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Preface

...no one expects conventional silicon-based micro-electronics to continue fol-
lowing Moore’s Law forever. At some point, chip-fabrication specialists will find
it economically infeasible to continue scaling down microelectronics. As they
pack more transistors onto a chip, phenomena such as stray signals on the chip,
the need to dissipate the heat from many closely packed devices, and the difficulty
of creating the devices in the first place will halt or severely slow progress.

The above quotation is taken from an essay titled “Computing with
Molecules” written by Mark Reed and James Tour in 2002. The quote clearly
shows that as computer engineers we are at a technological and scientific in-
flection point. However, the advent of nanotechnology might be the recourse
for continuing improvement of our computing power. Computer engineers
and scientists face new challenges as nano-technological innovations grow in
different fields of science and technology. As industry experts argue on the
scaling of Moore’s law beyond 2015, one fact is certain about the future of
electronics: The certainty is in the uncertainty germane in the size, nature, and
physics of electronic devices on which we will build our future computing and
communications infrastructures.

One of the grand challenges in the nano-scopic computing era is guarantees
of robustness. Robust computing system design is confronted with quantum
physical, probabilistic, and even biological phenomena, and guaranteeing high
reliability is much more difficult than ever before. Scaling devices down to the
level of single electron operation will bring forth new challenges due to prob-
abilistic effects and uncertainty in guaranteeing ‘zero-one’ based computing.
Minuscule devices imply billions of devices on a single chip, which may help
mitigate the challenge of uncertainty by replication and redundancy. However,

shear scale.
Much of the nanotechnology research taking place today is confined in the

domain of material science, electrical engineering, quantum and device physics,
chemistry, and even biology. However, computer engineers and scientists will
be forced to confront the effects that we described above as nanostructured

such device densities will create a design and validation nightmare with the
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material with unreliable and defective substrates begin to enter into the main
stream of computer design.

According to estimates made by nanotechnology experts, we should see
such substrates in the upcoming years (see Table 0.1), and hence the associated
problems of guaranteeing reliable computing and scaling in design automation
tools. This table, published in Wired Magazine about 10 years ago, might not
reflect the current predictions. Nonetheless, a point to remember about this
table is that breakthroughs in nanotechnology are happening every day and
hence predictions of this nature are being updated accordingly. As an example,
last April at a conference in Washington DC, a company announced that they
have been able to capture images at 10−8 meter scale, which is a breakthrough
in the capability of Scanning Tunneling Microscopes. Such inventions often
lead to a quick progression unprecedented and heretofore unthinkable.

Table 0.1. Prediction on Arrival of Nano Computing by Nano Technology Experts, Wired
Magazine in 1995

Expert Name Birge Brenner Drexler Hall Smalley
Arrival Prediction 2005 2025 2015 2010 2100

The questions that confront computer engineers regarding the current status
of nanocomputing material and the reliability of systems built from such minis-
cule devices, are difficult to articulate and answer. We have found a lack of
resources in the confines of a single volume that at least partially attempts to
answer these questions.

In November 2003, during the International Conference on Computer-Aided
Design (ICCAD) we started a discussion with Mark De Jhong of Kluwer on
the idea of putting together a book that would serve as a single source for
addressing many of the questions researchers would confront when designing
systems based on nano-scale or quantum effect devices. Fortunately, that year,
following ICCAD in San Jose, the IEEE High Level Design and Validation
Workshop (HLDVT) was held in San Francisco. At the workshop, we organized
a special session entitled “Science of The Small Coming the Bigway: Are We
Ready for the Design and Validation Challenges?” The speakers included Seth
C. Goldstein, Forrest Brewer, and Sankar Basu. Seth Goldstein spoke about
his work on defect-tolerant, dynamically reconfigurable architectures that are
based on future molecular devices, which drew much interest from the audience.
Forrest Brewer talked about coherence effects in today’s computing, and how
the future computing paradigms need to preserve some of these coherence
effects. Finally, Sankar Basu from the National Science Foundation spoke about
important issues in nanocomputing and the NSF’s interest in nanotechnology. A
very interesting panel discussion followed, and from the discussions and queries
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from the audience, we were more convinced that we need a single source put
together for bringing these issues to the forefront. This resulted in our effort to
collect some of the most relevant work that deals with the issue of design and
validation of architectures on top of nano-scale devices.

As we discussed the possibility of this edited book with the experts in the
field, they were immediately ready to help out by contributing various chapters.
Their immediate response and enthusiam has made this very informative volume
possible, within a span of six months. Based on the emphasis of the chapters,
we have divided the book into four major parts. The first part is meant to
introduce the readers to the physical realities of implementing nano-computing,
using various technologies such as carbon nano tubes (CNT), quantum dots,
and molecular switches. This part also ties in physical layer design issues
such as variational effects. The sole chapter in this part is written by Arijit
RoyChowdhury and Kaushik Roy from Purdue University. In this opening
chapter they introduce the readers to the intricacies as well as the promises of
the nano-scopic technologies for implementing computing.

Part two is a relatively larger part of this volume, and mainly focuses on
defect-tolerance. As we have hinted earlier, defects will be a feature of nano-
technology by the estimates by experts. One can no longer assume that pieces
of silicon that pass the post-silicon tests are the only one used for system design.
As a result, designers and system architects have to consider defect-tolerance
as a first-order parameter when making design decisions. These defects are
not only due to manufacturing imperfection, but also due to signal noise, quan-
tum effects, deformation, and aging. Techniques from traditional fault-tolerant
literatures need to be borrowed and enhanced, reconfigurability needs to be de-
signed in, and reliability figures of merits need to be computed. The six chapters
in part II are dedicated to this important aspect of nano-computing. This part
starts with an article by Paul Graham and Maya Gokhale of Los Alamos Labs,
where various defect-tolerant techniques are surveyed. Given this introduction,
the next chapter by Mahim Mishra and Seth Goldstein discusses reconfigura-
tion centric defect-tolerance. The next chapter written by Lisa Durbeck and
Nicholas Macias of Cell Matrix, introduces more abstract reconfigurable fabric
implementation in the form of cells, which will allow dynamic reconfiguration
for localization of defects, and thereby guarantee fault-containment. After the
readers have thorougly familiarized themselves with reconfiguration based de-
fect tolerance in the first three chapters, the following chapter by Iris Bahar,
Jie Chen and Joseph Mundy of Brown University presents a novel model of
computation to capture the coherence effects in nanocomputing devices, and
how Markov Random Fields can be used to capture the computing with such
effects. This chapter is a great introduction to the next chapter by Debayan
Bhaduri and Sandeep Shukla of Virginia Polytechnic on automated tools for
reliability/redundancy trade-offs for defect-tolerant architectures. The final pa-
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per in this part is by André DeHon from Caltech, titled “Law of Large Numbers
for System Design” which brings perspective to the uncertainty at the device
level in the nanoscopic substrate and where the abstraction boundaries are, and
at what levels we assume determinism approximating the uncertainties.

One very important technology for nano-scale computing is projected to be
Quantum Dot Cellular automata and variants of quantum computing devices.
Given that such devices work with single electron quantum dots, and the com-
putation often blurs the demarkation between 1 and 0s, implications to high
level design when using these technologies may be quite broad. Part three of
this book is organized in three chapters dealing with quantum dot devices and
their design parameters and rules. The first chapter is a great introduction to
the challenges of Quantum Computation by Diana Franklin of California Poly-
technic State University, and Fred Chong of University of California at Davis.
This opening chapter is followed by two chapters dealing with design rules of
QCA devices. The first one by Michael Niemier of Georgia Tech and Peter
Kogge of the University of Notre Dame provides a detailed look at the Quan-
tum Dots, Quantum Wires, and clocking issues. The second one by Sung Kyu
Lim and Michael Niemier from Georgia Tech follows on this to discuss clock
zoning in such systems and details the algorithms for partitioning systems into
clock zones. These papers will be of great importance to design automation
tool designers for future QCA based systems. Part four complements the rest
of the chapters with a single chapter on a look at formal verification technol-
ogy for large scale designs and for designs with unknowns or uncertainties.
This last chapter is written by Michael Hsiao and Rajat Arora of Virginia Tech,
Shuo Sheng of Mentor Graphics, Ankur Jain from University of California at
Berkeley, and Vamsi Boppana of Zenasis. This part introduces to the readers
possibilities of verifying large scale designs with redundancy and replications
as we have seen common in defect-tolerant design.

In summary, we believe that this volume contains a large amount of research
material as well as new ideas that will be very useful for some one starting
research in the arena of nanocomputing, not at the device level, but addressing
the problems one would face at system level design and validation when nano-
scopic physicality will be present at the device level.

Sandeep K. Shukla and R. Iris Bahar



Foreword

The manufacturing approaches that have been developed and evolved for
modern computational hardware represent what is undoubtedly the highest level
of technological achievement that the world has ever witnessed. For some
30+ years this technology has advanced at a pace and through a number of
generations that is unsurpassed by any other. However, it has also become
increasingly apparent that over the next decade, this technology paradigm will
mature. Issues such as power consumption, lithographic patterning limitations,
and others are beginning to come up as red flags.

Nevertheless, the physics of computation is still young. A number of emerg-
ing approaches, each one of which represents, to some degree, a paradigm shift,
are beginning to gain at least scientific credibility. These approaches include
quantum computation, spintronics, quantum cellular automata (QCA), molec-
ular electronics and neural networks, to name just the major ones. All of these
approaches have so-called ‘killer applications’. For quantum computing, it is
the reduced scaling of various classes of NP-hard problems. For QCA it is an en-
ergy efficient computational approach that should get better as the components
are reduced in size. For spintronics, it is a memory density that scales exponen-
tially with the number of coupled spin transistors. For molecular electronics,
it is an improved energy efficiency per bit operation as well as the potential for
continued device scaling to true molecular dimensions. True neural networks
possess a greatly increased connectivity and therefore the potential for a greatly
increased rate of information flow through a circuit.

All of these alternative computing approaches face tremendous challenges
that must be overcome before they can transition into technologies. These
include, for example, issues related to materials and/or molecular components
that are completely foreign to modern electronics manufacturing. Furthermore,
most of them are nanotechnologies — that is, they will require a near atomic
level control over the manufacturing steps, and manufacturing ‘noise’ will trans-
late directly into defective components. Finally, each of them will require new
thinking and significant breakthroughs with respect to architecture. This last
point is a critical one. Just as it is foolish to build a house without appropri-
ate design guidelines, it is foolish to build a new computational technology
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without co-designing a framework for that construction. This emerging arena
of ‘alternative computer architectures’ constitutes a new branch of computer
engineering that is both fraught with challenges and rich with opportunity.

This book will serve a unique purpose. Several times over the past few years
I have had students ask me to point them toward literature references on defect
tolerant architectures for nano-electronics, or nanoelectronics design concepts,
etc. For quantum computing and neural nets, well established research com-
munities exist and such references are easy to point to. For some of these other
paradigms, papers often appear in journals that biologists, chemists, materials
scientists, physicists, etc., rarely encounter — or, worse yet — students must
turn to patent literature! This book brings together, for the first time, many of
these modern architectural concepts into a single text, with chapters written by
a terrific group of experts. It is sure to become a mainstay in my group, and I
expect that it will be a valuable resource for many years to come.

Jim Heath
Elizabeth W. Gilloon Professor
California Institute of Technology
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Preface

Feymann said in one of his famous lectures “There is plenty of room at the
bottom,” in which he referred to the possibility that computing advances may
not have to stop with the gradually diminishing stature of Moore’s Law for
silicon technologies. New possibilities are abundant when we can harness the
computing powers inherent in miniscule particles, atoms, molecules, and their
Coulombic, van der Waals, and quantum interactions, which so far have gone
unexploited.

In a way, silicon technology is already at the threshold of nano-technological
wonders. At the time of publishing this book, most semiconductor companies
have been manufacturing devices at the 90nm scale, some going to 65 nanome-
ter. Companies have even figured out how to scale below these numbers. How-
ever, with device scaling, comes a plethora of problems related to reliability in
the face of cosmic particles, quantum physical interactions, and other physical
phenomena which did not play such an important role in the recent past. As we
scale down in size, we also scale up in number. This throws a challenge as well
for the designers of tools that need to simulate, validate and compute various
performance measures for systems built on nano-scale technologies.

The International Technology Roadmap has projected that silicon technology
could easily continue scaling down at least until the middle of the next decade.
To continue beyond this point, we have to think of alternative technologies.
Already we have been seeing some such alternatives in the form of Carbon
Nanotube devices, molecular switches, and Quantum Dot cellular automata to
name a few. These not only provide novel challenges to the technologists who
physically try to make them but also to designers of systems who have so far
assumed perfect or near perfect non-linear devices as basic components of their
systems. These new technologies not only bring forth new physical challenges,
but also imply system level challenges, where the probabilistic nature of devices
become a reality, and a first class parameter for high level design.

Parts II, III, and IV of this book discuss issues pertaining to system level
design based on nano-scopic technologies. However, in this first part, in order
to ground ourselves to physical reality, we present a chapter that discusses both
the scaling issues in silicon based technologies in the nano-era, as well as carbon
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nanotube (CNT) based technology issues at the physical layer. We believe this
chapter will provide the readers with the appropriate background to appreciate
the later chapters.



Chapter 1

NANOMETER SCALE TECHNOLOGIES:
DEVICE CONSIDERATIONS

Arijit Raychowdhury
Department of Electrical and Computer Engineering
Purdue University
IN, USA

araycho@ecn.purdue.edu

Kaushik Roy
Department of Electrical and Computer Engineering
Purdue University
IN, USA

kaushik@ecn.purdue.edu

Abstract This chapter discusses the problems and challenges in scaling Silicon transistors
in the nanotechnology era. The principle bottle necks to the scaling of Silicon
devices have been discussed. In the latter half of this chapter, novel devices,
particularly carbon nanotubes, have been introduced as possible alternatives to
Silicon. The material properties, principal device characteristics and circuit issues
relating to these revolutionary devices have been discussed.

Keywords: Keywords: Scaling of Silicon, Leakage current, Process variation, Molecular
transistors, Carbon Nanotubes.

1.1 Introduction

For the last three decades the semiconductor industry has witnessed an ex-
ponential growth in accordance with Moore’s Law. Integration density has
attained incredible heights and on-chip functionality has advanced from sim-
ple adders to systems-on-chip in the same time frame. Challenges in device
design, circuit engineering, and fabrication have been met and overcome. As
we advance to an era of nanotechnology, the promise is enormous. Wearable
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computers, bio sensors, adaptive control systems are all set to have a large im-
pact on life. In this new era, the semiconductor devices will be scaled down to
their physical limits. In the process, the circuit and the system engineer is faced
with the challenges of scaling. The Silicon MOSFET is no longer a perfect
switch and the ratio of the on current to the off current is decreasing [14, 43,
57, 21]. Further, process variation has led to variation of the critical transistor
parameters like length, width and threshold voltage (Vth) thereby reducing the
production yield. Research has started in the earnest to gauge the possibility
of newer device structures to mitigate these problems. The novel devices in-
clude modifications of bulk silicon into FINFETs, trigate structures, and double
gate MOSFETs [55]. For example, these modified MOSFETs have better short
channel immunity and better subthreshold slopes. Device designers are also
looking at revolutionary devices like carbon nanotube transistors, molecular
diodes and nano electromechanical systems. These devices with characteris-
tics different from Silicon could potentially have better scalability and increase
the on current to off current ratio.

In this chapter, a brief overview will be presented on the issues associated with
super-scaled bulk silicon devices and an introduction to non-silicon alternatives
will be put forward. Carbon nanotubes have emerged as the most promising
alternative device in the nanotechnology era and there has been considerable
interest in the design and understanding of carbon nanotube field-effect tran-
sistors. In the second part of this chapter, the nature and properties of carbon
nanotubes and carbon nanotube field-effect transistors will be discussed from
a circuit designer’s point of view.

1.2 Silicon Nanoelectronics

To achieve higher density and performance at lower power consumption,
MOS devices have been scaled for more than 30 years [48], [6], [1]. Transis-
tor delay times have decreased by more than 30% per technology generation
resulting in doubling of microprocessor performance every two years. Supply
voltage (VDD) has been scaling down at the rate of 30% per technology gener-
ation in order to keep power consumption under control. Hence, the transistor
threshold voltage (Vth) has to be commensurately scaled to maintain high drive
current and achieve performance improvement of at least 30% per technology
generation. The semiconductor industry has enjoyed the fruits of scaling; but
with shorter and shorter devices the problems of scaling are becoming more
and more predominant. In the first section of this chapter we would visit some
of the scaling issues of bulk silicon transistors.



Nanometer Scale Technologies: Device Considerations 7

Short Channel Effects

Short channel effect in scaled MOSFET devices is the lowering of the thresh-
old voltage Vth with decreasing channel length [55]. In long-channel devices,
the source and drain are separated far enough that their depletion regions have
no effect on the potential or field pattern in most part of the device, and hence,
the threshold voltage is virtually independent of the channel length and drain
bias. In a short-channel device, however, the source and drain depletion width in
the vertical direction is comparable to the effective channel length. This causes
the depletion regions from the source and the drain to interact with each other.
The obvious consequence of this is lowering of the potential barrier between
the source and the channel. This causes lowering of the threshold voltage of the
MOSFET with decreasing channel length, a phenomenon referred to as short
channel effect [55, 40, 51]. Figure 1.1 illustrates the effect of channel length
scaling on the surface potential of the device along the length.

Apart from the channel length, the drain voltage also has a significant effect
on the potential barrier for short channel devices. Under off conditions, this
potential barrier between the source and the channel prevents electrons from
flowing to the drain. For a long-channel device, the barrier height is mainly
controlled by the gate voltage and is not sensitive to Vds. However when a high
drain voltage is applied to a short-channel device, barrier height is lowered
resulting in further decrease of the threshold voltage. The source then injects
carriers into the channel surface without the gate playing a role. This is known
as drain induced barrier lowering (DIBL). DIBL is enhanced at higher drain
voltage and shorter effective lengths Surface DIBL typically happens before
deep bulk punch through. Ideally, DIBL does not change the subthreshold
slope, S, but does lower Vth. The DIBL effect increases as Vds increases.
Higher surface and channel doping and shallow source/drain junction depths
reduce the DIBL effect [55, 40, 51].

In scaled Silicon MOSFETs several other effects like Gate induced drain
leakage (GIDL), hot electron effect and punch-through are important for dif-
ferent biasing regions [55].

Leakage Current in Scaled Devices

It has already been established that one of the primary concerns in Silicon
MOSFETs is the increasing drain control over the channel. Figure 1.2 illustrates
how leakage power is fast catching up with active power in scaled CMOS and
Figure 1.2 shows the principle leakage current components in scaled Silicon
devices. As DIBL increases, the Vth of the device gets significantly lowered
resulting in higher subthreshold leakage current. Subthreshold or weak inver-
sion current is the drain current of the MOSFET when the gate is biased voltage
less than Vth. The minority carrier in the weak inversion region is small but
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Figure 1.1. Surface potential versus lateral distance (normalized to the channel length L) from
the source to the drain for (a) long-channel MOSFET (L = 6.25µm, Vds = 0.5V ), (b) a
short-channel MOSFET (L = 1.25µm, Vds = 0.5V ), (c) a short channel MOSFET at high
drain bias (L = 1.25µm, Vds = 5V ). The gate voltage is same for all three cases [55].

not zero. This results in a diffusion current from the drain to the source of
the device even when the gate to source voltage (Vgs) is at zero potential. The
current increases exponentially as the threshold voltage is lowered [55, 51].

To mitigate the problem of lowered Vth in MOSFETs, the channel doping
is increased in a region below the drain and the source (retrograde well) and
near the source-bulk and drain-bulk junctions (halo implants) [15] (refer to Fig-
ure 1.3). These higher doping regions serve to increase the threshold voltage
of the device and lower the subthreshold current. However, for scaled devices
(leff < 50nm) the increased halo doping creates a high electric field across the
reverse biased drain-bulk junction. This causes a junction band-to-band tunnel-
ing (BTBT) current to flow from the drain to the source of an n-MOS device.
A similar current flows across the source-body junction too depending on the
biasing conditions. Thus the halo doping decreases the subthreshold current at
the cost of higher BTBT leakage in scaled devices. Figure 1.3 illustrates how
the subthreshold and the BTBT currents vary with increasing halo doping.

For scaled devices the oxide thickness is scaled commensurately to increase
the gate control over the channel [51]. This has resulted in yet another significant
leakage current called gate tunneling leakage [20, 9, 29, 60]. Gate tunneling
current is the current due to tunneling of electrons from the conduction band of
bulk silicon and the source/ drain overlap regions through the potential barrier
of the oxide into the gate of the device. This tunneling current becomes more
significant as the oxide thickness is scaled and for sub-100nm devices where
the oxide thickness is about or below 20ºA, gate tunneling forms an important
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Figure 1.2. (a) Increase in leakage current with technology scaling (Source: Intel) (b) The
different components of leakage in scaled technologies.

(a)

Figure 1.3. Typical channel profile showing the retrograde well and the halo regions. (b) The
variation of the different leakage components with increasing halo doping.

leakage component. Simulation results from a super scaled device (leff ∼
25nm), (Figure 1.3) show the contribution of different leakage components.

In scaled Silicon devices, the leakage current increases almost exponentially
with scaling. This reduces the on current to off current ratio of transistors and
also consume considerable amount of power even in the standby mode. In
order to alleviate the leakage power consumption in densely integrated logic
and memory designs, circuit engineers and researchers have proposed different
schemes. One of the popular methods to reduce leakage power is to use multi-
ple Vth transistors in the design, where the performance critical transistors are
allowed to have a lower Vth whereas the Vth of the off-critical transistors are set
at a higher value. This can be implemented using multiple channel dopings [56,
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58, 55, 33, 11, 24], multiple oxide thicknesses (MOXCMOS), multiple Channel
Lengths [51] and multiple Body Bias techniques [22]. Further the use of tran-
sistor stacks has been proposed to reduce subthreshold leakage in the standby
mode [22, 52, 45]. In certain circuit applications, the whole circuit is forced
to a low Vdd (or drowsy) state in the standby mode thereby causing significant
reduction in leakage power[51]. Another popular technique is to adaptively
control the threshold voltage during various operation modes to reduce the
overall leakage power without degrading the performance [11]. These design
techniques [22] are finding their ways in the mainstream design methodology
for ultra high performance and low power processors.

Process Variation

Process parameter variation has also been identified as one of the principle
bottlenecks in scaling of Silicon MOSFETs beyond 100nm [46, 5, 19]. As the
device dimensions continue to shrink, it is becoming increasingly difficult to
control the critical process parameters, like gate length, oxide thickness and
dopant concentration. To add to this is the random dopant fluctuation [55].
This has resulted in significant variation of the threshold voltage of the device
thereby causing a considerable spread in the switching delay of the logic gates.
Die-to-die process variation causes the all the transistors in a particular die to
have a mean Vth that may be different from the nominal (refer to Figure 1.4).
On the other hand the within-die variation increases the spread (or variance) of
the Vth in a single die thereby affecting transistor matching and delay spread
adversely [19, 53, 17]. While process variation causes significant change in
the performance, its impact on transistor leakage is even more [5]. Figure 1.4
illustrates, a 2X variation in the ‘ON’ current of the device corresponds to 100X
variation in the leakage current. The increase in leakage current and process
variation in scaled Silicon devices may prove to be showstoppers. Even in
circuits with low activity (for example, level 2 caches) the increase in leakage
power has led to high power consumption thereby reducing battery lifetime.
With process variation production yield has gone down drastically and new
design methodologies like statistical timing analysis, statistical sizing for yield
are becoming popular. In the regime where the gate lengths are scaled below
50nm, predictable circuit design with tolerable power budgets may become
uneconomical for production [54]. Hence, leading researchers are investigating
modified device structures like FINFETs, partially depleted SOI and double gate
MOSFETS [55]. A discussion on these modified device structures is beyond the
scope of this chapter. If Silicon electronics reach the limits of scalability, it will
only be prudent to look for other materials to replace Silicon. Carbon nanotube
has emerged as a promising replacement to Silicon in future nanoelectronic
designs. In the following sections we will give an overview of the non-Silicon
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(a) (b)

Figure 1.4. (a) Variation of Vth for scaled technologies [14]. (b) The variation of the ON and
OFF currents with process variation.

based molecular devices such as carbon nanotubes and molecular diodes which
show promise for the future. Carbon nanotube transistors are predicted to
have about ten times the current density of silicon MOSFETs and maintain an
on-current ot off-current ratio of more than 103. Further, carbon nanotubes
will allow successful integration of high κ gate dielectrics because there is
no dangling bond in carbon nanotubes. This would result in the possible use
of thicker gate dielectrics thereby reducing gate leakage at no performance
penalty. Several other molecular diodes that are being currently investigated
show enormous promise as ultra-scaled switches for future technologies.

1.3 Carbon Nanotube Electronics

In a pursuit for novel materials in a post Silicon electronics era, scientists and
engineers worldwide have already started active research in carbon nanotube
electronics[16, 4, 32]. Although carbon filaments of nanoscaled diameters
(∼10nm ) were extensively grown in the ‘70s and the ‘80s, it was only after the
pioneering work of Iijima in 1991 [31] that the potential of carbon nanotube as a
possible device material has been recognized and extensively studied. Owing to
their excellent electrical, mechanical and thermal properties, researchers have
identified an array of potential applications for carbon nanotubes. Even in
a the short span since their inception, field effect transistors, diodes, optical
and cathode ray emitters, bio-sensors and energy storage elements have been
demonstrated [16].

Carbon nanotube (CNT) electronics is still in its infancy and the transport,
contacts, interfaces and electrostatics of these devices require detailed under-
standing. Experimentalists and theoreticians have been working closely to
unravel the unique properties of semiconducting as well as metallic carbon
nanotubes. In the next few sections, we will provide an introduction to car-
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bon nanotube electronics. We will discuss the bandstructure and the density
of states, and provide insights to the fundamental transport mechanisms of the
carbon nanotube field effect transistors (CNFETs). We would further discuss
the implications these transistors have in terms of circuit performance and look
at some of the bottlenecks and challenges in the development of CNT based
VLSI design. Instead of delving into the carbon nanotube properties from a
physicist’s point of view, we would concentrate on the potentials that these
novel devices hold for circuit and VLSI designers.

Bandstructure and Density of States

To understand the properties of a device structure it is essential to have a
clear understanding of its energy-band structure. Before calculating the E-k
(energy vs. wave vector) relation of a carbon nanotube, it is only prudent to
understand the bandstructure of graphene [13]. Carbon nanotubes are sheets
of graphene and the simplest way to calculate their bandstructure would be to
quantize the graphene E-k along the circumference.

Let us consider a sheet of graphene where the carbon atoms are packed in
a regular hexagonal structure with a C-C bond length acc (∼0.142nm) and a
C-C bond energy t0 (∼3eV). It can be noted that all the carbon atoms in the
graphene lattice do not see an identical environment. Hence two atoms can
be lumped together to form a unit cell, as has been illustrated in Figure 1.5.
The entire graphene sheet can thus be constructed by translating the unit cell
along the linear combinations of the basis vectors, a1 and a2. Let us define
the translation vector as T = ma1 + na2 where m and n are integers. It can be
noted from Figure 1.5 that the basis vectors can be expressed in terms of the
geometrical parameters as,

a1 = a0

(√
3

2
x̄ +

1
2
ȳ

)
(1.1)

a2 = a0

(√
3

2
x̄ − 1

2
ȳ

)

where, a0 =
√

3acc. In graphene, the 2pz orbitals gives rise to π bonds, which
determine the electronic properties of graphene. We may also assume that the
electrons are tightly bound to the respective atoms and only the wave functions
of neighboring atoms overlap to a small extent. This is known as the tight
binding approximation. This tight binding approximation applied to the 2pz

orbitals of carbon yields the following E-k relationship of graphene.

E(k) = ± |t0|
√

3 + 2 cos(k.a1) + 2 cos(k.a2) + 2 cos(k.a3) (1.2)
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(a) (b)

Figure 1.5. (a) Real Space lattice of Graphene (b) The reciprocal space representation of
graphene showing the first Brillouin zone.

where a3 = a1−a2. The positive sign in Eq. 1.2 corresponds to the conduction
band and the negative sign corresponds to the valence band. It should be noted
that the conduction and the valence bands are exact mirror images of each other.
For transport properties, this implies identical hole and electron mobilities.
Having obtained the real space lattice, it will be beneficial to obtain the lattice
vectors in reciprocal space. Let the basis vectors be b1 and b2, and they satisfy
the relations,

ai.bj = 2πδij for i, j = 1, 2 (1.3)

where, δij is the Kronecker delta function, being 1 when i=j and 0 otherwise.
The electronic properties can be obtained by translating the real space to the
k (wave-vector) space also called the reciprocal space. Using the real space
vectors we obtain the reciprocal space vectors for graphene,

b1 =
(π

a
x̄ +

π

b
ȳ
)

(1.4)

b2 =
(π

a
x̄ − π

b
ȳ
)

where a =
√

3a0/2 and b = a0/2. Figure 1.4 shows the reciprocal lattice
space. It can be shown that the energy at the three corners of the Brillouin zone
(the smallest volume in the reciprocal vector space such that the total reciprocal
space is a periodic repetition of this volume) is zero. These corners can be
represented in the kx − ky plane as,

(kxa, kyb) =
[ (

0,−2π
3

)
,

(−π, π
3

)
,

(
π, π

3

)
,(

0,−2π
3

)
,

(−π, −π
3

)
,

(
π, −π

3

) ]
(1.5)
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It should be noted that the first three are equivalent and the last three are
equivalent since they differ by only the reciprocal lattice vector. Hence we
have only two distinct valleys given by (0, ±2π/3).

Detailed calculations of the graphene sheet show that this tight binding ap-
proach works well in the vicinity of the Fermi point. Since it is this region that
accounts for electronic transport in semiconductors, Eq. 1.2 would be used in
deriving the bandstructure of carbon nanotubes.

A carbon nanotube can be visualized as a sheet of graphene rolled up in a
direction given by the chiral vector. The chiral vector C is given by,

C = mâ1 + nâ2 (1.6)

where, â1 and â2 are the unit vectors along a1a1 and a1 respectively. This
chiral vector (m,n) specifies most of the electronic properties of the nanotube
as would be evident subsequently. The diameter of the nanotube is given by,

d = a0

√
n2 + m2 + mn (1.7)

and the translation vector is given by,

T = t1â1 + t2â2 (1.8)

where,

t1 =
2m + n

dR
(1.9)

t2 = −2n + m

dR

and dR is the highest common divisor of (2m+n) and (2n+m). The number of
hexagons in a unit cell is given by,

N =
2(m2 + n2 + mn)

dR
(1.10)

Owing to the periodic boundary condition of the carbon nanotube, the fol-
lowing needs to be satisfied,

k.C ≡ kxa(m + n) + kyb(m − n) = 2πu (1.11)

where, u is an integer. It can be observed that Eq. 1.11 represents a series of
lines in the kx − ky plane and if (m-n)/3 is an integer then one of these lines
pass through (0, ±2π/3). Hence such nanotubes are metallic. This leads to
an important conclusion that without accurate control over chirality (as in the
present state of the art) one-third of the nanotubes are metallic and not usable
for transistor applications.
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Eq. 1.2 gives the E-k relationship in the entire Brillouin zone of graphene.
Using a Taylor series expansion of Eq. 1.2 near a Fermi point, kF and neglecting
higher order terms, the E-k relation near the Fermi point is

E(k) =
√

3acc |t0|
2

|k − kF | (1.12)

Based on this linear approximation the E-k relation in graphene and imposing
the periodic boundary condition of carbon nanotubes, the band structure of
carbon nanotube is obtained as

E(k) =
√

3acc |t0|
2

√
k2

c − k2
t (1.13)

where, kc and kt are the circumferential and tangential components of the k
vectors. For metallic nanotubes the minimum value of kc is zero and hence we
obtain a linear dispersion relation

E(k) =
√

3acc |t0|
2

kt (1.14)

whereas, for semiconducting carbon nanotubes the minimum value of kc is 2/3d
thereby giving

E(k) =
√

3acc |t0|
2

√
(2/3d)2 + k2

c (1.15)

Since the conduction and the valence band are mirror images for the carbon
nanotube, the bandgap is

E(k) =
2acc |t0|

d
≈ 0.8eV

d
(1.16)

Figure 1.6 shows typical E-k diagrams of one semiconducting and one metal-
lic nanotube.

Carbon Nanotube Field-effect Transistors

The principle of carrier transport in carbon nanotubes is of active research
in the device community [18, 3, 59, 37, 26, 27, 30, 36, 38, 23, 28]. Both
metallic as well as semiconducting nanotubes are being studied experimentally
and theoretically. Although the principle transport mechanisms have not yet
been established without reasonable doubt, some of the pioneering works in
this field have given us insights into the behavior of carbon nanotube based
transistors. In the following few sub-sections we would review a few of these
results and discuss their implications.
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(a) (b)

Figure 1.6. (a) E-k diagram of a semiconducting carbon nanotube (b) E-k diagram of a metallic
carbon nanotube. Note: k has been normalized with respect to the maximum value of k (kmax).

Figure 1.7. (a) Band diagram of a Schottky barrier carbon nanotube with VG>0. Note that
the barrier seen by electrons is thin and nearly transparent (b) The band diagram of the same
Schottky barrier carbon nanotube with VG<0. The bands bend upwards and the holes see a thin
barrier.
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Schottky Barrier Carbon Nanotube FETs. Since it was experimentally
shown that semiconducting carbon nanotubes (CNTs) can work as channel ma-
terial of field-effect transistors (FET) [30], significant progress has been made
in understanding and modeling the principle transport properties of these tran-
sistors.[59] With ultra thin gate dielectrics, low voltage operation of carbon
nanotube based transistors were demonstrated [3]. In some of the pioneering
work done in IBM research [59], it was observed that the contact plays an im-
portant role in determining the performance of these nanotransistors. It has been
predicted that in metallic source-drain carbon nanotube transistors, a potential
barrier exists between the source/drain and the channel. The current in these
devices is determined by the amount of tunneling through this potential barrier,
which is modulated by the gate voltage. Numerical study of such Schottky
barrier carbon nanotube FETs has been carried out by Heinze et. al. [30] and
this has been furthered to include a self consistent solution of Poisson’s equa-
tion and ballistic transport mechanism by Guo et. al. [28]. Numerical results
demonstrate a clear ambipolar current behavior of Schottky barrier carbon nan-
otube transistors. The band diagram of the Schottky barrier transistor has been
illustrated in Figure 1.7 for positive and negative gate voltages and the physi-
cal diagram is illustrated in Figure 1.8a. It can be noted that for positive gate
voltages there is electron current and for negative drain voltages a strong hole
current is established. The minimal leakage current in Figure 1.8b can be esti-
mated by noticing that it occurs when the electron and hole currents are equal.
The tunneling barrier for holes at the drain end is nearly transparent when the
gate oxide is thin, thus the off-current for holes is limited by thermionic emis-
sion over the barrier, , in the bulk body. The total current of these devices is
minimum when the electron current and the hole current are equal to each other.
Equal barrier heights for electrons and holes are required to produce the same
current, therefore, the barrier heights are . By adding the thermionic emission
currents for holes and electrons, we find the minimal leakage current as

I ∼ 8ekBT

h
× exp(−Eg − eVD

2kBT
) (1.17)

in the non-degenerate limit. (Here is Planck’s constant. kB in Boltzman con-
stant and T is the temperature.) Eq. 1.17 can be interpreted in the following way.
At equilibrium, the largest barrier height that limits electron and hole current
is one half of the band gap, and it decreases by an amount of after the drain
voltage is applied. For equal barrier heights of electrons and holes (mid-gap
source and drain materials) the minimum drain current occurs when the gate
voltage is equal to half the drain voltage, as illustrated in Figure 1.8.

Two important aspects of these nanotube transistors are worth mention-
ing. First, the energy barrier at the Schottky barrier severely limits the trans-
conductance of the nanotube transistors in the ‘ON’ state and reduces the current



18 NANO, QUANTUM AND MOLECULAR COMPUTING

(b)

Figure 1.8. (a) A Schottky barrier carbon nanotube FET. Note that the Source and Drain are
metallic and a high K dielectric has been used (b) The ID − VG characteristics of the Schottky
barrier FET showing ambipolar conduction.

(a) (b)

Figure 1.9. (a) A MOSFET like carbon nanotube FET having n+ source and drain regions (b)
The ID − VD characteristics of the MOSFET like device showing a higher ‘on’ current than a
corresponding Scottky barrier device (for different source drain metal work-functions).

(a)
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Figure 1.10. 1D electrostatics of a carbon nanotube FET showing the oxide capacitance (COX )
and the semiconductor capacitance (Csemi)

delivery capability- a key metric to transistor performance. Second, Schottky
barrier CNFETs exhibit strong ambipolar characteristics and this constraints
the use of these transistors in conventional CMOS logic families. Some of the
design issues with these transistors would be subsequently visited.

Ideal MOSFET-like Carbon Nanotube FETs. To overcome these hand-
icaps associated with the Schottky barrier CNFETs, there have been attempts
to develop CNFETs, which would behave like normal MOSFETs (Figure 1.9)
[18]. In this MOSFET-like device (refer to Figure 1.9 the un-gated portion
(source and drain regions) is heavily doped [27, 38] and it operates on the prin-
ciple of barrier height modulation by application of the gate potential. It should,
however, be noted that that doping in carbon nanotubes is not substitutional dop-
ing as in Silicon. The required doping of the source/drain extension may be
achieved either chemically or electrically. Carbon nanotubes are intrinsically
p-type. With deposition of highly electropositive materials like potassium on
a carbon nanotube, Fermi level inside the nanotube can be shifted causing it
to behave like n-type. In this case, the on-current is limited by the amount of
charge that can be induced in the channel by the gate. It is obvious that the
MOSFET-like device will give a higher on current and hence would define the
upper limit of performance [18]. Recent experiments have demonstrated that
the CNFET can typically be used in the MOSFET-like mode of operation with
near ballistic transport [36]. Although the feasibility of MOSFET-like carbon
nanotube transistors is questionable, some of the numerical studies have caught
the fancy of circuit designers. Guo et al. [18] were the first to predict perfor-
mance parameters of ideal MOSFET-like carbon nanotube transistors. These
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MOSFET-like CNFETs suppress the ambipolar conduction that occurs in SB
CNFETs. They also extend the channel length scaling limit because the density
of metal-induced-gap-states is significantly reduced. A MOSFET like CN-
FET has a negative Schottky barrier in the ‘ON’ state and hence delivers more
current than a Schottky barrier limited transistor. This has been illustrated in
Figure 1.9 where ballistic transport has been assumed in both the devices. Also,
the parasitic capacitance between the source and gate electrode is reduced in the
MOSFET-like devices, which allows faster operation. MOSFET-like CNFETs
will also display a leakage current in the off-state, but that leakage current will
be controlled by the full band gap of CNTs and by band to band tunneling.

Charge on a Carbon Nanotube and its Intrinsic Capacitance. So far
in our discussion on the carbon nanotube FETs, we have investigated the I-
V characteristics of the device in the Schottky barrier and the MOSFET-like
modes of operation. For circuit design, the extrinsic as well as the intrinsic
capacitances need detailed understanding [26]. Figure 1.10 demonstrates the
intrinsic capacitances (with 1D electrostatics) of the device, where Cox is the
oxide capacitance, Csemi is the semiconducting capacitance. It is a well known
theory that for Silicon MOSFETs in the inversion region of operation, the inver-
sion layer is limited to a very narrow width and the semiconducting capacitance
is way larger than the oxide capacitance. In carbon nanotubes however, this
assumption does not hold and even under inversion, the surface potential, ψs

s is strongly modulated by the gate voltage. This results in a semiconducting
capacitance that is comparable or even less than the oxide capacitance and the
charge (on the channel) is strongly modulated by the gate potential.

Principle Scattering Mechanisms. For nanoelectronic applications of
carbon nanotube transistors, it is essential to identify the nature of transport
and the principle scattering mechanisms. Scattering determines not only the
current through the device but also the locations of power dissipation in the
nanotube transistor [16]. A single nanotube should provide an ideal conduc-
tance of 4e2/h but in practice a much lower value is typically observed. The
anomaly can be attributed to the scattering effects and the imperfections in the
contacts. Yao et al. [61] have demonstrated a current handling capacity of
25µA at high biases for metallic carbon nanotubes due to electron backscat-
tering from optical or zone boundary phonons. In more recent experimental
data [39] electron-phonon interactions in single walled CNTs have been stud-
ied both in the high bias as well as the low bias regimes. It has been observed
that for low biases (<∼0.1V), channel lengths less than 200nm has a bias in-
dependent conductance, one of the hallmarks of ballistic transport. However
for longer channel lengths at low biases, a length dependant conductance has
been observed. This has been illustrated in Figure 1.11. In low bias regime, the
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principle scattering mechanism is due to electronic interactions with acoustic
phonons and the corresponding mean free path (mfp) of acoustic phonons has
been predicted to be 1.6µm. However at high bias (>0.16V) optical or zone
boundary phonons (mfp ∼ 10nm) become relevant and channel lengths less
than 100nm shows significant scattering effects. Several other experimental
results have been reported in recent publications and with high quality chem-
ical vapor deposition (CVD) materials and ohmic contact strategies, several
groups have observed ballistic electron transport in metallic nanotubes [41]
and more recently, in semiconducting SWNTs by Javey et al.[35]. Numerical
studies of metallic nanotubes have been extensively carried out [34] and the
mfp for acoustic phonon scattering has been estimated to be lap ∼ 300nm, and
that for optical phonon scattering is lop 15 nm. Transport through these short
macromolecular (∼ 10 nm) nanotubes has been shown to be free of significant
acoustic and optical phonon scattering and thus essentially ballistic at both high
and low voltage limits.

From a circuit designer’s point of view, ballistic transport through a semi-
conducting carbon nanotube FET would imply greater ‘ON’ current and faster
speed of operation. The current would be governed by the well-known transport
equation for 1D carriers,

ID =
4ekBT

h
[ln(1 + exp(ξS)) − ln(1 + exp(ξD))] (1.18)

where, ξS and ξD are the source-channel and drain-channel potential barriers.
Several circuit simulations in this ideal performance limit incorporating the in-
trinsic capacitance of the CNFETs have been presented in [8, 7, 49]. These
results show several terahertz of performance of these nanotransistors. How-
ever, the ballistic nature of transport is under close scrutiny and with increasing
perfection of the fabrication process, ballistic transport for low voltage appli-
cations seem plausible.

Circuit Design and Circuit Compatible Modeling

Along with extensive experimental results that are being published and cor-
responding numerical simulations of these carbon nanotube devices, circuit
designers and VLSI experts have started to gauge the performance of carbon
nanotubes in digital and analog circuits [8, 7, 49]. Three stage ring oscillators
with an oscillation frequency of 220Hz have been demonstrated in [38] (refer
to Figure 1.12). Although 220 Hz is indeed a low frequency of operation com-
pared to the terahertz performance predictions, this was one of the first attempts
to reveal ac measurements of CNFETs. Simple logic gates and inverters have
been experimentally demonstrated by the leading experimentalists [3] and has
been illustrated in Figure 1.13. More recent RF measurements [23] have shown
performances upto 250MHz thereby confirming the high frequency nature of the
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Figure 1.11. The experimentally measured I-V characteristics of a 1.8nm diameter metallic
carbon nanotube [39]. Note that for high biases the current saturates showing clear evidence of
increased scattering events at high biases.

Figure 1.12. A three stage ring oscillator made out of carbon nanotube FETs. The frequency
of operation is about 220Hz [38] and this is limited by the parasitic capacitances of the device
geometry and the measuring instruments.
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(a) (b)

Figure 1.13. Logic gates implemented using carbon nanotube FETs. Experimental data [3]
showing transfer characteristics of (a) an inverter (b) a latch.

CNTs (refer to Figure 1.14). Till now, all the high frequency measurements are
limited by the parasitic capacitances and the low current drive of the individual
CNTs. The integration of materials having a high dielectric constant (high-κ)
into carbon-nanotube transistors further promises to push the performance limit
for molecular electronics [36]. The p-type transistors with subthreshold swings
of S ∼ 70 mV per decade and n type transistors exhibiting S ∼ 90 mV per
decade have been experimentally demonstrated. High voltage gains of up to 60
have been obtained for complementary nanotube based inverters. The high κ
dielectrics like ZrO2 are chemically benign to carbon nanotubes. Further, since
all the bonds of carbon are satisfied in a highly symmetric nanotube structure,
there is no dangling bond (unlike Silicon) at the oxide-nanotube interface and
this ensures absence of trapped charge at the interface. More recently, mono-
lithic complementary logic integrated circuit using carbon nanotubes have been
successfully demonstrated thereby opening up possibilities and challenges for
a nano-scaled VLSI era.

From a simulation point of view modeling of the carbon nanotubes have
been attempted for circuit simulations and power/performance metrics of these
nanodevices are being studied. In the next two sub-sections we would provide
a brief introduction to RF and digital circuit simulation compatible models for
CNTs.

An RF Circuit Model of Metallic Carbon Nanotubes. A carbon nanotube,
because of its band structure has two propagating channels [8]. To add to this,
there is spin up and spin down that results in four channels in the Landauer-
Büttiker formalism [7]. Based on the Lüttinger liquid theory for a 1D electron
gas [7] spin charge separation can be considered for each of the modes of
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Figure 1.14. One of the pioneering efforts in measuring RF characteristics of carbon nanotube
FETs. Note that the limit 250MHz comes from the parasistic capacitors and not the carbon
nanotube itself [23]. Researchers are working on improved methodologies to measure GHz
performance of carbon nanotube FETs. Physics poses no restriction on high frequency operation
of these nano-devices.

propagation. Consequently these modes can be decoupled and each of them
can be modeled as a transmission line (refer to Figure 1.15). The principle
circuit elements of the transmission line model incorporate an accurate model
of the capacitance and the inductance. For a CNT of diameter d placed on
a dielectric of thickness h (backplane connected to ground), the electrostatic
capacitance comes out to be

CE =
2πε

cosh−1(2h/d)
(1.19)

which for typical experimental setups is in the order of tens of aF/µm. To
add to this, the quantum capacitance in carbon nanotubes is of considerable
significance. The quantum capacitance can be expressed as [8]

CQ =
2e

vF
(1.20)

where, vF is the Fermi velocity of electrons in the CNT. Numerically CQ

comes out to be 100aF/µm proving thereby that both electrostatic as well as
the quantum capacitances play pivotal role in the CNTs.

The inductance of a CNT comprises of a series connection of of the ki-
netic inductance and the magnetic inductance. The kinetic inductance can be
expressed as,
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Figure 1.15. A simple transmission line RF circuit model for metallic carbon nanotubes. The
contact resistances are the quantum resistances (assuming ballistic transport at dc). CQ represents
the quantum capacitance and CES represents the electrostatic capacitance. LK represents the
magnetic inductance. CQ and LK are divided by four to account for the spin-charge separation.
The magnetic inductance (which is much smaller than the kinetic inductance) has been neglected.

(a) (b)

Figure 1.16. The real and imaginary parts of impedance for two different values of g. ‘g’ is
the ratio of the semiconducting to the quantum capacitances.

LK =
h

2e2vF
(1.21)

and numerically it turns out to be 16nH/µm. This is larger than the magnetic
inductance of CNTs, the latter being numerically in the order of pF/µm. Thus
in nanoscaled transmission line model of the CNTs, the quantum capacitance
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and the kinetic inductances have to be incorporated and they would determine
the impedance of the transmission line. Figure 1.16 [8] shows the real and the
imaginary impedances of the transmission line model for CNTs. However, the
damping resistance of a CNT in the quasi-static limit would be around 4e2/h
which would give rise to an over damped impedance response. This RF circuit
model has been a classic approach in predicting high frequency behavior of
CNTs.

Spice Compatible Model of CNFETs in the Ballistic Performance Limit.
Attempts have been made to incorporate CNFETs in a circuit simula-

tion (SPICE) environment by proper modeling of the current-voltage and the
capacitance-voltage relations. One such methodology to model ballistic CN-
FETs has been discussed extensively in [49]. The circuit compatible model of
the CNFET has been illustrated in Figure 1.17. The current source IDS is a
non-linear current source and the capacitances CGS and CGD are non linear
capacitances governed by the piecewise model as,

CGi = qN0
AL

KT
exp(ξi) for ξi < 0 & VGS ≤ ∆1 (1.22)

= qN0
AL

KT
exp(ξi)(1 − α) for ξi < 0 & VGS ≥ ∆1

= qN0
BL

KT
for ξi ≥ 0 & VGS ≤ ∆1

= qN0
BL

KT
(1 − α) for ξi ≥ 0 & VGS ≥ ∆1

where, i =s,d and L is the length of the nanotube, A,B and α are physical fitting
parameters, and

N0 =
4KT

3πt0a0
(1.23)

ξi =
ΨS − ∆1 − µi

KT
(1.24)

t0 is the carbon-carbon (C-C) bonding energy (≈ 3eV), a0 the C-C bonding
distance (≈ 0.142nm), ∆1 is half the band-gap of the CNFET, ΨS is the surface
potential and µS and µd are the source and the drain Fermi-levels respectively.
The current Ids is given by the Eq. 1.18. Figure 1.17 illustrates the match
between this circuit compatible model and a detailed atmistic numerical simu-
lation. Simulations have also been carried out with ideal CNFET based logic
gates and ripple carry adders [49] (where, all extrinsic parasitic capacitances
have been neglected).
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(a) (b)

Figure 1.17. (a) The proposed compact model for ballistic CNFETs (b) The ID − VG charac-
teristics of a CNFET showing a close match between numerical simulations and the proposed
model.

Carbon nanotubes have thus attracted the fancy of physicists, device engi-
neers and circuit designers. Research has begun to harness the potential of
these nano devices and use carbon nanotube based transistors in integrated cir-
cuit design for the future generations. Although our understanding of these
devices needs to be furthered and a considerable portion of the theoretical work
has not yet been demonstrated in experiments, the promise is enormous. Like
any other device that is in its premature state, reliable production of these de-
vices is definitely an issue and an enormous amount of research is necessary
to build CNFETs with performances matrices comparable to the modern day
Silicon MOSFETs. However, with their super-scaled dimensions, reliable and
high current carrying capabilities and strong mechanical properties, CNTs have
emerged as champions among the different revolutionary non-silicon devices
that are being explored worldwide.

1.4 Molecular Diodes and Switches

Although carbon nanotubes have been the centre of exploratory research as
an alternative to Silicon devices, other molecular devices have also gained popu-
larity [50, 2, 44, 12, 10, 47, 42]. The simplest molecular electronic component:
one molecule between two metal electrodes: has recently been demonstrated
by several groups, leading to diverse charge transport behavior including gaps
in conduction [50], Coulomb blockade [2], current rectification [44], bistable
switching [12], negative differential resistance (NDR) [25], and Kondo reso-
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(a) (b)

Figure 1.18. NDR effects in styrene (a) and TEMPO (b) [25]. DRAM cell with molecular
RTDs (c) the circuit schematic and (d) the I-V characteristics.

nance [10, 47]. Although the choice of molecule plays a critical role in the op-
eration of metal-molecule-metal junctions, the interface between the molecule
and the electrodes has come under increasing scrutiny due to limited agreement
between experimental and theoretical analyses. The apparent importance of
the contacts in molecular electronic devices suggests that alternative electrode
materials may lead to unique charge transport phenomena. For example, recent
results show that self-assembled organic monolayers on Silicon lead to cur-
rent rectification. Recently, styrene and 2,2,6,6-tetramethyl-1-piperidinyloxy
(TEMPO) have been shown to have Negative Differential Resistance (NDR)
when connected between metal (Au) on one hand and Silicon on the other [25].
This provides concrete motivation for an integration of molecular devices with
nanoscaled Silicon.

Figure 1.18 illustrate the NDR effect when styrene is in contact with n+
Silicon and TEMPO is in contact with p+ Silicon. At a bias voltage of around
2.5 V, both the molecules exhibit distinct NDR effects. This can be utilized in a
number of ways, the most popular being to reduce the refresh rate of DRAMs.
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The circuit configuration is shown in Figure 1.18. The two NDR devices have
been shown as D1 and D2. The load lines are shown in Figure 1.18. The output
voltage VO represents the voltage at the node where the logic value is stored.
As the Si MOSFETs are becoming leakier, the output node VO loses charge
through the MOSFET. However, in such a situation D1 starts conducting and
replenishes the lost charge. The output voltages VO1, VO2, and VO3 are the
three operating points; however only VO1 and VO2 are stable. Thus the output
can be either at a high potential or at a low potential thereby representing two
distinct logic values. From a higher level of abstraction, it results in reduced
refresh rate for DRAMs, thereby reducing total dissipated power.

There have been also attempts to demonstrate multivalued logic operation
using organic molecules, build nano-sensors using DNA and perform logic
operation using quantum dots, but they will not be discussed in this chapter.
The intent is only to provide an introduction to the world of novel devices and
applications that are still in the physicists’ and chemists’ laboratory but might
find a place in the circuit designers’ standard cell library in the new era of
nanotechnology.

1.5 Conclusion

This chapter discusses the principle bottlenecks to further scale bulk Silicon
devices and provides an introduction to the non-Silicon alternatives for future
technologies. It is, by no means, an exhaustive survey of all the novel devices
that are being extensively studied, but is principally an attempt to make bring
them within the circuit designers’ horizon. The physical properties of carbon
nanotubes and fundamentals of carbon nanotube circuit design have been dis-
cussed. With the need for higher and higher integration density and complex
on-chip functionality, the laws of physics would be taken to their limits and
circuit and system designers; would have an increasing important role to play.
Understanding the principles of operation of such ultra-scaled devices and us-
ing them in the ICs of the future generation would be a hurdle that the device,
circuit and the architecture communities have to overcome together.
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Preface

In his famous book from 1956, "Probabilistic Logics and the Synthesis of Re-
liable Organisms from Unreliable Components", John von Neumann had talked
about building reliable computing systems from fault-prone components. His-
torically at that point in time, it made perfect sense. The valves that were
used as switching devices at that time used to burn out frequently, and hence
the ability to maintain reliability in the presence of such possibilities was very
important. However, with the advent of silicon transistors, and with the in-
creasing perfection of semiconductor manufacturing, for decades, this work
was of lesser importance. Of course, fault-tolerant computing has always been
a major research area, especially for mission critical systems. Nevertheless,
the idea of designing systems assuming non-zero defect probabilities in the
substrate, has not been common until recently, as researchers consider the use
of nanotechnology based devices as switching elements.

In current semiconductor manufacturing processes, immediately after a sil-
icon wafer is fabricated, tests are carried out and defective parts are rejected.
Manufacturing yield is determined by the percentage of parts that come out
without defects. Unfortunately, with silicon-based devices scaled down to a
few nanometers, or even newer technologies (such as molecular self-assembled
substrates, quantum dot cellular automata type devices, or carbon nanotube
based switches), the defect probability will be quite high. As a result, throwing
away parts that contain any defect at all will not be an option. Instead, robust
systems will have to be designed using these fault-prone substrates. As a result,
the notion of defect-tolerance will be a prime force in design. Instead of com-
puting manufacturing yield in the present manner, parts will likely be graded
according to their reliability characterizations.

With this in mind, researchers have already started looking into defect-
tolerant computing. There are two major schools of thoughts in defect-
tolerance. One is based on reconfigurability, and often self-reconfigurability
of systems. Such systems are designed to diagnose and map their own fault
locations, and reconfigure the computing around the faulty regions, so as to
provide reliable results. The other strain of research is based on probabilistic
characterization of the faulty substrates. Redundancy based defect-tolerance is
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then designed into the system in order to guarantee a certain level of reliability
given the particular characterization of the faults.

In this part of the book, we present six chapters. The first two focus mainly
on fault detection and reconfigurability-based defect tolerance. The last four are
based on defect-tolerance through probabilistic assumptions. Due to the very
nature of the computation at the nano-scopic level, new models of computation
— distinguishable from Boolean logic — may actually help in understanding the
interaction between quantum phenomena and valid computation. In particular,
Chapter 5 in this part presents one such model of computation that takes into
account thermal energy and information theoretic bounds on energy expenditure
in bit transformations. In addition, the final chapter in this section takes a
statistical view of computing with quantum devices, and draws contrast against
current silicon technologies.

We believe this part of the book will provide the readers with an interesting
sampling of defect-tolerance work pertaining to nanotechnology. Also included
in these chapters is discussion regarding the corresponding design automation
problems and emerging tools and techniques needed to support these defect-
tolerant systems.
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Abstract Computing systems implemented with nanotechnology will need to employ
defect- and fault-tolerant measures to improve their reliability due to the large
number of factors that may lead to imperfect device fabrication as well as the
increased susceptibility to environmentally induced faults when using nanometer-
scale devices. Researchers have approached this problem of reliability from many
angles and this survey will discuss many promising examples, ranging from clas-
sical fault-tolerant techniques to approaches specific to nanocomputing. The
research results summarized here also suggest that many useful, yet strikingly
different solutions may exist for tolerating defects and faults within nanocomput-
ing systems. Also included in the survey are a number of software tools useful for
quantifying the reliability of nanocomputing systems in the presence of defects
and faults.

Keywords: nanocomputing, redundancy, fault, defect, fault tolerance, defect tolerance

Introduction

With the increasing fabrication costs of CMOS-based computing devices
and the ever-approaching physical limits of their fabrication and use, a sig-
nificant community of researchers are exploring a number of nanometer-scale
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alternatives to existing CMOS silicon technology. Devices and architectures of
interest include carbon nanotubes[34], single-electron transistors (SETs)[29],
quantum-dot cellular automata (QCA)[47], molecular devices[48], and quan-
tum computing (see Chapter 8), to name just a few. With this demand to use
nano-scale devices to create more powerful and complex computers, a signifi-
cant concern is the reliability of these devices and the systems built with them.
For instance, the chemical processes for building molecular devices will have
significantly lower yields than those obtained through current fabrication prac-
tice, resulting in aggregates with high defect rates. Since they manipulate single
electrons, devices such as QCA and SETs are susceptible to background charge
fluctuations that can cause faults during operation. The decrease in the device
scales used also means that radiation effects, electromagnetic interference, and
power and temperature effects will all be more challenging to counteract. These
effects are already being seen: upsets in 150-nm CMOS devices by atmospheric
neutrons have already been observed [15].

The large number of factors that will affect the reliability of nanocomputing
devices suggests that defect and fault tolerance will be an integral part of device
and system design for nanocomputing. In this chapter, we will provide a brief
survey of the many techniques and tools being researched to aid in constructing
reliable nanocomputers from unreliable nano-scale devices. These techniques
range from applications of classical defect- and fault-tolerant techniques to
techniques that are unique to nano-scale devices. We will first define key terms
and concepts that will be used throughout the paper and the remaining sections
will cover classical error masking and reconfiguration techniques (Section 2.2),
non-traditional computing models and architectures (Section 2.3), and tools for
defect and fault tolerance (Section 2.4). We will conclude the chapter with
some general summary comments.

2.1 Background

Before surveying current research into reliable nanocomputing, we will de-
fine several terms and concepts that will be used throughout the chapter. Ad-
ditionally, we will provide a framework for discussing the specific ideas being
pursued in the nanocomputing community for building reliable systems.

A defect, or more specifically, a manufacturing defect is a physical problem
with a system that appears as a result of an imperfect fabrication process. By
contrast, a fault is an incorrect state of the system due to manufacturing defects,
component failures, environmental conditions, or even improper design[46].
Faults can be:

permanent, as in the case of physical defects or permanent device failures
during the lifetime of the system;
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intermittent, in which faults may periodically stop and start, but are po-
tentially detectable and repairable; or

transient, where faults are due to temporary environmental conditions.

With this context, defect tolerance is the ability of a system to operate cor-
rectly in the presence of manufacturing defects while fault tolerance is the ability
of the system to operate correctly in the presence of permanent, intermittent,
and transient faults. Clearly, fault tolerance encompasses defect tolerance but
also implies the ability to withstand temporary faults as well. Generally, both
defect and fault tolerance require redundancy to overcome problems within the
system. This redundancy may be in terms of the replication of functions tem-
porally or physically, or using techniques such as error-control coding, which
uses a redundancy in the code space for the data to detect and correct faults.
Often, the system must be able to reconfigure its resources to take advantage of
redundant components.

In the following sections of this chapter, the techniques used fall into two
broad categories:

classical error detection, masking, and reconfiguration, and

non-classical and/or nano-scale-specific defect- and fault-tolerant tech-
niques.

Classical error-masking includes techniques such as N-modular redundancy
and error-control coding. Reconfiguration involves using “spare” redundant
hardware to replace defective hardware and can be performed at a large scale
because of the massive amount of redundant hardware that is feasible to as-
semble at the nano-scale. This level of redundancy may well be necessary,
considering the expected high hardware defect rates at the nanometer scale.
The second category includes techniques that are not included in the above
more classical defect- or fault-tolerant techniques, such as the use of artificial
neural networks for fault tolerance [41], and includes some techniques that are
very specific to nano-scale devices.

Additionally, tolerance to defects and faults can be accomplished at several
different levels of abstraction: the physical device level, the architectural level,
and the application level. The physical device level refers to specific features
of nano-scale devices (such as QCA cells, SETs, CNTs, nanocells, etc.) that
provide tolerance to defects or device failures. At the architectural level, defect
and fault tolerance is achieved through techniques of assembling collections
of these nano-scale devices. Finally, defect and fault tolerance at the applica-
tion level involves features of the computing applications themselves that allow
them to operate correctly despite defects and faults in the computing system
on which they execute. Though nano-scale devices have some features that
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may make them tolerant to some defects and faults and though some applica-
tions themselves may have some inherent defect or fault tolerance, most of the
techniques being investigated relate to the architectural level.

To maximize the reliability of a system based on nano-scale devices for a
given or minimal cost, we expect that it may require a combination of techniques
at various levels of abstraction, from the device to the application level. For
instance, an extremely high degree of hardware reliability may not be necessary
if the application itself can handle a certain degree of noise in its data. In such
a case, it may not be cost effective to use extreme levels of redundancy when
the application doesn’t require it.

2.2 Error Detection, Masking, and Reconfiguration

To mitigate the effects of both faults and defects in designs, several traditional
techniques have been suggested and evaluated for nanocomputing, assuming a
high rate of defects and/or faults. Some of these more traditional approaches
include triple-modular redundancy, N-modular redundancy, cascaded triple-
modular redundancy, and NAND multiplexing [49]. Some of these techniques
are based on the early work of John von Neumann on creating reliable systems
using unreliable components [49]—a significant concern with early computing
systems and a concern with nanocomputing as well. Other techniques which
may be applicable include error-control coding and reconfiguration. We will
briefly describe each of these techniques and summarize the results of applying
them to nanocomputing.

Triple- and N-Modular Redundancy

With triple-modular redundancy (TMR), three copies of the same hardware
are executed with common inputs so that, ideally, they produce the same outputs
if all modules are defect or fault free. Since it is assumed that, at most, any one
module may either have a defect or fault during operation, the outputs of the
three modules are then combined using majority vote circuitry, which selects
the output which is most common, i.e., provided by two or three of the modules.
TMR with a single voter is illustrated in Figure 2.1. This technique is fairly
easy to apply to digital logic at the cost of increased circuit area and power
and decreased circuit speed. One of the strengths of TMR is that it can tolerate
multiple failures in a single module. Faults or defects in two or more of the three
modules will cause the logic to fail. To improve the reliability of the whole
system, three voters can be used instead of just one, as illustrated in Figure 2.2,
removing the voter as the single point of failure.

As a generalization of TMR, N-modular redundancy (NMR) uses N copies
of the hardware, N being an odd number so no “tie” votes are possible. NMR
is illustrated in Figure 2.3. Again, the output of the hardware is determined
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using a majority (�(N/2) + 1� or more outputs) voting scheme. With a cost
of more than a factor of N when considering the voting circuitry and modular
redundancy, the benefit of NMR over TMR is that it will correctly compute
the output with multiple defects or faults in �(N/2)� of the modules. As with
TMR, the NMR technique can take advantage of redundant voters to reduce the
probability of system failure due to a single defective or faulty voter.

Another variation on these approaches is to use cascaded NMR. Many ap-
proaches to cascaded NMR exist. For instance, [37] describes a cascading
scheme to increase the reliability of a module by replicating TMR-voter combi-
nations and adding multiple layers of voting to combine the results. Figure 2.4
illustrates this approach for the first level of cascading. Effectively, a set of
three top-level modules are voted in a TMR fashion, where these top-level
modules are either TMR-protected modules or applications of cascaded TMR
themselves. For a one level of cascading, 9 modules are used and 4 voters; with
two levels of cascading, 27 modules and 13 voters are used; etc. The goal of
the approach is to make the system more tolerant of errors by allowing more
modules to fail, but this comes at the cost of the considerable circuit resources
and the increased delays through the voters. Additionally, the reliability of the
voters becomes more dominant than in the simple TMR case as the levels of
cascading increases.

As another example of cascading, [46] describes a scheme where, instead of
simply voting a single time among N copies of the same hardware, the hardware
itself is divided into submodules and NMR is applied to these submodules. In
between the redundant submodules, the voters are also replicated to provide
a redundant set of N outputs that are fed into the next set of submodules in
the circuit. Depending on the application of NMR and the design, this can
effectively allow a circuit to withstand more errors across the redundant copies
of the design than simple NMR because of the granularity of the voting—in other
words, this approach can be used when errors may occur in more than �(N/2)�
of the N top-level modules. For instance, Figure 2.5 illustrates cascaded TMR
(or, equivalently, NMR where N = 3) using this approach. In simple TMR,
only one of the three modules can have any faults. In the cascaded approach,
errors could exist in submodules X1, Y 2, and Z3 (i.e., any single submodule
from each set of submodules) without affecting the performance of the design.

A good example of this second form of cascading can be found in work related
to the reliability of SRAM-based field-programmable gate arrays (FPGAs) in the
presence of radiation-induced soft errors (or single-event upsets—SEUs)[30,
8, 44, 51]. In addition to simply applying cascaded TMR to submodules, these
papers also apply another variation of TMR that illustrates an important issue.
Effectively, TMR is performed on the digital circuits, but voters are only placed
in feedback loops within the circuit and at circuit outputs (as necessary). With
this approach, the researchers assume that very few faults exist in the circuit
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due to SEUs at any one time—something they can assume due to constant
repair of the FPGA’s programming data, but an assumption that will probably
not be applicable to nanocomputing—and that the faults occur with uniform
probability across an entire FPGA. Consequently, there is a very low probability
that a TMR-protected submodule will fail. By placing voters in the feedback
loops, the submodule affected by the SEU will be able to recover from soft errors
in a short amount of time and resynchronize with the other two submodules
in the TMR-protected unit. The net result is that the system can withstand
transient faults in multiple submodules of the TMR over time, making the system
more robust. The variations of TMR mentioned before do not address this
synchronization issue with regards to feedback, meaning that even a transient
fault at different times in two of the modules may cause the system to fail
because the modules are no longer synchronized. Also, notice that the more
control structures, counters, and other forms of feedback that exist in the circuit,
the more submodules there are for applying cascaded TMR.

In each of these cases the defect and fault tolerance of the voters themselves
must also be considered and balanced with the reliability of the modules being
voted. If voting is performed at too small of a granularity, the reliability of the
voters will dominate the system reliability. If the voting is performed at too
coarse of a level, the number of defects and faults tolerated will be non-optimal.
Both [5] and [6] illustrate the need for balancing the reliability of voters with
the reliability of the redundant logic.

NAND Multiplexing

Von Neumann, the originator of TMR, also developed a theory that has been
termed “NAND multiplexing,” which can be used to produce the expected func-
tion in the presence of a high number of defects and faults in its components—up
to a failure probability of about .0107 for each component. This theory was
developed during an era when the reliability of individual components used in
building computers was low, thus, requiring designers to consider both defect
and fault tolerance in their designs.

The scheme involves replicating the function to be multiplexed N times. N
wires are used to carry the signal of each input and each output. Processing
is performed in two stages: an executive stage and a restorative stage—see
Figure 2.6 for an example. As described in [49], the executive stage performs
the function using the N copies of the original function unit. For each bundle
of N wires, the bundle is considered “stimulated” (logic ‘1’) if at least (1 −
∆) · N of the wires are “stimulated”, where 0 ≤ ∆ < 0.5; likewise, an
input is considered “unstimulated” (logic ‘0’) if no more than ∆ · N wires are
“stimulated.” Stimulation levels in between these two values are considered
undecided and would indicate that the circuit has failed or malfunctioned. Based
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on the probability of function failure and the probability of correctness of the
inputs to the executive stage, the percentage of wires in the output bundle that are
in the correct stimulated or unstimulated states may be lower than the fractions
of the input-wire bundles that were correct.

U U

Executive Restorative

Figure 2.6. NAND Multiplexing with N = 4

As a result of this potential reduction in effective signal strength, von Neu-
mann developed the restorative stage as a part of this multiplexing technique.
The purpose of the restorative stage is to increase the number of wires in the
output bundle that are in the majority state, whether the bundle is in the stim-
ulated or unstimulated state. As suggested in [37], the restorative stage is,
in effect, a non-linear amplifier. Figure 2.8 is the output characteristic of the
restorative stage made up of NAND gates, as illustrated in Figure 2.6. Fig-
ures 2.7 and 2.9 illustrate the restorative stage made up of majority gates and its
output characteristic, respectively. The restorative stage made from majority
gates is more ideal, while the NAND-based version is made of simpler com-
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Figure 2.7. Majority-Gate-Based Restorative Stage with N = 4
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ponents. The boxes labeled “U” in the figures represent the multiplexing part
of the technique. Effectively, they randomly permute their inputs to reduce the
correlation of the error within the input bundles. The random permutation can
also be performed in the executive stage, though, von Neumann’s original work
did not require it. Randomization of the error is made so that the restorative
logic has a better chance of properly selecting the majority state for its output
based on localized majority or majority-like logic decisions.

Several research groups in the nanotechnology community (and elsewhere)
have described von Neumann’s technique as “NAND multiplexing” because one
of his analyses used NAND gates for both the executive and restorative stages.
The technique is more general. For example, von Neumann initially presented
the technique using majority gates for both stages. Other formulations of the
technique are also possible, for example, some combination of NOR gates could
be used. Since NOR gates and NAND gates are both “universal” gates, entire
computing systems can be developed using this multiplexing technique with
either of these particular implementations. NAND multiplexing may be more
popular than majority gate multiplexing because of the simplicity of analysis.

Through reliability analysis of the NAND-based approach, von Neumann
demonstrated that this multiplexing technique can work in cases where indi-
vidual components have less than a .0107 uniform probability of failure. As
an example, von Neumann evaluated the probability of function failure where
the NAND gates had a uniform failure probability of .005. With this individual
gate failure probability, it required N = 1000 to achieve an overall failure prob-
ability of just .027 for a single multiplexed NAND function; with N = 20, 000,
this probability was reduced to 2.8 × 10−19. Von Neumann stated that, using
components with a failure probability of less than .0107, an arbitrary function
failure probability could be achieved by making the wire bundles large enough.
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The interest in this theory with regards to nanocomputing is twofold. First,
systems designed with this approach can withstand a high probability of failure
for their components. Second, nano-assembly techniques could provide the
number of components needed to reach the redundancy levels required for
usable systems. Of course, the high cost of redundancy greatly reduces the
number of “usable” components provided by any nano-scale implementation
technology. In this regard, von Neumann realized the impracticality of the
approach for his time and acknowledged that it might be useful in the future,
saying:

This implies, that such techniques are impractical for present technologies
of componentry (although this may perhaps not be true for certain conceivable
technologies of the future), but they are not necessarily unreasonable (at least
not on grounds of size alone) for the micro-componentry of the human nervous
system. [49]

Subsequent analyses of NAND multiplexing have refined the bounds for the
maximum fault probability for each device and the reliability of NAND mul-
tiplexing approaches. For instance, Evans and Pippenger in [14] illustrated
that for “noisy” NAND gates that the maximum probability of failure for each
component is (3 − √

7)/4 ≈ 0.08856. Additionally, Han and Jonker in [20]
performed some additional reliability analysis of NAND multiplexing and illus-
trated that using more restorative stages improved the performance of NAND
multiplexing. They also suggested that, for circuits with many levels of logic,
the restorative stages are not necessary. Considering this savings and using
values of N < 1000, Han and Jonker also suggested that nano-chips with 1012

devices may result in 109 ∼ 1010 effective devices by using NAND multiplex-
ing.

In [38], Norman and others performed a subsequent analysis of using ad-
ditional restorative stages to improve circuit reliability and have noted a flaw
in [20]’s modeling of the “U” random permutation. This improved analysis
has shown that Han and Jonker’s bounds given in [20] are not always either
upper or lower reliability bounds. Further, for smaller device fault rates, [38]
shows that increasing the number of restorative stages does improve reliability,
while for larger fault rates the increase in restorative stages can actually degrade
reliability.

Error-Control Coding

Another conventional technique to mask the presence of defects and faults
is to use error-control coding[50, 31]. With this technique, the redundancy
exists in how the data itself is encoded, not in replicating hardware having the
same function. The extra bits required for error-control coding are used to help
hardware distinguish between error-free data and data with errors. Ideally, if too
many errors do not occur, the hardware can also use the encoding redundancy to



50 NANO, QUANTUM AND MOLECULAR COMPUTING

locate and fix the data errors, if they exist. A variety of error-control codes have
been developed, ranging from the well known single-error correcting (SEC)
Hamming codes to Reed-Solomon and convolutional codes. This variety of
codes are used to handle a variety of different error conditions: single-bit errors;
multiple, independent errors; multiple, consecutive (or burst) errors; etc.

Error-control coding is commonly used in conventional computing, com-
munications, and storage systems. For example, high-reliability server com-
puters (and even some personal computers) typically use some form of error-
correcting-code (ECC) RAM to fix single-bit errors in data words. Often in
these schemes, 8 check bits are added to each 64-bit word in memory to pro-
vide single-error-correct/double-error-detect (SED/DED) protection. As an-
other example, Reed-Solomon codes are an integral part of making compact
discs a feasible storage medium where fingerprints, dust, and scratches can con-
tribute to large burst errors in a data stream. In summary, error-correcting codes
are frequently found protecting data internal to microprocessors, in caches, on
busses, and other places where data is either communicated or stored in modern
computing systems.

The costs of this approach to redundancy for defect and fault tolerance in-
clude: the additional hardware to both encode, decode, and correct data (more
hardware); increased latencies or decreased circuit speed (more time); and in-
creased power consumption (more power). Further, for this approach to work,
the hardware used to encode, decode, and correct data is generally assumed to
be reliable—a significant issue when applying this idea to nanocomputing.

Reconfiguration

Often in conjunction with redundancy and self-assembly, reconfiguration
has been explored as a defect and fault mitigation method for molecular-scale
computers. The basic idea of reconfiguration is that the capability exists within
a system to modify functionality after manufacture. Reconfiguration is a widely
recognized defect and fault management technique in conventional electronics.
Examples at the computer system level include the ability to de-activate chips
or cores within a chip upon error diagnosis; ability to switch to spare bits for
single cell failures in cache memories; to delete cache lines to map out bad
bits; to bypass a cache or an entire memory card; and to mark I/O resources
unavailable upon diagnosis of I/O failure. Diagnostic hardware must exist to
detect the failure. Once a failure has been detected, the failed unit must be
by-passed and, if a redundant resource exists, the redundant unit is activated
and wired in. This process is illustrated in Figure 2.10, where the black node
has failed and is replaced by the spare in its row. The approach is advocated in
a nanocomputing architecture proposed by Han and Jonker [21] that combines
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Figure 2.10. Fault Avoidance through Redundancy and Reconfiguration
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Figure 2.11. 4-input Look-Up Table

NAND multiplexing with additional redundancy for reconfiguration (see the
Discussion portion of this section below).

While specific circuitry can be inserted into various components of a com-
puter system to support dynamic reconfiguration of specific system resources,
an alternative that has been proposed by several nanocomputing research groups
is to build intrinsically reconfigurable architectures. Since it appears that a much
higher degree of defects and faults must be tolerated in nanocomputers than tra-
ditional CMOS circuits, an emerging model of the nanocomputer as a massively
replicated, inherently reconfigurable architecture is being studied [22, 21, 13,
11, 19].

Defect Management on the Teramac. An early experiment in defect-
tolerant reconfigurable architectures was conducted by researchers at Hewlett-
Packard in the early 1990’s. The “Teramac” computer [1, 22] was composed of
hundreds of SRAM-based field programmable gate arrays (FPGAs) designed
and fabricated by HP. SRAM-based FPGAs generally use an n-bit look-up table
(LUT) to determine a boolean function of n bits. A 4-input LUT is shown in
Figure 2.11. The 4 input lines form an address into a 1 bit × 16 deep memory.
The illustration shows that LUT[3] = 1.

Since the LUT is stored in memory, any function of n bits may be specified
and, further, replaced by simply re-writing the LUT memory. FPGAs also
contain a reconfigurable routing fabric so that LUTs may be connected to form
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larger circuits. The Teramac FPGA devoted most of its area to routing, using
partially populated crossbar switches in the routing fabric. In fact, routing area
comprised 90% of each FPGA. The FPGAs were organized 27 to a multi-chip
module (MCM), with four MCMs per board, and up to 16 boards. A unique
aspect of this machine was its high defect level: 75% of the FPGAs contained
defects, half of the MCMs were defective, and 10% of the interconnect signals
were unreliable. In spite of the fact that 3% of the total system resources were
defective, Teramac was able to run complex applications such as magnetic
resonance imagery analysis and volume visualization.

Reconfiguration was the enabling technology that allowed Teramac to com-
pute despite the 3% defect rate. Test configurations (“signature generators”)
were run on the FPGAs to isolate defects in LUTs, wires, and switches. The
signature generators created long sequences of pseudo-random bit strings and
circulated them throughout the machine over a variety of paths. Observation
of changes in the bit patterns helped to locate physical defects such as stuck-at
conditions, opens, and shorts. The test suite established a database of defects.
Circuits could then be physically mapped onto the remaining functional LUTs
and routed through the remaining functional interconnect.

This same notion of using redundancy and reconfiguration to alleviate de-
fects is suggested in a nano-scale Programmable Logic Array (PLA) architec-
ture proposed by DeHon in [11]. In this architecture, crossed carbon nanotubes
or nanowires are used as interconnect switching elements and as simple logic
cells. Recognizing the high defect rate of these nano-scale wires, [11] suggests
employing spares along with reconfiguration to create functional nanoarrays.
Sparing can be used at the local wire level and also hierarchically at higher
levels of organization. Likewise, Goldstein and Budiu also depend on recon-
figuration in their nanoFabric programmable architecture [19] to achieve defect
tolerance. For further discussion of the use of reconfiguration and sparing for
nanocomputing, please see Chapter 7.

It should be noted that reconfiguring Teramac to run all the test vectors and
create a defect database was a time-consuming operation, taking many hours
to days to complete, depending on the size of the Teramac system. Once the
database was created, the computer-aided design (CAD) tools could use it to
place and route circuits.

This defect database was static, so that faults that might emerge during op-
eration were not detected automatically. Only when the test procedure was
re-applied would new faults be discovered. When the database was updated,
all circuits would have to be re-compiled relative to the new database.

In [35], Mishra and Goldstein discuss a scalable testing methodology to find
defects in reconfigurable devices. A metric of k · p defines the number of
defective components in a test circuit, where k is the number of components
in the test circuit and p is the probability that a component is defective. For a
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Teramac-size machine in which k ·p 	 1 (3% defect rate in the entire machine),
a collection of test circuits is used so that a component in the reconfigurable
system is a part of many different test circuits. By comparing the results from
multiple test circuits, faulty components can be isolated. However, as k ·p 
 1,
the number of test circuits becomes unmanageably large. In this case, [35]
proposes more powerful test circuits such as Reed-Solomon codes that can
determine the number of defects in a component. Defect mapping then occurs
in two phases. In the first phase, components are divided into “probably good”
and “probably bad” groups. The former have k · p ≤ 1, so that Teramac-
like test circuit coverage can be employed. The latter are discarded and are
logically mapped out of the system. As with Teramac, this approach of defect
mapping and reconfiguration depends on a rich interconnect and reconfiguration
capability intrinsic to the system.

Defect and Fault Management on Cell Matrix. In contrast to a static
defect discovery process employing test vectors, the Cell Matrix [13] architec-
ture facilitates dynamic defect and fault discovery/recovery. The Cell Matrix
(CM) is a fine-grained reconfigurable fabric composed of simple, homogeneous
cells and nearest-neighbor interconnect. Like FPGAs, the CM cells are based
on look-up tables (LUTs). There are no critical, irreplaceable elements whose
failure could cause the entire system to fail. This homogeneity of cell structure
and interconnect as well as the ability of the Cell Matrix to self-reconfigure
makes the architecture inherently fault tolerant. Like Teramac, the Cell Matrix
can function in the presence of a high degree of defects. Further, the Cell Matrix
can continue to operate when faults occur by appropriately exploiting the Cell
Matrix architecture and using application-level fault-tolerant design.

A cell can operate in one of two modes. In Data mode, a cell produces
output as a function of its data inputs. In Configuration mode, a cell treats the
input lines as a new configuration to store in the LUT memory. A cell’s mode
is a local property, allowing neighboring cells to operate in different modes.
Any cell A can direct its neighbor B to go into Configuration mode simply by
asserting the Configure signal from A to B (see Figure 2.12), which causes B to
re-configure itself by loading its data inputs from A into the LUT memory. In
this example, when the Configure input to B is asserted, the ‘1’ bit input to cell
B on its data channel overwrites a ‘0’ in B’s LUT.

Thus each cell can receive configuration commands from adjacent cells, and
can, in turn, send configuration commands to neighboring cells. This allows a
cell or collection of cells to:

monitor their neighbors’ activities,

detect erroneous behavior,

disable defective neighboring cells, and
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Figure 2.12. Cell Matrix Nearest Neighbor Reconfiguration

relocate damaged segments of the circuit to other locations.

It should be noted that self-reconfigurability is a powerful capability that
must be applied and managed very carefully. Erroneous or malicious use of
self-reconfiguration can have widespread consequences on executing applica-
tions since it may be possible for one circuit to disrupt others through recon-
figuration. Further, self-reconfigurability and the modification of circuits as
they operate can add an additional level of complexity to application design
and are, currently, not easy to analyze. As another issue, this architecture also
imposes a substantial overhead to support self-reconfigurability—half of the
interconnect lines are devoted to configuration control alone. However, despite
these issues, the CM architecture and self-reconfiguration do allow autonomous,
self-repairing circuits to be constructed from a simple, locally interconnected,
homogeneous fabric [32, 12, 33]. For an additional discussion on Cell Matrix
and related defect- and fault-tolerant strategies, please see Chapter 4.

Discussion

Error detection, error masking, and reconfiguration are distinct methods for
defect and fault detection and mitigation. In this section, we will discuss some
of the research results of applying these techniques to nanocomputing. In the
discussion, we will compare and contrast the results from different researchers.
In addition, as these techniques are often used in tandem, we will describe
research in using a combination of the techniques to improve the reliability of
nanocomputers.

Comparing NMR, NAND Multiplexing, and Reconfiguration. In [37],
Nikolić et al. compare three techniques: NMR, NAND multiplexing, and
reconfiguration for different device fault rates. Assuming a chip with 1012

devices and with a requirement that the chip has a 90% probability of working,
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their analysis indicates that NMR is the least effective, with NAND multiplexing
providing better results, and reconfiguration the best results. Table 2.1 provides
some of their comparison data, stating the maximum device fault probability
(pf ) allowable for the given amount of redundancy (R) to achieve a chip with
a 90% probability of working. Reconfiguration can tolerate four to six orders
of magnitude larger device fault probabilities than the other two techniques for
the given redundancy factors. Further, reconfiguration can achieve a chip-level
90% probability of working even with a pf = 0.1, though, it requires R = 105.

Table 2.1. Comparison of NMR, NAND Multiplexing, and Reconfiguration. The table provides
the maximum device fault probability (pf ) given a redundancy factor, R, to achieve a 90% overall
probability of working for a chip with 1012 devices. Data from [37].

Redundancy Technique R Maximum pf (approx.)

NMR 10 4 × 10−9

NAND Multiplexing 10 3 × 10−8

Reconfiguration 10 2 × 10−3

NMR 100 4 × 10−8

NAND Multiplexing 100 4 × 10−7

Reconfiguration 100 2 × 10−2

NMR 1000 1 × 10−7

NAND Multiplexing 1000 5 × 10−6

Reconfiguration 1000 3 × 10−2

Combining NAND Multiplexing and Reconfiguration. In [21], Han
and Jonker suggest a hybrid approach that combines NAND multiplexing with
reconfiguration. Basically, they suggest a hierarchical approach which uses
NAND multiplexing at the lowest level and then uses redundancy for recon-
figuration at three additional implementation levels. To make the approach
practical, a redundancy factor of N = 3 is suggested for implementing a bit
slice of a 32-bit processor using NAND multiplexing with 11 logic levels. At the
next level of hierarchy—the processor level, 16 spare bit slices (an additional
50%) are added for reconfiguration purposes to create the 32-bit processor. At
the next level of the hierarchy, processors are combined into 32 × 32 arrays
to form clusters. Within each cluster, four out of the 32 columns of proces-
sors are considered as spares. Finally, at the top level of the hierarchy—the
chip level, the clusters are again organized into a 32 × 32 array, reserving four
of the 32 columns for use as spares. Through this hierarchical approach, the
researchers calculated that, for an individual gate fault probability of .01 and
with 106 devices per 32-bit processor, this approach would achieve a chip-
level reliability of 99.8% with a total redundancy factor of less than 10, i.e.,
3 × 3

2 × 8
7 × 8

7 × Rother < 10 where Rother is the redundancy of other nec-
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essary spare components. Their analysis assumes that faulty components can
be effectively substituted with spare ones through reconfiguration. Further,
they accounted for fault clustering, assuming that lower levels in the design
hierarchy would have more correlated faults than at higher levels. So, with
a system having 1012 devices and a high device fault rate (1%), they believe
it would be possible to have a reliable system with 1011 effective devices—a
large contrast with the large amount of redundancy (N > 1, 000) required for
von Neumann’s original NAND multiplexing formulation or any of the other
individual techniques listed in Table 2.1.

Self-Correcting Logic Structures: NanoBoxes. Another architectural
approach using classical techniques to achieve usable nanocomputing systems
is based on the NanoBox, as described in [25, 24]. A NanoBox is a look-up-
table-based building block that uses redundancy through either TMR or error-
control coding to correct any output errors produced by the LUT. Figure 2.13
illustrates what a 4-input, 1-output NanoBox might look like. Each NanoBox
stores both the LUT function as well as the associated LUT check bits, which
would be generated by the proposed CAD tool flow and then programmed into
the NanoBox along with the LUT bits. The self-correcting LUT block does not
actually correct the bits stored in the LUT memory or the check-bit memory,
but simply corrects just the output, as needed. They assume that the errors seen
are either transient or permanent and cannot be fixed, so they do not include
circuitry to perform the fixes. Though this seems to contradict the current trend
in SRAM FPGA reliability practice where upsets in the LUTs are assumed to be
correctable and are corrected [9], it may be hard to determine when correcting
the stored LUT and check-bit contents is beneficial, so not correcting the stored
values may be reasonable.

In [25], KleinOsowski and Lilja perform several experiments to determine
the best form of error correction for the NanoBox as well as the efficiency of the
NanoBox for implementing control logic. Using a 90-nm, silicon-on-insulator
CMOS process as way of implementing and evaluating the relative costs of the
error correction schemes, the researchers built a 4-instruction arithmetic logic
unit (ALU) and the control logic for an IBM Power4 floating-point-unit (FPU)
controller using CMOS-based NanoBoxes. They compared the relative costs
of using TMR, a Hamming code, a Hsiao code, and a Reed-Solomon code. Of
the four, TMR was the least costly in terms of circuit area and power, being
a factor of 2 − 3× smaller than the best error control coding solution. Of the
error control codes, Hamming was the least costly, while Reed-Solomon was the
most costly in terms of area and power. They also demonstrated that the 4-input
NanoBox was not very efficient in terms of memory usage for implementing
the FPU controller—each of the controller’s submodules used only 46–78% of
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Figure 2.13. NanoBox, a Defect- and Fault-Tolerant Look-Up Table for Logic

the LUT memory bits for the LUTs that were utilized based on the results of
using industry standard FPGA design mapping tools.

In [24], KleinOsowski et al. propose a defect and fault-tolerant architecture
with multiple levels of redundancy and test the reliability of the architecture for
high rates of injected faults. The architecture uses NanoBoxes at the bottom of
the architectural hierarchy to provide bit-level defect and fault tolerance. Then,
they implement a microprocessor using NanoBoxes. The microprocessor itself
uses either time- or TMR-based redundancy for each of its internal modules
(ALU, memory, controllers, etc.) to provide a second level of redundancy
they call module-level redundancy. Finally, at the top of the hierarchy, several
processors are arrayed in a two-dimensional grid where each processor can, if
it fails, provide its workload to a neighboring processor to complete. Though
nanotechnology is assumed to be the main method for implementing the proces-
sors themselves, conventional CMOS is used to implement the interconnection
network for the 2-D array of processors.

Finally, in [24], the research group evaluates the defect and fault tolerance
of the hierarchical architecture using a direct CMOS implementation of the
processor as a base implementation and then implementing the architecture
using NanoBoxes with no internal redundancy, with TMR, and with a Ham-
ming code. At the processor level, they evaluated reliability using no redun-
dancy, time-based redundancy (i.e., repeating operations), and TMR-based re-
dundancy. By injecting faults into their circuits at the CMOS gate or LUT level
(as appropriate), they determined that the most effective bit-level approach
was TMR, which provides better than 60% correct computation when 9% of
its internal nodes were injected with faults for their given processor work-
loads. The other techniques dropped below 60% at injected fault rates below
3%. As far as module-level redundancy, TMR performed the best, but none
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of the module-level approaches made a dramatic improvement over not using
module-level redundancy—in other words, the bit-level redundancy provided
by the NanoBoxes had the most impact. As a comparison with the expected
fault occurrence rates due to soft errors for conventional CMOS, the proces-
sor system using NanoBoxes with internal TMR and using TMR at the module
level could withstand soft error rates that were more than 20 orders of magnitude
greater than contemporary CMOS and still have 100% correct function for their
workloads. Note that the error-detection and error-correction logic within the
NanoBoxes did not undergo fault injection in this study, but the results are still
impressive considering the area cost for the system is on the order of 9× that
of simply using NanoBoxes with no internal redundancy and no redundancy at
the module level.

2.3 Non-Traditional Computing Models and
Architectures

Beyond the application of more traditional forms for defect and fault tol-
erance (NMR, reconfiguration, error-control coding, etc.), several researchers
are exploring other avenues for building reliable nanocomputing systems. This
section will touch on several approaches for achieving defect and fault tolerance
using techniques ranging from biologically inspired systems to new probabilis-
tic system synthesis approaches.

Neural Networks

Over the past twenty years, biologically-inspired artificial neural networks
have been a popular and proven method for solving complex non-linear prob-
lems in a wide variety of application domains. Artificial neural networks ab-
stract the properties of biological neurons and synapses, so that the synaptic
interconnection of neurons along with the weights associated with a synapse
form a distributed computation network. Nanoelectronics implementations of
neural networks have been proposed, including some exploiting single-electron
effects.

In [45], Rouw and Hoekstra identify two major challenges to nanoelectronic
neural network fabrication. Neural networks are typically connection-rich,
requiring each node to communicate across long distances. Nanoelectronic
implementation favors local interconnection and short-distance communica-
tion. Neural networks using summation to determine connection weights are
subject to errors due to the stochastic nature of single-electron transistors. To
circumvent these limitations, Rouw et al. suggest

local-interconnect-based linear topologies that exploit time delays and

Hebbian learning and classical conditioning as the training methods.



Nanocomputing in the Presence of Defects and Faults: A Survey 59

The work of [17] uses single-electron latching switches as the basis of nano-
scale binary weight, analog signal (BiWAS) synapses. Forwarding and branch-
ing latching switches are proposed, and these building blocks are used to design
2-D, square adaptive synaptic arrays. Experiments with free-growing arrays
show that, for the connectivity typical of the cerebral cortex (each neural cell is
connected to 10,000 others), interconnect density allows only a few neurons per
cm2. A more promising topology is based on nearest-neighbor communication
in a 2-D mesh, in which neurons communicate on 4 axonic and 4 dendritic
lines. The communication lines are interconnected by single-electron BiWAS
switches. This scheme gives a neuronal density estimate of as high as 108

neurons per cm2.
The authors of [52] propose another novel neural network based on the

stochastic nature of single-electron tunneling. A Boltzmann machine neural
network contains bi-directionally connected nodes in which each node com-
municates with every other. A neuron has a binary output state that changes in
response to inputs following a stochastic transition rule. All neurons operate
in parallel, with each adjusting its state in response to state changes of the oth-
ers. In [52], a digital oscillator is designed using a single-electron circuit that
generates a randomly fluctuating 1/-1 binary stream required for Boltzmann
machine operation. The authors do not address the problem of the massive
interconnectivity required for such networks.

Neural networks seem attractive for nanoelectronic implementation due to
intrinsic fault tolerance. Since computation is distributed through the array, the
system may be insensitive to partial internal faults. On the other hand, since the
computation is distributed, an error in one neuron or synapse potentially affects
the whole network. It has been found that the degree of fault tolerance of a
neural network is directly related to the degree of redundancy in the equilibrium
solution to which it has been trained [41].

There has been a substantial body of research into methods of introducing
fault tolerance into neural networks (see [41] for an excellent review, as well
as [36] or [40]). One approach to increasing a neural network’s fault tolerance
modifies the learning procedure to force a neuron to tolerate larger variations
in the input signals. A method that demonstrated enhanced fault tolerance for
Gaussian radial basis functions forces a few nodes to zero (to simulate stuck-
at-zero faults) and then trains the network. Alternatively, the neuron’s output
can be kept fixed to a given value once it has been found to be faulty. It is also
possible to retrain a neural network, re-deriving synapse weights to compensate
for a fault. All of these methods implicitly introduce redundancy into the
network. Phatak and Koren in [40] prove that triple-modular redundancy is
required for complete fault tolerance of feed-forward neural networks, thus, in
the limit, imposing on the neural-net model the same requirements as traditional
computing models.
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QCA Block Majority Gates

Quantum cellular automata (QCA) [47, 2] are a popular nanocomputing
architecture being explored by the research community. In fact, Chapters 8.7
and 10 describe some of the challenges of and techniques for designing with
QCA. Like many architectures at the nanometer scale, they have sensitivities
to both manufacturing defects and environmental issues. In [16], Fijany and
Toomarian analyze an implementation of the QCA majority gate and offer
an alternative to the four-cell majority gate that is less sensitive to inter-cell
alignment and cell failure. The QCA majority gate together with a QCA inverter
chain (or NOT gate) provide a set of universal logic gates for building any logical
function.

Figure 2.14 illustrates the conceptual, ideal QCA majority gate. Points A, B,
and C in the figure correspond to the inputs to the gate. In [16], the researchers
describe the various types of alignment errors which are possible and point
out that a failure of any of the cells will cause the gate to fail. During their
studies, they used the University of Notre Dame’s AQUINAS (A Quantum
Interconnected Network Array Simulator) software to simulate the effects of
misalignment and cell defects on the QCA logic gates. Figure 2.15 illustrates an
example of a gate that would likely fail due to the A input cell’s misalignment.

B

C

D

A

Figure 2.14. Ideal QCA Majority Gate

B

A

D

C

Figure 2.15. QCA Majority Gate with
Misaligned Cell

Figure 2.16 illustrates the 11×8 block QCA majority gate proposed by Fijany
and Toomarian, though, they do suggest that an array as small as 5 × 4 can be
used as a block majority gate. The three gray QCA cells indicate possible inputs
to the gate. Through their work, Fijany and Toomarian note that this block QCA
gate is superior to the four-cell gate in several ways:

the gate can function in the presence of many combinations of single-cell
and/or multiple-cell failures or misalignments;
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Figure 2.16. Block QCA Majority Gate

though only single cells are highlighted as inputs, any of the cells on an
edge can be used as an input, meaning that input cell alignment is less of
an issue;

for increased device-level defect and fault tolerance, more than a single
cell can be used as an input on each side; and

if multiple cells fail or are misaligned and, thus, cause a gate failure,
using different input cells or more input cells on the edges can allow the
gate to function again in some cases.

Clearly, the defect and fault tolerance provided by the redundancy in the array
structure is significant. Unfortunately, the effects of misalignment and failures
apparently are complex enough that it is not easy to give a simple reliability
figure for the gate—simulations are generally required to determine if the gate
will fail based on multiple variables (cell positions, cell failures, input cell
locations, input widths, etc.).

The researchers also illustrated in [16] that the block majority gates can be
used abutted so the output edge of one block majority gate can be placed next
to the input edge of an adjoining gate to perform logic, assuming the gates are
clocked with different clock phases. In this arrangement, the single output cell
shown in Figure 2.16 is not a single point of failure, suggesting that the whole
right edge of the block can be used effectively as the output.
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The Defect- and Fault-Tolerance of Nanocell Logic Gates

In [48], Tour and his fellow researchers describe a molecular comput-
ing structure, called the nanocell, that does not depend on the placement
of molecules in precise orientations or locations and is, therefore, amenable
to nano-scale fabrication. A nanocell is a two-dimensional network of
self-assembled metallic particles connected by molecules that act as repro-
grammable switches. Around the nanocell is a small set of lithographically
defined access leads that provide a way to interface with the nanocell. In a
sense, an array of nanocells would be similar in concept to an SRAM FPGA,
where the nanocells can be programmed and reprogrammed after fabrication to
perform a specific function or functions.

The downside to the approach is that it requires a complex programming
scheme since, internally, each cell is disordered topologically. In their pa-
per, the researchers use genetic algorithms to train the molecular switches in
the nanocell to perform a pre-defined function using specific input and out-
put leads to the cell. For the study mentioned in [48], the researchers assume
that the genetic algorithm is aware of the nanocell’s internal interconnection
topology—something that would not be feasible for real systems but is a good
first assumption for analysis. Despite the disorder of the internal switch net-
work, they have been able to illustrate the training of the nanocells to perform
as one-bit adders or as many as four independent two-input NAND gates.

Through simulating the training of nanocells, Tour and his colleagues noticed
that, with a specific nanocell having only 14 molecular switches (a simple case
used for thorough analysis) and a set I/O configuration, 13% of the possible
switch states caused the cell to function as a NAND gate. For their complete
set of 50 nanocells (each having between 5–16 switches per cell), 3%–19%
of the switch states implemented the NAND function. This implies that the
implementation does not depend on a single set of switch states, thus, providing
a degree of device-level defect and fault tolerance.

Additionally, with larger nanocells having an average of 1826 switches, they
did some additional tests to determine the defect tolerance of NAND gate logic
in terms of ON-OFF output characteristics. With all switches in the ON po-
sition, the nanocell performed NAND logic with ON-to-OFF output current
ratios of 20:1. When > 60% of the switches were turned off randomly, the
minimum output ON-to-OFF current ratio dropped to 10:1, again illustrating a
high tolerance to defects and faults at the switch and device level.

Lastly, they noticed that a large nanocell having 900 nanoparticles and 9000
switches could be trained as four independent two-input NAND gates at the
corners of the cell. Between adjacent NAND gates, the switches were turned
off, effectively isolating the gates from each other—another feature that can
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lead to better tolerance of device-level defects and faults when multiple gates
are implemented by the same cell.

Similar to other architectures mentioned in this volume, the nanocell’s
device-level defect and fault tolerance come from redundant interconnections
and the large number of “useful” logic states the cell provides.

Markov Random Fields for Reliable Nanocomputation

Yet another novel approach to defect- and fault-tolerant nanocomputing de-
sign has been suggested by researchers at Brown University [4, 10]. The idea
is to use probabilistic logic in the form of a Markov random network (MRN)
to perform computations instead of depending on simple discrete-valued logic
(see Chapter 5 for greater detail). By using probabilistic values for logic, the
network can be optimized to maximize the probability that the outputs and
intermediate results are correct, thus, accounting for defects and faults in the
nano-scale implementation of the network.

In [10], the researchers describe conceptually how the MRN realization of
Markov random fields (MRFs)[28] might be mapped to nanoelectronic struc-
tures based on carbon nanotubes (CNTs). The implementation of MRNs de-
pends on three specific aspects: weighted connections, clique energy summa-
tion, and probability maximization. For their potential CNT implementation,
the weighted connections are implemented by using multiple CNT paths for the
same functional weighted input. The use of multiple nanotubes for connections
clearly provides architectural-level defect and fault tolerance by allowing for
some connection failures while still providing some fraction of the input value.
As for clique energy summation, the Brown researchers propose the use of
CMOS-style FETs based on CNTs where the gate of the FET is controlled by
the summation of voltages provided by the nanotubes used for interconnection.
Finally, they suggest that binary flip-flops can be used to fulfill the probability
maximization function in the implementation, noting that more suitable persis-
tent state mechanisms may be found as CNT device characteristics are explored
further.

Based on this conceptual architecture, the researchers describe the design of
the MRN interconnections in terms of topology and weighting. At the center
of the design process is a technique that involves maximizing the probabilities
of correct network-node operation by using the MRF formalism and the Belief
Propagation algorithm[53]. In [4, 10], the researchers describe how the resulting
design is tolerant to interconnection failures as well as discrete and continuous
signal noise. The reader is referred to the discussion on this topic in Chapter 5
for more detail.
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2.4 Tools

As materials scientists, chemists, and physicists grapple with device fabri-
cation challenges, a variety of software tools have emerged to experiment with
nano-scale computational structures through simulation, modeling, or analysis.
Tools exist for analyzing nano-scale transistors [43], device physics modeling,
molecular dynamics simulations, molecular bonding models, small molecule
visualization, electron transport simulation, and many tools used in conventional
computer-aided design (CAD) such as Spice [39] circuit simulation [42, 27].

Fewer tools exist to help study defect and fault behavior in fault-prone cir-
cuits, especially at the architectural and system levels. In this section, we
describe recent advances in tools to understand and analyze error-prone com-
puting architectures.

Fault Simulation

An obvious technique to study faults in a system is to inject faults and then
observe system behavior. This concept was exploited by the Space-Based Re-
configurable Computing project at the Los Alamos National Laboratory [7, 18].
In this work, SRAM-based FPGAs were used as compute engines in order to
meet the size, weight, and power constraints of satellite-based processing. The
work was motivated by a need to compute in the presence of on-orbit radiation
effects without resorting to fully radiation-hardened electronics. In many ways,
the problem mirrors the trade-offs between nanocomputing and conventional
micro-scale computing: commercial components have many times the density
of radiation-hardened electronics but suffer a high degree of faults in a radiation
environment. In fact, it was determined that a collection of nine FPGAs would
experience a transient error (single-event upset—SEU) 1.2 times/hour in low
radiation zones and 9.6 times/hour in the presence of solar flares. These error
rates are unacceptable in current computing environments.

In satellite-based processing, it is desirable to use commercial electronics for
several reasons. Radiation hardened parts cost an order of magnitude more than
conventional ones. The radiation hardened systems are too slow to do real-time
data processing. In addition, the only fully radiation hardened FPGAs avail-
able cannot be reconfigured to hold different data processing algorithms. The
available radiation-tolerant SRAM FPGAs (which are essentially commercial
SRAM FPGAs fabricated on special wafers and are still susceptible to single-
event upsets) use a configuration memory, so that the part may be repeatedly
re-configured with new algorithms. In addition, the configuration data may be
read out and repaired while the parts are active [9].

To explore the feasibility of using fault-prone, high-density devices for com-
puting, a simulation—or more properly, emulation—environment has been de-
veloped. The emulator allows artificial injection of faults into an FPGA by
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dynamically reconfiguring the FPGA with corrupted configuration data. Fig-
ure 2.17 illustrates the mechanism. The emulator uses three FPGAs, all with
a common clock. X1 and X2 initially hold identical designs. As the circuit is
clocked, X3 monitors outputs from X1 and X2 and signals the processor when
outputs differ. During operation, X1’s configuration is selectively modified
while the results from X1 are compared to those from X2 on a clock-by-clock
basis. Through repeated and extensive testing, it is possible to correlate a
single-bit upset in the configuration data with an output error, yielding for a
specific circuit the probability of output failure attributable to each bit in the
configuration. The emulator results have been compared to radiation testing
in a cyclotron and show 97.6% correlation between output errors discovered
through radiation testing and output errors predicted by the emulator [23].

This tool helps an application designer to understand the fault behavior of an
application as well as where to insert redundancy or other error detection and
correction circuitry to improve reliability. In a nanocomputing context, such a
tool would be useful for characterizing an application’s reliability for varying
degrees of fault rates and types.

Automated Trade-off Analysis of Nanocomputing
Architectures

As discussed in detail in Section 2.2, redundancy is a standard technique
for minimizing the effects of errors. However, since the redundant parts might
themselves be error-prone, it is often not easy to determine the optimal level of
redundancy beyond which reliability either does not increase or might actually
decrease.
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In [5] and [6], the researchers have created automated analysis tools to help
micro-architecture designers quantitatively understand the design parameters of
reliability and redundancy. NANOLAB [5] is a set of library functions that can
be invoked within Matlab. The functions compute the probability of different
output states of a Boolean network for different system entropy parameters using
Belief Propagation [53] and the Markov random field formalism. The tool can
be used to determine the minimum level of redundancy required for reliable
computation in Boolean networks. NANOPRISM [6], based on the PRISM
symbolic model checker [26], uses probabilistic model checking to determine
the reliability of logic circuits and has been used to evaluate reliability using
redundancy at different granularities. These tools are described in Chapter 6.

In a similar vein, tools are being developed [3] to perform quantitative sta-
tistical analysis of fault-tolerant QCA architectures [47]. While QCAs are
resilient to certain perturbations in geometry and placement, they are sensitive
to other errors such as non-symmetrical translation in position. The tools being
developed integrate with the AQUINAS QCA simulator from the University of
Notre Dame and perform quantitative statistical analysis of fault-tolerant QCA
gate architectures.

2.5 Summary

Computing systems implemented with nanotechnology will need to employ
defect- and fault-tolerant measures to improve their reliability due to the large
number of factors that may lead to imperfect device fabrication as well as the in-
creased susceptibility to environmentally induced faults when using nanometer-
scale devices. For example, chemical assembly of molecular devices have only
statistical yields and will not create all devices perfectly. As another example,
single-electron transistors (SETs) and quantum-dot cellular automata (QCA)
are susceptible to fluctuations in the background charge near the devices.

Researchers have approached this problem of reliability from many an-
gles, using N-modular redundancy, NAND multiplexing, reconfiguration, error-
control coding, artificial neural networks, and other novel architectures. All of
the techniques use redundancy in some form to overcome defects and faults. The
research results summarized here also suggest that many useful, yet strikingly
different solutions may exist for tolerating defects and faults within nanocom-
puting systems.

Most of the work summarized has been performed at the architectural level for
these nano systems and several claim to offer significant reliability (> 90%) for
only an order of magnitude in redundancy. To solve the problem efficiently and
effectively, we believe that defect and fault tolerance needs to be considered at all
levels of the computing system: the device level, the architectural level, and the
application level. For example, at the device level, a device’s design parameters
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need to be considered to increase the probability that the device will operate
properly and for a significant lifetime. Redundancies available at the device
level should be exploited. At the architectural level, redundancy can be applied
at various granularities and the trade-offs among system performance, cost, and
reliability need to be weighed carefully. Further, many of the techniques being
pursued can be applied throughout the architectural hierarchy: the gate level,
the module level, and the system level. Finally, at the application level, there
may be instances where the applications themselves can withstand some degree
of noise in their operation. Requiring 100% reliability from the underlying
computing hardware may not be absolutely necessary in those cases. Likewise,
designing applications to be aware of system faults and to recover from them
should be considered, despite the hopes that the underlying hardware will be
able to mitigate the defect and fault issues.

Lastly, with the increased complexity of these computing systems as well
as the increased complexity in designing the systems using nano-scale devices,
designers will benefit from software tools that automate the mitigation of defects
and faults as well as provide the ability to analyze systems for their reliability
once designed. Without such tools, the costs of design and verification for these
systems may be prohibitive and out of the reach of many designers.
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Abstract As feature sizes shrink closer to single digit nanometer dimensions, defect tol-
erance will become increasingly important. This is true whether the chips are
manufactured using top-down methods, such as photolithography, or bottom-up
assembly processes such as Chemically Assembled Electronic Nanotechnology
(CAEN). In this chapter, we examine the consequences of this increased rate of
defects, and describe a defect tolerance methodology centered around reconfig-
urable devices, a scalable testing method, and dynamic place-and-route. We
summarize some of our own results in this area as well as those of others, and
enumerate some future research directions required to make nanometer-scale
computing a reality.

Keywords: nanotechnology, nanocomputing, end-of-roadmap CMOS, chemical assembly,
defect tolerance, reconfiguration, testing

Introduction

Future computing systems will inevitably be built using nanoelectronics,
i.e., from devices and wires with feature sizes below thirty nanometers. The
SIA roadmap [37] predicts that traditional silicon-based systems will have fea-
ture sizes of below 40nm within the decade. Additionally, there are advances
being made in building computing systems using new technologies, such as
molecular electronics [8]. Successfully harnessing nanoelectronics requires a
new approach to building computing systems. While each technology has its
own unique requirements, the small size of the individual devices and the large
quantities of devices per chip are common to all nanoscale technologies.
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The ever increasing improvement in computing performance is fueled by the
ever increasing number and speed of available transistors, but it is driven by
a hierarchy of abstractions. One plausible hierarchy is: Transistors → Logic
Gates → Circuits → Blocks → ISA → Programs. Each abstraction layer hides
the details of the layer below it, helping to control the complexity of designing
and implementing systems with hundreds of millions of components. The layers
also promote a separation of responsibilities, allowing independent progress to
be made at different levels of the system. Currently, this hierarchy rests on
certain assumptions about manufacturing, design, testing and verification. In
particular it assumes that transistors and wires can be placed at will by the
designer and will all work reliably. However, these assumptions break down at
the nanoscale.

Perhaps the greatest impact of the nanoscale on electronics will be the reduced
ability to arbitrarily determine the placement of the components of a system.
The most extreme example of this is to be found in chemically assembled
electronic nanotechnology (CAEN), a form of molecular electronics which
uses bottom-up assembly to construct electronic circuits out of nanometer-
scale devices. Large-scale molecular electronics requires some form of self-
assembly [8]. When using self-assembly, individual devices and wires are first
manufactured, and only later assembled into a circuit. While self-assembly
promises to be a very economical process (compared with the cost of traditional
semiconductor fabrication), it cannot be used to create the arbitrary patterns that
can be formed using photolithography. Only simple, crystal-like structures can
be created using self-assembly. Furthermore, defect densities of self-assembled
circuits are projected to be orders of magnitude higher then in silicon-based
devices. Thus, self-assembled circuits and architectures will have to be designed
for defect tolerance.

To a lesser extent similar issues face traditional semiconductor technology
as it continues to scale. The complexity of generating a reliable mask set which
produces reliable chips is already limiting the ability to create arbitrary patterns
of wires. This can be seen in the trend towards “structured” ASICs, which allow
custom chips to share many of the same masks [44]. As devices scale down it
is also harder to maintain constant characteristics for all the devices on a single
chip [33]. Some argue that process variation will essentially eliminate the per-
formance gains typically expected when feature sizes shrink [5]. These trends
indicate that as feature sizes shrink even photolithographically manufactured
chips will need to be crystal-like, i.e., built from very regular structures.

In order to implement useful reliable functionality on top of crystal-like
structures, post-fabrication customization is required; this customization will
be used for two purposes (1) to implement the desired functionality and (2) to
eliminate the deleterious effects of the defects [11, 21]. Economics will also
speed the movement towards customizable chips. As mask sets become more
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Transistor → new molecular devices
Custom hardware → generic reconfigurable hardware

Defect free hardware → defect tolerance through reconfiguration
Synchronous circuits → asynchronous computation

Microprocessors → hybrid CPU + compiler-synthesized application-specific
hardware

Figure 3.1. Our proposal for how the abstractions used in devising computing systems should
be changed.

expensive it becomes more economical to reuse the same chip for different tasks,
i.e., to use programmable hardware (also called a reconfigurable fabric) such as
field programmable gate arrays (FPGAs). A reconfigurable fabric is a network
of processing elements connected by a programmable interconnect [22]. It can
be programmed by determining how signals are routed on the interconnect. The
desire to decrease time-to-market is also accelerating the trend towards using
FPGAs for ever higher volume applications.

Defects in manufacturing have been, until now, primarily the concern of pro-
cess engineers, not circuit designers or architects. In the era of nanoelectronics,
delivering chips which can be viewed as defect free will likely be too expensive.
In fact, this is happening already; for example, state-of-the-art FPGA chips with
known defects can be purchased at a discount [47]. The “defective” chips can
be used because the defects on the particular chip are determined not to affect
the customer’s design. In the future, defect tolerance will have to be designed
in at the circuit and architectural level. In this chapter we discuss how defect
tolerance can be achieved by combining reconfigurable fabrics with new tools.
Reconfiguration provides defect tolerance by configuring the desired circuit
around the defects, thus creating a reliable system from an unreliable substrate.
Before the fabric is shipped its defects are mapped [31]. When the chip is used,
the desired circuit is configured around the defects. The two main challenges are
to develop architectures and tools which can find the defects quickly and then—
in the field—quickly place-and-route (P&R) circuits around the defects. Final
P&R needs to be done in the field so that a single configuration can be shipped
for all devices, in spite of the fact that each device will have a different set of
defects. For the remainder of this chapter, we will refer to such defect-tolerant
reconfigurable fabrics made from future-generation technologies as very large
reconfigurable fabrics, or VLRFs.

To summarize, our proposal for an alternative computer system architecture
is based on dramatically different abstractions (outlined in Figure 3.1, and dis-
cussed in more detail in [20, 19]). In particular, the abstraction that a circuit is
created at manufacturing time needs to be replaced by the ability to configure cir-
cuits at run-time; and the abstraction presented to upper layers of a defect-free,
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reliable computing fabric must give way to one where the defects are exposed to
the upper layers – circuits, architectures, and software – and these upper layers
must be actively involved in the objective of achieving defect tolerance.

3.1 Approaches for Achieving Defect Tolerance in the
Nanometer Domain

The high defect densities in VLRFs require a completely new approach to
manufacturing computing systems. No longer will it be possible to test a chip
and throw it away if it has only a handful of defects, since we expect that
every chip will have a significant number of defects. Instead, we must develop
a method to use defective chips. The ability to tolerate defects in the final
product in turn eases the requirements on the manufacturing process. In some
sense, this introduces a new manufacturing paradigm: one which trades-off
post-fabrication programming for cost and complexity at manufacturing time.
In this section, we summarize some of the major approaches to defect tolerance
used in computer systems of today, and which have been proposed for the
technologies of tomorrow. This list, while by no means exhaustive, presents a
good snapshot of the major research trends in this direction. Chapter 2 presents
a more detailed survey of many of these approaches.

Modern memory chips and hard drives are able to achieve some degree of
defect-tolerance by leveraging redundancy and post-manufacturing adaptive-
ness that allows them to substitute spare, working resources for defective ones.
In large, high density memory chips, extra rows and columns are built into the
chip. After manufacturing, a testing phase locates failing rows and columns,
and these are replaced by the spare rows or columns by using a laser to burn
a bypass path. Some modern operating systems go a step further: when they
detect a memory error, a testing tool is run to detect the failing memory regions;
the operating system then remembers not to use those regions when it stores
data to memory. With VLRFs, techniques based on simple row or column re-
placement will not be sufficient: it is unlikely that a portion of the fabric of
any appreciable size will be defect free. Moreover, these devices are being pro-
jected as a replacement not just for memories but also for logic, where simple
techniques such as row-replacement will not work since logic is less regular.

Modern hard disks achieve defect tolerance by having a number of spare disk
blocks. They ship with a map containing locations of all the bad disk blocks
and the spare to be used in place of a bad block. During the lifetime of the hard
drive, as more and more failing disk blocks are identified, the map is updated
with this information. As we will see later, this approach is very similar in spirit
to the one we are proposing for VLRFs.

One approach to achieve defect tolerance for logic would be to use tech-
niques developed for fault-tolerant circuit design (e.g., [38, 34, 40]). Such
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circuit designs range from simple ones involving triple-mode redundancy or
other relatively simple forms of majority logic to more complex circuits that
perform computation in an alternative, sparse code space, so that a certain num-
ber of errors in the output can be corrected. However, the best such techniques
available today require a significant amount of extra physical resources, result in
a (non-negligible) slow-down of the computation, and they are also hard to au-
tomate well. Also, these circuits work reliably only if the number of defects are
below a certain threshold. One major advantage of these techniques, however,
is that they are able to tolerate defects that may occur during the operational
lifetime of the fabric as well as transient faults, as long as the cumulative ef-
fect of these defects and faults remains smaller than the circuit’s fault-tolerance
threshold (for example, it can easily be shown that triple-mode-redundancy is
able to enhance a system’s reliability as long as the fault probability for each
of the replicas remains below one-half).

A novel architectural approach for nano-scale computing is based on using
probabilistic models of computation, such as the one proposed by Bahar et
al. [2], and discussed in detail in Chapter 5. Their approach is based on Markov
Random Fields and seeks to maximize the probability of correct boolean state
configurations by minimizing the entropy of a suitable energy distribution that
depends on neighboring nodes in the boolean network. Their architecture is
based on an algorithm called belief propagation: starting from the network
inputs, the known probabilities of the values of network nodes are used to com-
pute probabilities on the values of their neighbors, and this process is carried
out until the probabilities on the values of the outputs are known. This archi-
tecture is naturally defect and fault tolerant since computation happens in the
probabilistic domain; however, it presents to us the challenge of adapting to a
completely new architectural paradigm, and new programming models. The
fault tolerance properties of this architecture are evaluated quantitatively by
Shukla et al. [4] and described in more detail in Chapter 6.

Another paradigm that has been proposed for nano-scale computing are
Quantum Cellular Automata [3] (see also Chapters 8.7 and 10 in this book). The
fundamental component of a QCA architecture is the quantum dot, which is a
nanoscopic site capable of holding a small, quantized coulombic charge. QCA
devices perform logic and communication by arranging a number of quantum
dots in linear and 2-dimensional patterns, and allowing the quantum dots to be
affected by the charge state of their neighbors. On the one hand, their use of
coulombic interactions give QCA architectures some robustness against small
placement errors in the quantum dots; on the other, QCA-based devices pro-
posed so far require more precise patterning and assembly than that required
for mesh-based architectures, and hence are likely to be more fragile in the
face of error-prone manufacturing processes. Some researchers have proposed
using triple-mode-redundancy to increase the reliability of the wires and even
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the logic, or of architecting QCA logic gates in such a way to make them fault
tolerant; there has also been some work in developing test strategies for QCA
architectures (e.g., [41]).

A natural solution for achieving defect tolerance in VLRFs is suggested
by looking at reconfigurable fabrics, e.g., Field-Programmable Gate Arrays
(FPGAs). An FPGA is an interconnected set of programmable logic elements.
Both the interconnect and logic elements may be programmed, or configured,
to implement any circuit. The key idea behind defect tolerance in FPGAs is that
reconfigurability allows one to find the defects and then to avoid them. On the
theoretical side, Cole et al. [10] have shown that for fail-stop faults, an N ×N
reconfigurable array with N1−ε worst-case faults can emulate a fault-free N×N
array with constant slowdown. On the practical side, a number of approaches
have been proposed and implemented for tolerating manufacturing defects and
runtime faults in FPGAs and custom computing systems, as well as for run-time
defect detection and reconfiguration to avoid defects [29, 18]. In the domain
of custom computing systems, the Piperench reconfigurable processor [39] and
more notably the Teramac custom computer [12, 23] had a notion of testing,
defect-mapping and defect-avoidance built into them. Upto 75% of the FPGAs
used in the Teramac had at least one defect; assembly was followed by a testing
phase where the defects in the FPGAs were identified and mapped. Tools for
generating FPGA configurations used this defect map to avoid defects.

The defect tolerance strategy we propose is similar to the one used for the
Teramac: just like the Teramac’s FPGAs, we expect that VLRFs will go through
a post-fabrication testing phase at which point they will be configured for self-
diagnosis. The result of the test phase will be a defect map which contains
locations of all the defects. This map can be used by place-and-route tools to
layout circuits on the fabric which avoid the defects. However, compared to
the Teramac, the problem of implementing this defect-tolerance methodology
on VLRFs is significantly harder because the Teramac used CMOS devices
with defect rates much lower than those predicted for next-generation tech-
nologies. The enhancements we propose to make this process work for VLRFs
are described in later sections.

3.2 Technology

This section reviews some recent results in Electronic Nanotechnology and
Molecular Computing, as well as the basics of reconfigurable computing.

Nanotechnology and Molecular Circuits

Significant progress has been made in developing molecular scale devices.
Molecular scale FETs, negative differential resistors, diodes, and non-volatile
switches are among the many devices that have been demonstrated. Advances
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have also been made in assembling devices and wires into larger circuits. Esti-
mated densities are between 10x and 1000x greater than those predicted by the
ITRS 2001 road-map for silicon-based CMOS circuits [8]. In addition to the
increases in density, molecular electronics also promises to introduce devices
with characteristics not found in silicon-based systems. One example is the
non-volatile programmable switch, which holds its own state without using a
memory cell, and can be configured using signal wires; such a switch has the
same area as a wire-crossing. This contrasts with reconfigurable fabrics made
today using standard CMOS, where a reconfigurable switch has the same area
as a memory cell and is 2 to 3 orders of magnitude bigger than a wire-crossing.

The requirements imposed by the manufacturing process as well as the
area advantages presented by the molecular reconfigurable crosspoints have
prompted a number of researchers to propose regular, mesh-based reconfig-
urable architectures for VRLFs. One such architecture is the nanoFabric [21],
which is fine-grained reconfigurable and is designed to overcome the limita-
tions of self-assembly of molecular scale components. The basic unit of the
nanoFabric is the programmable molecular switch, which can be configured
either as a diode or as an open switch. As mentioned above, this molecular
switch eliminates much of the overhead needed to support reconfiguration in
traditional CMOS circuits, since the switch holds its own state and can be pro-
grammed without extra wires. These switches are organized into 2-D meshes
called nanoBlocks, which can be configured to implement logic functions. The
nanoBlocks in turn are organized into clusters which can be connected using
long lines which run between the clusters. Within a cluster, each logic block is
connected locally to 4 neighbors. In addition to the functionality of the logic
blocks, the connections to the interconnect are also all reprogrammable. An-
other architecture based on mesh-like arrangements of active cross-points is
the one proposed by DeHon [13], which uses arrays of configurable molecular
FETs.

Reconfigurable Hardware

In the last few years there has been a convergence in molecular-scale archi-
tectures towards reconfigurable platforms. Reconfigurable computing not only
offers the promise of increased performance but it also amortizes the cost of
chip manufacturing across many users by allowing circuits to be configured
after they are fabricated.

Reconfigurable Hardware shares features of both custom hardware and mi-
croprocessors. Its computational performance is close to custom hardware,
yet, because it is programmable, its flexibility approaches that of a processor.
Because of their enormous potential as computational elements, there has been
much research into using RH devices for computing (see [22] for an overview).
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(a) A nanoBlock is the smallest configurable logic block of
a nanoFabric.

(b) A nanoFabric consists of many regularly tiled nanoBlocks, inter-
spersed with routing resources.

Figure 3.2. The nanoFabric, an example of a reconfigurable CAEN-based architecture.
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Several features of RH devices differentiate them fundamentally from pro-
cessors, and are responsible for the extremely high performance of computing
systems built using such technologies:

1 Unbounded computational bandwidth: a microprocessor is designed
with a specific number of functional units. The computational bandwidth
of a processor is thus bounded at the time of manufacturing. Moreover,
it is unusual for a processor to reach its peak performance, because the
parallelism available in the program rarely has the exact same profile as
the available functional units.

In contrast, RH can support a virtually unbounded number of functional
units. Not only can highly parallel computational engines be built, they
can exactly fit the application requirements, since the configuration is
created post-fabrication.

2 Unlimited register bandwidth: another subtle but important difference
between a processor and an RH device is in the way they handle inter-
mediate computation results: processors have a predetermined number
of registers. If the number of manipulated values exceeds the number
of registers, then they have to be spilled into memory. Additionally, the
fixed number of internal registers can throttle parallelism.

Even more limiting is the number of register ports: in a processor the
bandwidth in and out of the register file is bounded by a hard limit. In
contrast, datapaths on RH directly connect the producers of a result to
its consumers. If there is a register needed, it is inserted directly into the
datapath. In other words, there is no monolithic register file, no register
port limit, and no need to spill values to memory.

3 Full out-of-order execution: while superscalar processors allow in-
structions to execute in orders different from the one indicated by the
program, the opportunity to do so is actually restricted by several factors,
such as limited issue window, generic exception handling and structural
hazards. None of these constraints exists in RH implementations.

Other often-cited advantages of RH are the abilities to:

4. Exploit all of an application’s parallelism: task-based, data, instruction-
level, pipeline, and bit-level,

5. Create customized function units and data-paths, matching the applica-
tion’s natural data size,

6. Eliminate a significant amount of control circuitry.
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Using VLRFs

There are two scenarios in which VLRFs can be used: (1) as factory-progra-
mmable devices configured by the manufacturer to emulate a processor or other
computing device, and (2) as reconfigurable computing devices.

(1) In a manufacturer-configured device, user applications treat the device as
a fixed processor (or potentially as a small number of different processors). Pro-
cessor designers will use traditional CAD tools to create designs using standard
cell libraries. These designs will then be mapped to a particular chip, taking into
account the chip’s defects. A finished product is therefore a VLRF chip and a
ROM containing the configuration for that chip. In this scenario, the configura-
bility of the VLRF is used only to accommodate a defect-prone manufacturing
process. While this provides the significant benefits of reduced cost and in-
creased densities, it ignores much of the potential in a VLRF. Since defect
tolerance and limitations of the manufacturing process require that a VLRF
be reconfigurable, why not exploit the reconfigurability to build application-
specific processors?

(2) Reconfigurable fabrics offer high performance and efficiency because
they can implement hardware matched to each application. However, this extra
performance comes at the cost of significant work by the compiler. A con-
servative estimate for the number of configurable switches in a 1cm2 VLRF,
including all the overhead for buffers, clock, power, etc., is on the order of 1011.
Even assuming that a compiler manipulates only standard cells, the complexity
of mapping a circuit design to a VLRF will be huge, creating a compilation
scalability problem. Traditional approaches to place-and-route in particular
will not scale to devices with billions of wires and devices.

In order to exploit the advantages listed above, we propose implementing the
user application as a distributed dataflow machine, with only local communica-
tion between different parts of the machine and clean interfaces that are based on
the request-response paradigm. This allows us to eliminate most global control
and synchronization mechanisms found on the processors of today, while at the
same time allowing us to synthesize hardware circuits directly from high-level
descriptions.

3.3 Toolflow Required to Achieve Defect Tolerance

Our defect-tolerance approach is two-fold. First, we construct a map of the
defects. Then, when configuring the device to implement a particular circuit,
we avoid the defects by using only the good components of the device. Our
approach requires three things from a reconfigurable device:

it must be reprogrammable

it must have a rich fine-grained interconnect



Defect Tolerance at the End of the Roadmap 83

Figure 3.3. The tool-flow for using molecular reconfigurable fabrics for computation.

it should allow us to implement a particular logic function in many dif-
ferent ways.

All three of these attributes are necessary for both defect detection and defect
avoidance. During defect detection, we reprogram different test circuits on
the device. Each different instance of a test structure gives us information
about different sets of components on the device. The latter two attributes are
most necessary during defect avoidance. They allow a particular circuit to be
implemented without requiring us to use any of the defective components.

Dealing with high defect densities in VLRFs will require a new set of tools,
such as fast testers to generate defect maps and place-and-route tools to convert
circuit descriptions into fabric configurations taking into account the defect
map for the fabric. Figure 3.3 depicts how these tools inter-operate. We briefly
list the expected functionality from these tools below; the following sections
contain more details on these ideas.
Fabric testers find and record defect locations. Defects can be tolerated by
configuring circuits around them. A testing step first generates a defect map,
much like the maps of defective blocks used for hard disk drives. This map may
be a listing of all the defects in the fabric, or may be coarser-grained information
such as a count of the number of defects in each portion of the fabric. We have
done some initial algorithmic work that demonstrates that it is indeed possible
to detect the defects in a large reconfigurable fabric with a defect density as
high as 10%; Section 3.4 describes the details of our method and the results we
have obtained.
Place-and-route: The place-and-route process generates fabric configurations
that avoid using defective components. The place-and-route tools have to deal
with the large size of the fabrics, as well as with the fact that each individual
fabric has a unique set of defects and therefore requires some effort from the
place-and-route tools to configure around its particular set of defects. Our work
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on these tools is still at a very preliminary stage; we outline below our proposed
two-step process to deal with these challenges and present some more details
on these ideas in Section 3.5.

1 An initial, fabric- and defect-independent step (DUPER, or Defect Un-
aware Place and Route) which includes technology mapping and global
placement and routing, and generates what we call a “soft” configura-
tion. The “soft” configuration is guaranteed to be place-and-routable on
a fabric that has a defect level below a certain threshold.

2 A final, defect-aware step (DAPER, or Defect Aware Place and Route) that
transforms the “soft” configuration into a “hard” configuration, taking
into account the target fabric’s defect map. At this step the final place-and-
route is performed, using only non-defective resources. If the defect-map
is imprecise or coarse-grained, this step requires the use of an on-the-fly
defect mapper to pin-point the precise location of defects. The hard
configuration is specific to each fabric.

We briefly summarize here the context in which we expect to use the above
mentioned tools. Our expectation is that VLRFs will be used for general-
purpose computation rather than only as a replacement for ASICs. In this
scenario, the above mentioned tools will have to be part of a chain that al-
lows the complete compilation of user programs from high-level programming
languages down to hardware implementations that can carry out the desired
functionality. The other important components of this hardware-compiler in-
frastructure will therefore have to include the following (see [20] for more
details):

1 A hybrid processing fabric consisting of a classical CPU (manufactured
using micro-scale technologies, if needed) and a large reconfigurable
component. The CPU will serve to perform “housekeeping” tasks that
are ideally not suited for execution on reconfigurable hardware, such as
tasks that require a lot of interaction with micro-scale peripherals (for
example, operating system tasks).

2 A compiler infrastructure that takes a high-level design description and
compiles it down to a circuit description. Since creating the functionality
of the circuit has been moved from manufacturing time to configuration
time, the compilation encompasses tasks traditionally assigned to soft-
ware compilers and to some tools in the CAD toolchain. The challenge
of building a single tool spanning both domains presents us with the
opportunity of reformulating the traditional interface between these two
domains: the Instruction Set Architecture. Removing this rigid interface
exposes a wealth of information to the compiler enabling novel classes
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of optimizations. The disadvantage of this approach is the complexity
between the source and target of the compilation process.

We propose the use of traditional, high-level software programming lan-
guages for programming VLRFs, as opposed to the traditional approach
to programming reconfigurable hardware which uses hardware-descrip-
tion languages. The ability to use high-level programming languages
will remove the burden from the users of these fabrics of having to
learn hardware design methodologies. One such compiler is CASH [7, 6]
which compiles ANSI C programs into collections of dataflow machines.
The resulting dataflow machines are highly composable: they have sim-
ple interfaces using simple, timing-independent protocols. The natural
substrate for implementing these dataflow machines are asynchronous
(or globally-asynchronous, locally-synchronous) circuits. Asynchronous
circuits also make it significantly easier to achieve rapid compilation and
to meet our defect-tolerance requirements; we elaborate on this further
in Section 3.5.

3.4 Testing

In this section we address the problem of finding the defects in high-density
reconfigurable fabrics [31]. For our purposes here we limit ourselves to an ab-
stract notion of defects and manifested faults: a defect is permanent and causes
the defective resource to malfunction without affecting other surrounding re-
sources. Also, a defect always manifests itself as a fault–it is not the case that
faults are manifested in some situations and not in others depending on the oper-
ation context. Permanent stuck-open and stuck-at faults are examples of faults
satisfying these conditions. We don’t directly consider shorts, which may ren-
der a number of components connected to the shorted wires unusable; instead, a
short manifests itself as failures in a number of fabric components located close
to each other in a cluster, which our testing methods should be able to detect.
We also do not consider defects which do not affect component functionality
but only slightly affect parameters such as delay and power consumption. It
should be noted that if the delay for any particular wire or logic component is
too high, it will show up as a functional failure in our test circuits; for delays
that are smaller, our proposal to use asynchronous or globally-asynchronous
locally-synchronous circuits (see Section 3.5) should make it easier to tolerate
these defects.

Although these assumptions may seem over-simplifying, they are not un-
realistic for CAEN-based technologies (see [20] and references therein): the
switches and logic elements will be made of molecules that should have fairly
uniform operational characteristics, and most defects will occur because mole-
cules fail to make contact or to align properly during the assembly process.
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Also, shorts can be made very rare because for CAEN-based fabrics, we can
engineer the molecules and assembly processes to be highly biased towards
opens. This is likely to cause a higher overall defect rate, but a single short
is more harmful than a handful of opens. Finally, we do not consider faults
that may occur during the operational lifetime of the fabric, although some of
our ideas for rapid defect location and reconfiguration to avoid defects have
applicability for tolerating defects that occur in the field as well.

Background

VLSI testing is a much-studied area of research. A large number of test-
ing strategies and design methodologies have been proposed over the years to
improve the speed and accuracy of VLSI testing, and hence to enhance man-
ufacturing yield [1]. Most such techniques have been designed around the
assumption that a single, or at most very few faults exist in the portion of the
circuit under test. The problem we wish to tackle is significantly harder, since
a large fraction of the resources under test may be defective. A key advantage
we enjoy over traditional VLSI testing is that since the fabric is reconfigurable,
we have the freedom to implement a circuit of choice to carry out the testing,
rather than being limited to passing input vectors to the fabricated circuit.

Testing and defect tolerance are widely studied problems for FPGAs and
custom computing systems. A number of testing methods have been proposed
for particular FPGA architectures (e.g., [26, 15, 25, 48]), as well as many FPGA
architectures designed with Design-for-Testability considerations [9, 30].

Our testing and analysis techniques have resonances with a large body of
work in Statistics and Information Theory on Group Testing [16], which is a
collection of techniques for finding members of a population which satisfy a
particular property (i.e., which are “defective” in our setting). Our work is
based on certain aspects of non-adaptive, probabilistic group testing. Different
flavors of this technique have been applied to a variety of problems [14, 45,
28]. However, none of the problems discussed in the group testing literature
have constraints as hard as ours: they have lower defect rates and assume that
members of the population can be tested individually; while testing VLRFs,
however, accessing individual fabric components will probably not be possible,
because the on-fabric routing and switching resources used to carry signals
to and from the particular component may themselves be defective, and also
because with the abundance of resources, testing each component individually
will be prohibitively expensive.

Fabric Architecture

The particular architecture of the reconfigurable device is not essential to our
defect detection or defect avoidance algorithms. In modeling the specifics of
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the algorithm we assume an architecture similar to an island-style FPGA, i.e.,
a mesh of interconnect resources surrounding islands of reconfigurable logic.
Examples of such an architecture include the nanoFabric (see Section 3.2) and
the architecture proposed by DeHon [13]. Both these architectures satisfy all
three characteristics necessary for defect tolerance as enumerated in Section 3.3.

Proposed Testing Method

We propose configuring sets of fabric components into test circuits whose
output is used to infer the defect status of individual components. Unlike
the dedicated Built-in Self Test structures often incorporated in current digital
designs, the test circuits placed on the fabric during this self-diagnosis phase
will utilize resources that will be available later for normal fabric operation; our
expectation is that testing in this way should not require any dedicated fabric
resources, and so supporting such a testing methodology should not incur either
an area or a delay penalty.

For the description in this section, we use an abstract notion of a “defect”
and a “fabric component”. A defect is assumed to be permanent, and to cause
some incorrectness in the output of a circuit using that defective component
(see above). When performing the tests on a real fabric, the test-circuits used
will have to be specialized according to the type of defects being diagnosed -
shorts, opens, wire-breakages etc. What we mean by a fabric component is also
left unspecified. It will depend on the design of the fabric, on the granularity
of reconfigurability, and on how much of the fabric resources we are willing to
sacrifice to achieve quick testing. Depending on these factors, a “component”
may be one or more simple logic gates, a small configurable mesh of active
cross-points, or a look-up table; the on-fabric interconnect resources are also
considered “components” in the sense that they are configurable and may be
defective.

As an example, consider the situation in Figure 3.4(a). Five components are
configured into one test-circuit, so that defects in one or more circuit components
would cause the circuit output to be incorrect. By comparing the circuit’s output
with the correct result, it can be determined if any of the circuit’s components
were defective. In the first run, the circuits are configured vertically, and test
circuit 2 detects a defect. In the next run, the circuits are configured horizontally,
and test circuit 3 fails. Since no other errors are detected, we can say that the
component at the intersection of these two circuits is defective, and all others
are good. This testing method, used for the Teramac [12], relies on the fact
that most of the constructed test circuits will be defect-free. Hence, all their
components can be assumed to be good. However, if the defect rate is higher,
as it is likely to be in VLRFs made with future-generation technologies, this
method no longer produces very good results. For example, in Figure 3.4(b),
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Configuration 1 Configuration 2

Defect−free Component

Defective Component Passing Test

Failing Test

(a) For small defect rates, precise defect location is possible,
and the false-positive rate (defect-free components identi-
fied as being defective) is low.

Configuration 1 Configuration 2

Defect−free Component

Defective Component Passing Test

Failing Test

(b) For a high defect rate, most test circuits fail and the
false-positive rate is high.

Figure 3.4. Examples showing how defective components can be identified using two different
test-circuit configurations, for fabrics with small and high rates of defects. Any component that
is part of a passing test is assumed to be free of defects.
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only one vertical and one horizontal circuit return the correct result, and we
gain no information about defect locations in the rest of the fabric. Also, the
test circuits used will have a much larger number of components than in the
simple examples shown here. This will be true for two reasons:

1. Controlling and observing a small set of resources in the interior of the
fabric will require fabric interconnect resources, which may themselves
be defective: an incorrect circuit result would mean a defect in the circuit’s
parts, or in the wires and switches used to observe the circuit’s output.
These interconnect resources will therefore have to be considered part of
the “test circuit”, thus imposing a limit on how small these circuits can
be made.

2. For high-density fabrics, small test circuits would imply a long testing
time, so much so that the fabrics may become economically unviable.

We believe typical test circuits used for testing these fabrics will have hun-
dreds or even thousands of components. With a defect rate of 10%, a test-circuit
with as few as a hundred components is expected to have 10 defects. This im-
plies that the simple technique used in the examples in Figure 3.4 will not work
at all, since an overwhelming majority of circuits will contain some defects.
For example, it is easy to see analytically that for a test-circuit size of 100 and a
defect rate of 10%, only about 1 circuit in 4×104 will be defect free. Therefore,
locating a significant number of defect-free components will require an enor-
mous number of test circuit configurations. The key idea we propose to deal
with this situation is that the test circuits should be more powerful: instead of
simply indicating the presence or absence of defects, they should provide us with
more information, such as an estimate of the actual number of defective com-
ponents. In particular, we have obtained encouraging simulation results using
idealized test circuits that can count the actual number of defective constituent
components, as well as practical LFSR-based circuits that provide approximate
counts of the number of defects but still give good diagnosis results.

Testing Algorithm. Our testing algorithm is sketched in Figure 3.5. It
consists of two phases: the probability assignment phase (lines 1–10) and the
defect location phase (lines 11–22). The probability assignment phase assigns
each component a probability of being defective, and discards the components
which have a high probability. This should result in a large fraction of defective
components being identified and eliminated from further testing. The remaining
components are now likely to have a small enough defect rate that they can be
tested in the defect location phase using the simple method employed in the
example of Figure 3.4 to identify all the defect free components. In each phase,
the fabric components are configured into test circuits in a particular orientation,
or tiling; since each circuit uses only a small number of components, many such
circuits can be configured in parallel, or tiled, across the fabric. For example,
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// Probability Assignment Phase
1 mark all fabric components not suspect
2 for iteration from 1 to N1 do
3 while probabilities not stable do
4 for all fabric components marked not suspect do
5 configure components into type-1 test-circuits using

a particular tiling
6 compute defect probability for each component using

circuit results from current iteration
7 done
8 done
9 mark components with high defect probability as suspect
10 done

// Defect Location phase
11 for iteration from 1 to N2 do
12 while results improve do
13 for all fabric components marked not suspect or

not defective do
14 configure components into type-2 test-circuits using

a particular tiling
15 for all circuits with correct output do
16 mark all circuit components not defective
17 done
18 done
19 done
20 mark some suspect components not suspect
21 done

22 Mark all remaining components as defective

Figure 3.5. Proposed testing algorithm.

the circuits in Figure 3.4 are arranged in two tilings, vertical and horizontal.
For now, we assume that arbitrary tilings are possible; this will generally not
be the case in a real fabric with limited connectivity. Later on, we discuss some
implications of limited fabric connectivity and ways to deal with it.

In the probability assignment phase, test circuits are repeatedly configured
on the fabric, and circuit results are analyzed to compute the probability of
being defective for each component (while loop of lines 3–8). When these
probabilities have stabilized, components with a high probability are discarded,
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or marked suspect. These suspect components are not made a part of further
test-circuits. This whole process is repeated a fixed number of times (N1, N1 ≥
1) or until a point of diminishing return is reached (for loop of lines 2–10). Note
that this phase is probabilistic, and many good components will be misidentified
as suspect. The purpose of running the for loop multiple times is to get a finer
resolution of defect-probabilities for the components and thus to minimize the
misidentification rate. The remaining points of interest here are the type-1 test-
circuits used in line 5, and the method for computing defect probabilities in line
6. Both of these are described in greater detail in subsequent subsections.

After the probability assignment phase, a number of components have been
marked suspect and are not included in the further test-circuits. For the re-
maining components, the defect density is expected to be low enough that a
substantial number of test-circuits will be defect-free. These defect-free com-
ponents are identified in the defect-location phase (lines 11–22). In this phase,
the circuits used (type-2 test circuits, line 14) return a wrong answer in the pres-
ence of a defect, but are not required to provide any more information. Compo-
nents of error-free circuits are marked not defective. This whole process is
repeated till no more good components are identified (while loop, lines 11–19).
At this point, some of the components previously marked suspect are added
back (line 20), and the whole process is repeated; this is done a total of N2 times.
The purpose of this is to try to reduce the number of components misidentified
as suspect by the probability-assignment phase.

We define a quality metric, recovery, to evaluate our algorithm. Recovery is
the percentage of defect-free components which our algorithm identifies as such.
For example, if the fabric has a 10% defect rate, and the algorithm identifies 45%
of the components as defect free, the recovery is 50% (45/(100-10)×100%).
The recovery value is usually less than 100% because the algorithm has many
false positives, i.e., good components that are identified as bad. In general,
recovery will depend on the type of test-circuits used, number of tests run and
the rigor of the post-testing analysis. There are a number of trade-offs that can
be made between testing time and recovery, for example by adjusting the value
of N1 and N2, or by changing the termination condition for the while loops on
lines 3 and 12. In particular, the value of N2 has been set to more than 1 in
our simulations and the step on line 20 has been added in an effort to maximize
recovery. It should be noted that if the test circuits used in the defect location
phase can detect all modeled defects, this method of defect-mapping will never
produce false negatives (i.e., bad components which are identified as good): all
the components that the algorithm says are good will actually be good.

Another important trade-off is the obliviousness or non-adaptiveness of the
test-circuit generation. By this, we mean that the results of previous tests are
not used to generate new circuits. In the algorithm as it stands, a small amount
of re-routing of test circuits is required after each iteration of the for loops in
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the two phases, when some components are discarded or added back. This
re-routing is unlikely to require much effort since only routes to bypass certain
components need to be included in pre-computed tile configurations; even this
small amount of routing effort can be traded-off against recovery by adjusting
N1 and N2.

Some Candidate Test-Circuits. We need test-circuits that can give us
some notion of the number of defects in the circuit’s constituent components.
We have considered two kinds of circuits for this purpose: idealized counter
circuits that can actually count the number of defects, and none-some-many
circuits, which can tell us, with reasonable certainty, if the circuit had none,
some or many defective components.

Counter circuits: These are idealized circuits that can count the number
of defects, upto a certain threshold. For example, if the circuit’s threshold is
t, it can tell us if there are 0, 1, 2, ..., t or more than t defects in the circuit’s
components. Naturally, circuits with a higher threshold are more powerful
and give better recovery results than those with a lower threshold. Although
it is extremely difficult to practically realize such counter circuits with high
thresholds, our simulation results (discussed later) show that even circuits with
a threshold of 1 (i.e., which can only tell us if there were 0, 1 or more defects)
can give significant recovery for moderate defect rates. For certain defect types,
designing such low-threshold counter circuits may be possible.

None-some-many circuits: These circuits are a weaker version of the coun-
ter circuits described above. They can tell us, with some degree of accuracy,
if the circuit contained none, some or many defects. We have designed simple
circuits based on Linear-Feedback Shift Registers (LFSR) that can give us such
information. These test circuits operate as follows:

• A set of components are organized into an LFSR, which is provided with
an initial input and run autonomously for a while. Its signature is then
matched against the correct output. If the signature matches, the circuit
is assumed to contain no defects. Note that this does not mean the circuit
is defect-free, because a correct output may have been obtained because
of aliasing.

• If the large LFSR produced a signature mismatch, it is split into some
number of smaller LFSRs (say 4), which are again provided initial inputs
and run autonomously. If less than half of the smaller LFSRs have a
signature mismatch, the entire circuit is assumed to contain some defects;
if there are more mismatches, the circuit is assumed to contain many
defects.

Breaking up a larger LFSR into some smaller ones should require minimal
reconfiguration, since only a small number of forward and feedback connections
need to be redirected. We have found that the two-step schema above works
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better than using smaller LFSRs from the start because smaller LFSRs have a
higher aliasing probability. Also, in the initial stages of testing, most circuits
will be found to contain some or many defects. However, as components are
marked suspect and removed from subsequent testing steps, many of the large
LFSRs will turn out to be defect-free, obviating the need to run the smaller LFSR
circuits. This should speed up the testing. An alternative to LFSRs would be
circuits based on linear cellular automata [36], which have the advantage of
not having long feedback connections. However, low aliasing probabilities are
harder to achieve with cellular automata and they are also harder to design since
they need more fabric resources.

Analysing Circuit Outputs. Once the results of the test circuits have
been obtained, they are used to determine the probability of each individual
component being defective. We have considered two methods for doing this
analysis:

“Sorting” analysis: Let a component c be part of n different circuits. Based
on the results of these n circuits, we calculate a fault-value for the component,
as follows: if the test circuits are counter circuits, the fault-value is simply the
sum of the number of defects in each of the n circuits. If the circuit is an LFSR-
based none-some-many circuit, we assign numerical weights to each result (e.g.,
2 to many defects, 1 to some and 0 to none) and sum up all n weights for the
component. Once this calculation has been performed for all components under
test, they are sorted according to their fault-values and components with higher
fault-values are assigned a higher probability of being defective. This method
involves simple calculations and places no specific restrictions on the shape or
nature of the tilings.

Bayesian analysis: Again, let a component c be a part of n different test
circuits. Let p be the a priori known defect rate in the fabric, obtained through
some initial testing or from knowledge of the manufacturing process. Let a1, a2,
..., an represent numerical results for each of these circuits (these can be actual
defect counts for counter circuits, or numerical weights for the none-some-
many circuits as described above). We need to find the posterior probability of
component c being defective given our knowledge of the circuit results. Let A
be the event that c is good, and let B be the event of obtaining the circuit results
that we have obtained for the n circuits. Therefore, we need to find P (A|B).

Now, from Bayes’ rule,

P (A|B) =
P (A ∩ B)

P (B)

=
P (A ∩ B)

P (A ∩ B) + P (A ∩ B)

If c is the only component that the n circuits share, this equation simplifies
to the following:
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Figure 3.6. A schematic representation of how testing will proceed in a wave-like manner
through the fabric. The black area is tested and configured as a tester by the external tester; each
darker-shaded area then tests and configures a lighter-shaded neighbor.

P (A|B) =
1

1 +
(1 − p)n−1nn

pn−1(n − a1)(n − a2)...(n − an)

This equation is solved for each component to obtain its probability of being
good (the probability of being bad, which is required by the algorithm, is simply
this value subtracted from 1). The simple closed-form expression obtained
above holds true only if all the circuits that a component is part of have only
that component in common. It can easily be shown that in general, the amount
of computation grows exponentially with the number of components that two
different circuits can share. This is a significant limitation of the method: on a
fabric with limited routing resources, it severely restricts the number and type
of tilings that are practically realizable. Although the sorting analysis gives
results inferior to the Bayesian analysis, it does not suffer from this limitation.
We are currently exploring ways to combine these two techniques to get around
this while maintaining high recovery.

Scaling The Testing Process with Fabric Size. A short testing time is
crucial for the usability and low cost of these fabrics, so it is important to
ensure that the testing procedure scales with fabric size. We shall begin by
analyzing the testing strategy above to see how long it takes to run.

The size of a test-circuit will depend on the granularity of access the fabric
provides us–in general, smaller circuits provide more accurate information but
are harder to realize. Let the circuit size be k. Then, since the circuits in a
tiling are independent of each other, a k × k piece of fabric can be configured
to run k test circuits in parallel. Let the average number of iterations of the
two while loops in lines 3–8 and 12–19 of the algorithm (Figure 3.4) be x and
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Figure 3.7. Recovery vs. defect rate for counter circuits using sorting analysis of circuit results.
Each line represents a circuit with a different upper bound for the number of defects that can be
counted. inf stands for infinity.

y respectively (x and y will depend on the termination condition used for the
two loops). Then, the total number of tilings used equals N1x+N2y. We have
observed empirically that if d is the defect rate, the number of tilings required
before recovery stops improving scales as O(k × d). Therefore, for testing
k×k components, we require O(k×d) fabric reconfigurations. If the fabric is
larger then k× k it can be split into many sections of size k× k, each of which
can be tested separately.

We envisage that the reconfigurability of the fabric can be leveraged to reduce
the time spent on an external tester significantly. Once a part of the fabric is
tested and defect-mapped, it can be configured to act as a tester for the other
parts. Also, there is nothing to prevent us from having multiple testers active
simultaneously. In such a scenario, the first area to be tested tests its adjacent
ones, which test their adjacent ones and so on, and the testing can move in a
wave through the fabric (see Figure 3.6). For large fabrics, multiple such waves
may grow out from different externally-tested areas. Now, as the fabric size
increases, testing time grows linearly with the distance this wave has to traverse
through the fabric, which is proportional to the length of the fabric’s edge, and
to the square root of the number of components in the fabric.

Evaluation

We performed simulations of our algorithm to determine its efficacy and to
evaluate the two types of test-circuits and analysis methods described above.
These simulations were carried out using a very abstract notion of the fabric
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Figure 3.8. Recovery vs. defect rate for counter circuits using Bayesian analysis of circuit
results. Each line represents a circuit with a different upper bound for the number of defects that
can be counted. inf stands for infinity.

architecture and defect model: the fabric was assumed to consist of a large
number of “components” arranged in a rectangular array with practically un-
limited routing resources to connect them together. This allowed us to configure
arbitrary test-circuit tilings onto the fabric, which will in general not be feasible
on a real fabric. It was also assumed that suitable test-circuits were available
to identify each of the different types of defects that can occur on the fabric.
Although this abstracts away all the details of the fabric architecture and de-
vice failure model, our results are still a fairly good indication of the level of
recovery achievable in such a high-defect-rate regime.

The simulations were carried out using test-circuits that had about 100 com-
ponents each, and with fabrics that had defect rates ranging from 1 to 13 percent.
What this actually means is that our analysis methods were tested for an average
of 1 to 13 defects per test circuit, and our results are valid if test circuits used on
actual fabrics have a defect count approximately in this range. Therefore, the
size of the test-circuit will have to be adjusted according to the defect rate of the
fabric: fabrics with a small defect rate can be tested using larger test circuits, but
fabrics with higher defect rates will require smaller circuits and therefore the
architecture will need to provide more fine-grained access to fabric internals.

Figures 3.7 and 3.8 present simulation results for counter circuits using,
respectively, the sorting and Bayesian analysis. Figures 3.9 and 3.10 present
results for the LFSR-based none-some-many circuits. For all of the above
simulations, we assume that the defects have a random, uniform distribution
throughout the fabric. Experience with VLSI fabrication has shown that defects
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Figure 3.9. Recovery vs. defect rate for none-some-many circuits using sorting analysis of
circuit results. The label for each curve represents the number of smaller LFSRs that the larger
LFSR is split into.

Figure 3.10. Recovery vs. defect rate for none-some-many circuits using Bayesian analysis of
circuit results. The label for each curve represents the number of smaller LFSRs that the larger
LFSR is split into.

are often clustered rather than uniformly scattered. However, the assumption of
randomly scattered defects is pessimistic compared to clustered defects: if the
defects are clustered, a larger number of circuits are expected to be defect-free,
and hence defect diagnosis can be expected to be easier, as we show later in
this section.
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The counter circuit simulations were carried out using a number of test
circuits with different thresholds on the number of defects they can count.
These thresholds were varied from 1 (the circuit can only tell us if there were 0,
1 or more defects) to 10. For comparison, a circuit that can count an unbounded
number of defects was also included. The simulated circuits were also allowed
to return an incorrect result with a small probability. The test cycle was carried
on till the results stopped improving, i.e., the precomputed tilings failed to
identify any new defect-free components. The number of tilings required for
each circuit varied from about 20 to 200, depending on the type of circuit, the
fabric defect rate and which type of analysis was being used (sorting analysis
needed about twice the number of tilings needed by the Bayesian analysis). Such
a large number of tilings is possible under our unrestricted fabric connectivity
assumption, but may not be achievable with a real fabric. For both types of
analysis, good recovery results were achieved with circuits having relatively low
counting thresholds. The results indicate that significant recovery is achievable
if the test-circuit can count about a third of the expected number of defects per
circuit (e.g., a circuit that can count 3 or 4 defects gives good results if the
average number of defects per circuit is less than 10).

For the none-some-many circuits, LFSRs were first configured using about
a hundred components, and these were then broken up into 2, 3, 4 or 5 smaller
LFSRs (recall that the results of the large LFSR as well as each of the smaller
pieces are taken into account while deciding if the circuit has none, some or
many defects). Breaking the initial LFSR into more pieces gives more accurate
information about the components being tested, but requires more effort to
get inputs to and outputs from the circuits. The simulated circuits produced
incorrect results with the expected aliasing probability for circuits of that size.
These circuits required about 50 to 100 tilings, before results stopped showing
an improvement. The number of tilings required depended in the expected way
on the type of circuit used, fabric defect rate and analysis technique.

To show that the results presented so far will only improve in the presence of
clustered defects, we generated fabrics in which the defects occurred in clusters,
with components around the center of the cluster having a normal probability
distribution of being defective. Clusters of different tightness were obtained
by varying the standard deviation of the normal distribution. These results are
presented in Figure 3.11: all the fabrics had a defect rate of 9%; the bars to
the left represent larger standard deviations and hence larger clusters, while
those to the right represent tighter clusters. The leftmost bars correspond to a
standard deviation of infinity, which is essentially the uniform distribution. We
simulated counter circuits with thresholds of 2 and 3 and Bayesian analysis.
As the clusters get tighter, the recovery results for the circuits with threshold
2 improve dramatically. For the threshold 3 counter, the results were good to
start with, but still show a small improvement.
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Figure 3.11. Recovery results for clustered defects, using counter circuits of thresholds 2 and
3 and Bayesian analysis. The horizontal axis shows different values of a clustering parameter,
which corresponds to the tightness of the clusters. Larger values represent looser clusters: infinity
(inf) represents unclustered, uniformly distributed defects, or the results in Figure 3.8.

To summarize, the more sophisticated Bayesian analysis has significantly
better recovery than the simpler sorting analysis. Also, simulations using the
sorting analysis technique needed about twice the number of reconfigurations
needed by the Bayesian analysis. However, the sorting analysis is much easier
to implement, particularly because it places far fewer restrictions on the types
of tilings that can be used (recall that the Bayesian analysis required that any
two test circuits have at most one component in common). We are presently
investigating other methods of analysing circuit results, including a combination
of sorting and Bayesian analysis, to reduce the number of reconfigurations
required as much as possible while not sacrificing recovery.

Testing: Discussion

We have presented a testing algorithm that can obtain a reasonably high level
of recovery of fabric components, using test-circuits that provide more infor-
mation about the defect status of their components than simply the presence or
absence of defects. Our algorithm attempts to minimize the amount of rerouting
required at test time, since rerouting is a slow and computationally expensive
procedure. Therefore, we restrict ourselves to using pre-computed tiling con-
figurations which undergo a minimal amount of adaptation at test time. Of
course, once the algorithm has identified some fabric resources as being defect
free, test circuits can be generated which incrementally test fabric resources
whose defect status is unknown, potentially achieving close to 100% recovery.
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A naive example of such an adaptive testing method would be one that tests each
component by making it part of a test-circuit all of whose other components
are known to be defect-free. Although this method does the required job, it is
very inefficient, and identifying an efficient way to carry out this final testing is
a focus of our current work.

3.5 Placement and Routing

This section lists some of the requirements that a placement and routing tool
must satisfy to be usable under our defect tolerance methodology. To briefly
summarize, the place-and-route tool should be able to take in a map of defects
(as generated by our testing tool) and produce fabric configurations that avoid
using these defective resources. The task of this tool is made more difficult by
the following constraints:

1 As opposed to current hardware design methodologies where the place
and route tools are run once per design, our approach would require
running them once per fabric. This is because each fabric would have a
defect map that is unique to it, requiring some place and route effort to
avoid the defects. To make this process practical, we will have to find
ways to minimize the per-fabric effort, while still achieving the desired
functionality.

2 Adjusting the design to avoid defects may have an unpredictable effect
on the timing of various signals. It has to be ensured that in spite of these
adjustments, the implemented circuits are able to meet all the timing and
functionality guarantees.

3 Since we envision using VLRFs for general-purpose computation rather
than only as ASIC replacements, the execution time of the place-and-
route tool should be comparable to software compilation and installation
runtimes–measured in seconds and minutes, rather than in hours and
days, as is the case for current hardware design or reconfigurable logic
toolflows. This should be true in spite of significantly more available
resources compared to current hardware design tools.

4 For significantly high defect rates, the complete defect map may not be
available. This is because storing a detailed defect map for the full fabric
may require resources comparable to those available on the fabric itself.

In the next few subsections, we propose techniques that may be used to deal
with each of these problems.
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Two-phase Place-and-route Process

As shown in Figure 3.3, we propose splitting the place-and-route process
into two steps, a Defect Unaware Place and Route (DUPER) step which is
performed once per-design by the application developer, followed by a Defect
Aware Place and Route (DAPER) step that is performed once per-fabric by the
end user. The DUPER phase will produce a “soft” configuration: this will
contain enough place and route information so that it can be quickly finalized
by the DAPER phase to produce a “hard” configuration, that can be loaded onto
the fabric. To give the user the impression that his application starts up in time
comparable to current software installation times, the DAPER phase should be
quick and lightweight, and as much place-and-route functionality as possible
should be handled by the DUPER phase.

The DUPER phase will be akin to global placement and routing performed
by place and route tools of today. For example, if a quadratic-placement based
method is used (e.g., [42, 17]), the DUPER phase will correspond to the initial
quadratic optimization phase, while the final legalization will occur in the sec-
ond, DAPER phase. If a recursive partitioning-based placement method is used
(e.g., [27, 43]), the partitioning of the design into small groups of logic blocks
can occur in the DUPER phase, while final placement for the groups will hap-
pen in the DAPER phase. Iterative improvement methods, such as those based
on simulated annealing (e.g., [35]), are not likely to be useful for our purposes,
since they commit the placement to be legal fairly early in the place-and-route
process. Similarly, global routing to assign nets to channels (or perhaps small
groups of channels) will be done in the DUPER phase, while the nets will be
assigned to individual wires in those channels in the DAPER phase.

We expect that the placement and routing tools for the DAPER phase will be
implemented to run on the VLRF itself, so that a companion compute system
is not required to execute these layout tasks. This may require modifications to
the layout algorithms, to make them amenable to a parallel, distributed imple-
mentation on the VLRF; for example, Wrighton et al. [46] describe a distributed
and parallel placement algorithm based on simulated annealing that can be im-
plemented on a reconfigurable fabric and runs up to 3 orders of magnitude faster
than standard tools, with a small degradation in placement quality. Also, the
fabric can be architected suitably to assist in placement and routing, reducing
runtime even further. One such approach described by Huang et al. [24] designs
the interconnect network in such a way that it is able to help significantly with
the task of identifying possible paths between two nodes, and congestion levels
along those paths. Their methods are able to obtain 2-3 orders of magnitude
speedup for the routing phase while seeing only a few percent degradation in
routing quality compared to standard routing tools.
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The configuration produced by the above process may not be well optimized
with respect to area or wirelength, which translates into slower execution. How-
ever, the reconfigurability of the fabric can be leveraged to improve on this
situation: while the computing system is lying idle, it can perform background
optimizations on the designs that have been “installed” on it, tweaking the con-
figuration to extract better performance. The next time the user loads up the
configuration, it will be faster and more compact. This background, post-install
optimization may very well be carried out by iterative methods.

Hierarchical Fabric Architecture

To make the task of defect-mapping and place-and-route simpler, we propose
architecting the reconfigurable fabric in a hierarchical manner. The fabric will
be divided into a number of smaller regions, each of which will consist of a
small number of basic configurable blocks. An example of such a hierarchical
design is the nanoFabric (Figure 3.2): the individual nanoBlocks are arranged
into clusters, which are tiled regularly across the plane to obtain the complete
fabric.

While testing the fabric as well as performing place and route, we can apply
a threshold on the number of defects in each region to determine whether that
region is usable. If a region has only a few defects, the defect map will contain
detailed information for it and the DAPER phase will be able to utilize the
region; if the region has too many defects, the whole region may be marked
unusable.

The Need for Asynchronous Circuits

Synchronous circuits present two complications to our methodology: they
increase place-and-route time since timing closure is one of the most difficult
and time-consuming objectives for CAD tools to achieve, and it is difficult to
guarantee timing closure will be achieved at all after the DAPER phase, since
the results of this phase are dependent on the unique defect map for each fabric.

To alleviate both these problems, we propose using asynchronous or globally
asynchronous locally synchronous (GALS) circuits [32]. If the fabric architec-
ture is hierarchical (see above), one possible implementation is to make each
region (or cluster in a nanoFabric) synchronous, and make inter-region commu-
nication asynchronous in nature. This will make it easy for design tools to deal
with regions that have been deemed unusable because of a very high number
of defects, by allowing asynchronous inter-regions signals to be routed around
them. For each individual synchronous region, the clock can be given enough
slack so that the small adjustments required to avoid defects does not cause a
timing violation. Using a GALS rather than a fully asynchronous design also
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minimizes the overhead caused by asynchronous signaling and handshaking
protocols.

Hierarchical, Multi-step Testing

Making the defect map hierarchical as suggested above – making it have
precise defect information for regions with a relatively small number of defects
while marking the regions with more defects completely unusable – helps to
compact the defect map a little. However, this map may still be too large to
ship with the fabric – the complete map may require storage that is larger than
the fabric itself.

One way around this problem is to include the complete defect map for only a
small portion of the fabric. This portion should be large enough to accommodate
most small and medium-sized applications, so that the rest of the fabric needs
to be used only rarely for the very large applications. A small testing tool is also
shipped with the fabric, and enough defect information about the remainder of
the fabric is included in the map (such as the count of the defects in each region,
or statistical information on the nature of the defects) so that this tester can
very quickly test and map the defects in that portion. When a large application
needs to be configured on the fabric, the DAPER tool runs the tester to obtain
this defect information before using that part of the fabric. This testing and
configuration can happen in an incremental, on-demand manner, so that part of
the application is up and running, while another part is still being configured.

3.6 Summary

Next generation manufacturing technologies are expected to achieve ex-
tremely high device densities, yielding computational fabrics with many billions
of components. However, this boon comes at the cost of large defect densi-
ties. In order to make the entire process economical it is important that the
chips be defect tolerant. One possible approach to defect tolerance is to use a
reconfigurable architecture for the computing devices, coupled with a testing
methodology that can locate the defects in the reconfigurable fabric and a place-
and-route process that can implement user circuits on the fabric while avoiding
the defects.

In this chapter, we have proposed a toolflow that can meet the requirements
for a reconfiguration-based defect tolerance strategy. We have described our
own work which demonstrates that it is indeed possible to quickly and reliably
locate the defects in a large reconfigurable fabric with a defect rate as high
as 10%. The testing strategy we propose is based on powerful test-circuits
and analysis methods which collate results from many different test-circuits to
determine whether a particular fabric component is defective or not. We have
also enumerated some of the challenges that layout algorithms will need to
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meet to enable them to configure circuits on the fabric while going around the
identified defects. We have proposed solutions to some of these problems; in
particular, we propose using a two-stage place-and-route process, hierarchical
fabric architecture, multi-stage testing, and implementing user functionality as
asynchronous circuits.
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[46] Michael Wrighton and André M. DeHon, Hardware-assited simulated
annealing with application to fast FPGA placement, Proceedings of the
International Symposium on Field-Programmable Gate Arrays (FPGA
2003) (Monterey, CA), Februaury 23–25 2003, pp. 33–42.

[47] Xilinx, Inc., Virtex-II Series EasyPath: Frequently Asked Questions,
http://www.xilinx.com/publications/products/v2/faq/faq101 easypath.pdf,
January 2003.

[48] Yinlei Yu, Jian Xu, Wei Kang Huang, and Fabrizio Lombardi, Minimizing
the number of programming steps for diagnosis of interconnect faults in
FPGAs, Proceedings of the 8th Asian Test Symposium (Shanghai, China),
November 1999, pp. 357–362.



Chapter 4

OBTAINING QUADRILLION-TRANSISTOR
LOGIC SYSTEMS DESPITE IMPERFECT
MANUFACTURE, HARDWARE FAILURE, AND
INCOMPLETE SYSTEM SPECIFICATION

Lisa J. K. Durbeck
Cell Matrix Corporation
Blacksburg, VA, USA

ld@cellmatrix.com

Nicholas J. Macias
Cell Matrix Corporation
Blacksburg, VA, USA

nmacias@cellmatrix.com

Abstract New approaches to manufacturing low-level logic—switches, wires, gates—are
under development that are stark departures from current techniques, and may
drastically advance logic system manufacture. At some point in the future, pos-
sibly within 20 years, logic designers may have access to a billion times more
switches than they do now. It is sometimes useful to allow larger milestones
such as this to determine some of the directions of contemporary research. What
questions must be answered so that we sooner and more gracefully reach this mile-
stone at which logic systems contain a billion times more components? Some
problems include how to design, implement, maintain, and control such large
systems so that the increase in complexity yields a similar increase in perfor-
mance. When logic systems contain 1017 switches or components, it will be
prohibitively difficult or expensive to manufacture them perfectly. Also, the han-
dling and correction of operating errors will consume a lot of system resources.
We believe these tendencies can be minimized by the introduction of a low-cost
redundancy so that, in essence, if one switch or transistor fails, the one next to it
can take over for it. This reduces effective hardware size by a factor in exchange
for a way both to use imperfect manufacturing techniques, and, through similar
means, maintain the system during its life cycle. It may also be possible to use
similar basic principles for a more complex problem, designing a system that can
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catch and compensate for operating errors, but with low enough cost in time and
resources to allow incorporation into all large systems. We suggest that such a
system will be a distributed, parallel system or mode of operation in which sys-
tems failure detection is a hierarchical set of increasingly simple, local tasks run
while the system is running. Work toward answering these questions appears to
also yield some useful ways to approach a more general question, of constructing
systems when their structure and function cannot be completely predetermined.

Keywords: integrated systems verification, integrated systems design, fault tolerance, fault
isolation, fault handling, Cell Matrix, cellular automata, nanotechnology, elec-
tronics, transistor, Von Neumann, Drexler, CPU/memory architecture

4.1 Four Areas for New Research

Hardware and logic designs have come a long way. The transistors used in
a modern single-chip CPU are several hundred million times smaller than the
original transistor built in 1947. If a contemporary CPU were built with the
original transistor technology, it would take up a space of roughly one square
kilometer. Current ways to produce logic designs pack many more transistors
into hardware than their predecessors ten years ago, and ten to twenty years from
now there may be ways to produce hardware devices with a billion times more
transistors or switches. Note that such an increase in fabrication density does
not lie on most current technology road maps, such as ITRS. This prediction is
instead based on the expectation that researchers will uncover fundamentally
different technologies that cause a sudden jump in device density. At the end of
the curve following Moore’s Law, we may find that process technology begins
a completely new curve.

There has been and continues to be strong economic incentive for minia-
turization of logic designs and electronics. Although for some products this
has been used to simply reduce the footprint, designers have also been freed to
create larger and more complex designs as transistor density has increased.

How complex will designs be with a billion times more capacity available?
And what of the fact that some of the work to uncover replacements for the field
effect transistor is being done in scientific disciplines in which three dimensional
structures are not at all unusual– ten to twenty years from now there could be
ways to produce three dimensional hardware for logic designs.

Technical breakthroughs over the next ten to twenty years could come grad-
ually, but may instead exhibit sudden leaps in progress as problems are solved,
discoveries are made. The path will depend on many variables: the nature
and timing of future breakthroughs, whether they combine to form a complete
production method, and how rapidly these new ideas are put into practice. In
addition to having much larger switch counts and much smaller package sizes
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for logic designers to work with, there may be production means, and product
parameters, very different from the ones in use today. There are many hard and
interesting research questions at this junction that are appropriately addressed
both in academia and industry. They include:

1 getting involved in the analysis of nascent switch-production methods
to model how well they fit the engineering requirements of integrated
circuits and what the outcomes could be from using a particular new
method. Considerations include the number of switches per unit area
or volume inside the device (density), total number of switches inside
the device (volume), operating condition limitations, operating speeds,
power requirements, production costs, and the reliability of production
method and of the product during its lifecycle. This analysis will help
guide the directions of research in switch production methods, determine
how a particular method is best applied, and also help in comparing and
contrasting differing production methods;

2 coming up with designs, and design tool capacity, for effective use of
1017 transistors or switches, such as designs that will scale up gracefully
or even seamlessly as density increases, and ways to produce designs that
readily lead to production of larger switch counts;

3 coming up with more powerful design and verification tools to handle
logic designs with many orders of magnitude greater scope and com-
plexity, a topic which Hsiao et. al address in Chapter 11;

4 coming up with more flexible processes for the product path, from def-
inition of a new product’s requirements, through logic design, test and
verification, and implementation in hardware. Processes should be flex-
ible enough to permit things like:

(a) co-development of design, test and build, with none of these steps
assumed to be fixed;

(b) development of design and verification that exploit a new fabrication
method’s strengths and minimize its weaknesses; and

(c) blurring of test and build into a more iterative process that takes
the imperfect nature of a build process into account, rather than
assuming that a perfect build is possible or normative while an
imperfect build is unusable.

We have done some work related to these four areas of inquiry. The question
we are interested in is what logic designs are suitable for billions to trillions of
times larger and more complex designs, particularly if you remove the assump-
tions of perfect hardware and completely predetermined usage. We propose a
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two layer hierarchy, in order to decouple logic and manufacturing issues. Fig-
ure 4.1 gives some idea of this approach and its effect on the production of
logic systems. For a given logic design X, we build a two-layer logic design,
with the lower layer Y representing what is actually built in hardware, and the
upper layer either representing the logic design X, or representing a means by
which X can be constructed, or often a representation of a bit of both, such as
a hardware library containing the components of X and a means to copy them
and lay them out onto the hardware layer Y. The lower layer Y contains the
logic design needed to either represent X in an efficient manner, or to construct
X, after which it represents X in an efficient manner. This means we have
direct control over the hardware layout of Y, but not X, which means we can
control the placement of X’s gates and wires on Y, but this is one step removed
from the native hardware and its placement of transistors or switches and wires.
In exchange, we gain the capacity to have parts of X defined, or redefined,
at runtime, when information about the hardware’s imperfections is known.
Similarly, we can use this capacity to cause the layout of X to be affected by
other information at any time during the system’s useful life, and can use it to
do things like optimize X or its implementation for the situation in which the
product is used, such as the specific inputs it gets, use patterns, changes in use
or inputs, environmental conditions, damage incurred throughout its life, etc.

The lower layer Y of this two-level design is a homogeneous structure with
local-only interconnect, one that appears to be a good fit with the expected
strengths and weaknesses of the revolutionary, post-field-effect transistor pro-
duction methods under development. An illustration of Y’s structure is provided
in Figure 4.2. Layer Y’s specification leads to hardware with every square or
cubic millimeter packed with simple building blocks that can implement tran-
sistors/switches and wires, or small-scale- integration-sized gates, logic blocks,
and wires. We call these building blocks logic cells, illustrated in Figures 4.3
and 4.4. Logic cells combine low level signals and produce outputs, and indi-
vidual cells’ functions can be combined to make more complex logic blocks and
functions such as memory, state machines, multipliers, floating point units, and
so on: any digital logic design. However, they also have this additional prop-
erty of supporting non-static, partially-predetermined functions. We achieve
this partly from the design of the logic cells, and partly from the functional
directives we provide them. That is, we assign them not a static but a dynamic
function, analogous to switch statements in programming languages (if X then
do A, else B). Then we base their function on the inputs they receive, and
organize groups of cells together to do useful work as dynamic circuits. The
Y layer of hardware can be thought of as smart transistors and wires that can
move around and change system function to suit new directives, and the new
capability of dynamically changing function can be thought of as a system that
can process and modify both data and its own logic, its own circuits, its own
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layout. The hardware layer Y is the physical and logical substrate upon which
these traditional static and new dynamic logic designs exist. The logic design
layer X is the set of current logic designs plus designs that take advantage of
the ability to change the logic and its layout during its operation, for example,
circuits that take in, process, and modify circuits.

We have explored the use of this new capability to create systems that deter-
mine on their own how to best utilize their hardware resources, and to create
systems that lay out perfect circuits on damaged hardware [2, 3, 5]; to cre-
ate self-replicating and self-modifying systems [2, 3, 5, 10, 11]; to create an
expanding counter that extends itself when it detects impending overflow condi-
tions [11]; to create orderly copying of libraries of logic blocks onto Y hardware
[10, 11]; to create mechanisms to test enhanced wires and transistors for faults
and report them [2]; to create mechanisms to isolate faulty transistors and wires
and demonstrate that they cannot affect the rest of the hardware [3]; to orga-
nize X,Y systems that efficiently perform computations via highly distributed,
highly parallel functions [1, 12]. We have also ensured that traditional capabil-
ities are well-served: it is easy to lay out a simple circuit onto Y hardware and
can be done via straightforward engineering practice, for example, compilation
of circuit schematics [14] or HDL [15]. We have fully defined the layer Y with
a complete and simple specification [6, 8] and have initial, unsophisticated and
fairly low-level ways to get X onto Y [14] and are working our way up to more
sophisticated tools for the use of higher level representations of logic designs.

Our work to date can provide researchers with a convenient framework in
which to develop research programs for these four areas of inquiry. In this
chapter we describe and address one particular problem associated with so
many orders of magnitude more switches per unit area/volume, which will give
the reader a better idea of the problems that cause the need for new research in
these four areas, and will provide a better idea of how to use our framework to
approach them as well.

Figure 4.1 shows a high level view of how the production of a particular logic
design might be performed using the Cell Matrix computing architecture we
have designed and the X,Y approach described here. The approach is similar
to that used for reconfigurable devices today, with several important unique
aspects that are marked in the figure by asterisks. Time proceeds roughly to
the right in two parallel, independent tracks, and then down the right hand
side of the diagram. The construction of the X and Y layers are performed
independently, shown by the first two rows of events. The product is produced
by the configuration of the Cell Matrix hardware in Layer Y according to the
Logic System Design X, shown as steps proceeding down the right column of
events. Because the implementation of X onto hardware is a post-manufacturing
process, there is opportunity to perform useful functions in a post-manufacturing
process labeled with a star, such as mapping and avoiding hardware defects, and
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Figure 4.1. A Way to Organize Production and Product Life Cycle for the X,Y Approach that
uses Cell Matrix hardware. A high level view of how a logic design is turned into a product
using this approach. The approach is similar to that used for reconfigurable devices today, with
the unique aspects marked by asterisks.
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modifying the design to accommodate other designs that are already on or will
be put onto the hardware as well. Also, because the hardware is reconfigurable,
the release of the product and sale to individual customers does not have to be the
end of the product design and build cycle. Changes to the product or product line
can be made after the product is released. Additionally, because this particular
hardware layer Y can contain dynamic design elements, these product changes
can be planned for and constructed ahead of time, put onto the hardware, and
deployed in the field, triggered by an event during the product’s lifecycle, and
performed on the product hardware itself, with no external intervention needed.
Examples of situations in which it could be beneficial to use this capability for
the product to adapt and change are provided in the figure on the lower left.

4.2 Cell Matrix Overview

The Cell MatrixTMis an architecture for a novel type of reconfigurable hard-
ware system. Similar to an FPGA, the Cell Matrix is composed of a large
number of simple reconfigurable elements (cells). Unlike most FPGAs though,
there are essentially no internal structures besides the cells themselves. More-
over, each cell is connected to only a small set of neighboring cells. These
two characteristics mean that the Cell Matrix architecture is inherently fault
isolating: defects in a cell will generally have limited scope.

The other essential feature is that, in contrast to an externally-controlled
FPGA, the Cell Matrix is a self-configurable system. This means that the
cells within the system are able to analyze and modify other cells, without
intervention or guidance from outside the matrix. This is one key to efficiently
managing the large amount of resources expected to be available in systems
within the next decade. This autonomous, distributed control is also key to
managing run-time operational failures, since system behavior can be observed
in many locations simultaneously.

The Cell Matrix architecture does not specify a particular topology or the
system’s cells. Cells may be three-sided, four-sided, six-sided, or any other
number of sides greater than two (though two-sided cells have limited useful-
ness). Cells may be interconnected in two-dimensional or three-dimensional
topologies - topologies greater than three dimensions are also possible. More-
over, the neighborhood defined for each cell can vary from one matrix to another.
In practical terms though, most work to date has studied two-dimensional four-
sided cells, and three-dimensional six-sided cells, in the expected square or
cubic orientation.

Regardless of these specifics, cells and their arising matrix all operate along
identical principals. Each cell has two inputs on each side, labeled D and C.
Each cell has a corresponding set of outputs (D and C). Cells are interconnected
according to the matrix-wide definition of a neighborhood, with inputs and
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Figure 4.2. Hardware Layer Y definition. The hardware is a densely packed substrate contain-
ing a regular mesh of identical, very fine-grained SSI-scale processors that are connected in a
local, nearest-neighbor scheme. The definition of the processors includes cases for connections
with n local neighbors, 3, 4, 6, or other convenient local connection schemes; here, the processors
are shown as 4-sided cells each connected to their four neighbors. The content of each of these
processor cells is detailed in Figure 4.3.

outputs connected in the obvious fashion. Additionally, each cell contains an
internal lookup table (LUT). The LUT maps every possible combination of D
inputs to a set of C and D outputs.

Each cell within the matrix operates in one of two ways, depending on the
mode in which the cell is operating. If a cell is in D mode, it continually samples
its D inputs, looks up a set of outputs in its internal LUT, and sends those LUT
values to its C and D outputs. Note that this happens continuously, without any
clocking or synchronization.

If, instead, a cell is in C Mode, it samples its D inputs as specified by a
system-wide clock, and loads the sampled bits into its internal LUT. Moreover,
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Figure 4.3. Structure of each logic processor cell in the hardware Layer Y from 4.2. A four-
sided cell is shown. As shown by the input signal labels on the left of the figure, each side
provides a data input to the cell, and receives a data output (which can also be used to output the
cell’s content, or code), as well as a Mode output that can be used to put the neighboring cell into
a programmable control mode called C mode, during which the neighbor’s content or code is
changed. The input signals are combined to produce any logic function of four inputs and eight
outputs, labeled f4, that is delivered to the left side of the cell. The other three sides’ outputs are
other logic functions f1 through f3 that are based on any of the inputs to the cell. The functions
f1 through f4 are settable: they are reset when the “Mode In” is set high, at which point the
“Code or Data In” line is used to input a new code for the functions. The cell is completely
symmetric in its function. A different view of the cell structure and function is provided in Figure
4.4.

before a LUT bit is overwritten, it is sent to the cell’s D outputs. C Mode is
thus the mode in which a cell’s LUT is read or written, while D Mode is the
mode in which a cell is able to perform data processing functions via it’s LUT.

Finally, a cell’s mode is specified by its C inputs. If any C inputs are asserted,
then the cell is in C Mode. Otherwise the cell is in D Mode. Three key
consequences of this are:
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Figure 4.4. Logic Cell Structure and Function. The Signals in and out of the cell are shown,
with the sides of the cells labeled as North, East, South , and West. The label “DN” at the top
indicates the Data or Code signals sent in or out the North side of the cell, and “CN” indicates the
Control Mode signals sent in or out of the North side of the cell. The lookup table that dictates
cell function is shown and enlarged on the lower left. This particular lookup table configuration
corresponds with the logical OR function shown on the lower right. A multi-cell lookup table
configuration is shown in Figure 4.5.
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Figure 4.5. Six logic cells set up to function as a 3-bit counter. The same functional view from
Figure 4.3 is shown in the inset at the bottom of the figure. Only the functions f1 through f4 that
are used for this circuit are displayed in the upper 3 × 3 matrix of logic cells. A Clock signal
CLK is provided at the top, and the bits Q are produced on the right. Many of the functions
f1 through f4 are in this case used for simple wires to propagate signals; others in the center
column of cells are used to perform boolean logic needed for the counter.

1 the mode of any cell C1 can be specified by any of its neighbors C2 (since
C2 has a C output connected to one of C1’s C inputs);

2 the mode of a cell can change over time, since the value of its C inputs
can change over time; and
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3 a cell’s mode is more or less independent of that of other cells - it is not
a system-wide property, but a property of each cell.

The interaction of D Mode and C Mode cells thus allows cells within the
matrix to read, modify and write other cells’ LUTs. The LUTs can be processed
as ordinary data, shared among cells as data, and then later used to configure
cells, i.e., treated as code. This can be used to yield a number of powerful func-
tions, including the testing of cell behavior, the creation of dynamic circuitry
under the direction of the matrix itself, and the configuration of large numbers
of cells in parallel. Further technical details on the Cell Matrix architecture can
be found in [17].

4.3 Example of Future Problems: Lower Reliability

New production methods for logic designs will not necessarily have the
benefit of utilizing past gains in reliability, since they may deviate greatly from
past methods of production. Reliability is a big issue when considering a
replacement for the existing process for creating hardware and for gradually
miniaturizing switches. What is the error rate of the production method, and
how many product defects does it produce? What specific types of errors
and defects are encountered? How well does the product perform, and how
long does it last? What specific types of error conditions and error states
does it encounter during use, and are these error states unrecoverable? There
may not be a single characterization of a production method with respect to
these reliability questions, and the characterization will depend not only on
the production method but on the product design as well: is the product robust
against the types of errors typical for the production method? Operating failures
are highly likely when using a relatively untested production method, and it will
be important to gather empirical data on early products to be able to assess how
well a new manufacturing method performs.

What the reader should be interested in is not just being on the receiving end
of new hardware manufacturing methods, but also participating in their develop-
ment, and their improvement. A new manufacturing process’ expected density
and volume are important, as are its expected cost and operating parameters
such as speed, temperature, and power. However, reliability is also a big issue
when considering a replacement for existing methods of manufacture. It seems
unlikely that any radically different production method will have reliability even
close to the current methods of producing field-effect transistors, because they
will likely be too different to be able to incorporate the last five decades of im-
provements in transistor production. And yet they may have highly desirable
traits in terms of volume or density, or operating parameters, and so we will
want to be able to find a way to overcome their reliability problems enough to
begin using them, and gradually improve them until they are reasonably reli-
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able. Even if they eventually reach the reliability of current techniques, their
reliability will forever be challenged by the tendency to utilize more switches in
designs as density improves, what we are calling here increased volume. There-
fore, even if the defect or operating error rates remained fixed, the number of
defects or operating errors will continue to rise with volume. With volumes
approaching a billion times today’s volumes, operating errors will likely be
commonplace in products as they are used.

Even with a manufacturing method that exhibits a small defect rate, such
as a one in a million defect rate, logic designs with 1010 to 1017 transistors
will be hard to manufacture perfectly, and, during their operation, will exhibit a
mean time between failures that is markedly decreased, and reciprocally related
to hardware volume, or system size. How are logic designers to handle this?
Can designers continue to assume that the manufacturing process will produce
perfect implementations of their designs that will also operate perfectly? Must
logic designs be intimately aware of and tied to the physical constraints of the
manufacturing method and its typical operating errors? Must each contempo-
rary design be redone to increase its robustness against manufacturing defects
and operating errors? A good goal for research in these areas would be to solve
these reliability problems and yet allow logic designers to have to change as
little as possible about what they do now.

With our two-layer approach there is opportunity to greatly minimize what
logic designers have to know about the manufacturing method and its imperfec-
tions. This is because the view of the hardware is abstracted up one level above
the physical layer, and is handled later in time, post-manufacture. There may be
errors in the manufacture of the Y layer, but designs are laid onto the Y layer in
a later step, which has the advantage of knowing what defects are present in the
Y layer. Current research with our collaborators is intended to provide ways to
handle operating errors that can exist within, underneath, alongside, or above
the desired logic design X, using the dynamic capabilities of our architecture.
The intention is that these capabilities can simply be evoked by the use of base-
level logic blocks with extra capabilities for fault handling, dynamic system
modification, and other needed functions. Although in some cases this will be
an overly reductive approach, it is possible to present a view of the hardware
as perfect to the logic designer, and delegate the handling of imperfections to a
post-processing step performed on the design. This approach also supports the
basic premise of managing complexity through encapsulation.

The focus of the discussion below will be on how two aspects of this
approach–redundant hardware and dynamic functions–lead to ways to tolerate
the reliability problems of larger, more complex systems built using immature
production technology.



122 NANO, QUANTUM AND MOLECULAR COMPUTING

Manufacturing Defects

Manufacturing methods must be refined and improved, but perfection is a
difficult goal to hold, particularly when the desire to continue to miniaturize
switches persists in driving manufacturing onward to new challenges. There
are at least five conceivable ways to handle defects in the construction of logic
designs in hardware:

discard any hardware that is not perfect;

repair, or remove and replace, the individual defects;

build redundancy into the hardware and a means to use only perfect
resources within the hardware;

use logic designs for Layer X that can function despite defects or runtime
faults; or

perfect the manufacturing technique so that it creates no defects.

The tact typically taken today is to place the burden largely on the manu-
facturing technique to provide perfect hardware, and to discard any hardware
it constructs that is not perfect. We argue, however, that certainly during the
development of revolutionary new fabrication techniques, and quite possibly
long after their refinement, this will not be the most cost-effective option to
choose. The other approaches above should also be considered, such as build-
ing redundancy into the hardware. Incorporating redundant copies of hardware
components is used widely today to effect fault tolerant systems. This option
is readily available for use in our approach, although it takes different forms
for the different layers. Again, there are two layers to a logic design in our
approach, the normal logic design X, and the lower level implementation layer
Y. It is possible to incorporate redundancy into the logic systems design and
implementation, as it is done today for systems onboard satellites and space-
ships, via modifications to the logic design layer X. The lower layer Y can also
be used quite effectively to safeguard products against manufacturing defects.
The basic mechanisms offered above for safeguarding a logic system’s perfect
function against manufacturing defects are to either enlarge the system hard-
ware to include redundant copies of resources, or to go in and repair, remove,
or replace defects. Layer Y can achieve both of these models. How is does this
is the next topic of discussion.

To define our use of terminology, we are using the general term errors to
refer to any sort of nonoptimal function, and looking only at one cause of
errors, hardware failures of some kind. We use the term manufacturing defect
for those failures that are turned up during initial testing of the hardware, and
operating errors for all other hardware failures that turn up later in the product
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life cycle. We note here that hardware failures’ effects can be persistent or
transitory, periodic or aperiodic, and can appear predictable or unpredictable in
their response to testing.

Redundant Copies of Hardware

One benefit of our approach is that some measure of both fault tolerance
and redundancy is automatically provided for all logic designs X by the nature
of layer Y. Y contains low-cost redundancy already, because the logic cells
themselves are resources that can be used to implement transistors, wires, flip
flops, truth tables, gates, logic blocks, state machines, or any other digital circuit
component. If one cell is bad, a design layout tool can use the one next to it.
This is a great way to provide redundancy, because the system designer does not
have to decide how much redundancy to put in ahead of time, or where exactly to
focus the extra resources (three copies of this subsystem, four of that); instead,
resources are pulled from a general pool, and used as cleverly as the design
layout tool or diagnostic system is designed to utilize them. The problem is thus
reduced to the question of how much larger to make the hardware than would be
strictly needed for perfect manufacture, which could potentially be answered
statistically, or via over engineering. This approach would then require an
additional processing step in the design flow that modifies the placement of
logic and wires using knowledge of hardware defects. A first version of such a
tool for this X,Y approach was created by Dimitri Yatsenko [15]. We have also
demonstrated the Y layer’s capacity to make the necessary determinations on
its own as to what hardware is good and where to put the gates and wires in a
circuit definition it receives [2, 3, 5], which serves as an example of how to use
dynamically interpreted, non-predetermined directives.

Nearly all circuits in use today cease to function properly when they incur any
sort of damage. Any error in the creation of its transistors or wires is usually
fatal to a circuit hardware implementation. Our cells are a much more fault
tolerant circuit design because an error in the production of one cell is generally
limited in effect to the immediate neighborhood of the cell. Because the X,Y
Layered approach described here lays a logic design X out on Y hardware in a
post-manufacturing step, we can attack this problem of manufacturing defects
from a different angle, invoking several different ways to ensure that a defective
piece of hardware is not intimately and irrevocably tied to the implementation
of a critical piece of logic. Figure 4.1 indicates a number of functions that can
be performed during the layout of the logic design onto the hardware in the
righthand side box above the gray Product box.

No particular piece of hardware is necessary in layer Y, aside from the receipt
of power to each logic cell. There are no differentiated cells, no buses, no
external memories, no specialized structures. In fact there is no heterogeneity
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at all: the hardware is simply a densely packed surface or volume of logic
cells connected only to their nearest neighbors. layer X can be put onto layer
Y in a post-manufacturing step, at a point in time after Y has been tested for
defects, and after an inventory of defect type and location is made. At that
point in time, the layout of layer X can safely be determined so that it uses
only good hardware. Or, if errors are encountered at runtime, there is support
for dynamically re-allocating Y’s hardware at runtime instead. This change
to design flow insulates logic designs from hardware defects. It prevents logic
system designers from having to change their current view that they will receive
perfect implementations of their logic designs. In a later section on operating
errors, we describe how error avoidance can be done at runtime, to deal with
errors that arise in systems later, post production, from parts that start to fail,
or from environmental effects.

SCANDISK for Logic Designs

One way to achieve this design flow process that can lay out perfect systems
on top of an imperfect Y layer is to implement something analogous to what is
used for memory, or disks, today, such as a SCANDISK type of process that
checks each region of hardware and constructs a map of all bad regions, which
is then used during writes to strictly prevent the copying of data into bad regions
of hardware. The system that performs the scanning must itself be nondefective,
and it should have the goal of marking as little extra hardware off-limits as is
possible. We have constructed such a process for scanning the Y layer and
reporting failed regions of hardware [2, 5]. The process has the capability of
marking off n × m regions of cells as defective if any one of the cells fails
any one of the tests it performs; most tests set the logic cell up to perform a
specific function, then tests it with a set of input values to make sure it provides
the expected outputs for the given inputs. The size of the region tested and
marked is set to whatever is convenient, if testing is done by an external system
proceeding from an edge of the hardware, and to a square region of 44×44 cells
if testing is done by autonomous agents set up on the hardware, with most of
that space required for replicating the testing apparatus and the ability to mark
sectors to all locations where the testing is being done. Testing begins at an
edge of a defined region, and scans the whole region using only already-tested
hardware. Because of the distributed, local nature of signal processing in the
Y layer’s structure and function, we were also able to set up the test process so
that it ran efficiently, testing many independent regions of hardware at the same
time [3].
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Isolation of Good Hardware from the Effects of Bad
Hardware

If the intention is to use hardware despite the presence of manufacturing
defects, then no defective hardware can be used in the layout of logic designs,
and the defects present in the hardware must not be allowed to affect the logic
design’s function. How we approach this in the X,Y approach is that the lay-
out of layer X on layer Y must be one that avoids placing any logic or wires
within defective regions. We also explicitly prevent defective hardware from
interfering with logic system function.

This preventive step could be done by either physically removing the defects
from layer Y’s hardware, or by logically removing them from layer Y’s func-
tioning. This effectively stops the spread of defects and guarantees that they
will not alter the operation of logic design X in any way.

Layer Y has the desirable property that defects tend to remain localized near
the source of the defect. This is largely due to the physical organization of layer
Y, which is fine-grained cells connected only locally, to their nearest neighbor
cells. We were able to validate this expectation by looking at failed cells’ ef-
fects on silicon chips, and we have also studied failure modes by configuring
reconfigurable chips with explicit errors in the definition of layer Y. Because
there are no specialized structures within the hardware, and no distant connec-
tions, a defect is limited in its ability to spread. A cell C1 can fail, and for some
types of failure modes, this cell’s failure can send signals that affect the outputs
of good neighboring cells C2, rendering them unusable. However, analysis of
these scenarios suggests that there is only a very slight possibility that cells C2
will in turn affect their neighbors C3. The extent of the region affected by a
specific defect will generally be one cell, and in some cases also its neighbors,
and in a few of those cases also their neighbors, for a total of two connected
levels outward from the defective cell.

This situation is a promising one, because it means that defects are naturally
limited in their locality and effects. We go further, however, to ensure that
defects do not affect good hardware. We do this by finding and then explicitly
isolating faulty cells, as illustrated in Figure 4.6. They are explicitly isolated
by setting the logic up in all neighboring cells to completely ignore any signals
received from the offending side of the cell. This is described more fully in
several sources [6, 5]; however, the effect is to construct a functional/logical
wall around the defective region, by specifying the functions of the good cells
at the boundary to ignore anything they receive from the defective region: it
doesn’t matter what they receive, they do not use it. This approach uses one set
of cells surrounding a defective region to guarantee that no signals escape out
of the wall around the defective region.
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Figure 4.6 shows how this guard wall is erected. In the figure, it is assumed
that analysis of each cell for defects has already been performed, and the center
cell has been determined to be defective. Layout tools need to have knowledge
of both the defects and the guard walls and are responsible for ensuring that
they do not attempt to lay down a part in this region: if they try, they will fail,
because the guard wall is already in place and irrevocable. They may use only
the unutilized resources and sides within the outermost level of the guard wall.
The defective cell is logically isolated from the functioning of the rest of the
matrix by ensuring that its outputs will be explicitly ignored. This is done by
putting its immediate neighbors, the plus shape of dark gray cells around the
center, permanently into C mode, which causes them to send out low signals
on the rest of their output lines no matter what signals they receive. They are
put into C mode by the light gray cells, as indicated by the 1 on the Cin lines
of the dark gray cells. This strategy completely contains the signals from the
defective center cell. It uses up the four neighboring cells completely, and the
edge of one of each neighbor one level further out in the adjacency that is used
to send the C mode signal. The smaller figure below it shows that the guard
wall grows compactly around the defect with a two-cell defective region.

Detection of Bad Hardware

Before defects can be examined and explicitly walled off, they must be found
and pinpointed as precisely as possible. Because cells have the ability to ex-
change data with other cells, as well as the ability to change a neighboring cell’s
function, it is possible for one cell to perform a series of tests on a neighboring
cell. For example, a cell can be configured to always output 0, and by then
verifying that the output is zero, one can confirm the output is not stuck-at-1.
Similarly, a cell can be configured to always output 1, to detect a stuck-at-0
fault in the output. By configuring a cell as a wire that outputs its input, one
can partially verify the cell’s configuration mechanism. Configuring a cell as
an inverter allows one to check for a short between the input and the output of
the cell, as well as to further test the configuration mechanism of the cell. More
complex test patterns can be used to further exercise the cell-under-test. Using
these basic concepts, we have developed ways to test for defects at a granularity
of one cell, and the passage or failure of one test by that cell [2].

Most defects can be detected by testing cell function, and extensive testing,
while time-consuming, can be organized as a distributed, parallel set of local
processes, so that many cells can be tested at each iteration of a testing regime
(ideally an increasing number at each iteration to reduce the order of magnitude).
We have constructed a distributed, parallel, order

√
n means to access logic

cells using only already-verified hardware to do so, and to supply tests of their
functioning, and reporting of any failures [2]. These test patterns can then be
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Figure 4.6. The Construction of a Guard Wall, and inset example of a guard wall for a 2-cell-
wide defect. Black cells are defective, dark gray cells are used to isolate the defective cells’
signals, and light gray cells are used to orchestrate this isolation.

customized to the expected defect types for a specific hardware manufacturing
process.
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Operating Errors

Even if a component of a hardware design is perfectly constructed, its in-
herent nature may cause it to suffer occasional lapses, intermittent failures, and
at some point, permanent failure. There will be a certain probability of these
operating errors occurring, and at some point in the scaling up of system sizes,
systems will contain enough components that the summed probabilities of com-
ponent failures lead to a rate of errors high enough that errors are completely
common while a system is operating. The gravity of this situation and potential
remediations are dealt with in Andre Dehon’s chapter 7 . Operating errors are
an example of the kinds of things for which a solution has to be provided at
runtime, during the working lifespan of a product. Solutions generally cannot
be preorchestrated or preordained, and they benefit greatly from the capacity
of our X,Y approach to put higher level functions onto the X layer that are
dynamically interpreted at runtime. This is analogous to telling someone what
you want them to achieve, but not telling them explicitly how to achieve it.

As an example of how the our approach can be used to handle operational
errors, we have implemented an autonomous, self-repairing system [5]. This
system implements another layer S in addition to X,Y. This new layer is re-
sponsible for the following actions:

detecting errors in the Y layer;

isolating errors in the Y layer;

populating the new S layer; and configuring the S layer so as to implement
the desired target circuit from the X layer.

In the system we designed, one could define a target circuit, and layer S
would implement that circuit automatically, without external guidance. This
means the circuit designer does not need to know which parts of the hardware
layer Y are defective, and does not need to participate in the layout of the target
circuit on Y. Because of this, if a system failure is detected during operation,
the system can automatically rebuild itself, working around the new defective
areas.

This is, in a way, nothing more than an automatic place-and-route system,
but with a few key differences:

the place and route is being run in the same hardware, in a parallel,
distributed fashion;

the algorithm can be implemented on hardware containing defects;

the hardware first self-organizes to create the circuitry for running the
place and route; and
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the same hardware that implements the place and route algorithm will
eventually implement the final target circuit.

Thus, by having layer S, the system no longer has to find, isolate and work
around defects for any application. Instead, it solves these problems for a
particular problem, that of the place and route controller. Once that controller
has been implemented, it is then responsible for implementing the final target
circuit. Since the place and route system is now aware of the location of faults
in the hardware, it is a relatively simple task to avoid them in implementing the
target circuit.

Repairing, Removing, or Replacing Defective Hardware

Another approach to manufacturing defects is not to accept them and handle
them, but to go back in after manufacture and testing, and physically remove or
replace them, or to effect repairs to them. This second defect-handling process
could be done by the same process that built the hardware, by a sort of “try
again” model, or by another process that specializes in removal and repairs, or
by a combination thereof.

Because of the physical organization of the Y layer, it is amenable to either
the replacement or removal of hardware. Missing hardware is no different from
unused hardware, except in that it can never be called upon for use. Our layouts
of layer X designs often have empty space within them now, to make them
easier to view, or to add to or amend later. Also, the size of the hardware does
not matter to the Y layer. It can be arbitrarily big in its dimensions: on the Y
layer there are no presumptions or structures dependent on size, such as data
buses and address spaces. And the hardware can be grown or shrunk at a later
date. We have demonstrated the ability to make and use a larger piece of Y
hardware by simply joining two pieces of Y hardware, by a simple physical
process of simply joining cells’ neighbor wires along the edges of two pieces of
hardware. Removed hardware would simply register as defective hardware via
the detection mechanisms described above, which can be combined with layout
procedures in a manner similar to that for defects, so that the layout of layer X
does not include the use of any missing hardware or holes in the hardware.

The checking of repairs can also be handled by the testing and defect handling
mechanisms described above, such as the analogue to SCANDISK. If the repairs
are good enough, the cell passes all tests and is treated like any other good
hardware; if they are insufficient, the cell gets treated appropriately as a defective
cell. Iterating between repair and this process would be a good way to determine
when the repair job has succeeded: the cell or region would no longer appear
on the defect list.

Efforts to perfect the manufacturing technique, even if not met with com-
plete success, are also desirable because they result in the highest density and
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volume for a fixed manufacturing process. This effort may also help to reduce
operating errors. The construction of a simpler target is often easier to perfect.
Accordingly, the construction of the Y layer is easier to perfect because it is
simply a task of repeatedly constructing the same, small design for the logic
cell, and repeating the same interconnection pattern throughout.

4.4 Summary, Conclusions

Revolutionary, not evolutionary, new manufacturing processes are a hot re-
search topic. With the capacity to vastly increase the number of switches de-
signers can use in logic designs, and with the likelihood that these new manu-
facturing processes will be too different from the current techniques to borrow
many advancements from them, their introduction may well usher in an age
where reliability cannot be guaranteed by the manufacturer and must be han-
dled upstream in the design flow as well, and, to a much larger degree than is
true today, downstream in the product also. Reliability must be directly ad-
dressed, on a per-design basis with logical/physical co-design where necessary
and appropriate, and with a broader brushstroke wherever possible.

The broader brushstroke we advocate upstream, for design systems, is to
address reliability using a two-layer, multi-step layout process we dub X,Y,
where a convenient, tightly packed hardware design Y is built with low-cost,
low-level redundancy. Then the hardware is tested, and then used to implement
specific logic designs built up from SSI level logic components, wires, or state
machines. This approach is much less dense than would be a direct hardware
representation of the logic design X. However, it makes it possible to routinely
use imperfectly manufactured hardware, which means that it is straightforward
to scale hardware up to much larger designs without paying a large penalty
in manufacturing yields, significantly increasing applications while simultane-
ously lowering costs. And it also means that a new manufacturing process can
be put into production sooner, before it is perfected, particularly for small logic
designs that can fit on the potentially small amount of good hardware in a device
that early versions of a process will produce. Layout of a design onto faulty
hardware would most likely need to be done by an automated process, since
each piece of hardware will have different defects. For one-offs or layouts onto
a specific piece of hardware, however, design tools could build fault locations
into the design checks and simply disallow the placement of logic on particu-
lar regions of the hardware space. This capability could serve in a facility for
diagnosing and then repairing customers’ systems.

The manufacturing process must of course be improved as much as possible,
and its unreliability duly minimized, but the design system will likely be left with
something still imperfect, and must take it from there. Accommodations, such
as these suggested here, should be developed so that hardware that is imperfect
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can still be used if it is found to have acceptable flaws or acceptable reliability
problems. This increases the effective yield of a manufacturing process by
finding a way to use imperfect hardware. For instance, a manufacturer could
use each piece of Y layer hardware it produces for whichever of the logic designs
it is producing - whichever one automatic tools can find a way to fit.

Downstream, reliability hits due to operating errors will plague products
containing massive numbers of switches. There are ways that have been de-
veloped to handle this within logic designs themselves such as subsystem re-
dundancy and voting. Again we advocate using a broader brushstroke wher-
ever possible, rather than a per-design fault handling strategy. The broader
brushstroke we advocate downstream for operating errors is finding ways to,
as cheaply and painlessly as possible, provide logic systems designers with ef-
ficiently self-analyzing, efficiently self-modifying systems that automatically
handle low-level operating errors locally. This capability is supported in the
system architecture we have developed by using the dynamic, local processing
capabilities of Layer Y. This allows the management of some of the complex
system problems that arise with scaling up in a more encapsulated way, and can
be used for various approaches. What approaches will work best is a wide area
of research, and there may be different ideal ways to do this for different kinds
of applications. However, we have included several ideas here, such as allowing
the placement of logic blocks and routing of signals to continue in some sense
during system operation, with logic designs that can shift and move their logic
to avoid using failing hardware, or investing designs with the ability to test their
higher and lower level systems for operating errors, and giving them the ability
to make repairs to themselves, possibly by cutting the wires to a subsystem and
wiring up a new copy of it elsewhere on the hardware. The main benefit to
this approach is that rather than trying to predict all failure modes or failure
situations and invest all systems with a game plan for them, each circumstance
is handled if and when it arises, by a more general approach, and the hardware
is eventually fine-tuned to its own quirkiness, usage patterns, and environment.
The vagaries of intermittent failures do not lend themselves to a static solution,
but rather a solution as dynamic as the problem itself.
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Chapter 5
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Abstract As current silicon-based techniques fast approach their practical limits, the inves-
tigation of nanoscale electronics, devices and system architectures becomes a cen-
tral research priority. It is expected that nanoarchitectures will confront devices
and interconnections with high inherent defect rates, which motivates the search
for new architectural paradigms. In this chapter, we exam probabilistic-based
design methodologies for designing nanoscale computer architectures based on
Markov Random Fields (MRF) The MRF can express arbitrary logic circuits and
logic operation is achieved by maximizing the probability of state configurations
in the logic network. Maximizing state probability is equivalent to minimizing
a form of energy that depends on neighboring nodes in the network. Once we
develop a library of elementary logic components, we can link them together to
build desired architectures. Overall, the probabilistic-based design can dynami-
cally adapt to structural and signal-based faults.

5.1 Introduction

During the past decades, we have witnessed the boom of microelectronics.
The whole semiconductor industry thrives on the miniaturization of micro-
scale devices based on “Moore’s Law”. That is, every couple of years, there
is a double of the number of transistors on a single chip. However, silicon-
based devices are fast approaching their practical limits, and Moore’s Law
will no longer be sustainable. For instance, short-channel effect can cause
direct tunneling between source and drain, or between gate and source/drain
when we keep scaling the device down below 40nm [14][1]. Other limitations
come from lithography, high-field effects, etc. As a result, many alternatives
to silicon-based devices are being explored for the basis of developing new
nanoelectronic systems. In the process, it is expected that the past approach
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of using global interconnections and assuming error-free computation may no
longer be possible, thereby presenting new challenges to computer engineers.
It is likely that nanoscale computing will be dominated by communication,
where processing is based on redundant and adaptive pathways of error-prone
connections.

Limitations of previously mentioned architectures can be classified into three
types:

Redundant architectures, such as Nanofabrics, are programmed to work
around manufacturing defects. Our view is that the defect density will
be too high to permit this strategy. Too much space and power will be
wasted on testing and redundant devices.

Architectures such as quantum cellular arrays currently must operate at
low temperature to overcome thermal noise and may not soon achieve
room-temperature operation. This will very likely prevent them having a
serious impact on the mainstream computing domain. Also, cellular ar-
rays exhibit high communication costs for computations involving global
constraints.

Neural network style architectures require training, and it is difficult to
analyze or optimize their performance according to engineering princi-
ples. It is not clear how their behavior generalizes to new computational
examples.

Anticipated Architecture Characteristics

Up to now, the fabrication of nanocircuits has been limited to a few devices
intended to demonstrate simple logic or memory operations. There are no actual
data to measure the characteristics of large networks of devices. However it is
possible to pose two likely characteristics that will have to be confronted in the
development of computational architectures that use these devices.

1 A high and dynamic failure process: It can be expected that a significant
fraction of the devices and their interconnections will fail. These failures
will occur both during fabrication and at a steady rate after fabrication,
thus precluding a single test and repair strategy.

2 Operation near the thermal limit: As device sizes shrink, the energy
difference between logic states will approach the thermal limit. Thus,
the very nature of computation will have to be probabilistic in nature,
reflecting the uncertainty inherent in thermodynamics.

The first characteristic is a simple extrapolation of current device fabrication
experience. The smaller the device dimensions become, the more phenomena
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can interfere with correct operation. It seems likely that architectures will have
to cope with device and connection failure rates of 10% or more. At the same
time, the nature of connections and devices will be based on mechanisms that
can easily mutate over time, such as chemical reactions or fusing and bridging
of connections.

The second conclusion can be arrived at in several ways. Perhaps the most
direct is to consider the evolution of current CMOS technology towards smaller
device sizes, perhaps using silicon nanowire devices. Current processor chips
are nearing 100 million transistors and dissipate over 100 Watts. It can be
assumed that this power level is already near the practical limit in terms of battery
life and dangerous external temperatures. The natural evolutionary forces that
drive the number of gates per chip and clock rate upward will decrease logic
transition energy limits to within a few orders of magnitude of kbT , where kb

is Boltzmann’s constant, 1.38× 10−23J/◦K, and T is absolute temperature in
◦K. At room temperature, kbT = 0.026 electron-volts. Current devices still
consume energy several orders of magnitude above this thermal limit.

Another approach to the same conclusion is the study of the ultimate limit
on the energy required for computation, starting with the paradox of Maxwell’s
demon [3] and ultimately clarified by the development of information theory.
It can be shown that the energy cost of computation cannot be reduced below
(ln 2)kbT per bit. This basic result is derived from the necessary increase
in randomness as information is lost during computation. For example, the
input to an AND gate has four possible states while the output has only two.
The evolution of device technology will relentlessly drive towards this limit,
requiring approaches that can confront randomness in logic state.

Nano-architecture Approaches

To date, architecture research has taken two approaches. The first approach
simply increases existing machine resources while the second approach uses
modular and hierarchical architectures to improve the performance of traditional
single-thread architectures. In particular, the highly regular, locally connected,
peripherally interfaced, data-parallel architectures of the second approach offer
a good match to the characteristics of nanoelectronic devices [2].

It will be necessary to evolve new architectural concepts in order to cope with
the high level of device failure and randomness of logic states anticipated by
the reasoning just proposed. Current architectural studies aimed at nanoscale
systems are focused primarily on the first issue, device failure.

There are two basic approaches being proposed to deal with significant device
failure rates: testing and routing around failures; and designing with redundant
logic in the form of error correction. Illustrative of the first approach are the
architectures of DeHon [5] and Goldstein and Budiu [8]. They propose design-
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ing in extra circuit elements that can be used to supplement failed devices and
connections. A major issue is the testability of the network and the ability to
confront continuous failures over the life of the device.

The second approach was suggested in the pioneering work by Von Neu-
mann [15] where he used majority logic gates as a primitive building block and
randomizing networks to prevent clusters of failures from overwhelming the
fault tolerance of the majority logic. The architecture proposed in [10] is based
on this approach. See Chapter 2 for more discuss about these approaches.

One architectural approach that can provide continuous adaptation to errors
is based on neural network structures [6]. The synaptic weights of the neural
network are implemented using multiple connection paths and the summation is
provided by conventional CMOS differential amplifier nodes. The connections
are adaptively configured using single electron switching devices. It is proposed
that useful computation could arise by training the network with a series of
required input-output pairs. Another work we have recently become aware of
attempts to build Bayesian networks with subthreshold CMOS circuits [12].
The paper focuses specifically on the sum-product algorithm useful for solving
problems in artificial intelligence, signal processing, and communications.

The approach taken in this chapter has some similarity to the architecture
proposed in [6], but is based on Markov Random Fields (MRF). The MRF
provides a formal probabilistic framework so that computation can be directly
embedded in a network with immunity to both device and connection failures.
Since logic states are computed probabilistically the computation is also ro-
bust to the logic signal fluctuations that will arise as operation approaches the
thermal limit of computation. Furthermore, the MRF is general and directly
programmed without learning.

In a computing system errors may occur either in devices or connections;
however, we do not distinguish between them. Instead, we have structure-based
and signal-based faults. Nanoscale devices contain a large number of defects or
structural errors, which fluctuate on time scales comparable to the computation
cycle. The signal-based type of error is directly accounted for in the probability
maximization process inherent in the MRF processing. The following sections
describe how the MRF and BP framework can be used to handle both types of
faults.

5.2 MRF Design for Structural-based Faults

Overview of the Markov Random Field. The Markov Random Field
(MRF) [11][4][13] has been widely used in computer vision, physics, com-
putational biology and communications and is proposed here as a model for
uncertain and noisy computation. The MRF represents the relationship be-
tween a set of random variables, X = {X1, X2, . . . , Xn}. Each Xi can take
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on values from a range set L. In some MRF treatments, the random variables
are called sites and the set L is called the label set. The notation presented here
is based on the treatment of Geman and Kochanek [7].

The joint probability of variable assignments is denoted as,

p(x1, x2, . . . , xn) = p(X1 = x1, X2 = x2, . . . , Xn = xn), (5.1)

where xi ∈ L. The conditional probability of a particular variable, say x2, is
in general,

p(x2|x1, x3, . . . , xn) =
p(x1, x2, . . . , xn)
p(x1, x3, . . . , xn)

(5.2)

In this case, the random variable set X is completely statistically inter-
dependent. If all the random variables are independent then,

p(x1, x2, . . . , xn) = p(x1)p(x2) . . . p(xn), and (5.3)

p(x2|x1, x3, . . . , xn) = p(x2). (5.4)

The MRF defines the concept of a neighborhood,Ni to represent the conditional
dependence of a variable, Xi, on a subset of X. The neighborhood can vary
from complete dependence (the entire setX) to complete independence (the null
set). As an example, suppose the neighborhood of X2 is N2 = {X3, X5, X7}.
Then,

p(x2|x1, x3, . . . , xn) = p(x2|x3, x5, x7) (5.5)

The formal definition of a Markov random field can now be stated. Let X
be a family of random variables defined over a set of values from L. X is said
to be a Markov random field on L with respect to a neighborhood system N if
and only if the following two conditions hold:

p(xi) > 0, ∀Xi ∈ X (Positivity) (5.6)

p(xi|{X− xi}) = p(xi|Ni) (Markovianity) (5.7)

A remarkable key property of Markov random fields is that p(xi|Ni) can
always be expressed in terms of a function of the cliques formed from a site
and its neighborhood. In this context the sites are considered to be nodes in
a graph and the conditional dependencies between nodes are the graph edges.
Recall that a clique in a graph is a set of nodes where each node in the set has
edges to the all other nodes. This graph interpretation of a MRF neighborhood
is illustrated in Figure 5.1. In this interpretation the edges of the graph indicate
elements of a neighborhood. The influence of each clique on the probability of
the entire set of random variables can be expressed in terms of a set of terms,
Uc, called clique energy functions. The variable, c, indexes the cliques over the
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Figure 5.1. A MRF neighborhood and example cliques

entire set of nodes, C. The use of the energy concept relates to the historical
origins of the MRF model in physics.

The probability of a particular label assignment is given by,

p(x1, x2, . . . , xn) =
1
Z

e
−1
kbT

Uc(xc1,xc2...xcm)
(5.8)

Equation (5.8) is called the Gibbs formulation. The fact that a general MRF is
equivalent to the Gibbs form was established by the Hammersley and Clifford
theorem [9]. For a given clique, c, Uc(xc1, xc2 . . . xcm) is defined on the set of
m random variables (nodes) in the clique. The term kbT can be interpreted as
thermal energy from the physical point of view, but in the calculations below it
is merely treated as a constant in proportion to the clique energy that controls
the sharpness of the Gibbs probability distribution. The term Z is called the
partition function and is a constant required to normalize the probability func-
tion to [0, 1]. It is the sum over all possible label assignments of the exponential
term in the numerator.

The great power of the Gibbs representation is that the problem of finding a
global site label assignment with maximum probability can be decomposed into
that of minimizing clique energies. In most practical problems, the neighbor-
hoods are small and the cliques involve only a few nodes. This computation is
immensely smaller then that entailed by considering all the possible global site
label assignments. There are |L|n assignment combinations for the full set of
variables, while only on the order of n × (|L|mmax) using the Gibbs formula-
tion. In this case, mmax is the size of the largest clique. For example, if there are
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100 sites, each with two possible labels, but the largest clique has three nodes,
then the full set of combinations is 2100 = 1.267× 1030 vs. 100× 8 = 800 for
the Gibbs computation.

Mapping Logic Circuits onto the MRF. So far, the description of the MRF
is such that it can be applied to any random variable assignment problem. The
goal here is to map noisy and faulty circuit operation to probability maximization
(clique energy minimization) on the MRF. In this application, the nodes or
sites correspond to logic signal terminals. The neighborhoods of the MRF
correspond to logic interactions. An example is shown in Figure 5.2.

Figure 5.2. An example mapping from a logic circuit onto an MRF. The graph edges indicate
neighborhood relations.

The input and output of the inverter are considered to be statistically de-
pendent as indicated by the graph edge between the two nodes. The graph
edge does not explicitly represent causality but just that there is a joint prob-
ability relationship between X0 and X1, i.e., p(x0, x1). That is, one doesn’t
think of X0 causing X1, but instead their joint assignments must be maxi-
mally probable. Thus in the case of an isolated inverter with logic states taken
from {0, 1}, there are two equally probable assignments (X0 = 0, X1 = 1)
and (X0 = 1, X1 = 0). For the NAND gate, the graph structure indicates
that cliques up to size three are required to represent the statistical dependence
among the three logic terminals.

Applying MRF in Nanoscale Architecture Design. The MRF is a com-
pletely general computational framework and in principle any type of compu-
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tation could be mapped onto the model. In order to concretely illustrate the
operation of the model, we will use combinatorial logic as an example. The
programming of the MRF is straightforward in this case, and will permit some
analysis of the fault tolerance of the architecture.

Combinatorial logic can be implemented using a simple, yet powerful, form
for the clique energy, called the auto-model. For cliques up to order three, the
energy function is given by:

Uc = κ + Σi∈C0αixi + Σi,j∈C1βijxixj +
Σi,j,k∈C2γijkxixjxk. (5.9)

The constants, αi, βij and γijk are called interaction coefficients. The constant
κ acts an energy offset.

In order to relate the logic compatibility function to a Gibbs energy form
in Equation (5.8), it is necessary to use the axioms of the Boolean ring. The
Boolean ring expresses the rules of symbolic Boolean logic in terms of algebraic
manipulations as follows:

X ′ → (1 − X)
X1 ∧ X2 → X1X2 (multiplication)

X1 ∨ X2 → X1 + X2 + X1X2.

The logic variables are treated as real valued algebraic quantities and logic
operations are transformed into arithmetic operations. Additionally, it is desired
that valid input/output states of computational logic should have lower clique
energies than invalid states so as to maximize the probability of being in a
correct (i.e., valid) state as expressed in Equation (5.8). Thus, the clique energy
expression is obtained by a negative sum over minterms from the valid states,

Uc = −
∑

i

fi(x0, x1, . . . , xn),

where fi = 1, and the minterms are transformed using the Boolean ring rewrite
rules. Note that this form exploits the simplification that cross-products of
minterms vanish. For instance, the Boolean ring conversion for the minterm
(x0, x1, x2) = 000 is,

x′
0 ∧ x′

1 ∧ x′
2 = (1 − x0)(1 − x1)(1 − x2) = (1 − x0 − x1 + x0x1)(1 − x2)

= 1 − x0 − x1 − x2 + x0x1 + x0x2 + x1x2 − x0x1x2.

Case Study I: Exclusive-OR Gate

The effect of structure-based errors, or errors on the coefficients in the clique
energy, is illustrated using an XOR example. There are three nodes in the
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Figure 5.3. The logic compatibility function for an exclusive-or gate with all possible states.

network: the inputs x0, x1, and the output x2 of the gate. Successful operation
of the gate is designated by the compatibility function, f(x0, x1, x2) as shown
in Figure 5.3. Here we list all possible states (valid states with f = 1 and
invalid state with f = 0) because our approach adapts to errors and we make
no assumption about the occurrence of errors. For the exclusive-or example,
by summing over the valid states based on the Boolean ring axiom, 000 =
(1 − x0)(1 − x1)(1 − x2), 011 = (1 − x0)x1x2, 101 = x0(1 − x1)x2, and
110 = x0x1(1 − x2), we can compute the clique energy as follows:

Uc = −1 − (1 − x0)(1 − x1)x2 − (1 − x0)x1(1 − x2) −
x0(1 − x1)(1 − x2) − x0x1x2

= −1 + x0 + x1 + x2 − 2x0x1 − 2x0x2 −
2x1x2 + 4x0x1x2. (5.10)

If we take the structural errors into consideration in our design, the clique
energy in Equation(5.9) can be rewritten as:

Uc = κ + Ax0 + Bx1 + Cx2 − 2Dx0x1 − (5.11)

2Ex0x2 − 2Fx1x2 + 4Gx0x1x2.

where κ is a constant, and the nominal weight values for the coefficients are:
A = B = C = D = E = F = G = 1, as derived above for the error free case.
In the modified equation above, the energy coefficients have been replaced
by variables to indicate that their values can deviate from the ideal setting
due to failures. The variables A, B, C stand for the first-order clique energy
coefficients, and D, E, F are second coefficients. The third order coefficient,
G, constrains the values of all the lower order coefficients as will be shown
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shortly. In the nanoarchitecture being described here, the coefficient values
are determined by a set of gate connections, so coefficient error is caused by
structure-based failure. For successful operation of the logic, it is necessary
that the energy of correct logic state configurations always be less than invalid
state configurations.

Lemma 5.1 For any combinational logic, the energy of a correct logic state
is always less than that of an invalid state by a constant.

Proof. For example, in a simple exclusive-or design shown in Figure 5.3, the
clique energy is

Uc = −1 + x0 + x1 + x2 − 2x0x1 − 2x0x2 − 2x1x2 + 4x0x1x2.

By substituting the invalid and valid states into this energy equation, we get that
the energy for valid states is always ‘−1’ while that of invalid states is always
‘0’. The energy difference is a constant (in this case, it is one).

The reason is embedded in the definition of clique energy:

Uc(x0, x1, x2) = −
∑

i

fi(x0, x1, x2).

For a valid state of any logic, the summation of valid states, fi, is always one.
Or, clique energy Uc is always Uc = −1. On the other hand, for any invalid
state, the summation of valid states is always zero or Uc = 0. Therefore, the
energy of a valid logic state is always less than an invalid state by a constant.�

For our example, the set of inequalities that must hold is given in Table 5.1.
Here we relate a valid state to all possible invalid states. For example, for valid
state (x0, x1, x2) = 000 the clique energy in Equation (5.11) must evaluate
to a lower energy state than all possible invalid states. These inequalities can
be solved using a proposed algorithm similar to Gaussian elimination where a
variable that appears with opposite signs in two equations can be eliminated.
Applying this procedure to the inequalities in Table 5.1 the following constraints
on the clique coefficients are obtained:

2G>D 2F>C 2E>A 2D>B
2G>F 2F>B 2E>C 2D>A
2G>E

The constraints should be viewed as being driven by coefficient G which can
take on any positive value. A selected value for G > 0 then determines bounds
on coefficients, D, E, F in terms of (2G > D, 2G > F, 2G > E). They in turn
bound A, B, C. The bounds are linear, and so the constraints form a polytope in
the space of energy coefficients. This concept is illustrated in Figure 5.4 where
a projection onto the D, A, B subspace is depicted. In general, the polytope will
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000 κ < κ +C
κ < κ +B
κ < κ +A
κ < κ +A+B+C-2D-2E-2F+4G

011 κ+B+C-2F < κ +C
κ+B+C-2F < κ +B
κ+B+C-2F < κ +A
κ+B+C-2F < κ +A+B+C-2D-2E-2F+4G

101 κ+A+C-2E < κ +C
κ+A+C-2E < κ +B
κ+A+C-2E < κ +A
κ+A+C-2E < κ +A+B+C-2D-2E-2F+4G

110 κ+A+B-2D < κ +C
κ+A+B-2D < κ +B
κ+A+B-2D < κ +A
κ+A+B-2D < κ +A+B+C-2D-2E-2F+4G

Table 5.1. The inequalities that must hold among the energy coefficients for successful gate
operation.

be a cone whose cross-section increases linearly with the highest order clique
coefficient. The nominal values for the coefficients of Figure 5.4 are A0 = D0

and B0 = D0.

Figure 5.4. The constraints on the clique coefficients form a cone in the space of coefficient
values for 2D > B and 2D > A. The dotted line indicates the nominal coefficient values.

We assume a fixed error rate in the connections leads to a coefficient error
proportional to its value. For example, for some error rate α, if coefficient D
deviates from its nominal value by D′ = D0±ε, then ε = αD0. The inequality
relating 2D > A requires that,

2D0(1 ± α) > D0(1 ± α) or

2 ∗ (1 − α) > (1 + α),

when the worst case condition is used. Thus, α can be as large as 1/3 without
causing a failure of the inequality. The constraint on the D coefficient also



144 NANO, QUANTUM AND MOLECULAR COMPUTING

permits α < 1/3. Similar conditions arise from considering the remaining
constraints. Thus for the XOR circuit, up to one third of the connections can
be bad and the correct logic state will still be achieved.

Case Study II: Half Adder

The effect of errors on the coefficients in the clique energy is illustrated using
another more complicated example — a half-adder. There are four nodes in the
network: the inputs x0, x1, the sum, x2, and the carry bit, x3, of the gate (here
we don’t consider the carry from the previous stage.). The successful operation
of the gate is designated by the compatibility function, f(x0, x1, x2, x3) as
shown in Figure 5.5.

Figure 5.5. The logic compatibility function for a half-adder gate.

The clique energy for summation is the same as the exclusive-or case in
Equation (5.9) while the clique energy for the carry bit is:

Uc = −(1 − x0)(1 − x1)(1 − x3) −
(1 − x0)x1(1 − x3) − x0(1 − x1)(1 − x3) − x0x1x3

= −1 + x3 + x0x1 − 2x0x1x3. (5.12)

The reason why we want to separately compute the clique energy for summation
and carry is that the summation (x2) and carry (x3) are independent outputs.
Their results only depend on inputs x0 and x1. Based on such a design, we
can drastically reduce the computational complexity of mixing both x2 and x3

into clique energy computation. The clique energy can then be expressed as
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follows:

Uc = −1 − (1 − x0)(1 − x1)(1 − x2)(1 − x3) −
(1 − x0)x1x2(1 − x3) − x0(1 − x1)x2(1 − x3) −
x0x1(1 − x2)x3

= −1 + x0 + x1 + x2 + x3 − x0x1 − 2x0x2 − x0x3 −
2x1x2 − x1x3 − x2x3 + 3x0x1x2 + 2x0x2x3 +
2x1x2x3 − 2x0x1x2x3. (5.13)

If we take device errors into consideration in our design, the clique energy
for the summation portion is the same as in Equation (5.11) while the clique
energy for the carry portion is:

Uc = κ + Hx3 + Dx0x1 − 2Ix0x1x3. (5.14)

Here we assume the same error coefficient D for connection x0x1.
By combining constraints on the clique coefficients for both summation and

carry cases, we can obtain the following results:

2I>D 2G>D 2F>C 2E>A 2D>B
2I>H 2G>F 2F>B 2E>C 2D>A

2G>E

From these two case studies, we observe that complex logic can be decom-
posed into simple designs by exploiting properties embedded in a circuit. In
general, the highest order clique coefficient can be increased until the lowest
order coefficient has sufficient connection redundancy to be guaranteed to attain
the average error rate. This policy guards against catastrophic failure, where
a few bad connections affect a large percentage of the coefficient values. The
conical structure of the constraint surface (shown, for instance, in Figure 5.4)
insures that this strategy is always possible.

It should be noted that the failure tolerance depends on the particular clique
energy function and follows from the form of the inequalities that arise from
correct logic operation. Work is underway to construct an algorithm for com-
puting the inequalities for an arbitrary logic function and in turn to analyze the
fault tolerance of the circuit.

State Probability Computation

The use of a probabilistic approach has its advantages because the process is
inherently fault tolerant to signal-based errors. The behavior of simple inverter
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and NAND gates will be used to illustrate this aspect of the Markov random
network approach.

Case Study I: Inverter

By following the automodel computation in Section 5.2, we can get the Gibbs
distribution for an inverter as:

p(x0, x1) =
1
Z

e
− 1

kbT
(2x0x1−x0−x1)

, (5.15)

where x0 is the input and x1 is the output of an inverter. Here Uc =
2x0x1−x0−x1 is the clique energy or auto-model of an inverter. The partition
function Z normalizes the expression as required for a probability. Suppose the
input, x0, takes on values from {0, 1}. The dependence on the input x0 can be
marginalized away by summing over its possible values, i.e,

p(x1) =
1
Z

∑
x0={0,1}

e
− 1

kbT
(2x0x1−x0−x1)

=
e

x1
kbT + e

(1−x1)
kbT

2(1 + e
1

kbT )
. (5.16)

In the marginalization it is assumed that the input to the inverter is equally likely
to be a zero or one and that the inverter has exact clique energy weights. These
assumptions are somewhat idealized, since in practice the inverter will have
variable clique coefficients and the input will range over a continuous set of
values near zero or one according to the distribution of signal noise and device
error.

Figure 5.6. The probability of an inverter output for different values of kbT .

The marginalized inverter output distribution function is plotted in Figure 5.6
for various energy values of kbT . Both output 0 and 1 are equally likely,
but note that the most likely outputs are 0 or 1 with the likelihood of any
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intermediate values becoming vanishingly small as kbT → 0. This behavior
is characteristic of Markov random network processing. As long as the energy
balance is favorable to the correct logic state, decreasing kbT will lock in the
valid configurations.

Most applications of the MRF model treat kbT as a variable that can be
manipulated in solving for the maximum probability state. For the purposes
of the following examples, kbT is expressed in normalized units relative to the
logic state energy. That is, thermal energy is expressed as a fraction of unit
logic state energy. For example, the value kbT = 0.1 means that the unit logic
energy is ten times the thermal energy, so at room temperature, the unit logic
energy in some physical realizations of the Markov network would be 0.026
electron-volts.

In actual operation of a logic circuit, the input states would not be equally
likely but would have higher probability of being in a given state, as required
by deterministic behavior. For example, suppose the input to the inverter has
p(1) = 0.7, p(0) = 0.3 then the Gibbs distribution of Figure 5.6 is as shown
in Figure 5.7. As the computing entropy increases, this probability margin

Figure 5.7. The probability of an inverter output for different values of kbT when the input is
one, with probability 0.7.

asymptotically approaches zero. Based on the Maxwell’s demon discussion
in [3], the minimum energy required for bit-operation is ln 2 kbT . Similarly,
a nano logic device will by necessity operate with logic energies within a few
tens of kbT in order to achieve the expected reduction in power afforded by
the small scale of nanodevices. For finite temperatures, the policy of choosing
the output state with the highest probability always yields the correct logic
operation. However, it can be expected that errors will result if |p(x) − 0.5| is
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small, since any physical realization of the Markov network will have significant
fluctuation of the logic levels.

Case Study II: NAND Gate

In order to consider the error behavior of more complex circuits, it is nec-
essary to describe the processing of logic signals through the Markov random
network. This process is carried out by the chaining of conditional probabilities.
The probability of logic variables can be determined by summing (marginaliz-
ing) over the set of possible values of clique neighborhood states except for the
variable in question. What remains is the probability for the single variable.
This probability can be propagated to the next node in the network and used
for the next summation. An example of this basic algorithm has already been
given in the case of Equation (5.15).

The Gibbs joint and conditional probability distributions for a NAND gate
are given by,

p(xa, xb, xc) =
1
Z

e
− 1

kbT
(2xaxbxc−xaxb−xc)

p(xc|xa, xb) =
1

(e
xaxb
kbT + e

1−xaxb
kbT )

e
− 1

kbT
(2xaxbxc−xaxb−xc),

where xa, xb are the inputs and xc is the output. Assuming independent inputs,
p(xa) = p(xb) = 0.5, we can obtain the probability of a one at the output by
marginalizing over all input combinations,

p(xc) =
∑

xa,xb∈{0,1}

1

(1 + e
1

kbT )
e
− 1

kbT
(2xaxbxc−xaxb−xc).

This probability distribution is shown in Figure 5.8.

Figure 5.8. The marginal distribution for the output of a NAND gate for different values of
kbT . The inputs are assumed to have uniform state probabilities.
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Figure 5.9. The probability, p(xc = 0), for a zero output state for a NAND gate as a function
of the input state probabilities, p(xa) = p(xb).

Note that the NAND gate is asymmetrical in its probability distribution and
for a uniform distribution of inputs, the probability of a one output state is
three times that of a zero state. This should be expected, since only one input
combination produces a zero output. However, this asymmetry is detrimental
to logic processing as shown in Figure 5.9. Note that it is necessary to have
p(xa) = p(xb) > 0.7 in order to achieve any logic margin. This margin
is reduced at higher input probabilities as the entropy increases. This result
shows that logic structures should be as symmetrical as possible in order to
operate close to the thermal limit of ln 2 kbT .

5.3 Design for Signal-based Errors

One of the goals for the MRF-based architecture is to be able to operate
much closer to the thermal limit of computation than with conventional logic
circuits. The effect of thermal noise on the behavior of the logic signals can be
expressed in the MRF model through the Gibbs distribution defined earlier,

p(x) =
1
Z

e
− Uc

kbT .

The term kbT expresses the amount of energy inherent in thermal excitations.
The clique energy Uc can be interpreted as a potential energy well that maintains
a given logic state. If Uc is many times kbT then the logic states are well-
delineated and there is negligible probability for errors. On the other hand, if
Uc is near kbT then thermal energy fluctuations can easily cause logic errors.
In the limit of Uc

kbT
→ 0, all logic states are equally probable.

The variation of a logic level over time can be simulated by drawing random
samples from the Gibbs distribution. The inverter model described earlier is
taken for illustration. In this treatment, the logic states are nominally, {−1, 1}
in order to have open intervals on the real number line. With this mapping of
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states, the joint probability of the input, x0 and the output x1 is,

p(x0, x1) =
1
Z

e
− 0.5

kbT
(x0x1−1)

.

Suppose that the input is held at a logic “one” state, i.e., x0 = 1. The output
can then be simulated by repeated samples from the distribution,

p(x1) =
1
Z

e
− 1

kbT
(x1−1)

. (5.17)

A series of samples is shown in Figure 5.10 for two different ratios of logic
energy to thermal energy. The decision as to the output logic state can be taken
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Figure 5.10. A series of samples from 1
Z

e
− 1

kbT
(x1−1)

, (a) with 1
kbT

= 10, (b) with 1
kbT

= 2.

as x1 > 0. Obviously, many errors will result even at 1
kbT = 10. The plot

b) corresponds to the ultimate limit of computation in the presence of thermal
fluctuations, Uc = 2kbT . This limit is established from entropy arguments in a
study of logic decisions in the presence of random thermal fluctuations [3].

There are two possible approaches to reducing the probability of error:

1 increase the logic energy ratio;

2 exploit temporal redundancy by averaging a series of output samples.

The first approach is certainly feasible since current CMOS logic operates at
energies many orders of magnitude above kbT . For example, for a junction
capacitance of 1 pF and a logic level of one volt, the logic energy ratio is
approximated by,

Uc

kbT
=

CV 2

2 kbT
= 1.2 × 108.

This ratio can be reduced by many orders of magnitude and still have highly
stable MRF logic states. It should be emphasized that operation below room
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temperature is not being advocated here. As will be shown in the following
experiments, it is possible to reduce the logic energy ratio by a million times
and still have a negligible probability of logic error.

In the next section considers the second approach, temporal redundancy, to
eliminate errors. These studies will provide insight into logic operation at or
near the thermal limit.

Error Tolerance Through Temporal Redundancy

In following experiments a logic decision is based on an ensemble average
of samples, rather than a single observation of the output state. That is, a logic
signal, xi, is determined to be “one” if,

(
k=−1∑
k=−m

xi) > 0

Here it is assumed that m samples in the past are averaged to produce the logic
state decision at the the current moment.

The effect of averaging can be illustrated by sampling the output distribution
of a two-inverter chain. The input to the first inverter is held at logic “one”
and thus its output distribution follows Equation 5.17. The samples from the
first inverter output are used as inputs to the second inverter. Each sample is
held fixed while the final inverter output is sampled to produce the signal to
be studied. This arrangement insures that the input to the second inverter has
the statistical distribution that would be present in a logic circuit implemented
using the MRF model. The temperature dependence of the effect of ensemble
averaging will also be consistent with the Gibbs distribution by using the first
inverter as a MRF “signal generator”.

Figure 5.11 shows the joint effect of the number of samples in the ensemble
average and temperature. In this figure, the ratio of Uc

kbT is expressed as the

reciprocal, kbT
Uc

with Uc = 1. So here, low values of kbT
Uc

indicate more stable
logic states. A given effective temperature ratio can be also be achieved by
adjusting the logic switching energy with kbT held fixed, which is what would
be done in practice.

It is also interesting to consider the effect of long cascaded logic paths.
Intuitively it is expected that error rate will increase at each stage due to the
increased randomness of the signal. A set of experiments were carried out
to simulate the output of a long chain of inverters. The result is shown in
Figure 5.12. As expected, the error rate rises dramatically with the number
of stages for operation at Uc

kbT
= 2, the theoretical limit of computation. In

actual practice, the logic energy would more on the order of Uc
kbT = 100 and so

a reasonable number of logic stages can be implemented with negligible error
rate.
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Figure 5.11. The effect of ensemble averaging for a chain of two inverters. The input to
the first inverter is fixed at ideal logic “one”. The output of this first inverter follows the Gibbs
distribution. (a) A table showing percentage of failure vs. the number of samples in the ensemble
average of the final output. Blank table entries indicate the failure rate was zero. (b) A graph
showing the same information from the table in (a).

Figure 5.12. The effect of ensemble averaging for a chain of inverters. inverters. The input to
the first inverter is fixed at ideal logic “one”. The output of the final inverter is averaged over a
20 samples.
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For an alternative approach to evaluating signal errors based on the Markov
Random Fields design methodology, the reader is referred to Chapter 6. In this
chapter, the authors describe NANOLAB, which automates the probabilistic
design methodology and allows fast analysis of reliability/redundancy trade-
offs. Noise is modeled as a uniform or Gaussian distribution.

Tolerance Through Design

The treatment in the last several sections has demonstrated that logic states
that are symmetrically balanced about the decision threshold are going to be
more tolerant to thermal noise (here the logic states are taken from {0, 1} and
the threshold is xi > 1

2 ). Two logic circuits with equivalent logic function are
shown in Figure 5.13. However, the probability distribution of logic states is
not symmetrical as shown in the figure. The marginal distribution of the output
state, p(x6) is shown in Figure 5.14. Circuit b) has a perfectly symmetrical
output distribution and thus can be expected to have significantly better failure
tolerance than circuit a), even though they have the same logic function.

This example demonstrates that the Markov framework can be used to char-
acterize circuit configurations for the best thermal noise reliability. However, it
should be noted that this treatment assumes perfect device operation. A com-
plete analysis would include both simulation of device structural errors and
logic signal errors.

5.4 Future Directions

The MRF model has proven to be an effective general framework for studying
the fundamental effects that are likely to impact computer circuit design at the
nano-scale. However, the treatment so far has been somewhat abstract in that
the model is not grounded in a physical device structure. The highest research
priority going forward is to develop practical mappings from the MRF model
to physical devices. It is expected that this mapping will take several forms.

In the near term, the model will be implemented using conventional silicon
technology with the goal of demonstrating interesting logic operation at much
lower power levels than can be achieved with conventional circuits. It is envi-
sioned that MRF logic and conventional logic will be co-located on the same
chip. The key issue is to discover effective implementations of clique energy,
either of the automodel form used in the work here, or some new form that is
more aligned with silicon device physics.

In any case, the maximization of logic state probability will occur as a nat-
ural physical process of energy minimization. It is envisioned that the entire
logic circuit will be continuously optimizing in the presence of random thermal
excitations. The output to macro circuits will have negligible error probability
through the use of structural and temporal redundancy.
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Figure 5.13. a) The logic function x6 = x2 ∧ (x0 ∨ x′
1). b) An equivalent logic circuit.

Figure 5.14. The marginal output distributions for the circuits in Figure 5.13. Note that circuit
a) is highly asymmetrical while circuit b) is perfectly symmetrical.
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In the longer term, the mapping will be extended to non-silicon devices such
as chemical gates and carbon nanotubes. Again the computation will take the
form of energy minimization and continuous adaptation to structural and signal
errors.
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Abstract Nano-computing in the form of quantum, molecular and other computing models
is proliferating as we scale down to nano-meter fabrication technologies. Accord-
ing to many experts, it is expected that nano-scale devices and interconnections
will introduce unprecedented level of defects in the substrates and architectural
designs need to accommodate the uncertainty inherent at such scales. This consid-
eration motivates the search for new architectural paradigms based on redundancy
based defect-tolerant designs. However, redundancy is not always a solution to
the reliability problem, and often too much or too little redundancy may cause
lack of reliability. The key challenge is in determining the granularity at which
defect tolerance is designed, and the level of redundancy to achieve a specific level
of reliability. Various forms of redundancy such as NAND multiplexing, Triple
Modular Redundancy (TMR), Cascaded Triple Modular Redundancy (CTMR)
have been considered in the fault-tolerance literature. Also, redundancy has been
applied at different levels of granularity, such as gate level, logic block level,
logic function level, unit level etc. Analytical probabilistic models to evaluate
such reliability-redundancy trade-offs are error prone and cumbersome. In this
chapter, we discuss different analytical and automation methodologies that can
evaluate the reliability measures of combinational logic blocks, and can be used
to analyze trade-offs between reliability and redundancy for different architec-
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tural configurations. We also illustrate the effectiveness of our reliability analysis
tools pointing out certain anomalies which are counter intuitive and can be ob-
tained easily by designers through automation, thereby providing better insight
into defect-tolerant design decisions. We foresee that these tools will help fur-
thering research and pedagogical interests in this area, expedite the reliability
analysis process and enhance the accuracy of establishing reliability-redundancy
trade-off points.

Keywords: Nanotechnology, Gibbs distribution, TMR, CTMR, reliability, entropy, PRISM,
probabilistic model checking, interconnect noise, modeling, defect-tolerant ar-
chitecture, granularity, Gaussian

6.1 Introduction

New technologies for building nanometer-scale devices are expected to pro-
vide the means for constructing much denser logic and thinner wires. These
technologies provide a mechanism for the construction of a useful Avogadro
computer [23] that makes efficient use of extremely large number (Avogadro
number is in the order of 1023) of small devices computing in parallel. But the
economic fabrication of complete circuits at the nanometer level with devices
computing in parallel remains challenging because of the difficulty of connect-
ing nanodevices to one another. Also, experts predict that these devices will
have high defect density due to their minuscule dimension, quantum physical
effects, reduced noise margins, system energy levels reaching thermal limits of
computation, manufacturing defects, aging and many other factors. In the near
future we will be unable to manufacture large, defect-free integrated circuits.
Thus, designing reliable system architectures that can work around these prob-
lems at run-time becomes important. General computer architectures till date
have been based on principles that differentiate between memory and process-
ing and rely on communication over buses. Nanoelectronics promises to change
these basic principles. Processing will be cheap and copious, interconnection
expensive and prevalent. This will tend to move computer architecture in the
direction of locally connected, redundant and reconfigurable hardware meshes
that merge processing and memory. At the same time, due to fundamental lim-
itations at the nanoscale, micro-architects will be presented with new design
challenges. For instance, the methodology of using global interconnections and
assuming error-free computing may no longer be possible. Due to the small
feature size, there will be a large number of nanodevices at a designer’s disposal.
This will lead to redundancy based defect-tolerant architectures, and thus some
conventional techniques such as Triple Modular Redundancy (TMR), Cascaded
Triple Modular Redundancy (CTMR) and multistage iterations of these may be
implemented to obtain high reliability. However, too much redundancy does
not necessarily lead to higher reliability, since the defects affect the redundant
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parts as well. As a result, in-depth analysis is required to find the optimal
redundancy level for each specific architecture. [43] and [6] discuss the key
challenges in determining reliability-redundancy trade-off points. These are as
follows:

The arbitrary augmentation of unreliable devices could result in the de-
crease of the reliability of an architecture.

For each specific architecture and a given failure distribution of devices,
once an optimal redundancy level is reached, any increase or decrease in
the number of devices may lead to less reliable computation.

Redundancy may be applied at different levels of granularity, such as gate
level, logic block level, functional unit level etc.

Determining the correct granularity level for a specific Boolean network
is crucial in such trade-off analysis.

Analytical methodologies [31, 32, 42] have been proposed in the past for com-
puting reliability-redundancy trade-offs of classical defect-tolerant architec-
tures. These techniques become complicated and cumbersome for complex
combinational logic. This motivates the need for automating reliability analy-
sis of systems. [44] proposes a probabilistic model checking based automation
approach, that found a flaw in the the analytical approach of [31]. We have de-
veloped automation methodologies to evaluate reliability measures of different
redundant architectural configurations for arbitrary Boolean networks.

In this chapter, we describe a MATLAB based tool (code named NANOLAB
since it is based on MATLAB) [5, 7] and a probabilistic model checking based
tool named NANOPRISM [6]. One difference between our automation tech-
niques and the standard analytical approaches is that we evaluate the reliability
of specific cases as opposed to considering the general framework, and hence
are not necessarily restricted by the analytical bounds of reliability.

Brief Introduction to Our Tools

Conventional digital signals are bimodal, meaning that the logic low or
high are defined as discrete voltage/current levels. Due to non-silicon
manufacturing technologies and device miniaturization in the nanotech-
nology era, the notion of being a binary zero or one will change. A proba-
bilistic design methodology based on Markov Random Fields (MRF) [40]
proposed in [2] (details in Chapter 5) introduces a new information en-
coding and computation scheme where signals are interpreted to be logic
low or high over a continuous energy distribution. The inputs and outputs
of the gates in a combinational block are realized as nodes of a Markov
network and the logic function for each gate is interpreted by a Gibbs
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distribution [48] based transformation. This computational scheme also
exploits the fact that maximizing the probability of energy levels at each
node of the network is equivalent to minimizing the entropy of Gibbs en-
ergy distribution that depends on neighboring nodes. The probability of a
logic variable can be calculated by marginalizing over the set of possible
states of the neighboring logic variables and propagated to the next node
in a Boolean network by using Belief Propagation [36]. NANOLAB
automates this probabilistic design methodology by computing energy
distribution and entropy at the primary/intermediate outputs and inter-
connects of Boolean networks, and by implementing Belief Propagation.
The logic compatibility functions (similar to truth table) [2] for the differ-
ent component gates of the Boolean network and the energy distribution
at the primary inputs are specified to the tool. We have also augmented
the capability to model uniform and Gaussian noise at the primary inputs
and interconnects of combinational blocks and analyze such systems in
terms of entropy at the outputs. Such modeling features in NANOLAB
will expedite and enhance the analysis of reliability measures for different
defect tolerant architectures.

NANOPRISM is a probabilistic model checking based tool that applies
probabilistic model checking techniques to calculate the likelihood of oc-
currence of transient defects in the devices and interconnections of nano
architectures. NANOPRISM is based on the conventional Boolean model
of computation and can automatically evaluate reliability at different re-
dundancy and granularity levels, and most importantly show the trade
offs and saturation points. By saturation point we mean the granularity
based redundancy vs. reliability reaches a plateau meaning that there can-
not be any more improvements in reliability by increasing redundancy or
granularity levels. It consists of libraries built on PRISM [37, 49] (prob-
abilistic model checker) for different redundancy based defect-tolerant
architectural configurations. These libraries also support modeling of re-
dundancy at different levels of granularity, such as gate level, logic block
level, logic function level, unit level etc. Arbitrary Boolean networks are
given as inputs to these libraries and reliability measures of these circuits
are evaluated. This methodology also allows accurate measurements of
variations in reliability on slight changes in the behavior of the system’s
components, for example the change in reliability as the probability of
gate failure varies.

Features of these Tools

Here we enlist some major advantages of our tools:
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Our tools allow fast analysis of reliability-redundancy trade-offs for al-
ternative defect tolerant architectures. In the case of NANOLAB, Fig-
ures 6.9 and 6.10 which evaluate the computational entropy (measure of
the failure probability) at the outputs of two different circuits, show that
a particular fault tolerance technique CTMR, requires different depths of
iteration for optimum circuit reliability. Whereas, the plots obtained in
Figure 6.19 (a) from NANOPRISM indicate that for a 1st order CTMR
configuration of a logic circuit (given in Figure 6.8) with logic block and
gate level granularity, there is a degradation of reliability of computation
at higher probabilities of gate failure. Such analysis can help system
designers quickly decide the redundancy scheme required for defect tol-
erance while building the designs targeted for nanoscale substrates.

The idea of a new model of computation in [2] for uncertainty based
computation is extended in the direction of reliability evaluation and au-
tomated by NANOLAB. Previously [2, 16] only show the viability of
a MRF based computation scheme and how it can be mapped to nano
devices such as Y CNTs [54]. These do not extend the model of compu-
tation in the direction of reliability-redundancy trade-off analysis.

NANOLAB can also compute reliability of systems in the presence of
signal noise at interconnects and inputs. Noise is modeled as uniform
or Gaussian distribution or combinations of both. This models practical
situations the circuits are subjected to during normal operation. Analysis
of reliability measures for redundant architectural configurations of these
logic circuits when exposed to such real world noise distributions makes
our methodology more effective.

NANOPRISM is a tool that automates the evaluation of redundancy vs.
reliability vs. granularity trade-offs. In [44] a probabilistic model check-
ing based CAD framework is used to evaluate reliability measures of
a specific redundancy technique namely NAND multiplexing, and only
redundancy vs. reliability trade-offs are computed. NANOPRISM uses
such a framework too, but we have developed a library of generic re-
dundancy based defect tolerant architectures where different Boolean
networks can be plugged in and analyzed. NANOPRISM analyzes op-
timal redundancy and granularity levels for specific logic networks and
expedites the process of finding the correct trade-offs.

We are able to illustrate some anomalous counter intuitive trade-off points
that would not be possible to observe without significant and extensive
theoretical analysis, and the automation makes it easier to analyze these
critical parameters.
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From our literature search, we found that the results on reliability mea-
sures for different defect tolerant architectures were mostly analytical
[53, 31, 42, 27] and none considered granularity and entropy as parame-
ters. However, for complex network of gates, such analytical results may
be error prone. As a result, we believe that scalable automation method-
ologies to quickly evaluate these figures of merits is crucial for practical
use by engineers.

Organization

We begin with an introduction to the basic concepts of defect-tolerant com-
puting, the probabilistic model of computation from [2] and how to use such
a computational scheme to model noise. We also discuss about granularity
and measure of redundancy, and introduce probabilistic model checking. We
discuss some interesting analytical reliability computation models and hybrid
defect-tolerant architectures in Section 3. Section 4 describes NANOLAB and
our approach to analyze reliability of systems with the model of computation
proposed by Bahar et al. A detailed example along with a code snippet is
used to elucidate this methodology. In Section 5 we report reliability measures
of different logic networks computed by NANOLAB. Section 6 focuses on
explaining how we use the NANOPRISM framework to model defect-tolerant
architectures such as TMR, CTMR and their iterations for single gates and logic
blocks respectively. Reliability-redundancy trade-off points for specific com-
binational circuits and interesting anomalies computed by NANOPRISM are
presented in Section 7. Finally, Section 8 concludes the chapter and summarizes
plans to extend these automation methodologies in the future.

6.2 Background

Nanotechnology currently involves various technologies that exploit quantum
mechanical effects, molecular bindings, inherent properties of materials at
atomic scale, weak forces, van der waal forces etc. Some of these emerg-
ing technologies are single electron transistors [17], nanowire transistors [19],
quantum dots [56], resonant tunneling devices [12], negative differential re-
sistors (NDR) [14], chemically assembled electronic nanocomputers (CAENs)
[18, 46], reconfigurable switches [15, 18] and molecular switches [24]. In all
the cases at least one dimension of the fabricated devices are of the order of
a few nanometers. Such miniaturization leads to high density of devices on
system on chips (SOCs). It has been shown in [58] that it is possible to build a
trillion (1012) devices in a square centimeter. But there is going to be a very high
degree of failures due to (i) manufacturing defects, (ii) transient faults result-
ing from thermal perturbations and reduced noise tolerance at reduced voltage
and current levels (less amiable operating environments), and (iii) faults due to
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aging, etc. Defect tolerant architectures are possible solutions to this problem
specifically by using redundant devices and functional units. The importance
of evaluating these defect-tolerant architectures is many-fold. Usually there are
many alternatives available in terms of configuration and parameters. Hence,
the perfect choice for a specific Boolean network is a matter of major analysis.

Defect Tolerant Architectures

Formally, a defect-tolerant architecture is one which uses techniques to mitigate
the effects of defects in the devices that make up the architecture, and guarantees
a given level of reliability. There are a number of different canonical defect-
tolerant computing schemes most of which are based on redundancy. The
techniques which we look at are highly generic and concerned with resource
redundancy and can be easily extended to nano architectures. Some of these
canonical techniques are Triple modular Redundancy(TMR), Cascaded Triple
Modular Redundancy(CTMR) and multi-stage iterations of these [42].

B-bits

B-bits

B-bits

B- Bit
Majority

Gate

Unit 1

Unit 2

Unit 3

Z

Figure 6.1. Generic Triple Modular Redundancy Configuration

Triple Modular Redundancy as shown in Figure 6.1 entails three similar units
working in parallel, and comparison of their outputs with a majority voting logic
[42]. The units could be gates, logic blocks, logic functions or functional units.
The TMR provides a functionality similar to one of the three parallel units
but provides a better probability of working. The tradeoff is that instead of n
devices, 3n devices and a majority gate are needed in this configuration. The
R-fold modular redundancy is a generalization of the TMR configuration where
R units work in parallel instead of 3 and R ∈ {3,5,7,9.....}.

Cascaded Triple Modular Redundancy is similar to TMR, wherein the units
working in parallel are TMR units combined with a majority gate. This config-
uration forms a CTMR of the first order and therefore TMR can be considered
to be 0th order CTMR. Higher orders of CTMR are obtained by multi-stage
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Figure 6.2. Cascaded Triple Modular Redundancy with Triple Voters: Multi-layer Voting

iterations of these, but this does not mean that the reliability of a system goes
up due to this. Increasing the redundancy level also introduces more unreliable
devices in the architectural configuration. Figure 6.2 shows a 1st order CTMR
configuration where the parallel processing units in each of the three TMR units
are NAND gates. This defect-tolerant technique is also called a Cascaded TMR
with triple voters (multi-layer voting scheme). Other variations such as CTMR
with triple voters (smaller granularity of redundancy) are discussed in details
in Chapter 2.

Let n be the order of the CTMR configuration. The majority logic requires
four gates i.e. if a, b and c are inputs, the logic operation is (a∧b)∨(b∧c)∨(c∧a).
If Fn−1 is the total number of devices for a (n-1)th order CTMR, then we can
say:

Fn = 3Fn−1 + 5 (6.1)

For a single gate, the total number of redundant gates in a nth order CTMR
configuration (where n ∈ {0,1,2....}) is:

Fn =
21
2

· 3n − 5
2

(6.2)

If the total number of gates in a logic circuit is k, then the total number of
devices in any nth order configuration will be:
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Fn = 3 · 2k + 5
3k − 1

(3k)n +
9k2 + 6k − 20

3k − 1
(6.3)

Multiplexing Based Defect-Tolerance

In 1952, von Neumann introduced a redundancy technique called NAND mul-
tiplexing [57] for constructing reliable computation from unreliable devices.
This multiplexing based defect-tolerant architectural configuration is more gen-
eral and can be applied to other logic as well (as discussed in Chapter 2). He
showed that such an architectural configuration can perform computations with
high reliability measures, if the failure probabilities of the gates are sufficiently
small and failures are independent. Pippenger [47] showed that von Neumann’s
construction works only when the probability of failure per gate is strictly less
than 1/2, and that computation in the presence of noise (which can be seen as
the presence of transient fault) requires more layers of redundancy. [21] also
showed that a logarithmic redundancy is necessary for some Boolean function
computations, and is sufficient for all Boolean functions. In [42], NAND mul-
tiplexing was compared to other techniques of fault-tolerance and theoretical
calculations showed that the redundancy level must be quite high to obtain
acceptable levels of reliability.

The multiplexing based defect-tolerance scheme replaces a single logic de-
vice by a multiplexed unit with N copies of every input and output of the device.
The N devices in the multiplexing unit process the copies of the inputs in par-
allel to give N outputs. Each element of the output set will be identical and
equal to the original output of the logic device, if all the copies of the inputs
and devices are reliable. However, if the inputs and devices are in error, the
outputs will not be identical. To tackle such an error-prone scenario, some
critical level ∆ ∈ (0, 0.5) is defined. The output of the multiplexing unit is
considered stimulated (taking logical value true) if at least (1−∆)·N of the
outputs are stimulated, and non-stimulated (taking logical value false) if no
more than ∆·N outputs are stimulated. If the number of stimulated outputs
is in the interval (∆·N, (1−∆)·N), then the output is undecided, and hence
a malfunction will occur. The basic design of a von Neumann multiplexing
technique consists of two stages: the executive stage which performs the basic
function of the processing unit to be replaced, and the restorative stage which
reduces the degradation in the executive stage caused by erroneous inputs and
faulty devices. As shown in Figure 6.3, NAND multiplexing is an architectural
configuration wherein a single NAND gate is the processing unit of a multiplex-
ing based defect-tolerant system. The unit U performs random permutation of
the input signals i.e. each signal from the first input bundle is randomly paired
with a signal from the second input bundle to form the input pair of one of the
duplicated NAND gates.
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Figure 6.3. A NAND multiplexing unit from [44]

Creating computing systems built from devices other than silicon-based tran-
sistors is a research area of major interest. A number of alternatives to silicon
VLSI have been proposed, including techniques based on molecular electron-
ics, quantum mechanics, and biological processes. One such nanostructure
proposed by Lent et al [39, 38] is quantum-dot cellular automata (QCA) that
employs arrays of coupled quantum dots to implement Boolean networks. Due
to the miniscule size of the quantum dots, extremely high packing densities are
possible in CA based architectures. Also, the other advantages are simplified
interconnections, and extremely low power-delay product. The fundamental
QCA logic device is a three-input majority logic gate consisting of an arrange-
ment of five standard quantum cells: a central logic cell, three inputs and an
output cell. A majority gate can be programmed to act as an OR gate or an AND
gate by fixing any of the three inputs as a program line [55]. This indicates that
majority gates are going to play an important role in the future architectural
configurations.

This motivates us to consider multiplexing when the logic device is a single
majority gate. We therefore replace the inputs and output of the gate with
N copies and duplicate the majority gate N times in the executive stage, as
shown in Figure 6.4. Again, the unit U represents a random permutation of the
input signals, that is, for each input set to the N copies of the majority gate,
three input signals are randomly chosen from the three separate input bundles
respectively. Figure 6.4 also shows the restorative stage which is made using
the same technique as the executive stage, duplicating the outputs of this stage
to use as inputs to the restorative stage. Note that, applying this approach only
once will invert the result, therefore two steps are required. To give a more
effective restoration mechanism this stage can be iterated [57].
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Figure 6.4. A majority multiplexing unit from [9]

Defect-Tolerance through Reconfiguration

A computer architecture that can be configured or programmed after fabrication
to implement desired computations is said to be reconfigurable. Reconfigurable
fabrics such as Field-Programmable Gate Arrays (FPGAs) are composed of
programmable logic elements and interconnects, and these can be programmed,
or configured, to implement any circuit. Such reconfigurable architectures may
mitigate manufacturing defects that will be rampant at the nano substrates. The
key idea behind defect tolerance in FPGAs is that faulty components are detected
during testing and excluded during reconfiguration. It is expected [41] that
reconfigurable fabrics made from next generation manufacturing techniques
(CAEN-based technologies where molecular junctions can be made which hold
their own state) will go through a post-fabrication testing phase during which
these fabrics will be configured for self-diagnosis. Testing for error-prone
devices will not incur either an area or a delay penalty because the test circuits
placed on the fabric during this self-diagnosis phase will utilize resources that
will be available later for normal fabric operation (unlike BIST structures). The
defect map obtained from this test phase will contain locations of all the defects,
and this map can be used by place-and-route tools to layout circuits on the fabric
that avoid the defective devices. Thus, the built-in defect-tolerance in such a
reconfigurable digital system will ease the requirements on the manufacturing
process.

Teramac [34] is such an extremely defect-tolerant reconfigurable machine
built in HP laboratories. The basic components in Teramac are programmable
switches (memory) and redundant interconnections. The high communication
bandwidth is critical for both parallel computation and defect tolerance. With
about 10% of the logic cells and 3% of the total resources defective, Teramac
could still operate 100 times faster than a high-end single processor worksta-
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tion for some of its configurations. In contrast to the static defect discovery
process used in Teramac (test vectors), [41] proposes scalable testing methods
that generate defect maps for reconfigurable fabrics in two phases, and dynamic
place-and-route techniques for configuartion/programming of the fabric. The
reconfigurable architecture particularly targeted by the methodology in [41]
is the nanoFabric [28, 29]. The nanoFabric is an example of a possible im-
plementation of a CAEN based reconfigurable device. The post-fabrication
testing suggested in [41] comprises of the probability assignment and defect
location phases. The probability assignment phase assigns each component a
probability of being defective, and discards the components which have a high
probability. Thus, this phase identifies and eliminates a large fraction of the de-
fective components. The remaining components are now likely to have a small
enough defect rate and can be tested in the defect location phase using simple
test-circuit configurations. The authors also point out the non-adaptiveness of
the test-circuit generation. This implies that the results of previous tests are
not used to generate new circuits (details in Chapter 3). The Cell Matrix archi-
tecture [23] (details in Chapter 4) also supports dynamic defect identification
and elimination. The Cell Matrix is a fine-grained reconfigurable fabric com-
posed of simple, homogeneous cells and nearest-neighbor interconnect. The
cells are programmable, gate-level processors where a small set of properties
holds true for cell structure, function, and intercellular communication. This
set of cellular properties provides ways to directly program cells to bring about
useful computations and data processing [22]. The homogeneity of this archi-
tecture makes it inherently fault-tolerant. Like Teramac, the Cell Matrix can
handle large manufacturing defect rates (permanent faults), and provide high
reliability of computation. However, the Cell Matrix architecture also provides
defect-tolerance to transient errors (caused due to less amiable operating con-
ditions) due to the inherent self-analyzing, self-modifying, and dynamic local
processing capabilities of the architectural configuration. Also, the embryon-
ics architecture [20] is a potential paradigm for future nanoscale computation
systems. The objective of developing defect-tolerant and ultra-large integrated
circuits capable of self-repair and self-replication makes this architecture viable
for future nanoelectronic system design.

Markov Random Field based Model of Computation

The advent of non-silicon manufacturing technologies and device miniaturiza-
tion will introduce uncertainty in logic computation. Newer models of com-
putations have to be designed to incorporate the strong probabilistic notions
inherent in nanodevices. Such a probabilistic design methodology has been
proposed in [2] (details in Chapter 5) that adapts to errors by maximizing the
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Figure 6.5. A NAND gate

probability of being in valid computational states. This model of computation
introduces a new information encoding and computation scheme, where signals
are interpreted to be logic low or high over a continuous energy distribution.
The basis for this architectural approach is the Markov random network which
is based on Markov random fields (MRF) [40]. The Markov random field is
defined as a finite set of random variables, Λ = {λ1,λ2,......, λk}. Each variable
λi has a neighborhood, Ni, which are variables in {Λ - λi}.

Figure 6.6. The neighborhood of the input of a NAND gate depicted as a network node

The energy distribution of a given variable depends only on a (typically
small) neighborhood of other variables that is called a clique. These variables
may represent states of nodes in a Boolean network and we might be able to
consider effects of noise and other uncertainty factors on a node by considering
the conditional probabilities of energy values with respect to its clique. Due to
the Hammersley-Clifford theorem [4],

P (λi|{Λ − λi}) =
1
Z

e−
1

KT

�
c∈C Uc(λ) (6.4)

The conditional probability in Equation 6.4 is Gibbs distribution. Z is the
normalizing constant and for a given node i, C is the set of cliques affecting the
node i. Uc is the clique energy function and depends only on the neighborhood
of the node whose energy state probability is being calculated. KT is the
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thermal energy (K is the Boltzmann constant and T is the temperature in Kelvin)
and is expressed in normalized units relative to the logic energy (clique energy).
For example, KT = 0.1 can be interpreted as unit logic energy being ten times
the thermal energy. The logic energy at a particular node of a Markov network
depends only on its neighborhood as discussed earlier. Also, the logic margins
of the nodes in a Boolean network decrease at higher values of KT and become
significant at lower values. The logic margin in this case is the difference
between the probabilities of occurrence of a logic low and a logic high which
if high leads to a higher probability of correct computation. This formulation
also allows correct analysis of entropy values.

i x0 x1 x2 �

0 0 0 1 1
1 0 0 0 0
2 0 1 1 1
3 0 1 0 0
4 1 0 1 1
5 1 0 0 0
6 1 1 0 1
7 1 1 1 0

Table 6.1. Logic compatibility function for a NAND gate with all possibilities

Let us take a specific example to walk through the methodology in [2]. For
a two input NAND gate as shown in Figure 6.5, there are three nodes in the
assumed logic network: the inputs x0 and x1, and the output x2. Figure 6.6
represents x0 as a network node, and shows its neighborhood. The energy state
of this node depends on its neighboring nodes. The edges in Figure 6.6 depict
the conditional probabilities with respect to the other input x1 and the output
x2 (nodes in the same clique). The operation of the gate is designated by the
logic compatibility function �(x0,x1,x2) shown as a truth table in Table 6.1.
� = 1 when x2 = (x0 ∧ x1)′ (valid logic operations). Such a function takes
all valid and invalid logic operation scenarios into account so as to represent
an energy based transformation similar to the NAND logic. The axioms of
the Boolean ring [13] are used to relate � to a Gibb’s energy form. Also, the
valid input/output states should have lower clique energies than invalid states to
maximize the probability of a valid energy state at the nodes. Thus the clique
energy (logic energy) is the summation over the minterms of the valid states
and is calculated as :

U(x0, x1, x2) = −
∑

i

�i(x0, x1, x2) (6.5)
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where �i = 1 (i is the index for each row of Table 6.1). This clique energy
definition reinforces that the energy of invalid logic state is greater than valid
state. As shown in [16], for a valid state, the summation of valid states (�i = 1)
is ’-1’ and for any invalid state, this summation value is ’0’. The clique energy
for the NAND gate is:

U(x0, x1, x2) = −x2 + 2x0x1x2 − x0x1 (6.6)

The probability of the different energy configurations of x2 is:

p(x2) =
1
Z

∑
x0∈{0,1}

p(x0)
∑

x1∈{0,1}
p(x1) e−

1
KT

U(x0,x1,x2) (6.7)

As according to Equation 6.7, the probability of different energy states at x2 is
calculated as a function of x2 after marginalizing over the distributions of x0

and x1. The probability of the energy state configurations at the outputs of any
logic gate can be calculated by the methodology above. Given the input proba-
bility distributions and logic compatibility functions, using Belief Propagation
algorithm [36] it is also possible to calculate entropy and energy distributions
at different nodes of the network. Thus, [2] gives a probabilistic model of
computation which we exploit to compute reliability-redundancy trade-offs for
different nanoscale architectures.

Modeling Noise at Inputs and Interconnects

The probabilistic non-discrete computing scheme described above can be ex-
tended to incorporate the impact caused by continuous noise at the inputs and the
interconnects of combinational circuits. Let us take the same NAND gate exam-
ple to illustrate this. For the inputs being logic low or high, the Gaussian noise
distribution below zero will be filtered out because negative values are invalid
[16]. To make the Gaussian noise symmetrically distributed about the inputs of
the gate, the coordinate system has to be shifted such that x = 0 → x′ = −1,
and x = 1 → x′ = 1. Thus, x0, x1 and x2 can be rewritten as :

x′0 = 2(x0 - 1
2 ), x′1 = 2(x1 - 1

2 ), x′2 = 2(x2 - 1
2 )

The clique energy in Equation 6.6 for the NAND gate is modified as follows:

U(x′0,x′1,x′2) = -1
2 - 1

4x′2 + 1
4x′0x′1 + 1

4x′1x′2 + 1
4x′0x′1x′2
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We have modeled noise as a Gaussian process with mean µ and variance σ2.
The probability distribution of x′2 being in different energy configurations ∈
{-1.0, -0.9, -0.8,...., 0.1, 0.2, 0.3,...., 1.0} is:

p(x′
2) =

1
Z

∫ 1

−1

∑
x′
1∈{−1,1}

e−
U

KT

(
e−(x′

0−µ)2/2σ2

√
2πσ

)
dx0 · p(x′

1) (6.8)

The energy distribution at x′2, if uniform distribution is used to model signal
noise is given by:

p(x′
2) =

1
Z

∫ 1

−1

∑
x′
1∈{−1,1}

e−
U

KT dx0 · p(x′
1) (6.9)

Equation 6.8 or 6.9 is used to compute the probability of x2 at different energy
states, marginalizing over the distributions of x0 (ranges between−1 and 1) and
x1 [11]. The energy distribution at the output of any logic gate can be calculated
in the presence of noisy inputs and interconnects by the methodology above.
For more details refer to Chapter 5.

Granularity and Measure of Redundancy

Redundancy based defect-tolerance can be implemented for Boolean networks
at different levels of granularity. For a specific logic circuit, all the gates could
be replicated as a particular CTMR configuration and the overall architecture
can be some other CTMR configuration. For example, each gate in the circuit
could be a kth order CTMR configuration and the overall logic block could be a
nth order configuration where k �=n. Redundancy can thus be applied at different
levels of granularity, such as gate level, logic block level, logic function level etc.
Later in this chapter, we discuss a few experiments that show us that reliability
is often dependent on the granularity level at which redundancy is injected in a
logic network. NANOPRISM indicates the correct level of granularity beyond
which the reliability measures for a system do not improve.

Probabilistic Model Checking and PRISM

Probability is the measure of level of uncertainty or randomness. It is widely
used to design and analyze software and hardware systems characterized by in-
complete information, and unknown and unpredictable outcomes. Probabilistic
model checking is a range of techniques for calculating the likelihood of the
occurrence of certain events during the execution of unreliable or unpredictable
systems. The system is usually specified as a state transition system, with prob-
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ability values attached to the transitions. A probabilistic model checker applies
algorithmic techniques to analyze the state space and calculate performance
measures.

NANOPRISM consists of libraries built on PRISM [37, 49], a probabilistic
model checker developed at the University of Birmingham. PRISM supports
analysis of three types of probabilistic models: discrete-time Markov chains
(DTMCs), continuous-time Markov chains (CTMCs) and Markov decision pro-
cesses (MDPs). We use DTMCs to develop libraries for generic defect-tolerant
architectural configurations. This model of computation specifies the proba-
bility of transitions between states, such that the probabilities of performing a
transition from any given state sums up to 1. DTMCs are suitable for conven-
tional digital circuits and the fault models considered. The fault models are
manufacturing defects in the gates and transient errors that can occur at any
point of time in a Boolean network.

The PRISM description language is a high level language based on guarded
commands. The basic components of the language are modules and variables.
A system is constructed as a number of modules which can interact with each
other by means of the standard process algebraic operations [50]. A module
contains a number of variables which represents its state. Its behavior is given
by a set of guarded commands of the form:

[] <guard> → <command>;

The guard is a predicate over the variables of the system and the command
describes a transition which the module can make if the guard is true (using
primed variables to denote the next values of variables). If a transition is
probabilistic, then the command is specified as:

<prob> : <command> + · · · + <prob> : <command>

The properties of a DTMC model can be verified by PCTL model checking
techniques. PCTL [33] is a probabilistic temporal logic, an extension of CTL. It
can be used to express properties such as “termination will eventually occur with
probability at least 0.98”. Our work is based on modeling defect tolerant archi-
tectures as state machines with probabilistic assumptions about the occurrence
of defects in the devices and interconnections, and then use Markov analysis
and probabilistic model checking techniques to evaluate reliability measures.

6.3 Analytical Approaches for Reliability Analysis

In this section we survey some theoretical models that have been used to an-
alyze reliability-redundancy trade-off points of some classical defect-tolerant
architectures. Several techniques have been suggested in the past to mitigate the
effects of both faults and defects in designs. One of the techniques discussed ex-
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haustively is the multiplexing technique initiated by von Neumann [57], and is
based on massive duplication of imperfect devices and randomized error-prone
interconnects. Han and Jonker [31] extend this technique to a rather low degree
of redundancy, and elucidate the stochastic markov [45] nature of the system.
They also investigate a system architecture based on NAND multiplexing for
SETs, where transient errors are introduced due to random background charges.
Stochastic analysis of the chains of stages (Figure 6.3) is performed to evaluate
optimal redundancy factors for systems, and bounds on the failure probability
per gate that can be tolerated for specific reliability and redundancy levels.

In current digital systems, memory and caches use the bulk of available
logic devices. The processor is made from a number of functional units, each
of which can be separated into function blocks. These function blocks are
composed of many logic circuits cascaded together, however there are specific
cascading bounds to avoid timing problems (hazard). [31] assumes that such
a function block can be made entirely by n stages of N parallel NAND gates,
and various trade-offs can be computed by statistical analysis. In a design with
unreliable logic devices, the upper bound is that we must replace each logic
gate with n · N unreliable and smaller gates.

For the NAND multiplexing system shown in Figure 6.3, let X be the set of
lines in the first input bundle that are stimulated. Consequently, (N −X) lines
are not stimulated (logic low). Y and Z are also corresponding sets for the
second input and the output bundles. [31] also assumes a constant probability
of gate failure ε, and that the faulty gates invert their outputs (von Neumann
fault). If the sets X , Y and Z have (x̄, ȳ, z̄) elements respectively, then these are
the relative excitation levels of the two input bundles and of the output bundle,
respectively. The stochastic distribution of z̄ has to be determined in terms of
the given input distributions (x̄ and ȳ).

In [57], von Neumann concluded that for extremely large N , the stochastic
variable z̄ is approximately normally distributed. He also determined an upper
bound of 0.0107 for the gate failure probability that can be tolerated. In other
words, according to von Neumann, if the failure probability per gate is greater
than this threshold, then the probability of the NAND multiplexing system
failing will be larger than a fixed, positive lower bound, no matter how large
a bundle size is used. Recently, it was shown that, if each NAND gate fails
independently, the tolerable threshold probability of each gate will be 0.08856
[25]. [31] shows how this technique can be used with rather low degrees of
redundancy rather than massive duplication of imperfect nanodevices.

Let us discuss this interesting analytical methodology in brief. For a single
NAND gate in the multiplexing scheme (Figure 6.3), assume x̄N and ȳN are
input lines stimulated in each input bundle respectively. If the error probabilities
for the two input bundles of the multiplexing configuration are independent, the
probability of each gate’s output being logic high is z̄ = 1−x̄ȳ (assuming error-
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free NAND operation). If the gate failure probability is ε, the probability of the
output being stimulated is:

z̄ = (1 − x̄ȳ) + ε(2x̄ȳ − 1) (6.10)

Equation 6.10 is valid only for the von Neumann fault model (erroneous gate
inverts the correct output). The NAND multiplexing unit constitutes a Bernoulli
sequence because the gates are assumed to function independently. Therefore,
the probability distribution of the stimulated outputs can be expressed as a
binomial distribution. The probability of exactly k outputs being stimulated is:

P (k) =
(

N

k

)
z̄k(1 − z̄)N−k (6.11)

When N is extremely large and z̄ is extremely small, the probability distribution
of exactly k outputs being stimulated from the N output lines of the NAND
multiplexing stage can be approximated to a Poisson distribution. If both inputs
of the NAND gates have high probability of being logic high, the stimulated
outputs are then considered erroneous. The reliability of the system can then be
computed as the probability of the number of stimulated outputs being below a
threshold (P (k ≤ x)). Since the number of stimulated outputs is a stochastic
variable that is binomially distributed, the central limit (De Moivre-Laplace)
theorem applies when N is extremely large and 0 < z̄ < 1. In this case,
Equation 6.11 can be rewritten as:

P (k ≤ x) =
∫ x

−∞

1√
2π

√
Nz̄(1 − z̄)

e−1/2(t−Nz̄/
√

Nz̄(1−z̄))2 (6.12)

Thus, [31] shows analytically that for the executive stage (Subsection 6.2.0)
of a NAND multiplexing configuration, for smaller N , the probability of the
number of stimulated outputs is theoretically a binomial distribution. Also,
the authors elucidate that the probability could be approximated to a Gaussian
distribution with mean Nz̄ and standard deviation

√
Nz̄(1 − z̄), when N is

extremely large and 0 < z̄ < 1. The authors then go on to demonstrate how
additional restorative stages improve fault-tolerance. The discussion above il-
lustrates that the number of stimulated outputs of each NAND multiplexing
stage is a stochastic variable and its state space is A = [0, 1, 2, ....N − 1, N ].
This stochastic variable is denoted as ξ̄n, where n is the index of the multi-
plexing stage. Thus, the evolution of ξ̄n in the multiplexing configuration is a
stochastic process, and with fixed bundle size and gate failure probability, the
distribution of ξ̄n∀n (stages) depends on the number of stimulated inputs of the
nth multiplexing unit (outputs of the n − 1 th unit). This can be expressed as
follows:
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P (ξ̄n ∈ A | ξ̄1 = k1, ξ̄2 = k2, ....ξ̄n−1 = kn−1)
= P (ξ̄n ∈ A | ξ̄n−1 = kn−1) (6.13)

Equation 6.13 is the condition for a stochastic process to be a Markov process.
As indicated in Figure 6.3, k1, k2, ....kn−1 are the number of stimulated outputs
of the stages represented by the indices respectively. The evolution of ξ̄n in
the NAND multiplexing system is therefore a Markov process, or a discrete
Markov chain. The transition probability of a stochastic Markov chain indicates
the conditional probability from one specified state to another. As elucidated in
[31], the transition probability matrix Ψ for each ξ̄n is identical and independent
of the multiplexing stage (n). Thus, it can be inferred that ξ̄n evolves as a
homogeneous Markov chain. Therefore, an initial probability distribution and
a transition probability matrix are sufficient to get all output distributions. For
a NAND multiplexing system with n individual stages, the output distribution
of the configuration is:

Pn = P0Ψn (6.14)

[31] also points out the fact that when the number of multiplexing stages (n)
is large, Ψn approaches a constant matrix π, and each row of π is identical.
This indicates that as n becomes extremely large, not only the transition prob-
abilities in a NAND multiplexing system will get stable, but also the output
distribution will become stable and independent of the number of multiplex-
ing stages. Experiments indicate that this defect-tolerant technique requires
a rather large amount of redundant components to give acceptable reliability
levels. This makes NAND multiplexing inefficient for the protection against
permanent faults, normally compensated by reconfiguration techniques. How-
ever, this architectural configuration may be a system solution for ultra large
integration of highly unreliable nanometer-scale devices affected by dominant
transient errors.

[32] reviews the NAND multiplexing and reconfiguration fault tolerant tech-
niques, and presents a defect and fault tolerant architecture in which multiplex-
ing (low degree of redundancy) is combined with a massively reconfigurable ar-
chitecture. The system performance of this architecture is evaluated by studying
its reliability, and this shows that the suggested architecture can tolerate a device
error rate of up to 10−2. The architectural configuration is seen to be efficiently
robust against both permanent and transient faults for an ultra-large integration
of highly unreliable nanodevices. In Section 6.2.0, the defect-tolerant capabili-
ties of different reconfigurable architectures are discussed, and it is seen that the
Cell Matrix architecture can also provide defect-tolerance for both permanent
and transient faults. For the NAND multiplexing configuration, Equation 6.11
can be used to compute the reliability of the system if the faulty devices are
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independent and uniformly distributed. This scenario may be reasonable when
the dominant faults are transient in nature. However, this binomial distribution
model is not sufficient to describe the manufacturing defects and permanent
faults. The device components are not statistically independent but rather cor-
related since defects tend to cluster on a chip [35]. Thus, Equation 6.11 is
not appropriate for computing reliability measures of the multiplexing system.
[32] indicates that such manufacturing defects can be modeled with a continu-
ous probability distribution function f(r) where r is the component reliability.
Thus, the new reliability evaluation formula is:

R(k) =
∫ 1

0

(
N

k

)
z̄k(1 − z̄)N−kf(r)dr (6.15)

The success of the approach depends on finding appropriate parameters for
Equation 6.15, and [32] follows Stapper’s beta distribution model [30]. Han
and Jonker also discuss about the analytical methodology to compute reliability
of reconfigurable architectures. The basic logic circuit blocks in the processor
arrays on a reconfigurable chip are referred to as processing elements (PEs),
and these are sometimes associated with local memories. In very large chips,
reliability can be enhanced by adding spare PEs to the architectural configura-
tion. Instead of trying to achieve complete fault tolerance, most techniques aim
at optimizing probability of survival, defined as the percentage of defects that
can be eliminated by the reconfiguration approach. Reconfiguration approaches
are categorized as local or global [26]. Global approaches usually involve far
more complex reconfiguration algorithms than local solutions. [32] assumes
that all PEs (also called modules) are identical, so that any spare module can be
substituted for a defective one, provided sufficient interconnection paths exist
in the cluster. If in an array there are r spares out of n identical modules, then at
least n−r must be error-free for proper operation. The reliability of the array is
given by Rn =

∑n
m=n−r Rmn, where Rmn is the probability of exactly m out

of n modules being fault free. Assuming the modules have the same reliability
measure R0, and are statistically independent, the probability distribution of the
number of defect free modules m can be modeled as a binomial distribution:

Rmn =
(

n

m

)
Rm

0 (1 − R0)n−m (6.16)

Again, these defective modules in an array are not uniformly distributed but
rather correlated, and Stapper’s model is used to improve the reliability calcu-
lation of correlated modules [30]. The authors compute the reliability measures
of a hierarchical approach that uses NAND multiplexing at the lowest level and
then uses redundancy (spares) for reconfiguration at three additional implemen-
tation levels. The authors show that for an individual gate failure probability of
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10−2 and with 1012 devices on the chip, this architectural approach achieves a
chip-level reliability of 99.8% with a redundancy factor of less than 10.

[42] also uses theoretical models to compare the relative reliability measures
of R-fold modular redundancy, NAND multiplexing and reconfiguration for
different device failure rates. It is shown that for a chip with 1012 devices,
and with a reliability level that specifies that the chip must work with 90%
probability, RMR is the least effective followed by NAND multiplexing and
reconfiguration providing the best computational reliability. Table 1.1 in Chap-
ter 2 provides these comparison data in details. It is also indicated in [42] that
for individual device failure rates of 0.01 to 0.1, the redundancy factors are very
large (103 to 105). The authors also derive the failure rate of a chip with N
devices [27] for a RMR defect-tolerant architectural configuration (explained
in Subsection 6.2.0) and this can be expressed as:

P chip
fail =

N

RNc + mB
[C(Ncpf )(R+1)/2 + mBpf ] (6.17)

In equation 6.17, C =
(

R
R−1

2

)
is the binomial factor, pf is the probability

of an individual device failing, Nc is the total number of devices in one of
the R units working in parallel, N = RNc is the total number of devices and
imperfect majority gates have B outputs and mB devices. The probability that
an i-th order RMR configuration (cascaded redundancy) works is as follows:

P (i)
w = (1 − pfail)mB[P (i−1)3

w + 3P (i−1)2

w (1 − P (i−1)
w )] (6.18)

where the majority gate contains mB imperfect devices and Pw = 1 − Pfail.
[42] also show that CTMR is not advantageous when the redundant units have
small number of devices and the majority logic is also made from the same
devices as the units. For complex Boolean networks, most of these analytical
methodologies do not scale well, and are error-prone and cumbersome. These
limitations motivate the need for automating reliability-redundancy trade-off
analysis methodologies.

6.4 NANOLAB: A MATLAB Based Tool

In this section, we discuss how information theoretic entropy coupled with
thermal entropy can be used as a metric for reliability evaluation [7]. We also
present the automation methodology for the NANOLAB tool with a detailed
example and code snippet.

Reliability, Entropy and Model of Computation

[2] not only provides a different non-discrete model of computation, in fact,
it relates information theoretic entropy and thermal entropy of computation
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in a way so as to connect reliability to entropy. It has been shown that the
thermodynamic limit of computation is KT ln 2 [3]. What the thermodynamic
limit of computation means is that the minimum entropy loss due to irreversible
computation amounts to thermal energy that is proportional to this value. If
we consider energy levels close to these thermal limits, the reliability of com-
putation is likely to be affected, and if we can keep our systems far from the
temperature values that might bring the systems close to this amount of en-
tropy loss, the reliability is likely to improve. The model of computation in [2]
considers thermal perturbations, discrete errors and continuous signal noise as
sources of errors. The idea is to use a Gibbs distribution based technique to char-
acterize the logic computations by Boolean gates and represent logic networks
as MRFs, and maximize probability of being in valid energy configurations at
the outputs.

Automation Methodology

NANOLAB consists of a library of functions implemented in MATLAB [1].
The library consists of functions based on the probabilistic non discrete model
of computation discussed earlier (details in [2]), and can handle discrete energy
distributions at the inputs and interconnects of any specified architectural config-
uration. We have also developed libraries that can compute energy distribution
at the outputs given continuous distributions at the inputs and interconnects, in-
troducing the notion of signal noise. Therefore, this tool supports the modeling
of both discrete and continuous energy distributions.

The library functions work for any generic one, two and three input logic
gates and can be extended to handle n-input logic gates. The inputs of these
gates are assumed to be independent of each other. These functions are also
parameterized and take in as inputs the logic compatibility function (Table 6.1)
and the initial energy distribution for the inputs of a gate. If the input distribution
is discrete, the energy distribution at the output of a gate is computed according
to Equation 6.7, by marginalizing over the set of possible values of the nodes
that belong to the same clique. In the case of generic gates these nodes are
their inputs. These probabilities are returned as vectors by these functions
and indicate the probability of the output node being at different energy levels
between 0 and 1. These probabilities are also calculated over different values
of KT so as to analyze thermal effects on the node. The Belief Propagation
algorithm [36] is used to propagate these probability values to the next node
of the network to perform the next marginalization process. The tool can also
calculate entropy values at different nodes of the logic network. It also verifies
that for each logical component of a Boolean network, the valid states have an
energy level less than the invalid states as shown theoretically in [2].
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Our tool also consists of a library of functions that can model noise either
as an uniform or gaussian distributions or combinations of these, depending
on the user specifications. The probability of the energy levels at the output
of a gate is calculated by the similar marginalizing technique but using Equa-
tion 6.8 or 6.9 or both depending on the characterization of signal noise. Similar
to the library functions discussed previously, the signal library returns output
energy distributions as vectors but the energy levels are between -1 and 1 due to
rescaling of the logic level for reasons discussed in Section 6.2. Entropy values
at the primary outputs of Boolean networks are also computed for different
thermal energy levels. Arbitrary Boolean networks in any redundancy based
defect-tolerant architectural configuration can be analyzed by writing simple
MATLAB scripts that use the NANOLAB library functions. Also, generic fault
tolerant architectures like TMR, CTMR are being converted into library func-
tions such that these can be utilized in larger Boolean networks where more
than one kind of defect-tolerant scheme may be used for higher reliability of
computation.

Detailed Example

We now discuss a detailed example to indicate the power of our methodology.
Figure 6.2 shows a CTMR configuration with three TMR blocks working in
parallel with a majority gate logic. The code listing shown in Figure 6.7 is a
MATLAB script that uses NANOLAB functions and Belief Propagation algo-
rithm to evaluate the probability of the energy configurations at the output of
the CTMR.

The probability distributions for x1, y1, x2, y2, x3 and y3 for the NAND gates
in Figure 6.2 are specified as vectors. These vectors specify the probability of
the inputs being a logic low or high (discrete). The input probability distribu-
tions for all the TMR blocks are the same in this case but these can be varied
by having separate input vectors for each TMR block.

z=0.0 z=0.2 z=0.5 z=0.8 z=1.0

0.809 0.109 0.006 0.025 0.190

0.798 0.365 0.132 0.116 0.201

0.736 0.512 0.324 0.256 0.263

0.643 0.547 0.443 0.379 0.356

Table 6.2. Probability of the output z of a logic gate being at different energy levels for values
of KT ∈ {0.1, 0.25, 0.5, 1.0}
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no of blocks = 3; % number of TMR blocks
prob input1 = [0.1 0.9]; % prob distbn of input1 of NAND gate
prob input2 = [0.1 0.9]; % prob distbn of input2 of NAND gate
BT Values = [0.10.25 0.5 1.0];% different kbT values

for TMR block = 1:no of blocks
counter = 1;
% energy 2 input gates function is a NANOLAB function and takes in as parameters
% the logic compatibility function , input prob distbns and the kbT values .
% The output gives the state configurations of the primary output of the logic
% gate at different kbT values .

prob1 = energy 2 input gates function(input1 ,prob input1 ,prob input2 ,BT Values);
prob2 = energy 2 input gates function(input1 ,prob input1 ,prob input2 ,BT Values);
prob3 = energy 2 input gates function(input1 ,prob input1 ,prob input2 ,BT Values);
[a ,b] = size(prob1);

% req pb1 , req pb2 , req pb3 are vectors which contain probabilities
% of the output being a 0 or a 1 for a particular kbT value for Belief
% Propagation.
for i = 1:a

req pb1 = [prob1( i ,1) prob1( i ,b) ] ;
req pb2 = [prob2( i ,1) prob2( i ,b) ] ;
req pb3 = [prob3( i ,1) prob3( i ,b) ] ;
BT = BT Values( i ) ;

% energy 3 input gates function is a part of NANOLAB and takes in input
% and output parameters similar to the previous 2 input gates function .
t p = energy 3 input gates function(input2 , req pb1,req pb2,req pb3,BT Values( i ) ) ;
prob(TMR block,counter) = t p (1 ,1);
counter = counter + 1;
prob(TMR block,counter) = t p(1,b);
counter = counter + 1;

end
end

Figure 6.7. Script for 1st order CTMR with discrete input distribution

The NANOLAB functions return vectors similar to the one shown in Ta-
ble 6.2. These indicate the probability of the output of a logic network being at
specified energy levels for different KT values. In the CTMR configuration,
for each TMR block, the energy configurations at the outputs of each of the three
NAND gates are obtained from the function for a two input gate. Then these
probabilities are used as discrete input probability distributions to the function
for a three input gate. This computes the energy distribution at the output of the
majority logic gate. Similarly, the probabilities of the final output of the CTMR
is calculated. It can be seen that our methodology provides a very convenient
way of evaluating this CTMR configuration and only requires minor modifi-
cations to be extended to any i-th order CTMR. Additionally, it is desired that
valid input/output states should have lower clique energies than invalid states
[2]. We have checked for the conformance to this property for the different
clique energy functions which are generated by NANOLAB.
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Similarly, MATLAB scripts can be written to model signal noise, and evaluate
energy distribution and entropy at the output of the CTMR shown in Figure 6.2.
The NANOLAB library functions can be used to interject unform or gaussian
noise or combinations of these. Our tool provides a wide range of modeling
options to system architects, and expedites reliability analysis of defect tolerant
architectural configurations for combinational logic circuits.

x0

x1

x2

x5
x3

x4
z

Figure 6.8. A Boolean network having the logic function z = x2 ∧ (x0 ∨ x1′)

Shortcomings of NANOLAB

NANOLAB libraries can be used to inject random noise at the inputs and in-
terconnects of logic circuits. Signal noise can be modeled as discrete and
continuous distributions. We have experimented with different such combina-
tions at the primary inputs of a Boolean network as well as interjected such
noise distribution at the interconnects of a logic circuit. While trying to specify
two noise spikes at the inputs of a NAND gate as independent gaussian distri-
butions, the expression for the energy distribution at the output of the NAND
gate turns out to be as follows [11]:

p(output) =

1
Z

∫ 1

−1

∫ 1

−1
e
− U

kbT
e−(x0−µ0)2/2σ2

0√
2πσ0

e−(x1−µ1)2/2σ2
1√

2πσ1

dx0dx1

(6.19)

The two gaussian processes have mean µ0 and µ1 which may or may not be
equal, and variance σ0 and σ1. Equation 6.19 doesnot evaluate to an explicit
integral and probability values for the output being at different energy levels
cannot be computed. To tackle this scenario, we are developing a procedure
in MATLAB to approximate the multiplication of two gaussian distributions.
Note that specifying noise as a bivariate gaussian leads to an explicit integral as
the probability density function of a bivariate gaussian leads to a less complex
integrand. Also, the accuracy of the probabilities computed by our libraries and



Evaluating Reliability Trade-offs for Nano-Architectures 183

the Belief Propagation algorithm [36] are limited by the floating point accuracy
of MATLAB.

6.5 Reliability Analysis of Boolean Networks with
NANOLAB

We analyze different defect-tolerant architectural configurations of arbitrary
Boolean networks starting from single gates to logic blocks with NANOLAB.
The entropy values and logic margins are observed and these determine in-
teresting facts [5]. The next few subsections discuss in details the different
experimental results. The combinational circuit we refer to is shown in Fig-
ure 6.8.

Reliability and Entropy Measures of a NAND Gate

Figure 6.9 shows the entropy curves at the outputs of a single NAND gate and
different orders of a NAND CTMR configuration at different KT values. The
output probability distribution of a NAND gate is asymmetrical. This should be
expected since only one input combination produces a logic low at the output.
Figure 6.9 (a) indicates that the entropy is lower when the inputs of the single
NAND gate are uniformly distributed. At higher KT values, in both the uniform
and non-uniform probability distribution cases, the entropy increases, resulting
in the logic margins (probability of being in valid energy configurations) being
reduced. This indicates that the logic margins in both scenarios of distribution
almost approach zero as thermal energy levels increase. When thermal energy
becomes equal to logic energy (KT = 1), the entropy values in the case of
the uniform distribution is lower implying that the logic margins are better than
when the inputs have a higher probability of being logic high.

Figure 6.9 (b) shows the entropy curves for different orders of a NAND
CTMR configuration at different KT values. The inputs in this case are uni-
formly distributed. It can be observed that the 0th order CTMR (TMR) has
higher entropy value i.e. less logic margin than the 1st order CTMR at lower
thermal energy levels and in both cases the entropy values almost converge at
KT = 0.5. At this point (at close proximities of the thermodynamic limit
of computation) logic margins at the output of the CTMR configurations be-
come insignificant and there is total disorder, and computation becomes unpre-
dictable. The interesting plot is for the 2nd order CTMR. The entropy shoots
up at a KT value of 0.25 indicating that the 2nd order CTMR degrades the
reliability of computation. This aptly shows that every architectural configura-
tion has reliability/redundancy trade-off points and even if redundancy levels
are increased beyond these, the reliability for the architecture either remains
the same or worsens.
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Figure 6.9. Entropies for the output of a Single NAND gate and CTMR configurations of the
NAND gate at different KT values

Figure 6.9 (c) indicates the entropy values when the inputs are non-uniformly
distributed with a probability of 0.8 to be logic high. In this case, it is observed
that the 2nd order CTMR degrades reliability of the system, but does better
than the 0th order CTMR configuration. This result demonstrates that varying
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energy distributions at the inputs of a Boolean network may result in different
reliability-redundancy trade-off points. Also, the entropy values are higher than
Figure 6.9(b) at lower KT values. This is because the inputs being at a higher
probability of being a logic high implies that the output of the NAND gate has
a higher probability of being non-stimulated, and only one input combination
can cause this to happen i.e. when both inputs are high. Thus, the logic margins
are a bit reduced due to convergence towards a valid output energy state, and
the entropy has higher values than the previous experiment.
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Figure 6.10. Entropy for different orders of CTMR configurations for the Boolean network
given in Figure 6.8 at different KT values

Reliability and Entropy Measures for the Logic Block

Figure 6.10 shows the entropy curves at the outputs of the CTMR configurations
for the logic block. Figure 6.10 (a) shows the entropy when the input distribu-
tion is uniform. It can be observed that as the CTMR orders are increased, the
entropy decreases (logic margin increases) at lower KT values, and the entropy
converges at KT = 0.5 for all the CTMR orders. This indicates that as the
system approaches the thermal limit of computation (KT ln 2) [3], increase in
redundancy level does not improve the logic margins. The reliability measures
remain the same. But at lower thermal energy levels, increasing the redundancy
level (orders of the CTMR) results in improvement of reliability. This is be-
cause the 4th order CTMR has entropy values less than the other lower orders
at thermal energy levels below 0.5. Whereas, in the NAND CTMR configura-
tion, the 2nd order CTMR has higher entropy at lower KT values indicating
degradation in reliability of computation. This experiment illustrates that each
specific Boolean network has an unique reliability-redundancy trade-off point.
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It may also be inferred that the redundancy level is proportional to the device
density of a logic network.

Figure 6.10 (b) indicates the entropy values when the inputs have a non-
uniform probability distribution i.e the probability of being logic high is 0.8.
The same facts are observed in this case as in Figure 6.10 (a). But, the entropy
is higher than the previous experiment at lower thermal energy levels. This is
because the inputs being at a higher probability of being logic high means that
the output of the logic block will be stimulated and only a few input combi-
nations can cause this to happen. Thus, the logic margins are slightly reduced
as compared to when the inputs are uniformly distributed. Also, the entropy
curves for the 3rd and 4th order CTMR configurations are in very close prox-
imity to each other. This indicates that the degree of reliability improvement
depletes as more redundancy is augmented to the architecture.

We conduct this experiment to explore the flexibility and robustness of our
tool in evaluating any arbitrary Boolean network. Note that the Boolean network
shown in Figure 6.8 has been used only for illustration purposes and reliabili-
ty/redunancy analysis of larger and more complex combinational circuits have
been performed.

Output Energy Distributions for the Logic Block

NANOLAB has another perspective to it: the probability of being in different
energy configurations at the primary outputs of a Boolean network can also
be computed. Reliability measures of logic circuits can also be analyzed from
these probability distributions. Figure 6.11 shows the energy distributions at the
outputs of the different CTMR orders applied to the logic circuit when the inputs
have uniform energy distribution. Note that the probability values are based
on bin sizes of 0.1. As the order of the CTMR is increased, it can be seen that
the logic margins for the output (z) at KT values of 0.1, 0.25 and 0.5 keep on
increasing. Due to the asymmetrical nature of the logic network, the probability
of z (p(z)) being at energy level zero is almost always higher than being at one and
hence such plots are obtained. It is also observed that at a KT value of one, the
logic margin for any order of the CTMR configuration becomes considerably
small (output energy distribution becomes almost uniform), and remains the
same even with an increase of redundancy resulting in unreliable computation.
Comparing the different orders of CTMR in Figure 6.11, we infer that for lower
thermal energy levels, the probability of being in a valid energy configuration
increases as more redundancy is added to the architecture. But this increase in
probability slows down as higher orders of CTMR are reached. This can be
understood as follows: the logic margin of the system reaches a saturation point
after which reliability can no longer be improved. The experimental results for
single NAND gate CTMR configurations show similar plots with the difference
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Figure 6.11. Energy distributions at the output of the Boolean network for different orders of
CTMR configuration at different KT values. Inputs are uniformly distributed

that the output of the 2nd order CTMR configuration is non-stimulated (valid
state) with a higher probability at KT = 0.1. This can be attributed to the
intuitive fact that if a unit being duplicated has a lesser number of devices, a
stable logic margin is reached with lower redundancy levels than a unit which
has higher number of components. Such observations give a clear notion of the
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optimal redundancy points of different architectural configurations for specific
logic networks.
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Figure 6.12. Entropy for different logic networks at KT values ∈ [0.01, 0.1]

Reliability Analysis of Different Circuits for Smaller KT
values

Reliability analysis of real systems at thermal energy levels below 0.1 are of
practical importance. Figure 6.12 presents computational entropy values for a
single NAND gate and the Boolean network. These results are similar to the
ones indicated by Figures 6.9 and 6.10. It is interesting to note that in this
case, there is a linear increase in the entropy plots for both the circuits with
increase in KT values. The previous experimental results had a convergence
of the entropy values at around KT = 0.5 and remained steady for all thermal
energy levels beyond that point. Similar reliability/redundancy trade-off points
are observed in both the logic networks. The 2nd order CTMR configuration
for the NAND gate does worse than the lower orders, whereas increasing the
redundancy level for the logic block yields better reliability.

Reliability Analysis in the Presence of Noisy Inputs and
Interconnects

We have also analyzed reliability of different logic networks in the presence
of random noise at the inputs and interconnects. Entropy and energy distri-
butions at the outputs are computed automatically and reliability/redundancy
trade-off points are inferred. Logic margins in the presence of signal noise is
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the difference between the probabilities of occurrence of -1 (logic low) and 1
(logic high) due to rescaling the energy levels as discussed in Section 6.2. The
Boolean network we consider here is the one given in Figure 6.8.
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Figure 6.13. Entropy at the outputs of different NAND gate configurations in the presence of
noisy inputs and interconnects

Reliability and Entropy Measures of a NAND Gate: Figure 6.13 shows
the entropy values at the outputs of different NAND gate configurations in the
presence of noisy inputs and interconnects. The plots in Figure 6.13 (a) are
obtained when (i) one of the inputs of the gate has equal probability of being at
logic low or high and the other is subjected to a gaussian noise spike centered
around 1 with a variance of 2 and (ii) when the gaussian noise signal is changed
to an uniformly distributed one ranging from {−1, 1}. The plots show that
the entropy has lower values in the presence of gaussian noise as compared to
uniformly distributed noise at lower KT values. This is because a gaussian
noise spike centered around logic high alleviates the probability of the output
being in a valid energy state and decreases the degree of randomness the system
is in (entropy). Normally gaussian noise spikes have mean at invalid energy
levels, and thus prevents the system from converging to a valid logic state. Such
noise signals have also been modeled for complex logic circuits.

The entropy curves for different CTMR configurations of a NAND gate are
indicated in Figure 6.13 (b). The entropy values for the NAND gate are plotted
till the 4th order CTMR for different thermal energy levels. The inputs to the
logic block and the interconnects are subjected to both uniformly distributed
and gaussian noise. We have assumed two gaussian noise spikes, one centered
around 1 with variance of 2 and the other centered around 0.5 with variance of
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0.2. It can be observed that as redundancy is increased by adding more CTMR
orders, the entropy decreases (logic margin and hence reliability increases) at
lower KT values. However, the rate of improvement in reliability decreases
as 3rd order CTMR is reached. This result emphasizes that beyond a certain
redundancy level, the system’s reliability for a given defect-tolerant configura-
tion reaches a steady state and cannot be improved substantially.
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Figure 6.14. Entropy and Energy distribution at the outputs of different CTMR configurations
of the logic block in the presence of noisy inputs and interconnects

Entropy and Energy Distribution for the Boolean Network: The entropy
and energy distribution at the output of different CTMR configurations of the
logic block are presented in Figure 6.14. The entropy values for the differ-
ent CTMR orders of the Boolean network are given in Figure 6.14 (a). The
experimental setup is as follows: the inputs and interconnects are subjected
to both uniformly distributed and gaussian noise. Two gaussian noise signals
are considered, with equal means at 0.5 energy level and variances 2 and 0.2
respectively. It can be inferred from the results that TMR (0th order CTMR)
has low entropy values at KT values less than 0.5. The higher CTMR orders
have very high entropy irrespective of the thermal energy. We have only indi-
cated entropy for the 1st order CTMR because higher orders do not improve
the reliability. Considering this result, we can state that due to a very noisy and
error-prone environment, the augmentation of any level of redundancy beyond
the TMR configuration causes a steep degradation of reliability. Comparing
these results with Figure 6.13(b), we surmise that reliability/redundancy trade-
off points are not only dependent on specific logic networks, these vary with
the normal operation scenarios (such as random noise) of the circuits.
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The energy distribution at the output of the TMR configuration for the circuit
at different thermal energy levels is presented in Figure 6.14 (b). As discussed
earlier, these probability values can also indicate reliability measures. Noise
characterizations at the inputs and interconnects are similar to the previous
experiment. Due to the asymmetrical nature of the logic network, the probability
of z being at energy level zero is almost always higher than being at one when
the inputs have equal probability of being logic low or high. But due to the
uncertainty interjected in the form of noise, the logic margins at the output of
the logic block becomes very sensitive to thermal fluctuations. At KT = 0.25,
z has high probabilities of being in any of the valid logic states, and as the
thermal energy increases, the probability of occurrence of the invalid states is
almost equal to that of valid states.

6.6 NANOPRISM: A Tool Based on Probabilistic Model
Checking

This section explains how we use a probabilistic model checking framework,
in particular PRISM [49] to model defect-tolerant architectures such as TMR,
CTMR and multi-stage iterations of these, and majority based multiplexing
systems. These probabilistic models that represent different defect-tolerant
architectural configurations are integrated to form a library that composes
NANOPRISM [8, 10].

Modeling Single Gate TMR, CTMR

In this subsection we explain the PRISM model construction of a single gate
TMR, CTMR and multistage iterations of these. The first approach is directly
modeling the systems as given in Figures 6.1 and 6.2. For each redundant unit
and the majority voting logic, construct separate PRISM modules and combine
these modules through synchronous parallel composition. However, such an
approach leads to the well know state space explosion problem. At the same
time, we observed that the actual values of the inputs and outputs of each logic
block is not important, instead one needs to keep track of only the total number
of stimulated (and non-stimulated) inputs and outputs. Furthermore, to compute
these values, without having to store all the outputs of the units, we replace the
set of replicated units working in parallel with ones working in sequence. This
folds space into time, or in other words reuse the same logic unit over time
rather than making redundancy over space. This approach does not influence
the performance of the system since each unit works independently and the
probability of each gate failing is also independent.

The different orders of CTMR configurations are built incrementally from
the models of the previous iterations. In this case too, two approaches seem
to emerge. One of the approaches is incorporating PRISM modules of the
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previous CTMR iteration as the redundant functional units for the current order
and adding a majority voting logic. This causes the model to grow exponentially
as the higher orders of configuration are reached. The other approach is to
use already calculated probability values (probability of being a logic low or
high) at the output of the last CTMR configuration as the output probability
distributions of the three redundant functional units of the current order of a
CTMR configuration.

prob p err = 0.1; / / probability that gate has error
prob p in=0.9; / / probability an input is logic high

const R=3; / /number of redundant processing units const
const R limit=1;

module TMRNAND

x : bool;
y : bool;
s : [0 . . 3 ] init 0; / / local state
z : [ 0 . .R] init 0; / / number of outputs that are stimulated
z output : [0 . . 1 ] init 0 ; / / output of majority logic
c : [0 . . 4 ] init 0; / / count of the redundant unit being processed

[ ] s=0 & c>R−> (s’=0);

/ / processed all redundant units
[ ] s=0 & c=R−> (s’=3)&(c’=c+1);

/ / ini t ial choice of x and y
[ ] s=0 & c<R−>p in : (x’=1)&(s’=1)&(’c=c+1) + (1−p in ) : (x’=0)&(s’=1)&(’c=c+1);
[ ] s=1−>p in : (y’=1)&(s’=2) + (1−p in ) : (y’=0)&(s’=2);

/ / NAND operation
[ ] s=2−>p err : ( z’=z+(x&y))&(s’=0) + (1−p err ) : ( z’=z+(!(x&y)))&(s’=0);

/ / majority logic
[ ] s=3 & z>=0&z<=R limit−> (s’=0) & (z output’=0);
[ ] s=3 & z>R limit & z<=R−> (s’=0) & (z output’=1);

endmodule

Figure 6.15. PRISM description of the TMR configuration of a single NAND gate

The DTMC model of the TMR configuration of a NAND gate is shown in
Figure 6.15 for illustration purposes. We assume in this case that the inputs X
and Y have identical probability distribution (probability of being logic high is
0.9), and the failure (inverted output) probability of NAND gates is 0.1. How-
ever, the input probability distributions and failure distribution of the NAND
gates can be changed easily by modification of the constants given at the start of
the description. The probabilistic state machine for this DTMC model built by
PRISM has 115 states and 182 transitions. Also, model checking is performed
to compute the probability distribution of the TMR configuration’s output being
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in an invalid state for different gate failure probabilities. Furthermore, since
PRISM can also represent non-deterministic behavior, one can set upper and
lower bounds on the probability of gate failure and then obtain (best and worst
case) reliability characteristics for the system under these bounds. As discussed
before, the CTMR configuration uses three TMR logic units and majority voter.
The probability distribution obtained for the TMR block of a single NAND gate
can be used directly in the CTMR configuration, thus reducing the state space.

Modeling Block Level TMR, CTMR

We explain the PRISM model construction for different orders of block level
CTMR configurations. Each unit as shown in Figure 6.1 is no longer composed
of a single gate, but contains a logic circuit such as the one shown in Figure 6.8.
As discussed earlier, we replace the set of replicated units working in parallel
with ones working in sequence, thus folding space into time. The DTMC model
for the TMR configuration of the logic block in Figure 6.8 has 1407 states
with this approach of modeling. The models for different orders of CTMR
configurations are built using similar techniques that are used for single gate
CTMR.

We have also incorporated different levels of granularity in these redundancy
based architectural configurations. Let us walk through an example to explain
this concept clearly. For the logic circuit under discussion, we model the differ-
ent levels of CTMR wherein each redundant unit contains the logic block itself.
We consider this redundancy at the logic block granular level. Next , for each
redundant logic block, we further replicate each gate so as to form different or-
ders of CTMR configurations at the gate level of granularity. Our experimental
results indicate the intuitive fact that CTMR configurations at different levels
of granularity and lower gate failure probabilities give better reliability than the
conventional flat architectural configuration.

Model Construction of Majority Multiplexing System

Our attention to the importance of majority gates in the nanotechnology context
was drawn by [52, 51], where analytical results for similar trade-off evaluations
were presented. However, since these evaluations involve complex combina-
torial arguments, and conditional probability computations, analytical results
often lead to mistakes. This motivates our work of automating the detailed re-
liability analysis of von Neumann multiplexing architecture for majority gates
by building a generic multiplexing library for NANOPRISM.

In this subsection, we explain the PRISM model of a majority gate multi-
plexing configuration. The first approach is directly modeling the system as
shown in Figure 6.4. A PRISM module is constructed for each multiplexing
stage comprising N majority gates and these modules are combined through
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synchronous parallel composition. However, such a model construction scheme
leads to the well know state space explosion problem. Due to the observations
stated earlier, a model construction technique similar to the TMR and CTMR
architectural configurations is adopted. The set of N majority gates working
in parallel is replaced by N majority gates working in sequence. The same
methodology is applied to the multiplexing stages of the system so as to reuse
the same module for each of the stages while keeping a record of the outputs
from the previous stage.

The unit U in Figure 6.4 performs random permutation. Consider the case
when k outputs from the previous stage are stimulated for some 0 < k < N .
Since there are k stimulated outputs, the next stage will have k of the inputs
stimulated if U performs random permutation. Therefore, the probability of
either all or none of inputs being stimulated is 0. This implies that each of
the majority gates in a stage are dependent on one other, for example, if one
majority gate has a stimulated input, then the probability of another having the
same input stimulated decreases. It is difficult to calculate the reliability of
a system by means of analytical techniques for such a scenario. To change
the number of restorative stages, bundle size, input probabilities or probability
of the majority gates failing requires only modification of parameters given
at the start of the model description. Since PRISM can also represent non-
deterministic behavior, one can set upper and lower bounds on the probability
of gate failure and then obtain best and worst case reliability characteristics for
the system under these bounds.

Figure 6.16 shows the DTMC model of the von Neumann majority multi-
plexing system. We assume in this case that the inputs X and Y have identical
probability distribution (probability of being logic high is 0.9), and the input Z
can be non-stimulated with the same probability value. The failure (inverted
output) probability of the majority gates is 0.01. However, these parameters
can be modified by changing the value of the constants (const) given at the start
of the model . The probabilistic state machine built by PRISM for the multi-
plexing configuration shown in Figure 6.16 has 1227109 states and 1846887
transitions. This indicates the complexity of analyzing such architectural con-
figurations. The models for the different multiplexing configurations are ver-
ified for PCTL [33] properties such as “probability of having less than 10%
errors at the primary output”.

6.7 Reliability Analysis of Logic Circuits with
NANOPRISM

NANOPRISM has been applied for reliability analysis of different combina-
tional circuits starting from single gates to logic blocks. The output error dis-
tributions for different granularity levels and failure distributions of the gates



Evaluating Reliability Trade-offs for Nano-Architectures 195

const N = 20; / / number of inputs in each bundle
const M = 3; / / number of restorative stages equals (M−1)
const low lim = 1; / / the higher limit for logic low at majority gate output
const high lim = 3; / / the higher limit for logic high at majority gate

prob p err = 0.01; / / probability that majority gate has von Neumann fault
prob p1 in=0.9; / / probability one of the inputs is logic high
prob p2 in=0.1; / / probability one of the inputs is logic high

module majority multiplex

u : [ 1 . .M] ; / / current stage
c : [ 0 . .N] ; / / counter (number of copies of the majority gate done)
s : [0 . . 5 ] ; / / local state

nx : [ 0 . .N] ; / / number of stimulated X inputs (outputs of previous stage)
ny : [ 0 . .N] ; / / number of stimulated Y inputs (outputs of previous stage)
nz : [ 0 . .N] ; / / number of stimulated Z inputs (outputs of previous stage}

x : [0 . . 1 ] ; / / value of f irs t input
y : [0 . . 1 ] ; / / value of second input
z : [0 . . 1 ] ; / / value of third input

k : [0 . . 3 ] ; / / value of addendum of all inputs

out : [ 0 . .N] ; / / number of stimulated outputs

[ ] s=0 & c<N−> (s’=1); / / next majority gate of current stage
/ / move on to next stage
[ ] s=0 & c=N & u<M−> (s’=1)&(nx’=out)&(ny’=out)&(nz’=out)&(u’=u+1)&(c’=0);
/ / finished ( reset variables)
[ ] s=0 & c=N & u=M−> (s’=0)&(nx’=0)&(ny’=0)&(nz’=0)&(x’=0)&(y’=0)&(z’=0)&(k’=0);
/ / choose x ( init ially random)
[ ] s=1 & u=1−>p1 in : (x’=1)&(s’=2) + (1−p1 in ) : (x’=0)&(s’=2);
/ / permute
[ ] s=1 & u>1−>nx/(N−c ) : (x’=1)&(s’=2)&(nx’=nx−1) + (1−(nx/(N−c ) ) ) : (x’=0)&(s’=2);
/ / choose y ( init ially random)
[ ] s=2 & u=1−>p1 in : (y’=1)&(s’=3) + (1−p1 in ) : (y’=0)&(s’=3);
/ / permute
[ ] s=2 & u>1−>ny/(N−c ) : (y’=1)&(s’=3)&(ny’=ny−1) + (1−(ny/(N−c ) ) ) : (y’=0)&(s’=3);
/ / choose z ( init ially random)
[ ] s=3 & u=1−>p2 in : ( z’=1)&(s’=4) + (1−p2 in ) : ( z’=0)&(s’=4);
/ / permute
[ ] s=3 & u>1−>nz/(N−c ) : ( z’=1)&(s’=4)&(nz’=nz−1) + (1−(nz/(N−c ) ) ) : ( z’=0)&(s’=4);
/ / add values for the inputs to check for majority
[ ] s=4−> (k’=x+y+z) & (s’=5);
/ / decide majority logic low or high
[ ] s=5 & k>=0&k<=low lim−> (1−p err ) : ( out’=out+0)&(s’=0)&(c’=c+1)&(k’=0)

+ p err : ( out’=out+1)&(s’=0)&(c’=c+1)&(k’=0);
[ ] s=5 & k>low lim & k<=high lim−>(1−p err ) : ( out’=out+1)&(s’=0)&(c’=c+1)&(k’=0)

+ p err : ( out’=out+0)&(s’=0)&(c’=c+1)&(k’=0);
endmodule

Figure 6.16. PRISM description of the von Neumann majority multiplexing system

are observed, and these demonstrate certain anomalous and counter-intuitive
facts. The next subsections discuss in details the different experimental re-
sults [8]. Figure 6.8 shows the Boolean network used for the illustration of the
effectiveness of NANOPRISM in evaluating arbitrary logic circuits.
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Figure 6.17. Error Distribution at the Outputs for the different Orders of CTMR Configurations
of Single Gates

Reliability Measures of Single Gate CTMR Configurations

Figure 6.17 shows the error distribution at the output of CTMR configurations
for the Inverter and NAND gates. The input distribution in both the cases is
assumed to be logic high with 0.9 probability. The probability of the gates being
in error ∈ {10−2, 0.1, 0.2, ......, 0.5}. Figure 6.17 (a) shows the probability of
the output being in error (inverted with respect to the expected output) for the
inverter CTMR configurations upto order three. It is observed that as the order
increases, the probability of having the output in error goes down. But at lower
gate error probabilities, it is clearly seen that the 2nd order and 3rd order con-
figurations provide the same reliability measures. Thus increasing redundancy
beyond this point does not make sense. At higher gate failure rates, there is
a difference between the reliability obtained by the 2nd and 3rd order CTMR
architectures. We extended the number of orders further and observed that at
the 5th CTMR order when gate failure distributions are high, the difference in
reliability measures obtained from this iteration and the previous one reduces
but never becomes equivalent. This is intuitive because at higher device failure
rates, introducing more redundancy causes more error prone computation and
at same point the reliability can not be improved anymore and may sometimes
degrade as we will observe shortly. Also, for each CTMR configuration, at
lower gate failure distributions a plateau is reached i.e. lowering the device
failure rate does not lower the probability of an erroneous output. This means
that a redundancy based architecture cannot provide a reliability level lower
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than a certain “point”, and NANOPRISM can analyze such reliability measures
accurately.

Figure 6.17 (b) shows the error distribution at the output of the different
CTMR configurations of a NAND gate. This graph indicates certain obser-
vations that are already seen in the previous plot. In this case, the 1st order
configuration provides a major improvement in reliability as compared to the
0th order CTMR. This observation is of interest and can be interpreted as fol-
lows: due to the asymmetrical nature of the NAND gate, there are ceratin
probabilistic combinations of the inputs that will cause the output to be in a
logic state that is an invalid state in the context of the model. For example, if
one of the inputs of the NAND gate are logic low and the gate is not in error, the
output is logic high. This scenario occurs when the inputs have higher proba-
bility of being 1 and a logic high is expected at the output if there is an error
thus mildly elevating the probability of errors at the output.Also, the 2nd and
3rd order CTMR configurations provide almost the same reliability measures
for lower gate failure rates.
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Figure 6.18. Error distribution at the outputs of the different CTMR orders for the Boolean
network given in Figure 6.8

Reliability Measures for the Logic Block CTMR
Configurations

We also analyze the combinational circuit given in Figure 6.8. This is to illus-
trate that our tool can be used to compute reliability measures of any arbitrary
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logic circuit. Figure 6.18 shows the output error distributions for different or-
ders of CTMR configurations for the aforesaid logic network. The probability
of the inputs being stimulated (logic high) is assumed to be 0.9. Also, the com-
ponent inverter and NAND gates are assumed to have same failure distribution.
These failure probability values ∈ {10−4, 10−3, 10−2, 0.1, 0.2, ......, 0.5}. The
plots observed in Figure 6.18 are similar to the previous experiment. It can be
seen that as the CTMR orders increase, the probability of having the output
in error goes down. Also, at lower gate error probabilities, it is clearly seen
that the 2nd and 3rd order configurations provide the same reliability measures.
Interestingly, in this case, at higher gate failure rates, the rate of improvement
in the reliability of the system slows down steadily as the redundancy (in terms
of CTMR orders) is increased. This is due to the augmentation of unreliable
devices to the architecture. Note that this degree of slow down is higher than
what is observed in the case of single gate logic networks. This important
observation can be interpreted as follows: for Boolean networks with higher
number of unreliable component gates, increasing redundancy factor increases
the probability of erroneous outputs and these probability values are higher than
for single gate logic networks.
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Figure 6.19. Granularity Analysis for the Logic Block shown earlier

Reliability vs. Granularity Trade-offs for CTMR
Configurations

We discuss the impact of applying reliability at different granularity levels
for specific Boolean networks. We determine interesting facts and anomalies
while experimenting with this form of redundancy based architectures. Fig-
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ure 6.19 shows error distributions at the outputs of 1st order CTMR configu-
rations with and without granularity. For illustration purposes, the granularity
considered here is at the gate level but our generic libraries can handle gran-
ularity based redundancy at logic block level, logic function level, unit level
etc. In Figure 6.19 (a), we compare the reliability measures of two different
defect-tolerant architectural configurations of the logic circuit shown in Fig-
ure 6.8. One of these is a 1st order CTMR configuration with redundancy at
the logic block level (only the logic circuit is duplicated), whereas the other has
gate level and logic block level redundancy and we call this a granularity based
architectural configuration. In this experiment, the logic circuit is configured as
a 1st order CTMR and the component gates are individually configured as TMR
configurations. It is observed that at lower device failure rates, the reliability
of the system for the granularity based architecture is better. This is intuitive
because introduction of more redundant devices causes better reliability. But
counter-intuitive phenomena is observed at higher gate failure rate distributions.
At the 0.4 failure probability mark, the probability of an erroneous output for
the granular architecture becomes more than the one without granularity. This
shows that for the CTMR configuration with gate level granularity, there is a
degradation of the reliability of the system. The reason for this anomaly is
that introduction of redundancy at any level of granularity entails addition of
more unreliable devices to a specific Boolean architecture. Thus, this inter-
esting finding ascertains the fact that there are indeed trade-off points between
reliability and granularity of redundant systems that may impact the design of
a defect-tolerant architecture.

We also model different orders of CTMR for the component gates (gate level
granularity) while having an overall 1st order CTMR configuration for the logic
block used in the previous experiment. The plots in Figure 6.19 (b) show that as
the CTMR levels at the gate level of granularity increase, the reliability of the
system improves steadily. Our experiments show that the reliability measures of
the system remain almost the same beyond the 2nd order CTMR configuration.
At lower gate failure distributions, the 1st order CTMR configuration at the
gate level can be considered to be the optimal redundancy level of the overall
architecture as increasing the level of redundancy further at the gate level does
not yield much improvement in the overall reliability.

6.8 Reliability Evaluation of Multiplexing Based Majority
Systems

In this section we study the reliability measures of multiplexing based majority
systems [9] both when the I/O bundles are of size 10 and 20. These bundle sizes
are only for illustration purposes and we have investigated the performance of
these systems for larger bundle sizes. In all the experiments reported in this
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paper, we assume that the inputs X , Y and Z are identical (this is often true
in circuits containing similar devices) and that two of the inputs have high
probability of being logic high (0.9) while the third input has a 0.9 probability
of being a logic low. Thus the circuit’s correct output should be stimulated.
Also, it is assumed that the gate failure is a von Neumann fault, i.e. when a gate
fails, the value of its output is inverted.

The PRISM model in Figure 6.16 is verified for properties such as the prob-
ability of having k non-stimulated outputs which in terms of Figure 6.16 cor-
responds to the probability of reaching the state where out = N − k, u = M
and c = N, for k = 0, . . . , N where N is the I/O bundle size. This is the
computation of the error distribution at the output of the majority gate archi-
tectural configuration. Hence any measure of reliability can be calculated from
these results. PRISM can be also be used to directly compute other reliability
measures such as, the probability of errors being less than than 10% and the
expected number of incorrect outputs of the system. Our analysis of reliabil-
ity for the majority multiplexing system using NANOPRISM concentrates on
the effects of the failure probabilities of the majority gates and the number of
restorative stages. The results we present show:

the error distribution at the output for different gate failure probabilities
(Figure 6.20).

the error distribution at the output for different gate failure probabilities
when additional restorative stages are augmented (Figure 6.21).

reliability measures in terms of the probability that at the most 10%
of the outputs are erroneous, as the probability of gates failure varies
(Figure 6.22).

reliability almost reaches steady state for small gate failure probabilities
and can be improved marginally once a certain number of restorative
stages have been augmented to the architecture. (Figure 6.22).

the maximum probability of gate failure allowed for the system to function
reliably by comparing the probability that at most 10% of the outputs are
incorrect and the expected percentage of incorrect outputs for different
numbers of restorative stages (Figures 6.23 and 6.24).

Error Distribution at the Outputs of Different Configurations

We consider a majority multiplexing system as shown in Figure 6.4, where the
I/O bundle size equals 10 and 20. We first investigate the effect of varying
the failure probabilities of the majority gates on the reliability of the system.
Figure 6.20 shows the error distribution at the output of the system in the cases
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Figure 6.20. Error distributions at the output with 1 restorative stage under different gate failure
rates and I/O bundle sizes
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Figure 6.21. Error distributions at the output with 3 restorative stages under different gate
failure rates and I/O bundle sizes

when the probability of gate failure equals 0.2, 0.1, 0.02 and 0.0001. Two
of the inputs of the majority gate are stimulated when working correctly, and
the correct output of the majority gate should be logic high. Hence, the more
outputs that are non-stimulated, the lesser the reliability of the system.

As expected, the distributions given in Figure 6.20 show that, as the prob-
ability of a gate failure decreases, the reliability of the multiplexing system
increases, i.e. the probability of the system returning incorrect results dimin-
ishes. If Figure 6.20 (a) and (b) are compared, it can be determined that the
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increase in I/O bundle size increases the reliability of the system as the proba-
bility of having erroneous outputs decreases.

Also, additional restorative stages are augmented to the architecture and the
change in reliability is observed. Figure 6.21 presents the error distributions at
the output of the system with 3 restorative stages. The gate failure probabilities
are similar to Figure 6.20. Comparing these distributions with those presented
in Figure 6.20, we observe that, when the gate failure probability is sufficiently
small (e.g. 0.0001), augmenting additional restorative stages results in increase
of reliability i.e. the probability of non-stimulated outputs is small. On the other
hand, in the cases when the gate failure probability is sufficiently large, adding
additional stages does not increase reliability and, in fact, can decrease the
reliability of the system (compare the distributions when the failure probability
equals 0.2 for each bundle size).
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Figure 6.22. Probability of atmost 10% of the outputs being incorrect for different I/O bundle
sizes (small probability of failure)

Small Gate Failure Probabilities

In Figure 6.22, we have plotted the probability that less than 10% of the outputs
are incorrect against small gate failure probabilities for multiplexing stages of
3, 4, 6 and 7. These plots show that for small gate failure probabilities, the
reliability of the multiplexing system almost reaches a steady state. Comparing
Figure 6.22(a) and (b), it can be inferred that increasing the bundle size results
in improvement of the reliability of the system. We have also experimented
with higher I/O bundle sizes such as 40 and 45, and the results from these
multiplexing configurations show that the rate of increase in reliability of the
system decreases as the bundle size increases.
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Also, these results demonstrate that increasing the number of stages can
greatly enhance the reliability of the system. However, the degree of improve-
ment slows down as more restorative stages are added. Moreover, there exists
an optimal redundancy level (in terms of number of restorative stages) beyond
which the reliability improvement is marginal. For example, let us consider
the plots presented in Figure 6.22 that indicate probability of erroneous out-
puts being less than 10% when the number of restorative stages equals 6 and
7. These show that the probability values increase marginally for different gate
failure probabilities as compared to when the architecture has lower number of
restorative stages. We should also mention that this result corresponds to the
observation made in [31] that, as the number of stages increases, the output
distribution of the system will eventually become stable and independent of the
number of stages.
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Figure 6.23. Probability that atmost 10% of the outputs of the overall system are incorrect for
different I/O bundle sizes (large probability of failure)

Large Gate Failure Probabilities

In this subsection, we consider the case when the probability of gate failure of
the majority gates becomes too large for the multiplexing system to function
reliably. Figure 6.23 plots the probability that less than 10% of the outputs
are incorrect against large gate failure probabilities (between 0.01 and 0.04)
for different number of multiplexing stages ∈ {1, 2, · · ·, 10, 11}. As can be
seen from the results, when the probability of gate failure is equal to 0.04
increasing the I/O bundle size does not improve the reliability of the system.
Comparing the same plots in Figure 6.23 (a) and (b), it can be observed that
augmenting additional restorative stages and increasing the I/O bundle size of
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Figure 6.24. Expected percentage of incorrect outputs for I/O bundle size of 10 (large proba-
bility of failure)

the architecture tends to cause a degradation in reliability of computation. This
anomalous behavior can be understood as follows: when the failure rate is 0.04
(or higher), the restorative stages are sufficiently affected by the probability of
gate failures to be unable to reduce the degradation, and hence increasing the
number of stages in this case makes the system more amenable to error.

We can infer from these observations that for gate probabilities of 0.04 and
higher, increasing bundle size or addition of more restorative stages cannot
make the system more reliable and may even cause degradation. On the other
hand, in the case when the gate failure probability is less than 0.04, the results
demonstrate that the system can be made reliable once a sufficient number of
restorative stages have been added.

In Figure 6.24, we have plotted the expected percentage of incorrect inputs
when I/O bundle size equals 10. The gate failure probabilities and restora-
tive stages are configured similar to Figure 6.23. Figure 6.24 and Figure 6.23
determine similar intuitive results but have different perspectives to reliability
evaluation of the system. By similar facts, we mean that for gate failure prob-
abilities of 0.04 and higher, increasing the number of restorative stages cannot
improve reliability measures. In fact, when the multiplexing system is config-
ured to have certain specific number of restorative stages, the reliability may
decrease as compared to a system with less redundancy (less number of mul-
tiplexing stages). It can also be observed that for all gate failure probabilities,
the reliability of the architecture reaches a steady state once a sufficient num-
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ber of restorative stages have been added. Such reliability-redundancy trade-off
points may mitigate challenges in design and evaluation of defect-tolerant nano-
architectures.

It is important to note that there is a difference between the bounds computed
by NANOPRISM on the probability of gate failure required for reliable com-
putation and the theoretical bounds presented in the literature. This difference
is to be expected since our methodology evaluates the performance of systems
under fixed configurations, whereas the bounds presented in the literature cor-
respond to scenarios where different redundancy parameters can be increased
arbitrarily in order to achieve a reliable system. Also, there are certain limi-
tations of the NANOPRISM tool. The accuracy of probabilistic computations
are limited to the floating point precision of PRISM [49]. Analysis of large and
very complex logic networks causes state space explosion, and we are in the
process of figuring out modeling techniques to circumvent this problem.

6.9 Conclusion and Future Work

In this chapter, we discuss a few analytical methodologies and propose two
automation methodologies that can expedite reliability evaluation of defect-
tolerant architectures for nanodevices. We have developed tools that can deter-
mine optimal redundancy and granularity levels of any specific logic network,
given the failure distribution of the devices and the desired reliability of the
system. These tools can also be used to inject signal noise at inputs and in-
terconnects and create practical situations the circuits are subjected to during
normal operation.

We have developed NANOLAB, a tool that is based on a non-discrete prob-
abilistic design methodology proposed by Bahar et al. This computational
scheme has two aspects. First, the gates are assumed to be defect free, and the
model of computation based on Markov Random Fields correlates information
theoretic entropy and the thermal entropy of computation. Since at the reduced
voltage level in nano-architecture this issue can become significant, reliability
may suffer when the computation is carried out close to the thermal limit of
computation. However, we show that by considering various defect-tolerant
architectural techniques such as TMR, CTMR and multi-stage iterations of
these, the effects of carrying out computation within close thermal limits can
be reduced substantially. Second, signal noise can be injected at the inputs and
interconnects of a logic network. We have introduced the effects of signal noise
in our automation methodology. Noise is modeled using Gaussian and uniform
probability distributions, and this goes beyond the thermal aspects as described
above. NANOLAB automatically computes reliability measures of systems
in terms of energy distributions and entropy in the presence of discrete input
distributions and random noise. This tool consists of MATLAB based libraries
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for generic logic gates that can calculate the probability of the outputs being
in different energy levels, and Belief Propagation algorithm that can compute
such distributions at the primary outputs of arbitrary Boolean networks (given
as inputs to the tool). It also supports various interconnect noise models, and
can be very useful in modeling transient faults and provide the designers a way
to figure out the configuration that is best in terms of reduced entropy (which
in turn means higher reliability). This is indeed an effective tool and technique
for evaluating reliability and redundancy trade-offs in the presence of thermal
perturbations and interconnect noise models. Our tool can also inject error
probabilities at the gates and do similar trade-off calculations.

We have reported on the results obtained for single gate and logic block level
architectural configurations and investigated the performance of the system in
terms of entropy and energy distribution, as the number of CTMR orders vary.
Using NANOLAB, we were able to compute the energy distributions at the
outputs of systems, and hence construct a complete picture of the reliability of
the systems under study. We chose to analyze TMR and CTMR for illustration
purposes as these are canonical fault tolerant architectures standard in the liter-
ature, and since these enabled us to compare the results with others. However,
as explained, this approach can equally be applied to alternative fault-tolerant
architectures for nanotechnology.

This chapter also presents NANOPRISM, a reliability evaluation tool based
on probabilistic model checking. This tool consists of libraries for different re-
dundancy based defect-tolerant architectural configurations. We have analyzed
reliability measures of specific logic circuits with this tool, and shown that for a
given probability of gate failure, we can find the minimum level of redundancy
and granularity that enables reliable computation. The NANOPRISM libraries
support implementation of redundancy at different levels of granularity, such
as gate level, logic block level, logic function level, unit level etc. We illustrate
the proficiency of our methodology by modeling von Neumann multiplexing
systems, and different orders of CTMR for arbitrary logic circuits. We also
describe a methodology that reduces the effect of the well known state space
explosion problem, and hence allows for the analysis of larger configurations.
The experimental results from our tool show anomalous and counter-intuitive
phenomena that may not be detected quickly by analytical methods.

NANOLAB applies an approach to reliability analysis that is based on
Markov Random Fields as the probabilistic model of computation. Whereas,
NANOPRISM applies probabilistic model checking techniques to calculate the
likelihood of occurrence of probabilistic transient defects in devices and inter-
connections. Thus, there is an inherent difference in the model of computation
between these two approaches. Although these two methodologies are dif-
ferent, they offer complementary alternatives to analytical methodologies and
allow system architects to obtain sharp bounds and study anomalies for specific
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architectures. Future work includes extending these tools to support reliability
analysis of sequential circuits. We are also in the process of building libraries
for other frequently used fault tolerance schemes.
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Abstract To date we have relied on the “Law of Large Numbers” below the device level
to guarantee deterministic device behavior (e.g. dopant ratios, transition timing,
electron state storage). However, at the nanoscale, we hope to build devices with
small numbers of atoms or molecules (e.g. wires which are 3-10 atoms wide,
diodes built from 1-10 molecules), and we hope to store state with small numbers
of electrons (e.g. 10’s). If we are to build devices at these scales, we will no
longer be able to rely on the “Law of Large Numbers” below the device level.
We must, instead, employ the “Law of Large Numbers” above the device level
in order to obtain predictable behavior from atomic-scale phenomena which are
statistical in nature. At the same time, the “Law of Large Numbers” can also
help us by providing statistical differentiation at scales smaller than those we can
pattern directly or economically using lithography. In this chapter, we examine
various applications of the “Law of Large Numbers” above the device level to
build reliable and controllable systems from nanoscale devices and processes that
only have statistically predictable behavior.

7.1 Introduction

How do we engineer systems when we can only statistically control behavior?
As we approach the design of engineered systems at the atomic scale, we

must confront the fact that the behaviors of individual atoms, molecules, and
electrons is something we can control or predict only statistically. Quantum
mechanics, Heisenberg uncertainty, and thermodynamics tell us that we can
know the likely behavior of these devices, but not the absolute behavior of an
individual element. How do we cope with this uncertainty in design?

In fact, we have coped with this uncertainty for decades. All of our engi-
neered systems are built out of these same building blocks. The difference is
one of scale. In the past, we were able to build devices from billions of atoms,
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implant millions of dopant atoms, and store state with millions of electrons. We
were able to provide a reliable device abstraction by employing the “Law of
Large Numbers” (LLN) at the device scale. With billions of atoms, in a struc-
ture, we could count on the statistical behavior of billions of atoms to assure
that the correct device was built almost every time. With millions of electrons,
we could be assured that the likelihood of a spontaneous change in charge state
was sufficiently low as to be ignorable.

Consequently, we have successfully built and employed an abstraction hi-
erarchy for component and system design that contains this uncertainty at the
device level. We ask our manufacturing to produce devices reliably and consis-
tently, and we ask that those devices operate reliably and deterministically. This
has been a reasonable place to ask for reliability in our design hierarchy because
we could afford to spend large numbers of atoms and charges to maintain it.

Nonetheless, this state of affairs breaks down if we hope to approach the
atomic scale. We could choose to continue to demand the phenomenal reliability
in manufacture and device operation we have achieved in the past. If we were to
do so, this would put a large limit on our ability to scale down device size. We
would be forced to continue to build devices with a sufficiently large number
of atoms that we could statistically guarantee manufacture and low variation in
operating parameters (e.g. resistance, delay).

The alternative is to recognize that we must adapt our design hierarchy if
we are to approach these ultimate scales. Devices built from 100’s of atoms
won’t always be fabricated perfectly or will have high variance in electrical
proprieties. Devices storing or switching on 10’s to 100’s of electrons won’t
always hold their value or switch in the desired manner. Nonetheless, when
we use these smaller and denser devices, we can have orders of magnitudes
more devices to work with. We will have large numbers of devices and large
numbers of switching events. We can continue to employ the LLN to ensure
reliable and predictable behavior of our systems, but we must do so where we
have a large numbers of things—that point will now be at higher levels in the
system than the device level.

This chapter illustrates many opportunities to employ the “Law of Large
Numbers” at the component and system design level. We start by briefly re-
viewing the “Law of Large Numbers,” a few of the statistical phenomena ever
present in our electronic systems, and the ways in which the “Law of Large
Numbers” has traditionally supported reliable device manufacture and oper-
ation (Section 7.2). We then highlight opportunities for employing the LLN
above the device level (Section 7.3) and briefly review cases where this is already
an accepted part of conventional system design (Section 7.4). We detail specific
opportunities for LLN design in device manufacture (Section 7.5), functionality
mapping (Section 7.6), nanoscale addressing (Section 7.7), and nanoscale dif-
ferentiation (Section 7.8). We touch briefly on tolerating faults (Section 7.9),
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and suggest how these atomic-scale effects and LLN design will impact our
abstraction stack for atomic-scale system engineering (Section 7.10).

7.2 Background

Law of Large Numbers

The “Law of Large Numbers” (LLN) is said to hold for a sequence of random
variables with finite expected values when the mean value for the sequence
converges to the expected value [1] (for a modern treatment see, for example,
[13]). That is, for a sequence of independent, identically distributed random
variables, yi:

lim
n→∞ Prob

[∣∣∣∣∣ 1n
n∑

i=1

yi − E(y)

∣∣∣∣∣ ≥ ε

]
= 0 (7.1)

This says that, even though each individual yi is probabilistic in nature, aggre-
gate properties of a large number of the yi’s are quite predictable. As we increase
the number of events over which we aggregate, the likelihood of deviating more
than a tiny percentage from this mean is smaller and smaller.

Statistical Phenomena

Most of the physical phenomena we rely upon in electronic systems are
statistical at the atomic scale.

In the construction of silicon devices, doping is a prime example. We build
transistors in MOS devices by mixing in a percentage of impurities (donors,
acceptors) to change the band structure of the devices. We do not place 999
Silicon atoms and then one Boron atom. Instead, we arrange to have a 1000:1
mix of Silicon and Boron atoms in a growth environment, or we arrange to
impact the silicon with a given intensity of Boron atoms to replace the Silicon
atoms. We don’t guarantee exactly where each Boron atom ends up. Nor do
we guarantee that every bond in the crystalline lattice is perfectly made.

During operation, we typically think about charges on capacitors and gates
and current flows across devices. However, current flow is simply an aggregate
view of the behavior of individual electrons. Individual electrons travel across
a device or region of silicon probabilistically depending on the fields and the
thermal energy. We only know statistically what each electron will do.

Similarly, we can isolate charge on a node such as a memory element or
gate input. We can construct electrostatic barriers to hold the charge in place.
Nonetheless, thermal energy and quantum tunneling give the individual elec-
trons some probability of surmounting the barrier and leaving, or entering, the
node.
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Reliable Manufacturing and Behavior from LLN

The LLN is how we can effectively get very reliable device manufacture
and device properties even though each individual atom or electron behaves
probabilistically.

Returning to our doping example, while we cannot guarantee that we have
exactly 999 Silicon atoms and then one Boron atom in our Silicon crystal,
the LLN assures us that we can have high confidence that there are close to
106 Boron atoms in a doped region with 109 crystal cites. The variation from
this mean will be small, such that the variation in parameters (e.g. resistance,
threshold level) is small from device to device. A region with 1000 atoms will
have exactly one dopant atom only 36% of the time, while a region with 109

atoms is within 1% of the mean of 106 dopant atoms over 99.9999% of the time.
Similarly, while we may have spot defects in our lattice, if the cross-sectional
area of a device or wire is sufficiently large, we know that the probability that
there are insufficient bonds across any boundary to disconnect the device or
significantly change its resistance is very low.

When there are millions of electrons sitting on a device, we know it is highly
unlikely that they will all choose not to travel in the direction of the applied field.
The behavior of the ensemble, the current flow, will approach very closely to
the expected behavior of an individual electron. Consequently, with sufficient
electrons, our abstraction of a current flow is very good and we can, with very
high certainty, depend on the aggregate electron behavior to be deterministic.

Similarly, when we store charge, we can erect energy barriers that are suffi-
ciently high to hold the charge on the node. While there is a probability that each
individual electron may gain enough energy to cross the barrier or may tunnel
across the barrier, the probability that a significant fraction of the electrons can
cross the barrier can be made sufficiently small as to be negligible.

This manufacturing and device behavior consistency works very well as long
as we have a large number of atoms or electrons to begin to approach the large
number limit. However, by the time wires have cross-sections on the order
of 100’s of atoms and 10’s to 100’s of electrons store important charge state,
we no longer have large number guarantees. We can no longer guarantee every
device built will have the right number of particles to lie within some reasonable
parameter range. We can no longer guarantee that the probability of a transition
occurring in a reasonable window of time is sufficiently high to depend upon it
for correct device operation.

7.3 “Law of Large Numbers” Above the Device Level

These observations lead us to consider how we can exploit the LLN above
the device level. We can:
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1. Tolerate variations in manufacture by selecting which devices to use (Sec-
tions 7.5)

2. Tolerate variation in manufacture by selecting which device to use for what
role (Section 7.6)

3. Exploit variations to get differentiation at the nanoscale (Sections 7.7
and 7.8)

4. Tolerate variations in behavior by performing redundant and self-checking
computations (Section 7.9)

Before we examine these techniques, we observe that the use of LLN above the
device level is already a well established practice in some of the systems we
employ every day (Section 7.4).

7.4 Component and System Level LLN in Conventional
Systems

We do, in fact, already employ LLN as a design principal for some of today’s
large-scale systems.

DRAM row and column sparing is perhaps the most familiar case of using
LLN design to deal with manufacturing defects [28] [19]. These defects may
arise from the probabilistic assembly of atomic-scale structures as described
above, or, more likely, from the lack of perfect purity and calibration in the
design of our manufacturing systems. In either case, if we are unhappy with
the probability that our manufacturing process produces a perfect memory bank
where we require every row, column, and memory bit to perform perfectly, we
add spare rows and columns (See Figure 7.3A). When the expected number
of defects per bank is less than one, it is highly unlikely we will see many
defects per bank. Providing one or a few spares per bank guarantees a very
high probability that each bank can be made perfect. Section 7.5 discusses
sparing as a general, system level, LLN design technique and quantifies the
benefits.

Error-correcting codes which protect DRAM bits are a familiar example
of how we use LLN to tolerate operational faults [24]. To push the density
of memory storage, DRAM storage cells are one case where the number of
electrons is already becoming small. A typical DRAM cell with a capacitance
around 30fF and a small storage voltage around 1.65 volts [19], stores its state
with only 300,000 electrons. It is well known that this is too few electrons to
preserve the value when the part is impacted with alpha particles or cosmic rays.
While these events are improbable, very large memory arrays running for long
periods of time will see storage cells disrupted—another LLN effect. Here the
LLN tells us that the probability of a group of bits seeing multiple errors is low.
We then use single-error-correcting codes (e.g. [16]) to identify and correct the
erroneous bits. While the use of error-correcting codes has been justified by
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cosmic ray and particle bombardment, it also serves to protect against statistical
noise fluctuations in the silicon and the possibility that a sufficient number of
electrons might choose to migrate off of, or on to, a storage cell.

With external electromagnetic noise on wires a consistent reality, our inter-
system communications have almost always required that we employ redun-
dancy and LLN effects to achieve reliable communications [29]. We regularly
employ one or more forms of error-detecting or error-correcting codes on the
wires. Here, again, we use redundancy and exploit the fact that the probability
we will see multiple errors is much lower than the probability of seeing one or
a few errors. Given sufficiently uncorrelated noise sources, the LLN assures us
that, over a sufficiently large block, the number of errors we will see is closely
bound near the expected value.

While our primitive devices have been very reliable, individual computer
systems have not been. This is in part due to the aggregate effect of a large
number of devices. However, the biggest impact for computer system reliability
has traditionally been issues outside of a single, hardware component including
software faults, operation faults, power faults, and wiring faults [30]. From this
composite effect, we found it necessary to design large-scale communication
protocols (e.g. TCP [26]) and networks to tolerate individual message or com-
ponent failures. Here again, we rely on the fact that the LLN guarantees that
we can get a certain fraction of good messages through a statistically faulty link
and that the likelihood we will see sufficient faults to partition the network is
very low.

7.5 Architectures with Sparing

Row sparing in DRAMs is a special case of M-of-N sparing. That is, we
fabricate or assemble N equivalent items in our system but only require that
M of them function in order to have a correct system. This way, rather than
requiring that M things yield perfectly, we simply require that at least M items
out of N yield. Here we use the term yield broadly to mean that the device
or component has been manufactured adequately to perform its intended role
(e.g. all the bits on the row or column can be read and written within a defined
timing window and will hold their values for a suitable length of time).

LLN in Sparing

Statistically, if the probability that each item yields is P , then the probability
that every one of M items will yield is:

Pallyield(M) = PM (7.2)
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We can calculate the probability that exactly i items will yield using a binomial
distribution:

Pyield(N, i) =
((

N

i

)
P i (1 − P )N−i

)
(7.3)

That is, there are
(
N
i

)
ways to select i good items from N total items, and the

yield probability of each case is: P i (1 − P )N−i. We yield an ensemble with
M items whenever M or more items yield, so our system yield is actually the
cumulative distribution function:

PMofN =
∑

M≤i≤N

((
N

i

)
P i (1 − P )N−i

)
(7.4)

When we want to yield M things with some probability Psysyield, we select a
sufficiently large N such that PMofN ≥ Psysyield. Alternately, for a given N ,
we can determine Mpmofn, the largest M such that PMofN ≥ Psysyield. As N
increases, Mpmofn becomes very close to the expected aggregate yield:

E(M) = N × P (7.5)

This arises exactly from the LLN effect where the expected value converges

to the mean (Equation 7.1). Figure 7.1 plots E(M)−Mpmofn

E(M) versus N demon-
strating the convergence as N increases for various level of Psysyield. This
mean difference ratio can be viewed as the overhead cost required to guarantee
a minimum level of yield given statistical variations. As we aggregate over
larger ensemble, the LLN drives down this overhead. Illustrating this effect,
Figure 7.2 plots PMofN versus M for N = 1000 and P = 0.9, showing the
sharp transition around the mean of M = N × P = 1000 × 0.9 = 900.

Architectures which Support Sparing

To exploit this M-of-N sparing, we need designs structured with a large
number of identical items which are cheaply interchangeable. The crossbar
organization used in memory arrays, interconnects, and programmable logic
arrays is a prime example of a structure which has this property.
• In a memory all the rows (or columns) are identical. As long as we can

program up the addressing for each row and column and configure non-
used lines so they do not interfere with operation, we can use any M of the
N row lines to serve as our desired row lines (See Figure 7.3A). Schuster
[28] and Tammaru and Angell [31] describe early VLSI memory designs
with spare rows and columns.

• In a Programmable Logic Array (PLA), all of the programmable terms
(e.g. product terms) are logically equivalent. We simply need to be able to
allocate enough product terms to cover our logic function (See Figure 7.3B).
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Figure 7.3. Crossbar-Based Resource Sparing

Wey et al. [35] describe a VLSI PLA design with spare input lines, output
lines, and product terms.

• In a routing channel, all the wires which span the same source→sink distance
are identical. Any good wire which can be programed to provide the source
to sink connection is adequate. If we have a full crossbar set of connections
between our sources and sinks, we have the desired property that any M of
the lines can serve to provide each connection (See Figure 7.3C).

The key element in all of these examples is that they can be configured to
select the M useful components from the N total components post fabrication.
That is, after fabrication we can test the device and program it to use only the
functional resources.

Nanowire Technology

Fortuitously, large sets of parallel, nanowires assembled into crossbars is
one of the things we do know how to build at sublithographic scales (e.g. [18]
[36] [37] [6] [22]). Further, while the full connectivity of the crossbar is quite
expensive for interconnect in conventional CMOS where programmable switch-
points are large compared to wire crossings, full connectivity is relatively cheap
in many of the emerging nanotechnologies. In particular, several technologies
offer the prospect of non-volatile crosspoints that fit within the space of a wire
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crossing (e.g. [27] [7] [8] [5]). As a result, this full M-of-N wire/row/product-
term selection is relatively inexpensive.

Of course, for this to work, we must be able to address individual, nanoscale
wires for programming (Section 7.7) and “defective” wires should not interfere
with operation. So far, we expect the most common defects to be broken
or disconnected wires, rather than shorted wires. We may be able to bias
manufacturing to further assure that any defects we have are much more likely
to be disconnects than shorts.

Local Defect Remapping

A convenient feature of the row/wire/product-term sparing is that defect
remapping is a local operation. We simply need to configure the producer and
consumer to connect to a unique, functional wire to serve in this role. The
full crossbar interconnect at the ends of the mapping prevents this choice from
effecting the mapping of resources elsewhere in the design.

Figure 7.4 shows a simple example of how full crossbar choice of alternate
resources allows us to localize the impact of remapping. The left side shows a
sparse interconnect scheme in the spirit of traditional FPGA designs (e.g. [34]
[33]). The right side shows the design with full connectivity for sparing. The
middle row shows a broken wire. In the crossbar case, this can be accommo-
dated simply by shifting the net segment which previously used the broken wire
to a free track in the same channel. This change is contained locally to this one
channel; the segments of the net in different channels do not need to change,
nor does the routing of any of the other nets. In the sparse case, however, we
are forced to change the track assignment of this A→B net in all the channels
it traverses due to the limited switch-box population; we are further forced to
reroute the C→D net in order to accommodate this change.

7.6 Architectures with Choice

The simple model presented in the previous section is that a resource is
simply all good or bad. However, we may not need to use all the potential
functionality of a resource. This gives us the opportunity to select the resource
which is simply “good enough” to serve for the purpose at hand.

Technology Example

To be concrete, consider the molecular-switch crosspoints (e.g. [7] [4] [8]
[5]). The assembly techniques allow us to, statistically, place a number of
switchable molecules between a pair of crossed conductors (See Figure 7.5).
Any particular junction may get fewer or no molecules in the junction. For ex-
ample, Chen et al. reports that only 85% of the junctions could be programmed
[5]. While we certainly expect this percentage to improve as the technology



Law of Large Numbers System Design 223

broken
  line

Sparse Switching Crossbar Switching

  Only one
      wire
reassigned

A

B

C

D

Figure 7.4. Local Defect Remapping Example



224 NANO, QUANTUM AND MOLECULAR COMPUTING

Top Conductor (Nanowire)

Bottom Conductor (Nanowire)

 Molecules
   forming
 Switchable
Crosspoint
  Junction

Figure 7.5. Cartoon Showing Molecule-Based, Switchable Crosspoint

matures, the nature of the assembly process suggests we will always have some,
statistical, gaps in the molecule coverage and we will get some statistical varia-
tion in the number of molecules in a junction. Junctions with fewer molecules
may have too high a resistance to perform properly, or, may simply perform
more slowly than junctions with the expected number of molecules in the junc-
tion.

Chen et al. estimates they have 1100 molecules in a 1600nm2 area [5],
suggesting we get one molecule per 1.5nm2 of crosspoint area. As we scale
to junctions which are just a few nanometers wide, there will only be 10’s
of molecule sites in the junction. Since we do not have the freedom of large
numbers here, we are stuck with a small number junction yield probability.

We could require that all junctions associated with a wire have good switches,
a minimum number of molecules (or a minimum resistance), in order to consider
the wire yielded. However, in this case, large numbers work against us. We
want the wire to connect to a large number of things to achieve the large number
effects of the previous section. Requiring that a large number of junctions all
meet some minimum threshold could make the wire yield rate so low as to be
unusable. If all the junctions must yield for the wire to be usable, then the
probability of yielding a wire becomes: Pw = (Pj)Nj , where Nj is the number
of junctions in the wire. For the 85% junction yield rate, a wire that crosses
1000 junctions will yield only Pw = 2.6 × 10−69% of the time.

Architectural Feature Example

Now, consider again the case where we are using the wire to perform channel
routing. Here, the wire simply needs to make good connections to a small
number of crossed connections. As shown in Figure 7.6, we might only need
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Figure 7.6. Channel Route Example. Figure shows compatibility of net with tracks in the
presence of defective junctions.

to make four junction connections for a particular net route. If our junction
faults are missing molecules, as suggested above, then we only need a wire
which has four good junctions; the rest of the junctions can have fewer or no
molecules. Now, the probability that a given wire can provide this particular
connection is simply Pgoodenough = (Pj)

4. For the aforementioned example,
we calculate Pgoodenough = 52%. In general, a net that requires Nc connections,
has Pgoodenough = (Pj)Nc . Since Nc << Nj , there can be a significant
difference between Pw and Pgoodenough as the example illustrates. Further, we
have the freedom of using any of the N wires in the channel for this connection,
so the probability that some wire in the channel can provide this connection is
simply a PMofN calculation with P = Pgoodenough and M = 1. In a channel of
10 wires, the probability that at least one wire is good enough is over 99.9%. The
whole problem of routing the channel then becomes an assignment problem of
nets to wires. For a channel with 100 4-point nets, 13 spare wires are sufficient
to guarantee over a 99.99% probability that all 4-point nets find a compatible
track in the channel.

This idea can be extended further to deal with timing effects that might arise
from fewer molecules in some junctions. In the simplest cases, we demand
sufficient molecules to provide a minimum speed on all junctions. However, we
could, further, use slow junctions, ones with fewer molecules, fewer dopants, or
poor ohmic contacts, off the critical path. This is a familiar problem in resource
binding for timing optimization (e.g. [2]).

Other Cases with Choice

This choice of resources also shows up in our other structures:
1. Programming address decoders – when we program the address into a pro-

grammable address decoder, we may only need to have good connections
between the particular “on”-bits in the address. This provides a scenario
similar to the track routing case described above.
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2. Programming PLAs – as noted earlier, we are free to use any product term
for a PLA. Consequently, we have a similar assignment freedom between
logical product terms and physical nanowires.

7.7 Unique Nanoscale Addressing via Statistical
Differentiation

Constructing differentiated patterns at the nanoscale is a key challenge asso-
ciated with nanoscale engineering. Our conventional lithographic approaches
may not extend economically to the nanometer scale [17]. There are a num-
ber of bottom-up assembly techniques that can produce interesting nanoscale
features (e.g. aforementioned parallel lines and crossbars, periodic lattices,
self-assembled monolayers). These techniques, however, can generally only
give us one of two things:
1. regular structures such as the crossbars, memory cores, and PLAs noted

above
2. statistical structures
The regular, crossbar structures cannot be used without some way of program-
ming their crosspoints—which will require some nanoscale differentiation so
that individual nanoscale wires can be addressed. This leads us to explore the
large number properties we can extract from the statistical assembly and ask if
these can be used profitably in building our desired, nanoscale systems.

Nanoscale Interfacing

A key challenge is addressing our nanoscale wires from conventional mi-
croscale wires. As noted, (1) we do not expect all of our nanoscale components
to be perfect, and (2) our nanoscale components may start out as regular, un-
differentiated arrays. If we can address our nanoscale wires from reliable, mi-
croscale wires, we can test resources, configure the system to use the functional
resources, and programmably differentiate the regular structure.

Because of the scale difference between our microscale wires (e.g. 100–
200nm pitch) and our nanoscale wires (e.g. <20nm pitch), it is not desirable
to directly connect each nanoscale wire to a single microscale wire. A direct
connection would prevent us from packing the nanoscale wires at their tight
pitch. A natural solution to bridging between the micro- and nano-scale is to
use a demultiplexer. The demultiplexer decodes a densely coded input and uses
that to address one of its outputs. Using a demultiplexer here allows a small
number of reliable, microscale wires to address a large number of nanoscale
wires. From an information theoretic standpoint, the demultiplexer only needs
log2(N) input wires in order to specify which of the N nanowires it should
address. Since log2(N) will be much smaller than N , for sufficiently large
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N , this allows us to minimize the cost of the interface microscale wires and
maintain the density benefit of the nanoscale wires.

Statistical Assemble of Nanoscale Interfaces

Williams and Kuekes argue that a statistical scheme can be sufficient to
construct such a demultiplexer [38]. They observe that we can use a physical
process to produce a random distribution of gold particles in a layer between
the microscale and nanoscale wires. These particles effectively provide sparse,
random addresses for the nanowires. Using a sufficient number of microscale
address wires, 5 log(N), they can uniquely address each of N nanowires. This
is an example of using the LLN along with our statistical effects to engineer a
desired property.

DeHon, Lincoln, and Savage introduced a different technique for statisti-
cally achieving unique nanowire addressability using LLN effects [11]. They
note that chemists have begun to demonstrate ways to differentiate individual
nanowires [15] [39] [3]. In particular, it is now possible to vary the doping
profile or material composition along the length of a nanowire, making some
regions field-effect gateable while other regions act as wires and are not gate-
able. This allows us to give each nanowire an address. They further note that
we can assemble a small number of these coded wires randomly selected from
a large code space to achieve a unique set of wires with very high probability.
A small example of this address decoder is shown in Figure 7.7. The result,
reviewed in the following section, shows that we need a little over 2 log2(N)
address wires in order to uniquely address N nanowires.

7.8 Generalizing Statistical Assembly

Since the previous section showed that large-number, statistical assembly can
be a valuable tool for microscale to nanoscale interfacing, it is interesting to ask
where else we can use this tool and what other properties we can achieve using
statistical assembly of a large numbers of resources. We start by reviewing the
details of the unique nanowire guarantee introduced in the previous section.

Unique Wire Review

Once we had a physical mechanism to provide differentiated wires (e.g.
nanowires with different doping profiles), and a suitable coding scheme (e.g.
N/2-hot), the question became: How large of a code space, C, do we need so
that a random selection of N codes is unique? This turns out to be a generalized
instance of the well known “Birthday Problem” (e.g. see p. 126 in [9]). In the
birthday problem, the question is usually framed as: How many people must
be in a room before there is a certain probability that at least two of them have
the same birthday. Here, our code space, C, takes the place of the days in the
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Figure 7.7. Stochastic Address Decoder using Coded Nanowires. Each nanowire is given an
address by varying the doping profile along its length. Only the lightly doped (white) regions
are gateable. The small example shown here uses a 2-hot code—every codeword has two high
address bits and two low address bits. A nanowire only conducts when all of its lightly doped
regions are gated by microscale control wires driven to low voltages. This example is shown
small for clarity; more typical examples will use 10–30 microscale address wires and control
100-1000 nanowires.

year, the space we are sampling from, and our N takes the place of the number
of people.

Assume that we have a sufficiently large supply of each nanowire type so that
selecting a nanowire of a given type does not change our sampling probability;
that is, we always select each particular code with probability 1/C on each
selection. Consider selecting nanowires one at a time. The first nanowire
is definitely unique. The probability of selecting a unique nanowire on the
second selection is C−1

C . Assuming we continue to select unique nanowires,
the probability we select a unique nanowire on the ith selection is C−i+1

C . Thus,
the probability of selecting N unique nanowires from a code space of size C
is:

Punique (C, N) = 1 ·
(

C − 1
C

)
·
(

C − 2
C

)
· · ·

(
C − N + 1

C

)

>

(
(C − N)

C

)N

(7.6)
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The last inequality is a weak bound which is, nonetheless, simple for estimation.
Rearranging terms:

Punique (C, N) >

(
1 − N

C

)N

(7.7)

Since (1 − x)N ≥ (1 − Nx) when x > 0 and N ≥ 1:

Punique (C, N) >

(
1 − N

C

)N

> 1 −
(

N2

C

)
(7.8)

Equation 7.8 tells us we only need to make C ≈ 100N2 in order to guarantee
over a 99% chance that all N wires are unique. Since the lower bound is weak,
the actual guarantee is much tighter.

Using a dense code (e.g. N/2-hot code in [11]), the number of address wires
we need is roughly the logarithm of the size of the code space we want to support.
From this, we see that making C = 100N2 means we need a little over twice as
many address wires as a dense code (i.e. log(100N2) = 2 log(N)+ log(100)).

Allowing Duplication

In the previous section we actually demanded a very strong property when
we asked that every nanowire be unique. In practice, there are many appli-
cations where we can tolerate or even benefit from duplications. Duplication
may result in multiple nanowires logically acting in tandem; this will lower the
effective resistance of the replicated code or resources. The lower resistance
of a parallel group of nanowires may reduce the delay on the logical group
and provides some greater tolerance to contact faults. These lower resistance
cases may be employed to accelerate the performance during resource assign-
ment as described at the end of Section 7.6. However, variable ganging of
multiple nanowires in parallel does have the effect of increasing the variance
in device resistance which may be undesirable in some applications. A notable
example where large variations in decoder resistance could be problematic are
cases where we store memory bits in differential pairs to tolerate variations in
junction off/on resistance. Duplicated nanowires can also raise the capacitance
which must be driven when selecting a nanowire, which can, in turn, increase
the energy requirements and increase the variance in power consumption. Con-
sequently, the application and system context will be necessary to determine
when duplication is allowable.

When duplications are allowed, we might want to know: Given that we select
N wires from C different wire types, how many different wires types, u, should
we expect to see?
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Allowing duplication, we can derive a recurrence relationship for calculating
the probabilities for all cases of C, N , and u:

Pdifferent(C, N, u) =(
C − (u − 1)

C

)
× Pdifferent(C, N − 1, u − 1)

+
( u

C

)
× Pdifferent(C, N − 1, u) (7.9)

The recurrence in Equation 7.9 says we can extend the probability distribution
from N − 1 to N in one of two ways. That is, either:
1. we have u− 1 things in the N − 1 case, and we select a new item not in the

u − 1 things already selected;
2. or we already have u different things in the N − 1 case, and we extend that

by selecting among the u different things we already have.
The base cases are:
• Pdifferent(C, 1, 1) = 1 (if we pick one thing, we get one different thing)
• Pdifferent(C, 1, u �= 1) = 0 (if we pick one, we will get exactly one

different thing)
• Pdifferent(C, 0, 0) = 1 (if we pick nothing, we get nothing)
• Pdifferent(C, 0, u > 0) = 0 (if we pick nothing, we get nothing)
• Pdifferent(C, N, u < 0) = 0 (we cannot have less than nothing)

This recurrence counts each code once even if it appears multiple times, which
is what we want if we allow duplications.

Since we are generally interested in achieving at least a certain number of
different wires, we are interested in the cumulative distribution function (CDF)
for the probability that we have at least a certain number of codes. We calculate
this:

Patleast (C, M, u) =
M∑

i=u

Pdifferent (C, M, i) (7.10)

We can now identify four basic regions of operation for stochastic popula-
tion:
1. N > C
2. N ≈ C
3. N < C
4. N << C
The N << C case is what we saw with the address decoder and is useful when
we simply want uniqueness of all resources. When duplications are allowed
the other cases can be quite useful as well, as described below.
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At Least One of Each (N > C)

In the aforementioned address decoder, we were able to uniquely address
each nanowire, but this required that we populate addresses sparsely. A natural
question is: What would it take to guarantee all, or almost all, of the addresses
were present? Naturally, in this case, we will need to assemble N > C wires
to have any chance of achieving this goal.

This is an instance of the “Coupon Collectors Problem” [21]. In the classic
coupon collectors problem, the customer gets one coupon (or trading card) from
a set of C with each purchase of some item (e.g. bubble gum, cereal, cigarettes).
The problem asks how many items the collector will have to buy before he can
expect to have a full set? Maunsell and others show that the collector needs
N = C ln(C) in order to have a 50% likelihood of gathering a complete set
[21]. Gojman et al. revisit this directly for this nanowire decoding case [14].
Figure 7.8 plots the N necessary to achieve various guarantees for the presence
of all C wire types based on our recurrence relation (Equation 7.9).

A logarithmic factor overhead to guarantee the presence of all wire types
could be too expensive in many scenarios. However, in cases where the partic-
ular C ln(C) for the decoder is dominated by other area factors in the device,
this may be reasonable. Notably, this could be useful for test access or bootstrap
addressing.

As an illustration, consider the case where we want to find the location of
the addressed nanowires in an array of M nanowires. This might arise using
our unique nanowire coding above. After we’ve found that a given address
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Figure 7.9. Ideal Construction of Test Structure to Locate the Position of a Single, Activated
Nanowire. The location nanowires come in pairs to resolve one bit of the selected nanowire’s
position. Using the microscale address wires, we can enable a single location nanowire. Each
nanowire will allow conduction from the reference voltage to the sensing line only when it is
both enabled by the microscale addresses and the selected line does not overlap with its set of
controllable inputs. By sequencing through all the location address wires, we can read off the
location of the the single, selected input nanowire. To assemble this location array, we populate
it with enough location nanowires to guarantee a high probability that each distinct location
nanowire appears at least once as described in the text.

is in the array, we might want to know where it is in the array. If we could
code up a set of nanowires which had different halves of their inputs active
(field-effect controllable), it would only take Cl = 2 log2(M) such nanowires
to uniquely determine the location of the single “on” nanowire in the array (See
Figure 7.9). As before, we have the challenge that we cannot select exactly
the right set of nanowires to place in the array. From the coupon collector
result, we know that if we substitute C = Cl = 2 log2(M), into the above
relation we need roughly (2 log2(M) × ln (2 log2(M))) nanowires. Using the
direct recurrence relation (Equation 7.9), we see that testing a 1024 × 1024
nanowire array (Cl = 2 log2(1024) = 20)) in this manner will require that we
populate the ends of the array with 149 of these randomly selected test wires to
guarantees a 99% probability that we have one copy of each of the 20 nanowire
types necessary for complete localization.

Restoration Array (N ≈ C)

The preceding suggests that demanding a full set of C items could be pro-
hibitively expense. We might instead want to know what fraction of the different
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resource types we would get with a given population, N . This, of course, is
exactly what our recurrence relation (Equation 7.9) allows us to compute.

A good example of this arises when we want to restore signal values in
nanowire computations (e.g. [12]). With the technologies demonstrated to
date, we can either build field-effect restoring junctions or diode-programmable
junctions, but not both. Since our crosspoints junctions are non-restoring, we
must follow these with some restoring junctions in order to be able to cascade
together multiple stages of logic and routing.

We can build a restoring or inverting nanowire using the doping profiles
mentioned earlier. That is, we dope a single region in the restoration nanowire
to be field-effect gateable, making this region just wide enough for a single
crossing nanowire to gate it; we dope the rest of the nanowire heavily so that it
acts like a wire and is, therefore, not gateable by its inputs (See Figure 7.10A).
This way the output of the restoration nanowire is controlled only by the intended
input. Given an array of nanowires with N input nanowires, we would, ideally,
like to have N restored output nanowires, each coded to restore one of the inputs
(See Figure 7.10B). As discussed, we cannot simply pick out one of each of
the N types of restoring wires and put them in the restoring plane. Instead, we
stochastically populate the plane (See Figure 7.10C) and ask how many of the
inputs we restore.

Figure 7.11 plots the fraction of unique nanowires, u/N we get when C = N
for various N , showing that we get roughly 60% unique nanowires. This says a
restoration scheme like this requires that we only populate 1.7 times as many raw
nanowires as we want to have restored. We can, of course, tradeoff the number
of restored inputs with the number of populated restoration wires. Figure 7.12
plots u/C (fraction of restored outputs) versus N/u (population factor) for
C = 1000.

Figure 7.13 shows a complete nanoPLA from [12]. This design combines
stochastic addressing (Section 7.7) for programming, M-of-N sparing (Sec-
tion 7.5) to tolerate defects in the or terms (horizontal nanowires), and restora-
tion arrays based on this stochastic population scheme. The nanowires are
all organized as two orthogonal sets of parallel nanowires making the design
compatible with the known, regular assembly techniques (e.g. [37]).

Mostly Unique Addressing (N < C)

In the preceding, we saw that we needed a moderately large code space
(C > 100N2) to have a high probability of obtaining completely unique ad-
dresses. However, if we are willing to accept a few duplicates, we can shrink
the code space considerably. This may be useful in reducing the number of
distinct nanowire types we need to manufacture and in reducing the number of
microscale address wires. Figure 7.14 plots the fraction of resource duplicates
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Figure 7.10. Nanowire Restoration Array. Using field-effect gating in the nanowires, we can
isolate an output from an input and restore, possibly inverting, the input. Part A shows the basic
arrangement for inverting a single input. The input and output nanowire are separated by a thin
oxide so that the electrical field from the input (horizontal) nanowire can potentially effect the
output (vertical) nanowire. The output is heavily doped along its length so that it is not effected
by most input fields. However it is lightly doped in the region of the designated input so that
the voltage on the input nanowire can gate the output nanowire. If the output nanowire is a
depletion-mode P-type nanowire, then a low input will allow the output nanowire to conduct
current from the high supply (Vhigh) and pull the output to a high voltage level. A high input
will deplete the carriers in the lightly doped control region and cutoff conduction from the high
supply; the weak pulldown or precharge load at the bottom of the structure pulls the output to low
in this case. The structure in A thus behaves as an inverter. Note that the output draws current
from the supplies, not from the input nanowire. DeHon shows that these field-effect nanowire
gates have sufficient non-linearity to provide gain [10]. B and C show how this structure is
assembled in an array to invert a set of inputs.

we can expect as we increase the C/N ratio. For N = 1000, this suggests we
only need C = 8N = 8000 to achieve over 90% (900) unique resources over
99% of the time. To achieve 99% (990) unique resources 99% of the time, we
need C = 128N = 128, 000. Both numbers are, of course, much lower than
the C = 100N2 = 108 unique resources or code words which we require to
achieve guaranteed non-duplication according to our weak uniqueness bound
(Equation 7.8).
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Figure 7.13. NanoPLA constructed from Stochastic Restoration Arrays, Programmable Cross-
points, and Stochastic Addressing
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7.9 Fault Tolerance

In the preceding sections, we have focused on the statistical nature of fabrica-
tion and assembly at the nanoscale. Since we will also have a small number of
electrons holding state and driving logic transitions, we must also be concerned
about active device behavior. Here, too, to protect against the small number
effects below the device level, we will have to exploit LLN effects above the
device level. Error-detecting codes and error-correcting codes are well known
ways of grouping many data elements together so that we can exploit large num-
ber effects to protect individual bits or wires. These ideas are extended to logic
using concurrent error-detecting logic (e.g. [20] [32] [40]) and error-correcting
logic (e.g. [23] [25]). Error-correcting logic is reviewed in Chapters 2 and 6.
To successfully exploiting atomic-scale devices, we must find the right level
and hierarchy for the deployment of these LLN techniques to assure the correct
dynamic behavior of our computations.

7.10 Atomic-Scale System Stack

Our traditional system stack has consisted of:
1. Reliable devices
2. Gates
3. Perfect and deterministic fabrication of interconnected gates and memories
4. Reliable architecture abstraction
5. Software which assumes perfect hardware
In order to approach the atomic scale, we must relax our expectation of perfect
fabrication and reliable devices. This will necessarily expose defect and fault
effects higher in our stack. At these higher points, we can gang together large
numbers of resources (e.g. devices, gates, wires, memory cells) and exploit
LLN effects to assure the integrity of our overall computation. Our revised
system stack might look like:
1. Statistical devices
2. Fault detecting and correcting circuits
3. Statistical fabrication of device and interconnect ensembles
4. Post fabrication configuration and correction
5. Software which is suspicious of the underlying hardware

7.11 Summary

Designing and engineering computations at the atomic scale will demand a
change in the way we guarantee component and system behavior. While we
have traditionally relied on “Law of Large Numbers” effects below the device
level to produce devices which can be reliably manufactured and devices which
behave reliably, we will no longer have this luxury. Further, we may not have
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the ability to deterministically specify how a structure is built at the atomic
scale. We may be forced to build regular structures and accept that the only
differentiation we can get at the atomic scale will be statistical in nature.

Nonetheless, we can still exploit “Law of Large Numbers” statistical tech-
niques to build reliable components and systems. We simply need to apply
these LLN techniques above the device level. Sections 7.5–7.8 suggest that
combining LLN statistical yield and differentiation with programmability is
a sufficiently powerful tool for the reliable construction of nanoscale devices
despite the fact that we cannot guarantee the yield of individual devices or the
exact placement or selection of resources. Large number statistical differen-
tiation gives us strong enough properties to construct the gross structure of a
system and achieve sufficiently unique nanoscale addressing. With this access
and post-fabrication crosspoint configurability, we can test and program the
device to avoid the defective portions and to behave in a desired, deterministic
manner despite the statistical nature of the initial assembly and device yield
rate.

Atomic-scale design will necessitate a shift in our system engineering ap-
proach, where the statistical effects are exposed to higher levels of the system
stack. This allows us to solve problems at the appropriate level, applying LLN
where large numbers of components can participate.
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Preface

How can we simulate the quantum mechanics? ...Can you do it with a new kind
of computer — a quantum computer? It is not a Turing machine, but a machine
of a different kind.

The above quote from Richard Feynman made in 1981, summarizes the mo-
tivation that gave rise to the idea of a quantum computer. The scale of quantum
physical phenomena is so vast, that even a super computer built on von Neu-
mann style computing cannot realistically model quantum physics at the atomic
and sub-atomic level. On the other hand, quantum computers, which mimic the
quantum physics themselves, are capable of vast parallelism and could theoret-
ically simulate such phenomenon. In 1985 seminal work by Deutsch showed
that quantum computers can create a quantum superposition of states, allow-
ing each state to follow a distinct computational path until a final output is
obtained. Such free access to parallelism is unprecedented using a classical
model of computation.

With the advent of new nanoscale technologies, we see quantum computing
as more than a source of large scale parallelism. It is likely that in the near fu-
ture we can exploit quantum entanglement, and quantum mechanical reversible
transformations to build new kinds of computing systems.

In the last decade, theoretical results have led to practical concerns as to the
vulnerability of systems dependent on cryptographic secrecy. Currently, cryp-
tography often relies on the difficulty of factoring large number using traditional
models of computation. However, in 1994 Peter Shor described a polynomial-
time algorithm for factoring large numbers on a hypothetical quantum computer.

Another motivating factor in quantum computing comes from the possibility
of power reduction inherent in reversible computing. In 1973, Charles Bennett’s
article entitled “The thermodynamics of computation” discussed reversibility
in quantum computation steps. This work motivates us to ask if we can we
actually realize computing logic that is reversible and hence would free us from
the growing power concerns in CMOS-based computing.

All this said, we present in this part three very interesting chapters that are
all concerned with the physical realization of quantum models of computa-
tion, and reliability issues inherent therein. Overall, we believe this part of the
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book will familiarize the readers with the basics of Quantum Computing mod-
els, Quantum-Dot Cellular Automata, and some of the system level statistical
phenomena and reliability issues relevant to quantum computing.
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Abstract Quantum computing is a new and promising technology with the potential of
exponentially powerful computation - if only a large-scale one can be built. There
are several challenges in building a large-scale quantum computer - fabrication,
verification, and architecture. The power of quantum computing comes from the
ability to store a complex state in a single bit. This also what makes quantum
systems difficult to build, verify, and design. Quantum states are fragile, so
fabrication must be precise, and bits must often operate at very low temperatures.
Unfortunately, the complete state may not be measured precisely, so verification
is difficult. Imagine verifying an operation that is expected to not always get the
same answer, but only an answer with a particular probability! Finally, errors
occur much more often than with classical computing, making error correction
the dominant task that quantum architectures need to perform well. We provide
a basic tutorial of quantum computation for the system designer and examine
the fundamental design and verification issues in constructing scalable quantum
computers. We find the primary issues to be the verification of precise fabrication
constraints, the design of quantum communication mechanisms, and the design
of classical control circuitry for quantum operation.

Keywords: quantum, fabrication, verification, error correction, nanotechnology
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Introduction

While the ideas for quantum computing have been gestating for years, it
has gained momentum in the past decade due to key discoveries in potential,
feasibility, and implementation. In 1994, Shor presented an algorithm that,
in polynomial time, can factor very large numbers. The fastest known clas-
sical algorithm requires exponential time. With Shor’s algorithm, our current
cryptographic techniques would be rendered useless, if a quantum computer
could be built. Building a large-scale computer became more feasible with the
Threshold Theorem [2], which essentially showed (in theory) an error correc-
tion technique that can correct errors as quickly as they can be introduced into
the system. Finally, several groups have successfully built 5-10 quantum bit
computers [30, 19, 23].

As promising as these developments are, we are still a long way from building
a reliable, large-scale quantum computer. The physical properties of quantum
matter make it very difficult to build a reliable quantum computer. There are
several aspects to this - error correction, communication and fabrication.

Quantum error correction is both more challenging and more cumbersome
than in classical computing. The power of quantum computation lies in the
fact that each quantum bit stores much more information than a classical bit.
Unfortunately, this means that a simple bit-flip is just one of many errors that can
occur. This, alone, would not be a large problem except that the quantum data
can not be copied exactly, nor measured precisely. In fact, a direct measurement
alone changes the state of a quantum bit! This leads to a solution that, in the
best case, requires seven physical bits for every logical bit. This seven to one
encoding is applied hierarchically - each time it is applied, the error rate is
squared (reducing it). In essence, quantum computers are trading off space for
time - they take less time to compute, but error-correction requires polynomial
times more space for the extra bits []. In addition, an unreliable computation
must be run more times to increase the chances of getting the desired result.
The original error rate is higher as the length of computation increases and the
underlying technology is less reliable. The hidden advantage of error correction
taking so many more resources than the computation itself is that, regardless
of how future quantum algorithms behave, an architecture optimized for error-
correction will be the most efficient design. We need not wait for a benchmark
suite to be developed to know how to design the architecture - error-correction
is the only benchmark we need.

Optimizing for error-correction means dealing with the fact that quantum
circuits will be very large (since so many bits are required). In order to have
these bits interact, they need to travel long distances. Thus, quantum computers
need to be optimized for communication. Traditional computation uses a wire
to transport a copy of a value to a new location. In quantum computing, we
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have neither wires nor the ability to make copies. The bit must be moved, not
copied.

A highly reliable fabrication technology reduces the amount of error correc-
tion necessary, so verification is vital. Because the quantum elements are so
small and fragile, incredible precision is required, much more so than with clas-
sical computing. While this could be solved through rigorous testing, the test
itself is difficult because, given the same operations, many quantum operations
are not expected to always produce the same measured result because there is
no way to precisely measure the complete quantum state. As much as possible,
classical methods must be used to test the fabricated chip.

We begin with an introduction to quantum computation, including some
proposed implementations and basic algorithms. Error correction is presented
in Section 8.2. Section 8.3 focuses on implementing a quantum computer in two
technologies - silicon and ion traps. Architectural difficulties in communication
are presented in Section 8.5, and we give conclusions in Section 8.6.

8.1 Quantum Computation

Just as classical systems can be represented in boolean algebra, with no
specification of the implementation, quantum systems have a mathematical
representation to describe their states and operations on those states. We begin
by presenting quantum bits and operators in this mathematical abstraction, fol-
lowed by several possible implementations. Finally, to give an idea of the power
of quantum computing, we present two famous quantum algorithms. This is
just a short introduction, and more information can be found in [22].

Quantum Bits and Operators

The basic building block in quantum computing is a quantum bit, or qubit
for short. The main difference between a bit and a qubit is that a bit is restricted
to the state 0 or 1. A qubit, on the other hand, is not restricted to its analogous
states |0〉 and |1〉; It is also possible to form linear combinations of states

|ψ〉 = α|0〉 + β|1〉, which can also be expressed

[
α

β

]

α and β are complex numbers, but thinking of them as real numbers is usually
sufficient for our purposes.

Initially, this seems like a huge advantage over classical computing - the
ability to store complex numbers within a single bit of data. There are two basic
operations that we take for granted in classical computing that are difficult in
quantum computing - measurement and replication.

There is no way to precisely measure the state of the quantum bit (i.e. deter-
mine α and β). Instead, when we measure the qubit, the outcome is either |0〉 or
|1〉. The significance of the α and β values is that the probability of measuring
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a |0〉 is α2, and the probability of |1〉 is β2. Because there are only two possible
outcomes, it must hold that α2 + β2 = 1. Furthermore, the direct measurement

of a qubit alters its state. Even if the qubit has the actual state

[ 1
2√
3

2

]
and

happens to be measured as a |0〉, from then on, it will always measure |0〉. The
act of measurement changes α and β (in this case, α becomes 1, and β becomes
0).

The problem of measurement affecting the state would not be nearly as bad,
surely, if we could copy the original qubit before we measured it. Then, we could
measure the copy and retain the original for future computations. Unfortunately,
qubits can not be copied without the destruction (through measurement) of the
original bit. In classical computing, voltage can be applied and split off into
an arbitrary number of wires, allowing one input bit to be outputted to several
destinations. Quantum bits do not work this way. Instead, we would need to
find a gate that takes as input the qubit to be copied and some known qubit, and
output two identical qubits that match the first qubit. This would be analogous
to having an or gate and knowing that if you input x and 0, you get x as the
output. Unfortunately, for reasons we will see later, no such quantum gate can
exist. These two issues - lack of measurement accuracy and the inability to
copy bits - make it difficult to test fabrication and provide error correction in
the classical way.

Now that we have seen that a bit is no ordinary binary bit, but rather a vector
that has the probability of expressing different results, what sort of operations
occur on such a vector, and how does this turn into meaningful computation?

Because the qubit is expressed as a vector, single qubit operators, or quantum
gates, are expressed as 2x2 matrices. In order to be a valid operator, the result
must still conform to α2 + β2 = 1. It turns out that any matrix which transforms
a source vector with that property to a result vector with that same property is
said to be unitary, that is U tU = I, where:

U =

[
a + bi c + di

e + fi g + hi

]
and U t =

[
a − bi e − fi

c − di g − hi

]

The requirement that the operator be unitary greatly restricts what can be
done in quantum computing. Most classical operations are not unitary, because
you can not get back the original value once the operation is performed. In fact,
any operation that takes two bits and produces one is not unitary.

The ability to reverse computation has practical implications. This creates
an explosion in the number of bits required to perform computation, because
the information necessary to reverse all operations performed must be part of
the computation. This is often in the form of requiring extra bits from the very
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Figure 8.1. Important 1-bit quantum gates

beginning. While each bit encodes much more information than in classical
computing, this unitary requirement requires extra space, greatly increasing the
number of bits required to execute an algroithm.

Let us play around with a few quantum gates. The first gate we present is the
quantum NOT gate, which is traditionally called X. A classical not gate flips a
0 to a 1 and a 1 to a 0. The quantum equivalent flips the coefficients of |1〉 and
|0〉.

α|0〉 + β|1〉 → β|0〉 + α|1〉.

X =

[
0 1

1 0

]
which has the effect: X

[
α

β

]
=

[
β

α

]

Some other important 1-bit quantum gates are shown in Figure 8.1
Things get a little more complicated when we add more qubits to the system.

Each additional gate doubles the number of possible outcomes. Now, as before,
the probabilities must sum to 1. The qubit state is:

|ψ〉 = α00|00〉 + α01|01〉 + α10|10〉 + α11|11〉

where

α2
00 + α2

01 + α2
10 + α2

11 = 1
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If we measure, say, the first bit, and it happens to be a 0, then our system has
collapsed, and we have only two options left. Remember - that does not mean
that α10 and α11 were zero; the act of measuring the first bit changes the system.
α10 and α11 become 0 as a result of the measurement, so this may affect the
other probabilities in order for the sum of the probabilities to be remain 1. The
new qubit state (|ψ′〉) if the first bit is measured as 0 will be:

|ψ′〉 = α00√
|α00|2+|α01|2

|00〉 + α01√
|α00|2+|α01|2

|01〉 or α00|00〉+α01|01〉√
|α00|2+|α01|2

Quantum gates approximate classical circuits by including a control bit that
allows the gate to satisfy the unitary requirement. Consider the controlled-NOT
gate - the first bit determines whether or not the NOT operation will be applied
to the second bit.

|00〉 → |00〉; |01〉 → |01〉; |10〉 → |11〉; |11〉 → |10〉;

which corresponds to:

α00|00〉 + α01|01〉 + α10|10〉 + α11|11〉 → α00|00〉 + α01|01〉 + α11|10〉 + α10|11〉

Although there is a mapping of classical algorithms to quantum computer,
this is not the true power of quantum computing. The key is in restricting the
set of possible outputs and making the different bits have a relationship to each
other. For example, one could built a circuit that puts 8 bits through a series of
transformations such that, for each of the possibilities for the first 4 bits (x), the
second 4 bits was the solution to some function f(x). Upon measurement, you
would find out one (x,f(x)) pair, though you would not know which one. If you
were to somehow restrict the values of the first 4 bits, you could further control
which (x,f(x)) pair you measured.

An Example Prototype

Now that you have some idea of the mathematical properties of quantum
computing, we describe a concrete implementation to give us some physical
way to think about the computations.

The largest, and perhaps most complete, prototype is a bulk-spin NMR ma-
chine which used the nuclei of a synthetic molecule to represent 7 quantum
bits [30]. Each nucleus has a different resonant frequency, which allows the
NMR machine (nuclear magnetic resonance) to both manipulate and measure
the qubits. Current NMR machines, however, do not have the resolution to ma-
nipulate or measure a single molecule. Consequently, the experiment is done
in bulk, where the same computation is simultaneously performed on a solu-
tion of many molecules and a histogram of the measured resonances is used
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to infer the result of a computation on a single molecule. This approach was
used to demonstrate Shor’s algorithm (described in the next section) factoring
the number 15 into 3 and 7. Although this sounds trivial, it is actually a very
significant step towards viable quantum computers.

Quantum Algorithms

Designers of quantum algorithms must be very clever about how to get useful
answers out of their computations. One method is to iteratively skew probability
amplitudes in a qubit vector until the desired value is near 1 and the other values
are close to 0. This is used in Grover’s algorithm for searching an unordered
list of n elements [12]. The algorithm goes through

√
n iterations, at which

point a qubit vector representing the keys can be measured. The desired key is
found with high probability.

Another option in a quantum algorithm is to arrange the computation such
that it does not matter which of many random results is measured from a qubit
vector. This method is used in Shor’s algorithm for prime factorization of large
numbers [25], which is built upon the quantum Fourier transform, an expo-
nentially fast version of the classical discrete Fourier transform. The quantum
bits are manipulated so that they contain values with a certain period, r, that
holds the key to our factorization. A Fourier transform is used to transform
the series into one with period k/r. This period is a fraction, so many of the
values in the series have r as their denominator. We now measure the result
and use continued fraction expansion to determine r. If we happen to measure
an integer rather than a fraction, we can repeat the calculation. Since prime
factorization of large numbers is the basis of nearly all modern cryptographic
security systems, Shor’s algorithm has received much attention.

Additional algorithms include adiabatic solution of optimization prob-
lems [6]; precise clock synchronization [15, 7]; quantum key distribution [5];
and very recently, Gauss sums [29] and Pell’s equation [13].

8.2 Error correction

Perhaps the single most important concept in devising a quantum architecture
is quantum error correction. Unlike classical systems, where error correction
can be performed by brute-force, signal-level restoration in every transistor, cor-
rection of quantum states requires a much more subtle and involved strategy. In
fact, localized errors on a few qubits can have a global impact on the exponen-
tially large state space of many qubits. As you will see later in quantum telepor-
tation, some quantum operations require a certain relationship between two bits.
Consider, for example, two qubits that have the state |Ψ〉 = 1√

2
(|00〉 + |11〉).

It is vital that the states |01 > and |10 > have probability 0. If one bit’s state
is corrupted, the relationship is changed, and its pair is also useless. In this
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section, we describe the basic idea of quantum error correction, and how it
can be applied recursively to provide fault-tolerant quantum computation. We
summarize problems with this traditional approach, and identify opportunities
for optimization and key points for architectural design improvements.

The need for error correction is made manifest by a simple calculation. If a
single qubit gate fails with probability p = 1−e−λ, then in the absence of error
correction, the failure probability after n gates is at worst 1 − e−nλ. Thus, to
have a circuit fail with at most probability ε, the computation would have to be
less than −[ln(1 − ε)]/λ gates in length, in general. Given the technological
considerations of Section 8.1, this would be a very short computation.

The difficulty of error-correcting quantum states arises from two obstacles.
First, errors in quantum computations are distinctly different from errors in
classical computing. Quantum bits hold much more complex state than classical
binary bits. Binary bits have only one possible error - a bit flip. The probability
amplitudes of qubit states are parameterized by continuous degrees of freedom,
so errors can be continuous in nature, and minor shifts in the superposition of
a quantum bit cannot be discriminated from the desired computation. Also,
quantum bits may suffer phase flip errors, since the signs of their amplitudes
can be negative as well as positive. Second, quantum states must be corrected
without measuring the state, because that would collapse the very superpositions
we desire to preserve. Instead of measuring the state, extra bits are used that
are measured to determine properties of the state rather than the exact value.

Quantum error correction codes successfully address these problems by si-
multaneously utilizing two classical codes to redundantly protect against both
bit and phase errors. An [n, k] code encodes k qubits of data using n qubits.
The encoding circuit takes the k data qubits as input, together with n−k ancilla
qubits each initialized in the state |0〉. The decoder does the reverse: it takes
in an encoded n qubit state, and outputs k (possibly erroneous) qubits, together
with n − k qubits which specify which error occurred, with high probability.
A recovery circuit then corrects the error on the data, by performing one of
2n−k operations. This model assumes that qubit errors are independent and
uniformly distributed, just as does classical error correction. Deviations from
this model can be treated similarly to classical strategies.

The effect of quantum error correction is powerful and subtle. Without
this step the “correctness” (technically, the fidelity) of a physical qubit decays
exponentially and continuously with time. Quantum error correction transforms
this exponential error model into a linear one, to leading order: a logical qubit
encoded in a quantum error correcting code and undergoing periodic error
measurement suffers only linear discrete amounts of error.

Not all codes are suitable for fault-tolerant computation — many different
quantum codes have now been discovered, and among these the largest class,
stabilizer codes, play a special role: computation on these encoded states can
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be performed without decoding the data, and without overly propagating errors.
For this reason, we focus on the [7, 1] Steane code, which encodes one qubit
using seven physical qubits and is nearly optimal (the smallest perfect quantum
code is [5, 1] [27]). This code has the marvelous property that an important set of
single qubit operations, and the controlled-not operator (used in the quantum
ALU discussed in the next section) can all be performed on the encoded qubit
simply by applying the operations to each individual physical qubit.

The cost of error correction is the overhead needed to compute on encoded
states and to perform periodic error correction steps (note that the correction
can also be done without decoding the data[21]). Each such step will be called
a fault-tolerant operation. For the Steane code, about 153 physical gates are
required to construct a fault-tolerant single qubit operation.

Despite this substantial cost, the 7 qubit error correcting code dramatically
improves the situation for quantum computing. The probability of a logical
qubit error occurring during a single operation changes from p to c · p2[27]
where c is a constant determined by the number of unique points in the error
measurement, recovery and the transform being applied to the logical qubit
state, where two or more failures can occur and propagate to the output of the
logical qubit. For a single logical gate application, c is about 17, 446. For a
physical qubit transform failure rate of p = 10−6 this means the 7 qubit Steane
code improves the probable logical qubit transform failure rate to 1.7 · 10−8.
However, more significantly, error correction transforms the exponentially de-
caying success probability e−λ·t to a linear one of 1 − t · p.

Recursive Error Correction

The most impressive and important application of quantum codes to compu-
tation is a recursive construction[2] which exponentially decreases error prob-
abilities with only polynomial effort. This is crucial because even with the 7
qubit error correction that gives us an error probability of c · p2 is too high
for most interesting quantum applications. The construction can be understood
with the following example: The Steane code transforms the physical qubit
error rate p to a logical qubit error rate c · p2 but requires some number of
physical qubit gates per logical qubit gate operation. However, suppose instead
that each of those physical gates were again implemented as a logical gate on a
7 qubit code. Each of those gates would have a logical gate accuracy of c · p2,
and hence the overall logical gate error rate would become c · (c · p2)2. For
a technology with p = 10−6 each upper level gate would have an error rate
of roughly 4.3 · 10−10. The key observation is that as long as cp2 < p, then
error probabilities decrease exponentially with only a polynomial increase in
overhead. Asymptotically, this gives rise to the Threshold Theorem, according
to which quantum computation can be sustained for any finite length of time
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Recursion Storage Operation Min. time Error
level (k) overhead 7k overhead 153k overhead 5k probability

0 1 1 1 10−6

1 7 153 5 1.7 · 10−8

2 49 23,409 25 5.3 · 10−12

3 343 3,581,577 125 4.9 · 10−19

4 2,401 547,981,281 625 4.2 · 10−33

5 16,807 83,841,135,993 3125 3.1 · 10−61

Table 8.1. Overhead of recursive error correction for a single qubit operation, c=17, 446,
p=10−6

so long as the underlying technology has a reliability greater than 1/c. The
relevant inequality may be expressed as:

(c · p)2
k

c
≤ ε

p(n)
(8.1)

This relates the overall failure rate ε and space-time complexity p(n) of an
algorithm to the individual physical qubit error rate p, logical transform com-
plexity c, and recursive error correction level k required to satisfy the inequality.
Table 8.1 summarizes the costs of recursive error correction.

Clearly, due to the high cost of such error correction, a quantum computer
architecture should not choose the error correction method and recursion level
indiscriminately. For a given algorithm and data size, the minimum recursion
level should be chosen in order to reduce the overhead.

8.3 Quantum Computing Technologies

A variety of technologies have been used to successfully construct quantum
computing prototypes [30, 19, 23]. For quantum machines to scale to thousands
or even hundreds of thousands of quantum bits, howevever, more scalable tech-
nologies are necessary. We focus on the long-term vision of ions implanted
in silicon. Nearer term, we expect much to be learned from micromachined
ion traps. In fact, both technologies share fundamental design and verification
challenges. We shall see that we can think of both technologies in terms of the
same system-level abstractions.

Ions Implanted in Silicon

The Kane [17, 26] schemes of phosphorus in silicon builds upon mod-
ern semiconductor fabrication and transistor design, drawing upon understood
physical properties.

Kane proposes that the nuclear spin of a phosphorus atom coupled with an
electron embedded in silicon under a high magnetic field and low temperature
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Figure 8.2. The basic quantum bit technology proposed by Kane [26]. Qubits are embodied
by the nuclear spin of a phosphorus atom coupled with an electron embedded in silicon under
high magnetic field at low temperature.

can be used as a quantum bit, much as nuclear spins in molecules have been
shown to be good quantum bits for quantum computation with nuclear magnetic
resonance [10]. This quantum bit is classically controlled by a local electric
field. The process is illustrated in Figure 8.2. Shown are two phosphorus atoms
spaced 15-100 nm apart. This inter-qubit spacing is currently a topic of debate
within the physics community, with conservative estimates of 15 nm, and more
aggressive estimations of 100 nm. What is being traded off is noise immunity
versus difficulty of manufacturing.

Twenty nanometers above the phosphorus atoms lie three classical wires that
are spaced 20 nm apart. By applying precisely timed pulses to these electrodes
Kane describes how arbitrary one- and two-qubit quantum gates can be realized.
Four different sets of pulse signals must be routed to each electrode to implement
a universal set of quantum operations.

Micromachined Ion Traps

Nearer term, ion traps technologies provide a means to scale to perhaps thou-
sands of quantum bits. Ion traps are one of the best understood technologies,
with extensive experimental data describing their characteristics.

A typical ion trap, shown in Figure 8.3 contains up to half a dozen ions
arranged in a linear array and trapped by a magnetic field. The ions are individ-
ually manipulated by hitting them with lasers of the appropriate frequency. This
allows both quantum operations and measurement. Measurement occurs when
a quantum bit is excited into either a phosphorescent state and a photodetector
detects the photons emited.

The key to scaling ion traps is the ability to move ions between traps via a
series of electrodes and magnetic fields. As we shall discuss later, this motion
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Figure 8.3. An ion trap containing ions arranged in a linear array and trapped by a magnetic
field.

is both slow and error prone, but allows us to build chips of micromachined ion
traps with up to perhaps 100s or 1000s of bits [18].

Common Abstractions

At a basic level, both silicon-embedded ions and ion traps involve the spatial
layout of quantum bits and control lines to implement quantum algorithms and
circuits. Both will face challenges in fabrication and verification of the precisely
placed bits and control signals, as well as in the communication of quantum
data across each system. These are the open issues we will explore in the next
two sections.

8.4 Fabrication and Test Challenges

Perhaps the most obvious difficulty in fabricating quantum computers is the
small scale of the components and precision with which they must be placed
in the system. Since reliable quantum operations are already challenging (dis-
cussed further in the next section) given a fabricated system with perfect spacing
and alignment, variations should be minimized and probably need to be de-
tected. Furthermore, the use of quantum operations to test components should
also be minimized.

Manufacturing

For the Kane technology, the first hurdle is the placement of the phosphorus
atoms themselves. The leading work in this area has involved precise ion
implantation through masks and manipulation of single atoms on the surface
of silicon [16]. For applications where substantial monetary investment is
not an issue, slowly placing a few hundred thousand phosphorus atoms with a
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probe device [11] may be possible. For bulk manufacturing, the advancement of
DNA or other chemical self-assembly techniques [1] may need to be developed.
Note, while new technologies may be developed to enable precise placement,
the key for this discussion is only the spacing (60 nm) of the phosphorus atoms
themselves and the number of control lines (3) per qubit. The relative scale of
quantum interaction and the classical control of these interactions is what will
lead to the fundamental constraints on quantum computing architectures.

A second challenge is the scale of classical control. Each control line into the
quantum datapath is roughly 10 nm in width. While such wires are difficult to
fabricate, we expect that either electron beam lithography [3], or phase-shifted
masks [24] will make such scales possible.

A remaining challenge is the temperature of the device. In order for the
quantum bits to remain stable for a reasonable period of time, the device must
be cooled to less than one degree Kelvin. The cooling itself is straightforward,
but the effect of the cooling on the classical logic is a problem. Two issues
arise. First, conventional transistors stop working as the electrons become
trapped near their dopant atoms, which fail to ionize. Second, the 10 nm
classical control lines begin to exhibit quantum-mechanical behavior such as
conductance quantization and interference from ballistic transport [9].

Fortunately, many researchers are already working on low-temperature tran-
sistors. For instance, single-electron transistors (SET’s) [20] are the focus of
intense research due to their high density and low power properties. SET’s,
however, have been problematic for conventional computing because they are
sensitive to noise and operate best at low temperatures. For quantum computing,
this predilection for low temperatures is exactly what is needed! Tucker and
Shen describe this complementary relationship and propose several fabrication
methods in [28].

Testing

Once fabricated, qubits and control will be difficult to test. Tolerances are
tight, and it may be necessary to avoid using qubits in the system that are spaced
incorrectly or have control signals that are misaligned.

It is likely that the most effective test for the spacing of control signals is to
inspect, using an SEM or other device, the pattern of small 10 nm vias above
each ion before they are covered by subsequent layers of metal. Connectivity
from wide control wires to the vias will have to be verified via a quantum test
program.

The spacing and alignment of the ions that implement the qubits is also
problematic. Defects could be caught via quantum test programs, but the test
would have difficulty distinguishing between ion spacing errors, misalignment
between control vias and ions, and control via spacing errors. Efficient test
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patterns will be needed to test individual qubits and the two-qubit operations
between neighboring qubits.

8.5 Architectural Challenges

We now look at how to take these individual quantum components and struc-
ture them into a working, large-scale quantum computer. We have two fun-
damental difficulties. First, because quantum computing requires very low
temperatures, and classical circuits (required for control of quantum gates) are
designed for higher temperatures, the design must be adjusted to allow classical
circuits to work at very low temperatures. Second, because quantum operations
are so error-prone, and error correction circuits themselves so large, a reliable
communication mechanism is required. This material is derived from our pre-
vious work [14, 8].

Basic Geometric Constraints

The quantum-mechanical behavior of the control lines presents a subtle chal-
lenge that is often overlooked. At low temperatures, and in narrow wires, the
quantum nature of electrons begins to dominate over normal classical behav-
ior. For example, in 100 nm wide polysilicon wires at 100 millikelvin, elec-
trons propagate ballistically like waves, through only one conductance channel,
which has an impedance given by the quantum of resistance, h/e2 ≈ 25 kΩ.
Impedance mismatches to these and similar metallic wires make it impossible
to properly drive the AC current necessary to perform qubit operations.

Avoiding such limitations mandates a geometric design constraint: narrow
wires must be short and locally driven by nearby wide wires. Using 100 nm as a
rule of thumb1 for a minimum metallic wire width sufficient to avoid undesired
quantum behavior at these low temperatures, we obtain a control gate structure
such as that depicted in Figure 8.4. Here, wide wires terminate in 10 nm vias that
act as local gates above individual phosphorus atoms. Note how access lines
quickly taper into upper layers of metal and into control areas of a classical
scale. These control areas can then be routed to access transistors that can
gate on and off the frequencies (in the 10’s to 100’s of MHz) required to apply
specific quantum gates.

Quantum Communication

We examine the problem of scaling a quantum system by focusing on perhaps
the primary task of quantum computer – error correction. Recall that error

1This value is based on typical electron mean free path distances, given known scattering rates and the
electron Fermi wavelength in metals.
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Figure 8.4. Instead of narrow wires throughout the system, wide wires are required for long
distances, and narrow wires may only be used for short distances in order to minimize the
quantum effects in the classical control.
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Figure 8.5. Schematic layout of the H-tree structure of a concatenated code. The branches in
the inset represent the logical two-rail qubits, with the bold lines representing ancillae.
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Figure 8.6. Quantum Teleportation of state |a〉 over distance. First, entangled qubits |b〉 and
|c〉 are exchanged. Then, |a〉 interacts with |b〉, and both |a〉 and |b〉 are measured to obtain two
classical bits of information (double lines). After transport, these bits are used to manipulate |c〉
to regenerate state |a〉 at destination.

correction is applied recursively to achieve enough fault tolerance to allow
sustainable quantum computation. The basic quantum error correction circuit
can be implemented with a double row of quantum bits, one for ancilla and one
for the actual quantum data. Recursively applying more levels error correction
results in a natural H-tree structure, as shown in Figure 8.5.

A crucial trait of this recursive structure is that communication distances
increase as we approach the root of the tree for any substantial level of recursion.
In fact, the naive approach of swapping quantum data from bit to bit becomes
untenable. There are too many swaps to accomplish without error correction, yet
we are trying to construct the basic error correction circuit! In fact, it is possible
to apply intermediate error correction, but this would substantially increase the
overhead of an already costly process. Instead, we examine another method of
achieving quantum communication over long distance – quantum teleportation.

Quantum Teleportation. Quantum teleportation is the re-creation of a
quantum state at a distance. Contrary to its science fiction counterpart, quantum
teleportation is not instantaneous transmission of information. In fact, calling
it teleportation conjures thoughts of instantaneous transportation of complex
beings over thin air, with the recreation of these complex beings at the other end.
Quantum teleportation is not nearly as magical. It does allow one to recreate
a quantum state with the communication of classical information rather than
quantum information. But, as you will see, the amount of work is actually the
same as if we had transported the quantum bit rather than using teleportation.
The reason for teleportation is reliability, not saving work.

The key to teleportation is the use of an entangled EPR pair, |Ψ〉 = 1√
2
(|00〉+

|11〉) [4]. One question you might ask is, how does this pair differ from two
single qubits |Ψ′〉 = 1√

2
(|0〉+ |1〉)? If those bits are operated on independently

to obtain |Ψ′〉, their combined state is: |Ψ′′〉 = 1
2(|00〉 + |01〉 + |10〉 + |11〉),
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which is clearly a different equation. What is the core difference? Somehow,
the operation that created the EPR pair is different than creating two identical
bits - it requires that if one of the pair is measured as a certain value, the other
of the pair will measure the same value. Truly independent identical qubits do
not have this property.

Figure 8.6 gives an overview of the teleportation process. We want to com-
municate the value |a〉. We start by generating an EPR pair, |b〉 and |c〉. We
separate the pair, keeping one qubit, |b〉, at the source, and transporting the other,
|c〉, to the destination. When we want to send a qubit, |a〉, we first interact |a〉
with |b〉 using a cnot gate. We then measure |a〉 and |b〉 in the computational
basis, and send the two one-bit classical results to the destination, and use those
results to re-create the correct phase and amplitude in |c〉 such that it takes
on the original state of |a〉. The re-creation of phase and amplitude is done
with X and Z gates, whose application is contingent on the outcome of the
measurements of |a〉 and |b〉. Intuitively, since |c〉 has a special relationship
with |b〉, interacting |a〉 with |b〉 makes |c〉 resemble |a〉, modulo a phase and/or
amplitude error. The two measurements allow us to correct these errors and
re-create |a〉 at the destination. Note that the original state of |a〉 is destroyed
when we take our two measurements. This is consistent with the “no-cloning”
theorem, which states that a quantum state cannot be copied.

Why bother with teleportation when we end up transporting |c〉 anyway?
Why not just transport |a〉 directly? As you might notice, teleportation is not
a huge savings in effort, because to accomplish this, two special quantum bits
must be created in the same location and then travel to the source and desti-
nation locations, which is the same amount of actual work as transporting the
original bit. First, we can pre-communicate EPR pairs with extensive pipelin-
ing without stalling computations. Second, transportation has the possibility of
errors, and we are constructing communication for use in error correction. We
need this communication to be error-free. But what about if |b〉 and |c〉 have
a failure? That is okay, because as long as we can detect the error, we throw
them out and use another pair. Since |b〉 and |c〉 have known properties, we
can employ a specialized procedure known as purification to turn a collection
of pairs partially damaged from transport into a smaller collection of asymp-
totically perfect pairs. If we accidentally destroy |a〉, we need to restart the
whole quantum computation. Thus, teleportation does not actually save work,
it just makes sure that important qubits use reliable, classical communication
for long-distance travel rather than the error-prone swapping method.

8.6 Conclusions

Quantum computing has unique obstacles to overcome before a large-scale
machine can be built. Our goal has been to provide some basic understanding
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of the mechanisms and issues involved. Since quantum technologies are still
under development, the key is to develop design and verification techniques
that are somewhat technology independent, much like the communication and
placement mechanisms discussed. Our hope is that the right abstractions and
techniques will help pave the way to realizing a scalable quantum computer in
the near future.
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Abstract This chapter introduces the quantum-dot cellular automata (QCA), what con-
structs can be made from it, and what constructs could be implementable in the
near-to-midterm. It will also explain a systems-level research component that
complements work in physical science. One objective of the systems-level track
is to compile a set of design rules to not only help system designers become more
involved with the evolution of emergent, nano-scale devices geared for compu-
tation, but it should also help us to reach computationally interesting, nano-scale
systems in an accelerated time frame. The motivations for, and the origins of
design rules for QCA (and other emergent technologies) will be explained here.

Keywords: Quantum-dot Cellular Automata, QCA, Design Rules

Introduction

The real purpose of this chapter is to present a set of parameters and a method-
ology that will assist in closing the gap of understanding between individuals
researching physical devices, and those interested in building systems from
those devices. With many classes of nano-scale devices emerging, often the
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two groups speak two different languages. Electrical engineers and chemists
do not have the background required to design larger-scale and computationally
useful systems from the devices that they are building. Similarly, while system
architects have this knowledge, they usually lack an understanding of what can
physically be built.

The goal of this chapter is to introduce a set of fundamental parameters for
the computer engineer which, if followed, should help eliminate the problem
just mentioned for one emergent nano-scale device - the Quantum-dot Cellular
Automata (QCA). Carver Mead and Lynn Conway’s work will be used as a
basis and a framework for a set of QCA design rules. Overall, this work should
help to further a goal of using systems-level research to help drive device de-
velopment. (In other words, systems designers can provide physical scientists
with computationally interesting schematics to physically build, and identify
what device characteristics are most important to implement in order to perform
computationally interesting tasks.) If the device and design communities are
better able to communicate, more proof-of-concept, realistic, and computation-
ally useful circuits and systems should become more physically realizable at an
accelerated time scale.

Specifically, this chapter (from a computer engineering perspective) will
begin by providing a detailed background of QCA devices. It will discuss the
basic logical properties associated with QCA - how a 1 or a 0 is represented,
how wires are formed, how logical gates are formed, etc. Next, it will focus
on what the current state of the art is with regard to QCA demonstrations. We
will discuss possible “real” QCA cell implementations. Additionally, the role
that a “clock” will play in QCA circuits will be introduced at a conceptual and
implementable level. We will then review the historical precedence for design
rules. It will be followed by a short section that considers the initial questions
that laid the ground work for design rules in QCA. Next we will present a
compilation of all of the information a computer engineer will want to know,
and a list of all of the questions that a computer engineer will need to answer
when attempting to design larger-scale systems of QCA cells. Finally, a brief
example of what a design rule might look like for a specific device technology
will be discussed.

9.1 The Basic Device and Circuit Elements

We will first present a very conceptual view of QCA - essentially showcasing
the building blocks available for the design of logical circuits and systems.
Possible implementations will be discussed later.
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A “Generic” 4-dot QCA Cell

A high-level diagram of a “candidate” four-dot metal QCA cell appears in
Figure 9.1. It depicts four quantum dots that are positioned to form a square.
Quantum dots are small semi-conductor or metal islands with a diameter that
is small enough to make their charging energy greater than kbT where kb is
Boltzmann’s constant and T is the operating temperature. The charging energy
is the potential energy needed to overcome the electrostatic repulsion from
the other electrons in the dot – or in other words, the energy required to add
an electron to a dot. If this energy is greater than the thermal energy of the
environment (kBT ), dots can trap individual charges.

P = +1
(Binary 1)

P = -1
(Binary 0)

Quantum Dots

Electrons
Quantum Dots Quantum Dots

Electron Electron

Figure 9.1. QCA cell polarizations and representations of binary 1 and binary 0.

Exactly two mobile electrons are loaded into this cell and can move to dif-
ferent quantum dots by means of electron tunneling. Tunneling paths are rep-
resented by the lines connecting the quantum dots in Figure 9.1. Coulombic
repulsion will cause “classical” models of the electrons to occupy only the cor-
ners of the QCA cell, resulting in two specific polarizations (again, see Figure
9.1). These polarizations are configurations where electrons are as far apart
from one another as possible, in an energetically minimal position, without
escaping the confines of the cell. Here, electron tunneling is assumed to be
completely controllable by potential barriers that can be raised and lowered
between adjacent QCA cells by means of capacitive plates parallel to the plane
of the dots [15].

It is also worth noting that in addition to these two “polarized” states, there
also exists a decidedly non-classical unpolarized state. Briefly, in an unpo-
larized state, inter-dot potential barriers are lowered to a point which removes
the confinement of the electrons on the individual quantum dots, and the cells
exhibit little or no polarization as the wave functions of two electrons smear
themselves across the cell [7].

The Majority Gate

The fundamental QCA logical gate is the three-input majority gate which
appears in Figure 9.2 [15]. Computation is performed with a majority gate by
driving the device cell (cell 4 in the figure) to its lowest energy state, which will
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occur when it assumes the polarization of the majority of the three input cells
(1, 2, and 3). We define an input cell simply as one that is changed by a logical
signal propagating toward the device cell. The device cell will always assume
the majority of the polarizations of the input cells because in that polarization,
the electrostatic repulsion between the electrons in the three input cells and the
electrons in the device cell will be at a minimum.

Cell 1 (input)

Cell 3 (input)Cell 2 (input)

Cell 4 (device cell)

Cell 5 (output)

Figure 9.2. The fundamental QCA logical device – the majority gate.

A Wire

Figure 9.3 illustrates what is called a “90-degree” wire. (The wire is called
“90-degrees” as the cells from which it is made up are oriented at a right angle).
The wire is a horizontal row of QCA cells and a binary signal propagates from
left-to-right because of electrostatic interactions. Initially, cell 1 has polariza-
tion P = -1 and cell 2 has polarization P = +1. It is assumed that charges in
cell 1 are trapped in polarization P = -1 but those in cells 2-9 are not. Because
the driving cell is “trapped”, there is no danger that this wire could “reverse di-
rections” and have a polarization propagate in a direction from which it came.
Initially, electron repulsion between cell 1 and 2 will cause cell 2 to change
polarizations. Then, electron repulsion between cell 2 and 3 will cause cell 3 to
change polarizations. This process will continue down the length of the QCA
“wire”. When electrons in all cells settle in an energetically minimal position,
the system is said to be in a ground state. (“Energetically minimal positions”
simply means that electrons are in positions such that the Coulombic repulsions
between them are as low as possible).

A 45-degree Wire

It is also possible to form what is called a “45-degree wire” [15]. Illustrated in
Figure 9.4, a binary value propagates down the length of such a wire, alternating
between polarization P = +1 and polarization P = -1. It is this orientation of
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Coulombic interaction causes Cell 2 to switch polarizations

Cell 1 Cell 2 Cell 3 Cell 4 Cell 5 Cell 6 Cell 7 Cell 8 Cell 9

Cell 1 = Input cell (Cells 2-9 have potential barriers lowered)

Figure 9.3. A QCA “wire”.

electrons within QCA cells that represents the minimum energy configuration
for each cell. Interestingly, with this orientation of wire, both a complemented
or uncomplemented signal value can be ripped off of the wire by placing a 90-
degree “ripper” cell at the proper location between 45-degree cells (see Figure
9.5).

Input Cell

Figure 9.4. A 45-degree wire.

Input Cell

1

2

3

4

Uncomplemented Copy

Complemented Copy

Figure 9.5. Ripping off a binary 0 and 1 from a 45-degree wire.

Off-center Wires

In theory, QCA cells do not have to be exactly aligned to transmit binary
signals correctly. Cells with a 90-degree orientation could be placed next to one
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another but off-center, and a binary value could still be transmitted successfully
(Figure 9.6) [15]. However, successful transmission is subject to the exact
positioning of the off-centered cell. To quantify the degree of allowable off-
centeredness, consider Figure 9.7. Essentially, with a four-dot cell, if the two
quantum dots of the middle cell (“polariztion okay” in the figure) are below the
center lines of its neighboring cells, then the polarization of the next cell of the
wire will be weak or indefinite which is undesirable. If the cell is above the
imaginary center line, the value should be transmitted successfully. It should
also be noted that different implementations of QCA cells (i.e. metal versus
molecular) will be subjected to different allowable degrees, ranges, and types
of “off-centeredness” with regard to propagating a signal correctly. The last
portion of Figure 9.7 illustrates one possible defining rule. External energy can
cause a cell in a wire or a system to switch into a mistake state (defined as
Ekink).

More specifically, the kink energy is the amount of energy that will excite a
cell into a mistake state and is proportional to the degree of off-centeredness.
Referring to Figure 9.7, the kink energy for off-center cells is proportional to
(1/R5)cos(4θ). Thus, as the distance between cells increases, the kink energy
will decrease indicating that a smaller amount of external energy could excite
a cell into a mistake state. Intuitively, this makes sense as one cell that is
supposed to drive another is now farther away from the cell that it is supposed
to drive. Additionally, if two cells are placed exactly in line, the angle of their
off-centeredness would simply be 0 (cos(0) is 1). However, if the angle of
offcenteredness between the two cells increases for example to 20-degrees, the
kink energy will again decrease (cos(4 × 20) is approximately 0.17). Thus
disorder (i.e. cells not in a straight line) will only lower the amount of external
energy required to create a mistake.

(Before continuing, it is also worth considering what happens if two cells
are off-center by 45 degrees. By plugging this number into the above equation,
cos(180) falls out and is equal to -1. This results in a kink energy identical to
that for two cells that have no misalignment between them. The negative sign
indicates signal inversion and what we really have is a 45-degree wire. If the
cells are 90 degrees off-center, the cells are again in-line, but in the vertical
direction.)

Cells off-center
Cells off-center

Cells off-center

Figure 9.6. An off-center binary wire.
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Polarization Okay

Polarization Okay Polarization Weak/Indefinite

The Defining Rule:
Ekink(r,Θ) ~ r-5cos(4θ)

θ

R

Figure 9.7. The restrictions on an off-center binary wire.

Finally, considering wire length in general, while it is to some extent a func-
tion of implementation technology, wire length is also largely a function of kink
energy. As an example, consider a linear array of N cells that form a wire that
we want to transmit a logical 1. The ground state for this configuration would
be all of the cells switching to the same polarization as that of the driving cell –
namely a line of cells in the logical ’1’ polarization. The first excited (mistake)
state of this array will consist of the first m cells polarized in a representative
binary 1 state and N-m cells in the binary 0 state. The excitation energy of this
state (Ek) is the energy required to introduce a “kink” into the polarization of
the wire. This energy is independent of where the kink occurs (i.e. the exact
value of m). As the array N becomes larger, the kink energy Ek remains the
same. However, the entropy of this excited state increases as there are more
ways to make a “mistake” in a larger array. When the array size reaches a certain
size, the free energy of the mistake state becomes lower than the free energy of
the correct state meaning that a value will not propagate. A complete analysis
reveals that the maximum number of cells in a single array is given by eEk/kBT

[7]. Thus, given an Ek of 300 meV (a reasonable value), kb (1.38×10−23 J/K),
close to room temperature operation (300K), and that 1 J = 1.6 × 10−19 eV,
arrays of cells on the order of 105 are not unreasonable.
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Wire Crossings in the Plane

QCA wires possess the unique property that they are able to cross in the plane
without the destruction of a value being transmitted on either wire. However,
this property will hold only if the QCA wires are of different orientations such
that one wire is comprised of 45-degree cells and another is comprised of 90-
degree cells (Figure 9.8) [15]. However, while theory tells us that this property
should hold, the problem of engineering devices to realize such functionality
has not yet been completely solved.

45-degree wire

90-degree wire

Figure 9.8. Two wires crossing in the plane.

An Example

To implement more complicated logical functions, a subset of simple logical
gates will be required. For example, it would be impossible to implement certain
circuits in QCA with just majority gates (at least without inverters). Earlier,
we have shown that a value’s complement can be obtained simply by ripping
a signal value off of a 45-degree wire at the proper location (it is also possible
to make an inverter with only 90-degree cells [15]). Implementing the logical
AND and OR functions is also quite simple. The logical function the majority
gate performs is: Y = AB + BC + AC.

The AND function can be implemented by setting one value (A, B, or C)
in the majority gate equation to a logical 0. Similarly, the OR function can be
implemented by setting one value (A, B, or C) in the majority gate equation to
a logical 1. This results in the logical AND/OR equations. It is worth noting
that because this property exists, and given the fact that it is possible to obtain
the inverse of a signal value, the QCA logic set is functionally complete, and
any logical circuit can theoretically be generated with only QCA devices.

More complex logical circuits (such as the multiplexor in Figure 9.9) can
then be constructed from majority-gate converted AND gates, OR gates, and
inverters, if not more clever combinations of simply majority gates. (Note:
QCA cells labeled “anchored” in Figure 9.9 are considered to have their electron



Origins and Motivations for Design Rules in QCA 275

polarization permanently frozen to successfully implement the AND and OR
functions).

AND gate

AND gate

OR gate

Anchored

S

S

B

A

Y

Figure 9.9. A 2x1 QCA multiplexor with logical equation: Y = AS’ + BS.

The Clock in QCA

This section will discuss the role that a clock will play in circuits and systems
of QCA cells. This will be followed by a generic explanation of what effect
a clock will have on data movement which is of specific importance to those
worried about the design of computational systems. A brief example will follow
and the section will conclude with a discussion of clocking mechanisms geared
toward implementation.

The Purpose of the Clock. Without providing specific or implementation
related detail (later sections will do that) it is nevertheless important to note that
the specific role that the “clock” plays in circuits and systems of QCA cells is
to provide power gain. Inevitably, in a long wire of cells, QCA signal energy
could be lost to irreversible processes in a circuit’s environment and somehow
must be replaced. Gain must come from some source external to the QCA cells
themselves, and is necessary to ensure that the binary 0s and 1s that the cells
encode propagate through a circuit as the specific data signals that they were
intended to represent [14].
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A CMOS Clock versus the “Clock” in QCA. In standard CMOS, the clock
is generally considered to be a signal that precisely controls the time at which
data bits are transferred to or from memory elements (i.e. flip-flops). A typical
clock signal usually has two phases – high and low. For instance, when the
clock signal is high, the data bit of a flip-flop can be written and when it is low,
no data can be written to the flip-flop.

In QCA, the clock is not a separate wire or port that would be fed into a
circuit like any other signal. Rather, it is typically viewed to be an electric field
that controls barriers within a QCA cell, which in turn controls the movement of
electrons from quantum dot-to-quantum dot within a specific cell. Also, unlike
a clock in a standard CMOS circuit, the QCA clock does not just have a high
and a low phase, but rather four phases.

A “Generic” Four-Phase Clock. These four clock phases are illustrated
in two different ways in Figure 9.10. During the first clock phase (switch),
QCA cells begin unpolarized with interdot potential barriers low. During this
phase barriers are raised and the QCA cells become polarized according to the
state of their drivers (i.e. their input cells). It is in this clock phase, that actual
switching (or computation) occurs. By the end of this clock phase, barriers
are high enough to suppress any electron tunneling and cell states are fixed.
During the second clock phase (hold), barriers are held high so the outputs of
the subarray that has just switched can be used as inputs to the next stage. In
the third clock phase, (release), barriers are lowered and cells are allowed to
relax to an unpolarized state. Finally, during the fourth clock phase (relax), cell
barriers remain lowered and cells remain in an unpolarized state [7].

SwitchSwitch SwitchHold SwitchRelease SwitchRelax

Switch Hold Release Relax
Time

E-field
Barrier

Figure 9.10. The four phases of the QCA clock.
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Individual QCA cells need not be clocked or timed separately. The wiring
required to clock each cell individually could easily overwhelm the simplifi-
cation won by the inherent local interconnectivity of a QCA architecture [7].
However, a physical array of QCA cells can be divided into zones that offer
the advantage of multi-phase clocking and group pipelining. For each zone, a
single potential would modulate the inter-dot barriers in all of the cells in the
given zone [7].

When a circuit is divided into different zones, each zone may be clocked dif-
ferently from others. In particular, this difference is important when discussing
neighboring, or physically adjacent, zones. Such a clocking scheme allows
one zone of QCA cells to perform a certain calculation, have its state frozen
by the raising of interdot barriers, and then have the output of that zone act as
the input to a successor zone. It is this mechanism that provides the inherent
self-latching associated with QCA. During the calculation phase, the successor
zone is kept in an unpolarized state so it does not influence the calculation or
result in a signal propagating back upon itself.

In an example circuit, clocking zones are partitioned using three rules. First,
there are four “colors” of clocking zones, with all cells in each zone marked
as having exactly one color. Each of the four clocking zones corresponds to
one of four different clock phases. All zones with the same color receive the
same phase clocks at the same time. Second, no two zones that touch can
have the same color. Third, physically, neighboring zones concurrently receive
temporally neighboring clock phases [7].

Finally, it is important to stress exactly what is meant when referring to the
QCA clock. As mentioned above, the QCA clock has more than a high and a
low phase but it is not a “signal” with four different phases either. Rather, the
clock changes phase when the potential barriers that control a clocking zone
are raised or lowered or remain raised or lowered (thus accounting for the four
clock phases). Furthermore, all of the cells within a clocking zone are said to be
in the same phase. One clock cycle occurs when a given clocking zone (electric
field generating mechanism) cycles through the four different clock phases.
Most importantly, the clock “traps” a group of cells in a specific polarization
to provide gain. This contrasts with conventional electronic devices where
transistors are used to achieve power gain and logic-level restoration through
pull-up/pull down mechanisms.

A Clocking Example. Figure 9.11 illustrates a five cell QCA wire (labeled
“schematic” in the upper part of the figure) with each cell in a separate zone.
Figure 9.11 has three significant parts to it. First, the figure is divided into
five vertically shaded regions, each with the label “clocking zone x”. In this
example, each clocking zone contains one QCA cell and hence each cell exists
in a different clock phase. Second, the state of the wire is shown during five
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different time steps. Third, the state transitions for cells that make up the wire are
illustrated for each time step. The number of cells that will have a meaningful
change of state (during a given time step) with regard to the ongoing computation
(or in other words, data movement) is equal to the time step number. Thus, in
Time Step 1, the first cell (in switch) will acquire a binary state. In Time Step
2, the first cell is latched (in hold) and the second cell (in switch) changes state
accordingly. Nevertheless, other cells in the wire must start in specific clock
states to ensure that they are in the switch state when computed data arrives.
As can be seen from this example, clocking zones clearly “latch” data, as it is
transferred from cell-to-cell.

Two items are worthy of further note. First, for detail on zone partitioning,
please see Chapter 10. Second, it may be worthwhile to investigate globally
ascynchronous, locally synchronous systmes (GALS). More specifically, dif-
ferent parts of a QCA system could be clocked differently/have different clock
layouts, and a protocol could be developed so that these portions of a system
could “talk” or share data when needed.

Switch Release SwitchH oldRelax

Switch Release H oldRelaxH old

Switch ReleaseRelax

Switch Relax

Switch

Release H old

Release H oldRelax

Switch Release H oldRelax

Time
Step 1

Time
Step 2

Time
Step 3

Time
Step 4

Time
Step 5

Schematic

F ixed Driver W ire Position

Figure 9.11. An example of QCA clock transitions.

A Clocking Mechanism. Again, the role that the clocking mechanism
plays in a QCA circuit or system is to provide a means for power gain and to
ensure that a QCA cell does not settle into a metastable state. In a metastable
state a cell’s polarization might encode a binary ’1’ as opposed to the binary
’0’ that it should represent (or vice versa). The restoring energy provided by
the clock works to ensure power gain and prevent metastable states.

Up until now we have described the clock in a very generic way to under-
score what affects it will have on computer architectures. However, it is now
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important to consider more implementation-related detail to ensure that as the
areas of QCA design and QCA fabrication mature, resulting circuits and sys-
tems generated are not only are geared toward being buildable, but also so that
design work can continue to be used to help drive device development [14], [4].

The theory behind an implementable QCA clock will actually apply to either
metal or molecular QCA cells, and is based inherently in the cyclical manip-
ulation of quantum wells to perform binary operations and move binary data.
Specifically, research focuses on systems that can be cyclically transformed
between monostable and bistable states (one stable state and two stable states
respectively), with the QCA clock controlling whether or not the system is
monostable or bistable. In other words, the clock will control whether or not
a device is active or null. This allows some external input or driver (ideally
another QCA cell) to control whether or not the cell is a 1 or a 0 [5].

In detail, because of the clock, at the start of a computation QCA cells (a.k.a.
the “system”) would begin in a monostable, restore state. During the switch
phase, an input potential is applied and the system is then converted from a
monostable state to a bistable state by means of some external energy source
– the clock. The binary state of the cell is then determined by the applied
input potential. The input signal should be small enough that it alone cannot
determine the binary state of the cell and some external clocking mechanism is
also required. During the end of the switch clocking phase, binary information
is latched in the system in the hold phase. A cell in the hold phase can be used to
drive another QCA cell. Finally, the system is restored to its original monostable
state and the process can begin again [5], [3]. The remaining discussion of QCA
experiments will refer to these clock phases.

When compared to contemporary FET based logic, this clocking scheme
has the potential to dissipate significantly less energy. If the potential profile
changes slowly enough so that a cell remains close to its ground state at all
times (quasi-adiabatically), the energy dissipated in the switching process can
be lowered to below log(2)kT per binary operation. The comparable energy
for FET-based logic is 106kT. Overall, the induced inherent pipelining in QCA
helps to alleviate problems related to the size of the non-clocked, edge driven
QCA architecture imposed by thermodynamic considerations which can lead
to metastability and also provides gain [6].

9.2 Implementable QCA

To better explain how CAD can have a positive effect on a given buildabil-
ity point for QCA, we will now explain how physical scientists envision the
constructs discussed in the first section being built. Specifically, the discussion
will center on molecular QCA.



280 NANO, QUANTUM AND MOLECULAR COMPUTING

QCA Devices

In contrast to metal-dot QCA cells, the small size of molecules (1-5 nm)
means that Coulomb energies are much larger, so room temperature operation
is possible [6]. Also, power dissipation from QCA switching would be low
enough that high-density molecular logic circuits and memory are feasible.
In molecular QCA, the role of a “dot” will be played by reduction-oxidation
(redox) sites within a molecule. A redox center is capable of accepting an
electron and donating an electron without breaking any of the chemical bonds
that are used to bind the atoms of the molecular device together. Molecules with
at least two redox centers are desired for QCA. It is possible to build molecules
with 2, 3, and 4 “dots” [8].

Molecular QCA is discussed further in the context of 3-dot cells. The
molecule forms a “v”-shape and charge can be localized on any one of the
three dots at the “points” of the “v”. If charge is localized on one of the top
two dots, the cell will encode a binary 1 or 0. Whether or not charge is in the
top two dots (the active state of the molecule) or the lower dot (the null state
of the molecule) can be determined by an electric field that will raise or lower
the potential of the central dot relative to the top two dots [5]. This idea will be
fundamental to a clock that can be used to control a circuit made from molecular
QCA cells and will be discussed further below. (Note that in Figure 9.12 the
hole is represented by a dot in the cell “schematic”. Open circles in Figure 9.12
are indicative of electrons – or the absence of the hole). 2 and 4-dot cells can
also have null states. When considering basic cell-to-cell interactions, binary
1s and 0s are physically represented by the dipole moments of QCA molecules.
Dipole moments are formed by the way that charge is localized within certain
sites of a QCA molecule, and how that charge can tunnel between these sites
[10]. In the presence of a strong dipole, a larger Ekink is required to excite a
cell into a mistake state [5].
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Figure 9.12. A “schematic” view of a three-dot molecular QCA cell. An electric field deter-
mines if the cell is active or null.
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Wires

Earlier, circuit elements were shown and described in terms of 4-dot QCA
cells. Assuming molecular QCA, a 4-dot cell could simply be formed by two
adjacent 3-dot or 2-dot cells, but are also being engineered as explicit molecules.
4-dot cells are ideal because of symmetry. Binary information is stored and
moved with quadropole moments and all the constructs/circuit elements shown
in the first section are theoretically possible.

Substrates

A pitch matching problem exists between the substrates to which molecular
QCA devices could attach, and the devices themselves [12], [2]. Molecular
devices are at most a few nanometers in length or width. However, lithography
that might be used to etch attachment paths is limited to 200 nm and 10 nm in the
cases of optical or x-ray/e-beam lithography. Given these current resolutions, it
would be either most difficult or impossible to create detailed patterns desired
for computationally interesting circuits.

One mechanism that might allow for selective cell placement is DNA tiles.
First proposed by Seeman et al, DNA tiles can form rigid, stable junctions
with well defined shapes, and can further self-assemble into more complex
patterns. Additionally each DNA tile could also contain several points to which
something (i.e. a QCA cell) could attach. Lieberman et. al. have developed
a DNA raft (37 nm long and 8 nm tall) built from 4nm × 12.5nm × 2nm
individual DNA tiles. Each individual tile could hold 8 QCA cells [9].

Each portion of a raft has a different DNA sequence. Consequently, molec-
ular recognition could be used to differentiate locations on the raft to which
individual molecules could attach – forming a “circuit board” for molecular
components. Individual tiles self-assemble according to the affinities shown
in Figure 9.13 and parts of the circuit board could self-assemble in a similar
manner. Finally, DNA rafts could be attached to silicon wafers using a thick
polyadhesion layer – which would be most useful if silicon is used to form the
clock circuitry.

B

A
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C

DNA tile

Figure 9.13. The DNA tiles being considered as an FPGA substrate.



Figure 9.14. A schematic showing buried silicon wires that could provide the needed electric
field to implement the monostable-bistable-monostable clocking scheme.

Error

Error will be discussed further below in the section QCA Fabrication Sources
of Error

Building Blocks

We briefly summarize the technological building blocks that will constrain
our designs. These could be used to build small systmes in the near-to-midterm.
Substrates (DNA tiles), devices (QCA molecules), and support mechanisms (a
silicon clock) will all be considered.

QCA Molecules. While QCA molecules are the real building blocks of any
circuit (i.e. the devices), they have been discussed earlier, and no more that a
few brief sentences about sizing will be included here. Specifically, 8 molecular
QCA cells (2-dot or 4-dot) should be able to fit onto one tile. Center cell spacing
for either type of device can be safely estimated at 1nm, and individual cells
do not require much more area than 1nm2. Thus, given a 4nm× 12.5nm tile,
8 cells per tile is not an unreasonable number.
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The Clock

For molecular QCA, the four phases of a clock signal could take the form of
time-varying, repetitious voltages applied to silicon wires embedded underneath
a substrate to which QCA cells were attached. Every fourth wire would receive
the same voltage at the same time [3]. Neighboring wires see delayed forms of
the same signal. The charge and discharge of the clocking wires will move the
area of activity across the molecular layer of QCA cells. Computation occurs
at the “leading edge” of the applied electric field in a continuous “wave” (see
Figure 9.14).

Conductor

QCA Molecules

Clock Wires
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Substrates. DNA tiles are currently the most realistic. However, one
other possible attachment mechanism currently under investigation involves
the use of electron beam lithography (EBL) to create tracks along the surface
of some substrate. Ideally, these tracks would dictate attachment points for
QCA cells which would then inherently form logical and computational QCA
circuits with functionality determined by the pattern of assembly [8]. The
overall process envisioned is as follows: first, a molecular QCA cell would be
engineered that will pack and assemble properly on a self-assembled monolayer
(SAM) on top of a silicon surface. (A SAM is a uni-directional layer formed
on a solid surface by spontaneous organization of molecules.) Second, I/0
structures would be constructed lithographically. Third, tracks would be etched
into the self-assembled monolayer (SAM) on top of a silicon surface with EBL.
Finally, the resulting “chip” would then be dipped into a bath of QCA cells for
self-assembly with devices binding to the etched tracks. In this manner, the
“chip” would acquire its functionality [8]. Current work with EBL involves a
beam with a primary diameter of 5 nm. However, because of the dispersion of
secondary electrons, only tracks that are 30 nm in width have been produced.
Also, the tracks are seven Angstroms deep on a 20 Angstrom “deep” monolayer
[8].

Silicon Underneath. The final major component required for a functional
design is some kind of clocking mechanism. A current vision for the implemen-
tation of a clock for a QCA circuit calls for silicon wires embedded underneath
a DNA substrate to which actual devices would have attached. Charge would
then move from wire-to-wire to actually generate propagating electric fields and
when compared to the overall power budget, the power dissipated by this silicon
circuitry should be quite low. Adiabatic switching was previously discussed.

9.3 Design Rules

Historical Precedence

Before considering design rules in the context of QCA, a brief discussion of
what impact they have had on the computer engineering community is worth-
while. This will take place largely in the context of the original rules Mead and
Conway proposed for MOS.

Motivation for Mead and Conway’s Design Rules

In the pre-Mead/Conway era (1960’s-1970’s), chip development flow usu-
ally had system architects express a design at a high level (such as Boolean
equations), and then turn it over to logic designers, who converted the designs
into “netlists” of basic circuits. Fabrication experts would then lay out im-
plementations of the individual logic blocks, and just “wire them together.”
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Interaction between the architects and the fabrication experts was limited. In
terms of technology, MOSFETs were considered “slow and sloppy” and the real
design was in sophisticated bipolar devices. However, with the advent of VLSI
electronics, the way that digital systems were structured, the procedures used
to design them, trade-offs between hardware and software, and the design of
computational algorithms for integrated electronics all changed [11]. In a sense,
integrated electronics required integrated design, and a common language for
system architects and fabrication experts was required.

What Mead and Conway Did

When considering chip lithography, it is important to note that there is a
clear separation between the fabrication of wafers and the design work that
generates the patterns to be placed on them. However, for this separation to be
possible, the designer will (at least indirectly) require specific knowledge about
the resolution and performance of a given processing line. In other words, the
designer needs information about how physical devices are actually made. With
MOS circuits, this information was (and still is) usually provided in the form
of geometries. If a circuit’s layout conforms to certain patterns, a designer can
be assured that a particular layout will conform to the resolution of a particular
fabrication process. Consequently, a fabricated chip should work as intended
[11], [13]. With MOS, geometries are usually specified in the form of allowable
widths, separations, extensions, and overlaps between various components of
a circuit. The values used to specify these parameters are usually a function
of a given process, take into account lithography limitations, and usually add a
margin for error.

Otherwise stated, design rule geometries exist to minimize the risk of fab-
rication errors, and are usually specified as multiples of a unit length λ. For
example, when designing a circuit, two polygons representing two metal wires
might have to be ’n’ λ apart to ensure that a fabricated version of this circuit
will actually work. λs for various physical integrated circuit components pre-
sented by Mead and Conway were originally abstracted from a conglomeration
of processes. Values given to them continued to scale downward over time as
lithography improved and define micron rules. A resulting benefit was that, if
specified in λs and lithography scaling held, a design targeted for one process
could be transferable to another.

The above paragraph provides a general description of λ design rules. It
is also worth a brief discussion of micron rules. When scaling in the sub-
micron range, relationships between layers can scale non-linearly (they are
usually valid in the 1-3 micron range). Additionally, scaling rules are often
(necessarily) conservative. Thus, with maximum densities desired by industry,
λ rules are usually avoided and are replaced by micron rules which specify
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explicit distances associated with parts of a CMOS circuit. However, both
provide the computer engineer with knowledge that we seek to duplicate for
QCA, and would be beneficial to develop for other emergent devices [13].

Technical Merits of Mead and Conway’s Work

At a high-level, by developing a set of design rules and abstractions that a
computer architect could use in the circuit design process, Mead and Conway
changed the focus of design from considering a chip “in cross section”, to “an
overhead view.” They reduced the physics-dependent device descriptions to a
scale-independent set of parameters based largely on area and shape, with some
simple rules for first order modeling of how such devices would interact in com-
bination with each other. They also introduced some simple but useful circuit
primitives that changed the discussion from isolated logic gate performance
to interconnect. This allowed architects (who became experts in hierarchical
designs) to extend their hierarchies one level down to potentially new basic
structures. This in turn allowed architects to take advantage of these structures
in implementing larger and larger systems. The introduction and use of clever
circuits using pass transistors is just one example of such an insight.

When considering design rules, one VLSI-design text author writes, “Turning
a conceived circuit into an actual implementation also requires a knowledge of
the manufacturing process and its constraints. The interface between the design
and processing world is captured as a set of design rules that act as prescriptions
for preparing the masks used in the fabrication process of integrated circuits.
The goal of defining a set of design rules is to allow for a ready translation of
a circuit concept into an actual geometry in silicon. The design rule acts as the
interface between the circuit designer and the process engineer. As processes
have become more complex, requiring the designer to understand the intricacies
of the fabrication process is a sure road to trouble [13].”

The above paragraph was originally included in a discussion of Mead and
Conway-esq design rules in Rabaey’s VLSI text. It is included here as it summa-
rizes the purpose of design rules for MOS, and because words such as “masks”
and “silicon” could easily be swapped with words related to a specific nano-
scale device – and the ideas would still apply equally well. System designers are
generally interested in the densest, most efficient designs possible (in whatever
technology), while a process engineer or device designer is mainly concerned
with a methodology that offers a high percentage of chips that work, and can be
fabricated in an efficient, reproducible manner [13]. Design rules are viewed
as the compromise to satisfy both groups. Given this, working to develop de-
sign rules for emergent devices will hopefully allow computer architects to
become involved with nano-scale devices. This should help us toward our goal
of working nano-systems sooner.
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Components of a CMOS Design

Before discussing relevant background for QCA designs, as well as the design
rules themselves, we will first review the components for CMOS circuits and
the design rules for them. How design rules capture sources of error will also
briefly be discussed.

Basic Structures

Generating a design in CMOS requires at least an implicit knowledge about
the set of masks that are used to actually fabricate it. The exact details of the
fabrication process are abstracted so that a designer can just think of a CMOS
circuit as being comprised of the following circuit elements:

Substrates for wells (p-type for NMOS, n-type for PMOS).

Diffusion regions which define areas where transistors can be formed.
Diffusions of an inverse type are required to form contacts to the wells
on substrates. These are called select regions.

Polysilicon forms the gate electrodes of transistors and also serves as
interconnect.

One or more layers of metal (also used for interconnect).

Contacts to provide connections between lines and circuit elements in
various layers.

Thus, a design layout will consist of a combination of polygon geometries
all of which represent one of the items listed above. The shapes are attached
to a specific layer and, along with interplay between objects in different layers,
specify the functionality of the circuit. For example, a MOS transistor is formed
when polysilicon crosses a diffusion layer [13].

Types of Rules

When considering design rules for CMOS, all of the entities discussed above,
as well as the interactions between them, can be specified by assigning ranges
to their allowable geometries. The ranges apply within a layer and are: the
minimum width of an entity to guarantee current flow (i.e. in poly or metal),
the minimum spacing between entities on the same layer (i.e. to prevent a short
circuit between two wires), and the required overlap to create devices, contacts,
etc. [13]. As an example, when considering metal, λs include the minimum
metal width (2-3 λ), the minimum spacing between metal lines (3 λ), and the
minimum metal overlap of a contact [16].
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Sources of Error

In Mead and Conway’s original work, unit length λ was equal to the fun-
damental resolution of the process itself. It captures the distance by which
a polygon (and hence an actual circuit component) could stray from another
polygon on the same (or another) layer and still function correctly. λ also en-
compasses an additional “margin of error” as well as other processing factors.
Using the above and the last two sections as context, λ design rules should help
computer engineers avoid (or at least minimalize) errors inherent to the fabri-
cation process. For CMOS, these include: over etching, misalignment between
mask levels, distortion of the silicon wafer (“runout”) due to high temperature
processing, and overexposure or underexposure of resist. Or, from a circuit
designer’s perspective: if a structure is not where its intended to be, if a struc-
ture is too wide or too narrow, the diffusion rates of values, and the heights of
structures in circuits with multiple layers of metal [11].

The Beginnings of Design Rules for QCA

The previous sections detailed why design rules have been historically useful
for computer engineers, and also what they accomplished for CMOS. Using this
as a guide, the purpose of this section is to detail the initial questions that led
us to the list of parameters (to be presented below) that would be of interest to
a computer engineer, in the context of QCA. Specifically:

What is the QCA equivalent of λ?

What factors will govern λ?

What sources of error will affect design?

Will the QCA clock (or another component of fabrication) create the need
for a second λ? Will it affect an original λ?

How will the switching times for QCA cells and the QCA clock be re-
lated?

How does the idea of floorplanning factor into design rules?

Will attachment and substrates govern cell placement?

What about I/O to the non-nano world?

Using these questions as a base, we will begin to define the parameters that
must eventually be compiled and enumerated and will propose some sought
after generalizations by attempting to answer some of the questions listed above.
We will generate a “process independent” list of values that must be defined
when given a specific fabrication methodology – just as Mead and Conway
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did for MOS. However, like we did here with CMOS, we will first specify the
basic structures that a circuit designer would need to use when generating a
QCA schematic intended for fabrication. Sources of error related to fabricating
systems of molecular QCA cells will also be considered.

QCA Device Types

A CMOS circuit can be constructed from substrates, wells, diffusion regions,
select regions, polysilicon, metal, and contacts. The building blocks for circuits
of molecular QCA cells will be detailed here. (Note that most of these entities
have been considered in detail previously and unless appropriate, will otherwise
just be listed here).

90-degree molecular QCA cells: see the discussion on “Implementable
QCA”, particularly two-dot, three-dot, and four-dot implementations.

45-degree molecular QCA cells: again, refer to the sections just listed.
Also, remember that this will be a function of attachment as well.

“permanent cells”: In some of the QCA circuit constructs (i.e. the small
multiplexor), some kind of cell permanently engineered to represent a
binary 1 or 0 was used. A similar type of device was mentioned when
discussing the simple multiplexor when explaining how a majority gate
could implement AND/OR functionality.

(It is worth briefly reconsidering two-dot versus four-dot cells in the context
of molecular QCA. Recall that, while researchers are currently working to
develop four-dot QCA molecules, much of the early work with specific device
implementations has focused on two-dot QCA molecules. However, a designer
could simply place two, two-dot cells adjacent to one another and gain the
functionality of a four-dot cell.)

Clock Structures

Currently, silicon is envisioned as a means for implementing a clock for
molecular QCA cells. Why the clock is useful, as well as possible implemen-
tations for it, was discussed above.

Bases

Two substrates envisioned for systems of molecular QCA cells were also
discussed when considering attachment: etching patterns to which cells would
attach with EBL, and using DNA tiles to hold devices.
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QCA Fabrication Sources of Error

As with CMOS, for QCA, we eventually want to help qualify and quantify
potential sources of error for the circuit designer in the form of design rules.
For molecular QCA, most sources of error arise from issues of placement,
offcenteredness, and the self-assembly process. All are shown graphically in
Figure 9.15. In particular, Figure 9.15a and Figure 9.15b illustrate that if a cell
does not attach where it should (a), the required distance between two QCA cells
(b) might be affected. Other sources of error related to off-centeredness include
cells that are not exactly aligned (c), cells with the wrong rotation (d), and cells
that are off-center with regard to the y-dimension of a circuit(e). While not yet
defined, and not an explicit part of a design rule, we will eventually want to
quantify rates for each one of these “defects”. This will give the system designer
an initial notion of error rates and circuit functionality when provided with a
finished product – and also could allow the designer to think about required
redundancies [9].

da.) b.)

c.) d.) e.)

Figure 9.15. Possible errors that can occur with molecular QCA cells – cells not attaching (a),
improper distance between cells (b), cell misalignment (c), improper cell rotation (d), cells not
level (e).

It is also important to begin to quantify what affects the sources of error listed
above will have on the storage and movement of binary data. For this reason,
we provide a short qualitative discussion of possible electrostatic interactions
between molecules. Possible interactions are listed and illustrated in Figure
9.16 and include: interactions between the charges, interactions between a
charge and a dipole, charge induced dipole interactions (an anion or cation may
induce a dipole in a polarizable molecule and thus be attracted to it), dipole
induced dipole interactions (the same as before but now the anion or cation
is a permanent dipole), dispersion (when 2 molecules are very close together,
their charge fluctuations are synchronized and have an attractive force), and
the van der Waals radius (the distance between two molecules such that there
outer electron orbitals begin to overlap creating a mutual repulsion between the
molecules). To what degree each of the interactions just listed is a function of
the distance between entities (d) is also shown in Figure 9.16 [10].
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Dipole−dipole 1/d3− +− +

1/d2Charge−dipole + − +

Charge−charge 1/d+ −

Charge−induced 1/d4
dipole

− ++

Dipole−induced
dipole

1/d5−+ −+

Dispersion 1/d6
−+
−+

van der Waals
i 1/d12

Figure 9.16. Possible electrostatic interactions – all could positively or negatively affect inter-
action/communication between molecular QCA cells.

To provide a flavor of how some of these interactions can affect QCA cells,
we can consider kink energy as a function of driver dipole strength. In the
presence of a stronger driver dipole, the energy required to induce a mistake
state increases; and from our above discussion, strong dipoles are a function of
the distance between them (d). Thus, intuitively, closer dipoles imply stronger
energies of interaction, while greater distances imply weaker dipole interactions
and lower kink energies. As another example, one disadvantage to using DNA
as an attachment substrate is that it brings background charge with it. As seen
in Figure 9.16, the energy of interaction between a charge (i.e. from the DNA)
and a dipole (a QCA molecule holding a 1 or 0) is proportional to 1/d2 – and
thus will have a greater (and negative) influence then the desired dipole-dipole
interactions. Charge-dipole interactions could provide a kink energy and as a
result cause a mistake.

All of the electrostatic interactions illustrated in Figure 9.16 (whether pos-
itive, negative, or applicable at all), must be considered in the context of the
specific components of a molecular QCA circuit implementation and will even-
tually help quantify error tolerances in a schematic.

Note that other nano-scale technologies are also subject to error and defects.
(See Chapters 5, 8, 4, 11). This is a common problem.

QCA Design Rules

This section will describe a preliminary set of design rules for QCA. We will
first consider any analogs to CMOS and then specify more specific rules for
molecular QCA.

How they are Analogous to CMOS

The general defining rules for components (i.e. polygons) in a CMOS layer
were listed earlier and included specifying minimum widths, minimum wire
spacings, and required overlaps. Each will be considered in turn in an effort to
provide some initial “guides” for each QCA design rule.
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Minimum width to guarantee flow: There is no direct analog in molecular
QCA circuits until you begin to consider “thicker wires”. As with simple
cell interactions, the error rates associated with molecular wires will be
affected by the amount of energy required to excite one cell in it into a
mistake state. Cell placements, stray particles, etc. can all contribute to
kink energy. The designer should be aware that “thicker” wires (i.e. 2 or
3 cells thick) can raise kink energy. For example, for a wire one cell wide,
simulations show that with molecular QCA cells the energy required to
excite the system into the mistake state is about 600 meV. However, for
a wire 3 cells thick, this excitation energy rises to approximately 1.5 eV
– a much more robust system [1].

Minimum wire spacing for separations: As with metal wires in CMOS
circuits, molecular QCA wires will also have to be a certain distance apart
from one another to ensure that there is no cross talk or short circuits
between them. Distance between individual cells in a wire will also have
to be defined to ensure a value is propagated. Additionally, clock wires
must be laid out as well to generate required electric fields. (CMOS
design rules would obviously apply here if silicon is used to build the
clock circuitry).

Overlap rules to create devices and contacts: When considering overlap,
we must ensure that all cells are “clocked” by an electric field and thus
space silicon wires accordingly. QCA analogs to overlap also include
crossovers between 45-degree and 90-degree cells and the inputs of a
majority gate.

Given a possible self-assembly process and the potential for defects, we
should also consider what the maximum possible spacing is between cells that
will still allow for signal propagation.

A Specific Rule

We will now consider an example design rules for molecular QCA. This will
help to qualify what a circuit designer will need to consider when building a
schematic of QCA cells. We are currently finishing the specifications for a
complete set of QCA design rules.

Our first design rule(s) (1A and 1B in Figure 9.17), consider(s) spacing be-
tween two molecular QCA cells. Specifically, what is the maximum allowed
and minimum required distance between two cells such that they will still trans-
mit data? In Figure 9.17, these distances are labeled xmax and xmin and specific
values would be governed by: substrates to which QCA cells can attach, Ekink

(i.e. background charge with energy of interaction proportional to 1/d2 could
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cause it), and dipole interactions between cells (proportional to 1/d3). Also,
xmin will provide an initial upper bound on maximum device densities.

1A 1B

xmax
Max distance so that a value

would still be transmitted
successfully

xmin
Minimum distance cells can be apart
and still transmit data successfully

Figure 9.17. Design rules 1A and 1B for molecular QCA cells spacing.

9.4 Wrap up

Historically, design rules have helped system designers to become more
involved in the process of bringing computationally interesting systems to re-
alization. We are applying this idea to QCA, and it has had a most positive
effect on interactions between system designers and physical scientists. Both
groups now better understand the needs and constraints of the other. Applying
these ideas and this “process” to other emergent technologies should be most
beneficial.
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Abstract Quantum-dot Cellular Automata (QCA) is a novel computing mechanism that
can represent binary information based on spatial distribution of electron charge
configuration in chemical molecules. It has the potential to allow for circuits
and systems with functional densities that are better than end of the roadmap for
CMOS, but also imposes new constraints on system designers. In this article,
we present the first partitioning and placement algorithm for automatic QCA
layout. The purpose of zone partitioning is to initially partition a given circuit
such that a single clock potential modulates the inter-dot barriers in all of the QCA
cells within each zone. We then place these zones as well as individual QCA
cells in these zones during our placement step. We identify several objectives
and constraints that will enhance the buildability of QCA circuits and use them
in our optimization process. The results are intended to: (1) define what is
computationally interesting and could actually be built within a set of predefined
constraints, (2) project what designs will be possible as additional constructs
become realizable, and (3) provide a vehicle that we can use to compare QCA
systems to silicon-based systems.
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Introduction

Nanotechnology and devices will have revolutionary impact on the
Computer-Aided Design (CAD) field. Similarly, CAD research at circuit, logic
and architectural levels for nano devices can provide valuable feedbacks to nano
research and illuminate ways for developing new nano devices. It is time for
CAD researchers to play an active role in nano research. We will discuss CAD
related issues for QCA (see Chapter 8.7 for QCA background).

Our goal in this article is to explain how CAD can help research to move
from small circuits to small systems of quantum-dot cellular automata (QCA)
devices. We leverage our ties to physical scientists who are working to build
real QCA devices. Based upon this interaction, a set of near-term buildability
constraints has evolved - essentially a list of logical constructs that are viewed as
implementable by physical scientists in the nearer-term. Until recently, most of
the design optimizations have been done by hand. Then these initial attempts to
automate the process of removing a single, undesirable, and unimplementable
feature from a design were quite successful. We now intend to use CAD,
especially physical layout automation, to address all undesirable features of
design that could hinder movement toward a “buildability point” in QCA. The
net result should be an expanded subset of computationally interesting tasks that
can be accomplished within the constraints of a given buildability point. CAD
will also be used to project what is possible as the state-of-the-art in physical
science expands.

In this article, we present the first partitioning and placement algorithm for
automatic QCA layout. The purpose of zone partitioning is to initially partition
a given circuit such that a single clock potential modulates the inter-dot barriers
in all of the QCA cells within each zone. We then place these zones as well
as individual QCA cells in these zones during our placement step. We identify
several objectives and constraints that will enhance the buildability of QCA
circuits and use them in our optimization process. The results are intended
to: (1) define what is computationally interesting and could actually be built
within a set of predefined constraints, (2) project what designs will be possible
as additional constructs become realizable, and (3) provide a vehicle that we
can use to compare QCA systems to silicon-based systems.

10.1 Preliminaries

This section provides a detailed comparison between QCA and CMOS tech-
nologies. We also discuss the need for QCA CAD research, especially the
physical layout automation.
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QCA Wins

As QCA is being considered as an alternative to silicon-based computation,
it is appropriate to enumerate what QCA’s “wins” over silicon-based systems
could be (as well as its potential obstacles). We begin by listing obstacles to
CMOS-based Moore’s Law design (Table 10.1), their effects on silicon based
systems, and how they will affect QCA.

Based on the information in Table 10.1 it is apparent that QCA faces some
of the same general problems as silicon-based systems (timing issues, lithog-
raphy resolutions, and testing), that QCA does not experience some of the
same problems as silicon-based systems (quantum effects and tunneling), and
that silicon-based systems can address one problem better than QCA currently
can (I/O) However, if the I/O problem is resolved, QCA can potentially of-
fer significant “wins” with regard to reduced power dissipation and fabrication.
Additionally, QCA can also offer orders of magnitude in potential density gains
when compared to silicon-based systems. When examining the existing design
of an ALU for a simple processor [11], one version is potentially 1800 times
more dense (assuming deterministic cell placement) than an end of the CMOS
curve equivalent (0.022 micron process). If based on a more implementable
FPGA (whose logic cell is a single NAND gate), the ALU is no less dense than
a fully custom, end of the CMOS curve equivalent [12]. Clearly, realizable and
potential QCA systems warrant further study.

Builability Analysis via QCA CAD

One might argue that it would be premature to perform any systems-level
study of an emergent device while the physical characteristics of a device con-
tinue to evolve. However, it is important to note that many emergent, nano-scale
devices are targeted for computational systems - and to date, most system-
level studies have been proposed by physical scientists, and usually end with a
demonstration of a functionally complete logic set or a simple adder. Useful
and efficient computation will involve much more than this, and, in general,
it is important to provide scientists with a better idea of how their devices
should function. This coupling can only lead to an accelerated development of
functional and interesting systems at the nano-scale. More specifically, with
QCA, physicists are currently preparing to test the self-assembly process and its
building blocks. Thus, our work can help provide the physicists with compu-
tationally interesting patterns (that could be fabricated) - the real and eventual
desired end result.

Our toolset will focus on the following undesirable design schematic char-
acteristics associated with a near-to-midterm buildability point: large amounts
of deterministic device placement, long wires, clock skew, and wire crossings.
We will use CAD to: (1) identify logic gates and blocks that can be duplicated
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Table 10.1. Comparing characteristics of silicon-based systems to QCA based systems

Obstacle Effect on CMOS circuits How it relates to QCA
Quantum
Effects
and Tun-
neling

A gate that controls the flow of elec-
trons in a transistor could allow them
to tunnel through small barriers -
even if the device is supposed to be
off [14].

No effect; QCA devices are charge
containers, not current switches and
actually leverage this property.

High
power
dissipa-
tion

Chips could melt [15] [9] unless
problems are overcome for which
SIA roadmap says “there are no
known solutions”. 2014 projection:
chip with 1010 devices dissipates
186W of power.

1011 QCA devices with 10−12

switching times dissipate 100W of
power. QCA’s silicon-based clock
will also dissipate power. Still,
clocking wires should move charge
adiabatically [5], greatly reducing
power consumption.

Slow
wires

Wires continue to dominate the over-
all delay [6]. Also, projections show
that for 60 nm feature sizes, less than
10% of the chip is reachable in 1
clock cycle [4].

The inherent pipelining caused by
the clock make global communica-
tion and signal broadcast difficult
[13]. Problems are similar to silicon-
based systems but for different rea-
sons.

Litho-
graphy
resolu-
tions

Shorter wavelengths and larger aper-
tures are needed to provide finer res-
olutions for decreased feature sizes.

QCA’s clock wiring is done litho-
graphically, which is subject to the
same constraints as silicon-based
systems. However, closely spaced
nanowires could also be used [8].

Chip I/O I/O count continue to increases as the
technology advances (Rent’s rule),
but pin counts do not scale well.
With more processing power, we will
need more I/O [15].

I/O remains under investigation with
one approach being to include
“sticky ends” at the ends of certain
DNA tiles in order to bind nano-
particles or nano-wires

Testing Even if designs are verified and sim-
ulated, defects caused by impuri-
ties in the manufacturing process,
misalignment, broken interconnec-
tions, etc. can all contribute to non-
functional chips. Testing does not
scale well [15].

We must find and route around de-
fects caused by self-assembly and/or
find new design methodologies to
make circuits robust. Defects for
self-assembled systems could range
from 70% to 95%. Structures such
as thicker wires could help.

Cost Fabrication facility cost doubles ap-
proximately every 4.5 years [17],
and could reach 200 billion dollars
in 2015.

Self-assembly could be much more
inexpensive.

to reduce wire crossings, (2) rearrange logic gates and nodes to reduce wire
crossings, (3) create shorter routing paths to logical gates (to reduce the risk of
clock skew and susceptibility to defects and errors), and (4) reduce the area of
a circuit (making it easier to physically build). Some of these problems have
been individually considered in existing work for silicon-based VLSI design,
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but in combination, form a set of constraints unique to QCA requiring a unique
toolset to solve them.

CMOS vs QCA Placement

Although QCA and CMOS have considerable technological differences,
CMOS VLSI placement algorithms [2, 7, 19] have been modified to satisfy
the design constraints imposed by QCA physical science. There are many rea-
sons for using this approach. Notably, VLSI design automation algorithms
work on graph-based circuits, and it has been found to be advantageous to
represent QCA circuits as graphs – especially because at present, only two
dimensional circuits have been proposed and are seen as technically feasible.
Existing algorithms can be fine-tuned to meet QCA’s constraints and objectives.
Additionally, physical design issues for CMOS have been widely studied, opti-
mized, and proven to be NP-complete [3]. Thus, it makes sense to leverage this
existing body of knowledge and apply it to a new problem. Finally, because
so few design automation tools and methodologies exist for QCA, using VLSI
algorithms as a base will allow us to compare and set standards for our place
and route methodologies.

More specifically, we note the following similarities and differences between
CMOS and QCA placement.

Similarities: In CMOS placement, partitioning, floorplanning, and place-
ment are performed in this order (a hierarchical approach) to efficiently
handle the design complexity. We use a similar approach in QCA place-
ment: zone partitioning, zone placement, and cell placement. The fol-
lowing objectives are common in both CMOS and QCA partitioning and
work to solve the same goal: cutsize and performance. The area, per-
formance, congestion, and wire length objectives are common to both
CMOS and QCA placement.

Differences: two major differences are QCA clocking and QCA single-
layer routing resource. Minimizing the total number of QCA wire cross-
ings is critical in QCA placement as QCA layouts must be done in a single
layer (unlike the multi-layer CMOS layout). Thus, node duplication in
CMOS targets area and performance optimizations while QCA dupli-
cation targets minimizing wire crossings to conform to QCA’s clocking
requirements, we use k-layered bipartite graphs to represent an original
and partitioned netlist. This in turn requires QCA partitioning to mini-
mize area increases (after the bipartite graph construction). In addition,
the length of all reconvergent paths from the same partition should be
balanced (to be discussed in detail later) and cyclic dependencies are not
allowed.
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Figure 10.1. Overview of the QCA layout automation process. A logic and a wire block are
shown. First, the input circuit is partitioned into logic and wire blocks (zone partitioning).
Second, each block is placed onto 2D space while satisfying QCA timing constraints (zone
placement). Third, QCA cells in each block is placed (QCA cell placement). Fourth, routing is
performed to finish inter-block interconnect (global QCA routing) and intra-block interconnect
(detailed QCA routing).

10.2 Problem Formulation

In this section, we provide an overview of the placement process for QCA
circuits. We then present the formulation of three problems related to QCA
placement–zone partitioning, zone placement, and cell placement problem. Our
recent work on zone partitioning and zone placement work is available in [10]
and cell placement in [16].

Overview of the Approach

An overview of QCA physical design automation is shown in 10.1. QCA
placement is divided into three steps: zone partitioning, zone placement, and
cell placement. The purpose of zone partitioning is to decompose an input
circuit such that a single potential modulates the inner-dot barriers in all of
the QCA cells that are grouped within a clocking zone. Unless QCA cells
are grouped into zones to provide zone-level clock signals, each individual
QCA cell will need to be clocked. The wiring required to clock each cell
individually would easily overwhelm the simplicity won by the inherent local
interconnectivity of the QCA architecture. However, because the delay of
the biggest partition also determines the overall clock period, the size of each
partition must also be determined carefully. In addition, four-phase clocking
imposes a strict constraint on how to perform partitioning. The zone placement
step takes as input a set of zones–with each zone assigned a clocking label
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Figure 10.2. Illustration of reconverent path constraint. (a) all three reconvergent paths from
S to T are unbalanced. If S is in the switch phase, A, B, and T will be in relax, release, and
hold phase. This puts C and T into relax and release, thereby causing a conflict at T . The
bottom path forces T to be in switch phase, causing more conflict. (b) wire blocks W1, W2, and
W3 are inserted to resolve this QCA clocking inconsistency. (c) some wire blocks are shared to
minimize the area overhead.

obtained from zone partitioning. The output of zone placement is the best
possible layout for arranging the zones on a two dimensional chip area. Finally,
cell placement visits each zone to determine the location of each individual logic
QCA cell – (cells are used to build majority gates).

Zone Partitioning Problem

A gate-level circuit is represented with a directed acyclic graph (DAG)
G(V, E). Let P denote a partitioning of V into K non-overlapping and non-
empty blocks. Let G′(V ′, E′) be a graph derived from P , where V ′ is a set of
logic blocks and E′ is a set of cut edges based on P . A directed edge e(x, y) is
cut if x and y belong to different blocks in P . Two paths p and q in G′ are re-
convergent if they diverge from and reconverge to the same blocks as illustrated
in Figure 10.2(a). If l(p)denotes the length of a reconvergent path p in G′, then
l(p) is defined to be the number of cut edges along p. A formal definition of
zone partitioning problem is as follows:

Definition 10.1 Zone partitioning: we seek a partitioning of logic gates in
the given netlist into a set of zones so that cutsize (= total number of cut nets),
wire block (= required during the subsequent zone placement) are minimized.
The area of each partition needs to be bounded (area constraint), and there
should not exist cyclic dependency among partitions (acyclic constraint). In
addition, the length of all reconvergent paths should be balanced (clocking
constraint).

The reconvergent path constraint is illustrated in Figure 10.2. Cycles may
exist among partitions as long as their lengths are multiples of four (i.e. because
of an assumed 4-phase, QCA clock). However, it becomes difficult to enforce
this constraint while handling other objectives and constraints. Therefore, we
prevent any cycles from forming at the partition level. In addition, it is difficult
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to maintain the reconvergent path constraint during the partitioning process.
Therefore, we allow the reconvergent path constraint to be violated and perform
a post-process to add wire blocks to fix this problem. Since the addition of wire
blocks causes an overall increase in area to increase, we minimize the amount
of wire blocks that are needed to completely remove the reconvergent path
problems during zone partitioning.

Zone Placement Problem

Assuming that all partitions (= zone) have the same area, placement of zones
becomes a geometric embedding of the partitioned network onto a m×n grid,
where each logic/wire block is assigned to a unique location in the grid. In this
case, a bipartite graph exists for every pair of neighboring clocking levels. We
define the k-layered bipartite graph as follows:

Definition 10.2 K-layered bipartite graph: a directed graph G(V, E) is
k-layered bipartite graph iff (i) V is divided into k disjoint partitions, (ii) each
partitionp is assigned a level, denoted lev(p), and (iii) for every edge e = (x, y),
lev(y) = lev(x) + 1.

Therefore, the zone placement problem is to embed a zone-level k-layered
bipartite graph onto an m × n grid so that all blocks in the same layer are
placed in the same row. All the I/O terminals are assumed to be located on the
top and bottom boundary of each block, and we may insert routing channels
between clocking levels for the subsequent routing. A formal definition of zone
placement problem is as follows:

Definition 10.3 Zone placement: we seek to place the zones we obtain from
zone partitioning onto a 2D space so that area, wire crossings and wire length
are minimized. Each zone (= logic/wire block) is labeled with a clocking level (=
longest path length from input zones), and all zones with the same clocking level
should be placed in the same row (clocking constraint). In addition, all inter-
zone wires need to connect two neighboring rows (neighboring constraint).

Cell Placement Problem

The input to the cell placement is the zone placement result, where all log-
ic/wire blocks at the same clocking level are placed in the same row. The output
of cell placement is an arrangement of QCA cells in each logic block. The re-
convergent path problem does not exist in cell placement–it is perfectly fine to
have unbalanced reconvergent path lengths among the logic gates in each logic
block. The reason is that correct output values will eventually be available at
the output terminals in each block if the clock period is longer than the max-
imum path delay in each block. We determine the clock period based on the
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maximum path delay among all logic/wire blocks. A formal definition of cell
placement problem is as follows:

Definition 10.4 Cell placement: we seek a placement of individual logic
gates in the logic block so that area, wire crossings and wire length are mini-
mized. The following set of constraints exists during QCA cell placement: (1)
the timing constraint: the signal propagation delay from the beginning of a
zone to the end of a zone should be less than a clock period established from
zone partitioning and the constraints of physical science (maximum zone delay)
(i.e. we want to eliminate possible skew), (2) the terminal constraint: the I/O
terminals are located on the top and bottom boundaries of each logic block,
(3) the signal direction constraint: the signal flow among the logic QCA cells
needs to be unidirectional-from the input to the output boundary for each zone.

A signal’s direction is dictated by QCA’s clocking scheme, where an electric
field E created by underlying CMOS wire is propagating in uni-directionally
within each block. Thus, cell placement needs to be done in such a way that the
logic outputs will propagate in the same direction as E. In order to balance the
length of intra-zone wires, we construct a cell-level k-layered bipartite graph
for each zone and place it.

10.3 Zone Partitioning Algorithm

This section presents zone partitioning and wire block insertion algorithms.
Zone partitioning algorithm is an iterative improvement based method, whereas
wire block insertion is based on the longest path computation.

Zone Partitioning

Let lev(p) denote the longest path length from the input partitions (partitions
with no incoming edges) to partition p, where the path length is the number
of partitions along the path. Then wire(e) denotes the total number of wire
blocks to be inserted on an inter-partition edge e to resolve the unbalanced
reconvergent path problem (clocking constraint of the QCA zone partitioning
problem). Simply, wire(e) = lev(y) + lev(x) − 1 for e = (x, y), and the
total number of wiring blocks required without resource sharing is

∑
wire(e).

Thus, our heuristic approach is to minimize the
∑

wire(e) among all inter-
zone edges while maintaining acyclicity. Then, during post-processing, any
remaining clocking problems are fixed by inserting and sharing wire blocks.
An illustration of zone partitioning and wire block insertion is shown in Figure
10.3.

First, the cells are topologically sorted and evenly divided into a number
of partitions (p1, p2, · · · pk). The partitions are then level numbered using a
breadth-first search. Next, the acyclic FM partitioning algorithm [1] is per-
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Figure 10.3. Illustration of zone partitioning and wire block insertion. (a) directed graph model
of input circuit, (b) zone partitioning under acyclicity and reconvergent path constraint, (c) wire
block insertion, where the numbers denote the longest path length. The dotted nodes indicate
wire blocks.

formed on adjacent partitions pi and pi+1. Constraints that must be met during
any cell move include area and acyclicity. The cell gain has two components:
cutsize gain and wire block gain. The former indicates the reduction in the
number of inter-partition wires, whereas the latter indicates the reduction in the
total number of wire blocks required. We then find the best partition based on
a combined cost function for both cutsize and wire block gain. Multiple passes
are performed on two partitions pi and pi+1 until there is no more improvement
on the cost. Then, this acyclic bipartitioning is performed on partitions pi+1

and pi+2, etc.
Movement of a single cell could change lev(p), the level number of a partition

p. Therefore every time a cell move is made, we check to see if this cell move
affects the level number. Levels can change as a result of a newly introduced
inter-zone edge or from completely removing an inter-zone edge. In Figure
10.4, cell a in Figure 10.4(a) is moved from partition A to B, thereby creating
a new inter-partition edge in 10.4(b). This in turn changes the level of all
downstream partitions. In Figure 10.4(c), cell a in Figure 10.4(a) is moved
from partition A to C, thereby removing the inter-partition edge between A
and C 10.4(c). This again changes the level of all downstream partitions. To
update levels, we maintain a maxparent for each p so that the level number of
the parent of p is lev(p)−1. lev(F ) is defined as the level number of the “from
block” of a cell c and lev(T ) is defined as the level number of the “to block” of c.
In the first case where a new inter-partition edge is created, lev(T ) is updated if
lev(F ) ≥ lev(T ) after the cell move. In this case, lev(T ) = lev(F )+1. Then,
we recursively update the maxparent and levels of all downstream partitions.
The maxparent for partition C was changed from A to B in Figure 10.4(b), and
lev(C) now becomes lev(B) + 1 = 2. This in turn requires the level number
of all downstream nodes to change. In the second case where an existing
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Figure 10.4. Illustration of clocking level update.

inter-partition edge is removed, the maxparent again needs to be update. The
maxparent for partition C was changed from A to none in Figure 10.4(c), and
lev(C) now becomes lev(C) = 0.

Wire Block Insertion

During post-processing, any remaining clocking problems are fixed by in-
serting and sharing wire blocks, while satisfying wire capacity constraints. The
input to this algorithm is the set of partitions and inter-partition edges. First,
a super-source node is inserted in the graph whose fan-out neighbors are the
original sources in the graph. This is done to ensure that all sources are in the
same clocking zone. Then the single-source longest path is computed for the
graph with the super-source node as the source–and every partition is assigned
a clocking level based on its position in the longest path from the source. For
a graph with E′ inter-partition edges, this algorithm runs in exactly O(E′) it-
erations. In the algorithm’s next stage, any edge connecting partitions that are
separated by more than one clock phase is marked, and the edge is added to an
array of bins at every index where a clocking level is missing in the edge. The
following algorithms perform wire block insertion.

wire block insertion(G(V, E))
lev(SUPER) = −1;
Q.enque(SUPER);
BFS-mark(G, SUPER);
while (E not empty)

N = E.pop();
S = lev(N.source);
T = lev(N.sink);
while (S + 1 < T )
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S = S + 1;
BIN [S] = (BIN [S], E);

BFS-mark(G, Q)
N = Q.deque;
S = set of fanout neighbors of N ;
while (S not empty)

A = S.pop();
if (LAST-PARENT(A) = N )

lev(A) = lev(N) + 1;
Q.enque(A);

BFS-mark(G, Q)

The number of wire blocks in each bin is calculated based on a predetermined
capacity for the wire blocks. This capacity is calculated based on the width of
each cell in the grid. Then the inter-partition edges are distributed amongst
the wire block, filling one wire block to full capacity before filling the next. It
might seem that a better solution would be to evenly distribute the edges to all
the wire blocks in the current level. This is not true because the wire blocks
with the most number of feed-throughs are placed closer to the logical blocks
in the next stage. This minimizes wire length, and hence the number of wire
crossings.

10.4 Zone Placement Algorithm

This section presents our zone placement algorithm. Our zone partitioning
algorithm is an iterative improvement based method, where the initial placement
of a zone-level k-level-bipartite-graph is refined via block swaps to minimize
the total number of wire crossings and reduce wire length.

Placement of k-Layered Bipartite Graph

The logical blocks (obtained from the partitioning stage) and the wire blocks
(obtained from post-processing) are placed on an m×n grid with a given aspect
ratio and skew. The individual zone dimensions and the column widths are kept
constant to ensure scalability and manufacturability of this design as clocking
lines would have to be laid underneath QCA circuits with great precision. The
partitions are laid out on the grid, with the cells belonging to the first clocking
zone occupying the leftmost cells of the first row of the grid, and the next level
occupying the leftmost cell of the next row, etc., until row r. The next level of
cells is placed again on row r to the right of the rightmost placed cell amongst
the r placed rows. Then, the next level of cells is placed in row r − 1 and the
rest of the cells are placed in a similar fashion until the first row is reached. This
process is repeated until all cells are placed (thereby forming a “snake-shape”).
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Figure 10.5. Illustration of zone placement and wire crossing minimization. (a) zone partition-
ing with wire block insertion, (b) zone placement, where a zone-level k-layered bipartite graph
is embedded onto a 2D space, (c) wire crossing minimization via block re-ordering.

The white nodes are white space that is introduced because of variations in
the number of wire and logic blocks among the various clocking levels. The
maximum wire length between any two partitions in the grid determines the
clock frequency for the entire grid as all partitions are clocked separately. For
the first and last rows (where inter-partition edges are between partitions in two
different columns), maximum wire length was given more priority as maximum
wire length at these end zones can be twice as bad as the maximum wire length
between partitions on the same column. An illustration of zone placement and
wire crossing minimization is shown in Figure 10.5.

Wire Crossing Minimization

During the next phase, blocks are reordered within each clocking level to
minimize inter-partition wire length and wire crossings. Two classes of solu-
tions were applied to minimize the above objectives: an analytical solution that
uses a weighted barycenter method, and Simulated Annealing. The analyti-
cal method only considers wire crossings since as there is a strong correlation
between wire length and the number of wire crossings.

Analytical Solution: A widely used method for minimizing wire crossings
(introduced by Sugiyama et al. [18]) is to map the graph into k-layer bipartite
graph. The vertices within a layer are then permuted to minimize wire crossings.
This method maps well to this problem as we need to only consider the latter part
of the problem (the clocking constraint provides the k-layer bipartite graph).
Still, even in a two-layer graph, minimizing wire-crossings is NP-hard [18].
Among the many heuristics proposed, the barycenter heuristic [18] has been
found to be the best heuristic in the general case for this class of problems. A
modified version of the barycenter heuristic was used to accommodate edge
weights. Edge weights represent the number of inter-partition edges that exist
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Figure 10.6. Illustration of cell placement, global routing and detailed routing. (a) zone place-
ment result, (b) cell placement result, where cells in each partition (= zone) again forms a k-
layered bipartite-graph, (c) global routing, where inter-zone connections are made, (d) detailed
routing, where intra-zone connections are made.

between the same pair of partitions. The heuristic can be summarized as follows:

barycenter(v) =
∑

N [weight(n) × position(n)]∑
N weight(n)

where v is the vertex in the variable layer, n is the neighbor in the fixed layer,
and N is the set of all neighbors in the fixed layer.

Simulated Annealing: A move is done by randomly choosing a level in
the graph and then swapping two randomly chosen partitions [p1, p2] in that
level in order to minimize the total wire length and wire crossings. In our
implementation, the initial calculation of the wire length is O(n) and updating
the number of wire crossings is O(n3) – where n is the number of nodes in a layer
of the bipartite graph. In our approach, we initially compute the wire length
and wire crossing and incrementally update these values after each move so that
the update can be done in O(m) time where m is the number of neighbors for
pi. This speedup allows us to explore a greater number of candidate solutions,
and as a result, obtain better quality solutions.

10.5 Cell Placement Algorithm

This section presents our cell placement algorithm, which consists of feed-
through insertion, row folding, and wire crossing and wire length optimization
steps. Figure 10.6 shows an illustration of cell placement as well as QCA
routing.

Feed-Through Insertion

In order to satisfy the relative ordering and to satisfy the signal direction
constraint, the original graph G(V, E) is mapped into a k-layered bipartite graph
G′(V ′, E′) which is obtained by insertion of feed-through gates, where V ′ is
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Figure 10.7. Illustration of feed-through insertion, where a cell-level k-layered bipartite-graph
is formed via feed-through nodes.

the union of the original vertex set V and the set of feed-through gates, and E′
is the corresponding edge set. The following algorithm performs feed-through
insertion.

feed-through insertion(G(V, E))
if (V is empty)

return;
n = V .pop();
if (n has no child with bigger level)

return;
g = new feed-through;
lev(g) = lev(n) + 1;
for (each child c of n)

g = parent(c);
c = child(g);

n = parent(g);
g = child(n);
add g into G;
feed-through insertion(G(V, E))

In this algorithm, we traverse through every vertex in the vertex set of the
graph. For a given vertex, if any of the outgoing edges terminate at a vertex
with a topological order that is more than one level apart, a new feed-through
vertex is added to the vertex set. The parent of the feed-through is set to the
current vertex, and all children of the current vertex which have a topological
order difference of more than one are set as the children of the feed-through. We
do not need to specifically worry about the exact level difference between the
feed-through and the child nodes, as this feed-through insertion is a recursive
process. This algorithm runs in O(k|V ′|), where k is the maximum degree
of V ′. Figure 10.7 shows the graph before and after feed-through insertion.
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A trivial result of this stage is that all short paths have a set of feed-throughs
between the last logical gate in the path and the last row.

Row-folding Algorithm

After the feed-through insertion stage, some rows may have more gates than
the average number of gates per row. The row with the largest number of gates
defines the width of the entire zone, and hence the width of the global column
that the zone belongs to. This significantly increases the circuit area. Hence,
rows with a large number of cells are folded into two or more rows. This is
accomplished by inserting feed-through gates in the place of logic gates, and
moving the gates to the next row. Row-folding decreases the width of the
row as a feed-through has a lower width than the gate it replaces. A gate g is
moved into the next existing row if it belongs to the row that needs to be folded,
and all paths that g belongs to contain at least one feed-through with a higher
topological order than g. The reason for the feed-through condition is that g,
along with all gates between g and the feed-through can be pushed to a higher
row, and the feed-through can be deleted without violating the topological
ordering constraint. The following algorithm performs row folding.

row folding(G, w)
if (w is a feed-through)

return(TRUE);
if (w.level = G.max level)

return(FALSE);
RETVAL = TRUE;
k = w.out-degree;
i = 0;
while (RETVAL and i < k)

RETVAL = row folding(G,w.CHILD(i));
i = i + 1;

return(RETVAL);

This algorithm returns true if a node can be moved, and false if a new row has
to be inserted. If this feed-through criterion is not met, and the row containing
g has to be folded, then a new row is inserted and g is moved into that row.

The number of gates that need to be moved from a row that needs folding to
a new row is given by the following trivial calculation. Let n be the number of
gates that need to be moved to the next row. Let m be the original number of
gates in the row, and let M be the maximum number of gates allowed in a row.
Further, let a be the ratio of the width of a feed-through to the width of the gate.
As the width of a gate is always greater than the width of a feed-through, (a < 1),
for every gate that is moved to a new row, a feed-through has to be inserted in
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its original place. Hence, after moving n gates to the next row, the width of the
original row will now be m−n+an, so n = (m−M)/(1−a). This calculation
is repeated for the next row if n is itself greater than the constraint M . The
principal reason for increasing the height of a zone rather than increasing the
width of the zone is that the width of global column that the zone belongs to
is much smaller than the height of the column as the aspect ratio of the entire
circuit layout is close to unity.

Wire Length and Wire Crossing Minimization

During zone placement stage, a zone-level k-layered bipartite graph is formed
via wire block insertion. This graph is then placed in such a way that all
zones at the same clocking level are placed in the same row. The same graph
transformation and placement is done during cell placement–a cell-level k-
layered bipartite graph is formed via feed-through insertion, and this graph is
placed in such a way that all cells of the same longest path length are placed in
the same row. In both cases, iterative improvement is performed to reduce the
wire crossing and wire length at the zone and cell level. We perform barycenter
heuristic to build the initial solution and perform block/cell swaps to improve
the solution quality.

To compute the net wire length in a circuit we traverse through every vertex
and accumulate the difference between the column numbers of the vertex and
all of its children. This runs in O(N), where N is the number of vertices.
But, during the first calculation, we store the sum of all outgoing wire length
in every vertex. This enables us to incrementally update if the position of only
one node changes. A node cannot change its row number since at this stage the
topological level is fixed. If a node changes its position within a level, then it
is enough to calculate the difference in position with respect to its neighbors
alone. Hence, subsequent wire length calculation is reduced to O(K) where K
is the node’s vertex degree.

Wire crossing computation can be done with either the adjacency list or
matrix, depending on the sparseness of the graph. We used the adjacency matrix
to compute the number of wire crossings in a graph. In a graph, there is a wire
crossing between two layers v and u if vi talks to uj and vx talks to uy, where
i, j, x, and y denote the relative positional ordering in the nodes, and either,
i < x < j < y or i < x < y < j or x < i < y < j or x < i < j < y without
loss of generality. In terms of an adjacency matrix, this can be regarded as if
either the point (i, j) is in the lower left sub-matrix of (x, y) or vice versa, there
is a crosstalk. Hence, our solution is to count the number of such occurrences.
If this counting is done unintelligently, it can be in the order of O(n4). Our
algorithm to compute the number of wire crossings runs in O(n2).
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Figure 10.8. Illustration of incremental wire crossing computation. (a) a bipartite graph with
3 wire crossings, (b) adjacency matrix of (a), (c) row-wise sum of (b) from left to right, (d)
column-wise sum of (c) from bottom to top. Each entry in (d) now represent the total sum of
entries in low-left sub-matrix. Using (b) and (d), wire crossing is A2 × B1 + B3 × C2 = 3,
where the first entry is from (b) and second from (d).

Figure 10.8 shown and example of wire crossing computation. The graph
in Figure 10.8(a) can be represented by the adjacency matrix shown in Figure
10.8(b). The number of crossings in Figure 10.8(a) is 3. This can be obtained
from the matrix by adding the product of every matrix element and the sum of its
left lower matrix elements (i.e. the number of crossings is

∑
(Aij×

∑ ∑
Axy),

where i + 1 < x < n and 1 < y < j − 1). This formula gives a good intuition
of the process but is computationally very expensive. We now illustrate our
method to calculate wire crossing more efficiently. First we take the row-wise
sum of all entries as in Figure 10.8(c). Then we use this to compute the column-
wise sum as in 10.8(d). Finally, we multiply all the entries in the original matrix
and the column-wise sum matrix to compute the total wire crossing–each entry
(r, c) in the original matrix is multiplied by the entry (r+1, c−1) in the column-
wise sum matrix as shown in 10.8(d). In the simulated annealing process, when
we swap two nodes, it is identical to swapping the corresponding rows in the
above matrices. Hence, it is enough if we just update the values of the rows
in between the two rows that are being swapped. The pseudo-code for this
incremental algorithm is as follows.

calc wire crossing(R1, R2, M)
if (R2 < R1)

return(calc wire crossing(R2, R1, M));
sum = pos = neg = diff = j = 0;
while (j < NumRows)

tmp = diff ;
i = R2 − 1;
while (i > R1)

sum = sum + M [i][j] ∗ (pos − neg);
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diff = diff + M [i][j];
i = i + 1;

sum = sum − M [R1][j] ∗ (tmp + neg);
sum = sum + M [R2][j] ∗ (tmp + pos);
pos = pos + M [i][j];
neg = neg + M [R2][j];

return(sum);

During cell placement, a move is done by randomly choosing a level in the
graph and then swapping two randomly chosen gates [g1, g2] in that level in order
to minimize the total wire length and wire crossing. In our implementation,
the initial calculation of the wire length takes O(n) and updating the number
of wire crossings takes O(n2) where n is the number of nodes in a layer of the
bipartite graph. In our approach, we initially compute the wire length and the
number of wire crossings and incrementally update these values after each move
so that the update can be done much faster as illustrated above. This speedup
allows us to explore a greater number of candidate solutions, and as a result,
obtain better quality solutions. We set the initial temperature such that roughly
50% of the bad moves were accepted. The final temperature was chosen such
that less than 5% of the moves were accepted. We used three different cost
functions. The first cost function only optimized based on the net wire length.
The second cost function evaluated the number of wire crossings, while the last
cost function looked at a weighted combination of both. The weights used were
the ratio between the wire length and the number of wire crossings obtained in
the analytical solution.

10.6 Experimental Results

Our algorithms were implemented in C++/STL, compiled with gcc v2.96
run on Pentium III 746 MHz machine. The benchmark set consists of seven
biggest circuits from ISCAS89 and five biggest circuits from ITC99 suites due
to the availability of signal flow information.

Zone Partitioning Results

Table 10.2 shows the zone partition results for our QCA placement. The
number of partitions is determined such there are 100 ± 10 majority gates per
partition. We set the capacity of each wire block to 200 QCA cells. We compare
acyclic FM [1] and QCA zone partitioning in terms of cutsize, white space, and
wire blocks needed after zone placement. With QCA partition, we see a 20%
improvement in cutsize at the cost of a 6% increase in runtime. A new algorithm
was implemented to reduce the number of white space, by taking into account
terminal propagation [2]. Our new algorithm for reducing the number of white
nodes involves moving wire blocks to balance the variation in the number of
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Table 10.2. QCA zone partitioning results.

Acyclic FM Zone Partitioner
name cut white wire cut white wire

b14 2948 151 138 2566 168 127
b15 4839 220 260 4119 144 256
b17 16092 1565 1789 13869 1616 1710
b20 6590 641 519 6033 642 518
b21 6672 599 560 6141 622 557
b22 9473 1146 1097 8518 1158 1098

s13207 2708 143 138 1541 144 137
s15850 3023 257 183 2029 254 181
s35932 7371 875 1014 5361 734 1035
s38417 9375 757 784 5868 775 773
s38584 9940 1319 1155 7139 1307 1095
s5378 1206 34 30 866 34 30
s9234 1903 99 81 1419 104 76

Ave 6318 600 596 5036 592 584
Ratio 1 1 1 0.8 0.99 0.98
time 14646 14509

partitions per clocking level. Although our algorithm results in a 67% decrease
in wire nodes and 66% decrease in white nodes, there is a tradeoff in a resulting
increase in the number of wire crossings. Since wire crossings have been seen
as a much more significant problem, we choose to sacrifice an increase in area
for a decrease in the number of wire crossings.

Zone Placement Results

Table 10.3 details our zone placement results, where we report placement
area, wire length, and wire crossings for the benchmarked circuits. We compare
the analytical solution to simulated annealing. Comparing simulated annealing
to the analytical solution, we see an 87% decrease in wire length and slight
increase in wire crossings.

Cell Placement Results

Table 10.4 shows our cell placement results where we report net wire length
and the number of wire crossings for the circuits using our analytical solution
and all three flavors of our simulated annealing algorithm. We further tried
simulated annealing from analytical start, and the results were identical to the
analytical solution. We observe in general that the analytical solution is better
than all three flavors of the Simulated Annealing methods, except in terms of
wire length in the case of the weighted Simulated Annealing process. But, the
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Table 10.3. QCA zone placement results.

Analytical SA-based
name area length xing length xing

b14 20x17 81 67 23 67
b15 20x24 59 90 34 90
b17 69x52 3014 346 305 345
b20 36x36 414 165 99 166
b21 36x37 140 172 100 172
b22 48x50 1091 230 188 230

s13207 18x21 28 9 28 9
s15850 24x23 81 16 11 14
s35932 45x44 1313 64 78 68
s38417 42x43 493 54 48 54
s38584 55x48 1500 102 110 80
s5378 10x10 3 10 2 9
s9234 15x16 15 11 5 11

Ave 633 103 79 101
Ratio 1 1 0.13 0.98
time 23 661

Table 10.4. QCA cell placement results.

Analytical SA+WL SA+WC SA+WL+WC
wire xing wire xing wire xing wire xing

b14 5586 1238 28680 23430 54510 3740 5113 4948
b15 9571 1667 23580 40400 69030 7420 8017 8947

s13207 3119 548 14060 15530 30610 1450 3250 1982
s15850 3507 634 18610 22130 42700 2140 3919 2978
s38417 9414 1195 45830 48400 80240 7320 9819 9929
s38584 19582 4017 59220 75590 140130 9820 20101 33122
s5378 1199 156 6280 6690 13600 730 1344 841
s9234 2170 205 10720 11540 23290 980 1640 2159

Ave 4192 741 16980 19950 38950 2740 3880 6878
Ratio 1 1 4.05 26.9 9.29 3.69 0.92 9.27
time 180 604 11280 12901

tradeoff in wire crossings makes the analytical solution more viable, since wire
crossings pose a bigger barrier than wire length in QCA architecture.

One interesting note is that when comparing amongst the three flavors of
simulated annealing, we find that simulated annealing with wire crossing min-
imization alone has the best wire crossing number. However, surprisingly, in
terms of wire length the simulated annealing procedure with wire length alone
as the cost function is not as good as the simulated annealing procedure which



316 NANO, QUANTUM AND MOLECULAR COMPUTING

optimizes both wire length and wire crossing. We speculate that this behavior
is because a lower number of wire crossings has a strong influence on wire
length, but smaller wire length does not necessarily dictate a lower number of
crossings in our circuits.

10.7 Conclusions and Ongoing Work

In this article, we proposed a QCA partitioning and placement problem and
present an algorithm that will help to automate the process of design within the
constraints imposed by physical scientists. Work to address QCA routing and
node duplication for wire crossing minimization are underway. Our ongoing
work for zone placement includes a 2D placement solution, where the partitions
are placed anywhere in the grid with the help of properly clocked routing chan-
nels. The outputs from this work and the work discussed here will be used to
generate computationally interesting and optimized designs for experiments by
QCA physical scientists. Finally, this work is an example of how systems-level
research can positively affect physical device development - and why we should
integrate both veins of research. Lastly, during this work it became apparent
that a better picture of the QCA circuit design could be painted if we could
compare the results from QCA placement to the placement of a CMOS circuit
with the same functionality, and our ongoing work focuses on this issue.
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Preface

The tremendous density that we expect from scaling down device sizes leads
us to another very important problem. We are already quite far behind in
our validation technologies today when total device count is on the order of
several millions, and each single device can be assumed to function more or
less correctly. The so called “validation gap” in the semiconductor industry
translate to about 70% of any design cycle being devoted to validating the
correctness of a design.

Some of us believe not only that the tools for complete formal verification
are inadequate, but also that the methodologies are not completely developed in
order to exploit the full power of formal verification. For example, exploiting
modularity, hierarchy, and composability in design may enable us to formally
verify larger designs.

The authors of the single chapter in this section address some of these issues,
and speculate how to apply various formal verification techniques applicable to
large scale systems, to future large-scale nanotechnology based systems.
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Abstract Any nano-system that designers build must guarantee functional correctness.
The sheer scale factor and the added layers of uncertainty in nano-systems de-
mand revolutionary breakthroughs in system design tools and algorithms. Formal

 323 

S.K. Shukla and R.I. Bahar (eds.), Nano, Quantum and Molecular Computing, 323-351 

© 2004 Kluwer Academic Publishers. Printed in the Netherlands. 



324 NANO, QUANTUM AND MOLECULAR COMPUTING

verification of nano systems, then, must be able to deal with large state spaces, to-
gether with the presence of unknowns and uncertainties. The methods described
in this chapter present a suite of algorithms that can offer potential in reducing
the problem complexity in verification of nano-systems.

Keywords: Verification, model checking, unknowns, uncertainties

11.1 Introduction

Nanotechnology has brought us the promise of building multi-billion device
systems. However, with such minuscule devices, where the logic and architec-
ture are built on defect-prone nanostructured devices, verification and validation
of such large-scale nano systems will be a nightmare for designers and system
integrators.

Conceptually, any nano-system that designers build must guarantee func-
tional correctness as if it was built using classical components composed of
CMOS gates. As illustrated in Figure 11.1, let the classical system be the
virtual golden model (with multi-billion devices), then the system built using
nanotechnology must produce the correct output for every input pattern without
being affected by the inherent uncertainties in the system.

While these challenges are not difficult to comprehend, the sheer scale fac-
tor and the added layers of uncertainty in nano-systems demand revolutionary
breakthroughs in verification tools and algorithms. These technologies must

Classical System

Nano−System

should be at constant 0

: Uncertainties

Inputs

Outputs

Figure 11.1. A robust nano-system should be as reliable as a classical system.

consider and efficiently deal with (1) large state spaces and (2) presence of
unknowns and uncertainties within the design. These two characteristics of
nano-systems make up two of the fundamental challenges that enabling verifi-
cation technologies should possess for nano-scale systems.

This chapter presents a suite of recent advances in verification that can sig-
nificantly reduce the problem complexity as well as handling unknowns/uncer-
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tainties within the design. In particular, an automatic test pattern generation
(ATPG) based approach has been used to successfully compute the preimage,
a key step in unbounded model checking. In addition, this ATPG not only is
memory efficient, it can also be computationally superior than traditional BDD-
based approaches. The proposed ATPG uses a novel success-driven learning to
uncover and avoid previously visited search spaces. Next, a global sequential
learning engine that can be very scalable for bounded model checking (BMC) is
presented. As the bound in BMC increases, the search space increases as well.
While satisfiability (SAT) based BMC solvers have shown success in recent
years, the increase in problem size generally translates to exponential increase
in computational complexity. Therefore, global learning can play an important
role in reducing the SAT complexity. This chapter describes a global learning
technique that spans multiple time-frames without the need to explicitly unroll
the sequential design. And the learned global constraint clauses can be quickly
replicated throughout the BMC instance, making the learning very attractive
and effective. Finally, an approach that can verify the design in the presence of
unknowns is described. The proposed method offers an efficient and scalable
approach to handle uncertainties within the design, offering an exciting and
promising solution to nano-system verification.

The rest of the chapter is organized as follows. First, Section 2 gives a
brief overview of the verification using model checking (both bounded and
unbounded). Next, Section 3 describes a novel method to scale unbounded
model checking using ATPG-based method. Section 4 discusses approaches
that can take today’s bounded model checking to handle much larger designs.
Section 5 presents a scalable method to verify designs with embedded unknowns
and uncertainties. Finally, Section 6 summarizes the chapter.

11.2 Scalable Verification of Nano Systems

As described in the Introduction of this chapter, the hurdles for verifying the
multi-billion device nano-system are the need for revolutionary approaches to
verify systems that are substantially larger, more complex, and contain much
uncertainties than today’s systems. While this chapter does not cover all the
aspects in model checking and unknowns, we believe it nevertheless provides
an initial attack on the problem of nano-scale verification.

Brief Overview of Model Checking

Model Checking is a widely accepted formal verification method. It involves
the exploration of the design space to see if desired properties are upheld in the
design model. If a property is violated, a counterexample can be generated.
Symbolic Model Checking [1, 2], based on Reduced Ordered-Binary Decision
Diagrams (ROBDDs), has shown to hold promise. However, BDDs are known



326 NANO, QUANTUM AND MOLECULAR COMPUTING

to suffer from the memory explosion problem, and hence are not scalable for
bigger circuits with large number of state variables.

There are two broadly categorized approaches to solving this problem. One
category of solutions is by restricting the model checker to an unbounded circuit
model, termed unbounded model checking (UMC), in which the property to be
checked is not restricted to a given number of time-frames. The other category
is the bounded circuit model, termed Bounded Model Checking (BMC), where
the verification is performed only within the specified bound on the number of
time-frames. We will first discuss the UMC formulation that can significantly
achieve orders of magnitude speedup, followed by scalable techniques for BMC,
and finally the framework for verification with embedded uncertainties and
unknowns in the system.

11.3 Scalable Unbounded Model Checking

The advantage of UMC over BMC is that it is complete – it can falsify the
property as well as prove that the property holds because of its fixed-point
check capability. The disadvantage with conventional UMC is that ROBDD
is very sensitive to the variable-ordering. The BDD size can blow up if a
bad variable-ordering is chosen. In some cases (e.g. a multiplier unit), no
variable-ordering exists that can yield a compact ROBDD representation of the
circuit function. In addition, for many problem instances, even the ROBDD for
transition relation can be constructed,memory can still easily blow up during the
quantification operation. Current research in this area continues in improving
BDD algorithms to reduce memory explosion [25] and using abstraction and
reduction techniques to reduce model sizes [26].

A complement to BDDs is to use SAT solvers in model checking [27]. The
transition relation of a system is unrolled K time frames, allowing any coun-
terexample of length up to k to be found by a SAT solver. The advantage is that
SAT solvers are less sensitive to the problem size and do not suffer from space
explosion. Recent advances in SAT solver has made it capable of solving very
large industrial problems in seconds [36]. However, the major disadvantage
is that this methodology can only verify a property within a bounded number
(K) of transitions. If no counterexample is found in K time frames, nothing
can be concluded for K + 1 and longer cases. We need to unroll the transition
K +1 time frames and do the SAT check again. This procedure could continue
infinitely. Therefore, it is called Bounded Model Checking (BMC). BMC is
incomplete as compared to BDD-based UMC. It can only find counterexamples
but can not prove the property hold unless a bound on the maximum length of
counterexample is known.

Since both BDD and SAT solvers have their pros and cons, researchers have
been trying to make a perfect combination of the two [28–30]. In [28], the
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transition relation is represented in a data structure called “Reduced Boolean
Circuits". Some simplification method is applied to reuse and manipulate the
subformulas. SAT solver is used to do fixed-point checking. However, quantifi-
cation is still expensive. In [29], a method of combining SAT-solver and BDD
for image computation is proposed. The transition relation is represented by a
CNF formula. SAT-solver performs a high-level decomposition of the search
space and BDD is used to compute all solutions below the intermediate points
in SAT decision tree, which is referred to as “BDDs at SAT leaves". As an
extended work, a decision heuristic based on separator-set induced partitioning
for SAT-solver was proposed in [30], which yielded simpler BDD subprob-
lems. However, these two work still fall into the framework of partitioned
BDDs: SAT-solver is just used to compute disjunctive decomposition of the
problem and the decomposed problems are handled by BDDs.

On the other hand, a couple of recent works have been focusing on using a
pure SAT solver to do unbounded model checking [31, 32]. This nails down an
initial attempt to the key problem of how to find an efficient SAT procedure to
perform quantifier elimination and thus compute images and preimages. The
basic idea in [31, 32] is to modify the SAT procedure such that the solver
continues to search for the next solution when a satisfying assignment (called a
“solution" in the rest of this paper) is found, as if a conflict occurs. The solutions
that have already been found, named “block clauses" in [31] and “excluding
clauses" in [32], serve for two purposes: they prevent SAT solver from being
trapped into the same solution again and store the information for constructing
the final results – the quantified formula. Essentially, the SAT quantification
problem is equivalent to the problem of enumerating all solutions to a given
SAT problem.

However, while the single-solution SAT problem is NP-complete, the all-
solution SAT problem is known to be #P-complete [33]. #P-complete problems
are generally harder than NP-complete problems. In fact, the BDD-construction
problem is #P-complete. Therefore, by switching from BDD to SAT one does
not actually get away from the intrinsic complexity of the problem. The two
methods are just a trade-off between space and time. If the hardness of the
problem manifest itself as space explosion in BDDs, the corresponding SAT
“symptom" is likely to be time explosion. In fact, the case could be worse
for SAT. The reason is: most decision procedures employed in SAT-solver are
based on branch-and-bound algorithms (e.g., Davis-Putnam, PODEM, etc.);
these algorithms are optimized to derive one solution at a time, as opposed to
BDD which captures all solutions simultaneously. To use SAT to enumerate all
solutions, backtracks are enforced so that the algorithm can continue searching
for the next solution when one is found. If the solution set is large, e.g. it
contains billions of solutions, then enumerating and storing them one at a time
is obviously impossible due to both time and memory limitation. SAT methods,
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in this case, will suffer from both time and space explosion problems! This
phenomenon is termed “solution explosion". This is also the reason the authors
of [29] avoid having the SAT-solver run to a leaf node of the decision tree, and
instead they let BDDs finish off the decision tree starting at intermediate nodes.
The solution explosion problem have not been well addressed in either [31] or
[32].

As a result, learning plays an important and critical role in non-BDD-based
unbounded model checking for large designs. In particular, recent Auto-
matic Test Pattern Generator (ATPG)-based and SAT-based Unbounded Model
Checking [21–23, 13–15, 24], can offer potential memory savings over BDD-
based methods. In particular, we will discuss a new technique that centers
around learning from “successes”.

The Basic Idea

We now describe a novel ATPG approach that has been developed to ad-
dress the “solution explosion" problem in computing preimages for UMC.
The prototype ATPG algorithm we use is based on PODEM [39], which is
a Davis-Putnam-like decision procedure but employs circuit structural infor-
mation in making decisions. As mentioned before, a naive way of using such a
decision procedure to enumerate all solutions is to enforce a backtrack when-
ever a solution is found so that the algorithm could continue to search for the
next solution until the entire search space is exhausted. Various search-space
pruning techniques have been proposed [34–37] to improve search efficiency.
However, these methods, e.g. conflict-driven learning, dependency-directed
non-chronological backtracking, and conflict clauses, target pruning conflict
spaces, which contains no solution. In other words, they learn from mistakes.
In the all-solution SAT problem scenario, this is far from being sufficient be-
cause a lot of subspaces contain solutions and they can overlap heavily. They
do not cause any conflicts with one another. This is explained in Figure 11.2,
where multiple solutions are found by PODEM for a preimage computation
SAT problem. In the figure, a circle with a label denotes a decision node, which
is either a state element or a primary input in a sequential circuit; the label is
marked using its gate ID; the left branch corresponds to the decision of 0 and
the right branch corresponds to 1; a triangle denotes a conflict subspace (no so-
lution exists); a rectangle marks the terminal node of a solution. Each solution
is defined as a cube characterized by the decision path from the root node to a
terminal node. There are three solutions under the left branch of decision node
107, marked as Soln#1, Soln#2 and Soln#3. Actually they are marked in the
order they are found. The Soln#2 and Soln#3 were found by simply enforcing
a backtrack and making ATPG continue after Soln#1 has been found.
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Figure 11.2. Decision Tree in ATPG.

However, when the ATPG continued to search for solutions and found the
fourth, fifth and the sixth solutions (the three lying under the right branch of node
108, marked as Soln#4, Soln#5 and Soln#6), an interesting phenomenon can be
observed: the same partial assignments for decision nodes {93, 139, 9, 101} are
repeated. This implies that the subspace immediately before the two 93 nodes
(marked as A & B in the figure) are somehow “equivalent". In other words,
earlier node assignments {5 = 0, 6 = 0, 149 = 0, 108 = 0, 107 = 0} and
{5 = 0, 6 = 0, 149 = 0, 108 = 1} resulted the same circuit state. Therefore,
if one could learn from the first three solutions, the subspace B can be skipped
and the search can directly return solutions #4, #5, and #6. When the search
is advanced further, such phenomenon was observed again. It is found that the
entire subtree under the left-most decision node 149 (within the big dotted circle)
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was repeated again under the other three 149 nodes on the right (denoted by the
three small dotted circles). Therefore, if one could learn the structure in the area
inside the largest dotted circle (containing 6 solutions) and its corresponding
“search space", the complete decision tree for the other three can be skipped
by backtracking earlier and return all related solutions. The savings for the
“enforced backtracks" for these solutions will be enormous when a lot of them
have such “repeated structure". This is the foundation for constructing a learning
algorithm to capture this phenomena and improve the searching efficiency for
the all-solution SAT problem. Since this learning is invoked by solutions found,
it is called success-driven learning. The subsequent sections will explain the
proposed notion of “search state equivalence" and how they are implemented
as a “success-driven learning algorithm" and how a free-BDD is constructed
accordingly to represent all the solutions.

Search State Equivalence

In a high-performance ATPG or SAT-solver, learning plays a very important
role: the knowledge learned is stored and used for pruning search space in the
future, e.g. in SOCRATES [38] the knowledge is in the form of implications
and in GRASP [35] and CHAFF [36] it is in the form of conflict clauses. In the
proposed approach, the knowledge is called “equivalent search state".

As shown in Figure 11.2, it is discovered that different complete solutions
may share the same structure of partial solution. This phenomenon can be
explained again by an example via the circuit fragment shown in Figure 11.3.
There are four PIs (decision nodes) in this circuit: a, b, c, d. The OR-gate z is the
PO. Let us assume that we wish to derive all solutions for the objective z = 1.
It is observed that two different partial PI assignments, {a = 0, b = X, c = 1}
and {a = 0, b = 0, c = X}, will result in the same internal circuit state
{g = 0, f = 0, h = X}. Then, to satisfy the objective z = 1, d = 1 needs to
be set in both cases, which corresponds to the repeated partial solution at the
bottom of the decision tree. An equivalent search state can be characterized by
its cut set with respect to the objective. In this example, the cut set is simply
{g = 0, f = 1, d = X}, which is a unique internal circuit state.

The cut set {g = 0, f = 1, d = X} consists of two parts: internal specified
gates {g = 0, f = 1} and unspecified PI gates {d = X}. They are obtained
by the following procedures: 1. beginning from the objective site z (currently
unsatisfied), backtrace to PIs along all the X-paths in its fanin cone; 2. record
every specified input to all unspecified gate-output encountered in this depth-
first search (in this example, there is only one X-path z − h − d, f = 1 is the
specified input of the unspecified gate h and g = 0 is the one for unspecified
gate z.); 3. record the unspecified PIs at the end of each X-Path (d = X in
the example). After performing this depth-first-search all the marked gates
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Figure 11.3. Search State Equivalence.

(specified gates and unspecified PIs) and their values (1,0,X) define a cut set of
the circuit state (shown in dashed line in Figure 11.3). Notice that this cut set is
rather with respect to the objective than to the entire circuit. Cut sets are stored
in a hash table which is managed as the knowledge database. The algorithm
uses this database to determine if an equivalent search space is encountered,
and if so, it skips this search space.

Success-Driven Learning

The success-driven learning algorithm controls when to invoke the search
state equivalence learning and when to reuse it. It is built into a basic recursive
PODEM algorithm that enumerates the entire search space, shown in Figure
11.4. Note that unlike conventional PODEM which returns either SUCCESS
or FAIL, this function does not have a return value because a backtrack is al-
ways enforced when a solution is found so that it can continue to search for
the next solution. However, the number of solutions found under each node
in the decision tree must be recorded. A success-counter (SC) pair is set up
for each decision node in the decision stack. This pair, SC0(i) and SC1(i),
counts the total number of solutions found for the 0 and 1 branch of node i
in the decision tree. For example, in Figure 11.2, for the left most decision
node 93 (marked ’A’ in figure), SC0(93) = 0 and SC1(93) = 3. The subrou-
tine update success counter() at step 1 in Figure 11.4 is called every time
a solution is found. It increments all the success counters in the current deci-
sion stack. Using the same example in Figure 11.2, when the solution at the 0
(left)-branch of the left-most decision node 139 (below point ‘A’) is found,
update success counter() will increment the following success counters:
SC0(139), SC1(93), SC0(107), SC0(108), SC0(149), SC0(6), SC0(5) and
all such counters above decision node 5 till the top of the decision tree. Next,
when the solution at the left branch of succeeding decision node 9 is found,
update success counter() will perform the same update again, except that
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    if (next_decision_node == NULL)  return;
     next_decision_node = get_obj();

// step 3. get a new decision node

function success_driven_podem() {

if (lookup_search_state_dateBase()== HIT) {
    update_solution_BDD();
    update_success_counter();

// step 2. reuse knowledge learned before

if (objective_satisfied) {
    update_solution_BDD();
    update_success_counter();
    return;

// step 1.  found a solution

if (imply()== CONFLICT)
nBackTrack++;

else
success_driven_podem();

    next_decision_node = 0;
// step 4. try left branch of the decision node

if (imply()== CONFLICT)

    next_decision_node = 1;

nBackTrack++;
else

success_driven_podem();

// step 5. try right branch of the decision node

if (check_success_counter() > 0) {
// step 6. pop decision node out of decision stack

}
    update_search_state_datebase();

}

    return;
}

deduce_current_search_state();

}

Figure 11.4. Success-Driven Learning Alg.

SC1(139) rather than SC0(139) is updated, since it is on the right branch
of node 139. In addition, SC0(9) is initialized to 1. Note that through this
mechanism, all the success counters are synchronized as they are dynamically
maintained. When a decision node is popped out of the decision stack, it in-
dicates that the subspace below it has been fully explored. Therefore, the two
success counters for this node should have the final numbers of all solutions in
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the subspace below it. If any of them is greater than 0 (indicating that there
exist at least one solution), the search state equivalence learning is performed
by computing the corresponding cut set and delete the success counters in the
subtree. This operation is performed by subroutine check success counter()
and update search state datebase() at step 6. Because only the equivalent
search space is computed when there is at least one success (solution), this
algorithm is called “success-driven learning". Note that since success counters
are allocated only for decision nodes that are active in the current decision stack
and since only PIs and FFs can be decisions in PODEM, the maximum number
of success counters managed is 2 × |PIs + FFs|.

At step 2 in the algorithm, the function computes the current search state and
look it up in the knowledge database. If it detects a Hit, then it immediately
returns and the entire subspace below is pruned, with solution BDD updated. At
steps 4 and 5, the subroutine imply() performs logic simulation and implication
when a new decision variable is assigned a specified value. If it detects a
conflict, it increments the counter nBackTrack and skips the exploration of
the subspace below. At step 6, update search state datebase() creates a new
entry in the hash table if a new search state cut set is found. The subroutine
update solution BDD() at steps 1 and 2 constructs the BDD to record every
partial solution found by the function. This BDD grows from partial to complete
when the entire search space has been explored and the last decision node in
decision stack is popped out.

Constructing a BDD from the ATPG Decision Tree

To avoid solution explosion, a graph representation of the preimage set is
desirable. The main idea comes from the observation that the decision tree in
Figure 11.2 resembles a free-BDD, although this BDD may not be canonical.

The BDD node data structure is shown in Figure 11.5. There are six members
in the structure. The first is the decision node label, which identifies the PI.
The second is the address of the left child. The third is the number of total
solutions under the left branch (value passed from the success counter SC 0
during success-driven learning). The next two fields are for the right branch.
The last member is the index to the hash table that identifies the search state cut
set.

Based on the success-driven learning algorithm, the BDD is built in a bottom-
up fashion. Whenever a new solution is found, a BDD node is created for
the leaf decision node and its associated search state. Its parent nodes are
created when the ATPG backtracks to higher levels in the decision tree and
detects there are solutions beneath by success counters. Figure 11.6 shows
how the solution BDD is constructed in chronological order for the solutions
found in the decision tree in Figure 11.2. The BDD grows gradually from a
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typedef struct _BDD_NODE {

int decision_node_id;

int search_state_hash_table_index;

int num_solutions_in_right_branch;
int right_branch_successor;

int left_branch_successor;
int num_solutions_in_left_branch;

} BDD_NODE;

Figure 11.5. BDD Node Data Structure.

single node (Figure 11.6(a)) to a complete graph (Figure 11.6(f)), in which each
path corresponds to a solution. When a search state equivalence is detected
and this knowledge is reused, instead of creating a brand new BDD node,
subroutine update solution BDD() will link the current decision node to an
existing BDD node, as shown by those dashed edges in Figure 11.6. Through
this reduction, significant space is saved for storing the overlapping portion of
solutions.

An interesting question would be what decides the variable ordering for
this free-BDD. As a matter of fact, the variable ordering is implicitly decided
by the ATPG decision procedure when it picks a new decision variable. It is
dynamically generated by the subroutine get obj() at step 3 in the function
success driven podem(). The function get obj() is a standard function in
ATPG that uses controllability and observability as heuristics to find next deci-
sion PIs through backtracing along X-paths [39]. Notice that unlike SAT-solvers
in which the variable that directly satisfies the largest number of clauses is cho-
sen [35], ATPG’s decision variable selection is more guided by the structural
information of the circuit and the objective. It has been shown in [40] that such
testability-based heuristics often yield a good variable ordering for constructing
compact shared ROBDDs. Note that although our resulting solution is in the
form of a free-BDD, it can be converted to an ordered BDD later if desired.

Experimental Results

The success-driven learning algorithm together with a basic PODEM were
implemented in 5,000 lines of C code. ATPG experiments were conducted on a
Pentium 4 1.7 GHz machine with 512MB RAM and Mandrake Linux OS 8.0.
The experiments were designed to evaluate the effectiveness of the proposed
method and compare its performance to a CUDD-based BDD package, BINGO
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[41]. The BINGO experiments were conducted on a SUN Ultra-1 200MHz
machine with 512MB RAM.

The first set of experiments conducted was for computing 1-cycle preimages
for some “properties" of ISCAS benchmark circuits s1423 which has 74 FFs
and 754 gates. The properties used are random conjectures of 10 state variables.
Therefore, each property actually specifies a set of target states. The proposed
success-driven learning algorithm was applied to compute all states which not
only can reach the target states in a single transition but also contain the property
themselves. This is a typical step for checking liveness (EG) properties in model
checking, where the property needs to be included in every state in the path.

Table 11.1 reports the results for s1423 over four properties. First, the results
obtained from the original ATPG without success-driven learning are shown
under column NO SUCC; the number of solutions, execution time, and the
number of backtracks occurred are first reported. Then, the results for the new
ATPG with success-driven learning are shown under column SUCC. Here, the
resulting BDD size that contains the complete preimage is also reported. Under
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Table 11.1. Compute Preimages for s1423 (74 FFs, 754 Gates)

NO SUCC SUCC
prop # soln. # bktrack time # soln. # bktrack bdd size time
1 49,682 >100,000 7.10 1,371,990 698 693 0.10
2 36,046 >100,000 35.6 99,631,320 5,524 5,114 0.86
3 2 7 0.01 2 7 2 0.01
4 57,389 >100,000 55.2 4,298,293 4,639 4,545 0.69

Time reported in seconds

the “# soln" column, the number of solution cubes found by the ATPG engine is
reported. If the ATPG cannot exhaust all solutions within the 100,000 backtrack
limit (e.g. for properties 1, 3, 4 with NO SUCC), then this number reflects the
maximum number of solutions it can enumerate within that backtrack limit.

From Table 11.1, it is observed that success-driven learning can significantly
reduce the computation necessary. For example, for properties 1, 2, and 4,
the original ATPG without the new learning mechanism exhausted all 100,000
backtracks while only finding a very small subset of all the solution cubes. On
the other hand, the new success-driven ATPG was able to compute the preimage
completely in both fewer backtracks and shorter execution times. Note that the
BDD sizes for storing all these solutions were also very small.

Next, preimages for a larger benchmark circuit, s5378, with 3043 gates and
179 FFs are reported in Tables 11.2 and 11.3. Three methods were compared:
BINGO [41], ATPG without success-driven learning (NO SUCC), and ATPG
with success-driven learning (SUCC). Note that the results for BINGO are
reported in a separate Table (Table 11.2). Again, a backtrack limit of 100,000
is imposed. Since the success-driven learning algorithm constructs a final BDD,
the “bdd-size" (number of BDD nodes) and the “mem" (peak memory) columns
are also reported for ATPG with SUCCess-driven learning so as to compare with
BINGO results.

From Tables 11.2 and 11.3 one can see that success-driven learning signifi-
cantly reduced the execution time (about 2 to 3 orders of magnitude speedup)
for finding all solutions when compared to ATPG without success-driven learn-
ing, while being memory efficient than BINGO. For example, for property #2,
both NO SUCC and SUCC found all 7,967 solutions; however, NO SUCC
consumed more than eighteen thousand backtracks and 22.6 sec, while SUCC
took only 200 backtracks and 0.42 sec in time and 10Mb in memory to finish
the job. BINGO took 14.7 sec and 27Mb memory to do the job. The bdd size
for BINGO is 230 nodes while general BDD obtained by the proposed method
only contained 139 nodes. For property #6, NO SUCC could not exhaust all
solutions; it only found 22,266 solutions within the 100,000 backtrack limit
and took 60.49 sec; SUCC can enumerate all 67,379,200 solutions in 1.03 sec,
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Table 11.2. Compute Preimages using BDDs for s5378 (179 FFs, 3043 gates)

BINGO [41]
prop. bdd size time(s) mem

1 229 14.7 27M
2 230 14.2 27M
3 219 14.7 27M
4 1689 14.8 27M
5 1075 14.7 27M
6 3064 14.8 27M
7 965 14.7 27M
8 2796 14.7 27M
9 3893 14.8 27M
10 506 14.7 27M

Table 11.3. Compute Preimages using ATPG for s5378 (179 FFs, 3043 gates)

NO SUCC SUCC
prop. soln. bktrack time(s) soln. bktrack bdd size time(s) mem

1 2,990 12,034 20.1 2,990 319 250 0.62 10M
2 7,967 18,117 22.67 7,967 200 139 0.42 10M
3 5 67 0.08 5 29 23 0.07 10M
4 14,165 >100,000 115.34 250,880 509 283 0.51 10M
5 1,024 8,218 4.83 1,024 77 76 0.1 10M
6 22,266 >100,000 60.49 67,379,200 806 739 1.03 10M
7 14,630 >100,000 44.18 31,928 611 606 1.1 10M
8 16,331 >100,000 61.54 8,630,272 3,555 3551 1.97 10M
9 4,008 19,826 30.7 4,008 517 395 0.98 10M
10 20,626 >100,000 77.04 22,750 1,149 494 1.71 10M

using only 806 backtracks and 739 nodes to represent these solutions. Note
that a separate graph traversal is not needed to obtain those solution numbers -
the sum of the two solution counters in the root node in the BDD because they
have been synchronized to reflect the number of total solutions in the subtrees.
Also, even though ATPG trades off time for space, the ATPG’s performance
(less than 2 sec. on a 1.7 GHz Pentium machine) was on the same order in
execution time with BINGO (about 14 sec on a 200MHz Sun UltraSparc). For
all ten properties, the proposed ATPG engine completed the preimage compu-
tation using only 10MB for each property, while BINGO required 27MB for
each property.

Finally, another similar experiment was conducted for a property of circuit
s38417, which contains 1636 FFs and 23950 gates. The results are shown in
Table 11.4. For this circuit, BINGO failed to construct the transition function
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Table 11.4. Compute Preimages for s38417 (1636 FFs, 23950 gates)

NO SUCC SUCC BINGO
# solutions 24,938 129,171,456 abort
# backtracks >100,000 440 NA
Time (s) 517 0.77 abort
BDD size NA 438 abort
Memory (MB) NA 187 > 512

due to the 512Mb memory limitation while the proposed method successfully
finishing enumerating all 129,171,456 solutions within 0.77 sec, using only
187Mb memory.

11.4 Scalable Bounded Model Checking

While BMC can be solved using various methods, including BDDs, ATPG,
and SAT, we will focus only on SAT-based BMC, as advances in SAT in recent
years have made it extremely effective for such applications.

In SAT-based BMC, given a safety/liveness property, the SAT-solver tries
to determine its satisfiability (or unsatisfiability) in the bounded length k. The
sequential circuit is first unrolled into k time-frames. While unrolling, the D
flip-flops in the first time frame are treated as Pseudo Primary Inputs (PPIs); for
subsequent time-frames they are converted into buffers and fed to the combi-
national portion of the sequential circuit. Finally, for the last time-frame these
flip-flops are treated as Pseudo Primary Outputs (PPOs). Next, a BMC Circuitry
called Monitor Circuit is constructed for the unrolled circuit corresponding to
the property to be verified. A CNF database is built for this transformed circuit
and the SAT solver is asked to satisfy the Monitor Circuit output to logic 1. For
example, consider that the sequential circuit under verification has 6 flop-flops
(S1S2S3S4S5S6). Suppose the starting/initial state is (101010) and the safety
property EF(0X0X10) needs to be verified. A monitor circuit is constructed
such that it evaluates to logic 1 if the target state (0X0X10) can be reached
in any of the k time frames. The starting state (101010) is also added to the
existing CNF as a constraint.

Previously, efforts have been made to compute relations across the circuit to
improve the SAT-based BMC. In [3], the authors perform BDD-based approx-
imate reachability analysis and convert this reachability information to clauses
added to the original CNF. These clauses in turn restricts the search space of
the SAT-solver. In [4], the authors induce signal correlation into the original
CNF by locally building up BDDs around the seed node (which is selected
statically or dynamically). Every path leading to 0 in such a BDD denotes
a conflict, and is added as multi-literal clause to the existing CNF. However,
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in general, the locally built BDDs are not helpful in extracting global rela-
tions among signals across time frames. In [5], equivalence and implication
relations are learned within a set of observable variable list and converted to
clauses. In [6], incremental learn-from conflict strategy was introduced for
SAT-based combinational equivalence checking. All these previous techniques
only target relationships among local nets; no global learning was performed
and the performance improvements would subsequently be limited. Finally,
in a recent deduction engine Hypre [7], hyper resolution and equality reduc-
tion was performed in a preprocessing step to learn additional clauses; these
deduced clauses comprise only a subset of learned clauses compared to the
proposed method. In addition, the proposed method explores global sequential
relationships that span multiple time frames to achieve orders of magnitude per-
formance gains over other methods. We note that the global sequential learning
never needs to explicitly unroll the sequential circuit, making our method very
attractive and scalable to large designs.

The formulation to enhance global learning

In [8], non-trivial relations among signals across the sequential circuit are
efficiently identified, especially those crossing time-frame boundaries. This is
unlike the previous works, where only relationships among signals in the combi-
national portion of the circuit are learned. Moreover, the sequential relations are
learned without unrolling the circuit; thus, the global learning is extremely fast.
The preprocessing phase involves building the sequential implication graph for
the circuit under verification, converting the nontrivial implications into two-
literal clauses, replicating these clauses over the entire unrolled circuit, and
finally appending the new clauses to the existing CNF database. Figure 11.7
shows the concept of sequential implications in a 5 time-frame unrolled circuit.
These implications not only help us to identify relations within the combina-
tional portion of the sequential circuit (of type ai → bi in the figure), but also the
relations spanning multiple time frames (of type wi → xj and yi → zj) which
can play a very significant role. The clauses corresponding to sequential im-
plications crossing time-frame boundaries will involve variables from different
time frames. The two-literal clauses resulting from these non-trivial impli-
cations can be quickly replicated throughout the k-frame unrolled sequential
circuit. For instance, the implication, w0 → x1 in time-frame 1 is replicated
as w1 → x2, w2 → x3, and so on. Note that the sequential implications
crossing time-frames only need to be computed once in the proposed approach,
and the subsequent replication is applied automatically. This is different from
combinational learning on the unrolled circuit, where each relation crossing
time-frame boundary (each of wi → xj and yi → zj) is regarded as a distinct
relation and must be learned individually. Finally, these added clauses constrain
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Figure 11.7. Global implications in a sequential design

the overall search space of the SAT-solver and provide correlation among the
different variables, which enhances the Boolean Constraint Propagation (BCP).

Before going further, a brief overview of how these implications are com-
puted is described. We will use the notation [a, v] to indicate logic value v
assigned to node a in the current time-frame 0; the ’0’ is implicit and is omitted
in the notation. [b, u, t] indicates value u assigned to node b in time-frame t (for
sequential circuits), and impl[a, v] to denote the implication set of assigning
logic value v to node a in the current time-frame of the circuit.

The implications are stored in a directed graph (called implication graph),
where each node corresponds to a circuit node assignment [node, value], and
each directed edge denotes an implication. Since sequential circuits are con-
sidered, some edge may have a non-zero integer weight associated with it,
indicating the time frame to which the implication spans; this is similar to the
implication graph described in [9–11]. Within the combinational portion of the
circuit, all implication edges will have zero edge weights. The non-zero edge
weights come in at the flip-flop boundaries only.

The global sequential implication relations that we compute are composed
of direct implications and indirect implications. Direct implications of a gate G
consist of implications associated with the gates directly connected to G. Such
implications are easily computed by traversing through the immediate fanins
and fanouts of the gate. When an implication propagates across a D flip-flop,
the time frame is incremented or decremented accordingly. Figure 11.8 shows
how implications can go beyond the current time frame. Part (a) of this figure
illustrates an iterative logic array expansion of a sequential circuit, where four
nodes have implication relations as shown (e.g., [a, 0] → [b, 1, 1], which is
node b = 1 in the next time frame). Figure 11.8(b) shows the corresponding
implication graph for the four nodes. The transitive law is also reflected by
the implication graph. For instance, since [a, 0] → [b, 1, 1], and [b, 1] →
[c, 0, 2], by the transitive law, [a, 0] → [c, 0, 3] is obtained. Note that during
transitive propagation, the time-frame value is summed across the directed
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edges. In general, the transitive law helps to deduce implication relations with
edge weights ranging from −n to +n (n being a whole number). However, in
case of a loop, n can be infinity. Hence, we restrict this n in our implementation
and make it user-specified. We call this n as Maximum Edge Weight.
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Figure 11.9. Sequential implication graph

To illustrate where the non-zero edge weights arise around flip-flops, a sim-
ple sequential circuit with its implication graph is used (Figure 11.9). In this
example, one can see from the implication graph that [b, 1]→ [c, 1,−1] directly,
and that [b, 1] indirectly implies [c, 1, 1] via the nodes c = 0 and b = 0.

The contrapositive law states that if [a, u] → [b, v, t], then [b, v̄] → [a, ū,−t].
Using the example in Figure 11.8, since impl[a, 0] = {[b, 1, 1], [c, 0, 2]}, using
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the contrapositive law one obtains: [b, 0] → [a, 1,−1] and [c, 1] → [a, 1,−2].
These contrapositive edges can also be added to the graph, if they do not already
exist.

We also compute the sequential indirect implications associated with a node.
This is obtained by simply logic simulating the transitive closure of its direct
implications, time-frame by time-frame, in an event-driven fashion. The read-
ers are referred to [8, 9] for examples and an in-depth analysis on sequential
implications. These implications between intermediate points of the circuit
propagate in the forward/backward direction, crossing the flip-flop boundaries,
and hence help to identify global relations throughout the sequential circuit.

Once these non-trivial global implications have been computed they are
converted into two literal clauses and replicated successively in each of the
time-frames as per their edge weights (see Figure 11.7). These added clauses
prune the overall search space of SAT-solver engine (reducing the number of
backtracks) and provide correlation among the different CNF variables, which
enhances the Boolean Constraint Propagation (BCP). We show through prelim-
inary experimental results that by addition of these clauses, the SAT instance
complexity is reduced significantly, thereby resulting in orders of magnitude
speedup over the conventional approach.

Preliminary results for bounded model checking with global
learning

The proposed concept was implemented in an algorithm called SIMP2C
(Sequential Implications to Clauses). All experiments were run on Pentium-4,
1.8GHz machine, with 512Mb of RAM and Linux as the operating system.
Arbitrary safety properties are generated, and Berkmin [12] is used as the SAT
solver for all instances. The results for the effectiveness of the proposed ap-
proach is reported in Table 11.5. The execution times reported are the average
on a set of 10 random difficult safety properties for each circuit. These proper-
ties include both satisfiable and unsatisfiable instances. In this table, for each
of the sequential circuits, the number of flip-flops is first given, followed by the
average execution time taken by Berkmin without any global learning. Next, the
average execution time taken by the proposed approach including global con-
straints is reported. In the final column, the speedup attained with the proposed
approach is shown.

According to Table 11.5, the proposed method achieved speedups ranging
from 7.7X (7700%) for s1423 to 149.0X (14900%) for circuit s9234.1 when
applied on the state-of-the-art SAT solver Berkmin. The vast range in speedup
is due to the fact that the execution time is both circuit and property dependent.
Some properties can be quickly solved by Berkmin alone, whereas some are
computationally expensive. For instance, some random properties generated
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Table 11.5. Bounded model checking with added global constraints

Ckt. # FFs Berkmin [12] Proposed Speedup
s382 21 49.51 s 2.05 s 24.2
s400 21 38.30 s 0.89 s 43.0
s444 21 34.25 s 1.04 s 32.9
s820 5 414.60 s 16.60 s 25.0

s1423 74 62.35 s 8.15 s 7.7
s1488 6 714.50 s 55.72 s 12.8
s1512 57 440.30 s 7.70 s 57.2

s9234.1 211 1445.20 s 9.70 s 149.0
s38417 1636 585.12 s 97.31 s 16.3

Average speedup of 41X over state-of-the-art solver Berkmin [12]

for circuit s1423 were solved very quickly with Berkmin (alone). After the
non-trivial global implication clauses were added with the proposed approach,
the average time taken by Berkmin would be reduced at a less dramatic ef-
fect. Nevertheless, 7700% speedup is very significant considering that other
proposed methods generally achieved speedups of less than two-fold. On the
other hand, for circuit s9234.1, the average execution time to solve a set of 10
safety properties was reduced from 1445.2 seconds to only 9.7 seconds, thereby
achieving a speedup of over one-hundred fold.

Note that the time taken by the proposed pre-processing engine SIMP2C is
very low, ranging from 0.14 seconds to 25.12 seconds, thus making this method
very attractive - little effort is sufficient to significantly reduce SAT complexity.

The proposed method can also be applied to the combinational equivalence
checking problem. Table 11.6 shows the results when Berkmin [12] is used
to solve the equivalence checking with and without global learning on a few
difficult ISCAS and ITC benchmark instances. Since we are dealing with com-
binational circuits there is no notion of time frames or sequential implications.
Here we compute implication relationships only in the combinational portion
of the circuit and in addition to direct and indirect implications we also com-
pute highly non-trivial extended backward implications [19, 9]. In Table 11.6
for each combinational equivalence-checking instance (each original bench-
mark circuit mitered with its optimized version), the original Berkmin results
are reported, followed by the combined SIMP2C and Berkmin, as well as the
speedup. Note that the times taken by SIMP2C is included under the third
column. According to the experiments, more than 10,000 times speedup can
be achieved. For the instance (c6288 eqv), global learning takes a fraction of
a second, and those learned clauses significantly affect the way SAT solvers
perform the search. Before the added clauses, Berkmin could not finish even
after 7200 seconds. But after the global constraints were added, it took only a
fraction of a second to complete the search.
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Table 11.6. Equivalence checking with added global constraints on hard instances

Instance Berkmin [12] SIMP2C+Berkmin Speedup
c6288 eqv >7,200.00 s 0.34 + 0.01 s 13,478.60
c7552 eqv 102.31 s 1.71 + 0.29 s 51.15

b14 eqv 417.13 s 26.05 + 4.37 s 13.71
b18 eqv >150,000.00 s 2132.50 + 527.20 s 56.39

Note: At least one order of magnitude improvement is achieved for each instance

11.5 Verification in the Presence of Unknowns and
Uncertainties

Given a nano-system composed of billions of devices, many of which may
behave in an uncertain manner due to potentially many defects at the nano-scale,
functional verification of the design must be able to handle such uncertainties.
In other words, in the presence of a defect, one would like to verify if the target
system still works to its desired functionality. Allowing “unknowns” in the
design verification procedure would be critically useful because of the natural
manner in which it supports abstraction of such uncertainties. A side benefit to
handling unknowns is the capability to handle black-box verification [17, 18],
in which implementations with unfinished blocks can be verified against the
specification.

Modeling unknowns and uncertainties

Satisfiability (or SAT for short), has gained much prominence in the ver-
ification community as much stride in SAT solvers has been made in recent
years [35, 36, 12]. A method to model unspecified assignments in a Boolean
satisfiability framework in order to find minimum-sized prime implicants has
been presented [42]. Here, a brief description is given for the proposed tech-
nique used to model unknown constraints on arbitrary nodes in a circuit for
a Boolean satisfiability solver which determines if a conjunctive normal form
(CNF) formula from the propositional logic is satisfiable.

Given a CNF formula, F = c1 ∧ c2 ∧ . . . ∧ cm, where ci for 1 ≤ i ≤ m
is a clause from propositional logic over a finite set V of variables, such that
1 ≤ | ci | ≤ 3 for 1 ≤ i ≤ m, an assignment S : V → {1, 0, X} is said to
satisfy F if and only if under the assignment, F evaluates to a Boolean 1. If
there is no satisfying assignment, F is said to be unsatisfiable. Given a circuit,
a CNF formula can be readily extracted, where each node in the circuit maps to
a unique variable in the formula. The formula evaluates to a Boolean 1 for any
valid combination of Boolean values at the inputs and outputs of the nodes in
the circuit. For example, the CNF formula of the NAND gate 1 in Figure 11.10
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is as follows: F = (d + a + b)(d + a)(d + b). The CNF formula for the entire
circuit can be expressed as follows:

F = (d + a + b)(d + a)(d + b)(e + b + c)(e + b)(e + c)
(f + d + e)(f + d)(f + e)

a

b

c

d

e

f

1

2

3

Figure 11.10. Example circuit

In the preceding discussion, each node in a circuit is represented by a single
variable in the CNF formula for the circuit. But, a single variable is able
to encode only two different assignments (Boolean 0 and Boolean 1) to its
corresponding node. Therefore, in order to encode an unknown constraint on
a node (in addition to a Boolean 0 and a Boolean 1), a new variable encoding
scheme in the CNF formula is necessary for that node. Two variables n0 and n1

are used to represent the value assignments to each node n in the propositional
logic [16, 17]. Table 11.7 shows one possible encoding scheme for variables
representing node n.

Table 11.7. Encoding scheme for assignments to node n

n n0 n1

0 1 0
1 0 1
x 0 0

Note that the combination n0 = 1 and n1 = 1 is illegal in the encoding
scheme given in Table 11.7. Unknown and uncertainty constraints on a node n
can be encoded by adding two unary clauses, n0 and n1, to the CNF formula.
Also, since the combination n0 = 1, n1 = 1 is illegal, the clause (n0 + n1) is
added to the CNF formula. Consider the NAND gate 1 in Figure 11.10 again. If
the node a can have unknown constraints in addition to assignments of Boolean
0 and 1, it has to be represented using two variables in the CNF formula for the
gate. To be able to propagate the unknown constraints across gate 1, node d
needs two variable representation as well. The CNF formula for the gate can
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be derived from the truth assignments in the encoded truth table. Further to
prevent the illegal value assignment on a0, a1, d0 and d1, clauses (a0 +a1) and
(d0 + d1) are added to the CNF formula.

Complexity of SAT with uncertainties

The SAT under unknown constraints (SAT-UC) [16, 17] can be formally
defined as:

Definition 11.1 (SAT-UC) Given a set of clauses C = {c1, c2, . . . , cm}
from propositional logic on a finite set V of variables such that 1 ≤ | ci | ≤ 3
for 1 ≤ i ≤ m, and a set U of variables such that U ⊂ V , find a set of Boolean
assignments for V ′ ⊆ (V − U) such that all the clauses in C are satisfied.

Theorem 11.2 SAT-UC is NP-complete.

Proof: (SAT-UC is in NP) Given an instance of SAT-UC, a non-deterministic
algorithm can guess a set of Boolean assignments to the variables in V ′ and
check in polynomial time if the assignments satisfy the clauses in C.

Proof by restriction is used to show that SAT-UC is NP-complete. If the
set U is empty, the SAT-UC problem reduces to the general SATISFIABILITY
problem. Hence, under proof by restriction, SATISFIABILITY is a special case
of SAT-UC. Therefore, SAT-UC is NP-complete. �

Preliminary results on verification with uncertainties

Preliminary results were collected to demonstrate the constrained Boolean
satisfiability solutions developed [16, 17]. The setup is to miter each of the
ISCAS85 benchmark circuits with itself; however, a copy is injected with a
number of uncertainties, similar to the setup illustrated in Figure 11.1. Un-
certainty constraints were placed at nodes that are at one level (fanout) away
from PIs. Such nodes were chosen because these represent the most difficult
cases of circuit modification for the problem. Results from these experiments
are reported in Table 11.8. The constraints were increased starting from zero
nodes (no constraints) and increased up to 4 nodes. The columns in Table 11.8
represent the number of constraints, the time required to create a structural mod-
ification of the circuit (to encode the unknown constraints), the time required
for Boolean comparison and the maximum memory used in the comparison
process, respectively.

Although the benchmark instances are small designs, Table 11.8 clearly
demonstrates that it is indeed possible to solve constrained versions of the
Boolean comparison problem rapidly and without extensive memory require-
ments. It is also evident that the time required for constrained Boolean compar-
ison is larger than the ordinary Boolean comparison without constraints. This
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Table 11.8. Verifying classical system against nano-system with increasing uncertainty con-
straints

Ckt. # ModTime BCTime Mem
Constr (sec.) (sec.) (MB)

c880 0 0.00 0.40 3.12
1 0.05 0.47 3.28
2 0.08 0.50 3.36
3 0.10 0.43 3.37
4 0.28 5.06 5.37

c1355 0 0.00 3.88 3.89
1 0.32 5.11 5.35
2 0.37 12.33 7.21
3 0.33 11.31 6.56
4 0.28 8.86 6.66

c1908 0 0.00 1.21 3.87
1 0.50 1.05 6.42
2 0.22 1.61 4.64
3 0.23 2.19 4.69
4 0.57 0.96 5.94

c2670 0 0.00 0.87 4.92
1 0.45 1.07 5.33
2 0.38 1.08 5.36
3 0.33 1.09 5.39
4 0.33 1.11 5.45

c5315 0 0.00 1.62 6.62
1 0.82 1.91 7.34
2 0.83 2.06 7.37
3 0.72 2.19 7.41
4 0.92 2.29 7.45

c7552 0 0.00 3.60 8.70
1 0.88 12.53 23.65
2 0.80 5.96 23.95
3 1.03 4.27 9.87
4 1.18 4.42 9.90

occurs due to the fact that the tool used in the experiments uses internal corre-
spondences to verify the required equivalence relation between the two Boolean
networks. Nevertheless, it illustrates that the formulation is very scalable, in
which the complexity in verification does not increase with increasing number
of uncertainties.

11.6 Summary

In this chapter, some of the challenges faced in verifying nano systems have
been addressed; in particular, countering the sheer scale factor and the handling
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of uncertainties. Techniques to extend model checking (both bounded and
unbounded) using SAT and ATPG were described, whose results reported one
to two orders of magnitude speedup. In addition, a method for verification in
the presence of uncertainties was described in which the verification complexity
scales well with the number of added unknowns. As we move into the nano era,
we believe the methods described in this chapter can offer potential in reducing
the both the complexity and cost of nano-system verification.
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