field 
or a change in temperature …). Obviously, even if the structure of the PCF is 
preserved, the operating guiding principle in this case is likely to become the TIR 
because of the higher index of medium in the core. Notwithstanding this, making the 
guided light wave interact with the liquid inserted into the core of the fiber opens the 
way to a multitude of applications: switches, tunable attenuators, tunable lazers, 
intrinsic sensors, biosensors for the analysis of sub-microliter samples, etc. 
[LAR 03]. 

3.7. Conclusion 

Since their quasi-fortuitous invention in 1996, interest in microstructured fibers 
guiding light following the total internal reflection principle has increased 
considerably. Such infatuation is due to the novel propagation properties of these 
fibers that open the way to a large number of applications not realizable with more 
conventional fibers, in particular for telecommunications and non-linear optics. 
Furthermore, the manufacturing technique of preforms that consist of stacking 
simple silica tubes and rods makes it possible to conceive structures with opto-
geometrical characteristics much more varied than those made possible through 
CVD-type techniques. 
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Photonic crystal fibers operating by virtue of transverse resonance in cladding 
have also raised many hopes, especially since their ability to guide light in a hollow 
core over long distances has been experimentally demonstrated. This has been made 
possible by a spectacular improvement in fabrication techniques over the first years 
of the 21st century. The very first applications reported at the end of this chapter take 
advantage of the fact that, contrary to the case of all other fibers, the light wave can 
remain confined and propagate in low index media such as a vacuum, gas or certain 
liquids. The very long lengths of interaction between light and the medium inserted 
into the core enable us to efficiently exploit the optical properties of this medium: 
transparency, high or low non-linear coefficients, etc. 

With TIR-MOFs and PCFs, it has thus been shown that nanostructures could be 
realized and maintained longitudinally invariant in fibers over several hundreds of 
meters, even kilometers. Moreover, in another register, optical fibers can also form 
the basic element of short length nanostructures used in particular for near field 
analysis techniques. Indeed, the different techniques of near field microscopy are 
based on the use of probes consisting of a short sample of tapered fiber for making a 
sharp point (metallized or not) whose end is 50 to 200nm in diameter. In this case 
too, control of the geometry of the structure (shape of the tip, dimension of the nano-
opening) is particularly critical. This issue is treated in detail in the Chapter 7. 

Considering the great efforts that the large laboratories have made to improve the 
performance of micro- and nanostructured fibers, one can predict that significant 
progress will be made shortly, in the early years of the twenty-first century, in 
particular in the fields of telecommunications, metrology and opto-biology. Even 
though the results already obtained are numerous and convincing, they are perhaps 
only the beginnings of a true revolution in the field of guided optics. 
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Chapter 4 

Quantum Dots in Optical Microcavities 

4.1. Introduction  

Since 1990, Cavity Quantum ElectroDynamics (CQED) has become a major 
source of inspiration for basic research in optoelectronics [BUR 95; WEI 96; DUC 
96; BEN 98]. In the 1980s, a beautiful series of experiments on atoms in microwave 
and optical cavities had demonstrated that optical processes – including spontaneous 
emission (SE) – can be deeply modified using a cavity to tailor the emitter-field 
coupling [HAR 89].  

Among other effects observable in the so called “weak coupling regime”, the 
modification of the emission diagram, the enhancement or inhibition of the SE rate, 
the funneling of SE photons into a single mode and the control of the SE process on 
the single photon level are particularly attractive for applications in optoelectronics. 
For very high-Q (i.e. weakly damped) cavities, SE can even become a reversible 
process, in the so called “strong-coupling regime”.  

Improving control over spontaneous emission processes in optoelectronic 
devices was recognized in the mid-1980s as a promising avenue for improving the 
performance of light emitting diodes and lazer diodes. In lazers, for instance, 
photons that are spontaneously emitted into the lasing mode(s) act as seeds for 
amplification by stimulated emission. Conversely, SE into other modes is useless 
and even detrimental, as it consumes a significant amount of the injected electron-
hole pairs.  

                                   
Chapter written by Jean-Michel GÉRARD. 
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By increasing the fraction β of the SE that is coupled to the lasing mode, one can 
reduce (roughly in inverse proportion) the threshold current of the lazer. Novel 
devices based on full spontaneous emission control have also been proposed. In the 
β=1 limit, all photons (be they emitted by SE or by stimulated emission) are 
funneled into the lasing mode. This device, known as “thresholdless lazer” 
[YOK 92; BJO 91], would act as an ideal converter of electrical signals into optical 
signals. Another attractive device is the single mode single photon source, which is 
able to generate on demand light pulses containing a single photon prepared in a 
well defined quantum state (spatial mode, polarization …). Such a source can be 
obtained by placing a single quantum emitter (atom, ion, quantum dot …), able to 
generate photons one by one, into a single mode optical microcavity.  

High quality solid-state microcavities became widely available in the early 
1990s, and have since brought about major achievements, such as the observation of 
strong coupling for quantum wells in planar cavities [WEI 92], the fabrication of 
high-efficiency microcavity LEDs which exploit SE angular redistribution [DEN 
97], and low-threshold vertical-cavity surface emitting lazers [HUF 97] or 
microsphere lazers [SAN 96]. However, the emission spectrum of solid-state 
emitters is usually spectrally broad, which has long been a major hindrance to the 
observation of several important CQED effects.  

Because of their “atomic-like” properties, self-assembled semiconductor 
quantum dots (QDs) are particularly well suited to performing solid-state CQED 
experiments. By placing one or a few QDs in semiconductor optical microcavities, 
one can for instance obtain the first clear demonstrations, in a solid-state system, of 
the Purcell effect [GER 98; GRA 99; GAY 98; GAY 01; KIR 01; MOR 01a; SOL 
01; VUC 03] and of the strong coupling regime for a single discrete emitter [REI 04; 
YOS 04; PET 05]. A single-mode solid-state source of single photons based on a 
single QD in a pillar microcavity has also been developed [MOR 01a; SAN 02; OLI 
05]. This device is the first optoelectronic component whose operation actually 
relies on CQED, through the Purcell effect, and has a strong application potential in 
the field of quantum communications and quantum information processing. 

 In this chapter, we first briefly present in section 4.2 some relevant properties of 
QDs as well as available single mode semiconductor microcavities. Basic CQED 
effects observed in the weak and strong coupling regimes are discussed in section 
4.3. Finally, well-established as well as more prospective applications of these 
CQED effects in the field of nano-optoelectronics and quantum information 
processing are finally discussed in section 4.4. 



Quantum Dots in Optical Microcavities     137 

 

4.2. Building blocks for solid-state CQED  

4.2.1. Self-assembled QDs as “artificial atoms” 

Solid-state CQED experiments have until now generally been performed on 
InAs/GaAs QDs in GaAs/GaAlAs microcavities. We will concentrate our attention 
on this very mature system, although other QDs, such as II–VI self-assembled QDs 
[ROB 05], QDs formed by interface fluctuations in quantum wells [BRU 94; HOU 
03; PET 05] and semiconductor nanocrystals [FAN 00; ART 01] are also potentially 
interesting in this context. 

It has been known since 1985 [GOL 85] that strained-layer epitaxy can be used 
to build defect-free nanometer scale InAs rich clusters in GaAs, which constitute 
potential traps for both electrons and holes. These self-assembled QDs support well-
separated discrete electronic states and exhibit a single narrow emission line (<<kT) 
under weak excitation conditions [MAR 94]. A linewidth close to the limit imposed 
by the exciton radiative lifetime (~1 µeV) has been observed at 2K [BAY 02; KAM 
02].  

This makes it possible to exploit fully the potential of high Q cavities for SE 
control. When the temperature is raised, electron-phonon interaction causes the 
onset of a broadband line related to elastic acoustic phonon-exciton interactions as 
well as a broadening of the zero-phonon line [BES 01; BOR 01; MAT 01; FAV 03]. 
At 300K, the first of these effects is dominant and single QDs exhibit a lorenzian 
emission line, whose linewidth can be as large as 5 to 10 meV.  

Due to the strong 3D electronic confinement in QDs, few-particle Coulomb 
effects dominate single QD emission spectra under high excitation conditions [LAN 
98; GeER 99a]. For instance, “exciton” and “biexciton” lines, into which photons 
are emitted when the QD contains respectively one or two electron-hole pairs, are 
separated by typically one to three meV for InAs QDs (see Figure 4.1). This splitting 
varies from QD to QD and from one laboratory to another, a fact that highlights the 
high sensitivity of these effects to the precise shape and size of the QD. Under non-
resonant pumping, the QD emission is influenced by the fluctuating charge 
distribution in its surroundings, which entails a significant broadening of the exciton 
and multi-exciton lines. This effect, as well as the phonon-related ones, shows that a 
single QD cannot in general be considered an isolated artificial atom. This implies 
that CQED experiments with QDs have to be performed (in most cases) at low 
temperature, and puts severe limits on the implementation of CQED effects in 
optoelectronic devices as discussed in section 4.5.  
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Figure 4.1. Photoluminescence spectra obtained at 4K for a single InAs QD, isolated in an 

etched mesastructure, as a function of excitation power. Schematic view of the density of 
states of the valence band (VB) and conduction band (CB) and of the QD state filling by 

electrons and holes, for exciton and biexciton recombination events 

Self-assembled QDs also display a large electric dipolar moment d for their 
fundamental optical transition, providing efficient coupling to the electromagnetic 
field. Due to the compressive strain experienced by InAs, this dipole is (randomly) 
oriented in the xy epilayer plane. Absorption experiments on InAs QD arrays have 
shown that the oscillator strength per QD is in the order of 10 [WAR 97]; this 
corresponds to values for dx (or dy) around 9 10-19C.m, which is ten times larger than 
typical values for atoms emitting in the same wavelength range. This feature is 
reflected by the rather short radiative lifetime (~1 ns) of InAs QDs in bulk GaAs.  

The peak emission wavelength of InAs QD arrays can be chosen – typically in 
the 0.9–1.5µm range at 10 K – since the average size of the QDs depends 
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reproducibly on the growth conditions in molecular beam epitaxy [GER 95]. Such 
QDs display a high radiative quantum yield (η~1), provided that carrier 
thermoemission is negligible. This corresponds to T<100 to 200 K depending on 
their average size. This excellent yield is due to the trapping of excitons in the 
defect-free QDs, which prevents further diffusion towards non-radiative 
recombination centers [GER 96a]. This trapping is obviously the key to the 
observation of intrinsic properties for QDs in etched microcavities, which present 
free surfaces close to the QDs under study.  

Though moderate, size fluctuations lead to a significant dispersion of QD 
bandgaps within arrays, revealed by the inhomogeneous broadening of QD arrays 
emission lines (~15 to 100 meV). This feature constitutes at first sight a major 
difficulty when one wants to place a single QD in resonance with a discrete cavity 
mode. This difficulty can however be turned to some extent into an asset. Instead of 
placing a single QD inside the cavity (which is in practice rather tricky [BAD 05]), it 
is possible to insert a collection of a few hundred QDs, which are statistically all 
different due to size fluctuations. The detuning between the cavity mode and the 
center of the QD distribution can easily be adjusted so that a single QD on average is 
resonant with the cavity mode. Fine tuning of the resonance can then be obtained 
using small temperature changes [KIR 01]. 

Finally, let us mention a major practical advantage of QDs for applications: 
unlike atoms, QDs can be pumped in a non-resonant way, by exciting the GaAs 
barrier. This opens a route toward compact, electrically pumped optoelectronic 
devices exploiting CQED effects on QDs. 

4.2.2. Solid-state optical microcavities  

Early CQED experiments have been performed in the microwave spectral-range, 
for which perfectly reflecting mirrors based on superconductors can be used to 
define the electromagnetic cavity. Such perfect mirrors have no equivalent in the 
optical spectral range, since metallic mirrors entail significant losses upon reflection. 
Metals are therefore usually not used to build optical microcavities, with the 
remarkable exception of the demonstration of both SE rate enhancement (x 3) and 
inhibition (x 0.7) at room temperature for a quantum well inserted a planar 
microcavity defined by Ag mirrors, by varying the cavity thickness [BOU 00]. 
However, the absorption of a large part of the emitted light by the output mirror puts 
strong limitations on this approach. Planar microcavities are commonly defined by 
placing the “cavity” layer, which contains the emitting species, between two 
transparent dielectric mirrors. Such mirrors exploit distributed Bragg reflection, and 
are usually made by stacking one-quarter-wavelength thick layers of two different 
dielectric materials. For such structures, the electromagnetic field penetrates inside 
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the mirror upon reflection, which increases very significantly the effective thickness 
of the cavity. Only minor modifications of the spontaneous emission rate (+/-20%) 
have been observed experimentally for rare earth atoms in dielectric cavities [VRE 
93] as well as quantum wells in the weak coupling regime [TAN 95], in accordance 
with theoretical expectations. 

The implementation of zero D (or 0D) optical microcavities, able to confine light 
in all three dimensions of space on the wavelength scale, is the key to observing 
stronger modifications of SE dynamics as discussed in the next section. In order to 
achieve such a confinement, two basic effects can be used independently or in 
combination. The first one is total internal reflection in high-refractive index 
dielectrics, which has long been used to realize 1D waveguides such as optical fibers 
as well as to provide 0D confinement in silica microspheres [SAN 96; ART 01], 
microdisks [MCC 92; FUJ 00; GAY 01] (Figure 4.2b) or torroid-shaped 
microcavities [ARM 03]. The second effect is distributed Bragg reflection (basically 
an interference effect) which is commonly used for instance to build high-
reflectivity optical dielectric coatings. This concept has been extended to the multi-
dimensional case through the development of 2D and 3D photonic crystals [YAB 
87; YAB 93]. Pillar microresonators [JEW 89; GER 96b] (Figure 4.2a) exploit both 
waveguiding along the micropillar axis and Bragg reflection for vertical 
confinement. Another approach, illustrated by Figure 4.2c, consists of defining a 
cavity surrounded by a 2D photonic crystal (which ensures lateral confinement) 
from a thin semiconductor membrane (which ensures in-plane waveguiding) [PAI 
99; PAR 04; YOS 04].  

These examples highlight the diversity of the strategies that can be used to 
achieve 0D confinement of light on the wavelength scale using only dielectric 
material. One should note at this stage that these cavities do not constitute perfect 
“photonic dots”. Besides their discrete resonant modes, which are confined in all 3 
dimensions of space, they also sustain a continuum of non-resonant modes. The 
recent development of 3D photonic crystals in the optical spectral range changes, at 
least conceptually, this state of affairs [N0D 00]. Inside such a structure, the density 
of non-resonant modes can be decreased to arbitrarily small values by increasing the 
crystal size, while the introduction of a defect of tailored size/shape makes it 
possible to introduce high Q resonant mode(s) at a specific wavelength within the 
stop-band of the photonic crystal. 

An optical microcavity confines light in both space and time. In order to 
compare the respective assets of these 0D microcavities for CQED, let us consider 
two important figures of merit: the cavity quality factor Q=ω/∆ω and the modal 
volume V. Typical values for some semiconductor microcavities are shown in 
Figure 4.2. These microcavities concentrate – for resonant modes – the 
electromagnetic field within a remarkably small volume. One can note for instance 
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that, for an electromagnetic energy equal to 2/ω (in other words, for the vacuum 
field), the amplitude of the field at the mode antinode is in the order of 105 V/cm for 
a mode volume V=(λ/n)3 and λ=1 µm. Their cavity Q however remains relatively 
small, in spite of significant recent progress [GAY 01; YOS 04]. Let us recall at this 
point that Q is simply proportional to the photon lifetime inside the cavity; this time 
is for instance close to 0.6 ps for Q=1,000 and λ=1µm. Silica microspheres [SAN 
96] and microtores [ARM 03] display very different properties when their diameter 
is large enough (~100µm); they manifest huge cavity Qs as large as 109, but their 
modal volume V is much larger than (λ/n)3 (V~1,000(λ/n)3). When their diameter is 
in the order of few micrometers, their Qs and Vs are more similar to those of 
semiconductor microcavities [ART 01].  

To conclude, many approaches can be used to build a 0D optical microcavity. 
Owing to their different merits, these microcavities present advantages in different 
contexts. High Q microspheres or microtores constitute an ideal system for realizing 
very low threshold lazers [SAN 96; KIP 04], whereas low volume semiconductor 
microcavities are better suited to the observation of the Purcell effect or of the strong 
coupling regime, provided an appropriate emitter, such as a single QD at low 
temperature, is implemented. 

1 µm

2 µm 3 µm

V=5 (λ/n)3 , Q=2,100
Fp =32

V=6 (λ/n)3, Q=12,000
Fp =150

V=1.2(λ/n)3, Q=20,000
Fp=1,300

a) b) c)  

Figure 4.2. Micrographs obtained by scanning electron microscopy for some 0D 
semiconductor microcavities fabricated at CNRS/LPN. The typical values for Q and V are 

taken from [GER 98] for GaAs/AlAs micropillars (a), [GAY 01] for microdisks (b),  
and [YOS 04] for photonic crystal microcavities (c) 
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4.3. QDs in microcavities: some basic CQED experiments 

4.3.1. Strong coupling regime 

Ideally, the strong coupling regime is achieved when a two level system, which 
is initially in its excited state, is coupled resonantly and exclusively with a single 
resonant mode of a loss-less electromagnetic cavity. In such a case spontaneous 
emission becomes a reversible process. Since emitted photons cannot leak out of the 
cavity, they are reabsorbed by the emitter. The coupled emitter-cavity system 
describes a Rabi oscillation whose angular frequency is given by: 

( )erd ε.=Ω                                      (1) 

where er  is the emitter’s location, ε  is the field amplitude when the 

electromagnetic energy in the cavity mode is ω , and d  is the dipolar electric 
moment of the emitter. The eigenstates of the coupled system are mixed exciton-
photon states, whose energies are split by Ω2 .  

In practice, this regime will be observable only if all decoherence mechanisms 
are slower than the Rabi oscillation. Such possible decoherence mechanisms include 
for instance the escape of the photon out of the cavity, and the SE into other non-
resonant modes (if any). In solid state systems, other phenomena can play a 
dominant role for the emitter, such as homogeneous broadening due to electron-
electron or electron-phonon interactions. 

For solid-state microcavities, the strong coupling regime was first observed for 
quantum wells inserted inside a high Q planar microcavity [WEI 92]. At low 
temperature, the elementary excitations of the quantum well are excitons, electron-
hole pairs which are bound by their mutual Coulomb attraction. Excitons move 
freely within the plane of the quantum well, so that their eigenstates are plane 
waves, characterized by their in-plane wave vector k //. Similarly, the planar cavity 
is a 2D photonic system. Since k// is conserved during an optical transition, one sees 
that each exciton state is coupled to a single optical mode, which leads to the strong 
coupling regime. Numerous studies have been devoted to this system over the last 
ten years. In practice, the analogy with the standard “single atom in a cavity” model 
system for CQED is rather limited. For quantum wells in planar cavities, mixed 
exciton-photon states, which are called microcavity polaritons, form bands and the 
dynamic properties of the system are dominated by additional effects such as 
polariton-polariton scattering or phonon-polariton scattering [LES 98; SEN 99; 
SAB 01]. 



Quantum Dots in Optical Microcavities     143 

 

Due to their discrete electronic levels, single QDs enable one to work in close 
analogy with atomic CQED. Figure 4.3 displays the expected Rabi splitting for a 
single InAs QD located at the mode antinode, as a function of the modal volume V 
[GER 03]. The expected Rabi splitting can be in the order of 100µeV, ie much larger 
than usual values for single atom CQED; this is a consequence of the combination of 
an emitter having a large dipole, and of a cavity with very small modal volume.  

Remarkably, the expected Rabi splitting is much larger than the typical linewidth 
of a single InAs QD at low temperature (few µeV to few tens of µeV). On the other 
hand, the cavity Qs of semiconductor microcavities were until recently too small to 
allow observation of the vacuum Rabi splitting for a single QD. Let us note that in 
such a regime, for which decoherence is mostly due to cavity damping, the 
necessary condition for observing the strong coupling regime is written [AND 99]:  

cavE∆>Ω4                          (2) 

where ∆Ecav is the linewidth of the mode of the “empty” cavity (i.e. before coupling 
with the emitter is established). In order to present condition (2) graphically, we 
compare in Figure 4.3 state of the art values of ∆Ecav obtained for various 
microcavities to the expected value of Ω4  for a QD located at the mode antinode.  

 

Figure 4.3. Theoretical estimate of Ω4  (i.e. twice the Rabi splitting) for a single InAs QD 
or a single GaAs QD formed by an interface defect of a quantum well, located at the antinode 
of a cavity mode of volume V. This estimate is compared to experimental values of the cavity 

mode linewidth for micropillars [GER 98; REI 04], microdisks [GAY 01; KIR 01], and 
photonic crystal microcavities [PAI 99; YOS 04] 
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New design rules led recently to a spectacular improvement in the cavity Qs of 
photonic crystal microcavities. Such microcavities now have the greatest potential in 
this context, due to the combination of a modal volume which is close to the 
ultimate limit for a dielectric cavity (V~ (λ/2n)3) as well as the highest Qs 
(Q~20,000 per V=(λ/n)3 ). As a result, such cavities have made it possible to observe 
very recently, for the first time, the strong coupling regime for a single InAs Q 
[YOS 04].  

Another promising approach consists of increasing the oscillator strength of the 
QD. QDs formed by monolayer fluctuations of the thickness of a GaAs/AlAs 
quantum well are particularly attractive in this context [AND 99]. For appropriate 
growth conditions, such interface defects can be much larger than the Bohr radius of 
the exciton. In such a case, confined excitons couple more strongly to light, and 
exhibit a large oscillator strength (a few hundreds instead of 10 for a single InAs 
QD). Experimentally, the strong coupling regime has been achieved by placing such 
a GaAs QD in a high Q microdisk [PET 05] (see Figure 4.4), as well as large 
InGaAs QDs in pillar microcavities [REI 04].  

In these three successful experiments, the Rabi splitting is typically 1 to 3 times 
larger than the linewidth of the cavity mode. In other words, the system describes 
only few Rabi oscillations due to the strong decoherence related to cavity damping. 
Figure 4.3 tells us, however, that for a large oscillator strength QD ideally located in 
a high Q photonic crystal microcavity, the coupled system could produce as many as 
100 Rabi oscillations before being destroyed, which creates very interesting 
opportunities. Such strongly coupled cavity-QD systems could for instance be used 
in the future to realize single QD lazers [GER 03] or to demonstrate quantum logical 
gates based on coherent optical manipulations [IMA 99]. 

 
 
 
 
 

 
 
 

 
 

 

a) 
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Figure 4.4. Strong coupling regime for a single GaAs QD in a microdisk (from [PET 05]).  
(a) MicroPL spectra for various temperatures T in the 4–44K range. (b) Peak energies of two 

emission lines as a function of T. As long as they are well separated spectrally, these lines 
exhibit different energy shifts, respectively typical of a QD emission line and of a microdisk 

whispering gallery mode. Close to 30K, the QD enters in resonance with the cavity mode; the 
clear “anticrossing” behavior of these two lines demonstrates that the QD-cavity system is in 
the strong coupling regime. (c) Blow-up of (a), showing the PL spectrum at 30K. As expected 
for a strongly coupled QD-cavity system on resonance, the two exciton-photon modes exhibit 

the same intensities and spectral linewidths 

4.3.2. Weak coupling regime: enhancement/inhibition of the SE rate and “nearly” 
single mode SE 

As shown in the previous section, it is relatively difficult to achieve a strong 
coupling regime for a single QD. In general, QDs in microcavities are in the weak 
coupling regime, ie SE remains an irreversible process as when the emitter is in free 
space. The SE rate, which is given by Fermi’s Golden Rule, is proportional to the 
density of modes per unit volume. It can therefore be tailored to a large extent by 
modifying the density of electromagnetic modes to which the emitter is coupled, as 
suggested by Purcell as early as 1946 [PUR 46].  

              10         20          30         40 
Temperature (K) 
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Figure 4.5. Schematic representation of the density 
 of modes per unit volume related to one discrete mode of a 0D cavity and for free space 

Let us consider more specifically an emitter in a strongly damped 0D 
microcavity. In such a case we have ∆Ecav >∆Eem ; the emitter, which is quasi-
monochromatic on the scale of the mode linewidth, sees a continuum of 
electromagnetic modes, as when it is in a homogeneous dielectric medium or in free 
space (Figure 4.5). 

By comparing the density of modes per unit volume for both cases (and taking 
into account the fact that the emitter is coupled in free space to one third of the 
modes, which have a polarization vector parallel to its dipole), one sees that the SE 
rate in the cavity is enhanced/inhibited by a factor Fp, with respect to the SE in a 
homogeneous dielectric medium of refractive index n:  
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It is essential to note that this “Purcell factor” Fp is a cavity figure of merit, 
related to one specific mode. It expresses the SE rate of an ideal emitter, referenced 
to its value in free space. This dimensionless number depends solely on the mode 
volume V 1 – normalized by the wavelength in the material λ cubed – and on the 
cavity mode quality factor Q. This ideal emitter is optimally coupled to the cavity 
mode, i.e. is located at the antinode of the mode and has a dipole vector which is 
aligned with the local polarization vector of the field. Furthermore, it is quasi-
monochromatic and perfectly matched spectrally with the cavity mode. If the emitter 
cannot be treated as quasi-monochromatic (for instance when it experiences a strong 
homogeneous broadening due to dephasing mechanisms), it is necessary to replace 
1/Q by 1/Q+1/Qem in equation (3) (the quality factor of the emitter is defined by 
E/∆Eem).  

The Purcell effect or enhancement of the SE rate was first spectacularly observed 
(x500) for Rydberg atoms located inside microwave cavities [HAR 89]. Although 
high-Fp semiconductor microcavities have been available since the early 1990s, its 
observation in the solid-state was somewhat delayed due to the spectral broadness of 
usual solid-state emitters. Indeed, for spectrally broad emitters, 1/Q << 1/Qem, so that 
the Purcell effect is smeared out. Using QDs at low temperature as artificial atoms 
was therefore the key to observing a strong Purcell effect in a solid-state system 
[GER 98; GRA 99; GAY 01; SOL 01; KIR 01; MOR 01].  

The Purcell effect was first observed by performing time resolved 
photoluminescence experiments on collections of QDs inserted inside micropillars 
(x5 [GER 98]), microdisks (x13 [GAY 01]), and structures very close to vertical-
cavity surface emitting lazers (x2.3 [GRA 99]). In such experiments, the SE rate 
enhancement factor is much smaller than the Purcell factor Fp (30 for pillars, 120 for 
microdisks), since the QDs are randomly distributed, both spatially and spectrally, 
with respect to the cavity mode. When the number of QDs coupled to the mode is 
large enough (~30 at least), one can easily account quantitatively for the magnitude 
of the Purcell effect by realizing a statistical averaging, assuming random spectral 
and spatial distributions of the QDs [GER 98, 03].  

 

 

                                   
1 In this expression, V represents the effective volume of the mode, which is usually much 
smaller than the physical volume of the microcavity. This figure of merit quantifies the 
suitability of the cavity for the spatial confinement of the electromagnetic field. It is defined 
as the volume of a cavity defined by Born-von Karmann periodic boundary conditions (inside 
which the electromagnetic field is uniform), for which the vacuum field would have the same 
maximum amplitude as for the cavity in question.  
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More recently, single QDs inserted in a micropillar [MOR 01; SOL 01] or in a 
microdisk [KIR 01] have also been studied. As an example, Figure 4.6 displays 
some time resolved photoluminescence spectra obtained for three QDs located in the 
core of a 1µm diameter micropillar. For such a pillar, one can compare directly the 
properties of QDs which are in resonance or out-of-resonance with its fundamental 
resonant mode. Out-of-resonance QDs, which are only coupled to the continuum of 
non-resonant modes of the pillar cavity, display a radiative lifetime which is very 
close to the one of similar QDs inserted in bulk GaAs (~1.3 ns). In spite of the 
modest Purcell factor of the pillar under study (Fp=6), a clear enhancement of the SE 
rate is observed for the QD1, which is perfectly matched spectrally with the cavity 
mode. As expected, the magnitude of the Purcell effect can be stronger for a single 
QD than for a collection of QDs, as soon as the former is reasonably well coupled 
(spatially and spectrally) to the cavity mode.  

0 2 4 6

In
te

ns
ité

 d
e 

ph
ot

ol
um

in
es

ce
nc

e

b)a)

λ (nm)

In
te

ns
ité

 d
e 

ph
ot

ol
um

in
es

ce
nc

e

temps (ns)

9700 9800 9900

BQ1

 

 

  

Figure 4.6. (a) Scanning electron micrograph obtained for a GaAs/AlAs micropillar 
containing QDs in its core (diameter: 1µm). (b) Time-resolved photoluminescence decay 

curves (log scale) measured for three QDs located in this micropillar, after excitation by a 
pulsed excitation of the GaAs barrier by a lazer. Two photoluminescence spectra obtained for 
this micropillar are also shown in the inset. Under weak optical excitation (solid line), single 
QD emission lines are spectrally resolved. Under strong excitation (dashed line), each QD 

experiences strong homogeneous broadening; the spectrum then reflects the density of modes 
of the cavity [MOR 01]. (c) Schematic representation of the density  

of modes per unit volume for a micropillar 

 An intrinsic difficulty in the analysis of such experiments is related to the fact 
that their precise location in the cavity is not known, likewise the radiative lifetime 
they would exhibit in bulk GaAs [GAY 03]. Earlier, we implicitly assumed that this 
lifetime is similar for QDs having similar bandgaps, which is generally well verified. 
In order to demonstrate unambiguously the occurrence of the Purcell effect for a 
single QD, it is however better to play with the spectral detuning of the cavity-QD 
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system so as to compare the behavior of a given QD when it is in or out of resonance 
with the cavity mode. Temperature tuning, which affects essentially the QD 
bandgap, has made it possible to evidence a strong Purcell effect for a single InAs 
QD in a microdisk (x6) [KIR 01], or in a micropillar (x5) [VUC 03].   

Until now, the Purcell effect has only been observed at relatively low 
temperatures (T<50K). The homogeneous broadening of the QD line, related to 
electron-phonon interaction, is a major hindrance in view of applications of the 
Purcell at 300K, for instance to realize ultrafast light emitting diodes. In the mid-
term, the Purcell effect will more likely be used to collect efficiently the SE into a 
single mode [GER 98], rather than utilized for its ability to fasten SE dynamics. Let 
us indeed consider the density of modes per unit volume related to a 0D 
microcavity, such as a micropillar (Figure 4.6c). Such a microcavity supports a 
continuum of unconfined modes, besides its set of discrete resonant cavity modes. 
However, if a resonant mode has a large Purcell factor, its contribution to the density 
of modes per unit volume can be much larger than for all the non-resonant modes 
together. For an emitter in resonance in the cavity, the Purcell effect enhances 
selectively the SE rate into the resonant cavity mode, and funnels dynamically most 
emitted photons into that specific mode. 

Let us consider for instance the QD1 which is studied in Figure 4.6. Its SE rate 
into the continuum of non-resonant modes (estimated using the SE rate of QD2 and 
QD3 which are out of resonance) is in the order of 1/ (1.3) ns-1, whereas its total SE 
rate is 1/(0.4) ns-1. The fraction of the SE which is coupled to the fundamental mode 
of the pillar is therefore β=1-(0.4/1.3) ~ 0.7. For micropillars displaying higher 
Purcell factors (Fp>30), βs in excess of 95% could be achieved in this way [GER 
98; SOL 01], which brings about very interesting opportunities in the field of 
nanolazers or single photon sources. 

The Purcell effect can also be used to control the polarization of spontaneously 
emitted photons. The dipole of InAs QDs has two similarly strong components 
along the x and y in-plane directions. As a result, the emission of such QDs is in 
general essentially unpolarized2. This property is not affected by QD insertion inside 
axi-symmetrical micropillars, since their fundamental mode displays two-fold 
polarization degeneracy related to the equivalence of x and y directions. Some shape 
birefringence can be introduced by designing micropillars with an elliptical cross-
section. Elliptical micropillars present a non-degenerate pair of fundamental modes, 
which have linear polarizations along crossed directions [GAY 98]. When a single 

                                   
2 High resolution microphotoluminescence experiments performed on a single QD reveal a 
fine splitting of the exciton line related to the QD asymmetry [BAY 99]. In such a case, the 
two components of this doublet exhibit crossed linear polarizations and similar intensities, 
when the QD is surrounded by bulk GaAs. 
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QD is inserted into such a micropillar, its emission exhibits a strong linear 
polarization degree (in excess of 90% in the best cases), which is defined by the 
polarization of the resonant mode to which it is preferentially coupled, due to the 
Purcell effect [MOR 01].  

Finally, let us discuss briefly recent experiments demonstrating SE inhibition for 
QDs in 0D microcavities. As shown by the behavior of out-of-resonance QDs (see 
e.g. Figure 4.6), this effect cannot be observed in standard micropillars, since the 
density of non-resonant modes is comparable to that of bulk GaAs. This can be 
traced back to the fact that GaAs/AlAs Bragg mirrors designed to operate at a 
certain wavelength have a good reflectivity only for a limited angular range (+/-20° 
typically around normal incidence, when seen from the cavity layer). Several 
strategies can be used to reduce significantly the density of non-resonant modes. In 
the spirit of Yablonovitch’s initial proposal [YAB 97], inverse opal 3D photonic 
crystals have been used to inhibit the SE from semiconductor nanocrystals [L0D 
04]. For self-assembled QDs, a decrease in the SE rate by a factor as large as 10 has 
been observed in metal-coated micropillars [BAY 01], due to the suppression of the 
continuum of leaky modes entering/exiting the micropillar through its sidewalls. 
Although they do not display a complete photonic bandgap, 2D photonic crystals are 
highly reflective (and, therefore, suppress non-resonant modes) over a very large 
solid angle for laterally propagating light. Strong SE inhibition has been observed 
for both collections of InAs QDs (x0.5) [KRE 05] and single QDs (x0.2) [ENG 05] 
in 2D GaAs photonic crystals. When a single QD is coupled to a cavity mode in 
such structures, it experiences both the Purcell effect, which enhances the SE into 
one resonant cavity mode, and an inhibition of its SE rate into the continuum of 
leaky modes. These combined effects ensure an excellent single-mode collection of 
the QD emission (β > 0.97), which is very attractive in view of the development of 
high efficiency single photon sources, as discussed in the next section.  

4.3.3. Applications of CQED effects to single photon sources and nanolazers 

These CQED effects open an avenue toward the development of novel 
optoelectronic devices, displaying original functionalities. We will first review the 
recent fabrication of single-mode Solid-State Sources of Single Photons (S4P), 
before discussing potential developments in the field of nanolazers.  

A single photon source is a device that is able to generate on demand a light 
pulse containing one and only one photon. For usual light sources, on the other 
hand, the number of photons in a given pulse is ill defined; this is for instance the 
case for a thermal source, such as a light bulb (∆N~<N>), or for a lazer source 
(∆N=<N>1/2). Presently, the development of single photon sources is in general 
motivated by their potential application to quantum key distribution, which uses 
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encoding of the information on the state of a quantum system (i.e. a photon or an 
entangled pair of photons) to ensure a perfect confidentiality of a communications 
channel [BEN 92]. Numerous experimental demonstrations of quantum key 
distribution have already been achieved, both in the lab and on public 
telecommunications networks. The oldest protocol for QKD, which relies on the 
encoding of binary information on the polarization state of single photons, is still a 
good compromise in terms of complexity and efficiency. Until recently, attenuated 
lazers were used as approximate sources of single photons, due to the lack of real 
single photon sources. In practice, the attenuation must be very strong (average 
number of photons per pulse <N> <<1) in order to reduce to an acceptable level the 
proportion of multiple-photon pulses, which could be exploited by an eventual 
eavesdropper. Simple models show that the replacement of a weak coherent source 
by a true single photon source would make it possible to increase the length of 
secure transmission channels based on optical fibers from 30 to 100 km typically, or 
to increase the bit rate (for a constant transmission length) by two orders of 
magnitude [BRA 00]. In the longer term, a nearly perfect single photon source could 
also be used as standard (for light flux, or energy), or even quantum computers using 
single photons as physical supports for quantum bits [KNI 01]. 

Two main strategies can be followed to build an S4P. One can firstly implement 
a Coulomb blockade in semiconductor nanostructures: if one injects exactly one 
electron and one hole in a quantum well or QD, it will emit one photon (at most) 
[KIM 99]. This approach seems however restricted to a low temperature operation 
range (T<0.1 K until now). A second approach consists of using a single emitter, 
which supports discrete electronic levels. Single photon generation has recently been 
reported for a single molecule [BAS 92; LOU 00], a color center in diamond [KUR 
01; BRO 00], a semiconductor nanocrystal [MIC 00a], and a single self-assembled 
QD [MIC 00b; SAN 01]. Among these solid-state emitters, only QDs have enabled 
the demonstration of an electrically pumped S4P [YUA 02] as well as of a single-
mode S4P [MOR 01], which is able to generate single photons with very high 
efficiency, prepared with a well defined spatial mode and polarization. This 
possibility is particularly interesting in practice for quantum key distribution, since it 
is necessary, prior to polarization encoding of the information, to prepare the 
photons in a reference state. When using a source of unpolarized photons, half of the 
photons are lost during this preliminary preparation stage.  

The operation of the single mode S4P relies on two basic functions: the 
generation of photons one by one, and their preparation in a well defined quantum 
state. Since a QD can trap several electron-hole pairs (and can, in such a case, re-
emit several photons within an arbitrarily short delay), a specific protocol must be 
used to ensure that photons are really emitted one by one on demand. The strong 
Coulomb interaction between charge carriers trapped inside QDs is particularly 
helpful in this context. Figure 4.7 depicts a simple protocol that was proposed a few 
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years ago [GER 99b], which has been validated experimentally by numerous groups 
[MIC 00; SAN 02; MOR 01]. A QD, which has been isolated by convenient means, 
is excited non-resonantly through pulsed optical or electrical pumping of the barrier 
material. Several electron-hole pairs are rapidly captured by the QD and relax down 
to their lowest electronic states within a few tens of picoseconds. A sequential 
recombination of these pairs then occurs, until the QD is “empty”. At each stage of 
this radiative cascade, one photo is emitted at a specific energy Xn, which depends 
on the number n of electron-hole pairs still present in the QD. Spectral filtering can 
therefore be used to prepare light pulses containing a well defined number of 
photons. By selecting for instance the X1 QD emission line, a single photon is 
prepared, whereas a filtering of both X1 and X2 lines makes it possible to prepare a 
strongly correlated pair of photons [MOR 01b]. Because this pumping scheme is 
non-resonant, electrical pumping can also be achieved [YUA 02; OLI 05].  

 

Figure 4.7. Schematic illustration of a radiative cascade in a QD,  
and of the protocol that is used to generate single photon pulses [GER 99b] 

 

As a result of their particular fabrication process, self-assembled QDs are 
inserted in a bulk semiconductor, whose refractive index is large. Therefore, most of 
the QD SE usually remains trapped within this matrix due to total internal reflection 
at the semiconductor-air interface. By inserting the QD in a microcavity, one can 
greatly improve extraction efficiency, and prepare these photons, as described in 
section 4.3, with a well defined mode and polarization due to the Purcell effect. 
Detailed studies performed at CNRS/LPN [MOR 02], Stanford University [PEL 02] 
and CEA Grenoble [OLI 05] have confirmed that such an S4P, although not perfect, 
already presents very attractive properties in view of its application to QKD. 
Interestingly, the probability of emitting one photon is already as high as 40%, and 
the probability of emitting two or more photons is reduced by one to two orders of 
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magnitude, when compared to a weak coherent source of similar intensity. Short 
term studies in this field aim at developing a “plug and play” S4P for QKD, which 
will combine electrical pumping and a singlemode emission within the 1.3µm 
telecom window. In the future, novel microcavity designs based for example on 
photonic crystals could be implemented to increase S4P efficiency further [GER 04]. 
One a more fundamental note, QD SE dynamics becomes faster than emitter 
decoherence processes when the Purcell effect is strong enough. In such a case, each 
single photon emission event is identical. In such a regime, the QD emits 
indistinguishable single photons [SAN 02, VAR 05] which opens up many novel 
opportunities in the field of quantum information processing.  

Improved SE control is also likely to improve microlazers significantly, and 
should in particular make it possible to reduce their threshold current by several 
orders of magnitude [GER 03]. A first approach would exploit an ultimately small 
microcavity (V~(λ/2n3) built from a photonic crystal structure. For such a cavity, a 
strong Purcell effect can be obtained even for spectrally broad emitters. Let us 
consider for instance a state-of-the-art InAs QD array, having an inhomogeneous 
spectral linewidth in the order of 15 meV (Qem ~ 60). The expected SE rate 
enhancement factor is close to 20 and the SE coupling coefficient β is around 0.95. 
This approach is probably the most promising one to date for approaching the 
regime of “thresholdless lasing” at room temperature, and for reducing the threshold 
current of lazer microsources below 1µA at 300K, as compared to at least 30µA 
today [HUF 97]. It is also possible, at least in principle, to build a lazer with an 
active medium restricted to a single QD, and to reduce the threshold current further, 
down to 10 pA [PEL 99]. Here however, the QD line must be narrow enough to 
warrant a good coupling of the QD to the cavity mode, which requires operation at a 
low temperature (T<100K) [GER 03]. Although major technological difficulties 
must be faced, for example to ensure the electrical pumping of these microlazers, 
these estimates show that the implementation of CQED effects will greatly modify 
the physics of lazer diodes, and bring them close to their ultimate properties. On the 
application side, very low threshold microlazers working at 300K could be of use in 
realizing dense optical interconnections embedded in integrated electronic circuits, 
or remote optical sensors for the environmental or biomedical domains.  

This chapter is based in large part on research work conducted by the author in 
collaboration with CNET and CNRS/LPN researchers in Bagneux between 1990 and 
2002. The contributions of numerous colleagues including B. Gayral, E. Moreau, B. 
Sermage, I. Abram, I. Robert, J. Y. Marzin, P. Senellart, E. Peter, J. Bloch, A. 
Lemaître, L. Ferlazzo, V. Thierry-Mieg and C. Dupuis are gratefully acknowledged.  
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Chapter 5 

Nonlinear Optics in Nano- and 
Microstructures 

5.1. Introduction  

One year after the invention of the lazer [MAI 60], the observation of second 
harmonic generation [FRA 61] was the starting point for a new field in optics: 
nonlinear optics. This observation constituted a demonstration of the possibility of 
changing the wavelength of a lazer via a second order nonlinear process. Since that 
time, nonlinear optics has grabbed the attention of many researchers and the 
progress made in this domain can be measured by looking at some of the very 
important resulting applications. For example, many commercial tunable lazer 
sources are based on the use of nonlinear processes such as parametric oscillations 
or parametric amplification. One can also cite the use of the optical Kerr effect, a 
third order nonlinear effect, in optical fiber communications systems in order to 
compensate chromatic dispersion and propagate optical solitons. However, 
breakthroughs are still awaited in nonlinear optics, especially their capability to be 
used for ultrafast data processing for future optical integrated circuits. 

On the other hand, in the domain of nano- and microtechnologies, the 
tremendous progress achieved in material processing, such as in growing, 
lithography and etching, are revolutionizing optoelectronics and integrated optics 
because they enable the fabrication of nano- and microstructures that can be used to 
manufacture completely new miniaturized optical components [JOA 97].  
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Using microstructures presenting a periodic modulation of the refractive index 
was proposed as soon as the first steps were taken in nonlinear optics to obtain 
greater nonlinear interactions. The first proposals aimed at using these structures to 
achieve the phase matching condition that is necessary to get efficient second order 
nonlinear interactions [BLO 70; ZIE 75]. Despite pioneering experiments [ZIE 76], 
it is only since the 1990s that the study of nonlinear effects in microstructured 
materials has become a very active research domain [BAL 99; FIO 98; GOL 99; 
JAN 93; MAR 97; RAN 00; TRU 95; WAD 00]. Structuring the matter at the scale 
of the wavelength of the light enables the engineering of its dispersion properties, 
such as phase and group velocity [ZHE 00]. This possibility can be used, for 
instance, to make optical waves at very different wavelengths propagate in a very 
dispersive medium at the same phase velocity to fulfill the phase matching condition 
and at low group velocities to obtain greater nonlinear interactions. 

This chapter describes the marriage of nonlinear optics and nano- 
microstructured materials. It is organized in the following way:  

– In section 5.2, the general concepts of nonlinear optics are introduced, starting 
with Maxwell’s equations. We describe briefly some of the second order nonlinear 
processes like second harmonic generation and parametric amplification as well as 
some of the third order nonlinear phenomena like non-degenerated four wave 
mixing, optical Kerr effect and Raman, Brillouin and Rayleigh scattering.  

– In section 5.3, some examples of the literature on how the nano- or 
microstructuration of matter can be used to enhance nonlinear interactions are given.  

5.2. Introduction to nonlinear optics 

5.2.1. Maxwell equations and nonlinear optics1 

Assuming a medium without free charges, nonlinear optics phenomena can be 
described in a classical way with Maxwell’s equations:  

( ) ( )
( ) ( ) ( ) ( )

t
,t,t

t
,t,t

,t,t

∂
∂=×∇

∂
∂−=×∇

=⋅∇=⋅∇
rDrHrBrE

rBrD 00
 (1) 

( ),trE  is the electric field, ( ),trH  is magnetic excitation, ( ),trD  is the 
displacement vector and ( ),trB  is magnetic induction. The medium response to the 
excitations ( ),trE  and ( ),trH  is given by the constitutive relations that read in an 
ideal dielectric medium: 
                              
1 For more detail see [BUT 90]. 
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( ) ( ) ( ) ( ) ( ),t,t,t,t,t rHrBrPrErD 00 µ=+ε=  (2) 

where ( ),trP  is the induced polarization vector, and 0ε  and 0µ  are void 
permittivity and permeability respectively. From these equations, we can obtain the 
following propagation equation for the electromagnetic field: 

( ) ( ) ( )
2

2

02

2

2
1

t
,t

t
,t

c
,t

∂
∂µ−=

∂
∂+×∇×∇ rPrErE  (3) 

Because the considered materials are without free charges, they can be modeled 
by an assembly of charged particles linked to each other. When a weak electric field 
is applied, these particles behave like dipoles oscillating at the exciting field 
frequency. This implies a linear dependence of the polarization on the electric field. 
The polarization is characterized by the linear susceptibility )1(χ of the medium 
which is a second order tensor: 

( ) ( ) ( ) ττχε= ∫
+∞

∞−

d,,t,t τ:;)1(
0 rErrPL  (4) 

This constitutes the linear response of the material. Let us assume now that the 
electric field is intense enough to obtain an anharmonic response of the oscillating 
charges of the material. It is convenient to decompose this response in the 
consecutive powers of the electric field:  

( ) ( )∑
∞

=

=
2i

,t,t rPrP (i)NL  (5) 

with:  

( ) ( ) ( ) ( )∫ ∫
+∞

∞−

+∞

∞−

τ⋅⋅⋅τττχττε= ii
i

i
i ,,,tdd,t rErErrP 11

)(
10

)( :,...,;...

 

(6) 

)(iχ , the ith order susceptibility, is a ( )1+i th order tensor. Thus, the total 
macroscopic polarization reads as the sum of a linear term and a nonlinear term:  

( ) ( ) ( ),t,t,t rPrPrP NLL +=  (7) 
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In the frequencies space, the relation between ( )ω,rP  and ( )ω,rE  becomes 
simpler: 

( ) ( ) ( )

( ) ( ) ( )ii
i

i ,,,

,,,

ω⋅⋅⋅ωωωω−χε+

ωωω−χε=ω

∑
∞

=

rErEr

rErrP

11
2

)(
0

)1(
0

:,...,;

:;
 (8) 

With for each value of i : 

∑
=

ω=ω
i

p
p

1

 (9) 

Note that pω  frequencies can be positive, negative or null. The relation between 

( )ω,rE  and ( ),trE  reads:  

( ) ( ) ( ) ( )∫ ∫
+∞

∞−

+∞

∞−

ω−ω ωω
π

==ω de,,tdte,t, tjtj rErErErE
2
1et  (10) 

We can now write the propagation equation for the electric field oscillating at ω 
frequency:  

( ) ( ) ( ) ( )ωµω=ωωεω−ω×∇×∇ ,,,
c

, rPrErrE NL
0

2
2

2
:  (11) 

where: 

( ) ( )ωω−χ+=ωε ;1 )1( ,, rr  (12) 

The nonlinear polarization appears like a source term in the propagation equation 
(11). In general, this equation is difficult to solve. In order to be able to discuss the 
nonlinear effects and to extract some general rules, the following hypotheses are 
considered: 

– The nonlinear medium is assumed to be homogenized, which means that the 
dielectric constant does not depend on the variable r. 

– All the electromagnetic waves are propagating collinearly in the z-direction. 
– All the waves interacted nonlinearly are propagating in one sense. 
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– The waves are assumed to be plane, linearly polarized and oscillating in plane 
normal to propagation direction. As a consequence, the problem becomes scalar and 
the transverse nature of electric fields ensures the condition: ( ) 0, =ω⋅∇ rE . 

The propagation equation (11) now reads:  

( ) ( ) ( ) ( )ωµω−=ωωεω+
∂

ω∂ z,Pr,Ez
cz

z,E NL
0

2
2

2

2 ,
2

 (13) 

Let us suppose: 

( ) ( ) ccezAz,E zjk +=ω ω
ω2

1  (14) 

where cnk ω= ωω  with ωn  the refractive index at ω  frequency. cc corresponds to 
the complex conjugate. The nth order nonlinear polarization reads: 

( )( ) ( )( ) ccezpz,P zjknn NL +=ω ω2
1  (15) 

with: 

∑
=

ω=
n

p
NL p

kk
1

 (16) 

By injecting (14) and (15) in (13), and by taking into account the nth order 
nonlinear polarization only, we obtain: 

( ) ( ) ( )( ) kzjn ezp
z

zAjk
z

zA ∆
ω

ω
ω

ω µω−=
∂

∂+
∂

∂
0

2
2 2

2
 (17) 

The quantity ω−=∆ kkk NL  is called the phase mismatch. We will see later in 
this chapter that this term plays a crucial role in second order processes.  

Because all waves are traveling in one sense, we can apply the slowly varying 
envelope approximation: 
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( ) ( )
z

zAk
z

zA
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ω 22

2
 (18) 

Thus, the propagation equation of the electric field envelope reads: 

( ) ( )( ) kzjn ezp
n

cj
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ω

ω

ω µω=
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∂
2

0  (19) 

This supposes that the envelope does not depend on the time variable. In the case 
where the propagation of ultrashort pulses is considered, this description is not 
adapted. Time dependence must also be taken into account in the slowly varying 
envelope approximation: 

( )( ) ( )( ) ( )( )tzp
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tzp
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We can show that the propagation equation reads: 
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where 
k

vg ∂
ω∂=  is the group velocity. 

In a general way, the nonlinear polarization appears as a perturbation term in the 
propagation equation of the light. Second and third order nonlinear effects are 
discussed below. 

5.2.2. Second order nonlinear processes 

The propagation equation of a monochromatic wave at ω pulsation was 
established in the last paragraph when nth order nonlinear polarization term was 
considered (17). Let us now consider the second order term of nonlinear 
susceptibility. The second order nonlinearity of a material enables the coupling of 
three electromagnetic waves. In a corpuscular description, this means that three 
different photons at angular frequencies 1ω , 2ω  and 3ω  are interacting. Energy 

conservation imposes a condition on their energy:  
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213 ω+ω=ω  (22) 

The electric fields associated to these pulsations read: 

( ) ( )
3,2,1

2
1

=

+=ω

i

ccezAz,E zjk
ii

i

 (23) 

If in  is the refractive index at iω  pulsation, the wave vector modulus is 
cnk iii ω= . 

5.2.2.1. Three wave mixing 

Preliminary note concerning second order nonlinear tensors 

Generally, second order nonlinear polarization reads: 

( )( ) ( ) ( ) ( )
3,2,1,,

,;)2(2

=ω+ω=ω=

ωωωωω−χ=ω ∑∑
mzyxi

EEP

pnm

pknj
jk np

pnmijkmi
 (24) 

( )njE ω  are the Cartesian components of the electric field ( )nωE . Several 
simplifications occur in the expression of nonlinear susceptibility when the 
following properties of materials are taken into account: 

– Symmetry rules. Note that the second order nonlinear susceptibility is null for 
centrosymmetrical materials.  

– Medium transparency. This gives the Kleinman relations that induce the non-
dispersive nature of nonlinear susceptibility.  

As a consequence, second order nonlinear susceptibility is represented by a 3x6 
matrix ( )jkd  that couples ( )( )miP ω2  to terms of the form 

( ) ( ) ( ) ( )pjnkpknj EEEE ωω+ωω . 

Further, the problem is assumed to be scalar, as it was when equation (13) was 
established. For this, we introduce the effective nonlinear susceptibility ( )2χ  that 
describes nonlinear interaction. To each frequency corresponds a nonlinear 
polarization term:  

– for 3ω : ( )( ) ( )( ) ( ) ( ) ( ) ccezAzAKzP zkkj +ωωω−χε=ω + 21
21213

2
03

2 ,;
2
1,  
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– for 2ω : ( )( ) ( )( ) ( ) ( ) ( ) ccezAzAKzP zkkj +ωω−ω−χε=ω −∗ 13
31312

2
02

2 ,;
2
1,  

– for 1ω : ( )( ) ( )( ) ( ) ( ) ( ) ccezAzAKzP zkkj +ωω−ω−χε=ω −∗ 23
32321

2
01

2 ,;
2
1,  

with: rK ql 22 −+=  where 1=l  if 0≠ωm  otherwise 0=l , q  and r  are 
respectively the numbers of null frequencies and permutations in the list of 
the pon ,,ω . For example, if the considered frequencies are non-null and all are 

different: 1!22 201 =×= −+K . 

Thanks to the nonlinear polarization expressions, we can now write the 
propagation equations for the different spectral components of the electric field 
envelope: 
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 (25) 

123 kkkk −−=∆  is the phase mismatch between a field and induced polarization 
at the same frequency. 

5.2.2.2. Second harmonic generation 

Let us now consider the simplest case of three wave mixing: second harmonic 
generation (SHG). Now, we have ω=ω=ω 21  and ω=ω 23 . 

In this case, the equations system (25) is simplified and becomes: 
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2

2
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 (26) 

Note the 1/2 factor coming from the frequencies’ degeneracy 
( 21!12 201 =×= −−K ). Figure 5.1 depicts the quantum diagram of second harmonic 
generation when no field is in resonance with the nonlinear material. 
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Figure 5.1. Quantum diagram of second harmonic generation. Full lines correspond to real 
energy level and dotted lines symbolize the start and end states of the virtual transitions 

ωA  is called the fundamental field (F) envelope and ω2A  the second harmonic 
field (SH) envelope. The usual configuration is the generation of an SH wave from 
an F wave incident on a nonlinear medium, meaning that two photons of the F field 
are taken to generate one photon of double energy.  

When the second harmonic generation efficiency is not very high ( )%10≤ , the 
fundamental wave can be considered undepleted. In this case, the F field intensity is 
constant and the equation describing SH field envelope propagation can easily be 
integrated. Thus, the SH field intensity reads: 
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 (27) 

( )0ωI  is the F field intensity and λ  its wavelength. The efficiency of second 
harmonic generation over a distance L is defined as the ratio between the SH and F 
intensities:  

( ) ( ) ( )02 ωω=η ILIL  (28) 

From (26) and (27), it can easily be seen that, when k∆  is non-null, i.e. when 
nonlinear polarization and the generated second harmonic do not travel in the 
medium with the same phase velocity, conversion efficiency varies periodically with 
the distance (see Figure 5.2a). It reaches its maximum value at the propagation 
distance ( )ωω −λ=∆π= nnkLc 24 , called the coherence length. This length 
corresponds to the maximal distance over which the generated SH interfere 
constructively with the nonlinear polarization. As the phase mismatch increases, the 
coherence length as well as the conversion efficiency decreases. 

ω

ω

ω2
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Figure 5.2. Figure 5.2a depicts conversion efficiency as a function of the propagation 
distance z (normalized to L) for different cases: ∆kL=π (thin full line), 2∆kL=π (dotted line) 
and ∆kL=0 (phase matching) (thick full line). Figure 5.2b represents phase matching curves 

(efficiency versus phase mismatch) for a length of interaction L (full line) and for 2L 
(dotted line). It should be noted that as the interaction length is increased,  

the phase matching curve becomes narrower 

Optimal conversion efficiency is obtained when the phase mismatch is null, i.e. 
when all the induced dipoles by the F field oscillate in phase with the generated SH 
in all the points of the nonlinear medium. SH intensity grows in this case as the 
interaction length squared (Figure 5.2a).  
 

Note: SH generation for ultrashort Gaussian pulses of duration τ . 

In this case, the following equation has to be solved:  
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It can be shown that beyond the length defined as: 
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SH average intensity no longer grows quadratrically with the length; it grows 
linearly.  

5.2.2.3. Parametric amplification 

A parametric amplifier is a quadratic nonlinear medium (length L) in which two 
waves are injected. One of these two waves, the pump, is sufficiently intense to 
transfer a part of is own energy to a weaker signal injected with a frequency ω1 or ω2. 
 

 
 

Figure 5.3. Quantum diagram of parametric amplification. One pump photon  
with frequency ω3 is changed in a photon with the frequency and in the 

 mode of the signal (ω1) and in an idler photon (ω2) 

A third wave is generated (the idler) to satisfy energy conservation. In order to 
simplify equation (25), we define a quantity proportional to the photons’ flow at the 
angular frequency ωi: 

( ) ( )
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i
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2
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Consequently, (25) becomes: 
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with: 

( )

321

321
2

2 nnnc
g ωωωχ=  (33) 

In the following, the field at 1ω  frequency is the signal, the field at 2ω  the idler, 
and the field at 3ω  the pump. As the pump is much more intense than the two other 
fields, ( )03ξ  is assumed constant. The pump phase at 0=z  is considered as null. 
When ( )03ξ= gG , the solution of equations system (32) reads: 
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(34) 

The parametric gain by length unit is then given by: 

( )22 2kGb ∆−=  (35) 

Just like conversion efficiency in the GSH, this gain is maximized when phase 
matching reaches ( 0=∆k ). In this case it grows linearly with incident pump power. 

5.2.2.4. How can phase matching be achieved? 

We have just seen how important it is to achieve the phase matching condition to 
obtain efficient nonlinear second order processes. In the following, two methods of 
obtaining phase matching are described. 

5.2.2.4.1. Phase matching by birefringence 

Phase matching is usually obtained using the property that most second order 
nonlinear materials have: birefringency. Two ways of obtaining phase matching in a 
birefringent material are generally distinguished: 

– Type I phase matching: in this case, the two photons at ω  frequency are 
identically polarized (either along the ordinary axis or along the extraordinary axis). 
The second harmonic photon is then generated along the perpendicular polarization. 
The propagation direction is chosen so that the relation ( ) ( )ω=ω oe nn 2  is verified 
for a uniaxial negative crystal and ( ) ( )ω=ω eo nn 2  for a uniaxial positive crystal. 
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– Type II phase matching: the two photons of the fundamental field are 
perpendicularly polarized and the SH photon is polarized along the extraordinary 
(ordinary) axis for the uniaxial negative (positive) crystals. The phase matching 
condition reads in the case of the uniaxial negative crystal: 

( ) ( ) ( )[ ]ω+ω=ω eoe nnn
2
12 . 

The main drawbacks of this method are, firstly, that it is impossible to implement 
it in isotropic materials (like III–V semiconductors), and secondly, that it is not 
always possible to reach the greatest coefficients of the nonlinear tensor like the 33d  
of LiNbO3. 

5.2.2.4.2. Quasi-phase matching 

One way to overcome the problems of phase matching obtained by birefringence 
is to use quasi-phase matching [ARM 62; FEJ 92]. This approach consists of 
periodically modulating ( Λ  is the period) the value of the nonlinear coefficient of 
the material2.  

Let us consider this in the context of SHG. Taking into account the spatial 
variations of nonlinear susceptibility, the evolution equation of the second harmonic 
envelope (26) becomes: 
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 (36) 

As nonlinear susceptibility is a periodical function, it can be written as a Fourier sum: 
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We obtain: 
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2 Frequently, the solution consists of changing the sign of nonlinear susceptibility with a 
period equal to the coherence length. Indeed, during propagation over this distance the 
fundamental wave and the nonlinear polarization are phase-shifted by π. The change in the 
sign of susceptibility allows them to interfere constructively (Figure 5.4a). 
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The phase matching condition is consequently somewhat relaxed. If, for 
instance, kK p ∆= , it is obvious that after the integration of equation (38), the pd  

term becomes dominant as the other terms of the sum oscillate quickly. Thus, the 
second harmonic field value after propagating over a distance L reads: 

( ) ( )LAd
cn

jLA p 0
2

2

2
2 ω

ω
ω

ω=  (39) 

The phase matching condition is verified for the pd  component.  

Note that quasi-phase matching also makes it possible to obtain an SH intensity 
which grows quadratically with the propagation length. However, efficiency is 
reduced by the pd  factor which is equal to π2  in the optimal case. 

 

 

Figure 5.4. (a) The SH conversion efficiency as a function of the propagation distance 
normalized to the coherence length in the case of quasi-phase matching of the first order 

(Λ=2Lc).The thin curve corresponds to the case where the susceptibility is cancelled over a 
coherence length. The thick curve corresponds to the case where nonlinear susceptibility is 
periodically inverted (optimal case). (b) An example of quasi-phase matching of the third 

order (Λ=6Lc). The evolution of SH intensity in the case of a bulk phase matched material is 
plotted on the two diagrams as dashed lines 
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5.2.2.5. Applications of second order nonlinearity 

Second order nonlinear effects are involved in numerous applications. Here are 
some examples: 

Second harmonic generation is used to obtain lazer sources at wavelength that 
are not available with “standard” sources. 

Parametric amplification leads to a parametric gain for the signal field. Using 
parametric material in a resonant cavity (at least for signal frequency), a parametric 
oscillator can be obtained. This kind of source is equivalent to a lazer source in 
which stimulated emission is replaced by parametric emission. Parametric sources 
can be widely spectrally tunable by changing the phase matching conditions with an 
exterior parameter like temperature or light incident angle on the nonlinear crystal.  

There is also a quadratic phenomenon which is the parametric equivalent to 
spontaneous emission: parametric fluorescence. This effect consists of the 
spontaneous creation in the nonlinear crystal of two photons with frequency 1ω  et 

2ω  from one photon at 3ω . This phenomenon can be used in light sources for 
quantum cryptography protocols. 

In section 5.3, we will describe how the nano- or microstructuration of materials 
with a strong nonlinear coefficient enables the fabrication of compact integrated 
light sources. 

5.2.3. Third order processes 

This section is dedicated to the study of the effects associated with the third 
order term of nonlinear susceptibility. This term depends on the cube of electric field 
amplitude. As a consequence, a large number of different phenomena of nonlinear 
optics are expected to occur. Namely, considering that the nonlinear tensor χ(3) order 
is 4, the number of possible interactions is 34.  

5.2.3.1. Four wave mixing 

Let us consider the coupling of four monochromatic waves of frequency 1ω , 

2ω , 3ω , 4ω  in a material having a third order nonlinear susceptibility3. 
 
 
 
                              
3 Third order nonlinear susceptibility is non-null in all materials. This is not the case for 
second order nonlinear susceptibility. 
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Figure 5.5. Energy diagram of a four wave mixing process 
(sum frequency) 

 Energy conservation is written: 

3214 ω+ω+ω=ω  (40) 

In this case, the polarization term at mω  frequency is given by the following 
relation: 
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(41) 

where ( )3
ijklχ  and ( )njE ω  are respectively the Cartesian components of the third 

order nonlinear tensor and of the electric field amplitude at mω  frequency. 

If the problem is assumed to be scalar, as previously, the nonlinear polarization 
for each wave reads: 
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respectively the numbers of null frequencies and permutations in the list of the 
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ω

ω

ω

ω

pon ,,ω . The propagation equation for each wave can now be deduced by casting 
these terms of polarization in (17). 

5.2.3.2. Optical Kerr effect 

In the nonlinear optics formalism, the optical Kerr effect corresponds to a third 
order susceptibility of the form ( )( )ωω−ωω−χ ,,;3 . 
 
 
 
 
 
 

Figure 5.6. Energy diagram of the optical Kerr effect 

In this case, three different triplets of frequencies are obtained: ( )ωω−ω ,, , 

( )ωωω− ,,  and ( )ω−ωω ,, . The K coefficient equals to 4332 301 =×−+ and the 
nonlinear polarization reads: 

( )( ) ( )( ) ( ) ( ) ( ) ccezAzAzAzP zjk +ωω−ωω−χε=ω ω
ω

∗
ωω,,;

8
3, 303  (42) 

Using this relation in (13), we can define an intensity dependent effective 
refractive index ( )ω,zN  as: 

( ) ( ) ( )ωω+=ω ω ,, 2 zINnzN  (43) 

where ωn  is the linear refractive index, ( )ω,zI  is the electromagnetic wave 
intensity and ( )ω2N  is the nonlinear refractive index given by: 

( )
( )( )

0
2

3

2 4
,,;3

ε
ωω−ωω−χ=ω

ω cn
N  

(44) 

Thus, the refractive index depends linearly on electromagnetic wave intensity: it 
is the optical Kerr effect. Numerous different physical phenomena can create this 
effect, for instance: thermal effects, electronic polarization, atomic transition 
saturation, and free-carriers population variation in semiconductors. 
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Applications 
 
Among all the nonlinear processes, the optical Kerr effect is certainly one of the 

most important for applications. Indeed, this effect is involved in a great number of 
phenomena such as: 

– Self-focussing and self-defocussing: This comes from nonlinear refractive 
index variation in space. For example, if we consider the propagation of an 
electromagnetic wave that has a Gaussian transverse spatial distribution in intensity 
in a Kerr medium, the induced refractive index change follows this spatial 
distribution, the change being maximal where the intensity is maximal. If 2N  is 
positive, the medium acts like a converging lens and self-focussing occurs. When 

2N  is negative, self-defocussing is expected. Self-focussing can be used to 
compensate diffraction and to obtain spatial solitons. 

– Self-phase modulation: Let us consider the propagation of a pulse in a Kerr 
medium. The propagation equation of the electric field envelope ( )tzA ,  reads: 

( ) ( ) ( ) ( )tzAtzANnjtzA
tvz g
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(45) 

Here, the second order term of dispersion 2

2

ω∂
∂ k  is neglected. If gvzt −=ξ  

where gv  is the group velocity, the solution of the propagation equation is: 
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20 ),0(
2
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This represents a constant-intensity pulse that accumulates a supplementary 
phase φ  as it propagates through the medium. After a distance L this phase reads: 

( ) LANn 2
202

1
ωω ωεω=φ  (47) 

Because φ  depends on the temporal distribution of intensity, the pulse broadens 
spectrally. Self-phase modulation is presently used in optical fiber transmission 
systems to compensate chromatic dispersion of silica in order to propagate temporal 
solitons. 
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– Four wave mixing degenerated in frequency: Two powerful pump waves at ω  
frequency interfere to create a nonlinear refractive index grating. A third wave of 
weak intensity (probe at ω  frequency) is then partially diffracted by the grating that 
gives birth to a fourth wave. More details on this phenomenon can be found in 
Chapter 6.  

5.2.3.3. Nonlinear spectroscopy: Raman, Brillouin and Rayleigh scatterings 

Nonlinear spectroscopy constitutes a fundamental application of nonlinear optics 
for the study of excitations in natural media (atoms, solids …) and their dynamics. 
The principle relies on the stimulated scattering of light by matter: a lazer of weak 
intensity (probe at Sω ) propagates through a medium pumped by an intense second 
lazer (pump at ω ). Pump photons are scattered in probe photons through nonlinear 
effects. The probe intensity is measured as a function of frequency detuning δ  
between the pump and the probe. 

 

Figure 5.7. Principle of nonlinear spectroscopy based on stimulated scattering.  
A probe wave at ωs frequency is detected after propagating through  

a medium pumped by another wave at ω frequency 

The nonlinear effects generally associated with nonlinear spectroscopy are: 
– stimulated Raman spectroscopy: δ  is an optical frequency (for instance 13Thz 

for silica optical fibers); 
– stimulated Brillouin scattering: δ  is an acoustic frequency (≈11Ghz for silica 

optical fibers); 
– stimulated Rayleigh scattering: δ = 0. Here, it is an elastic diffusion process. 

5.3. Nonlinear optics of nano- or microstructured media 

Some examples of applications of third order nonlinear optics in nano- or 
microstructures are described in this section. 

Scattering 
medium

 
ω

Sω

Detector 
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5.3.1. Second order nonlinear optics in III–V semiconductors 

Second order nonlinear susceptibilities of III–V semiconductors are very high. 
Moreover, they are widely used in optoelectronics. These two features make them 
very attractive for achieving integrated parametric sources. Unfortunately these 
materials are optically isotropic and the standard techniques of birefringent phase 
matching cannot be used to compensate their strong chromatic dispersion. Using 
some examples, we will show in this section how the nano- or microstructuration of 
their optical properties enables the realization of phase matching. 

5.3.1.1. Quasi-phase matching in III–V semiconductors 
For a fundamental wavelength at 1.55 ,mµ  the coherence length of AlGaAs is 

around 1.6 .mµ  As a consequence, in order to fabricate quasi-phase matched III–V 
semiconductors, it is necessary to be able to modulate their nonlinear susceptibility 
with a period of about one micrometer. This value has to be compared to mµ20  for 
ferroelectric materials to understand why this kind of operation can be difficult. To 
achieve the periodical inversion of susceptibility, several methods have been 
demonstrated. Here we describe one method which seems to be very promising 
[YOO 95]. Two substrates of GaAs oriented along the crystallographic axis [001] 
are bounded using an interface formed by two nm20  thick layers made in 
In50%Ga50%P.  

After the bounding the upper substrate is removed by selective chemical etching, 
and the process is stopped by an AlGaAs layer. A grating is patterned into the 
semiconductor by photolithography followed by etching. A periodical substrate is 
obtained on which three AlGaAs layers are then grown. One can observe on Figure 
5.8a the result obtained after the process: a structure presenting a periodical 
inversion of the crystallographic axis is shown (interface visible between the two 
parts of the crystal with opposed orientation). This inversion leads to a periodical 
change of the sign of nonlinear susceptibility. A ridge waveguide is then defined by 
chemical etching in order to guide the light efficiently (Figure 5.8b). 
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(a) (b)  

Figure 5.8. Scanning electronic micrographs from [YOO 95]. (a) The periodical inversion of 
the sign of nonlinear susceptibility. (b) The whole nonlinear ridge waveguide 

5.3.1.2. Quasi-phase matching in microcavity 

An alternative method to domain inversion consists of using a doubly resonant 
microcavity (for F and SH frequencies) [ROS 95]. The microcavity is designed in 
such a way that for each reflection onto the mirrors, the F and SH fields which are 
phase-shifted by π during their propagation in the medium are resynchronized. The 
authors of [SIM 97] reported the first achievement of such a microcavity in III–V 
semiconductors (Figure 5.9).  
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[001] 
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BRAGG mirror 

BRAGG mirror 

(a) (b) 
 

Figure 5.9. (a) A doubly resonant microcavity made of AlGaAs optimized for SHG.  
(b) The generated SH from this microcavity as a function of the incident angle. The dashed 
curve is deduced from a simulation considering a simply resonant cavity. The experimental 

observation of the decrease of FWHM of this curve confirms the doubly resonant regime 
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The use of non-periodical Bragg mirrors makes it possible to obtain a doubly 
resonant structure (at F and SH frequencies) as well as the quasi-phase matching 
condition. Note that, because the F field is resonant, conversion efficiency increases 
proportionally to cavity finesse. 

5.3.1.3. Bidimensional quasi-phase matching 

 

(a) (b)  

Figure 5.10. (a) Representation of a nonlinear photonic crystal in real space. 
(b) Representation of a nonlinear photonic crystal in reciprocal space 

A generalization of the quasi-phase matching technique to several dimensions 
was proposed in 1998 [BER 98]. The author talks about nonlinear photonic crystals. 
In this kind of photonic crystal, linear susceptibility ( )1χ  is homogenous whereas 

nonlinear susceptibility ( )2χ  is modulated at least in two dimensions of space 
(Figure 5.10a). This material can satisfy the phase matching condition 
simultaneously in different propagation directions for different wavelengths (Figure 
5.10b). 

5.3.1.4. Form birefringence 

It is possible to obtain birefringence from isotropic materials when they are 
structured. It was proposed in [ZIE 75] to use the birefringence of a lamellar 
structure to achieve phase matching. This idea was recently used to achieve phase 
matching in an AlGaAs waveguide [FIO 98]. This waveguide is layered in one 
direction perpendicular to the propagation direction k  (Figure 5.11a). Using high 
index contrast materials such as AlGaAs and AlOx (aluminum oxide) it is possible 
to create sufficient artificial birefringence between TE and TM modes to achieve 
phase matching. In [FIO 98], the authors describe an experiment of phase matched 
difference frequencies ( 213 ω−ω=ω ). The wave at 2ω  frequency is TM polarized 
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whereas the waves at 1ω  and 3ω  frequencies are TE polarized. Consequently the 
phase matching condition reads: 

( ) ( ) ( ) 332211 ωω=ωω−ωω TETETM nnn  (48) 

The phase matching curve showing the generated field power as a function of the 
pump field wavelength is shown in Figure 5.11b. This method is very promising for 
implementing second order nonlinear optics in semiconductors guiding structures. 
 

 

(a) (b) 

TM (ω1) TE (ω2,ω3) 

k

Figure 5.11. (a) A form birefringent layered waveguide optimized for frequency difference. 
(b) Phase matching curve for difference frequency generation  

in layered AlGaAs/AlOx waveguide 

5.3.1.5. Phase matching in one-dimensional photonic crystals 

The use of anomalous dispersion at the photonic band edges in lamellar 
structures to achieve phase matching was proposed in 1977 [YAR 77]. More 
recently, studies of periodical finite structures have succeeded in designing 
configurations where efficient second harmonic generation is expected [SCA 97; 
CEN 99]. Figure 5.12a shows a schematic view of an AlGaAs/AlOx 1D photonic 
crystal. The dispersion relation of a structure where the filling factor and the 
periodicity are chosen to satisfy the phase matching condition for an F wavelength at 
1.55µm is represented in Figure 5.12b. Note that F and SH frequencies are both 
tuned at the edge of the Brillouin zone so that their wave vectors satisfy the vectorial 
phase matching condition (taking into account folding in the first Brillouin zone): 

( ) ( )00 22 ω=ω zz kk  (49) 
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On the other hand, near the band edges, F and SH fields experience low group 
velocity modes, which as a consequence enhances their intensity in the material and 
so increases conversion efficiency. In this condition efficiency η  is proportional to 
the square of the propagation length and to the square of the inverse of the group 
velocity at F frequency [DAG 01]: 

2
1

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
×∝η

ωgv
L  (50) 

(b) (c) 

SH (2ω0) 

F (ω0) (a) 

z  

0,0 0,5 1,0
0,0

0,5

1,0

1,5

2,0

2,5

 ω
/ω

0

0 25 50 75
0,0

0,5

1,0

1,5

2,0

2,5

kz (π/a) 1/vg (arbs)
750 760 770 780 790 800

0,0

0,5

1,0

1,5

2,0

2,5

3,0

3,5

R
ef

le
ct

ed
 S

H
 in

te
ns

ity
 (a

rb
s)

λ (nm)

 

Figure 5.12. (a) An AlGaAs/AlOx 1D photonic crystal generating SH in reflection. (b) The 
dispersion relation of the z component of the wave vector and group velocity dispersion (z is 
the direction perpendicular to the layers). The AlGaAs layers are 151nm thick, periodicity is 
270nm. (c) The spectra of the generated SH for different fundamental central wavelengths. 
The fundamental pulse duration τ is 150fs. The thick curve is deduced from a simulation 

obtained using nonlinear transfer matrices theory 

For a lamellar structure, at the band edges, group velocity decreases with the 
square of the number of unit cells N  [BEN 96]. This leads to a conversion 
efficiency which grows as the sixth power of the number of unit cells [DEA 01]. 
Figure 5.12c shows the superposition of the reflected SH spectra obtained in the 
femtosecond regime. The F field is tuned at the first resonance above the first stop-
band and the SH field is tuned at the second resonance above the second stop-band. 
This configuration enables us to achieve phase matching and a good synchronization 
of group velocity. Comparing three structures of the same kind with different values 
of N, it is possible to verify relation (50) [DUM 02]. 
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In order to take better advantage of the second order nonlinear tensor of AlGaAs 
and to obtain a better lateral confinement of the electric fields, it is possible to 
extend the method described above to the case of a deeply etched AlGaAs 
waveguide. Unfortunately the SH field is located above the light-lines of substrate 
(dash line) and air (full line) as it is represented in Figure 5.12b. This considerably 
affects the dependence of conversion efficiency on the number of periods. However, 
it has been shown that harmful diffraction losses can be limited by adapting the 
waveguide parameters [DUM 03]. 

5.3.1.6. Phase matching in two-dimensional photonic crystal waveguide 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5.13. (a) A two-dimensional photonic crystal waveguide. The F field is H polarized 
and the SH field is E polarized. (b) The linear transmission of the F and SH fields, and the 

numerical calculations for the generated SH field 

In two-dimensional photonic crystal W1 waveguides (see Chapter 1), several 
parameters can be adjusted to achieve simultaneous phase matching and group 
velocity synchronization. Moreover, these waveguides present a further advantage 
over the configuration shown in section 5.3.1.5: propagation with low diffraction 
losses is possible. It is, indeed, possible to obtain phase matching in a W1 
waveguide fabricated in an AlGaAs planar waveguide. This waveguide consists of a 
single line defect in a triangular lattice of air holes. The air-filling factor of the 
structure is 6.0=f  [RAI 02]. Phase matching has been numerically demonstrated 
using on one hand the plane wave expansion program developed by the MIT [JOH] 
and, on the other, a finite difference time domain program. The results of the 
calculations are shown in Figure 5.13. 
 

 

z=[001] 

y 

x=[110] 

E 

H AlGaAs 

Air 

(a) (b) 

k 

765 770 775 780 785 790 795
0,0

0,2

0,4

0,6

0,8

1,0

1bis)

 SHG
 T2ω

 Tω

1) λ=780.9nm

2) λ=774.3nm

SH
 In

te
ns

ity
 (a

rb
s)

λ (nm)



184     Nanophotonics 

 

5.3.2. Third order nonlinear effects 

5.3.2.1. Continuum generation in microstructured optical fibers 

Microstructured optical fibers with silica cores (Figure 5.14a) guide the light like 
conventional optical fibers due to total internal reflection. However, these fibers 
have extra properties that cannot be obtained with conventional ones. For instance, it 
is possible to fabricate microstructured fibers having a zero-group velocity 
dispersion at lower wavelengths than in normal fibers. Moreover, because of the 
small dimension of the core of these fibers (diameter in the order of 1 micron), very 
small mode sizes are obtained and, as a consequence, enhanced efficiency of 
nonlinear processes is expected.  
 

 

Figure 5.14. (a) A scanning electron micrograph of the cleaved face of a microstructured 
optical fiber with silica core. (b) The spectrum of the continuum generated in the fiber (full 

line). The spectrum of the incoming pulses is represented by a dotted line 

These properties have been exploited to generate an ultra-broadband continuum 
of light going from ultraviolet to infrared (from 392nm to 1,600nm) [RAN 00]. 
100fs-long pulses with energy per pulse of 890pJ and spectrally centered at the zero-
group velocity dispersion (790nm) (dotted line in Figure 5.14b) are injected in the 
fiber. Because all the spectral components of the pulses are propagating at the same 
velocity, nonlinear interactions are efficient over the whole length of the fiber. Self-
phase modulation and Raman scattering are at the origin of the generation of new 
spectral components that give the super continuum at the end of the fiber. The white 
light obtained can be used to simplify the measurement of optical frequencies from 
standard microwaves [DID 00]. 

5.3.2.2. Optical reconfiguration of two-dimensional photonic crystal slabs 

Photonic crystals with their lattice dimensions in the order of the wavelength of 
the light offer an efficient way of controling an electromagnetic field. By varying the 
opto-geometrical parameters of these structures (lattice, refractive indices contrast, 
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lattice constant …), it is possible to engineer the dispersion properties of the matter 
or, in other words, to control phase and group velocities. For instance, structures can 
be designed such that light propagation is forbidden in every dimension of space in a 
wide range of frequencies, or such that light is considerably slowed down at a 
certain frequency in order to increase its interaction with matter (see Chapter 1 for 
more detail). Fabricating photonic crystals in a material that has a Kerr-type 
nonlinearity would make it possible to achieve systems where the propagation of 
light is controled by the light itself through the nonlinear refractive index control. 
Devices such as ultrafast optical switches and all-optical routers could be fabricated 
and implemented in integrated optical circuits.  
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Figure 5.15. Set-up of a pump and probe experiment. Pulses obtained via an optical 
parametric oscillator (OPO) are used to probe photonic crystal reflectivity around 1.5µm as 

it is pumped by a pulsed Ti: Sapphire lazer at 810nm. The incident power of each beam is 
controled by rotating half-wave plates (λ/2 plate) behind polarizing beam splitters (P). Both 

beams are focussed on the sample due to an achromatic microscope objective.  
The reflected signal is injected in a single mode optical fiber connected to an optical 

spectrum analyzer (OSA) 

Experiments have recently been carried out on two-dimensional semiconductor 
photonic crystals [RAI 05]. The investigated sample consists of an InP membrane 
incorporating four quantum wells transferred onto silicon where a graphite lattice of 
holes has been drilled. The idea is to change the semiconductor refractive index by 
varying the free carriers’ population via optical excitation (pump). The experimental 
set-up is depicted in Figure 5.15. In the linear regime, a sharp resonance is observed 
in reflectivity in a direction parallel to the holes’ axis ( nm4.0=λ∆  – 3,700Q =  – 
see Figure 5.16a), attesting to the presence at this wavelength of a low group 
velocity mode. When the pump is incident on the sample, resonance spectrally shifts 
towards the blue (towards lower wavelengths), the opposite way from that induced 
by thermal effects. The spectral shift increases as the pump intensity is increased up 
to free carriers’ population saturation.  
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Figure 5.16. (a) Reflectivity spectrums measured for different values of pump intensity [0.19 
kW/cm2 (a), 0.43 kW/cm2 (b), 0.74 kW/cm2 (c), 1.13kW/cm2 (d) and 1.78 kW/cm2 (e)]. 

 (b) Blue shift in resonance as a function of pump intensity 

This demonstrates that it is possible to spectrally shift the photonic bands of a 
photonic crystal efficiently. This constitutes the first step towards all-optical 
reconfigurable photonic crystals.  

5.3.2.3. Spatial solitons in microcavities 

The propagation of optical pulses in optical fibers is almost always accompanied 
by their spectral and temporal deformation because of chromatic dispersion and self-
phase modulation. However, by choosing the fiber (normal or abnormal dispersion), 
the shape and the power of the pulses appropriately, it is possible that chromatic 
dispersion and nonlinear effects will compensate each other [AGR 95]. In this case, 
propagating pulses are called solitons, pulses that are not deformed during 
propagation.  

By analogy, in optical microcavities, the compensation of phenomena that spread 
out beams (diffraction, scattering, self-defocussing) by phenomena that are 
focussing them (self-focussing, absorption saturation) can lead to spatial 
structuration in the opposite direction to the transmitted or reflected beams. In this 
case, we talk about spatial cavity solitons. This has recently been observed for the 
first time in VCSEL (Vertical Cavity Surface Emitting Lazer) used as an amplifier 
(electrical pumping under lazer threshold) [BAR 02] (see Figure 5.17a and 5.17b). 

The control of transverse structuration of the electromagnetic field combined 
with the integration capacity of semiconductor-based technology opens the way to 
very important applications such as ultrafast optical memories.  
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Figure 5.17. (a) The VCSEL used in [BAR 02]. (b) A picture obtained with a CCD 
where we can observe a spatial soliton 

5.4. Conclusion 

In this chapter, our goal was to give the reader a glimpse of the potential of the 
“marriage” between nonlinear optics and nano- or microstructures. We illustrated 
this with examples that second and third order nonlinear interactions could be 
enhanced in these materials. Engineering the nonlinear properties ( ( )2χ  domain 
inversion to achieve quasi-phase matching) and managing phase and group velocity 
is key to producing efficient nonlinear effects. In return, nonlinear optics offer to 
these nanotechnology jewels numerous new functionalities such as spectral 
tunability and ultrafast reconfiguration. 
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Chapter 6 

Third Order Optical Nonlinearities 
in Photonic Crystals 

6.1. Introduction  

Since Yablonovitch’s proposal regarding photonic band gap crystals [YAB 94], 
numerous studies have been performed throughout the world to realize and use such 
nanostructures in the optical domain [JOA 95a; JOA 95b; LOU 03]. These studies, 
whilst fascinating at a fundamental level, may also lead to applications concerning, 
for example, lazers without thresholds, guided propagation with very small 
curvature radii, or optically active elements for optical signal processing, all of 
which open the way to the optical information processing microcircuits of the future. 
To realize these optical information processing functions, the implementation of 
nonlinear optical interaction processes will be required, in which third order 
nonlinear effects will play an essential role.  

Here we hit an important scientific stumbling block: how to obtain sufficient 
optical nonlinearities to realize, with sufficiently small lazer energies, efficient 
control devices on optical microcircuits. As is well known, the use of one or many 
photon resonant, and possibly non-resonant, interactions in semiconductors produces 
high nonlinear effects on relatively small interaction lengths. However, for potential 
future information processing optical circuits, the interaction length will have to be 
on the micrometer range, leading to the necessity to further reinforce the optical 
nonlinearity of these materials. The nanostructuring of the material in the form of 
photonic band gap crystals, otherwise necessary for other linear elements of circuits, 
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may give us an elegant and efficient solution. This will particularly be the case for 
photonic crystals used at the edge of the photonic band gap, where the very high 
optical mode density may considerably increase nonlinear processes (in such cases 
the optical intensities inside the structures greatly exceed those injected in the 
devices). 

Ignoring the already well reported study of second order nonlinear effects in 
photonic crystals [SI 02, BER 98, BRO 00, FIO 98, DUM 01], this chapter deals 
with the specificities of photonic crystals concerning third order optical 
nonlinearities. Its goal is to make the reader aware of the enormous potential of 
photonic crystals for the future realization of micrometer size nonlinear devices for 
optical information processing. 

The chapter is organized into three sections. Section 6.2 presents a recall of the 
nonlinear optical processes of interest in photonic crystals, i.e. optical Kerr effect, 
two photon absorption and frequency degenerated four wave mixing, that will be at 
the origin of secondary effects which are promising for applications, such as optical 
bistability or instability, quantum noise reduction, soliton propagation and 
interaction, etc. Section 6.3 deals with the core of the problem, i.e. the influence of 
the local field inside the nanostructure. Finally, section 6.4 shows some results 
concerning the evaluation of local nonlinearity in the case of frequency degenerated 
four wave mixing.  

6.2. Third order nonlinear optic reminder 

When the intensity of light waves present in a material is intense, the electronic 
density of atoms’ peripheral electrons is strongly disturbed so that the polarization 
induced in the material is no longer proportional to the electric field of the light 
wave. If the perturbation is not too large (i.e., for a field of the optical wave smaller 
than the ionization field of the atoms), one can express the induced polarization as a 
power series development of the optical field. In such a case, for a nonlinear process 
of the nth order, the corresponding nonlinear polarization depends on the nth power 
of the optical field and one can write nonlinear propagation equations for the waves 
intervening in the nonlinear interaction [SHE 84]. In this chapter we will limit 
ourselves to the third order nonlinearities that always exist whatever the optical 
material used. 

6.2.1. Third order optical nonlinearities  

In the most general case, third order optical nonlinearities occur when four 
waves of frequencies ω1, ω2, ω3, and ω4 such as, for example, ω4=ω1+ω2+ω3 are 
present in a material (see Figure 6.1). The total electric field is written:  
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E r, t( )= Ej r,ω j( )exp −iω jt( )+C.C.
j=1,4
∑  

(1) 

where the complex amplitude Ej r,ω j( ) of the plane and monochromatic optical 

wave of frequency ωj is given by: 

E4(r,ω4)E1(r,ω1)

E2(r,ω2)E3(r,ω3)

 

Figure 6.1. Schematic diagram of four wave mixing 

Ej r,ω j( )= ˆ e jAj r,ω j( )exp ik j.r( ) (2) 

ˆ e j, Aj r,ω j( ) and k j  being respectively the polarization vector (taken linear in the 

following), the amplitude and the wave vector of the optical wave of frequency ωj. 
The nonlinear propagation equation of the amplitude A4 r,ω4( ) can then be written 
(in CGS units):  

ˆ k 4 .∇A4 r,ω4( )= i 4π 2

n4λ 4

ˆ e 4 .PNL
(3) ω4( )exp i kΣ − k 4( ).r[ ] (3) 

where ˆ k 4  is the unitary wave vector in the direction of k 4  and n4 the index of 

refraction at the wavelength λ4=2πc/ω4. In equation (3), the third order nonlinear 
polarization PNL

(3) ω4( ) of wave vector kΣ = k1 + k 2 + k 3  is expressed:  

PNL
(3) ω4( )= Dχ (3) ω1,ω2 ,ω3( )ˆ e 1ˆ e 2 ˆ e 3A1 r,ω1( )A2 r,ω2( )A3 r,ω3( )    (4) 

where D is the degeneracy factor of the three waves generating the nonlinear 
polarization (D=3!=6 for three different waves, D=3 when only two waves are 
different, and D=1 for three identical waves). Let us note that, taking into account 
the exp[i(kΣ − k 4).r]  term of equation (3) that imposes a sinusoidal spatial 
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oscillation to A4 r,ω4( ), the nonlinear process will be efficient only under phase 
matching conditions, i.e. if kΣ = k 4 . 

6.2.2. Some third order nonlinear optical processes 

In the following section, we will mention some third order nonlinear optical 
processes that are interesting for the study of optical information processing in 
photonic crystals.  

Frequency degenerated four wave mixing 

In this nonlinear process, two intense pump waves EF r,ω( ) and EB r,ω( ), of 

frequency ω and propagating in exactly opposite directions interact with a signal 
wave ES r,ω( ), at the same frequency, propagating in a different direction from that 

of EF r,ω( ) and EB r,ω( ). 

If we consider the third order nonlinear polarization at frequency ω:  

PNL
(3) ω( )= 6χ (3) ω,ω,−ω( )ˆ e F ˆ e Bˆ e SAF r,ω( )AB r,ω( )AS

* r,ω( ) (5) 

which uses the same writing conventions for the electromagnetic field as equation 
(4), we note that the wave vector of this nonlinear polarization is kΣ = −kS . The 

wave radiated by this polarization is called the phase conjugate wave of ES r,ω( ). 
This wave propagates in a direction exactly opposite to the signal wave direction 
(kC=-kS): the four-wave mixing process is then phased matched and can thus be very 
efficient. 

In the complete parametric regime of low energy transfer between the pump, 
signal and conjugate waves (Aj(z’,ω)=Aj0,j=F,B) and low amplification of the signal 
wave (AS(z,ω)=AS0), it is easy, from the nonlinear propagation equation (3) written 
for the amplitude of the conjugate wave and the nonlinear polarization given by 

equation (5), to obtain the conjugate wave intensity IC = cn 2π( )AC 0,ω( )2
 for a 

nonlinear material of thickness L, that is: 

IC =
64π 6

c2n4λ2 6χeff
(3) 2

IFIBIS L2  
(6) 
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The conjugate wave intensity appears then as proportional to the incident 
intensities of the “pump” and “signal” waves, to the square of the thickness of the 
nonlinear material and to the square of the modulus of the third order nonlinear 
susceptibility χeff

(3) = ˆ e C.χ (3) ω,ω,−ω( )ˆ e F ˆ e Bˆ e S. For this automatically phase matched 

nonlinear process, one can directly obtain the effective nonlinear susceptibility value 
by a simple measurement of incident intensities. This is why frequency degenerated 
four wave mixing, otherwise very useful for optical information processing, is used 
in this chapter as a sign of the enormous progress of third order optical nonlinearities 
brought about by material nanostructuring.  

Optical Kerr effect and two-photon absorption 

Nonlinear effects not only exist when the interacting waves are different: they 
also exist in the propagation of a single intense optical wave in a nonlinear material. 
Those effects can also affect the intensity of the optical wave by the introduction of 
losses or the phase of this wave by a modification of the refractive index of the 
material. These effects are in fact described by the same nonlinear polarization: 

PNL
(3) ω( )= 3χ (3) ω,−ω,ω( )ˆ e ̂  e ̂  e A r,ω( )2

A r,ω( ) (7) 

Depending on the purely real or imaginary nature of the effective nonlinear 
susceptibility χeff

(3) = ˆ e .χ (3) ω,−ω,ω( )ˆ e ̂  e ̂  e , we will speak of the optical Kerr effect or 

of two-photon absorption. Taking into account that the nonlinear polarization wave 
vector k Σ = k  is exactly the same as that of the incident beam, these two 

automatically phase matched processes have a universal character: they occur in any 
material with any optical beam. Only the importance of the self-induced 
modification of the characteristics of the incident optical beam will depend on the 
beam intensity itself and on the value of the effective nonlinear susceptibility. The 
nonlinear propagation equation for the optical wave amplitude can then be written:  

dA z,ω( )
dz

= i
4π 2

nλ
3χeff

(3) A z,ω( ) 2
A z,ω( ) 

(8) 

If χeff
(3)  is purely imaginary, the intensity I(L) transmitted by the material of 

length L for an incident intensity I0 is given by:  

I L( )= I0

1+ KI0L
 (9) 
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where K = 16π 3 cn2λ( )Im 3χeff
(3)( ) represents the two-photon transition strength. The 

beam intensity is then more attenuated at higher incident intensities.  

If χeff
(3)  is real, the optical beam intensity is unchanged; on the other hand its 

wave vector k = nω c( )ˆ k  is modified by a quantity ∆k = 8π 3 cn2λ( )Re 3χeff
(3)( )I0

ˆ k . 

For a monochromatic plane wave, the optical Kerr effect generates a phase variation 
that will have an incidence only when subject to light interferences. On the other 
hand, when associated to a spatial or temporal dependence of the incident optical 
intensity, the optical Kerr effect brings about spectacular effects such as self-
focussing or self phase modulation and their derived products, spatial and temporal 
solitons.  

6.2.3. Influence of the local field 

In the nonlinear propagation equation (3) as well as in the expression of 
nonlinear polarization (equation (4)), the electric fields that represent optical waves 
are those that exist inside the material at point r. On the other hand, an evaluation of 
the efficiency of nonlinear effects is made from measurements realized outside the 
nonlinear material. It is thus useful to calibrate optical nonlinearities with the 
external fields. The local fields Eloc

(j) r,ω j( ) actually present in the material must then 

be related to the external fields Eext
(j) r,ω j( ) actually measured. One notes then:  

E loc
(j) r,ω j( )= fj r,ω j( )Eext

(j) r,ω j( ) (10) 

where fj r,ω j( ) is the local field factor at the point r for the frequency ωj [FLY 75]. 

The local field appears in fact as a superposition of the external field and of the 
field radiated by polarization Pj r,ω j( ) induced at point r by the local field itself. 

One can then relate the two local and external fields by the relation:  

E loc
(j) r,ω j( )= Eext

(j) r,ω j( )+ Λ j r,ω j( )Pj r,ω j( ) (11) 

where Λ j r,ω j( ) is used as a measure of localization strength. In the linear regime 

polarization induced at the frequency ωj is related to the local field through local 
linear susceptibility χ loc

(1) r,ω j( ) by the relation:  

Pj r,ω j( )= χ loc
(1) r,ω j( )Eloc

(j) r,ω j( ) (12) 
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From equations (10) to (12), one easily finds the relation relating fj r,ω j( ) to 

Λ j r,ω j( ) , that is:  

fj r,ω j( )= 1

1− Λ j r,ω j( )χ loc
(1) r,ω j( ) (13) 

In third order nonlinear optical processes, which we are interested in here, total 
polarization P r,ω4( )= PL r,ω4( )+ PNL

(3) r,ω4( ) can be expressed as a function of the 

local fields using local nonlinearities of the material or as a function of the external 
fields using effective nonlinearities. Performing this operation, one finds the 
expressions relating the linear χeff

(1) r,ω4( ) and nonlinear χeff
(3) r,ω1,ω2 ,ω3( ) effective 

susceptibilities to the corresponding local susceptibilities χ loc
(1) r,ω4( ) and 

χ loc
(3) r,ω1,ω2 ,ω3( ):  

χeff
(1) r,ω4( )= f4 r,ω4( ) χ loc

(1) r,ω4( ) (14a) 

χeff
(3) r,ω1,ω2 ,ω3( )= f4 r,ω4( )f1 r,ω1( )f2 r,ω2( )f3 r,ω3( )χ loc

(3) r,ω(
 

(14b) 

Equation (14a) shows that if fj r,ω j( ) is greater than 1, then the propagation 

speed of the optical wave related to the effective refractive index 

neff r,ω j( )= 1+ 4πχeff
(1) r,ω j( ) is smaller than for a material with the same refractive 

index but which does not present localization effects. Localization of light is then 
directly related to the slowing down of the optical wave in the material.  

On the other hand, as shown by equation (14b), light localization plays an 
essential role in ensuring the efficiency of third order nonlinear processes since if we 
neglect dispersion in a first approximation, third order nonlinear susceptibility grows 
as the fourth power of the local field factor. This means that even for a moderate 
value fj r,ω j( )= 3.3, the effective nonlinearity of the considered material is 100 

times greater than for a material that does not exhibit light localization effects. In a 
bulk material, the local field effect is due to the localization of electrons near the 
nucleus (the local field factor is then maximum for an ionic compound and zero for 
a metal). Below, we will ignore this effect, or more precisely we will suppose that 
the “bulk” local field effect is already incorporated in the value of local linear and 
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nonlinear susceptibilities. The following paragraph describes the effect of 
localization due to the nanostructure of the material. 

6.3. Local field in photonic crystals 

To show the physical origins of the huge enhancement in effective nonlinearities 
that can be obtained in photonic crystals, let us examine the value of the local field 
in a one-dimensional photonic crystal such as a Bragg mirror. Such a nanostructure 
(see Figure 6.2) is made of a stack of N periods of two layers of thickness e1 and e2 
and refractive indices n1 and n2, with the same optical thickness λM/4=e1n1=e2n2 
where λM is the central wavelength of the forbidden band of the photonic crystal.  
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Figure 6.2. Structure and reflectivity spectrum of a one-dimensional photonic crystal 

Such a device can be called a one-dimensional photonic band gap crystal, 
because of the existence of a frequency band for which propagation perpendicular to 
the periodicity is forbidden, light being totally reflected by the structure. The band 
structure of such an infinite crystal can be calculated relatively easily [JOA 95a, 
95b]. The result is shown in Figure 6.3, with a particularly clear band gap in that 
case.  
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Figure 6.3. Band diagram of a one-dimensional photonic crystal 

For any steady state optical device, the variation in volumic energy density per 
unit time is equal to the variation of optical intensity per unit length. Consequently, 
optical intensity at a given frequency is directly proportional to the density of modes 
contained by the device at the same frequency. Moreover, this density of modes 
ρ=dk/dω defined from quantum electrodynamics [DOW 92] is the inverse of the 
group velocity vg=dω/dk defined from the propagation of the maximum rate of the 
pulse. The mean local field factor appears then as the square root of the ratio of the 
group velocity of the non-structured material to that of the photonic crystal. The 
local field factor will be then all the more important since the group velocity of light 
through the device will be small (this has been shown in a different manner in 
section 6.2.3). At the edge of the band gap (see Figure 6.3), the frequency varies 
only slightly with the wave vector, which means that group velocity will be small. 
Light remains in the structure for a very long time and can then interact at length 
with the nonlinear material. Another point of view says that the local amplitude of 
the field of the electromagnetic wave is increased by interferences due to multiple 
reflections on the interfaces separating the 1 and 2 media, as is the case in a Fabry-
Perot etalon. The low value of group velocity is in fact obtained for a wavelength 
corresponding to a maximum of transmission of the photonic crystal, which means 
that in the absence of losses, the light stays in the nanostructure for a long time but 
exits it almost integrally, with only a small proportion being reflected. The local 
field factor in the one-dimensional photonic crystal is calculated for this wavelength.  

As an example of an easy experiment, we consider a Bragg mirror centered at a 
wavelength of 1.5µm made of pairs of layers of CdMnTe (n1=2.937) and CdMgTe 
(n2=2.547) of optical thickness λ/4 grown on a CdMnTe substrate. The calculation is 
made using a matrix technique to determine the fields propagating forwards and 
backwards in the structure [DEL 05]. In order to fully show the importance of the 
nanostructuration of the material, the local field factor that we consider is the ratio 
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of the modulus of the field (forward or backward) at the point with ordinate z in the 
structure, to the one obtained in a bulk material of index n1. 
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Figure 6.4. Distribution of the local field factor fL in a photonic crystal of N periods  

(N=10, 20, 50 and 100 in (a), (b), (c) and (d) respectively) 

Figure 6.4 shows the value of the local field factor inside the layers of index n2 
as a function of the number N of periods grown on the substrate for fields 
propagating forwards (full squares) and backwards (empty circles). The calculation 
is made for wavelengths chosen at the band edge (λ=1.642, 1.598, 1.577 and 1.573 
for N=10, 20, 50 and 100 respectively) when the structure becomes transparent 
again. The local field factor fL differs for the wave propagating forwards and 
backwards because of the dissymmetry introduced by the fact that only the forward 
propagating wave is incident on the structure. One may nevertheless note that the 
difference decreases when N increases because of the growing importance of 
multiple reflections that gives a maximum of the local field around the middle of the 
structure.  

The slight dissymmetry of the curves is in fact due to that part of the 
structure itself that is exposed to open air on one side and to the substrate on the 
other side. Note also that because of the small value of the index mismatch 
(∆n=n1-n2), the local field factor in the layers of index n1 is only slightly smaller 
than the one calculated in the layers of index n2. To show the effect of the 
resonance that occurs at the band edge, Figure 6.5 shows the spectra of the mean 

local field factor fM = 1 2N( ) ffor n1, j( )fback n1, j( ) + ffor n2, j( )fback n2 , j( )( )
j=1

N

∑  

(averaged on the photonic crystal’s length) for the structures of 10, 20, 50 and 
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100 layers considered previously. When the number of periods increases, the 
central wavelength of the mean local field factor peak comes closer to the 
theoretical band edge of an infinite photonic crystal. At the same time, the width 
of the peak decreases whereas the maximum of the curve increases, confirming 
resonance effect due to multiple interferences.  
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Figure 6.5. Mean local field factor spectra for a one-dimensional photonic crystal 

Figure 6.6 shows the evolution of the maximum of the mean local field as a 
function of the number N of periods of the structure. The full squares correspond to 
the results of the previous numerical calculation. The full line curve corresponds to 
an evaluation of the local field factor made from the analytical formula giving the 
group velocity in the photonic crystal at the band edge [BEN 96]: 

 

fM =
1− T12 cos2 π 2N( )

T12 sin2 π 2N( )
 

(15) 

 
T12 = 4n1n2 n1 + n2( )2

 being the intensity transmission factor of the diopter 
separating the two media of indices n1 and n2. 
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Figure 6.6. Mean local field factor variation versus the number 

of periods of the one-dimensional photonic crystal 
 
 

For a sufficiently large value of N (N>20), the local field is then directly 
proportional to the thickness of the nanostructure. Taking into account formula 
(14b), this means that effective third order nonlinear susceptibility grows as the 
fourth power of the thickness of the photonic crystal. Thus for 100 layers, effective 
nonlinear susceptibility is 400 times higher than in a bulk crystal, which indicates 
conceivable solutions for the realization of information processing functions with 
micrometer dimensions. In the case of the structure considered above, huge 
enhancements are made at the price of a large number of periods of the photonic 
crystal. This drawback can be eliminated if a higher index contrast between 
successive layers is used. Indeed, looking at equation (15) and the expression giving 
T12 shows that the local field factor increases in an important manner with the index 
contrast ∆n. This is confirmed by the numerical calculation: in Figure 6.7 we see the 
spatial distribution of the forward local field factor in the high and low index layers 
of a structure with 20 periods, for a value of the refractive index of the low index 
layer n2=2.8, 2, 1.5 and 1, the high index layers maintaining an index n1=3. 
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Figure 6.7. Local field factor distributions for photonic crystals 
with different index contrasts 
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As expected, the effect of the index contrast favoring the efficiency of the 
reflections on the different diopters is spectacular on the enhancement of the local 
field factor with maximum values around 15, allowing nonlinear susceptibility to be 
raised by a factor 5.104. It is also important to note that, as the amplitude 
transmission factors differ for the crossing from low index to high index layers and 
vice versa, the local field factor is higher by a factor n1 n2  in the low index layer. 
As the low index layer is also thicker by a factor n1 n2 , this point shows the 
importance of choosing a low index nonlinear material with the highest possible 
nonlinearity. This could be obtained, for example, by filling the interstices between 
high index layers with a gas having a resonance at the band edge frequency.  

6.4. Nonlinearities in photonic crystals 

The very strong influence of the local field factor on effective nonlinearities can 
easily be quantified using frequency degenerated four wave mixing. Indeed, as this 
process is automatically phase matched, a comparison of the measured or calculated 
conjugate intensities for a photonic crystal and for a bulk crystal made of the same 
material, and for identical pump and signal beam intensities makes it possible to 
obtain the nonlinearity gain G = χ PC

(3) χBC
(3) . Figure 6.8 shows the variation of the 

conjugate intensity as a function of the number of periods deposited on the substrate 
for the photonic crystal considered in Figures 6.4 and 6.5. The calculation is made 
using the same matrix technique as for the evaluation of the local field, the only 
difference being that nonlinear propagation in the different layers of the structure is 
taken into account.  
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Figure 6.8. Phase conjugate reflectivity of a one-dimensional photonic crystal as a 
function of the number of periods in the structure 
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As expected, the growth of conjugate reflectivity is proportional to the eighth 
power of the structure’s thickness, whereas growth is only proportional to the square 
of this thickness in the case of a bulk crystal. It brings about an improvement in 
performance of the device of several orders of magnitude, which means that we can 
expect the implementation of optical signal processing functions with micrometer-
sized devices. 

6.5. Conclusion 

In this chapter, we have shown that the introduction of optical information 
processing functions in potential optical microcircuits made with photonic crystals 
necessitates an optimization of the nonlinear performance of the structures. After an 
introduction to third order nonlinear effects useful for optical information processing 
(mainly the optical Kerr effect, four wave mixing and derived processes), this 
chapter has shown the importance of light localization for nonlinear effects: an 
enhancement with the fourth power of the local field factor of third order nonlinear 
susceptibility has been shown. We have also indicated how the nanostructuring of 
materials with large intrinsic nonlinearities such as semiconductors considerably 
increases the efficiency of nonlinear processes occurring in these materials. The 
local field factor at the band edge increases with the number of periods, but at the 
expense of a decrease in the phenomenon spectral bandwidth. Furthermore, a large 
index contrast makes it possible to obtain a huge increase in the local field factor 
with a small number of periods. From this point of view, air-semiconductor 
structures have a lot of potential.  

Of course, the results presented here for a one-dimensional structure give the 
general basis for optimization of two- or three-dimensional photonic crystals that 
have potential in various applications for optical information processing. 
Nevertheless, deeper studies incorporating in addition the influence of linear and 
nonlinear losses will have to be made in these much more complex, but also richer 
in terms of potential for of structuration, cases. 
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Chapter 7 

Controling the Optical Near Field: 
Implications for Nanotechnology 

7.1. Introduction  

Until recently, the concept of near field has not been extensively exploited in 
optics. Indeed, since information contained in the signal could only be detected in 
far field, interest tended generally to be more focussed on the structure of the 
electromagnetic field in far field.  

The advent of near field microscopies and integrated-optical devices first 
developed in the fields of microtechnology and nanotechnology is now changing 
this state of affairs. The control of the optical near field is now recognized as a key 
issue for the qualification of optical nanotechnology devices. The term 
“qualification” is used here to denote the control of specific properties of these 
devices, and the control of their local losses. In the medium term, the efficient 
development of active near field optical devices based on localized optical 
interactions will not be possible save through a thorough understanding of near field 
optics. 

This chapter begins with a definition of the notion of near field in certain specific 
configurations. It then turns to a description of the methods used for detecting the 
near field, before providing the reader with some examples of applications. Since 
only a limited number of examples can be described in this chapter, we have chosen 
to restrict ourselves to a consideration of three: integrated waveguides, photonic 
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crystal cavities and metal perforated with sub-wavelength Hole Arrays. In our 
opinion, all three types of components are among the key optical devices that will be 
in used in nanotechnology in the future.  

7.2. How is the near field defined? 

The question of the definition of the near field is still debated. Here we will 
consider a few definitions, each of which might lead to a different conception of the 
near field. We shall first consider the case of the field radiated by a dipole, before 
turning our attention to the field scattered by an aperture with sub-wavelength 
dimension, and finally we will look at the evanescent field of a diopter illuminated 
under total internal reflection. 

7.2.1. Dipolar emission 

Let us consider a dipole oscillating along the z-axis, as represented in Figure 7.1. 
The electric polarization of the dipole follows the equation: 

nrrtptrP GGGGG
)()(),( 0−= δ  (1) 

where p(t) is the time-dependent polarizability. 
 
 
 
 

 

Figure 7.1. Schematic representation of a dipole  
with momentum parallel to Oz 
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The components of the field generated by the dipole are given by the following 
equations [BOR 59]: 
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(2) 

(3) 

(4) 

where ,  and p p p� ��  correspond to polarizability and its time derivatives. 

The field emitted by the dipole can then be determined from these equations. By 
calculating the average flux of the Poynting vector through a sphere extending 
around the dipole, it can easily be demonstrated that only the 1/r terms have a non-
null contribution. Therefore, the other terms represent the evanescent waves 
associated to the dipole.  

In the case of a dipole, the near field region corresponds to the region of space 
where evanescent waves are in the majority. This region can therefore be determined 
using the previous relations. This leads to an estimation of the near field distance in 
the order of λ/2π. 

Everything happens as if the energy associated with evanescent waves is 
periodically flowing out from and back to the source without ever being lost by 
the system.  

For the purpose of demonstrating the existence of evanescent waves associated 
with the dipole, in 1913 Sélényi conducted the following experiment [SEL 13]. 
Having deposited fluorescent molecules on the plane surface of a semi-cylindrical 
prism, he then proceeded to measure their emitted power as a function of the 
emission angle. Since the signal detected in the prism above the critical angle was 
found to be non-null, Sélenyi concluded that the signal was generated by the 
evanescent waves associated with the fluorescence emission.  
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       a)      b)  

θ
θ

 

Figure 7.2. Sélényi’s experiment, demonstrating the presence of evanescent 
waves in the vicinity of a dipole. The detected light comes from (a) waves associated  

with the dipole, (b) evanescent waves 

The following figure presents the theoretical analysis underlying Sélényi’s 
experiment.  

 

       

Figure 7.3. Emission diagram of a dipole located at different distances 
from a semi-infinite medium 

If the near environment extending around a dipole can transform some of the 
evanescent waves into propagative waves, this means that the emission rate of the 
dipole increases. In other terms, the lifetime of the dipolar radiation/emission can be 
said to decrease. An alternative approach to coupling between the dipole and its 
environment consists of considering that the dipole acts as a probe in its near field. 
Thus, if for instance two metallic particles are located near the dipole, the lifetime 
associated with the dipole will be dependent on the distance separating it from the 
particles. The following figure shows that a loss in resolution occurs when the 
particles move outside the near field of the dipole. This demonstrates that sub-
wavelength resolution is related to the interaction occurring with the evanescent 
waves associated to the dipole.  
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Figure 7.4. The dipole used as a probe moves in a plane parallel to the substrate upon which 
two metallic particles have been deposited. The image describes the variations of the emission 

rate as a function of the location of the probe with respect to the particles.  
The resolving power depends on the distance D, equal to (a) 10 nm,  

(b) 20 nm and (c) 40 nm respectively [RAH 97] 

Let us now consider a second example of interaction in the near field of the 
dipole. It is known that, in order to optically excite a surface plasmon, it is necessary 
to resort to the so called Kretschmann configuration, where the evanescent wave 
generated by total internal reflection excites the plasmon [RAE 88]. A surface 
plasmon can also be excited from the evanescent wave of the dipole, as can be seen 
in the following figure, where a minimum appears when the dipole is near the 
surface (λ ≈ 320nm).  

        

Figure 7.5. Excitation of plasmons by the field of a dipole:  
(a) dipole normal to the surface, (b) dipole parallel to the surface [RAH 01] 
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7.2.2. Diffraction by a sub-wavelength aperture  

The following figure summarizes what happens when the size of an aperture 
illuminated by a plane wave is reduced. The parameter to be taken into consideration 
is the relative size of the aperture (2a) with respect to the wavelength of the incident 
wave (λ). 

 

Figure 7.6. Schematic representation of the transmission of light through an aperture with 
variable size illuminated by a plane wave. The curves in dotted lines represent evanescent waves 

As the size of the aperture decreases, the numerical aperture of the transmitted 
beam increases up to the point, at λ = 2a, where it completely fills the half-space. 
From this value onwards, evanescent waves appear.  

The equation for the evanescent field when λ > 2a is: 

)exp()/exp(0 ykxktjdzEE yxp −−−= ω  (5) 

where dp is the penetration depth of the evanescent waves, as given by the following 
equation: 

2/1

2

2
22

−

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−+=

c
kkd yxp

ω
 

(6) 

The idea of using the field generated by a sub-wavelength aperture for enhancing 
the resolution power of microscopes was first suggested by Synge in a letter written 
to Einstein at the beginning of the twentieth century [SYN 28]. However, it was only 
much later that these ideas were actually implemented in optics [LEV 86]. 
Applications to near field microscopy were developed on the basis of the studies 
conducted on diffraction by a sub-wavelength aperture [BET 44; BOU 50; LEV 86]. 
The following figure shows the average flux of the Poynting vector, represented as a 

λ<2a
λ=2a λ>2a
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function of the distance from the aperture. The rapid decay of the transmitted 
intensity is apparent on these curves. The determination of the electromagnetic field 
shows that, at a great distance from the aperture, the latter acts as a dipole. 

 

Figure 7.7. Evolution of the average flux of Poynting’s vector transmitted through a sub-
wavelength aperture, plotted against the distance from the aperture. The electric field in the 

plane of the aperture extends (a) along Ox, (b) along Oy [LEV 86] 

As has been seen, the near field region can be defined as the region of space 
where evanescent waves predominate. The final example that we consider here is 
that of total internal reflection.  

7.2.3. Total internal reflection 

Let us consider an ensemble consisting of two semi-infinite media, with 
refractive indices n1 and n2, where n1 > n2. Depending on the illumination 
conditions, either refraction (if θ < θc) or total internal internal reflection (if θ >θc) 
will occur. Here θc is the critical angle of refraction, as given by the equation:  

)/sin( 12 nnArcc =θ  (7) 
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Figure 7.8. Schematic representation of the refraction phenomenon for θ<θc and θ>θc 

Assuming Oz to be the normal axis with respect to the interface between the two 
media, and the incidence plane to be defined Ox, Oz, then the field in the second 
medium obeys the following equation:  

– in p-polarization: 
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The dp term is the penetration depth of the evanescent field in the second 
medium.  
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dp depends on the incidence angle, on the refractive indices of the two media, 
and on the wavelength. It is not polarization-dependent.  

For a better insight into the order of magnitude of this parameter, the following 
table provides a few values for dp in different configurations. 
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λ (nm) n1 n2 θc θ dp (nm) 

1,300 Glass Air 43.3 45 825 

1,300 Silicon Air 16.9 45 94 

633 Glass Air 43.3 45 402 

633 Glass Air 43.3 85 96 

633 Glass Water 65.8 85 173 

414 Glass Air 43.3 85 63 

Table 7.1. Value of the penetration depth of the evanescent wave for different values of 
refractive indices of the media, different incidence angles and different wavelengths 

Let us now return to the criterion that we previously determined for the near 
field. In the case of a plane surface illuminated under total internal reflection, we can 
no longer use the same definition of the near field as for a dipole or an aperture. 
Indeed, the possibility may now exist that θ is close to θc and that the evanescent 
wave has such a great spatial extension (with dp assuming a high value) that only 
this evanescent wave exists. In such a case, the value for dp is to be considered as 
given and defines the spatial extension of the near field.  

Another property to be pointed out is the dependence of the value of the field at 
the interface between the two media on the incidence angle. It can be seen from the 
following figure that the maximal value for the field has reached near total internal 
reflection, and that when the surface is illuminated at an angle above θc the field 
decreases relatively rapidly. A slight difference in the behavior of the curve can be 
observed depending on the polarization. 

 

 

Figure 7.9. Variation of the intensity of the electric field at the interface between the two 
media in s and p polarizations as a function of the incidence angle. n1=1.46 and n2=1.33 
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The existence of the evanescent field in total internal reflection was first 
experimentally demonstrated by Newton. He brought near the hypotenuse face of a 
right-angle prism a second optical element consisting of a modified prism whose 
hypotenuse face had a large radius of curvature. Observation of the transmitted 
signal reveals that transmission between the two prisms takes place not only at the 
contact point, but also in regions where the distance between the two surfaces, while 
non-null, remains small with respect to the wavelength. In such a case, total internal 
reflection is said to be frustrated. This result was interpreted by Newton as 
demonstrating the penetration of light in the second medium at total internal 
reflection.  

 

Figure 7.10. Experiment demonstrating the existence  
and the frustration of the evanescent wave 

A more local method for demonstrating the penetration of the field in the second 
medium consists of moving a thinned/sharpened optical fiber close to the interface 
where total internal reflection occurs, in order to measure the signal thus transmitted. 
 

 
 

Figure 7.11. Detection of the near field with a sub-wavelength probe consisting 
 of a sharpened fiber, θ = 50° and 60°, λ = 1.3 µm. (a) Experimental measurement;  

(b) Numerical model [FOR 93] 

(a)    (b) 
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When the probe is at a distance larger than 200nm, the curve is exponential and 
follows the relation given by the previous equations. By contrast, when the probe is 
very close to the surface, this exponential variation no longer exists. At a great 
distance from the surface, the field extending in this region takes into account the 
presence of the probe. The latter therefore causes only a slight perturbation. Thus, in 
order to simulate such systems, it is necessary to take into account the presence of 
the probe, as in the curve shown in Figure 7.11b.  

7.3. Optical near field microscopies  

7.3.1. Introduction 

The properties of the near field can be exploited in a variety of fields, including 
waveguides, sensors and antennas. In this chapter we shall restrict ourselves to the 
field of nanosciences, and in particular to so called optical near field microscopies. 

7.3.2. Fundamental principles 

The principle of near field microscopies can be summarized in the following 
simple fashion. Since far field detection does not give access to sub-wavelength 
information contained in evanescent waves, an alternative way of overcoming the 
Rayleigh criterion would be the detection of these waves. At the risk of 
oversimplification, near field microscopy can thus be described as a method for 
collecting local information in the near field of the object under study. These 
microscopes are described in more detail in the book by D. Courjon and C. Bainier, 
and only a few specific examples will be presented here [COU 01]. The following 
figure shows the main configurations which are currently used in near field 
microscopy. Near field optical microscopes are generally referred to as scanning 
near field optical microscopes (SNOM) [FOR 01].  

(a)                                    (b)                                 (c)

 
Figure 7.12. Main configurations for near field microscopes (SNOM): 

(a) Photon Scanning Tunneling Microscopy (PSTM), (b) Scanning Near field Optical 
Microscopy (SNOM), (c) Apertureless microscope 



218     Nanophotonics 

With the PSTM, the object to be studied is illuminated under total internal 
reflection, while the probe, which usually consists of an optical fiber, detects the 
field in the vicinity of the object. It collects part of the radiative waves and 
transforms part of the evanescent field into a propagative field. For near field optical 
microscopes with an aperture, a first possibility consists of using the metallized fiber 
as a sub-wavelength probe: in this case, the evanescent field localized in the vicinity 
of the aperture is transformed into a propagative field either through scattering by 
the sub-wavelength features of the sample or through other types of interaction, for 
instance fluorescence phenomena. This configuration is referred to as scanning near 
field microscopy in emission mode. Note that the signal can be detected either after 
its propagation through the sample or by means of the fiber used for the 
illumination. Near field optical microscopes can also be operated in collection mode, 
as is the case for PSTM: the probe here is used for detecting a part of the field. 
Detection depends on the size of the aperture, on the refractive index of the probe, 
and on the material from which the aperture is realized.  

In apertureless mode, an opaque probe with sub-wavelength size is brought 
inside the near field of the object under investigation, the latter generally being 
illuminated under external reflection. The detected signal results from the diffraction 
of the incident beam by the extremity of the probe. This generates a strong 
evanescent field which interacts with the surface. Likewise, the sub-wavelength 
features of the surface generate an evanescent field, which is transformed into a 
propagative field by the probe. The signal is detected in far field with a high 
numerical aperture. 

For all these microscopes, the theoretical analysis of the detected signal requires, 
when the probe is extremely close to the surface, that the system formed by the 
probe and the surface be considered as a whole. For near field measurements, the 
distance between the probe and the object goes from a few nanometers to a few tens 
to nanometers. In the following figure an example of near field detection is given. 

 

Incident  
beam 

Reflected 
beam 

Diffused field (evanescent and 
propagative)  

Detection by the fiber and 
coupling with the fiber modes 

 

Figure 7.13. Schematic representation of the near field detection by a sharpened fiber 
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In collection mode, it is necessary to take into account not only the interaction in near 
field between the extremity of the probe and the object, but also the coupling between 
the detected signal and the guided modes of the probe. The latter typically consists of an 
optical fiber, which can be either multimode or single-mode [ADA 82; GOU 05].  

7.3.3. Realization of near field probes 

Depending on the type of microscope where they are to be used, near field 
probes need to satisfy different criteria. For the PSTM, the probe must be small if it 
is to locally transform part of the evanescent waves into propagative waves and to 
detect a part of the propagative waves existing in the vicinity of the structure under 
investigation. Thus far, the existence of a direct relation between the resolving 
power of this type of microscope and the optogeometrical properties of the probe 
has not been demonstrated, either experimentally or theoretically.  

With the exception of the apertureless microscope, probes used in near field 
microscopy are generally realized from optical fibers. Their structure is described in 
the following figure.  

 
 

 Figure 7.14. Different types of probes used for microscopes operating 
in collection or emission mode 

The difficulty of realizing these probes lies in the problem of their reproducibility and 
of controling the shape of the extremity, the quality of the metallic layer and the size of 
nano-aperture, which is typically between 50 and 200nm. 

Cladding 

Optical fiber 
core 

Metallic layer 

b a c 
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Figure 7.15. Photographs of some near field probes. On the left-hand side of 
the figure are three chemically etched probes (the first without pulling), 

and on the right-hand side are  two metallized probes 

Probes used for apertureless microscopy can be realized from AFM or tungsten 
probes. Techniques originally developed for scanning tunneling microscopy can be 
used for the realization of these probes [COU 01]. 

7.3.4. Imaging methods in near field optical microscopes 

Images are obtained by having the surface scanned “line by line” by the probe. 
Different scanning modes exist, which are as follows. 

Constant height mode (CHM) (Figure 7.16a) 

– The analysis of the optical images is relatively straightforward. 
– Mechanical shift problems may arise during scanning. 
– Controling the displacement plane of the probe with respect to the average 

plane of the sample can be difficult. 

Constant distance mode (CDM) (Figure 7.16b) 

– The distance between the probe and the surface is kept constant through the 
use of an AFM or shear-force regulation. The distance between the probe and the 
surface is then in the order of a few nanometers. 

– Analysis of the images is more difficult, due to the possibility that the 
displacement of the probe may directly induce intensity variations. 

Constant (optical) intensity mode (CIM) (Figure 7.16c) 

– If the detected intensity is a monotonous function of the distance between the 
end of the probe and the surface, the position of the probe can be controled by 
keeping the optical signal constant. 
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– This mode is used for the PSTM, with the probe at a 50 to 250nm distance 
from the surface. 

– The image gives “isointensity” curves of the optical signal. 
 

Detected optical intensity

Sample geometry  
(a) 

(b) 

(c) 

Detected optical intensity

Sample geometry  

Probe displacement 

Sample geometry  

Detected optical intensity

Probe displacement 

Probe displacement 

 
 

Figure 7.16. Different scanning modes used in near field microscopy: (a) constant height 
mode, (b) constant distance mode, (c) constant (optical) intensity mode 

For each of these configurations, a variety of different arrangements exist. The 
two following figures show an apertureless microscope with an AFM regulation and 
a microscope operating in collection mode with a shear-force feedback. 

 

Figure 7.17. Schematic representation of an apertureless microscope with AFM regulation 
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Figure 7.18. (a) SNOM operating in collection mode with shear-force regulation, (b) detailed 

view of the shear-force regulation mechanism, (c) variation of the impedance of the dither-
tube at the resonance, represented as a function of the distance between the probe and the 

surface. The interaction occurs for distances less than 12nm 

7.3.5. Feedback 

In order to control the position of the probe with respect to the detected 
signal, it is necessary that the signal should be varying monotonously as a 
function of the distance between the probe and the surface of the sample. As far 
as the optical signal is concerned, only the configuration where the sample is 
illuminated under total internal reflection may satisfy this criterion. For the 
regulation to be as efficient as possible, it is preferable that the variation curve 
be as steep as possible. This leads to envisioning the highest possible angle, as 
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well as materials with high dielectric contrasts (see the values for dp given in 
Table 7.1). Operating scanning near field optical microscopes in illumination 
mode is more complicated, due to the multiple reflections which may arise 
between the probe and the surface.  

In cases where it is not possible to keep the optical signal constant, 
complementary regulation methods include AFM regulation and shear-force 
feedback. The latter relies on the shear-force type interactions occurring between the 
surface and the probe which oscillates laterally with an amplitude of a few 
nanometers. Finally, when both the probe and the sample are metallic or metallized, 
the electronic tunneling effect can be used for controling the position of the probe. 
By keeping the signal constant, the distance between the probe and the surface of the 
sample can be controled from a few tens of nanometers to λ, i.e. in the visible range 
up to 600nm. The utilization of tunnel current or mechanical forces makes it 
possible to keep the probe at a distance of a few nanometers from the surface. 

7.3.6. What is actually measured in near field? 

Answering this seemingly simple question is far from simple. This is because 
determining the signal, whether it be detected through the probe operating in 
collection mode, collected in far field in illumination mode, or generated by the 
interaction between the surface and the field scattered by the metallic probe, is not 
an easy task, which varies depending upon which configuration is used. However, 
certain configurations exist where a relatively clear-cut answer can be given to this 
question.  

7.3.7. PSTM configuration 

Let us return to the example described by L. Salomon, where gold pads were 
deposited on a silicon substrate illuminated under total internal reflection 
[SAL 01]. The following figure describes this experiment, and provides a 
comparison between the images thus obtained and the distribution of the square of 
the electric field. A very good agreement can be noted between these two series of 
results. This can be explained either by the fact that the probe does not 
significantly perturb the field in the vicinity of the structure, or by the fact that the 
perturbation thus induced is the same at any point. It should be noted that the fiber 
used here is a multimode fiber, which causes the angular filtering during detection 
of the near field to be limited. In this case, what is recorded is the distribution of 
the electric field. Had a single-mode probe been used instead, the results obtained 
for the square of the electric field would have been markedly different.  
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Figure 7.19. Comparison between the isointensity images obtained in PSTM and the 
isointensity surfaces of the square of the electric field, for different reference values of  

the intensity. Image (a) corresponds to the contact between the probe and the gold pads, 
while image (d) corresponds to an average distance value equal to 400nm [SAL 02] 

Devaud et al. have demonstrated that, in the case where the probe is covered 
with some specific metallic layer, the image obtained in PSTM in constant height 
mode is close to the magnetic field distribution [DEV 00]. This occurs only under 
specific conditions as regards both the nature and the thickness of the metallic layer, 
such that a surface plasmon can be excited. In this case, the optical signal detected 
by the probe is close to the magnetic field. 
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Figure 7.20. (a) PSTM image obtained in constant intensity mode with a fiber coated with 
20nm gold layer; (b) Distribution of the magnetic field 

2
B
G

; for λ =633nm, in TE polarization 

(a) 

(b) 

(c) 

PSTM Images Numerical simulation 

(d) 
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7.3.8. Apertureless microscope  

The PSTM mode can be easily (!) simulated. Indeed, provided that the probe can 
be assumed to be passive, the formation of the images is a relatively straightforward 
process. For other types of microscopes, however, relatively few studies comparing 
experimental results and theoretical simulations have been conducted. We mention 
here the first works carried out at ESPCI (Paris), which provide a comparison 
between the intensity of the flux of the Poynting vector and the images obtained in 
apertureless mode. 
 

 

Figure 7.21. Optical images of a step obtained in apertureless mode,  
in s (a) and p (b) polarization respectively. The topography  
of the sample is represented by the dotted curves [GRE 99] 

 
 
 

Figure 7.22. Calculation of the Poynting vector for a conductive half-plane whose edge is 
placed at the 430nm abscissa. The field is s (a) and p (b) polarized respectively [GRE 99] 

More recent approaches take into account in the analysis of the signal the fact 
that the probe oscillates periodically and orthogonally to the surface of the sample. 
Using numerical methods allowing for interaction between the probe and the 
sample, images in agreement with experimental optical images can be retrieved 
[FIK 03].  

a) b) 

Po
yn

tin
g 

ve
ct

or
 

Po
yn

tin
g 

ve
ct

or
 

nm nm



226     Nanophotonics 

7.3.9. Effect of coherence on the structure of near field images 

As in classical microscopy, interference phenomena induced by the coherence of 
light waves may appear. The following figure shows the image obtained with a 
PSTM of a topographic step. The fringes that can be observed on this figure are 
caused by interferences between the transmitted evanescent field and the field 
scattered by the edge of the step, which propagates parallel to the surface from the 
edge.  

 

Figure 7.23. PSTM image of (a) coherent illumination, (b) incoherent illumination [FOR 01] 

Spectrally incoherent illumination can be considered as being equivalent to 
illumination by an ensemble of coherent sources with different wavelengths. 
Therefore, the oscillations that were present under incoherent illumination now 
disappear under coherent illumination. This phenomenon can also be observed in 
classical microscopy. More surprisingly, it also occurs in illumination mode. Indeed, 
the signal detected by the probe may actually be the sum of different signals coming 
from different points of the surface and propagating along different paths. If the 
source is coherent enough, these signals may interfere. This phenomenon, first 
demonstrated by E. Betzig, is shown here in Figure 7.24. 

        

  (a)   (b)   (c) 

Figure 7.24. Effects of coherence and polarization on an SNOM image in transmission 
mode: (a) and (b) coherent illumination, with the electric field being horizontally and 

vertically polarized respectively; (c) incoherent illumination [BET 88] 

(a)                                                                         (b)  
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The effect of coherence for the analysis of near field images is of importance, not 
only for simple structures of the kind described above, but for random surfaces as 
well. In practice, numerous surfaces actually exhibit a random structure with a very 
large roughness spectrum. In such cases, it is necessary, when analyzing optical near 
field measurements, to take into account the coherence phenomena occurring in near 
field [APO 03]. 

7.4. Characterization of integrated-optical components 

Since near field microscopies offer a method for probing the electromagnetic 
field, they can be used for the characterization of different integrated-optical 
components, including such devices as [COU 01; FOR 01]: 

1)  optical waveguides, 

2) photonic crystals, 

3) microcavities, 

4) periodical structures with certain specific properties. 

This shows the implications that these characterization methods have in the field 
of nanotechnology.  

7.4.1. Characterization of guided modes 

In light of the importance of waveguides in integrated optics, their 
characterization has important implications. Guided modes are modes whose field is 
partly confined in the core of the waveguide (i.e. in the region with a higher 
refractive index) and partly extends outside the waveguide. When the probe is 
brought near the waveguide, it detects this evanescent part of the field of guided 
modes. Thus, by moving the probe along the waveguide, the field distribution of the 
mode(s) can be mapped. Methods for measuring losses or the effective refractive 
index of guided modes have been developed on this principle, and are now widely 
used [TSA 90; FOR 01]. Here we describe some of the results obtained at the 
University of Twente concerning the observation of phase singularities in 
waveguides [BAL 02]. A part of the lazer beam is coupled to the waveguide, while 
the other part is used as a reference. The two intensities are then summed up using a 
coupler, which makes it possible to determine the relative phase and amplitude of 
the guided signal. The following figure shows the variations in amplitude and phase 
occurring for a single-mode excitation (TM00). 
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Figure 7.25. (a) Interferometric arrangement for the PSTM; (b) topography of the ruban 
waveguide, amplitude of TM00 mode excited in the waveguide and variation of the phase 

recorded along the waveguide. The effective index of the waveguide can be determined for 
this mode from the interfering value 

As modal excitation ceases to be single-mode, phase singularities can be 
observed in near field. At the points where the amplitude of the field is null, the 
phase is no longer determined, and it may exhibit discontinuities, such as can be 
seen in the bordered areas in the next figure. These singularities are caused by the 
fact that the probe sums up the signals detected in near field. However, the 
summation of the TE and TM modes cannot take place in the waveguide, since these 
modes are of a different order.  
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(a)  

(b)  

Figure 7.26. (a) Interferometric measurement of the amplitude (A) and phase variation (B) of the 
combination of excited TE00, TE01 and TM00 modes; (b) corresponding numerical simulation 

7.4.2. Photonic crystal waveguides 

Waveguides realized from a photonic crystal by removing a row of holes should 
theoretically exhibit a higher degree of robustness in the presence of bends. These 
waveguides are generally characterized by means of the measurement of their 
transmission loss ratio [LOU 05b]. In this respect, near field microscopy provides a 
complementary method, which turns out to be perfectly well suited to the local 
characterization of these particular waveguides.  

 

Figure 7.27. (a) SEM image of the structure; (b) overall view of the different waveguides;  
(c) image obtained using a CCD camera; (d) and (e) images obtained in near field, showing 

the localization of the losses and the guiding as a function of the wavelength [BOZ 02] 

(d) (e) 
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Interferences can be observed on the near field image of the waveguide. These 
interferences are due to the field reflected by the exit side of the waveguide, but also 
to the waveguide itself. This measurement technique can be used for drawing 
effective comparisons between the effects induced by a bend on the propagation of 
the mode at different wavelengths [BOZ 02]. Recent research has made it possible to 
determine the group velocity of modes propagating along a W3 waveguide 
[GER 05]. 

7.4.3. Excitation of cavity modes  

The first cavity that we shall consider here is a hexagonal ring-shaped cavity, 
whose structure is schematically represented in the following figure. The excitation 
of the cavity modes is achieved through the external illumination of the structure. 
This causes excitation of the luminescence of both the structure and the guided 
mode.  

          

Figure 7.28. Schematic representation of the excitation of guided modes in a suspended 
membrane and detection of the near field. A is the InP membrane with InAsP quantum well,  

B is the InGaAs sacrifice layer, and C is the InP substrate 

The probe, whose displacements are shear-force controled, penetrates the holes 
with a 100nm depth. The membrane has a 200nm thickness and its extremity is 
located at the center of the waveguide. Three different regions can be distinguished 
on the optical image, represented here in Figure 7.29. In the A region, where the 
sacrifice layer is still present, index guiding does not occur, leading to the presence 
of detected losses.  

The B region corresponds to the photonic crystal: it can be noted that, with the 
exception of the first series of holes, the signal is of the same order of magnitude as 
the noise occurring during the experiment. This results from the fact that the 
photonic crystal inhibits luminescence, thereby preventing the guided mode of the 
membrane from propagating in the crystal. Thus, as might be expected, only in the 
first row of holes do out-of-plane losses occur. The analysis of the optical image 

Excitation 
of guided 

mode

Detection of the near 
field by the probe 

Pump beam 
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compared to the topography of the sample clearly shows that if the period is not 
adequately chosen, then the photonic band gap effect of the crystal disappears (see 
the arrow and bordered area).  
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Figure 7.29. Topographical image and optical near field image of a cavity 
realized in a two-dimensional photonic crystal [GER 02] 

In this example, cavity modes could not be detected, owing to the fact that the 
detection was conducted without spatial resolution. Single-mode as well as multimode 
cavity modes have recently been imaged and studied [KRA 04; GER 04; LOU 05].  

 
Figure 7.30. Topography of a hexagonal cavity and imaging 

of the modal structure of the cavity [GER 04] 

Figure 7.30 shows a mode of an H2 cavity. Had the cavity exhibited a lack of 
symmetry, the modal structure would have presented an asymmetry as well. Only 
through such a near field observation can the cavity be locally controled. This makes 
it possible to correlate the measurements thus realized and the quality factor of the 
cavity.  
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7.4.4. Localized generation of surface plasmons  

The last section of this chapter is devoted to the study of locally excited 
plasmons. Two of the essential properties of surface plasmons are their strong 
confinement near the interface which has generated them, and the strong 
amplification of their evanescent field compared to the incident field [RAT 88]. 
These properties have been extensively exploited for the realization of sensors. 
Numerous studies have been conducted on plasmons and on their spontaneous 
generation [PIN 94]. We shall describe here an extremely simple example, that of a 
gold strip deposited on a dielectric substrate, as represented in Figure 7.31.  

 
Figure 7.31. Schematic representation of the structure under consideration 

The sample consists of 40µm large gold strips deposited on a silicon substrate. 
The following curves present the variation of the intensity of the electric field, 
calculated at a 50nm distance from the surface of the sample. Two incident angles 
were selected, the first near the resonance of the plasmon of the metal/air interface, 
the second far from the resonance. The following figure presents the values of the 
electric field in the near field of the structure. 

 Figure 7.32. Intensity of the electric field at a 50nm distance from the gold strip:  
(a) outside the plasmon resonance associated with the air/gold interface, θ=60°;  

(b) near the resonance, θ=45.7° [SAL 02] 

          (a)  (b)



Controling the Optical Near Field     233 

 

It can be seen, by considering the field above the gold area, that this field is, on 
average, weaker than above the silicon substrate. This simply results from the fact 
that gold absorbs part of the light. Two series of exponentially decreasing 
oscillations can also be observed, starting from each edge of the strip. The period of 
these oscillations corresponds to the interfringe distance between the interferences 
created between the field transmitted through the metal (evanescent field) and the 
surface plasmon excited at each edge. Thus: 

)Re(sin)/(/2 2,1
am
SPknc ∓θωπ =Λ  (10) 

It can be seen that the intensity of the field is multiplied more than a hundred 
times at the resonance. Of course, it can be noted that the oscillations with period Λ1 
disappear at the resonance, whereas those with period Λ2 are still present. On the 
other hand, new oscillations with a Λ3 period now appear from the left edge. These 
oscillations correspond to interferences occurring between the transmitted field and 
the metal/glass interface plasmon. 

)Re(sin)/(/2 3
sm
SPknc −=Λ θωπ  (11) 

These different interfringes, as well as the lateral attenuation, were 
experimentally measured in near field microscopy [SAL 02]. Further, such 
measurements can also enable the local determination of the dielectric constant of 
the metal. 

The generation of plasmons can be due to either an edge effect or a periodical 
perturbation of a metallic film. Both of these effects are at work in the enhancement 
of the transmission through a silver film drilled with periodically distributed holes 
[EBB 98]. We shall concentrate instead on near field issues, and more specifically 
on the problem of determining the structure of the electromagnetic field inside the 
apertures and in their close vicinity. The field is calculated using the differential 
method. The following figure presents the distribution of the intensity of the electric 
field for different distances from the aperture. 
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Figure 7.33. Distribution of the intensity of the transmitted field at two different wavelengths 
exhibiting field exaltations. The diameter d of the apertures and their period D are equal to 
300nm and 900nm respectively. The field is calculated at a 15nm distance (c) and (e) and  

at a 100nm distance (d) and (f) from the surface respectively [SAL 01] 

It can be noted that intensity is strongly amplified in the immediate vicinity of the 
apertures, this being due to the weight of the evanescent waves localized at the center of 
the apertures. Besides the exaltation of the intensity, which can reach several orders of 
magnitude in the immediate vicinity of the aperture, attention should be given to the 
particular structure of the lateral field distribution. This stems from the fact that 
excitation of plasmons can be partly induced by the periodical structuring of the metallic 
film. This phenomenon is described by the following equation:  

yxsp u
D

qu
D

pkk ππθ 22sin 00 ±±=  
(12) 

A schematic representation of this relation is given in the following figure, indicating 
the directions of propagation of the plasmons for the different values for p and q.   

 

Figure 7.34. Description of plasmon excitation associated with the periodicity 
of the system of apertures, and inducing a structuring of the field in the apertures 

λ=800nm 
 
 
 
 
λ=1,450nm 
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This type of periodical structure has given rise to numerous publications, most of 
which have been of a theoretical nature [LAL 03; BAR 04]. Thus far, no 
measurement of the field in the apertures has been realized. It would be interesting 
to determine the conditions making the measurement of field distribution possible 
without perturbing it, or conversely the effect of a local perturbation on transmission 
in these structures.  

7.5. Conclusion 

In optics, but also in acoustics and hyperfrequency, the near field of an object 
contains both evanescent and propagative waves generated by this object. More 
precisely, the near field is the region where evanescent waves exert a strong 
influence. Conversely, at a great distance from the object, i.e. in far field, these 
waves play a negligible role.  

The specific properties of the near field derive from those of the evanescent 
waves with which it is intimately associated. Thus, in near field, localization as well 
as amplification phenomena may for instance occur. Surface plasmons are an 
example of a phenomenon where amplification and local confining of the field occur 
simultaneously. Phenomena associated with properties of the far field, such as 
interference or coherence phenomena, are also to be found in near field.  

In the field of nanotechnology, the development of optical nanodevices 
necessarily requires that control of the field distribution be achieved, both in the 
devices themselves and in their immediate vicinity. This is necessary not only for 
the realization of devices with certain specific properties (waveguides or loss-less 
cavities), but also for their characterization (localization of losses in order to control 
the design and fabrication processes). To this end, an exhaustive and complete 
analysis of the field must be undertaken, which can be complemented by its 
characterization in near field microscopy. 

The sensitivity of certain structures to their near environment has been exploited 
for the realization of sensors and nanosensors. The confinement of the field for 
cavity modes or plasmons can be compared to resonance or modal excitation 
phenomena. Since modifying the environment of the device where these resonances 
take place causes a modification in its response, nanodevices can thus be created by 
actively modifying the near environment of such structures. This leads to the 
possibility of envisioning the realization of active near field functions.  
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Chapter 8

Sub-Wavelength Optics: Towards Plasmonics

8.1. Technological context

Today’s performances of optical devices are limited by the restricted framework of
the underlying fundamental concepts. These concepts rely exclusively on the notion of
radiative electromagnetic eigenmodes sustained by large scale dielectric structures. The
mathematical description of these modes includes at least an exponential of imaginary
argument to account for propagation over distances much longer than the incident
wavelength. Practically, such standard waveguides are rectilinear and feature transverse
sections of several square micrometers.

Recently, researches on optical waveguides addressed the question of keeping a
reasonable transmission level through a constriction whose width is smaller than the
incident wavelength. Up to now, two research areas arise as being pertinent for the
purpose of miniaturizing optical connections, namely: photonic crystals research and
interface polaritons research.

At visible frequencies, interface polaritons are easily obtained at metal-dielectric
interfaces: one speaks then of surface plasmon polaritons (SPP). This chapter will
ignore all aspects dealing with photonic crystals (which is covered by other authors
in this book) in order to bring to the fore the potential of sub-wavelength plasmonics
devices as compared to high refraction index devices.

Chapter written by Alain DEREUX.
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Whichever road map is followed, miniaturizing optical connections raises funda-
mental physical questions. A first set of questions deals with the basic concepts of
non-radiative photonic transport through solid state mesoscopic and nanoscopic struc-
tures, including the practical problems of injection and detection in sub-wavelength
structures. Characterizing the optical functionalities of such devices requires a coherent
point of view on the issues related to detecting optical fields with a sub-wavelength res-
olution. The next section will show that exciting surface plasmons featuring a magnetic
dipolar moment is essential for this purpose.

8.2. Detecting optical fields at the sub-wavelength scale

8.2.1. Principle of sub-wavelength measurement

Optical measurements with a sub-wavelength resolution has been actively investi-
gated since the 1980s by a generation of surface physicists who worked on the devel-
opment of a new class of instruments known today as near-field optical microscopes.
Various configurations of near-field optical microscopes have been developed around
two generic experimental configurations: the Scanning Near-Field Optical Microscope
(SNOM) and the Photon Scanning Tunneling Microscope (PSTM).

As introduced in the preceding chapter, the SNOM exploits the analogy to the
electron Scanning Tunneling Microscope (STM): a nanometer size source of light
scans the sample surface. According to the nature of the sample, the outgoing light is
detected in transmission or in reflection. Although reflection SNOM devices use their
tips both as local emitter and local probe, the discussion below will make clear that the
SNOM is a fundamentally illuminating probe device.

The PSTM operates differently. The sample lies on a glass prism which makes it
possible to shine light in total internal reflection. The nanometer sized tip scanning
the surface then frustrates the total reflection. The PSTM probe tip is thus used as a
detector of the optical field close to the surface. This is referred as the collection mode.

Both configurations mainly use tips obtained by pulling optical fibers which may
eventually be coated with a metal. The structure of the metallization at the tip apex is not
trivial. A simplifying assumption models this structure by a sub-wavelength aperture.
During the 1990s, the development of near-field optical microscopy was hindered by
the absence of a criterion defining rigorously this sub-λ nature. This lack of any reliable
criterion led to controversies about the interpretation of near-field optical images [Hecht
et al., 1997].

In order to interpret the images obtained by one or other of the generic setups,
we propose a practical point of view relying on the Heisenberg uncertainty principle,



Sub-Wavelength Optics: Towards Plasmonics 241

which deals with the measurement in a volume δl3 such that δl is of sub-wavelength
(sub-λ) size.

By going through a sub-λ structure, the incident wave faces the consequence of the
Heisenberg uncertainty principle (i = x, y, z):

Δxi Δpi ≥ h̄

2
(1)

For an electromagnetic wave, this leads to an uncertainty principle which, through
the cyclic permutation of the indexes (i, j = x, y, z), binds the components of the
electric Ei and magnetic Hj fields of the optical wave and the typical size δl (SI units)
[Heisenberg, 1930]:

ΔEi ΔHj ≥ h̄

2
c2

(δl)4
(2)

If δl ≤ 0.1 μm, the right hand side of this formula becomes large (Figure 8.1). This
uncertainty principle means that a simultaneous (in the sense of quantum theory, i.e
without any reciprocal influence) measurement of the electric field and of the magnetic
field is not possible if the detection occurs in a volume δl3 such that δl is sub-λ.
Consequently, measuring the energy of an electromagnetic wave, the sum of the electric
and magnetic contributions, also becomes uncertain (in the sense of quantum theory)
in a sub-λ volume. Therefore, one cannot conceive any sub-λ measurement by a near-
field optical microscope which could be interpreted like the far-field measurement of
the reflected or the transmitted energy which occurs in a standard microscope.

Figure 8.1: Evaluation of the right hand side of equation 2
for two typical wavelengths λ in vacuum
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Moreover, the essential feature of any measuring instrument is to enable recording
data about a physical system in such a way that these data are, to a reasonable degree
of accuracy, still relevant to describe the system which is not interacting with the
said measuring instrument. In the context of near-field optical microscopy, this feature
means that the data recorded using the scanning local probe have a practical value if
they still represent the physical system not interacting with the local probe, i.e. in the
absence of any tip.

The practical point of view that we propose defines the sub-λ resolution by the
detection of the spatial distribution of intensity either of the electric field or (exclusive)
of the magnetic field close to the sample surface, as it exists when no tip is present.
Justifying this criterion to the case of SNOM setups is somewhat less intuitive. Indeed,
since the local probe is then the source of light, how can the field be identified in the
absence of the tip which the practical point of view aims at detecting? To answer this
question, one needs to remember that the field in the absence of external excitation is
the fundamental state of the electromagnetic field. This fundamental state is described
by the electromagnetic (Local Density Of States, LDOS) at the frequency of the laser.
The practical point of view thus leads to consider that the criterion of sub-wavelength
resolution is met by SNOM configurations when a signal proportional to the electro-
magnetic LDOS is detected.

Practically, we suggest that the sub-λ resolution is achieved if [Dereux et al., 2000],
[Dereux et al., 2001]:

– in collection mode,the experimental images agree with the theoretical distribution
of the electric or the magnetic field scattered by the sample surface, as computed without
including any tip;

– in illumination mode,the experimental images agree with the theoretical distribu-
tion of the electromagnetic Local Density of States (LDOS) at optical frequencies, as
computed without including any tip.

This criterion makes it possible to determine rigorously not only the quality of the
probe tip, but also the quality of the whole experimental setup. It requires the capacity
to compute the electromagnetic field and the electromagnetic LDOS in the near-field
zone. The scattering theory explained in the next chapter makes it possible to compute
both within a single framework.

8.2.2. Scattering theory of electromagnetic waves

From the mathematical point of view, scattering theory casts the most general an-
alytical solution of the inhomogeneous wave equation as an integral equation where
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the kernel is a Green’s function [Newton, 1966]. Several variants of electromagnetic
scattering theory were applied successfully to the modelization of near-field optical phe-
nomena. Although Green’s function may be expanded in Fourier or multipoles series,
most variants preferred a discretization in the direct space since near-field optical phe-
nomena occur on a sub-wavelength scale. Here, we restrict the presentation to the steps
needed to establish the link with the measured quantities discussed in the next sections.
For more details, the reader may consult [Girard & Dereux, 1996, Dereux et al., 2000]
and the references therein.

With the exp(−iωt) time dependence, the Maxwell’s equations in the absence of
any external source lead to the following vector wave equation for the electric field
E(r) (SI units, c is the speed of light in vacuum):

−∇ × ∇ × E(r) +
ω2

c2 ε(r) E(r) = 0 (3)

may be cast as:
−∇ × ∇ × E(r) + q2 E(r) = V(r) E(r) (4)

with:

q2 =
ω2

c2 εref . (5)

Any complicated behavior due to the anisotropy or to the low-symmetry of the ge-
ometrical shape of the original dielectric tensor profile ε(r) is described as a difference
relatively to the reference system εref (I is th unit dyadic):

V(r) =
ω2

c2 I (εref − ε(r)) . (6)

Through the dielectric function ε(r) (depending also on the pulsation ω), this equa-
tion includes a macroscopic description of the linear response of matter to electromag-
netic excitations. This dielectric function (equal to the square of the complex index of
refraction) is built from the response of a large number of atoms and is thus valid if the
size of the scatterers is sufficiently larger than the wavelength. At visible frequencies, it
is generally accepted that ε(r) is valid to model scatterers typically larger than 10 nm.

The solution of (4) is obtained from the implicit Lippmann-Schwinger equation:

E(r) = Eo(r) +
∫

D

dr
′

Go(r, r′) V(r
′
) E(r

′
). (7)

In scattering theory, the first term Eo(r) is referred to as the incident field while the
second term is called the scattered field obtained from the integration over the domain
D where V(r

′
) is non-zero.
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To solve the Lippmann–Schwinger equation, we need to know the analytical solu-
tion Eo(r) satisfying:

−∇ × ∇ × Eo(r) + q2 Eo(r) = 0 (8)

and the associated Green’s dyadic defined by:

−∇ × ∇ × Go(r, r′) + q2 Go(r, r′) = I δ(r − r′). (9)

The reference structure εref is usually a homogeneous background material or a
semi-infinite surface system. For homogeneous media, the analytical form of Go(r, r′)
is known from ancient works [Morse & Feshbach, 1953, Levine & Schwinger, 1950]
to be:

Go(r, r′) =
[

I − 1
q2 ∇∇

]
g(r, r′) (10)

where g(r, r′) is the Green function associated to a scalar Helmholtz equation, i.e. a
spherical wave emitted at r′:

g(r, r′) = −exp(iq | r − r′ |)
4π | r − r′ | . (11)

For a surface system, the expression of the propagator is somewhat more elaborated
[Agarwal, 1975, Metiu, 1984, Girard & Bouju, 1992].

8.2.3. Electromagnetic LDOS

The electromagnetic Local Density of States (LDOS) of vacuum ρo(r, ω) is well-
known as the factor multiplying the Bose–Einstein distribution in the Planck’s law
describing the black–body radiation (kB is the Boltzmann constant and h̄ is the Planck
constant):

U(ω) dω = ρo(r, ω)
h̄ω

e
h̄ω

kBT − 1
dω (12)

It is also underlying the Fermi Golden Rule which casts the decay rate in the problem
of coupling of a discrete system with a continuum. Indeed, from (p being the dipolar
moment operator while |i〉 and |f〉 respectively stand for the initial and final states of
the discrete system):

Γ =
2π

h̄
|〈f |p · E(r)|i〉|2 δ(ω = ωf − ωi) (13)

one can prove that:

Γ =
2π

h̄
|〈f |p|i〉|2 ρo(r, ω). (14)
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Applying the standard calculus of distributions makes it possible to show that the
factor ρo(r, ω) is deduced from the electric Green dyadic Go of vacuum (εref = 1):

ρo(r, ω) = − 1
π

� Trace Go(r, r′, ω) =
∑

j=x,y,z

ρo;j(r, ω) =
1
π2

ω2

c3 (15)

where, to account for the vector nature of electromagnetic fields, we have defined the
“partial’’ LDOS by:

ρo;j(r, ω) = − 1
π

� Go; jj(r, r, ω) (16)

Close to sub-λ structures deposited on surfaces, this LDOS may vary from place
to place and may depend on the polarization of the exciting dipole. In the case of a
system described by its dielectric function ε(r), the LDOS is related to (but not equal
to) the dipolar point source corresponding to the Dirac δ function which arises in the
wave equation defining the Green dyadic of the system:

−∇ × ∇ × G(r, r′, ω) +
ω2

c
ε(r, ω) G(r, r′, ω) = I δ(r − r′) (17)

The Green dyadic G(r, r′, ω) of the actual system ε(r) may be deduced numerically
from the one of a reference system after casting a Dyson equation:

G(r, r′) = Go(r, r′) +
∫

V

Go(r, r′′) V(r′′) G(r′′, r′) dr
′′

(18)

Let us note that, at least in principle, the Green dyadic of the reference system
may be computed using a similar Dyson equation on the basis of the knowledge of the
Green dyadic pertaining to vacuum.

The LDOS is then deduced from G:

ρ(r, ω) = − 1
π

� Trace G(r, r′, ω) =
∑

j=x,y,z

ρj(r, ω) (19)

where, again, we have to define the “partial’’ LDOS by:

ρj(r, ω) = − 1
π

� Gjj(r, r, ω) (20)

Through the unit dyadic I, each partial LDOS is related to a given orientation
x, y, or z of the point-like source. The above summary aims at pointing out that, to
detect a signal proportional to the LDOS, the adopted point of view aims at finding
the experimental conditions such that, in practice, one can consider the probe tip as a
point-like dipole oscillating at the angular frequency ω.
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8.2.4. PSTM detection of the electric or magnetic components of optical waves

In the context of the interpretation of PSTM images, the tip design is of primary im-
portance. It turned out that dielectric tips obtained by pulling optical fibers provide a sig-
nal proportional to the electric field associated to the optical wave [Weeber et al., 1996].
These tips coated with a thin film of gold (10 nm to 50 nm) provide a signal proportional
to the magnetic field associated to the optical wave [Devaux et al., 2000]. Theoretical
studies have confirmed that the observed signal is indeed proportional to the distribution
of the optical magnetic field such as found by solving Maxwell equations.

The experiments reproduced the phenomenon of detection of the magnetic com-
ponent of the optical wave at several incident wavelengths. However, to observe this
phenomenon at a given wavelength, the thickness of the gold coating surrounding
the dielectric core of the tip has to be adjusted precisely in order to excite a circular
symmetry plasmon in the said coating.

Figures 8.2, 8.3 and 8.4 illustrate the detection of the optical magnetic field close
to nanostructures observed by PSTM. Figure 8.2 shows an AFM image of the topogra-
phy of the reference nanostructure. Figure 8.3 displays the theoretical distributions of
the intensities of the electric (a) and magnetic (b) fields. For this specific sample, the
distributions keep the same features if λ = 543 nm. The calculations assume that the
nanostructures are deposited on a perfectly plane surface. This leads to strong interfer-
ences in the vicinity of the pads. In the experiments, realistic surfaces downgrade these
interferences into a speckle, so that the comparison between theory and experiment
must be limited to the contrast on top of each pad.

Figure 8.2: AFM image of the topography of the reference nanostructure: seven gold glass
pads (130 nm × 130 nm × 100 nm) are deposited on a plane surface of glass
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Figure 8.3: Theoretical distributions (angle of incidence = 60 degrees, TM polarization,
λ = 633 nm) of the intensity of the electric (a) and magnetic (b) fields scattered in the

near-field zone close to the surface of the sample of Figure 8.2

Figure 8.4 gathers PSTM images recorded above the sample of Figure 8.2 using
optical fiber tips coated with different thicknesses d of gold. In Figure 8.4(a) and (c),
the thicknesses have been selected in order to excite a circular symmetry plasmon.
The images (a) and (c) agree with the distribution of the optical magnetic field (Fig-
ure 8.3(b)) while the images (b) and (d) agree with the distribution of the electric
field (Figure 8.3(a)). At both wavelengths λ = 543 nm and λ = 633 nm, dielectric
(uncoated) tips provide images similar to (b) and (d).

Using another incident polarization or observing a different kind of sample, such
as gold pads sustaining plasmon resonances, leads to similar conclusions.

The unprecedented agreement of experimental PSTM results with the relevant
theoretical distributions validates the practical point of view proposed in section 8.2
for collection mode near-field optical microscopes. In this context, exciting a circular
symmetry plasmon in the probe tip turns out to be of great importance in order to
establish the coherence of the proposed point of view.

8.2.5. SNOM detection of the electromagnetic LDOS

The experimental test of the hypothesis of detection of the electromagnetic LDOS
by SNOM configurations makes it necessary to realize specific nanostructures. Nu-
merical simulations [Colas des Francs et al., 2001a, Colas des Francs et al., 2001b]
of the spatial distribution of the variation of the LDOS Δρx(r, ω) and Δρy(r, ω) rela-
tively to the constant value in vacuum (see Figure 8.5(b) and (c)) have established that
the “stadium’’ geometry (Figure 8.5(a)) makes it possible to easily study the effects
related both to the polarization and to the sub-λ tailoring of the LDOS. Inside the
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Figure 8.4: PSTM images (TM polarization, angle of incidence = 60 degrees): (a)
d = 20 nm, λ = 633 nm; (b) d = 20 nm, λ = 543 nm; (c) d = 30 nm, λ = 543 nm; (d)

d = 35 nm, λ = 543 nm

stadium, Δρx(r, ω) displays a pattern of concentric replica of the stadium shape, while
Δρy(r, ω) features two “focal’’zones.

The experiments (Figure 8.6) lead to the following conclusions about the necessary
conditions to detect the LDOS [Chicanne et al., 2002]:

– including a device to detect the scattered light at angles larger than the critical
angle for total reflexion in the substrate;

– using a specific tip whose emission features can be considered as a point-like
dipole. Bare (uncoated) optical fiber tips turned out to be inefficient for this purpose.
The same optical fiber tip coated with gold provide a signal proportional to the LDOS.
Contrary to an assumption commonly spread in the literature, it was not found necessary
to form a small hole in the coating at the apex of the tip.
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Figure 8.5: (a) AFM images of the reference sample. Gold particles
(100 Nm × 100 nm × 50 nm) are deposited on a flat surface of glass. Relatively to the

constant value of vacuum, theoretical distributions of partial LDOS changes close to the sample
(height of calculation plane: z = 160 nm above the substrate): (b) Δρx(r, ω), (c) Δρy(r, ω)

The agreement between the experimental results of Figure 8.5 with the theoretical
distributions (Figure 8.4(a) and (b)) is unprecedented in the context of SNOM research
and confirms the possibility to detect a signal proportional to the electromagnetic
LDOS. The practical point of view suggested in section 8.2 is thus also validated
for illumination mode near-field optical microscopes [Colas des Francs et al., 2002],
[Dereux et al., 2003].

8.3. Localized plasmons

This section provides various illustrations of the observation of plasmonic phe-
nomena at the sub-wavelength scale by operating a PSTM equipped with probe tips
detecting the intensity of the electric field.
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Figure 8.6: SNOM images recorded above the sample of Figure 8.4(a) for two polarization
states giving rise to an effective dipole oriented along x (a) and y (b) at the tip apex

8.3.1. Squeezing of the near-field by localized plasmons coupling

Metal nanostructures were fabricated on glass surfaces. Very sensitive measure-
ments were realized with a PSTM operated at constant height above single gold parti-
cles (100 nm×10 nm×40 nm) (Figure 8.7) [Krenn et al., 1999b]. In the computation
(Figure 8.7(a)), such a particle is centered at the origin of the coordinate system while
it is slightly translated to the right in the experimental image (Figure 8.7(b)). The
agreement between the patterns of the calculated and the experimental images is ex-
cellent. Since the simulation has not included the tip, the experimental image exhibits
a broader and less contrasted pattern. The simulation successfully recovers the inter-

Figure 8.7: At 40 nm above a gold particle (100 × 100 × 40 nm3) deposited on a ITO glass
substrate: theoretical distribution of the electric associated to the optical near-field (a) and

PSTM image (b)
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-0.4 0.40-0.4 0.40

Figure 8.8: Constant height PSTM image PSTM (a) recorded above a section of a chain made
of 10,000 gold particles deposited on ITO glass substrate compared to a numerical simulation

(b) taking into account only a few tens of particles

ference between the incident surface optical wave and the wave scattered by the gold
particle. This confirms the relatively passive role of the probe tips even when scanning
samples sustaining plasmons resonances.

In order to test the hypothesis of non-radiative coupling, small gold particles
(100 nm × 100 nm × 40 nm) were aligned in a row with a spacing of 100 nm. The
experimental result makes it possible to observe that the plasmon coupling between the
particles confines the electromagnetic field within the width of the chain (Figure 8.8(a))
[Krenn et al., 1999b]. Indeed, the tip has integrated the detection of the optical field
over its own volume at least (as in Figure 8.7). Consequently, the field distribution in
the absence of the tip is probably narrower.

The squeezing effect is related to the mutual coupling of the localized plasmons
of each individual nanoparticle setting a hybrid plasmon mode. The model calculation
(Figure 8.8(b)) confirms that the spots are narrower than in the case of the single gold
particle and that they are not centered on top of the particles. The effect observed in Fig-
ure 8.8(a) is thus the plasmon coupling and not the underlying topography. However,
the calculated squeezing is not so narrow as in the experiment since the modeling in-
volved only 30 particles instead of the 10, 000 present in the experiment. The squeezing
probably increases as the chain length grows.

8.3.2. Controling the coupling of localized plasmons

Subsequently, it was possible to control the plasmon coupling between two gold
nanostructures of different shapes [Krenn et al., 1999a]. In the sample of Figure 8.9,
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(B)

(A)

(C)
k//

Figure 8.9: AFM image of the test sample used to demonstrate the control of plasmon coupling
between nanostructures. The white arrow shows the direction of propagation of the surface

wave obtained by total internal reflexion

Figure 8.10: PSTM image above the sample of Figure 8.9 obtained by shining a TM polarized
laser beam TM (wavelength 633 nm). The angle of incidence is 60o. At this wavelength, the

particles and the nanowires are not resonant

all particles have a volume 120 × 60 × 40 nm3 an all nanowires have a volume of
660 × 60 × 40 nm3. We demonstrated that it is possible to switch on (Figure 8.11) or
off (Figure 8.10) the excitation of the resonant mode of a gold nanowire by changing
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Figure 8.11: (a) PSTM image of the sample of Figure 8.9 obtained by shining a TM polarized
laser beam (wavelength 740 nm). (b) Theoretical distribution of the intensity of the electric

field associated to the optical near-field (normalized relatively to the intensity of the incident
field, same illumination conditions as in the experiment)

the position of a gold particle located at a sub-wavelength distance of the wire. In
Figure 8.10, the isolated particles (zone A) do not give rise to any significant signal
while the nanowires produce a signal proportional to their volumes. This explains the
minor difference between the zone B (isolated nanowire) and the zone C (nanowire
close to a particle).

In Figure 8.11(a), the isolated particles (zone A) are excited resonantly while the
nanowire in zone B is not because of a selection rule involving the incident polarization.
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However, the nanowire in zone C is excited because it lies close to a resonant gold
nanoparticle. This resonant nanoparticle scatters all kinds of possible polarizations,
among which the polarization leading to the resonant excitation of the nanowire C.
Let us note that, to design the sample which made this demonstration possible, the
numerical simulations (Figure 8.11(b)) were realized before the experiment.

8.4. Sub–λ optical devices

8.4.1. Coupling in

An efficient (i.e. minimizing losses) coupling of light into a sub-λ optical device is a
difficult problem. We developed successfully an original injection technique exploiting
the Goos–Hänschen effect (Figure 8.12). We can therefore deal with the transition
of optical signals coming out of macroscopic optical devices (lenses, etc.) towards
nanostructures. Resulting from a nanofabrication process, a sub-λ devices lying on the
surface of a glass substrate (dielectric function ε1) is illuminated by a Gaussian beam
reflected at the interface between the substrate and the external medium (air, dielectric
function ε3). The PSTM probe tip detects the optical near-field in an observation plane
parallel to the surface of the substrate.

8.4.2. Sub–λ waveguides

The coupling technique of Figure 8.12 was tested using a sample obtained by
electron beam lithography: on a plane surface of BK7 glass lies a 200 nm wide, 150 nm
high and 40μm long TiO2 sub-λwaveguide [Quidant et al., 2001,Weeber et al., 2000].
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Figure 8.12: Geometry of the technique used to couple an incident field to a sub-λ device. In
the example of the figure, the device is a sub-λ waveguide
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Figure 8.13: Assembling of five 5 μm × 5 μm PSTM images recorded above the last quarter of
a TiO2 sub-λ waveguide excited using the technique of Figure 8.12. The vertical lines locate

the boundaries of the superimposed images. The leftmost image, where a bright spot shows up
(here the intensity has been saturated), corresponds to the area at the exit of the sub-λ

waveguide

The wavelength in vacuum of the incident light being fixed to 633 nm, the coupling into
the guided is observed with the PSTM (Figure 8.13). The sub-λ waveguide sustains
a mode featuring a very narrow spatial width (� 300 nm). A bright spot shows up
at the exit end of the guide. This experiment confirms not only the efficiency of the
injection method, but also the ability of the PSTM to map, in direct space, the optical
phenomena associated to sub-λ waveguides, thereby demonstrating the pertinence of
performing a measurement, in the near-field zone at the exit of the device, in a sub-λ
volume (in this case, the PSTM tip), of a signal not proportional to the Poynting vector,
but proportional to the intensity of the optical electric field.

8.4.3. Towards plasmonics: plasmons on metal stripes

Another coupling technique has been tested on a silver sample deposited on glass,
also designed by electron beam lithography (Figure 8.14). Several stripes of various
width are connected to a large 250 × 250 μm2 thin film. The thickness (60 nm) of this
area makes it possible to launch a surface plasmon by total internal reflection through
the glass substrate. The PSTM maps in direct space the coupling of plasmons launched
on the large square area to the finite widths stripes [Weeber et al., 2001].

Figure 8.15 confirms that only surface plasmons play a role in this experiment.
The asymmetrical shape of the incident spot proves that surface plasmons are launched
from the right to the left. When the incident spot is aligned along the axis of the stripe,
a smaller spot shows up at the exit end of the stripe (Figure 8.15(a)). If the incident
spot is misaligned, the coupling is inhibited and the glass surface acts as a barrier
(Figure 8.15(b)).
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Figure 8.14: (a) Electron microscope image of the silver sample (60 nm thick) deposited on
glass and designed to study the coupling between surface plasmons and the modes of the silver

stripes. AFM images of various stripes which can be addressed by the surface plasmons
launched on the large square area; (b) width = 2.5 μm; (c) width = 1.6 μm; (d) width =1.0 μm

Successive zooms (corresponding to decreasing heights of the observation plane)
above the exit end of the strip (Figure 8.16) reveal the intensity of the field of the
plasmons which couple to the finite width stripe. The interference pattern is built
by the plasmons which reach the end of the � 20 μm long stripe where they are
reflected back. Let us notice that the plasmon field is strictly confined to the width of the
stripe.

8.4.4. Prototypes of submicron optical devices

Fundamental research make the control transfer of electromagnetic signals, at
infra-red and visible wavelengths, plausible in the submicron range, thus breaking
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(a)

(b)

Figure 8.15: PSTM image of the 2.5 μm wide stripe excited by a surface plasmon launched on
the large square area visible in the middle of Figure 8.14. (a) The incident spot is aligned along

the axis of the stripe. At the exit end of the stripe, a spot shows up (white arrow). (b) The
incident spot is shifted 15 μm in the y direction while keeping the same scanning area as in (a)

the diffraction limit [Quidant et al., 2002], [Quidant et al., 2004]. The main features
of the new kind of devices we propose are:

1. sub-λ cross-sections;

2. introduction of heterostructures in the direction of propagation;

3. excitation by non-radiatives waves;

4. transmission efficiency defined in the near-field zone (submicron distance) close
to the exit end of the device.

The rest of this section provides some examples of recent achievements pertaining
to high index dielectric waveguides and to plasmonics. Both technologies are relatively
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(b)

(c)

(a)

Figure 8.16: PSTM image of the 2.5 μm wide stripe of Figure 8.14 excited by a surface
plasmon launched on the large square area visible in the middle of Figure 8.14. (a) The tip to
sample d is about 350 nm; (b) d � 100 nm; (c) d < 50 nm. The dimensions of the images (b)

and (c) correspond to the areas inside the rectangles visibles in (a) and (b) respectively
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Figure 8.17: Top: Electron microscope image of a Y junction made of TiO2 featuring a sub-λ
cross-section and deposited on a glass substrate. Bottom: PSTM image of the Y junction excited

from the right using the technique of Figure 8.12

easy to combine with each other. Therefore, optical devices relying on a combined use
of metals and high index materials are expected in the near future.

Splitter

Figure 8.17 demonstrates the feasibility of TiO2 Y junctions Y featuring sub-λ
(� 200 nm) cross-sections. This junction splits the mode coming from a sub-λ waveg-
uide similar to the one of Figure 8.13. The PSTM makes it possible to observe that the
separation of the mode occurs over a distance of a few μm with minimal losses and
minimal cross-talk between the branches. To appreciate this result, one should remem-
ber that today’s technology obtains such splitting using waveguides with transverse
sizes larger than several μm and over a range of several hundredths of μm.

Coupling a sub-λ waveguide to an annular microstructure

Figure 8.18 shows the addressing of an TiO2 annular microstructure featuring sub-
λ (� 200 nm) cross-sections by a sub-λ waveguide similar to the one of Figure 8.13
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μm3

Figure 8.18: Top: Electron microscope image of an annular microstructure made of TiO2

featuring a sub-λ cross-section and deposited on a glass substrate. Bottom: PSTM image of
this annular microstructure excited by a mode going out a sub-λ waveguide (from the upper

left part of the image)

which is in turn excited according to the principle of Figure 8.12. Such geometry
provides the basic of the so-called add-drop filters. As in the case of the Y junction,
the PSTM images makes it possible to observe that the coupling occurs with minimal
radiative losses. The diameter of the ring is among the smallest diameters reported in
the literature until now

Optical tunnel effect through heterostructures with sub-λ cross-sections

PSTM imaging also led to the mapping in direct space of the light propagation
through heterostructures obtained by aligning rows of mesoscopic particles which have
a high index of refraction (shortened as “heterowires’’). Numerical simulations first de-
termined the geometrical parameters of two heterowires featuring respectively either a
high (passing) or low (stopping) transmission efficiency at an incident frequency corre-
sponding to a wavelength in vacuum of 633 nm. The heterowires were microfabricated
following the calculated parameters (Figure 8.19) and were optically excited by a sub-
λ waveguide similar to the one of Figure 8.13. The constant height PSTM images of
Figure 8.20 makes it possible to observe the details of the optical tunnel effect across
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Figure 8.19: Electron microscope image of two TiO2 samples deposited on a glass substrate.
The particles width is W=(350±20) nm in sample (a) and W=(210±20) nm in sample (b). (c)

(resp. (d)) Electron microscope image of the junction between the sub-λ waveguide used to
address optically the heterowires (a) (resp. (b))
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Figure 8.20: PSTM images recorded above the two heterowires described in Figure 8.19 and
excited by a frequency corresponding to the wavelength λ = 633 nm in vacuum. (a)
“Stopping’’ heterowire (W = 350 nm). (b) “Passing’’ heterowire (W = 210 nm)
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the heterowires. The black arrows point to the position of the sub-λ waveguides used
to excite the heterowires. The white arrows show the direction of the incident light.
The near-field intensity is spread along more than 10 μm over the passing heterowire
while it is drastically damped above the stopping heterowire. Such heterowires may
turn out to be of practical use in designing reduced sizes optical devices.

Plasmonic devices

Fundamental researches about the confinement of the electromagnetic field by lo-
calized plasmon coupling (see section 8.3.1) and about the thin metal stripes plasmons
(see section 8.4.3) are among the pioneering works which triggered the international
trend towards the development of miniaturized optical devices exploiting surface plas-
mon effects, also called “plasmonics’’ [Barnes et al., 2003]. An appealing feature of
plasmonics is that the same thin metal circuitry can carry electric charges and electro-
magnetic waves at infra-red and visible frequencies [Weeber et al., 2003]. An exemple
of the rapid evolution towards applications appears in Figure 8.21 [Devaux et al., 2003].

Results presented in this chapter are due to various collaborations which are grate-
fully acknowledged, namely: Ch. Girard, J.R. Krenn, T.W. Ebbesen, J.P. Goudonnet,

Figure 8.21: Top: SEM images of a the result of nanofabrication process aimed at designing a
Bragg mirror for stripe plasmons. A Focused Ion Beam carved a series of nanoslots in a 40 nm

thin gold stripe deposited on glass obtained by e-beam lithography (LPUB–Dijon). Bottom:
PSTM image of the stripe plasmon (incident from right to left, launched using a wavelength in
vacuum equal to 800 nm according to a procedure explained in section 8.4.3) reflected by the

Bragg mirror. The quality of the nanoslots mirror is such that, to the left of the mirror zone, the
intensity falls dramatically down to a value not detectable by the PSTM tip
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Chapter 9  

The Confined Universe of Electrons in 
Semiconductor Nanocrystals 

9.1. Introduction  

Semiconductor nanocrystals are clusters of nanometric size that contain hundreds 
to thousands of atoms. Their chemical composition is that of a semiconductor and 
they are usually embedded in a transparent matrix, which makes their optical study 
possible (polymer, solution, gel, glass, etc.).  

The main characteristic of these materials is the presence of electronic 
confinement effects. These effects appear when the size of nanocrystals is as large as 
the electron wavelength in the material and when energy barriers surround electrons. 
For electrons, semiconductor nanocrystals represent real three-dimensional potential 
quantum wells, and then they are veritable quantum dots. The restriction of available 
space for the movement of electrons in the three dimensions is at the origin of its 
energy level quantification. That is why semiconductor nanocrystals are often called 
solid-state atoms. Quantum confinement effects are, then, at the origin of the 
specific electronic and optical properties of these nano-objects. The study of these 
new properties constitutes a huge domain for basic and applied research.  

In this chapter, we will describe the fundamental characteristics of the electronic 
structure of these nano-objects. We will underline the connection between this 
structure and the new properties of nanocrystals. We will also discuss in more detail 
the latest knowledge concerning applications in nanophotonics of semiconductor 
nanocrystals. Three different fields will be considered: the obtaining of single 
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photon sources, biological labeling, and the obtaining of wavelength tunable lazer 
nano-sources. 

9.2. Electronic structure 

Optical properties of semiconductor nanocrystals depend on the structure of 
valence and conduction electronic states. For their definition it is possible to use the 
same approach as in bulk crystal, i.e., effective mass approximation. In this 
framework, the effect of all the atoms in the crystal on electronic movement is taken 
into account by giving an effective mass to the electron which is different to the free 
electron mass. This approach could be borne out, for nanocrystals which are not 
very small, by the fact that, typically, a nanocrystal of CdSe with a radius of 3.5nm 
contains about 7,700 atoms: this observation should give the area meaning. 

9.2.1. “Naif” model 

The simplest model takes as its starting point a semiconductor with only one 
parabolic band for electrons and for holes. The wavefunction of one particle in the 
bulk material can be expressed as a linear combination of Bloch wavefunctions. 
However, if the particle is in a nanocrystal the wavefunction will be written as a 
product of wavefunctions: one which contains the periodic part of the Bloch 
function and another which is called the envelope function and takes into account 
symmetries of the confinement potential. We will discuss the determination of this 
latter part of wavefunction below. 

Usually, in effective mass approximation, the matrix is described as infinite 
potential out of a nanocrystal. That is well justified when the nanocrystal is 
immerged in a glass matrix with a gap energy of about 5 eV because this value is 
larger than the same value in a semiconductor, for example 1.7 eV for CdSe at room 
temperature. The following hypotheses simplify the problem further: nanocrystals 
have a spherical shape and there is no interaction between them. In the simplest 
model, the Hamiltonian of the electron-hole system contains kinetic energy of 
electron and hole, their Coulomb interaction energy and the confinement potential 
for electron and hole. It is written as follows [EFR 82]: 

  
Η = − =2

2me

∇ re

2 − =2

2mt

∇ rt

2 − e2

ε re − rt

+ Ve (re ) + Vt (rt )  (1) 

where me,t denotes the electron or hole effective mass, re, t is the electron or hole 
position respectively, ε is the relative dielectric constant of the nanocrystal taken 
with respect to the matrix, Ve,t is zero if re,t is smaller than the nanocrystal radius, R, 
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and infinite otherwise. Charged particles, electrons and holes, then, have two 
potentials: the interaction Coulomb potential and the spherical well potential of 
radius R that quantifies the kinetic energies of the electron and hole. The Coulomb 

energy scales as e2

εR ; meanwhile electron-hole pair kinetic energy in the well of 

radius R scales as 
  
=2

2µR2 where 
1
µ

= 1
me

+ 1
mt

. The relative importance of 

these two potentials enables us to distinguish three different confinement regimes.  

When the Coulomb energy is much larger than the confinement energy, the 
regime is called “weak confinement”. If we define the Bohr radius of the electron-

hole pair, aB, as 
  
aB = =2ε

2µe2 , this regime appears when R is much larger than aB . 

That is the case, for example, for CuCl nanocrystals of average sizes (about 4nm). 
Indeed, the binding energy of the electron-hole (e-h) pair is large εexc =213 meV 
and its Bohr radius is very small, aB= 7 Å. In this situation the e-h pair is confined as 
a whole and then the quantification of the movement of the center of mass is 
accomplished. The envelope wavefunction of the e-h pair is then given by the 
product of two wavefunctions, the first one describing the movement of the e-h pair 
with respect to its center of mass, and the second one describing the movement of 
the center of mass confined in the infinite spherical well. After resolution of the 
Schrödinger equation, the energies of possible optical transitions are: 

  
En = Eg −εexc + =π 2n2

2MR2  (2) 

where M=me+mt is the total mass of the electron and hole 

together, R = mere + mtrt

me+mt

 is the position of the center of mass, Eg denotes the gap 

of bulk crystal and n is an integer number that we have taken (l=m=0). n,l,m are 
quantum numbers with the same meaning as in atomic physics.  

The second regime, the opposite of the one already described, is called “strong 
confinement”. Here the Coulomb energy is negligible with respect to confinement 
energy. This regime appears when R is much smaller than the aB. In this case, both 
the electron and the hole are confined separately. The movement of both carriers is 
independent and they are considered separately confined in the infinite spherical 
potential. Confinement energies of the electron and hole depend only on n and l 
quantum numbers and are written as follows: 
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En,l

(e,t ) = =2αn ,l
2

2m(e,t )R
2  (3) 

with  1,0 1,1 2,1, 1.43 , 1.83 ,  ...etcα π α π α π= ≈ ≈  (4) 

In general, the electronic state is denoted n℘ where ℘ is the usual atomic 
symbol (S,P,D …) which corresponds to a given value l (l=0,1,2 …). Each state is 
2(2l+1) fold degenerated when electronic spin is considered. Optical transitions are 
accomplished between two quantum states: one for the electron and the other for the 
hole. Calculation of selection rules for dipolar transitions shows that in the optically 
allowed possible transitions the quantum numbers n and l are preserved. Then, if 
Coulomb energy is calculated with a perturbation approach, the total energy of the 
first optical transition, 1S–1S (ne=nt=1, le=lt=0, me=mt=0), is written as follows 
[BRU 83, 84]: 

  
E1S−1S = Eg + =2π 2

2µR2 − 1.8e2

εR
 (5) 

GaAs or PbS nanocrystals are good examples of a strong confinement regime: 
electron-hole binding energy is equal to 4 meV for GaAs and 2 meV for PbS, and 
their Bohr radii are respectively equal to 100Å and 180Å.  

The third regime is called “intermediate”, and Coulomb energy is no longer 
negligible with respect to confinement energy. In general, the electron and hole have 
very different effective masses. The electron is the lightest particle, and only its 
movement is confined. Exact calculations for the electronic structure are more 
complicated because the two terms of interaction have to be considered at the same 
level in the Hamiltonian. To solve the problem in this situation, the results of “strong 
confinement” are taken as a departure point to diagonalize the Hamiltonian and to 
use a variational calculation or a perturbative calculation to take into account 
Coulomb interaction. CdS and CdSe nanocrystals having a radius of about of 4–5nm 
are good examples of an intermediate confinement regime (the Bohr radius is equal 
to 3nm for CdS and 5nm for CdSe). In any case, the boundaries of the different 
regimes are not really strict. For example, in the literature, it is common for these 
nanocrystals to take expressions usually given to strong confinement to describe 
transitions near the threshold of optical absorption.  
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9.2.1.1. Absorption and luminescence spectra 

The main results in the effective mass approximation which are summarized in 
equations (2) and (5) are: first, the transformation of a band structure in a series of 
discrete levels for which their energy depends on nanocrystal size; second, the 
increase of the first optical transition energy with respect to the bulk gap energy Eg. 

 

Figure 9.1. Absorption spectra, at 5K,of CdSe nanocrystals in silicate glasses, from the 
reference [CHA 96b]. Average radii are 25, 19.7, 18.3 and 11.4 Å for samples from 4 to 1, 

respectively. The arrow gives the energy band gap of bulk CdSe 

Optical absorption spectra clearly show the existence of confinement effects for 
charged carriers [EKI 85]. For PbS, for example, a very important blue shift of 
absorption threshold (>1.5 eV at room temperature) has been observed [GAC 94]. 
Figure 9.1 represents absorption spectra in the case of CdSe nanocrystals. This 
figure shows the blue shift of the absorption threshold and also the presence of 
different bands, which are related to different optical transitions between discrete 
levels. Moreover, their maximal energy position depends on nanoparticle size. A 
comparison between theoretical and experimental results for the lowest energy 
transition is represented in Figure 9.2 for CdSe nanocrystals. The plain line gives the 
energy of the first electronic transition E1S–1S as a function of the average radius of 
nanocrystals. This line was obtained using effective mass approximation (equation 
(5)). Circles represent the energy of the first absorption band maximum, measured 
by Wang and N. Herron for CdS nanocrystals of average size [WAN 90]. 
Theoretical values given by effective mass approximation and experimental values 
are in agreement when nanocrystal radii are larger than 2nm, but there is less 
agreement for nanocrystals having radii of less than 2nm. In fact, equation (5) is 
obtained in a very simple model: only one parabolic band is considered for electrons 
and holes. This approximation can only be justified when the confinement effect is 
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not very important. A theoretical model taking into account the complexity of the 
electronic structure of conduction and valence bands has been proposed in the strong 
confinement regime and gives a better result [XIA 89; GRI 90; VAH 90; EKI 93; 
RIC 96]. Meanwhile, for very small nanocrystals, from a purely intellectual point of 
view, other approaches seem more reasonable, such as tight-binding approximation 
[LIP 89; RAM 93; ALB 98; PER 01] or pseudo-potential calculations [ZUN 98]. 
These two approaches have a more microscopic approach that consists of building 
nanocrystals from isolated atoms. Tight binding is used to calculate the size 
dependence of the energy shift of the optical absorption threshold and the results are 
given in Figure 9.2 (dashed line). We can see that this latter method gives a better 
agreement for smallest sizes. 
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Figure 9.2. Size dependence of energy of the lowest optical transition of CdS nanocrystals. 
The plain line represents a theoretical calculation in the effective mass approximation 
equation (5). The dashed line represents a theoretical calculation using tight binding  

[RAM 93]. Experimental points are taken from WAN 90 

Luminescence experiments give complementary information, but they need a 
more complicated interpretation than optical absorption spectra. Luminescence 
spectra show in general broader bands and luminescence maxima are shifted to 
lower energies with respect to absorption spectra, as shown in Figure 9.3 (see bands 
denoted a and b). Moreover, this red shift is a function of average size and increases 
when size decreases. Figure 9.3 also shows a very broad band at lower energy, 
denoted c). Impurities are certainly at the origin of this band. Some authors also 
discuss this band in terms of surface states [SPA 87]. 
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9.2.2. Fine electronic structure 

Absorption and luminescence spectra show broad bands even at low 
temperatures. Two mechanisms are mainly responsible of this broadening. First, an 
intrinsic mechanism which is responsible for a homogeneous broadening due to 
phonon-electron coupling (phonons are the vibration quanta of the crystal structure); 
second, an extrinsic mechanism which is the dominant mechanism in these 
materials. This latter point is due to a size dispersion of the nanocrystal and induces 
an inhomogeneous broadening, which is not temperature dependent. Size dispersion 
is related to the fabrication procedure. Despite the high quality of samples that are 
currently fabricated, residual sample homogeneous still remain and size dispersion is 
at best in the order of 5% r.m.s. [MUR 93]. Each nanocrystal absorbs and emits at a 
given energy which is characteristic of its size. That is why absorption and 
luminescence spectra give information not about a given nanocrystal size but about 
an average nanocrystal size. Contributions of different sizes are mixed together in a 
broad inhomogeneous band. 

 
Figure 9.3. Absorption and luminescence spectra at room temperature of a sample  

containing CdS nanocrystals with average radius 15 Å 

9.2.2.1. Size-selective excitation 

Several spectroscopic techniques are used in order to avoid this difficulty and to 
obtain more precise information on the electronic structure of nanocrystals. A very 
important example of these techniques is based on the selection of a small number of 
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nanocrystals among those contained in the sample. That is done by reducing 
spatially the excitation area through micro-luminescence experiments (we will 
discuss these experiments in more detail in section 9.3), or by using spectral 
selection that gives information about an isolated nanocrystal’s size in the 
distribution: the size-selective technique. Hole-burning is one example of the latter 
technique, and luminescence size-selective excitation or detection is another 
example. In the following paragraphs we will describe the principle of luminescence 
size-selective excitation and the main parameters obtained when this technique is 
used. 

 

Figure 9.4. The principle of size-selective excitation of the luminescence (scheme).  
(a) Two arrows indicate energies discussed in the text. (b) Scheme of three first optical 

transitions energies as a function of nanocrystal size. The scale has been exaggerated for 
clarity. (c) Nanocrystal size distribution in the sample (scheme). (d) Luminescence spectra 

of excited nanocrystals at high energy and under selective size excitation 
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The objective of size-selective excitation is to isolate in the luminescence 
spectrum the contribution of a given nanocrystal size which is contained in the size 
distribution of the sample. This principle is represented in the scheme of Figure 9.4. 
Part (a) gives the absorption of the sample. Part (b) schematically represents the 
correspondence of nanocrystal radius to energy for the first three optical transitions 
which have been arbitrarily denoted α, β and γ.  Part (c) represents the size 
distribution of the nanocrystal which is at the origin of the spectral broadening of 
absorption and luminescence spectra. If we assume that the excitation energy is 
equal to Eexc, several optical transitions of different nanocrystal sizes are excited. In 
Figure 9.4b we give the size dependence of the energy of three first optical 
transitions: the lowest transition corresponds to nanocrystals having a radius equal to 
R1, the second electronic transition corresponds to nanocrystals having a radius 
equal to R2, and the third one corresponds to a radius equal to R3. Whatever the 
optical transition excited in the nanocrystal after a very quick relaxation to the 
lowest electronic state, α, nanocrystals give luminescence at an energy 
corresponding to their lowest optical transition, α. Each nanocrystal size contributes 
to the luminescence spectrum at a characteristic energy. Thus a broad luminescence 
spectrum that contains contributions of different sizes is obtained in Figure 9.4d. 
When excitation energy decreases to get a value at the threshold of the optical 
absorption spectrum, denoted E exc-sel in the figure, there are very few electronic 
levels available to be excited. In Figure 9.4b, there is only one optical transition 
denoted α which corresponds to the nanocrystals having a radius equal to R4, i.e., 
among the biggest radius in the sample. Under these excitation conditions, the 
luminescence spectrum is much more narrow than for non-selective excitation and 
gives information about the luminescence of one set of nanocrystals, in this case 
nanocrystals of size equal to R4. 

In summary, with selective excitation, there is only one excited optical transition: 
the lowest optical transition for the biggest size in the distribution. 

When the size-selective luminescence of nanocrystals in the strong confinement 
regime is studied, a universal phenomenon is observed: the presence of red energy 
shift between luminescence and absorption. More precisely, the luminescence peak 
which is observed at a lower energy than the excitation energy is accompanied by 
one or two phonon replicas, i.e. emission composed of photons and phonons [CAL 
93; NIR 95; CHA 95; BAN 97; MIC 97; CHA 98; LAV 02]. Figure 9.5 shows the 
absorption and luminescence spectrum for CdSe nanocrystals with an average radius 
of 18 A. Indeed, for a size-selective excitation (excitation energy equal to 2.14 eV), 
near the lazer line we observe three very well resolved peaks. Moreover, in the low 
energy side of this size-selective luminescence spectrum we also observe a broader 
band related to the presence of some defects in the sample. Temporal behavior of the 
three luminescence peaks reveals a non-exponential decay with a very fast 
component in the order of a hundred of picoseconds and a slower component with a 
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time constant in the order of several tenths of nanoseconds. The authors who 
originally observed this size-selective luminescence attributed it to the presence of 
surface states [BAW 90; BAW 92]. However, the polarization properties of size-
selective luminescence show clearly that this luminescence has an intrinsic character 
[CHA 96a]. In the next section we will briefly describe this intrinsic origin. 
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Figure 9.5. Absorption (dashed line) and luminescence (blue plain line) spectra of CdSe 

nanocrystals embedded in a glass matrix. The size-selective luminescence spectrum is also 
represented in this figure with a full red line. A vertical arrow gives the used excitation energy 

9.2.2.2. “Dark” electron-hole pair  

When nanocrystal size decreases, the overlap of the electron and hole 
wavefunctions increase and the Coulomb interaction between particles also 
increases. In the framework of the strong confinement regime Coulomb interaction 
is introduced in a perturbative scheme. In Coulomb interaction two parts can be 
distinguished: first, a direct term which is responsible for electron-hole pair binding, 
and second, an electron-hole exchange term usually weaker than the direct term. The 
direct term gives a red shift of the optical transition associated to the electron-hole 
pair. This term scales as 1 R  (see equation (5)).  

When a more sophisticated model than that described in section 9.2.1 is used, the 
electron-hole pair state is in fact constituted of an electron having a 1/2 spin and a hole 
characterized by a 3/2 angular momentum [EKI 93]. The electron-hole exchange term is, 
then, at the origin of the splitting of the electron-hole pair state into two groups of states: 
one characterized by an angular momentum Jpair=1 and another characterized by a 
momentum Jpair=2. The first group is connected to the fundamental state via the 
absorption or emission of photons; this is why it is usually said that this level is optically 
allowed. The second group is not connected with the fundamental one via the absorption 
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or emission of photons. The latter states are optically forbidden states or dark states. 
Several authors have calculated the splitting energy of these two groups of states in the 
effective mass approximation [TAK 93; ROM 94; GOU 98] or by using a tight binding 
method [PER 01] or in the pseudo-potential formalism [FRA 98]. In the effective mass 
approximation this splitting, called electron-hole exchange interaction energy, scales as 
the inverse of the nanocrystal volume. 
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Figure 9.6. Size dependence of the red shift of the size-selective excited 
 luminescence obtained in CdSe nanocrystals. The continuous line represents  

the result of the electron-hole exchange interaction calculation in the  
effective mass approximation. Results taken from [TAK 93] 

Now we are able to better understand the results of a size-selective luminescence 
technique. Indeed, in these experiments, the optically active states, which are associated 
with important oscillator strength, are populated, and then a relaxation to the optically 
forbidden states occurs. Emission from the optically forbidden states at a low 
temperature is possible due to electron-phonon interaction in nanocrystals [EFR 91]. 
Then, the red shift between the excitation energy and the emission energy is in fact the 
energy splitting between allowed and forbidden states. This splitting is very weak in the 
bulk material, in the order of 0.12 meV or 0.24 meV for CdSe and CdS, respectively. For 
nanocrystals it is a function of excitation energy, i.e. of the excited nanocrystal size. 
Figure 9.6 shows that for CdSe nanocrystals with radii values from 30 Å to 15 Å the red 
shift between emission and excitation increases with decreasing nanocrystal size and is 
several orders of magnitude larger than in the bulk material. 



276     Nanophohtonics 

9.3. Micro-luminescence 

Micro-luminescence experiments are essentially experiments in luminescence with a 
spatial resolution near to the diffraction limit. This resolution is usually obtained by using 
a microscope objective with a big numerical aperture ≈0.7 or by using an immersion lens 
with numerical aperture ≈1.25. Under these excitation conditions and if the sample 
contains very few nanocrystals, it is possible to study a few nanocrystals (or one isolated 
nanocrystal) which are in the excitation spot area. The first experiments of this kind were 
carried out in 1996 by the M. G. Bawendi group at the Massachussetts Institute of 
Technology, United States [EMP 96]. They showed a very characteristic behavior for 
CdSe nanocrystals at a low temperature (10K). First, micro-luminescence spectra show 
essentially the same basic structure as luminescence spectra obtained by the size-
selective excitation technique, described in the last section, but they are spectrally 
narrower. A narrow peak and one or two more peaks at lower energy (phonon replica) 
constitute the spectrum of an isolated CdSe nanocrystal, as shown in Figure 9.7. 
Moreover, we have to underline that the dynamics of luminescence of a single 
nanocrystal is a function of temperature [LAB 03] and the results confirm the results 
obtained in size-selective experiments [CHA 96b]. 
 
 

 
Figure 9.7. Figures from [EMP 96]. (a): Typical image of the micro-luminescence of CdSe 

nanocrystals obtained at 10K with an integration time of 0.5 s and an excitation density of about 
150 W/cm2. The white points represent places from which the luminescence of an isolated 

nanocrystal is collected. (b) Comparison of standard luminescence spectra of CdSe nanocrystals 
with an average size of 45 Å (bandwidth of 13meV) and the luminescence spectrum of an isolated 

nanocrystal excited with a power of 2.5 KW/cm2 (bandwidth of 1.26 meV). (c) Comparison of 
standard luminescence spectra, from all excited CdSe nanocrystals in the sample, and from 
different isolated CdSe nanocrystals contained in the studied sample. Micro-luminescence  

spectra were obtained for an integration time of 60 s 

Second, micro-luminescence spectra show a reversible red shift, which depends 
on the excitation density. For an excitation density of 2.5 KW/cm2 at the energy of 

ENERGY (eV) 

b) c) 
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the Ar green lazer line, it is possible to measure a spectral shift of about 60 meV 
after several minutes. Moreover, a decrease in the intensity of the luminescence 
band and an increase in phonon replica intensity is observed: see Figure 9.8. That 
has been interpreted as a Stark effect induced by the existence of a local electric 
field, which fluctuates as a function of trapping and detrapping of charges in the 
nearest environment of the nanocrystal. The presence of the already described 
behavior makes it difficult to measure the homogeneous bandwidth. Indeed, to 
obtain a spectrum it is necessary to average for several minutes and then the 
obtained luminescence spectrum is, in fact, an average luminescence spectrum, 
which contain several luminescence spectra shifted in energy. M. G. Bawendi’s 
group has obtained at low excitation density a bandwidth of the main micro-
luminescence line of 120 µeV (25W/cm2) [EMP 96]. This value is in reality a higher 
limit for the real value because it is forced by the resolution of the detection system 
that was used. 

 

Figure 9.8. Figure from [EMP 96]. Sixteen consecutive luminescence spectra of an isolated 
CdSe nanocrystal taken minute by minute. Spectra were obtained using an excitation density 

of 2.5 KW/cm2. Insets show magnifications of the same spectra 

Third, from the first measurements of micro-luminescence, its telegraphic 
behavior has been observed. Indeed, nanocrystal fluorescence under continuous 
excitation turns on and off intermittently with a characteristic time scale of several 
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seconds. This intermittency is not apparent from ensemble measurements on many 
nanocrystals. Figure 9.9 shows, over a range of several minutes, the temporal 
behavior of the intensity of emitted light, integrated with the whole spectrum. This 
figure evidences the presence of bright intervals (for which luminescence is active, 
“on” intervals) and dark intervals (for which the luminescence is absent, “off” 
intervals). The duration of “off” intervals is independent of the excitation density, 
but the duration of “on” intervals is proportional to the inverse of the excitation 
density. Moreover, as is shown in Figure 9.9, the stability of “on” intervals becomes 
better when nanocrystals are encapsulated by a layer of another semiconductor 
having a higher gap energy.  

 
 

 

Figure 9.9. Figures from [NIR 96]. (a) Comparison of micro-luminescence intensity as a 
function of the observation time measured for two excitation densities for a CdSe nanocrystal 

encapsulated by four monolayers of ZnS. (b) Comparison of the intensity of micro-
luminescence as a function of the observation time obtained for a “bare” nanocrystal  

(which is not encapsulated by another semiconductor) and for a nanocrystal encapsulated by 
7 monolayers of ZnS. Excitation density is equal to 0.7 KW/cm2 

Efros et al. [EFR 97] give the following explanation for all these experimental 
observations:  

Bright intervals correspond to the radiative recombination of an electron-hole 
pair photo-created in the nanocrystal. Dark intervals appear because the probability 
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of creating two electron-hole pairs in a nanocrystal is not negligible. When two 
electron-hole pairs are in the nanocrystal a phenomenon known as Auger ionization 
becomes important. Moreover this phenomenon is increased by a confinement 
effect, which we will discuss later in this chapter. Auger ionization consists of an 
energy transfer from one electron-hole pair, which relaxes non-radiatively, to the 
other pair in the nanocrystal. Then the ejection of an electron or a hole belonging to 
the second pair to the surrounding matrix occurs. In this way, as long as the 
nanocrystal is charged, electron-hole pairs recombine non-radiatively preferentially 
via an Auger effect. Detrapping of the electron or the hole and its return in the 
nanocrystal neutralizes the nanoparticle and makes the reactivation of the 
luminescence possible. This model is not completely satisfactory but gives a global 
description of the main experimental facts. Indeed, the telegraphic behavior of 
luminescence in this model is a function of the excitation density. Moreover, this 
model explains the red shift of the micro-luminescence spectrum and its less 
important intensity as a result of the trapping and detrapping of charges in the near 
surroundings of the nanocrystal which creates a fluctuating electric field at the 
origins of the Stark effect in luminescence [EMP 97]. 

9.4. Auger effect  

Auger effect efficiency is related to electron-hole Coulomb interaction. This 
efficiency is less important in bulk semiconductors than it is in atoms because of the 
reduction in electron-electron interaction and because of kinetic restrictions imposed 
by energy and momentum conservation. In the case of semiconductor nanocrystals, 
electronic confinement increases Coulomb interactions and relaxes conservation 
rules of quantity of movement and in this manner should increase the Auger effect, 
whereas a discrete electronic structure imposes restrictions on the accessible 
electronic states, which make energy conservation possible in the overall process. 
That leads to an Auger recombination that is efficient only when it is assisted by 
phonons or when the final state is the continuum, i.e. states outside of the 
nanocrystal. That is known as Auger ionization. Theoretical treatment of this 
process is complex [CHE 90]. In this section we have chosen to summarize the main 
results of experiments concerning the phenomenological study of Auger ionization 
[KLI 00a]. 

In the case of CdSe nanocrystals, a lifetime study of several electron-hole pair 
states as a function of number of pairs is summarized in Figure 9.10a. We underline 
that for a given size, the lifetime of several electron-hole pairs becomes shorter and 
shorter as the number of pairs increases. Moreover, if the number of electron-hole 
pairs, N, is fixed, the lifetime of a state containing several pairs, τ N , decreases when 
nanocrystal size decreases. Indeed, in Figure 9.10b we can see that the lifetime of a 
two electron-hole pairs state τ 2 decreases from 363 ps to 6 ps when its radius varies 
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from 4.1 to 1.2nm. This means that τ 2 is proportional to the volume of the 
nanocrystal. This experimental rule has been also obtained for τ 3 and τ 4  
respectively. In the lower part of Figure 9.10 we show the value of the Auger 
constant, CA, as a function of nanocrystal radius. This constant is defined in the 
following way for N ≥2: 
 
 
 
 

Figure 9.10. Figures from [KLI 00a]. (a) Dynamics of two, three or four electron-hole pair 
states in CdSe nanocrystals with an average size of 23 Å. Curves were obtained after an 
analysis of differential transmission measurements as a function of excitation density.  

(b) Dynamics of two electron-hole pair state for samples containing CdSe nanocrystals with 
different average sizes. (c) Size dependence of Auger constant CA.  

The line represents a fit of experimental data 
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where V is the nanocrystal volume. Experimental results show that the Auger 
constant is proportional to the volume of the nanocrystal. When size decreases, 
Auger recombination becomes very important and consequently the lifetime of four, 
three or two electron-hole pairs decreases significantly. 

9.5. Applications in nanophotonics 

We have summarized the specific electronic properties of semiconductor 
nanocrystals. Absorption and emission energy is a function of nanocrystal size. 
Absorption and emission spectra evidence the discretization of their electronic 
structure. Coulomb effects are greatly enhanced with respect to the same effects in 
bulk material. This leads to two main consequences when nanocrystals are in the 
strong confinement regime: first, low temperature emission which comes from a 
“dark” state and, second, the enhancement of Auger recombination which is 
responsible for the shortening of lifetimes of states containing several electron-hole 
pairs. Moreover, micro-luminescence experiments evidence sensitivity to the nearest 
nanocrystal surrounding. 

The combination of these electronic properties added to the versatility of 
chemical methods used for their fabrication makes these materials very interesting 
for a huge number of potential applications: saturable filters [BRE 64], bistables 
[YUM 87], electroluminescent diodes [COL 94], one electron transitor [KLE 97], 
lazers [PAV 00], “qubits” in quantum computers [BRU 00], photovoltaic cells 
[HUY 02], etc. 

In the next section we will describe the main advantages of nanocrystals in three 
kinds of application in the domain of nanophotonics. 

9.5.1. Semiconductor nanocrystals: single photon sources  

Conventional light sources, i.e. lazer diodes or lazers, generate radiation 
which is well described by the classic Maxwell equations. On the other hand, 
there are applications in the very new domain of quantum information which 
require optical sources with very weak intensity but emitting a controlled 
number of photons [BOU 00]. Among these sources, these emitting pulses 
containing only one photon are of prime importance. That is particularly true for 
quantum cryptography, where the main objective is communications security 
through the intelligent use of the concept of quantum measure. One essential 
element in secure distribution is the use of an optical source, which has to emit a 
series of impulsions containing one, and only one, photon; each photon codes an 
information bit. In this manner any spy that taps information, by measuring the 
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state of the single photon, perturbs the state of the photon and makes it possible 
to detect the tap on the transmission line. 

A prerequisite for obtaining single photon sources is the existence of isolated 
single photons emitting materials exhibiting the phenomenon known as “photon 
antibunching”: a dark time between two successive photon emissions. This 
phenomenon has so far been observed in several materials: atoms [KIM 97], 
molecules [BAS 92], nitrogen vacancies in diamond [KUR 00; BRO 00], quantum 
dots obtained by molecular beam epitaxy [MIC 00a; MOR 01]. Semiconductor 
nanocrystals are very good candidates for producing single photon sources. They 
have several advantages over other materials. Radiation stability is higher than the 
stability of dye molecules. Moreover, contrary to quantum dots obtained by epitaxy, 
they can be used at room temperature. 

Recently, photon antibunching has also been observed for semiconductor 
nanocrystals [MIC 00b; LOU 00]. Experimental set-up is essentially a micro-
luminescence set-up added to a Handbury Brown and Twiss interferometer joined to 
a photon correlation time detection system. This experimental set-up measures the 
second order auto-correlation function of nanocrystal emitted light, which is given 
by the following expression: 

g2(τ) =< I(t)I(t + τ) > / < I(t) >2 (7) 

where τ is the time between two successive detections of photons, the first arriving 
at the detection system of one of the interferometric arms and the second at the other 
detection system at the end of the second interferometric arm. < > denotes a 
temporal average of I(t), the measured intensity at time t. 

In Figure 9.11, we can see the histogram for τ values ϖαλυεσ of emitted 
photons of an isolated CdSe nanocrystal encapsulated by several monolayers of ZnS. 
The histogram is proportional to the second order correlation function. The signature 
of photon antibunching is given by the observation of no signal at τ=0 and a signal 
which increases as the absolute value of time delay τ values ινχρεασεσ. These 
experiments also give a measurement of the lifetime of the emitting state [MIC 00b].  
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Figure 9.11. Figure from [MIC 00b]. Histogram of time delay between two consecutive 
emitted photons of an isolated CdSe nanocrystal encapsulated by several monolayers of ZnS 

In quantum dots, the probability of the creation of several electron-hole pairs 
after excitation is negligible. When epitaxial quantum dots are used, it is necessary 
to select the detected signal spectrally in order to observe no signal at τ=0 and 
isolate the emission of single photons from other kinds of emissions: wetting layer 
and several pair states. On the other hand, when semiconductor nanocrystals are 
used in the Auger process, which is more efficient in the case of nano-objects than 
for epitaxial quantum dots, the radiative recombination of states containing several 
pairs is inhibited. 

These first experiments showing the existence of strong photon antibunching are 
very promising. Several groups are now working on the characterization of single 
photon sources based in semiconductor nanocrystals. 

9.5.2. Semiconductor nanocrystals: new fluorescent labels for biology  

A connection between biology and optics has long existed within the very active 
domain of microscopy. This synergy has increased because of increasing interest in 
biotechnologies. In this respect, biophotonics is a very dynamic branch, which has 
improved and renewed detection procedures. One possibility, explored below, is to 
use semiconductor nanocrystals as labels of biological molecules [BRU 98; CHAN 
98; DAH 03]. In this section, we will underline the main advantages of nanocrystals 
in this domain.  

A method widely used in biology to analyze different entities is to attach a 
fluorescent compound to the entity under study. This compound is usually a dye 
molecule.  
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Dye molecules have relatively narrow absorption and luminescence spectra with 
maxima slightly shifted in energy. Luminescence spectra are slightly asymmetric 
and showing shoulders at low energy. These characteristics make them very 
interesting as biological labels but they are also the cause of several of their 
limitations, in particular when we are interested in the multidetection of molecules 
with a discrimination based on the color of the scratched molecule. Indeed, the 
experiment consists of attaching different molecules to different biological entities 
and following this combination via the detection of the luminescence of dye 
molecules. The first difficulty in this situation arises from the fact that in order to 
excite all the dye molecules it is necessary to use a tunable source or several sources 
delivering all wavelengths, which can be absorbed by dye molecules. The second 
difficulty comes about because detection could be less selective than expected due to 
the presence of long queues of luminescence which could give conflicting 
information. Meanwhile, the main difficulty is, in general, degradation of 
luminescence of dye molecules under irradiation, a phenomenon that is call 
photodarkening.  

Spectroscopic characteristics of semiconductor nanocrystals are well adapted to 
give a more satisfactory answer to the constraint of experiences in biology. 
Semiconductor nanocrystals show, as already discussed, relatively narrow 
luminescence spectra and the associated absorption spectra are larger than the 
spectra of dye molecules. Then, is possible to excite a group of nanocrystals of 
different sizes using only one source and to obtain the luminescence of all of the 
nanocrystals. Concerning the degradation of luminescence under illumination, it has 
been shown that the luminescence photostability of a set of nanocrystals is much 
more satisfactory than that of a set of dye molecules typically used as probes in 
biology [BRU 98]. Only telegraphic emission (see section 9.3) may introduce 
limitations for using nanocrystals in this domain. 

We would like to add that when nanocrystals are used as biological label, they 
must be soluble in water and bio-compatible. In this respect, researchers have found 
an intelligent solution which consists of encapsulating nanocrystals in several layers 
which makes them more stable and also increases their solubility in water. Then a 
CdSe nanocrystal is encapsulated by another semiconductor with higher gap energy, 
for example the ZnS, in order to improve their luminescence stability. Finally, a 
silica layer encapsulates this ensemble core-shell which makes it soluble in water 
[BRU 98]. 

These kinds of studies are in their infancy, but early results are very promising. 
In this book the reader can find more information in Chapter 10 on nano-
biophotonics.  
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9.5.3. Semiconductor nanocrystals: a new active material for tunable lazers 

Quantum dots, auto-assembled or semiconductor nanocrystals, have two main 
advantages as the active material in lazers sources. First, due to the fact that 
emission wavelength is a function of quantum dot size, it is possible to obtain 
tunable lazers in a very large domain by choosing the size of emitting quantum dots. 
Second, because the energy difference between two electronic states is also a size 
function, it is possible to fabricate lazer sources for which the threshold of lazer 
emission will not depend on temperature. Indeed, in the strong confinement regime, 
this energy difference is very high as compared with thermal energy, in such a way 
that electronic levels, which are near the band gap, are nearly always populated.  

Lazer effect was also shown in quantum dots obtained by molecular beam 
epitaxy (auto-assembled dots). However, for this application, semiconductor 
nanocrystals have several advantages with respect to assembled dots. First, it is 
possible to obtain very narrow size distribution (5%). Second, its fabrication using 
chemical methods gives rise to very new possibilities for integration. Moreover, 
sizes are an order of magnitude smaller than sizes of quantum dots obtained by 
molecular beam epitaxy and potential barriers, which are fixed by the matrix in 
which dots are immersed, are greater in semiconductor nanocrystals. These two last 
characteristics of nanocrystals means that the strong confinement regime is easily 
achieved, which is a more promising departure point for obtaining temperature 
independent lazers sources. In spite of this, very few works investigate stimulated 
emission in nanocrystals. In the strong confinement regime, semiconductor 
nanocrystals also show an enhanced Auger recombination, which is a very important 
disadvantage.  

Klimov et al. [KLI 00b] recently observed optical gain in films containing a 
compact arrangement of nanocrystals [MUR 95] and for encapsulated nanocrystals 
[DAB 97]. The maximum gain obtained for nanocrystals having radii from 10 to  
30 Å was 510cm–1. When nanocrystals are excited at very high energy the necessary 
condition for the gain is that the relaxation time for electrons and for holes to the 
emitting state will be very short as compared with the non-radiative time, Auger 
recombination of a two-particle state τ2. This condition is generally satisfied, as 
shown by several experimental studies [KLI 87; KLI 99]. Meanwhile, the existence 
of an optical gain is not a guarantee of the existence of stimulated emission. This 
emission is observed if the time necessary for stimulated emission, τs, is faster than 
the gain relaxation time which is supposed to be of the same order of magnitude as 
the two pairs recombination τ2. 

τ s = 4πR3

3
1
ξ

nr

σ gc
< τ 2 ≅ βR3  (8) 
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where nr is the refraction index of the sample, c is the light speed, and σg is the 
gain transversal section. If we use the value measured by Klimov [KLI 00a] for 

nanocrystals having a radius equal to 13 Å we will obtainξ = 4πn R3

3 > 0.002 

where n  is nanocrystal concentration in the sample. This value of volume 
concentration is very difficult to obtain for the usual fabrication methods which 
use the precipitation of nanocrystals in a glass matrix. That is why very few 
works deal with the observation of stimulated emission of nanocrystals in glass 
matrices [DNE 92]. Stimulated emission has been observed recently in samples 
containing compact arrangements of nanocrystals [KLI 00b] and in titanium 
oxide sol-gel in which a very high concentration of nanocrystals was achieved 
[EIS 02]. For this latter kind of sample Eisler et al. show that is possible to tune 
the emission energy from 2 eV to 2.2 eV using nanocrystals 27 to 17 Å in size, 
respectively. Moreover, these authors show the feasibility of stimulated 
emission at room temperature.  

9.6. Conclusions 

Studies completed in the 1980s and 1990s on the determination of the 
electronic structure of semiconductor nanocrystals have revealed their main 
characteristics. We have given a short description of the electronic properties of 
semiconductor nanocrystals and we have also underlined two main 
characteristics of these materials: on the one hand, the discretization of their 
electronic structure and its size dependence and, on the other hand, the 
enhancement of Coulomb effects. We have also shown that their properties 
could play a very different role as a function of the application considered. 
Indeed, the enhancement of Coulomb effects becomes more favorable to the 
photon antibunching of luminescence of an isolated nanocrystal, but also makes 
the observation of a stimulated emission more difficult. 

Nowadays, the main questions are articulated around the role that surface states 
have in the telegraphic behavior of micro-luminescence and also the microscopic 
origins of this behavior. But, in addition, new perspectives for applied and 
fundamental research in nanophotonics are being considered due to the versatility of 
chemical methods of fabrication. New materials are in production: nanocrystals 
containing only one impurity, or an isolated magnetic ion [NOR 01], molecules of 
nanocrystals, microcavities containing nanocrystals [POI 03], and also controlled 
negatively charged nanocrystals [CON 01]. 
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Chapter 10  

Nano-Biophotonics 

10.1. Introduction 

Since the beginnings of molecular biology, our view of signaling processes has 
been enriched by a large amount of molecular detail [GIL 02]. Starting from a 
stimulus, a signaling process is a cascade of molecular events which leads a cell to 
take a decision: gene expression, cell division, etc. These cascades are often depicted 
as block diagrams where each elementary step is sketched (protein interaction, 
recruitment …). Between these steps one can find arrows representing the flux of 
biological information (Figure 10.1). 

 

Figure 10.1. Block diagram found in biology: arrows represent the flux of biological 
information between elementary steps. Case of the CD2AP/CIN85 protein involved in T cell 

responses (from [MAL 03]) 
                                   
Chapter written by Hervé RIGNEAULT and Pierre-François LENNE. 
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Although these block diagrams provide a structured and coherent view of 
signaling processes in the cell, they do not provide any information concerning 
space (where precisely are the interactions localized?), time (what is the dynamic of 
molecular displacement and interaction dynamics?) and structure (is there any 
structural modification at the nanoscale?) which nowadays are fundamental to a 
detailed understanding of cell machinery. A precise description of information flux 
in the cell is difficult to obtain because of the multitude of molecules involved at 
various spatial and temporal scales. 

Although it provides a nanometer resolution, the electronic microscope is unable 
to work on living samples. However, optical techniques are well adapted to work on 
living cells and tissues. 

With this constraint, instruments have to exhibit dedicated characteristics such as: 

– High sensitivity: molecular concentrations found in signaling processes are 
often very low and require high sensitivity (down to the single molecule level) 
together with large optical magnification. It is also important to find an efficient and 
specific contrast mechanism to detect the molecules of interest. 

– High spatial and temporal resolving power: the cell volume exhibits a variety 
of sub-structures and one aims at localizing the molecular signal with the best 
accuracy; furthermore a good temporal resolution (µs to ms) is needed to describe 
most of the biological dynamics. 

– Cell innocuousness: any relevant study should not perturb the cell and keep it 
in its natural physiological state. 

Although local probe techniques are making progress, they still have limitations 
in connection with the accurate monitoring of the distance between the probe and 
the soft biological sample. Optical techniques and especially far field microscopy 
are still nowadays the best compromise in terms of sensitivity, spatial and temporal 
resolution, innocuousness and ease of implementation. 

Within this framework, this chapter will focus on optical methods and techniques 
dedicated to studying cell architecture and dynamics through the accurate 
localization of molecular entities (lipids and proteins). 

The first section will briefly present the sizes of cell constituents. The second 
section will focus on contrast mechanisms that can be generated to study bio-
molecules at work. Special emphasis will be given to techniques which take 
advantage of the interaction between ultrashort lazer pulses and the biological 
medium. The third and final section will focus on the spatial resolution problem and 
will present recent advances for reducing the observation volume below the 
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diffraction limit. Such techniques use non linear optics or nanophotonic structures 
located in the vicinity of bio-molecules. 

As the nano-biophotonics field is progressing at a great pace, the examples 
chosen by the authors are far from exhaustive and are subject to change quickly. 
Nevertheless, the goal of this chapter is to give to physicists some insight into the 
world of nano-biophotonics. 

10.2. The cell: scale and constituents 

The spatial and temporal scales found in the cell are very broad and will dictate 
the properties and characteristics of the optical tools necessary to perform nano-
biophotonic studies. 

Briefly, a eukaryotic cell has a diameter of 20µm. Its intracellular volume is 
separated from the extracelullar space by the plasmic membrane which is made of a 
lipid bilayer (thickness 5nm).  

The intracellular volume is partitioned into organelles such as the nucleus (which 
contains genetic information), the Golgi and the endoplasmic reticulum (which 
synthesize, sort and transport the elementary constituents). As important elementary 
constituents, proteins are a few nm and exhibit three-dimensional structures which 
play a crucial role in their functions. They can be localized both in the intracellular 
space and in the plasma membrane (membrane protein). For more information, the 
reader should consult a textbook of biology [ALB 02; LOD 03]. 

Figure 10.2. The eukaryotic cell and its constituents (typical sizes) 
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Protein
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10.3. Origin and optical contrast mechanisms 

To probe the cell and its constituents, one needs a contrast mechanism. This can 
be the simple refraction or absorption of incoming light by the sample (as in 
standard vision) or it can be more complex-light matter interaction such as 
fluorescence. In any case, the micron scale of the cell requires us to use microscope 
objective lenses to concentrate and collect the light. A microscope objective lens is a 
complex association of lenses and can be simply described by its magnification1 and 
numerical aperture (NA). If n stands for the refractive index in which the objective is 
used, NA is simply related to the maximum angle of focalization θmax taken from the 
optical axis2: 

maxsin=NA n θ  (1) 

Furthermore, the Airy disk3 stands for the minimum area an objective can focus 
an incident beam of wavelength λ. The radius of the Airy disk is given by: 

min 0.61=w
NA
λ

 (2) 

Finally, the resolving power4 dx,y of a microscope objective in the plane 
transverse to the optical axis is still given by equation (2) in the case of a point 
source5.  

Along the optical axis, the depth of field dz gives the distance over which the 
sample is in focus and is given by: 

( )2=zd n
NA

λ
  (3) 

After these basics, let us discuss the contrast mechanisms used in microscopy. 

                                   
1 Modern objectives, whose aberrations are corrected at infinity, mention a magnification 
which is achieved when they are used with their nominal tube lens whose focal length is 
manufacturer dependent (Leica: 200mm; Nikon: 200mm; Olympus: 180mm; Zeiss: 160mm). 
2 An objective with an NA greater than the refractive index n produces evanescent waves. 
3 For a wavelength of λ=0.5µm and a numerical aperture NA=1.2 in water (n=1.33), the 
minimum focal spot diameter is 2wmin=λ. 
4 This resolving power is also known as the Rayleigh criterion and stipulates that an imaging 
optical setup can separate two point sources if they are distant from more than wmin. 
5 In the case of bright field microscopy, when the light shone on a sample comes from a 
condenser whose numerical aperture is NAcondenser the resolving power is given by 
d=1.22λ/(NAcondenser+ NAobjective). 
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10.3.1. Classical contrast mechanisms: bright field, dark field, phase contrast and 
interferometric contrast 

Conventional microscopy uses white light to illuminate the sample and uses 
refraction (phase difference when beams are crossing the sample) and absorption as 
contrast mechanisms. So called bright field microscopy uses as a spatial contrast the 
absorption of light and generates a magnified image in the detection plane (known 
as image plane). Because biological samples exhibit low contrast, various 
specialized techniques have been developed to improve bright field contrast. A 
detailed discussion of these techniques is beyond the scope of this chapter, but we 
recommend that the interested reader consults a reference textbook [MUR 01] or the 
internet (http://micro.magnet.fsu.edu/primer). 

Briefly, these specialized techniques use two concepts: 

– Dark field: The scattered beams at large angles (high spatial frequencies) crossing 
the sample carry information relating to strong phase or amplitude gradients and are used 
to generate an image which emphasizes the contours of the sample. 

– Phase contrast and differential interference contrast (DIC): These techniques use 
the phase difference between a set of two beams crossing the sample6 to create an 
interference pattern which reveals the thickness of the sample.  

These conventional contrasts have a limited resolving power (equation (2)) and are 
unable to distinguish two nano-objects separated by a distance below the diffraction limit 
and which furthermore present a very faint contrast (absorption or refraction). Figure 
10.3 shows neuron cells observed with various contrast mechanisms available in 
classical transmission microscopy (dark field and phase contrast). 

                                   
6 These classes are “scattered” and “non-scattered” beams in the phase contrast and beams 
with different polarization states in the difference interference contrast (DIC). 
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Figure 10.3. Neuron cells imaged with the dark field (A) and the phase contrast 
technique (B) (from http://www.zeiss.de/) 

10.3.2. The fluorescence contrast mechanism 

Fluorescence is a very efficient contrast mechanism which is widely used in live 
optical microscopy, especially in the detection of molecular species. 

Fluorescence is the process of light emission from molecules experiencing 
electronic transitions following photo-activation7. 

 

 

 

 

 

 

 
 (A)        (B)    (C) 

Figure 10.4. Jablonski diagram of 1-photon (A) and 2-photon (B) fluorescence processes. 
(C) Typical fluorescence absorption and emission spectra of a dye molecule 

 

                                   
7 Fluorescence is a sub-class of luminescence which indicates the various processes leading to 
molecular light emission (chemical, mechanical, biological, etc.). 
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As depicted by the schematic Jablonski diagram in the energy space, the 
excitation beam is absorbed and populates the S1 electronic state from which the 
luminescence is produced through a radiative relaxation to S0 (Figure 10.4A–B). The 
spectral shift between the absorption and emission maxima (Figure 10.4C) is called 
the Stokes shift. The optical instruments which use the fluorescence contrast often 
require strong optical filtering to separate fluorescence from the excitation light. If 
the transition from the fundamental level S0 to the excited level S1 corresponds to 
the absorption of a single photon, the resulting fluorescence is called a 1-photon 
fluorescence process (Figure 10.4A).  

If the transition from S0 to S1 requires the simultaneous absorption of two 
photons, the resulting fluorescence is called a 2-photon absorption or fluorescence 
process8 (Figure 10.4B). Note that in this case the excitation wavelength is twice the 
wavelength of maximum absorption shown in Figure 10.4C. 2-photon fluorescence 
is a quadratic process in excitation field intensity and is very unusual as compared to 
a 1-photon process; to be observed it requires high peak power that can be found in 
ultrashort lazer pulses9. 

The success of fluorescence contrast is mainly due to the excellent quantum 
efficiency10 of some dyes together with the ability to hybridize these dyes with 
various bio-molecules (lipids and proteins). 

Since the discovery of the green fluorescent protein (GFP) and the possibility of 
including its genome in a host cell to tag a specific protein [BRE 97; TSI 98], 
fluorescence microscopy has been enjoying a strong revival. The resulting GFP 
chimer protein is produced by the cell and possesses the properties of the native 
protein together with being fluorescent. Figure 10.5 shows a confocal microscopy 
image of Hela cells expressing a membrane protein merged with GFP.  

                                   
8 The expression “2-photon fluorescence” should more accurately be replaced by “2-photon 
absorption” as 2 photons are absorbed from the excitation field. 
9 The 1-photon absorption cross-section of a dye molecule is around σ1=10-16cm2 whereas it 
goes down to σ2=10-49cm4.s in the case of a 2-photon process. 
10. As an example, the quantum efficiency of Fluoresceine and Rhodamine dye reaches 0.9 
(ratio between the number of absorbed and emitted photons). 
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Figure 10.5. 1-photon fluorescent image of the ABC1 membrane protein merged with GFP. 
The Golgi and the plasma membrane are visible (courtesy Yannick Hamon – CIML) 

One drawback of fluorescence is the photobleaching of dye molecules when they 
are excessively illuminated with the excitation beam11. Semiconductor quantum dots 
are less subject to photobleaching and offer an attractive alternative to labeling bio-
molecules [ALI 04]. 

10.3.2.1. The lifetime contrast 

It is possible to use the excited electronic state lifetime of the fluorescent 
molecule to generate a contrast. This lifetime contrast is known as FLIM 
(Fluorescence Lifetime Imaging Microscopy) and has the interesting property of 
being independent of the dye concentration inside the sample. FLIM images are 
obtained by recording the dye lifetime for each point in the sample. This lifetime is 
dependent on the local dye environment together with the physiological conditions 
of the cell (Figure 10.6). 

 

 
 

Figure 10.6. Fluorescent image (A) and FLIM image (B) of plant tissue (convalaria). The 
lifetime range is between 0.5ns and 2.5ns (from http://www.lambert-instruments.com) 

                                   
11 Typically a fluorescent molecule emits between 104 and 106 photons before it photobleaches. 

 (A)           (B)    
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 This technique is of particular interest when studying fluorescence resonant 
energy transfer12 (FRET) between two fluorescent molecules. Instead of monitoring 
the increase in fluorescence of the acceptor when FRET occurs, it is much more 
interesting to study the lifetime decrease of the donor. 

The FLIM technique generally uses sub-picosecond lazer pulses to detect the 
nanosecond lifetime of dye molecule and its variation. 

10.3.2.2. Resolving power in fluorescence microscopy 

The optical resolution achievable in fluorescence microscopy is essentially 
limited by the diffraction limit given by equation (2). Therefore, it is impossible to 
distinguish two molecular emitters separated by a distance less than dx,y=wmin in 
the plane perpendicular to the optical axis. This Rayleigh criterion deals with the 
ability of the optical system to separate two entities, nevertheless it does not forbid 
localizing a single emitter with an accuracy better than dx,y.  

This case is precisely the one found in single molecule detection where a 
nanometer size emitter appears as a diffraction pattern (Airy disk) in the microscope 
image plane. This Airy disk is well described by (J1(r) /r)

2, where J1 is the first order 
Bessel function and r the transverse spatial coordinate.  

If the signal to noise ratio is good enough, it is possible to follow the Airy disk 
center with a precision much better than the diffraction limit (Figure 10.7). 

It is therefore possible to follow the trajectory of a single fluorescent molecule 
with an accuracy of a few tens of nm. In this specific case, far field optics can even 
reach a resolution of a few nm13. 

                                   
12 FRET: when two fluorescent molecules are a few nm apart, an electromagnetic energy 
transfer can occur from the acceptor molecule to the donor molecule. This energy transfer is 
possible if the absorption band of the acceptor overlaps the emission band of the donor and 
follows a law in 1/r6. 
13 In single particle tracking (fluorescent molecules and beads) [NIS 03] and [YIL 04] claim 
a precision of a few nm. 
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Figure 10.7. Super resolution in single particle tracking: the Airy disk center can be localized 
with a nm accuracy if the signal to noise ratio is good enough 

Confocal microscopy 

To achieve the best transverse resolution dx,y, one has to clearly identify the Airy 
disk corresponding to a single fluorescent molecule. This is a hard task when 
fluorescent light also comes from emitters located beyond or above the depth of 
field dz. This is often the case in 1-photon fluorescence where all the emitters 
located in the excitation path are activated. The classical technique for getting rid of 
this parasitic fluorescence is to place a pinhole in front of the detector (Figure 
10.8A). This so called “confocal” set-up aims at stopping the fluorescent light 
coming from emitters located above or under the depth of field area. Furthermore 
the pinhole spatially filters a transverse area corresponding to the image of the 
pinhole in the object plane. In all, this spatial filtering defines an “observation 
volume” whose best transverse14 and longitudinal extension are given by [PAW 95]. 

( )20.4    ;   1.4= =confoc confoc
xy zd d n

NA NA
λ λ

 (4) 

One can see that transverse extension is slightly better than in wide field 
microscopy (wmin in equation (2)) whereas the longitudinal extension is slightly 
larger than the depth of field dz. Nevertheless, the signal to noise ratio coming from 
this confocal observation volume15 is excellent. In confocal microscopy the image is 
built by raster scanning the observation volume through the sample. 

                                   
14 One speaks of “best resolution” when the pinhole radius divided by the optical 
magnification equals wmin. For a larger pinhole, the observation volume is larger. 
15 In a first approximation one can consider that the transverse and longitudinal extensions of 
the optimal observation volume are equal to 2dxy

confoc and 2dz
confoc respectively. For a 
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  (A)    (B) 

Figure 10.8. Confocal microscopy set-up (A), in the case of 2-photon fluorescence the 
confocal pinhole can be removed. (B) 1-photon fluorescence (top) and 2-photon fluorescence 

(arrow) (from Bio-Rad website: http://www.microscopy.bio-rad.com) 

In the case of 2-photon fluorescence [DEN 90; DIA 02], the confocal pinhole 
can be removed because this unlikely process takes place only at the very focal 
plane where the excitation beam is the sharpest (Figure 10.8B). It is interesting to 
note that, without a confocal pinhole, the 2-photon observation volume is twice as 
large as in the 1-photon case (essentially because the excitation wavelength is twice 
as large). This is the same for the resolution, which is degraded by a factor of 2. 
Nevertheless, it is possible to recover the 1-photon resolution by using a pinhole16. 

One real advantage of 2-photon fluorescence is its ability to excite 
simultaneously chemically different fluorescent molecules with the same infra-red 
(IR) pulse. This is possible because the 2-photon absorption cross-sections of 
common fluorescent probes spectrally overlap [ZIP 03]. 

10.3.3. Non-linear microscopy 

In non-linear microscopy the contrast mechanism uses light-matter interaction, 
which belongs to the field of non-linear optics (see Chapter 5 in this book). 
Advances in this field take advantage of recent progress in ultra-fast lazer systems 
and the associated strong optical peak power which it is possible to generate. As 

                                   
λ=0.5µm wavelength and a 1.2 numerical aperture in water one gets 2dxy

confoc = 0.33µm ≈ 2/3 λ 
and 2dz

confoc = 1.3 µm ≈ 2.5 λ. 
16 Nevertheless, photobleaching in 2-photon fluorescence is larger than in the 1-photon case. 

Cell 
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Fluo 
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discussed above, 2-photon fluorescence is a good example of a non-linear contrast 
mechanism.  

10.3.3.1. Second harmonic generation (SHG) 

SHG is a non-linear process where a fundamental wave (pulsation ω) interacts 
with a non centro-symmetric medium to generate a harmonic wave (pulsation 2ω). 
The harmonic field is coherent with the fundamental field and is generated in 
specific directions which follow the phase matching condition. These specific 
directions are related to the distribution and orientation of the induced dipoles in the 
interaction volume [MER 01] (Figure 10.9). 

 
 
 
 
 
 
 
 

 
 
 
 

Figure 10.9. (A) Relation between the generated harmonic wave and the orientation of the 
induced dipoles. (B) On the contrary fluorescence (1 or 2 photons) has an isotropic radiation 

pattern [ZIP 03]  

This effect can be used to image the cell membrane (Figure 10.10). 

  
(A)     (B) 

Figure 10.10. Non-linear molecules (Di-6-ASBPS) are introduced in a cell. The molecules 
inserted in the membrane create a non centro-symmetric medium and generate SHG  

(A) whereas the molecules in the cytoplasm have no privileged directions and  
generate only fluorescence (B) (after [MOR 01])  
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In the previous example, exogenous non-linear molecules are used to create SHG 
but it is possible to use endogenous structures such as collagen, which naturally 
present a non centro-symmetric structure to generate SHG efficiently. 

Using high peak power it is also possible to generate third harmonic generation 
(THG) [MUL 98]. 

10.3.3.2. Coherent anti-Stokes Raman scattering (CARS) 

Contrary to SHG which is a non-resonant process, stimulated Raman scattering 
uses vibrational molecular levels to generate a contrast mechanism which reveals the 
local density of a specific molecular bond.  

This process, known as CARS (Coherent Anti-Stokes Raman Scattering), does 
not require labeling or staining and can be used directly on fresh living samples. 
Although four wave mixing processes are not new in microscopy [DUC 82], 
advances in ultrafast lazer systems have revolutionized the technique [ZUM 99]. 

10.3.3.2.1. Spontaneous Raman 

In Raman scattering, an incoming lazer optical wave (pulsation ωl) experiences 
an inelastic scattering by a molecule and is converted into a Stokes wave (pulsation 
ωS) and an anti-Stokes wave (pulsation ωAS). The frequency shift between the 
incoming and the scattered waves depends on the molecular vibrational levels 
(pulsation ΩR) such that ωL-ωS= ωAS-ωL= ΩR. In the photon picture, Stokes and anti-
Stokes waves are associated to an absorption process which starts from the 
fundamental and the excited vibrational levels respectively (Figure 10.10A–B). Note 
that the upper levels involved in the CARS process are a priori virtual (dashed lines 
in Figure 10.11) but can be real (electronic levels) in the resonant Raman case. 

 

 
 (A)   (B)   (C) 

Figure 10.11. Spontaneous Raman: Stokes wave generation (A) and anti-Stokes wave 
generation (B). CARS process: (C) the four wave mixing process creates the anti-Stokes wave 
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Inelastic scattering which creates the anti-Stokes wave is very unlikely because it 
starts from the vibrational excited level. For this reason only the Stokes wave can be 
detected in practice. The spectral positions of the Stokes line give valuable 
information on the molecular bond and their density in the observed sample; such 
information is the essence of Raman scattering. Using such a technique in living 
tissue it has been possible to reveal the localization of a cancerous cell tumor [CHO 
02]. This inelastic scattering process is very weak17 compared to fluorescence and 
cannot be implemented at a sub-cellular level18. 

10.3.3.2.2. CARS 

The essence of CARS is to populate the excited vibrational level by means of 
stimulated emission. This non-linear optical process can be produced at the focal 
point of a microscope objective lens if the Laser and Stokes waves are overlapping 
spatially and temporally and are such that ωL-ωS= ΩR. In this case a four wave 
mixing process takes place, generating an anti-Stokes wave whose pulsation is 
ωAS=2ωL-ωS-ωR. 

In practice, one must tune the frequency difference between the Laser and Stokes 
pulses to match the desired vibrational chemical bond. After careful tuning to 
overlap these two pulses in time and space, one simply raster scans the sample, as in 
confocal microscopy, to build an image of the anti-Stokes signal (Figure 10.12). 

 

   
  (A)    (B) 

Figure 10.12. CARS images: (A) NIH-3T3 cells: when ωL-ωS is tuned to the CH2 vibration, 
one can distinguish the nucleus membrane and the mitochondria. (B) Nucleus image: when 

ωL-ωS is tuned to a DNA vibration, chromosomes can easily be seen (after [CHE 02]) 
                                   
17 Raman cross-sections are in the 10-31–10-29 cm2 range. The largest values are obtained in 
resonant Raman. This should be compared with the absorption cross-section of a good dye 
which reaches σ1=10-16 cm2. 
18 Spontaneous Raman can be strongly enhanced (up to 1014) by metallic nanoparticles. This 
effect is known as SERS (Surface Enhanced Raman Scattering) and is interesting in nano-
biophotonics [KNE 02]. 
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The spatial resolution of a CARS microscope is similar to the resolution of  
2-photon fluorescence. 

We have shown some contrast mechanisms that are able to build images with 
molecular information on bio-samples. All of these techniques are fundamentally 
limited by the laws of diffraction. As we will see in the next section, there are some 
clever techniques which allow us to push the ability of these optical systems further. 

10.4. Reduction of the observation volume 

We learned from Optics books that the resolution of optical microscopes is 
limited by the laws of diffraction [ABB 73]. At best, a confocal microscope reaches 
the resolution given by equation (4) and conventional optical methods are unable to 
distinguish two identical objects when separated by a distance smaller than this limit 
value. However, as explained above, the diffraction limit does not prevent us from 
detecting single molecules that are much smaller than the diffraction limit if they are 
sufficiently far apart. Moreover, when spectrally different, they can be a priori 
“separable” whatever their inter-distance (in this case the resolution depends on the 
signal to noise ratio). Reduction of the observation volume is still a crucial problem 
for resolving small details or detecting identical single molecules at high 
concentration. In biology this is the case for most fluorescently-labeled molecules. 
When the surface concentration is larger than a few tens of molecules per µm2 or the 
volume concentration larger than a few tens of nanoMoles/l, molecules cannot be 
optically separated. 

How can the observation volume be reduced below the limit imposed by 
diffraction? Optical methods based on non-linear [HEL 03] and near field optics 
[LAN 01] have recently been proposed to bypass this limit.  

For photo-excitation the size and shape of the observation volume depend on 
both the properties of the excitation field and the optical system which collects the 
light. To describe these characteristics it is appropriate to introduce the Molecular 
Detection Efficiency function (MDE). In the linear regime it is defined for every 
spatial coordinate r as the product of excitation intensity Ie by the collection 
efficiency function (CEF): 

)().()( rrr eICEFMDE =  (5) 

The MDE function gives locally the power emitted by a point source which is 
collected by collection optics. The methods which are proposed to reduce the 
observation volume aim at modifying the excitation and/or collection efficiency. 
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10.4.1. Far field methods 

The optical resolution of a microscope is related to the size of the smallest focus 
spot (equations (2) and (4)). By using shorter optical wavelengths and higher 
numerical aperture objectives, it is theoretically possible to reduce this spot. 
However, living samples are easily damaged for optical wavelengths below 350nm 
and the half aperture angle is technically limited to 75°19. 

10.4.1.1. 4Pi microscopy 

The numerical aperture of the microscope’s collection system can be increased 
by combining the aperture of two apposite objectives (Figure 10.13B). These 
techniques are called 4Pi [HEL 92] or I5-M [GUS 99]. They lead at best to a 
sevenfold increase in the axial resolution. Two contra-propagating fields are 
focussed at the same position by two apposite objectives.  

The central spot has a width of ~λ/4n ≈ 100nm along the optical axis but is 
surrounded by interference fringes with a period of ~λ/2n ≈ 200nm, whose number 
and amplitude increase as the numerical aperture decreases. To reduce the side-
lobes’ contribution different methods have been proposed: spatial filtering, 2-photon 
excitation, and using the difference between the excitation and fluorescence 
wavelengths. This latter strategy is based on the fact that when excitation and 
fluorescence wavefronts interfere on the sample and the detector, respectively, the 
associated side-lobes do not coincide anymore. When combined with image 
restoration, such methods yield the optical resolution down to ~100nm in the three 
spatial dimensions. 4Pi microscopy requires a precise adjustment of the two apposite 
objectives, which can make its implementation difficult. This technique of far field 
optics is remarkable.  

 
 

                                   
19 Some manufacturers propose NA=1.45 objectives working in a n=1.5 immersion medium.  
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Figure 10.13. Detection volume (MDE) obtained in confocal microsopy (A), in 4Pi 
microscopy using two opposite objectives (B) and in a set-up using a mirror at  

the focal plane of a confocal microscope (C) 

10.4.1.2. Microscopy on a mirror 

In our group we proposed a method that combines high numerical aperture 
and high axial resolution. We used a mirror located at the focal plane of the 
objective lens, in order to reflect both the excitation and emission beams [LEN 
02; RIG 03]. The interference of the excitation incident and reflected beams 
gives rise to an axial modulation of the excitation intensity with a period of 
~λ/2n ≈ 200 nm, as in 4Pi microscopy. Single fluorescent molecules diffusing 
through the collection volume emit a fluorescent signal that fluctuates with time. 
The diffusion of the molecules through a bright fringe produces a fluorescence 
fluctuation whose duration depends on interfringe spacing and the diffusion 
coefficient. The temporal analysis of these fluctuations, which is called 
fluorescence correlation spectroscopy (FCS), provides information on a 
molecule’s dynamics, diffusing in a volume as small as ~λ/2n along the optical 
axis. Moreover, because the mirror redirects the fluorescence beam towards the 
objective, the collected signal is enhanced (>fourfold) as compared to the 
standard confocal set-up. Figure 10.13C shows the MDE obtained in the 
presence of a mirror. 

10.4.1.3. Stimulated emission depletion: STED 

Far field linear methods are not suitable for reducing the observation volume 
below λ/2n. In free space, a possible method consists of using a non-linearity 
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between the excitation field and the signal to be detected (e.g. the fluorescence). In 
1994 Hell and Wichmann [HEL 94] proposed using the saturation of a two-state 
electronic transition to locally forbid fluorescence emission. 

The method consists of depleting a fluorescent molecular state (first excited) by 
a focussed beam which exhibits a non-zero intensity point. In one modus operandi, 
which is called stimulated emission depletion (STED) [KLA 00], fluorophore, which 
are first excited by a focussed pulse to a state S1 (Figure 10.14A), are stimulated 
down to their ground state S0 by a second beam with a donut shape20 (Figure 
10.14C). Only fluorophores which are in the central region of the donut emit a 
fluorescence signal that can be detected. Because depletion is a non-linear effect, the 
non-depleted central region can be smaller than the diffraction limit21. 

This method enables us to reduce the observation volume down to22 0.67×10-18 l 
(Figure 10.14C). The observation volume can be scanned through the sample, as in 
confocal microscopy, and high resolution images can be obtained. One of the current 
obstacles to STED microscopy rests in the limited number of “good” fluorophores 
that can be efficiently depleted. Nevertheless, this method has opened a new window 
in microscopy. 

                                   
20 Such a shape is obtained by placing a phase mask before the microscope objective. 
21 Superresolution is obtained by virtue of non-linearity, whereas the excitation and depletion 
beams are diffraction-limited. 
22 The non-depleted final volume is roughly a sphere with a 100nm diameter. 
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Figure 10.14. Scheme of Stimulated Emission Depletion (STED) microscopy. (A) Fluorophore 
energy diagram. One molecule, which is excited in state S1 can be brought down its fundamental 
level S0 either by spontaneous or stimulated emission. (B) To saturate depletion, the STED pulse 

must be intense and longer than the fluorescence lifetime of the molecule in the state S1. Excitation 
and depletion pulses are synchronized but temporally delayed to deplete the S1 state before 

spontaneous relaxation. (C) The depletion beam is superimposed on the excitation beam but 
exhibits zero-intensity at the focus point. The saturated depletion reduces strongly the size  

of the fluorescence collection volume (from [HEL 03]) 

10.4.2. Near field methods 

To circumvent the diffraction limit, near field methods can alternatively be used. 
The advent of near field microscopy (in particular Atomic Force Microscopy – 

volume 
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AFM), which uses a very sharp tip to scan the surface of the sample23, has opened 
the way for nanometric observation.  

The diffraction limit as expressed by equation (2) is only correct for far field, in 
other words when the propagating waves can propagate and be focussed. By using 
evanescent waves located in the vicinity of dielectric or metallic structures, whose 
curvature radii are smaller than the wavelength24, high intensity spots whose 
extensions are much smaller than the diffraction limit can be obtained. 

10.4.2.1. NSOM 

Near field scanning optical microscopy (NSOM) enables fluorescence imaging 
to be performed with a resolution down to a few tens of nm25. The size of the 
NSOM tip’s aperture (Figure 10.15A) reduces the size of the detection volume in 
order to detect single molecules at a concentration of up to 100/µm2 [GAR 00].  

Most NSOM applications in biology are concerned with isolated and fixed 
samples26, for example fluorescent chromosomes [MOE 96] or cytoskeleton isolates 
[BET 93]. To our knowledge, there has been no report on live cells in physiological 
conditions, despite the efforts of a few teams. 

10.4.2.2. TIRF 

Total Internal Reflection Fluorescence (TIRF) also benefits from the properties 
of the evanescent field. At low angles (below the critical angle), total internal 
reflection results when light propagating within a high optical index medium (e.g. 
glass) reaches an interface with a lower optical index medium (e.g. aqueous 
solution). Although the light is fully reflected, an evanescent field is generated 
which extends beyond the interface into the aqueous solution over a distance in the 
order of 100nm27 (Figure 10.15B). This method can be used to image the contact 
area between a cell and a substrate [TOO 01] (Figure 10.16) or to analyze ligand-
receptor associations [LIE 03]. 
 

                                   
23 Tip to sample distance is in the order of a few nm. 
24 There is theoretically no limit if evanescent waves with sufficiently large wave vectors are 
present. 
25 See Chapter 7 on near field optics. 
26 The biological sample is fixed due to a chemical which makes it more rigid. 
27 The evanescent wave penetrates over a distance d=λ/4π(n1

2sin2θ1-n2
2)-1/2 where n1 is the 

optical index of the high index medium, n2 the optical index of the low index medium and θ1 
the incident angle to the normal. 
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Figure 10.15. Near field methods and reduction of the observation volume. (A) NSOM.  
(B) TIRF. (C) Single-molecule detection in sub-wavelength metallic apertures 

 

 
 

Figure 10.16. Images of a fluorescently-labeled cell (a) wide field fluorescence image;  
(b) TIRF image. In TIRF, the only region which is close to the cover-slip surface (a few tens 

of nm above) is observed (from Nikon Microscopy: http://www.microscopyu.com) 

10.4.2.3. Nanoholes 

TIRF uses a planar observation interface and therefore its transverse resolution 
(in x,y plan – see Figure 10.15) is diffraction-limited. The shaping of 

x 

z 
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excitation/detection volumes is also possible in 3D due to structures with “defects”, 
whose size is smaller than the optical wavelength. For example, sub-wavelength 
apertures in metallic films can be used to define nanometric detection volumes [LEV 
03] (Figure 10.15c). In this example, a focussed beam illuminates a single nanohole; 
because the excitation field is evanescent inside the hole, the detection volume can 
be as small as 10-21 l. Because of such structures, single molecules can be detected 
up to 100µM concentration, making studies of low affinity molecular associations 
possible. Moreover, when the aperture diameter is about one third of the light 
wavelength (150 nm) the detected fluorescence count rate per molecule is drastically 
increased (up to 6.5) as compared to larger holes or open solution [RIG 05]. By 
taking benefit of this significant enhancement, such apertures could serve as 
efficient nano-optical sources or nano-wells for fast and highly parallel molecular 
analysis at high concentration. 

10.5. Conclusion 

By presenting a few examples we have shown that optical microscopy enables us 
to study the organization of biological objects both spatially and temporally. While 
fluorescence makes the detection of single molecules possible, label-free methods 
can produce complementary information, based on vibrational contrast for example. 
Even if optoelectronic systems can be efficiently used to perform fast single spot 
measurements, crucial improvements need to be made to increase the speed of 
imaging scanners and high-sensitivity cameras. The development of new fluorescent 
probes is also an important area. 

Because classical optical systems are spatially limited by the laws of diffraction, 
the detailed architecture of live cells can only be tackled by new methods. In this 
chapter we presented a few strategies which have been proposed in wide and near 
field optics to bypass the diffraction limit. These new tools will be of benefit in 
biology and will hopefully reveal the details of information fluxes in the cell, and 
finally replace the arrowheads in Figure 10.1. 
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