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Preface

The new field of molecular and nano-electronics brings possible solutions for a post-
microelectronics era. Microelectronics is dominated by the use of silicon as the preferred
material and photo-lithography as the fabrication technique to build binary devices
(transistors). Properly building such devices yields gates, able to perform Boolean
operations and to be combined yielding computational systems capable of storing,
processing, and transmitting digital signals encoded as electron currents and charges.

Since the invention of the integrated circuits, microelectronics has reached increasing
performances by decreasing strategically the size of its devices and systems, an approach
known as scaling-down, which simultaneously allow the devices to operate at higher
speeds. However, as devices become faster and smaller, major problems have arisen
related to removal of heat dissipated by the transistors and physical limitations to keep
two well-defined binary states; these problems have triggered research into new alter-
natives using components fabricated by different procedures (self-assembly, chemical
deposition, etc.), which may encode information using lower energetic means.

The goal of this book is to bring together the most active researchers in this new
field, from the entire world. These researchers illustrate what is probably the only way
for success of molecular and nano-electronics: a theory guided approach to the design
of molecular- and nano-electronics. The editor thanks all the contributors for their kind
collaboration, effort, and patience to put together this volume, and acknowledges the
dedication of Ms Mery Diaz who helped compiling this camera-ready volume. The editor
also thanks the continuous support of the US Army Research Office to the development
of this new field.

Jorge M. Seminario
Texas A&M University
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Chapter 1

Metal–molecule–semiconductor junctions:
An ab initio analysis

Luis A. Agapito and Jorge M. Seminario

Department of Chemical Engineering and Department of Electrical and Computer
Engineering, Texas A&M University, 3122 TAMU, College Station, TX 77843, USA.
seminario@tamu.edu

1. Introduction

The ability to calculate the current–voltage characteristics through a single molecule is
essential for the engineering of molecular electronic devices [1, 2]. Because quantum-
mechanical effects prevail at atomistic sizes, there is a need to implement and develop
precise ab initio quantum chemistry techniques rather than using those originally devel-
oped for microscopic and mesoscopic systems.

In order to evaluate experimentally the use of single molecules as electronic devices,
the usual approach is to attach them to macroscopic contacts to be able to measure their
electrical properties. However, this is not a direct requirement for the design but just to
help us to understand their electrical behavior and to make sure that we have the correct
tools to model their behavior. In practice, molecular devices should not be connected to
macroscopic contacts when they are components of a circuit. The whole advantage of
having nanosized devices would be lost if they are connected to macroscopic or even
microscopic contacts. Nevertheless, the presence of macroscopic contacts influences
greatly the electrical properties of a single molecule [3–5]; thus our community tries to
test the metal–molecule–metal junction as an independent unit instead of evaluating the
isolated molecule. Experimentally, it has been challenging to measure metal–molecule–
metal junctions with metallic contacts separated by a distance of ∼20 Å or less. Only
few experiments until now have claimed to have been able to address a single molecule
between two macroscopic gold contacts [6].

Fortunately, quantum-chemistry techniques can be used to study precisely
isolated [7, 8] and interconnected molecules. We use the Density Functional Theory
(DFT) of a quantum-chemistry flavor [9] to determine the electronic properties of
molecules; a mathematical formalism based on the Green function (GF) is used then
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2 Luis A. Agapito and Jorge M. Seminario

to account for the effect of the contacts on the molecule keeping the realistic chemical
nature of the sandwiched molecule. These techniques can also be used to study scenarios
where the information is not coded in electron currents [10–12].

The electron transport in quantum chemistry is studied as a chemical reaction or as a
state transition through junctions of atomic sizes and can also be approximately described
in terms of mesoscopic physics models in a coherent regime, where the electrons travel
with a given probability, sequentially one after the other through the molecule without
electron–electron or phonon–electron interactions. This kind of transport is described
by the Landauer formalism [13]. Here, we use our DFT-GF technique [14] to make an
atomistic adaptation of the Landauer formalism for the calculation of current through
molecular junctions.

Specifically, we focus our study on an oligo-phenylene-ethynylene (OPE) molecule,
which has been proposed as a candidate for a molecular electronic device [15]. Similar
OPE molecules, attached to gold contacts, have shown two distinctive states of con-
ductance, namely a high- and a low- conductance state. Those states can be used to
encode information as logic “0” and “1,” hence, their importance. Switching between
the two states of the molecule is mainly attributed to two different mechanisms: changes
in charge state [15] and changes in conformational states [16].

We use our DFT-GF formalism to calculate the conductance through metal–nitroOPE–
metal junctions in several charge and conformational states. Two different metallic
materials are evaluated in this work: the commonly used gold and the promising carbon
nanotube (CNT).

2. Electron transport at interfaces

From the computational viewpoint, primarily two types of molecular systems are
involved in the work presented here: finite and extended systems. Finite systems refer
to molecules or nanoclusters with a finite number of atoms whereas an extended system
refers to a crystalline such as the contacts. The tools to study both types of systems
are well-established in the computational chemistry field [1, 2, 17–20]. The Gaussian
03 [21] is capable of performing calculations of systems with periodic boundary con-
ditions in one, two and three dimensions. However, systems that combine both a finite
and an extended character represent a new and challenging area of research; this is the
case for the study of a single molecule (finite) adsorbed to contact tips (modeled as an
infinite crystal material).

The discrete electronic states of an isolate molecule are obtained by solving the
Schrödinger equation; we solve that equation following a DFT approach. When the
molecule is adsorbed on a contact tip, the continuous electronic states of bulk material
modify the discrete electronic states of the molecule. In other words, electrons from the
contacts leak into the molecule, modifying its electronic properties. A mathematical for-
malism based on the Green function is used to account for the effect of the bulk contacts.

2.1. Electronic properties of molecules and clusters

The electronic properties of a molecular system can be calculated from its auxiliary
wavefunction, which is built as a determinant of molecular orbitals (MOs). MOs are



Metal–molecule–semiconductor junctions 3

linear combinations of atomic orbitals (AOs) from all the atoms composing the system.
In other words, the atomic orbitals are the basis functions, �, used to expand the MOs
shown in Eq. (1).

2.1.1. Basis functions

Practical procedures represent the AO using linear combination of Gaussian functions
also called primitives. Gaussian-type functions (GTFs) or primitives, which form a
complete set of functions, are defined in their Cartesian form as:

gijk = Kxi
by

j
bz

k
be

−�r2
b (1)

where i� j� k are nonnegative integers, � is a positive orbital exponent, xb� yb� zb, are
Cartesian coordinates and rb is the radial coordinate. The subscript b indicates that the
origin of the coordinates is at the nucleus b. K is a normalization constant.

The sum l = x + y + z determines the angular momentum of an atomic orbital.
Depending on whether l equals 0, 1, 2, � � � , the GTF is called s-, p-, d-, � � � type
respectively. The principal quantum number n determines the range of the exponents
for a particular function.

A basis function �r , also referred to as contracted Gaussian-type orbitals (GTOs), is
defined as a normalized linear combination of GTFs (gu) or primitives:

�r =∑

u

durgu (2)

where dur are called contraction coefficients. Basis sets published in the literature
provide the values of �, Eq. (1), and dur , Eq. (2). A basis function is constructed to
resemble a given AO. Throughout this work, two basis sets are used: the LANL2DZ,
which includes an effective core potential and the 6-31G(d) also represented as 6-31G∗

in the specialized literature.
For instance, in the 6-31G(d) basis set, the inner shell 1s atomic orbital of carbon is

formed by contracting six GTFs, as follows:

�1s =
6∑

u=1

dug1s��u� (3)

where the contraction coefficients du and the Gaussian exponents �u are given in
Table 1. For an s-type function, the GTF given in Eq. (1) simplifies to

g1s��� = e−��x2+y2+z2� (4)

where the normalization constant K, defined in Eq. (1), has been included in the
contraction coefficients.

2.1.2. Density functional theory

For a polyatomic molecular system, the electronic non-relativistic Hamiltonian can be
written as

Ĥel = −1
2

∑

i

�2
i +∑

i

∑

b

Zb

rib

+∑
i

∑

j>i

1
rij

(5)
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Table 1 Contraction coefficients and Gaussian exponents for the
inner 1s atomic orbital of the carbon atom (Eq. 3) corresponding
to the 6-31G(d) basis set

u Contraction coefficients Gaussian exponents
du �u

1 0.001834700 3047.52490
2 0.014037300 457.369510
3 0.068842600 103.948690
4 0.232184400 29.2101550
5 0.467941300 9.28666300
6 0.362312000 3.16392700

where i and j count over all electrons and b counts over all nuclei, and Zb is the atomic
number of the atom b. If the system contains n electrons then the wavefunction of
the molecular system is a function of 3n spatial coordinates and n spin coordinates.
Therefore, calculating the complete electronic wavefunction is computationally chal-
lenging simply because the wavefunction is a mathematical function that contains more
information of the system than needed for specific applications.

The first Hohenberg–Kohn theorem [22] established that all the properties of a molec-
ular system in the ground state are determined by the ground-state electron density
	0�x� y� z�, which is a function of only three variables. This theorem circumvents the
use of the wavefunction; instead, the electron density function is used to calculate the
properties of a molecular system. This theorem together with the constrain search of
Levy [23] finally sets DFT on a formal basis.

In 1965 Kohn and Sham [24] published a method to determine the electron density
without having to find the real wavefunction. They demonstrated that the electron
density of a molecular system of interacting electrons can be represented with the
electron density of an ideal or ficticious system of non-interactive electrons subjected
to an effective potential 
s. Therefore, the interacting many-electron problem is split
into several non-interacting one-electron problems, which are governed by the following
one-electron Kohn–Sham (KS) equations:

ĥKS�r��KS
i �r� = �KS

i �KS
i �r� (6)

where the one-electron KS Hamiltonian ĥKS is defined as:

ĥKS�r� = −1
2

�2
r +
s�r� (7)

and the external potential for the fictitious electrons is defined as:


s�r� = −∑
b

Zb

�r − rb�
+
∫ 	�r ′�

�r − r ′�dr ′ +
xc�r� (8)

where 
xc is the exchange-correlation potential


xc�r� ≡ Exc�	�r��

	�r�
(9)
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The external potential vs is found by solving Eq. (6) self-consistently. The KS molec-
ular orbitals (�KS

i ), shown in Eq. (6), are expanded in terms of the GTOs defined in
Eq. (2).

�KS
i =

B∑

r=1

cri�r (10)

where B is the number of basis functions of the molecular system. By inserting Eq. (10)
in Eq. (6) and applying the variational principle, a Roothaan-type matrix equation is
obtained. For example, the matrix equation for a molecular system that has only five
basis functions is

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

hKS
11 hKS

12 hKS
13 hKS

14 hKS
15

hKS
21 hKS

22 hKS
23 hKS

24 hKS
25

hKS
31 hKS

32 hKS
33 hKS

34 hKS
35

hKS
41 hKS

42 hKS
43 hKS

44 hKS
45

hKS
51 hKS

52 hKS
53 hKS

54 hKS
55

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

C =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

S11 S12 S13 S14 S15

S21 S22 S23 S24 S25

S31 S32 S33 S34 S35

S41 S42 S43 S44 S45

S51 S52 S53 S54 S55

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

EKSC (11)

where hKS
rs are matrix elements of the one-electron KS Hamiltonian operator ĥKS. These

matrix elements are defined as:

hKS
rs = ��r �ĥKS��s� (12)

The overlap integral Sjk between two basis functions is:

Sjk = ��j��k� (13)

C is a matrix composed of the expansion coefficients cri, which are defined in Eq. (10).
EKS is a diagonal matrix composed of all the eigenvalues (energies) of the one-electron
KS equation defined in Eq. (6).

EKS =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

�KS
1 0 0 0 0
0 �KS

2 0 0 0
0 0 �KS

3 0 0
0 0 0 �KS

4 0
0 0 0 0 �KS

5

⎞

⎟
⎟
⎟
⎟
⎟
⎠

(14)

The expansion coefficients, cri, of the molecular orbitals are found by solving itera-
tively Eq. (11) [25].

	 =
n∑

i=1

��KS
i �2 (15)

At all steps of the iteration, the expansion coefficients are updated. Consequently, new
KS molecular orbitals, Eq. (10), and electron densities, Eq. (15), are obtained during the
iterative process. When self-consistency is reached, the ground-state electron density
and KS molecular orbitals can be evaluated. All properties for the molecular system can
be extracted from the ground-state density, according to the Hohenberg–Kohn theorem.
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2.1.3. Molecular electrostatic potential

A molecular system can be modeled as an electronic device, encapsulating all the
chemistry of the system behind the electron density 	. The equivalent electrostatic
potential � for such electronic device, measured at a point of space r = �x� y� z�, can
be calculated as:

��x� y� x� =∑

�

Z�

�r −R�� −
∫∫∫ 	�x′� y′� z′�

�r − r ′� dx′dy′dz′ (16)

where the electron density 	 is defined in Eq. (15).

2.2. Electronic properties of crystalline materials

In the case of finite systems, atomic orbitals, Eq. (2), are used to build up the molecular
orbitals. For infinite systems, Bloch functions ���	r� 	k�, are used to build up crystalline
orbitals �i�	r� 	k�:

�i�	r� 	k� =∑

�

c�i�	k����	r� 	k� (17)

where 	r and 	k represent vectors in the direct and reciprocal space, respectively. Bloch
functions are defined as follows

���	r� 	k� =∑

	T
���	r − 	A� − 	T�ei	k�	T (18)

where 	T represents all direct lattice vectors. �� represents contracted GTOs as defined
in Eq. (2). The subscript � counts over all the basis functions used to expand the unit
cell, 	A� indicates the coordinates of the atom on which �� is centered. The Bloch
functions Eq. (18) are constructed to satisfy the Bloch theorem:

���	r + 	T� 	k� = ���	r� 	k�ei	k	T (19)

Bloch functions with different wavevectors, k, do not interact each other; therefore,
a periodic system can be solved independently for each value of k.

A crystalline orbital Eq. (17) resembles the definition of an MO Eq. (10) in finite
systems. The expansion coefficients for the crystalline orbitals c�i, Eq. (17), are found
analogously to the case of finite systems. The matrix C�k�, which contains the coeffi-
cients c�i, is found by solving self-consistently Eq. (20) for each k point.

HKS�k�C�k� = S�k�C�k�E�k� (20)

where HKS�k� is the Kohn–Sham Hamiltonian matrix in reciprocal space

HKS
�
 �k� =

〈
���	r� 	k��ĥKS��
�	r� 	k�

〉
=∑

	T

〈
���	r − 	A� −	0��ĥKS��
�	r − 	A
 − 	T�

〉
ei	k	T
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S�k� is the overlap matrix over the Bloch functions

S�
�k� =
〈
���	r� 	k���
�	r� 	k�

〉
=∑

	T

〈
���	r − 	A� −	0���
�	r − 	A
 − 	T�

〉
ei	k	T

E�K� is a diagonal matrix that contains the eigenvalues �k
i for a given point k. The

number of eigenvalues per k point is equal to the number of basis functions of the unit
cell, and C�k� contains column-wise the coefficients of the crystalline orbitals.

The density of states (DOS) of the infinite system is found according to

DOS��� = 2
∑

i�k

��−�k
i � = 2

VBZ

∑

i

∫

BZ
��−�k

i �d
3k (21)

where VBZ is the volume of the first Brillouin zone. The software Crystal 03 [26] is used
to calculated the DOS for the different crystalline materials that are used throughout
this work.

2.2.1. DOS of Au and Pd crystals

The Au and the Pd crystals are modeled as FCC lattices with space group number
225. The lattice parameters for the conventional cells are a = 4�078 Å for gold and
a = 3�891 Å for palladium (Figures 1 and 2). The primitive cell for both crystals contains
one atom and is defined by the following primitive vectors

A1 = 1
2

aŷ + 1
2

aẑ�

A2 = 1
2

ax̂+ 1
2

aẑ

–15 –10 –5 0 5
0

0.5

1

1.5

2

2.5

3

3.5

Energy (eV)

D
O

S
 (

st
at

es
 e

V
–1

 a
to

m
–1

)

s
p
d(t2g)

d(eg)

total

Figure 1 DOS for the Au crystal. Fermi level is at −5�83 eV using the B3PW91 functional with
the LANL2DZ basis set and ECP



8 Luis A. Agapito and Jorge M. Seminario

–15 –10 –5 0 5
0

0.5

1

1.5

2

2.5

3

3.5

Energy (eV)

D
O

S
 (
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)

s
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d(t2g)

d(eg)

Figure 2 DOS for the Pd crystal obtained using the B3PW91 functional and LANL2DZ basis
set and ECP. The Fermi level is at −5�59 eV

and

A3 = 1
2

ax̂+ 1
2

aŷ

The calculation of the electronic structure is performed at the B3PW91 level of
theory combined with the LANL2DZ basis set. The total DOS for gold (black curve) is
reported in Figure 1. We also compute the contribution of each type of basis function
(s-, p-, or d-type) to the total DOS. For consideration to the symmetry of the d-type
functions, their contribution is split into two groups: the contribution of the dxz� dyz� dxy

basis functions, which present t2g symmetry and the contribution of the dz
2∗

, dx
2
−y

2 basis
functions, which present eg symmetry. For Au and Pd, most of the electrons available
for conduction (at their Fermi level) have a d-character.

2.2.2. DOS of silicon crystal

Silicon presents a crystal structure of the diamond (point group number 227). The
conventional cell has a lattice parameter a = 5�42 Å. The primitive cell is defined by
the following primitive vectors

A1 = 1
2

aŷ + 1
2

aẑ�

A2 = 1
2

ax̂+ 1
2

aẑ

and

A3 = 1
2

ax̂+ 1
2

aŷ

∗
The orbital dz2 is more properly referred as d2z2−x2−y2 .
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with two atoms per each primitive cell, the basis vectors for these atoms are

B1 = −1
8

A1 − 1
8

A2 − 1
8

A3 = −1
8

ax̂− 1
8

aŷ − 1
8

aẑ

B2 = +1
8

A1 + 1
8

A2 + 1
8

A3 = +1
8

ax̂+ 1
8

aŷ + 1
8

aẑ

The crystal is calculated using the B3PW91 level of theory. Two sets of calculations,
using different basis sets, are carried out.

The full-electron 6-31G(d) basis set uses four s-type, nine P-type, and six d-type
Gaussian functions to represent the electrons of a and Si atom. The total DOS and the
s, p, and d projections obtained using that basis set are shown in Figure 3. The states
around the Fermi level have mostly a p-character and a bandgap of 0.72 eV; the midgap
is at −2�22 eV.

The LANL2DZ basis set supports elements with large atomic numbers, such as gold.
Whenever the molecule under study contains gold atoms, the system is calculated using
the LANL2DZ basis set. Therefore, for compatibility purposes, the DOS of Si using
the LANL2DZ basis set is also obtained. LANL2DZ is not a full-electron basis set for
Si; only the four valence electrons are considered in the calculations; the remaining ten
core-electrons are modeled by an effective core potential (ECP). The Si DOS using this
basis set is reported in Figure 4; notice that there is not d projection of the total DOS
since no d-type polarization functions are used for Si in the LANL2DZ basis set.

2.2.3. DOS of the (4, 4) CNT

Single-walled carbon nanotubes SWCNTs are one-dimensional crystals with interest-
ing mechanical and electrical properties (See for instance [27]). The geometry and

–15 –10 –5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Energy (eV)

D
O

S
 (

st
at

es
 e

V
–1

 a
to

m
–1

)

s

p

d

total

Figure 3 DOS for a silicon crystal calculated using the B3PW91 method and the 6-31G(d)
basis set
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)

Figure 4 DOS for a silicon crystal calculated using the B3PW91 DFT method and the LANL2DZ
basis set. The Fermi level for the material (purple line) is at −1�85 eV. The calculated bandgap is
1.11 eV

the electrical behavior of an SWCNT are defined by a pair of integers (m�n). It is
known [28] that

Condition Type Bandgap

n−m = 3q Semimetallic ∼m eV
n−m = 3q Metallic 0 eV
n−m = 3q Semiconductor 0.5–1 eV

where q is a non-zero integer. Recent breakthroughs in synthetic chemistry [29] have
opened the possibility of using metallic CNTs as contacts to organic molecules. We use
the (4, 4) CNT, which is a metal according to the above table, to explore the electrical
characteristics of CNT–nitroOPE–CNT molecular junctions. The DOS of the (4, 4)
CNT, Figure 5, is calculated using the B3PW91 DFT functional and the 6-31G basis
set. Despite the presence of a gap in the CNT DOS at ∼3�50 eV, the absence of gaps
at the Fermi level confirms the metallic character of this material. The calculated DOS
is in agreement with previous experimental [30, 31] and theoretical [32–35] findings.
A unit cell of the (4, 4) CNT is modeled by 16 carbon atoms.

2.3. Combined DFT-GF approach to calculate the DOS of a molecule
adsorbed on macroscopic contacts

An isolated molecule has discrete electronic states, which are precisely calculated from
the Schrödinger equation. When the molecule is attached to macroscopic contacts, the
continuous electronic states of the contacts modify the electronic properties of the
molecule. A technique that combines the Density Functional Theory and the Green
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Figure 5 DOS for the metallic (4, 4) CNT, which is calculated using the B3PW91/6-31G method
and basis set. The Fermi level (purple vertical line) is at −4�39 eV

function (DFT-GF) [36, 37] is used to account for the effect of the contacts on the
electronic states of adsorbed molecule.

In a real system, molecules are chemically attached to real contacts, made of atoms,
and not to ideal surfaces. Therefore, information about the interface, obtained at the
molecular level, needs to be provided. This is accomplished through coupling matrices
obtained from quantum-mechanical calculations of the extended molecule (i.e., the
molecule attached to a few atoms from the contacts). The Gaussian 03 [21] software is
used for the quantum-mechanical calculations of all the finite systems throughout this
work. Thus, our calculations consider explicitly the chemistry of the attachment of the
molecule to the contacts instead of unrealistic simulations of a molecule attached to
perfect or ideal surfaces.

For a hypothetical molecular system that has only five basis functions (�), the elements
of the Kohn–Sham Hamiltonian matrix (HKS) are given by

HKS =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

��1�ĥKS��1� ��1�ĥKS��2� ��1�ĥKS��3� ��1�ĥKS��4� ��1�ĥKS��5�
��2�ĥKS��1� ��2�ĥKS��2� ��2�ĥKS��3� ��2�ĥKS��4� ��2�ĥKS��5�
��3�ĥKS��1� ��3�ĥKS��2� ��3�ĥKS��3� ��3�ĥKS��4� ��3�ĥKS��5�
��4�ĥKS��1� ��4�ĥKS��2� ��4�ĥKS��3� ��4�ĥKS��4� ��4�ĥKS��5�
��5�ĥKS��1� ��5�ĥKS��2� ��5�ĥKS��3� ��5�ĥKS��4� ��5�ĥKS��5�

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(22)

The atoms of the molecular system can be classified as belonging to the contact 1, the
contact 2, or the molecule (M). For illustration, the atoms conforming the contact 1, the
contact 2, and the molecule are modeled by the �2��3��4; and �1��5 basis functions,
respectively. After reordering and partitioning HKS into submatrices we have:

H11 = ���2�ĥKS��2�� (23)

H22 =
(
��3�ĥKS��3� ��3�ĥKS��4�
��4�ĥKS��3� ��4�ĥKS��4�

)

(24)
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HMM =
(
��1�ĥKS��1� ��1�ĥKS��5�
��5�ĥKS��1� ��5�ĥKS��5�

)

(25)

H1M = (��2�ĥKS��1� ��2�ĥKS��5�
)

(26)

HM1 =
(
��1�ĥKS��2�
��5�ĥKS��2�

)

(27)

H2M =
(
��3�ĥKS��1� ��3�ĥKS��5�
��4�ĥKS��1� ��4�ĥKS��5�

)

(28)

HM2 =
(
��1�ĥKS��3� ��1�ĥKS��4�
��5�ĥKS��3� ��5�ĥKS��4�

)

(29)

where HMM is the submatrix representing the isolated molecule (restricted molecule).
The other submatrix represents the couplings between the molecule (subscript M) and
the atoms of the contact (subscripts 1 and 2).

Then, we create an ordered Hamiltonian matrix (H) and the respective overlap matrix
(S) in the following way:

H =
⎛

⎜
⎝

H11 H1M H12

HM1 HMM HM2

H21 H2M H22

⎞

⎟
⎠

S =
⎛

⎜
⎝

S11 S1M S12

SM1 SMM SM2

S21 S2M S22

⎞

⎟
⎠

(30)

This Hamiltonian matrix for the extended molecule (H) is also recalculated as the bias
electrical field is applied to the junction in order to account for the reorganization
of the molecular electronic structure due to the presence of such field. This allows
us to study among others the effects of the external bias potential on charge transfer
between the molecule and the contacts, the shift of molecular levels and the shape
changes of the molecular orbitals, which have a direct effect on the conductance of
the junction. These effects are needed to explain the nonlocal behavior of molecular
systems presenting highly nonlinear features such as rectification, negative differential
resistance, memory hysteresis, etc. Notice that the molecule itself does not have an
integer charge in any of the charge states of the extended molecule because the charge
distributes between the isolated molecule and the metal atoms. Charge transfers between
the molecule and contact occur even at zero bias voltage and also as a result of an
externally applied field. Certainly, this charge transfer is determined by the metal atoms
attached to the molecule; these metal atoms together with the continuum define specific
tip. It is clearly demonstrated from theoretical as well as experimental information
[3, 14, 38] that the connection of the molecule to the metal is only through one or
two metal atoms as concluded in [3]. However, the effect of local interactions with the
atoms located beyond these nearest neighbors on the actual molecule is very small and
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usually truncated; this constitutes the strongest approximation of our procedure only if
the molecule were realistically connected directly to a continuum. Fortunately, there is
strong evidence that it is an acceptable approximation because it precisely considers
the chemistry and physics of the actual local attachment or bonding of the molecule to
the surface atoms [3, 14]. Methods such as the so-called “non-equilibrium” for instance
are shown to include only the Hartree response of the system, thus missing important
physics of the problem [39].

The coupling between atoms of the contact and those of the molecule yields the
self-energy term, �j:

�j = HMjgjHjM j = 1� 2 (31)

which depends on the complex Green function, gj , describing the contact j. The complex
gi can be obtained from any source as long as it can be represented in matrix form of
the appropriate dimensions; it provides the information from the contact to the DFT-GF
formalism. We choose to generate the Green function for the conctacts using Crystal 03
since it allows obtaining a high-level electronic structure of a bulk system of any shape
using DFT. This complex function is defined as:

gj�E� = −�
√−1

⎛

⎜
⎜
⎝

g1
j � � � 0
���

� � �
���

0 · · · g
nj

j

⎞

⎟
⎟
⎠ j = 1� 2 (32)

where each value of the diagonal matrix is proportional to the local density of states
DOS, which has been calculated in Section 2.2.

gk
j �E� =

⎛

⎜
⎜
⎜
⎝

DOSjs
k�E� 0 0 0

0 DOSjp
k�E� 0 0

0 0 DOSjd
k
t2g�E� 0

0 0 0 DOSjd
k
eg

�E�

⎞

⎟
⎟
⎟
⎠

(33)

In order to keep consistency in the matrix dimensions of Eq. (32), the index k runs
over all the interfacial atoms that represent contact j�k = l� � � � � nj�. Each diagonal term
of Eq. (33) is again another diagonal matrix, in such a way that the size of DOS js

k�E�
is equal to the number of s-type basis functions used to model the electronic structure
of the type of atom that composes contact j.

The coupling of the molecule to the contacts is obtained from molecular calculations
(HiM and HMi shown in Eq. (30)) that consider the atomistic nature of the contact–
molecule interface. The interaction terms defined in Eq. (31) are added to the molecular
Hamiltonian to account for the effect of the contact on the molecule:

He =
⎛

⎜
⎝

H11 H1M H12

HM1 HMM +�1 +�2 HM2

H21 H2M H22

⎞

⎟
⎠ (34)
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To account for the non-orthogonality of the basis set, the overlap matrix S modifies
the Hamiltonian into:

H′
e = S−1He =

⎛

⎜
⎝

H′
11 H′

1M H′
12

H′
M1 H′

MM H′
M2

H′
21 H′

2M H′
22

⎞

⎟
⎠ (35)

This modified Hamiltonian is used to obtain the Green function for a molecule attached
to two contact tips:

GM�E� = �E1−H′
MM�−1 (36)

Finally, the DOS of the molecule subjected to the effect of the two contacts is
calculated as:

DOS =
√−1
2�

Trace�GM −G†
M� (37)

Within the Green function formalism, two separated and independent calculations are
needed. First is molecular calculations on the molecule of interest plus a few atoms
like those in the contact. Second is a calculation of the DOS of each contact; those
calculations can be performed at any level of theory; however, it is desirable to choose
ab initio methods known to provide chemical accuracy, such as DFT using generalized
gradient approximation or better.

3. Electron transport in molecular junctions

We model our molecular system as a generic two-port network, shown in Figure 6. The
bias voltage is defined as: V = V1 −V2. Thus, contact 1 is considered as the positive
electrode and contact 2 the negative one. At contact 1, we define i−1 as the current
flowing from contact 1 towards the molecule and i+1 as the backscattered current, which
flows from the molecule to the contact. Likewise, at contact 2, we have i+2 flowing from
contact 2 to the molecule, and i−2 flowing from the molecule to contact 2. For a detailed
description of the original procedure the reader may refer to [13] and references therein.

The associated scattering matrix for such two-port network is:

(
i+1
i−2

)

=
(

S11 S12

S21 S22

)(
i−1
i+2

)

(38)

where the elements of the scattering matrix are defined as:

S21 = i−2
i−1

∣
∣
∣
∣
i+2 =0

(39)

S12 = i+1
i+2

∣
∣
∣
∣
i−1 =0

(40)
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Extended molecule

Restricted molecule

Interfacial atom

Bulk contact 2
Bulk contact 1
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i2
+
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+

i2–
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Figure 6 Terminology used in our electron transport calculations. The bulk contacts are pictorial
representations of the two macroscopic tips that approach the molecule. A restricted molecule
corresponds to the model under study itself; it includes the alligator atoms, such as sulfur, if they
are present. Interfacial atoms correspond to atoms of the type belonging to the bulk contacts. The
extended molecule is composed of the restricted molecule and some atoms of the type belonging
to each contact material. Arrows show the convention used for the direction of the currents and
the polarity of the bias voltage

S22 = i−2
i+2

∣
∣
∣
∣
i−1 =0

(41)

S11 = i+1
i−1

∣
∣
∣
∣
i+2 =0

(42)

From Eq. (39), s21 is interpreted as the number of electrons that can reach contact 2
(considering contact 2 as reflectionless, i+2 = 0), per each electron that is injected from
contact 1. In other words, it is the probability for an electron to cross the molecular
junction from contact 1 to contact 2. Analogously, s12 represents the probability for an
electron to cross the junction from contact 2 to contact 1. At equilibrium, the probability
for a particle to tunnel through a barrier would be the same whether it crosses the barrier
from left to right or from right to left. We define this quantity as the “transmission
probability”, T .

S21 = S12 = T (43)

From Eq. (41), s22 is the number of backscattered electrons per each electron that
goes through contact 1, considering no reflection at contact 2. Then it is the probability
for an electron injected through port 2 to be reflected, which is the complement of the
transmission probability:

S11 = S22 = 1−T (44)



16 Luis A. Agapito and Jorge M. Seminario

Then, Eq. (38) becomes
(

i+1
i−2

)

=
(

1−T T

T 1−T

)(
i−1
i+2

)

(45)

Equation (45) ensures the conservation of total current in the two-port network, i.e.,
I = i1 = i2, where:

i1 = i+1 − i−1

i2 = i+2 − i−2

At a given energy E, the current per mode per unit energy (as a result of an occupied
state in one contact leaking into the molecule) is given by 2e/h

∗
. For a partially occupied

state, such current needs to be corrected by the Fermi distribution factor (f ) of the
contact. The total current leaking from contact 1 into the molecule is given by:

i−1 �E� = 2e

h
M�E�f1�E�dE (46)

where M�E� is the number of transmission modes allowed for the molecule at the energy
E. Analogously, the amount of total current leaking from contact 2 into the molecule
before reaching equilibrium is:

i+2 �E� = 2e

h
M�E�f2�E�dE (47)

When a small bias voltage (V �= 0) is applied between the contacts of the junction,
the molecular system is taken out of equilibrium and the electrons flow. The application
of a positive bias voltage between the contacts shifts down the Fermi level of contact
1 and shifts up the Fermi level of contact 2. In both cases, the shifts are by an equal
amount of 0�5eV with respect to the equilibrium Fermi level of the extended molecule
(�EM) [14], in the following way

�∗
2 = �EM + 1

2
eV (48)

�∗
1 = �EM − 1

2
eV (49)

Consequently, the Fermi distribution functions of both contacts are shifted whenever a
bias voltage (V ) is applied to the junction; this makes the Fermi distributions dependent
on the applied bias voltage.

f2

(

E −�EM − 1
2

eV

)

= 1

1+ e
E−�∗

2
kT

(50)

f1

(

E −�EM + 1
2

eV

)

= 1

1+ e
E−�∗

1 �

kT

(51)

∗
e refers to the charge of a proton +1�602177×10−19.
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Combining Eqs. (45), (46), (47), (50), and (51), we obtain:

i�E�V � = 2e

h
M�E�T�E�

[

f2

(

E −�EM − 1
2

eV

)

−f1

(

E −�EM + 1
2

eV

)]

dE (52)

Defining the transmission function as T�E� = M�E�T�E� and integrating over energy,
the total current of electrons flowing between the contacts is:

I�V � = 2e

h

+�∫

−�
T�E�V �

[

f2

(

E −�EM − 1
2

eV

)

−f1

(

E −�EM + 1
2

eV

)]

dE (53)

The transmission function, T , is obtained from the chemistry of the molecular junction.
It is defined as [40]:

T�E� V � = 1
N

Trace��2GM�1G†
M� (54)

where N is the number of basis functions used to represent the restricted molecule and
V is the bias voltage applied between the contacts. The consideration of the bias voltage
affecting all the matrices equation (54) was of paramount importance to convert this
early mesoscopic procedure into a molecular one [41]. The coupling (�j) between the
molecule and the contact j is defined as:

�j = √−1��j −�†
j � j = 1� 2 (55)

where the self-energy term, �j , Eq. (31), depends on the Green function, of the contacts.
The Green function, g�E�, Eq. (32), depends on the Fermi level of the contact, which
varies with the applied voltage according to Eqs. (48) and (49). Consequently, the
Green function of each contact, the self-energy terms �j , the coupling terms �i, and the
transmission function are a function of the applied voltage, i.e, T�E� V �.

4. Metal–molecule–metal junctions

4.1. Metal–benzene–metal junction

We aim to study the conductance of the nitroOPE molecule, which is composed of three
benzene rings, attached to metallic CNT tips. We start the analysis with a simpler case,
a single benzene molecule between two CNT tips (CNT–benzene–CNT junction). The
Au–S–benzene–S–Au junction has been studied before [36, 42]; in those calculations,
the adsorption of benzene to the gold contacts is possible by use of a sulfur atom
connecting a carbon and a gold atom (thiol bond). Recent research has shown the
possibility of direct attachment of benzene to carbon nanotubes [43–46]; this opens the
possibility of employing metallic CNTs as contacts to organic molecules.

The first step in simulating the benzene connected to two infinitely long CNT contacts
is the inclusion of interfacial carbon atoms, representing the CNT contacts, in the
extended molecule (see terminology in Figure 6). It is known that an infinitely long
(4, 4) CNT shows metallic behavior [28], but small pieces of (4, 4) CNT need not
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necessarily show a metallic character. Therefore, the CNT has to be modeled by an
adequate number of atoms such that metallic behavior is reached. The second step is
to include the effect of the continuum of electronic states provided by the infinitely
long nature of the (4, 4) CNT contacts; this is accomplished by the use of the DFT-GF
approach described in Section 2.3.

We test several junctions in which each CNT contact is modeled by 40, 48, 56, 64,
72, and 80 carbon atoms, corresponding to parts A, B, C, D, E, and F of Figure 7,
respectively. The DOS for the (4, 4) CNT, which is shown in Figure 5, and the electronic
structures of all the molecular junctions are calculated using the B3PW91 DFT method
combined with the 6-31G basis set. The calculation of the I-Vs (Figure 8) shows that
all the junctions present consistently similar values of current, indicating that even 40
carbon atoms are suffice to model each CNT contact. Moreover, in a previous work [47],
we demonstrated that small pieces of CNT, composed of 80 atoms, did behave as
expected for their infinitely long counterparts, i.e., metallic character for the (4, 4) and
the (9, 0), and semiconducting character for the (8, 0) CNT.

All the junctions show ohmic behavior, with a constant resistance of ∼2 M�, for
small bias voltages (<∼3 V). The ohmic behavior at low bias voltages agrees with the
theoretical calculations reported by Derosa [36] and Di Ventra [42].

(A) (B) (C)

(D) (E) (F)

Figure 7 Molecular junctions of the type metal-benzene-metal. The pieces of (4, 4) CNTs
(metal) are shown above and below the benzene. A ring of the metallic CNT is defined to be
composed of 8 carbon atoms. The total number of atoms belonging to the top and bottom CNTs is
increased progressively, both contacts are constructed to have the same number of carbon atoms.
(A) is composed of 5 rings in the top and also 5 rings in the bottom contact, (B) of 6, (C) of 7,
(D) of 8, (E) of 9, and (F) of 10
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Figure 8 Current–voltage characteristics for six junctions of the form CNT–benzene–CNT
(shown in Figure 7). In each junction a different number of carbon atoms is used to model the
CNT contact (40, 48, 56, 64, 72, and 80 carbon atoms corresponding to the junctions A, B, C, D,
E, and F, respectively). The inset shows the geometry of the junction F. The plots on the bottom
part are two amplifications of the ohmic region

Gold has more electrons available for conduction per atom than the metallic (4, 4)
CNT; ∼10 times higher at their Fermi levels as shown in Figures 1 and 5, which
in principle should make the Au–S–benzene–S–Au junction more conducting that the
CNT–benzene–CNT junction. However, the current in the CNT–benzene–CNT junction,
at 2 V, is found to be higher than the values reported theoretically [36] and experi-
mentally [6] for the Au–S–benzene–S–Au junction. We attribute that higher current
to the better (seamless) chemical bond between the benzene and the CNT than the
Au–S–benzene bond.

4.2. Metal–nitroOPE–metal junction

We calculate junctions containing the nitroOPE molecule under metallic contacts such
as Au and the (4, 4) CNT. These results are considered as references for subsequent
calculations, which include semiconducting contacts.

Gold has been the preferred contact material for the experiments on molecular con-
duction either as a vapor-deposited top contact, such as in a nanopore device, or as the
tip of an STM [48]. Here, we study two cases in which the nitroOPE is bonded to gold
contacts, the Au6–nitroOPE–S–Au1 and the Au1–S–nitroOPE–S–Au1 junction.

In the Au6–nitroOPE–S–Au1 junction, the bottom contact is modeled by one interfacial
gold atom. The nitroOPE is bound to the gold atoms by a thiol bond (C-S-Au). The
top contact is modeled by six interfacial gold atoms that are not chemically bonded
to the nitroOPE. This type of physical bond is expected to be found in experimental
measurements of molecular I-V that use an STM tip as top contact. The geometry of
the extended molecule is shown in the lower right corner of Figure 9B. The neutral, the
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Figure 9 (A) Current–voltage characteristic for the Au6–nitroOPE–S–Au1 junction. (B) Ampli-
fication of the low-current region of (A). The coplanar conformation of the molecular junction is
shown in the lower part of (B). The C, H, S, N, O, and Au atoms are colored grey, white, yellow,
blue, red, and green, respectively

first charge state (anion), and the perpendicular conformational state are calculated for
this Au6–nitroOPE–S–Au1 junction.

Also, two different and possible geometrical conformations are calculated. In the
coplanar conformation, the three phenyl rings in the nitroOPE are lying in the same plane;
however, in the perpendicular conformation, the middle phenyl ring is perpendicular to
the other two. The calculation establishes the coplanar conformation as more stable than
the perpendicular conformation, with a rotational barrier of −0�20 eV �−4�7 kcal/mol�
for the middle phenyl ring. The current–voltage calculations for the coplanar, perpen-
dicular, and anion states are reported in Figure 9A.

In the Au1–S–nitroOPE–S–Au1 junction, one gold atom is used to represent each
contact. The attachment of the nitroOPE molecule to both gold atoms is through thiol
bonds. The geometry of this junction is shown in the lower right corner of Figure 10A.
The current–voltage characteristic for the coplanar, perpendicular, and anion states for
these junctions are shown in Figure 10.

For both junctions, the Au6–nitroOPE–S–Au1 and the Au1–S–nitroOPE–S–Au1, two
distinct states of conductance are observed, high conductance (red curve) and low
conductance (green and blue curves). The neutral molecule (charge = 0) presents high
conductance whereas the anion (charge = −1) and the perpendicular state show low
conductance. Moreover, the high-conductance state of the junctions shows ohmic
behavior at low bias voltage, which agrees with previous results reported for similar
molecules [15, 16, 37].

The Au1–S–nitroOPE–S–Au1 junction allows for significantly higher current (∼5
times) than the Au6–nitroOPE–S–Au1. The physical bond, present between the nitroOPE
and the six-gold plane, is a gap of atomistic size that obstructs the flow of electrons. It is
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Figure 10 (A) Current–voltage characteristic for the nitroOPE under two gold tips (green). Sulfur
atoms (yellow) have been included too. (B) Amplification of (A). The coplanar conformation of
the molecular junction is shown in the lower right corner of (A)

effectively a thin tunneling barrier for the electrons to overcome. The thiol bond in the
top contact of the Au1–S–nitroOPE–S–Au1 junction allows more transfer of electrons
than the physical bond in the top contact of the Au6–nitroOPE–S–Au1 junction. In this
regard, Cui et al. have experimentally demonstrated [49] a difference of four orders of
magnitude between the current in a chemisorbed junction (“glued” by covalent bonds)
and the current in a physisorbed junction (“glued” by physical bonds).

We study metallic CNTs as prospective contacts for molecular junctions. Eighty
carbon atoms are used to model a piece of the (4, 4) CNT. The geometry of the coplanar
conformation of the CNT–nitroOPE–CNT junction is shown in the lower right corner of
Figure 11. The calculated current–voltage characteristics for the coplanar, perpendicular,
and anion states are reported in Figure 11.

Similar to the case when having gold contacts, the two distinct states of conductance
attributed to the nitroOPE molecule are still found for the CNT–nitroOPE–CNT junction.
The coplanar conformation (red) exhibits high conductance whereas the perpendicular
and anion states (blue and light green respectively) exhibit low conductance.

Despite the fact that gold has more electrons per atom available for conduction than
the metallic (4, 4) CNT has, the CNT–nitroOPE–CNT allows higher current than the
Au6–nitroOPE–S–Au1 junction. This is a consequence of the tunneling gap around the
top contact of the Au6–nitroOPE–S–Au1 junction, which obstructs the flow of electrons.

Although thiol bonds are chemically easy to work with, they present a disadvantage
from the electrical point of view. Thiol bonds are highly polar, and polar bonds introduce
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Figure 11 Left: Current–voltage characteristic for the coplanar, perpendicular, and anion states
of the CNT–nitroOPE–CNT junction. The coplanar conformation of the molecular junction is
shown in the lower right corner. Right: Amplification of the low-current region

undesirable capacitive effects that restrict the flow of electrons. Vondrak et al. used two-
photon photoelectron spectroscopy to show that the S atom, in C-S-Cu thiol bonds, acts
as insulators, obstructing the flow of electrons [50]. Thiol bonds should be considered
as thin tunneling barriers. The Au crystal has ∼10 times higher density of states than the
(4, 4) CNT crystal does; however, the Au–S–nitroOPE–S–Au junction exhibits only ∼3
times higher current than the CNT–nitroOPE–CNT junction does. This is an indication
that the C-C bonds in the CNT–nitroOPE–CNT are electrically superior to the thiol
bonds in the Au1–S–nitroOPE–S–Au1 junction.

From another point of view, the Au1–S–nitroOPE–S–Au1 and the Au6–nitroOPE–S–
Au1 junctions can be thought of as a nitroOPE isolated by two thin tunneling barriers at
each end, resembling the particle-in-a-box problem. The quantum confinement preserves
the discrete nature of the molecular electronic states. The DOS of the perpendicular Au1–
S–nitroOPE–S–Au1 junction shows the presence of an isolated and narrow peak in the
proximity (a channel for conduction) of its Fermi level. The junction is not conducting
until enough bias voltage (energy) is applied to reach the energy of that channel; electron
transport takes place by resonant tunneling using that isolated channel. Moreover, the
current does not change with the increase of voltage until another molecular channel is
reached. This phenomenon is reflected in the steplike shape of the I–V curve (Figure 9B).
The perpendicular Au1–S–nitroOPE–S–Au1 junction shows steplike I–V characteristic
(Figure 10B), too. The steplike variation of the current has also been experimentally
observed in molecular systems [51, 52].
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In summary, metal–nitroOPE–metal junctions are found to have isolated and nar-
row DOS peaks, which are reflected in steplike I–V curve, whenever they meet two
conditions: first, they are in a state of low-conductance (perpendicular conformation or
anion); and second, they contain tunneling barriers (physical or thiol bonds). Junctions
in states of high conductance (coplanar conformations) and junctions that do not contain
tunneling barriers (CNT–nitroOPE–CNT) do not show steplike I–V curve.

The transport of current through a molecular junction comprises the study of a
molecular system that presents both a finite and an infinite character. The finite part
(single molecule) is calculated precisely from the fundamental Schrödinger equation.
The effect of macroscopic contacts (infinite part) is included following the DFT-GF
approach. At the scale of the molecular junctions considered in this work, the transport
of electrons is described by the Landauer formalism.

A DFT-GF implementation of the Landauer formalism is used to calculate the
I–V of metal–nitroOPE–metal junctions in different conformational and charge states.
Gold and the (4, 4) CNT are tested as metallic contacts, and in both cases the
metal–nitroOPE–metal junction presents high conductance when the nitroOPE is in its
coplanar conformation. The calculations predict low conductance for the perpendicular
conformation and for the charge states (anion, dianion, trianion) of the nitroOPE. It is
observed that the states of high conductance exhibit ohmic I–V at low bias voltage.

The CNT–nitroOPE–CNT junction has values of current similar to the junctions
containing gold contacts, despite the fact that CNT has ∼10 times lower DOS than gold.
This result encourages the use of CNT as an alternative to gold in molecular devices;
however, technological challenges remain regarding the manipulations of single CNTs.
The rationale for the high conductance of the junction containing CNT is the direct
C−C bond between the CNT and the nitroOPE; instead, the thiol bonds (Au–S–C) in
the Au1–S–nitroOPE–S–Au1 junction behave as undesired interfacial capacitors at the
interfaces, isolating the nitroOPE from the contacts. Moreover, the calculation shows
that the gold atoms at the top contact of the Au6–CNT–S–Au1 junction form a physical
bond with the nitroOPE. The physical bond is effectively a tunneling gap, which deters
even more the flow of electrons. For the Au6–CNT–S–Au1 junction, the current is lower
than for the CNT–nitroOPE–CNT junction.

5. Metal–molecule–semiconductor junctions

The semiconductor industry entered the nanometer regime (<100 nm) in 2000 and
continues today to be in the race for miniaturization. The first commercial single
molecule–based device is most likely to be built around Si.

At sizes approaching the quantum-confinement regime, the electrical properties of
silicon, and any other material, diverge from the bulk properties. For example, studies
have shown the increase of the bandgap with the decrease of the size of the semicon-
ducting nanostructure [53–55]. For silicon nanowires (SiNWs), theoretical calculations
have shown that the quantum effects are substantial at diameters below 3 nm [56–61].
Quantum-mechanical calculations of the type presented in this work are necessary for
devices containing Si nanostructures in the quantum-confinement regimen.

In the previous section, we have described the distinctive impedance states of the
metal–nitroOPE–metal junctions. Advances in synthetic chemistry have allowed the
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direct attachment of organic molecules on Si substrates [62, 63], opening the door for
hybrid organic-semiconducting devices. In this section, we consider the effect of Si
contacts on the bistable properties of the nitroOPE.

A Schottky diode, which is formed when a metal and a semiconductor are in inti-
mate contact, acts as a current rectifier. Therefore, in a macroscopic metal–device–
semiconductor junction, the simultaneous use of a semiconducting and a metallic con-
tact implies a tremendous change in the properties of the device. In other words, the
electrical behavior of the device may be overruled by the rectifying behavior of the
contacts. The challenge is to use Si as one of the contacts in metal–nitroOPE–Si molec-
ular junctions without destroying the bistable characteristics attributed to the nitroOPE
molecule. The rectifying behavior has been experimentally observed to vanish as the
size of the metal–semiconductor junction approaches the nanometer regime: i.e., ultra-
small Schottky diodes [64–66]. This gives hope for using Si as a righteous contact
material in single molecule–based electronic devices; we perform quantum-mechanical
calculations to assess the ability of metal–nitroOPE–Si junctions to keep the high- and
low-impedance states found in metal–nitroOPE–metal junctions. Our study considers
the different charge states (neutral, anion, dianion, and trianion) as well as the coplanar
and perpendicular conformations of the nitroOPE molecule. Both gold and (4, 4) CNT
are tested as metallic contacts.

5.1. Significance of the electronic chemical potential (Fermi level)
for a single molecule

The electrochemical potential is a property traditionally defined, for macroscopic sys-
tems, as the variation of the total energy with respect to the number of particles in the
ensemble. This concept needs to be extended to be able to determine the Fermi level of
a single molecule.

The Fermi level for a molecule is synonymous with minus the electronegativity,
which is defined as the average of the ionization potential (IP) and the electron affinity
(EA) (Mulliken electronegativy):

� = − IP +EA
2

(56)

where the electron affinity (EA) is defined as the amount of energy needed by the
molecule (or atom), in its neutral state, to accept an extra electron. The ionization
potential (IP), also called ionization energy, is the energy needed to strip out one electron
from the molecule (or atom). EAs and IPs can be calculated computationally as the
difference between the self-consistent field (SCF) energies of the charge states of the
molecule.

EA = Eanion −Eneutral

IP = Ecation −Eneutral

This approach is called �SCF; recent studies show that DFT methods are able to achieve
0.1–0.2 eV of accuracy to calculate EAs and IPs [67–69].
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A more direct approach to calculate the molecular Fermi level is based on a quantum-
mechanical extension of the traditional definition of chemical potential [70–72].

According to the first Hohenberg–Kohn theorem [22], the ground-state energy (E0)
is a functional of the density, 	0�r�:

E0 = E
�	0�r�� =
∫

	0�r�
�r�+F �	0�r�� (57)

where 	0�r� is the ground-state electron density. For any other trial electron density,
	�r�, we get another energy:

E′ = E
�	�r�� =
∫

	�r�
�r�+F �	�r�� (58)

The second Hohenberg–Kohn theorem establishes that the energy of Eq. (58) cannot
be lower than the energy in Eq. (57). In other words, the minimization of Eq. (58) with
respect to variations of the electron density, 	�r�, yields the ground-state energy �E0�
and ground-state electron density, 	0�r�

∫
	�r�d� = N (59)

with N being the number of electrons in the molecular system. This minimization
problem is commonly tackled by the introduction of a Lagrange multiplier �

�
{
E
�	�r��−�

∫
	�r�d�

}
(60)

which results in the following Euler–Lagrange equations:

� =
[

�E�	�r��

�	�r�

]

	=	0

(61)

� = �E

�N
(62)

The similarity of Eq. (62) to the traditional, thermodynamical definition of chem-
ical potential in macroscopic systems reassures that the chosen Lagrange multiplier
constant, �, corresponds indeed with the Fermi level [72]. Moreover, Eq. (62) gives a
direct relationship of the Fermi level with the total energy functional and the ground-state
electron density.

Combining Eqs. (56) and (61), we obtain the following relation:

� =
[

�E�	�r��

�	�r�

]

	=	0

= − IP +EA
2

(63)

Based of Eq. (61), Perdew et al. [70, 71] have shown that the ionization potential
(IP) is exactly minus the energy of the highest occupied Kohn–Sham molecular orbital
energy (�HOMO), for the exact energy functional.

IP = −�HOMO (64)
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The ground-state energy of a molecule varies continuously with fractional variations
in the number of electrons in the system. For integer variations on the number of elec-
trons, the exact exchange-correlation potential component of the total energy jumps
by a constant, i.e. it has a derivative discontinuity at any integer number of electrons.
However, the exact exchange-correlation functional may never be found and the approx-
imations that are in use cannot account for these discontinuities. The smoothing of the
curve introduces errors that make �HOMO deviate from the ideal relation in Eq. (64).
Surprisingly, it has been shown [73] that the accumulation of errors makes the energy
of the HOMO tend to the average of the IP and the EA instead of to the IP. Then

�HOMO ≈ − IP +EA
2

(65)

Combining Eqs. (64) and (65), we finally get an expression to find the Fermi level
of a molecule as approximately the energy of the Kohn–Sham HOMO.

� ≈ �HOMO (66)

5.2. “Fermi-level alignment” in metal–semiconductor interfaces

One of the paramount issues in the study of metal–semiconductor junctions relates to
the electronic equilibration of charges across the interface. When having two materials
with different Fermi levels in direct contact, electrons flow from the material with
higher Fermi level to the one with lower Fermi level until equilibrium is reached. At
equilibrium, it is said that the junction has a unique Fermi level throughout the two
materials, this is called the “Fermi-level alignment” rule.

The rearrangement of charges produces a built-in electric field at the interface,
which helps to maintain the equilibrium at the interface. The distribution of charges
is expressed as a built-in electrostatic potential profile Vbi�x� across the junction. This
potential modifies the original Fermi level to produce an effective Fermi level, �∗, in
the following way

�∗ = �+ eVbi�x� (67)

Then “Fermi-level alignment” refers strictly to the alignment of the effective Fermi
levels of the materials conforming the junction, not to the alignment of the Fermi levels.

Our method of studying the interfaces is schematized in Figure 12. Zones I and V
correspond to the regions of the junction where both contacts (contact 1 and contact 2)
behave as bulk materials and their effect on the junction is accounted using the Green
function method. The critical part of the junction is the region where both bulk materials
are in direct contact; the formation and breakage of molecular bonds takes place in this
region, resulting in a new material (material 3) that is neither contact 1 nor contact 2 (see
nomenclature in Table 2). The electronic properties of the junction depend mostly on
the character of this interface; thus, a high degree of accuracy is needed in modeling this
region. This region is treated as a separate new molecule, which is the extended molecule
defined in Figure 6, and calculate quantum-mechanically. The extended molecule is



Metal–molecule–semiconductor junctions 27

x

I II III IV V

(A)

(B)

(C)

(D)

μ
 1

μ' = μ EM –eVbi

μ* = μ
 
+

 
eVbi (x)

Vbi (x)

μ 2

μ 1 μ 2

eV
2

eV
2

μ 
EM ≈ ε HOMO* *

μ 
EM ≈ ε HOMO

Figure 12 (A) Schematic of the electrochemical potential (Fermi level) distribution, ��x�, along
the x axis, perpendicular to the junction. Zone I corresponds to bulk CNT, zone V to the silicon
bulk, and zones II, III, and IV to the extended molecule. (B) Spatial distribution of the electrostatic
potential (ESP), Vbi�x�, for the CNT–molecule–Si junction. (C) Spatial distribution of the effective
electrochemical potential (effective Fermi level), �∗�x�, across the junction. (D) Shifting of the
effective electrochemical potential (effective Fermi level) across the junction upon the application
of an external bias voltage V

comprised of the zones II, III, and IV (Figure 12). Several atoms belonging to the contacts
(interfacial atoms, zones II and IV) are included as part of the extended molecule.

In other words, our model considers the original two-contact junction as a junction
composed of three different materials: material 1 (the contact 1), material 3 (the extended
molecule), and material 2 (the contact 2). These three distinct materials reach and stay
in equilibrium. Their effective Fermi levels are aligned to the value of the Fermi level
of the extended molecule, as shown in Figure 12C. According to Eq. (66), the Fermi
level of the extended molecule corresponds to the energy of the Kohn–Sham HOMO.

In order to read/write information from/in the molecule, an external bias voltage, V ,
needs to be applied between the contacts. Upon the application of the external voltage,
the junction gets out of equilibrium. As a first approximation, the effective Fermi levels
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Table 2 Parallel between several equivalent names given to the components of a junction. The
extended molecule is composed of the interfacial atoms and the restricted molecule

Junction Components Molecule Figure 12A Figure 6

Material 1 Contact 1 Au DOS I Bulk contact
Interface Au atoms II Interfacial atoms

Material 3 Interface nitroOPE III Restricted molecule
Interface Si atoms IV Interfacial atoms

Material 2 Contact 2 Si DOS V Bulk contact

of both contacts are affected by the external voltage as shown in Figure 12. This gradient
of effective Fermi levels along the junction produces a flow of electrons between the
contacts, i.e. current.

5.3. Quantum-mechanical calculation

5.3.1. Gold contact

The Au–nitroOPE–Si junction (Figure 13C) is composed of 6 interfacial Au atoms,
which model the top contact, and 38 Si atoms, which model the bottom contact. The
geometry for this extended molecule is obtained by performing quantum-mechanical
optimizations of the top and bottom components of the junction separately.

(A) (B) (C) (D)

Figure 13 (A) Optimization of the bottom past of the junction. (B) Optimized geometry corre-
sponding with the top part of the junction. (C) Final assembly of the Au–nitroOPE–Si junction.
(D) Associated Au-Si tunneling junction. For higher compatibility all calculations are performed
under the same DFT method and basis set (B3PW91/LANL2DZ)
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To find an appropriate geometry for the bottom part of the junction, we optimize the
nitroOPE molecule perpendicularly bonded to a hydride-passivated Si (111) surface,
which is modeled by 52 silicon atoms (Figure 13A). Hydrogen atoms are added to
saturate the boundary Si atoms. This molecule presents a total dipole moment of 5.08 D
(+2.72 D in the direction of the junction). The optimized C−Si bond length is 1.913 Å.

The top part of the junction is found by optimizing the nitroOPE molecule and six
gold atoms (Figure 13B). We run several calculations with increasing number of Au
atoms (from 1 to 6); those geometry optimizations show that the gold atoms tend to a
planar conformation and that there is no chemical bond between the gold atoms and
the nitroOPE molecule. For compatibility, the optimization of the top (Figure 13B) and
bottom (Figure 13A) parts of the junction is performed using the same level of theory,
B3PW91, and basis set, LANL2DZ.

Figure 13C shows the final assembly of the Au–nitroOPE–Si junction from the
optimized bottom and top parts. For practical reason to confront the computationally
challenging nature of the geometry optimizations, the assembled geometry of the junction
(Figure 13C) is kept fixed (not fully optimized) for all subsequent calculations. Also,
notice that the number of total silicon atoms is reduced to 38 with respect to Figure 13A.
The total dipole moment for this junction is 9.03 D (+7.8 D in the direction the junction).

We also calculated an alternative geometry, the perpendicular conformation. In that
conformation, the middle phenyl ring, which contains the nitro group, is rotated 90�

with respect to the plane of the other two phenyl rings. If the opposite is not stated
explicitly, the default conformation corresponds to “coplanar”, where all the phenyl
rings are contained in a plane, as seen in Figure 13C.

The calculations of both conformations, shown in Table 3, predict that the Au–
nitroOPE–Si junction is more stable in the perpendicular conformation than in the
coplanar conformation, with an energetic barrier of 0.19 eV (4.3 kcal/mol, ∼7 kT ) for
rotation of the middle phenyl ring.

5.3.2. (4, 4) CNT contact

Recently, several procedures have been reported for attaching covalently aromatic hydro-
carbons (arenes) to CNTs [44–46]. Manipulation of CNTs has been limited since they
are synthesized as bundles or ropes. Because of the tendency to agglomerate, CNTs
present low solubility and dispersion when placed in polymer matrices [74]. The ability
to attach arene “handles” to CNTs allows direct manipulation of this amazing form of
carbon, opening new possibilities of using individual CNTs as molecular devices.

Table 3 Summary of the calculation for the Au–nitroOPE–Si junction

Coplanar conformation Perpendicular conformation

Calculation type single point single point
Calculation method UB3PW91 UP3PW91
Basis set LANL2DZ LANL2DZ
Total electronic energy −2014�57326 Ha −2014�58015 Ha
Dipole moment 9.03 D 9.52 D
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Moreover, several functionalization techniques have been reported to react faster in
metallic CNTs rather than in semiconducting ones [43, 75, 76], which has allowed the
separation of CNTs based on their electronic properties, i.e., metallic from semicon-
ducting [43]. The advances have opened the possibility of using metallic CNTs as tips
for contacting organic molecules.

On the other hand, the synthesis of nitroOPE molecules perpendicularly assembled
on a hydride-passivated Si (111) substrate, with the top end covalently attached to a
metallic CNT, i.e., the mettalic CNT–nitroOPE–Si junction shown in Figure 14A, has
been reported recently [29]. Computationally, the use of atoms with smaller atomic
number, such as carbon instead of gold, has the advantage of allowing a full-electron
study of the system, which leads to a more precise calculation.

We optimize the geometry of the (4, 4) CNT–nitroOPE–Si junction by parts. The top
part of the geometry is obtained by optimizing a piece of (4, 4) CNT with a benzene ring
covalently bonded to it. The piece of the armchair (4, 4) CNT is composed of 10 carbon
rings, each ring containing 8 carbon atoms. The positions of the CNT atoms away from
the benzene-CNT bond are kept fixed. The bottom part is obtained as described for
the Au–nitroOPE–Si junction. The geometry of the assembled (4, 4) CNT–nitroOPE–Si
junction is shown in Figure 14A. Due to computational restrictions, this geometry is
kept fixed for all subsequent calculations.

We calculated the coplanar (Figure 14A) and the perpendicular (Figure 14B) con-
formations. Contrary to the case when having a gold top contact, the coplanar

(A) (B) (C)

Figure 14 (A) Coplanar and (B) perpendicular configuration of the (4, 4) CNT–nitroOPE–Si
junction. (C) The (4, 4) CNT–Si tunneling junction has the interfacial atoms in the same position
as (A) and (B), but without the nitroOPE molecule between them
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Table 4 Summary of the calculation for the (4, 4) CNT–nitroOPE–Si junction

Coplanar configuration Perpendicular configuration

Calculation type single point single point
Calculation method UB3PW91 UP3PW91
Basis set 6-31G(d) 6-31G(d)
Total electronic energy −15097.75352 Ha −15097.74713 Ha
Dipole moment 130.46 D 133.37 D

conformation of the CNT–nitroOPE–Si junction turns out to be slightly more stable
than the perpendicular conformation (Table 4), with a rotational barrier of 0.17 eV
(4 kcal/mol).

The calculated total dipole moment is 130.46 D (−130�16 D in the direction of the
junction) for the coplanar configuration. The perpendicular configuration presents a
similar dipole moment: 133.37 D (−133�03 D in the direction of the junction).

Because of the larger spatial extension of d-electrons over p-electrons, the wavefunc-
tion of gold can tunnel farther into the vacuum than the wavefunction of a CNT contact.
The variation of the ESP (Figure 15B and 15D) along metal–Si tunneling junctions
(Figure 15A and C) corroborates the fact that the wavefunction of gold can tunnel
farther, yielding higher tunneling currents. Gold would apparently be a superior choice
for metallic contact than the (4, 4) CNT would for a nitroOPE-based molecular device.

(A) (B) (C) (D)

Figure 15 (A) Geometry of the Au–Si tunneling junction. The position of the gold and silicon
atoms are kept the same as in the Au–nitroOPE–Si junction. (B) Distribution of the ESP for (A).
The spatial region corresponds to the same cylindrical surface shown in Figure 21C. (C) CNT–
nitroOPE–Si junction. (D) Distribution of the ESP for (C). The spatial region for all the figures
corresponds to a cylinder of radius 4 Å. The color scale for all the figures ranges from −0�1 V
(red) to 0.1 V (blue)
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However, the CNT has the advantage of forming a covalent bond with the nitroOPE-Si
whereas gold forms a physical bond.

5.3.3. Mulliken charges

The distribution of charges is computed based on the recipe given by Mulliken [77–80],
which starts from the calculated wavefunction of the molecular system.

The analysis of Mulliken atomic charges (Table 5) shows a strong rearrangement of
charges taking place in the (4, 4) CNT–nitroOPE–Si junction; for the coplanar neutral
state of this junction, the CNT loses 0.97e, the Si loses 1.09e and the nitroOPE gains
2.06e. The high rearrangement of charges accounts for the high dipole moment of the
(4, 4) CNT–nitroOPE–Si junction, −130�16 D in the direction of the junction.

The optimization of the gold atoms in the top contact of the Au–nitroOPE–Si junction
shows a gap between the plane of gold atoms and the nitroOPE molecule (Figure 13B).
This gap obstructs the free displacement of charges between the Au contact and the
rest of the junction, explaining the very low charge rearrangement throughout the
Au–nitroOPE–Si junction (Table 6). Most of low charge transfer takes place between
the nitroOPE and the Si contact with an almost-null transfer between the nitroOPE and
the Au contact, 0.03e. This also explains the relatively low dipole moment that is found
for the Au–nitroOPE–Si junction (7.80 D in the direction of the junction).

The metal–Si junctions (Figure 15A and C) present a gap of ∼20 Å, which is large
enough to obstruct any transfer of charges between the contacts. The lack of charge
displacement results in the negligible dipole moment found for the CNT-Si, 1.31 D in
the direction of the junction, and the Au–Si tunneling junction, 2.85 D in the direction
of junction.

Table 5 Distribution of Mulliken charges for the (4, 4) CNT–nitroOPE–Si junction
in its coplanar conformation. The Si contact includes the hydrogen atoms adsorbed on
it. The units of the charges are in e, the absolute value of the charge of an electron

Neutral Anion Dianion Trianion

CNT contact 0�97 0�19 0�00 0�00
nitroOPE −2�06 −0�33 −0�98 −1�22
Si contact 1�09 −0�86 −1�02 −1�78
total charge 0 −1 −2 −3

Table 6 Distribution of Mulliken charges for the Au–nitroOPE–Si junction in its
coplanar conformation. The Si contact includes the hydrogen atoms adsorbed on it.
The units of the charges are in e, the absolute value of the charge of an electron

Neutral Anion Dianion Trianion

Au contact −0�03 −0�03 −0�08 −1�64
nitroOPE −0�10 −0�17 −0�19 −0�26
Si contact 0�13 −0�80 −1�73 −1�10
total charge 0 −1 −2 −3
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5.4. Current–voltage calculation

The calculation of current assumes electrons being injected from the top contact (negative
electrode) to the bottom contact (positive electrode). At zero bias voltage (V = 0), the
most energetic electrons in the top and bottom bulk contacts have the same energy;
therefore, the junction is in equilibrium, without net flow of electrons. This is called
“Fermi-level alignment” as described in Section 5.2. The most intimate part of the
junction is modeled by an extended molecule, which contains atoms representing both
contacts; the Fermi level of the extended molecule gives an approximation of the Fermi
level of the macroscopic junction. The quantum-mechanical calculations allow to find
the Fermi level of the extended molecule, which corresponds to the energy of the
HOMO, as discussed in Section 5.1.

The applied bias voltage (V ) is defined such that the semiconducting contact is
positively biased with respect to the metallic contact, V = Vsemic −Vmetal. Therefore, after
applying a bias voltage between the contacts, the effective Fermi level of the metal is
shifted up whereas the effective Fermi level of the Si contact is shifted down (by an
equal amount of 0�5×e×V ) with respect to the equilibrium Fermi level of the extended
molecule ��EM�, in the following way

Metal � �∗
2 = �EM + 1

2
eV (68)

Semiconductor � �∗
1 = �EM − 1

2
eV (69)

The values of current reported here refer to “current of electrons” and is defined as
positive when flowing from the metal (contact 2) to the semiconductor (contact 1).

5.4.1. Gold contact

The Fermi levels for the Au-nitroOPE-Si ��EM� are calculated as the energy of the
HOMO ��HOMO� of the extended molecule. The calculated values for the �HOMO and the
�LUMO of several Au-nitroOPE-Si junctions are reported in Table 7.

The Green function, g�E�, for the metallic contact is based on the density of states
for the FCC gold crystal, which is calculated under the same level of theory (B3PW91)

Table 7 Summary of the �-HOMO and �-LUMO energies for the different charge
states and conformations of the Au–nitroOPE–Si. The calculations are performed using
the B3PW91 method and the LANL2DZ basis set

Conformation Charge (e) �EM or �HOMO (eV) �LUMO (eV)

Coplanar 0 −5�45 −4�75
−1 −2�96 −2�86
−2 −1�67 −1�04
−3 0�36 0�50

Perpendicular 0 −5�37 −4�70
−1 −3�00 −2�77
−2 −1�47 −0�92
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and basis set (LANL2DZ) as the junction. The DOS for Au used for the current–voltage
calculations is shown in Figure 1. For compatibility, we use a Si DOS calculated using
the combination B3PW91/LANL2DZ (Figure 4).

The calculation of the current–voltage characteristic for the junction with the nitroOPE
in its coplanar conformation is shown in Figure 16A. Only the contribution of �-electrons
is taken into account for the I-V calculation.

5.4.2. (4, 4) CNT contact

We test several (4, 4) CNT–nitroOPE–Si junctions, which include the coplanar, per-
pendicular, and charge states. The quantum-mechanical calculation of the values for the
Fermi levels is performed using the B3PW91 method and the full-electron 6-31G(d)
basis set. These values are reported in Table 8.

The Green functions, g�E�, for the Si and CNT contacts are based on B3PW91/
6-31G(d) calculations of the DOS using the Crystal 03 software. The Si DOS is shown
in Figure 3, it is calculated using the 6-31G(d) basis set. We point out that the Si
DOS use for the Au–nitroOPE–Si junction is calculated using a different basis set, the
LANL2DZ basis. The DOS of the (4, 4) CNT is shown in Figure 5.

Since the molecule is connected to one half of the Si bulk, we consider that only half
of the total Si electronic states are available to leak into the molecule through the bottom
contact. Then, a DOS factor (a scaling factor) of 0.5 is applied to the silicon DOS,
mostly on intuitive geometrical grounds [36]. Interestingly, the atoms in a CNT are both
surface and bulk atoms at the same time; therefore, DOS per atom of the bulk material
corresponds to the DOS of the atom to which the nitroOPE molecule is adsorbed and
no factor needs to be applied to the CNT DOS. The current–voltage characteristic for
the coplanar (4, 4) CNT–nitroOPE–Si junction is reported in Figure 16B.

For both metal–nitroOPE–semiconductor junctions, we notice a flat region in the
I-V curve at low bias voltage (approximately from −1.4 to 1.4 V). This flat region of
approximately zero conductance has also been observed in experimental calculations of
semiconductor–molecule–metal (metallic STM tip) junctions [81–84] and in insulator–
molecule–metal junctions [85], Al–AlOx–molecule–Ti–Al. The flat region in the I-V
curve constitutes the most notorious difference with respect to the metal–nitroOPE–metal
junctions (Figures 9 and 10).

Table 8 Summary of the �-HOMO and �-LUMO energies for the different charge
states and conformations of the (4, 4) CNT–nitroOPE–Si junction

Conformation Charge (e) �EM or �HOMO (eV) �LUMO (eV)

Coplanar 0 −4�83 −4�50
−1 −3�06 −3�06
−2 −1�58 −1�53
−3 0�07 0�12

Perpendicular 0 −4�81 −4�48
−1 −3�18 −3�01
−2 −1�57 −1�52
−3 −0�11 0�19
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Despite the fact that gold is a metal with higher Dos than the (4, 4) CNT (∼10 times
higher at their respective Fermi levels), the current in the CNT–nitroOPE–Si junction
is similar to or higher than the current in the Au–nitroOPE–Si junction. This indicates
that a better chemical contact between the molecule and the metallic contact can make
up for the lower density of electrons of the (4, 4) CNT.

Any junction composed of a metallic of a metallic and a semiconducting contact is
a simple Schottky diode. The interface between the metal and the semiconductor gives
rise to a potential barrier, which was first explained by Schottky. The Schottky barrier
obstructs the transport of carriers in one direction of the junction, acting as an electrical
rectifier. The rectifying behavior is one of the most characteristic features associated with
macroscopic Schottky diodes; however, lack of rectifying behavior in Schottky diodes
of nanometer sizes has been experimentally observed [64–66]. Likewise, no rectifying
behavior is seen in our I-V calculations of molecular metal–molecule–semiconductor
junctions (Figure 16).

Three mechanisms for electron transport can take place in a junction: thermionic
emission, tunneling, and diffusion. Thermionic emission and tunneling are the most
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Figure 16 (A) Current–voltage characteristic for the Au–nitroOPE–Si in linear scale. (B) I-V
for the (4, 4) CNT–nitroOPE–Si junction
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important mechanisms in Schottky diodes. The thermionic transport depends mostly on
the height of the Schottky barrier whereas the tunneling transport depends on both the
height and the thickness of the barrier. The thermionic contribution to the current is
given by the following equation:

I ∝ T 2e
�B
kT

[
e

eV
kT −1

]
(70)

where �B is the height of the barrier and T , temperature. The tunneling current, for a
triangular barrier, is given by:

I ∝ �� � = e
4
3

√
2m�B
�

L (71)

where � is the tunneling probability, m is the effective mass, L is the thickness of the
barrier, and h is the reduced Planck constant (h = h/2�).

Smit et al. used a theoretical model based on the Poisson equation to track the
behavior of the Schottky barrier for diodes of arbitrary sizes, from macroscopic to
ultra-small dimensions. Following that top–down methodology, they demonstrated that
for diodes smaller than a characteristic length (associated with the doping level of
the semiconductor), the thickness of the potential barrier no longer depends on the
concentration of the dopant in the semiconductor but on the size and shape of the
diode [86, 87]. “Molecular Schottky diodes” exhibit thin potential barriers; therefore,
the tunneling contribution to conduction outweighs the thermionic contribution [64, 65].
Then, contrary to macroscopic diodes, the I-V of molecular diodes does not exhibit the
characteristic diode-like shape of Eq. (70).

Because of the small length of molecular junctions, the electron transport is coherent.
Our DFT-GF is built upon the Landauer formalism, which deals with coherent transport.
In coherence transport, electrons travel non-interactively from one contact to the other
in a single quantum-mechanical process whose probability can be calculated directly
from the fundamental equations. The transport in molecular junctions can be seen as a
probability for an electron to cross from one side of the molecule to the other, which
is a tunneling process. Equation (53), used in our formalism to calculate the current–
voltage characteristic, reflects the fact that tunneling is the main mechanism for electron
transport through molecular junctions.

It is interesting to see how Smit et al., by using a top-down approach, reached
the conclusion that electron transport in ultra-small Schottky diodes is predominantly
by tunneling. This conclusion arises naturally when using an atomistic (bottom-up)
approach, such as our DFT-GF interpretation of the Landauer formalism.

5.5. Changes in the conformation and charge states

This section very importantly discusses how to determine the current-voltage charac-
teristics of the junctions. We will analyze the gold and the (4, 4) CNT contacts as
well as the electrostatic potential distribution along the junction and their molecular
orbitals.
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5.5.1. Gold contact

We also analyze the perpendicular conformation of the Au–nitroOPE–Si junction. For
that, we rotate by 90� the atoms of the middle phenyl ring and keep all the other
simulation parameters the same as for the coplanar conformation.

Our result predicts a drastic difference in conductance between the coplanar and per-
pendicular conformations (Figure 17). Such change in conductance has been attributed
to the rupture of the �-orbital network [88]. When the phenyl rings are coplanar, they
form a conducting path across the molecule; however, when the phenyl rings are per-
pendicular to each other, this conducting path is broken, decreasing tremendously the
conductance.

This huge change of conductance was observed by Donhouser [48] in STM electrical
measurement of several types of OPE molecules, including the nitroOPE, over time.

The charge trapped in the molecular junction has been thought to cause a strong
change in the conductance of molecular junctions [15, 85]; we investigate that by
calculating the I-V of Au–nitroOPE–Si junctions containing an extra number of electrons
(anion, dianion, and trianion). In the coplanar conformation, we observe a strong decay
in conductance when the extended molecule gets negatively charged (Figure 18A). The
anion and dianion states present similar low conductance, but the trianion is seen to have
the lowest conductance. At 3.3 V the neutral junction conduces 23.6 nA, which is 34.6,
75.3, and 23.6 times the current conduced by the anion, the dianion, and the trianion
states respectively. At 1.0 V the ratios are even better, Ineutral/Ianion = 88�5� Ineutral/Idianon =
123�4� Ineutral/Itrianion = 246�2, where Ineutral = 5�5×10−13 A.

High ratios of the currents (Ineutral/Icharged) are encouraging for the design of a bistable
electronic device. Although the absolute current values are too small (∼10−13 A) to
be measured by present equipment (we point out that those values correspond to the
conduction through a single molecule), in reality, thousands of molecules are expected
to be self-assembled on parallel, with the net current being also thousand times higher.
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Figure 17 Current–voltage characteristic for two different geometrical conformations of the
Au6–nitroOPE–Si. The planar conformation is referred to when the three rings are coplanar, and
the perpendicular conformation refers to the case when the ring containing the nitro group is
perpendicular to the other two. The inset shows a zoomed view of the I-V characteristic for the
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Figure 18 (A) Current–voltage characteristic for different charge states of the Au–nitroOPE–
Si junction in their coplanar conformation. Only the contribution of � electrons is shown. (B)
Current–voltage characteristic for the different charge states of the Au–nitroOPE–Si junction in
its perpendicular conformational state

In the perpendicular conformation, the junctions already have a much lower con-
ductance for the neutral state with respect to the coplanar configuration, as seen in
Figure 17. The addition of charge to the perpendicular conformation lowers even more
the conductance as reported in Figure 18B.

5.5.2. (4, 4) CNT contact

We calculate the I-V for the perpendicular conformation of the (4, 4) CNT–nitroOPE–Si
junction. Figure 19 shows a comparison of the conductance between the coplanar and
the perpendicular conformations. The calculation confirms that the strong change in
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Figure 19 Comparison of the current–voltage characteristics of the coplanar and perpendicular
configurations for the (4, 4) CNT–nitroOPE–Si junction

conductance between the two conformational states is still present if we use the metallic
CNT instead of gold.

For instance, at 3.3 V the molecule in its coplanar conformation conducts 53 nA,
which is 496 times the current that we find for the perpendicular conformation.

We calculate the I-V characteristic for several charge states (charges −1, −2, and −3)
for the coplanar and perpendicular configurations of the (4, 4) CNT–nitroOPE–Si junc-
tion, as summarized in Figure 20. The geometries of the charge states are kept fixed to
the geometry of the neutral molecule, only the wavefunctions are optimized. The opti-
mization of all the conformational and charge states is performed using the combination
of B3PW91 level of theory and the 6-31G(d) basis set.

Our I-V calculations for the negatively charged states of the coplanar (4, 4) CNT–
nitroOPE–Si junction show a reduction in conductance with respect to the neutral
(Figure 20A). The anion, dianion, and trianion present similar values of conduc-
tance, which is clearly distinctive from the neutral. For instance, at 3.3 V, the neutral
molecule conducts 52.9 nA, the anion 17.4 nA, the dianion 5.9 nA, and the trianion
10 nA. The reduction in conductance is not as drastic as when using Au for the top
contact.

For instance, at 3.3 V the molecule in its coplanar conformation conducts 53 nA,
which is 496 times the current that we find for the perpendicular conformation.

We calculate the I-V characteristic for several charge states (charges −1, −2, and
−3) for the coplanar and perpendicular configurations of the (4, 4) CNT–nitroOPE–Si
junction, as summarized in Figure 20. The geometries of the charge states are kept
fixed to the geometry of the neutral molecule, only the wavefunctions are optimized.
The optimization of all the conformational and charge states is performed using the
combination of B3PW91 level of theory and the 6-31G(d) basis set.

Our I-V calculations for the negatively charged states of the coplanar (4, 4) CNT–
nitroOPE–Si junction show a reduction in conductance with respect to the neutral
(Figure 20A. The anion, dianion, and trianion present similar values of conductance,
which is clearly distinctive from the neutral. For instance, at 3.3 V, the neutral molecule
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Figure 20 Current–voltage characteristic for different charge states of (4, 4) CNT–nitroOPE–Si
(A) in its coplanar conformation. (B) in its perpendicular conformation. For all cases, only the
contribution of � electrons is shown

conducts 52.9 nA, the anion 17.4 nA, the dianion 5.9 nA, and the trianion 10 nA. The
reduction in conductance is not as drastic as when using Au for the top contact.

5.5.3. ESP distribution along the junction

We compare the ESP distribution between the neutral and anion states of the coplanar
nitroOPE junction. The ESP distributions for the neutral states of the Au–nitroOPE–Si
and the CNT–nitroOPE–Si are shown in Figure 21A and Figure 21C, respectively. The
value for the ESP in the junction ranges from positive (blue) to negative (red) values;
however, for the anion states (Figure 21, B and D) mostly regions of negative values
are found within the junction. Because of electrostatic repulsion, negatively charged
particles are scattered from regions of negative ESP (red). Therefore, the negatively
charged junctions (negative ions) behave as nearly closed channels for electron transport,
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(A) (B) (C) (D)

Figure 21 Distribution of the ESP for (A) the neutral and (B) anion states of the coplanar
Au–nitroOPE–Si junction. Distribution of the ESP for (C) the neutral and (D) anion charge states
for the coplanar (4, 4) CNT–nitroOPE–Si junction. The spatial region corresponds to a cylinder
of radius 4 Å centered on the main C−C axis. The scale ranges from −0�1 V �red� to 0.1 V (blue)

which explains the noticeable reduction of current in the charged junctions as compared
to their neutral states.

5.5.4. Analysis of the molecular orbitals

Molecular orbitals (�KS
i ) are the mathematical solutions to the one-electron Kohn–Sham

equation, given in Eq. (6). Despite controversies regarding their physical reality, MOs
have extensively been used as important qualitative indicators of the conductance of
molecular systems [15, 16, 89]. An MO that is delocalized throughout the molecular
junction represents a conducting channel; an MO that is localized only on specific
regions of the molecular junctions is not a good conducting channel. As a qualitative
rule, the more delocalized an MO is, the more conducting the channel it represents.

In the resonant tunneling picture, an electron from one contact jumps into an unoc-
cupied MO (HOMO, HOMO−1� � � � ) then it jumps again from that MO to the other
contact, freeing the way for another electron to repeat the process. The transport of elec-
trons can also take place through the occupied MOs (LUMO, LUMO+1� � � � ). In this
case, the electron occupying the MO jumps first into one contact, with a given tunneling
probability. Then, an electron from the other contact can jump into the available MO.
The tunneling probability depends not only on the shape of the MO, which indicates
how localized or delocalized the MO is, but also on the proximity of the energy of the
MO to the Fermi level of the molecular junction. As a qualitative rule, the MOs whose
energies are closest to the Fermi level of the molecule are more conducting than the
ones whose energies farther apart.

A simple electrostatic explanation suffices to account for the change in conductance
due to charge state, as discussed in section 5.5.3. However, we could not find a direct
electrostatic explanation for the change in conductance observed between the coplanar
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and the perpendicular. The explanation rests more in the quantum-mechanical nature of
the system. We use the MOs to explain the change in conductance between the coplanar
and the perpendicular conformational states. Since the Fermi level of the molecular
junction is taken as the energy of the HOMO, we expect most of the electron transport
to take place through the HOMO.

For the Au1–S–nitroOPE–S–Au1 junction, the HOMO for the coplanar conforma-
tion is totally delocalized between the metallic contacts and the nitroOPE, as seen in
Table 9. This explains the high conductance of the coplanar configuration and the low
conductance of the perpendicular configuration.

Similar results are found for the Au6–nitroOPE–S–Au1, shown in Table 10. The
HOMO for the coplanar configuration is delocalized across the nitroOPE and the bottom
Au atom; however, it does not cover the top Au6 contact, reflecting the absence of a
chemical bond. Because of that, the conduction through the HOMO is not as high as for
the Au1–S–nitroOPE–S–Au1 junction, where a chemical bond is present. However, this
is compensated by the presence of three delocalized orbitals (the HOMO, HOMO−1, and
HOMO−2) instead of only one. The frontier MOs for the perpendicular configuration
are localized, accounting for the low conductance observed in the I-V calculation.

The MOs for the CNT–nitroOPE–CNT junction are shown in Table 11. The popula-
tion of the MOs at both CNT–nitroOPE interfaces gives an indication of the seamless
chemical attachment of an organic molecule to the CNT, which reflects an electroni-
cally superior contact. We observe four delocalized MOs (LUMO, HOMO, HOMO−3,
HOMO−4) which enhance the conduction in the coplanar conformation. Conversely,
the MOs, for the perpendicular conformation are localized.

For the coplanar Au6–nirtoOPE–Si junction, the MOs (Table 12 close to the HOMO
are localized but two delocalized MOs (HOMO−3, HOMO−4) are found at lower
energies. This agrees with the flat region observed in the I-V curve of the coplanar
junction, where current is found upon the application of higher voltages. All the MOs
for the perpendicular conformation are localized.

The frontier MOs for the CNT–nitroOPE–Si junction are reported in Table 13. The
MOs are localized for the perpendicular conformation and delocalized for the coplanar
conformation, accounting for the difference in conductance found between the two
conformational states.

6. Summary and conclusions

The miniaturization of conventional electronic devices can change drastically their elec-
trical characteristics due to the predominance of quantum-mechanical effects at atomistic
dimensions. Because of its technological importance, the use of silicon in molecu-
lar electronic devices is desirable. Macroscopically, metal–semiconductor junctions are
known to behave as electrical rectifiers (Schottky diodes); this is apparently a drawback
for the use of a semiconductor material as a contact for single molecule–based devices.
However, our calculations of metal–nitroOPE–semiconductor junctions corroborated
previous predictions that a “molecular Schottky diode,” contrary to its macroscopic
counterpart, does not present rectifying behavior. This is due to the predominance of
the tunneling over the thermionic transport mechanisms at atomistic sizes.
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Table 9 Molecular orbitals for the coplanar and the perpendicular conformations of the Au1–S–nitroOPE–S–Au1 junction. An isosurface of value 0.02
is used for all the plots
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Table 10 Comparison of the molecular orbitals for the coplanar and the perpendicular conformations of the Au–nitroOPE–Au junction. An isosurface
of value 0.02 is used for all the plots
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Table 11 Molecular orbitals for the coplanar and the perpendicular conformations of the CNT–nitroOPE–CNT junction. An isosurface of
value 0.001 is used for all the plots
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Table 12 Molecular orbitals for the coplanar and the perpendicular conformations of the Au6–nitroOPE–Si junction. An isosurface of
value 0.001 is used for all the plots
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Table 13 Comparison of the molecular orbitals for the coplanar and the perpendicular conformations of the CNT–nitroOPE–Si junction.
An isosurface of value 0.0001 is used for all the plots
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We determined that the low- and high-conductance states, observed for metal–
nitroOPE–metal junctions, could still be obtained from a metal–nitroOPE–semicon-
ductor junction. The switch between the two states of conductance is because of the
conformational and charge-state changes of the molecular junctions. However, the oper-
ating point of the device should be set at higher bias voltages since a flat region of zero
current is predicted to appear at low bias voltages.

The change of conductance of the metal–nitroOPE–Si junctions due to charging effects
can be accounted by a simple electrostatic explanation. For the negatively charged junc-
tions, the ESP distribution along the junction reveals a region of negative electrostatic
potential, which repels the electrons, thus, it obstructs the flow of carriers.

Changes in conductance between the coplanar and the perpendicular conformation of
all the analyzed junctions can be explained by looking at the shape and spatial distri-
bution of their molecular orbitals. The coplanar conformations have molecular orbitals
that are more delocalized than the ones belonging to the perpendicular conformations.
This indicates that the molecular orbitals for coplanar conformations are more conduc-
tive than those from the perpendicular conformation, therefore, explaining the higher
conductance of the coplanar junctions.

Molecules can be used as electronic circuits to store binary information encoded in
two molecular bistable states: for instance, a state of high conductance and a state of
low conductance. Molecules can be arranged in crossbar architectures to create logic or
memory electronic devices. In both cases, the desirable property of bistability depends
not only on the molecule but also on the type and geometry of the contacts. Therefore,
our calculations consider the molecule and few atoms of the contacts as an entwined
unit, a molecular junction.

Advances in DFT and the increase in computational power of modern computers
have allowed us to perform full-quantum-mechanical calculations of molecular junctions
composed of up to a few hundred atoms. The continuum of electronic states, derived
from the semi-infinite nature of the contacts, has been added to the molecular junction
by using a mathematical formalism based on the Green function.

We have estimated the conductance of molecular junctions composed of the nitroOPE
molecule and two contacts of materials such as Au, Si, and carbon nanotubes. These
results are summarized in Figure 22. Two very well defined states of conductance,
requisite for digital electronics, are obtained from the nitroOPE by changing the confor-
mation and charge states of the molecule. The nitroOPE molecule is found to conduct
higher current (logic “1”) when all its phenyl rings are coplanar rather than when the
middle phenyl ring is perpendicular to the other two (logic “0”). In addition, bistable
states can be obtained by charging the molecule. When the nitroOPE is in its neutral
state, it conducts higher current (logic “1”) than when the molecule is negatively charged
(logic “0”).

We determined that when two gold contacts are used to address the molecule, the
bistable states of conductance are readily available at any bias voltage. However, when
a combination of one semiconducting and one metallic contact is used, the bistable
states are lost at low bias voltages. We found a nearly flat region in the current–voltage
characteristic of metal–nitroOPE–semiconductor junctions in the low bias voltage region.
Instead of presenting two distinguishable states, all the conformation and charge states of
the metal–nitroOPE–semiconductor junctions (coplanar, perpendicular, anion, dianion,
and trianion) showed almost indistinguishable zero conductance in the flat region. These
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Figure 22 Summary of current–voltage characteristics for the following molecular junctions:
(A) Aul–S–nitroOPE–S–Aul, (B) Au6–nitroOPE–S–Aul, (C) CNT–nitroOPE–CNT, (D) Au6–
nitroOPE–Si, and (E) CNT–nitroOPE–Si

indicate that when a semiconducting contact is used, we must move the operating point
of the device to higher bias voltages.

Our calculations demonstrated that the recently synthesized CNT–nitroOPE–Si junc-
tion [29] presents the same potential as a bistable device that the Au–nitroOPE–Si
junction does. However, for the former case, charging of the junction does not lead
to two very distinguishable states; therefore, the two bistable states to consider should
come from the neutral coplanar (logic “1”) and the neutral perpendicular (“0”).

Quantum-mechanical effects cannot be disregarded whenever dealing with elec-
tronic devices of atomistic dimensions. For instance, we corroborated that a “molecular
Schottky diode” does not present the rectifying behavior associated with a macro-
scopic Schottky diode. It is most likely that future electronic devices will be purposely
engineered to take advantage of the most exotic quantum-mechanical properties for
applications such as quantum computation, quantum teleportation, and quantum cryp-
tography. Consequently, computational tools derived from the fundamental equation of
quantum mechanics, the Schrödinger equation, will be mandatory.
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The rapidly developing field known as nanotechnology suggests that there is a vast
potential for revolutionizing electronic systems as they are known today. The possibilities
for enormous increases in functionality, integration, and speed offered by molecular-level
systems have motivated a detailed investigation of nanoscale elements and components.
Major scientific and engineering research challenges must be addressed today before a
robust and fully functional nanoscale capability can be realized in the future. Hence,
entirely new scientific approaches and innovations are clearly necessary for bridging
the intellectual and technology gap between the nanoscopic and the microscopic where
the full advantages of ultra-small, ultra-dense and ultra-complex electronic systems can
be realized. One specific avenue for realizing the technological payoffs available at the
nanoscale is to incorporate aspects of architecture and algorithmic functions that already
exist in nature. Indeed, many biological molecules (e.g., DNA) demonstrate phenomenal
levels of functionality and efficiency and may hold the ultimate key to revolutionary
capabilities within human-engineered systems of the future.

While many fantastic molecular-level device concepts have been introduced in recent
years, much fundamental research work remains to elevate biomolecular-based devices
and systems to a practical and useful level. This chapter presents new results from an
ongoing research effort [1–3] that seeks to define a new architectural paradigm whereby
enhanced sensing of terahertz (THz)-frequency biological-signatures (bio-signatures)
may be achieved. Here, the basic methodology is to incorporate the target biomolecular
agents directly into the electronic architecture and to utilize their THz-frequency char-
acteristics directly into the function of the sensor platform. This chapter will illustrate
how new sensor platforms can utilize combinations of electrical (conductive), THz, and
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optical – or Electro-THz-Optical (ETO) – based communication and control to refine
the process of collecting THz bio-signatures and to define approaches for increasing the
available number of THz spectral features through a procedure that will be referred to
as Multi-State Spectral Sensing (MS3�. The introduction of MS3is of significant impor-
tance because the number of spectral signature features associated with any individual
bio-agent in its natural state (i.e., ground state) is somewhat limited and new methods
are needed to provide for adequate levels of agent discrimination [1–4].

The first step in the realization of the proposed integrated sensor architecture is a
detailed theoretical description of the target bio-molecules, and the associated ETO-
based processes, that are required for defining communication and control at the
nanoscale. Hence, this chapter will present modeling and simulation results for an initial
set of bio-molecules (e.g., butene and retinal) that (a) illustrates a procedure through
which optical excitation can be used to control the molecular conformational state, and
(b) accurately predicts the THz spectral characteristics in both the natural (i.e., ground)
state and the final metastable state. Therefore, this research is establishing a new sci-
entific foundation of knowledge which can serve as a blueprint for enabling integrated
bio-molecular sensing platforms of the future with enhanced capabilities for sensing and
processing THz bio-signatures.

1. THz sensing science motivation and requirements

The new concepts for a biomolecular-based sensing architecture presented in this
chapter were motivated almost exclusively by prior research into the utilization of THz-
frequency spectroscopy as a potential tool for the detection of biological materials and
agents. Indeed, by 1995, our group initiated new scientific studies into the fundamental
interactions of THz radiation with biological materials at the molecular level [5]. This
has been followed by a continuous and focused effort to establish a new THz sensing
science and technology base that can be used to assess the detection, identification,
and characterization capability of THz spectroscopic analysis [6, 7]. Obviously, these
activities were made a high priority because THz sensing has important potential rel-
evance to both military and homeland defense against bio-based threats. However, the
spectral probing of the fine structural and electronic characteristics of organic molecules
also has the potential to provide new insights into microscopic biological systems and
therefore may also have broad ramifications to biological and medical science in the
future [1, 8, 9]. Important details regarding this THz sensing research and the influence
on guiding the definition of the integrated sensor methodology will now be briefly
discussed.

1.1. THz sensing science issues for bio-systems

Scientific results generated from an ongoing research project conducted by our group
[10–18] have already demonstrated the potential use of THz-frequency transmission
spectroscopy as a technique for the general characterization of biological agents. Under
initial exploratory research, experimental measurements were carried out and theoretical
models were developed that enabled detailed investigations into the submillimeter-wave
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(i.e., approximately <1 THz, which is equal to 1000 GHz) spectra of DNA macro-
molecules [19]. While the THz-frequency regime had been predicted to be fairly rich
with spectral features of DNA phonon modes that arise out of poorly localized motions
spread over one or more base-pair units [20, 21], the new experimental studies performed
by our group [15, 16, 19, 22] were the first to confirm the presence of this phenomenon
in this spectra regime (i.e., ∼0�3–3 THz). These long-wave absorption features, of the
type as illustrated in Figure 1(A), where the THz spectra of Salmon DNA is compared
to Herring DNA, were shown to be intrinsic properties of biological materials that arose
as a result of phonon activity. In addition, DNA films prepared such that the molecular
chains were partially aligned and oriented were shown to exhibit a significant depen-
dence on the polarization of the measurement field (see Figure 1(B)). It is clear that these
results are important because they reveal fundamental frequency-dependent properties
of bio-molecules that are arising at the microscopic level. In particular, these results
suggest that bio-electronic components might be used to selectively filter and control
the transmission of electromagnetic signals with carrier frequencies in the THz band.
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Figure 1 (A) Absorption spectra for Salmon & Herring DNA. (B) Spectral enhancement from
Herring DNA sample with structural alignment [19]
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In an effort to quantify various aspects of THz-frequency sensing, our prior research
[19, 22] was used to show that unique submillimeter-wave resonance absorption fea-
tures arise in both bio-molecular samples (e.g., DNA) and complete cellular materials
(e.g., bacteria spores). These spectral signatures verified that the THz regime is poten-
tially useful for the study, analysis, and identification of biological macromolecules
when placed under highly controlled laboratory conditions. In addition, more recent
system-level investigations conducted [1, 23, 24] suggested that remote detection of
bio-particles is also viable using THz-frequency signatures. However, while adequate
levels of sensitivity appear to be demonstrated even for remote detection applications,
the viability of THz spectroscopy for biological sensing (i.e., point and remote) will ulti-
mately hinge on the level of reliable discrimination it can provide. Two challenges arise
within this context. First, there are a reasonably limited number of spectral signatures
(i.e., < ∼100) associated with any bio-agent in its natural state and, second, the strong
atmospheric absorption limits the sensitivity of the approach (i.e., at remote-sensing
ranges) at all but a few THz-band transmission channels. Therefore, it appears that THz
spectral sensing techniques will not become practical unless new probing techniques are
identified that allow for (1) introducing controlled perturbations at the microscopic level
that increase the amount of phonon-mode information which is specific to the target
bio-molecule, and (2) the precise extraction of all available dynamical phonon-mode
characteristics.

While this might at first appear to be an insurmountable challenge, details regarding
the phenomenology of bio-systems, and their response to external influences, can be
used to define electronic architectural paradigms for achieving the prescribed goals.

1.2. Multiplication of THz phonon mode information in bio-systems

Based upon the discussion above, it may be argued that the main bottleneck to the
effective utilization of THz spectral sensing is a technological limitation for interfacing
to dynamical processes at the molecular level. For example, the THz-frequency phonon
modes that arise in macromolecules will be strongly dependent on the specific type of
bonding present and molecular structure. A number of research groups have already
investigated relationships between bio-molecular conformation and the interactions of
very long-wavelength radiation. This includes the use of microwave reflection to sense
the thermal modulation of protein folding [25, 26] and the application of THz spec-
troscopy for sensing conformational changes in a number of bio-molecules (e.g., DNA,
lysozyme, myoglobin, bacteriorhodopsin) as a function of temperature, hydration, and
photoexcitation [27], just to name two examples. It is apparent from these examples that
external stimulus can be used to alter the microscopic structure of bio-molecules such as
to effect changes in the THz spectral signatures. Therefore, if an appropriate electronic
interface could be defined, then in theory it should be possible to modify molecular
structure such that new phonon mode information becomes available for characterization
purposes. Fortunately, one can hypothetically envision nanoscale, integrated architec-
tures where strategically designed electronic interactions are used to modify the state of
embedded bio-molecules. If such controlled interfacing was possible, then the integrated
system itself could be used to modify the electronic and/or conformational state of a
target bio-molecule, and to define methodologies for extracting the spectral signature



Bio-molecular devices for terahertz frequency sensing 59

information. In addition, if numerous excited- or metastable-states could be defined and
utilized in integrated architectures, then the amount of THz spectral information could
be significantly multiplied.

1.3. Acquisition of THz phonon mode information from bio-systems

It is widely accepted that the phonon absorption characteristics obtained from biological
materials will contain weak and broadened resonant features. Indeed, almost all the
published experimental transmission and reflection spectra taken from solid-state bio-
logical samples routinely show extremely limited variations (i.e., ∼1–5%) in absorption
versus frequency characteristics within the THz regime [7]. Furthermore, before the
very recent experimental demonstrations of THz signatures, the scientific community
generally assumed that THz vibrations in weakly bonded bio-systems would possess
low-level polarizability and be severely over-damped at very long wavelengths. How-
ever, a number of experimental results obtained by our group and others suggest that
the interaction dynamics at the microscopic level may be significantly underestimated
by many of the measurements made on concentrated macro-sized bio-samples. Specif-
ically, it is important to note that most measurements made to date on bio-materials
utilize large samples that possess mesoscopic structure (i.e., in between macroscopic and
microscopic. As will now be discussed and demonstrated, macroscopic measurements
can fail at revealing the true dynamical characteristics at microscopic levels.

As an initial example, consider the results given in Figure 2 that compares the exper-
imentally derived absorption coefficient taken from a thin (i.e., 6�6 �m thick) sample of
short-chain (12 base pairs) double-stranded Poly[C]-Poly[G] RNA to modeling results
for equivalent layers of the isolated molecules. Here, two different values of molecular
dissipation have been considered (i.e., � = 0�5 and 1 cm−1) in the simulations. The
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Figure 2 Experimental absorption coefficient taken from 6 �m thick Poly[C]–Poly[G] RNA
films compared to modeling prediction for � = 0�5 and 1�0 cm−1 [15]
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experimental studies utilized free-standing dry films of the RNA material that were
produced by drying gel solutions using a previously documented process [28]. Here, one
can observe very good agreement between the experimentally derived spectral signature
at 15 cm−1 (i.e., frequency location and magnitude) and that predicted by theory when a
dissipation value of � = 0�5 cm−1 is employed. Hence, this experimental result is strong
evidence for the existence of a very strong and optically active phonon resonance that is
relatively isolated in frequency from any other modes. Most importantly, the intensity
of this particular mode was found to be strongly dependent on the thickness of the
sample used in the spectroscopic measurement. In fact, when the sample thickness is
increased to 30 �m and above, the peak-to-valley variation in the phonon mode intensity
was observed to decrease by a factor of 10, as shown in reference [28]. The strong
dependence of absorption intensity on film thickness immediately suggests some type
of mesoscale interaction effect. Specifically, these results suggest that interactions that
are occurring at scales much larger than the size of the RNA molecules (i.e., perhaps
between large clustering of molecules) to be responsible for leading to the very weak
and broadened spectral signatures which are usually obtained from macroscopic mea-
surements. Furthermore, one might speculate that the underlying molecular dynamics
are best represented by the results obtained from the very thin samples given in Figure 2.
If this theory is true, then there is a great opportunity at the nanoscale for gathering
precise THz signature information associated with bio-molecules that will be useful for
sensing and characterization applications.

As another example, consider the measured transmission results given in Figure 3(A)
that were obtained from Salmon DNA gel samples that were produced by dissolving
the DNA into distilled water at a mass ratio of 1:18, Salmon to water.

Here, the measurements were taken from gel samples of thickness ∼100 microns
that were prepared between two very thin layers (i.e., 13 microns) of polyethylene film.
These results contain very sharp spectral features that may be attributed to absorption
by the Salmon DNA in the solution. While one should expect influences on the DNA
molecules by the surrounding solution (e.g., water mass loading) that will perturb the
absorption spectra, it is clear that the relative intensity of the spectral signature are much
more pronounced when the bio-molecules under test are subject to a less confining and
rigid environment (i.e., in comparison to the results given in Figure 1 for dry films). This
viewpoint is further supported by Figure 3(B) where strong peak-to-valley variations
in a Herring DNA gel (initially prepared at a 1:12 ratio) are seen to persist (and even
intensify) as the water content evaporates over time and the background absorption
is reduced. While these results are suggestive of strong dynamical activity in semi-
isolated bio-molecules, results recently published by another group provide much more
compelling evidence [29]. Indeed, experimental studies performed upon bio-particles
(i.e., bacterial endospores) have generated evidence that if the samples are diluted (i.e.,
such that individual spores are isolated from one another) then the resulting THz spectral
signatures are greatly enhanced.

This section has presented credible experimental results that suggest there are oppor-
tunities at the nanoscale for the precise collection and controllable multiplication of
THz-frequency bio-signatures. The implementation of integrated systems that can take
advantage of this sensing modality will require the identification of novel methods for
interfacing to bio-molecules at the microscopic level. The next section will introduce
a new concept for a biomolecular-inspired electronic architecture for enhanced THz
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Figure 3 (A) Absorption spectra for Salmon DNA gel prepared in 1:18 mass ratio with water,
(B) Absorption spectra from Herring DNA gel (1:12 mass ratio with water) as a function of drying
time [1]

sensing and present a theoretical analysis for some prototype bio-components that will
be needed for implementing this type of system.

2. Bio-molecular architectural concept and bio-component studies

The novelty of the bio-inspired architecture to be presented here lies in the strategic
use of integrated biological elements to achieve higher-level function and spectral data
processing within a nanoscale and molecular-level architecture. As discussed at length in
Section 1, fundamental absorption/emission properties present in known biological mate-
rials (e.g., DNA, RNA, etc.) can provide new insight for a novel approach to nanoscale
device functionality and integrated molecular-level sensing and data processing. Specif-
ically, DNA and RNA macromolecules have been shown to exhibit spectral absorption
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characteristics with multiple absorption peaks that might be used to selectively filter
and control transmission frequency channels at very long wavelengths. In addition, the
absorption characteristics of such bio-molecules are known to be strongly dependent on
molecular conformations. As all bio-molecules can be elevated to excited-state confor-
mations through optical or THz-frequency excitation, this process can be used to define
ETO molecular function. Therefore, it should be possible to utilize existing and the
future artificially designed bio-molecular elements to realize optical or THz-frequency
controlled filters of long wavelength electromagnetic signals.

2.1. Bio-molecular inspired architecture for sensing

A very simple example of the proposed concept is illustrated in Figure 4 where a
hypothetically tunable DNA-based filter (i.e., the THz-frequency spectral absorption
peak is influenced by the photonic emission at frequency f2 as depicted in the inset) can
be used to establish feedback, and as will be shown later, clocking/register function. As
conceptualized here, the ETO-based architecture utilizes two emission sources (i.e., at
frequencies f1 and f2�, a single detector (i.e., sensitive to radiation at frequency f1� and a
direct-current driven circuit. This particular bio-electronic element, as defined, will allow
for defining functionality through the coupling of multiple-frequency channels that in
turn control a direct-current pulse that periodically flows through the circuit connecting
detector D1 to emitter E2. One important advantage of this architecture is that it is
possible to realize gating and feedback within densely packed bio-molecular components
while at the same time providing for isolation between other system elements (i.e., by
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Figure 4 An electro-THz-optical architecture for illustrating functional bio-sensing [1]
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utilizing alternative transmission frequencies for nearby units). Also note that these types
of bio-molecular components might also be integrated with other inorganic molecules
and to traditional semiconductor devices to enable functional control and data processing
at the nanoscale. Most importantly, as this basic architecture is intrinsically linked
to species-specific spectral absorption features, these bio-electronic systems can be
engineered into sensing arrays that detect the presence of target bio-agents. This approach
also solves a critical sensing problem, as this type of bio-architecture allows for the
nanoscale modification of the electronic and/or conformational state of the target agent –
here it is assumed that the target molecule will be captured into the system via engineered
ligand bonding sites. Therefore, this bio-electronic architecture allows for a new MS3

approach that can expand the amount of available spectral signature information and
greatly improve detection, identification, and characterization capabilities.

The control element of the nano-circuit defined in Figure 4 is to utilize the ETO
characteristics of bio-molecules – e.g., the THz-frequency spectral absorption will be
modified through optical excitation. For example, consider an arbitrary DNA fragment
that exhibits a conformation and typical absorption profile around a phonon-induced
resonance as shown in Figure 5(A). Here, the resulting spectral absorption is defined
by the ground-state conformation of the molecule as shown in the top of Figure 5(A).
When subjected to an adequate external excitation (i.e., energy and polarization), the
molecule can experience a charge (or potential) redistribution that is accompanied by
changes in the conformation and spectral characteristics. If the proper modeling tools are
available, it should be possible to identify naturally occurring or artificially engineered
bio-molecules that under proper excitations assume excited-state conformations with
modified spectral characteristics of the type as shown at the bottom of Figure 5(A).
Indeed, simulation studies [30] on small test molecules have already been used to demon-
strate this basic effect in the cis-2- and trans-2-isomers of butene. Figure 5(B) shows
these two isomers (i.e., which can occur via a rotation around the center bond) along with
the discrete (no broadening) THz-frequency absorption spectrum which displays the dra-
matic changes of the type needed for defining the new bio-molecular architecture. This
ETO effect will allow for defining multi-frequency communications and for defining
bio-molecular architectures that enable logic and signal processing type functionality.

2.2. Bio-component modeling and simulation

The successful implementation of bio-molecular architectures of the type described in
the last sub-section requires the identification of bio-molecules that can be control-
lably induced (i.e., through optical and/or THz radiation) into alternative geometric
conformations. Furthermore, these molecules must exhibit significant variations in their
THz-frequency absorption characteristics, as to make the approach useful for processing
and collecting bio-signatures. The sub-sections that follow will present a theoretical
analysis of two bio-molecules that demonstrate these required ETO-based character-
istics. Specifically, the investigations that follow will consider the optically induced
isomers of butene and retinal. Here, the results will show that optical control of spectral
characteristics is possible, with the smaller butene molecule exhibiting infrared absorp-
tion signatures and the larger retinal molecule that demonstrates similar properties in
the THz regime.
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2.2.1. Simulation and analysis of butene isomers

In the initial study, the cis-trans isomers of butene have been chosen because they
are very well known and simple examples of a ground- and metastable-state pair with
significantly different geometries. The cis-trans isomers are geometric isomers, a type
of stereoisomerism in which atoms or groups display orientation differences around a
double bond, such as trans-2- and cis-2-butene as was shown earlier in Figure 5(B). This
work demonstrated molecular isomers that yield different sets of vibrational frequencies.
In this case to be studied, photo-induced transitions bring about the conversion from
one geometric shape (i.e., trans-2-butene) to another (i.e., cis-2-butene) through rotation
about a double bond and the conversion is also called isomerization.

The analysis presented here includes calculations of the optimized energies, vibra-
tional frequencies, and infrared intensities that were carried out at the Hartree–Fock
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(HF) level within the split valence polarized 6-31G(d) basis set in the Gaussian 98 pack-
age [31]. The energies of the excited states were found within the single configuration
interaction approach (CIS), where one models the first excited state as combinations of
a single substitution from the highest occupied molecular orbital (HOMO) to the lowest
unoccupied molecular orbital (LUMO). Vibrational frequencies were then computed by
determining the second derivatives of the potential energy with respect to the Cartesian
nuclear coordinates and then transforming to mass-weighted coordinates. Due to the fact
that electron correlation is neglected, the frequencies computed using the HF approxi-
mation are known to be overestimated by approximately 10–12%. Furthermore, because
a medium-sized basis set was used, the derived values can be expected to deviate even
more from experiments, i.e., by approximately 15% in total [32]. Therefore, a scaling
was performed on the originally calculated frequencies by an empirical factor of 0.893
to eliminate known systematic errors in the physical model.

To monitor the process of isomerization from trans-2-butene to cis-2-butene, the
torsional angle �, defined as the dihedral angle of the plane of C1–C2–C3 and the
plane of C2–C3–C4 around the double bond in the C1–C2==C3–C4 chain associated
with the molecule given in Figure 6(A), was taken to be the reaction coordinate. The
potential energy (PE) curves associated with the isomerization process for the ground
(S0� and the first excited singlet state (S1) of 2-butene are shown in Figure 6(B), along
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curves associated with the isomerization process which involve the ground-state, S0, and the first
excited-state, S1. Arrows depict the energy-path of the molecules
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with the next two excited states S2 and S3. Here it is important to note that the trans-2
geometry (i.e., � = 180�) is the natural-state and the cis-geometry (i.e., � = 0�) is the
metastable-state. Without external excitations, the large PE barrier 1.98 eV in the ground
state prevents the transition from trans-2-butene to cis-2-butene. It is also clear from
Figure 6(B) that there is no barrier in the first excited singlet state S1, which is ideal for
an ultra-fast switching between the trans- and cis- isomers.

Potential energy curves can be used to illustrate this optically induced isomerization
process by following the superimposed arrows. The process begins with a required
optical excitation (∼8�46 eV, 146 nm) of the “electronic-state” of the trans-geometry
from S0 to S1. This is followed by a non-radiative decay to the S1 PE valley minimum,
which corresponds to a 90� rotation about the reaction coordinate. At this point, the
molecule undergoes an “electronic” radiative decay from S1 to S0. This is followed by
a second non-radiative decay to the cis-geometry, which corresponds to a second 90�

rotation about the reactive coordinate. At this point, butene will remain in the metastable
cis-2 geometry until thermal relaxation of the system back to the ground state.

To estimate the probability that the excited trans-2-butene will follow the isomer-
ization process described above, instead of relaxing back to its own ground state, we
investigate the molecular dynamics of butene in the first singlet excited state S1 by
combining the theory of Newton’s Dynamics and standard quantum chemistry software
Gaussian 98. We began the investigation from cis-geometry (� = 0�� and calculated the
time for the excited cis-geometry to achieve the energy minimum (� = 90�� and the
excited trans-geometry (� = 180�� of S1. The calculation procedure is as follows: (i) we
calculated the potential energy of the ground state and the excitation energy of S1 of the
optimized cis-butene using Gaussian 98 package and by adding the two energies we got
the potential energy of the excited cis-butene. Note that we took this potential energy as
the total energy of butene ( i.e. we assume the kinetic energy of excited cis-butene is 0).
To initiate the rotation, we actually started from a very small � with a very small initial
velocity. (ii) For every 10�, we calculated 20 points (i.e., we performed Gaussian 98
calculation every 0�5�). For every point, we calculated the ground-state energy without
optimization and the corresponding excitation energy; thus we got the potential energy
of the excited state. By subtracting the potential energy from the total energy, we got
the kinetic energy. Then we used the energies of 20 points to calculate the time for
butene to rotate 10� by integrating Newton’s equations.

The relation between the potential energies of excited states and time is given in
Figure 7, and for demonstrative purposes, the PE curves of the ground state S0 is
presented on the same graph. We can see that the time for excited trans-2-butene to
relax to the valley minimum is about 100 fs and symmetrically it takes almost the same
time to go from the minimum to cis-2-butene. On the other hand, according to the
spontaneous emission theory the time for excited trans-2-butene to relax back to ground
state is about 5�9 × 103 s. So the isomerization process will be significantly probable.
In Figure 8, we demonstrate how the dihedral angle of C1–C2==C3–C4 double bond, or
the geometric structure of butene, will change with time.

The lowest vibrational frequencies and the associated IR intensities that were cal-
culated for trans-2-butene and cis-2-butene are compared in Figure 9. These results
indicate a significant difference in spectral signatures of the two molecular conforma-
tions and one that has the general quantitative characteristics needed by the previously
discussed bio-molecular architecture.
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Table 1 A comparison of calculated spectral signatures with measurements of McKean et al. [33]

cis-2-butene trans-2-butene

McKean el al. [33] Calculated in this
work

McKean et al. [33] Calculated in this
work

566 544�2 239 236�0
686 687�8 284 271�2
865 934�2 964�3 956�8
970.9 997�3 978�8 990�7

1009.1 1051�6 1046�8 1025�4
1036.9 1129�6 1063�6 1052�9
1268.5 1366�3 1303 1300�6
1383.8 1405�1 1382�2 1398�9
1408.4 1417�3 1447�4 1451�9
1444.5 1458�1 1461 1466�9
1456.2 1460�2 2835�6 2848�9
1458.9 1466�9 2871 2890�0
1669 1702�9 2890 2890�1
2893.2 2852�9 2932�5 2917�6
2900.8 2855�8 2949�4 2957�3
2914.5 2891�9 2973 2961�9
2929.5 2932�5
2947.5 2951�4
2954.1 2955�6
2979.2 2979�8

Table 1 compares the calculated frequencies to prior experimental measurements of
McKean et al. [33]. One can see that all the absorption frequencies calculated in this
work are reasonably-good agreeable (i.e., within ∼3%) with the experimental results.

While this study yielded qualitative bio-molecular function of the type needed for
the proposed architecture, the required excitation from S0 to S1 is far too large (i.e.,
∼8�5 eV) to be practical, and the associated spectral bio-signatures are well above the
THz regime where species-specific information is expected to be present. Hence, the
alternative molecule retinal will now be considered, which is known to be visible-
frequency light sensitive, and which is more complex and can be expected to yield much
lower frequency vibrational modes.

All-trans-retinal is the chromophore of bacteriorhodopsin, the light transducing pro-
tein in the purple membrane of Halobacterium salinarium. The isomerization from
all-trans to 13-cis conformation takes places very quickly in approximately 500 fs [34]
induced by absorption of a 568 nm photon [35]. 11-cis-retinal is the chromophore of
rhodopsin. The ultra-fast (in ca. 200 fs [34]) photoisomerization from 11-cis-retinal to
all-trans-retinal conformation has been elucidated as induced by absorption of a 498 nm
photon [35]. Besides 11-cis-retinal and 13-cis-retinal, 9-cis-retinal is also a geomet-
ric isomer of all-trans-retinal and derives from the rotation of all-trans-retinal around
C9==C10 double bond by 180� although 11-cis-retinal and 13-cis-retinal derive from
the rotation of all-trans-retinal around C11==C12 and C13==C14 double bonds.
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Figure 10 Geometric structures of retinal isomers

The geometric structures of all-trans-retinal and its isomers are shown in Figure 10.
The retinal has two properties which make it very interesting for our studies. First,
the electrons in retinal readily absorb photons in the visible range of wavelengths
(400–700 nm) which means the molecule can be optically induced into excited-states.
Second, as this study will show, the lowest vibrational frequencies are in THz region.

2.2.2. Simulation and analysis of retinal isomers

The vibrational spectra were calculated at Hartree–Fock method within split valence
polarized 6-31G(d) basis set using Gaussian 98 package. All calculated frequencies were
multiplied by empirical factor 0.893 to eliminate the known systematic errors. The very
far infrared (FIR) spectra (under 30 cm−1) of four isomers are shown in Figures 11–13.

These results illustrate that the various metastable-state conformation yields spectra
fidelity (e.g. 22 cm−1 in 9-cis, 12 cm−1 in 11-cis, 26 cm−1 in 13-cis) that can be used
in defining multiple communication channels and for realizing the MS3 approach to
expand the amount of bio-signature information. We compared our theoretical vibra-
tional frequencies with the density functional calculations of Gervasio [36], and also
with the experimental data measured by THz time-domain spectroscopy at 10 K [37]
and by FTIR spectrometer at 15 K [36]. As shown in Table 2, the frequencies pre-
dicted in our simulation are in very good agreement with the calculations of Gervasio
and comparable to experimental data above 40 cm−1. It is noteworthy that vibrational
modes under 40 cm−1 exist in both simulations but are not available in experimental
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Figure 11 FIR spectra of 9-cis-retinal and all-trans-retinal (<30 cm−1) [2]
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Figure 12 FIR spectra of 11-cis-retinal and all-trans-retinal (<30 cm−1) [2]

measurements. This can be explained by the experimental difficulties in the range of
40 cm−1 and below.

This research effort also generated results for the potential energy barriers between
the ground state and metastable-state conformations (which are important for specify-
ing switching times) and the electronic excited-state energies (which are needed for
specifying the necessary optical excitation).

Calculations of the potential energy curves (PEC) in the ground-state S0 were carried
out at both HF theory and density functional theory (DFT) levels with the split valence
polarized 6-31G(d) basis set using the Gaussian 98 package [31]. The B3LYP density
functional was used, which is Becke’s three-parameter hybrid functional using the
Lee, Yang, and Parr (LYP) correlation functional [38]. We calculated the energy of
9-cis-retinal, 11-cis-retinal, 13-cis-retinal and all-trans-retinal isomers and simulated
the rotation of all-trans-retinal around C11==C12, C13==C14, and C9==C10 double
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Figure 13 FIR spectra of 13-cis-retinal and all-trans-retinal (<30 cm−1) [2]

Table 2 Vibrational frequencies of isolated retinal isomers in the range of FIR spectra (cm−1)

All-trans-retinal 9-cis-retinal 11-cis-retinal 13-cis-retinal

Ref.
[37]
exp

Ref.
[36]
exp

Ref.
[36]
cal

This
work

Ref.
[37]
exp

This
work

This work Ref.
[37]
exp

This
work

17 14�1 12.2 5�6 12.7
29 30�0 22.0 12�3 25.3
35 30�8 27.2 30�5 30.3

46.6 46 49 42�7 43.5 33�7 41.7 47.7
54.4 53 59 57�5 53.9 54.0 54�4 54.8 58.5
61.0 59.9 62�7 61.0
66.2 64 64.8
69.3 68 78 75�5 81.1 68.6 75.2
90.6 89 99 96�0 92.8 94�2 98.8

100�0

Table 3 Energy barrier in the PECs of isolated retinal in the ground state (eV)

C9==C10 C11==C12 C13==C14

HF B3LYP HF B3LYP HF B3LYP

Barrier between 0� and 90� 1.8360 1.4334 1.4878 1.1859 1.6728 1.2974
Barrier between 90� and 180� 1.8578 1.4634 1.7517 1.4035 1.6946 1.3274
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Figure 14 PECs of all-trans-retinal rotating around C11=C12 double bond calculated at HF
and DFT level

bonds. We took the dihedral angles of the corresponding double bonds �C11=C12� �C13=C14

and �C9=C10 as the reaction coordinates which were fixed during the optimizations,
although all other parameters were free. The PECs of the ground state of rotation around
C11==C12 double bond calculated at both HF and DFT levels are shown in Figure 14.
According to our calculations, the results at the DFT level qualitatively agree with
those at the HF level although they achieve better accuracies by including electron
correlation. Also, both results predict significant barriers in the ground state that prevent
the transition from one isomer to another without external excitation.

In addition, PECs of the ground state of rotation around C9=C10, C11=C12, and
C13=C14 double bonds at DFT level are shown in Figure 15. It is clear that all-trans-
retinal has the smallest energy among all retinal isomers and is the most stable confor-
mation of retinal. 11-cis-retinal, 13-cis-retinal and 9-cis-retinal are local minima on the
PECs which means they are metastable conformations. Rotation around C9=C10 double
bond has the biggest barrier and around C13=C14 has the smallest barrier. The complete
list of barriers of the three isomerizations in the ground states are illustrated in Table 3.

To investigate the external conditions (proper light frequency) needed to initiate the
isomerization processes, we calculated the low-lying excited-states of all-trans-retinal
and its isomers. The energies of the excited states as shown in Table 4 are found within
time-dependent DFT (TDDFT) methods. For molecules with low-lying excited-states,

Table 4 Excitation energies of retinal isomers calculated with TDDFT method (eV) and OS
represents oscillator strength

9-cis-retinal 11-cis-retinal 13-cis-retinal All-trans-retinal

E(eV) OS E(eV) OS E(eV) OS E(eV) OS

S1 3.0708 0.9110 3.0490 1.0821 3.0673 1.0771 3.0496 1.2225
S2 3.0833 0.0006 3.0505 0 3.0991 0.0002 3.0646 0.0054
S3 3.8894 0.5567 3.8612 0.5131 3.9118 0.5023 3.8893 0.5745
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Figure 15 PECs of the ground state of all-trans-retinal rotating around C9==C10, C11==C12,
and C13==C14 double bonds at DFT level

TDDFT makes a considerable improvement over HF-based methods (like CIS) [39].
The excitation energies are similar for the corresponding states of these four isomers and
the lowest excitation energies 3.07 eV (ca. 403 nm) are in the visible region. The similar
excitation energies show that our existing simulations are not sufficient to explain the iso-
merization mechanism around different double bonds. As mentioned before, in rhodopsin
the isomerization from 11-cis-retinal to all-trans-retinal occurs but in bacteriorhodopsin
the isomerization from all-trans-retinal to 13-cis-retinal takes place. So the proper envi-
ronments, such as protein environment in this case, probably play the most important
role in determining which double bond participates in the isomerization process.

3. Retinal nanostructure arrays

Monolayers of retinal immobilized on solid substrates are of considerable importance
not only for applications as retinal-based sensors but also for investigations of the
complex behavior of retinal molecules at interfaces. By modifying one end of retinal
with a thiol linker, we could chemically graft the retinal to gold surfaces. Because
two-dimensional gold nanostructure arrays can be produced on highly oriented pyrolytic
graphite (HOPG) surfaces [40] and on semiconductor substrates [41], we can finally
fabricate two-dimensional retinal nanostructure arrays. In addition, by controlling the
two-dimensional spatial distribution of gold nanostructures including shapes and sizes,
we can control retinal molecules quantitatively.

3.1. Two-dimensional nanopatterned retinal structure

Two-dimensional nanopatterned retinal structures can be created in the following three
steps. First, connect retinal to cysteine (amino acid) which contains the thiol group by
nucleophilic addition-elimination reaction between aldehyde (C==O) and primary amine
(–NH2) as described in most organic chemistry textbooks such as [42]. The reaction is
shown in Figure 16 with the product N -retinylidene cysteine.
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all-trans-retinal H

C COOH

COOH

CH2

S–H

H2NH

N CH S H

H

CH2

O

+

cysteine

Figure 16 Nucleophilic addition-elimination reaction between all-trans-retinal and cysteine
amino acid

Second, fabricate two-dimensional gold nanostructure arrays on pit-patterned HOPG
surfaces [40] or semiconductor substrates by a dip-pen nanolithography (DPN)-based
strategy [41]. A two-step experiment was performed in [40] to produce two-dimensional
patterns of gold nanostructures on HOPG. First, nanometer-size etch pits were patterned
as regular arrays on HOPG using highly focused 25 keV Ga+ ion bombardment. The
second step was to deposit gold onto the pit-patterned HOPG surfaces in vacuum. In
[41], the investigators developed a method for fabricating arrays of Au nanostructures
on a SiOx/Si surface based on DPN and wet chemical etching.

Finally, due to the strength of the thiol groups at the end of cysteine amino acids,
self-assembled monolayers of retinylidene cysteine molecules on gold nanopaticles can
be formed. For example, in [43] they show how the etched Au nanopatterns can be
used as templates to adsorb and assemble proteins from solution to form functionalized
inorganic/biological nanostructures and in [44] self-assembled monolayers on Au(111)
are formed by microcontact printing of dodecanethiol. The bonding of the sulfur head
group to the gold substrate is in the form of a metal thiolate (RS−) species [45]. This
is an extremely strong surface bond and the resulting monolayers are quite stable.
The formation of gold thiolate requires the loss of SH hydrogen but it has not been
determined whether this proton is lost as H2 or H2O [46]. The presumed adsorption
chemistry is shown in the equation of Figure 17 [47]. In this way, retinal derivative
molecules are confined in a nano-size space and two-dimensional retinal nanostructure
arrays are formed as shown in Figure 18.

3.2. Simulation and analysis of retinal derivatives

To approximately infer how the gold substrates will affect the properties of retinal
molecules, simulations have been conducted to predict the properties of retinylidene

300 K, EtOH
Au + HS (CH2)nX Au–S– (CH2)n 

X
–H2(+O2 – H2O?)

Figure 17 Chemical reaction between molecules with thiol group and gold [47]
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HOPG
substrate Pit etched

on HOPG

Gold contact
deposited in pit

Gold nanopaticles

Pit-templated HOPG

Figure 18 Two-dimensional nanopatterned N -retinylidene cysteine arrays

cysteine-gold molecules. While the long-range goal is to simulate retinylidene cysteine-
gold monolayers on gold clusters, initial investigations have been focused on the case
where one retinal isomeric molecule is connected to a gold atom via the link of a cysteine
molecule (N -retinylidene cysteine-gold molecule) and one such N -all-trans-retinylidene
cysteine-gold molecule is illustrated in Figure 19. Other retinylidene cysteine-gold
isomers simulated in this chapter are constructed in the same manner.

The THz characteristics of various retinylidene cysteine-gold molecular conformations
have been investigated at HF level using LANL2DZ basis set. The scaling factor 0.9
was applied to eliminate the systematic errors due to the method and basis set [48].

The very far infrared spectra (<30 cm−1) of N -all-trans-retinylidene cysteine-gold and
its isomers are shown in Figures 20–22. It is clear that there are many more vibrational
modes in FIR spectra of retinal derivatives than those of isolated retinal isomers. The
strongest absorption peaks of N -9-cis-retinylidene cysteine-gold, N -11-cis-retinylidene

COOH

H

N S AuCH CH2

Figure 19 An all-trans-retinal molecule connected with a cysteine amino acid molecule and
then a gold atom (N -all-trans-retinylidene cysteine-gold molecule)
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Figure 20 FIR spectra of N -9-cis-retinylidene cysteine-gold and N -all-trans-retinylidene
cysteine-gold (<30 cm−1)
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Figure 21 FIR spectra of N -11-cis-retinylidene cysteine-gold and N -all-trans-retinylidene
cysteine-gold (<30 cm−1)

cysteine-gold and N -13-cis-retinylidene cysteine-gold molecule are quite distinguishable
from that of N -all-trans-retinylidene cysteine-gold, which shows that the spectra fidelity
of retinal isomers still exists in these retinal derivatives.

In addition, the PECs of the retinylidene cysteine-gold molecule were derived as
were done earlier for the isolated retinal. Geometric optimizations and calculations of
potential energies of molecules were performed at DFT using LANL2DZ basis set.
B3PW91 is used by the DFT level, which uses the Becke-3 hybrid exchange functional
and the Perdew–Wang 91 correlation functional. The PECs of rotation for N -all-trans-
retinylidene cysteine-gold around C9==C10, C11==C12, and C13==C14 double bonds are
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Figure 22 FIR spectra of N -13-cis-retinylidene cysteine-gold and N -all-trans-retinylidene
cysteine-gold (<30 cm−1)
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Figure 23 PECs of N -all-trans-retinylidene cysteine-gold molecule rotated around C9==C10,
C11==C12, and C13==C14 double bonds

shown in Figure 23. Besides the spectra fidelity, other observations from the simulations
of isolated retinal isomers can also be found from the simulations of retinal derivatives
isomers. For example, significant barriers are observed in PECs that are even larger
than those of isolated retinal. And another one is that the barrier for rotation around
the C9==C10 double bond of retinylidene cysteine-gold is still the largest and around
C13==C14 is still the smallest. The complete list of excitation energies of both isolated
retinal and retinylidene cysteine-gold is shown in Table 5. Excited states were calculated
with the time-dependent DFT (TDDFT) method. The excitation energies of the retinal
derivatives are smaller than those of corresponding isolated retinal isomers but still
relatively close to each other as isolated retinal isomers. According to the discussion
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Table 5 Excitation energies calculated with TDDFT method (eV)

Isomers S1 S2 S3

All-trans-retinal (Isolated) 3.0496 3.0646 3.8893
N-all-trans-retinylidene cysteine-gold 1.6606 1.8640 2.7852
9-cis-retinal (Isolated) 3.0708 3.0833 3.8894
N-9-cis-retinylidene cysteine-gold 1.6900 1.8780 2.7732
11-cis-retinal (Isolated) 3.049 3.0505 3.0991
N-11-cis-retinylidene cysteine-gold 1.6654 1.8745 2.7825
13-cis-retinal (Isolated) 3.0673 3.0991 3.9118
N-13-cis-retinylidene cysteine-gold 1.6594 1.8656 2.7506

above, it is reasonable to conclude that many properties of isolated retinal isomers are
preserved in retinal derivatives.

4. Directions for future work and conclusions

This chapter has presented a new bio-molecular electronic architecture that offers an
enhanced capability for sensing THz-frequency bio-signatures. This chapter also presents
modeling results that illustrate prototypical examples for the type of functional bio-
molecules needed for implementing this bio-molecular system. In the future, this work
will be used to guide new experimental investigations that focus on the measurement of
very far infrared spectra of retinal isomers and retinal isomer derivatives. The studies
presented in this chapter analyzed compound molecules of the type needed for realiz-
ing functional bio-molecular devices and derived their THz spectra and photo-induced
methods for controlling the THz-frequency characteristics through changes to energy
state and conformation. One possible fabrication approach for the construction of retinal-
based two-dimensional nanostructures was also presented. Future theoretical work will
consider such functional bio-molecules that are bonded to traditional nanoscale semicon-
ductor systems. The ultimate goal of this research is to define functioning bio-molecular
devices (e.g., light guiding structures) that can be used to achieve bio-signature sensing
and data processing in ultra-small integrated platforms.
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1. Introduction

Carbon nanotubes are long cylindrical structures composed of hexagonal rings of carbon
atoms. These rings can have various orientations with respect to the tube axis, as can be
seen in the examples in Figure 1. The two extremes are when each ring has two sides
parallel to the axis, Figure 1(a), and perpendicular to it, Figure 1(b). An intermediate
case (one of many possibilities) is illustrated in Figure 1(c).

A system has been devised for labeling the different types of nanotubes in terms of
two positive integers (n�m); it is explained in detail elsewhere [1–4]. Our present interest
is primarily in tubes having two sides of the carbon rings parallel to the axis; these are
in the category (n� 0), with n being the number of rings around the circumference of
the tube. Thus Figure 1(a) shows an (8, 0). Tubes having two ring sides perpendicular
to the axis are labeled (n�n); all others are (n�m) with n �= m.

The structures in Figure 1 are portions of “single-walled” nanotubes, meaning that
each is a single cylinder. It is also possible to have several coaxial tubes; these are
designated as “multi-walled.” We shall focus solely upon the former.

Another feature of nanotubes, in practice, is that they are normally closed at both
ends (capped) when synthesized. The caps can have various structures and shapes [2].
However, whereas the lateral sides of carbon nanotubes are composed entirely of six-
membered rings (except for possible defects), each cap must contain six five-membered
rings. This follows from Euler’s theorem: Any hexagonal framework can achieve com-
plete closure only through the introduction of exactly twelve pentagons [1, 2].

The unusual structural, electronic and mechanical properties of carbon nanotubes
have aroused enormous interest and stimulated a great deal of work, as well as proposed
applications in many different areas. For recent overviews, see White and Mintmire [3]
and Politzer et al. [4].

82
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(a)

(b) 

(c)

Figure 1 Portions of lateral surfaces of carbon nanotubes: (a) (8, 0); (b) (8, 8); (c) (8, 5)

A natural extension of all this activity has been to investigate the possibility of
nanotubes with other elemental compositions. The boron/nitrogen combination seemed
particularly promising because of BxNx being isoelectronic with C2x, as well as other
analogies between B/N and carbon compounds, such as the fact that solid boron
nitride exists in both graphite-like and diamond-like forms [5, 6]. BxNx [7, 8] and
CxByNz [9, 10] nanotubes have indeed been prepared.

In this chapter, our emphasis will be upon the remarkable capacities of some (n, 0)
model nanotubes for charge delocalization and transmission of electronic effects. We
will limit the discussion to all-carbon systems, although some CxByNz are also of interest
in this respect. We became aware of these unique features in the course of computational
analyses of the electrostatic potentials and local ionization energies on model nanotube
surfaces [4, 11, 12]. We will therefore begin by providing some background relating to
these two properties.

2. Electrostatic potential

The nuclei and electrons of any system produce an electrostatic potential V (r) in the
surrounding space; its value at any point r is given rigorously by Eq. (1):

V�r� =∑

A

ZA

�RA − r� −
∫ ��r′�dr′

�r′ − r� (1)
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ZA is the charge on nucleus A, located at RA, and �(r) is the electronic density. The
sign of V (r) in any region depends upon whether the positive contribution of the nuclei
or the negative one of the electrons is dominant there.

The potential V (r) is physically observable. It has been determined experimentally,
by diffraction techniques [13–15], as well as computationally. In our studies of model
nanotubes, we compute V (r) on both their inner and outer surfaces; we take these to be
defined by the 0.001 electrons/bohr3 contours of their electronic densities, as suggested
by Bader et al. for molecules [16].

The electrostatic potential on the surface of a molecule or other system, which we
label VS�r�, can be characterized in terms of several statistical quantities. Two obvious
ones are the most positive and the most negative values of VS(r): VS�max and VS�min.
Others that will be relevant with respect to model nanotubes are the total variance, �2

tot,
and its positive and negative components, �2

+ and �2
−:

�2
tot = �2

+ +�2
− = 1

m

m∑

i=1

[
V +

S �ri�−V
+
S

]2 + 1
n

n∑

j=1

[
V −

S �rj�−V
−
S

]2
(2)

In Eq. (2), V
+
S and V

−
S are the average positive and negative values of VS�r�:

V
+
S = 1

m

m∑

i=1

V +
S �ri� (3)

V
−
S = 1

n

n∑

j=1

V −
S �rj� (4)

The first summation in Eq. (2) and that in Eq. (3) are over the points where VS(r) is
positive, the others are over those where it is negative, on grids covering the inner and
outer nanotube surfaces.

The quantities �2
tot��2

+ and �2
− indicate how variable the total, positive and negative

surface potentials are, i.e. how extensive their ranges are. Since the terms in Eq. (2) are
squared, the extrema of VS(r) – the VS�max and VS�min – are particularly influential.

We have shown earlier that the quantities that we use to characterize VS(r) (which
can include also its average deviation and an electrostatic balance parameter) provide
an effective basis for correlating and predicting a variety of properties that depend upon
noncovalent interactions: boiling points and critical constants, heats of phase transitions,
solubilities and solvation energies, partition coefficients, diffusion constants, viscosities,
surface tensions, etc. There have been several reviews of this work [17–20].

3. Average local ionization energy

The second property in terms of which we have analyzed model nanotube surfaces is
the “average local ionization energy,” Ī(r). We introduced this originally within the
framework of Hartree–Fock (HF) theory [21], as:

Ī�r� =∑

i

�i�r� ��i�
��r�

(5)
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in which �i(r) is the electronic density of the ith occupied orbital of the system, having
energy ��i�. Within Hartree–Fock formalism, the ��i� are equal to the electrons’ ionization
energies, provided that their loss does not affect the remaining orbitals, an assumption
for which Koopmans’ theorem offers some support [22, 23]. Accordingly we interpret
Ī(r) as the “average local ionization energy” that is required to remove an electron from
the point r in the space of the system. The focus is upon the point in space, not a
particular orbital. When we compute Ī(r) on 	�r� = 0
001 electrons/bohr3 surfaces, as
we normally do, then it is denoted by ĪS�r�.

Both ĪS�r� and Ī(r) have been shown to be significant in a variety of areas, both
fundamental and applied. ĪS(r) correlates with atomic electronegativities [24] and shell
structure [25], the latter reflecting its relationship to local temperature [26, 27]. ĪS�r� is
indicative (inversely) of local polarizability [28, 29], as well as C–C bond strain [30]
and radical sites in polycyclic aromatic hydrocarbons [31].

With respect to chemical reactivity, it is the lowest values of ĪS�r�, the ĪS�min, that
are of particular interest. These reveal the locations of the least tightly held electrons,
those most reactive toward electrophiles. Thus, the ĪS�min correctly predict the activat-
ing/deactivating and directing effects of benzene substituents [21, 32], and the sites
most vulnerable to reaction with electrophiles (and radicals [31, 33]) in other organic
molecules [33, 34]. As might be anticipated, the magnitudes of ĪS�min correlate with
proton affinities and pKa [35].

While the justification for our interpretation of Ī(r) comes from Hartree–Fock theory,
ĪS�min obtained by Kohn–Sham density functional methods have proven to be equally
effective in predicting trends [32]. For a recent review and discussion of Ī(r) and ĪS�r�,
see Politzer and Murray [27].

4. Computational procedure

The results that will be discussed were obtained by calculations at the Hartree–Fock
(HF) STO-5G//STO-3G level. The use of minimum basis sets was dictated by the
sizes of the systems; most of the model nanotubes that we have investigated in our
earlier work had between 80 and 120 atoms, not including hydrogens. We believe,
however, that the computational procedure was fully adequate for our purposes. The
bond lengths produced by the HF/STO-3G optimizations are in good agreement with
available experimental data [4, 36–38]. It has also been demonstrated that HF/STO-5G
V (r) [39, 40] and ĪS�r� [40] are quite satisfactory on a relative basis, for showing trends,
which has been our objective in these studies.

It was already mentioned that when nanotubes are prepared, they are generally capped
at both ends. To facilitate various applications, these caps are often removed, by one of
several methods [41–43]. Computationally, we have treated both capped and uncapped
(open) model nanotubes. For the latter, in order to avoid having unfulfilled valencies
at the ends, we follow the common practice of terminating the tubes with hydro-
gens [44–49]. In doing so, we must keep in mind that their presence may have some
perturbing effect, hopefully small, upon the results.
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5. Electrostatic potentials of model carbon nanotubes

We have computed VS�r� on the inner and outer surfaces of more than 30 model
nanotubes of various compositions–carbon, BxNx and CxByNz – and structural
types [4, 11, 12, 36–38]; some of the carbon systems bore substituent groups. The num-
ber of non-hydrogen atoms was generally between 80 and 120. Before discussing these
results, we would like to present some data that will help to put them into proper
perspective.

In Table 1 are given, for a representative group of molecules, some of the computed
quantities in terms of which we characterize molecular surface electrostatic potentials:
VS�max�VS�min�V

+
S �V

−
S ��2

+��2
− and �2

tot. Our objective is simply to point out some general
features:

1. Negative regions tend to be stronger than positive ones. Thus, usually
∣
∣VS�min

∣
∣ >

VS�max�
∣
∣V

−
S

∣
∣ > V

+
S and �2

− >�2
+. The most positive VS�max are in the neighborhood

of 30 kcal/mole, and are associated with hydroxyl or sometimes amino hydrogens;
in contrast, the VS�min due to oxygen and nitrogen lone pairs are often −40 to
−50 kcal/mole, or even more negative.

2. Exceptions to the preceding generalizations can arise when the molecule has sev-
eral strongly-electron-withdrawing groups [51]. In Table 1, for example, 2,4,6-
trinitrotoluene has VS�max >

∣
∣VS�min

∣
∣ �V

+
S >

∣
∣V

−
S

∣
∣ and �2

+ >�2
−. VS�max is above the

ring, which has lost much of its � electronic charge to the NO2 groups.
3. Hydrocarbons usually have weak VS�r�, with both V

+
S and

∣
∣V

−
S

∣
∣ being less than

5 kcal/mole, and they show little variability, �2
tot < 20 �kcal/mole�2.

Table 1 Computed surface quantities (HF/STO-5G*//STO-3G*) for some representative
moleculesa�b

Molecule VS�max VS�min V
+
S V

−
S �2

+ �2
− �2

tot

benzene 9
5 −10
2 4
63 −4
87 7
3 8
5 15
8
butylbenzene 8
5 −12
4 3
74 −4
51 4
9 13
0 18
0
dimethylsulfide 11
2 −17
0 4
07 −5
69 7
2 25
7 33
0
1-hexanol 12
6 −36
7 5
00 −9
17 9
9 132
5 142
4
cyclohexanol 26
7 −43
5 5
61 −15
94 18
6 207
5 226
1
methanol 29
9 −41
6 10
31 −18
44 48
9 181
9 230
8
ammonia 18
1 −29
0 9
16 −12
78 27
6 73
7 101
3
methylamine 21
4 −53
2 9
32 −20
20 34
6 263
0 297
6
piperazine 22
9 −47
8 9
32 −17
40 26
3 207
2 233
5
phenol 34
9 −36
6 8
62 −8
54 64
0 73
1 137
1
acetamide 32
0 −40
6 12
73 −20
61 68
0 150
8 218
9
para-cresol 34
0 −35
9 7
32 −8
11 53
6 68
9 122
5
para-dichlorobenzene 15
2 −11
1 6
17 −7
01 18
0 10
2 28
1
2,4,6-trinitrotoluene 37
5 −28
8 20
63 −14
69 104
3 53
2 157
5

a Units: VS�max�VS�min�V
+
S and V

−
S are in kcal/mole; �2

+��2
− and �2

tot are in �kcal/mole�2.
b Data taken from [50].
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Another point of interest, although not evident in Table 1, is that the positive regions
on molecular surfaces, while weaker than the negative ones, are typically larger in area,
often considerably so [50]. This originates in the fact that V�r� is positive everywhere
for ground-state, spherically averaged atoms [52, 53], the contribution of the nucleus
dominating those of the dispersed electrons. When atoms combine to form a molecule,
some negative regions normally develop, e.g., near localized lone pairs or the � electrons
of unsaturated hydrocarbons, but most of the surface remains positive.

In proceeding now to model nanotubes, we will focus first upon the important role
that their curvatures play in determining their electrostatic potentials. A curvature has
two general consequences, which are common to all of the systems that we have studied,
regardless of composition or structure (n�m):

1. The inner surfaces are always somewhat more positive (or less negative) than the
outer. This is because each inner point is in closer proximity to more nuclei than
is the corresponding point on the outer surface. This becomes more significant as
the diameter of the tube decreases, and it is particularly important inside the caps of
closed tubes, since these tend to have high levels of curvature.

2. A second factor, which makes the outer surfaces more negative (or less positive), is
believed to arise from the effects of curvature upon the covalent bonds between the
atoms [54, 55]. It is argued that curvature forces the atoms to deviate from the sp2

configurations of a planar hexagonal framework and to acquire some sp3 character,
thereby introducing electronic localization in the fourth unfulfilled valency, as well as
some degree of strain. An alternate explanation focuses upon curvature diminishing
2p�–2p� overlaps, with similar results.

What we have observed, therefore, is that VS(r) is normally more positive on the inner
surface of a tube, especially inside the caps, and more negative on the outside, again
more so on the caps. The differences become less significant as curvature decreases;
thus a planar sheet of carbon hexagons, which is called graphene, has the same VS�r�
on both sides [56].

Table 2 lists a selection of the model carbon nanotubes that we have studied. For
each one are presented the same computed surface quantities, all related to VS�r�, as are
in Table 1. For most of the systems in Table 2, color plots of their surface electrostatic
potentials can be found in the respective references.

The VS�r� of the two closed tubes, (6, 0) C96 and (5, 5) C120, are perhaps the most
realistic, since any perturbation by the terminal hydrogens is avoided. The surfaces of
these two tubes are primarily weakly positive, with the VS�max inside the caps. (The
relatively high VS�max of the (6, 0) C96 is due to the greater curvature of its caps [38].)
Most of the outer surfaces have VS�r� < 10 kcal/mole; the inner are somewhat more
positive, but overall V

+
S < 4 kcal/mole. The only negative regions are on the outsides

of the caps, but the VS�min are only −5
9 and −1
8 kcal/mole.
The terminal hydrogens on the open tubes do affect VS�r� to some extent, as antic-

ipated. They donate some charge to the carbons, so that the lateral outer surfaces
become very slightly negative, mainly between 0 and −5 kcal/mole. The VS�max are now
associated with the hydrogens, which also cause the V

+
S to be somewhat higher.

Overall, the surface electrostatic potentials of these model carbon nanotubes,
whether closed or open, are very weak and rather bland, with little variability; note
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Table 2 Computed surface quantities (HF/STO-5G//STO-3G) for some model carbon
nanotubesa

Composition (n�m) VS�max VS�min V
+
S V

−
S �2

+ �2
− �2

tot Ref.

Closed (capped)
C96 (6, 0) 24
5 −5
9 3
1 −1
8 13
0 3
2 16
2 b
C120 (5, 5) 10
3 −1
8 2
6 −0
5 4
9 0
2 5
0 c

Open (uncapped)
C62H16 (7, 1) 13
7 −7
3 7
0 −3
0 17
7 1
7 19
4 c
C68H14 (6, 1) 14
8 −7
4 6
3 −2
7 19
9 1
2 21
1 c
C68H18 (8, 1) 13
6 −7
3 7
2 −3
1 16
5 1
6 18
1 c
C72H12 (6, 0) 15
2 −4
4 7
3 −2
0 21
4 0
8 22
2 d
C80H20 (5, 5) 14
7 −8
0 7
0 −3
9 17
2 2
1 19
3 c

Open, substituted
C68H13OH (6, 1) 35
8 −34
0 7
0 −3
2 40
1 15
6 55
6 e
C68H13NH2 (6, 1) 29
1 −35
9 7
5 −3
8 43
9 10
4 54
3 d
C80H19OH (5, 5) 37
2 −31
5 8
1 −4
3 38
9 7
1 46
0 e
C72H11OH (6, 0) 74
7 −41
8 22
2 −18
1 297
9 121
2 419
1 e
C72H11NH2 (6, 0) 73
8 −45
5 24
7 −19
1 409
3 139
4 548
7 e
C72H11NO2 (6, 0) 58
5 −85
1 19
2 −24
0 264
3 669
0 933
3 e
H2NC72H10NO2 (6, 0) 75
8 −87
2 21
8 −21
6 410
4 625
7 1036
1 e

a Units: VS�max�VS�min�V
+
S and V

−
S are in kcal/mole; �2

+��2
− and �2

tot are in �kcal/mole�2.
b Reference [37]. c Reference [36]. d Reference [4]. e Reference [11].

that �2
tot < 25 �kcal/mole�2. In these respects, they are similar to the hydrocarbons in

Table 1, but contrast markedly with most of the other molecules in that table.
What happens if one of the hydrogens on an open tube is replaced by a substituent

group, e.g. OH or NH2? As long as the tube is not of the type (n, 0), the effects are
quite localized. In the vicinity of the substituent, VS�r� reflects its presence; elsewhere,
however, VS�r� is essentially the same as for the original open tube, as described above.
Table 2 includes three examples of this: (6, 1) C68H13OH; (6, 1) C68H13NH2; and (5, 5)
C80H19OH. The VS�max and VS�min are seen to be in the ranges found for hydroxyl and
amino groups in typical organic molecules (Table 1), while the positive and negative
averages over the whole surfaces are similar to the unsubstituted tubes in Table 2.

The results are dramatically different when substitution takes place on an (n, 0) tube.
It develops a striking gradient in VS�r� along its entire length, from very positive at one
end to very negative at the other. This can be seen in Figure 2, and is also brought out
clearly by the data in Table 2. Both VS�max and VS�min are much larger in magnitude for
the four substituted (6, 0) tubes than for any of the others in Table 2, as well as most of
the molecules in Table 1. The same is true of V̄+

S and V̄−
S , and particularly for the �2

tot,
which are much higher than those in Table 1. The latter point reflects the remarkable
variation in VS�r� from one end of the tube to the other.

For the (6, 0) tubes bearing OH or NH2�VS�max is near the site of the substituent, and
VS�min is at the other end. Since these groups are well known to be resonance donors
of electronic charge (see Table 3), it appears that they are acting in that capacity here,
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Figure 2 Computed (HF/STO-5G//STO-3G) electrostatic potential VS�r� on the outer surface of
the (8, 0) C80H15NH2 model carbon nanotube. The NH2 group is at the right end. The variation
in VS�r� is between −26
1 kcal/mole at the left end and +26
1 kcal/mole at the right

Table 3 Resonance (��
R) and inductive (�I) substituent

constants [57]

Substituent ��
R �I

OH −0
40 0
25
NH2 −0
48 0
17
NO2 0
15 0
67
F −0
34 0
54
CN 0
13 0
57
CH3 −0
11 −0
01

and that the charge that they provide is delocalized along the full length of the tube,
producing an increasingly negative VS�r�:

OH OH
+

–

:

1

NH2 NH2

+
–

:

2

This interpretation is supported by the fact that the computed C–OH and C–NH2

distances in these (6, 0) tubes are shorter than usual, and that the C–NH2 portion is
planar [4, 11, 12], as predicted by structures 1 and 2.

When the substituent is NO2, which is strongly electron-withdrawing by induction
(Table 3), then the electronic delocalization is toward its end, which becomes the site of
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VS�min. When both NH2 and NO2 are introduced, at opposite ends, their effects reinforce
each other and the resulting �2

tot� 1036 �kcal/mole�2 (Table 2), is one of the highest that
we have ever encountered.

We have also investigated the effects of other substituents on (6, 0) systems, and
found analogous tube-long polarization. For F and CN, the direction is the same as
for NO2, as expected on the basis of their relative inductive and resonance tendencies
(Table 3); for CH3, however, which is weakly donating through both resonance and
induction, the direction is as for OH and NH2.

As Figure 2 shows, it is not only substituted (6, 0) tubes that exhibit this dramatic
polarization of VS�r�; other (n, 0) do as well. It is notable that a single substituent can
so affect the entire surface of the tube.

6. Average local ionization energies on model carbon
nanotube surfaces

The average local ionization energies on the outer surfaces of carbon tubes have local
minima, ĪS�min, above the carbons [4, 11, 12, 38], just as was found for graphene [56],
but they are smaller in magnitude, mainly 13–14 eV, compared to 14.8–14.9 eV in the
interior of graphene. The difference is due to curvature, which produces more negative
VS�r� on the outsides of the tubes (as was already discussed) from which it is accordingly
easier to remove an electron. For comparison, the HF/STO-5G//STO-3G ĪS�min above
the carbons of benzene are 14.3 eV [56]. (ĪS�min are always somewhat higher than the
��i� of the highest occupied orbitals because, as seen in Eq. (5), the former reflect some
probability of inner, more-tightly-held electrons being at the point in question.)

Since lower ĪS�min implies more energetic and easily removed electrons, higher lev-
els of curvature, e.g. at caps, should be associated with greater chemical reactivity
toward electrophiles. This has indeed been observed [1]. It has even been suggested
that enhanced reactivity could be induced in carbon nanotubes by prior mechanical
twisting or kinking [55, 58]; when the desired reaction was completed, the tube could
be straightened.

When a substituent is introduced on a model tube other than (n, 0), the effect upon
ĪS�r� is largely localized to its vicinity, just as for VS�r� [4, 11, 12]. For (n, 0) systems,
however, a tube-long gradation in ĪS�r� is now superposed upon the pattern of ĪS�min

above the carbons. Overall, ĪS�r� changes from low to high in the same direction as
VS�r� goes from strongly negative to strongly positive. Thus, the polarization observed
in VS�r� is reflected in ĪS�r�.

7. Polarization of unsubstituted model carbon nanotubes

We have attributed the striking polarization of the VS�r� of (n, 0) carbon tubes to the
presence of substituents at the open ends. To our surprise, we have found that a similar
effect, although weaker, can be produced even by minor structural asymmetry. This will
be demonstrated for some relatively small systems, but qualitatively the same has been
observed for larger ones.
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(a) (b)

(c) (d)

Figure 3 Computed (HF/STO-5G//STO-3G) surface electrostatic potentials VS�r�. (a) Planar
C54H20. (b) Symmetric (6, 0) C48H12 tube. (c) Asymmetric (6, 0) C48H12 tube. (d) (8, 5) C104H26

tube. In (a), (b) and (d), the range of values is less than 2 kcal/mole, from red (most negative) to
blue (most positive). In (c), it is −3
9 (red) to +3
9 (blue) kcal/mole

Figure 3(a) shows VS�r� for a planar sheet of 18 carbon hexagons, arranged in 3 rows
of 6 apiece, with hydrogens around the periphery. As in our previous study of model
graphenes [56], VS�r� is weakly negative everywhere above the carbons, due to the
hydrogens. There is no indication of any overall polarization.

This sheet of carbon hexagons can be rolled into a short (6, 0) tube. When the C–H
distances are all constrained to be exactly the same, in this instance 1.070 Å, the resulting
VS�r�, in Figure 3(b), is typical of open model carbon nanotubes, as described earlier
in this chapter. There is no polarization.

Figure 3(c) shows VS�r� for the same tube, but with the C–H bond lengths at the two
ends differing slightly: 1.0870 Å and 1.0805 Å. This very small asymmetry is sufficient
to cause a weak but clearly evident tube-long polarization of VS�r�; the end with
the shorter C–H bonds is negative, VS�min = −3
9 kcal/mole, and the other is positive,
VS�max = 3
9 kcal/mole.

Analogous results have been obtained for other (n, 0) tubes, e.g. (8, 0) and (9, 0),
although the polarization diminishes as the tube diameter increases and the curvature
decreases. Thus for the (9, 0) of the same length, VS�min = −2
3 kcal/mole�VS�max =
2
3 kcal/mole. On the other hand, there is no polarization of the VS�r� of (8, 8) and
(8, 5) tubes; see Figure 3(d). It appears to be only the (n, 0) that have this capability.

8. Why?

Why does asymmetry, whether due to substituents or to structure, lead to such distinctive
polarization in (n, 0), and only (n, 0), carbon tubes? We will suggest some possible
factors and offer some speculation.



92 Peter A. Politzer

A unique feature of (n, 0) tubes, as can be seen in Figure 1, is that alternate C–C
bonds are parallel to the tube axis. No other type of tube, (n�n) or (n�m), has any
bonds at all with this property. Only for such bonds is 2p�–2p� overlap unaffected by
curvature, so their presence might mean that (n, 0) systems have an enhanced capacity
for charge delocalization parallel to the axis. They do in fact have very high (computed)
axial polarizabilities [47, 59–61], but this is also true of the (5, 5) [60, 61].

In any case, having axially oriented bonds cannot be enough to produce the polariza-
tion that is observed, since it does not occur in the planar analogues of (n, 0) tubes, such
as that in Figure 3(a). Curvature is evidently essential; indeed the polarization becomes
weaker as the tube diameter increases. However, curvature is also not sufficient, since
it is characteristic of all of the types of tubes, to varying degrees.

The key point may be the specific symmetry that open (n, 0) systems have with
respect to the tube axis. It is not only the longitudinal C–C bonds that are parallel to the
axis, but also the C–H bonds and those to end substituents, if any. Another important
element of axial symmetry is the “zig-zag” pattern of the transverse C–C bonds. As a
result of these framework properties, which are specific to (n, 0) systems, the electronic
effects of even a minor perturbation at one end of the tube are transmitted around its
entire circumference and along its full length. We continue to try to gain further insight
into these phenomena.

9. A possible application: Nonlinear optics

The response of a molecule’s dipole moment (or bulk matter’s polarization) to an
external electric field can be represented by Eq. (6) [62–66]:

i��� = i�0�+∑
j

�ij�j + 1
2

∑

jk

�ijk�j�k + 1
6

∑

jkm

�ijkm�j�k�m +· · · (6)

i��� is the component of the dipole moment along an axis i in the presence of the
electric field �. The tensors ��� and � are the polarizability and the first and second
hyperpolarizabilities, respectively (or the first-, second- and third-order susceptibilities
in the case of bulk polarization).

Nonlinear optical activity reflects an enhanced higher-order (i.e. nonlinear) response
to the electric field associated with electromagnetic radiation; thus it depends upon �
and �. A high level of nonlinear optical activity can have important applications in
optoelectronics, e.g. in frequency converters, signal processors, switches, modulators,
etc. [62, 63, 65, 67]. There have in fact been a number of investigations of the possible
use of carbon nanotubes in optoelectronic devices [61, 68–75].

Molecules having electron donor and acceptor groups separated by a conjugated
bridge, e.g. 3 and 4, are known to be good candidates for showing enhanced second-
order nonlinearity [62–66, 76]. The remarkably strong charge delocalization that we
have found in substituted (n, 0) model tubes suggests that these may be particu-
larly suitable for such purposes. As an initial test, we estimated computationally, at
the local density functional SVWN/6-31G* level, the second-order responses (i.e., the
first hyperpolarizabilities) of para-nitroaniline (4) and our NH2/NO2-substituted (6, 0)
model tube (Table 2) [11]. The value was nine times larger for the latter! It seems
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clear that appropriately substituted (n, 0) systems merit particular consideration in
optoelectronics.

(N C)2C CH C C C6H4 N(CH3)2

3

H2N NO2

..
H2N N

+ O−

O−
+

4

10. Concluding remarks

While this chapter has dealt almost entirely with open (n, 0) model carbon nanotubes,
both substituted and unsubstituted, we have also found very notable charge delocalization
and transmission of electronic effects in capped (n, 0) CxByNz tubes; see Politzer et al.
[4, 12, 38]. The common element is the (n, 0) framework and the introduction of some
perturbation of the symmetry of the system.

At present, we are aware only of our computational evidence for the very unusual
features of (n, 0) systems, although it may be relevant to mention Zipper et al.’s
observation of enhanced electrical conduction by (n, 0) carbon nanotubes [77, 78].
Given the rapid advances in technology and synthesis techniques, however, experimental
confirmation may soon be forthcoming.

References

[1] P. M. Ajayan, Chem. Rev. 99 (1999) 1787–1800.
[2] P. J. F. Harris, Carbon Nanotubes and Related Structures, Cambridge University Press,

Cambridge, UK (1999).
[3] C. T. White, J. W. Mintmire, J. Phys. Chem. B 109 (2005) 52–65.
[4] P. Politzer, J. S. Murray, P. Lane, M. C. Concha, in A. A. Balandin, W. L. Wang (eds),

Handbook of Semiconductor Nanostructures and Devices, American Scientific Publishers,
Los Angeles, 2006.

[5] M. Windholz (ed.), The Merck Index, 10th edn, Merck, Rahway, NJ (1983).
[6] J. K. Burdett, Chemical Bonding in Solids, Oxford University Press, New York (1995).
[7] E. Bengu, L. D. Marks, Phys. Rev. Lett. 86 (2001) 2385–2387.
[8] S. Y. Bae, H. W. Seo, J. Park, Y. S. Choi, J. C. Park, S. Y. Lee, Chem. Phys. Lett. 374

(2003) 534–541, and references cited.
[9] K. Suenaga, C. Colliex, N. Demoncy, A. Loiseau, H. Pascard, F. Willaime, Science 278

(1997) 653–655.
[10] D. Golberg, Y. Bando, M. Mitome, K. Kurashima, N. Grobert, M. Reyes-Reyes, H. Terrones,

M. Terrones, Chem. Phys. Lett. 360 (2002) 1–7.
[11] P. Politzer, J. S. Murray, P. Lane, M. C. Concha, P. Jin, Z. Peralta-Inga, J. Mol. Model., 11

(2005) 258–264; J. Mol. Model. 12 (2006), 528 (Erratum).
[12] P. Politzer, J. S. Murray, P. Lane, M. C. Concha, in W. A. Sokalski (ed.), Molecular

Materials with Specific Interactions: Modeling & Design, Springer, London, 2006, ch. 5.



94 Peter A. Politzer

[13] R. F. Stewart, J. Chem. Phys., 57 (1972) 1664–1668.
[14] P. Politzer, D. G. Truhlar (eds), Chemical Applications of Atomic and Molecular Electrostatic

Potentials, Plenum Press, New York (1981).
[15] G. Naray-Szabo, G. G. Ferenczy, Chem. Rev. 95 (1995) 829–847.
[16] R. F. W. Bader, M. T. Carroll, J. R. Cheeseman, C. Chang, J. Am. Chem. Soc. 109 (1987)

7968–7979.
[17] J. S. Murray, P. Politzer, in J. S. Murray, P. Politzer (eds), Quantitative Treatments of

Solute/Solvent Interactions, Elsevier, Amsterdam (1994) ch. 8.
[18] J. S. Murray, P. Politzer, J. Mol. Struct. (Theochem) 425 (1998) 107–114.
[19] P. Politzer, J. S. Murray, Trends Chem. Phys. 7 (1999) 157.
[20] P. Politzer, J. S. Murray, Fluid Phase Equilib. 185 (2001) 129–137.
[21] P. Sjoberg, J. S. Murray, T. Brinck, P. Politzer, Can. J. Chem. 68 (1990) 1440–1443.
[22] T. A. Koopmans, Physica 1 (1933) 104–113.
[23] R. K. Nesbet, Adv. Chem. Phys. 9 (1965) 321.
[24] P. Politzer, M. E. Grice, J. S. Murray, Coll. Czech. Chem. Comm. 70 (2005) 550–558.
[25] P. Politzer, J. S. Murray, M. E. Grice, T. Brinck, S. Ranganathan, J. Chem. Phys. 95 (1991)

6699–6704.
[26] Nagy, R. G. Parr, S. Liu, Phys. Rev. A 53 (1996) 3117–3121.
[27] P. Politzer, J. S. Murray, in A. Toro-Labbé (ed.), Theoretical Approaches to Chemical

Reactivity, Elsevier, Amsterdam, 2006, in press.
[28] P. Jin, T. Brinck, J. S. Murray, P. Politzer, Int. J. Quantum Chem. 95 (2003) 632–637.
[29] P. Jin, J. S. Murray, P. Politzer, Int. J. Quantum Chem. 96 (2004) 394–401.
[30] J. S. Murray, J. M. Seminario, P. Politzer, P. Sjoberg, Int. J. Quantum Chem., Quantum

Chem. Symp. 24 (1990) 645–653.
[31] J. S. Murray, F. Abu-Awwad, P. Politzer, J. Mol. Struct. (Theochem) 501 (2000) 241–250.
[32] P. Politzer, F. Abu-Awwad, J. S. Murray, Int. J. Quantum Chem. 69 (1998) 607–613.
[33] J. S. Murray, Z. Peralta-Inga, P. Politzer, K. Ekanayake, P. LeBreton, Int. J. Quantum Chem.

83 (2001) 245–254.
[34] P. Politzer, J. S. Murray, M. C. Concha, Int. J. Quantum Chem. 88 (2002) 19–27.
[35] T. Brinck, J. S. Murray, P. Politzer, Int. J. Quantum Chem. 48 (1993) 73–88.
[36] Z. Peralta-Inga, P. Lane, J. S. Murray, S. Boyd, M. E. Grice, C. J. O’Connor, P. Politzer,

Nano Lett. 3 (2003) 21–28.
[37] P. Politzer, P. Lane, J. S. Murray, M. C. Concha, J. Mol. Model. 11 (2005) 1–7.
[38] P. Politzer, P. Lane, M. C. Concha, J. S. Murray, Microelectr. Eng. 81 (2005) 485–493.
[39] P. Politzer, J. S. Murray, in K. B. Lipkowitz and D. B. Boyd (eds), Reviews in Computational

Chemistry, vol. 2, VCH Publishers, New York (1991), ch. 7, and references cited.
[40] J. S. Murray, T. Brinck, P. Politzer, J. Mol. Struct. (Theochem) 255 (1992) 271–281.
[41] C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune, M. J. Heben, Nature

386 (1997) 377–378.
[42] Kuznetsova, J. T. Yates, Jr., J. Liu, R. E. Smalley, J. Chem. Phys. 112 (2000) 9590–9598.
[43] Fujiwara, K. Ishii, H. Suematsu, H. Kataura, Y. Maniwa, S. Suzuki, Y. Achiba, Chem. Phys.

Lett. 336 (2001) 205–211.
[44] M. S. C. Mazzoni, H. Chacham, P. Ordejon, D. Sanchez-Portal, J. M. Soler, E. Artacho,

Phys. Rev. B 60 (1999) R2208–R2211.
[45] W. Bauschlicher, Jr., Nano Lett. 1 (2001) 223–226.
[46] S. Irle, A. Mews, K. Morokuma, J. Phys. Chem. A 106 (2002) 11973–11980.
[47] M. D. Halls, H. B. Schlegel, J. Phys. Chem. B 106 (2002) 1921–1925.
[48] R. L. Jaffe, J. Phys. Chem. B 107 (2003) 10378–10388.
[49] Z. Zhou, M. Steigerwald, M. Hybertsen, L. Brus, R. A. Friesner, J. Am. Chem. Soc. 126

(2004) 3597–3607.
[50] P. Politzer, J. S. Murray, Z. Peralta-Inga, Int. J. Quantum Chem. 85 (2001) 676–684.



Charge delocalization in (n, 0) model carbon nanotubes 95

[51] J. S. Murray, P. Lane, P. Politzer, Mol. Phys. 93 (1998) 187–194.
[52] H. Weinstein, P. Politzer, S. Srebrenik, Theor. Chim. Acta 38 (1975) 159.
[53] K. D. Sen, P. Politzer, J. Chem. Phys. 90 (1989) 4370.
[54] J. Chen, R. C. Haddon, S. Fang, A. M. Rao, W. H. Lee, E. C. Dickey, E. A. Grulke,

J. C. Pendergrass, A. Chavan, B. E. Haley, R. E. Smalley, J. Mater. Res. 13 (1998) 2423.
[55] Srivastava, D. W. Brenner, J. D. Schall, K. D. Ausman, M.-F. Yu, R. S. Ruoff, J. Phys.

Chem. B 103 (1999) 4330–4337.
[56] Z. Peralta-Inga, J. S. Murray, M. E. Grice, S. Boyd, C. J. O’Connor, P. Politzer, J. Mol.

Struct. (Theochem) 549 (2001) 147–158.
[57] O. Exner, Correlation Analysis of Chemical Data, Plenum Press, New York (1988).
[58] Dekker, Phys. Today 52(5) (1999) 22.
[59] L. X. Benedict, S. G. Louie, M. L. Cohen, Phys. Rev. B 52 (1995) 8541–8549.
[60] L. Jensen, O. H. Schmidt, K. V. Mikkelsen, P.-O. Åstrand, J. Phys. Chem. B 104 (2000)

10462–10466.
[61] L. Jensen, P.-O. Åstrand, K. V. Mikkelsen, J. Phys. Chem. A 108 (2004) 8795–8800.
[62] S. R. Marder, J. E. Sohn, G. D. Stucky (eds), New Materials for Nonlinear Optics, ACS

Symposium Series 455, American Chemical Society, Washington, DC, 1991.
[63] R. Kanis, M. A. Ratner, T. J. Marks, Chem. Rev. 94 (1994) 195–242.
[64] N. Matsuzawa, D. A. Dixon, J. Phys. Chem. 98 (1994) 2545–2554.
[65] S. P. Karna, J. Phys. Chem. A 104 (2000) 4671–4673.
[66] R. Andreu, M. J. Blesa, L. Carrasquer, J. Garin, J. Orduna, B. Villacampa, R. Alcala,

J. Casado, M. C. R. Delgado, J. T. L. Navarrete, M. Allain, J. Am. Chem. Soc. 127 (2005)
8835–8845 and references cited.

[67] W. L. Wilson, in J. H. Moore and N. D. Spencer (eds), Encyclopedia of Chemical Physics
and Physical Chemistry, vol. III, Institute of Physics, London, 2001, C2.15.

[68] X. Wan, J. Dong, D. Y. Xing, Phys. Rev. B 58 (1998) 6756–6759.
[69] X. Liu, J. Si, B. Chang, G. Xu, Q. Yang, Z. Pan, S. Xie, P. Ye, J. Fan, M. Wan, Appl. Phys.

Lett. 74 (1999) 164–166.
[70] J. Jiang, J. Dong, D. Y. Xing, Phys. Rev. B 59 (1999) 9838–9841.
[71] Ya Slepyan, S. A. Maksimento, V. P. Kalosha, J. Herrmann, E. E. B. Campbell, I. V. Hertel,

Phys. Rev. A 60 (1999) R777–R780.
[72] P. Chen, X. Wu, X. Sun, J. Lin, W. Ji, K. L. Tan, Phys. Rev. Lett. 82 (1999) 2548–2551.
[73] S. R. Mishra, H. S. Rawat, S. C. Mehendale, K. C. Rustagi, A. K. Sood, R. Bandyopadhyay,

A. Govindaraj, C. N. R. Rao, Chem. Phys. Lett. 317 (2000) 510–514.
[74] S. Barazzouk, S. Hotchandani, K. Vinodgopal, P. V. Kamat, J. Phys. Chem. B 108 (2004)

17015–17018.
[75] D. A. Stewart, F. Léonard, Nano Lett. 5 (2005) 219–222.
[76] S. R. Marder, D. N. Beratan, L.-T. Cheng, Science 252 (1991) 103.
[77] M. Szopa, M. Marganska, E. Zipper, M. Lisowski, Phys. Rev. B 70 (2004) 75406–75412.
[78] E. Zipper, M. Szopa, M. Marganska, M. Lisowski, Nano and Giga Challenges Conference,

Jagellonian University, Krakow, Poland, September 2004.



Molecular and Nano Electronics: Analysis, Design and Simulation
J. M. Seminario (Editor)
© 2007 Elsevier B.V. All rights reserved.

Chapter 4

Analysis of programmable molecular electronic
systems

Yuefei Ma and Jorge M. Seminario

Department of Chemical Engineering, and Department of Electrical and Computer
Engineering, 3122 TAMU, Texas A&M College Station TX77843, USA.
seminario@tamu.edu

1. Introduction

The continuing scaling down in size of microelectronics devices has motivated the
development of molecular electronics, often called moletronics, which uses molecules
to function as electronic devices [1–14]. One of the goals of moletronics is the con-
struction of programmable molecular arrays [15, 16]. We will focus this chapter on
one of the scenarios for these devices, a quasi-ordered array of metallic islands inter-
linked by molecules that are addressed by a small number of input/output leads located
on the periphery of this programmable molecular array, which is also called nanoCell
[15], and which is populated with different molecules interconnecting the metallic
islands. Experimentally and theoretically, the electrical characteristics of the nanoCells
suggest that the metallic islands contribute to some nonlinear features of the current–
voltage characteristics, such as negative differential resistance and memory phenomena
[16–19]. The importance of high speed electronics also compels us to carefully under-
stand the limitations faced by microelectronics due to device fabrication and physical
limits. Therefore, challenging new techniques are described that may complement con-
ventional microelectronics and permit the attainment of higher computing speeds.

1.1. Importance and current status of high speed electronics

In 1965, only seven years after Jack Kilby invented the integrated circuit, Gordon Moore
made his famous observation popularly known as “Moore’s Law” [20, 21]. Moore’s
Law predicted that the number of transistors per integrated circuit would double every
18 months, leading to an exponential growth in the complexity of devices. Amazingly,
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this empirical rule is still holding true. The number of transistors in the 4004 processor
was 2,250 in the year 1971. The number of transistors increased to 275,000 for the
Intel386™ processor in 1985. By 2003, it grew to 410,000,000 in the Intel® Itanium®

2 processor. Then, on 25 January 2006, Intel demonstrated a fully functional 45 nm
SRAM chip with more than a billion transistors.

The fundamental driving force behind Moore’s Law is the constant craving for ultrafast
computing. It is always said, “Time is money”; in fact time is everything. As the technology
grows, the need for faster computation is demanded in many disciplines, such as mathe-
matics, chemistry, physics, meteorology, etc. Faster computation facilitates state-of-the-art
research and makes it more productive and efficient. It would be better to finish a compu-
tation in a shorter time, because it will shorten the time needed for feedback and thus for
completion of a project. Also, faster computers means faster communication, which will
bring people closer together, all around the world. In the meantime, the information being
processed is growing exponentially, which requires a larger number of memory devices
and faster speed to process and deliver all the information. All these computational and
memory functions require more and more transistors in a smaller space. Thus, the size of
transistors in a single chip needs to shrink tremendously.

1.1.1. Limitations in device fabrication

The continuous growth resulting from following Moore’s law creates obstacles in device
fabrication in the following two aspects.

1. Lithography Since the resolution of lithography depends on the wavelength of the
light source, a light source with shorter wavelength is needed to create smaller
images. New techniques such as phase-shift masks and optical proximity correction
make it possible to print smaller patterns than those normally expected from the
wavelength of the light source. For example, currently, 193 nm light is used to
produce a minimum feature size of 45 nm. However, the goal of feature sizes of
30 nm or less is still pushing us to seek new light sources with shorter wavelength.
As researchers search for new light sources, technologies for improved photo resist,
mask, and aligner systems need to be developed simultaneously. Some alternatives
have been found, such as E-beam and X-ray lithography, which can yield nano-sized
features, but these alternatives are not suitable for mass production [22]; fabrication
with feature sizes smaller than 45 nm in large-scale production is extremely difficult.

2. Doping Semiconductor materials are made conductive by adding certain impurities
into the bulk. This process of doping is done by diffusion or ion implantation. Both
processes face a limitation of solid solubility, meaning that the maximum number of
impurity atoms that can exist in a solid is limited. Thus, as the size of the device
is decreased, it might be possible in the future that only one or a few doping atoms
will exist in the source/drain area, resulting in fuzzy boundaries and therefore bad
performance.

1.1.2. Limitations in device operation

The building blocks of current electronic circuits are Complementary Metal Oxide
Semiconductor (CMOS) Field Effect Transistors (FET), in which both NMOSs and
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PMOSs are used to implement the logic functions. In NMOS, electrons are majority
carriers in the channel region; while in PMOS, holes are majority carriers. According to
the International Technology Roadmap for Semiconductors (ITRS), CMOS technology
will still be around until 2015 [23]. Even if some of the difficulties in device fabrication
are overcome, there will still be a number of intractable issues in solid-state physics as
follows.

• Velocity saturation in Metal Oxide Semiconductor Field Effect Transistors (MOSFET)
The speed of carriers in a MOSFET is related to the mobility of the majority carriers
in the channel, i.e., the electron/hole mobility. The mobility is inversely related to the
lateral electric field across the channel. As the device is scaled down, the electric field
increases, which results in decreasing mobility. Therefore it restricts the MOSFET
current and the speed of the device.

• Punch through During normal operation, the current in a MOSFET is carried through
the channel, which is induced by the voltage applied to the gate. However, if the
device is scaled down so that the channel is extremely short, the depletion region of
the drain expands, because of the application of the drain voltage. Eventually, it will
touch the source depletion region. Thus, the electrons will “punch through” from the
source to the drain, resulting in leakage current.

• Parasitic capacitance As the device is scaled down, the surface-to-bulk ratio
increases. This may increase the parasitic capacitance of the Gate-Drain capacitor,
the Gate-Source capacitor, the Drain-Bulk capacitor, the Source-Bulk capacitor, etc.
The general problem is that large capacitors decrease the speed of the device.

• Gate leakage Scaling of the MOSFET results in an extremely thin gate oxide and
due to the “uncertainty principle” between the velocity and the momentum of the
electron, it is impossible to find an electron in an exact position [24]. As is predicted
by quantum mechanics, electrons tunnel through the thin gate resulting in a reduced
gate field. To maintain the same channel depth as well as the same channel current,
larger voltages must be applied to the gate, which increase the power consumption.

1.2. Future perspective of electronics

We study the electrical conductance through the metallic islands and their conformational
changes under bias. Furthermore, a scenario is proposed to use molecular vibronics
and electrostatic potentials to transport and process signals inside the programmable
molecular array [16, 19, 25–36].

All these limitations urge us to search for new solutions for further expanding
Moore’s Law. Amazingly, three years before the publication of Moore’s Law, Richard
P. Feynman gave a talk, “There is plenty of room at the bottom.” He spoke about the
problem of manipulating and controlling things on a small scale. This seminal talk laid
the foundation for the development of nanotechnology and molecular electronics; thus,
a number of possible solutions have been found for the end of the Silicon era:

• Single molecular transistor The fundamental idea behind the single molecular
transistor is to use a single molecule to function as an electronic device. This will
decrease the size of a device tremendously. Since the seminal paper describing a
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molecular rectifier [37] was published in 1974, the field of molecular electronics has
grown rapidly. However, fine lithography remains as a limitation for its realization
as single molecules need to be addressed precisely.

• Programmable molecular array A programmable molecular array is a two-
dimensional structure made of chemically arranged molecules. Microsized metallic
input and output leads are located on the periphery of the structure. Thus, there are tens
or hundreds of single molecular devices connected in series–parallel between input
and output. This intriguing feature further shrinks the dimensions of devices. How-
ever, programmable molecular array has to be programmed by applying a sequence
of voltage pulses on the metallic leads in order to perform specific post-fabrication
functions.

• Use of molecular vibrational modes and molecular potential to transmit and process
information When an atom in a molecule is displaced, the displacement signal will
be transmitted through the molecule by the molecular vibrational modes. It is similar
to the case of a mass-and-spring system. Furthermore, the displacement introduces a
change in the distribution of the molecular electrostatic potential (MEP). By combining
these two methods, the signals can be transmitted and processed without any electron
current.

• Spintronics Spintronics is a technology that uses electron spin (and sometimes the
nuclei spin), instead of using electron charge to store and transfer information [38,
39]. The spin can be detected as a weak magnetic energy state characterized as “spin
up” or “spin-down”. Spintronics has been successfully applied to a device called a
spin valve, which utilizes a layered structure made of thin films of magnetic materials
to change the electrical resistance which depends on the direction of magnetic field
being applied. Currently, researchers are developing new magnetic semiconductors
based on room-temperature ferromagnetism.

• Cross bar approach In a cross bar structure, two layers of regularly arranged
nanowires (or nanotubes) are crossing each other with electrically switchable
molecules. By applying a sequence of voltage impulses to the nanowires and using
switches of opposite polarities, the device can perform specific logic functions. In
addition, it can restore a logic level in a circuit to its ideal voltage value, allowing
a designer to chain many simple gates together to perform an arbitrary computation.

In addition to extending the unique scenario based on the charge-current to process
and encode information in integrated circuits to the molecular electronic systems, a
dual scenario is proposed to use molecular vibronics and electrostatic potentials to
transport and process signals inside programmable molecular arrays [16, 19, 25–36].

2. Programmable molecular arrays

In this section, first the programmable molecular array will be introduced. Next, related
research work in other research groups is reviewed. Then the fabrication process of the
programmable molecular array as well as the process of forming self-assembled mono-
layers will be explained. And then the electrical measurement set-up is described. Last,
the electrical characterization of memory and switching phenomena, start-up transitional
behavior, effect of different molecular depositions, and programmability of the device
are investigated.
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2.1. Introduction to programmable molecular cells

As conventional silicon-based microelectronics encounters more and more challenges
when it scales down to smaller sizes, several companies and research groups are trying to
incorporate single or small groups of molecules into electronic circuits. These molecules
are expected to implement complex computations, for example, logic gates, memories,
etc. By doing so, the size of a rather complicated circuit can be greatly reduced, and at the
meantime it will bring down the fabrication cost. However, to address a single molecule
is another challenge for conventional fabrication techniques, especially lithography. This
is the reason why molecular programmability has been proposed [40–43].

A programmable molecular array can also be called a molecular random access
memory cell or nanoCell. It is a two-dimensional structure constructed on an insulator,
e.g., SiO2. Inside a nanoCell, there are chemically organized molecules and metallic
nanoclusters, nanowires and/or nanotubes, as shown in Figure 1.

The nanowires or nanotubes serve as anchors to attach the molecules by self-assembled
monolayer techniques. They can also conduct electrical current. Microsized metal leads
are located on the periphery of the two-dimensional structure to allow the interconnection
between the molecules and external circuit. It has been shown theoretically that some
molecules can function as electronic device [3, 8, 44, 45]. Therefore, the nanoCell can
be viewed as hundreds of devices connecting any of the two contacts in series-parallel.
After fabrication, the nanoCell will be programmed by a computer program to function
as the purpose of desired device.

Figure 1 Schematic of a nanoCell composed of gold clusters (green) and interlinking
molecules (grey) sitting on a substrate of SiO2 (white). The electrodes (green) are located around
the nanoCell [15]
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The advantage of a nanoCell is to relieve the painful fabrication process, especially
for photolithography, which currently cannot fabricate features at molecular size. The
smallest feature in a nanoCell that needs to be defined by photolithography is the metal
lead. Except for this, the components of a nanoCell are chemically located. Since the
structure of a nanoCell is mainly made of molecules, it also has the advantage of reducing
power consumption and heat dissipation. In addition, it allows the device to be advanced
in the future to conquer the physical and technical limitations of silicon-based electronics.

The programmable molecular array was originally proposed by a group of researchers
from University of South Carolina (USC), Yale University, and Penn State University
(PSU) [40]. The preliminary idea is to chemically place the molecules inside a box
and address them by using an external electrical field. The simulation conducted by
Seminario et al. shows that the nanoCell can function as a logic device and can be
programmable after fabrication [44]. The first two-dimensional nanoCell was fabricated
by Tour and Franzon. [43, 46]. Since it is almost impossible for the molecules to lie
parallel to the substrate surface and to interconnect each other, a discontinuous gold
film is vapor deposited inside the box [46]. Molecules are then self-assembled onto the
gold islands through which the molecules are interconnected. To enhance conductance,
molecules covered by nanowires are assembled onto the surface after being deposited
[43]. The first molecule being deposited onto the nanoCell was mononitro OligoPheny-
lene Ethynylene (OPE). It exhibits Negative Differential Resistance (NDR) between Au
probes both experimentally and theoretically [8, 47, 48]. The NDR is believed to be
essential to obtain switching effects [42, 49]. The current–voltage characteristics of OPE
deposited nanoCell were studied and reported. Switching effects and memory effects
have been demonstrated in the device.

At the same time, Husband et al. addressed the issue relating to programming the
nanoCell to perform specific functions [42, 49]. In a computer simulation, they were
able to program a nanoCell into a half adder. However, successfully programming a
nanoCell in real experiments has never been reported.

2.2. Sample fabrication

The fabrication process of the nanoCell device can be divided into two parts based on
the components: the substrate and the molecules.

2.2.1. Substrate fabrication

The first nanoCell substrate (Figure 2) was fabricated by researchers at North Carolina
State University (NCSU). As shown in Figure 2, instead of metallic nanoclusters, a
discontinuous gold film is deposited onto the p-type Si substrate uniformly covered with
thermally grown wet SiO2 [46]. The thickness of the SiO2 film is 1000 Å. The patterning
of the discontinuous gold film is performed using a lift-off technique. In this technique,
a layer of photoresist is deposited onto the substrate and a lithography process is used
to define the pattern. Afterward, a discontinuous gold film is vapor deposited in high
vacuum �∼10−10 torr�. During the deposition, the substrate temperature is maintained at
100 �C in order to increase the stability of the film. Standard silicon process techniques
are utilized to fabricate the contact leads and contact pads.
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(a) (b)

Figure 2 Optical microscopic images of an experimentally constructed nanoCell. (a) Optical
microscopic image of a nanoCell. The yellow squares are contact pads. The purple square in the
middle is a discontinuous gold film. The meander lines are contact leads. (b) Enlarged view of a
discontinuous gold film

According to the scanning atomic force microscope (AFM, Digital Instrument) image
(Figure 3a), the diameter of the gold islands ranges from 5 to 60 nm and the separation
between the islands is around 5 nm, which is sufficiently small to fit two molecules.
Atomic force microscope (AFM, Digital Instruments) shows that the thickness of the
film ranges from 3 to 4 nm in Figure 3 However, because the AFM tip might be larger
than or about the same size as the gap between the gold islands, the tip might not touch
the substrate when it scans through the device. So, the thickness of the gold film might
be larger than 4 nm.

2.2.2. Formation of self-assembled monolayers on nanoCell

Two kinds of molecules were chosen separately to deposit on different chips.
Molecule 1 (Figure 4) is 4� 4′-(diethynylphenyl)-2′-nitro-1-benzenethioacetyl, which
belongs to the mononitro oligo (phenylene ethynylene) (OPE) group. The molecule is a
three-benzene-ring oligomer with two nitro group �NO2� substituents in the central ring.
Sulfur atoms acting as “alligator clips” join one end of the molecular devices with the
Au clusters. Electrical properties of the molecule have been studied both experimentally
and theoretically. The study shows that the molecule yields NDR which makes it a
potential molecular electronic device [47, 48]. This is the reason why this molecule has
been chosen for this research work. The molecule is synthesized by Tour’s group in
Rice [47]. The acetyl group is used to protect the molecule against reaction with oxygen
during transportation and it is removed in situ during the self-assembly process under
acid conditions �CH2Cl2/MeOH/H2SO4�, which is reported to yield better results than
the traditional NH4OH/THF mixture [51]. Once the acetyl group is removed, the S− ion
will attach to the Au atoms, resulting in a self-assembled monolayer (SAM).

Molecule 2 (Figure 4) is octyltrichlorosilane, which self-assembles on SiO2 [52]. The
adsorption of the molecule onto the SiO2 substrate takes place through the hydrolysis
of the Si-Cl bonds to form Si-OH groups which interact with OH groups on the SiO2

surface and form Si-O-Si bonds.
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(a) (b) 

(c) 

Figure 3 (a) Scanning electron microscope image of a discontinuous gold film [50]. (b) Atomic
force microscope image of a discontinuous gold film. (c) Cross-section analysis of the gold film

Two different self-assembly procedures are performed at room temperature. Before
the self-assembly, the nanoCell chip is cleaned using methanol and acetone, then rinsed
with distilled water and dried by using nitrogen gas. For self-assembling molecule 1,
1 mM of molecule 1 is added to a solvent composed of methylene dichloride and
methanol (2:1). The nanoCell chip is soaked for approximately 12 hours in the solution.
During the reaction, the acetyl group at the end of the molecule 1 is cleaved and then
reacts with the gold surface, forming SAMs. Finally, it is rinsed by methanol to stop the
reaction and dried by nitrogen gas. For self-assembling 2, the nanoCell chip is soaked
for 12 hours in 1% toluene solution. During the reaction, the three chlorine atoms are
displaced by surface hydroxyls on the SiO2 substrate. Thus the molecules are self-
assembled on the SiO2 surface. It is then rinsed by methanol and dried by nitrogen gas.

2.3. Measurement set-up

The nanoCell devices are measured in a probe station (Lakeshore Cryogenic probe
station). Since the system being tested involves nanoscale features, such as molecules
and gold islands, any free particles in the ambient environment might interfere with the
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Figure 4 Molecules used for self assembling. 1 yields the 4� 4′-(diethynylphenyl)-2′-nitro-1-
benzenethiolate during self-assembly wherein the acetyl group (COCH3) is cleaved and the sulfur
attaches to the gold islands. 2 is the octyltrichlorosilane. During the self-assembly process, the
three chlorine atoms are displaced by surface hydroxyls on the SiO2 substrate [50]

normal operation of the system. In order to exclude this environmental influence, the
sample is placed inside a high vacuum (about 10−7 torr) chamber (Figure 5) during the
measurement.

The temperature of the sample stage inside the vacuum chamber can be reduced by
a continuous flow of liquid nitrogen, which is pumped out from a nitrogen dewar by a
flow of nitrogen gas. A temperature sensor is attached to the sample holder inside the
vacuum chamber. The other end of the temperature sensor is connected to a temperature
controller. Users could input the set point of the desired temperature and the temperature
controller calculated the output power of a heater, which is located at the chamber wall,
based on the difference between the desired and the current temperature. Thus, the
temperature gradually approaches the set point. In this chapter, the nanoCell devices are
analyzed at room temperature (297 K).

The electrical measurement is performed by a HP 4145 semiconductor parameter
analyzer remotely controlled by a computer. The applied voltage is swept in a staircase
manner from start voltage V1 to stop voltage V2 in a voltage step of �V . The current is
measured at the end of each voltage step.

2.4. Electrical characteristics of nanoCells

Current–voltage measurement is carried out on the simple structure with only two
opposing electrodes. There are only OPE molecules self-assembled in the nanoCell.
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Figure 5 Probe station (Lakeshore Cryogenic) used to measure the nanoCell device. The probe
station provides a high vacuum environment (∼10−7 torr) to eliminate any free particles in the
neighborhood of the sample
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Figure 6 Typical NDR-like behavior shown in nanoCell device

Most of the devices tested exhibit NDR-like behavior, as shown in Figure 6, i.e., the
current changes inversely according to the applied voltage. Thus, NDR-like behavior
has two conductive states at the same current. The current peak value and position,
and even the number of peaks may vary for each device. In addition, the devices show
similar current–voltage characteristics under both polarities of biased voltage, although
the peak value and the position may not be exactly the same.
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2.4.1. Transition states before NDR

Initially, no NDR behavior is found in the nanoCells; instead, transition states are
found before NDR appeared. Based on the tested nanoCells, 50% of them exhibit
initial transitional behavior as shown in Figure 7. During the first voltage sweeps from
0 to 5 V, the nanoCell exhibits repeatable linear I-Vs (Figure 7a). When the voltage
sweeps from 0 to 10 V, the current drops sharply at a certain voltage Vth1 =∼6�8 V
(Figure 7b). When a voltage less than 6 V is applied, the current is relatively low,
between 9 and 10 nA, as shown in Figure 7c. If the voltage is above 6 V, the current
increases about 3 orders of the magnitude, as shown in Figure 7c. Therefore, voltage of
6 V is defined as the threshold voltage, which is denoted as Vth2. Repeatable NDR-like
characteristics appear in the subsequent voltage sweeps (Figure 7d). This sequence of
events is referred to as the first observed initial transitional behavior, which is composed
of a high conductance ohmic behavior (Figure 7a), a breakdown behavior (Figure 7b)
and a transitional behavior (Figure 7c).

The initial transition states of the other 50% of the nanoCells do not contain the high
conductance ohmic behavior and the breakdown behavior. Instead, they contain only the
transitional I-V. It is referred to as the second observed initial transitional behavior. For
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Figure 7 First observed current–voltage transition behavior of a nanoCell device. (a) high
conductance ohmic I-V from 0 to 5 V; (b) breakdown once the bias voltage exceeds ∼6�8 V;
(c) transitional I-V, low current increases sharply at about 6 V; (d) NDR-like behavior [50]



Analysis of programmable molecular electronic systems 107

the last 10% of the nanoCells, the transitional I-V does not occur before NDR appears.
It is referred to as the third observed initial transitional behavior.

An interesting feature of all these three transitional behaviors is that it is not reversible,
i.e., the nanoCell cannot be switched back to the original state by the application of
a biased voltage. For instance, for the first observed one, once the NDR appears, the
ultra-high conductance ohmic behavior cannot be observed. In addition, on unbiased
nanoCell devices, negative voltage sweeps also induce similar sequences of I-Vs and
finally reach the NDR-like behavior. However, on biased nanoCells, after the NDR has
appeared in the forward biased range, it also shows up in the negative biased range
without the initial and transitional sequence of I-Vs, and vice versa.

2.4.2. Memory phenomenon in nanoCells

Memory is another phenomenon that has been observed in a nanoCell. Based on the
forward biased I-V characteristics which indicate NDR characteristics, as shown in
Figure 7d, the operating voltage range of the nanoCell can be obviously divided into two
regions separated by a threshold voltage VT. When the applied voltage is confined below
VT, the I-V curve is relatively smooth and follows a predictable track. When the voltage
goes beyond VT, the I-V curve becomes less predictable and includes one or several
negative resistance regions. The interesting feature of nanoCell is that the conductance
of the first region can be changed by applying a voltage beyond the second region.

As shown in Figure 8, if a voltage sweep with stop value higher than VT is applied
(curve 1 in Figure 8a), the next voltage sweep with stop value lower than VT yields a
low conductance of around 5�5×10−8 �−1 (curve 1 in Figure 8b). This low conductance
can be switched to high conductance by applying another voltage sweep with stop
value higher than VT (curve 2 in Figure 8a). The resulting conductance is around
1�7 × 10−5 �−1 (curve 2 in Figure 8b). Thus, the process of applying a voltage that is
higher than VT is “write”, while the process of applying a voltage that is lower than VT

is “read”. If we assign the high conducive state “1” or “on” and low “0” or “off ”, the
nanoCell can be switched between “1” and “0” by applying the writing process.

The assignment of “1” and “0” to different conductive states is arbitrary since the
conductance of the read I-V is dependent on the final current value of the writing
process. For example, the conductance curves 1 and 2 in Figure 8d are both low if we
compare them to curve 1 in Figure 8b. However, it is obvious that they are different
since their corresponding conductance are 5�5×10−8 �−1 and 1�0×10−9 �−1 for curves
1 and 2, respectively. Certainly, in order to insure a high on–off ratio, these conductive
states will not be used to differentiate “1” and “0”.

Both conductive states are repeatable, i.e., any subsequent read voltage sweep gen-
erates similar I-V curve as in the previous one. Besides, switching between the two
conductive states is repeatable, i.e., any induced conductive state can be switched to
the other one by applying a write voltage. In addition, as shown in Figure 9, the read
voltage is reversible, i.e., the I-V characteristics generated from reverse read voltage
sweep also follows the same pattern.

Switching could also be carried out by applying a voltage pulse. Similarly, reading
can be done by a constant voltage. For example, for the nanoCell that already shows
a “0” state, if a voltage pulse of 6 V for 0.05 second is applied, a higher current is
obtained at a read voltage of 2 V (Figure 10).
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Figure 8 Repeatable memory effect in a nanoCell with VT = 3 V. (a) Writing process in which
the final currents are 38 and 219 �A for curves 1 and 2, respectively; (b) reading process in
which the conductance are 5�5 × 10−8 �−1 and 1�7 × 10−5 �−1 for curves 1 and 2, respectively;
(c) writing process in which the final currents are 38 and 8 �A for curves 1 and 2, respectively;
(d) reading process in which the conductance are 5�5 × 10−8 �−1 and 1�0 × 10−9 �−1 for curve
1 and 2, respectively

One interesting experiment is to prepare and test four different ensembles (Figure 11)
by depositing different combinations of molecules 1 and 2. The first ensemble has only
the discontinuous gold film; the second one has molecule 1 self-assembled on the gold
islands of the discontinuous gold film; the third ensemble has molecule 2 self-assembled
on the silicon oxide of the substrate; and the fourth one has 1 and 2 self-assembled on
the gold islands and SiO2, respectively.

2.5. Influence of molecules on electrical behavior

It is expected that the first and the third ensemble should have extremely low conduc-
tance, since alkane and vacuum are both good insulators; the fourth ensemble should
have a conductance somewhat in-between. However, the four ensembles showed similar
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Figure 10 A read current at 2 V vs time after a write voltage of 6 V for 0.05 second

I-V characteristics with peak current values in the same order of magnitude. Thus, we
reach the conclusion that the above observed behavior is due to the electron migration
through discontinuous gold film.

In order to further investigate the influence of molecules on the nanoCells’ electrical
behavior, one of the chips with nanoCells featuring NDR is cut into two pieces. Molecule
OPE is deposited on one-half of the chip and alkane molecule on the other half of
the chip.

The nanoCells with OPE molecule (Figure 11b) exhibit similar switching character-
istics like the nanoCells with only the discontinuous gold film (Figure 3a), including a
similar threshold voltage and NDR peak value. This further demonstrates that only the
formed gold filaments are responsible for the NDR behavior or at least that the contribu-
tion of the OPE to the electron conductance is negligible compared to the contribution
of the filaments.
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(a)

(c)

(b)

(d)

Figure 11 Schematic drawings of four ensembles of the nanoCells with (a) only the discon-
tinuous gold film on SiO2; (b) molecule 1 deposited on the discontinuous gold film islands;
(c) molecule 2 deposited on the silicon oxide surface; (d) molecules 1 and 2 deposited on gold
and SiO2, respectively

The nanoCells with alkane molecule (Figure 11c) self-assembled on SiO2 show
increases in threshold voltage Vth2 (∼10 V higher). This means that the insulating alkane
molecule creates a higher barrier for the electron transfer through gold islands. After
reaching Vth2, the barrier is overcome and we obtain an NDR characteristic similar to
those found without any molecule or with only OPE. We carry out deposition of alkane
on the chips already containing molecule OPE (Figure 11d). This fourth ensemble
(Figure 3d) exhibits behavior similar to the third ensemble (Figure 11c), which is
consistent with our previous conclusion that the I-Vs of the nanoCell with and without
OPE are very similar.

To further investigate the influence of the OPE, we deposit the OPE on a chip where
no current is found. After deposition, there is still no current. This, again, proves that
the OPE has no significant influence on the I-Vs of the nanoCells.

2.6. Programming of nanoCell

The nature of randomness on addressing molecules inside the nanoCell makes this
device dependent on computer programming.

In a multi-leads nanoCell, each pair of the leads shows similar switching and memory
phenomenon as in the two-lead nanoCell. Once a conductive state has been written
to one of the lead pairs, the conductance of the same nanoCell between the other
pairs changes accordingly. During the measurement, only the two leads of interests are
connected to the semiconductor parameter analyzer, while others are dangling. Take the
nanoCell shown in Figure 12 as an example. When the conductive state between K and
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Figure 12 Multiple-leads nanoCell with alphabetic notation on each lead

A B C D E F G H I J K L M N O P Q R S T
A X 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
B 1 X 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
C 1 1 X 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
D 1 1 1 X 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
E 1 1 1 1 X 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
F 0 0 0 0 0 X 0 0 0 0 0 0 0 0 0 0 0 0 0 0
G 0 0 0 0 0 0 X 0 0 0 0 0 0 0 0 0 0 0 0 0
H 0 0 0 0 0 0 0 X 0 0 0 0 0 0 0 0 0 0 0 0
I 0 0 0 0 0 0 0 0 X 0 0 0 0 0 0 0 0 0 0 0
J 0 0 0 0 0 0 0 0 0 X 0 0 0 0 0 0 0 0 0 0
K 1 1 1 1 1 0 0 0 0 0 X a 0 0 0 0 0 0 0 0
L 1 1 1 1 1 0 0 0 0 0 0 X a 0 0 0 0 0 0 0
M 1 1 1 1 1 0 0 0 0 0 0 0 X a 1 1 1 1 1 1
N 1 1 1 1 1 0 0 0 0 0 0 0 0 X a 0 0 0 0 0
O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 X 0 0 0 0 0
P 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 X a 0 0 0
Q 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 X a 0 0
R 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 X a a
S 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 X 0
T 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 X

D
S

Figure 13 Truth table of a nanoCell as K–E is set to “1”. The truth value in any entry is
measured between the drain-terminal (D) and the source-terminal (S) when a voltage sweep is
applied to the drain

E is set to “1”, the conductive states between other pairs of leads are summarized in
Figure 13.

Three kinds of conductive states exhibit on this nanoCell. The “1” and “0”
correspond to the high (higher than 10−6 �−1) and low conductance (lower than
10−6 �−1), respectively. These are expected to be observed. However, there is a third
state with high conductance and ohmic behavior which is similar to the initial transi-
tional behavior in the two-leads nanoCell. In the programming of nanoCell, this kind of
conductance can be ignored.

The programming of nanoCell can be carried out using a multiple probe testing
board and computer controlled oscilloscope. The fundamental idea is to first collect all
the switching information between each leads. For example, the switching information
between KE when KE is “1” has been obtained. The switching information between
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KE when KE is “0” also needs to be obtained. Similarly, the information between AB,
CD, JO, etc. needs to be obtained. Once a database of switching information is formed,
the computer calculates the specific pair of leads that a voltage pulse can write into to
perform desired function.

3. Electrical conductance of discontinuous metallic film

In this section, first the theoretical models proposed by several researchers to explain
the electrical conductance through discontinuous metallic films are outlined. Then the
electrical conductance is investigated both experimentally and theoretically in two
categories: below the threshold voltage and beyond the threshold voltage.

3.1. Theoretical models in discontinuous metallic film

Since nanoCells with only discontinuous gold film have large current (>1 �A) and
exhibit memory and switching phenomena, the understanding of the electrical conduc-
tance of discontinuous metallic film becomes critical for the analysis of programmable
molecular array. It will not only benefit the research work in discontinuous-metal-film-
based nanoCell, but also provide in-depth knowledge of electron transport through any
two-dimensional molecular array. Since the molecules that will be used in the pro-
grammable molecular array are semiconducting, ultimately the programmable molecular
array can be viewed as a two-dimensional array of electron transport junctions, as the
discontinuous metallic film does.

As early as 1960s, electrical conductance through discontinuous thin metal films
has been studied by a number of researchers. Non-ohmic behavior of the electrical
conductance have been observed in several types of discontinuous metal film [53–56].
Neugebauer et al. proposed that when island sizes and separations between them are
both small, activated tunneling of electrons is the dominant mechanism of electron
transfer [57]. The barrier to tunneling is the energy difference between a Fermi-level of a
particle and the lower edge of the conduction band of the substrate. Hill et al. developed
a two-island model to account for the transport. However, Uozumi et al. argued that
the non-ohmic conductance arises from non-ohmicity of the tunneling current at high
electric field, and the expression for the current density is given in [58]. They also
found that the non-ohmicity occurs when the electric field between the two metal islands
exceeds the critical field Ec, which is defined in [58]:

Ec = kT/ed (1)

where k is the Boltzman constant, T is the temperature, e is the electron charge, and d
is the island separation.

Uozumi et al. extended the two-island model to one-dimensional series-connected
islands with identical sizes but different gap lengths [59]. Their computational result
showed that the voltage between two islands can be about a hundred times higher than
the average voltage calculated from the one between the two electrodes and that the
logarithm of the conductance depends almost linearly on the square root of the voltage
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between the two electrodes above the threshold voltage [59]. Their experimental results
further confirmed their suggestion [60].

A tremendous breakthrough was accomplished by Shin et al., who proposed a ring-
shaped model to account for the transport properties [61, 62]. In this model, the ring-
shaped array of small islands is located between the two electrodes. Thus, unlike the
one-dimensional arrays proposed by others [58–60, 63–68], there are two branches or
paths for electron transfer. Electrons may get trapped in one of the islands [69]. Thus,
multiple Coulomb blockade gaps may appear in current–voltage characteristics [61] as
current peaks followed by NDR behavior. This is the distinct feature of this model
in contrast to the linear one-dimensional array. In addition, trapped electrons block
the electrical conduction through the array, so no current flows. Using Monte Carlo
simulation, Shin et al. were able to calculate the current for constant voltage between
the two electrodes.

Interestingly, NDR and memory phenomena have been observed and reported in thin
insulating films made of SiO [70] and in organic light emitting diodes [71–82]. Tang
et al. found that for those devices, nanosized metallic islands exist inside the insulating
film. Thus, they explained the NDR and memory phenomena based on the ring-shaped
model of four islands [83]. The state that the trapped electrons block the conductance
path is the “off ” state; otherwise it is “high”. The thermal fluctuations results in the
transition between “on” and “off ”, thus the NDR appears [83]. When the temperature
increases, the current peak broadens. In addition, The memory effect is due to the
“charging” and “discharging” of the electrons in the system [83].

3.2. Electron transport through discontinuous metallic film
below activation energy

As it is mentioned in the last chapter, the current–voltage characteristics of nanoCell can
be divided into two regions: below VT, the current increases with increasing voltage and
the I-V curve follows a predicted behavior; beyond VT, the I-V curve changes violently
and include one or several local current maximum.

When the applied voltage is below VT, the I-V characteristic is relatively smooth for
both low conductance and high conductance. In order to find out the electron conduction
mechanism, we performed a temperature variant current–voltage measurement on the
nanoCell sample that carries room temperature I-V curves shown in Figure 14. There
are no molecules deposited on the discontinuous film. Thus, the gaps between the gold
islands are considered as vacuum.

Interestingly, although discontinuous gold film is a two-dimensional array of junc-
tions, the electrical characteristics resembles the one that is predicted by Uozumi et al.
Figure 15 shows the electric field dependence of the high conductance G of a discon-
tinuous gold film at various temperatures. The electric field is calculated directly from
the applied voltage by dividing by 2 ×10−4 cm, which is the distance between the two
electrodes for this particular sample. The interesting feature of these curves is that a
remarkable ohmic conductance can be observed beyond 220 K at low electric fields,
i.e., around 20 (V/cm)−1/2.

Thus the critical applied field strength from 220 K to room temperature is 400 V/cm.
A second interesting point is for all temperatures, there is another critical applied field
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Figure 14 Room temperature I-V curves of the sample whose field dependences of conductance
are shown in Figures 15 and 16
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Figure 15 Electrical field dependence of the high conductance of a discontinuous film

above which the logarithm of the conductance G depends almost linearly on the electric
field in a form of

log G = NE1/2 +C (2)

where N is the slope and C is the interception.
In contrast, the electric field dependence of the low conductance G at various tem-

peratures is shown in Figure 16. Since the current is close to zero, the measurement
will inevitably generate some artifact current value that is lower than zero. It should be
noted that although the current is extremely small, there is a slightly larger variation
of the current in low field. Since the largest variation happens in 260 K and 220 K, it
seems that this variation does not depend on temperature.

While several mechanisms have been proposed to explain the NDR behavior, modern
molecular simulation technique enables us to visualize the atomic movement in an
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Figure 16 Electrical field dependence of the low conductance of a discontinuous film
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Figure 17 Comparison of molecular simulation results and experimentally obtained I-V [50]

electrical field. Molecular dynamics (MD) simulations have been performed on a one-
dimensional nanowire with hundreds of gold atoms. The simulation starts from an ideal
state where all the atoms are closely packed and the whole nanowire is in a regular
shape (Figure 17a). Since this shape has relatively high conductance, we could say the
peak current is associated with it.

3.3. NDR region beyond threshold voltage

When an electric field is acting upon the nanowire, the local temperature of the
nanowire increases, the atoms vibrate persistently, yielding the irregular shape shown
in Figure 17b, which also accounts for the decreasing current. The atoms continue to
vibrate, and the shape of the nanowire is constantly changing, which results in the
rising and falling of the current. At some point the atoms vibrate so quickly that the
nanowire breaks, yielding nano-clusters, then current rapidly drops to zero (Figure 17c).
After the nanowire breaks, the local temperature decreases. Then under the high voltage
electron migration induced the moving of the gold atoms, thus bridging the nanoclusters
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(Figure 17c). Hence the current increases again. This could also explain the rising of
the current when the biased voltage is between VT and Vmax. Thus, by the assistance of
MD simulation, the I-V characteristic beyond VT can be explained and is mainly due to
the combination effect of thermal motion and electro migration.

3.4. Effects of morphology of discontinuous gold film

The gold islands in the nanoCells are removed when a chip with discontinuous gold
film is immersed in piranha solution (a mixture of H2SO4 and H2O2, in a ratio of 3:1)
for 30 minutes. The temperature in this exothermic reaction rises to 130 �C. However,
we find that only the gold filaments and clusters can be removed without significantly
damaging the discontinuous Au film if the chip is immersed for a much shorter time.

An experiment is carried out in which one chip with only the discontinuous gold
film is immersed in piranha solution for 45 seconds. Thus, the gaps between the gold
islands become wider after the piranha bath. On this chip, prior to the piranha bath
treatment, some of the nanoCells have yielded NDR behavior. After the piranha bath,
we find no NDR behavior in these nanoCells. Instead, the two types of observed
behaviors (first and second) are found again; therefore, the nanoCell can be reset to
its original conduction state through the bathing process. Moreover, the nanoCell does
not have memory of its previous behavior; in other words, a nanoCell, which initially
exhibits the first observed behavior, may exhibit the second observed behavior after the
piranha bathing, (i.e., second behavior, piranha bath, and first behavior) and vice versa.
Then, the same nanoCell chip is immersed in piranha for another 2 minutes and then
90% of the nanoCells do not show any current in excess of the noise �∼0�1 pA� even
when they are biased up to 100 V and observations under an optical microscope indicate
that the discontinuous gold film (gold islands) is not removed.

4. Static and transient current–voltage characteristics
at the nanoscale

In this section, the standard transient response of conventional systems is first briefly
reviewed. Then, the similarities and differences between the nanosized systems and
the conventional system are introduced. A situation is proposed in which the number
of electrons may be in the order of magnitude as the number of nuclei. The effect
of this situation is investigated based on the static current–voltage measurement of
discontinuous gold film.

4.1. Standard transient response of conventional systems

For many physical systems or devices, there is a transient status between two stationary
stages. The nature of the transient and stationary responses is determined by the individ-
ual characteristics of the system or device. What is most interesting is that most realistic
systems have uniquely determined responses by the same equations, implying that both
static and transient responses can be studied using similar techniques through several



Analysis of programmable molecular electronic systems 117

fields of science and engineering. In particular, systems with equivalent characteristics
constitute the topic of several if not all of present engineering.

For the electrical RLC circuit, the rising and falling of the voltage is determined
by the movement and rearrangement of electrons in the RLC circuit, thus time scales
associated are usually from fractions of seconds to fractions of nanoseconds; however,
the chemical plant has a transient behavior depending on the movement and arrangement
of big, macroscopic masses involving large portions of fluids and large mechanical
systems with transient times from minutes to several hours.

The interesting analogy between chemical and electrical systems of totally different
size, no matter human-fabricated or natural, has usually been taken for granted and we
never ask the question “why?” Why this strong similarity between a macroscopic and
microscopic system is not observed at the nanoscopic scale? The answer is based on
the atomistic nature of the system. At microscopic level we can observe the robustness
of the nuclei compared to the fluid, the electrons. For instance, a typical current of
10−4 A in an n-channel silicon-based MOSFET with channel length L = 1 �m, width
W = 10 �m and depth d = 100 nm represents a total of 6�25 × 105 electrons flowing
through the channel in one nanosecond, which is the typical frequency �∼GHz� of
today’s microelectronic device. We know the density of silicon is 5 × 1022 atoms per
cm3 [84]. Thus, in such a volume holding the little transistor, one single electron causes
a small perturbation to an average of 105 atoms. As a result, the nuclei in a crystal are
not strongly affected by the dynamics of the electrons. Chemically speaking, when the
nuclei are kept together by equally strong chemical bonds in the three dimensions, the
strong dependence of transient and stationary responses is valid. This also gives rise to
specific and sharply defined transient and stationary responses. A similar situation takes
place at macroscopic level, for instance, in the chemical plant where the fluid is not a
small perturbation to the materials forming the plant. Since the weight of the fluids in
chemical plant is in the same order of magnitude as the materials making the plant, the
nature of the flows may cause much more fluctuations in plants than electronics, which
also explains why chemical plants require much more maintenance than the transistors
in integrated circuits.

As the electronic device scales down dimensions whereby the number of electrons
and the number of atoms become comparable, then a similar problem encountered in
a chemical plant also is faced by the electrical circuits. The plant components should
be robust enough to hold the fluids; however, in microelectronics, the materials under
process are not the electrons but information encoded on their flow. In electronics, the
amount of information that can be processed per unit of matter has grown exponentially;
however, in classical engineering, the amount of material that can be processed by a
unit of plant material has undergone only a linear growth and it is practically constant
with time. Thus the exponential growth of the former is going to strongly affect the
electronic devices at nano-dimensions if we want to continue with such an exponential
growth.

Thus, as devices and systems approach the nanoscale driven by the present trends
in nanotechnology [85], the strong relationship and sharp separation between transient
and stationary responses is broken and blurred as the electron–nuclei interaction takes
a major contribution. Thus from a system point of view, transient times in nanosystems
are longer and may differ from one similar system to another as construction and
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distribution of atoms at the atomistic level need to be considered individually and not
averaged over a large number of nuclei.

4.2. Set-up of transient response measurement

To test the above assumptions we have performed several electrical experiments of non-
chemically robust metallic structures. The structure we test is a piece of discontinuous
gold film deposited on a silicon dioxide substrate. Scanning electron microscope (SEM)
image shows that the gap between the gold islands is around 5 nm. There are two probe
tips made of palladium and titanium at each side of the film to allow the application of
electric fields. The separation between the tips is 3 �m.

For the static current–voltage measurements, we combine the time-domain measure-
ment function of the HP4145A and our custom designed Labview control program. In
the time-domain measurement, a fixed voltage is applied while the current is measured
in every interval �t′. Once the current is considered stable or stationary, the voltage
goes down to zero and then the next voltage is applied.

4.3. Atomic scale response of discontinuous gold films

Before the static voltage sweep is applied, we performed a transient current–voltage
measurement.

The voltage sweeps from 0 to 5 V with a step size of 0.05 V. Figure 18 shows a
transient current–voltage characteristic obtained from the device constructed by discon-
tinuous gold film. The delay time is 0.1 second. In the low voltage region, the current
voltage curve is slightly smoother than the high voltage region.

The static voltage sweeps from 0 to 5 V with a step size of 0.1 V. The current is
recorded in intervals of 10 seconds. Figure 19 shows the measured current vs time when
applied voltage is varied from 0 to 5 V and then back to 0 V. It is clear from the plot
that for a fixed voltage, the current oscillates around a relatively stable value.
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Figure 18 Transient current–voltage characteristic of a discontinuous gold film device
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Figure 19 Time-domain current (axis on left side) vs applied voltage (axis on the right) from
0 to 5 V and then back to 0 V. (b) Current vs time plot when applied voltage V = 0.1 V; (c) current
vs time plot when V = 5.0 V

This current oscillation is the “transient” behavior of the device, analog to macroscopic
electrical devices, for example a resistor, which yields a fixed current when a fixed
voltage is applied. Consider now the discontinuous gold film as the structure under
test, which is a two-dimensional array of gold clusters with nanosized separations.
Since there is no other substance inside the system, the conduction of current should
depend on the conformations of the gold atoms. As the voltage is applied, the gold
atoms diffuse by electron migration and form quantum nanosized filaments [30, 86,
87] (which are different in nature from widely studied classical microfilaments). As
the current flows through the nanofilaments, the local temperature inside the filaments
also increases, which results in the breaking of nanofilaments. As a result, the current
increases by forming the nanofilaments and decreases by breaking the nanofilaments
forming a variety of nanocluster structures. We find that the higher the applied voltage,
the more the current oscillates. This phenomenon is also clearly shown by observing
the standard deviation of the current vs. voltage plot, as in Figure 20. Since the local
temperature increases with the applied voltage, and the self-diffusion coefficient of the
gold clusters increases accordingly [30], the gold atoms vibrate more vigorously. This
explains the strong oscillation of current at high voltages.

In addition, the level of uncertainty of the current also increases as the voltage
increases. For instance, when applied voltage is 4.8 V, the current ranges from 80 to
100 pA. At the next step, i.e., V = 4.9 V, the current ranges from 97 to 108 pA. This
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Figure 20 Standard deviation of the current flowing through the nanoCell at each applied voltage

uncertainty have a strong impact on the transient current–voltage measurements yielding
results in the choppy region of current–voltage curve in the high voltage area, as shown
in Figure 18.

On the other hand, the current uncertainty also washes out or creates artificial NDR
characteristic. If, during a measurement, the current is 100 and 98 pA at 4.8 and 4.9 V,
respectively, an NDR behavior is observed. However, if the current is 95 pA at 4.8 V
and 100 pA at 4.9 V, then the NDR is not observed. In fact, NDR has been reported
in several experimental papers [30, 47, 48] where only non-“static” current–voltage
measurements were performed.

In addition, it takes longer time for the device to reach a stationary state at higher
voltage. As seen from Figure 19(b), when the applied voltage is 0.1 V, the system
immediately enters into a quasi-static stage, i.e., although the current oscillates, the mean
value of the current remains almost constant. However, at higher voltage, V = 5�0 V in
Figure 19(c) for instance, the current oscillates for more than 4 hours and still does not
reach to a static or quasi-static state.

4.4. Time-dependent NDR and hysterisis

A large amount of work on single molecules has been reported indicating switching and
NDR; it would be informative to re-analyze those results to find out whether they are
really electrical in nature as it takes place in standard microelectronics or they are due
to nuclear dynamic effects due to the strong interaction with the electron currents as the
experiments reported in this work.

We actually provide a new perspective to study the electrical characteristic of nano
systems at the atomistic level. As the dimensions of today’s electronic devices scale
down to the nano level, the relative amount of electrons flowing through the electronic
system increases when compared to the microelectronic systems. This relatively increas-
ing amount may result in the displacements of atoms, which in turn causes a more
complex transient behavior due to the creation of conformational states of gold clusters.
The design of devices needs to consider this new conformational behavior and might
utilize these inherent characteristics for some specific functions of nano circuits.
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5. Vibronics and molecular potential

In this section, first the limitation of charge–current transport as a method for signal trans-
mission is reviewed. Then the concept of vibronics is introduced and related research
works are reviewed. Next the fundamental theory of MD simulation is explained. And
then the DSP techniques for encoding and decoding information are introduced. The
results of the simulation are reported. Additionally, the molecular electrostatic poten-
tial method is explained and simulation results are provided. Finally, the feasibility of
combining the two methods into programmable molecular array is investigated.

5.1. Limitations of charge–current transport as a method
for signal transmission

One of the biggest problems faced in microelectronics development is the amount of
power consumed by the various components in the circuit. This leads to extremely
high amount of heat dissipated by the chips containing the integrated circuits. Although
smaller transistors consume less power, as transistor density and speed rise, the overall
chip consumes more power and generates more heat.

Presently, a charge–current approach is widely used to process and transfer informa-
tion in any integrated circuit. In this approach, the data is stored by induced charge sepa-
ration in a memory device and data signals are transmitted and processed using electron
current variations. Based on these methods, detection of signals and driving of circuits
require minimum signal-to-noise ratio having strong effects in energy dissipation, which
is the major limiting factor for charge–current approaches. Nevertheless, for practical
but not optimal reasons, this approach is still being used in molecular electronics [16].

The programmable molecular circuit, which is studied in the previous two chapters,
is proposed to complement conventional electronic devices in order to reach molecular
size devices. However, it may not be the right solution if it still uses the charge–current
approach, i.e., the data is transmitted through the device using electron current variations,
which may still, and certainly will, lead to the problem of energy dissipation.

5.2. Previous research work related to vibronics

Due to the limitations of charge transport, molecular vibronics combined with MEP is
proposed as a substitute method to transport information [88].

“Vibronics” stands for “vibrational electronics”. When a signal is injected into a
molecule, the vibrational modes of the atoms around the injection point change. Since
the atoms in a molecule are bonded to each other, the changes in the vibrational states
of the molecule triggers the movement of atoms, which transfers to their neighbor atoms
by means of bond bending, bond stretching, Van der Waal interactions, coulombic
interaction between charges, etc. [89]. Thus using vibronics, the signals are transferred
through the molecule [16, 27, 90].

Our MD simulation demonstrates that a signal can be encoded and can modulate
the vibrational state at one site of the molecule, and the propagation of the vibrational
movement allows the vibrational signal be detected at the other site of the molecule. Thus
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the molecule can be used as a single signal processing unit. Digital signal processing
techniques are used to encode and decode the signals from molecular vibrational states.
The typical molecular vibrations are in the range of terahertz (THz) thus starting a
new era for terahertz signal transmission techniques in molecular electronics. All this
work is triggered by preliminary MD simulations performed in a “nanoCell” where the
modulation of a signal was performed [31, 91]. It should be noted that to implement
vibronics in real electrical circuits, transducers are necessary to convert the electrical
signals to vibrational signals and vibrational to electrical.

5.3. Molecular dynamics simulation

Atoms in molecules vibrate around their equilibrium position. Usually, the vibrational
modes are assigned to certain bond length stretching or bond angle bending, etc.; how-
ever, bond length stretching or bond angle bending can cause the vibrational movement
of other atoms that are directly or indirectly bonded to this vibrating bond. There-
fore a vibrational mode is actually the vibrational movement of a few atoms in a
molecule. Although the propagation of vibrational movements are beyond the ability
of direct observation by modern experimental techniques, modern computer simulation
techniques allow us to trace the trajectory of all the atoms, and therefore, to view the
vibrational movements of individual atoms in a molecule.

Molecules are modeled as a collection of mass centers, which may be a single atom
or a group of atoms (united atom) that are part of the molecule. The mass centers, which
will generally be called atoms in this context, bear electric charges. The atoms interact
with each other via bonding forces, non-bonding forces, and electrostatic forces.

During the simulation, two atoms, F1 and F2, from each end of the molecules are fixed.
The vibrational signal is injected into the molecule following every step of updating
coordinates. In this extra step, an atom X bonded to one of the fixed atoms, F1 for
example, oscillates along the direction X-F1 at the distance defined by the modulated
signal. The step time is set to 1 fs, and 200,000 equilibration steps are run before
the production runs to relax the system. Then, 1,000,000 production steps are run
corresponding to 1 ns, and the coordinates of all the atoms at each step are recorded in
a trajectory file.

5.4. DSP techniques for encoding and decoding signals

From the trajectory file, time series of bond lengths, which contain the vibrational infor-
mation, is calculated at each time step, and digital signal processing (DSP) techniques
are applied to analyze the signal transmission along the molecule.

5.4.1. Modulation techniques

Before the signal is transmitted in a molecule, it has to be modulated with a carrier
signal. This carrier signal is usually a sinusoidal signal. The main reason for modulation
is that it makes the signal properties physically compatible with the propagation medium,
i.e., the molecule.
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Amplitude modulation (AM) and frequency modulation (FM) are two methods used
frequently in signal modulation. In AM, amplitude of a carrier wave is varied in direct
proportion to that of a modulating signal; while in FM, frequency of the carrier is
varied. In our simulation, the frequency of the carrier wave is selected as the intrinsic
vibrational mode of the backbone of the molecule. For example, for polypeptide, the
frequency fc is 23.81 THz.

For the sake of identifying, the modulating signal, i.e., the actual information signal)
is designed to consist of a series of squares and triangles.

The frequency modulating (FM) wave, xF�ti�, is slightly different from the AM signal
that it consists a series of trapezoids and triangles.

5.4.2. Decoding information

Digital signal processing (DSP) techniques are used to analyze bond length vibration sig-
nals in the molecular wires [92, 93]. At a sampling period of 1.0 fs, which is identical to
the time step for the MD simulations, a discrete time series D	
�i� �i = 0� 1� � � � � N −1
is calculated from R	 and R
, the i-th step coordinates of atoms 	 and 
, respectively,
recorded in trajectory file.

The time series D	
 contains both the direct (DC) and alternating (AC) components.
The AC series, D̃	
�i� �i = 0� 1� � � � �N −1, is calculated from the initial bond length
series D	
�i� �i = 0� 1� � � � �N −1 by subtracting its series average D	
�0

, which is the
DC component.

The frequency spectrum of the time-domain signal F	
 �k� �k = 0� 1� � � � �N −1
is obtained by a fast Fourier transform (FFT) of the AC time series
D̃	
 �i� �i = 0� 1� � � � �N −1 [92, 93]:

F	
 �k� �k = 0� 1� � � � �N −1 =
N−1∑

i=0

D̃	
 �i� e−j2� i k/N (3)

F	
 �k� = A	
 �k� ej �	
�k� (4)

where N is the total number of samples in the series, A	
�k� and �	
�k� are the amplitude
and phase of the frequency-domain signal, respectively.

5.4.3. Recovering amplitude-modulated signal

To recover signal from an AM wave, the time-domain AC series is filtered using a
Bessel bandpass filter centered at a carrier frequency and with a bandwidth of around
1 THz. The Bessel filter is selected because its output closely resembles the original
waveform adding small and gentle edge rounding [92]. This bandpass filter filters out
all the low frequency and high frequency vibration signals and only allows vibrational
signal centered at the carrier frequency fc with a narrow band to pass. Then, the bandpass
filtered signal is rectified using a rectifier and the signal is recovered by passing the
rectified signal through a Bessel lowpass filter with a small cutoff frequency; these last
two steps can also be done using a peak detector. Figure 21 shows the front panel of
the Labview program for amplitude modulated signal recovering.

As any computer program, the Labview program consists of input section and output
sections. The user needs specify the trajectory data, i.e., the time series of bond lengths;
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Figure 21 Front panel of Labview program to recover AM signal. The input fields are located
on the top of the panel; the output time-domain signals (lower left) and their corresponding
frequency-domain signals (lower right) are shown

the sampling interval, i.e., the time steps that has been used to record the trajectory
data; the cut-off frequencies for the bandpass filter and lowpass filter. Because the fast
Fourier transform of the trajectory data is needed for the selection of cutoff frequencies,
the last two inputs are specified when the program is running, instead of before the
program starts. The output signals are visualized in the front panel as well.

The program is constructed using a sequence structure in which each diagram, or
frame, executes sequentially. This structure is chosen because of its ease of data mani-
pulation. In the first diagram which primarily prepares the signal data for analysis, the
program reads the data from the selected file and transforms it into a one-dimensional
array. It is preferable to skip the initial part of the signal since it may contain excessive
noise due to large vibration. The DC series of the data, i.e., the mean value, is extracted
from the data so that only the AC signal is remained. Frequency spacing �f is also
calculated in this diagram:

�f = 1

N ·�t
(5)

where �f is the frequency resolution, N is the number of data and �t is the sampling
interval. The input data is plot in a waveform graph shown as the first one in the
left column of Figure 21. To perform the bandpass filtering of the input AC data,
the user needs to manually select the cutoff frequencies of the bandpass filter by
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Figure 22 Front panel of the bandpass sub-program

dragging the vertical cursors in the interactive graph of the frequency-domain signal
(shown as the first one in the right column of Figure 21). The values of the cutoff
frequencies are inputted into the Bandpass sub-program, whose front panel is shown in
Figure 22.

The infinite impulse response (IIR) Bessel filter is the right choice for bandpass filter
since it has maximally flat response in both magnitude and phase and nearly linear-phase
response in the passband [94]. The rectification is realized by simply using a Labview
sub-program which returns the absolute value of each data point. The lowpass filtering
of the rectified signal is similar to the bandpass filter in the previous step. The topology
of the lowpass filter is also the Bessel IIR filter. The difference is that the user only
needs to select the high frequency limit for the filter.

The lowpass filtering can be replaced by a peak detector which finds the location
and amplitude of the input signal. The resulting signal is similar to the lowpass filtered
signal.

5.4.4. Recovering frequency-modulated signal

The demodulation of the FM signal is carried out by means of slope detector. First, the
time-domain AC series, which is obtained as described in the AM signal recovery, is
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filtered using a Bessel bandpass filter centered at carrier frequency. Then the bandpass
filtered signal is clipped to constraint the amplitude variation and thus eliminating the
thermal noise due to the finite temperature. The clipped signal is demodulated by a slope
demodulator, a special Bessel bandpass filter, which has a center frequency slightly
larger than the carrier frequency, and the entire frequency variation of the FM signal
falls on the linear part of the left slope of the frequency response curve of the filter
[92]. Figure 23 shows the frequency response of the slope detector used to demodulate
signal transmitted through molecule GLY58. Since the carrier frequency is 23.81 THz
and the frequency variation of the bandpass filtered signal is ±0�2 THz, the center and
bandwidth of the slope demodulator are set to 24.9 and 2.6 THz, respectively. Finally,
the signal is recovered by passing the slope-detected wave through a full wave rectifier
and a lowpass filter.

The Labview program to recover the FM signal is essentially similar to the amplitude
modulated one with two additional steps. The first one is a clipper after the bandpass
filter to eliminate excessive noise. The clipper is realized by a sub-program, which clips
the elements to within the boundary defined by upper and lower limits. The limits are
set by the user in interactive waveform graph. If xi represents the original data, a and b
represents the upper and lower limits, respectively, the clipped data yi is

yi =
⎧
⎨

⎩

a xi > a
xi b < xi < a
b xi < b

(6)

After the clipper, there is a demodulator to demodulate the frequency-modulated signal.
The demodulator is basically a Bessel bandpass filter. The difference between this filter
and the filters in the previous section is that it has different center and bandwidth.
Frequency response of the filter is necessary to find the correct bandwidth and center.
Figure 24 shows the Labview program for obtaining frequency response. By varying the
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Figure 23 Frequency response of the slope demodulator, a special Bessel bandpass filter, used
for FM signal demodulation; the center frequency f0 is 24.9 THz and the bandwidth is 2.6 THz.
The lower and upper cutoff frequencies of the slope demodulator, fL and fH, are 23.6 and
26.2 THz, respectively. The carrier signal has a center frequency fc of 23.81 THz and frequency
variation �f of 0.2 THz
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Figure 24 Front panel of Labview program for obtaining frequency response of a bandpass filter

frequency of the input sinusoidal signal, the amplitude of the filtered signal is recorded
and plotted versus the input frequency.

5.5. Simulation results of molecular vibrational signal transmission

Molecular dynamics simulation of molecular vibrational signal transmission is carried
out for molecule GLY58 (Figure 25) at room temperature (298.1 K) for 1 ns. The
sampling time, i.e., the time step is 1 fs and total number of steps is 1,000,000. The total
length of the molecule is around 218 Å. The intrinsic vibrational mode of the backbone of
this molecule is 23.81 THz.

C D E F G HBAX

F1 F2

(a)

(b) 

Figure 25 (a) Molecular structure of GLY58; (b) detailed structure of GLY58 at one end of the
molecule. The grey atoms are Carbon (C); the blue Nitrogen (N); the red Oxygen (O); the white
Hydrogen (H) [95]
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During MD simulation, two carbon atoms, F1 and F2, from each cap are held fixed.
Input signals are coupled to the carbon atom X that is bonded to F1 at left. The signals
are detected at different sites A, B, C, D, E, F, G and H in the backbone of GLY58 as
shown in Figure 25. Sites A, B, C, D, E, F, G and H are located at 1.4, 8.3, 34, 67, 90,
116, 142, 168 Å from the input site, respectively.

5.5.1. Amplitude-modulated signal transmission

Amplitude-modulated signal is injected into the molecule GLY58 by coupling the input
signal into the movement of carbon atom X. Figures 26a and b show the time-domain and
frequency-domain signals detected from site A (1.4 Å from the input site X in Figure 25a)
and site E (90 Å from the input site X), respectively. In the frequency-domain signal, the
carrier frequency is clearly shown as a peak in 23.81 THz. Apparently, the frequency-
domain signal carries not only the carriers signal, shown as a peak at 23.81 THz in
Figure 26d, but also other molecular vibrational signal due to thermal noise, solvent
effect, etc. The modulating signal is recovered as described in the previous section. The
Bessel bandpass filter is centered at 23.81 THz with a bandwidth of 0.7 THz. The Bessel
lowpass filter has the cutoff frequency of 0.5 THz. The recovered signal is shown in
Figure 26c. The similarity between the original modulating signal and the recovered
signal clearly tells us that the recovered signal is the original modulating signal that
propagates from the site X.
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Figure 26 Signal transmission along GLY58 using amplitude modulation by a carrier at 23.81
THz. (a) Time-domain vibrational signal detected at a remote site A (upper plot) and E (lower
plot); (b) frequency-domain vibrational signal at site A (upper) and E (lower); (c) signal recovered
using DSP techniques [95]
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5.5.2. Time delay of molecular vibrational signal transmission using AM

Figure 27 shows the recovered AM AC signals at different sites in molecule GLY58 as
indicated in Figure 25a. The average velocity of the vibronic signal can be determined
following the time delays as signal propagates along the molecule. From Figure 27, the
peak of the first triangle-shaped signal is located at 617.705 ps at site A and 622.775 ps
at site H. The distance between site A and H is 166.6 Å. This yields a speed of 3286 m/s.
When this type of information is collected at all sites, an average speed of 3279 m/s will
be obtained (Figure 28). Although this speed is at least one order of magnitude smaller
than the speed of electrons in a bulk semiconductor, the advantage of our vibronic
approach is that the energy needed to transfer one bit of information is a fraction of eV
as compared to the few ten-thousands of eV needed under the present electron current
approaches.

0.000

0.002

0.004

0.006

A
B

C
D

E
F

G
H

620 640 660 680

t (ps)

d 
(m

Å
) 

Figure 27 Detected AM AC signals in molecule GLY58 at different sites as indicated in
Figure 25a [95]
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Figure 28 Distance vs time-delays of the first triangle apex from AM signals in Figure 27 [95]
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5.5.3. Noise and attenuation of molecular vibrational signal transmission
using AM

Signal-to-noise ratio is a determining factor in any data processing systems. As signal
travels, its amplitude decreases to the point that is washed out by the noise (usually
thermal noise). Amplitude modulation is prone to this as noise simply adds to the signal.
The vibronic approach is suited to interconnect molecular and nano devices that cannot
be interconnected by standard lithographic techniques, thus in the range of nanometers.
Figure 27 shows that the signal keeps its original shape after it travels to site G at
14.2 nm, which is a reasonable distance for a nanosized circuit. However, the amplitude
of the signal at the carrier frequency, which is 23.81 THz, attenuates (Figure 29). The
distance dependence of the amplitude shows that the amplitude attenuates exponentially
with a factor of 0�0195 Å

−1
(Figure 30). Thus, for a distance of 1.0 nm, the signal

amplitude is still 82.3% of its original amplitude.

5.5.4. Effects of different carrier frequencies on AM signal transmission

When signals are coupled to atom X (forced movement of X), the atom that is directly
bonded to X will also be driven to vibrate at the applied frequency; and this atom
will again drive another bonded atom. As this process progresses, the vibrational signal
propagates. As is discussed before, the carrier frequency of the signal should be one of
the intrinsic vibrational frequencies of the backbone in the molecule.

We compare the response to two signals with different carrier frequencies: one at
23.81 THz corresponding to one of the intrinsic vibrational mode; and the other at
71.43 THz corresponding to a frequency range with no intrinsic vibrational modes.
Figure 31 compares the evolution of these two signals. Notice that the later signal at
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Figure 29 Detected frequency-domain AM signals in molecule GLY58 at different sites as
indicated in Figure 25a [95]
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Figure 30 Attenuation of the AM signal along molecule GLY58 [95]

10

0 0
0 50 100 0 50 100

20
H

f (THz) f (THz)

0

10

20 F

0

50
B

0

50

10

20
0

10

20

0

50

0

50
A

H

F

B

A

A
 (

µÅ
)

A
 (

µÅ
)

(a) (b)

Figure 31 Frequency response of GLY58 of different AM carrier frequencies. (a) Frequency
spectrums at sites A, B, F and H under excitation frequency of 23.81 THz; (b) frequency spectrums
at sites A, B, F and H under excitation frequency of 71.43 THZ [95]

71.43 THz is much faster than the former that corresponds to an intrinsic mode of the
polypeptide; actually, it almost dissolved immediately after it propagates through site A.

5.5.5. Molecular vibrational signal transmission using frequency modulation

Frequency-modulated signal is injected into the molecule GLY58 by coupling the input
signal into the movement of carbon atom X as indicated in Figure 25. The time-domain
signal at site A, 1.4 Å from the input site X, is shown in the upper plot of Figure 32a.
Since the signal is only varied by frequency, it is difficult to distinguish the change in
the time domain. In the frequency-domain signal (upper plot of Figure 32b), the carrier
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Figure 32 Signal transmission along GLY58 using frequency modulation by a carrier at
23.81 THz. (a) Time-domain vibrational signal detected at a remote site A (upper plot) and G
(lower plot); (b) frequency-domain vibrational signal at site A (upper) and G (lower); (c) signal
recovered using DSP techniques [95]

frequency is clearly shown as a peak in 23.81 THz. Figure 32a and 32b also show the
time- and frequency-domain signals detected at site G, which is 142 Å from the input
site.

The modulating signal is recovered as described in Section 5.4.2. The first Bessel
bandpass filter is centered at 23.81 THz with a bandwidth of 1.0 THz. The bandpassed
AC signal is clipped to constrain the amplitude variation to ±200 �Å. The slope demod-
ulator is centered at 24.9 THz with a bandwidth of 2.6 THz and the Bessel lowpass filter
has a cutoff frequency of 0.5 THz. The recovered signal is shown in Figure 32c.

5.6. Using molecular potential to process information

For any molecular system, there is an electrostatic potential �. The electrostatic poten-
tial � at a point P is defined as the reversible work per unit charge needed to move an
infinitesimal test charge Qt from infinity to P [96]. The molecule can be viewed as a col-
lection of point-charge nuclei and electronic charge smeared out into a continuous distri-
bution. The probability of finding a molecular electron in a volume dV = dxdydz is [96]

��x� y� z� = n
∑

allmx

∫
· · ·
∫

���x� y� z� x2� � � � � zn�ms1� � � � �msn�2dx2� � � dzn (7)
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where � is the electronic wave function of the system comprising n electrons, and
���x1� � � � � zn�ms1� � � � �msn�2 dx1dy1dz1� � � dxndyndzz is the probability of simulta-
neously finding electron 1 with spin ms1 in the volume dx1dy1dz1 at �x1� y1� z1�,
electron 2 with spin ms2 in the volume dx2dy2dz2 at �x2� y2� z2�, and so on [96]. The
wave function � can be obtained by solving Schrödinger equation numerically using
Gaussian 03 program.

Knowing the probability, we know the amount of electronic charge in dV is −e�dV .
The molecular electrostatic potential � is the addition of the molecular electric charge
and of the nuclei �. Thus, the molecular electrostatic potential at point �x1� y1� z1� can
be expressed as [96]

��x1� y1� z1� =∑

�

Z�

r1�

−
∫ ∫ ∫ ��x2� y2� z2�

r12

dx2dy2dz2 (8)

where Z� is the nuclei charge, r12 is the distance between points 1 and 2 and the
integration is over the entire space. Likewise, the molecular electrostatic potential is
calculated using the Gaussian 03 program.

As an example, the molecular electrostatic potentials of water are plotted as in
Figure 33. Positive and negative potentials can be easily distinguished by the color:
positive is blue and cyan, and negative is red and yellow. Although the regions around
the nuclei show positive potential, the sites outside the molecule show potential either
positive (blue) or negative (red) depending on electron distributions around the molecule.
For the singlet ground state (Figure 33a). the negative potential is located at the lower
sites of the molecule; while for the triplet excited state, which is less angular, the
negative effect of the electrons can be seen on both sites of the molecule.

The molecular electrostatic potential can be modified by external fields or excitations.
For instance, the molecule triflourobenzene is excited by two water molecules conve-
niently located to produce four possible inputs (Figure 34), Assuming positive voltage is
“1” and negative is “0”, then if we record the potential at the right site of the hydrogen
atom, the truth table can be generated (Figure 35). Thus, the molecular system performs
as an AND gate.

–0.1 V 0 V 0.1 V

Figure 33 Molecular electrostatic potential [15]
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(c) 

(a) (b) 

Figure 34 The implementation of a logical AND using a tri-flourobenzene molecule [15]

Input 1 Input 2 Output
1 1 1
1 0 0
0 1 0
0 0 0

Figure 35 Truth table of the molecular system shown in Figure 34 [15]

6. Conclusion and perspectives

Both AM and FM can be used to transmit information in molecular wires using molecular
vibrations with a power dissipation of ∼50 nW when working at 1 Tbps.

These kinds of vibrational movements are at the range of terahertz. The vibrational
modes can not only be excited by an electromagnetic wave, but also be detected using
infrared (IR) spectroscopy or Raman spectroscopy if their movements cause changes in
electrostatic dipole (IR active) or in polarizability (Raman active).

When the signal is transferred using molecular vibrational modes, the atoms vibrate
to a certain position, which may introduce a change in the MEP distribution of the
whole molecular system and this change is subsequently transferred through vibronics.
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Thus, by proper programming, the hundreds of molecules inside the nanoCell can be
viewed as signal processing devices.

If information is transmitted using vibronics, the power dissipation could be evaluated
from the energy that excites and keeps the molecular wire to vibrate although you do not
need energy for a molecule to vibrate in its stationary states; molecules vibrate even at
0 K. Our simulation shows that the molecular wire dissipates 0.321 eV for transmitting
one bit data using FM or 0�293 eV using AM. If the molecular wire transmits at 1 Tbps,
the molecular wire will dissipate 51 nW using FM or 47 nW using AM, respectively.

Interestingly, the energy needed to excite the molecule with the two inputs is less
than 0.5 eV. This implies that it may be possible to operate 200 millions of these
gates at 10 GHz frequency with just less than 1 W. More precisely, �2 × 108gates� ×
�1010 operation/s�× �0�5 eV/gate-operation�× �1�6×109 J/eV� = 0�16 J/s = 0�16 W.

This is certainly a rough estimate, most likely within the same order of magnitude
of the exact value. This estimation considers the energy to change states of the gate
and the energy to excite their inputs. As gates are directly interconnected, losses in
interconnections are perhaps a small fraction of the energy to change states. Nevertheless,
even an error of one or two orders of magnitude underestimating the power consumption
still represents an excellent result. Using a similar logic to calculate the power needed
in the modern Pentium XE, assuming a gate capacitance of 40 aF, amazingly yields
125 W (most likely a lucky match) to which we need to add the energy dissipation
in the interconnects, the energy needed to change the input states, and the utilization
factor among others; all these should account for the total 130 W dissipation in the
microprocessor.

The research work presented in this chapter focuses on the analysis of programmable
molecular arrays, including electrical characterization of a nanoCell device, study of
electron transport in discontinuous thin metal film as well as implementing molecu-
lar vibrational modes and molecular electrostatic potential as methods to process and
transfer information using programmable molecular arrays. This research represents a
major contribution to an in-depth investigation of the implementation of programmable
molecular arrays.

First, the limitations by conventional silicon-based microelectronics in device fabri-
cation and solid-state physics are outlined. New techniques such as single molecular
electronic device, programmable molecular array, etc. are described that may help to
overcome those limitations.

The electrical characteristics of programmable molecular array are thoroughly stud-
ied. The distinct features of programmable molecular array include the memory and
switching phenomena and start-up transitional behavior. Effects of deposition of dif-
ferent molecules are investigated. It is found that the OPE molecules interlinking the
gold islands do not contribute significantly to the electrical conductance. However,
the alkane molecules create additional barrier for the electron transport through the
islands. A programming procedure for the multi-leads molecular array is proposed. In
this method, a matrix of truth valued between each pair of the leads is obtained and
followed by a set of voltage pulses to program the molecular array.

Since the OPE molecules are found not to contribute significantly to the electrical
conductance of the programmable molecular array, it is obvious that the discontinuous
gold film is the fundamental conductor. After reviews of several theoretical models that
explain the electrical conductance through a discontinuous metallic film, a model based
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on the clustering effect of gold atoms is proposed to account for the electrical behavior
of discontinuous gold film in high electrical field. At low field, however, electrons have
not overcome the barrier imposed by electron activation energy. So the discontinuous
gold film exhibits a predictable current–voltage behavior in low field.

Finally, it is proposed that in the programmable molecular array, the molecular
vibronics and MEP could replace the charge-current approach to transport and process
information. The result of the simulation is provided as a primary proof for the concept.
In addition, it is shown that the energy consumption using this approach is much smaller
than the conventional charge-current-based device.

Much remains to be done in this topic of programmable molecular arrays. For instance,
an effective electrical testing system has to be built to measure the conductance between
each pair of the electrodes in the multi-leads programmable molecular array. Also,
an electrical transducer needs to be developed in order to realize vibronics in the
programmable molecular array. May this research work provide all of us several new
ideas towards the realization of ultimate molecular computer in the future.
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1. Introduction

Miniaturization of electronic devices is continuing steadily and will hopefully approach
the scale of molecules in the near future. Current research [1–5] in this field aims to
incorporate a small number of active molecules into an electronic circuit and make them
perform suitable electronic functions. Molecules are particularly interesting as active
elements of electronic circuits, due to their tiny size, synthetic tailor-ability, properties
of molecular recognition and molecular assembly and their dynamic stereochemistry.
Though a large number of studies have already been carried out on the design and
synthesis of molecular wires [6–9], rectifiers [10–13], transistors [14–16], switches
[17–19], memories [20] etc., the fundamental understanding of the molecular processes
that govern the working principle of such devices and the effective manipulation tech-
niques are still not adequate to build efficient molecular-level electronic devices. The-
oretical and computational design of functional molecules or molecular assemblies is a
key to the development of such bottom-up nanotechnologies. Computational experiments
allow us to examine structures quickly and easily, rejecting those which have obvious
defects. By fully utilizing the potential of various theoretical modeling techniques that
has been developed in the recent years, design and development of complex systems
like molecular devices are feasible.

In this chapter we discuss molecular switches, focusing mainly on conductance
switching systems. Switches are most basic components of an electronic circuit. A molec-
ular switch is a nanoscale machine which switches reversibly between two or more
states. Actually, any drastic change in the properties of a molecule due to some external
stimulus may be considered as a switching phenomenon and possibly be utilized to
design a molecular switch. Many molecules have different conformational or electronic
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states depending on its external conditions; such molecules are very promising can-
didates for the design and synthesis of molecular switches. A structural change of a
molecule is analogous to the mechanical motion of a macroscopic system. Although a
mechanical switch is usually too slow to be used in modern electronic devices of silicon
technology, the situation may be completely different in the nanometer scale, where
molecules can change its conformation rapidly enough to be used as a switching device.
To be useful as a device the switching has to be reversible and triggered by a suitable
external stimulus like light, electric field or magnetic field. One basis for such a device
is an adsorbed molecule that can be electrically switched between two states, namely
ON and OFF. This type of molecular switches has been designed and investigated, for
example, in the case of [2]rotaxanes anchored to a metal surface [21, 22]. The molecule
has a mobile macrocyclic part, and the two states correspond to two structures where
the marcocycle resides in distinctly different positions of the molecule.

Perhaps the most difficult part in this research is how to control individual molecules.
Break junctions [23–25], nano-gap electrodes [26–28], and crosswire assemblies [29]
have been used for making electronic devices incorporating a small number of molecules.
Nanoprobes such as scanning tunneling microscope (STM) and atomic force microscope
(AFM) are powerful tools for the manipulation of a molecule adsorbed on surfaces using
local forces. Our design of a reversible molecular switch [30] based on a polar amide
molecule on surface is appropriate for conductance studies done by using STM.

2. Various types of molecular switches

There can be many types of interesting switching phenomena in molecules. A full
description and survey of all the types is beyond the scope of this chapter; however,
we try to outline briefly a few very interesting cases. Photoresponsive switching for
molecules has been studied by many groups [31–33] and is an area of great interest. In
this class of molecular switches, the molecule shows different optical properties for dif-
ferent conformations. Particularly promising photoresponsive molecules that have been
used to design optical switches are azobenzene [34–36], carbocynine [37], diarylethenes
bearing two thiophene-derived groups [38, 39] etc.

Molecular scale mechanical switching based on interlocked molecules mainly
including rotaxanes and catenanes have been studied in details [21, 22, 40–43]. These
interlocked systems generally consist of an electron-rich and an electron-deficient portion
held together by non-covalent bonds. The magnitudes of the non-covalent bonding
interactions that control the locations of the macrocycles in bistable catenanes and rotax-
anes can be switched reversibly in solution by redox processes triggered by chemical,
electrochemical and photochemical stimuli. Bistable rotaxanes are also known as molec-
ular shuttles which consist of a molecular rod with two stations (recognition sites), onto
which a macrocycle is threaded. The macrocyle is constrained to move within the thread
due to the presence of bulky stoppers at the ends of the molecular rod portion. Presence
of external stimulus initiates a redox reaction, as a result of which the macrocyle moves
from one recognition site to the other reversibly. This type of molecular actuation gives
rise to the OFF and ON states of the switch.

Conductance switching in molecules is our main topic of interest in this chapter. In
molecular systems, conductance switching occurs when two of its conformations show
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distinctly different conducting properties which can be switched reversibly by means
of external electric field. Experimental studies of conductance switching in molecules
are very difficult, but with the development of scanning probe technologies, many
studies in this field are now being reported. STM techniques allow for investigation
of surface properties at very high resolution. Since an STM tip can be positioned
with great precision, local electronic transport measurements are possible, enabling
one to measure conductance of a single molecule [44–46]. A particularly interesting
discovery in this field is the negative differential resistance (NDR) in ethynylphenyl-
based organic molecules at room temperatures in self-assembled monolayer [47]. The
molecule contains an ethynylphenyl backbone but a redox center is introduced in the
middle benzene ring: an electron-withdrawing nitro (–NO2) and an electron-donating
amino (–NH2) group. Current–voltage measurements of the device show NDR and a
large ON–OFF peak-to-valley ratio in excess of 1000:1. The authors at first suggested
a two-step reduction process that modifies charge transport through the molecule as the
potential mechanism for this NDR effect. However, there is a debate [46, 48–51] on the
origin of NDR in this molecule and it is not very well understood yet.

There can be two types of conductance switching behaviors, namely stochastic switch-
ing attributed to statistical fluctuations in the film or molecule [52–54] and switching
due to an applied external voltage [55–59]. Random statistical switching, also known as
stochastic switching, has only been observed using scanning probe techniques on indi-
vidual molecules isolated in an insulating matrix [51–53, 60]. This is a transient, random
process, independent of applied voltages and its origin had been debated over long time.
Since this switching phenomenon is difficult to control, it is not certain how it can be
utilized for designing molecular devices where the key idea is controllability. Studies
of isolated individual molecules embedded in a matrix of alkanethiolate monolayers by
Donhauser et al. [61, 62] had shown conductance switching of single phenylene ethyny-
lene oligomers (OPE) embedded in matrices of alkanethiolates when studied using STM.
The molecules switched reversibly between discrete states that differ in their apparent
heights. Although the origin of the switching was not well understood, it was interpreted
as a tilting of the inserted molecules or a change in the orientation of the molecule
with respect to the STM tip. This type of motion can cause a change in the physical
height of the molecule above the host matrix. The height is an important parameter in
the case of STM experiments, where an exponential decrease in the tunneling current is
observed due to an increase in the tip–sample distance. Therefore, a small increase in
the height of the molecule on the surface can result in a large increase in the tunneling
current. Weiss and co-workers [63] has recently studied six customized OPEs for their
electronic properties using STM to test the true mechanisms of stochastic conductance
switching. They tested for many previously suggested mechanisms, which included
functional group reduction [64], functional group rotation [65], backbone ring rotation
[66], neighboring molecule interactions [67, 68], bond fluctuations [60, 61, 69] and
hybridization changes [61–63] by making appropriate modifications in the molecules.
Finally, they concluded [63] that hybridization changes at the molecule–surface inter-
face are responsible for the switching phenomenon. The hybridization change can occur
through surface reconstruction or a change in the alignment of the molecule with the
surface.

For strongly polar molecules, it is possible to reorient the dipole of the molecule by
application of external bias voltage. Orientational switching caused due to the rotation of
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dipole as a result of applied electric field has been reported by Yanagi et al. [58]. They
observed a reversible, orientational switching of chloro[subphthalocyaninato]-boron(III)
molecule with STM. This molecule has a three-fold symmetric structure like shuttlecock
with an axial chlorine head binding to the central boron atom. When adsorbed on Cu(100)
surface, two orientations are possible: the axial chlorine atom upward or downward.
After scanning at a positive or negative bias, the molecules were observed to switch
to the upward or downward orientation, respectively. This clearly indicated that the
electric field coupled with the dipole moment of the molecule strongly and could cause
the flipping of the molecule on the surface. In another interesting study, Ishida et al.
[70] observed apparent molecular motion induced by the polarity change of electric
fields by STM. They used disulfide molecules containing a terphenyl moiety with a
large dipole moment, embedded into alkanethiol self-assembled monolayers. From the
STM measurements the authors concluded that the observed apparent height change
was caused by the conductance change (rectification property) of the electrically active
terphenyl moiety, although it could not be explained by a simple coupling between the
electric field and the dipole moment. Recently Kitagawa et al. observed conductance
switching of peptide helix bundles on a gold substrate by STM [59]. These are helical
molecules with many amide groups linked by intramolecular hydrogen bonds and are
capable of exhibiting two different lengths corresponding to an �-helix structure and
a 310-helix structure. The conductance of the helix alternated between the two states
by changing the polarity of applied bias. The conductance and the apparent molecular
length were also observed to undergo stochastic changes with time. Since the molecules
considered in this study are highly polar, the coupling of the dipole moment and the
applied electric field may be an important factor controlling the switching.

There exist also a number of theoretical predictions and studies of NDR and associ-
ated conductance switching phenomena in different classes of molecules, and different
mechanisms have been proposed. Seminario and co-workers have studied the electronic
structure and geometry of the isolated OPE molecules and tried to explain the NDR
mechanism found experimentally in OPEs by Reed and co-workers [47]. They pro-
posed that NDR in these molecules is caused by the change of the electronic charge
state of the molecule under increasing bias voltages and the resulting change of the
molecular conformation due to the change of the charge state [71, 72]. The extended
and the localized nature of the molecular orbitals under reduced and neutral conditions
formed the basis of this study. Further analysis of this molecule sandwiched between
two gold electrodes was performed by Stokbro et al. [73] using a combination of
density functional and non-equilibrium Green function methods. They concluded that
functional groups present in the OPEs have a stronger effect on the energetics of the
monolayers than on the individual molecular orbitals responsible for current transport,
hence a better understanding of the intermolecular interactions in such monolayers is
important. Coherent electron transport study through a metal–molecule–metal junction
consisting of photoactive azobenzene molecule is reported [74]. The conductance of the
cis conformation of azobenzene molecule was found to be two orders of magnitude less
than the conductance of the trans isomer. The trans isomer is expected to be a better
conductor because of its planar orientations of the phenyl rings, giving rise to delocal-
ized conduction channels. On the other hand, the conductance of the cis isomer is low
because of different orientations of the molecular orbitals in the two rings. Another the-
oretical study of single molecule conduction switching of photochromic dithienylethene
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molecule is available [75]. It reports a large change in conduction due to optical switch-
ing of dithienylethene. The molecular switching process is found to produce a swapping
of the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular
orbital (LUMO) during the conformational change.

In a very simple theoretical analysis, Torisi and Ratner [76] have recently shown that
‘off-resonance rectification’ can be achieved by exploiting the conformational changes
in molecules sandwiched between metal electrodes, driven by an external electric field.
Molecules with polar groups were suggested as possible candidates, which rearrange
in space by rotation around � bonds. Our theoretical study for substituted benzamide
molecule is in the same direction, where we utilize the conformational change due to
bond rotation in applied electric fields to design a reversible molecular switch on metal
surface [30].

3. Molecules with amide groups – Conductance switching
in applied electric fields

Conductance switching in molecules can take place due to various reasons. For exam-
ple, conductance switching can take place when cis azobenzene molecule is converted
to trans isomer, or an open dithienylethene is converted to closed isomer due to pho-
toexcitation [74, 75]. In both the situations, the conductance switching is governed by
the change in the molecular orbitals. In metal–molecule–metal junction studies, nature
of the molecular orbitals plays a very vital role. The �-type molecular orbitals that
are extended over the full molecule can act as conduction channels for electrons in
two-probe systems. However, if STM studies on SAMs are considered, conductance
switching may occur if the height of the molecule from the substrate changes. The
change in the height of the molecule can be due to isomerization process, bond rotation,
change in titling angle of the molecule, etc. In STM studies an increase in the height of
the molecule ensures a decreased tip–sample distance, thereby increasing the tunneling
current exponentially. The STM image, of course, does not depend only on the tip–
sample distance, but also on the electronic structure of the systems. We argue that the
presence of a polar amide unit (–CONH) in a molecule not only makes it responsive
towards applied electric field, it is flexible enough to be rotated at low available energies
which can cause the molecular height to change drastically depending on the molecule
(for adsorbed cases). This may result in conductance switching depending on the spe-
cific molecule concerned. In the next section, we discuss about a model molecule with
one amide group on Au(111) surface in the presence of applied electric field. Situations
can be more complicated if more number of amide groups are present in the molecule.

4. N -(2-mercaptoethyl)benzamide on Au(111): A reversible
molecular switch

N -(2-mercaptoethyl)benzamide (see Figure 1) is a simple molecule with its dipole
moment largely arising due to the presence of the polar amide moiety in it. The molecule
also has a thiol end group, which ensures that it can chemisorb on Au(111) surface.
The molecule can exist as trans amide and cis amide structures. We have studied this
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Figure 1 N -(2-mercaptoethyl)benzamide

molecule in free state and in adsorbed conditions. We have used a model surface of
21 Au atoms arranged in (111) fashion for adsorption studies. There are 20 atoms in
one layer with only one atom added in the second layer below the adsorption site to
mimic the hcp and fcc adsorption sites. Details of the calculations are discussed in [30].

4.1. Free and adsorbed conformations

In the optimized structure of N -(2-mercaptoethyl)benzamide, the C==O bond is trans
to the N–H bond. The studies of the free molecules reveal that the cis amide con-
formation of N -(2-mercaptoethyl)benzamide is 6.38 kcal/mol less stable than the trans
amide conformation. Conversion of trans amide structure to cis amide structure barely
occurs at room temperature as the barrier height is about 15 kcal/mol, hence, only the
trans conformation predominates in normal conditions. A rotation about the C–N bond
adjacent to the CONH unit of the molecule leaves the free molecule nearly unchanged
but reverses the orientation of the molecular dipole with respect to the surface. We
found that the barrier height for the rotation of this bond is low (5.29 kcal/mol), and the
rate of reaction at 300 K was estimated to be 1�1×108 s−1 using transition state theory
[77, 78]. This essentially means that the rotation may occur at room temperature due to
thermal fluctuations.

According to previous studies on the bonding of thiol molecules on Au(111) sur-
face [79–85], there can be on-top, fcc-hollow, hcp-hollow, bridge, fcc-bridge and
hcp-bridge adsorption sites for the sulfur atom in the thiol molecule to bond to the
surface. Most studies indicated that upon adsorption of alkane thiols on Au(111) the S
atom is bonded to two Au atoms on the surface (the bridge bond) with slight tilting
towards the fcc site (called the fcc-bridge site) [79, 80, 82, 85]. The studies also sug-
gest that the hcp-bridge and fcc-bridge sites have virtually same energy. We studied
N -(2-mercaptoethyl)benzamide on the model 21 Au atom cluster (see Figure 2). The
adsorbate preferred an hcp-bridged structure (Au-S: 2.75 Å) with a very slight displace-
ment towards the hcp site. The S–C bond (1.85 Å) extends towards the fcc site. The
molecule is largely tilted from the surface normal (z-axis) with a tilting angle (of the
S–C bond) nearly 60� in all cases. The optimized, adsorbed structures are shown in
Figure 2. It is evident from the figure that the molecule is not a perfect zig-zag structure
like alkanethiols as reported before [80, 84]. The distortion from the usual structure
occurs because the –CONH unit in N -(2-mercaptoethyl) benzamide tends to remain
coplanar.

We found two conformations for N -(2-mercaptoethyl)benzamide molecule on
Au(111) surface, viz. ‘CO-up’ and ‘CO-down’ structures (for details see Figure 2).
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Figure 2 Optimized CO-up and CO-down structures of N -(2-mercaptoethyl)benzamide on model
Au(111). The dipole moment of the CO-down structure is 4.49D (x� −0�84� y: 2.45, z: 3.68, with
z-axis as surface normal) and that of the CO-up structure is 3.80D (x: 0.23, y: 2.84, z� −2�51,
with z-axis as surface normal)

A rotation about the C3–N4 bond adjacent to the CONH unit of adsorbed molecule
converts the CO-up conformer to the CO-down. The barrier height for the C–N bond
rotation for the adsorbed molecule was roughly estimated to be ∼5.3 kcal/mol. The
energies of adsorbed CO-up and CO-down structures are nearly the same, with the
CO-down structure more stable by merely 1.05 kcal/mol. The directions of dipole for
the two conformations are reverse, which indicates that they respond to electric field in
opposite manner. The perpendicular height of the adsorbed molecule from the Au(111)
surface is calculated for the optimized structures. It is found that the CO-down struc-
ture is nearer to the surface in comparison to the CO-up structure and the benzene
ring in the CO-down structure tends to be more parallel to the surface due to stronger
surface–molecule interaction.

4.2. Bistability and hysteresis

The height of the molecule from the surface is considered as a relevant variable con-
trolling the conductance switching in our study. Molecular height is obtained from
the optimized structures. An external electric field is applied along z-axis for adsorbed
CO-up and CO-down conformers. Charge transfer between the surface and the molecule
was negligible in the concerned electric field strength.

The change in the height of the two conformers under the electric field is shown
in Figure 3. For the CO-up structure, there is a rapid increase in height at positive
fields above 1 V/nm and then it sharply falls to 0.8 nm at around an electric field
of 3 V/nm.

This fall in height results from the fact that the CO-up conformer is converted to the
CO-down with a rotation about C–N bond. The increase in the height of the molecule
would mean an increase in tunnelling current in STM experiments, which would sharply
fall when the height decreases. The CO-up structure remains at nearly the same height at
negative fields till −2 V/nm. The optimized structures for the points marked in Figure 3
are displayed separately in Figures 4 and 5, showing how the tilting angle between
molecule and the surface and the structure of the adsorbate changes in applied field. This
is responsible for the increase in the height of the molecule. In the case of the CO-down
conformer, however, the effect of electric field is just the reverse. In this case the height
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Figure 3 Effect of applied electric field on the molecular heights of CO-up and CO-down
conformations of N -(2-mercaptoethyl)benzamide adsorbed on a model gold surface
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Figure 4 Selected optimized structures for CO-up conformation in applied fields. The points
marked by a, b, c and d in the previous figure are shown here
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Figure 5 Selected optimized structures for CO-down conformation in applied fields. The points
marked by e, f, g and h in Figure 3 are shown here

increases up to applied field 1 V/nm but remains almost unchanged above this field. At
negative fields the height gradually decreases with a minimum at −1�5 V/nm. Then the
molecule flips to the CO-up structure with a sudden jump in height. Hence, at −2 V/nm
there exists only the CO-up structure and at 3.1 V/nm there exists only the CO-down
structure. In any applied fields between these two extremes, both the structures exist.

To understand the conformation changes under the electric field, we examined the
change in the z-component of the dipole moment of the molecule under an electric
field applied along z-direction. The calculated dipoles of the two conformers are shown
in Figure 6. They are both increasing functions of the electric field, with the dipole
moment of the CO-down structure larger than that of the CO-up structure. When the
CO-up structure flips to the CO-down structure at around 3 V/nm, the dipole moment
increases substantially, while the opposite process occurs at negative fields.

When no electric field is applied, the CO-up and the CO-down structures are sim-
ilar in energy, with CO-down structure being more stable only by 1.05 kcal/mol. The
dependence of the energy on the electric field is different for the two structures as
shown in Figure 7. The CO-up conformation has a dipole pointing down towards the
surface and stabilized more by an electric field in the negative z-direction. In the case
of a positive electric field, the energy of the CO-up structure first increases slightly,
but soon it starts decreasing, with a sharp fall around 2 V/nm. This drastic change in
energy is caused by the flipping of the molecule to the CO-down orientation. In the
case of the CO-down conformation the z-component of the dipole moment is positive,
so that there is stabilization at positive fields. But the energy increases for fields in the
negative z-direction. At about −1�5 V/nm there is sudden decrease in energy because
the molecule changes its conformation to CO-up. Only the CO-up structure exists below
−2�1 V/nm and only the CO-down structure exists above 3.1 V/nm. This is essentially a
hysteresis phenomenon, where a bistability in the potential energy profile is reduced to
a single minimum by the application of a threshold field. The single minimum outside
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Figure 6 Effect of applied electric field on the z-component of dipole moment for CO-up and
CO-down structures on model gold surface
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Figure 7 Effect of electric field on the energies of CO-up and CO-down conformations on gold
surface. All the energies are relative to the energy of the CO-down structure at no field

the hysteresis region corresponds to the CO-down structure for positive fields and to the
CO-up structure for negative fields. The unique hysteresis behavior shown in Figure 3
is a result of delicate balance between the deformation of the molecule and the direction
of the dipole. The dipole of the molecule in this case is not along the molecular axis but
depends on the orientation of the amide group. The amide moiety plays an important
role because of its flexibility and polarity.
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The CO-up and CO-down conformers of N -(2-mercaptoethyl)benzamide on Au(111)
have different molecular heights and different dipole moments. Hence, the two con-
formations can act as high-conducting ‘ON’ or low-conducting ‘OFF’ states, which
can be switched by means of an external electric field. In this case, the ON and OFF
conformers are almost isoenergetic and the barrier height for the conversion of CO-up
and CO-down conformers is not very large (nearly 6 kcal/mol). So there is not much
control about the choice of the starting geometry due to thermal equilibrium at room
temperature. In spite of the equilibrium between the two there can still be rectification.
Figure 3 shows an overall increase in the height of the molecule at positive applied
fields, which corresponds to the ON state of the molecule. The molecule remains to
be OFF at negative applied fields. This is similar to the rectification of the current
discussed by Troisi and Ratner [76]. Furthermore, the ON state is switched OFF by the
application of external fields higher than 2.6 V/nm, corresponding to negative differ-
ential resistance. This shows that amide molecules can also be used for studying NDR
mechanism.

At low temperatures, however, the ON and OFF states can be brought into separate
observable states without thermal equilibrium. In this case the full hysteresis curve of
Figure 3 can be followed. Alternatively, if the molecule is embedded in a matrix of
self-assembled monolayer on the surface, the interactions with surrounding molecules
may cause a substantial increase in the barrier height for the conversion. We can also
expect a cooperative switching in the case of an ordered monolayer of the switching
molecules on the surface. In the next section we relate this study for the model molecule
with the conductance switching and rectifying behavior of an adsorbed azobenzamide
molecule on Au(111) surface studied under applied bias voltage with STM at room
temperatures [46].

5. Conductance switching in a photoisomeric azobenzamide
molecule

The trans–cis isomerization is possibly one of most well-studied conformation changes
caused by photoexcitation. A common example is azobenzene, which undergoes trans-
formation from the more stable trans to the less stable cis conformation upon UV
irradiation. Visible light irradiation or heating may be used for the reverse transforma-
tion. It is extremely interesting to study how the photoisomerizable azobenzene unit
couples with the applied electric field. Better understanding of this process may allow
the control of isomerization processes with applied electric field which may then have
many important device applications.

The photoisomerization of N -(2-mercaptoethyl)-4-phenylazobenzamide (structure
shown in Figure 8 and hereafter denoted as azobenzamide) was observed by Yasuda et al.
for the first time using STM [46]. The molecule has a polar amide group with a thiol end
for chemisorption on gold surface. The molecule embedded in N -dodecanethiol (C12)
self-assembled monolayer (SAM) films formed on Au(111) substrate was observed
by STM. The image of the molecule appeared bright under visible light (325 nm) and
became dark under UV irradiation (450 nm). These two states corresponded to the trans
and cis conformations of the azobenzene moiety present in the molecule. Then, the
authors studied the effect of electrical excitation caused by STM tip on the individual
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Figure 8 N -2-(mercaptoethyl)-4-phenylazobenzamide

azobenzamide molecules in the SAM without photoillumination. Studies were separately
conducted under applied bias voltages for the molecules which were tightly packed
and also the molecules which were relatively free (adsorbed in etch pits or at phase
boundaries of the SAM). It was found that bright spots corresponding to azobenzamide
molecules in tightly packed regions did not change with applied bias voltage but the
molecules which were relatively free became dark at negative applied fields. The STM
images of the same area with sample bias voltages of +1�0 and −1�0 V are shown in
Figure 9.

In the case of an unchanged azobenzamide molecule, the I-V characteristics were
symmetric for positive and negative voltages. In contrast, a drastic change was observed
in the I-V curve measured over the molecule which changed in brightness. Tunneling
current was almost flat between −1�0 and +0�5 V and rapid switching in the tunneling
current between two I-V curves (high and low current states) was observed in the high
positive voltage region. The turn-on voltage for the switching was around 0.5 V. The low
current state I-V curve had a shape similar to that obtained for negative voltage, whereas
the high current state I-V curve exhibited a characteristic similar to that obtained for
the unchanged azobenzamide molecule, which indicated that the unchanged molecule
was always in the high current state. The results had clearly shown that the molecules
loosely surrounded by alkane thiol molecules changed their conformations between two
distinct (high and low current) states during I-V measurement. The high and low current
states were attributed to the trans and cis conformational structures of the azobenzamide
molecule, considering the similarity with the photoinduced changes.

When the bias voltage was fixed and the tunneling current was measured, stochastic
switching between two definite states at each bias voltage was observed. By analyzing
the distribution of the residence time of the flip-flop motion, the lifetimes of the azoben-
zamide molecule in the two states were obtained for each voltage. The values were
scattered over the range of 0.1–1 ms. The lifetimes of the two states showed opposite
dependencies on the applied bias voltage. The lifetime of the high current and the low
current states became longer and shorter, respectively, with an increase in the applied
positive voltage. The low current state was stable in the low bias voltage region; barrier
height for the flip-flop motion was anticipated to be high compared to the thermal energy
at room temperature. Possible origin of the turn-on voltage for the flip-flop motion was
not very clear. However, an interesting point, as the authors admitted, was that the low
current state (which was attributed to the cis phase) was apparently the ground state not
only for the negative bias voltage but also for the positive bias voltage, in contrast to
usual knowledge.
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Figure 9 Typical STM images of azobenzamide-embedded C12 SAM film obtained at
(a) Vsample = +1�0 V, Itunnel = 10 pA and (b) Vsample = −1�0 V, Itunnel = 10 pA. (c) I-V curve obtained
over an azobenzamide molecule. (d) I-V curve measured over an azobenzamide molecule which
changed in brightness in (b). Histogram of the turn-on voltage for the flip-flop motion is shown
in the inset [46], Copyright (2003) American Chemical Society]

6. Possible conformational changes of the azobenzamide molecule

Although the main functional part of the azobenzamide molecule is the azobenzene
moiety, it also contains an amide moiety and an alkanethiol moiety. The amide portion
has a large polarity and must interact with the electric field strongly. Rotation of the
amide unit can have interesting consequences as discussed in previous sections, therefore
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we studied in details [30] various conformational change processes possible in this
molecule by ab initio quantum chemical calculations.

We first considered the cis–trans isomerization of the azobenzene moiety. The cis and
the trans structures of free azobenzamide are optimized and the trans form is found to
be more stable by 15.44 kcal/mol than the cis form. The transition state for the cis–trans
isomerization is located at a barrier height of 37.5 kcal/mol from the trans isomer. This
value is very similar to the barrier heights found for the cis–trans isomerization of the
free azobenzene molecule in earlier studies [86–91]. Hence, the introduction of a long
amide-substituted alkyl group in the azobenzene molecule did not influence its cis–trans
isomerization energetics significantly. In order to see whether a reversal of stabilities
between the cis and trans structures is possible for their adsorbed counterparts, we
then checked relative stabilities of the various conformations of adsorbed molecule on
a model surface using a five-atom Au cluster. It turned out that the trans azobenzene
form was still the most stable structure on the five-atom Au cluster. The barrier height
for conversion of trans azobenzene molecule to cis azobenzene for adsorbed case is not
expected to change very differently from the free molecules as the isomerizable unit is
far from the surface. Thus, theoretical studies did not support the assumption that the cis
azobenzene conformation was the predominant structure under experimental conditions.

We then studied the cis–trans isomerization of the amide bond. As normally expected,
a conformation with the cis amide unit and the trans azobenzene unit turned out to be
less stable than the trans amide and trans azobenzene conformation by 4.58 kcal/mol.
The barrier height for the amide bond to convert from trans to cis was calculated
to be 14.51 kcal/mol for the free molecule. Thus, rapid interconversions at ordinary
temperatures are not expected.

Finally we considered a rotation around the C–N bond adjacent to the amide group
(rotation about C3–N4 shown in Figure 10). In contrast to the above two processes
this barrier height is 5.68 kcal/mol. The result of this rotation is a nearly identical
conformation with a change in the orientation of the C==O bond for free molecule. But,
these two conformations are different when the molecule is adsorbed on a surface with
a reversed orientation of the molecular dipole moment and a difference in molecular
height from the surface.

7. Study of the azobenzamide molecule in applied electric field

To test how azobenzamide molecule responds to applied electric fields, we optimized
the trans structures of the molecule on a five-atom Au cluster modeled as a surface in
external electric fields theoretically [30].

7.1. Adsorbed conformations

The trans–trans (i.e., trans-azobenzene trans-amide) isomer of the molecule can exist as
four different conformations when adsorbed: C==O and N==N both pointing towards the
surface (downward); C==O and N==N both pointing away from the surface (upward);
and C==O pointing downward but N==N pointing upward and vice versa. These struc-
tures are shown in Figure 10. Conformers 1 and 2 both have a CO-up structure with
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down, 4: C==O down and N==N up

the N==N bond pointing up and down respectively. Conformers 3 and 4 both have
CO-down structures with N==N bond pointing down and up, respectively. The CO-down
conformers (3 and 4) are slightly higher in energy (by 0.5 kcal/mol) than the CO-up
conformers (1 and 2). Structure 3 has the smallest and structure 1 has the largest value
of molecular heights from the surface amongst all the four conformers. Since all the
four structures have similar energies, they can exist with almost equal probabilities on
Au(111) at room temperature, if other interactions from the surroundings are not taken
into account. Rotation about C3–N4 (see Figure 10) can allow interconversions between
1 and 3 or between 2 and 4.

7.2. Electric-field-dependent conformation changes

All the four trans-amide, trans-azobenzene conformers were studied theoretically in
the presence of an external electric field applied along z-axis. The dependence of
the molecular height from the surface upon the electric field is shown in Figure 11.
The heights of the CO-up structures (1 and 2) increase rapidly with the field applied in
the positive z-direction. This is a result of the decrease in the tilt angle of the molecule.
The CO-down structures (3 and 4) exhibit little change in height due to their dipole
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Figure 11 Effect of applied electric field on the height of adsorbed N -(2-mercaptoethyl)-4-
phenylazobenzamide on the five-atom gold cluster

alignment for positive fields. The situation for this molecule is only partially similar
to the case of N -(2-mercaptoethyl)benzamide, because now the dipole moment of the
molecule not only is due to the CONH unit but also affected by the azobenzene unit.
Therefore the two CO-up structures 1 and 2 behave quite differently under an external
field. In the case of 2, the CO-up and N==N down conformer, the molecule at first
rises in height and then flips to 4 (CO-down, N==N up) after application of a field of
∼1�5 V/nm. But in the case of 1, the CO-up and N==N up conformer, the molecular
height continues rising steadily even above ∼2 V/nm, and the molecule becomes more
and more vertical to the surface. We further checked the structure of 1 at external fields
as strong as 4 V/nm and found that it did not flip and the structure became almost
perpendicular to the surface. When conformer 2 (CO-up, N==N down) flips to 4 (CO-
down, N==N up), there is a sudden fall in the height of the molecule from 1.47 to
1.07 nm. This can result in a huge change in conductance for STM experiments. The
flipping is also accompanied by a sudden change in the dipole moment from 6.96D
(z-component: 5.37D) to 12.36D (z-component: 10.88D). So in the positive field regime
above ∼1�5 V/nm there can be only three conformers present: 1, 3 and 4. Among these
three structures, 1 has a much greater height from surface than the other two structures
(see Figure 11). Hence 1 is likely to be much more conducting than 3 and 4.

When the field is applied in the negative z-direction, the molecular height varies very
slowly and the molecule tends to lie down on the surface, in analogy with the case of
N -(2-mercaptoethyl)benzamide shown in Figure 3. In case of 1 the molecular height
increases slightly in negative fields. Under negative fields, the conformers 3 and 4 are
expected to be low in height and hence of low conducting type though we could not
study 3 and 4 in negative fields due to strong oxygen–gold interactions arising from the
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Figure 12 Effect of applied electric field on the relative energies of different conformations
of N -(2-mercaptoethyl)-4-phenylazobenzamide on the five-atom gold cluster. All energies are
relative to the most stable isomer 1

small size of the metal cluster. A close inspection of the energy changes (see Figure 12)
for all the four conformations reveals that the CO-down structures 3 and 4 behave in a
similar fashion. The CO-up structures 1 and 2 also behave in a similar manner. At first
the energy increase slightly with application of positive field but soon starts decreasing
rapidly. At about 2 V/nm the energy of 2 suddenly falls sharply in contrast to 1 and it
is converted to 4.

7.3. Possible effects of intermolecular coupling

The existence of the high and low conformations (in terms of molecular heights) at posi-
tive fields shown in this theoretical study [30] is consistent with the stochastic switching
between high and low conducting states observed in the STM image of azobenzamide
molecules on Au(111) under positive sample bias voltages at room temperatures [46].
Therefore we believe that the rotation about the bond between the amide unit and the
alkyl chain may be the dominant mechanism of the observed conductance switching.
The cis–trans isomerization in the azobenzene unit may occur at much higher applied
voltages, because the barrier height for this process is much higher.

However, if we look at the details of the experimental results, there are many issues
to be resolved. First of all, the experiment indicates that the OFF state is more stable
than the ON state without an electric field, as mentioned before. The observed lifetime
is a decreasing function of the bias voltage for the low current state and an increasing
function for the high current state. At small bias voltages, the low current state has a
longer lifetime than the high current state. Therefore, if we consider these lifetimes as
thermal transition rates, then the low current state must be the ground state and the high
current state is a metastable state.

We considered theoretically an isolated molecule on a metal cluster, and thus the
energetics of the switching states observed in the experiment [46] could not be captured.
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The small barrier height for the rotation of C–N bond would imply that CO-up and
CO-down conformations coexist at room temperature as mentioned before, and the
conductance would be an average of thermally fluctuating high and low conducting
states. However, the observed lifetime of switching was rather long, on the order of
1 ms [46]. This suggests that the barrier height is strongly enhanced by the effect of
surrounding molecules. The importance of this effect is evident also from the fact that the
switching phenomenon was observed only for molecules located in domain boundaries
but not inside the domains of the SAM.

The relative energies of the various conformations shown in Figure 12 are expected
to be affected by the intermolecular interaction. The structures with a smaller molecular
height occupy a larger surface area, which requires more energy due to repulsive
interaction with surrounding molecules. Thus, the upright conformations (1 and 2, in
Figure 10) may become more stable than the relatively flat conformations (3 and 4) in the
molecular matrix. Theoretical methods designed to take into account the intermolecular
interactions on surfaces are likely to give results which reproduce the experimental
results.

8. Other interesting molecules for switching

Amide molecules are very common in nature; all the protein molecules are actually
amide-linked polymers. It is important to understand the effect of electric field on such
amide molecules. The study of Kitagawa and co-workers had shown that such long chain
helical molecules can also be used for conductance switching if they can be immobilized
on metal surfaces [59]. However, due to intramolecular hydrogen bonding, the behavior
of these interlinked amide groups is less obvious. In this case the applied electric
field must break the hydrogen bonds and then reorient the dipole associated with the
molecule. Here we mention about another molecule, tribenzyl-1-aza-adamantanetrione
(shown in Figure 13). It is C3 symmetric and is known to form self-assembled structures
due to intramolecular forces [92]. This molecule has three amide groups arranged in
a C3 symmetric way. Application of electric field along the symmetry axis of the free
molecule can cause the amide bonds to flip. Due to the presence of three amide bonds,
the applied voltage necessary for such flipping process is expected to be higher than
that required for benzamide molecules.
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Figure 13 Tribenzyl-1-aza-adamantanetrione [92]
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9. Concluding remarks

Amide molecules are an interesting class of flexible molecules, as they can undergo
electric field–induced conformational switching processes. Our study shows that such
switching may trigger a drastic conductance change, if the molecule is anchored to a sur-
face. We have discussed this type of switching for amide molecules on a metal surface
considering two examples. In the first case, we show the possibility of electric-field-
dependent conformation switching in an adsorbed benzamide molecule. The conforma-
tional change involves the rotation of the amide unit in the molecule, which reverses
the direction of the dipole and changes the height of the molecule. The conductance of
the system is expected to be affected by this switching. Despite the small barrier height
for interconversion between the conformers it shows a switching behavior as there is
a net increase in conductance at positive applied electric fields which abruptly falls
after a threshold field. This corresponds to NDR mechanism. The conductance change
follows a hysteresis curve. Therefore one can think of a memory device consisting of
a SAM of the switching molecules sandwiched between electrodes, where conforma-
tion switching of can be induced by applying a sufficient voltage. In the next case we
have studied electric field–induced conformational changes in N -(2-mercaptoethyl)-4-
phenylazobenzamide molecule on a gold cluster. We have qualitatively explained the
voltage-induced phase switching of this molecule on Au(111) reported by Yasuda et al.
[46] in terms of the rotation of the amide unit in the adsorbate molecule which may
occur at room temperatures. The comparison of the theoretical results with the experi-
ments also suggests that the kinetics of switching is likely to be strongly influenced
by surrounding molecules in SAM. Finally, we have suggested a few model molecules
with amide moieties where such kind of switching may occur.
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1. Introduction

Carbon nanotubes (CNTs) are tube-shaped nanostructures consisting of coaxial graphene
cylinders, which usually measure a few nanometers in diameter and up to microns in
length. Since their discovery in the early 1990s [1–3], CNTs have attracted enormous
attention from researchers all over the world. The specific geometry as well as the
unique electrical, mechanical, thermal, and chemical properties have made the CNT an
ideal test ground for fundamental theories in low-dimensional nanostructures, and also
a promising candidate for applications in the fast-developing field of nanotechnology
and molecular electronics [4].

The past decade has seen considerable progress in the experimental aspects of CNTs,
from synthesis, growth, separation, and analysis of the material to fabrication and control
of CNT-based devices. Field emitters, field effect transistors, nano-electromechanical
systems, AFM/STM probes, and biosensors are just a few examples of CNT applications
successfully demonstrated in the lab. On the other hand, theoretical modeling and
simulations have been a valuable complement of experiments to help analyze and explain
experimental results as well as predict the behavior of the material or device under study.
Most importantly, with the variety of well-developed numerical techniques and powerful
computational platforms available today, it is now realistic to conceive and design
novel CNT-based molecular devices from simulation and to predict numerically their
performance as well as propose solutions for optimization, which could be increasingly
important to guide experiments.
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Depending on the complexity of the system and the physical properties of interest,
one can employ theoretical approaches at different approximation levels to study CNT-
based system. Here we focus on a practical, self-consistent tight-binding (TB) model
to investigate the electronic properties of CNTs under external electronic perturbations,
both in the infinitely long limit and in the finite-size limit. Despite its simplicity, the
TB approach may include as many important physical details as do more sophisticated
models with the right choice of empirical parameters.

Moreover, the physical interpretation of a TB model is amenable to intuitive con-
nection with the physics, while its simple algorithm enables simulating systems of
considerable size, which would be inaccessible for more advanced methods such as
density function theory (DFT). In some situations, a multi-level approach combining
methods at different approximation levels proves to be an efficient and accurate way to
model the system [5].

This chapter is organized as follows. In Section 2, we briefly review the basics of
CNTs and describe the self-consistent TB formalism. Next, we apply the TB model to
investigate the electronic properties of CNTs, both in an infinite periodic system and
in a finite-size system. In Section 3, we discuss the possibility of metal–semiconductor
transitions (MSTs) in metallic nanotubes under angular perturbations. With the aid of
group theory techniques and the analytical power of the TB derivation, we provide
selection rules for subband coupling and estimate the magnitude of band gap openings
as well as the Fermi velocity renormalization near the Fermi level. We also suggest
an effective mechanism to enhance the MST by a combination of different forms of
perturbations. Then, in Section 4, we study the finite-size effect on the structural and
electronic properties of carbon nanotubes. By combining first principle calculations with
classical molecular dynamics simulations, our model allows us to study the transport
behavior of a water molecule or of an ion interacting with a short nanotube segment.
We demonstrate the importance of the nanotube polarization effect and atomic partial
charges in determining the energetics of the system, which may facilitate understanding
and controlling the electronic behavior of carbon nanotubes in biological applications.

For simplicity, we only consider single-walled carbon nanotubes (SWNTs) in this
chapter and mostly focus on armchair SWNTs (A-SWNTs), which possess the highest
geometrical symmetry. Some conclusions can be easily extended to chiral SWNTs, e.g.,
through a more general k·p description of the electronic states, while for some other
issues high order correction terms need to be incorporated to account for the chiral
dependence [6].

2. Background

2.1. Geometry of CNTs

A single-walled nanotube can be described as a graphene sheet rolled up into a seam-
less cylinder along a certain direction defined by the chiral vector Ch, which can be
decomposed into the unit vectors a1 and a2 of a hexagonal lattice as shown in Figure 1:

Ch = n1a1 +n2a2 or �n1� n2�� with n1� n2 being integers (1)
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TArmchair

Zigzag

(η = 30°)

(η = 0°)

T

Ch

a1

a2

Ch

Figure 1 The unrolled graphene lattice and the unit cells of (4, 4) armchair and (5, 0) zigzag
nanotubes. The chiral vector Ch and translational vector T are also shown

Here, a= �a1�2� =
√

3rCC is the lattice constant of the two-dimensional (2D) graphene,
with rCC = 1�42 Å, the C–C bond length [7]. The angle between Ch and a2 is defined as
the chiral angle �, where 0� ≤ �≤ 30�. The translational vector T is parallel to the tube
axis and is normal to Ch. The rectangle Ch ×T defines the unit cell for the nanotube, as
shown in Figure 1 for armchair and zigzag SWNTS, which have � = 30� and � = 0�,
respectively.

2.2. Tight-binding description

The electronic band structure of CNTs can be derived from that of the unrolled graphene
sheet by using a zone-folding scheme [7]. For a 2D graphene layer, each carbon atom
forms three in-plane �-bonds hybridized in sp2 configuration, while the 2pz orbital stands
perpendicular to the plane and forms a covalent �-bond. The low energy (relative to the
Fermi level) properties of 2D graphene are dominated by the delocalized �-electrons,
and the electronic structure can be described by a single �-orbital Hamiltonian in the
formalism of second-quantization as

H0 =∑

i

	ic
+
i ci +

∑

�i�j�

ijc

+
i cj (2)

where c+
i and ci are the creation and annihilation operators of the �-electron on the

i-th atomic site, respectively. 	i is the unperturbed onsite energy of �-orbitals in the peri-
odic crystal potential, which is usually set to zero. 
ij is the electron hopping integral (also
called the “transfer integral”) between atoms i and j, and the summation runs over all
pairs of neighboring atoms within the proper cutoff of neighboring distance. Eigenstates
of the Hamiltonian in Eq. (2) can be constructed from a linear combination of Bloch wave
functions on the two non-equivalent sublattices of 2D graphene (denoted as A and B):

�graphene�k� r�= CA�k��A�k� r�+CB�k��B�k� r�

���k� r�= 1√
N

N∑

i=1
eik·ri��r − ri��� �� = A�B�

(3)
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where CA and CB are coefficients to be determined� �r − ri�� is the atomic-like orbital
centered at ri� and i is summed over all A or B atoms. Below we take the first nearest-
neighbor (NN) approximation and set 
ij ≡ 
0 = −2�5 eV [7]. The overlap integral,
s ≡ ��r − ri����r − rj���, is assumed to be zero for first-NNs. In the next section, we
will show that the band structure near the Fermi level is modified only slightly when one
includes the non-orthogonality of atomic orbitals (s 	= 0� or electron hopping integrals
beyond the first-NN approximation. By substituting Eq. (3) into Eq. (2), and solving for
H0��k� r�= E�k���k� r�, one obtains the eigen coefficients as

(
CA�k�
CB�k�

)

= 1√
2

(±f�k�/ �f�k��
1

)

f�k�= 3∑

�=1
eik·r�

(4)

Egraphene�k�= ±
0 �f�k��

= ±
0

√

1+4 cos

√
3kxa
2

cos
kya

2
+4 cos2

kya

2
(5)

where the r�’s correspond to bonding vectors that connect neighboring atoms.
When the graphene layer is rolled up into an infinitely long SWNT, the axial

wave vector kt remains continuous. Meanwhile, the angular wave vector kc becomes
quantized due to the periodic boundary condition in the circumferential direction:
kc ·Ch = 2�m� �m= 1�2�3� � � � �, with m being the angular momentum. By substituting
the discrete values of kc into Eq. (5), and using the following coordinate transformation

(�
x
�
y

)

=
⎛

⎜
⎝

cos
(�

6
−�

)
− sin

(�

6
−�

)

sin
(�

6
−�

)
cos

(�

6
−�

)

⎞

⎟
⎠

(
�
c
�

t

)

(6)

one immediately obtains the energy dispersion relations for 1D subbands of SWNTs,
labeled by different angular momentum m� Theoretical analysis shows that an �n1� n2�
SWNT is metallic (or quasi-metallic) when n1−n2 is a multiple of 3; otherwise, the
SWNT is semiconducting [7]. It turns out that for very narrow nanotubes, this sim-
ple classification breaks down and the solid-state properties of the nanotube becomes
strongly dependent on the curvature effect and the �–� hybridization [8, 9]. Since this is
not the focus of this chapter, we will study relatively wide nanotubes of small curvature
in the following.

2.3. Self-consistent formalism

In the presence of an external potential, electrons are driven by the electric field and
redistributed on the nanotube surface. The charge/potential profile of the nanotube
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should be calculated self-consistently in order to capture the screening effect from the
electrons. The total Hamiltonian is rewritten as

H =H0 +∑
i

(

U ext
i +∑

j

U ind
ij �

ind
j

)

c+
i ci (7)

where U ext is the external potential and U ind is the electron–electron Coulomb inter-
action from a non-uniform distribution of the induced charges, assuming a smoothed
form as

U ind
ij = 1

√∣
∣ri − rj

∣
∣2 +U−2

0

(8)

with e set to unity. U0 is the on-site Hubband energy and its exact value is found
to affect the quantitative results only slightly. As �ri − rj� increases, the usual form
of Coulomb interaction, i.e., Ue−e�r�∝ �r�−1, is recovered. �ind

j is the induced change of
occupation number of �-electrons at site j, which is associated with the projection of
the occupied eigenstate �� on the j-th atomic orbital j as

�ind
j =

(
∑

�∈occ
2
∣
∣
〈
j ���

〉∣
∣2
)

−1

H���r�= E����r�

(9)

Notice here that the eigen energies and eigen functions are no longer labeled by the
axial wave vector k, because the translational invariance in the axial direction may not
be preserved under external perturbations.

To ensure self-consistency of the total potential and charge distribution, the Hamilto-
nian in Eq. (7) is diagonalized iteratively. An initial guess of �ind

j is first assumed, and
Eqs (7) and (9) are solved to yield another set of �ind

j constructed from the eigenvectors.
At the next iteration, �ind

j is obtained from a linear combination of values at the previous
and current iterations. The procedure continues until the total potential and charges
converge.

The Hamiltonian in Eq. (7) corresponds to an eigen problem of an Na ×Na matrix for
a system of Na atoms, which becomes formidable with the growing size of the system.
However, in many cases, the complexity of the problem can be effectively reduced by
using the symmetry of the system. For example, when the angular dependence of the
perturbation is negligible, the nanotube can be treated as a 1D system with uniform
charge/potential distribution along the circumference. The size of the Hamiltonian is
then reduced to Nt ×Nt for each angular momentum m, with Nt being the total number
of unit cells along the nanotube axis. There are also situations in which the external
potential is only dependent on the angular coordinates of the nanotube while the axial
periodicity is conserved. The eigen problem reduces to solving one Nc ×Nc matrix at
each kt point, where Nc is the total number of carbon atoms within a unit cell. In either
case, however, the induced Coulomb interactions U ind

ij in Eq. (7) should be summed
over all atomic sites j = 1�2� � � � �Na.
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3. Metal–semiconductor transition in carbon nanotubes

The metal–semiconductor transition (or metal–insulator transition) has been a subject
of interest for decades [10]. It is well understood that MST is typically related to the
breaking of a specific symmetry of the system, and CNTs are particularly interesting to
study, due to their low dimensionality and special helical symmetry. A most intriguing
case is given by the A-SWNTs, which have the highest geometry symmetry of all
nanotubes (Figure 2(a)). In addition to the axial wave number k and angular momentum
m, the symmetry group of A-SWNTs also contains vertical mirror planes ��v� and glide
planes �� ′

v�, horizontal mirror planes ��h� and rotoreflection planes �� ′
h�, and two sets

of horizontal C2 rotation axes. The two crossing subbands, � and �∗, have opposite
parities about �v and � ′

v, which make them robust against gap opening for typical non-
chiral perturbations, such as curvature effect and many-body interactions. In order to
mix the two subbands and lift the degeneracy at the Fermi point, symmetry about all

σ ′h

σh

σv σ ′v

U ′U

(a)

(b)

m = n ± q, σ = 1

m = n ± q, σ = –1

φ–(k t, n + q)

φ+(k t, n – q)

φ+(k t, n + q)

φ–(k t, n – q)
φ π

φπ

φπ*

φπ*

π

π*

a ab

b

c
c

d

d

Figure 2 (a) Symmetry elements of A-SWNTs (see text) [23] and (b) Schematics of second
order perturbation series between � and �∗ subbands, and the corresponding phase angles of the
four intermediate states [6]
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vertical reflections and glide reflections must be broken simultaneously, which we refer
to as the mirror symmetry breaking (MSB) rule.

The high symmetry of A-SWNTs is also responsible for the existence of ballistic
(non-scattering) conductivity channels [11], which is very attractive for CNT-based
electronic devices [12, 13]. Therefore, a method to modulate and control the conductance
of A-SWNTs is particularly desirable from the point of view of applications. Many types
of perturbations were studied previously, including intra-rope interactions [14], twisting
or bending [15], squashing [16–19], applying uniform perpendicular electric fields [20,
21] and functionalizing the nanotubes [22]. Still, it remained an open question if MSB is
a sufficient condition to induce a gap in A-SWNTs. In the following, we derive in a TB
formalism the additional conditions for MST in A-SWNTs under external perturbations.
For simplicity, the external perturbation is modeled as an angular potential consisting
of a single angular Fourier component or as combinations of such potentials. It is found
that the MST effect depends not only on the MSB but also on the selection rules between
energy subbands of the A-SWNTs.

3.1. Model formulation

A non-orthogonal TB model �s 	= 0� is chosen in order to study the influence of the
additional electron–hole symmetry on the band gap opening. The electronic states are
obtained by solving the stationary Schrödinger equation

H�� = E�S�� (10)

where H and S are the total Hamiltonian matrix and the overlapping matrix. First-NN
approximation with hopping integral 
0 = −3�033 eV and overlapping integral s= 0�129
are adopted [7].

The wave function of an unperturbed A-SWNT can be expressed as a linear combi-
nation of Bloch wave functions �A�k� r� and �B�k� r� as in Eq. (3), or equivalently as
the combination of the two periodic functions uA�B�k� r�, where uA�B�k� r� is such that
�A�B�k� r�= eik·ruA�B�k� r�:

���k� r�= eik·r
√

2�1− s��f�k���
[
ei�� �k�uA�k� r�+ e−i�� �k�uB�k� r�

]

E��k�= 
0

−��f�k��
1− s��f�k��

(11)

Here, � = ±1 denotes the conduction and valence bands and f (k) is defined in Eq.
(4). The wave vector k is represented by an axial wave number k and an integer angular
momentum m. The phase angle 2���k� ≡ arg[−�f�k�� indicates the phase difference
of the coefficient before uA and uB, and defines the pseudo-spinor symmetry of the
state [11].

Now consider a perturbation H1, which is uniform in the axial direction, for which
k is conserved. The low energy behavior of � and �∗ bands can be estimated from
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a 2 ×2 effective perturbation Hamiltonian matrix using nearly degenerate perturbation
theory [6]:

Heff =
[
E��k�+H���k� H��∗�k�

H�∗��k� E�∗�k�+H�∗�∗�k�

]

(12)

where the matrix element, H���k� with ��� = � or �∗, can be represented by a
perturbation series of different coupling order �′s as

H���k�=∑

�

∑

��i�

H
���
�� ���i��

H
���
�� ���i��= �¬��H1 ��1�

∏�−1
i=2 ��i−1�H1 ��i�
∏�−1

i=1 �−Ei�
〈
��−1

∣
∣H1 �¬�� (13)

�i ≡��i
�k�mi� r�� Ei ≡ E�i�k�mi�

One notes that all intermediate states �i �i= 1� � � � ��−1� are different from �� and
��∗ by definition. Figure 2(b) illustrates an example of second order coupling between
� and �∗ subbands of an �n�n� A-SWNT through four different perturbation series.
Also shown are the phase angles of the intermediate states relative to �� and ��∗ , which
determine their coupling strength with �� and ��∗ .

3.2. Gapping of A-SWNTs

Assume that a scalar perturbation in the form of H1 = Vq cos�q��− �0�� is applied to
the �n�n� A-SWNT, where Vq is the magnitude of the potential. �0 is defined as the
minimum angular offset of the vertical mirror planes or glide planes of the nanotube
and those of the potential. Using the TB wave function and eigen energy in Eq. (11),
the �-th order perturbation matrix elements in Eq. (14) can be derived as [6]:

H
���
�� ���i��= e−i��q�0

(
Uq

2

)� P�����i��Q���i��
∏�−1

i=1 �−E0
i �

P�����i��=
[
�−1∏

i=1

cos��i−1 −�i�

]

cos���−1 −�� +��q�/3n� (14)

Q���i��=
�∏

i=1

[

1− 1
2
s��i−1 �fi−1�+�i �fi��

]

where the subscripts “0” and “�” correspond to the initial state �� and final
state �� respectively, with angular momentum m0 = m� = n. We stress that E0

i =
−�i
0�f�k�mi��, since the factors �1 − s�i�fi��−1 in Eq. (11) are cancelled by those
from the wave functions. P��({�i}) is the total phase of the perturbation series of given
order � while Q���i�� corrects for contributions from a nonzero orbital overlap s. The
intermediate states, ��i ≡ ��i

�k�mi�� �i = 1� � � � ��− 1�, satisfy the conservation law
for the angular momentum mi with the constraints:

mi−1 −mi = ±q �i= 1� � � � ��−1�

m�−1 −m� = ±q+multiples of 2n
(15)
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The value of �� in Eq. (14) is determined by satisfying the relation that∑�
i=1 �mi−1 −mi� = ��q+ multiples of 2n = 0� i.e., −��q = multiples of 2n. Direct

evaluation of Eq. (14) with all possible {�i} sets is formidable. Nevertheless, one can
get useful information by applying symmetry arguments, as shown below.

We first study the off-diagonal term H
���
��∗ , and replace mi in Eq. (14) with m̃i =

2n−mi, which is allowed by the conservation of angular momentum. The energy
denominators and the function Q remain unchanged while the sign of �� changes. By
defining �̃i ≡ ��i

�k�2n−mi� and by using the relations between phase angles (see
Figure 2(b)), one arrives at

P��∗���̃i��= −P��∗���i��

H
���
��∗���i��+H

���
��∗���̃i��∝

(
Uq

2

)�
sin���q�0�P��∗���i��

(16)

Since the above relation is true for all possible sets of intermediate states at any
coupling order, one can conclude the following. (1) The coupling between � and �∗ is
always zero if �0 = 0 or when any vertical mirror plane or glide plane of the A-SWNT
overlaps with that of the potential. This reproduces the MSB rule and is an explicit result
of the mirror symmetry requirement [24]. (2) The coupling is zero if �� = 0, which
results from mirror reflection symmetry of the energy bands: E0

��k�m�=E0
��k�2n−m�.

This excludes the possibility of any nonzero second order contribution, i.e., � = 2�
�� = 0. In other words, a second order band gap is forbidden in A-SWNTs. (3) The
next lowest possible �� satisfying the angular momentum conservation in Eq. (15)
is given by

�0 = 2n
gcd�2n�q�

(17)

in which gcd is the greatest common divisor. �0 is also the lowest contributing order of
the perturbation series [24]. The very relations (1)–(3) also apply to tensor potentials,
although the dependences of the corresponding phase angles are different [6].

The summation over all possible intermediate states can be simplified further by
combing the original process ({�i}) with the reversal process (��R

i ≡ �−��−i �k�2n−
m�−i���. The sign change of the energy results in an extra factor of �−1��−1 in the
denominator and the function Q changes accordingly. One can prove that

P��∗���R
i ��= P��∗���i��

H
���
��∗���i��+H

���
��∗���R

i ��

∝ �1− �−1���− s�1+ �−1���
�−1∑

i=1
�i�fi�+O�s2�

(18)

Under the approximation of orthogonal basis �s = 0�, only the first term in Eq. (18)
exists and it is nonzero only when � is odd, i.e., when �0 = odd. This constraint on �0

results from the invariance of the inner product of pseudo-spinors upon reversal oper-
ation [11], in combination with the electron–hole symmetry E0

−��k�m� = −E0
��k�m�.
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Figure 3 Band gap variation of (a) (5, 5) and (b) (6, 6) A-SWNTs as a function of the angular
potential with q = 2. Insets: the unwrapped unit cell and schematics of the potential [6]

The latter, however, is not an intrinsic property of A-SWNTs, but rather due to the
approximation of first-NN interaction. For instance, the energy band symmetry is bro-
ken when the second-NN hopping integral is included, or, if s 	= 0. Figure 3 plots the
band gap opening at q = 2 calculated by the TB method with zero or finite overlap
approximations, respectively. At s = 0, the (6, 6) A-SWNT remains metallic, because
coupling order �0 = 6 is forbidden. At nonzero s, a small band gap occurs and increases
with the dimensionless potential, u= UqR/vF , as a power law. In contrast, the band gap
curve of a (5, 5) A-SWNT only shows a slight increase at nonzero s, with corrections
proportional to s2.

An interesting feature for possible applications is that the potential has short oscillation
period, q = 2n, which yields a coupling order �0 = 1. Assuming s = 0, an analytical
expression for the band gap can be obtained by the nearly degenerate perturbation
theory:

Eg = √
3Uo sin�2n�0� (19)

Since � and �∗ are now directly coupled, the band gap is linearly proportional to the
perturbation and the relation in Eq. (19) holds up to a few electron volts. A potential of
this form �q = 2n� requires changing the sign of the electrostatic potential alterna-
tively on neighboring carbon atoms. One can possibly generate such perturbations by
chemical/biological decoration of the tube or by using the high multipoles of very
inhomogeneous potential [25].

The results discussed above can be generalized to arbitrary metallic nanotubes by
expanding the TB electronic wave functions near the Fermi point while retaining the
chiral-angle dependence in the phase angle ��k� [6]. However, due to the lower sym-
metry, relations in Eqs (16) and (18) may not hold in nanotubes of other chirality,
and a finite band gap may occur at a much lower perturbation order. For example,
in a uniform electric field applied perpendicularly to the nanotube axis, an �n�n�
armchair nanotube always remain metallic due to the high coupling order �0 = 2n,
while a second order band gap opens for an �n�0� metallic zigzag nanotube with
Eg ∝ R−2.
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3.3. Renormalization of the Fermi velocity

Except for a few special cases, for instance with q = multiples of 2n, the coupling order
between � and �∗ is about of the same order n and the resulting band gap remains small.
However, the diagonal coupling matrix elements in Eq. (12) are not necessary small.
The same symmetry arguments used above can be applied here. For a scalar potential,
P�� (or P�∗�∗� remains the same upon mirror reflection or reversal operation so that

H���
�� ���i��+H���

�� ���̃i��∝
(
Uq

2

)�
cos���q�0�P�����i��

H���
�� ���i��+H���

�� ���
R
i ��∝ �P�� − �−1��P��� (20)

− s�P�� + �−1��P���
�−1∑

i=1

�i�fi�+O�s2�

with ��� = � or�∗, and � 	= �. Since cos���q�0� is always unity when �� = 0, the
lowest contributing coupling order is therefore �0 = 2. In an orthogonal basis �s = 0�,
only the first term in Eq. (20) remains, which results in an energy shift for � and �∗

subbands in the same direction when � is odd and the opposite direction when � is even.
If s 	= 0, a relative shift between � and �∗ subbands always occurs and their crossing
point (the new Fermi point) is shifted.

The values of H�� and H�∗�∗ , although not contributing to the band gap opening,
may significantly change the low energy density of states (DOS) or, equivalently, the
Fermi velocity. By extracting the linear dependence on �k−kF� from the second order
perturbation term in Eq. (20), the renormalized Fermi velocity is estimated by

v̄F ≈
(

1− u2

q2

)

vF (21)

which agrees very well with numerical results from TB calculations [6]. The low energy
DOS is enhanced by the external potential, which is more evident for large radius
A-SWNTs due to the power law dependence on u= UqR/vF.

3.4. Combination of perturbations

Realistic perturbations usually have more than one dominating angular mode, and the
interplay of different angular components may result in a stronger influence on the
electronic properties of the nanotube. In the simplest case, only two angular components
are present: H1 = V1 cos�q1��−�1��+V2 cos�q2��−�2��. Here �1 and �2 are defined as
the angular offsets of the vertical mirror (or glide) planes of the A-SWNT with regard
to those of V1 and V2. The coupling order �0 is now a function of both q1 and q2. For
q1 = 1� q2 = 2, the lowest-order nonzero coupling is of the 3rd order through  ��k�→
 �1�k�m1�→ �2�k�m2�→ �∗�k� with 24 possible combination of intermediate states
 �1�k�m1� and  �2�k�m2�. By substituting these states into Eq. (14) the band gap is
evaluated as [24]

Eg ≈ 2�H�3�
��∗�kF�� ∝ u3

n2
sin�2�d� (22)
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where �d = �2 − �1 and the dimensionless potential u is defined as �V 2
1 V2�

1/3R/vF.
Equation (22) predicts that whenever mirror planes of the two potential components
coincide ��d = 0�, the band gap should be zero whether or not the MSB condition is
satisfied. The maximum band gap occurs at �d = ±�/4, which is plotted in Figure 4 for
A-SWNTs of different radii. Since this combination always gives a secondary band gap
�Eg ∼ R−2�, which could be hundreds of meV for A-SWNTs with a moderate radius, it
may be an effective mechanism to induce MST effect and be used in tunable metallic
field-effect transistor [25].

Another way to reduce the coupling order �0 is by combining perturbations of
different types, e.g. an elastic radial deformation and a uniaxial electrostatic potential.
Assume that a scalar potential (denoted as U ) is applied on the A-SWNT together with
a tensor perturbation (denoted as ∗ ∝ !
q) of same angular momentum q, but with an
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angular difference �d between the mirror planes of these two components. It turns out
that even if the second order contribution from either component is zero, the cross terms
do not necessarily vanish. Summing up the cross terms, one obtains

Eg ≈ 2�H�2�
��∗�cross�kF�� ∝ u	 sin�q�d�

�
0�
q

�q � n� (23)

where u = UqR/vF and 	 ∼ !
q/
0 are the dimensionless potential and strain respec-
tively. Similar dependence on �d is found as from the previous case of mixed scalar
potential components, but here the band gap is almost independent of radius for fixed
values of u and 	, as confirmed for the case of q = 2 in Figure 4.

The linear dependence of Eg on u = UqR/vF makes it promising to generate a
substantial band gap in a large radius A-SWNT by using only a moderate external
perturbations. Recently, it was found that the conductance of a carbon nanotube can be
controlled by tuning the voltage of a local gate placed near mechanical defects on the
tube, such as kinks or bends [26]. This scenario is reminiscent of the combination of
scalar and tensor potentials of q = 1, and might be related to the resulting second order
band gap.

4. Finite-size effect of carbon nanotubes

Carbon nanotubes, as building blocks of nanotechnology, hold great promise for nano-
scale biological applications. It has been proposed that the small size and stable structure
make short CNTs good candidates for artificial nano-scale channels of water [27–30],
protons [31, 32], ions [33], or polymers [34]. Confinement of water molecules inside the
hydrophobic interior of narrow nanotubes has been recently confirmed by experiments
using X-ray diffraction [35] and neutron scattering [36]. On the other hand, as the length
of a CNT is shortened to a few tens of the radius, the energy dispersion changes from
a continuous spectrum to discrete energy levels while the electronic properties such
as the dielectric response also change from 1D-like to 0D-like. At the same time, the
terminations at the edges of a finite CNT result in appreciable buildup of partial charges,
which plays an important role in the energetics of CNT-based channels. Therefore,
studying the finite-size effect of CNTs is essential for understanding and controlling the
electronic behavior of short CNTs in biological applications.

Below, we choose finite-length (6, 6) A-SWNT segments as our model system.
The atomic partial charges on an unperturbed CNT are calculated using the DFT
(B3LYP/6-31G∗) method and assigned to the CNT as parameters in the simulation.
The electronic properties are calculated within a self-consistent third-NN "-orbital TB
method, which includes interactions up to the third-NNs with values derived previously
[37]: 
0 = −2�97 eV, 
1 = −0�073 eV, 
2 = −0�33 eV for the first-, second- and third-
NN hopping integrals. U0 = 14�6 eV is used for the on-site Hubband energy [38] in
a smoothed form of the electron–electron Coulomb interactions as shown in Eq. (8).
This description is then combined with classical molecular dynamics (MD) simulations
to study the interaction between external molecules and the CNT channel, and the
movement of the molecules through the channel. As shown below, this multi-level
approach provides an efficient way to capture the electrostatics of the nanotube, which



176 Yan Li and Umberto Ravaioli

in turn determines the energetics of the system and the transport behavior of the confined
molecules.

4.1. Structure and atomic partial charges

The finite-length (6, 6) A-SWNT segments are saturated with hydrogen atoms to avoid
drastic geometry reconstruction caused by the dangling bonds [39]. C–C and C–H bond
lengths in the ideal geometry are fixed at dCC = 1�44 Å [7] and dCH = 1�09 Å [40].
Segments of different lengths are label by l, the number of carbon atom sections. As
shown in Figure 5, segments of odd and even l belong to D6h and D6d symmetry groups,
respectively. The former contains a horizontal mirror reflection (�h� while the latter
contains a rotation–reflection (S2n = C2n�h with n= 6), which corresponds to a regular
rotation about the axis by 2"/2n followed by the regular �h operation.

The corresponding selection rules for transitions between the electronic states are
also slightly different for segments of these two different symmetry groups [41]. The
atomic partial charges of A-SWNT segments, �0, are determined under the restricted
electrostatic potential (RESP) fitting scheme by matching the surrounding electrostatic
potential (ESP) built by �0 to the ESP from the DFT method [42]. For the range of
segment lengths we studied (l = 2 to 12), it is found that due to its relative lower
electronegativity, each hydrogen loses 0.13–0.14 electrons, which are mostly picked up
by the outermost carbon atoms while the charges on other carbon atoms decay toward
the tube center rapidly, as demonstrated in Figure 6 for l= 12.

(a)

(b)

σv

σv

σh

S 2n

Figure 5 Structure of (6, 6) A-SWNT segments with l = 3 (top) and l = 4 (bottom) and
stereographs of the corresponding D6h and D6d symmetry groups
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Also shown is the ESP profile calculated from the RESP charges, which features a
wide potential well of about −0�32 eV inside the A-SWNT and agrees reasonably well
with the DFT ESP profile except for a slight overall shift. Also plotted in Figure 6(b) is
the ESP calculated from the Mulliken population analysis, which produces an artificial
barrier of 0.32 eV in the middle of the tube, resulting in distorted channel energetics.
A further analysis indicates that the atomic partial charges mostly reside in the s
orbitals of hydrogen atoms (sH) and the � orbitals of carbon atoms [41]. These highly
localized charges are not expected to move during weak electronic perturbations, but
the resulting local dipoles at the edges contribute significantly to the electrostatics of the
short CNT and may, for instance in a CNT-based molecular channel, greatly influence
the entrance and permeation of molecules through the channel. Geometry optimization
at the B3LYP/6-31G* level shows a contraction of C–C bond length from 1.44 Å to
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1.36–1.39 Å while the changes in the C–H bond and other C–C bonds are quite small
(<2%) [42]. The overall magnitude of atomic partial charges is also decreased in the
optimized structure.

4.2. Band gap oscillation

An infinitely long A-SWNT is metallic with two subbands crossing at the Fermi level.
As the tube length is reduced, the energy levels become quantized and a finite gap
opens between the highest occupied molecular orbital (HOMO) and the lowest unoc-
cupied molecular orbital (LUMO). The energy gaps of nanotubes with ideal geometry
computed with B3LYP and TB method are shown in Figure 7 as a function of tube
length. Both curves exhibit similar oscillation patterns, and clearly fall into three dif-
ferent classes characterized through lengths l = 3s+w, with s being an integer and
w= 0�±1.

It was shown earlier that including the third-NN interaction is necessary to lift the
degeneracy of HOMO and LUMO states at w= −1 and reproduce the nonzero band gaps
from DFT calculations [43]. The energy gap predicted by TB method is systematically
lower than the B3LYP result by ∼1 eV at short lengths, because the TB parameters
used here were derived by fitting the band structure of graphene to pure DFT results
[37], with the latter known for underestimating the band gap [40]. On the other hand,
as a hybrid DFT variant, the B3LYP method should improve the accuracy of energies
by using a mixture of the Hatree–Fock exchange and the DFT exchange-correlation
functional [44]. The differences of gap minima in the two descriptions are caused by the
neglect of curvature effect in our TB model, which has a much less important influence
on the dielectric response. Upon structure optimization, the energy distance between
HOMO and LUMO is systematically larger, as a result of reducing the total energy of
the system.

third-NN TB
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Figure 7 Band gap variation of a (6, 6) nanotube as a function of tube length [42]



Semi-empirical simulation of carbon nanotube properties 179

4.3. Dielectric responses

For infinitely long CNTs, the static dielectric functions can be expressed in the Fourier
space as [45]:

	m�k�= 1+#m�k�Gm�k�

Gm�k�= 2Im�k�Km�k�
(24)

where the density response function #m�k� and the electrostatic kernel Gm�k� are labeled
by the axial wave number k and the angular momentum m. I and K are the modified
Bessel functions of the first and second kind. The electronic potential imposed by
uniform electric fields parallel and perpendicular to the axis corresponds to m= 0� k →
0 and m = ±1� k = 0, respectively. Electronic transitions contributing to dielectric
response must satisfy the selection rules �k1 − k2� = k and �m1 −m2� = m. For finite-
length CNTs, the axial wave vector becomes quantized but similar selection rules apply;
while on the other hand, the overall screening ability is expected to be much weakened
due to long range nature of the Coulomb interaction.

To investigate the effect of size on the dielectric behavior of A-SWNTs, we estimate
the averaged screening constants by turning on a uniform weak electric field parallel
and perpendicular to the nanotube axis and extract the corresponding changes in the
ESP profile from the middle region of the nanotube. Results are plotted in Figure 8 as
a function of index l.

As expected, the parallel dielectric constant is drastically reduced, compared to the
bulk values, as the screening in the parallel direction mostly arises from transitions
between electronic states with small difference in the axial wave vector, i.e., with small
�k with length-induced limitation �k∼ 1/L. Both TB and B3LYP methods show very
similar oscillation patterns in the period of three sections, except that values of 	��TB

are about 10% higher than results from 	��B3LYP. This can be partly attributed to the
fact that the pure DFT method, used in the TB parameterization, usually overestimates
the dielectric constant. The oscillation in 	�� though, is not directly correlated with that
of the band gap shown in Figure 8, as can be seen by comparing 	�� and the inverse
of Eg

−1. This independence on Eg can be understood from the special vertical mirror
reflection symmetry (�v� of A-SWNTs, which is preserved in the finite segments (see
Figure 5). The transition from HOMO to LUMO, which possesses opposite parities with
regard to �v, is forbidden by conservation requirement of the parities.

For dielectric response to fields applied perpendicularly to the tube axis, both TB
and B3LYP methods predict similar oscillation patterns of the corresponding dielectric
constant 	⊥ while small differences arise from neglecting the contribution of � electrons
and the curvature effect in the TB description. The inset of Figure 8(b) shows 	TB

⊥ for
A-SWNT segments up to 30 sections long and one can clearly discern the splitting of
the values into two tails: one converging monotonically to the bulk value (	⊥ ∼ 5 [24])
while the other converging in an oscillating fashion and more quickly.

As shown in Figure 8, energy optimized A-SWNT segments always exhibit a lower
screening capability in both directions. This is because structure optimization always
tends to increase the energy separation between occupied states and unoccupied states,
resulting in larger electronic transition energies and smaller dielectric constants.

So far, the dielectric response has been evaluated under weak external electric field
and the nanotube is assumed to be charge neutral. As pointed out for the case of infinitely
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A-SWNT segments with different length, calculated from both TB and B3LYP methods. Insets:
the TB dielectric constant for A-SWNTs with up to 30 sections

long nanotubes, the dielectric constant is expected to be enhanced upon injection of
charges into the nanotube or under strong electric field [20, 46]. It would be interesting
to see how the dielectric behavior of finite-length nanotubes changes under similar
conditions, as it is usual practice in CNT applications to dope the nanotube or to
modulate the device behavior by applying electric fields, e.g., through a gate or a tip.

4.4. Examples: Short CNTs in biological applications

The nanotube models used in most existing MD simulations have an incomplete descrip-
tion of nanotube electrostatics, which may affect accurate modeling of transport through
the nanotube channel. For example, most models treat the nanotube carbon atoms as
neutral, thus neglecting the local dipoles formed at the nanotube edge due to charge
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transfer and the polarization effect from the delocalized � electrons. Both are important
sources of electrostatic interaction. Attempts have been made to employ ab initio MD
methods [31, 32] to study water and proton transport through nanotubes, but the compu-
tational cost limits their applications in MD settings. The self-consistently TB approach
discussed above, when combined with classical MD simulations and using parameters
from first principle calculation, may serve as an efficient and sufficiently reliable way
to characterize the CNT-based channel and account for the electron degrees of freedom
of the system [5, 42, 43].

As a demonstration, here we show examples based on this semi-empirical description
to study the interaction of a single water molecule or a potassium ion with a finite-
length nanotube channel in biological applications. The atomic partial charges and the
polarization of the nanotube are found to be important in determining the energetics of
such system and the movement of water/ions through the channel.

We look first at a system consisting of a single water molecule and an open-
ended 12-section (6, 6) A-SWNT with ends saturated with hydrogen atoms [42]. The
interaction between the water molecule and the nanotube includes the short-range
van der Waals (vdW) interaction calculated with a standard Lennard–Jones poten-
tial, UL–J, the Coulomb interaction arising from the atomic partial charges q0i�U0,
and the interactions with the induced charges !qi on the A-SWNT, Uind, where the
index i runs over all atomic sites of the CNT. Geometry and atomic partial charges
of the water molecule are assumed to be those of the TIP3P model [47], i.e., with
dOH = 0�9572 Å� �HOH = 104�52�, and q�O�= −2q�H�= −0�834e. Amber 94 force field
parameters [48] are used for the C-O Lennard–Jones potential:

UL–J�r�= 4�0	CO���CO/r�
12 − ��CO/r�

6� (25)

with 	CO = 0�1143 kcal/mol and �CO = 3�2752 Å. The atomic partial charges on the
CNT are determined by RESP scheme at the B3LYP/6-31G∗ level on an isolated
CNT and fixed during the simulation: q0�H� = 0�138308e, q0�C1� = −0�176750e,
q0�C2�= 0�032725e, q0�C3�= 0�023788e, q0�C4�= −0�022954e, q0�C5�= 0�006498e
and q0�C6� = −0�001615e, where the carbon atoms are counted from the edge
towards the center. The induced charges are calculated self-consistently through the TB
method, treating electric fields from the water dipole as external perturbations in the
TB Hamiltonian.

Figure 9(a) illustrates the total interaction energy and its components as a single
water molecule with fixed orientation moves along the nanotube axis. UL–J is found
to be almost symmetric with a simple potential well of −4�34 kcal/mol in the middle
of the tube. In contrast, U0 is anti-symmetric due to the nonzero axial dipole moment
of the water molecule, �z ≈ 2�35 Debye. The edge dipoles on the nanotube strongly
affect the energetics of water entering the tube: on the left (right) side, the water
molecule encounters a shallow potential well (barrier) of 0.44 kcal/mol followed by a
high potential barrier (well) of 2.97 kcal/mol. In the middle of the tube, the potential is
nearly vanishing. Uind has a similar shape as UL–J, but is about one order of magnitude
smaller.

In summing up all three contributions, the total potential, Utot, exhibits several char-
acteristic features. At the edges, the shape of Utot is dominated by U0, and the resulting
energy barrier from the edge dipoles may slow down the transport of water through the
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Figure 9 (a) Interaction energies between an ideal 12-section (6, 6) A-SWNT and a single
water molecule of fixed orientation at various positions along the nanotube axis � and � refer
to different RESP fitting schemes [42]. (b) A snapshot of MD simulation with a 6-water-chain
inside the same nanotube. The overlaying curve plots the summed induced charges of each carbon
section of the nanotube [43]

nanotube. With a different termination, e.g., with atoms or functional groups other than
hydrogen atoms, the shape and magnitude of U0 and even the dynamics of the whole
system may be quite different. Therefore it is extremely important to include the proper
atomic charges and the corresponding electrostatic potential term U0 in a realistic model
of CNT channels. In the middle of the tube, the major contribution to Utot stems from
UL–J, while Uind further lowers the potential well by about 0.5 kcal/mol.

Though small, the polarization effect from Uind is not negligible when considering the
filling of the CNT channel by a one-dimensionally ordered chain of water molecules
instead of just a single molecule. Figure 9(b) is a snapshot taken from a classical MD
simulation with six water molecules inside the same A-SWNT. Due to the confinement
of the nanotube, these water molecules are arranged in a single file and their dipole
moments are preferably aligned along the tube axis. According to previous MD studies,
filling of the hydrophobic interior of a narrow nanotube results from a delicate energy
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balance and is subject to change under external perturbations as small as few kBT
[28], with kB being the Boltzman constant and T the room temperature. We found
that Uind between the six-water chain confined inside a short nanotube and the images
charges on the nanotube surface (Figure 9(b)) amounts to about the same energy scale
(∼6kBT �, while the total dipole moment of the water chain is reduced from 12.23
to 5.24 Debye. A similar yet stronger screening effect has also been observed in an
ab initio calculation [32].

When the molecule interacting with the nanotubes is charged, the situation becomes
drastically different [5]. Figure 10(a) shows the interaction energies of a potassium ion
(K+) with the same nanotube as a function of the axial location of the ion. The Lennard–
Jones potential between the K+ ion and the nanotube is modeled using the CHARMM27
force field, with 	KH = 0�043749 kcal/mol� 	KC = 0�078039 kcal/mol��KH = 2�7473 Å,
and �KC = 3�3464 Å [49, 50]. In contrast with the case of a water molecule, the elec-
trostatic interaction terms now dominate over the Lennard–Jones potential in the whole
range. The Coulomb interaction from the atomic partial charges, U0, takes a symmetric
shape and is attractive inside the nanotube and repulsive outside the nanotube, with
an energy barrier of about 7.02 kcal/mol from the edge dipoles. The polarization effect
from � electrons further lowers the potential by about 25 kcal/mol. Most importantly,
Uind effectively reduces the access barrier to 1.05 kcal/mol, making it possible for a
monovalent cation to enter the nanotube simultaneously. The interaction energies along
the x axis in the tube center are also plotted in Figure 10(b), which indicates a local
maximum at the origin and a minimum at a radial distance of about 1.3 Å, as a compet-
ing result of a more repulsive vdW potential and more attractive Coulomb interaction
when the ion moves towards the wall of the CNT.

To study the dynamics of the K+ ion inside the short CNT channel, we simulate
the system by employing the polarizable nanotube model under the micro-canonical
ensemble with the nanotube fixed at its ideal geometry. The K+ ion is initially placed
still on the z-axis (0, 0, −8�803 Å), close to one end of the nanotube. Due to the attraction
from the image charges on the nanotube, the K+ ion starts to oscillate. The instantaneous
induced charges at each atomic sites on the nanotube are updated constantly during the
MD simulation, while the initial atomic partial charges are always fixed.

During the simulation of 4.84 ps (with a time step of 2 fs), the ion finishes two
complete cycles at a frequency of 0.43 THz, which agrees well with the estimated value
of 0.41 THz obtained by fitting the harmonic component of the interaction potential.
The intervals used for numerical fitting are indicated by the dashed lines in Figure 10.
If the K+ ion is set off on the z-axis by 1.0 Å, for example, the axial oscillation of the
ion is then accompanied by fluctuations in the radial direction, resulting in a slightly
decreased oscillation frequency [5]. Energy dissipation, e.g., through interaction with
the phonon modes of the nanotube, should dampen the oscillation observed in the above
QM/MM simulation. A complete characterization of this nano-oscillator will require
knowledge of the vibrational modes as well as the dynamic dielectric response of the
nanotubes. Nevertheless, this simple CNT-based terahertz (THz) oscillator scheme could
conceivably lead to a THz wave-detector at room temperature, and there should be room
to improve and modify the interaction strength and oscillation dynamics by selecting
CNT geometry, terminations, and the type of interacting ions or molecules.

In the water/CNT or K+/CNT complex, the atomic partial charges on the nanotube
edges constitute a major part of the total interaction energy, while the polarization from
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Figure 10 Interaction energy between the K+ ion and the nanotube along (a) the z axis and
(b) the x axis. Comparison is made between a nonpolar model (without contribution of Uind�
and a polar model (with contribution of Uind)

� electrons considerably lowers the electrostatic energy. These properties should affect
the motion of charged or polar molecules entering, moving through and reorienting
inside the CNT channel. We have provided the proof of concept that a multiple-level
approach combining a quantum mechanical model (including first principle and semi-
empirical methods) and molecular mechanical simulations provides a fast yet efficient
way to capture the main features of such systems at a relatively low computational cost.

5. Conclusion

In this work, we have applied a semi-empirical TB method to study both infinite and
finite-size CNTs under electronic perturbation. The inclusion of charge self-consistency
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and the combination with methods at different approximation levels make it an accurate
and efficient way to treat the electron degrees of freedom of the CNT-based system. We
have demonstrated that the low dimensional (0D and 1D) characteristics of geometric
and electronic properties make CNTs a promising element with unique properties for
applications in electronic transport devices as well as in biological systems involving
nano-scale confinement in molecular channels.
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1. Introduction

The recent advent of molecular electronic systems has opened up a new frontier, whose
aim is the ultimate miniaturization of electronic systems [1–7]. The current–voltage
(I-V) characteristics of such atomic and molecular systems, along with the more complex
Nanometer Electro-Mechanical Systems (NEMS), hold the promise of revolutionary
new devices for ultra-sensitive probes and detectors, very high speed and ultra-large
density electronic components, and the possibilities of novel logic layouts. Indeed,
demonstrations of molecular-based logic gates and nonvolatile random access memory
have already been realized, and point to the exciting possibility of molecular computing
[1, 2, 4]. However, many challenges remain before molecular electronic systems can
become a viable technology. In very general terms, these include a fundamental under-
standing of molecular electronic systems, the synthesis and cost-effective assembly of
nanostructures into desirable, functional arrangements, and the establishment of good,
reliable macro-to-nanoscale contacts. In this short review, we focus on theoretical devel-
opments associated with the first of these challenges, aimed primarily at first principles
approaches to the modeling of quantum transport for real molecular electronic systems.

Aside from the technological impetus, there is a great interest in understanding quan-
tum transport from a fundamental point of view. For instance, at what length scales, and
in what manner, do the macroscopic transport laws break down and quantum effects
take over? Although the trend in device miniaturization has been going on for about
60 years [8], experimental answers to these questions have only become available during
the 1980s and 1990s with the advent of mesoscopic [9], and now nanoscale systems
[10]. Mesoscopic systems are typically in the 100 nm to 1 �m range, and were first
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studied intensely in the 1980s. The outstanding example here is the two-dimensional
electron gas, which is a carefully manufactured system in which a small subset of elec-
trons is trapped in a layer of a heterojunction between two semiconducting materials.
The electrons move through in this layer over relatively long distances (∼1 �m), while
maintaining phase-coherence and without undergoing significant scattering [9]. While
mesoscopic devices dominated the 1980s, the 1990s have seen the rise of molecular or
nanoscale devices, which directly manipulate the electronic states of individual atoms
and molecules to form the device. This field has benefited considerably from the devel-
opment of self-organized structures such as carbon nanotubes [11], and other nanowires
[12]. Devices such as nanotube-based field-effect transistors [13, 14], intramolecular
metal-semiconductor diodes [15, 16], and intermolecular-crossed nanotube-nanotube
diodes [17] have already been produced in the laboratory, and analyzed. Currently, the
transport properties of similar structures based on different materials such as metals,
semiconductors, polymer, organic compounds, and biomolecules are all the subject of
intense scientific investigations [18].

In the field of molecular electronics, experimental work has clearly demonstrated that
many of the important device characteristics relate specifically to the strong coupling
between the atomic and the electronic degrees of freedom. Hence, the accurate prediction
of the properties of atomic and molecular scale devices – including the true I-V curves
with as few adjustable parameters as possible – still represents a formidable challenge.
However, recent algorithmic advances related to the application of nonequilibrium
Green’s function (NEGF) methodology to the transport problem [18–21], combined with
power of fast supercomputers, mean that theory is poised to make significant inroads
into this important problem. The purpose of this chapter is to give a short review of this
new methodology [20, 21], and use selected case studies to illustrate some of the very
basic principles behind quantum transport [22–25].

2. Review of methodology

At the nanometer length scale, devices are typically much smaller than the mean-free
path length of the electrons, which move ballistically through the system [18]. To
illustrate the complexity of the quantum transport problem, consider a typical two-
probe molecular device shown in Figure 1. The device consists of an Si10 cluster
contacted to two metallic electrodes, assumed to be aligned along the z-axis, which
extends to two electron reservoirs at z = ±�, where the current is collected. A gate
electrode, which couples capacitively with potential Vg to the molecule, may also be
present. It is clear that accurate transport properties cannot be described semi-classically,
but must be derived from a quantum mechanical treatment which, at the level of
density functional theory (DFT), includes the atomic orbitals, the exchange-correlation
interactions, the core-valence interactions, the coupling to the electrodes, and the effects
of any externally imposed fields. Finally, the microscopic system must be coupled to
macroscopic reservoirs in order to investigate the electron transport. Furthermore, if the
electrochemical potentials �l�r + Vl�r with bias voltage Vl�r of the left (l) and right (r)
electrodes are not equal, then the device is actually in a nonequilibrium state.

To properly deal with transport, three aspects are essential. First, one must deal with
an open quantum system within the DFT formalism. This is different from conventional
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(a)

(b)

Left Lead Right LeadScattering region

Figure 1 (a) Plot of the Al(100)/Si10 molecular device. (b) Contour plot of a slice of the
equilibrium charge distribution. Note the almost perfect match across the boundaries of the
scattering region and the electrodes

DFT simulation schemes, which are based on plane-wave [26] or real-space methods
[27] which deal with a finite or isolated system, such as a collection of atoms or
molecules or with a periodic supercell type of structure. By contrast, the device shown in
Figure 1 has open boundaries provided by the long electrodes, which maintain a specific
chemical potential due to the external bias voltages. Hence, one must find new ways
of making this “infinite” open problem into a tractable finite-size problem. Second, one
has to calculate the device Hamiltonian H���r�	 within DFT using the correct charge
distribution ��r�, which must be constructed under a finite bias with the correct open
boundary conditions. For open systems, the charge distribution is constructed both out
of the scattering states connecting z = −� to z = +� and out of the bound states
which may exist within the molecular region. Finally, one needs an efficient numerical
procedure in order to simulate molecular devices with a large number of atoms.

To date, all the theoretical approaches to the accurate modeling of quantum transport
of molecular devices fall into four main categories: semi-empirical methods [28–33],
supercell methods [33–38], open-jellium Lippman-Schwinger approach [39–45], and the
recently developed NEGF approach [20, 21]. Fully recognizing the important contribu-
tions made by all of these approaches, we briefly outline their pros and cons along with
a short discussion of pending challenges.

Semi-empirical [28–33] methods are typically non-self-consistent, and are based on
parameterized tight-binding type of Hamiltonians for bulk and isolated molecular sys-
tems. These parameters, in general, cannot account for important factors such as the
external bias or gate potentials. In addition, one can expect difficulties with the align-
ment of the Fermi levels of the electrodes and the molecular region, because true
self-consistency is lacking. Semi-empirical methods are, however, relatively simple and
easy to implement, which accounts for their widespread popularity. Indeed, in situations
where there is relatively little charge transfer, they often provide good semi-quantitative
insight. For instance, they have recently been used quite extensively in exploring trans-
port through carbon nanotube–based systems [33].
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Supercell methods [34–38, 46] are based on ab initio solutions to the Kohn–Sham
(KS) equations using periodic boundary conditions. Once these are solved, the effective
device potential is joined to perfect electrodes, and the scattering states determined via
a recursive technique. This is a first principles method and, as such, it is parameter-
free. However, because the effective potential is derived from a problem with periodic
boundary conditions, these methods cannot describe systems with different electrodes
and, more importantly, they cannot deal with systems under an external bias. These
methods are for the most part suitable for calculating transport coefficients such as the
conductance within the linear response regime.

In the Lippman-Schwinger-based open-jellium approach [39–45], the leads are
described in terms of a jellium model. The KS equations are then solved self-consistently
for the open structure, and the charge density is constructed from the scattering states of
the device. As such, this method – which has been pioneered by Lang [39] – correctly
describes the open boundary conditions, and may be used to calculate I-V curves. There
are, however, two problems inherent in this approach which appear to be difficult to
overcome. For molecular devices, it is not enough to simply use the scattering states to
construct the charge density and the potential – the bound states which exist inside the
device must also be accounted for in order to achieve a truly self-consistent solution.
Second, the use of the jellium model for the leads does not account for any effects
resulting from the realistic atomic structure of the leads. For instance, associated with
a set of atomic leads will be a band-structure, which determines the wavevectors and
energies of the electrons moving through the device. Clearly, a realistic description
of molecular electronic systems must, in some fashion, account for the features of
the leads.

The most recent advances in the theory of molecular electronics have been based on
combining the NEGF formalism with DFT-based simulations [20, 21]. Over the past few
years, this approach has been applied to an ever growing number of physical systems,
including fullerenes, nanotubes, clusters, metallic nanowires, and organic compounds,
primarily in a two-probe geometry [47–55]. Roughly speaking, the main advantages of
the NEGF–DFT approach are: it allows for (i) a proper treatment of the open-boundary
conditions for a quantum system under a bias voltage; (ii) a fully atomistic treatment of
the electrodes; and (iii) a self-consistent calculation of the charge density via NEGFs,
thereby incorporating the effects of both the bound and the scattering states in the system.
Moreover, because this approach is based on real-space grids, the entire procedure may
be parallelized enabling the treatment of large systems.

The key feature of this NEGF formalism is that the self-consistent charge density
is not constructed out of the eigenstates of the system. Rather, the charge density is
determined via the Keldysh NEGFs [18–21], which provides an efficient framework
for dealing with an open quantum system. Roughly speaking, the self-consistent charge
density � may be constructed from the NEGF G< via:

� = − i
2


∫
dEG<�E� (1)

with

G< = GR
∑<

�fl� fr	G
A (2)
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with GR�A denoting the retarded/advanced Green’s functions of the device. The quantity
�< = −2i Im�fl�

l + fr�
r) represents the injected charge from each of the electrodes,

and is defined in terms of the self-energies (�) of each of the leads, and the distribution
functions fl�r describing the occupation of the eigenstates of the electrodes. Note that
in the absence of a bias voltage, one can compute the linear conductance coefficients
using the equilibrium Green’s function GR, instead of G<. However, in the presence of
a bias voltage, G< must be used because the system is out of equilibrium. For a system
at equilibrium, all states below the the chemical potential � will be filled, such that
fl�E� = fr�E�. For those states, Re[G<�E�	 = 2Im�GR�E�], so that:

� = 2



∫ �min

−�
dEGR�E�+ 1




∫ �max

�min

dEG<�E� (3)

where �min = min��l + Vl��r + Vr� and �max = max��l + Vl��r + Vr�. The evaluation
of these integrals is complicated by the fact that they contain contributions from both
the scattering states – i.e. eigenstates with a continuous spectrum which correspond
to electrons with wave-functions extending infinitely into the leads – and the bound
states, which are states of discrete energy with wave-functions localized in the central
scattering region and decaying into the leads. Such bound states arise if the molecules
in the central region have states with energies below the propagating threshold of the
leads, if there are mismatches in the symmetries of the wave-functions, or when there
are bandgaps present in both of the lead electrodes. The contributions of these bound
states to the charge density may be significant, and generally speaking should not be
ignored. To calculate their contribution, we note that it has been shown that GR has
poles at the bound state energies that lie below the real energy axis in the complex
plane. Hence, GR is analytic above the real axis. Thus, a convenient way of dealing
with them is to integrate the first term of equation (3) along a semi-circle in the upper
half plane of the complex plane, starting from some minimum energy that lies below
all the states, and ending on the real axis at �min, as shown in Figure 2. Numerically,
very accurate integration is achieved by means of Gaussian quadrature with a relatively
modest number of points. The presence of bound states between �min and �max is
actually problematic, giving rise to singularities in G< which manifest themselves as
convergence problems. Fortunately, most systems investigated to date are free from

Ei

Eminimum
µ min µ max Er

Figure 2 Schematic integration pathway in the complex plane used to evaluate the charge
density
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this problem, and may otherwise be treated with a special symmetry decomposition
scheme [24].

To calculate the required quantities, the electronic wave-functions are represented
with a minimal �s� p� d linear combination of atomic orbitals (LCAO) basis set [55],
along with standard pseudopotentials [56]. This gives a description similar to that used
for the SIESTA code [21], except that the terms are augmented to include the effects
of the open system Poisson’s equation with the proper boundary conditions. The latter
is solved by means of standard multigrid methods [57]. Ultimately, such a description
gives a set of tight-binding-like matrix elements for both the Hamiltonian and the
overlap matrices. To handle the contributions of the leads, the respective self-energies
are calculated by means of the method of Sanvito and coworkers [58]. Construction
of the retarded (advanced) Green’s functions from these quantities is standard, and
proceeds by direct matrix inversion.

The current is then evaluated with the Landauer formula:

I = 2e

h

�max∫

�min

dE�fl −fr�T�E� (4)

where T�E� is the transmission probability given by:

T�E� = 4Tr
[
Im
(∑l

)
GRIm

(∑l
)

GA
]

(5)

It should be emphasized that since the current is calculated from a self-consistent
analysis, the quantities inside the trace are all functions of the bias potential, so that
gauge-invariant I-V curves are obtained. This is important because all the relevant
physics of the devices can only depend on the voltage differences [59]. At equilibrium,
the current is proportional to the conductance G:

I = G�����l −�r� (6)

which when evaluated at the Fermi level � of the device gives G(�� = �2e2/h�T���.

3. Transport through prototypical molecular electronic devices

To illustrate the power of the methodology, along with the main physics behind molec-
ular transport, we briefly discuss four examples taken from primarily our own work
[22–24]. Specifically, transport through small Si clusters and finite nanotubes, carbon
nanotube capacitance, and an organic molecule that acts as a molecular diode will be
considered.

As a first example. we consider the I-V characteristics of small Si-clusters in contact
with two Al-electrodes, as shown in Figure 3. The clusters display metallic I-V char-
acteristics with a linear regime about the origin and significant nonlinearities setting
in at a higher bias. Specifically, for Si4, there is evidence of strong negative differ-
ential resistance (NDR) with the current decreasing with increasing bias voltage. For
the Si7 clusters, this effect is considerably less pronounced. How can one explain the
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Figure 3 Sample I-V curves for Si nanoclusters between Al-leads: filled circles, Si4;
squares, Si7

shape of these I-V curves? To understand these, we have analyzed the transmission
coefficients T�E�Vb�, which give us the contribution to the current as a function of
the electron energy and bias voltage. The shape of this function is determined by two
concepts, namely the band structure of the leads and the renormalized molecular levels
that mediate the transmission process.

Figure 4 shows T�E� (right panel) for both Si4 and Si7, along with the band structure
(left panel) of the (100)Al for wavevectors in the device direction. On the band structure,
the wave vectors that couple to the scattering states of the system are marked with filled
circles, such that the size of the circles indicate the relative importance of that state to the
transmission process. What is observed? For Si4, there are two bands that significantly
contribute to the transmission near the Fermi level, which here has been shifted to
E = 0. The contributions from the other bands are considerably less, and hence T�E�
takes on a value greater than two (units Go�. Similarly, for Si7, more bands contribute
to the transmission giving a larger value of ∼3�5. The linearly increasing part of the I-V
curves is now readily understood: as the bias voltage increases, the relative position of
the band structure of the left- and right-electrodes are shifted apart by the bias. Between
E = 0 and ∼0�46 eV, the current increases because more and more conduction density
of states are included in the integration window. However, for V > 0�46 eV, there are
no additional conduction density of states because no scattering states in that energy
region couple to the cluster. Clearly, T�E� must decrease precipitously at this point,
and the current begins to drop. The system therefore displays NDR unit ∼2 eV, when
transmission can take place through other subbands and the current begins to recover.
This behavior is to be contrasted with that of the Si7 cluster. For that cluster, there
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is always at least one band that conducts significantly. Hence, although T�E� does
decrease significantly, it does not go to zero. This decrease in T manifests itself through
a decrease in the slope of the I-V curves. These considerations clearly emphasize the
importance of keeping a fully atomistic description of the leads.

The aspect that determines the shape of T�E� are the molecular levels that mediate the
transmission process. First, consider an isolated molecular cluster. For such a system, it
is relatively easy to find the molecular levels by simply diagonalizing the Hamiltonian
of the system, thereby identifying the HOMO/LUMO levels. These may or may not,
however, be exactly the levels relevant to the transmission process. Because of the
coupling between the electrodes and the molecule, the character of these levels will
change considerably in ways that are not known a priori. Furthermore, the energy
spectrum for the open quantum system will be continuous and broadened because of
the contacts to the leads. To understand these changes, we have focused on calculating
the renormalized molecular levels (RMLs), which we have approximated as follows.
After a self-consistent field calculation of the Kohn-Sham equations is completed, one
obtains the self-consistent potential and the matrix elements of the Hamiltonian. By
diagonalizing the submatrix of the Hamiltonian associated with the molecule (e.g., the
Si-clusters), one obtains a set of new levels – the RMLs – which are characteristic of
the changes induced in the molecular levels of the isolated cluster through the coupling
to the leads. These RMLs are plotted as filled circles on the T�E� of Figure 4. Roughly
speaking, the presence of peaks in T�E� correspond to the location of an RML. Hence
the position of an RML marks a broad region of energy over which there is significant
coupling between the electronic states of the clusters and the leads. Generally speaking,
the six states closest to the HOMO/LUMO gap of the original molecular levels of the
isolated clusters provide the majority of the contribution to the RMLs.

The second example we will consider is that of short carbon nanotube, which will
serve to illustrate the important role played by evanescent waves for molecular elec-
tronic systems [23, 60]. The device consists of an (8, 0) single-walled carbon nanotube
between two 5 × 5 Al(100) electrodes. Figure 5 shows the calculated I-V curves for
four semiconducting nanotubes of increasing length. The short tubes display more or
less linear behavior, characteristic of metallic systems. As the length of the nanotube is
increased, the I-V curves flatten and the system acquires much more of a semiconducting
nature. To gain further insight into the transport, Figure 5 also shows the transmission
spectra of these devices. This is a somewhat complicated function, reflecting both the
bandstructure of the leads and the nanotube levels that mediate the transport. As a
generic feature, it is evident that T�E� does develop a gap about the Fermi level, that
progressively widens and deepens as the nanotube length is increased.

To understand the origins of these features, we consider the electronic states of these
devices. As the central part of the nanotube becomes very long, one can expect that the
electronic states in this region approach that of a very long, periodic nanotube without
any Al-leads. An examination of the coupling between the nanotube and the electrodes
does indeed show that the most significant perturbations are confined to the atomic
planes adjacent to interface: aside from the interface dipole, only a small amount of
charge flows into the nanotube.

Thus, away from the edges of the leads, the system is approximately translationally
invariant, and so the electronic states of this device should be similar to states of
an infinitely long nanotube with a similar charge distribution. This has been checked



196 Pawel Pomorski et al.

2 cells 4 cells 6 cells 8 cells

200

150

100

50
20

40

60

0.5 0.51.5 1.5
0 0

5

10

15

20

25

0

5

10

15

0
0 01 1 0.5 1.50 1 0.5 1.50 1

6

5

4

3

2

1

0
–2 –1 0 1 2

6

5

4

3

2

1

0
–2 –1 0 1 2

6

5

4

3

2

1

0
–2 –1 0 1 2

6

4

2

0
–2 –1 0 1 2

Bias (V)

l (
μA

)

E (eV) E (eV) E (eV) E (eV)

Bias (V) Bias (V) Bias (V)

T
 (

E
 )

Figure 5 I-V curves (top panel) for nanotube device, consisting of 2–8 unit cells, respectively.
The transmission spectrum for each corresponding device is also shown (bottom panel). Note the
development of the gap about V = 0, as the number of unit cells is increased

explicitly through a calculation of the renormalized bandstructure of the system. Given
a self-consistent Hamiltonian matrix, we select the submatrix corresponding to the
different unit cells of the device, and calculate the bandstructure by standard means. This
renormalized bandstructure reflects the influence of the leads, the bias voltage, and other
external effects. Generally, within a constant energy shift, there is excellent agreement
between the shape of the renormalized bandstructure and that of an infinite carbon
nanotube. What is important here is that this bandstructure retains the characteristic of a
semiconducting system with no propagating modes near the Fermi energy. This suggests
the presence of evanescent modes inside the semiconducting nanotube, with very long
decay lengths responsible for the metallic transport characteristics of the finite-sized
nanotubes.

These evanescent modes give rise to a finite density of states inside the nanotube,
which acquire charge from the Al-electrodes forming metal induced gap states (MIGS).
The presence of these MIGS is signalled by nonzero values of T�E� in the gap region,
as shown in Figure 5. Of course, for a very long nanotube coupled perfectly to ideal
leads, transmission would be given by the number of propagating modes present at any
given electron energy. Evanescent modes, which decay a finite distance away from the
electrodes, would then not play a role. In contrast, for the finite-sized nanotube system
considered here, the evanescent modes play a crucial role because of tunneling through
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shown. The contributions of the evanescent bands to T�E�, which dominate the gap region, are
shaded

these modes. Clearly, their contributions will be most important inside the band gap,
where no propagating modes are present.

To quantify this aspect, we have decomposed T�E� into its contributions from the
different modes, and plotted the results along in Figure 6. This figure clearly shows
that the evanescent mode contribution dominates the transmission process account-
ing for almost 100% of T�E� within the gap region. The origins of the evanescent
modes may be understood in terms of the complex band structure of the nanotubes.
The evanescent modes are associated with the imaginary branch of the complex band-
structure. Essentially, the complex branch consists of a pair of “loops”, that “connect”
different valence and conduction bands of the real branch of the bandstructure. For the
(8, 0) nanotube, Im(k) near the Fermi level is about k ∼ 0�3 (in units of the inverse
unit cell length ��. This is important, because the decay length of the evanescent
modes may be estimated as � ∼ 2
/k ∼ 6–10 unit cells, in agreement with the numer-
ical data.

We now turn to the case of an polyphenylene-based molecule (Figure 7), which can
be shown to act as a molecular diode. The polyphenylene molecule consists of two
parts: a donor and an acceptor part, each with their own molecular levels. The two
parts of this organic molecule are separated from each other by means of a central CH2

pair, which acts as an effective electronic barrier. The molecule is attached to two Au
leads. Figure 8 shows the calculated I-V curves, which show that the device acts as
an effective molecular diode. Thus, the current is mostly small, until the bias voltage
approaches −2 V, at which point the current begins to rise steeply. The workings of
this device can be understood from a straightforward analysis of the molecular levels
of the device. For the most part, the donor and the acceptor portions of the molecule
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have levels that are well separated from each other. Hence, electrons tunneling through
the CH2 barrier have nowhere to go, and so the current is small. However, under the
influence of a bias of about −2 V, the levels are shifted into alignment. Electrons can
therefore tunnel through these levels and then into the device electrodes signaled by the
subsequent current rise.

As a final illustrative example, we discuss recent investigations of the capacitance of
carbon nanotube systems [24]. This problem differs from the previous examples insofar
that it depends on the induced rearrangement of charges, rather than on the direct flow
of current. For general nanoscale systems, it has been theoretically predicted [61–63]
and experimentally verified [64] that the capacitance of molecular scale conductors
shows distinct, nonclassical behavior, as previously anticipated from general consider-
ations [63]. Specifically, at the nanoscale, the screening length of the material is often
comparable to the dimensions of the system, so that the classical concept of electrostatic
capacitance is no longer adequate. Instead, one makes use of the notion of the the elec-
trochemical capacitance C�� = e�dQ�/d���, which is a measure of the charge variation
dQ� on conductor � when the electrochemical potential of the reservoir connected to
conductor � is changed by a small amount d��. C�� takes quantum effects into account,
and may behave qualitatively and quantitatively very different when compared to its
classical counterpart [64].

To calculate the capacitance, use was made of the NEGF–DFT-based formalism.
However, here the focus is on calculating the charge as a finite bias is applied to
the reservoirs, i.e., �Q = Q�V +Vb�−Q�V �, and then calculate the capacitance from
Vb = ed�. As a further feature, it has been useful to use Dirichlet boundary conditions
for the electrostatic potential at the walls of the finite-sized calculational box, which
corresponds to surrounding the system with a metal container. This serves to terminate
any field lines which may escape from the nanotubes [65]. For a container infinite in
size, the results would reduce to that of a system in free space.

Figure 9 shows an example of a two-probe system [24], in which a capped (5, 5)
nanotube is inserted at a finite distance into an open (12, 12) tube, with the central
axis coinciding. The system now consists of two semi-infinite nanotube leads, and a
central region containing the junction of the two tubes. Note that distance between the
carbon atoms is quite large – at least 9.1 A, so that the tubes are de facto separated,
with no dc current flowing between them. Of course, the tubes are coupled through
influence of the electrostatic potential. Details of the charging of the nanotubes, along
with a histogram of the change in the total charge accumulated on each nanotube
ring, is shown in Figure 9. In particular, it is noted that the (12, 12) tube acquires a
very large amount of charge on its terminal ring due to the presence of the dangling
bonds.

For this particular nanotube case, the charge accumulation is essentially linear
as a function of the bias voltage. The calculated values of the capacitance
matrix are C�5�5��5�5� = 0�105 aF�C�12�12��5�5� = −0�455 aF�C�5�5��12�12� = −0�451 aF, and
C�12�12��12�12� = 0�156 aF. Figure 9 also displays coefficient C�5�5��12�12� as a function of the
nanotube insertion depth, which ultimately matches that of two nested carbon nanotube
shells. From the figure, it is also evident that nanotube, to which the bias is applied, gains
charge along its entire length. This “self-charging” is due to the capacitive coupling
between the nanotube and the surrounding metal container. It therefore follows, that the
values of C�m�m��m�m� calculated will increase linearly in size, as more and more of the
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Figure 9 (a–d) Nanotube charging of the (12, 12)/(5, 5) biased junction for a central simulation
box of 458 atoms. A +0�272 eV bias is applied on the right (5, 5) tube in (a, c), and on the left
(12, 12) tube in (b, d). Upper panels (a, b) show charge accummulation with a temperature color
scheme (blue is charge addition, red is charge depletion). Lower panels (c, d) display histogram
plot of the charge accummulated on the nanotube rings, with the black (red) bars showing charge
accummulation on the (12, 12) capped (5, 5) tubes, respectively. Panel (e) shows capacitance
matrix element as a function of the relative position d of the two nanotubes. The origin d = 0
is chosen such that the longitudinal positions of the terminal rings of both tubes coincide, and
negative d indicates the overlap between the two tubes. Finally, (f) illustrates the computational
configuration and the equivalent circuit device

charge density is included. To understand this, it is useful to consider the equivalent
circuit of the device shown in Figure 9(f). In addition to the capacitance between the
nanotubes in the central cell, there are the additional capacitances between the nano-
tubes and the container. For a system enclosed in an infinitely large box, the capacitive
coupling between the leads/box will vanish, and all charge variations will occur in
the junction only. All capacitance matrix elements would then be equal in magnitude.
However, finite-size investigations show that the values of the C�m�m��n�n� capacitance
coefficients are in reasonable agreement with their large-box limits. In addition to
the investigation of the two-probe nanotube system presented here, the capacitance of
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nested concentric nanotubes, a special (12, 0)/(6, 6) nanotube junction, and the action
of nanotubes as probes over Al (100) surfaces have all been considered [24].

4. Current theoretical developments

The NEGF–DFT formalism for quantum transport is poised to make important contribu-
tions towards calculating the device properties of real materials systems, especially when
combined with the power of parallel supercomputers. While the first implementations
discussed in this review have focused on issues related to the I-V curves of two-probe
devices, one can expect a host of new developments such that calculations based on
three- and four-probe molecular devices, current-induced forces, spin-dependent, and
time-dependent devices may all be expected to emerge shortly. Here, we briefly mention
a few important issues related to the last two developments.

The incorporation of spin-dependent effects opens up the important field of nanoscale
magnetoelectronics or “spintronics” [66]. In magnetoelectronics, both the charge and
the spin degrees of freedom are utilized for the operation of a functional device. Such
effects are of course extremely important from technological point of view. Spintronic
devices have already been used to construct nonvolatile random access memory, mag-
netic tunnel junctions, and magnetic transistors. Clearly, the ability to investigate the
functionality of such devices at the nanoscale will prove to be an important future
direction.

In discussing devices, it has tacitly been assumed that we are dealing with steady-state
dc currents through molecular systems. However, the dynamic response of molecular
devices is also significant in its own right. Time-dependent information is, of course,
an intrinsic part of nonequilibrium devices such as electron pumps and turnstiles.
Dynamic information also plays an important role when discussing high-speed appli-
cations, the nonequilibrium charge distributions, dynamic couplings, and simply the
transport dynamics of a conductor. In this case, the problem is complicated by the fact
that time-dependent electromagnetic fields can take the system out of equilibrium, with
the possibility of inducing displacement currents. The inclusion of these displacement
currents is absolutely crucial, as only then can the total current be conserved and the
system display gauge invariance. Recently, the NEGF formalism has been extended
to cover the case of the dynamic conductance [67]. This formalism shows that the
dynamic conductance develops both real and imaginary frequency-dependent (�) com-
ponents, i.e., G���Vb� = dI���Vb�/dVb, which may be of a capacitive or inductive
nature, depending on the frequency. To date, this formalism has only been used to
investigate transport through carbon nanotubes in the wideband limit, and hence almost
nothing is known about the dynamic response of other molecular electronic systems.
Such investigations may be expected to emerge in the near-term future.

5. Summary

In summary, we have briefly reviewed recent theoretical developments for simulating
the quantum transport properties of real materials systems. The method is based on
combining the Keldysh NEGF formalism with the power of DFT simulations, and has
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the advantages of: properly treating open quantum systems, allowing for a full atomistic
treatment of the leads, the self-consistent calculation of the charge density, and – when
combined with the power of state-of-the art supercomputers – the ability to treat large-
scale molecular electronic systems. This formalism has proven itself to be reliable, and
is believed to have full predictive power within the context of DFT. Hence, it is not only
being applied to an ever growing list of materials system, but also the main product of
new simulation-based venture capital firm Atomistix [68].
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1. Introduction

The idea of molecular electronics now dates back three decades [1]; however, the
problems that need to be addressed in order to make a nice principle into a real
working device are still quite challenging, due to the difficulty of precisely controlling
the molecular building blocks and stability issues related to organic materials. Great
progresses have been made in recent years in these directions [2–4], and the field of
molecular electronics is steadily progressing as new experimental breakthroughs are
achieved. Conduction through single molecules can now be routinely obtained by several
groups, particularly in break-junctions configurations.

Fingerprints of molecular species can unequivocally be detected in tunneling experi-
ments by using inelastic tunneling spectroscopy (IETS). Such technique not only provide
conclusive evidence that electrons are really tunneling through the molecular bridges
[5, 6], but could provide in future a valuable characterization tool providing useful
information about the interface structure, morphology and molecular geometry.

Despite many successes, the understanding and controlling of transport mechanisms
is far from the understood. From a theoretical point of view, the description of conduc-
tion in molecular systems is also quite a challenge, as subtle many-electron correlations
may play significant role, changing transport to the coherent regime to incoherent or
Coulomb blockades. Highly accurate quantum chemical methods are far too computa-
tionally expensive to treat the very large clusters required to simulate realistic electrodes
(hundreds of atoms). On the other hand, semi-empirical methods are often unable to
catch the real behavior of molecular systems between electrodes.

Certainly, molecular devices require new simulation approaches, since the inher-
ent quantum-mechanical physics involved must be treated properly [7]. The gDFTB
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approach for transport computations is based on the density functional tight-binding
(DFTB) method [8], extended to the non-equilibrium Green’s functions (NEGF) for the
self-consistent computation of charge density and electronic transport [9].

The gDFTB method allows a nearly first-principle treatment of systems comprising
a large number of atoms. The Green’s function technique enables the computation of the
tunnelingcurrent flowingbetween twocontacts inamannerconsistentwith theopenbound-
ary conditions that naturally arise in transport problems. On the other hand, the NEGF
formalism allows to compute the charge density consistently with the non-equilibrium
conditions in which a molecular device is driven when biased by an external field.

The key ingredient of the self-consistent loop is the solution of the Hartree potential
needed in the density functional Hamiltonian. The Hartree potential is calculated by solv-
ing the three-dimensional Poisson’s equation (with appropriate boundary conditions),
for the corresponding non-equilibrium charge density computed via the NEGF formal-
ism. The Green’s function method also allows extensions to include electron–phonon
and many-body corrections of the electron–electron interaction.

A full description of our methodology is given in the first sections. Applications to the
computation of conductance of various molecular systems are also shown, particularly
applications to IETS of octane-thiols and heat dissipation in dithio-benzene. We also
present how to include electron–electron interactions beyond DFT, using the well-known
GW approach. In the last section a detailed study of carbon nanotube field-effect devices
is presented.

2. DFTB as a semi ab-initio approach

The density functional–based tight-binding formalism (DFTB) has been described in
detail in many articles and reviews [8]. All matrix elements and orbital wavefunctions
are derived from density-functional calculations. The advantage of the method relies on
the use of a small basis set and the restriction to two center integrals, allowing extensive
use of look-up tables. What distinguishes our approach from empirical methods is the
explicit calculation of the basis wavefunctions, which allows deeper physical insights
and better control of the approximations used. The method solves the Kohn–Sham
equations self-consistently using a Mulliken charge projection [10].

In the traditional DFTB code a minimal basis set of atomic orbitals is used in order to
reduce the matrix dimensions for diagonalization speed-up. This approach has proved to
give transferable and accurate interaction potentials and the numerical efficiency of the
method allows molecular dynamic simulations of large super-cells, containing several
hundreds of atoms, particularly suitable to study the electronic properties and dynamics
of large mesoscopic systems and organic molecules such as CNTs, DNA strands or
adsorbates on surfaces, semiconducting heterostructure, etc., see [11].

We briefly describe here the self-consistent DFTB method. The method is a develop-
ment of the idea first introduced by Foulkes, where the electronic density is expanded as
a sum of a reference density, n0�r�, (that can be chosen as the superposition of neutral
atomic densities) and a deviation, �n�r�, such that n�r�= n0�r�+�n�r�. The total energy
of the system can be described, up to second order in the local density fluctuations, as:

Etot�n�=
∑

k

nk < �k�H0��k >+Erep�n
0�+E�2���n�� (1)
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The first term in Equation (1) can be written in terms of the TB Hamiltonian, which
is given by

{
H0

	
 = �free-atom
	 � 	= 
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 ∈ j
(2)

where � and �� are the atomic orbitals localized around the atomic centers i and j;
T is the kinetic energy operator, and veff is the effective one-particle potential, which
depends on the density of the two atomic centers i and j.

The term Erep�n
0� in Equation (1) is the repulsive energy between the ions, screened

by the electronic distribution and the exchange energy. This term is short-ranged because
of the neutrality of the density n0�r� and can be expressed as a summation over atomic
pair contributions as follows [12]:

Erep�n
0�= 1

2

∑

��

U���n
0
�� n

0
��� (3)

The third term in Equation (1) is the second order correction, which can be written as

E2��n�= 1
2

∫ ∫ [ 1
�r− r ′� + �2Exc

�n�r��n�r ′�

]

�n�r��n�r ′�drdr ′� (4)

where the Hartree and exchange-correlation potentials have been separated.
This quantity is greatly simplified by retaining only the monopole term in the radial

expansion of the atom-centered density fluctuations, written as [12]

�ni�r�≈ �qi
�3
i

8�
exp�−�i�r−Ri��� (5)

It follows that the second order correction can be written as

E2 = 1
2

∑

i�j

�qi�qj�ij� (6)

where

�ij =
∫ ∫

��r� r ′� n0�ni�r�nj�r
′�drdr ′ (7)

is introduced as a shorthand and �qi are the atomic charges. The atomic charges can
be easily calculated, using the Mulliken charge analysis. This consists on a simple
projection of the eigenstates over the local orbitals,

�qi =
∑

k

nk
∑

	∈i

∑




Re�c∗
k	ck
S	
�−q0

i � (8)

Within the local density approximation (LDA) the exchange contribution vanishes
for large atomic distances, hence in Equation (4) the second order correction to Exc can
be neglected with respect to the Coulomb interaction. The term ��r� r ′� n0� becomes the
usual Green’s function of the Coulomb potential, 1/�r− r ′�, with vanishing potential at
infinity. The on-site terms �ii are related to the on-site Hubbard parameters, Ui ≡ �ii,
which are calculated for any atom type within LDA-DFT as the second derivative of the
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total energy of the atom with respect to the occupation number of the highest occupied
atomic orbital. These values are therefore neither adjustable nor an empirical parameter
[10]. Therefore, the expression for �ij only depends on the distance between the atoms
i and j. Applying the variational principle to the energy functional of Equation (1)
together with Equation (6) and using Equation (8), it is possible to obtain a modified
Hamiltonian for the Kohn–Sham equations,

H� = H0
� + 1

2
S�

∑

k

��ik +�jk��qk� ∀	 ∈ i� 
 ∈ j� (9)

Since the atomic charges depend on the one-particle wavefunctions �k, a self-consistent
procedure is required. The improvement of the self-consistent over the non-selfconsistent
procedure is considerable in determining structural and energetic properties of molecular
systems [10].

3. The non-equilibrium Green’s function technique

Despite its mathematical complexity, the non-equilibrium Green’s function (NEGF)
method for calculations of quantum transport has gained a great popularity in recent
years, mostly because of the versatility and numerical stability of the method, in contrast
to wavefunction or transfer matrix approaches. The open boundary conditions can be
elegantly included by exactly mapping the contacting leads into a finite and small part
of the system [13]; furthermore, the Green’s function approach can be generalized to
many-body quantum theory, allowing the inclusion of electron–phonon [15] as well
as electron–electron interactions [16] within a unified and systematic formalism. Good
references in many-body quantum theory can be found in [17, 18] and an exhaustive
review on NEGF can be found in [19].

The type of systems under study can be represented as in the graph of Figure 1. The
system can be arbitrarily partitioned into three parts: two contacts, C1 and C2 and a
device region, D. In principle more contacts can be included in a general formalism,
but here we restrict to two contacts for sake of simplicity.

The contacts are semi-infinite leads and it is assumed that their properties coincide
with those of bulk systems [21]. The device is a collection of atoms linking the two

Device region D

Conductor Semi infinite
Contact 2

Semi infinite
Contact 1

Surface regions

M

C2C1

S1 S2

Figure 1 Diagram showing the system comprising the contact regions, C1 and C2, the molecular
region M, and the surface regions S1 and S2 included in the extended-molecule region, D
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contacts, comprising the molecular bridge, M, and a portion of the surfaces of the
conducting leads, S1 and S2. The inclusion of the surfaces within the molecular region
is necessary to ensure that the regions C1 and C2 can really be considered bulk-like.
This assumption can be directly verified by checking that the charge density smoothly
joins at the boundaries C1/S1 and C2/S2. The molecule plus the surfaces can be called
extended-molecule.

The two contacts are kept at different electrochemical potentials, driving a current
across the molecular bridge. The system can also include external modulating fields,
provided by gate plates.

In solving the transport problem it is not possible to make the assumption of local
thermodynamical equilibrium, i.e., a global Fermi energy is not defined. The only
assumption that can be made is that the connecting leads are kept at different elec-
trochemical potentials, and are considered as large reservoirs where the electrons are
effectively in equilibrium. In order to be consistent with this scenario, the conducting
bridge must offer the largest source of resistance to the flowing current. Only under
such condition is it consistent to assume that the potential drops essentially across the
device region, whilst the contacting leads are in equilibrium at two different constant
potentials.

The underling assumption of this formalism is that the dominating transport mecha-
nism is by coherent tunneling. Even when inelastic scattering occurs, these events are
too few to allow perfect equilibration, and most of the energy relaxation occurs at the
final contact. The extended-molecule region is therefore out of equilibrium and a proper
treatment must be employed.

In order to compute quantum current, open boundary conditions must be employed.
Open boundary conditions are necessary in order to allow the eigenstates to carry any
current, which can be derived, for instance, in the context of scattering theory. The
total density of states out of equilibrium can be expressed in terms of partial density of
states propagating from lead ‘1’ to ‘2’ and vice versa. The key assumption is that the
states ��1 > originate deep in contact ‘1’ where there is an equilibrium condition with
chemical potential 	1. Similarly the states ��2 > originate deep in contact ‘2’ where
there is an equilibrium condition with chemical potential 	2. Hence, the total density of
these propagating states is

�=
∫ +	

−	
dE�d1�E�f�E−	1�+d2�E�f�E−	2��� (10)

This expression can be used to calculate the electronic density needed for the density-
functional Hamiltonian. The expression (10) for the density matrix, derived from the
scattering states, is equivalent to a direct derivation from the NEGF formalism, first
introduced by Keldysh [23] within many-body quantum theory [18] and later adapted
to quantum transport problems by several authors [21, 26]. We give a brief overview
of the main concepts of the NEGF theory which will serve us to introduce the relevant
quantities of the formalism.

We start by introducing the time-ordered (also called ‘causal’) zero-temperature
single-particle Green’s function, defined as

G�x� t� x′� t′�= −i
h


�0�T
[
�H�x� t��

†
H�x

′� t′�
] ��0�


�0��0�
(11)
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where �0 is the exact many-body ground-state and �H�t� is the Heisenberg representation
of the system wavefunction (for details see [18]). The central quantity in constructing
the perturbation theory of the Green’s function is the S-matrix, which evolves the
wavefunction in time. The general assumption is that at time t = −	 the ground-state,
�0, is for non-interacting particles. The interactions are switched on adiabatically and
the wavefunction evolves into the interacting ground-state, �0 = S�0�−	��0. The proof
of this relationship can be found in [17]. Similarly �0 = �0S�	�0�. However in non-
equilibrium conditions there is no guarantee that the system returns to its initial state for
asymptotically large times. This is a fundamental assumption for the entire perturbation
theory, including the fundamental Wick theorem.

A way around this difficulty is to introduce a contour-ordered Green’s function, where
the time ordering operator is substituted by a contour ordering operator, TC. The time
contour is shown in Figure 2, which, by construction, starts at an infinitely remote time
and goes back to that time. The time contour can be divided into two branches (upper and
lower) and the turn-point can be placed at any arbitrary time. When the two times t and
t′ of Equation (11) fall in the same time-branch the quantities of the standard equilibrium
theory are recovered. When the two times fall in opposite branches, the time of the
lower branch will always be later with respect to the time of the upper branch along the
contour, therefore, the correlation function, G<�r� t� r ′� t′�= i
�0��†

H�r� t��H�r
′� t′���0�,

is recovered. (For now on we set � = 1.) Any physical quantity of interest can be
obtained from G<�x� t� x′� t′�. For example, the charge density, n�r� t�, and the current
density, j�r� t�, given by n�r� t�= −iG<�r� t� r ′� t′� and

j�r� t�= 1
2

lim
r ′→r

�� −� ′�G<�r� t� r ′� t′�� (12)

In steady state the Green’s functions only depend on the time difference t− t′, which
can be Fourier-transformed to energy, E. The quantity G<�E� is proportional to a
spectral density of occupied electronic states and the important relationship

n�r�= 1
2�i

∫ +	

−	
dEG<�r�E� (13)

holds. For the contour ordered Green’s function, the formal perturbation theory looks
exactly the same as for the equilibrium counterpart. However, the perturbation terms
resulting from the series expansion do not have an immediate physical meaning and
must be related to the physical quantities Gr�Ga and G<. Physically G<�E� and G>�E�
represent respectively the density of occupied and empty states, whereas Gr , defined by

Gr�E�= 1

E−H−�
r
�E�

� (14)

⏐Ψ0 >
⏐Ψ >t

t
t′

Figure 2 Complex time-contour used to define the non-equilibrium Green’s function
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is related to the spectral function or, broadly speaking, to the density of states. In
Equation (14) we have explicitly included the presence of the retarded self-energy,
�r�E�, which accounts for the presence of the contacts and can account for other
perturbing potentials due to phonons, impurities or the other electrons (as shown in
Sections 7 and 9). One of the advantages of the Green’s function approach is that the
contacting leads can be exactly mapped into the extended-molecule by using appropriate
self-energies. In local orbital representations, where the interaction among atoms has a
finite range, the contact self-energy can be easily calculated by exploiting the fact that
the Hamiltonian describing the interaction between the device region and the contacts
involves a finite number of atoms close to the junctions. Therefore, the required contact
Green’s function can be solved just for the matrix block corresponding to atoms close to
the extended-molecule region. This so-called surface Green’s function can be calculated
using powerful recursive algorithms (see [7] and references therein).

Under equilibrium conditions the relationship between G<�E� and Gr�E� is simply
given by the Fermi distribution, as

G<�E�= if�E��Gr�E�−Ga�E��� (15)

where Ga�E� is the so-called advanced Green’s function, also given by Gr�E�=Ga�E�.
Under non-equilibrium conditions it is necessary to generalize Equation (15) by taking
into account that the occupation depends on the scattering itself, which is controlled by
the quantity �<�E�, known as the electron in-scattering function. The same function
also controls the in-scattering of electrons from the leads into the device region. The
dynamics of the occupation due to inelastic scattering processes from one energy channel
to the other is provided by the Keldysh–Kadanoff–Baym (KKB) equation [23, 24], also
known as the ‘kinetic equation’. Within the TB matrix representation, the KKB equation
can be expressed in terms of matrices, as

G<�>�E�=Gr�E��<�>�E�Ga�E�� (16)

defined in terms of the retarded, the advanced Green’s functions and the non-equilibrium
self-energies �< and �>. In physical terms �<�E� and �>�E� respectively represent the
rate of injection of electrons and that of holes into the device as a function of energy. In
the general case, the self-energies �< and �> can include, beside the contact self-energy,
terms corresponding to scattering sources. These can be provided by electron–phonon,
electron–electron or electron–defect potentials interactions. The total self-energy is a
summation of the self-energies due to the leads, �<�>

� , and that due to additional phase-
breaking interactions, �<�>

� [25],

�<�> = �<�>
� +∑

�

�<�>
� � (17)

The rate of injection can be obtained from the assumption of thermodynamical equi-
librium of the leads. In fact the self-energies verify an equation similar to Equation (15),

�<�>
� �E�= ±if�±�E−	�����

r
��E�−�a

��E��� (18)

Note in the previous equation the identity f�−E�= 1−f�E�.
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Putting together Equations (18), (15) and (10) it is possible to obtain general expres-
sions for d1 and d2,

d� = 1
2�

Gr��G
a� (19)

where �� is defined as:

�� = i��r
� −�a

��� (20)

In practical computations it is much more convenient to rewrite Equation (10) as

�=
∫ +	

−	
dE �d1�E� +d2�E�� f�E−	1�

+
∫ +	

−	
dEd2�E� �f�E−	2�−f�E−	1�� (21)

Using the definitions given in Equation (19), and invoking time-reversal symmetry
�Ga =Gr∗�, this expression can be written as:

�= − 1
�

Im
[∫ +	

−	
dEGr�E�f�E−	1�

]

+�2� (22)

where �2 is a shorthand defining the second integration in Equation (21).
The integration in Equation (22) can be conveniently evaluated by deforming the

integration from the real axis into the path C+ � shown in Figure 3. The deformation
is possible according to the residue theorem:

∫
dzGr�z�f�z−	�= −2�ikT

∑




G�z
�� (23)

where zv = 	+ i�kT�2v+ 1� are the poles of the Fermi function and the summation
in Equation (23) includes the poles enclosed within the contour. The poles of Gr are
slightly displaced below the real axis. The function is analytic on the upper half complex
plane. For T> 0 the integration path stays away from the real axis where Gr�z� behaves
regularly, with the exception of the point Elow, shown in Figure 3, chosen sufficiently
below the lowest energy of the electronic spectrum. The integration involved in �2 must
be evaluated on the real axis, since the function is analytic on the real axis only (it
depends on Gr and Ga). This integration may be delicate and requires a fine mesh.

Elow μ1 μ2

xxxxx xxxxxxx xxxxxxxxxxxx xxxxxxxxxxxxxxxxx x xxxxxx

Figure 3 Diagram showing the integration path in the complex plane needed to evaluate the
non-equilibrium Green’s function. The crosses below the real axis represent the poles of Gr�z�,
and those on the imaginary axis the poles of the Fermi function
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4. Real contact and virtual contact currents

The current flowing in the system can be computed by defining an appropriate current
operator [26, 21]

Iop�r� r
′�= e

h

[
G<�r� r ′�HD�r�−HD�r�G

<�r� r ′�
]
� (24)

whose diagonal elements give the divergence of the total current. An alternative deriva-
tion for deriving TB currents involves the definition of a bond-current operator [20],
which is very useful for the calculation of local current fluxes. The trace of the current
operator gives the net outflow of current per unit energy across an imaginary surface
enclosing the molecular region,

Tr�Iop�=
∫
� · J�r� E�dr� (25)

Therefore, using Equations (20) and (15) and the relationships Gr −Ga =G> −G<�
�r −�a =�>−�<, the total outflow of current at any specific energy can be written as

Tr�Iop�=
e

h
Tr
[
�<�E�G>�E�−�>�E�G<�E�

]
� (26)

Inserting in Equation (26) the expression for the total self-energy (16), it is possible to
identify the terminal current contributions to the total current,

i��E�= e

h
Tr
[
�<
� �E�G

>�E�−�>
� �E�G

<�E�
]
� (27)

Expression (27) represents the inflow of current from the � contact into the molecular
region per unit energy.

Combining Equations (15) and (27) it is possible to separate the coherent and the
incoherent contributions from the total current,

i��E�coh = e

h

∑

�

Tr
[
�<
�G

r��G
a −��G

r�<
�G

a
]
� (28)

i��E�incoh = e

h

∑

�

Tr
[
�<
�G

r��G
a −��G

r�<
�G

a
]
� (29)

The incoherent part involves scattering contributions giving non-vanishing �<
� and

�>
� . The interactions can be viewed as an exchange of particle with a virtual contact (see

Figure 4), which adsorbs electrons at a given energy and emits them at another energy.
In this respect, in perfect analogy to the real contacts, the virtual contact breakes the
phase coherence of the wavefunction. Similarly to Equation (27), the flux of electrons
at the virtual contact can be written as:

i��E�= e

h
Tr
[
�<
��E�G

>�E�−�>
��E�G

<�E�
]
� (30)

Current conservation must ensure that the net current exchange with the virtual contact
is zero, or

∫
i��E�dE = 0� (31)

This is an important constraint to be checked when developing the interaction self-energy
from perturbation theory.
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Figure 4 Diagram showing the in-scattering and out-scattering electron in and out of the
electrodes and the virtual phase-breaking contact

5. The Poisson equation

As anticipated in Section 2, the Hartree potential needed for the SCC iteration of
the Kohn–Sham equations is computed by solving the Poisson’s equation with the
appropriate boundary conditions imposed by the contacts. The Poisson’s equation for
the mean field electrostatic potential should be written as:

{
�2�Vel +Vions�= −4�

∑

i

�n0
i �r�+�ni�r�+qi��r−Ri��

+ boundary conditions
(32)

where Vel and Vions are respectively the contribution from the electrons (treated in mean
field approximation) and the ions to the total electrostatic potentials, and qi are the ionic
charges. The usual boundary condition used to solve the Poisson equation in DFT is that
the potential vanishes at infinity. This gives the familiar solution for the electrostatic
potential of a point charge, q, as q/�r− r ′�, and the usual form for the Hartree energy.
In transport problem the boundary conditions are more likely imposed by the applied
potentials.

In the DFTB implementation the self-consistent potential is related to the density
fluctuations �n�r�. The effective potential for the reference density n0 is included in H0

and Erep�n0� of Equation (1). Therefore, by linearity, we split the Poisson’s Equation (32)
into two equations, one for the ionic part plus the reference density:

�2
[
V
�0�
el +Vions

]
= −4�

∑

i

[
n0
i �r�+qi��r−Ri�

]
� (33)

and the other for the self-consistent correction:

�2V
�2�
el = −4�

∑

i

�ni�r�� (34)

When solved with the usual boundary condition, Equations (33) and (34) give the
electrostatic field included in the usual DFTB calculations. However, Equation (34) is
solved using the boundary conditions imposed by the device. These conditions arise from
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the natural requirement that deep inside the contacts the effective potential for the Kohn–
Sham equations must correspond to the bulk electrochemical potentials. Therefore, at
the boundaries between the device region and the contacts, the potential must match the
intrinsic effective bulk potential (which originates from any equilibrium charge density)
shifted by the applied bias. At the device-contacts interfaces, C�/S�, the potential must
satisfy

V
�2�
S�
�r��C�/S� = V

�2�
C��bulk�r��C�/S� +�V�� (35)

where �V� is the applied external potential to the �-contact. The decoupling of Equa-
tions (33) and (34), which at first may seem arbitrary, is actually a good approximation
since the reference density is taken as that of the neutral atoms and therefore can-
cels with the ionic charges. On the contrary, the excess density produces a long-range
Coulomb field that should respect the boundary conditions imposed by the device. For
example, the charge which accumulates on the contact surfaces must be consistent with
the applied bias.

Within the gDFTB approach, the Poisson equation is solved in real space using
a three-dimensional multi-grid algorithm applied to a general linear, non-separable,
elliptical PDE. The Poisson equation is just a particular case of this kind of equation,
which has the general form

∑

i

[

cii�r�
�2V�r�
�x2

i

+ ci�r�
�V�r�
�xi

]

+ c�r�V�r�= ��r�� (36)

where V�r� is the unknown solution potential. The previous equation simply reduces to
the Poisson equation if the coefficients are taken such that ci�r�= c�r�= 0 and cii�r�=
−1/4� at all the points r of the three-dimensional box in which the equation itself
is discretized. The general equation (36) has a great flexibility. Indeed, the possibility
of setting the coefficients to different values in different regions of the solution space
is the fundamental feature which allows us to impose Dirichlet boundary conditions
on arbitrary shaped three-dimensional surfaces, such as planar or cylindrical gates, and
handles easily even four terminal geometries.

A Dirichlet boundary condition simply consists of imposing a value for the solu-
tion potential on a defined spatial region. Consequently, such a boundary condition
can be set by imposing in the spatial region occupied by the metallic gate contact,
cii�r� = ci�r�= 0� c�r� = 1 and V�r� = ��r�/c�r�. The charge density ��r� is in turn
suitably initialized to the appropriate value, for instance, of an external gate field. The
region occupied by the gate can obviously have any arbitrary shape, since the boundary
condition is simply reduced to the initialization of a numerical function on a subset of
points on which the equation has been discretized.

In the remaining regions of the solution box, where the metallic gate is not present, the
coefficient are suitably initialized in order to obtain the effective Poisson Equation 34,
and, at the same time, the charge density is evaluated starting from the atomic charge
fluctuations projected on the real-space mesh.

Once the computation of V �2�
el �r� is done, it is projected back into the local orbital basis.

The mesh is usually chosen as a trade-off between accuracy and computational speed.
However, the ansatz (5) for the atomic charge density gives quite smooth functions and
usually convergent results are obtained with a mesh spacing of 0.5 atomic units.
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6. Applications to molecular conductance

In this section we show results of self-consistent computations of the I-V characteristics,
charge density and potential of molecular systems bridging metal contacts. Benzene-
dithiol, shown in Figure 5, is a simple and important test system much studied as a
test-bed reference for comparisons between theory and experiments.

For such system we find that the potential drops almost linearly across the molecular
bridge. The I-V characteristics shown in Figure 5 exhibits an ohmic behavior at small
bias which turns into a superlinear behavior beyond 2 V. The ohmic behavior owes to
a relatively high conductance also due to the position of the highest occupied level of
the molecule (HOMO), lying at 1.0 eV below EF.

Aviram and Ratner proposed in 1974 to realize a diode with a donor-�-acceptor
molecule connected at either end to metallic leads [1]. The new aspect of this idea was
that the combined system of electrons and leads could support a continuous sequence of
electron transfer processes. For the particular setup considered, the current–voltage (I-V)
characteristic was predicted to be the one of a rectifier. More recently a small rectification
ratio was demonstrated in a break-junction experiment [27] for a single molecule. The
molecule is a variation of a Tour wire, asymmetrically doped by fluorination of a
benzene ring, as shown in Figure 6. The two rings are separated by an insulating bridge
of diphenyl, where the insulation is produced by the break of conjugation due to the
tilting angle between the two benzene rings of the bridge.

The self-consistent potential for an applied bias of 2.0 V is shown in Figure 6. From
the isolines it is possible to see that the potential drops non-linearly across the molecule,
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Figure 5 Diagram showing a di-thio-phenyl molecule bridging two Au contacts and the
calculated I-V characteristics
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with a larger drop at the insulating bridge. The computed I-V characteristics do not
show relevant rectification within the bias range between −2 and +2 V. The computed
DFT eigenstates predict the HOMO level nearly in resonance with the Au Fermi level
at V = 0. The feature at −4�8 eV is instead related to the local density of states of the
contacting Au lead, as it is not affected by the applied bias. As the bias increases more
resonances enter in the injection window, as shown in the left panel of Figure 7. This
produces the staircase-like I-V characteristics shown in the right panel of Figure 7. Such
steps are also observed experimentally, although at different voltages.

The difficulty of making accurate theoretical predictions, in agreement with experi-
mental findings, is due to the high sensitivity on the precise position of the molecular
energy levels, which are very difficult to predict using just DFT calculations. As dis-
cussed in Section 9, correction for the exchange and correlation energies is necessary
for quantitative results. It is worth stressing that in transport calculations it is not just
the magnitude of the energy gap that matters, but also the absolute position of the
molecular energy levels with respect to the Fermi level of the metal, providing the
reference injection energy.
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Figure 7 Transmission probability and computed current for the symmetric and asymmetric
Tour wire

7. Analysis of IETS spectra

An IETS spectrum is formally defined as the second derivative of I vs. V . As such
spectra are obtained at very low temperature (usually 4.2 K) only phonon emission is
possible. When the applied bias matches a phonon frequency an additional channel of
tunneling assisted by phonon emission opens up. This corresponds to a barely visible
kink in the I-V characteristics, but it can be amplified as a peak in the second derivative.
The assignment and interpretation of the spectra are not without difficulties. The spectra
are usually assigned with the help of IR, Raman and HREELS results for monolayers
of the molecule in question, or even isolated molecules. However, the interaction with
the substrate and the absence of definite selection rules means that IETS may exhibit
markedly different spectra from these other techniques and the characteristics of these
spectra are difficult to predict. Theoretical simulations are necessary in order to interpret
the measured IETS spectra [15, 28, 29].

To obtain the spectrum we calculate the coherent and incoherent current at T = 0,
using Equations (28) and (29). The calculation of the incoherent component requires
an explicit evaluation of the electron–vibration coupling matrices, �q

	v, obtained by
expanding the TB Hamiltonian to first order in the atomic displacements. The couplings
are then expressed in terms of derivatives of the Hamiltonian and the overlap matrices,
therefore without fitting parameters [30, 31], as

�q
	v =

√
�

2�qMq

∑

�

[
�H	v

�R�

−∑
 ��

�H	 

�R�

S−1
 �H�v −H	 S−1

 �

!H�v

!R�

]

eq�� (37)

where R� are atomic displacements, Mq the atomic masses and eq� the vibrational
mode eigenvectors. The relevant self-energy is evaluated within the first order Born
approximation, as

�<�>
el−ph���= i

∑

q

2�
∫

d�′�qG<�>��−�′��qD<�>
0�q ��

′� (38)
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Figure 8 Relaxed Alkanethiol geometry between Au contacts

where the D<�>
0�q ��� are the correlation functions related to the vibrational modes,

assumed Einstein oscillators in thermal equilibrium with a bath,

D<�>
0�q ���= −2�i��Nq +1�"��±�q�+Nq���∓�q��� (39)

The geometry of the molecule in the junction, shown in Figure 8, is determined in
two steps. First, an optimized geometry is obtained for octanethiol chemisorbed through
the terminal sulfur to a single Au(111) surface. Periodic boundary conditions are used;
however, the chemisorbed molecules were sufficiently far apart to be considered isolated.
The geometry for the full electrode–molecule–electrode system was then generated by
symmetrizing about a point of inversion between the C4–C5 bond to give octanedithiol
bound to two co-facial Au(111).

The computed conductance of such system agrees with a model which assumes that
approximately 10,000 molecules are sampled in parallel within the nanopore device
used in the experiment [5].

The gDFTB code reproduces, to a reasonable extent, experimentally observed vibra-
tional frequencies for octanedithiol chemisorbed on Au [30]. The electrodes produce
a significant perturbation in the character of the molecule and as a consequence the
vibrational modes associated with the extremities of the molecule differ in frequency
from modes of the same character associated with the central region. For example, the
C–H symmetric stretching modes occur at different frequencies for the modes associated
with the central region (0.368 eV) and the extremities (0.348 eV).

This is reflected in the calculated IETS spectra for octanedithiol, shown in Figure 9
with the peaks assigned as shown in Table 1. Unlike IETS, the spectroscopies used to
assign IETS spectra of octanedithiol (IR, Raman, HREELS) all have specific selection
rules. It has been observed previously that in IETS spectra both IR-active modes and
Raman-active modes can be seen as well as additional modes, although not all IR-active
modes and Raman-active modes may be seen. This complex relationship between what is
observed in IETS and what is observed in other spectroscopic techniques means that for
a system of the complexity of octanedithiol a complete assignment of the IETS spectra
from IR, Raman and HREELS is difficult to achieve. For instance, in the experimental
IETS spectra for octanedithiol [5] there were a number of unknown peaks attributed to
Si3N4 impurities.

Indeed, according to our calculations, relevant signal from molecular modes in the
high frequency range (above 2000 cm−1) should not be expected. On the other hand,
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Figure 9 Simulation of the IETS for the octanedithiol (hcp bonding site). Numbers for peaks
are related to modes of vibration in Table 1

Table 1 Principal peaks in the calculated IETS spectrum

Peak Voltage (V) mode

1 0�008 S–C–C out-of-plane wag
2 0�017 S–C–C out-of-plane wag
3 0�033 Au–S stretch
4 0�044 S–C–C scissor
5 0�060 C–C–C scissor
6 0�083 C–S stretch
7 0�111 CH2 in-plane rock (extremities)
8 0�121 CH2 in-plane rock (central)
9 0�135 CH2 in-plane rock (central)

10 0�150 CH2 in-plane rock (all)
11 0�157 C–C stretch
12 0�164 C–C stretch
13 0�180 CH2 scissor (extremities)
14 0�196 CH2 scissor (central)
15 0�212 CH2 out-of-plane wag (all)
16 0�217 CH2 out-of-plane wag (all)
17 0�348 C–H stretch sym (extremities)

peaks 1, 2 and 5 nicely correspond to observed, but not clearly assigned, features [5, 31].
These are low frequency modes (Table 1), the first of which can be described as a
rigid out-of-plane oscillation of the four central CH2-groups, the second as a rigid and
symmetric out-of-plane oscillation of the two C–C–C–S backbones. The fifth mode is
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associated to the longitudinal oscillation of the CH2–CH2 subunit pairs. Overall the
calculated spectra reflects qualitatively the experimental findings, giving the largest
signal from the backbone vibrational modes in the range 1000–1500 cm−1.

8. Power dissipation in molecular junctions

A relevant quantity for technological applications is the amount of power dissipated in
the molecule due to inelastic phonon emission, which can be obtained by considering the
virtual contact current, as discussed, for instance, in [30]. This is an important quantity
since it is related to thermal dissipation and therefore to the stability of the molecule
under applied bias. The power dissipated is given by the net rate of energy transferred
to the molecule and can be calculated using the virtual contact current as

W = 2
h

∫ +	

−	
�Tr

[
�<
ph���G

>���−�>
ph���G

<���
]
d�� (40)

simply representing the average energy transfer occurring at the virtual contact.
The power dissipated can be used to compute for the rate of phonon emission. This

can be done by first observing that Equation (40) can be expressed as a sum over the
individual vibrational modes, W =∑

Wq, allowing to compute the power dissipated in
each mode [30]. In order to take into account for the non-equilibrium phonon population
of the molecular modes we set up a phenomenological rate equation. The rate of phonon
emission can be defined as Rq�Nq�=Wq/��q (the energy emitted divided by the phonon
energy), which is a function of bias and phonon population. The rate Rq is actually the
net rate of phonon emission, also including the absorption rate due to assisted tunneling
and electron–hole pair production, very important in metal contacts. In order to compute
the phonon population of the vibrational modes a rate equation can be written, including
the rate of emission and dissipation into the leads, as

dNq

dt
= Rq�Nq�− Jq�Nq −N 0

q �T ��= 0� (41)

where Jq is the rate of phonon dissipation and N 0
q �T � is the equilibrium thermal

distribution of phonons, which is established without applied bias. Under stationary
condition, Equation (41) can be used to compute the non-equilibrium phonon population.
For the alkanethiol discussed in the previous section most of the power is emitted in the
C–C stretching modes, for which we have computed an average of 10 pW per mode. C–S
and S–Au modes adsorb approximately 8 pW. The total power emitted in the molecule
under this simple stationary model is 0.16 nW at the applied bias of 2.0 V, rising with
an approximately linear behavior. The amount of power dissipated in such molecule is
actually very small and does not affect considerably the phonon population.

To show the effect, we can consider another molecule, di-thio-phenyl, in which the
power dissipation is much larger owing to a larger incoherent current. The analysis
is restricted to those vibrational modes which give non-negligible incoherent electron–
phonon scattering [32], having frequencies of �q = 756, 1147, 1182, and 1754 cm−1,
respectively. The molecule and its vibrational modes are represented in Figure 10.
The coupling of the vibrational modes with the reservoirs gives a phonon decay rate
Jq ≈ 1013 Hz.
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Figure 10 shows the power dissipated and the equivalent temperature of each mode as
a function of applied bias for a contact temperature of 300 K. The equivalent temperature
is obtained from the Bose–Einstein distribution using the self-consistent solution of the
steady-state phonon population. It is possible to see that the highest energy modes heat
up considerably, reaching a temperature of almost 600 K, while low energy modes are
less sensitive. This is related to the larger power emitted in such modes and the fact
that the power emitted depends on the population itself. Since the lowest modes have
an equilibrium population, Nq > 1, the net emission rate is small since emission and
absorption probabilities tend to cancel each other.

9. GW corrections and transport

As discussed above, the DFT approach is used to construct the one-particle system
Hamiltonian. The advantage is that DFT is a valid method to include several hun-
dreds of atoms which are frequently necessary to include an atomistic description of
the contacts. The main problem of DFT is related to the description of the unknown
exchange-correlation potential, usually approximated to be locally given by that of a
free electron gas of equal density. This tends to overestimate the metallic characteristics
of the molecular states, producing among the others, an underestimation of the HOMO–
LUMO gap, with relevant consequences to transport. Moreover, DFT is a ground-state
theory providing at most an exact electronic density, but it is not meant to compute
exact wavefunctions and single particle energy levels, both necessary ingredients for
tunneling calculations. In order to obtain quantitative prediction of tunneling currents
as well as correct quantitative trends it is necessary to go beyond DFT, even keep-
ing the simple single-particle description. Many attempts have been made to improve
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the DFT calculations using hybrid functionals, correlated transport [33, 34] and self-
interaction corrections [35]. The alternative time-dependent current density-functional
scheme [36] could provide a consistent scheme to compute steady-state currents, auto-
matically including excited-state corrections.

Within the NEGF formalism electron–electron interactions contribute both to �< and
to �r . In a way similar to electron–phonon interactions, the contribution to �< takes
into account phase-breaking scattering events, whereas �r corrects for the single particle
propagator,

Gr�a�E�= �ES−H −�r�a
R �E�−�r�a

L �E�−�r�a
ee �E��

−1� (42)

Since the Hamiltonian already contains a mean field DFT approximation for the electron–
electron interactions, it is important to note that �ee must contain terms which subtract
such contributions. In fact the general theory for developing the electron–electron inter-
action starts usually from the free propagator.

The GW approximation is essentially a first order truncation of a general and system-
atic perturbative expansion of the electron–electron interactions in terms of a screened
Coulomb potential. The GW method takes its name from the characteristic form of the
self-energy [37],

�ee�E�= �GW�E�= i
2�

∫ 	

−	
dE′eiE′0+

G0�E−E′�W�E′� (43)

Where G0 is the single particle Green’s function and W�E� is the screened Coulomb
potential, which can be expressed in terms of the bare Coulomb interaction, v, and the
generalized dielectric function, ��E�, as W�E�= �−1�E�v, or in terms of the polarization
function W = v/�1 − vP�E��. �GW can be split into the sum of two terms so that
�GW = iG0v+ iG0��

−1 − 1�v = �x +�c. The first term reduces to the known formula
for the exchange energy contribution of Hartree–Fock, whilst the second term is the
correlation part. Such an approximation has been proved to give essentially exact results
for a free electron gas [37] and provides very good corrections of bulk semiconductor
bandgaps [38, 39]. The method has been also applied with success to molecular systems
[40]. Unfortunately the full GW method is very expensive and many approximations are
necessary in order to increase the computational speed and make calculations feasible.

The GW correction has been efficiently implemented on the DFTB method [41]. The
key approximation of such implementation is to write the wavefunction products into
charge monopoles, as

�	�r��v�r�≈ 1
2
S	v���	�r��2 +��	�r���2�� (44)

within the spirit of the Mulliken charge approximation used for the self-consitent charge
calculations (see Section 2). The exchange self-energy, �x

i , can be computed using

�x
i =

occ∑

j

∑

	v

qij	 �v�	vq
ij
v � (45)

where the qij	 are generalized Mulliken charges [41], and v	v are the Coulomb integrals
between squared DFTB atomic orbitals. The correlation term is evaluated with a similar
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approach. First the polarization function of the self-energy is approximated in the RPA
framework,

P�E�=
occ∑

j

virt∑

i

�i�j�j�i

E− ��i −�j�
� (46)

and then approximated within the plasmon-pole approximation, to reduce the integration
in Equation (43) to an analytic form. The approximation consists of assuming a simple
form for the inverse dielectric function, �−1�E�, in terms of its eigenvalues, which are
obtained by diagonalization at different test frequencies. With such approximations the
difficult integration of equation (43) can be done analytically. Such an approach provides
a very fast GW calculation [41], behaving exceptionally well on several test molecules,
particularly on �-conjugated systems. The first step requires the explicit calculations of
the quasiparticle states, given by

�QP
i = �DFTB

i +Zi
�i ��x +�c −
xc��i�� (47)

where the three terms in the brackets are respectively the exchange, the correlation and
the DFTB exchange-correlation contribution to the energy. The Zi, instead, takes locally
into account of the energy dependence of the self-energy [41]. In the common GW
approximation the DFT eigenstates are not perturbed. Consistent with such approxima-
tion the quasiparticle energies can be seen as improved MO eigenvalues, and the GW
self-energy can be projected back into the local orbital representation using the original
DFT eigenstates.

In the Plasmon-pole approximation the quasiparticle lifetimes are approximated to
be infinite. Since the lifetime is longer than the tunneling time, we can consider this a
good approximation and neglect the contribution to the in-scattering function, �<, in
the transport properties. The coherent transmission is modified only by the effect of �r

on the propagator.
The method has been applied to the computation of the transmission across

sulfur-ended molecular chains of thiophenes and phenyl-ethynes of different lengths, from
one to five rings, contacted by Cu surfaces. The Cu contacts are considered in the wide-band
limit. This approximation, although apparently crude, captures the essential physics of
the metal–molecule interaction, without introducing in the present discussion additional
complications, for instance, due to surface states and features of the local DOS of the con-
tacts. Such molecules offer an interesting test, because the�-conjugated system they form
produces highly delocalized states across the whole molecule, with a consequent highly
conducting behavior. In such system the failure of DFT-LDA becomes even more evi-
dent, as the HOMO level gets quite close to the Fermi level of the metal contacts, giving
rise to a theoretically very high coherent conduction, as opposed to many experiments.

The GW renormalization was tested first on isolated molecules with consistent results.
The enlargements of the gap region is very satisfactory, both the HOMO and LUMO
states are shifted in energy. The code was already tested for other different classes of
organic molecules for which it was showed that the enlargement of the energy gap
follows the difference between electron affinity and first ionization energy [41]. In
particular for diphenylethyne, we obtain EHOMO = −5�17 eV and ELUMO = −2�29 eV
in the DFT calculation, whereas the GW correction leads to quasiparticle energies of
EQP

HOMO = −6�64 eV and EQP
LUMO = 0�26 eV, comparing much better with the experimental

workfunction of # = −7�94 eV and affinity of A <−0�32 eV.
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Figure 11 Comparison among different renormalization schemes for a benzene-dithiol. The
transmission is fully renormalized, only the levels close to the HOMO and LUMO (from
HOMO−2 to LUMO+2)

Figure 11 shows the transmission function across a benzene-dithiol, the shortest of the
molecular chains. The black line represents the calculation of the DFTB transmission, the
other curves refer to selective renormalization of the molecular energy levels, using GW
calculations. Renormalization of all the energy levels is compared to renormalization of
the HOMO and LUMO levels only, as well as a selective renormalization of just two
states closest to the HOMO–LUMO. The small fluctuation of the transmission in the gap
region induced by change in the renormalization scheme supports the idea that the trans-
mission is controlled only by the HOMO–LUMO states and few states closest in energy.

Figure 12 reports calculations of the transmission across the oligomers of increasing
length. We observe that associated to the HOMO–LUMO gap renormalization, there
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Figure 12 Comparison between the DFTB transmission and the renormalized one with GW for
polyphenylethynes and polythiophenes chains up to five rings. In the small box the beta decay of
the transmission at Fermi energy (−4�8 eV) is shown
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is also a strong reduction on the magnitude of the transmission, especially close to
the Fermi energy (around −4�8 eV). The effect is relevant for both chains where the
error of DFT in the energy gap produces a near resonance of the HOMO level at the
metal Fermi energy. The GW correction preserves the trend of the transmission for
increasing molecular lengths, since as the chains become longer the gap shrinks but the
transmission reduces. The calculated trends for both molecules is shown in the small box
in Figure 12. It is interesting to note that the GW correction, in the poly-phenylethynes,
though producing a strong decrease in conduction, does not affect considerably the
exponential decay length, with only slight decrease of its value. The effect is instead
dramatic for poly-thiophenes where the decay changes qualitatively also.

10. Applications to CNT devices

Carbon nanotubes have been recently acknowledged as promising candidates, among
several low-dimensional physical systems, to realize nanoscale electronic devices [42,
43]. In particular, single-wall CNTs are ideal candidates to study general transport
properties of quasi-one-dimensional conductors.

Here we focus our attention on the theoretical description which can be given as
bulk-modulated, CNT-based field-effect transistors (CNTFETs) by means of the gDFTB
approach. The physical mechanisms governing transport in these devices, starting from
the role played by one-dimensional screening on gate- and drain-induced current mod-
ulation, can be correctly predicted at an atomistic level within our approach.

The system we have simulated is shown in Figure 13. It consists of an infinite,
semiconducting CNT (7, 0), having a diameter of 5.52 Å and an energy gap Eg = 1�3 eV.
The nanotube is coaxially gated by a metallic cylindrical contact centered in the middle
point of the channel. The gate length is 1.2 nm. An insulator layer with dielectric constant
�r = 3�9 and a thickness of 0.8 nm surrounds the metallic cylinder.

Details on the interface between the source–drain metallic contacts and the semi-
conducting nanotube are not necessary to describe bulk-switching mechanisms, which
consist of a local gate-field modulation with no electrostatic coupling with the metallic
contact structures.

To simulate charge injection in the intrinsic channel, we simply dope the two
ending portions of the nanotube by varying the number of valence electrons per carbon
atoms [44]. Calculations have been performed retaining only the pz-orbital part of the

Gate

Drain Source

intrinsic CNT

Gate

Insulator

Insulatorp–doped CNT p–doped CNT

Figure 13 Schematic cross section of the coaxially gated CNTFET we have simulated
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Hamiltonian. This is sufficient to accurately describe the first conduction and valence
bands of the CNT (7, 0).

10.1. Screening properties of CNTs

In bulk-modulated CNTFETs, current modulation depends on the channel capability to
screen the local gate field, that is, on the amount and the distribution of charge that
can be locally induced on the CNT by the applied gate bias. Owing to their very small,
one-dimensional density of states (DOS), nanotubes are generally not able to completely
screen the gate field in the small extension of the electron gas associated to the grapheme
sheet.

In this situation, the channel charge response for a given gate bias can no longer be
described by using only the geometrical capacitance of the insulator. On the contrary,
a correction should be brought to the insulator capacitance to account for the correct
value of the induced charge. This correction is obtained by means of the so-called
quantum capacitance [45]. The total capacitance of the gated nanotube system, CQ, is
given by the series connection of the geometric and the quantum capacitances [46],
respectively Cins and CQ as 1/CG = 1/Cins +1/CQ. A correct evaluation of the quantum
capacitance is fundamental in order to correctly describe the charge response (and
consequently the barrier height modulation properties) of a bulk-modulated CNTFET.
The gDFTB approach naturally includes the treatment of the quantum capacitance,
since the charge induced on the nanotube is computed self-consistently with the gate
electostatics. Furthermore, by using an atomistic, DFT-based approach, the computed
charge takes into account the DOS of the one-dimensional system, and retains, at
least within a mean-field approximation, some of the electron–electron exchange and
correlation effects on the nanotube screening properties. The importance of many-
body corrections to the quantum capacitance of a gated nanotube has been recently
pointed out in [47] and [48]. In large-diameter tubes, where the contribution of the
exchange interaction to the total energy is negligible, the quantum capacitance can be
estimated simply from the DOS as CDOS

Q = e2�0��F�L. For small-diameter tubes, due
to the predominance of the exchange interaction over the kinetic energy, the quantum
capacitance can instead be very different from the DOS-proportional result, and can even
assume negative values. From a physical point of view, this means that the nanotube,
owing to the predominance of the attractive exchange interaction among electrons, can
accumulate even more charge than what strictly needed to totally screen the gate field,
giving rise to a small over-screening of the gate potential in its interior.

In Figure 14 we report the computed inverse quantum capacitance of a uniformly
p-doped CNT (7, 0) as a function of the Fermi energy inside the first CNT valence
subband. Each value of the Fermi energy univocally corresponds to a given p-doping
fraction. These results have been obtained following the methodology presented in [47],
and refer to an insulator capacitance Cins = 0�28 aF. Solid line refers to the DFT atomistic
computation, while dashed line is representative of the DOS-limited, non-interacting
result. The nanotube over-screens the external gate field in the whole range of holes
densities we have explored, and no positive values of the quantum capacitance have
been obtained.
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10.2. Output characteristics

In Figure 15 we show the calculated output characteristics for a p-i-p CNTFET. The
intrinsic channel of the simulated nanotube is 10.26 nm long. Source and drain contacts
are p-doped with a carrier concentration of 2�63 · 106 cm−1, corresponding to a doping
fraction f = 0�004 holes per carbon atom. In realistic devices, this carrier concentration
can be easily obtained by an electrostatic doping, controlled by means of a back gate
contact [49]. This doping causes the nanotube Fermi level to be shifted inside the first
valence subband, at ∼16 meV below the subband edge. Charge transfer at the junction
between the degenerate p-type and the intrinsic portion of nanotube generates a barrier
for holes transmission in valence band. The different curves shown in Figure 15 refer to
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Figure 15 Computed output characteristics of the p-i-p CNTFET. Different curves correspond
to different gate potentials. The inset shows details of the first two operative regimes of the
device, the linear regime and the carrier injection saturation. The corresponding band profiles are
shown in the right panel
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different gate biases. Positive potentials applied to the gate contact increase the barrier
height for holes transmission, hence reducing the current for a given drain voltage.

The physical mechanisms governing the current dependence on the applied source–
drain bias can be understood referring to the band profiles shown in Figure 15 (right).
These band profiles have been obtained, for a fixed gate potential, by varying the
drain–source applied bias, VDS, in a range of negative values (as required for a p-type
conduction device).

The current is determined by the holes transmission probability in the energy interval
between the Fermi levels of the source and that of the drain contact. Although the
applied bias continuously shifts the drain Fermi level with respect to the source, the
nanotube bandgap reduces the energy window for hole injection to the energy interval
�Einj, between the source valence band edge and the source Fermi level (see Figure 15).
In other words, the maximum holes injection in the channel is fixed by the source
doping rate.

At first, the current linearly increases as a function of the applied bias, simply due
to the increase of the energy window for carrier injection between the source and the
drain Fermi levels. As the maximum energy window for carrier injection is reached,
corresponding to the bias �VDS�inj� =�Einj/e (see also the inset of Figure 15), the current
does not completely saturate due to a drain-induced modulation of the barrier width
within the fixed injection interval, which considerably increases the holes transmission
probability. It should be kept in mind that the fundamental reason for the behavior
we observe is that the device operates in such a regime that current is entirely due to
tunneling through the potential barrier.

In purely ballistic devices, it is just the barrier height which determines the device
behavior. On the contrary, in tunneling regimes, the barrier width and shape are also
relevant in determining the current. In the p-i-p structure we have simulated, the contact
Fermi level lies closely to the valence subband edge, well below the top of the potential
barrier for hole transmission (see Figure 15). This is not totally unexpected for a
small-diameter nanotube junction, where charge transfer occurring at the doped-intrinsic
interface is distributed over an exiguous number of carbon atoms, owing to the marked
quasi-one-dimensionality of the system. A large shift in the atomic energy can also,
therefore, result from a relatively small charge transfer, causing a very high potential
barrier with respect to carrier injection level. This deeply differentiates the behavior
of a CNTFET with respect to the ballistic transport theory developed for silicon nano-
MOSFET [50]. The strong dependence of the saturation current on the drain bias we
have so far observed is just caused by the exponential dependence of the tunneling
current on the width of the barrier. We can refer to the mechanism responsible for the
non-saturation of the current as drain-induced barrier thinning (DIBT).

Finally, it should be noted that the short length of the channel enhances the sensitivity
of the tunneling current to drain-induced barrier modulation. Longer nanotubes are
therefore expected to show a considerably lesser sensitivity of the saturation current
to the drain bias. In Figure 16 we show the trans-characteristic obtained for the p-i-p
CNTFET for a fixed drain bias of −0�4 V.

Simulation results show the exceptional transport characteristics of bulk-modulated
CNTFETs. First, we note that the device shows a perfectly unipolar behavior. Current
is carried only by holes which are injected from the p-doped source contact, and is
progressively switched off by increasing the barrier for holes transmission with the gate
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Figure 16 Trans-characteristic of a p-i-p CNTFET consisting of the semiconducting CNT
(7, 0) doped at the contacts with 0.004 holes per carbon atom. The non-monotonic behavior of
the current for high gate voltages is associated to band-to-band tunneling

bias. The non-monotonic behavior that can be observed in the trans-characteristic when a
high gate voltage is applied is associated to band-to-band (BTB) tunneling mechanisms,
which allows holes to propagate from the valence subband of source contact into the
conduction band in the middle of the channel, and then to be collected into the valence
subband of the drain [51] (see the inset in Figure 16). Thanks to their intrinsic unipolar
behavior, vertically scaled CNTFETs accomplish one of the fundamental requirements
for a high-performance device which can be used in CMOS-like logic circuits.

The computed output-characteristics show also a very high Ion/Ioff ratio, ∼108, which
is an evidence of the exceptional effectiveness of the bulk-switching mechanism in mod-
ulating the current. Exceptional performances have also been obtained concerning the
sub-threshold swing parameter, S = dVG/d�log IDS), which measures the effectiveness
of the gate bias in switching off the current in the sub-threshold regime. The com-
puted output characteristic shows a very good value for the inverse sub-threshold slope,
75 mV/dec. Note that the BTB branch of the characteristic in Figure 16 shows a sub-
threshold swing of 42 mV/dec, which is even lower than the minimum value attainable
for any conventional silicon MOSFET at room temperature, which is KBT ln�10�/e =
60 mV/dec.

11. Conclusions

We have presented a detailed description of the gDFTB tool for quantum transport
calculations in molecular systems and nanostructures. Several applications of the method
have been shown, ranging from coherent transmission across molecular junctions and
CNT devices to studies of inelastic electron–vibration interactions with applications to
IETS. Methodology development to improve the DFT spectra using the GW approach
has been also shown.
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1. Introduction

Electron transport properties through molecular bridges connecting nano-scale electrodes
have been among the hot topics of molecular electronics [1]. Towards realization
of molecular bridge devices, ultra-fine bottom-up fabrication technologies should be
developed. In spite of its strong expectation, however, to realize the single molecular
devices is not easy and the fabrication and characterization methods have not been well
developed so far.

In such a situation, the role of the theoretical studies is significant, for example,
to propose a useful contact formation method, to analyze observed data properly, and
to explore functionality of molecules as devices [2]. In this chapter, we will report
some recent attempts to explore the remarkable properties of quantum transport through
molecular bridges.

For a theoretical analysis of molecular bridges, we mainly use the non-equilibrium
Green’s function method with tight-binding basis [2]. If necessary, a self-consistent
calculation in the standard density-functional-theory (DFT) level [3], or its simplified
version [4], can be incorporated in this approach.

As will be discussed later, the transport through molecular bridges is strongly influ-
enced by the connecting part to the electrodes, though of course it is also influenced
by the internal structure of the molecule. The internal current distribution within the
molecule, which is induced by the source-drain current, shows remarkable quantum

233
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nature and will be one of the topics discussed in this chapters. When the electron incident
energy is close to a degenerate molecular level, a large loop current is often generated
inside the molecule [5]. The internal current distribution is similar to that induced by
the magnetic field.

According to the principle of the quantum mechanics, since the number of the electrons
in the molecular island and the phase of the wavefunction in a bridge region are a pair
of conjugate physical quantities, there is an uncertainty relation between the two. If the
bottleneck at the connection part is weak, the phase tends to be a good quantum number,
and a coherent quantum transport is expected. If the bottleneck is strong enough, the
electron number in the molecular island will be more or less well defined. In this case
the electron transfer is associated with the energy dissipation to the phonon system
or the electro-magnetic environment. The crucial problem is to know which regime,
coherent or dissipative, dominates the electron transport. Moreover, it is an interesting
problem to know the nature of the transition between the two regimes and to explore
the marginal situation. For the study of this problem, effects of the electron coupling
with medium degrees of freedom should be seriously considered.

2. Non-equilibrium Green’s function with tight-binding bases

In this section, as the basic theoretical approach for the quantum transport, non-
equilibrium Green’s function method is briefly summarized. Hamiltonian H of the
whole system is written as the sum of the Hamiltonian H0 of the free molecule and its
interaction with the environment �,

H = H0 +� (1)

The self-energy term � takes into account the interaction with electrodes, many-body
effects such as electron–phonon and electron–electron interactions. The retarded and
advanced Green’s functions are defined by

GR�E� = {
EI −H0 −�R + i�

}−1
(2)

GA�E� = GR�E�†� (3)

with a positive infinitesimal �. The lesser Green’s function is defined by

G<�E� = GR�E��<�E�GA�E� (4)

which is used to obtain the current between the site i to j,

Jji�E� = 2e

h
Re
[
HjiG

<
ji �E�

]
(5)

In the above, Hji is the �j�i� element of the Hamiltonian H0. All the effects
due to the interactions with the environment are included in �R�A� and the lesser
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self-energy �<. When the many-body effect and the electron–phonon coupling are
neglected, the self-energy comes only from the coupling with leads. In this case �< is
given by

�<�E� = i
∑

�

f��E����E� (6)

���E� = i
∑R

�
�E�−∑A

�
�E� (7)

where f� and �R�A�
� denote the Fermi distribution function in the lead �, and the retarded

(advanced) self-energies, respectively. The transmission probability from lead � to �′

is given by

T��′�E� = Tr
[
GR��GA��′

]
(8)

The Hamiltonian H0 can be obtained in a self-consistent manner in the framework of the
DFT with the localized basis set. For the simplest approximation, we use phenomeno-
logical tight-binding model.

3. Effects of the linkage structure on the conductance
of molecular bridges

Here we consider how the terminal structures of the molecules affect the conductance
of the molecular bridge. The transmission spectra of the phenalenyl molecule [6] and
the tape porphyrin molecule [7] are examined as case study. In all the cases, the
electronic states of the whole systems are described by the density functional–derived
self-consistent tight-binding method [8–10], in which the basis is assumed to be the
localized atomic orbitals.

Figure 1 shows the molecular bridge of the phenalenyl molecule attached to the two
gold electrodes through the mercapto-vinyl groups [6]. The difference between the two
systems in (a) and (b) of Figure 1 is seen in the positions of the connecting sites of the
leads (mercapto-vinyl groups), i.e., � and 	 sites for the corresponding cases.

The transmission spectrum when both leads are attached to the � sites is shown in
Figure 2(a), while for the case with the leads attached to the 	 site it is shown in
Figure 2(b). In both figures, the origin of the electron energy is the Fermi level of the
gold electrodes. For the case with the leads at the � sites, the transmission peak appears

(a)

α

β
X

ss

(b)

X

s s

Figure 1 Structure of phenalenyl molecular bridge (X==C atom). The mercapto-vinyl groups
are attached to (a) � site and (b) 	 site
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Figure 2 The transmission spectra for the phenalenyl molecular bridges shown in Figure 1.
Labels (a) and (b) correspond to those of Figure 1
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Figure 3 The energy diagram (schematic) and wave-functions of phenalenyl molecule

at the very vicinity of the Fermi level, but not for the case with the leads at the 	 sites.
In the latter case, the prominent peak at around the Fermi level disappears.

Figure 3 shows the energy diagram of the free phenalenyl molecule. The transmission
peak in the vicinity of the Fermi level is caused by 
′′

1 orbital which has no amplitudes
at the 	 sites. This orbital is a single occupied molecular orbital (SOMO) of phenalenyl.
It is easily understood from the nature of the SOMO orbital that the orbital 
′′

1 does not
contribute to the transmission, if the leads are connected to 	 sites. This is the reason
for the disappearance of the transmission peak near the Fermi level in Figure 2b. Such
a sensitivity of the conductance on the terminal sites has been also found in the tape-
porphyrin molecules [11]. Tape porphyrin is a sort of the oligomer of the porphyrin,
which shows the vanishing of the HOMO–LUMO gap for a very long chain length. We
investigated four different linkage structures of the tape-porphyrin to the gold electrodes
as shown in Figure 4. For all the cases, the numbers of the porphyrin molecules in
the chain is assumed to be 8 (n=6). The calculated results of the transmission spectra
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Figure 4 Four kinds of bridge structures using a tape porphyrin

are shown in Figure 5. It is remarkable that only a small difference of the linkage
part dramatically influences the conductance of the molecular bridge. Namely, among
the four bridges from A through D shown in Figure 4, the case B shows the largest
conductance, because there is a prominent transmission peak very close to the electrode
Fermi level.

These findings indicate that for designing a whole system of the molecular bridge,
special attention should be paid to the linkage parts of the molecule to the electrodes.

4. Internal large loop currents

Figure 6 illustrates a triangular nano-graphene sheet bound with zigzag edges. The
protruded atoms along the topmost zigzag edge are numbered from 1 to N . The number
of atoms in the nano-graphene is N 2 + 4N + 1. The smallest molecule with N = 2
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1 2 s d N

Figure 6 A structure of triangular nano-graphene

corresponds to the phenalenyl molecule discussed in the previous section, but here we
focus on the larger system with N = 56. The source s and the drain d are connected to
the top edge at �s�d� = �N/4+1� 3N/4�. The connection would be made by the vinyl
group. As for the lead-molecule coupling, we set t′ = 0�6t.

The isolated nano-graphene molecule has many doubly degenerate energy levels in
the vicinity of the Fermi level [12], although there are �N −1�-fold degenerate levels at
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(a) (b)

Figure 7 (a) Microscopic loop current distribution in the trianglar nano-graphene and
(b) a schematic view of its current direction

E = 0, which correspond to the edge states. Due to the localized character of the edge
state, they do not contribute to the resonant current [12]. Figure 7(a) shows the internal
bond current Jij(E) (from site i to j) at one of the degenerate levels E = −0�165t, so that
the strongest one is expressed by the darkest color. Figure 7(b) schematically illustrates
the orientation of the current flow. Noticeably, a large current loop appears circulating a
large area of the graphene molecule. The strength of the current is much larger than the
source–drain current. Even when the source and the drain sites are moved to different
sites along the upper edge, almost the same current patterns are obtained [12]. The
internal current distribution is determined from the nature of the particular degenerate
molecular orbitals, rather than being accidentally induced by the current from the leads.

The distribution of the internal bond current is analyzed as follows. The current
flowing through the bond connecting the sites i and j is given by

jij = 4e

h
Im
[
� ∗

i Hij�j

]

= 4eHij

h

∑

v

(
�i�vj −�vi�j

) ∣
∣a

∣
∣ �av� sin�� −�v� (9)

where �� label the molecular states,
∣
∣a

∣
∣ � �av�are their amplitudes, and �� �v are the

phases of the coefficients expanding the whole scattering electron wave with the energy
E. On the other hand

{
�i

}
i=1� 2� � � �

are the LCAO coefficients of the particular molecular
orbital  in the isolated molecule. The envelop factor of

∣
∣a

∣
∣ �a�� sin

(
� −��

)
does not

depend on the atomic site in the molecule, and resonantly enhanced when the electron
energy becomes closer to a degenerate molecular level. In this case, the states  and �
are certain components of the degenerate state. Because of the sine function factor of
the phase difference � −��, the energy corresponding to the maximum of the envelop
factor is slightly higher or lower than the just on resonance energy. Because of the
resonantly enhancing feature of the envelop factor, the magnitude of the loop current
becomes larger than the source–drain current often by several tens of times.

The factor
(
�i��j −��i�j

)
in Eq. (9) expresses the microscopic current distribu-

tion inside the molecule. Interestingly enough, the same factor appears for the current
distribution of the isolated molecule under a static magnetic field. Such current causes
the diamagnetism of the molecule in general, and for a mesoscopic system, it is the
current distribution of the magnetically induced persistent current. One might speculate
a close relationship between the source–drain induced loop current and the magnetic
field–induced molecular current.
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5. Effect of electron–phonon coupling

Though the conductance value of molecular bridges so far theoretically predicted has not
been so much reduced from the quantization value G0 (= 1/12�9 k��, experimentally
reported values have been usually by some orders of magnitude smaller than this.
Unfortunately there have been few conductance measurements, where the contact is
characterized in the atomic level. On the theoretical side, approaches ignoring the
electron–vibration coupling may not be always satisfactory. Such approaches might
result in too much enhancement of the coherent nature and tends to estimate larger
values for the conductance. To clarify the reason for the gap between the theory and
experiment, we should look into the effect of the molecular vibration on the electron
transfer processes.

With the decrease of the transfer integral in the molecular region, the electronic
states would change from the extended states to the localized states due to the polaron
formation. By considering the transition between these polaron-like states, the carrier
transfer in the molecular bridges can be properly analyzed. In this section we propose a
unified method to treat the extended and the polaron-like localized states coupled with
the molecular vibrations. Second, we will clarify the electron transport processes based
on the transition rates between the coupled electronic states with the vibration modes.
The case study is made for the one-dimensional molecular bridge made of the thiophene
molecules [13].

The model we treat in this chapter is shown in Figure 8. It consists of molecules
arranged in a chain in the bridge region and two outer electrodes. The molecules should
be regarded to form a large single molecule for the stronger interaction. We consider
the case in which one additional electron or hole exists over the otherwise neutral whole
molecules. Only a single state, i.e. LUMO for the case of electron or HOMO for the
case of hole, is considered as the electronic state on each molecule (or molecular unit
for the stronger interaction case).

HOMO
(or LUMO)

Electron–vibration
coupling

VB1 V V V VB2
E1

E0

E2
EN

EN+1Site: NSite: n = 1

Site: n = N + 1

Site: n = 0

n = 2

Transfer integral

Electric field
Electrode

Electrode

γλ
(n)

ωλ

Figure 8 A model of the bridge of linearly arranged thiophene molecules
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The Hamiltonian of the total system is given as

Htotal = HMB +HE +HMB−E (10)

where the first two terms of the right hand side describe molecule(s) and electrodes,
respectively, and the last term is their coupling term. Each term on the right hand side
of the above equation is written as

HMB =
N∑

n=1

Ena
+
n an +

N−1∑

n=1

V�a+
n a+

n+1a
+
n+1an�

+∑
�

h��b+
� b� +

N∑

n=1

∑

�

�
�n�
� h��a+

n an�b
+
� + b�� (11a)

HE = E0a
+
0 a0 +EN+1a

+
N+1aN+1 (11b)

HMB−E = VB1�a
+
0 a1 +a+

1 a0�+VB2�a
+
N aN+1 +a+

N+1aN � (11c)

Here a+
n �an� creates (annihilates) an electron or hole in the n-th molecule (hereafter,

“molecule” should be interpreted as a molecular unit for a strong V case) or one of the
electrodes with energy En.

The indexes n = 0 and n = N +1 correspond to the electronic state of the electrodes.

Since the number of carriers is assumed to one,
N+1∑

n=0
a+

n an = 1 ·b+
� �b�� creates (annihilates)

a vibration quanta in the mode � with energy ���. The electron–vibration coupling
between the carrier at the n-th molecular site and �-th vibration mode is given by the
parameter �

�n�
� .

For the estimation of the electron–phonon coupling parameter, the following relation
is useful;

�
�n�
� = −

√
m���

2h
��d · �e� (12)

with ��d being the 3Natom-dimensional relaxation vector from neutral state to ionic state
(Natom is the number of atoms in the molecule), and �e� being the �-th normal vibration
mode of the molecule. In the case of the thiophene molecule, among 21 normal vibration
modes, the 16th mode from the lowest has the largest coupling. This is because the
displacement of the 16th mode is nearly the same as the relaxation vector. Thus the
value of the coupling constant is calculated by ab initio molecular orbital method.

Transfer integral V is also estimated by ab initio molecular orbital method. Examples
of the transfer integral of the HOMOs of thiophene molecules are shown in Figure 9.

The electronic states in the molecular bridge region can be obtained as follows. First,
in the limiting case of V = 0, the exact wavefunctions are given by

�m�
n =∏

�

exp�−�
�n�
� �b+

� −b��� �m����n� (13)
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|V | = 2.1 eV 

|V | = 0.7 eV 

|V | = 0.0 eV 

Figure 9 Values of transfer integral for the linear array of thoiphene molecules

which will be called “the polaron-like states”, hereafter. Here “�m��” means the vibration
state with m� quanta in the mode �. Second, if the electron–vibration coupling is equal
to 0, the eigen states should be in the form of

��m��
m =

{
N∑

n=1

fm
n ��n�

}

��m��� � (14)

which are called the “the undressed states”. The first factor of
{

N∑

n=1
fm

n ��n�

}

corresponds

to the molecular orbital for the system without vibration degrees of freedom. The state
��m��� means �m1� �m2� · · · �mn� · · · . Generally, the wavefunction is expressed by

�
�ma

��
a =

N∑

n=1

Aa
n�

�ma
��

n +
N∑

m=1

Ba
m�

�ma
��

m (15)

with Aa
n and Ba

m determined by the minimum energy condition for the ground states:

��0�
a =

N∑

n=1

Aa
n�

�0�
n +

N∑

m=1

Ba
m��0�

m =
N∑

n=1

[

Aa
n

∏

�

exp�−�
�n�
� �b+

� −b���+Ca
n

]

��n�
∣
∣0ph

〉
(16)

Here we set Ca
n = N∑

m=1
fm

n Ba
m.

The electronic states in the molecular bridges with five sites will be shown below.
In this model the energy difference between neighboring sites is set to 0.04 eV (see
Figure 8). The single vibration mode is assumed for each molecular units, with the
value of the coupling being 1.6. Figure 10 shows how the energy levels of the electronic
states depend on the transfer integral. There are two kinds of states in this figure: one
with almost constant energies and the other showing the linear dependence with transfer
integral.

In Figure 11 the coefficients of the wavefunction are shown in the case of (a) �V� =
0.1 eV and (b) �V� = 0.7 eV. The coefficients of the polaron-like part and the undressed
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Figure 11 Composition of each eigen-state coupled with vibration modes for (a) �V � = 0�1 eV
and (b) �V � = 0�7 eV. Other parameters are �� = 0�18 eV and � = 1�6

part are plotted by full and dotted lines, respectively, with the upper and lower half circles
indicating positive and negative values, and the radius being the relative magnitude
normalized by the maximum value. In case (a), the lower and upper five states are the
polaron and the undressed states, respectively. On the other hand, in case (b), from
the third to the seventh, the states are the polaron states, while the other states are the
undressed ones. The ground state for lower �V� is polaron, but with the increase of �V�,
the ground state becomes undressed state.



244 M. Tsukada et al.

6. Carrier transport process

In this section, the carrier transport in the molecular bridge is discussed in the model of
the previous section. Here the states of the electrodes are expressed as

�
�mL

��

left = ��0�
∣
∣�mL

��
〉

(for left electrode) (17a)

�
�mR

� �

right = ��N+1�
∣
∣�mR

��
〉

(for right electrode) (17b)

Transition rates from a state “a” to another state “b” is calculated by Fermi’s golden
rule as

Wa→b = 2�

h

∑

�mb
��

〈
�Hab�2 ��Ea −Eb�

〉

�ma
��

(18)

The state “a” or “b” is defined in Eq. (15) or (17a) or (17b), and the matrix element
Hab and the energy Ea are calculated by

Ea =
〈
�

�ma
��

a

∣
∣
∣Htotal

∣
∣
∣�

�ma
��

a

〉
(19)

Hab =
〈
�

�ma
��

a

∣
∣
∣Htotal

∣
∣
∣�

�mb
��

b

〉
(20)

In Eq. (18), �� � � ��ma
��

means the thermal average with the vibration state of “a”. In the
following, temperature is set to 0 Kelvin.

The carrier transport can be analyzed from the population probability �Pa �t�� obtained
by the master equation,

dPa�t�

dt
=∑

b

Wb→aPb�t�−∑
b

Wa→bPa�t� (21)

Figures 12(a) and (b) shows the time-dependent occupation of each site and state,
respectively. The 0th and 6th sites in Figure 12(a) means the left or right electrode.
Before t = 0 the carrier is assumed to be in the left electrode. At t = 0, we started
to solve the master equation of Eq. (12). In other words, the injection from the left
electrode to the molecular bridges started at t = 0. When time goes by, the occupation
at the left electrode rapidly decreases, and the occupation at the sites 1, 2, 4, 5 increases
as shown in Figure 12(a). After 0.1 fsec, the occupation of the 6th site at the right
electrode increases and finally becomes “1”.

The time-dependent occupation of each state is shown in Figure 12(b). At first, the 8th
state is occupied and then the 7th , 5th and 2nd states are occupied. After these processes,
the 0th state in right electrode is finally occupied. We analyze these processes by the
wavefunction and the energy levels. The wavefunctions in the molecular bridges are
shown in Figure 12(c). Notice that because a different value of the coupling parameter �
is assumed (� = 0�8�, the composition of each state is somewhat different from the case
of Figure 11 (� = 1�6�. The energy level of each state from 0 through 11 in the electrodes
and the molecules are shown in Figure 12(d). From Figure 12(c) and (d), the 8th state
has a large amplitude at the 1st site, i.e., the site closest to the left electrode and its
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Figure 12 Time-dependent occupation of each (a) site and (b) state, for the case with the state
components and the levels are shown in (c) and (d), respectively

energy is near the level of the left electrode. So it is easy to understand why the 8th
state becomes occupied at the earliest stage. By analyzing the relative magnitudes of
the transition rate Wi→k, the most probable path is 11th (left) → 8th → 7th → 5th →
2nd→ 1st→ 0th (right). This is consistent with the result of Figure 12. The rate of W2→1

has a smaller value and this is a rate-limiting step. The reasons for the small W2→1 are:
first, the 2nd state has a node at the 3rd site while the 1st state does not have a node:
second, a large energy gap exists between the two states 1 and 2, which suppresses
the transition. The transition rates W7→6 and W5→4 are also negligibly small, because
of the almost orthogonal character between the states 6 and 7, or between the states 5
and 4. In Figure 13, the center of the charge and its velocity are shown as functions of
time. For bulk organic materials, time-of-flight (TOF) experiments are frequently used
to estimate the carrier mobility. The result of the velocity in Figure 13 is similar to that
observed by TOF. Therefore, this might indicate the method of the estimation for the
carrier mobility in the molecular bridges described above is legitimate.
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1. Introduction

The aim of this chapter is to give a pedagogical introduction to our recently proposed
ab initio theory of quantum transport. It is not intended to be a general overview of
the field. For further information we refer the interested reader to [1–3]. The nomen-
clature quantum transport has been coined for the phenomenon of electron motion
through constrictions of transverse dimensions smaller than the electron wavelength,
e.g., quantum-point contacts, quantum wires, molecules, etc. The typical experimental
setup is displayed in Figure 1 where a central region C of meso- or nano-scopic size
is coupled to two metallic electrodes L and R which play the role of charge reservoirs.
The whole system is initially (at time t < 0) in a well-defined equilibrium configuration,
described by a unique temperature and chemical potential (thermodynamic consistency).
The charge density of the electrodes is perfectly balanced and no current flows through
the junction.

As originally proposed by Cini [4], we may drive the system out of equilibrium by
exposing the electrons to an external time-dependent potential which is local in time and
space. For instance, we may switch on an electric field by putting the system between
two capacitor plates far away from the system boundaries. The dynamical formation
of dipole layers screens the potential drop along the electrodes and the total potential
turns out to be uniform in the left and right bulks. Accordingly, the potential drop is
entirely limited to the central region. As the system size increases, the remote parts
are less disturbed by the junction, and the density inside the electrodes approaches the
equilibrium bulk density.

247
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Region C

Right electrode RLeft electrode L

t < 0

Figure 1 Schematic sketch of the experimental setup described in the text. A central region
which also includes few layers of the left and right electrodes is coupled to macroscopically large
metallic reservoirs. The system is in equilibrium for negative times

The Cini scheme can be combined with Time-Dependent Density Functional Theory
(TDDFT) [5]. In this theory, the time-dependent density of an interacting system moving
in an external, time-dependent local potential can be calculated via a fictitious system of
noninteracting electrons moving in a local, effective, time-dependent potential. Therefore
this theory is in principle well suited for the treatment of nonequilibrium transport
problems [6]. However, as far as the leads are treated as noninteracting, it is not obvious
that in the long time limit a steady-state current can ever develop. The reason behind
the uncertainty is that the bias represents a large perturbation and, in the absence of
dissipative effects, e.g., electron–electron or electron–phonon scattering, the return of
time-translational invariance is not granted. In this chapter we will show that the total
current tends to a steady-state value provided the effective potential of TDDFT is
independent of time and space in the left and right bulks. Also, the physical mechanism
leading to the dynamical formation of a steady state is clarified.

It should be mentioned that there has already been considerable activity in the density
functional theory (DFT) community to describe transport phenomena through systems
like the one in Figure 1. Most approaches are limited to the steady-state regime and
are based on a self-consistency procedure first proposed by Lang [7]. In this steady-
state approach based on DFT, exchange and correlation is approximated by the static
Kohn–Sham (KS) potential and the charge density is obtained self-consistently in the
presence of the steady current. However, the original justification involved subtle points
such as different Fermi levels deep inside the left and right electrodes (which is not
thermodynamically consistent) and the implicit reference of nonlocal perturbations such
as tunneling Hamiltonians within a DFT framework. (For a detailed discussion we refer
the reader to [8].) Furthermore, the transmission functions computed from static DFT
have resonances at the noninteracting KS excitation energies which in general do not
coincide with the true excitation energies.

Our TDDFT formulation, as opposed to the static DFT formulation, is thermody-
namically consistent, is not limited to the steady-state regime (we can study transients,
AC responses, etc.) and has the extra merit of accessing the true excitation energies of
interacting systems [9].

We will first use the nonequilibrium Green’s function (NEGF) technique to discuss
the implications of our approach. For those readers that are not familiar with the Keldysh
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formalism and with NEGF, in Section 2 we give an elementary introduction to the
Keldysh contour, the Keldysh–Green functions and the Keldysh book-keeping. The aim
of this section is to derive some of the identities needed for the discussion (thus providing
a self-contained presentation) and to establish the basic notation. In Section 3 we set up
the theoretical framework by combining TDDFT and NEGF. An exact expression for
the time-dependent total current I�t� is written in terms of Green’s functions projected
in region C. It is also shown that a steady-state regime develops provided: (1) the KS
Hamiltonian globally converges to an asymptotic KS Hamiltonian when t → �, (2) the
electrodes form a continuum of states (thermodynamic limit), and (3) the local density
of states is a smooth function in the central region. It is worth noting that the steady-state
current results from a pure dephasing mechanism in the fictitious KS system. Also, the
resulting steady current only depends on the KS potential at t= � and not on its history.
However, the KS potential might depend on the history of the external applied potential
and the resulting steady-state current might be history dependent. A practical scheme to
calculate I�t� is presented in Section 4. The main idea is to propagate the KS orbitals
in region C only, without dealing with the infinite and non-periodic system [10]. We
first show how to obtain the KS eigenstates �s of the undisturbed system in Section 4.1.
Then, in Section 4.2 we describe an algorithm for propagating �s under the influence
of a time-dependent disturbance. The numerical approach of Section 4 is completely
general and can be applied to any system having the geometry sketched in Figure 1. In
order to demonstrate the feasibility of the scheme we implement it for one-dimensional
model systems in Section 5. Here we study the dynamical current response of several
systems perturbed by DC and AC biases. We verify that for noninteracting electrons
the steady-state current does not depend on the history of the applied bias. Also, we
present preliminary results on net currents in unbiased systems as obtained by pumping
mechanisms. We summarize our findings and draw our conclusions in Section 6.

2. The Keldysh formalism

2.1. The Keldysh contour

In quantum mechanics we associate to any observable quantity O a hermitian operator
Ô. The expectation �� �Ô��� gives the value of O when the system is described by the
state ���. For an isolated system the Hamiltonian Ĥ0 does not depend on time, and the
expectation value of any observable quantity is constant provided ��� is an eigenstate
of Ĥ0. In this section we discuss how to describe systems which are not isolated but
perturbed by external fields. Without loss of generality, we assume that the system is
isolated for negative times t and that Ĥ�t < 0� = Ĥ0. The evolution of the state ��� is
governed by the Schrödinger equation i d

dt ���t�� = Ĥ�t����t��, and, correspondingly, the
value of O evolves in time as O�t� = ���t��Ô���t��. The time-evolved state ���t�� =
Ŝ�t�0����0��, where the evolution operator Ŝ�t� t′� can be formally written as

Ŝ�t� t′�=
{
T e−i

∫ t
t′ dt̄ Ĥ�t̄� t > t′

T e−i
∫ t
t′ dt̄ Ĥ�t̄� t < t′

� (1)

In Eq. (1), T is the time-ordering operator and rearranges the operators in chronolog-
ical order with later times to the left; T is the anti-chronological time-ordering operator.
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The evolution operator is unitary and satisfies the group property Ŝ�t� t1�Ŝ�t1� t
′� =

Ŝ�t� t′� for any t1. It follows that O�t� is the average on the initial state ���0�� of the
operator Ô in the Heisenberg representation, ÔH�t�= Ŝ�0� t�ÔŜ�t�0�, i.e.,

O�t�= ���0��Ŝ�0� t�ÔŜ�t�0����0��
= ���0��Te−i

∫ 0
t dt̄ Ĥ�t̄� Ô Te−i

∫ t
0 dt̄ Ĥ�t̄����0��� (2)

We can now design an oriented contour � with a forward branch going from t = 0
to t and a backward branch coming back from t and ending in t = 0, see Figure 2a.
Denoting with z̄ the variable running on �, Eq. (2) can be formally recast as follows

O�t�= ���0��TK

{
e−i

∫
� dz̄ Ĥ�z̄� Ô�t�

}
���0��� (3)

The contour ordering operator TK moves the operators with “later” contour variable
to the left. A point z is later than a point z′ if z′ is closer to the starting point than
z, see Figure 2a. In Eq. (3), Ô�t� is not the operator in the Heisenberg representation
[the latter is denoted with ÔH�t�]. Actually, Ô�t� = Ô for any t. The reason for the
time argument stems from the need for specifying the position of the operator Ô in the
contour ordering.

Let us now extend the contour � up to infinity, as shown in Figure 2b. For any physical
time t there are two points z= t+ and z= t− on �; t− lies on the forward branch while
t+ lies on the backward branch and it is later than t− according to the orientation cho-
sen. We have TK	e

−i
∫
� dz̄ Ĥ�z̄� Ô�t−�
= Ŝ�0���Ŝ��� t�Ô�t�Ŝ�t�0�= Ŝ�0� t�ÔŜ�t�0�� and

similarly TK	e
−i
∫
� dz̄ Ĥ�z̄� Ô�t+�
 = Ŝ�0� t�Ô�t�Ŝ�t���Ŝ���0� = Ŝ�0� t�ÔŜ�t�0�� Thus,

the expectation value O�t� in Eq. (3) is also given by the formula

O�z�= ���0��TK

{
e−i

∫
� dz̄ Ĥ�z̄� Ô�z�

}
���0��� (4)

where � is the contour in Figure 2b; � is called the Keldysh contour [11, 12]. In
Eq. (4) the variable z can be either t− or t+ and O�t−�= O�t+�= O�t�.

The Keldysh contour can be further extended to account for statistical averages [13].
In statistical physics a system is described by the density matrix �̂ =∑

n wn��n���n�,

0 tz ′
z

∞
t

t–

+t

(a) (b)

–iβ

∞0–0–

(c)

γ γ γ

Figure 2 (a) The oriented contour � described in the main text with a forward and a backward
branch between 0 and t. According to the orientation the point z is later than the point z′. (b) The
extended oriented contour � described in the main text with a forward and a backward branch
between 0 and �. For any physical time t we have two points t± on � at the same distance from
the origin. (c) The generalization of the original Keldysh contour. A vertical track going from 0
to −i has been added and, according to the orientation chosen, any point lying on it is later than
a point lying on the forward or backward branch
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with wn being the probability of finding the system in the state ��n� and
∑

n wn = 1.
The states ��n� may not be orthogonal. We say that the system is in a pure state
if �̂ = ����� �. In a system described by a density matrix �̂�0� at t = 0, the time-
dependent value of the observable O is a generalization of Eq. (4), i.e., O�z� =
∑

n wn��n�0��TK	e
−i
∫
� dz̄ Ĥ�z̄� Ô�z�
��n�0��� Among all possible density matrices there is

one that is very common in physics and describes a system in thermal equilibrium:
�̂ = exp�−�Ĥ0 −�N̂��/�� with the inverse temperature , the chemical potential
�, the operator N̂ corresponding to the total number of particles and the grand-
partition function � = Tr exp�−�Ĥ0 −�N̂��. Assuming that Ĥ0 and N̂ commute, the
statistical average O�z� with the thermal density matrix can be written as O�z� =
Tr � e�N̂e−Ĥ0TK	e

−i
∫
� dz̄ Ĥ�z̄� Ô�z�
 �/�� We can now extend further the Keldysh contour

as shown in Figure 2c and define Ĥ�z� = Ĥ0 for any z on the vertical track. With this
definition Ĥ�z� is continuous along the entire contour since Ĥ�0� = Ĥ0. According to
the orientation displayed in the figure, any point lying on the vertical track is later than
a point lying on the forward or backward branch. We use this observation to rewrite
O�z� as

O�z�=
Tr
[
e�N̂TK

{
e−i

∫
� dz̄ Ĥ�z̄� Ô�z�

}]

Tr
[
e�N̂TK

{
e−i

∫
� dz̄ Ĥ�z̄�

}] � (5)

where TK is now the ordering operator on the extended contour. It is worth noting
that the denominator in the above expression is simply �. We have already shown that
choosing z on one of the two horizontal branches, Eq. (5) yields the time-dependent
statistical average of the observable O. On the other hand, if z lies on the vertical track
O�z�= Tr � e�N̂e−i

∫ −i
z Ĥ0Ôe−i

∫ z
0 Ĥ0 �/�= Tr � e−�Ĥ0−�N̂�Ô�/�� where the cyclic property

of the trace has been used. The result is independent of z and coincides with the thermal
average of the observable O.

To summarize, in Eq. (5) the variable z lies on the contour of Figure 2c; the r.h.s.
gives the time-dependent statistical average of the observable quantity O when z lies
on the forward or backward branch, and the statistical average before the system is
disturbed when z lies on the vertical track.

2.2. The Keldysh–Green function

The idea presented in the previous section can be used to define correlators of many
operators on the extended Keldysh contour. The Keldysh–Green function G is the
correlator of two field operators ��r� and �†�r� which obey the anticommutation
relations 	��r���†�r ′�
= ��r − r ′�. It is defined as

�r�G�z� z′��r ′� = 1
i

Tr
[
e�N̂TK

{
e−i

∫
� dz̄ Ĥ�z̄� ��r� z��†�r ′� z′�

}]

Tr
[
e�N̂TK

{
e−i

∫
� dz̄ Ĥ�z̄�

}] � (6)

where the contour variable in the field operators specifies the position in the contour
ordering (there is no true dependence on z in � and �†). Here and in the following we
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use boldface to indicate matrices in one-electron labels, e.g., G is a matrix and �r�G�r ′�
is the �r� r ′� matrix element of G. Due to the contour ordering operator TK, the Green
function G has the following structure

G�z� z′�= ��z� z′�G>�z� z′�+��z′� z�G<�z� z′�� (7)

where ��z� z′� = 1 if z is later than z′ on the contour and zero otherwise. We say that
a two-point function on the contour having the above structure belongs to the Keldysh
space. The Green function G�z� z′� obeys an important cyclic relation on the extended
Keldysh contour. As we shall see, the relations below play a crucial role since they
provide the boundary conditions for solving the Dyson equation. Choosing z = 0−
we find

�r�G�0−� z
′��r ′� = −1

i

Tr
[
e�N̂TK

{
e−i

∫
� dz̄ Ĥ�z̄��†�r ′� z′�

}
��r�

]

Tr
[
e�N̂TK

{
e−i

∫
� dz̄ Ĥ�z̄�

}] � (8)

where we have taken into account that 0− is the earliest time and therefore ��r�0−� is
always moved to the right when acted upon by TK. The extra minus sign in the r.h.s.
comes from the contour ordering. More generally, rearranging the field operators � and
�† (later arguments to the left), we also have to multiply by �−1�P , where P is the parity
of the permutation. Inside the trace we can move ��r� to the left. Furthermore, we can
exchange the position of ��r� and e�N̂ by noting that ��r�e�N̂ = e��N̂+1���r�. Using
the fact that TK moves operators with later times to the left we have ��r�TK	� � � 
 =
TK	��r�−i�� � � 
. Therefore, we conclude that

G�0−� z
′�= −e�G�−i�z′�� G�z�0−�= −e−�G�z�−i�� (9)

where the second of these relations can be obtained in a similar way. The conditions in
Eq. (9) are the so-called Kubo–Martin–Schwinger (KMS) boundary conditions [14, 15].

2.3. The Keldysh book-keeping

In this section we derive some of the identities that we will use for dealing with time-
dependent transport phenomena. A systematic and more exhaustive discussion can be
found in [16].

Let k�z� z′� belong to the Keldysh space: k�z� z′�= ��z� z′�k>�z� z′�+��z′� z�k<�z� z′�.
For any k�z� z′� in the Keldysh space we define the greater and lesser functions on the
physical time axis

k>�t� t′�≡ k�t+� t
′
−�� k<�t� t′�≡ k�t−� t

′
+�� (10)

We also define the left and right functions with one argument t on the physical time
axis and the other � on the vertical track

k	�t� ��≡ k�t±� ��� k
��� t�≡ k��� t±�� (11)
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In the definitions of k	 and k
 we can arbitrarily choose t+ or t− since � is later
than both of them. The symbols “	” and “
” have been chosen in order to help the
visualization of the time arguments. For instance, “	” has a horizontal segment followed
by a vertical one; correspondingly, k	 has a first argument which is real (and thus lies
on the horizontal axis) and a second argument which is imaginary (and thus lies on the
vertical axis). We will also use the convention of denoting with Latin letters the real
time and with Greek letters the imaginary time.

It is straightforward to show that if a�z� z′� and b�z� z′� belong to the Keldysh
space, then c�z� z′�= ∫

�
dz̄ a�z� z̄�b�z̄� z′� also belongs to the Keldysh space. From the

definitions (10–11) we find

c>�t� t′�=
∫ t′−

0−
dz̄ a>�t+� z̄�b

<�z̄� t′−�+
∫ t+

t′−
dz̄ a>�t+� z̄�b

>�z̄� t′−�

+
∫ −i

t+
dz̄ a<�t+� z̄�b

>�z̄� t′−�

=
∫ t′

0
dt̄ a>�t� t̄�b<�t̄� t′�+

∫ t

t′
dt̄ a>�t� t̄�b>�t̄� t′�

+
∫ 0

t
dt̄ a<�t� t̄�b>�t̄� t′�+

∫ −i

0
d�̄ a	�t� �̄�b
��̄� t′�� (12)

The second integral on the r.h.s. is an ordinary integral on the real axis
of two well-defined functions and may be rewritten as

∫ t

t′ dt̄ a>�t� t̄�b>�t̄� t′� =∫ 0
t′ dt̄ a>�t� t̄�b>�t̄� t′�+ ∫ t

0 dt̄ a>�t� t̄�b>�t̄� t′�. Using this relation, Eq. (12) becomes

c>�t� t′�=
∫ �

0
dt̄ �a>�t� t̄�bA�t̄� t′�+aR�t� t̄�b>�t̄� t′��+

∫ −i

0
d�̄ a	�t� �̄�b
��̄� t′�� (13)

where we have introduced two other functions on the physical time axis

kR�t� t′�≡ ��t− t′��k>�t� t′�−k<�t� t′���

kA�t� t′�≡ −��t′ − t��k>�t� t′�−k<�t� t′��� (14)

The retarded function kR�t� t′� vanishes for t < t′, while the advanced function
kA�t� t′� vanishes for t > t′. A relation similar to Eq. (13) can be obtained for the lesser
component c<. It is convenient to introduce a shorthand notation for integrals along the
physical time axis and for those between 0 and −i. The symbol “·” will be used to
write

∫ �
0 dt̄f�t̄�g�t̄� as f ·g, while the symbol “∗” will be used to write

∫ −i
0 d�̄f��̄�g��̄�

as f ∗g. Then

c> = a> ·bA +aR ·b> +a	 ∗b
� c< = a< ·bA +aR ·b< +a	 ∗b
� (15)

Equation (15) can be used to extract the retarded and advanced component of c. By
definition cR�t� t′�= ��t− t′��c>�t� t′�− c<�t� t′�� therefore

cR�t� t′� = ��t− t′�
∫ �

0 dt̄ aR�t� t̄��b>�t̄� t′�−b<�t̄� t′��

+��t− t′�
∫ �

0 dt̄ �a>�t� t̄�−a<�t� t̄��bA�t̄� t′�� (16)



254 G. Stefanucci et al.

Due to the � function, we have t > t′ for cR �= 0. In the second term on the r.h.s.
bA�t̄� t′� contains a ��t′ − t̄� and hence it must be t > t̄; therefore we can replace the
difference in the square bracket with aR. Then we break the first term on the r.h.s. into
two pieces by inserting � functions: one for t̄ < t′ and the other for t̄ > t′. In compact
notation, we end up with

cR = aR ·bR� cA = aA ·bA� (17)

where the second relation can be proven in a similar way. It is worth noting that in the
expressions for cR and cA no integration along the imaginary track is required. For later
purposes we also define the Matsubara function kM��� � ′� with both the arguments in
the interval �0�−i�:

kM��� � ′�≡ k�z= �� z′ = � ′�� (18)

It is straightforward to prove the following identities

c	 = aR ·b	 +a	 ∗bM� c
 = a
 ·bA +aM ∗b
� cM = aM ∗bM� (19)

Finally, we consider the case of a Keldysh function k�z� z′� multiplied on the left
by a scalar function l�z�. The function kl�z� z

′� = l�z�k�z� z′� = ��z� z′�l�z�k>�z� z′�+
��z′� z�l�z�k<�z� z′� and hence belongs to the Keldysh space. The Keldysh components
can be extracted using the definitions (10, 11, 14, 18). Choosing for instance z = t+
and z′ = t′− we find k>l �t� t

′�= l�t�k>�t� t′� and similarly for z= t− and z′ = t′+ we find
k<l �t� t

′� = l�t�k<�t� t′�. More generally, the function l is simply a prefactor: kx
l = lkx,

where x is one of the Keldysh components (≶, R� A, 	� 
, M). The same is true for
kr�z� z

′�= k�z� z′�r�z′�, where r�z′� is a scalar function: kx
r = kxr.

3. Quantum transport using TDDFT and NEGF

3.1. Merging the Keldysh and TDDFT formalisms

The one-particle scheme of TDDFT corresponds to a fictitious system of non-
interacting electrons described by the Kohn–Sham (KS) Hamiltonian Ĥs�z� =∫

drdr ′�†�r��r�H s�z��r ′���r ′�. The potential vs�r� t� experienced by the electrons in
the free-electron Hamiltonian H s�t� is called the KS potential and it is given by the sum
of the external potential, the Coulomb potential of the nuclei, the Hartree potential and
the exchange-correlation potential vxc. The latter accounts for the complicated many-
body effects and is obtained from an exchange-correlation action functional, vxc�r� t�=
�Axc�n�/�n�r� t� (as pointed out in [17], the causality and symmetry properties require
that the action functional Axc�n� is defined on the Keldysh contour). Axc is a functional
of the density and of the initial density matrix. In our case, the initial density matrix is
the thermal density matrix which, due to the extension of the Hohenberg–Kohn theorem
[18] to finite temperatures [19], also is a functional of the density. We should mention
here that an alternative formulation based on TDDFT has been recently proposed by
Di Ventra and Todorov [20]. In their approach the system is initially unbalanced and
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therefore the exchange-correlation functional depends on the initial state and not only
on the density.

The fictitious Keldysh–Green function ��z� z′� of the KS system satisfies a one-
particle equation of motion

{

i
−→
d
dz

1−H s�z�

}

��z� z′�= 1��z− z′��

��z� z′�

{

−i
←−
d

dz′ 1−H s�z
′�

}

= 1��z− z′�� (20)

with KMS boundary conditions (9). In Eqs (20) the arrow specifies where the derivative
along the contour acts. The left and right equations of motion are equations on the
extended Keldysh contour of Figure 2c and ��z− z′� = d

dz ��z� z
′� = − d

dz′ ��z� z
′�. For

any z �= z′, the equations of motion are solved by the evolution operator on the con-
tour S�z� z′�= TK	e

−i
∫ z
z′ dz̄Hs�z̄�
, since i

−→
d
dzS�z� z

′�= H s�z�S�z� z
′� and S�z� z′��−i

←−
d

dz′ �=
S�z� z′�H s�z

′�. Therefore, any Green function

��z� z′�= ��z� z′�S�z�0−�f
>S�0−� z

′�+��z′� z�S�z�0−�f
<S�0−� z

′�� (21)

with f≶ constrained by f> −f< = −i1, is a solution of Eqs (20). In order to fix the
matrix f> or f< we impose the KMS boundary conditions. The matrix H s�z� equals
H s for any z on the vertical track, meaning that S�−i�0−� = e−Hs . Equations (9)
then implies f< = −e−�Hs−��f>, and taking into account the constraint f>−f< = −i1
we conclude that f< = if�H s�, where f��� = 1/�e��−�� + 1� is the Fermi distribution
function. The matrix f> takes the form f> = i�f�H s�−1�.

The Green function ��z� z′� for a system of noninteracting electrons is now completely
fixed. Let us consider some Keldysh–Green functions. For z= t+ and z′ = t− we have
the greater Green function while for z = t− and z′ = t+ we have the lesser Green
function

�>�t� t′�= i S�t�0��f�H s�−1�S�0� t′�� �<�t� t′�= i S�t�0�f�H s�S�0� t
′�� (22)

Both �> and �< depend on the initial distribution function f�H s�. The diagonal
matrix element of −i�< is nothing but the time-dependent value of the local electron
density n�r� t�, while i�> gives the local density of holes. Another way of writing
−i�< is in terms of the eigenstates ��s�0�� of H s with eigenvalues �s. From the
time-evolved eigenstate ��s�t�� = S�t�0���s�0��, we can calculate the time-dependent
wavefunction �s�r� t�= �r��s�t��. Inserting

∑
s ��s�0����s�0�� in the expression for �<

we find −i�r��<�t� t′��r ′� =∑
s f��s��s�r� t��

∗
s �r

′� t′�, which for t = t′ reduces to the
time-dependent density matrix. Knowing the greater and lesser Green functions we can
also calculate �R�A. Taking into account the definitions (14) we find

�R�t� t′�= −i��t− t′�S�t� t′�� �A�t� t′�= i��t′ − t�S�t� t′�= ��R�t′� t��†� (23)

In the above expressions for �R�A, the Fermi distribution function has disappeared.
The information carried by �R�A is the same as contained in the one-particle evolution
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operator. There is no information on how the system is prepared (how many particles,
how they are distributed, etc.). We use this observation to rewrite �≶ in terms of �R�A

�≶�t� t′�= �R�t�0��≶�0�0��R�0� t′�� (24)

Thus, �≶ is completely known once we know how to propagate the one-electron
orbitals in time and how they are populated before the system is perturbed [4, 21]. For
later purposes, we also observe that an analogous relation holds for �	�


�	�t� ��= i�R�t�0��	�0� ��� �
��� t�= −i�
���0��A�0� t�� (25)

3.2. Total current using TDDFT

The fictitious � of the KS system will not, in general, give correct one-particle properties.
However, by definition, �< gives the correct density n�r� t� = −i�r��<�t� t��r�. Also
total currents are correctly given by TDDFT. If, for instance, I� is the total current from
a particular region � we have

I��t�= −e
∫

�
dr

d
dt
n�r� t�= e

∫

�
dr i

d
dt

�r��<�t� t��r� (26)

where the space integral extends over the region � (e is the electron charge). We stress
here that I� is the electronic current (the direction of the current coincides with the
direction of the electrons).

At this point, it is convenient to partition the system into three main regions: a
central region C consisting of the junction and a few atomic layers of the left and right
electrodes and two regions L and R which describe the left and right bulk electrodes.
According to this partitioning, the KS Hamiltonian H s can be written as a 3×3 block
matrix, and the left equation of motion in (20) reads

⎧
⎨

⎩
i

d
dz

1−
⎡

⎣
HLL�z� HLC 0
HCL HCC�z� HCR

0 HRC HRR�z�

⎤

⎦

⎫
⎬

⎭
��z� z′�= ��z− z′�1� (27)

with

��z� z′�=
⎡

⎣
�LL�z� z

′� �LC�z� z
′� �LR�z� z

′�
�CL�z� z

′� �CC�z� z
′� �CR�z� z

′�
�RL�z� z

′� �RC�z� z
′� �RR�z� z

′�

⎤

⎦ (28)

(a similar equation is easily obtained for the right equation of motion). Choosing z
on the forward branch of the Keldysh contour and z′ on the backward branch of the
same contour, we obtain a left and a right equation for the lesser Green function. These
equations can be used to get rid of the time derivative in Eq. (26). We find for �= L�R

I��t�= e
∫

dr �r�i d
dt
�<

���t� t��r�

= e
∫

dr �r�H�C�
<
C��t� t�−�<

�C�t� t�HC��r� = 2eRe �TrC 	Q��t�
� � (29)
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where

Q��t�≡ �<
C��t� t�H�C = [

�R�t�0��<�0�0��A�0� t�
]

C�
H�C

= �R
CC�t�0��<

CC�0�0��A
C��0� t�H�C

+ ∑

=L�R

�R
C�t�0��<

C�0�0��A
C��0� t�H�C

+ ∑

�=L�R

�R
CC�t�0��<

C��0�0��A
���0� t�H�C

+ ∑

�=L�R

�R
C�t�0��<

��0�0��A
���0� t�H�C (30)

is a one-particle operator in the central region C and TrC denotes the trace over a
complete set of one-particle states of C. Let us express the quantity Q� in terms of
the Green function �CC projected in the central region. We introduce the uncontacted
Green function g which obeys Eqs (20) with H�C = HC� = 0,

⎧
⎨

⎩
i

d
dz

1−
⎡

⎣
HLL�z� 0 0

0 HCC�z� 0
0 0 HRR�z�

⎤

⎦

⎫
⎬

⎭
g�z� z′�= ��z− z′�1� (31)

where

g�z� z′�=
⎡

⎣
gLL�z� z

′� 0 0
0 gCC�z� z

′� 0
0 0 gRR�z� z

′�

⎤

⎦ (32)

and the same KMS boundary conditions as �. The uncontacted g allows us to convert
Eqs (20) into an integral equation which entails the KMS boundary conditions for �:

��z� z′�= g�z� z′�+
∫

�
dz̄g�z� z̄�Hoff��z̄� z

′�

= g�z� z′�+
∫

�
dz̄��z� z̄�Hoffg�z̄� z

′�� (33)

� being the extended Keldysh contour of Figure 2c and Hoff is the off-diagonal part of
H s. Using the relations (17) of Section 2.3 we find

�R�A
C� = �R�A

CC ·HC�g
R�A
�� � �A

� = ��g
A
 +gA

HC ·�A
CC ·HC�g

A
��� (34)

In Eq. (30) all matrix elements of �< are evaluated at times �0�0�. From Eq. (15) we
see that c<�0�0�= [

a	 ∗b
] �0�0�, due to the � functions in the retarded and advanced
components. Therefore

�<
C�0�0�=

[
g

	
HC ∗�


CC

]
�0�0�� �<

C��0�0�=
[
�	

CC ∗HC�g


��

]
�0�0�� (35)

and exploiting the first two relations in Eq. (19) we also find that

�<
��0�0�= ��g

<
�0�0�+

[
g

	
HC ∗�M

CC ∗HC�g


��

]
�0�0�� (36)
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Substituting Eqs (34–36) into Eq. (30) and using the identities (24 and 25) for the
Green function g, we obtain the following expression for Q��t�:

Q��t�= ∑

=L�R

[
GR ·�<

 ·
(
�� +GA ·�A

�

)]
�t� t�

+ ∑

=L�R

[
GR ·�	 ∗GM ∗�



 ·
(
�� +GA ·�A

�

)]
�t� t�

+ i
∑

=L�R

GR�t�0�
[
G	 ∗�



 ·
(
�� +GA ·�A

�

)]
�0� t�

+
(
GR�t�0�G<�0�0�− i

[
GR ·�	 ∗G


]
�t�0�

)[
GA ·�A

�

]
�0� t�� (37)

where we have used the short-hand notation G ≡ �CC and

��z� z′�= ∑

�=L�R

��� ���z� z
′�= HC� g���z� z

′�H�C (38)

is the so-called embedding self-energy which accounts for hopping in and out of
region C.

Having the quantity Q��t� we can calculate the exact total current I��t� of an interact-
ing system of electrons. Eq. (29) allows for studying transient effects and more generally
any kind of time-dependent current responses. In the long time limit

lim
t→� Q��t�=

[
GR ·�<

� +GR ·�< ·GA ·�A
�

]
�t� t� (39)

provided G and � tend to zero when the separation between their time arguments
increases (in this case, it is only the first term on the r.h.s. of Eq. (37) that does not
vanish). This condition is not stringent and is fulfilled provided the electrode states
form a continuum and the local density of states in the central region C is a smooth
function. In the next section we investigate under what circumstances a steady current
I� develops in the long-time limit. We will also discuss the dependence of I� on the
history of the external potential.

3.3. Steady state and history dependence

In this section we show that a steady state develops provided (1) the KS Hamiltonian
H s�t� globally converges to an asymptotic KS Hamiltonian H�

s when t → � and (2)
the electrodes form a continuum of states (thermodynamic limit), and the local density
of states is a smooth function in the central region.

Let us define the asymptotic KS Hamiltonian of electrode � as H�
�� = limt→� H���t�.

The retarded/advanced component of the uncontacted Green function g behaves like

lim
t→� gR

���t�0�= i e−iH�
��t�� lim

t→� gA
���0� t�= −i�†eiH�

��t (40)

where � is a unitary operator and it is defined according to

� = lim
t→�

T
{

e−i
∫ t

0 H���t
′�dt′
}

e−iH�
��t

� (41)
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T being the time-ordering operator. In terms of diagonalizing one-body states ���
m�� of

H�
�� with eigenvalues ��

m�, the lesser component of the embedding self-energy, defined
in Eq. (38), can be written as

lim
t�t′→�

�
<
� �t� t

′�= lim
t�t′→�

HC� gR
���t�0�g<

���0�0�gA
���0� t

′�H�C

= i
∑

m�m′
e−i���

m�t−��
m′�t

′�

×HC����
m�����

m��f��H���0��
†����

m′�����
m′��H�C� (42)

where we have taken into account that g<
���0�0� = if�H���0��. The left and right

contraction with a nonsingular hopping matrix H�C causes a perfect destructive inter-
ference for states with ���

m�−��
m′��� 1/�t+ t′� and hence the restoration of translational

invariance in time

lim
t�t′→�

�
<
� �t� t

′�= i
∑

m

fm��m�e−i��
m��t−t′�� (43)

where fm� = ���
m��f��H���0��

†����
m�� while �m� =HC����

m�����
m��H�C. In principle,

there may be degeneracies which require a diagonalization to be performed for states on
the energy shell. The above dephasing mechanism is the key ingredient for a steady state
to develop. Substituting Eq. (43) into Eq. (39), we obtain for the steady state current

I�S�� =−2e
∑

m

fmTrC

{
GR���

m��mG
A���

m�Im��
A
���

�
m��

}

−2e
∑

m

fm�TrC

{
�m�Im�GR���

m���
}

(44)

with

GR�A���= 1

�1C −H�
CC −�

R�A
���

� (45)

The imaginary part of GR is simply given by GRIm��
R
�GA. By definition, we have

�
R�A
� ���= HC�

1
�1� −H�

�� ± i�
H�C (46)

and hence

Im
[
�

R�A
� ���

]
= ∓�∑

m

���−��
m���m�� (47)

Using the above identity, the steady-state current can be rewritten in a Landauer-like
[22] form

I
�S�
R = −e∑

m

�fmL�mL −fmR�mR�= −I�S�L � (48)
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In the above formula �mR =∑
n �

nL
mR and �mL =∑

n �
nR
mL are the TDDFT transmission

coefficients expressed in terms of the quantities

� n
m� = 2�����

m� −��
n�TrC

{
GR���

m���m�G
A���

n��n

}= � m�
n � (49)

Despite the formal analogy with the Landauer formula, Eq. (48) contains an important
conceptual difference since fm� is not simply given by the Fermi distribution function.
For example, if the induced change in effective potential varies widely in space deep
inside the electrodes, the band structure of the �-electrode Hamiltonian �H���0��

†

might differ from that of H�
��. However, for metallic electrodes with a macroscopic

cross section the switching on of an electric field excites plasmon oscillations, which
dynamically screen the external disturbance. Such a metallic screening prevents any
rearrangements of the initial equilibrium bulk-density, provided the time-dependent
perturbation is slowly varying during a typical plasmon time-scale (which is usually less
than a femtosecond). Thus, the KS potential vs undergoes a uniform time-dependent shift
deep inside the left and right electrodes and the KS potential-drop is entirely limited to
the central region. Denoting with �v��t� the difference in electrode � between the KS
potential at time t and the KS potential at negative times, �v��t�= vs�r ∈ �� t�−vs�r ∈
��0�, to leading order in 1/N we then have

H���t�= H���0�+1��v��t�� (50)

meaning that H�
�� = H���0�+1��v

�
� . Hence, except for corrections which are of lower

order with respect to the system size, �H���0��
† = H���0� and

fm� = f���
m� −�v�

� �� (51)

The formula for the current can be further manipulated when Eq. (51) holds. Let us
write the embedding self-energy as the sum of a real and imaginary part �

R�A
� ��� =

�����∓ i�����/2. Using Eq. (47) we can rewrite the transmission coefficients as

�mR = TrC

{
GR���

mR��mRGA���
mR��L��

�
mR�

}
� (52)

�mL = TrC

{
GR���

mL��mLGA���
mL��R��

�
mL�
}
� (53)

Substituting these expressions in Eq. (48) and taking into account Eq. (51) we obtain

I
�S�
R = −e

∫ d�
2�

�f��−�v�
L �−f��−�v�

R ��TrC

{
GR����L���G

A����R���
}
� (54)

In the above equation the Green functions are calculated from Eq. (45). The
Hamiltonian H�

CC is the KS Hamiltonian H s�t → �� projected on region C and can be
obtained by evolving the system for very long times. According to the Runge–Gross
theorem, H�

CC depends on how the system was prepared at t = 0 (in our case the system
is contacted and in thermal equilibrium) and on the full history of the time-dependent
density. Therefore, the use of Eq. (54) in the context of static DFT is generally not
correct. Indeed, static DFT is an equilibrium theory while here we are dealing with a
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nonequilibrium process. One might argue that in the linear-response regime, the static
DFT approach is free from the above criticism. Unfortunately, this is not the case.
Denoting with �v�

� the small change �v�
� of the effective potential in electrode � and

with �I
�S�
R the corresponding current response, to first order in �v�

� Eq. (54) yields

�I
�S�
R = −e

∫ d�
2�

�f���

��
TrC

{
GR

0 ����0�L���G
A
0 ����0�R���

}
��v�

R −�v�
L � � (55)

The Green functions and the �’s in Eq. (55) refer to the system in equilibrium and
static DFT approaches can be used to evaluate the trace. However, DFT is not enough
to calculate the change �v�

� . Indeed

�v�
� = lim

t→� lim
x→±�

��vext�r� t�+�VH�r� t�+�vxc�r� t�� � (56)

where x is the longitudinal coordinate, the plus sign applies for � = R and the minus
sign for �= L. In the above equation vext is the external potential and VH is the Hartree
potential; their sum gives the electrostatic Coulomb potential vC,

�v��C = lim
t→� lim

x→±�
��vext�r� t�+�VH�r� t�� � (57)

The variation �vxc of the exchange-correlation potential can be expressed in terms of
the exchange-correlation kernel fxc�r� t� r

′� t′�= �vxc�r� t�/�n�r
′� t′�

�v��xc = lim
t→� lim

x→±�
�vxc�r� t�= lim

t→� lim
x→±�

∫
dr ′

∫
dt′fxc�r� t� r

′� t′��n�r ′� t′�� (58)

The kernel fxc depends only on the difference t− t′. We denote by f��xc�r
′��� the

Fourier transform of fxc evaluated at x = ±� for �= R�L. Then

�v��xc = lim
t→�

∫ d�
2�

e−i�t
∫

dr ′f��xc�r
′����n�r ′��� (59)

with �n�r��� the Fourier transform of �n�r� t�. Rewriting �v�
� as �v��C + �v��xc

and taking into account Eq. (59), the current response �I
�S�
R in Eq. (55) can also be

written as

�I
�S�
R = −e

∫ d�
2�

�f���

��
T���

[
(
�vR�C −�vL�C

)+ lim
t→�

∫ d�
2�

e−i�t

×
∫

dr ′ (fR�xc�r
′���−fL�xc�r

′���
)
�n�r ′���

]
(60)

with T��� = TrC

{
GR

0 ����0�L���G
A
0 ����0�R���

}
. At zero temperature �f���/�� =

���−�F�, with �F being the Fermi energy, and Eq. (60) becomes

�I
�S�
R =GKS��F �

[
(
�vR�C −�vL�C

)+ lim
t→�

∫ d�
2�

e−i�t

×
∫

dr ′ (fR�xc�r
′���−fL�xc�r

′���
)
�n�r ′���

]
(61)
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where GKS��F � = −eT��F �/2� is the conductance of the KS system. We conclude
that also in the linear-response regime static DFT is not appropriate for calculating
the conductance since dynamical exchange-correlation effects might contribute through
the last term in Eq. (61). Equation (61) can also be obtained within the framework of
time-dependent current density functional theory as it has been shown in [23].

We emphasize that the steady-state current in Eq. (48) results from a pure dephasing
mechanism in the fictitious noninteracting problem. The damping effects of scattering
are described by Axc and vxc. Furthermore, the current depends only on the asymptotic
value of the KS potential, vs�r� t → ��. However, vs�r� t → �� might depend on the
history of the external applied potential and the resulting steady-state current might be
history dependent. In these cases the full-time evolution cannot be avoided. In the case
of Time Dependent Local Density Approximation (TDLDA), the exchange-correlation
potential vxc depends only locally on the instantaneous density and has no memory at all.
If the density tends to a constant, so does the KS potential vs, which again implies that
the density tends to a constant. Owing to the nonlinearity of the problem there might
still be more than one steady-state solution or none at all. We are currently investigating
the possibility of having more than one steady-state solution.

4. Quantum transport: A practical scheme based on TDDFT

The theory presented in the previous sections allows us to calculate the time-dependent
current in terms of the Green function �CC = G projected in the central region. In
practice, it is computationally very expensive to propagate G�z� z′� in time (because it
depends on two time variables) and also calculate Q� from Eq. (37). Here we describe
a feasible numerical scheme based on the propagation of KS orbitals. We remind the
reader that our electrode–junction–electrode system is infinite and non-periodic. Since
one can, in practice, only deal with finite systems we will propagate KS orbitals projected
in the central region C by applying the correct boundary conditions [10].

We specialize the discussion to nonmagnetic systems at zero temperature and we
denote with �s�r�0� ≡ �r��s�0�� the eigenstates of H s�t < 0�. The time dependent
density can be computed in the usual way by n�r� t�=∑

occ ��s�r� t��2, where the sum
is over the occupied Kohn–Sham orbitals and ��s�t�� is the solution of the KS equation
of TDDFT i d

dt ��s�t�� = H s�t���s�t��. Using the continuity equation, we can write the
total current I��t� of Eq. (26) as

I��t�= −e∑
occ

∫

�
dr� · Im ��∗

s �r� t���s�r� t��

= −e∑
occ

∫

S�

d� n̂ · Im ��∗
s �r� t���s�r� t�� (62)

where n̂ is the unit vector perpendicular to the surface element d� and the surface
S� is perpendicular to the longitudinal geometry of our system. From Eq. (62) we
conclude that in order to calculate I��t� we only need to know the time-evolved KS
orbitals in region C. This is possible provided we know the dynamics of the remote
parts of the system. As at the end of Section 3.3, we restrict ourselves to metallic
electrodes. Then, the external potential and the disturbance introduced by the device
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region are screened deep inside the electrodes. As the system size increases, the remote
parts are less disturbed by the junction and the density inside the electrodes approaches
the equilibrium bulk-density. Thus, the macroscopic size of the electrodes leads to an
enormous simplification since the initial-state self-consistency is not disturbed far away
from the constriction. Partitioning the KS Hamiltonian as in Eq. (27), the time-dependent
Schrödinger equation reads

i
d
dt

⎡

⎣
��L�
��C�
��R�

⎤

⎦=
⎡

⎣
HLL HLC 0
HCL HCC HCR

0 HRC HRR

⎤

⎦

⎡

⎣
��L�
��C�
��R�

⎤

⎦ � (63)

where ���� is the projected wave-function onto the region � = L�R�C. We can solve
the differential equation for �L and �R in terms of the retarded Green function gR

��.
Then, we have for �= L�R

����t�� = igR
���t�0�����0��+

∫ t

0
dt′gR

���t� t
′�H�C��C�t

′��� (64)

Using Eq. (64), the equation for �C can be written as

i
d
dt

��C�t�� = HCC�t���C�t��+ ∫ t

0 dt′�R
�t� t′���C�t

′��
+ i

∑

�=L�R
HC�g

R
���t�0�����0��� (65)

where �
R = ∑

�=L�R HC�g
R
��H�C, in accordance with Eq. (38). Thus, for any given

KS orbital we can evolve its projection onto the central region by solving Eq. (65) in
region C. Equation (65) has also been derived elsewhere (for static Hamiltonians) [24].
To summarize, all the complexity of the infinite electrode–junction–electrode system
has been reduced to the solution of an open quantum-mechanical system (the central
region C) with proper time-dependent boundary conditions.

Equation (65) is the central equation of our numerical approach to time-dependent
transport. It is a reformulation of the original time-dependent Schrödinger equation (63)
of the full system in terms of an equation for the central (device) region only. The
coupling to the leads is taken into account by the lead Green functions gR

���� = L�R.
Equation (65) has the structure of a time-dependent Schrödinger equation with two extra
terms. The first term describes the injection of particles induced by a nonvanishing
projection of the initial wave-function onto the leads. The second term involves the
self-energy �

R and the wavefunction in the central region at previous times during the
propagation. We will denote it as the memory integral. We should remark here that
these memory effects are of different origin than those which are usually discussed
in the context of TDDFT [25, 26]. The latter ones arise from the dependence of the
exchange-correlation functional on the full history of the time-dependent density. Most
density-based functionals used at present rely on the adiabatic approximation therefore
ignoring the functional dependence on past time-dependent densities [27].

Equation (65) is first order in time, therefore we need to specify an initial state which
is to be propagated. We want to study the time evolution of systems perturbed out of
their equilibrium ground state. Of course, the ground state of our noninteracting system
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is the Slater determinant of the occupied eigenstates of the full, extended Hamiltonian
in equilibrium, H s�t < 0�. The practical question then arises as to how one can obtain
these eigenstates and how one can propagate them in time without having to deal
explicitly with the extended Hamiltonian. Below, we show how we have coped with
these problems.

4.1. Computation of KS eigenstates

Let us consider our electrode–junction–electrode system in equilibrium (t < 0) and let
�s�r�=�Ej�r� be the j-th degenerate eigenstate of energy E of the KS Hamiltonian H s.
The Green functions �R�A�t� t′� and �<�t� t′� of the undisturbed system depend only on
the difference t− t′. In absence of magnetic fields, H s is invariant under time-reversal
and the imaginary part of the Fourier transformed �R is simply given by

− 1
�

Im ��r���E��r ′��=∑

E′
��E−E′�

dE′∑

j=1

�E′j�r��
∗
E′j�r

′� � (66)

Multiplying Eq. (66) by �∗
Em�r��En�r

′� and integrating over r and r ′ in region C we
obtain

− 1
�

∫

C
dr
∫

C
dr ′�∗

Em�r�Im ��r���E��r ′���En�r
′�

=∑

E′
��E−E′�

dE′∑

j=1

Smj�E
′�Sjn�E

′�� (67)

where

Smj�E�≡
∫

C
dr �∗

Em�r��Ej�r�= S∗
jm�E� (68)

is the overlap matrix in region C between degenerate states. This matrix is Hermitian
and can be diagonalized, i.e.,

dE∑

j=1

Smj�E�a
�l�
j �E�=  l�E�a

�l�
m �E�� (69)

Next, we multiply Eq. (67) by a�l�
∗

m �E�a�l
′�

n �E� and sum over m and n. The result can be
written in terms of the new eigenfunctions aEl�r�=∑dE

n=1 a
�l�
n �E��En�r� as

− 1
�

∫

C
dr
∫

C
dr ′a∗

El�r�Im ��r���E��r ′�� aEl′�r ′�= �ll′ 
2
l �E�

∑

E′
��E−E′�� (70)

where we have used Eq. (69) and the orthonormality of the S-matrix eigenvectors:∑dE
j=1 a

�l�∗
j �E�a

�l′�
j �E� = �ll′ . Equation (70) shows explicitly that the functions aEj�r�

diagonalize Im ��CC�E�� in the central region and that the eigenvalues are positive. Since
any linear combination of degenerate eigenstates is again an eigenstate, diagonalizing
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Im ��CC�E�� gives us one set of linearly independent, degenerate eigenstates of energy
E. In our practical implementation described in more detail in Section 5, we diagonalize

− 1
�DC�E�

Im ��CC�E�� (71)

where DC�E�= − 1
�

Tr 	Im ��CC�E��
 is the total density of states in the central region.
If we use Ng grid points to describe the central region, the diagonalization, in principle,
gives Ng eigenvectors but only a few have the physical meaning of extended eigenstates
at this energy. It is, however, very easy to identify the physical states by looking at
the eigenvalues: at a given energy E only dE eigenvalues are nonvanishing and they
always add up to unity. The corresponding states are the physical ones. All the other
eigenvalues are zero (or numerically close to zero) and the corresponding states have
no physical meaning.

The procedure described above gives the correct extended eigenstates only up to
a normalization factor. When diagonalizing Eq. (71) with typical library routines one
obtains eigenvectors which are normalized to the central region. Physically this might
be incorrect. It is possible to fix the normalization by matching the wavefunction for
the central region to the known form (and normalization) of the wavefunction in the
macroscopic leads.

It should be emphasized that the procedure described here for the extraction of
eigenstates of the extended system from �CC�E� only works in practice if E is in the
continuous part of the spectrum due to the sharp peak of the delta function in the discrete
part of the spectrum. Eigenstates in the discrete part of the spectrum can be found by
considering the original Schrödinger equation for the full system: H s� = E�. Using
again the block structure of the Hamiltonian this can be transformed into an effective
Schrödinger equation for an energy-dependent Hamiltonian for the central region only:

(

HCC + ∑

�=L�R

HC�

1
E1� −H��

H�C

)

��C� = E��C�� (72)

This equation has solutions only for certain values of E which are the discrete
eigenenergies of the full Hamiltonian H s. Since the left and right electrodes form a
continuum, the dimension of the kernel of �E−H��� is zero for those energies E in
the discrete part of the spectrum. We also notice that the second term in parenthesis in
Eq. (72) is nothing but the real part of the retarded/advanced self-energy in equilibrium,
see Eq. (47). Bound states as well as fully reflected waves will contribute to the density
but not to the current and might play a role in the description of charge-accumulation
in molecular transport, as, e.g., in Coulomb blockade phenomenon. In our TDDFT
formulation, bound states and fully reflected waves also play an extra role, since they
are needed for calculating the effective potential vs (which is a functional of the density)
which is in turn used for extracting all extended states.

4.2. Algorithm for the time evolution

In order to calculate the longitudinal current in an electrode–junction–electrode system
we need to propagate the KS orbitals. The main difficulty stems from the macroscopic
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size of the electrodes whose remote parts, ultimately, are taken infinitely far away from
the central, explicitly treated, scattering region C.

The problem can be solved by imposing transparent boundary conditions [28] at the
electrode–junction interfaces. Efficient algorithms have been proposed for wave-packets
initially localized in the scattering region and for Hamiltonians constant in time. In this
section we describe an algorithm well suited for delocalized initial states, as well as for
localized ones, evolving with a time-dependent Hamiltonian.

Let H s�t� be the time-dependent KS Hamiltonian. We partition H s�t� as in Section 3.2.
The explicitly treated region C includes the first few atomic layers of the left and right
electrodes. The boundaries of this region are chosen in such a way that the density
outside C is accurately described by an equilibrium bulk density. It is convenient to
write H���t�, with �= L�R, as the sum of a term H0

�� = H���0� which is constant in
time and another term U��t� which is explicitly time-dependent, H���t�= H0

��+U��t�.
In configuration space, U��t� is diagonal at any time t since the KS potential is local
in space. Furthermore, the diagonal elements U��r� t� are spatially constant for metallic
electrodes. Thus, U��t� = U��t�1� and UL�t�−UR�t� is the total potential drop across
the central region. We write H s�t�= H̃�t�+U �t� with

H̃�t�=
⎡

⎣
H0

LL HLC 0
HCL HCC�t� HCR

0 HRC H0
RR

⎤

⎦ � and U �t�=
⎡

⎣
UL�t�1L 0 0

0 0 0
0 0 UR�t�1R

⎤

⎦ � (73)

In this way, the only term in H̃�t� that depends on t is HCC�t�. For any given initial
state ���0�� = ���0�� we calculate ���tm =m�t�� = ���m�� by using a generalized form
of the Cayley method

(
1+ i�H̃

�m�
) 1+ i �2 U �m�

1− i �2 U �m�
���m+1�� =

(
1− i�H̃

�m�
) 1− i �2 U �m�

1+ i �2 U �m�
���m��� (74)

with H̃
�m� = 1

2 �H̃�tm+1�+ H̃�tm��, U �m� = 1
2 �U �tm+1�+U �tm�� and � = �t/2. It should

be noted that our propagator is norm conserving (unitary) and accurate to second order
in �, as is the Cayley propagator [29]. Denoting by ���� the projected wave function
onto the region �= R�L�C, we find from Eq. (74)

���m+1�
C � = 1C − i�H

�m�
eff

1C + i�H
�m�
eff

���m�
C �+ �S�m��− �M�m��� (75)

Here, H
�m�
eff is the effective Hamiltonian of the central region:

H
�m�
eff = H

�m�
CC − i�HCL

1

1L + i�H0
LL

HLC − i�HCR

1

1R + i�H0
RR

HRC (76)

with H
�m�
CC = 1

2 �HCC�tm+1�+ HCC�tm��. The source term �S�m�� describes the injection
of density into the region C, while the memory term �M�m�� is responsible for the
hopping in and out of the region C. In terms of the propagator for the uncontacted and
undisturbed � electrode

g� = 1� − i�H0
��

1� + i�H0
��

� (77)
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the source term can be written as

�S�m�� = − 2i�

1C + i�H
�m�
eff

∑

�=L�R

!�m�0�
�

u
�m�
�

HC�

�g��
m

1� + i�H s
��

���0�
� �� (78)

with

u�m�� = 1− i �2U
�m�
�

1+ i �2U
�m�
�

and !�m�k�
� =

m∏

j=k
�u�j�� �

2� (79)

For a wave packet initially localized in C the projection onto the left and right
electrode ���0�

� � vanishes and �S�m�� = 0 for any m, as it should be. The memory term
is more complicated and reads

�M�m�� = − �2

1C + i�H
�m�
eff

∑

�=L�R

m−1∑

k=0

!�m�k�
�

u
�m�
� u

�k�
�

[
Q�m−k�

� +Q�m−k−1�
�

]

×
(
���k+1�

C �+ ���k�
C �
)

(80)

where

Q�m�
� = HC�

�g��
m

1� + i�H s
��

H�C� (81)

The quantities Q�m�
� depend on the geometry of the system and are independent of the

initial state ��0�.
Below, we propose a recursive scheme to calculate the Q�m�

� ’s for those system
geometries having semiperiodic electrodes along the longitudinal direction, see Figure 3.
In this case H0

�� has a tridiagonal block form

H0
�� =

⎡

⎢
⎢
⎣

h� V � 0 � � �
V � h� V � � � �
0 V � h� � � �
� � � � � � � � � � � �

⎤

⎥
⎥
⎦ � (82)

where h� describes a convenient cell and V � is the hopping Hamiltonian between two
nearest neighbor cells. Without loss of generality we assume that both h� and V �

Region C

....

V L

h L h L h L h L h L h R h R h R h R h R

V L V L V L V L V R V R V R V R V R

V R V R V R V R V RV L V L V L V L V L

....

Figure 3 Schematic sketch of an electrode–junction–electrode system with semiperiodic
electrodes.
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are square matrices of dimension N� ×N�. Taking into account that the central region
contains the first few cells of the left and right electrodes, the matrix Q�m�

� has the
following structure

Q
�m�
L =

⎡

⎣
q
�m�
L 0 0
0 0 0
0 0 0

⎤

⎦ � Q
�m�
R =

⎡

⎣
0 0 0
0 0 0
0 0 q

�m�
R

⎤

⎦ � (83)

The q�m�
� ’s are square matrices of dimension N� ×N� and are given by

q�m�
� = V �

[
�g��

m

1� + i�H��

]

1�1

V �� (84)

where the subscript �1�1� denotes the first diagonal block of the matrix in the square
brackets. We introduce the generating matrix function

q��x� y�≡ V �

[
1

x1� + iy�H��

]

1�1

V �� (85)

which can also be expressed in terms of continued matrix fractions

q��x� y�= V �
1

x+ iy�h� +y2�2V �
1

x+ iy�h� +y2�2V �
1

� � � � � �
V �

V �

V �

= V �

1
x+ iy�h� +y2�2q��x� y�

V �� (86)

The q�m�
� ’s can be obtained from

q�m�
� = 1

m!
[

− �

�x
+ �

�y

]m
q��x� y�

∣
∣
∣
∣
x=y=1

� (87)

From Eqs (87) and (86) one can build up a recursive scheme. Let us define

p−1
� �x� y�= x+ iy�h� +y2�2q��x� y�

and

p�m�
� = 1

m!
[

− �

�x
+ �

�y

]m
p��x� y�

∣
∣
∣
∣
x=y=1

�

Then, by definition, q�m�
� = V �p

�m�
� V �. Using the identity

1
m!
[

− �

�x
+ �

�y

]m
p��x� y�p

−1
� �x� y�= 0�

one finds

�1+ i�h��p
�m�
� = �1− i�h��p

�m−1�
� −�2

m∑

k=0

�q�k�
� +2q�k−1�

� +q�k−2�
� �p�m−k�

� (88)
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with p�m�
� = q�m�

� = 0 for m < 0. Once q�0�
� has been obtained by solving Eq. (86) with

x= y= 1, we can calculate p�0�
� = �1+ i�h�+�2q�0�

� �−1. Afterwards, we can use Eq. (88)
with q�1�

� = V �p
�1�
� V � to calculate p�1�

� and hence q�1�
� and so on and so forth.

This concludes the description of our algorithm for the propagation of the time-
dependent Schrödinger equation for extended systems. It is worth mentioning an
additional complication here which arises for the propagation of a time-dependent Kohn–
Sham equation. This complication stems from the fact that in order to compute ���m+1�

C �
at time step m+ 1, one needs to know the time-dependent KS potential at the same
time step which, via the Hartree and exchange-correlation potentials, depends on the
yet unknown orbitals ���m+1�

C �. Of course, the solution is to use a predictor-corrector
approach: in the first step one approximates H

�m�
CC by HCC�tm�, computes new orbitals

��̃�m+1�
C � and from those obtains an improved approximation for H

�m�
CC .

5. Implementation details for one-dimensional systems
and numerical results

All the methodological discussion of Section 4 is general and can be applied to all
systems having a longitudinal geometry like the one in Figure 3. In this section we show
that the proposed scheme is feasible by testing it against one-dimensional model systems.
The extension to real molecular-device configurations is presently under development
[30]. We consider systems described by the Hamiltonian

�x�H�x′� = ��x−x′�
[

−1
2

d
dx2

+V�x�

]

� (89)

We have used a simple three-point discretization for the second derivative

d2

dx2
��x��x=xi ≈

1
��x�2

[
��xi+1�−2��xi�+��xi−1�

]
(90)

with equidistant grid points xi, i= 1� � � � �Ng and spacing �x. Within this approximation,
matrices of the form HC�MH�C, which are Ng×Ng matrices and appear, e.g., in Eq. (38)
or (81), have only one nonvanishing matrix element. For �= L this is the �1�1� element,
for �= R it is the �Ng�Ng� element.

In order to proceed, we have to specify the nature of the leads and therefore the
lead Green function. Here we choose the simplest case of semi-infinite, uniform leads
at constant potential U�0. In this case, the retarded Green function gR

�� in the energy
domain can be given in closed form:

�gR
���E��kl = − i�x

√
2Ẽ�

exp
{

i
√

2Ẽ��xk −xl�
}

+ i�x
√

2Ẽ�

exp
{

i
√

2Ẽ���xk −x�0�+ �xl −x�0��
}

(91)

with Ẽ� = E−U�0. The abscissa x�0 is the position of the interface between the lead
and the device region; in our implementation xL0 is the first grid point of region C
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while xR0 is the Ng-th grid point of region C. According to the notation in Eq. (63)
the one-particle state of region C describing an electron localized in xL0 is denoted by
�xC1� while the one-particle state of region C describing an electron localized in xR0 is
denoted by �xCNg

�. The coordinate xk = x�0 ±k�x, k > 0, where the plus sign applies
for �= R and the minus sign for �= L.

The results of the procedure for calculating extended eigenstates as described in
Section 4.1 are illustrated in Figure 4 for a square potential barrier with zero potential
in both leads. In the left panel we have the square modulus of eigenstates at an energy
below the barrier height, while in the right panel eigenstates with energy higher than the
barrier are shown. The states result from diagonalization of Eq. (71). In order to obtain
the normalization constant we compute the logarithmic derivative at the boundary of
the central region numerically and match it to the analytic form in the lead to obtain the
phase shift ��:

1
2

d2

dx2
ln����x��2�

∣
∣
∣
∣
x=x�0

= q cot���� (92)

where q =
√

2Ẽ�. Knowing the phase shift we can rescale the wavefunction such that it
matches with the analytic form sin�q�x−x�0�+��� at the interface. Of course, this form
of the extended states only applies for Ẽ� > 0 but as long as E is in the continuous part
of the spectrum, it is correct at least for one of the leads. This is sufficient to determine
the normalization. The states obtained numerically with this procedure coincide with
the known analytical results.

We then implemented the propagation scheme presented in the previous section.
Within our three-point approximation, h�, V � and q� are 1×1 matrices. The equation
for q�0�� [see Eqs (86) and (87)] becomes a simple quadratic equation which can be
solved explicitly

q�0�� = −�1+ i�h��+
√
�1+ i�h��2 +4��V��2

2�2
� (93)
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Figure 4 Continuum states of square potential barrier at different energies with leads at zero
potential. Left panel: eigenstates for � = 0�45 au, just below the barrier height of 0.5 au. Right
panel: eigenstates at �= 0�6 au
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Although the quadratic equation has two solutions, the above choice for q�0�� is dictated
by the fact that the Taylor expansions for small � of Eqs (93) and (86) have to coincide.
Using this result we then solved the iterative scheme to obtain the q�m�� for m≥ 1.

As a first check on the propagation method we propagated a Gaussian wavepacket
which, at initial time t = 0, is completely localized in the central device region. (The
source terms �S�m�� then vanish identically.) As can be seen in Figure 5, the wavepacket
correctly propagates through the boundaries without any spurious reflections.

For the propagation of the extended initial states (the eigenstates of the unper-
turbed system) we also need to implement the source terms �S�m��. In the follow-
ing we assume that the left and right leads are at the same potential initially so
that the analytic form of the initial states is in both leads given by sin�q�x− x�0�+
��� = �exp�i�� − iqx�0� exp�iqx�− c�c�� /2i. Let us specialize the discussion to the
case � = R and define the state �qR� according to �xRk�qR� = exp�iqk�x�, where
�xRk� is the one-particle state of electrode R describing an electron localized in xk =
xR0 + k�x, k > 0. Then, the projection of the initial state onto lead R reads ���0�

R � =
1
2i �exp�i����qR�− exp�−i����−qR��. From Eq. (78) the contribution to the source term
for � = R is completely known once we know how HCR�gR�

m/�1R + i�HRR� acts on
the state �qR�. We have

HCR

�gR�
m

�1R + i�HRR�
�qR� = VR�xCNg

��xR1�
�gR�

m

�1R + i�HRR�
�qR� (94)

where xCNg corresponds the Ng-th discretization point of region C (the last point on the
right before electrode R starts). We rewrite the unknown quantity as follows

〈

xR1

∣
∣
∣
∣

�gR�
m

1R + i�HRR

∣
∣
∣
∣qR

〉

= �D�x� y��m

m! "�x� y�

∣
∣
∣
∣
x=y=1

� (95)
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Figure 5 Time evolution of a Gaussian wavepacket with initial width 1.0 au and initial
momentum 0.5 au for various propagation times. The transparent boundary conditions allow the
wavepacket to pass the propagation region without spurious reflections at the boundaries
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with

D�x� y�=
(

− �

�x
+ �

�y

)

� "�x� y�= �xR1�
1

x1R + iy�HRR

�qR�� (96)

Next, we use the Dyson equation to find an explicit expression for "�x� y�. We have

1
x1R + iy�HRR

�qR� = 1
x
�qR�− 1

x

iy�
x1R + iy�HRR

HRR�qR�� (97)

It is straightforward to realize that the action of HRR on �qR� yields

HRR�qR� = 2VR cos�q�x�+hR�qR�−VRe−iq�x�xR1�� (98)

so that Eq. (97) can be rewritten as
[

1+ 2iy�VR cos�q�x�
x

]
1

x1R + iy�HRR

�qR� = 1
x
�qR�+ 1

x

iy�VRe−iq�x

x1R + iy�HRR

�xR1�� (99)

Projecting Eq. (99) on �xR0� we find
[

1+ 2iy�VR cos�q�x�
x

]

"�x� y�= 1
x

+ iy�e−iq�x

xVR

qR�x� y�� (100)

where qR�x� y� is the generating function defined in Eq. (85). Solving Eq. (100) for
"�x� y� we conclude that

VR"�x� y�= VR + iy�e−iq�xqR�x� y�

x+2iy�VR cos�q�x�+hR

� (101)

Using the relation in Eq. (87) for the coefficients q�m�� we find

�D�x� y��m
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∣
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q
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R
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(102)

One may proceed along the same lines for extracting the left component of the
source term.

To test our implementation we have propagated eigenstates of the extended system.
As expected, these states just pick up an exponential phase factor exp�−iEt� during the
propagation.

We are now in a position to apply our algorithm to the calculation of time-dependent
currents in one-dimensional model systems. The systems are initially in thermodynamic
equilibrium. At time t = 0, a time-dependent perturbation is switched on. In all the
examples below the current is calculated according to Eq. (62):

I�x� t�= 2
∫ kF

−kF

dk
2�

Im
(

�∗
k�x� t�

d
dx
�k�x� t�

)

= 2
∫ kF

0

dk
2�

Im
(

�∗
k

d
dx
�k +�∗

−k
d

dx
�−k

)

(103)
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where the prefactor 2 comes from spin and kF = √
2�F is the Fermi wavevector of a

system with Fermi energy �F.

5.1. DC bias

As a first example we considered a system where the electrostatic potential vanishes
identically both in the left and right leads as well as in the central region which is
explicitly propagated. Initially, all single particle levels are occupied up to the Fermi
energy �F. At t = 0 a constant bias is switched on in the leads and the time-evolution
of the system is calculated. We chose the bias in the right lead as the negative of the
bias in the left lead, UR = −UL.

The numerical parameters are as follows: the Fermi energy is �F = 0�3 au, the bias is
UL = −UR = 0�05� 0�15� 0�25 au, the central region extends from x = −6 to x = +6 au
with equidistant grid points with spacing �x = 0�03 au. The k-integral in Eq. (103) is
discretized with 100 k-points, which amounts to a propagation of 200 states. The time
step for the propagation was �t = 10−2 au.

In Figure 6 we have plotted the current densities at x = 0 as a function of time for
different values of the applied bias. As a first feature we notice that a steady state is
achieved, in agreement with the discussion of Section 3.3. The corresponding steady-
state current I�S� can be calculated from the Landauer formula. For the present geometry
this leads to the steady current

I�S� = 8e
∫

max�UL�UR�

d�
2�

�f��−UL�−f��−UR��

×
√
�−UL

√
�−UR

[√
�−UL +√

�−UR

]2 +ULUR

[
sin�l

√
2��√
�

]2 � (104)
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Figure 6 Time evolution of the current for a system where initially the potential is zero in the
leads and the propagation region. At t = 0, a constant bias with opposite sign in the left and
the right leads is switched on, U = UL = −UR (values in atomic units). The propagation region
extends from x = −6 to x = +6 au. The Fermi energy of the initial state is �F = 0�3 au. The
current in the center of the propagation region is shown



274 G. Stefanucci et al.

where l is the width of the central region. From Eq. (104) with l= 12 au and UL = −UR,
the numerical values for the steady-state currents are 0�0316 au (UL = 0�05 au), 0�0883 au
(UL = 0�15 au) and 0�0828 au (UL = 0�25 au). We see that our algorithm yields the same
answers. Second, we notice that the onset of the current is delayed in relation to the
switching time t = 0. This is easily explained by the fact that the perturbation at t = 0
happens in the leads only, e.g., for �x� > 6 au, while we plot the current at x = 0. In
other words, we see the delay time needed for the perturbation to propagate from the
leads to the center of our device region. We also note that the higher the bias the more
the current overshoots its steady-state value for small times after switching on the bias.
Finally it is worth mentioning that increasing the bias not necessarily leads to a larger
steady-state current.

In the second example we studied a double square potential barrier with electrostatic
potential V�x� = 0�5 au for 5 au ≤ �x� ≤ 6 au and zero otherwise. This time we switch
on a constant bias in the left lead only, i.e., UR = 0. The Fermi energy for the initial
state is �F = 0�3 au. The central region extends from x= −6 to x= +6 au with a lattice
spacing of �x = 0�03 au. Again, we use 100 different k-values to compute the current
and a time step of �t = 10−2 au.

In Figure 7 (Left panel) we plot the current at x= 0 as a function of time for several
values of the applied bias U = UL. Again, a steady state is achieved for all values of U .
As discussed in Figure 6 the transient current can exceed the steady current; the higher
the applied voltage the larger is this excess current and the shorter is the time when it
reaches its maximum. Furthermore, the oscillatory evolution towards the steady current
solution depends on the bias. For high bias, the frequency of the transient oscillations
increases. For small bias, the electrons at the bottom of the band are not disturbed
and the transient process is exponentially short. On the other hand, for a bias close to
the Fermi energy the transient process decays as a power law, due to the band edge
singularity. As pointed out in Section 3.3, for non-interacting electrons the steady-state
current develops by means of a pure dephasing mechanism. In our examples the transient
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Figure 7 Left panel: Time evolution of the current through a double square potential barrier
in response to an applied constant bias (given in atomic units) in the left lead. The potential is
given by V�x�= 0�5 au for 5 ≤ �x� ≤ 6 au and zero otherwise, the propagation region extends from
x = −6 to x = +6 au. The Fermi energy of the initial state is �F = 0�3 au. The current in the
center of the structure is shown. Right panel: Time evolution of the total number of electrons in
the region �x� ≤ 6 for the same double square potential barrier
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process occurs in a femtosecond time-scale, which is much shorter than the relaxation
time due to electron–phonon interactions.

In Figure 7 (right panel) we plot the time evolution of the total number of electrons
in the device region for the same values of UL. We see that as a result of the bias a quite
substantial amount of charge is added to the device region. This result has important
implications when simulating the transport through an interacting system as the effective
(dynamical) electronic screening is modified not only due to the external field but also
due to the accumulation of charge state in the molecular device. This illustrates that
linear response might not be an appropriate tool to tackle the dynamical response and
that we will need to resort to a full time-propagation approach as the one presented in
this review. Here we emphasize that all our calculations are done without taking into
account the electron–electron interaction. If we had done a similar calculation with the
interaction incorporated in a time-dependent Hartree or time-dependent DFT framework
we would expect the amount of excess charge to be reduced significantly as compared
to Figure 7.

5.2. Time-dependent biases

In the previous section we have shown how a steady current develops after the switching
on of a constant bias and discussed the transient regime. Here we exploit the versatility
of our proposed algorithm for studying different kinds of time-dependent biases.

As a first example we consider how the current responds to a sudden switching off of
the bias. For comparison we have considered the same double square potential barrier
of Figure 7 subject to the same suddenly switched on bias, but we have turned off
the bias at t = 75 au. The results (obtained with the same parameters of Figure 7) are
displayed in Figure 8. We observe that the current shows a rather well pronounced peak
shortly after switching off the perturbation. The amplitude of the peak is proportional
to the originally applied bias. This peak always overshoots the value of the current at
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Figure 8 Same system of Figure 7 exposed to a suddenly switched on bias at t = 0. The bias is
then turned off at t = 75 au. The current is measured in the middle of the central region
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the steady state. Another interesting feature is the fact that after turning off the bias
the transient currents show only two oscillations around the zero current limit and the
transient time for switching off is much shorter than for switching on a high bias.

We have also addressed the simulation of AC-transport. We computed the current for
a single square potential barrier with V�x� = 0�6 for �x� < 6 and zero otherwise. Here
we applied a time-dependent bias of the form UL�t� = U0 sin��t� to the left lead. The
right lead remains at zero bias. The numerical parameters are: Fermi energy �F = 0�5 au,
device region from x= −6 to x= +6 au with lattice spacing �x= 0�03 au. The number
of k-points is 100 and the time step is �t = 10−2 au. In Figure 9 we plot the current at
x = 0 as a function of time for different values of the parameter U0 = 0�1�0�2�0�3 au.
The frequency was chosen as �= 1�0 au in both cases. Again, as for the DC-calculation
discussed above, we get a transient that overshoots the average current flowing through
the constriction; again, this excess current is larger the higher the applied voltage. Also,
after the transient we obtain a current through the system with the same period as the
applied bias. Note, however, that (especially for the large bias), the current is not a
simple harmonic as the applied AC bias.

Exposing the system to an AC bias also allows us to acquire information about
the excitation energies of the molecular device. In Figure 10 (left panel) we plot the
time-dependent current for a symmetric double square potential barrier in response to a
harmonic bias in the left lead, UL�t� = U0 sin��t�, with U0 = 0�15 au and � = 0�03 au.
The Fermi energy of the initial state is �F = 0�3 au and the current at x= 0 is shown. The
central region extends from x= −6 to x= 6 au with lattice spacing �x= 0�03 au and the
potential V�x� in region C is given by V�x�= 0 for �x�/au< �6−d� and V�x�= 0�5 au for
�6−d� < �x�/au < 6. The number of k-points is 100 and the time step is �t = 10−2 au.
We have studied barriers of different thickness d = 1 au and d = 2 au. For d = 2 au we
observe small oscillations superimposed to the oscillations of frequency � = 0�03 au
driven by the external AC field. Such small oscillations have frequency � 0�23 and
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Figure 9 Time evolution of the current for a square potential barrier in response to a time-
dependent, harmonic bias in the left lead, UL�t�= U0 sin��t� for different amplitudes U0 (values
in au) and frequency �= 1�0 au. The potential is given by V�x�= 0�6 au for �x� ≤ 6�0 au and zero
otherwise. The propagation region extends from x = −6 to x = +6 au. The Fermi energy of the
initial state is �F = 0�5 au. The current at x = 0 is shown
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Figure 10 Left panel: Time evolution of the current for a symmetric double square potential
barrier in response to a time-dependent, harmonic bias in the left lead, UL�t� = U0 sin��t� with
U0 = 0�15 au and � = 0�03 au for different thickness d = 1 and d = 2 au of the barriers. Right
panel: Transmission function of the same double square potential barrier for d = 1 and d = 2 au

can be understood by looking at the transmission function T�E� in the right panel of
Figure 10. For d = 2 au both the second and third peaks of T�E� are in the energy
window ��F −U0� �F +U0�= �0�15�0�45� au. The energy difference between these two
peaks corresponds to a good extent to the frequency of the superimposed oscillations. On
the contrary, for d= 1 au only one peak of the transmission function T�E� is contained in
the aforementioned energy window and no superimposed oscillations are clearly visible.
This example shows the AC quantum transport can be used also for probing molecular
devices.

5.3. History dependence

In Figure 11 we show time-dependent currents for the same double barrier as in Figure 7
for two different ways of applying the bias in the left lead: in one case the constant bias
U0 is switched on suddenly at t = 0 (as in Figure 7), in the other case the constant U0 is
achieved with a smooth switching U�t�= U0 sin2��t� for 0 < t < �/�2��. As expected
and in agreement with the results of Section 3.3, the same steady state is achieved after
the initial transient time. However, the transient current clearly depends on how the bias
is switched on.

According to the result in Eq. (39), for noninteracting electrons the independence of
the history is not limited to steady-state regimes. The long-time behaviour of currents
I�t� and I ′�t� induced by biases U��t� and U ′

��t� does not change provided U�−U ′
� → 0

as t → �. For instance, the current response to an AC bias has the same periodic
modulation and the same phase independently of how the AC bias is switched on.
In Figure 12 we plot the time-dependent current for the same system (and using the
same parameters) of Figure 9. The bias remains on zero in the right lead. In the
left lead we applied a time-dependent bias of the form UL�t� = U0f�t� sin��t�, with
U0 = 0�2 au, � = 1�0 au, and we considered two different “switching on” functions
f�t�. The first is f�t� = 1 (as in Figure 9) while the second is a ramp-like switching
on f�t� = ��T − t�t/T + ��t−T� with T = 30 au. As expected, and in agreement with
Eq. (39), the current has the same behaviour in the long-time limit.
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Figure 11 Time evolution of the current for a double square potential barrier when the bias is
switched on in two different manners: in one case, the bias U0 is suddenly switched on at t = 0
while in the other case the same bias is achieved with a smooth switching U�t�= U0 sin2��t� for
0 < t < �/�2��. The parameters for the double barrier and the other numerical parameters are
the same as the ones used in Figure 7. U0 and � given in atomic units
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Figure 12 Time evolution of the current for a square potential barrier in response to a time-
dependent, harmonic bias in the left lead, UL�t�= U0f�t� sin��t� with U0 = 0�2 au and frequency
�= 1�0 au. The system and the parameters used are the same as in Figure 9. The current at x= 0
is shown for two different “switching on” functions f�t�

5.4. Pumping current: Preliminary results

Our algorithm is also well suited to study pumping of electrons. An electron pump
is a device which generates a DC current between two electrodes kept at the same
bias. The pumping is achieved by applying a periodic gate voltage depending on two
or more parameters. Electron pumps have been realized experimentally, e.g., for an
open semiconductor quantum dot [31] where pumping was achieved by applying two
harmonic gate voltages with a phase shift.
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In the literature, different techniques have been used to discuss electron pumping
theoretically. Brouwer [32] suggested a scattering approach to describe pumping of
noninteracting electrons which has been used, e.g., to study pumping through a double
barrier [33]. Nonequilibrium Green’s function techniques have been used to study
pumping in tight-binding models of coupled quantum dots [34]. Alternatively, Floquet
theory which describes evolution of a quantum system under the influence of time-
periodic fields is also well suited to describe pumping [35].

As a first example of electron pumping we have calculated the time evolution of
the density for a single square barrier exposed to a travelling potential wave U�t� =
U0 sin�qx−�t�. The wave is spatially restricted to the explicitly treated device region
which in our case also coincides with the static potential barrier. Some snapshots of the
density and the potential wave are shown in Figure 13. The density in the device region
clearly exhibits local maxima in the potential minima and is transported in pockets
by the wave. This is also evident in Figure 14 where we show the time-dependent
density as function of both position and time throughout the propagation. The density
contour lines show transport of electrons from the left lead at x = −8 to the right lead
at x = +8 au. The pumping mechanism in this example resembles pumping of water
with the Archimedean screw.

As a second example we have calculated pumping through a double square barrier by
applying two harmonic gate voltages with a phase difference to the barrier potentials,
i.e., U�x� t� = U0 sin��t� for the left barrier and U�x� t� = U0 sin��t+#� for the right
barrier. Figure 15 shows the DC component of the pump current as a function of
the phase # which has a sinusoidal dependence for our parameter values. This is in
agreement with similar results of [33] for small amplitudes of the AC bias which were
obtained using Brouwer’s approach. In addition, this example may be interpreted as a
very simple model to describe the experiment of [31].
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Figure 13 Snapshots of the density for and the travelling potential wave at various times for
pumping through a single square barrier by a travelling wave. The barrier with height 0.5 au
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6. Conclusions and perspectives

In this chapter we have given a self-contained introduction to our recent approach
to quantum transport. In essence our approach combines two well-established
theories for the description of nonequilibrium phenomena of interacting many-electron
systems.

On the one hand there is the formalism of non-equilibrium Keldysh–Green functions.
Although this approach, in principle, can be used to study interaction effects, here we
only used it in the context of noninteracting electrons. The reason for this is that the
self-energy of interacting electrons (which is not to be confused with the embedding
self-energy) is long-range and nonlocal. In our scheme which partitions space into left
and right leads as well as the central device region, this nonlocality is extremely difficult
to deal with in a rigorous manner.

On the other hand, the NEGF formalism for (effectively) noninteracting electrons can
easily be combined with the second approach for time-dependent many-particle systems,
namely time-dependent density functional theory. Just as the NEGF formalism, TDDFT,
in principle, gives the correct time-dependent density of the interacting system (if the
exact exchange-correlation potential is used). Moreover, the time-dependent effective
single-particle potential of TDDFT is a local and multiplicative potential which is crucial
for practical use within the partitioning scheme for transport.

In combining the NEGF and TDDFT approaches we have presented a formally
rigorous approach towards the description of charge transport using an open-boundary
scheme within TDDFT. We have implemented a specific time-propagation scheme that
incorporates transparent boundaries at the device/lead interface in a natural way. In order
to have a clear definition of a device region, in Figure 1 we assumed that an applied
bias can be described by adding a spatially constant potential shift in the macroscopic
part of the leads. This implies an effective “metallic screening” of the constriction. The
screening limits the spatial extent of the induced density created by the bias potential
or the external field to the central region. Our time-dependent scheme allows to extract
both AC and DC I/V device characteristics and it is ideally suited to describe external
field (photon) assisted processes.

In order to illustrate the performance and potential of the method we have implemented
it for one-dimensional model systems and applied it to a variety of transport situations:
we have shown that a steady-state current is always reached upon application of a DC
bias. For a harmonic AC bias, the resulting AC current need not be harmonic. In the
case of systems at DC bias without any source of dissipation it is known that the steady
current is independent of the history of the process [8]. We have explicitly demonstrated
this history independence for two different switching processes of the external bias.
The history independence for noninteracting electrons not only applies for DC but also
for AC bias, which we have also demonstrated in a numerical example. Since we can
compute current densities locally, we are not restricted to currents deep inside the leads.
In one example we have analyzed the time evolution of the density for localized states
which are only weakly coupled to the reservoirs. Finally, we have shown a few simple
applications of our algorithm to electron pumping.

The list of the example calculations presented here already demonstrates the versatility
and flexibility of our algorithm. It includes the Landauer formalism as the long-time limit
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for systems under DC bias and allows to study transients. Moreover, it can deal with
periodic time-dependent fields (which are usually treated with the Floquet formalism)
but is applicable to nonperiodic conditions as well [36].

Most theoretical approaches to transport adopt open boundary conditions and assume
that transport is ballistic, i.e., under steady-state conditions inelastic collisions are absent
and dissipation occurs only in the idealized macroscopic reservoirs. This might be an
unrealistic assumption for transport through single molecules, in particular when the
device is not operated in the regime of small bias and linear response. When inelastic
scattering dominates, this picture is not applicable. In particular, experiments [37–39]
indicate that inelastic scattering with lattice vibrations is present at sufficiently large bias,
causing local heating of contacts and molecular devices. In addition, current-induced
forces might lead to bond-breaking and electromigrations.

In a joint collaboration with Verdozzi and Almbladh, one of us has included the
nuclear degrees of freedom at a classical level [40]. The initial ground state (consisting
of bound, resonant and scattering states) has been calculated self-consistently. Also, the
time-propagation algorithm of Section 4.2 has been generalized to evolve the system
electrons + nuclei in the Ehrenfest approximation. Several aspects of the electron–ion
interaction in quantum transport have been investigated.

Electron correlations are also important in molecular conductors, for example,
Coulomb blockade effects dominate the transport in quantum dots. Short-range electron
correlations seem to be relevant in order to get quantitative description of I/V character-
istics in molecular constrictions [41–43]. In particular it is commonly assumed that the
energy scales for electron–electron and electron–phonon interactions are different and
could be treated separately. However, the metallic screening of the electrodes consider-
ably reduces the Coulomb-charging energy (from eV to meV scale). In this regime the
energy scales for the two interactions merge and they need to be treated on the same
footing. We would like to emphasize that our scheme allows for a consistent treatment
of electronic and ionic degrees of freedom.

It is clear that the quality of the TDDFT functionals is of crucial importance. In
particular, exchange and correlation functionals for the nonequilibrium situation are
required. Time-dependent linear response theory for DC-steady state has been imple-
mented in [44] within TDLDA assuming jellium-like electrodes (mimicked by complex
absorbing/emitting potentials). It has been shown that the DC-conductance changes
considerably from the standard Landauer value. Therefore, a systematic study of the
TDDFT functionals themselves is needed. A step beyond standard adiabatic approx-
imations and exchange-only potentials is to resort to many-body schemes based on
perturbative expansions [45, 46], iterative schemes [47], or variational-functional for-
mulations [48]. Another path is to explore exchange-correlation functionals that depend
implicitly [25, 49] or explicitly [50, 51] on the current density.
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