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PREFACE

Magnetism has been known to humans for millennia, and for millennia inter-
pretations of the nature of this elusive force capable of moving inert bodies have
been produced. An early example is provided by Plinius, who in Naturalis His-
toria wrote: ‘Quid ferri duritia pugnacius? Pedes ei importuit et mores. Trahitur
namque magnete lapide, domitrixque illa rerum omnia materia ad inane nescio
quid currit atque, ut propius venit, adsilit, tenetur amplexuque haeret.’ Plinius
expresses his surprise for the fact that iron, a typical example of hard matter,
is irresistibly attracted by lodestone until they embrace. One and a half millen-
nium later, G.B. Porta in his book Natural Magick in 1589 similarly wrote ‘iron
is drawn by the Loadstone, as a bride after the bridegroom, to be embraced;
and the iron is so desirous to join with it as her husband, . . .’. Magnetism was
understood as a soul of inert matter which transformed it into something like a
living organism and expressions like animal magnetism and organic magnetism
gradually became popular, especially among charlatans. It was in the nineteenth
and twentieth centuries that the nature of magnetism was finally understood, but
the magnetic materials were still structurally based on metals or oxides. Finally
towards the end of the twentieth century the first examples of magnets based
on organic matter were discovered and a new research field, which is commonly
defined as molecular magnetism, was opened.

A particularly appealing area in molecular magnetism is that of molecules
which show a slow relaxation of the magnetization at low temperature, behaving
as tiny magnets and thus known also as single-molecule magnets. These were
discovered at the end of the twentieth century and immediately attracted much
interest for their relevance to fundamental phenomena, like the coexistence of
quantum and classical phenomena and for the opportunities of developing new
types of magnetic materials.

The present book is particularly devoted to these single-molecule magnets
although more general aspects of molecular nanomagnetism are also addressed.
This research field is rapidly expanding and requires the cooperation of chem-
ists, for the challenge of designing and synthesizing new examples of magnetic
molecules with tailor-made properties, and of physicists, who can experimentally
measure the properties and work out the theoretical models required for their
interpretation.

Many research articles, reviews, and book chapters dealing with molecular
nanomagnetism have recently appeared but a book covering the different aspects
of this new domain was lacking. It was also felt that a field where the chemical and
physical expertise is so intimately mixed could be tackled only by a joint effort
of people with different backgrounds. The book is in fact written by the chemists
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pioneers in this field and by a theorist who has been one of the protagonists of
its development. The book is explicitly addressed to an audience of chemists and
physicists aiming to use a language suitable for the two communities.

Establishing a common language is certainly a very difficult task. The authors
tried to be helpful to the other researchers, especially new-comers, by taking
advantage of their reciprocal ignorance in the complementary field. The chapters
of the book have been tested in this way, starting with a draft version which
was returned full of question marks which showed that what is obvious for one
person may be completely obscure for another. A trial and error approach pro-
gressively diminished the number of question marks in subsequent versions of
the manuscript. The present text has been released when the question marks
were acceptably few in the various chapters. The appendix section is fairly large
because it was felt appropriate to leave the more demanding mathematical pas-
sages available for the interested reader, keeping technicalities to a minimum in
the main text.

A further important improvement of the text has been achieved by the care-
ful reading of the different sections by some patient and friendly colleagues who
accepted of being the first test of the approach of the book. We thank Giuseppe
Amoretti, Pierre Averbuch, Steve Blundell, Andrea Cornia, Pierre Dalmas de
Reautier, Julio Fernández, Anna Fort, Andrew Kent, Alessandro Lascialfari,
Achim Müller, Wolfgang Wernsdorfer, and Richard Winpenny for the many
improvements they have provided to us. Of course all the errors and obscure
passages that remain have to be attributed to the authors. We are indebted to
our closer collaborators and our families who demonstrated great patience when
finding us often occupied with the writing of this manuscript. We also wish
to thank the many colleagues who kindly permitted the reproduction of their
graphic material.

Dante Gatteschi
Roberta Sessoli
Firenze, July 2005

Jacques Villain
Grenoble, July 2005
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1

INTRODUCTION

Molecular magnetic materials have been added to the library of magnetism only
at the end of the twentieth century through the concerted action of chemists
and physicists. Before this, all the known magnets were based on metallic and
ionic lattices, ranging from magnetite, the first magnet discovered by man, to
iron. The interest in functional molecular materials was not limited to magnet-
ism but rather arose from the discovery that purely organic compounds could
be electrical conductors, and even superconductors (Jérome and Schulz 2002).
This prompted much research, because it was immediately clear that organic
conductors could open up new technological applications, taking advantage of
low cost and the possibility of tuning the properties using chemical techniques.
With an obvious extension, the possibility of organic magnets was taken into
consideration. After some false starts at the beginning of the 1990s, Kinoshita
and co-workers (Tamura et al. 1991) in Japan reported the first evidence of a
purely organic ferromagnet, based on a nitronyl nitroxide, whose structure is
sketched in Fig. 1.1.

Organic radicals, i.e. systems with at least one unpaired electron, are in general
unstable, but the nitroxides, which have an unpaired electron essentially localized
in a NO group, are relatively stable, and have been widely used as spin probes and
spin labels (Berliner and Reuben 1981). An early example of the investigation
of ferromagnetic interactions involving organic radicals was provided by Veyret
and Blaise (1973). Magnetic ordering was observed (Saint Paul and Veyret 1973)
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Fig. 1.1. Sketch of the molecular structure of the para-nitrophenyl nitronyl
nitroxide, NITpNO2Ph.
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N

N

N

N

Fig. 1.2. Sketch of the structure of the TCNE.− radical. All the CN groups are
equivalent.

but the material at a deeper investigation revealed to undergo a metamagnetic
transition (Chouteau and Veyret-Jeandey 1981). Nitronyl nitroxides, like
NITpNO2Ph shown in Fig. 1.1, are a variation on the nitroxide theme, con-
taining two equivalent NO groups in a five-membered ring with one unpaired
electron delocalized on the two NO groups. The equivalence of the NO groups
in Fig. 1.1 can be verified by writing the symmetric formula in which the double
bond and the unpaired electron in the five-membered ring are moved to the
symmetric counterpart.

NITpNO2Ph is ferromagnetically ordered only below 0.6 K; nevertheless it
was important because it showed that it is indeed possible to have a permanent
magnet in which the magnetic orbitals, i.e. those containing the unpaired elec-
trons, are s and p in nature, rather than the d and f orbitals involved in classical
magnets. Currently the purely organic magnet with the highest critical temper-
ature is a sulphur-based radical which orders as a weak ferromagnet below 35 K
(Palacio et al. 1997).

Before NITpNO2Ph some other examples of molecular ferro- and ferrimag-
nets had been reported, based on molecular lattices comprising various transition
metal ions and also transition metal ion-organic radicals pairs (Miller et al. 1987;
Kahn et al. 1988; Caneschi et al. 1989). In this way, a high-temperature ferri-
magnet was obtained, using vanadium ions attached to the radical anions of
tetracyanoethylene, TCNE− sketched in Fig. 1.2 (Manriquez et al. 1991). The
structure is not known because V(TCNE)2 is highly insoluble and no single crys-
tals suitable for crystallographic analysis were obtained. However the compound
orders above room temperature. The ferrimagnetic order arises from the antifer-
romagnetic coupling between the S = 3/2 of V2+ and the S = 1/2 of the TCNE.−

radicals.
Another room-temperature ferrimagnet is a Prussian blue type compound

comprising chromium(III)1 and vanadium(II) and vanadium(III) ions, of formula
[V(II)0.42V(III)0.58(Cr(CN)6)0.86]2H2O (Ferlay et al. 1995).1

1 We will use in the following different notations for the formal charge of the metal ions,
namely: chromium(III), Cr3+, CrIII. The three must be considered to be equivalent.
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Beyond providing some new magnetically ordered systems, molecular mag-
netism provided several new types of low-dimensional magnetic materials, which
attracted the interest of a growing number of physicists, looking for new types
of magnetic materials. For instance, materials which provided evidence for the
so-called Haldane conjecture (Haldane 1983) are molecular in nature; Kagome-
type lattices were obtained (Awaga et al. 1994; Wada et al. 1997); various types
of one-dimensional ferro-, antiferro- and ferrimagnets were obtained, also using
unusual constituent spins (Lascialfari et al. 2003).

In fact starting from the 1980s there was a marked shift of interest in the field
of magnetism of molecular systems, which can be summarized as the transition
from magnetochemistry to molecular magnetism. Magnetochemistry is essen-
tially the use of magnetic techniques for obtaining structural information on
simple paramagnetic systems, and it is a branch of chemistry which uses phys-
ical measurements (Carlin 1986). Molecular magnetism, on the other hand, is an
interdisciplinary field, where chemists design and synthesize materials of increas-
ing complexity based on a feedback interaction with physicists who develop
sophisticated experimental measurements to model the novel properties asso-
ciated with molecular materials (Kahn 1993). If one wants to fix a starting date
for molecular magnetism the best candidate seems to be the NATO Advanced
Study Institute, ASI, which was held in Castiglion della Pescaia in Italy in 1983
(Willet et al. 1983). The title of the ASI, ‘Structural–magnetic correlations in
exchange coupled systems’, reflects the interest of the chemist organizers for
understanding the conditions under which pairs of transition metal ions could
give rise to ferromagnetic interactions. Looking at the list of participants it is
clear that there was a blend of chemists and physicists, many of whom met for
the first time. A common language started to be developed and useful collab-
orations were established for the first time. The proceedings of that ASI have
been intensively referenced, and have been the textbook for the first generation
of scientists active in molecular magnetism.

Important as they have been, the efforts in designing and synthesizing bulk
magnets starting from molecules always meet the difficulty that molecules are
not easy to organize in a three-dimensional net of strong magnetic interactions.
This can be rather easily done with ions or metals, where the building blocks are
spherical, while it is often far from being obvious with molecular building blocks,
which are in general of low symmetry. This is one of the main reasons why a
comparatively large number of low-dimensional materials have been obtained by
using molecular building blocks.

However, this difficulty may turn out to be an advantage if the target is
changed from three-dimensional magnets to low-dimensional and, in particular,
zero-dimensional magnets. Indeed the interest in finite-size magnetic particles
had developed in the 1980s as a consequence of the growing interest in the
so-called nanoscience. It was realized that nanosize objects can be particularly
interesting because matter organized on this scale has enough complexity to
give rise to new types of properties, and yet it is not too complex and can be
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investigated in depth in much detail. The interest in nanoscience (and, in per-
spective, for nanotechnology) spans all the traditional disciplines. In condensed
matter physics the first steps were perhaps made in the field of conductors and
semiconductors, as a result of the impetus on the miniaturization processes asso-
ciated with more efficient computers. One of the challenges is the realization of
objects of size so small that they save rise to the coexistence of classical and
quantum properties. The most interesting results were in the field of quantum
dots and quantum wires (Bimberg et al. 1999), which correspond to objects
whose size is in the nanometre range in three or two directions, respectively. Pro-
gress was made possible by the development of experimental techniques, which
allowed ‘seeing’ and investigating the properties of particles of a few nanometres.
Among them a particular relevant place was kept by scanning probe micro-
scopy techniques, like atomic force microscopy, scanning tunnel microscopy, etc.
(Bai 2000).

Magnetism could not be an exception, and one of the relevant themes was
the possibility of observing quantum tunnelling effects in mesoscopic matter. A
scheme, showing the size effects in the magnetization dynamics and hysteresis
loop going from multidomain magnetic particles to molecular clusters, has been
extracted from an interesting review (Wernsdorfer 2001) and is given in Fig. 1.3.

–40

–1

0

Nucleation, propagation and

annihilation of domain walls

Macroscopic

Permanent

magnets

Micron

particles

Nanoparticles Clusters Molecular

clusters

Individual

spins

Nanoscopic

Uniform rotation

curling

quantum tunnelling, quantization,

Quantum interference

M
/M

s

1

–20 0

�0H(mT)

20 40 –100

–1

0

M
/M

s

1

Multidomain Single domain Magnetic moment

0

�0H(mT)

100 –100

–1

0

M
/M

s

1

0

�0H(T)

100

0.1K

0.7K

1K

Fe8

S = 1020 1010 108 106 105 104 103 102 10 1

Fig. 1.3. The transition from macroscopic to nanoscopic magnets. From
Wernsdorfer (2001). The hysteresis loops are typical examples of magnet-
ization reversal via nucleation, propagation and annihilation of domain
walls (left), via uniform rotation (middle), and quantum tunnelling (right).
Reprinted with permission of John Wiley & Sons.
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At the macroscopic limit the particles contain at least billions of individual
spins, which are coupled in such a way that the individual moments will respond
all together to external stimuli. The magnetic energy is minimized by forming
domains, regions in space within which all the individual moments are parallel
(antiparallel) to each other. The orientation of the moments of the domains
will be random in such a way that in the absence of an external magnetic field
the magnetization of the sample is zero. The transition from a domain to the
neighbouring one will occur through a region where the local magnetic moments
are rapidly varying, called the Bloch walls (Morrish 1966). The width of the
Bloch walls, d, depends on the exchange coupling constant J , which tends to
keep the spins ordered and to make the walls as large as possible, in order to
minimize the effort needed to change the orientation of the moments, and on
the magnetic anisotropy, which tends to minimize the Bloch walls to reduce the
probability of high-energy orientations. Obviously the width of the domain walls
depends on the nature of the magnetic material.

When the sample is magnetized all the individual moments will eventually be
parallel to each other and the magnetization reaches its saturation value. If the
field is decreased the formation of domains will not be reversible in such a way
that the magnetization at zero field will not be zero, like in the non-magnetized
case. The finite value of the magnetization in zero field is called the remnant
magnetization. In order to demagnetize the sample it is necessary to go to a
negative field, which is called the coercitive field. This value is used in order
to classify the bulk magnets: a small value of the coercitive field is typical of
soft magnets, while in hard magnets the coercitive field is large. The M/H plot,
shown in Fig. 1.3 on the left, shows a hysteresis loop, which tells us that the
value of the magnetization of the sample depends on its history. This is the basis
of the use of magnets for storing information.

On reducing the size of the magnetic particles a limit is reached when the
radius of the particle is small compared to the Bloch wall depth. Energetically
the process of domain wall formation is no longer economical and the particle
goes single domain.

By further reducing the size of the particles, another effect sets in (Néel 1949).
The magnetic anisotropy of the sample, A, depends on the size of the particle:

A = KV (1.1)

where V is the volume of the particle and K is the anisotropy constant of the
material. Let us suppose that the anisotropy of the magnetization is of the Ising
type, i.e. the stable orientation of the magnetic moment of the particle is parallel
to a given direction z. The energy of the system as a function of the orientation
of the magnetic moment is pictorially shown in Fig. 1.4.

The bottom of the left well corresponds to magnetization down, the bottom
of the right well to magnetization up, and the top to the magnetization at 90◦

from the easy axis. On reducing the size of the sample eventually the barrier for
the reorientation of the magnetization will become comparable to the thermal
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Fig. 1.4. Energy of an Ising (easy axis) type magnet as a function of the angle
of the magnetization from the easy axis.

energy. If the sample is prepared with the magnetization up (right well) some of
the particles will have enough energy to jump over the barrier and reverse their
magnetization. If the particles are given enough time, half of them will be in the
left and half in the right well at equilibrium because the two minima have the
same energy. The system will no longer be magnetized in zero magnetic field,
like a paramagnet. If an external field is applied then one of the two wells will
lower its energy and the other will increase it. The two wells will have different
populations and the system behaves like a paramagnet, but since the response to
the external perturbation comes from all the individual magnetic centres, it will
be large. These kinds of particles are called superparamagnets, and they find some
interesting application, like in magnetic drug delivery, in magnetic separation of
cells, and as a contrast agent for magnetic resonance imaging (Pankhurst et al.
2003).

An important feature of the superparamagnet is that the observation of either
static or dynamic magnetic behaviour depends on the time-scale of the experi-
ment used for investigating it. For instance, using an ac magnetic susceptibility
measurement with a field oscillating at ν = 100 Hz, static behaviour, with a
blocked magnetization, will be observed if the characteristic time required for
the particles to go over the barrier is longer than τ = (2πν)−1, while dynamic
behaviour is observed for shorter τ . The so-called blocking temperature corres-
ponds to the temperature at which the relaxation time of the magnetization
equals the characteristic time of the experiment.

The characteristic time for the reorientation of the magnetization can be easily
calculated assuming that it occurs through a thermally activated process. This
gives rise to an exponential dependence on the energy barrier with so-called
Arrhenius behaviour, as observed in many other classes of thermally activated
physical and chemical processes:

τ = τ0 exp
KV

kBT
. (1.2)
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This behaviour is typical of a classical system. In principle, when the size of the
magnetic particles reduces, it may be possible to invert the magnetization also
through the quantum tunnel effect (Leggett 1995). This effect should show up
at low temperature, where it should provide the most efficient path for magnetic
relaxation only if the wavefunctions of the left and of the right well have some
overlap. The quest for quantum effects in magnetic nanoparticles is certainly one
of the goals of this book.

The size of the particles needed to observe superparamagnetic behaviour
ranges from 2–3 to 20–30 nm, depending on the nature of the material. Mag-
netic nanoparticles are obtained in many different ways, ranging from mechanical
grinding to sol–gel techniques (Sugimoto 2000). An original procedure uses nat-
urally occurring materials like ferritin, the ubiquitous iron storage protein. Iron
is needed in the metabolism of living organisms, and it must be stored in some
place in order to use when it is needed. Nature chose ferritin to do this job in
animals, plants, fungi, and bacteria. Man has an average of 3–4 g iron and ca.
30 mg per day are exchanged in plasma. Structurally ferritin comprises a proteic
shell, apoferritin, and a mineral core, of approximate composition FeOOH. The
size of the internal core is ca. 7 nm, giving rise to superparamagnetic behaviour
in the iron oxide particles, which can contain up to ca. 4000 metal ions (St. Pierre
et al. 1989).

An interesting feature is that it is possible to substitute the iron oxide core
with other magnetic oxides, like magnetite, taking advantage of the proteic shell
for limiting the size of the magnetic particles (Wong et al. 1998). Indeed fer-
ritin was used in one of the early attempts to observe quantum phenomena in
mesoscopic magnets, but only conflicting evidence was obtained (Gider et al.
1995; Tejada et al. 1997). The problem is that the observation of quantum
phenomena is made difficult by the fact that either the experiments are per-
formed on individual particles, or, if an assembly of them is used, they must be
absolutely monodisperse. Monodisperse means a collection of identical particles,
because quantum phenomena scale exponentially with the size of the particles,
and it would be impossible to unequivocally observe quantum phenomena in
polydisperse assemblies.

Definite improvements have been made recently in the techniques to obtain
monodisperse assemblies of magnetic particles. In some cases it has been possible
to obtain identical particles that have been ‘crystallized’ (Redl et al. 2003; Sun
and Murray 1999). In fact if spherical particles all identical to each other are put
together they will try to occupy space in the most efficient way, giving rise to a
close packed array exactly as atoms do in crystals.

An alternative to using magnetic nanoparticles, i.e. of reducing the size of bulk
magnets in a sort of top-down approach, is that of using a molecular approach
in a bottom-up approach (Gatteschi et al. 1994). The idea is that of synthesizing
molecules containing an increasing number of magnetic centres. In the ideal
process one would like to be able to add one magnetic centre at a time, starting
from one and going up to say a few thousand magnetic centres. The theoretical
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advantage of the molecular approach is that molecules are all identical to each
other, therefore allowing the performance of relatively easy experiments on large
assemblies of identical particles, and still being able to monitor elusive quantum
effects. Molecules can be easily organized into single crystals, therefore allowing
the performance of accurate measurements. Further, they can be investigated in
solutions, thus destroying all the intermolecular magnetic interactions that might
give rise to spurious effects. As an alternative to single crystals it is possible to
organize them in self-assembled monolayers and address them with microscopic
techniques like STM. Therefore molecular nanomagnets have great promise and
they well deserve the effort needed to design and synthesize them.

The idea of making molecules of increasing size by adding the magnetic centres
one at a time is certainly appealing, but unfortunately it is not like that that
chemistry goes. However, some successful strategies have led to noticeable results
such as the spectacular increase in the size of manganese molecular clusters
achieved by Christou and co-workers and schematized in Fig. 1.5 (Tasiopoulos
et al. 2004).

Manganese-containing molecules have been intensively investigated, as will
become apparent in the rest of the book. It must be recalled that the interest in
manganese clusters is not only for the magnetic properties but also for mimicking
the centres present in Photosystem II, the system responsible for water oxidation
in photosynthesis (Christou 1989).

The interest in magnetic molecules with large spin was first related to the
possibility of using them as building blocks to obtain bulk ferromagnets. Perhaps

[Mn4] [Mn12]
[Mn30]

[Mn84]

N

1 10

Quantum world

Molecular (bottom-up) approach

Classical world

Classical (top-down) approach

100 1000

Fig. 1.5. Increasing size and nuclearity of molecular clusters containing man-
ganese ions that approach the size of nanosized magnetic particles. From
Tasiopoulos et al. (2004). Reprinted with permission of Wiley-VCH.
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Fig. 1.6. Left: sketch of a carbene centre. Right: structure of linear aromatic
polycarbene radicals.

the first interesting systems were unstable organic radicals, based on carbene
groups, which actually were designed to show the possibility of yielding strong
ferromagnetic coupling in organic matter (Itoh 1978). A carbene is a very reactive
carbon centre with two unpaired electron, as shown in Fig. 1.6.

The valence orbitals of the carbene centre can be considered as sp3 hybrid
orbitals: two are used for normal two-electron bonds with R substituents, while
the other two remain as non-bonding orbitals with one electron each. Since
the two magnetic orbitals are orthogonal to each other the carbene centre is
in the ground S = 1 state. It has been found that connecting the carbene groups
through benzene rings, strong ferromagnetic coupling is established, leading to
ground states S =n, where n is the number of carbene groups, with no evidence
of thermally populated states with a spin value smaller than S. A branched chain
nonacarbene with an S = 9 ground state has been reported. The largest carbene
so far reported has S = 9 (Nakamura et al. 1993; Lahti 1999).

In order to achieve large ground spin states it is easier to use an approach
with building blocks containing transition metal or rare earth ions, which can
have spin states as high as S = 5/2,and S = 7/2, respectively. In this way it is
relatively easy to obtain spin clusters with a large S in the ground state. An
early success was achieved with the ring [Mn(hfac)2(NITPh)]6, whose structure
is shown in Fig. 1.7 (Caneschi et al. 1988).

It comprises six Mn2+ (S = 5/2) ions coupled to organic radicals analogous to
NITpNO2Ph, with the NO2 group substituted by a hydrogen atom. hfac is just
the diamagnetic organic anion of hexafluoracetylacetone. The radical has S = 1

2
and is strongly antiferromagnetically coupled to the metal ion in such a way that
the cluster behaves as a ferrimagnetic ring, with S = 6×5/2−6×1/2 = 12 in the
ground state. This ring has for some time been the cluster with the largest spin
in the ground state and it showed how it is possible to obtain real rings on which
to test theoretical models. It must be remembered that one ring had long been
used, for instance, for modelling the properties of one-dimensional materials.

The breakthrough occurred when the magnetic properties of a compound
which had been synthesized at the beginning of the 1980s (Lis 1980) were
investigated in detail. [Mn12O12(CH3COO)16(H2O)4], Mn12ac, has the structure
shown in Fig. 1.8. The analysis of the structure, which will be discussed in more
detail in Section 4.7.1, shows that the cluster has crystal-imposed S4 symmetry,
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Fig. 1.7. Schematic view of the molecular cluster [Mn(hfac)2(NITPh)]6 along
the trigonal axis. Manganese ions are the largest light-grey spheres.

Fig. 1.8. Structure of the molecular cluster [Mn12O12(CH3COO)16(H2O)4] along
the tetragonal axis. The manganese ions are reported as large grey spheres,
oxygen in black, and carbon as small grey spheres. Only hydrogen atoms of
water molecules have been drawn for sake of clarity.
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with an external ring of eight manganese(III), S = 2, ions and an internal tetra-
hedron of four manganese(IV) ions. The temperature dependence of the magnetic
susceptibility clearly indicates ferrimagnetic behaviour, and the low-temperature
magnetization clearly indicates an S = 10 ground state. This is easily rationalized
assuming that all the manganese(III) spins are up and the manganese(IV) spins
are down. Magnetization data also showed strong magnetic anisotropy of the
easy axis (Ising) type. The most exciting aspect was, however, that ac magnetic
susceptibility measurements clearly indicated a slow magnetic relaxation below
10 K (Caneschi et al. 1991). The fact that the complex ac susceptibility strongly
depended on the applied frequency of the oscillating magnetic field ruled out
the possibility of a transition to bulk magnetic order. The system, measured as
a polycrystalline powder, showed a magnetic hysteresis which is molecular in
origin (Sessoli et al. 1993a), i.e. it is not associated with irreversibility effects in
the domain-wall formation, like in classical magnets, but is bound to the slow
relaxation of the magnetization of the individual molecules. In principle, it is
possible to store information in one molecule of Mn12ac, which has a diameter
of ca. 1 nm. This observation produced some excitement and a proper name to
the observed behaviour. After some variation, the term single-molecule magnet,
SMM, was used, suggesting that the individual molecules behave as tiny mag-
nets (Eppley et al. 1997; Aromi et al.1998; Christou et al. 2000). The name is
certainly evocative, but in strict terms it is not correct. In order to have a mag-
net it is necessary that the spin correlation length diverges, and this is certainly
impossible in a zero-dimensional material.

The conditions for the unusual behaviour of Mn12ac, and of derivatives
obtained by substituting the acetate groups with other carboxylates (Boyd et al.
1988; Aromi et al. 1998; Gatteschi and Sessoli 2003), soon appeared to be the
large ground spin state and the large easy axis magnetic anisotropy. Using this
point of view, it was soon realized that an octanuclear iron(III) cluster, Fe8, a
compound first reported by Wieghardt in the 1980s (Wieghardt et al. 1984) and
investigated for its magnetic properties in the middle of the 1990s, indeed met the
conditions for behaving as a SMM, showing an S = 10 ground state and an Ising
type magnetic anisotropy (Barra et al. 1996). Ac magnetic susceptibility meas-
urements showed that the magnetization of Fe8 relaxes slowly at low temperat-
ure, but faster than in Mn12ac, in agreement with its smaller magnetic anisotropy.

Even more exciting, these systems proved to be ideal testing grounds for
theories of the coexistence of quantum and classical effects in magnets (Gunther
and Barbara 1995); in particular they provided for the first time evidence of
quantum tunnelling of the magnetization (Novak and Sessoli 1995; Friedman
et al. 1996; Thomas et al. 1996; Sangregorio et al. 1997) and of oscillations of
the tunnel splitting (Wernsdorfer and Sessoli 1999), an interference effect that is
the magnetic analogue of the Berry phase. At this point SMMs attracted much
attention from both chemists, who were trying to design new classes of SMMs
with enhanced properties, and physicists, fascinated by the wealth of different
new magnets on which to measure new properties and test theories.
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The field of SMM, or more generally molecular nanomagnets, is coming of
age and we felt it appropriate to try to provide a unified picture, trying to com-
pensate the difficulties of chemists in following the great number of equations
needed to understand the physics of the systems, and those of physicists in orient-
ing themselves in the intricate forest of molecular compounds. Some important
review articles are already available in the literature, and in particular a series
of edited books is available in which all the major features of molecular nano-
magnets are clearly outlined (Miller and Drillon 2001–2005). However a unified
approach is still lacking and we are trying to produce it here. In general we will
try to be as basic as possible in the treatment of the topics, leaving the more
complex treatments to appendices. The general problem of the system of units
will be introduced in Appendix A, together with physical constants and basic
mathematical tools.

The organization of the book is the following. In Chapter 2 we introduce the
spin Hamiltonian approach, which is the background theory needed to provide
a first-hand description of the magnetic properties of individual spins, of pairs
and of more complex clusters. The basic theory needed for understanding the
meaning of the spin Hamiltonian parameters will be worked out at the simplest
possible level, but trying to clarify which are the factors responsible of the nature
of the ground state of the individual magnetic centres, including the anisotropy,
and of the magnetic interactions between different centres.

Chapter 3 is devoted to the observation of microscopic magnetism, working
out in some detail the most commonly used magnetic techniques. Also in this case
the basic aspects of the techniques will only be briefly recalled, with an indica-
tion of relevant textbooks to be used for a sound background. However, it is the
goal of the authors to allow the reader to be able to read the current literature
with some acceptable understanding. The magnetic techniques that are presented
include micro-SQUID and micro-Hall probe techniques and torque magneto-
metry; specific heat measurements, including equilibrium and out-of-equilibrium
measurements; magnetic resonance techniques, including EPR, NMR, and muon
spin resonance. Neutron techniques, in particular polarized neutron diffraction
and inelastic neutron scattering, will conclude the section.

After the three introductory chapters, Chapter 4 will definitely introduce
the reader to the field of single-molecule magnets. The first part is an essen-
tially chemical one, aiming to familiarize the reader with the basic aspects of
the art-and-science approach that chemists use to design and synthesize their
compounds. In the following sections the three most investigated classes of com-
pounds, namely Mn12, Fe8, and Mn4, will be introduced, with some detailed
description of their properties.

Chapters 5–12 are devoted to working out in some detail the theoretical back-
ground needed to understand the mechanism of relaxation of the magnetization
in molecular nanomagnets, of tunnelling, and of quantum coherence. In partic-
ular Chapter 5 works out the thermally activated magnetic relaxation, which is
responsible for the high-temperature behaviour of the SMM.
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Chapter 6 introduces the magnetic tunnelling of an isolated spin, while
Chapter 7 introduces the formalism of field theory applied to the tunnelling
effect, including imaginary time and path integrals.

Time-dependent magnetic field at low temperature will be the theme of
Chapter 8, in particular developing the Landau–Zener–Stückelberg formalism.
The fundamental aspects of coherence, incoherence and relaxation, which char-
acterize the interaction of a molecular spin with the external world, will be
worked out in Chapter 9. Chapter 10 shows the tunnelling involving excited
states, Chapter 11 coherence and decoherence, and Chapter 12 will tackle the
basic problem of disorder.

Chapters 13 and 14 will lead the reader back to experiments. Chapter 13 will
provide more insight into the subtleties of the magnetic properties of Mn12, Fe8

and Mn4, while Chapter 14 will advocate the interest in other classes of magnetic
molecules, which do not show SMM behaviour but are very interesting for their
magnetic properties.

Chapter 15, comprising the conclusions, will also treat some emerging area,
like that of single-chain magnets, SCM, i.e. one-dimensional magnetic materials
whose magnetization relaxes slowly at low temperature, without cooperative
phenomena.



2

MAGNETIC INTERACTIONS IN MOLECULAR SYSTEMS

Magnetic interactions in molecular systems are in principle the same as can be
observed in continuous lattices (Herpin 1968). The relevance of pair interactions
is, however, larger in molecular systems, because they are generally insulators
and the magnetic interaction is strongly localized. The origin of the coupling
between the two magnetic centres is twofold. One is purely magnetic and the
other is electrostatic in nature. Alternatively, the two types of interaction may
be described as through-space and through-bond, respectively. In principle we
may consider that two magnetic centres interact via their magnetic fields. This is
certainly possible, but elementary calculations using, for instance, point dipolar
approximations, to be discussed below in Section 2.4, show that the interaction
energies are a fraction of a kelvin, while values of 10–103 K are known to be
operative between transition metal ions.

In fact it is well known (Kahn 1993) that the origin of the coupling is the
electrostatic interaction responsible of the formation of the chemical bonds. In
a very simple scheme the origin of the magnetic interaction is the formation of
a weak chemical bond between the two magnetic centres. The simplest possible
case is that of a system for which the ground state is orbitally non-degenerate on
both centres. The states of the interacting centres are described by a set of orbit-
als, which in general can be considered as molecular orbitals, i.e. wavefunctions
delocalized over all the atoms of the molecule. A rule of thumb for the magnetic
interaction can be developed taking into consideration the magnetic orbitals.
The magnetic orbitals are the singly occupied molecular orbitals (SOMO) of the
magnetic centres (Slater 1968). If the magnetic orbitals are orthogonal to each
other, the two spins of the electrons will be parallel to each other (ferromagnetic
coupling), while if the magnetic orbitals have a non-zero overlap the spins will
tend to orient antiparallel to each other.

The original description of the magnetic interaction (Anderson and Hasegawa
1955; Anderson 1959; Anderson 1963) was performed by using localized magnetic
orbitals or a valence-bond approach. It is customary to use other approaches
which have their justification in the molecular orbital (tight binding) approaches
(Kahn and Briat 1976; Hay et al. 1975). Recently density functional theory
(DFT) models proved to be extremely effective in calculating the magnetic inter-
actions. They will be discussed in Section 2.3.5. Let us assume that a centre
A interacts with a centre B through a bridging group L. Initially A and B are
considered as isolated and each of them has some unpaired electrons. We assume
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that the group L has only paired electrons. The interaction is switched on by
allowing the unpaired electrons of A to feel the electrons of B and vice versa. This
requires that the total wavefunction is antisymmetric relative to the exchange
of a pair of electrons. The exchange interaction, which is of paramount import-
ance for magnetic phenomena, may occur either directly or through a formally
diamagnetic ligand. Two different terms are used, namely exchange interaction
for the former and super-exchange interaction for the latter. An early digest
of the qualitative features responsible of the coupling between different centres
is represented by the Goodenough–Kanamori rules (Goodenough 1958, 1963;
Kanamori 1959, 1963).

These points will be made clearer in the following. For the moment we stop
here, and before discussing in more detail the fundamental theory needed to
understand in some detail the nature of the magnetic interactions, we will have
to make a detour introducing the so-called spin Hamiltonian approach.

2.1 The spin Hamiltonian approach

The spin Hamiltonian, SH, approach is widely used in various spectroscopies in
order to find a suitable short-cut which allows us to interpret and classify the
obtained spectra without using fundamental theories. The SH approach elimin-
ates all the orbital coordinates needed to define the system, and replaces them
with spin coordinates, taking advantage of the symmetry properties of the sys-
tem (Abragam and Bleaney 1986). Of course there are several approximations
which are associated with this approach. A central one is that the orbital moment
of the magnetic bricks is essentially quenched, as it often occurs in solids, and
that it can be conveniently treated as a perturbation. We will see that this is
often the case for many compounds, but we will also notice many cases where
this approximation is far from being tenable. The systems with orbitally non-
degenerate ground states are usually well treated with the SH approach, and we
will focus on these for the moment.

2.1.1 Zeeman and crystal field terms for isolated ions

A magnetic centre with n unpaired electrons will have a ground state charac-
terized by S = n/2. The 2S + 1 spin levels associated to this multiplet will be
split by low-symmetry components of the appropriate Hamiltonian, and by an
applied magnetic field. We call the former a crystal field hamiltonian and the
latter the Zeeman Hamiltonian. The notation ‘crystal field hamiltonian’ refers
to a simplified treatment of the spin levels of the transition metal compounds,
in which the effects of the atoms around the transition metal ions (the ligands
or the donor atoms in chemical language) are considered as the only sources of
ionic interactions.

The Zeeman Hamiltonian can be written as:

HZ = −H · m = µBH · g · S (2.1)
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where µB is the Bohr magneton defined in Appendix A4, H is the applied mag-
netic field, g is a tensor1 connecting the magnetic field and the spin vectors, and
S is a spin operator. The corresponding magnetic moment m is given by:

m = −µBg · S. (2.2)

As will be seen, it is often a good approximation to assume the crystal field spin
Hamiltonian to be a quadratic form of the spin operators, i.e.

HCF = S · D · S (2.3)

where D is a real, symmetric tensor. It therefore has three orthogonal eigen-
vectors. If the coordinate axes x, y, z are chosen parallel to these eigenvectors, D

is diagonal and (2.3) takes the form

HCF = DxxS2
x + DyyS2

y + DzzS
2
z (2.4)

where Sx, Sy, Sz are spin operators.
The physical properties are not changed if a constant is subtracted from a
Hamiltonian. Subtracting (1/2)(Dxx + Dyy)(S2

x + S2
y + S2

z ) = (1/2)(Dxx + Dyy)
S(S + 1), one obtains

HCF = DS2
z + E(S2

x − S2
y) (2.5)

where

D = Dzz − 1

2
Dxx − 1

2
Dyy;E =

1

2
(Dxx − Dyy). (2.6)

Subtracting the constant DS(S + 1)/3 from (2.5), one obtains

HCF = D

[

S2
z − 1

3
S(S + 1)

]

+ E(S2
x − S2

y). (2.7)

With respect to (2.5), the advantage of (2.7) is that it satisfies Tr H = 0, where
Tr is the trace of the tensor. Another advantage of both (2.5) and (2.7) appears
if one introduces the eigenvectors |m〉 of Sz, defined by Sz|m〉 = m|m〉, where
m = −s, −(s − 1), . . . , (s − 1), s. If the vectors |m〉 are used as a basis, it is
easily seen that the second term of (2.5) or (2.7) has no diagonal elements, i.e.
〈m|S2

x − S2
y |m′〉 = 0 if m′ is equal to m. On the other hand, the first term of

(2.5) or (2.7) has no off-diagonal elements.
Sometimes a parameter B = 2E is used instead of E and (2.5) can be rewritten

using the raising and lowering operators as

HCF = DS2
z + (B/2)

(

S2
x − S2

y

)

= DS2
z + (B/4)

(

S2
+ + S2

−
)

. (2.8)

Ignoring a constant, one can use the alternative notation

HCF = −D′S2
z + BS2

x (2.9)

where D′ = −(D + B/2).

1 Formally only g2 has the properties of a second-rank tensor.
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It follows from (2.6) that D is zero when Dzz = Dxx = Dyy, i.e. in cubic sym-
metry. In axial symmetry, Dxx = Dyy, and therefore E = 0, so that (2.5) reads

HCF = DS2
z . (2.10)

Thus, in axial symmetry, only the D parameter is needed to express the energies
of the (2S + 1) spin levels of the S multiplet at this level of approximation. The
effect of the Hamiltonian (2.5), (2.7) or (2.9) is that of splitting the (2S + 1)
levels even in the absence of an applied magnetic field. Therefore this effect is
often called zero-field splitting, ZFS.

These properties simplify the perturbation treatment of the second term of
(2.9) if |E| is sufficiently smaller than |D|. It is customary to limit its variation
according to:

−1/3 ≤ E/D ≤ +1/3. (2.11)

Letting E/D vary in a larger range is physically equivalent to renaming the
reference axes. In fact from (2.6) one can derive:

Dxx = −D/3 + E; Dyy = −D/3 − E; Dzz = 2D/3. (2.12)

For E/D = 1/3, Dxx = 0; Dyy = −2D/3; Dzz = 2D/3 and the splitting between
the three components is maximum (maximum rhombic splitting). At E/D = 1,
Dxx = Dzz = 2D/3; Dyy = −4D/3. The x and z components are identical to
each other, meaning that the system is now axial with y as the unique axis.

The eigenvectors of (2.5) or (2.7) in axial symmetry (when E = 0) are the
eigenvectors |m〉 of Sz, and the eigenvalues are

W (m) = Dm2 − S(S + 1)/3. (2.13)

At this level of approximation W (m) = W (−m). Including a non-zero E (i.e.
reducing the symmetry below the axial one) the |m〉 and | − m〉 states remove
their degeneracy if S is integer, while they remain degenerate in pairs if S is
half-integer. This is due to time reversal symmetry, and the pairs of degenerate
levels are called Kramers doublets (Kramers 1930) .

D can be positive or negative: in the former case the levels with lowest |m|
are the most stable, while for negative D the levels with highest |m| lie lowest.
Positive D corresponds to easy-plane magnetic anisotropy, negative D to easy-
axis type magnetic anisotropy.

The calculated energies for S = 2 and S = 5/2, in the range |E/D| = 0 − 1/3
are shown in Fig. 2.1. The degeneracy of the levels is completely removed for
the integer spin while the double degeneracy is retained in half-integer spin. The
five levels of an S = 2 state are symmetrically split for the maximum rhombic
splitting, |E/D| = 1/3, and the same is true for the three doublets of S = 5/2.
It is also interesting to follow the variation of the eigenvectors. For E = 0 the
states are pure eigenstates of Sz, each of them corresponding to a different m
value. For the maximum rhombic splitting substantial admixing of the |m〉 levels
is observed, as shown in Tables 2.1 and 2.2.
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Fig. 2.1. Energy levels in zero field for an S = 5/2 (left) and S = 2 (right)
multiplet as a function of the rhombic distortion factor E/D.

Table 2.1. Eigenvectors of an S = 2 spin for E/D = 1/3.

Eigenvalue 2 1 0 −1 −2

−2.3094 0.1830 −0.9659 0.1830
−2.0000 0.7071 −0.7071

0.0000 −0.7071 −0.7071
+2.0000 +0.7071 −0.7071
+2.3094 −0.6830 −0.2588 −0.6830

Table 2.2. Eigenvectors of an S = 5/2 spin state for E/D = 1/3.

Eigenvalue 5/2 3/2 1/2 −1/2 −3/2 −5/2

−3.52767 0.1364 −0.8881 +0.4390
−3.52767 +0.4390 −0.8881 0.1364

0.0000 −0.1336 +0.4226 0.8964
0.0000 0.8964 0.4226 −0.1336
3.52767 −0.9816 −0.1810 −0.0610
3.52767 −0.0610 −0.1810 −0.9816

We will discuss in some detail the splitting of the ±m levels for S = 2,
because this kind of discussion will be resumed later in conjunction with the
tunnel splitting. The levels can be labelled as ±m when E = 0. m = 0 lies lowest
when D is positive, then follow the m = ±1 levels, separated by D, and m = ±2,
which lie 3D above m = ±1. When E becomes different from zero the splitting of
the ±1 levels is much larger than that of the ±2 levels, because the E term mixes
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directly states which differ in m by ±2. The second observation is that a non-zero
E determines the admixture of odd and even m states only between themselves.
If we imagine calculating the energies of the levels using the E(S2

x −S2
y) term as

a perturbation on the energies determined by the D term, we see that the ±1
levels are already split in first order, while the ±2 levels are split only in second
order. We will see in Chapter 6 that this is of paramount importance for the
dynamics of the magnetization of systems with large S.

The Hamiltonian (2.3), which is quadratic in the S coordinates (spin compon-
ents), is the simplest possible crystal field Hamiltonian. In principle, one has to
include fourth, sixth, etc. order terms in the Hamiltonian in order to adequately
reproduce the energy levels. Only even-order terms must be retained in zero field
when calculating the effects on states belonging to the same configuration. In
fact in this case the product of the bra and of the ket is even, and only an even
operator can give non-zero matrix elements. Also it is not necessary to include
all the terms up to infinity, it is sufficient to include only terms of order

N = 2, 4, 6, . . . , 2S. (2.14)

It is in general a good approximation to consider that higher order terms are com-
paratively smaller than the lower order terms. For spin S = 2 it is in principle
required to include fourth-order terms in the zero-field splitting Hamiltonian.
This can be done by introducing operators of the type S4

z , S4
x, etc., but a con-

venient way to exploit at best the point group symmetry is that of using the
so-called Stevens operator equivalents. In a symbolic way they are indicated as:

HCF =
∑

N,k

Bk
NOk

N (2.15)

where the sum runs over all the N values defined in (2.14) and the integer k
satisfies

−N ≤ k ≤ +N (2.16)

Bk
N are parameters, and Ok

N are the so-called Stevens operators (Abragam and
Bleaney 1986), whose explicit form is given in Appendix A5. The N numbers are
limited according to (2.14) while the k values to be actually included in the sum
depend on the point group symmetry. For instance, for tetragonal symmetry,
and N = 4 only terms with

k = 0,±4 (2.17)

must be taken into consideration. The k = 0 term depends on operators of the
type SN

z , therefore it is diagonal in the S manifold. The second-order terms split
the levels according to (2.13), and the inclusion of the N = 4, k = 0 terms changes
the energy separations between levels with different |m|. The k = 4 term, on the
other hand, couples states differing by ±4 in m, therefore it can have important
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z z
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z

Fig. 2.2. The distance of the surface from the origin represents the classical
potential energy of a spin experiencing a uniaxial crystal field with negative
D (left), the same including a transverse second-order term (middle), or a
transverse fourth-order term (right).

effects on the composition of the eigenstates. Physically it introduces an aniso-
tropy in the xy plane according to which the x and y axes are equivalent between
themselves, but different from the diagonals of the quadrants in the plane.

A convenient way to visualize the effects of the different crystal field terms on
the magnetic anisotropy consists in plotting the potential energy of a classical
spin as a function of Cartesian coordinates, as shown in Fig. 2.2 (Del Barco et al.
2005).

Instead of using the Stevens operators simpler expressions have also been used,
like the following Hamiltonian which is appropriate for tetragonal symmetry

H = αS2
z + βS4

z + γ(S4
x + S4

y) (2.18)

where α = D − B0
4 [30S(S + 1) − 25], β = 35B0

4 , and γ = 1
2B4

4 .
The energies associated to the levels obtained with the quadratic Hamilto-

nian (2.3) range from 100 mK for organic radicals to 10 K for some transition
metal ions (Bencini and Gatteschi 1999). The fourth-order terms are typically
one-hundredth of this. It must be remembered that the relative energies of the
different order perturbations must be made comparing the Bk

NSN values and
not the parameters.

2.1.2 Electron nucleus (hyperfine) interaction terms

Another term in the spin Hamiltonian for individual magnetic bricks is that
associated with the interaction with the magnetic nuclei which may be present.
For historical reasons this is usually referred to as the hyperfine interaction
(Abragam and Bleaney 1986). A convenient form for it is:

Hhf =
∑

i

S · Ai · Ii (2.19)

where the sum is over all the magnetic nuclei of the brick, Ii is the angular
momentum operator of nucleus i, and Ai is the tensor describing the electron–
nucleus magnetic interaction. It is the sum of three contributions, namely the
contact, the dipolar and the pseudocontact term. The contact term is given by
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the electron spin density on the magnetic nucleus, the dipolar term is given by
the magnetic dipolar interaction between the electron spin and the nuclear spin,
and the pseudocontact term is given by the magnetic dipolar interaction between
the orbital moment of the electron and the nuclear spin. The energies involved
are typically in the mK region, and may be much smaller than that.

2.1.3 Spin Hamiltonian for pairs

When two magnetic centres interact it is possible to extend the above formalism
by summing the spin Hamiltonians for the two non-interacting centres, and then
adding an interaction term, which we will call the spin–spin Hamiltonian, which
at the simplest level can be written as (Heisenberg 1926; Dirac 1929; Van Vleck
1932):

HSS = S1 · J12 · S2 (2.20)

where S1 and S2 are the spin operators for brick 1 and 2, respectively, and J12 is
a matrix describing the interaction, which is not necessarily symmetric and may
have a non-zero trace. It is always possible to rewrite it in an equivalent way,
breaking it into three contributions, corresponding to the scalar, the vector, and
the tensor product of two vector operators:

HSS = −J12S1 · S2 + S1 · D12 · S2 + d12 · (S1 × S2) (2.21)

where J12 = −(1/3)TrJ12, Dαβ
12 = (1/2)(Jαβ

12 + Jβα
12 ) − δαβ(1/3)Tr(J12); d12 =

(1/2)(Jβγ
12 −Jγβ

12 ) and α, β, γ are Cartesian components. The first term in (2.21)
is referred to as the isotropic, the second as the anisotropic, and the third as the
antisymmetric spin–spin contribution to the magnetic interaction. The isotropic
term tends to keep the spins either parallel or antiparallel to each other, the
third term to cant them by 90◦. The second term tends to orient the spins along
a given orientation in space.

In many cases the first term can be considered as dominant, introducing the
other terms as perturbations. Under these conditions the total spin S = S1 +S2

of an isolated pair of spins is a good quantum number and can be used to label
the states of the pair. It is defined by the standard angular momentum addition
rules and satisfies

|S1 − S2| ≤ S ≤ S1 + S2. (2.22)

The energies of the states S are given by:

W (S) = −(J12/2)[S(S + 1) − S1(S1 + 1) − S2(S2 + 1)]. (2.23)

With the sign convention introduced in (2.21) for positive J12 the S with
maximum multiplicity is the ground state (ferromagnetic coupling), while for
antiferromagnetic coupling J12 is negative. Unfortunately (2.21) is not the only
possibility of expressing the spin–spin Hamiltonian. The coupling constant is fre-
quently indicated as either J12 or −2J12 and in order to compare experimental
results care must be taken to verify the type of Hamiltonian used by the authors.
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The Hamiltonian (2.20) is the simplest possible correction to the energies of
the pair. In fact they are bilinear in the spin coordinates, but it is also possible
to include biquadratic terms, which have been occasionally used. However, in
general the Hamiltonian (2.21) is believed to provide reasonable approximation
to the energy of the coupled states.

An important limit is the case |J | ≫ |D1|, |D2|, |D12|, |d12|, |Ak
1 |, |Ak

2 |, which
is quite often realistic. This is often called the strong exchange limit. Then it is
possible to relate the spin Hamiltonian parameters observed in the S state with
those of the individual centres. In principle one has just to project the individual
spins on the total spin, and this can be done using standard techniques.

The relations between the g tensor, the hyperfine coupling constants, and the
zero-field splitting parameters of the coupled pair and those of the individual
ions are given below (Bencini and Gatteschi 1990):

gS = c1g1 + c2g2 (2.24)

Ak
S = c1A

k
1 + c2A

k
2 (2.25)

DS = d1D1 + d2D2 + d12D12 (2.26)

where

c1 = (1 + c)/2; c2 = (1 − c)/2

d1 = (c+ + c−)/2; d2 = (c+ − c−)/2

d12 = (1 − c+)/2

(2.27)

and

c =
S1(S1 + 1) − S2(S2 + 1)

S(S + 1)

c+ =
3[S1(S1 + 1) − S2(S2 + 1)]2 + S(S + 1)[3S(S + 1) − 3 − 2S1(S1 + 1) − 2S2(S2 + 1)]

(2S + 3)(2S − 1)S(S + 1)

c− =
4S(S + 1)[S1(S1 + 1) − S2(S2 + 1)] − 3[S1(S1 + 1) − S2(S2 + 1)]

(2S + 3)(2S − 1)S(S + 1)
.

(2.28)

For S = 1
2 , c+ and c− are zero. The reader can easily check these relations in the

classical limit S1, S2, S ≫ 1. The parallel case (S = S1 +S2) and the antiparallel
case (S = |S1 − S2|) are of particular interest.

The use of these expressions has been verified in several cases (Bencini and
Gatteschi 1990) and they provide an important insight into the properties of
coupled states. We will see later how it is possible to extend the use of equations
(2.24–2.28) to an arbitrary number of coupled spins, provided that the condi-
tions for strong exchange are met. An important point, which needs to be well
understood, is that equations (2.24–2.26) are tensorial relations, and one has to
take into account not only the principal values of the various tensors, but also
their relative orientations.
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2.2 Single ion levels

Using the SH approach it is possible to express the energies of the spin levels
in a very effective way, and obtain the values of the parameters from the com-
parison with experimental data. It is possible, for instance, to find that in a
manganese(III) compound the ground state is characterized by an axial g tensor,
with g‖ = gzz = 1.93, g⊥ = gxx = gyy = 1.96, and a zero-field splitting parameter
D/k = −4.0 K. These data are certainly useful if, for instance, one is interested
in the interpretation of the temperature dependence of the magnetic susceptibil-
ity or of the EPR spectra but per se they do not provide any information on the
electronic structure of the compound. In order to do this, it is necessary to resort
to some fundamental theory which can explain why these values are obtained.

In the last few years there has been an explosion of possibilities of calculating
the electronic structure of transition metal compounds, using density functional
theory (DFT) techniques (Sen 2002; Noodleman et al. 1995). We will come back
to this point later, treating the new possibility of calculating from first principles
the magnetic coupling between molecular bricks. Now we prefer to introduce
an empirical description of the low-lying energy levels using a relatively simple
theory which has long been used for the properties of the transition metal and
rare earth ions. We will neglect here the possible treatment for organic radicals.
The origin of the treatment dates back to Bethe (1929) who coined the term
Crystal Field, which we already used in Section 2.1. The physical assumption of
a purely ionic interaction between the metal ion and the ligand was soon found
to be unrealistic, and the basic crystal field theory evolved to ligand field theory.

Ligand field theory (Ballhausen 1962; Griffith 1961; Lever and Solomon 1999)
is based on the assumption that the low-lying energy levels of a metal ion
compound, like for instance the aquo ion depicted below, can be described
without taking explicitly into account the ligand orbitals, performing a per-
turbation calculation on the configuration dn that corresponds to the oxidation
state of the metal ion. For instance MnIII corresponds to the configuration d4,
while MnIV corresponds to d3. The theory simply assumes that the effect of

n+
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the ligands can be described as an electrostatic one, which can be represented
by either a negative point charge or a point dipole. The electrons of the metal
ions will try to avoid the region of space where the negatively charged ligands
are. Therefore, in an octahedral complex, like the aquo ion depicted before,
the orbitals dx2–y2 and dz2, which point to the ligands, will have higher ener-
gies than the dxy, dxz, and dyz orbitals. The result of orbital splitting is also
obtained on the basis of symmetry considerations. In octahedral symmetry, the
dx2–y2 and dz2 orbitals span the irreducible representation eg of the group Oh,
while the dxy, dxz, and dyz orbitals span t2g, and therefore must have different
energy. Similar qualitative conclusions are also reached developing an element-
ary molecular orbital (tight binding) treatment of the metal–ligand bond. The
d orbitals of the metal ion are allowed interact with a linear combination of the
ligand orbitals. The σ orbitals span the eg irreducible representation of the group
Oh, therefore they will couple with the corresponding orbitals of the metal, giving
a bonding and an antibonding combination. Since the ligand orbitals lie lower in
energy than the metal orbitals, the antibonding combination has a higher metal
contribution. The π orbitals of the ligands span the t2g representation, and sim-
ilar considerations can be worked out. Since the π interaction is weaker than the
σ one the antibonding t2g∗ orbitals lie lower than the eg∗ ones, in qualitative
agreement with the ligand field theory.

In order to describe the levels of the metal ions the following Hamiltonian
must be taken into consideration:

H = Hel−el + HLF + Hso (2.29)

where Hel−el is the Hamiltonian relative to the electron–electron repulsion, HLF

the Hamiltonian relative to the ligand field interaction, and Hso the Hamiltonian
relative to the spin–orbit coupling interaction. The magnetic consequences of the
three terms are spin multiplicity, the quenching of the orbital angular moment,
and the anisotropy, respectively.

The two Hamiltonians relative to electron–electron and ligand field interac-
tions are of comparable energies for transition metal ions, while the spin–orbit
coupling is substantially smaller, and often it is considered as a perturbation.
Matters may be different for heavy transition metal and rare earth ions. In the
former approximation the spin value S is a good quantum number and the states
can be labelled as |2S+1Γγ〉, where S is the spin quantum number, and Γγ are
the labels of the irreducible representation of the point group symmetry of the
molecule induced by the orbital component. In fact it has been the extensive use
of symmetry which has determined the great success of ligand field theory.

The matrix elements of the d basis set of the electron repulsion operator are
often expressed as a function of the Racah parameters. Their values in free ions
are known from spectroscopic analysis. In compounds they are usually reduced
as a consequence of electron delocalization on the ligands. The energies of the dn

states are found in many standard textbooks (Griffith 1961; Lever and Solomon
1999). In spherical symmetry the electron states are labelled by using the total
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spin, S, and orbital, L, momentum using the so-called Russell–Saunders formal-
ism, in which the states are labelled as 2S+1L. For a given electron configuration
the ground state is characterized by the highest value of S, according to Hund’s
first rule. If more than one state with the same S is present then the state with
the highest L value is the ground state according to Hund’s second rule.

The Hamiltonian relative to the ligand field interaction can be written as:

HLF =
∑

i

Vi. (2.30)

The sum is over all the ligands (or better the donor atoms). Usually the potentials
relative to the donor atoms are expressed as a sum of terms, which depend on
the physical model used to justify the LF treatment. In the crystal field frame
Vi is given by:

Vi =
Zie

2

ε0rij
. (2.31)

Equation (2.31) describes the potential associated with an electron j of charge
e at a distance rij from a negatively charged ligand of charge Zie. Usually the
Hamiltonian (2.30) is expanded in spherical harmonics centred on the metal ion:

HLF =

∞
∑

k=0

k
∑

q=−k

4π

2k + 1

∑

i

Zie
2Y q∗

k (θi, ϕi)
rk
<

rk+1
>

Y q
k (θj , ϕj) (2.32)

where r< is the radius vector of the electron and r> is that of the ligand. The
sum over k is actually limited to k = 0, 2, 4 for d electrons. The k = 0 term shifts
all the levels by the same amount, therefore it may be omitted. The calculation
of the matrix elements of (2.32) requires the calculation of radial integrals, which
are used as parameters. In octahedral symmetry only the k = 4 and q = 0, ±4
terms are needed, leaving only one parameter which is often called Dq, not to be
confused with the D parameter of (2.5). The d levels are split into two subsets of
t2g and eg symmetry, respectively (Griffith 1961). The energies of the former are
−4Dq and of the latter +6Dq, giving an energy difference, which is accessible
from spectroscopic measurements, of 10 Dq. It is found that the Dq values for
different ligands are in the order:

I− < Br− < Cl− < S2− < N−
3 < F− < OH− < OAc− < oxalate

≈ O2− < H2O < NH3 < bipy < CN− < CO. (2.33)

This is called the spectrochemical series and is a useful tool for the qualitative
analysis of the electronic structure of transition metal ions.

Another approach relates the parameters not to an ionic interaction but rather
to a covalent interaction, and the parameters are called eσ and eπ, respectively.
This model is called the angular overlap model, AOM (Schäffer 1968). It has a
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very intuitive approach for the case of one ligand on the z axis. Its effect is to
give the following energies for the d orbitals:

E(z2) = eσ; E(xz) = E(yz) = eπ;E(xy) = E(x2 − y2) = eδ (2.34)

where eδ is usually taken as zero. The energies for the case of more ligands can
be additively calculated by taking into account the required coordinate rotations
through the so-called angular overlap matrix.

The ground states for octahedral transition metal ions can easily be determ-
ined by an aufbau approach to the various dn configurations. They are shown
in Fig. 2.3. It is seen that for the d1, d2, d3, d8, d9 configurations there is only
one way of putting the electrons in the two sets of levels. For the d4 to d7 con-
figurations, depending on the energy separation between the two sets of levels,
the electrons may prefer to occupy the d orbitals with their spin parallel, giving
rise to high spin configurations, or to pair in the lowest-lying t2g orbitals, giving

2T2g
3T1g

4A2g

5Eg
3T1g

6A1g

2T2g
5T2g

1A1g

2Eg

4T1g
2Eg

3A2g

Fig. 2.3. Electronic configurations of dn octahedral complexes. The number of d
electrons increases from left to right and from up to down.



SINGLE ION LEVELS 27

rise to low spin configurations. The choice of the configuration is dictated by the
relative kinetic exchange energies, which favour the high-spin configuration, and
the splitting energy, which favours the low-spin configuration.

For some compounds of iron(III), iron(II), and cobalt(II), the strength of
the ligand field is comparable to the exchange energy and the low- and high-
spin states can be thermally populated. Low temperatures favour the low-spin
states, which are characterized by shorter bond lengths and lower entropy. The
transition from low to high spin may show some irreversibility and a hysteretic
behaviour, therefore these systems have been exploited to store information
(Kahn and Martinez 1998).

Perusal of Fig. 2.3 shows that orbitally non-degenerate ground states occur for
d3 (4A2g), d5 (6A1g), low spin d6 (1A1g) and d8(3A2g), all the others have either E
(doubly degenerate) or T (triply degenerate) ground states. Orbitally degenerate
states are unstable, and two mechanisms may be operative for removing the
degeneracy, namely the Jahn–Teller effect or spin–orbit coupling. The former is
a consequence of phonon coupling (vibronic coupling for the chemists) which is
enhanced by the breakdown of the Born–Oppenheimer approximation associated
with orbital degeneracy. It can be shown that vibronic coupling is operative with
the doubly degenerate E terms, therefore all the E terms drastically lower their
symmetry due to phonon coupling. In general the deformation of the octahedron
is of the tetragonally elongated type for d4, d7, and d9. The orbital contribution
is drastically quenched and as we will see the magnetic anisotropy is low for the
g tensor, but relatively large for the zero-field splitting.

For T states matters are usually different. The states of lowest energy form
a space inside which the spin–orbit coupling matrix elements are not zero, so
that the spin–orbit coupling actively works to quench the orbital degeneracy.
Low-symmetry components, however, can still be operative. The result is that in
general the T states have a very complex magnetic behaviour, characterized by
high magnetic anisotropy. A typical example is cobalt(II), which is characterized
by a ground 4T1g state. In octahedral symmetry spin–orbit coupling removes
the degeneracy of order twelve (three orbital and four spin components), giving
rise to two quartets and two Kramers doublets. One Kramers doublet happens
to be the ground state and it is well separated from the other multiplets by ca.
100 K. This can be treated as an effective S = 1

2 state, characterized by a g
value much different from the free-electron value ge

∼= 2 due to the strong orbital
contribution. In fact for octahedral symmetry g = 4.3. If some low-symmetry
component is present, it can produce strong deviations from this behaviour and
very anisotropic g values. For instance, we may take into consideration the case
of tetragonal elongation and compression, respectively. The order of the energies
of the d orbitals in the two coordination environments is shown in Fig. 2.4.

Two unpaired electrons are in the two orbitals of the octahedral eg manifold,
which are no longer degenerate. In the tetragonally elongated case the unpaired
electron in the t2g subshell is in the xy orbital, and g‖ ∼ 2, g⊥ = 4. For the
tetragonally compressed case g‖ ∼ 9, g⊥ ∼ 0.
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Octahedral
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tetragonal
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tetragonal

x2–y2
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z2
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xz, yz

xy

x2–y2

Fig. 2.4. Energies of the d levels in octahedral and tetragonal symmetry.

In order to understand the behaviour of a compound of a transition metal ion
in a magnetic field it is necessary to explicitly introduce the spin–orbit coupling
interaction (Carlin 1986). In a general way the corresponding Hamiltonian can
be written as

Hso =
∑

i

ζili · si (2.35)

where ζ is the spin–orbit coupling constant of the ith electron, and li and si are
the orbit and spin operators, respectively, for electron i. The spin–orbit coupling
constant increases on passing from the light to the heavier elements. Therefore
spin–orbit coupling effects are largely negligible in the magnetic properties of
organic radicals, where only light elements are generally present, while it has
an important role for transition metal ions and even larger for rare earth ions.
The Hamiltonian (2.35) can be rewritten in a simplified form if the spin–orbit
coupling contribution is calculated within a given Russell–Saunders term 2S+1L:

Hso = λL · S (2.36)

where L and S are the total orbital and spin operators, respectively, and

λ = ±ζ/(2S) (2.37)

where the plus sign applies for dn configurations with n < 5, and the minus sign
for n > 5. For n = 5, (2.37) gives zero.

In the perturbation treatment of the spin–orbit coupling interactions the
spin Hamiltonian parameters for an orbitally non-degenerate ground state are
given by:

g = geI − 2λΛ (2.38)
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Table 2.3. Calculated deviations of the g values from the free-
electron value for some pseudo-octahedral transition metal ions.

Configuration S Ground state ∆gx ∆gy ∆gz

d1 1/2 T2g
a −2λ/∆1 −2λ/∆2 −8λ/∆3

d3 3/2 A2g
b −8λ/∆1 −8λ/∆2 −8λ/∆3

d4 2 Eg
c −2λ/∆1 −2λ/∆2 −8λ/∆3

d8 1 A2g
d −8λ/∆1 −8λ/∆2 −8λ/∆3

d9 1/2 Eg
e −2λ/∆1 −2λ/∆2 −8λ/∆3

a Ground state xy. ∆1 and ∆2 are the excitation energies to yz and xz, respect-
ively. ∆3 is the excitation energy to x2–y2.
b ∆i are the energies of the split components of the excited 4T2g.
c Ground state configuration (xy)(xz)(yz)(z2). ∆1, ∆2, and ∆3 are the energy
excitations yz → x2 − y2, xz → x2 − y2, and xy → x2 − y2, respectively.
d ∆i are the energies of the split components of the excited 3T2g.
e Ground state x2–y2. ∆1 and ∆2 are the excitation energies to xz and yz,
respectively. ∆3 is the excitation energy to xy.

where ge is the Landé factor of the free electron, I is the identity matrix, Ilm =
δlm, and Λ is given by

Λ =
∑

n

〈g|L|n〉〈n|L|g〉
En − Eg

(2.39)

where |g〉 is the ground state function and the sum is extended over all the
excited states, |n〉. En and Eg are the energies of the excited and of the ground
state, respectively. L is the orbital angular momentum vector operator. Due
to its definition the elements of Λ are positive, while λ is positive for the dn

configuration with n < 5 and negative for n > 5. Therefore the corrections to
the free-electron g values are negative for the transition metal ions with n < 5
and positive for n > 5. The calculated expressions for some transition metal ions
to be used in the of the book are shown in Table 2.3.

The orbital contribution to the single-ion zero-field splitting tensor is given by:

D = −λ2Λ. (2.40)

The D tensor so calculated has a non-zero trace, therefore it must be modified
using (2.7) to compare the calculated values with the ones obtained by using the
Hamiltonian (2.5).

The above treatment is very useful for a semiquantitative rationalization of
the single-ion properties. However, it must be recalled that a second-order per-
turbation treatment may be difficult to justify. A more correct approach is that of
diagonalizing the Hamiltonian matrix, using the full matrix of the dn configura-
tion including the magnetic field, and then to compare the values obtained
by the ligand field–spin–orbit coupling treatment with the values of the spin
Hamiltonian approach. This has been advocated by Bencini et al. (1998). They
calculate the energy levels of a given transition metal ion with a set of ligand
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field–magnetic field parameters, then they use a least squares fitting procedure in
order to reproduce the same values of the energy levels, using the SH approach.
Therefore the Ligand Field approach provides the SH parameters to be compared
with those obtained through experiment.

An instructive example is provided by the manganese(III) ions which will be
extensively taken into consideration in the following. Manganese(III) is a d4 ion,
therefore in octahedral symmetry it has a ground 5Eg state, which is unstable
due to Jahn–Teller effects. It is generally observed that the removal of the orbital
degeneracy is performed through a tetragonal elongation, i.e. two donor atoms
lengthen their bonds, and four shorten them. The split components of the 5Eg,
5A2g and 5B1g, the former lying lowest, are typically separated by 12–15 thousand
K. In [Mn(dbm)3], where Hdbm = 1,3-diphenyl-1,3-propanedione, the metal
ion is in a roughly tetragonal coordination of six oxygen atoms. High-frequency
EPR spectra show gx = gy = 1.99; gz = 1.97; D/kB = −6.26 K, E/D = 0.06. Using
(2.37)–(2.39) the g values are correctly calculated but the calculated D value,
−1.94 K, is much smaller than the experimental one (Barra et al. 1997a). This
was taken as evidence that the simple second-order approximation does not
hold. A full matrix diagonalization, which includes also the contribution of states
with S < 2, gives much better agreement with experiment, D/kB = − 6.55 K,
E/D = 0.06.

2.3 Exchange interaction

2.3.1 Delocalization effects

In a system in which the magnetic orbitals are essentially localized on two centres,
as is often the case for metal ion derivatives, it is possible to use the so-called
natural orbitals, i.e. assuming that in a first approximation the unpaired spin
density is localized on the d orbitals and partially delocalized on the bridging
ligands. These orbitals have a spin density on the bridging ligands, and the
conditions for coupling are determined by the overlap density there. An example
is shown in Fig. 2.5. It corresponds to two metal ions bridged by a cyanide,
CN−, group as it is found in the Prussian blue family of molecular magnets. The

A NC

C BN

Fig. 2.5. Natural magnetic orbitals for two ions bridged by a CN− group.
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convention of different shading to differentiate the signs of the wavefunction is
used. Since the two natural orbitals have large spin densities on the bridging
cyanide the two magnetic orbitals are not orthogonal to each other and the
coupling is expected to be antiferromagnetic (Verdaguer et al. 1999a)

Orthogonalized localized orbitals are frequently used. They can be obtained
from the molecular orbitals by a standard procedure. Let us suppose that a
given pair of molecular orbitals is formed by linear combinations of the two
atomic orbitals, centered on atom A and B, respectively:

ψg =
1√

1 + 2S2
(φA + φB)

ψu =
1√

1 − 2S2
(φA − φB).

(2.41)

where S is the overlap of the two orbitals and g and u stand for gerade and
ungerade, respectively. The orthogonalized orbitals are given by:

ΦA =
1√
2
(ψg + ψu)

ΦB =
1√
2
(ψg − ψu).

(2.42)

ΦA is essentially localized on A, but it also has a non-zero contribution on B, as
shown in Fig. 2.6.

The mechanisms responsible of the coupling have been first introduced by
Anderson (Anderson 1959), crystallized in a simple set of rules by Goodenough
and Kanamori (Goodenough 1958, 1963; Kanamori 1959), and then extended and
specialized by several authors, in order to take into account the large number
of cases which have been reported in the last 20 years (Kahn and Briat 1976;
Kahn 1993; Hay et al. 1975; Weihe and Güdel 1997a), and the advent of organic
magnetism (Borden W. T. 1999; Lahti 1999).

In the following we work out essentially the Anderson model using orthogon-
alized localized orbitals. When the magnetic orbitals ΦA and ΦB are allowed to
interact with each other there is some delocalization of the electron of A to B and
vice versa. In order to predict the nature of the ground state, singlet or triplet,
it is necessary to take into account excited states which can mix in the ground
state. The first excited state corresponds to the transfer of one electron from ΦA

to ΦB. This corresponds to a polarization A+B−, and necessarily the two spins

A C N B

Fig. 2.6. Orthogonal localized magnetic orbital ΦA for two ions bridged by one
CN− group.
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are antiparallel and thus in a singlet state. By second-order perturbation this
singlet excited state depresses the energy of the ground singlet by

∆E1 = −4t211
U

(2.43)

where U is the Coulomb repulsion energy for the two electrons occupying the
same orbital and t11 is the so-called transfer integral, which corresponds to the
one-electron matrix element connecting ΦA and ΦB. t11 depends on the overlap S
between ΦA and ΦB. If S = 0, t11 = 0 and the stabilization of the singlet is zero.
∆E1 can be considered as the antiferromagnetic contribution to the coupling. It
was called kinetic exchange by Anderson.

A second term which must be taken into account is the exchange energy
associated with the ground configuration. It stabilizes the triplet and is given by

∆E2 = 2 K (2.44)

where K is the exchange integral
∫

Φ∗
A(1)Φ∗

B(2)(e2/r12)ΦA(2)ΦB(1)dτ . It was
called potential exchange by Anderson. It can be considered as a ferromagnetic
contribution to the coupling.

Up to now we have only considered singly occupied molecular orbitals
(SOMO). If we consider also excitations to empty orbitals, or from completely
filled orbitals, additional mechanisms of coupling become available. The first case
to be considered is that in which the excitation involves two different magnetic
centres. In this case the excitation also gives rise to a singlet and a triplet, but
Hund’s rule requires that the triplet lies lowest. These terms therefore stabilize
the ground state triplet and correspond to ferromagnetic coupling. The energy
correction ∆E3 can be calculated using third-order perturbation theory as

∆E3 = −4
t212
U ′

K0

U ′ (2.45)

where K0 is the one-centre exchange integral, U ′ is the energy difference between
the ground state and the excited state, and t12 is the transfer integral between
the two states. Comparing (2.45) and (2.43) we see that the former formally
corresponds to the latter with a weighting factor K0/U ′. This is a number much
smaller than 1, therefore this ferromagnetic correction is much smaller than the
antiferromagnetic one.

2.3.2 Spin polarization effects

All these terms correspond to delocalization effects, i.e. to the formal transfer
of one electron from one site to the other. There are additional terms which
give a contribution to the coupling, which correspond to excitations on the same
centre. These are spin polarization mechanisms. These mechanisms have long
been known in the analysis of magnetic resonance experiments and in polarized
neutron diffraction. The best way to understand their role is that of using an
example.
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We have already seen that nitronyl nitroxide radicals are very important
building blocks for molecular magnets. They have the general formula sketched
below:

N

R

O

N

O

•

The unpaired electron is in a π∗ orbital, ψ1, which in the Hartree–Fock approx-
imation can be represented as shown in Fig. 2.7a. We remind that HOMO means
highest occupied molecular orbital.

At this level of approximation, therefore, one should expect a positive spin
density on the NO groups, and no density elsewhere. However, many experi-
mental results show that this is not the case, and that, in particular, a relatively
large negative spin density is present on the carbon atom between the two
nitrogen atoms. The origin of this discrepancy is clearly the crudeness of the
approximation inherent in the assumption that the ground state can be cor-
rectly represented by one configuration. Actually there are other states close to
the ground one which can be admixed into it: at a more suitable level of approxi-
mation it is necessary to include a configuration interaction, CI. In particular the
closest state is represented by the orbital depicted in Fig. 2.7b, ψ2. A possible
way to take into account electron correlation is that of using, in a given MO
wavefunction ψ, a different orbital part for different spin components, ± 1

2 . In
fact, when electron exchange is taken into consideration, ψ2(↑) is different from
ψ2(↓), because the former interacts with ψ1(↑), and the latter does not. In other
words the ↑ spin density at the NO groups interacts with the filled ψ2 orbital
stabilizing the ↑ spin density over the ↓ spin density in this orbital. Since on the
whole there cannot be a finite spin density in ψ2, because it is a filled orbital,

(a) (b)

Fig. 2.7. Sketch of the π∗ SOMO (a) and HOMO (b) of a nitronyl nitroxide
radical. The surface of the circles is proportional to the amplitude of the
wavefunction on the corresponding atom, and the shading distinguish positive
and negative amplitudes.
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the increase of ↑ spin density on the NO groups must be compensated by a cor-
responding increase of ↓ spin density on C, i.e. by a build-up of a negative spin
density on that atom.

These spin polarization mechanisms are operative also in coupled systems, and
they are responsible of some coupling mechanisms, which can be either ferro- or
antiferromagnetic in nature.

2.3.3 Some examples

In general it is much easier to realize the conditions for antiferromagnetic coup-
ling, therefore in the following we will show which are the conditions under
which ferromagnetic coupling can be observed in coupled systems. The key is
always that of realizing orthogonality conditions, and at the same time con-
straining the two magnetic orbitals to have a large overlap density. Examples of
orthogonal orbitals are shown in Fig. 2.8. 1 is the case of a binuclear copper(II)–
oxovanadium(IV) complex (Kahn 1993). Copper(II) has a dx2–y2 magnetic
orbital, while oxovanadium(IV) has a dxy magnetic orbital. The two are obvi-
ously orthogonal, but they both have large overlap densities on the bridging
L ligand, thus providing the required large overlap density for ferromagnetic
coupling.

In all these cases the orthogonality between the orbitals is symmetry determ-
ined. It is possible, however, to realize orthogonality by accident. An example
is shown in 2 of Fig. 2.8. The magnetic orbitals of the two copper ions can be
considered to a good approximation to be essentially dx2–y2 plus a small amount
of copper 4s. For a general angle Cu–O–Cu the two orbitals have overlap S �= 0,
and antiferromagnetic coupling, but when the O–Cu–O angle is close to 96◦ the
overlap accidentally goes to zero, and in complexes with angles close to this the
coupling is ferromagnetic (Hatfield 1983).

Spin polarization mechanisms are responsible of ferromagnetic coupling in
3 of Fig. 2.8. It corresponds to the case in which a magnetic orbital, say dz2

in a tetragonally elongated manganese(III) ion, has non-zero overlap with the
empty dx2–y2 orbital of a neighbouring ion. We may imagine that a fraction of
unpaired electrons is transferred into the dx2–y2 orbital, and this, according to
Hund’s rule, will polarize the unpaired electron in the dz2 orbital, thus providing
a ferromagnetic coupling.

O

O

O

O

1 32

Fig. 2.8. Magnetic orbitals inCu2+–VO2+,1,Cu2+–Cu2+,2, andMn3+–Mn3+,3.
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A very strict condition in order to have ferromagnetic coupling is to have a set
of degenerate orbitals in a high symmetry, highly delocalized molecule. However,
it is clear that strong limitations exist with this approach. In fact, the highest
possible degeneracy is three for a molecule with cubic symmetry therefore it is
not possible in this way to realize ground states with very high spin multiplicity.
Further many of these systems are unstable towards Jahn–Teller distortions,
which lower the symmetry removing the orbital degeneracy.

2.3.4 Double exchange

An additional type of magnetic interaction is observed in the case of mixed
valence systems (Zener 1951; Anderson and Hasegawa 1955; Girerd 1983). In
the case of inorganic materials this corresponds to the presence of metal ions
in different oxidation states. A typical example is provided by the manganites,
where manganese(III) and manganese(IV) ions are present. In mixed valence
compounds the valences may be trapped, partially or totally delocalized. Gener-
ally these cases are referred to as Class I, II, and III according to the Robin and
Day classification (Robin–Day 1967). Class I corresponds to the situation where
a well-defined charge can be associated to each metal. In Class III, the complete
delocalized case, one or more electrons hop rapidly from one centre to the other,
while Class II is an intermediate case between Class I and Class III behaviour.
Class I is not particularly appealing and the magnetic properties of the mixed
valence pairs are qualitatively similar to the properties of similar pairs, and can
be predicted using the technicalities described above. In Class II and Class III
compounds it necessary to take into account the additional contribution coming
from the delocalization of one unpaired electron, which is rapidly hopping from
one centre to the other. The formal electron configurations of the Mn3+ and
Mn4+ ions are shown in Fig. 2.9.

Mn3+, d4 Mn4+, d3

Fig. 2.9. Electron configuration of Mn3+ and Mn4+ and the electron transfer
process (hatched symbols) responsible of double exchange. In a mixed valence
species one electron can hop from the eg orbital of Mn3+ to the empty orbital
of Mn4+.
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The additional electron on Mn3+ can be delocalized on the other centre as
schematized in Fig. 2.9. It is apparent that in the transfer it must keep its spin
parallel to those of the Mn4+ electrons, according to the Pauli principle, there-
fore determining an effective ferromagnetic coupling between the two centres.
This particular interaction has been called double exchange, or spin-dependent
delocalization. The double exchange interaction doubles the number of states
as compared to the trapped case. In fact one has to take into account the case
where the hopping electron is on the right or on the left centre, respectively.

Double exchange can be introduced into the SH scheme giving an expression
originally derived by Anderson and Hasegawa (1955):

E±(S) = −J

2
S(S + 1) ± B

(

S +
1

2

)

(2.46)

where S is the total spin, comprised between 1
2 and 2S0 + 1/2. S0 is the spin

of the configuration without hopping electrons, and 1/2 gives the spin of the
hopping electron. In the manganese(III)–manganese(IV) example, S0 is the spin
of the manganese(IV) centre, S0 = 3/2. The ± refers to the symmetric and anti-
symmetric combination of states, respectively, and B is a parameter which can
be expressed as:

B =
tab

2S0 + 1
(2.47)

where tab is the transfer integral between the magnetic orbitals of centre a and
b, respectively. The double exchange splits the S levels into two, stabilizing the
ferromagnetic state. The energy separation between the pairs of levels is given by:

∆E± = 2B(S + 1/2). (2.48)

An early review of the application of double exchange to transition metal
binuclear complexes was reported by Girerd et al. (1983). More detailed applic-
ations have been reported by Tsukerblat et al. (Borras-Almenar et al. 1996;
Borras-Almenar et al. 1998a; Borras-Almenar et al. 1999; Borras-Almenar et al.
2001a)

2.3.5 Towards quantitative calculations of exchange interactions

The calculation of the exchange coupling constants from first principles is a
rather difficult problem, which is now finding encouraging results using the DFT
approach. The main difficulty is associated with the fact that open shell sys-
tems must be considered as weakly interacting between themselves. In particular
the electrons remain largely localized on the two centres as qualitatively shown
above. This means that in principle it is necessary to do an open shell or unres-
tricted Hartree–Fock calculation with subsequent configuration interaction. Ab
initio methods, which introduced the interaction perturbatively, were used by
De Loth et al. (1985), but the method was far from being general. They con-
sidered the dimeric species copper acetate hydrate, Cu2(CH3COO)4(H2O)2, and
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found a reasonable agreement with experiment by first constructing the mag-
netic orbitals and then perturbing them by adding excited configurations. The
potential and kinetic exchanges have the largest contribution but they alone
do not even reproduce the sign of the experimental coupling constant. In order
to obtain better results they had to introduce spin polarization and high-order
kinetic exchange.

A simpler model was introduced by Noodleman (Noodleman 1981; Noodle-
man and Davidson 1986; Noodleman et al. 1982; Noodleman et al. 1995). This
model is widely used now, therefore we will briefly give its foundations in the fol-
lowing. In a coupled dimer there will be a number of doubly occupied canonical
molecular orbitals describing paired electrons on the ligand and metal atoms,
and a small number of weakly interacting magnetic orbitals. The model takes
into consideration the two linked subunits and introduces a mixed or broken
symmetry state, that is in each subunit the spins are parallel to each other and
antiparallel to those of the other subunit. When the two subunits are allowed
to interact a state is obtained which has 〈Sz〉 = 0 but is not an eigenvector of
S2, therefore it is not a pure state. The Heisenberg exchange coupling constant
can be calculated from the energies of the mixed spin state and the highest spin
multiplet. The calculation is usually performed using DFT. The key equation for
the broken symmetry approach is:

ESmax − Ebs = −2SmaxJ. (2.49)

The method was originally applied to binuclear iron–sulphur clusters, which
attracted interest as models of the active centres in iron–sulphur proteins. Later
it was applied to a large number of clusters (Kortus and Pederson 2000; Kortus
et al. 2001, 2002), including also mixed valence species (Ciofini and Daul 2003).
An interesting review on the subject is available (Ruiz E. et al. 2001).

2.4 Through-space and other interactions

The through-space interaction between the two magnetic centres can often be
easily calculated through the point dipolar approximation. This assumes that
the individual moments can be well represented by point dipoles, and that the
separation between the dipoles is large compared to the spatial extension of
the dipoles themselves. Under this approximation the dipolar component of J12

defined in (2.20) is given by

Jdip
12 =

µ2
B

R3

[

g1 · g2 − 3
(g1 · R)(R · g2)

|R|2
]

(2.50)

or, in a more explicit style

(

Jdip
12

)

αγ
=

µ2
B

R3

[

gαξ
1

.gξγ
2 − 3

(gαξ
1

Rξ)(Rς .g
ςγ
2 )

|R|2

]

when R is the vector joining the two dipoles. Here repeated indices mean sum-
mation on those indices. α, γ, ξ, and ζ correspond to Cartesian coordinates x, y,
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and z. It is important to notice that in the general case when g1 and g2 are two
different tensors which are not multiples of the unit matrix Jdip

12 is not symmetric.
It can be decomposed as outlined in (2.20)–(2.21). In particular it has a non-zero
trace, therefore it also contributes to the isotropic component J12. For instance
for a pair of interacting spins characterized by the following g tensors g1 = geI,
g2,xx = g2,zz = 2.05; g2,yy = 2.20 separated by 0.3 nm, the Dzz component is
calculated as −0.202 K. The dipolar contribution to the isotropic term is only
−6.16 × 10−3 K. The anisotropic component has its maximum value parallel to
the line connecting the two spins, and this is negative, indicating that the spins
tend to be parallel to each other. In this example, where the direction connecting
the two spins coincides with a principal axis of the anisotropic g tensor, all the
components of the dipolar antisymmetric vector,ddip, are zero.

The isotropic through-bond interaction was described in Section 2.3. The
anisotropic and antisymmetric terms arise from higher order perturbations. A rel-
atively simple treatment was provided by Moriya (1960, 1963) who showed that
the ground state function of an electron centred at the atom 1 must include
excited states through spin–orbit coupling mixing:

|g1〉 = |g0
1〉 +

∑

ei
1

〈ei
1|Hso|g0

1〉
∆ei

1

(2.51)

where g0
1 refers to the ground state in the absence of spin–orbit coupling, and

ei
1 label the excited states of centre 1. Similar corrections are applied to the

functions of centre 2. Spin–orbit mixing of excited states is responsible of the
deviation of the g values of a paramagnet from the free-electron value ge =
2.0023 (see equations 2.38–2.39). When the corrected wavefunctions are used
to express the exchange interaction, they give rise to terms which depend on
integrals involving ground and excited orbitals. The anisotropic parameters are
proportional to (∆g/g)2, while the antisymmetric terms correspond to (∆g/g).
Since (∆g/g) is usually much smaller than 1 the antisymmetric term may be
potentially larger than the anisotropic one, provided it is symmetry-allowed.
However there are several difficulties to a quantitative estimation of these terms.
In fact the integrals involving excited states are also needed. Often they are
approximated with the isotropic term J , but they are in principle different, and
there is good experimental evidence that they are in fact different. However
the (∆g/g) dependence is a relevant one, which allows us to neglect anisotropic
exchange components in systems like high-spin iron(III), for which g ∼ ge.

All the above considerations hold on the assumption of orbitally non-
degenerate ground states. While this is a good approximation for organic
magnets, for transition metal ions it is not infrequent to encounter orbital degen-
eracy. When this situation is attained the isotropic term is no longer dominant in
the bilinear expansion of (2.21), and the other components must be directly intro-
duced. This makes the whole treatment very complicated. However, a simplified
treatment is quite often used, with the following anisotropic Hamiltonian:

Hex = −J [αS1zS2z + βS1xS2x + γS1yS2y] (2.52)
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where, for α = β = γ = 1, (2.52) becomes identical to the isotropic term of
(2.21). This case is called Heisenberg exchange. For α = 1, β = γ = 0, Hex

corresponds to the Ising model, and for α = 0, β = γ = 1 to the XY model.
Tsukerblat suggested a new model for taking into account orbital degeneracy
(Borras–Almenar et al. 1998b, 1998c; 2001b).

2.5 From pairs to clusters and beyond

2.5.1 Isotropic coupling

The simplest extension to the case of more than two interacting centres is made
by adding additional terms to the spin Hamiltonian (2.21). Let us suppose ini-
tially for the sake of simplicity that the isotropic term of the spin–spin interaction
is the only one to be considered. Then (2.21) can be extended to:

Hex = −
∑

i<j

JijSi · Sj (2.53)

where the sum is over all the pairs of the cluster.
At this level of approximation, i.e. considering isotropic exchange interactions

only, the total spin is a good quantum number. Writing the eigenfunctions of
the total spin can be a good strategy for reducing the size of the Hamiltonian
matrices to be computed for calculating the energies of the spin levels. This is
simple in principle but the problem rapidly becomes very complex, because the
number of states increases very rapidly. In fact for a cluster of N identical spins
Si the states are (2Si + 1)N . If Si = 5/2 for N = 8 the states are 1,679,616,
and the total spin states range from S = 20 to S = 0. The number of states
corresponding to each value of S is shown in Table 2.4.

In some highly symmetric cases it is possible to give closed formulas for the
energy levels of the total spin states. The procedure relies on the so-called Kambe
approach (Kambe 1950) which rewrites the spin Hamiltonian using the total spin.
Let us take, for example, a cluster of six equivalent spins Si on the vertices of
an octahedron. The spin Hamiltonian can be written as:

H = −J(S1 · S2 + S1 · S3 + S1 · S4 + S1 · S5 + S1 · S6 + S2 · S3

+ S2 · S4 + S2 · S5 + S2 · S6 + S3 · S4 + S3 · S5 + S3 · S6

+ S4 · S5 + S4 · S6 + S5 · S6).

(2.54)

If we define a total spin operator:

S = S1 + S2 + S3 + S4 + S5 + S6 (2.55)

it is easy to verify that (2.54) can be rewritten as:

H = −J

2
(S2 − S2

1 − S2
2 − S2

3 − S2
4 − S2

5 − S2
6). (2.56)
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Table 2.4. Number of states for each
total spin value S in the case of 2,
4, 6, and 8 coupled spins 5/2.

S N = 2 N = 4 N = 6 N = 8

0 1 6 111 2666
1 1 15 315 7700
2 1 21 475 11900
3 1 24 575 14875
4 1 24 609 16429
5 1 21 581 16576
6 15 505 15520
7 10 405 13600
8 6 300 11200
9 3 204 8680

10 1 126 6328
11 70 4333
12 35 2779
13 15 1660
14 5 916
15 1 462
16 210
17 84
18 28
19 7
20 1

The energies of the total spin levels become a function only of the total spin S,
and they are given by

E(S) = −J

2
[S(S + 1) − 6Si(Si + 1)]. (2.57)

The systems for which the Kambe approach can be used have been reported
(Belorizky and Fries 1993). In general it can be applied to highly symmetric spin
arrangements.

For spin clusters which are not too large (typically up to say 8–10 S = 5
2

spins) an elegant approach exploits the irreducible tensor operators ITOs (Silver
1976; Gatteschi and Pardi 1993). The formalism of ITOs is rather complex, but
their use is after all very simple. The central idea is that of writing the operators
in a standard way in order to exploit the symmetry of the full rotation group.
This is a continuous group, i.e. it contains an infinite number of elements, and it
is not generally taught in chemistry, where only the finite point groups are used.
Nevertheless chemists are familiar with its irreducible representations, whose
bases correspond to the eigenfunctions of the angular momentum operators. For
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instance a p function is the basis for the irreducible representation J = 1. When
we combine two angular momenta S1 and S2 to give S values |S1 − S2| ≤ S ≤
S1 + S2, we exploit the rules for the reduction of a representation in the full
rotation group. The basis functions which we use in the description of the coupled
magnetic clusters are eigenfunctions of the spin momentum, therefore they are
suitable for obtaining the irreducible representation in the coupled scheme. In
order to be able to exploit symmetry to calculate the matrix elements it is
necessary to write also the operators in such a way that they correspond to
irreducible representations of the full rotation group.

Without giving any details of how this can be done, it is important to learn
how to recognize the irreducible representations of the full rotation group approp-
riate to a given operator. An angular momentum operator like Si is a vector
operator, characterized by three components, x, y, and z. Therefore it can be
considered as a basis for the J =1 representation of the full rotation group.
Formally we can replace it by a TJ=1,M (Sj) irreducible tensor operator of rank
1. The explicit form of the operators is the following: T11(S) = −(2)−1/2S+;
T10(S) = Sz; T1−1(S) = (2)−1/2S−, where S+ and S− are the well-known shift
operators.

A scalar operator is defined by a TJM ITO characterized by J = 0, M = 0.
A second-rank tensor operator is characterized by J = 2 and −2 ≤ M ≤ 2.
The Zeeman operator is a first-order tensor operator; the zero field splitting
corresponds to a second-rank operator.

The matrix elements of the ITO can be formally expressed by using the
Wigner–Eckart theorem:

〈S1M1|TJM (S1)|S′
1M

′
1〉 = (−1)S1−M1〈S1‖TJ(S1)‖S′

1〉
(

S1 J S′
1

−M1 M M ′
1

)

(2.58)

where 〈S1‖TJ(S1)‖S′
1〉 is called a reduced matrix element, which can be

calculated once and for all for ITOs, as shown below:

〈S1‖T0(S1)‖S′
1〉 = δS1S′

1

√

(2S1 + 1)

〈S1‖T1(S1)‖S′
1〉 = δS1S′

1

√

S1(S1 + 1)(2S1 + 1). (2.59)
(

S1 J S′
1

−M1 M M ′
1

)

is a 3-j symbol, i.e. a number which can be easily cal-

culated, as shown in Appendix A6, and it is also found in standard computer
routines. In order to be different from zero the condition M1 + M + M ′

1 = 0
must hold.

The importance of (2.58) is that in order to calculate the matrix elements
of a given vector or scalar operator one needs only the symmetry properties of
the functions. Since the spin eigenfunctions are indeed symmetry labelled, the
calculation of the matrix elements becomes very simple. There is no real advant-
age in the use of ITOs for the calculation of the levels of a system comprising
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one spin, but matters become very different in the case of coupled spins. In fact
in this case it is possible to define compound operators, which allow very fast
calculations. If we are interested at the energy levels of the operator:

H = −JS1 · S2 (2.60)

we can define a compound ITO, T0(S), starting from the operators T1M (S1)
and T1M (S2). The direct product of two first-rank operators is a set of nine
operators which can be reorganized as {T1(S1) ⊗ T1(S2)}JMj , where J = 0, 1, 2.
{T1(S1)⊗T1(S2)}00 = T0(S) must be scalar because in (2.60) we have the scalar
product of the two operators.

The matrix elements of (2.60) in a given basis |S1M1S2M2SM〉 are given by:

〈S1S2SM |T0(S)|S1S2S
′M ′〉

= δSS′δMM ′(−1)S−M 〈S1S2S|T0(S)|S1S2S〉
(

S 0 S
−M 0 M

)

. (2.61)

The compound reduced matrix element can be written as:

〈S1S2S|T0(S)|S1S2S〉

= (−1)S+S1+S2〈S1‖T1(S1)‖S1〉〈S2‖T1(S2)‖S2〉
{

S1 0 S1

S2 S S2

}

(2.62)

where the symbol in curly brackets is a 6-j symbol, i.e. a number, akin to a 3-j
symbol, which can be calculated given the values of the numbers indicated in it.
Standard expressions for calculating 6-j symbols are given in Appendix A6.

The great advantage of using ITOs, although at the beginning the formalism
looks awkward, is that the eigenfunctions of the total spin need to be written
only symbolically, with a minimum need of memory storage on a computer pro-
gram, and their matrix elements can be easily calculated in a standard way
using equations (2.60)–(2.62). Let us make this point clear with an example,
considering two spins S1 = S2 = 5/2. We know that the total spin values S are
0,1,2,3,4,5. When we use ITOs the eigenfunction is simply indicated by the set
of four numbers |S1S2SM〉, |5/2 5/2 0 0〉, and the matrix elements are simply
computed using (2.60)–(2.62). The advantage is clear, even for two spins, but of
course it is much larger when we increase the number of spins.

In order to manage to write a general expression for a matrix element for a
cluster of n spins we still need some additional considerations. We must imagine
the functions to be written in the order corresponding to the chosen coupling
scheme. For instance, in the case of four spins for which we choose a coupling
scheme in which we consider first S1 and S2 to give S12, then S12 and S3 to
give S123, and finally S123 and S4 to give S, the functions should be written
as: |S1S2S12, S12S3S123, S123S4SM〉. In this way all the spins are grouped into
n − 1 sets of three, corresponding to pairwise couplings, specified by the spins
Sα, Sα+1, and Sα+2 in the bra, and by the spins S′

α, S′
α+1, and S′

α+2 in the ket.
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If α = 1 then Sα = S1, Sα+1 = S2, Sα+2 = S12; if α = 4 then Sα = S12,
Sα+1 = S3, Sα+2 = S123; If α = 7 then Sα = S123, Sα+1 = S4, Sα+2 = S.

The general matrix element for the term of the Hamiltonian (2.53) describing
the interaction between the ith and lth spins of the cluster, is given by:

〈

S1S2 . . . .Sn . . . Sp . . . SM |Ji,lSi · Sl|S1S2 . . . .Sn . . . S′
p . . . S′M ′〉

=

√
3√

2S + 1
Ji,l(−1)S−M

Πm=1,n〈Sm‖Tk(Sm)‖Sm〉Πα=1,4,...3n−2

⎧

⎨

⎩

Sα S′
α kα

Sα+1 S′
α+1 kα+1

Sα+2 S′
α+2 kα+2

⎫

⎬

⎭

[(2Sα+2 + 1)(2S′
α+2 + 1)(2kα+2 + 1)]1/2 (2.63)

where S1 to Sn represent the individual n spins of the cluster and Sp stands
for the intermediate coupled spins and kα is the rank of the corresponding ITO.
The symbol in curly brackets is a 9-j symbol, similar to the 3-j and 6-j symbols
already introduced, only more complex. Standard formulae are available to cal-
culate them. However, it can be easily shown that if we are interested in isotropic
exchange only, then at least one of the kι indices is zero, and the 9-j symbols
reduce to 6-j symbols, according to the relations shown in Table 2.5.

Although (2.63) looks formidable, it is not difficult at all to use it as can be
shown by working out an example in detail (Gatteschi and Pardi 1993). Let us
consider a cluster of four S = 1/2 spins, and let us assume the coupling scheme
defined above, |S1S2S12, S12S3S123, S123S4S〉. The corresponding eigenfunctions
of S2 are shown in Table 2.6

To calculate the matrix element (2.63), the values of the ranks kι of the
operators are needed. Since we are considering a Hamiltonian which operates on
the coordinates of spins 1 and 2, respectively, and since S1 and S2 are vector
operators, then k1 = k2 = 1. The Hamiltonian requires the scalar product of
the two vector operators, therefore the compound operator rank k12 must be a
scalar, i.e. k12 = 0. In the Hamiltonian there is no operator corresponding to the
coordinates of the spins 3 and 4, therefore k3 = k4 = k123 = k = 0. The diagonal

Table 2.5. Relations between 6-j and 9-j symbols in special cases. The first
column gives the 9-j symbol, the second the equivalent 6-j product.

{SaSa′1; SbSb′1; ScSc′0} δScSc′(−1)Sa′+1+Sb+Sc[3(2Sc + 1)]−1/2{SaSa′1; Sb′SbSc}

{SaSa′1; SbSb′0; ScSc′1} δSbSb′(−1)Sa+1+Sb+Sc′

[3(2Sb + 1)]−1/2{Sa′Sa1; ScSc′Sb}

{SaSa′0; SbSb′1; ScSc′1} δSaSa′(−1)Sa+1+Sb′+Sc[3(2Sa + 1)]−1/2{Sc′Sc1; SbSb′Sa}

{SaSa′0; SbSb′0; ScSc′0} δSaSa′δSbSb′δScSc′ [3(2Sa + 1)(2Sb + 1)(2Sc + 1)]−1/2
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Table 2.6. Eigenfunctions of
S2 for four S = 1

2 spins.

S12 S123 S

1 3
2

2

1 3
2

1

1 1
2

1

0 1
2

1

1 1
2

0

0 1
2

0

matrix element of the function |S12 = 1, S123 = 1/2, S = 0〉 is given by:
〈

1

2
0 |−J12S1 · S2| 11

2
0

〉

= J12

〈

1

2

∥

∥

∥

∥

1

2

√
3T1

∥

∥

∥

∥

1

2

〉 〈

1

2
‖T1‖ 1

2

〉 〈

1

2
‖T0‖ 1

2

〉 〈

1

2
‖T0‖ 1

2

〉

× [(2 × 1 + 1)(2 × 1 + 1) (2 × 0 + 1)]1/2

[(

2 × 1

2
+ 1

) (

2 × 1

2
+ 1

)

(2 × 0 + 1)

]1/2

× [(2 × 0 + 1)(2 × 0 + 1)(2 × 0 + 1)]1/2

⎧

⎪

⎨

⎪

⎩

1
2

1
2

1
1
2

1
2

1

1 1 0

⎫

⎪

⎬

⎪

⎭

⎧

⎪

⎨

⎪

⎩

1 1 0
1
2

1
2

0
1
2

1
2

0

⎫

⎪

⎬

⎪

⎭

⎧

⎪

⎨

⎪

⎩

1
2

1
2

0
1
2

1
2

0

0 0 0

⎫

⎪

⎬

⎪

⎭

.

(2.64)

For the sake of simplicity we omit the Si = 1/2 spins and we give only the values
of S12, S123, S. It is apparent that all the 9-j symbols in (2.64) contain at least
one zero, therefore they can be reduced to 6-j symbols taking advantage of the
relations shown in Table 2.5. The first 9-j symbol is equal to −1/18, the second
to 1/

√
12, and the third to 1/2. The matrix element on the whole is calculated to

be −1/4J12. Proceeding in the same way it is possible to calculate all the matrix
elements.

Even with the simplifications allowed by the ITO approach, the number of
levels increases very rapidly, and if we look, for instance at Table 2.4 we imme-
diately realize that it may be difficult to diagonalize so many large matrices. An
additional reduction in the size of the matrices can come from the introduction
of the point group symmetry appropriate to the system under consideration.
The procedure becomes even more complex. The techniques are described in the
literature (Raghu et al. 2001; Rudra et al. 2001).

2.5.2 Magnetic anisotropy in clusters

An important step must still be made in order to extend the treatment of
Section 2.1.3 to find correlations between the spin Hamiltonian parameters of
the individual centres and those of the clusters. We recall that it is possible to
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find closed equations in the assumption of strong exchange. In order to do this
we rewrite (2.24)–(2.26) in a formally slightly different but equivalent way:

g(S1S2S) = cα(S1S2S)g1 + cβ(S1S2S)g2. (2.65)

We label the coefficients defined in (2.24) relative to the first spin as α and to
the second spin as β. When we pass to a cluster we must first of all specify the
coupling scheme, i.e. decide the procedure to pass from the individual spins to
the total spin. This is not unambiguous and the choice will be made according
to the most convenient way of describing the total spin states. At any rate we
will have to define n − 2 intermediate spins. Let us work out as an example the
case of a cluster of four spins, and let us decide as a coupling scheme:

S1+S2 = S12;S3 + S4 = S34;S12 + S34 = S (2.66)

The required relations can be worked out by using (2.65) for the two intermediate
spins S12 and S34 and for S. We may first calculate the coefficients for the
intermediate state S12: clearly (2.65) holds. For S34 we will write in analogy:

g(S3S4S34) = cα(S3S4S34)g3 + cβ(S3S4S34)g4. (2.67)

Finally we proceed to calculate the relations for the total spin:

g(S12S34S) = cα(S12S34S)g(S1S2S12) + cβ(S12S34S)g(S3S4S34). (2.68)

Combining (2.66)–(2.68) we finally find:

g(S1S2S12S3S4S34S) = cα(S12S34S)[cα(S1S2S12)g1 + cβ(S1S2S12)g2]

+ cβ(S12S34S)[cα(S3S4S34)g3 + cβ(S3S4S34)g4].
(2.69)

Proceeding in a similar way we calculate the analogous relations for the D

tensor generated by the local Di tensors:

D(S1S2S12S3S4S34S) = dα(S12S34S)[dα(S1S2S12)D1 + dβ(S1S2S12)D2]

+ dβ(S12S34S)[dα(S3S4S34)D3 + dβ(S3S4S34)D4]. (2.70)

where the dα and dβ can be calculated according to (2.27) and (2.28).
The D tensor generated by the spin–spin Dij tensors are given by:

D(S1S2S12S3S4S34S) =
∑

i<j

dij(S1S2S12S3S4S34S)Dij . (2.71)

Let us calculate the dij(S1S2S12S3S4S34S) coefficients, starting from
d12(S1S2S12S3S4S34S). This depends on the coordinates of spin 1 and spin 2,
therefore it will contribute with a term dαβ(S1S2S12), the dαβ coefficients being
defined in (2.27) and (2.28).

Further we must take into account also the single spin contribution of S12

introducing a term dα(S12S34S):

d12(S1S2S12S3S4S34S) = dαβ(S1S2S12)dα(S12S34S). (2.72)
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The case is slightly different for d13(S1S2S12S3S4S34S), the spins 1 and 3 showing
up in different intermediate spin operators. The dαβ(S12S34S) coefficient must
be weighted according to the presence of spin 1 in S12 and spin 3 in S34:

d13(S1S2S12S3S4S34S) = dαβ(S12S34S)cα(S1S2S12)cα(S3S4S34). (2.73)

The other coefficients can be calculated by obvious extensions:

d14(S1S2S12S3S4S34S) = dαβ(S12S34S)cα(S1S2S12)cβ(S3S4S34)

d23(S1S2S12S3S4S34S) = dαβ(S12S34S)cβ(S1S2S12)cα(S3S4S34)

d24(S1S2S12S3S4S34S) = dαβ(S12S34S)cβ(S1S2S12)cβ(S3S4S34)

d34(S1S2S12S3S4S34S) = dαβ(S3S4S34)dβ(S3S4S34).

(2.74)

In order to gain a feeling of the formulae reported above it may be interesting
to calculate the variation of the anisotropic interactions on increasing the size
of the clusters (the number of the interacting spins). For a system of N spins Si

which are ferromagnetically coupled to give a total spin S= NSi it can be shown
that the following relations are valid:

di =
2Si − 1

N(2NSi − 1)
; dij =

2Si

N(2NSi − 1)
(2.75)

where di and dij are defined by the relations

DS =
∑

i

diDi +
∑

i<j

dijDij (2.76)

H =
∑

i

Si · Di · Si +
∑

i<j

Si · Dij · Sj . (2.77)

In the case of individual centres all parallel to each other the single-ion
contribution to the D parameter is

DS =
2Si − 1

2S − 1
Di. (2.78)

The energy difference between the states with highest and lowest |M |, value
respectively, ∆, which is relevant for the low-temperature dynamics of the
magnetization of single-molecule magnets is therefore given by

∆ = |D|S2 (2.79)

for integer spin and

∆ = |D|S2 − 1
4 (2.80)

for half-integer spin.
Let us consider integer spin Si = 2. Then

∆(NSi) =
2Si − 1

2NSi − 1
N2S2

i Di. (2.81)
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A ferromagnetic ring of eight manganese(III) ions, provided all the local aniso-
tropy axes are parallel to each other, would have ∆(S = 16) = 768/31Di while
for a single ion it would be ∆(S = 2) = 4Di,, yielding an energy barrier ca. 6.2
times larger for the ring.

In the case of regular rings it is possible to evaluate the dipolar contribution
for isotropic g in the ferromagnetic state. We define a local coordinate system
where all the z axes are along the line connecting spin i and spin j and all the
local y axes are parallel to each other and perpendicular to the ring plane and

DS = − 2Si

3(2S − 1)

[

Di,i+1 + Di,i+2 + · · · +
1

2
Di,i+ N

2

]

(2.82)

for even N , and

DS = − 2Si

3(2S − 1)

[

Di,i+1 + Di,i+2 + · · · +
1

2
Di,i+ N−1

2

]

(2.83)

for odd N .
A useful example is provided by antiferromagnetic rings of six S= 5/2 spins,

which will be discussed in some detail in Section 14.1. We suppose that the ring
lies in the xz plane. Therefore the ring has axial symmetry around y, and we
need to calculate only the Dyy components of the individual dipolar tensors. The
distances ri,i+k needed to calculate the dipolar tensors are given by

ri,i+k = ri,i+1

√

√

√

√

√

√

√

1 − cos

(

2kπ

N

)

1 − cos

(

2π

N

) . (2.84)

For a nearest-neighbour distance ri,i+1 = 3.00 Å we calculate the Dyy
i,i+k

components reported in Table 2.7.

Table 2.7. Components
of the dipolar tensor
for a hexagonal ring of
six S = 5/2 spins. The
values of D are given in
10−3 K.

k ri,i+k Dyy
i,i+k

1 3.00 0.9229
2 5.20 0.1772
3 6.00 0.1154
4 5.20 0.1772
5 3.00 0.9229
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Table 2.8. Coupling coefficients for the lower
spin states originated by the coupling of two
intermediate spins S135 = S246 = 15/2 of a
hexagonal ring of six S = 5/2 spins.

S c1 d1 d12 d13 d14

1 0.1667 −2.4000 2.8556 −3.0000 2.8556
2 0.1667 −0.5442 0.6905 −0.6803 0.6905
3 0.1667 −0.2349 0.3296 −0.2937 0.3296
4 0.1667 −0.1224 0.1984 −0.1531 0.1984
5 0.1667 −0.0684 0.1353 −0.0855 0.1353
6 0.1667 −0.0381 0.1000 −0.0476 0.100
7 0.1667 −0.0194 0.07812 −0.0242 0.0781

The total spin states of the rings can be efficiently described by coup-
ling first the odd site spins, then the even sites and finally summing the
two intermediate spins together. Therefore the functions can be labelled as:
|S1S3S13S5S135S2S4S24S6S246S〉. It can be shown that for antiferromagnetic
coupling the lowest lying states are

∣

∣

5
2

5
25 5

2
15
2

5
2

5
25 15

2 S
〉

. The coupling coefficients
which are needed are: c1, d1, d12, d13, d14, all the others being symmetry related.
The coefficients for the lowest total spin S states originating by the coupling of
the intermediate spins S135 = 15/2 and S246 = 15/2 are given in Table 2.8.
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OBSERVATION OF MICROSCOPIC MAGNETISM

Experiments have played a seminal role in the field of molecular nanomagnetism.
In fact, the experimental observation of an unusual imaginary component of the
alternating current (ac) susceptibility in zero static field for Mn12ac could be con-
sidered as the starting point for this branch of molecular magnetism (Caneschi
et al. 1991; Sessoli et al. 1993b). Since then many different experimental tech-
niques have been used to characterize these classes of materials. This chapter
focuses on highlighting what kind of information, relevant for molecular nano-
magnetism, can be obtained from the different techniques commonly employed
in magnetism. It is impossible to cover in depth the various topics, and we
assume that the reader has a basic knowledge of experimental magnetism. We
will provide, however, the relevant background references to which the interested
readers may refer.

The information we are interested in can be grouped into three categories. The
first one regards interactions among the different paramagnetic centres consti-
tuting the cluster and the energy spectrum of spin states that arises from them.
Equally important is the information on the magnetic anisotropy of the system
and the energy spectrum of the lowest spin multiplets. The last category concerns
the dynamics of the magnetization. We will proceed by discussing the different
techniques beginning from standard magnetometry and moving to more soph-
isticated techniques like magnetic torque measurements. Magnetic resonances,
both electronic and nuclear, or even the more exotic muon resonance, are also
widely employed. Neutron techniques, exploiting the magnetic moment of the
neutron, are particularly useful to quantify energy splitting in zero field and the
spin distribution on the molecule.

Most of the content of this chapter is obvious for experimentalists working in
the field but can be of some use for scientists and students entering the field,
as well as for theoreticians, who sometimes are not aware of the details that are
behind the experimental data they are struggling with.

3.1 Magnetic techniques

3.1.1 Standard magnetometry

Most magnetometers are nowadays based on an inductive detection of the mag-
netic moment. According to Faraday’s law a time-varying magnetic flux causes
a current to flow in a closed circuit. The electromotive force is proportional
to −dΦ/dt. The pick-up coil is therefore sensitive to the flux generated by the
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Fig. 3.1. Pick-up coils (gradiometers) to detect the magnetic flux of a magnet-
ized sample that is moved inside the coils. Left: first-order gradiometer; right:
second-order gradiometer. On top of each coil the typical dependence of
the induced electromotive force on the position of the magnetized sample
is shown.

magnet itself and by the magnetized sample. The first contribution can be elimin-
ated by employing a special design for the pick-up coils, also called gradiometers
because they are sensitive only to the gradient of the magnetic field. The simplest
form is a first-order gradiometer constituted by two loops wound in opposite dir-
ections. The magnetized sample is moved from one loop to the other and the
difference between the induced voltages measured at the two positions is propor-
tional to the magnetization of the sample. A further improvement is given by a
second-order gradiometer, where 2N windings are placed between two sets of N
windings, these last two wound in opposite directions to the central one. A schem-
atic drawing of the two types of gradiometer and the induced electromotive force
is shown in Fig. 3.1.

In most high-sensitivity magnetometers the induced current is not directly
measured but the coils are inductively coupled to a Superconducting QUantum
Interference Device (SQUID). These devices combine two physical phenomena:
the quantization of the flux in a superconducting loop and Josephson tunnelling.
A SQUID is in fact a superconducting ring interrupted by a Josephson junction,
i.e. a non-superconducting barrier that can be tunnelled by the Cooper pairs.
Indeed there are two types of SQUIDs; the dc-SQUID consists of two Josephson
junctions connected in parallel, while the radiofrequency rf-SQUID has only one
junction, and to be operated must be biased with an alternating current. SQUIDs
are the most sensitive detectors of the magnetic flux. They are, in essence, a very
efficient flux—voltage transducer with a voltage output that is periodic in the
applied flux and the flux period is one flux quantum, Φ0 = h/2e = 2.07 · 10−15

weber.
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It is not within our scope to cover here the theory of the operation and the
practical aspects of SQUIDs and interested readers can refer to a specialized
text (Clarke 1990) for general information. Companies commercializing SQUID
magnetometers also offer interesting technical descriptions of their instruments.

The SQUID, being superconducting, is kept in liquid helium and is usually
shielded from the magnetic field. Due to its sensitivity to the field, commercial
SQUID-based magnetometers do not work at field higher than 80 kOe. For larger
fields a different measuring technique is employed. The sample is moved at a
frequency in the range 50–100 Hz up and down over a length of a few mm in the
centre of one coil of a first-order gradiometer. The signal induced in the pick-up
coils is read by a phase-sensitive detector (a lock-in amplifier). These very old
types of magnetometers, developed by Foner at MIT (Foner 1959) are called
vibrating-sample magnetometers, VSMs, and are now commercially available,
usually equipped with a magnet producing fields over 100 kOe.

The measurement of the magnetization is generally done at variable temper-
ature, and temperatures between 1.5 K and 300 K are currently available. The
lower limit is reached by pumping over the liquid helium that enters the sample
space through a needle valve. Variable temperatures are extremely important
to get information on the energy spectrum of the spin levels. By decreasing
the temperature the excited spin states are depopulated and the temperature
dependence of the magnetization is thus related to the energy separation of the
levels with different S value.

It is very common in the chemical literature to report the temperature vari-
ation of the magnetic susceptibility, χ, or its product with temperature, χT . The
latter is particularly useful to highlight deviations from the paramagnetic behavi-
our of non-interacting spins, because in the last case χT assumes a constant value,
as predicted by the Curie law:

χT =
Ng2µ2

B

3kB
S(S + 1) (3.1)

for a mole of centres characterized by the spin value S. χ is field independent
as long as one works at small fields and not too low temperatures, where the
condition gµBH ≪ kBT is satisfied. It is important to stress here that what
is usually measured is the magnetization of the sample, from which the M/H
ratio is often reported. This ratio at moderate and strong applied fields does not
always coincide with the magnetic susceptibility χ = dM/dH, especially if the
ground state has a large spin as in the materials of interest here.

When extracting the susceptibility from the magnetization we assume that
the field experienced by the spin system has the same value of the applied field.
This is not true, because a magnetized sample has poles of opposite signs on its
surfaces, and these poles generate an additional field, which points in the opposite
direction to the magnetizing one, and therefore is called the demagnetizing field:

H′ = H − dM. (3.2)
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H′ is also known as the Maxwell field. The demagnetization factor, d, depends
on the geometry of the sample. For a sphere, d is isotropic and equal to 4

3π,
in Gaussian (cgs) units. In the other cases, d is a tensor. For an infinitely
long needle-shaped sample, the component of d along the axis of elongation
approaches zero, and 2π perpendicular to it. Demagnetizing factors can be cal-
culated for ellipsoids of revolution and are reported for instance in the textbook
by Morrish (1966). A more general formulation is given in Appendix B.

We should take into account that the susceptibility relates M to H ′ and not
to the applied field, and therefore differs from the M/H ratio, which we call here
χobs, according to:

χ =
M

H ′ =
M

H − dM
=

χobs

1 − dχobs

or

χobs =
χ

1 + dχ
(3.3)

where χ is the susceptibility per volume unit. A simple calculation for a spher-
ical sample of Mn12ac can be performed assuming that at low temperature it
behaves as a paramagnetic S = 10 spin. Taking into account the molecular
weight, 2060.22 g/mol, and the density of the crystals, 1.895 g/cm3, at 4 K we
obtain dχ = 5.2×10−2. Molecular nanomagnets are characterized by a low mag-
netic density and the effect of the demagnetizing field can be neglected especially
if a moderate field is applied. It is for the same reason that the permeability can
be assumed to be that of the vacuum, and in Gaussian units the magnetic field,
H, and the magnetic induction, B, assume the same value.

The experimental temperature dependence of χ (or χT ) can be used to extract
information on the exchange magnetic interactions active in the system. These
experimental data are usually sufficient to determine the exchange coupling con-
stant in a pair of coupled spins or in clusters with small nuclearity and high
symmetry. Example of pairs, triads, and tetramers can be easily found in any
book on magnetochemistry (Carlin 1986; Kahn 1993). The experimental curve
is simulated by weighting, according to the Boltzman population, the contribu-
tions to the susceptibility that come from the different spin states of the cluster
according to equation (2.53).

A well-known example is the Bleaney–Bowers equation (Bleaney and Bowers
1952) for two isotropically coupled s = 1

2 spins, where the total spin states S = 1
and S = 0 are separated by J and the magnetic susceptibility, in the low-field
regime, is given by:

χ =
2Ng2µ2

B

kBT

1

3 + exp(−J/kBT )
. (3.4)

In this case the only adjustable parameters are J and g.
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As soon as the magnetic molecule increases in nuclearity, many independ-
ent parameters of the spin Hamiltonian need to be determined. An over-
parametrization is often encountered in the best-fit procedure and the possibility
of gaining additional information from different techniques becomes crucial. The
use of a variable magnetic field, especially if a large field and a low temperat-
ure are available, often provides the lacking information. This is the case when
the paramagnetic centres of the molecule are antiferromagnetically coupled. The
state with the largest spin is necessarily not the ground one, but its energy
decreases most rapidly by interacting with the field. A crossing of energy levels
can be induced by the field and reveals itself as a sudden increase in the
magnetization as schematized in Fig. 3.2.

The simplest molecular compounds to which this approach has been applied
are antiferromagnetic dimers, such as [Fe2(salen)2Cl2](Shapira et al. 1999)
and [Fe2(C2O4)(acac)4](Shapira et al. 2001), where salen = N, N ′-ethylene-
bis-(salicylaldiminato), and acac = acetylacetonate. Here, isotropic intradimer
exchange interactions are dominant and the energy of spin levels E(S, M) are
well described by the formula

E(S, M) = −J

2
S(S + 1) + gµBMH (3.5)

which follows directly from the spin Hamiltonian

H = −JS1 · S2 + gµBS · H (3.6)

for two exchange-coupled spins S1 and S2 in a magnetic field H (H = |H|).
In (3.5), S is the total spin quantum number of the binuclear species while
M = −S, −S + 1, . . . , S − 1, S labels the total spin component along H. For
two high-spin ferric ions S1 = S2 = 5

2 and S thus ranges from 0 to 5. In the
presence of antiferromagnetic interactions (J < 0) the ground state has S = 0
in zero applied field, as shown in Fig. 3.2(a). By contrast, in a strong magnetic
field the S = 5 state must lie lowest, the high magnetic field limit being reached
when the external field overcomes the antiferromagnetic interaction. By sweeping
the magnetic field, it is thus possible to observe the cross-overs from S = 0 to
1, from 1 to 2, etc. as depicted in Fig. 3.2(b). These occur at evenly spaced
magnetic field values Hn given by:

Hn = n
|J |
gµB

with n = 1, 2, . . . 5. (3.7)

At each cross-over the value of |M | in the ground state changes by one unit, so
that the magnetization exhibits a sudden step-like increase at low temperature
(kBT ≪ |J |). Alternatively, when dM/dH is measured (as in pulsed-field experi-
ments) each magnetization step shows up as a peak in the dM/dH versus H plot,
as shown in Fig. 3.2(c). Because the position of the steps is directly related to
the magnitude of the exchange constant through equation (3.7), the method rep-
resents a useful alternative to the traditional approach based on the temperature
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Fig. 3.2. (a) Calculated spin levels for a dimer of antiferromagnetically coupled
S = 5/2 spins in zero magnetic field. (b) Evolution of the spin levels in a
magnetic field H. The cross-over fields Hn are marked by dashed vertical
lines. (c) Molar magnetization (M) and differential susceptibility (dM/dH)
of the dimer at low temperature.

variation of magnetic susceptibility for the determination of J values, provided
that the experiment is performed at sufficiently low temperature (typically below
1 K). In Fig. 3.3 the data taken from Shapira (2001) in fields up to 45 T for
[Fe2(C2O4)(acac)4] show all five predicted peaks, and J/kB = −10.4(3) K has
been extracted, assuming g = 2.00 for the high-spin ferric ion. This technique has
been widely used in the investigation of molecular rings of antiferromagnetically
coupled spins, as discussed in Chapter 14.
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Fig. 3.3. Differential susceptibility of [Fe2(C2O4)(acac)4] measured in pulsed
fields at 1.5 K. Reprinted with permission from Shapira et al. (2001).
Copyright (2001) by the American Physical Society.

An important parameter is the magnetic anisotropy, which in many cases is
associated to the axial zero-field splitting parameter D of equation (2.5). A rather
precise estimation of D can be obtained also working on powder samples by
analysing the field dependence of the magnetization at low temperature.

Some authors plot the magnetization versus the H/T ratio by varying the
temperature and not the field. This procedure is correct for an isolated isotropic
spin but is not adequate for polynuclear clusters, where excited spin states can
be thermally populated. If the data are going to be analysed in terms of one spin
state, i.e. the ground state split in zero field by the magnetic anisotropy, it is
mandatory to stay at the lowest temperature and sweep the field.

When the data are obtained from a powder average it is important to avoid
field-induced orientation of the crystallites due to their magnetic anisotropy.
The degree of orientation is in fact hardly reproducible and difficult to quantify,
but crucial in the quantitative analysis. Several techniques can be employed,
like mixing the microcrystalline powder with grease or with wax. Eicosane, the
aliphatic hydrocarbon C20H42, has a very low melting point, 35 ◦C, and it is
therefore suitable for compounds that decompose upon heating. This technique,
however, fails with very anisotropic materials for which it can be necessary
to press the ground powder in a pellet. In this last case it is important to
take into account possible structural or chemical modification induced by the
pressure.

When the magnetic data are obtained from a random orientation of aniso-
tropic microcrystals the quantitative analysis requires us to calculate the
magnetization by integrating over all the possible orientations of the external
field. In the simplest case, when only the ground spin state is thermally popu-
lated, the magnetization can be calculated starting from the diagonalization of
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Fig. 3.4. Spin topology of ‘iron stars’ (four high-spin iron(III), spin S = 5/2)
leading to a ground state with S = 5.

the (2S + 1) × (2S + 1) matrix describing the spin Hamiltonian:

H = S · D · S + µBH · g · S. (3.8)

In order to calculate the magnetization the energy of the 2S + 1 states
is evaluated at different but close field values and the derivative is evaluated
numerically.

To work out a simple example we have considered the tetranuclear iron cluster
of formula [Fe4(thme)2(dpm)6], where dpm- is the anion of dipivaloylmethane,
and thme3− stays for the anion of trishydroxymethylethane (Cornia et al. 2004).
Several clusters belong to this class of molecule, also known as ‘iron stars’ (Barra
et al. 1999; Saalfrank et al. 2001; Cornia et al. 2004) and schematized in Fig. 3.4.
They are characterized by a high-spin iron(III) ion at the centre and three
iron(III) on the vertex of a triangle that can be either equilateral or isosceles,
depending on the crystal symmetry.

Antiferromagnetic interactions between the central and peripheral spins are
mediated by the bridging ligands, usually alkoxides. The topology is, however,
very favourable because the peripheral spins are antiparallel to the central one,
but parallel to each other, resulting in a S = 5 ground state, usually well separ-
ated from the excited spin states. In Fig. 3.5 is reported the magnetization curve
measured for this compound at T = 1.9 K. Superimposed on the experimental
data are also reported the Brillouin function for S = 5 and the magnetization
curve calculated for D/kB = −0.58 K and g = 1.93, by simply averaging the
magnetization calculated along the easy axis and in the hard plane according to
〈M〉 = 2/3M⊥ + 1/3M//. In both cases the agreement is very poor, while the
curve obtained by integrating over all the possible orientations of the field, the
solid line of Fig. 3.5, nicely fits the data.

Of course, more reliable information on the magnetic anisotropy can be
obtained by the measurement of the magnetization of oriented single crystals, if
large enough crystals are available. In this case other aspects, beyond the dif-
ficulty in getting large crystals, must be taken into account. First of all, not
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Fig. 3.5. Field dependence of the magnetization of a powder sample of
[Fe4(thme)2(dpm)6] and calculated magnetization curves with the Brillouin
function (–), including the magnetic anisotropy D/kB = −0.58 K and aver-
aging over the field orientations (solid line). The simple averaging formula
〈M〉 = 2/3M⊥ + 1/3M// (dotted line - -) does not fit the experimental data.

all crystalline materials are well suited to this kind of investigation. Even if the
molecules are characterized by a strong anisotropy they can be packed in the
crystal lattice in such a way that the anisotropy axes are not all parallel to each
other. This happens whenever a molecule has a symmetry that is lower than
that of its crystal space group, and in particular if a molecule in the crystal lat-
tice is related to the equivalent one by a rotation axis or a mirror plane. These
symmetry elements are present in the most common crystal systems in coordin-
ation chemistry, i.e. the monoclinic and ortho-rhombic systems. An inversion
centre does not rise this problem. The triclinic system is therefore unaffected
by this problem but the experiments are complicated because it is not possible
to know a priori where the anisotropy axes are pointing. A particularly favour-
able case is that of high crystalline symmetry, with the molecules also sitting
on a high-symmetry site in the unit cell. This is a very special and favourable
case, because the principal direction of the magnetic anisotropy, i.e. the easy,
medium, and hard axes, are forced by crystal symmetry to coincide with some
special crystallographic directions, easily identifiable from the morphology of the
crystals, or, in the worst case, from single-crystal X-ray diffraction.

In the more general case the experimental procedure consists of measuring
the magnetic moment by rotating the sample along three orthogonal axes, as
commonly done in single-crystal electron paramagnetic resonance (EPR) spec-
troscopy discussed in Section 3.3.1. What seems a trivial procedure is, however,
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very time-consuming, because in most magnetometers the magnetic field is gen-
erated by a vertical solenoid, and the simple rotation of the sample rod does not
change the field orientation. Therefore it is necessary to remove the sample rod
to change the orientation of the sample unless the system is equipped with a spe-
cial sample holder that allows a horizontal rotation of the sample. Such a device,
also commercially available, is a precious tool for the magnetic investigation of
single crystals.

3.1.2 Time-dependent measurements

From the same instrumentation, a SQUID magnetometer or a VSM, we can get
information also on the spin dynamics, provided it falls into the appropriate time-
window. This window usually ranges from 100 s to days or even weeks or months,
depending on the patience of the experimentalist. The simplest characterization
of the dynamics of the magnetization consists in monitoring the time decay of
the remnant magnetization.

This type of experiment is usually performed by applying a strong field at
a temperature where the dynamics is still fast. The next step is to cool down
the sample to the investigated temperature, then remove the field and start to
measure the magnetization as a function of the elapsed time. This procedure is
schematically shown in Fig. 3.6. The curve is then fitted starting from a single
exponential law,

M(t) = M(0) exp(−t/τ) (3.9)

where τ is the relaxation time. More complex behaviour is often encountered,
like the stretched exponential decay first observed by Kohlraush in 1847 when

t = 0 Time

T1

T2

H1

H2

M1

M2

Fig. 3.6. Schematic view of the procedure to measure the time decay of rem-
nant magnetization. The time dependence of the temperature (top), applied
magnetic field (middle), and the measured magnetization (bottom) are
reported.
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he investigated the decay of residual charge in glasses:

M(t) = M(0) exp[−(t/τ)α] (3.10)

where α is a number ranging from 0 to 1.
It can also be interesting to investigate the dynamics in going from an ini-

tial state in the magnetic field H1, characterized by the equilibrium value M1,

to another field H2 and magnetization M2 with the time dependence of the
magnetization given by

M(t) = M2 + (M1 − M2) exp(−t/τ). (3.11)

While M1 is easy to detect it is important that the experiment lasts long enough
to get a precise determination of M2. Moreover, to avoid errors, the relaxation
time must be much longer than the time needed to ramp the field. This instru-
mental parameter determines the shortest relaxation time that can be measured,
which is in the range of a few minutes for standard instrumentation.

Other types of experiments are commonly performed to investigate the
dynamics of the magnetization. Certainly the most common procedure is the
measurement of the thermal irreversibility and thermo-remnant magnetization,
summarized in Fig. 3.7. The sample is first cooled in zero applied field. At
low temperature the relaxation time is much longer than the measuring time

�
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Fig. 3.7. (a) Schematic view of the procedure to measure the thermal irre-
versibility and thermo-remnant magnetization. The time dependence of the
temperature (top), applied magnetic field (middle), and the measured mag-
netization (bottom) are reported. Step I corresponds to the cooling in zero
field, step II to the measurement of ZFC magnetization, step III to FC
magnetization, and step IV to the measurement of the thermo-remnant mag-
netization. (b) The magnetization measured in steps II, III, and IV is plotted
as a function of the sample temperature.
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and the application of a polarizing field, weak enough not to affect the relaxa-
tion time, does not produce a net magnetic moment because the magnetization
is frozen. The magnetization that is measured as a function of increasing tem-
perature after having cooled in zero field and having applied a weak field is
called zero field cooled (ZFC). On increasing temperature usually the relaxation
time diminishes and the magnetization is gradually unblocked. On increasing
the temperature the magnetization increases because it approaches the equilib-
rium state that in an applied field is a magnetized one. However, the equilibrium
value of M in a paramagnet decreases with temperature and this results in
a maximum of the ZFC magnetization versus T curve. The system is at the
equilibrium when the ZFC magnetization superposes with the magnetization
measured when cooling down in the same field, the field cooled (FC) magnetiz-
ation. The experimental procedure is usually completed with a fourth step that
consists in removing the field at the lowest temperature and measuring again
the magnetization on increasing the temperature. The equilibrium value in the
paramagnetic phase has M = 0 and therefore the equilibrium is reached when
the thermo-remnant magnetization disappears.

The time dependence of the magnetization is now not very easy to interpret
but if the magnetization data of this experiment are plotted as a function of the
temperature, as in Fig. 3.7b, the difference between the ZFC and FC magnet-
ization, measured under the same conditions in H and T but with a different
history of the sample, becomes evident.

The temperature at which the maximum in the ZFC magnetization occurs is
known as the blocking or freezing temperature, TB, which does not necessarily
coincide with the temperature at which the ZFC and FC curves superimpose,
which we can call the irreversibility temperature, TIRREV. The larger the differ-
ence (TIRREV −TB), the larger the distribution of relaxation times. In molecular
nanomagnets the two points almost coincide. The procedure of Fig. 3.7a is com-
monly used in a preliminary screening to show the presence of irreversibility and
to estimate TB. It is, however, important to notice that TB is strongly affected by
the sweeping rate of the temperature, a parameter not always easy to control in
most experimental set-ups. Therefore minor changes in TB, especially if obtained
from different instruments, should be critically evaluated. As these experimental
procedures are also employed to characterize spin-glass materials the interested
reader can easily find more information in the related literature (Mydosh 1993;
Binder and Young 1986).

Slow relaxing magnetic materials are characterized by the opening of the
magnetization versus field loop, known as the hysteresis loop. In molecular
nanomagnets the appearance of magnetic hysteresis is not due to the irre-
versible growth of domains with the orientation of the magnetic moments
parallel to the field, but rather to the fact that the magnetization of each
molecule is relaxing too slowly compared to the time required to sweep the
field and therefore the magnetization of the ensemble of the molecules in
the sample does not reach the equilibrium value in the time-window of the
experiment. The width of the hysteresis loop is therefore directly related to
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the dynamics of a single molecule. In molecular nanomagnets the magnetic
field can have a very peculiar effect on the dynamics of the magnetization. The
recording of the hysteresis loop has therefore played a much more important
role in the characterization of the dynamics compared to conventional magnetic
materials. We will discuss this aspect in more detail in the following chapters.

3.1.3 Micro-SQUID and micro-Hall probe techniques

If we were asked which experimental technique has given the most significant
contribution to the investigation of molecular nanomagnets, the choice would
surely fall on micro-SQUID magnetometry. This unconventional instrumentation
was developed at the beginning of the 1990s in Grenoble, principally to invest-
igate the magnetic reversal of a single magnetic nanoparticle (Chapelier et al.
1993; Wernsdorfer et al. 1995). The technique has been extended and upgraded
by Wernsdorfer at the L. Néel Laboratory in Grenoble (Wernsdorfer 2001). It
is based on coupling the micro-SQUID, a superconducting ring of micrometric
dimensions, to the sample by placing the last one directly on the SQUID loop,
as shown in Fig. 3.8.

The advantages of this technique go well beyond its very high sensitivity, which
allows us to detect magnetic moments as small as 10−17 emu. The miniaturization
of the device allows its insertion in a dilution refrigerator and in two small
orthogonal superconducting solenoids that can be independently driven. We will
see in the following how relevant is the possibility to sweep the magnetic field
simultaneously but independently along both the easy and the hard axes of an
anisotropic sample. Given the small size of the coils it is possible to ramp the field
at very high speed and very short relaxation times can therefore be measured.

For this type of measurement single crystals of micrometric size are used, thus
permitting single-crystal characterization also for those compounds that do not
grow in large crystals. The small size of the sample improves the dissipation of
the heat pulse that is generally produced when the magnetization reverses its

H

Sample
Array of

micro-SQUIDs

2 µm

Fig. 3.8. Left: scanning electron micrograph of a Nb micro-SQUID fabricated by
electron beam lithography. A Ni wire of diameter of about 90 nm was depos-
ited on the SQUID. Right: an array of micro-SQUIDs used for a macroscopic
crystal. From Wernsdorfer (2001). Reprinted with permission of John Wiley
& sons.
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orientation. In general samples of molecular nanomagnets exceed the dimension
of a single micro-SQUID loop and are arranged on an array of these loops,
as shown in Fig. 3.8. In the magnetometer developed at the Néel laboratory in
Grenoble the signals of all the loops of the array are read simultaneously so that a
sort of mapping of the magnetization of the macroscopic sample is possible. This
procedure can show inhomogeneities of the sample, for instance due the presence
of decomposition products, which can be non-homogenously distributed inside
the crystal.

This technique, however, has some limitations. The highest operative tem-
perature is limited by the critical temperature of the superconducting material
employed for the SQUID loop (i.e. about 7 K for loops made of Nb), and the
applied field is limited to µ0H ≈ 2 T. Moreover, absolute measurements of the
magnetic moment cannot be done, because the output signal is strongly depend-
ent on how the SQUID(s) are coupled to the sample, and therefore on its shape,
positions, etc.

The field and temperature limitations can be overcome if the detection of the
magnetic moment is done by exploiting the Hall effect on a micro-Hall probe.
If a current is flowing through a conductor or a semiconductor in the form of a
thin slab and a magnetic field is applied perpendicular to the current direction,
the trajectory of the carriers is deflected. The result is a difference in the electric
potential, VH, at the extremes of the conductor perpendicular to the current
according to the law

VH = RHIB. (3.12)

The Hall constant RH is given in a first approximation by RH = 1/ned, where
n is the density of the carriers and e is the charge of the electron and d is the
thickness of the slab.

The Hall probe, and in particular the active area of the cross, is sensitive to
the magnetic induction produced by both the applied field and the magnetized
sample. In order to get rid of the contribution of the field different set-ups can
be exploited. In the original work by Kent et al. (1994), where for the first time
micro-Hall probes where used to investigate arrays of nanoparticles, two identical
Hall crosses were connected as shown in Fig. 3.9a. Opposite currents flow in the
two crosses that are exposed to a field applied perpendicular to the large surface
of the crosses. If the two crosses are identical and I = I ′ no voltage difference is
measured in the absence of a magnetized sample. The positioning of a magnetized
sample on one of the crosses results in a voltage which is proportional to the
magnetic induction of the sample. In practice, I and I ′ are chosen to be slightly
different to compensate small differences in the contruction of the two crosses. AC
currents are applied and the voltage is measured with a phase-sensitive detector.

An early application of micro-Hall probes to molecular nanomagnetism was
the detailed investigation of the temperature dependence of tunnel resonance
fields in a single crystal of Mn12ac, discussed later in Chapter 13 (Bokacheva
et al. 2000).
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Fig. 3.9. Schematic view of two micro-Hall crosses with the applied field perpen-
dicular to the probes (a) and in the plane of the probes and parallel to the
current (b).

A different set-up, characterized by a lower parasitic signal, is shown in
Fig. 3.9b. In this case the magnetic field is applied parallel to the current direc-
tion, and ideally it does not produce any Hall effect, even though in practice a
misalignment of the field is always present. On the contrary, the magnetic flux
of a magnetized sample, if placed close to the active area of the cross, has a
component perpendicular to the cross and induces a voltage. If two crosses are
used and the sample is large enough to be close to the active area of both sur-
faces the field generated by the magnetized sample has opposite direction in the
two crosses. By measuring the difference V − V ′ it is possible to eliminate the
contribution due to the misalignment of the field. This design, which has been
mainly used to investigate the molecular cluster Fe8 (Sorace et al. 2003), has the
disadvantage that the direction of the magnetic field is fixed.

The most frequently employed materials for these devices are two-dimensional
heterostructure materials, such as GaAl/GaAlAs, known as a two-dimensional
electron gas, or thin films of three-dimensional semiconductors, such as InGaAs.
The ideal material has a low density of carriers but a high mobility. A typical
value of RH for 2D electron gas probes is 0.2 Ω/G, about two orders of mag-
nitude larger than for 3D semiconductors. Hall probes can be used over a wide
temperature range (1–50 K) without significant variation in sensitivity. At much
lower temperatures ballistic transport reduces the sensitivity, and quantum Hall
effects influence the measurements, but micro-Hall probes have nevertheless been
employed even slightly below 100 mK. In this case 2D hole gas heterostructures
have been employed because holes have a larger effective mass than electrons
and therefore a lower mobility. The reduction of mobility of the carriers, on
the contrary, limits the use of the device at higher temperature. The frequency
range that can be spanned by the ac current is also quite large, from 1 mHz
up to 100 kHz, with a sensitivity increase proportional to

√
υ. The sensitivity

at high frequency is, however, limited by Josephson noise. As in the case of the
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micro-SQUID, absolute values of the magnetization cannot be extracted from
the measurements. However the high versatility, lower cost, and simpler opera-
tion of the micro-Hall probes have contributed to a much larger diffusion of this
experimental technique compared to that of micro-SQUIDs, even if the last ones
still retain a sensitivity about 3–4 orders of magnitude larger.

3.1.4 Torque magnetometry

Small single crystals can also be investigated with torque magnetometry, thanks
to the high sensitivity that has been achieved with the introduction of cantilever
devices. A cantilever is a flat member fixed at one end and hanging free at the
other end. In the simplest realization a cantilever apparatus is a constructively
simple device, as shown in Fig. 3.10. An elongated thin slab made of silicon or a
non-magnetic metallic alloy (typically CuBe) is mounted, with one end hanging
free, parallel to a fixed metal platform. This results in a parallel-plate capacitor,
whose capacitance C (neglecting edge effects) is given by:

C = ε
A

d
(3.13)

where A is the area of the plates, ε is the dielectric constant of the medium
in which the cantilever is operated and d is the separation between the two
electrodes (usually <100 µm). The sample is fixed to the cantilever surface close
to the free end, and if a mechanical couple is present, this results in a flexion of
the cantilever and in a change in the capacitance, C. For small deflections the
device approaches a linear-response regime in which the capacitance variation is
directly proportional to the torque t (Cornia et al. 2000):

∆C = CH − C0 ∝ −ty (3.14)
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Upper plate
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Fig. 3.10. Schematic view of a cantilever used for magnetic torque measure-
ments. Top: front view; bottom: side view.
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where CH is the capacitance measured in the presence of an applied field and C0

is that measured at rest, i.e. without an applied field.
Very high sensitivities can be achieved through a suitable design of the capa-

citor, for instance by increasing the flexibility of the cantilever itself and/or by
reducing the separation between the electrodes.

With this technique it is possible to measure the force acting on an isotropic
magnetic sample in an inhomogeneous magnetic field or the torque experienced
by an anisotropic sample under the influence of a homogeneous magnetic field.

In the first case the force experienced by the magnetic sample is related to
the gradient of the magnetic field F = ∇(M · H). A non-homogenous field is
usually achieved moving the sample far from the centre of the superconducting
solenoid. If the profile of the magnetic field is known the magnetization can be
easily extracted from the torque signal.

In the second case, most common in molecular nanomagnetism, the magnetic
torque is given by

t = M × H (3.15)

where H = (Hx, Hy, Hz) is the magnetic field and M = (Mx, My, Mz) is the
bulk magnetization. If we choose a reference frame so that M and H lie in the xz
plane, the magnetic torque vector t = (tx, ty, tz) is necessarily parallel to y, as
shown in Fig. 3.11. It follows that tx = tz = 0 while the y component is given by:

ty = MzHx − MxHz = H2

(

Mz

Hz
− Mx

Hx

)

sin θ cos θ (3.16)

where θ is the angle between the magnetic field and the z axis. Hence, the
experiment measures the anisotropy of the magnetization in the xz plane.

From equation (3.16) it follows that the origin of the magnetic torque is the
fact that the magnetization and the applied field are non-collinear. The origin of

y

M

H

z

x t = M × H

�

�

Fig. 3.11. Geometrical arrangement of the external field, the magnetization and
the magnetic torque.
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the non-collinearity is different in paramagnets and in permanent magnets. Since
in the latter the direction of the magnetization is fixed, the torque reduces to

ty = HM sin θ (3.17)

where H = |H| and M = |M|. Notice that the torque vanishes for θ = 0◦ or 180◦,
and that the torque modulus is simply proportional to the bulk magnetization.
Indeed, this approach has been used to measure magnetization of SMMs below
the blocking temperature (Perenboom et al. 1998a,b).

More complex is the behaviour in paramagnetic materials, because both
magnetization and magnetic anisotropy are field dependent. Nevertheless the
technique represents a powerful tool for magnetic anisotropy investigations, as
shown by the earlier applications of this technique to simple transition-metal
complexes (De W. Horrocks and De W. Hall 1971; Mitra 1977).

To give an idea of the information that can be extracted from a magnetic
torque measurement on paramagnetic samples we can work out a simple example
for the same tetranuclear iron cluster whose structure is shown in Fig. 3.4, which
at low temperature can be handled as an S = 5 characterized by D/kB = −0.58 K
and E = 0. The crystal-field induced anisotropy is of the easy-axis type, i.e. the
magnetization at low temperature will preferentially orient along, say, z. The
behaviour of this type of system is different in the weak-field (gµBH ≪ kBT ) and
in the strong-field (gµBH ≫ kBT ) limits. In the former case, the magnetization
is simply M = χH = (χxxHx, χyyHy, χzzHz), so that if the field is rotated
in the xz plane the axial anisotropy is just the difference between the z- and
x-magnetic susceptibilities, χzz − χxx. Consequently, the torque ty at a fixed
θ-angle is simply proportional to the square of the magnetic field:

ty = H2(χzz − χxx) sin θ cos θ. (3.18)

Notice that in contrast with the case of permanently magnetized samples (3.17)
the torque is zero when the magnetic field is applied along a principal direction
(θ = nπ/2 with n integer) (Cornia et al. 2000), and goes through extrema for
nπ/4.

In the high-field regime the magnetization reaches its saturation value. For
a system with isotropic g, like the one we are considering, the axial anisotropy
goes to zero. It has been shown (Cornia et al. 2000) that at high field the torque
has a limiting value

lim
H→∞

ty = −2DS

(

S − 1

2

)

sin θ cos θ. (3.19)

In principle the high-field limit of the torque could provide a direct measurement
of the spin of the system and its magnetic anisotropy. In practice, however, abso-
lute measurements of the torque are not performed, simply because the crystals
employed are in the micrograms range and cannot be precisely weighted. Other
features can be exploited to obtain quantitative information on the magnetic
anisotropy, as shown in the following.
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Fig. 3.12. Calculated angular dependence of the y component of the magnetic
torque of a S = 5 spin state characterized by D/kB = −0.58 K and E = 0.
θ is the angle formed by the magnetic field with the molecular easy axis (z).

In Fig. 3.12 we show the angular field dependence of the torque calculated for
the S = 5 system defined above.

The magnetic field, 2 T in strength, is rotated in the xz principal plane. At
10 K the curve has the typical sinusoidal shape given by the sin θ cos θ term of
(3.18), with zero torque when the field is parallel to the principal directions x and
z. On lowering the temperature the curve becomes more and more asymmetric,
the torque being larger close to the hard direction. The origin of this asymmetry
lies in the departure from the weak-field limit. In Fig. 3.13 the field dependence
of the torque is shown for two angles, θ = 5◦ and θ = 85◦, close to the easy and
hard axis, respectively. The strong-field asymptotic limit is the same for these
two angles, but close to the hard axis the torque has a non-monotonic behaviour,
passing through a well-defined maximum. The position of the maximum is only
slightly affected by small angle variations around the hard axis direction, and
therefore it is a feature directly connected to the axial magnetic anisotropy. It
is worth noticing, as shown in Fig. 3.13, that the field position of the maximum
in the torque is strongly temperature dependent, raising the necessity of a good
temperature calibration for the system.

One of the first examples of torque measurements on a SMM concerns the
archetypal Mn12ac cluster (Cornia et al. 2000). The torque curves were recorded
at 4.2 K by applying the magnetic field (0–30 T) close to the hard (xy) magnetic
plane of a Mn12ac single crystal (θ = 90 ± 1.1◦), see Fig. 3.14. In the weak-field
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Fig. 3.13. Calculated field dependence of the magnetic torque of an S = 5 spin
state characterized by D/kB = −0.58 K and E = 0. θ is the angle formed by
the magnetic field with the molecular easy axis (z).
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Fig. 3.14. Experimental torque data in µV for the detected capacitance change
∆C, recorded for a Mn12ac single crystal by applying the magnetic field at
different small angles from the hard axis. The temperature was fixed at 4.2 K.
Reprinted from Cornia et al. (2000). Copyright (2000) Elsevier.
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region the torque signal is proportional to H2, as predicted by equation (3.18).
A pronounced peak is detected at about 6.2 T, while in high fields an asymptotic
field dependence is observed according to (3.19). The symmetry of the curves
around the hard direction is well evident, and was indeed exploited to precisely
align the crystal. The values D/kB = −0.67(1) K and B0

4/kB = −3.4(1) ×
10−5 are found to provide the best fit with gxx = gyy = 1.96 and gzz = 1.93.
The agreement with the same parameters determined by HF-EPR (Barra et al.
1997b) and inelastic neutron scattering (Mirebeau et al. 1999) experiments is
remarkable.

Magnetic torque measurements are useful not only to characterize the aniso-
tropy of paramagnetic centres of the ground spin state of a cluster. In fact it
can provide information on the exchange interactions active in the system. For
instance, it has been recently exploited to determine the pattern of energy of the
spin levels, as well as the D values in antiferromagnetic clusters (Cornia et al.
1999).

Before closing this section it is useful to remind the reader that the calculated
curves of Figs 3.12 and 3.13 have been obtained by diagonalization of the spin
Hamiltonian matrix in the presence of the applied field as already mentioned
for Fig. 3.5. In the present case all the magnetization components, and not only
that along the field direction, have to be computed to evaluate the torque.

Finally in the above treatment it has been assumed that the crystal magnetic
axes, which are obtained from the experiment, are the molecular axes. This is
only true when there is only one magnetically equivalent molecule in the unit
cell. Associating the crystal and molecular axes in the general case requires some
additional assumptions.

3.1.5 Ac susceptometry

This is a very simple technique that can give easy access to the susceptibility,
dM/dH. The sample is inserted in a small coil, called the primary coil, most
commonly made of copper wire. An alternating current flows in the coil thus
generating a small oscillating magnetic field that usually does not exceed 10 Oe.
A secondary coil is wound inside the primary one as schematized in Fig. 3.15.

The two coils can be designed so that the voltage induced in the secondary is
zero in the absence of a sample. This is usually done by winding two secondary
coils in opposite directions as for a first-order gradiometer. Once a sample is
inserted its magnetic moment oscillates as an effect of the ac field and induces
a voltage in the secondary coil that can be easily detected in amplitude and
phase. To eliminate the signal induced by non-perfect balancing of the coils the
sample is moved from the centre of a secondary coil to the centre of the other.
The measurement can be done also in a static field H0 parallel to the oscillating
field h so that the applied magnetic field becomes

H = H0 + hcosωt (3.20)

where ω is the angular frequency of the ac current flowing in the primary.
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Fig. 3.15. A schematic view of the primary and secondary coil design usually
employed in ac susceptometers.
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�dc = M/H �ac = ∂M/∂H

Fig. 3.16. A schematic magnetization curve where the differences between M/H
and dM/dH are highlighted. The amplitude of the oscillating field is enlarged
for clarity.

The advantage of measuring the ac susceptibility is clearer in Fig. 3.16. The
magnetization curve can be a non-linear function of H but for the small field oscil-
lations given by the primary coil the response is in general linear, and ∆M/∆H
corresponds to the susceptibility. The signal amplitude is proportional to ∆M
and therefore depends linearly on h but not directly on H0. Usually it decreases
with H0 and therefore this type of measurement is particularly well suited to
investigate the behaviour at low applied static field, without loss of sensitivity.

The major advantage of the technique resides, however, on the fact that the
dynamics of the magnetization can be easily investigated by varying ω. Since the
first experiments, done in the 1930s by C. J. Gorter (Gorter and Brons 1937)
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at the Kamerlingh Onnes Laboratory to investigate the magnetic relaxation of
paramagnetic metal ions, the technique has seen a significant improvement of
its sensitivity, thanks to the use of lock-in detectors or even SQUIDs and Hall
probes. The principles of the measurement, however, remain the same.

The population of each state, for instance the m component of an s multiplet,
according to the Boltzmann distribution is given by:

pm =
1

Z
exp(−Em/kBT ) =

1

Z
exp(−βEm) (3.21)

where Z is the partition function and β = 1/kBT . The magnetization depends
on pm as

〈M〉 =
∑

m

pmMm. (3.22)

For simplicity we assume N spins S = 1/2 in the magnetic field given by (3.20).
The equilibrium population of the two states |1〉 with m = −1/2 and |2〉 with
m = 1/2 oscillates in time:

p1/p2 = exp[−gµB(H0 + h cos ωt)/kBT ] (3.23)

The establishment of thermal equilibrium requires a time τ . If the frequency ω of
the ac field is low, ωτ ≪ 1, the susceptibility which is measured is the isothermal
one, χ = χT. On the contrary, in the limit ωτ ≫ 1, the system has no time to
exchange energy with the external world and one measures the adiabatic sus-
ceptibility χS . In the intermediate regime, Casimir and Du Pré (1938) proposed
the following interpolation formula for the measured susceptibility:

χ(ω) = χS +
χT − χS

1 + iωτ
. (3.24)

If χS and χT are real, the real and imaginary components of the susceptibility
are given by:

χ′ =
χT − χS

1 + ω2τ2
+ χS ; χ′′ =

(χT − χS)ωτ

1 + ω2τ2
. (3.25)

Mathematically analogous relations have been determined for dielectrics by
Debye (Mc Connell 1980).

It may be appropriate to recall that the complex susceptibility is defined by

M(t) = M0 + Re[(χ′ − iχ′′)heiωt] = M0 + (χ′ cos ωt + χ′′ sinωt)h (3.26)

The assumption of real χS and χT in (3.25) is justified if the frequency is so
low that χS(ω) and χT (ω) are practically equal to the static values χS(0) and
χT (0). At very high frequency, both χS(ω) and χT (ω) vanish. In practice, χS(ω)
may be interpreted as the susceptibility of an isolated magnetic molecule while
χT (ω) corresponds to equilibrium with phonons. An extension of the Casimir
Du Pré theory, which takes thermal conductivity into account, has been given
by Eisenstein (1951).
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Fig. 3.17. Theoretical frequency dependence of the real and imaginary compon-
ent of the magnetic susceptibility in a semi-log scale. χT and χS are the
isothermal and adiabatic limit of the susceptibility, respectively.

Figure 3.17 reports the frequency dependence of χ′ and χ′′. χ′′ goes through
a maximum when ωτ = 1, while it goes to zero for ω → 0 and ω → ∞, contrary
to χ′ which has the limiting values χT and χS .

Another common way to report dispersion data is the Cole–Cole plot used
for dielectrics (Cole and Cole 1941), known in magnetism as the Argand plot
(Dekker et al. 1989), where χ′′ versus χ′ is used. Equation (3.25) transforms in a
semicircle with its centre on the x axis, as shown in Fig. 3.18. At the top of the
semicircle the frequency satisfies the relation ω−1 = τ , and thus the relaxation
time can be easily extracted.

If the relaxation process is not characterized by a single τ but rather by a
distribution of relaxation times a simple empirical law that can account for this
is (Cole and Cole 1941):

χ(ω) = χS +
χT − χS

1 + (iωτ)1−α

and

χ′(ω) = χS + (χT − χS)
1 + (ωτ)1−α sin(πα/2)

1 + 2(ωτ)1−α sin(πα/2) + (ωτ)2−2α
(3.27)

χ′′(ω) = (χT − χS)
(ωτ)1−α cos(πα/2)

1 + 2(ωτ)1−α sin(πα/2) + (ωτ)2−2α
.

The wider the distribution in relaxation times the larger is α. This parameter
can be easily derived by the experimental ac data in the Argand plot because
the semicircle becomes an arc of a circle with its centre translated in the fourth
quadrant. The angle that subtends the arc is given by π(1 − α), as shown in
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Fig. 3.18. Argand plot (or Cole–Cole plot for dielectrics) where at a given
temperature χ′′ is plotted versus χ′, for each frequency. Solid line: no dis-
tribution in relaxation time; broken line, a distribution in τ according to
equation (3.27).

Fig. 3.18. More complex behaviour can be also observed. For instance if different
components of the magnetization relax with different processes, more semicircles,
sometimes partially merged, can be obtained (Grahl et al. 1990).

In molecular magnetism the ac susceptibility is often measured scanning the
temperature with a relatively small number of frequencies, usually in a limited
range that does not exceed three decades. An Argand plot is therefore not always
drawn with sufficient accuracy. χ(ω) is then reported as a function of the tem-
perature, rather than of ω. If τ varies with temperature, as in all mechanisms
involving an energy exchange with the phonon bath, the condition ωτ(T ) = 1 can
be met by sweeping the temperature and this gives rise to a maximum in χ′′. It is
important to stress that the condition τ(Tmax) = ω−1 is exact only if (χT − χS)
is temperature independent, which is not the case in the paramagnetic phase.
However, the simple τ(Tmax) = ω−1 relation is commonly used for paramagnetic
materials because χT , being proportional to T−1, can be considered as constant
over the narrow temperature range of the maximum. An example of temperature
and frequency investigation of χac on the molecular nanomagnet Fe8 is shown
in Fig. 3.19.

An important advantage of ac susceptometry on measurements of the decay
of the magnetization is that in the first case a stationary state is monitored.
Experimental details, like the magnetic history of the sample, have no crucial
effects on the results.

Also from the data such as those reported in Fig. 3.19 it is possible to
gain some hints if a single τ describes the relaxation, or if a distribution is
present. According to (3.25), at Tmax, χ

′ and χ′′ should have the same value if
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Fig. 3.19. Temperature dependence of the real and imaginary components of the
magnetic susceptibility of the cluster Fe8 measured in zero static field at five
frequencies.

the adiabatic susceptibility is close to zero, as commonly observed in molecular
nanomagnets.

We will not discuss here the different mechanisms of relaxation (direct,
Raman, and Orbach) observed in paramagnets (Gorter 1947). It is important
to stress that most paramagnetic systems show a divergence of the spin–lattice
relaxation time at low temperature, and τ is for instance of the order of some ms
for iron ammonium alum at 1.2 K (Casimir and Du Pré 1938). The observation
of an imaginary component of χ is therefore a rather common result. However,
simple paramagnets show a non-zero χ′′ only if a static field larger than a few
hundreds Oe is applied. The presence of a static field in fact induces a polariza-
tion, i.e. the spins precess around the direction of the static field. The application
of the oscillating field involves a modification of the population of the two energy
levels according to (3.23), and some spins reverse their precession to attain the
equilibrium. This relaxation process involves an exchange of energy with the
thermal bath through a coupling with the lattice. This energy transfer, however,
is not necessary in zero static field. Each spin in fact precesses along a variable
internal field generated by the surrounding spins. The small applied oscillating
field adds to the internal one and the spins precess around a slightly different
local field. In zero static field the relaxation process therefore involves the coup-
ling with the other spins of the systems. In this case the equilibrium is attained
in the time-scale of the spin–spin relaxation time, which does not diverge at low
temperature, being temperature independent. In concentrated paramagnets the
spin-spin relaxation time is of the order of 10−9 s while the frequency range
commonly investigated with ac susceptibility goes from 1 Hz to 100 kHz. In zero
static field therefore the isothermal limit with χ′′ = 0 is always observed.

A non-zero χ′′ is observed in some cases, for instance at the magnetic phase
transition when the magnetic order produces an internal field. As the dynamics
follow a critical behaviour at Tc, no significant frequency dependence of χ(T )
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around Tc is observed. In some cases, as in spin glasses or disordered ferro-
magnets, frequency dependence is more evident and it can become tricky to
distinguish between the single-molecule magnet behaviour and the freezing of
a spin-glass. Mydosh has suggested analysing the frequency-dependent shift of
the temperature of the maxima of χ(ω, T ), i.e. the freezing temperature Tf , by
evaluating:

F =
(∆Tf(ω)/Tf(ω))

∆ ln(ω)
(3.28)

where ∆Tf(ω) is the difference between the highest and lowest blocking temper-
atures corresponding to the extremes of the investigated frequency range that
appears, on a logarithmic scale, in the denominator.

While for spin-glasses F ranges from 0.001 to 0.08, in the case of paramagnetic
relaxation F has the value of 0.28 (Mydosh 1993). This can only be observed
when no distribution of τ is observed, a difficult condition to be realized in real
systems. For instance, Fe8, probably the SMM that best approaches the ideal
behaviour, has F = 0.24. Large deviations from the paramagnetic limit should,
however, be looked at with a critical eye and considered as evidence of a large
distribution of relaxation times that deserves further investigation.

Before closing this section it is interesting to pose a question: Why do SMMs,
which are substantially paramagnets, have χ′′ �= 0 in zero static field? We anti-
cipate here a qualitative answer leaving the detailed treatment to Chapter 5.
A SMM is a molecule with a spin ground state that is split in zero field by the
magnetic anisotropy with the m = ±S states lying lowest. In zero field and low
temperature the relaxation transfers population from one level to the other of the
lowest doublet. These states are pure m = ±S in strictly axial symmetry while
are admixed by transverse anisotropy or transverse field. The larger S is, the
smaller is the admixing and the lower is the transition probability between these
two states. If we neglect this very slow process, i.e. the tunnelling process, the
relaxation requires the system to populate other levels at an energy separation
which exceeds the spin spin interaction, and energy transfer with the lattice is
necessarily involved. In other words, the magnetic anisotropy and the large spin
value induce a sort of internal field that makes the fast spin–spin relaxation
inefficient. χ′′ �= 0 is thus observed also in zero static field, and its presence is
considered as a fingerprint of SMM behaviour.

3.2 Specific heat measurements

3.2.1 The specific heat and its magnetic part

The specific heat is one of the thermodynamic properties most investigated in
condensed matter physics, both from the experimental and theoretical points of
view (Tari 2003). From its definition, the heat, per unit of mass, necessary to
increase by a degree the temperature of the material, it is apparent that the
specific heat provides information over all the possible excitations: electronic,
vibronic, rotational, magnetic, nuclear, etc. If we focus, as usual, on molecular
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magnetic materials, we have to separate the magnetic contribution from the
others. A common procedure is to measure the specific heat of an isostructural
non-magnetic compound. The lattice contribution is thus estimated, and then
subtracted from the specific heat of the investigated compound. Such a procedure
is not applicable to molecular clusters because the diamagnetic analogue usually
cannot be prepared. The lattice contribution to the specific heat of insulating
compounds at intermediate temperature is found to follow (Ashcroft and Mermin
1976):

C =
12π4

5
nkB

(

T

θD

)3

(3.29)

where n is the number of atoms in the crystal, and θD is the Debye temperature.
This parameter represents the temperature below which the vibrational modes
start to be frozen and is therefore a measure of the ‘stiffness’ of the lattice. Its
experimental determination is important to evaluate the phonon contribution to
magnetic relaxation. Moreover, given the strong temperature dependence, well
below θD the lattice contribution becomes negligible compared to the magnetic
contribution, whose investigation becomes thus feasible at low temperature.

3.2.2 Magnetic specific heat at equilibrium

In magnetism it is convenient to use the specific heat at constant volume and at
constant fields. It is given by the general formula

C =
∂

∂T
〈H〉 (3.30)

where the derivative is taken at constant volume and fields and

〈H〉 =
1

Z
TrH exp(−βH) (3.31)

where Z = Tr exp(−βH) is the partition function.
In (3.31) it is possible to split the Hamiltonian into a non-magnetic part, and

a magnetic part, Hmag. Then one can define a magnetic specific heat:

C =
∂

∂T
〈Hmag〉 (3.30 bis)

where

〈Hmag〉 =
1

Z
TrHmag exp(−βH). (3.31 bis)

In this chapter the magnetic Hamiltonian will be assumed independent of non-
magnetic degrees of freedom. In particular the spin–phonon interaction will be
ignored in the calculation of the average values (although it is essential for the
time evolution). Then (3.31 bis) reads:

〈Hmag〉 =
1

Z
TrHmag exp(−βHmag) (3.31 ter)



SPECIFIC HEAT MEASUREMENTS 77

2 4 6 8 10 12 14

S = 5 D = –0.58 K

m0H = 0

m0H = 1T

2

4

6

8

10

12

C
H

 (
J 

m
o
l–

1
 K

–
1
)

0

14

0 16

Temperature (K)

Fig. 3.20. Temperature dependence of the magnetic specific heat calculated for
S = 5, D/kB = −0.58 K in zero field and with µ0H = 1 T, respectively
directed along the easy axis of magnetization.

As an example we can evaluate the magnetic contribution to the specific heat of
a system of N spins S in an axial magnetic anisotropy D and a magnetic field
H. The average (magnetic) energy is given by:

〈Hmag〉 =
N

∑S
m=−S (Dm2 + hm) exp[−(Dm2 + hm)/(kBT )]

∑S
m=−S exp[−(Dm2 + hm)/(kBT )]

(3.32)

where h = gµBH. The molar magnetic specific heat is easily obtained from (3.32)
if N is the Avogadro number.

The calculated temperature dependence for the case S = 5 and D/kB =
−0.58 K is shown in Fig. 3.20. The curve has the typical behaviour with a
broad maximum, also known as the Schottky anomaly, which always arises when
discrete levels are separated by an energy difference ∆. At high temperature the
specific heat goes to zero because all the states are thermally populated. At very
low temperature fewer phonons are available to excite the modes and therefore
the specific heat is zero. At intermediate temperature, a maximum is observed.
Its height and position depend of course on the energy level spectrum and the
degeneracy of each level but can easily be estimated from (3.30) and (3.32). For
a two-level system Tmax ≈ 0.42∆/kB.

In the case of a fluid, which is usually treated in textbooks of thermodynamics,
one distinguishes a specific heat at constant volume and at constant pressure.
Similarly, in magnetism, one might define a magnetic specific heat at constant
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magnetization as

CM =

(

∂W

∂T

)

M

(3.33)

where W = 〈H〉 − H〈M〉. The correspondence with the fluid is obtained from
the following substitutions

V → −M

P → H.
(3.34)

The quantity 〈W 〉 may be called the internal energy as in a fluid, while 〈H〉 is
analogous to the enthalpy. The formula analogous to (3.32) from which CM can
be evaluated is:

〈W〉 =
N

∑S
m=−S Dm2 exp[−(Dm2 + hm)/(kBT )]

∑S
m=−S exp[−(Dm2 + hm)/(kBT )]

. (3.35)

Specific heat measurements can therefore be used to estimate the energy spec-
trum, but the resolution is usually very low compared to other techniques. In
the investigation of SMMs the technique has, however, been demonstrated to
provide precious information. First of all, it has excluded the possibility that the
slow magnetic relaxation observed in SMMs is due to the occurrence of magnetic
order.

In fact a magnetic transition is revealed as an anomaly in the specific heat
with typical λ shape. No anomalies of these type have been observed for Mn12ac
or Fe8 (Gomes et al. 1998, 2001).

The application of an external magnetic field turns out to be very useful in the
characterization of SMMs. The Zeeman splitting removes the energy degeneracy
of the ±m pairs of states and the effects on the specific heat are well shown in
Fig. 3.20 with an increased specific heat compared to the zero-field case. The
contribution due to the Zeeman splitting can be detected only if the system can
reach equilibrium in the time-scale of the experiment. We will see later in detail
that precious information on the magnetization dynamics can be extracted in
this way.

3.2.3 Measurement of the magnetic specific heat: the relaxation method

We will briefly show here how the specific heat can be measured. The simplest
way, at least in principle, to evaluate the specific heat is to decouple the sample
from the surrounding, and send a known amount of heat to the sample. The
temperature of the sample is monitored and its variation allows evaluating C.
This type of measurement, schematized in Fig. 3.21, is however seriously affected
by the non-perfect adiabatic condition. The wires of the thermometer and of the
heater, as well as the sample holder, are responsible for the thermal leak.

Bachmann et al. (1972) have developed another method, also known as the
relaxation method, where the thermal link of the sample with the thermal bath
is taken into account. A heat pulse is sent to the sample and this results in a
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Fig. 3.21. Schematic view of the heat pulse (bottom) and temperature variation
(top) in: an adiabatic calorimeter (a); a semi-adiabatic calorimeter employing
the relaxation method (b); an ac calorimeter (c).

sudden temperature increase of the sample. Due to the thermal link with the
thermostat the temperature goes back to the equilibrium value, as shown in
Fig. 3.21. If the thermal conductance Kb between the sample and the bath is
constant over the investigated temperature range, and if the heat pulse gives a
temperature increase which is small compared to the sample temperature, the
time dependence of the relaxation follows the equation

C̃
dT (t)

dt
= Kb[T (t) − Tb] (3.36)

where Tb is the bath temperature and C̃ is the thermal capacity, C̃ = MC , of
the sample of mass M , with appropriate corrections due to the sample holder,
etc. Integration yields

T (t) = Tb + ∆T (0) exp

(

− t

τb

)

(3.37)

where

τb = C̃/Kb (3.38)

The thermal conductance Kb is known from a calibration of the system. Then
the measurement of the thermal relaxation τb yields the heat capacity C̃ = MC
and thus the specific heat C.

The relaxation method presents several advantages: adiabaticity is not
required and the sample can also have poor thermal conductivity. Moreover,
heat pulses at the same thermostat temperature can be repeated, increasing the
sensitivity of the technique.
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3.2.4 Magnetic specific heat in an alternating current

From (3.38) it is evident that measurements of the specific heat with the relax-
ation method provide information on the dynamics of the magnetization if the
characteristic time of this last one is comparable to or longer than τb. Faster
magnetic relaxation can be investigated using a method ‘in alternating current’.
The method, indeed quite old (Corbino 1911), is schematized in Fig. 3.21c. An
alternate current is applied to the heater at a frequency ω/2. Its effect is the
generation of a heat pulses at frequency ω and thereby temperature oscillations
at the same frequency. The amplitude of the temperature oscillation is related
to the specific heat of the sample and the sample holder. This is only true if the
frequency is sufficient large, ωτb > 1, where τb given by (3.38), is the relaxation
time of the thermal link to the bath. This can be seen from the formula

C̃
dT

dt
= −Kb[T − Tb] + Q cos ωt + Q (3.39)

which is an extension of (3.36) in the presence of a sinusoidal heat flux of
frequency ω. The solution is easily seen to be

T = Tb +
Q

Kb
+ B cos(ωt − ϕ) (3.40)

where tan ϕ = ωC̃/Kb and

|Q/B| = Kb

√

1 + ω2τ2
b . (3.41)

The measurement quantities are Q and B, and therefore the ratio Q/B given by
(3.41) can be evaluated. For ω = 0 this ratio is independent of the heat capacity
C̃. However if ω is of the order of τb or larger, the measurement of Q/B yields
τb and therefore C̃ through (3.38). In practice, a large value ωτb ≫ 1 is chosen,
so that (3.41) reads

|Q/B| = ωC̃. (3.42)

This result turns out to be independent of Kb and yields directly C̃.
The condition ωτb ≫ 1 implies a weak response B/Q, so that the system can

be said to be ‘quasi-adiabatic’. However, if ω is too large B/Q becomes too small
and the accuracy decreases. Quasi-adiabaticity implies that the temperature T
is almost in phase quadrature with the heat flux. The thermal relaxation time τb

has to be large enough in order that the temperature is homogeneous throughout
the sample.

The main advantage of the ac technique is that very small samples can be
measured, of the order of µg in mass, provided that the contribution to the spe-
cific heat of the sample holder, thermometer and heater, the so-called ‘addenda’,
are not much larger than that of the sample (Fominaya et al. 1997a). Another
important advantage is the fact that ω can be varied and therefore the time
dependence of the enthalpy can be investigated. This will be seen to be useful
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in the case of the investigation of the thermally activated magnetic relaxation of
Mn12ac and Fe8 discussed in Chapter 10. The use of a single crystal is of great
interest if a magnetic field is applied, because its alignment with respect to the
crystal axes can be chosen at will. More details on the specific heat in alternating
currents can be found in the work of Sullivan and Seidel (1968a,b).

3.3 Magnetic resonances

3.3.1 Electron paramagnetic resonance

Electron paramagnetic resonance spectroscopy induces transitions within the
m states belonging to a given S multiplet split by an external magnetic field
(Abragam and Bleaney 1986; Pilbrow 1990; Bencini and Gatteschi 1990; Bencini
and Gatteschi 1999). It provides information on the chemical environment of the
paramagnetic centre(s) and also in principle on the spin dynamics. The former
is associated to the spin–orbit coupling contribution and is given by the g, D,
and A tensors described in Chapter 2. In the following we will consider only the
EPR spectra of magnetically non-diluted systems. Under these conditions the
hyperfine structure associated to the A tensor is wiped out by the dipolar and
exchange interactions between the magnetic centres and is not experimentally
available. Therefore we will neglect this important part of the EPR spectra and
in the same way we will not mention other satellite techniques like ENDOR
spectroscopy. On the other hand, the hyperfine interaction can be obtained from
the NMR spectra described in Section 3.3.2.

An important piece of information which can be obtained from the EPR
spectra is the anisotropy of the tensors. It can be obtained directly not only
from experiments performed on single crystals but also from systems in which
the tumbling ratio of the paramagnetic centres is slow compared to the EPR
time-scale and all the orientations of the magnetic molecules are present. This
can be achieved by using polycrystalline powders or frozen solutions, for instance.
This opportunity has been largely exploited as outlined below.

Another important feature of the EPR experiment is that it can also provide
information on the spin dynamics, particularly when pulsed techniques are used.
This part of the use of the technique has so far been largely neglected in molecular
magnetism and will not be treated further.

For a static magnetic field parallel to the z axis of the g tensor, in the case of
S = 1

2 , the transition energy between m = − 1
2 and m = 1

2 is given by:

hν = gzµBH (3.43)

where ν is the radiation frequency and H is the static field. The resonances
are in the microwave range, and in this spectral region it is difficult to continu-
ously sweep frequency over a large range. Therefore the resonance is measured
by using a fixed frequency and sweeping the magnetic field. At the beginning
klystrons were used for generators; now it is more common to use semiconductor
diodes, like Gunn or IMPATT diodes. In the traditional set-up the static mag-
netic field and the oscillating magnetic field of the radiation used to induce
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Table 3.1. Microwave frequencies and
resonant fields for EPR spectroscopy.

Frequency
(GHz)

Symbol Resonant field
(g = ge), T

9 X 0.3211
35 Q 1.2489
95 W 3.3899

200 7.1366
300 10.7048
500 17.8414

the transition are orthogonal to each other, so that selection rules of the type
∆m = ±1 hold. The resonance fields for gz = ge at various frequencies are given
in Table 3.1. For historical reasons some frequency ranges are indicated by letters,
as shown in Table 3.1. In order to use small fields, easily achieved with electro-
magnets, X-band spectrometers are widely spread out. Also it is possible to use
commercial spectrometers operating at Q and, since a few years ago, W-band.
All the other sources are implemented on home-made spectrometers. In fact in
the last few years there has been a wide increase in the use of high-frequency
spectrometers.

Equation (3.43) is sufficient for multiplets S if the zero field splitting is absent.
If the field is applied parallel to x the resonance condition is the same, only gz

must be replaced by gx. The spectra are recorded by modulating at low fre-
quency the magnetic field in such a way that the output is the derivative of
the absorption curve, usually a Gaussian or a Lorentzian. The spectra of poly-
crystalline powders of a compound with S = 1

2 and anisotropic g are shown in
Fig. 3.22.

For gx = gy = gz only one line is observed like in a single crystal. For gx =
gy = g⊥; gz = g// two features are observed, that corresponding to g// being less
intense because the crystallites with the z axis parallel to the applied field are less
numerous than those with the x or y axes parallel to the field. For gx �= gy �= gz

three lines are observed. The three g values are easily obtained from the spectra,
but it is impossible to know their orientation in the molecular frame. For this,
single-crystal experiments are needed.

The inclusion of a zero-field splitting complicates the spectra. The simplest
case is that of an axial ZFS which is small compared to the Zeeman energy. The
energy levels are quantized along the magnetic field, and resonance fields for the
various m → m + 1 transitions in a perturbation approach for axial symmetry
are given by:

H(m → m + 1) =
ge

g

[

H0 − D′ 2m + 1

2
(3 cos2 θ − 1)

]

(3.44)
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Fig. 3.22. Polycrystalline powder EPR spectra of a system with S = 1
2 charac-

terized by gx �= gy �= gz (top), gx = gy �= gz (middle), and isotropic g value
(bottom).

where H0 is the resonant field of the free electron, D′ = D/(gµB), θ is the
angle between the unique axis and the external magnetic field. For a given ori-
entation each Zeeman line is split into 2S components. The neighbouring lines
are separated by D′(3 cos2 θ − 1), therefore the ZFS parameter can be directly
extracted from the spectra. The associated structure of the spectra is called the
fine structure.

The advantages of increasing the operating frequency are (Eaton and Eaton
1999; Barra et al. 1998; Barra 2001):

(i) increased resolution;

(ii) increased sensitivity;

(iii) simplification of the spectra and of their assignment;

(iv) observation of the spectra in ‘EPR’ silent species;

(v) determination of the sign of the zero-field splitting anisotropy.

Point (iv) is particularly important in SMMs. In fact these often correspond to
systems with an integer S for which the separation between neighbouring m levels
in the absence of an applied magnetic field is large. For instance, in Mn12ac the
separation between the lowest m = −10 and the first excited m = −9 state in
zero field is about 14 K. Using a 9 GHz exciting frequency, which corresponds
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Fig. 3.23. EPR spectra of polycrystalline powder spectra of Mn12ac at 525 GHz
and 30 K. Lower experimental spectra, upper calculated. The low-field
features correspond to crystallites with the external field parallel to the tetra-
gonal axis. The features correspond to the −10 → −9,−9 → −8,−8 → −7,
and −7 → −6 transitions. Reprinted with permission from (Barra et al.
1997b). Copyright (1997) by the American Physical Society.

to 0.5 K, the transition can never be observed (Blinc et al. 2001). In fact at
zero field this exciting frequency is too small to induce the transition (14 K
is about 300 GHz) and an increase in the field further increases the separation
between the two levels. At X-band frequency only a few transitions are observed,
corresponding to the high lying m levels, like −2 → −1,−1 → 0.

At the highest frequency so far used, 525 GHz (Barra et al. 1997b), the trans-
itions corresponding to the lowest lying levels, namely m = −10 → −9; m =
−9 → −8;m = −8 → −7;m = −7 → −6, are clearly resolved in the spectrum
of Fig. 3.23. This spectrum corresponds to measurements on a polycrystalline
powder pressed in a pellet. The low-field lines correspond to the resonances of
crystallites with their tetragonal axis parallel to the external magnetic field, while
the high-field lines correspond to crystallites with the tetragonal plane parallel
to the field.

If all the m levels are equipopulated (high-temperature approximation) the
intensities of the transitions can be calculated by using the Fermi golden rule:

I(m → m + 1) ∝ [S(S + 1) − m(m + 1)]. (3.45)

A simple inspection of Fig. 3.23 shows that (3.45) is not followed in the high-
frequency spectra. In fact (3.45) suggests for the allowed transitions the pattern
of intensities given in Table 3.2.

The large deviation is originated by the breakdown of the high-temperature
approximation, which requires that gµBH0/kB ≪ T . At 525 GHz, gµBH0/kB =
25 K, therefore at low temperature only the lowest m = −S level will be pop-
ulated and one transition should be observed. At intermediate temperature the
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Table 3.2. Calculated temperature dependence of
the relative intensities of the m → m + 1 trans-
itions for S = 10. The frequency is 525 GHz.
The field is applied parallel to z. Only the
second-order axial splitting D/kB = −0.72 K is
included.

m = −10 m = −9 m = −8 m = −7

I(T = ∞) 1 1.9 2.7 3.4
I(T = 300 K) 1 1.75 2.27 2.6
I(T = 100 K) 1 1.47 1.60 1.52
I(T = 50 K) 1 1.14 0.95 0.68
I(T = 35 K) 1 0.92 0.61 0.34
I(T = 20 K) 1 0.53 0.20 0.06
I(T = 5 K) 1 0.01 0.00 0.00

intensities of (3.38) will be weighted according to the Boltzmann population of
the m levels. It is interesting to note that even at 300 K the high-temperature
limit is not reached.

Another important feature of HF-EPR spectra is that they also provide the
sign of the D parameters. This should become apparent with the example worked
out below. The calculated energy levels for S = 3 in a field parallel to z are
shown in Fig. 3.24 for D > 0 and D < 0. It is evident that in the former case the
transition involving the lowest energy m level occurs at high field, while in the
latter at low field. Therefore the EPR spectra at high frequency provide the sign
of the D parameter, or the sign of the magnetic anisotropy. It is an easy exercise
using (3.44) to show that the reverse pattern is observed for the transitions
perpendicular to the unique axis.

Useful as they are, and simple to measure, polycrystalline powder EPR spectra
cannot provide the principal directions of the spin Hamiltonian tensors. In many
cases this is an important piece of information, which can only be obtained by
single-crystal spectra.

In order to show the potentialities of single-crystal EPR experiments we
present the case of the first tetranuclear iron(III) cluster of the class of the ‘iron
stars’ already discussed in Section 3.1. The present one has the formula [Fe4

(OCH3)6(dpm)6] and its structure (Barra et al. 1999) is shown in Fig. 3.25. The
crystals are monoclinic, with a crystallographically imposed binary axis passing
through Fe1 and Fe2. Each iron ion is coordinated to six oxygen atoms, defin-
ing a distorted octahedron. The oxygen atoms belong to dpm− ligands (dpm−

is the anion of dipivaloylmethane) shown also in Fig. 3.25 and to methoxide
groups.

As all the other Fe4 clusters of this type it has an S = 5 ground state. The
large zero-field splitting observed in the ground state grants SMM behaviour to
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Fig. 3.24. Spin levels of an S = 3 state in a magnetic field parallel to the unique
axis. Left, D/kB = 0.40 K; right, D/kB = −0.40 K. The transitions are
calculated for a frequency of 150 GHz.
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Fig. 3.25. View of the structure of the Fe4 cluster [Fe4(OCH3)6(dpm)6] and of
the anion of dipivaloylmethane.

this molecule. Single-crystal W-band EPR spectra were measured (Bouwen et al.
2001), which showed the expected transitions for S = 5, as shown in Fig. 3.26.

However it is apparent that more sets of transitions are present, indicating
the presence of different species in the lattice. In fact, in the crystal structure
determination, disorder was observed, which is due to the wrapping of the organic
moieties in the molecular environment, as shown in Fig. 3.27.
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Fig. 3.26. Single-crystal W-band EPR spectra of [Fe4(OCH3)6(dpm)6]. Upper
static field parallel to c; lower parallel to b. Reprinted with permission from
Bouwen et al. (2001). Copyright (2001) American Chemical Society.
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Fig. 3.27. Three different isomers present in the unit cell of Fe4. Bold lines cor-
respond to bonds emerging from the plane of the paper. They differ in the
way the bis-chelate ligands wrap around the peripheral iron(III) ion.

The oxygen atoms of the dpm and methoxide ligands define two layers, like in
a compact structure of an oxide. The iron ions related by the binary axis, Fe3 and
Fe3′, are disordered in the way the organic moieties of dpm connect the oxygen
atoms bound to the metal ions. In case A the two oxygen atoms of the dpm
ligand are on different layers, while in case B they are on the same layer. There
can be three different types of isomers, as sketched in Fig. 3.27, namely AA, AB,
and BB. Experimentally the AA isomers correspond to 49% of the molecules,
AB to 42% and the BB isomer to 9%. Although the bond distances between
the iron(III) and oxygen atoms are very similar to each other, minor changes in
the bond angles determine significant changes in the D tensors of the various
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Fig. 3.28. EPR spectra of a single crystal of Fe8 measured along the easy axis
at 190 GHz. Thicker lines correspond to experimental spectra.

isomers. In fact the axial zero-field splitting parameter D/kB is −0.296(1) K for
AA, −0.273(2) for AB, and −0.252 K for BB.

In the case of Fe4 the position of the principal axes of the D tensor is largely
determined by the symmetry and shape of the molecule. Matters are more com-
plex in a system like Fe8 where no crystal symmetry requirement is present
(Wieghardt et al. 1984). Single-crystal EPR spectra recorded at 190 GHz, shown
in Fig. 3.28, correspond to the easy axis of the magnetization at low temperature
(Barra et al. 2000). It is interesting to note that the linewidth of the m → m+1
transitions decreases with |m|. This has been attributed to crystal strain effects
leading to a small distribution of D parameter.

The use of high frequencies requires the use of high fields. The latter tend to
orient the crystals along the easy direction. If averaged polycrystalline powders
need to be used it is necessary to avoid orientation using the same techniques
described in Section 3.1.1 for magnetic measurements. Alternatively the high
field can be used to measure pseudo-single-crystal spectra.

In the recent years several developments have been made for the measure-
ment of frequency swept experiments (Kozlov and Volkov 1998 ; Van Slageren
et al. 2003). In fact, the possibility of employing backward-wave oscillators
(BWO), originally developed in the 1960s, has been explored. The BWO is a
vacuum tube similar to a klystron, where electrons are generated at a heated
cathode and accelerated towards the anode. Their kinetic energy change gener-
ates microwaves. The power output of a BWO varies from several hundreds of
mW (at about 100 GHz) to 1 mW at 1.5 THz. For a frequency swept experi-
ment several different sources are used. The advantage of using frequency swept
experiments is shown in Fig. 3.29, which shows the spectra of a pressed pellet
(Mukhin et al. 1998) of Mn12ac at 4 K.
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Fig. 3.29. Zero-field EPR spectra of a pressed pellet of Mn12ac at 5 K. Redrawn
from Mukhin et al. (1998) with permission of EDP sciences.

The peak at about 300 GHz corresponds to the transition ±10 → ±9; that
at about 250 GHz to the ±9 → ±8 transition and that at about 220 GHz
to the ±8 → ±7 transition. The relative intensities essentially depend on the
different populations of the levels at low temperature. The zero-field splitting
parameters obtained from the analysis of the spectrum of Fig. 3.29 compare well
with those obtained from the analysis of the HF-EPR spectra. The spectrum
of Fig. 3.29 clearly shows that the separation between neighbouring lines is not
constant and suggests the need to include fourth-order terms of the type αS4

z .

3.3.2 Nuclear magnetic resonance

Nuclear magnetic resonance can provide information on the properties of clusters
in several ways. One is the type of structural information which is so famil-
iar to chemists, through the so-called chemical shift. However, since in general
the clusters are paramagnetic it is the less conventional paramagnetic NMR
technique which is of relevance here (Bertini and Luchinat 1996; Köhler 2001).
The chemical shift is contained in the nuclear Zeeman term, while additional
information is contained in the hyperfine tensor A, defined in Section 2.1.2. The
experiments are performed in solution and at room temperature. The molecules
in solution tumble rapidly on the NMR time scale. Under these conditions the
experimental output is the isotropic component of the hyperfine tensor defined
in (2.19), the dipolar components being averaged to zero.

Experiments can be performed also on solid samples, both polycrystalline
powders and single crystals. In both cases, information can be obtained on the
anisotropy of the hyperfine tensor. Further it is possible to obtain information
on the electron spin dynamics by performing pulsed experiments.

An example of the use of 1H NMR in solution for obtaining structural informa-
tion is provided (Eppley et al. 1995) by the spectra of Mn12ac shown in Fig. 3.30.
The x axis corresponds to the shift (with a sign) from the absorption of a ref-
erence diamagnetic species like tetramethylsilane. The spectra of diamagnetic
species are generally limited to shifts of a few parts per million (ppm). The large
shifts observed here depend on the paramagnetic nature of the cluster.
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Fig. 3.30. 1H NMR spectra of Mn12ac in CD3CN solution at room temperature
and assignment of the peaks. The grey lines represent the integrated area of
the peaks. The labels refer to the bridging made of the acetate ligand carrying
the methyl group. Courteously provided by A. Cornia.

The first information which comes from these spectra is that the structure of
the cluster is preserved in solution, because the signals of the protons correspond
nicely to what is expected for a symmetric tetragonal structure, as will be shown
below. The peak at ca. 18.7 ppm is broader than the others. It is assigned to the
weighted average of the water molecules bound to the cluster and free. The fact
that only one averaged signal is observed indicates that there is fast exchange
between bound and free water. Fast means that the average residence time of the
water in the coordination spheres of the manganese ions is short on the NMR
time-scale. The other signals disappear if deuterated acetic acid is used in the
synthesis of the cluster, therefore they correspond to the methyl groups of the
acetates. The presence of three signals, with a pattern of intensities 1:2:1, agrees
with the tetragonal structure of the cluster in the solid state. In fact this requires
that there are four different CH3 groups, all the others being reported by the
symmetry elements of the cluster. Perusal of the structure shows that there are
three types of acetate groups which bridge pairs of manganese(III) ions, and one
bridge manganese (III)-manganese(IV) pairs. Two peaks are largely shifted from
the corresponding diamagnetic position, while the other is closer to it. Therefore
the largely shifted methyl signals are globally three times more intense than the
other one. On this basis, the latter is assigned to the four acetates which bridge
the manganese(III) and manganese(IV) ions, while the others are assigned to
the manganese(III)-manganese(III) bridges. Among these the signal with double
intensity is assigned to the eight equatorial acetates and the other to the axial
ones. Equatorial means that they approximately lie in the tetragonal plane, while
axial means that they point out of the plane as can be seen in Fig. 1.8.
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These qualitative considerations should rely on quantitative consideration:
The shifts observed correspond to the isotropic part of the hyperfine tensors of
the various protons. In fact the anisotropic components are averaged to zero
by the rapid tumbling of the molecules in solution. The isotropic part of the
hyperfine tensor is given by the sum of two contributions: one is the contact and
the other the pseudocontact one.

The contact contribution is given by the unpaired spin density on the
nucleus N :

A(N) =
µ0

3S
geµBγN |ψ(0)|2 (3.46)

where µ0 is the vacuum permeability, S is the electron spin quantum number
and |ψ(0)|2 is the probability of finding the unpaired electron at the observed
nucleus. Only s orbitals have a non-zero density on the nucleus. The observed
shifts are related to the isotropic component by:

δcon
T (N) = A(N)

gavµBS(S + 1)

3γNkT
. (3.47)

This expression is valid in the case of isotropic g and in the absence of zero-
field splitting. A more accurate relation takes into account the relaxation of these
conditions by introducing the magnetic susceptibility:

δcon
T (N) = A(N)

1

3γNµB

(

χxx

gxx
+

χyy

gyy
+

χzz

gzz

)

. (3.48)

It is apparent that the NMR experiment provides the unpaired spin densities on
the magnetic nuclei. In this sense it is similar to polarized neutron experiments
to be discussed below. However for the latter the spin density is measured in
all the lattice positions, while the NMR experiment can only monitor it at the
discrete positions corresponding to the coordinates of the magnetic nuclei.

The contact term is not the only one giving rise to an isotropic shift. In the
case of not completely quenched orbital moment one must also take into account
the isotropic part of the orbital-dipolar contribution. It can be calculated in the
ligand field approximation by extending the approaches outlined in Chapter 2.
A convenient form of expressing it, in analogy to (3.48), is

δdip
T =

1

24π

1

r3

{

[2χzz − (χxx + χyy)](3 cos2 θ − 1) + 3(χxx − χyy) sin2 θ cos 2Ω
}

(3.49)

where θ is the angle between the metal-nucleus vector r and the z molecular
axis, and Ω is the angle between the projection of the r vector in the xy plane
and the x axis.

Equations (3.48) and (3.49) are appropriate for defining the shifts in solution,
because the terms arising from the dipolar interaction between the electron and
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nuclear spin are averaged to zero by the rapid tumbling of the molecules. This is,
of course, no longer true when the experiment is performed in condensed phase,
where the dipolar terms give a sizeable contribution. In fact this kind of exper-
iment can provide first-hand information on the spin density of the magnetic
clusters. For instance in Mn12ac it is possible to perform NMR experiments on
1H (I = 1

2 ),2H (I = 1),13C (I = 1
2 ), and 55Mn (I = 5

2 ). Perhaps the most
exciting nucleus is 55Mn because it is the closest to where the magnetic action
occurs.

The 55Mn NMR spectra of oriented polycrystalline powders of Mn12ac at
1.4 K have been reported (Furukawa et al. 2001a; Kubo et al. 2002). The exper-
iments were performed both in zero applied magnetic field and at varying field.
The spectra at zero field are shown in Fig. 3.31. The required field for the NMR
experiment is provided by the magnetization of the clusters themselves which
at this temperature are not fluctuating. The spectra clearly show three main
signals of approximately the same intensity, suggesting that they correspond to
the three non-equivalent manganese ions of the unit cell (two manganese(III)
and one manganese(IV), respectively). The structure of the signals is due to the
quadrupolar interaction of the 55Mn nuclei. In fact they have I = 5

2 , splitting the
signal into five lines of intensities 1:1:1:1:1. The assignment of the signals is made
based on the extent of the quadrupolar splitting. The manganese(IV) ions have a
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Fig. 3.31. 55Mn NMR spectra of Mn12Ac at 1.4 K and zero applied magnetic
field. The inset shows the field dependence of the signals. Reprinted with
permission from Furukawa et al. (2001). Copyright (2001) American Physical
Society.
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coordination environment close to a regular octahedron, so they show a relatively
narrow line, because in octahedral symmetry the quadrupolar splitting goes to
zero. The Hamiltonian for the quadrupolar interaction is usually written as:

H =
e2Qqzz

4I(I − 1)

[

3I2
z − I(I + 1) + η

(

I2
x − I2

y

)]

(3.50)

where eQ is the quadrupole moment and eqzz is the maximum principal value
of the electric field gradient Vzz along the z axis. η is an asymmetry para-
meter defined by (Vxx − Vyy)/Vzz. It is interesting to note the analogy of the
Hamiltonian (3.50) with that of the zero-field splitting (2.7). The quadrupolar
splitting for the signal attributed to manganese(IV) is ∆νQ = 0.72(5) MHz. The
broad signal at 279.4(1) MHz , P1, has a quadrupole splitting ∆νQ = 4.3(1) MHz,
while the signal at 364.4(1) MHz, P2, has ∆νQ = 2.9(1) MHz. Since the devi-
ations of the coordination octahedron of the two manganese(III) sites from
regular octahedral symmetry are different it has been possible to assign the
signal with larger quadrupolar moment to the more distorted Mn3+ sites.1

Another possible origin of the broad lines is the presence of several distorted
isomers in the unit cell, a feature that will be discussed in Section 4.7.1. Better
resolved spectra have indeed been observed on a different Mn12 derivative,
namely with bromo-acetic acid, which does not show distorted isomers (Harter
et al. 2005).

The addition of an external magnetic field parallel to the unique axis provides
additional information on the relative orientation of the spins on the different
manganese ions. In fact the signals corresponding to the manganese(III) ions
move to lower frequency, suggesting that their magnetization is parallel to the
external field, while the signal corresponding to manganese(IV) shifts to higher
frequency, confirming that its magnetization is essentially antiparallel to the mag-
netic field. This is a confirmation of the ferrimagnetic nature of the ground state.

The hyperfine tensor of the manganese(IV) ion is isotropic and dominated
by the contact contribution. In fact the dipolar contribution goes to zero in an
octahedral environment. The unpaired electrons are to a good approximation
in the d orbitals, but spin polarization effects induce some density also in the
s orbitals. The calculated Fermi contact contribution for the manganese(IV) ion
is −29.3 T, while the value observed in Mn12ac is −21.84 T. The reduction in
the value in bound metal ions is usually associated with covalency effects.

For the manganese(III) ions both the Fermi contact and the dipolar contri-
bution are different from zero. The NMR frequency for the transition mI − 1 ↔
mI , νm, is given by:

νm = νF − 1

2
(3 cos2 θ − 1)

[

νd −
(

mI − 1

2

)

νQ

]

(3.51)

where νF is the Fermi, νd is the dipolar and νQ is quadrupolar frequency,
respectively. By analysing the dependence of the observed hyperfine fields on

1 This corresponds to Mn(2) in the labelling scheme of Fig. 4.20.
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the orientation of the external magnetic field it was possible to obtain the Fermi
contact and the dipolar component. It was found that the Fermi contact com-
ponents are identical for Mn(2) and Mn(3), −41.24 T, the difference in resonance
frequencies being determined by the dipolar component. The calculated value for
the free manganese(III) ion is −48.5 T, while the experimental value measured
by EPR for Mn3+ in TiO2 is −41.48 T (Geritsen and Sabisky 1963).

Beyond providing information on the spin density on the clusters through
the resonance frequencies, NMR can provide useful information through the
relaxation times. In a modern NMR spectrometer pulsed techniques are used,
associated with fast Fourier transforms. The spectra and the time dependence
of the free induction decay, FID, are measured using different pulse techniques.
In the case of SMM it is the so-called Hahn echo technique which is used, taking
advantage of the extremely long relaxation times observed at low temperature
(Slichter 1963).

The Hahn echo consists in sending a 90◦ pulse which sends the nuclear magnet-
ization vector in the plane perpendicular to the magnetic field, Fig. 3.32. During
the waiting time τ the magnetization starts to dephase in the plane until a 180◦

pulse refocuses it, yielding an echo signal. How the echo amplitude decreases on
increasing τ provides information on the nuclear spin dynamics.

Echo experiments were performed on Mn12ac (Goto et al. 2003) and the mag-
netic relaxation was observed on the Mn4+ resonance. The sample was prepared
by cooling the oriented powder in a field H = 1.2 T from 4.2 to 2.0 K. Under
these conditions the resonance is observed at ν = 230.4+(γMn/2π)H. The relax-
ation was monitored by measuring the time variation of the intensity of the
echo after switching the field to −1.2 T. The reversal of the external field can
be achieved in a few seconds. Since the nuclear relaxation is much slower than
this the measurements are not affected. The recovery follows a square-root time
dependence (Fig. 3.33) as suggested by theoretical treatments to be discussed
below. In the inset is shown the field dependence of the relaxation times at 2.0 K.
A periodic behaviour is apparent, with minima at H = nH1, where n = 0, 1, 2, . . .
and H1 = 0.4 T. The anomalies correspond to the fields where crossing of the m
levels of the ground S = 10 multiplet occur, and are the signature of quantum
tunnelling effects, as will be discussed at length below. Analogous results were
obtained from measurements on the proton spectra.

	/2 pulse 	 pulse RefocusingWait time �

Fig. 3.32. Scheme of the pulse sequence for the Hahn echo.
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Fig. 3.33. 55Mn spin echo amplitude of Mn4+ ions in Mn12ac. The inset shows the
relaxation time τ versus the applied magnetic field. Reprinted with permission
from Kubo et al. (2002). Copyright (2002) American Physical Society.

3.3.3 Muon spin resonance (µSR)

Under the heading µSR several techniques are collected: µ stands for muon,
S for spin, and R can be rotation, resonance, relaxation (Blundell 2001; Blundell
and Pratt 2004). A muon, which has spin S = 1

2 , is a particle of mass and
gyromagnetic ratio intermediate between that of the electron and the proton
(Table 3.3).

It may be either positively or negatively charged, but the one which is mostly
used for experiments on magnets is µ+. The µ+ are obtained by collision of
a high-energy proton beam with a target which generates pions (Schenck and
Gygax 1995). These decay rapidly to muons. In the simplest case (the only
one to be considered in this book) the emerging muon beam is completely spin
polarized, and this is indeed an important feature for the µSR technique. The
muons enter a sample and localize at some particular site, which is generally not
known. The implanted muon decays into a positron with emission of a neutrino
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Table 3.3. Physical constants for proton, muon, electron, and neutron.

Particle Mass (kg) Charge Spin µ(J/T) g γ/2π(MHz/T)

Proton 1.672 · 10−27 +1 1
2

1.410607 · 10−26 5.585 695 42.5774813

Muon 1.883 · 10−28 ±1 1
2

−4.490448 · 10−26 −2.002 331 135.538817

Electron 9.109 · 10−31 −1 1
2

−9.284764 · 10−24 −2.002 319 28024.9532

Neutron 1.675 · 10−27 0 1
2

−0.966236 · 10−26 −3.826 085 29.1646958

Magnetic
field

Sample

Forward detectorBackward detector

µ+

Fig. 3.34. Scheme of a µSR spectrometer showing the two positron detectors
and the polarization of the spin of the muon that is antiparallel to the muon
beam. The magnetic field is applied perpendicular to this direction.

and an antineutrino according to the equation:

µ+ → e+ + νe + ν̄µ (3.52)

with a mean lifetime of 2.2 µs. The emitted positrons are monitored with two
detectors in order to provide information on the spin direction of decaying muons.
Accelerator facilities where experiments can be performed are in Switzerland,
England, Canada, and Japan. A very simple scheme of an apparatus is shown in
Fig. 3.34.

The muons are spin polarized with their spin antiparallel to the beam dir-
ection. The positrons are emitted preferentially along the muon spin direction.
When the muon is implanted in the sample the presence of a transverse magnetic
field causes the precession of the muons and a change of the spin polarization.
Short-lived muons have no time to change their spin polarization, therefore the
emitted positrons will be captured by the backward detector, while the long-lived
muons will invert their polarization giving rise to positrons which are captured
by the forward detector. Therefore the information on the spin autocorrelation
function G(t) = A(t)/Amax, where A(t) is the so-called asymmetry function, is
given by

A(t) =
NB(t) − NF(t)

NB(t) + NF(t)
(3.53)
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and NB(t) and NF(t) are the numbers of positrons detected by the backward
and forward detector, respectively.

For a muon site with a local field at an angle θ to the initial muon spin
direction at the moment of implantation the spin autocorrelation function is
given by

G(t) = cos2 θ + sin2 θ cos(γµHt). (3.54)

In the absence of an external field, if the direction of the local magnetic field H
is entirely random while the modulus is the same everywhere then the averaging
over all directions would yield

G(t) =
1

3
+

2

3
cos(γµHt). (3.55)

For a Gaussian distribution of the local field experienced by the muons of width
∆/γµ centred around zero, then

G(t) =
1

3
+

2

3
e−∆2t2/2(1 − ∆2t2). (3.56)

This is the so-called Kubo–Toyabe equation (Kubo and Toyabe 1967).
µSR measurements were performed on Mn12ac samples (Lascialfari et al.

1998), both in zero field and in the presence of applied magnetic fields ran-
ging from 0.025 to 0.37 T. The time dependence of the asymmetry of the muon
beam was fitted with a stretched exponential:

A(t) = A(0) exp[−λt]β (3.57)

where λ is the equivalent of a longitudinal relaxation time, defined more precisely
in (3.59), and β is between 0 and 1. The need of a stretched exponential for fitting
the experimental data is taken as an indication that there are several muon sites.
The plot of the λ values, obtained from the analysis of the experimental data,
as a function of the temperature at various fields is shown in Fig. 3.35.

For the sake of simplicity, the interaction between the muon spin I and
a molecular spin S will be assumed to be isotropic and described by the
parameter a:

Hint = aS · I. (3.58)

Detailed formulae will be given in the case of an exponential relaxation (β = 1)
resulting from the interaction of the muon with a single molecular spin S. Then,
the relaxation rate of the muon spin can be expressed (White 1983; Lancaster
et al. 2004) as

λ =
a2

2h̄2

∫ ∞

−∞

〈

S−(t)S+(0)
〉

exp(iωt)dt (3.59)

where ω is the Larmor frequency of the muon. It vanishes if the magnetic field is
zero. Formula (3.59) is well known in nuclear magnetic resonance, and gives the
contribution of a paramagnetic impurity to the spin–lattice relaxation rate 1/T1
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Fig. 3.35. Temperature dependence of the asymmetry of the muon beam in
Mn12ac. In the inset is shown the corresponding temperature dependence of
the proton relaxation rate. Reprinted with permission from Lascialfari et al.
(1998). Copyright (1998) American Physical Society.

(White 1983). It is valid when the electronic spin S relaxes much faster than the
muonic or nuclear spin I.

If the external field and the muon spin are parallel to the easy anisotropy
axis z,

〈S−(t)S+(0)〉 =
∑

m,m′

1

Z
exp

−Em

kBT
〈m|S−(t)|m′〉〈m′|S+(0)|m〉 (3.60)

where Z =
∑

m exp[−Em/(kBT )]. In the absence of damping,

〈m|S−(t)|m′〉 = δm,m′−1〈m|S−|m′〉 exp
i(Em − Em′)t

h̄

has an oscillating behaviour. In practice the oscillations are damped. A simple
assumption is

〈m|S−(t)|m + 1〉 = 〈m|S−|m + 1〉 exp
i(Em − Em+1)t

h̄
exp

−t

τ+
m

.



NEUTRON TECHNIQUES 99

Then according to Salman (2002) and Lancaster et al. (2004)

〈

S−(t)S+(0)
〉

=
1

Z

∑

m

∣

∣〈m + 1| S+|m〉
∣

∣

2
exp

−Em

kBT
exp

i(Em − Em+1)t

h̄
exp

−t

τ+
m

.

(3.61)

In the simplest case, Em = −|D|m2 + gµBHz. If the field is not parallel to
the easy axis z, formula (3.61) should be replaced by a more complicated one
derived by Lancaster et al. (2004). The expression for τ+

m as a function of the
spin–phonon interaction will be given in Chapter 11.

3.4 Neutron techniques

Neutrons are very powerful probes for obtaining information on crystal struc-
tures, on the magnetization density and on the energies of the low-lying levels in
condensed matter studies (Lovesey 1986; Williams 1988). For molecular nano-
magnets the most appealing applications are the inelastic scattering, INS, which
provides information on the low-lying spin levels that is largely complementary
to that obtained by EPR as outlined above, and polarized neutron diffraction,
PND, which provides information on the magnetization density in the clusters
(Schweizer and Ressouche 2001; Gillon 2001; Basler et al. 2003). The latter there-
fore provides information which is analogous to that obtained through NMR, as
shown in Section 3.3.2. However, magnetization density is available to NMR only
on magnetic nuclei, while the use of neutrons allows the reconstruction of the
complete magnetization map in all the points of space.

3.4.1 Polarized neutron diffraction

The neutrons interact in matter with nuclei, but also with magnetic moments,
because neutrons have a spin. The key idea for using polarized neutron diffraction
(PND) is to polarize all molecular magnetic moments in the same direction by
a magnetic field, and to take advantage of the different cross-section for spin
polarized neutron beams of different polarization. A quantity which is measured
in a typical PND experiment is the ratio of the intensities I+ and I− of the
scattered beams when the neutron spin is respectively parallel and opposite to
the magnetization, i.e. to the magnetic field (Blume 1963; Tasset 2001). The
quantity R = I+/I− is called the flipping ratio. In the case of centric structure,
it is given by:

R(K) =
1 + 2Pγ sin2 α + γ2 sin2 α

1 − 2Pγ sin2 α + γ2 sin2 α
(3.62)

where α is the angle between the field axis and the scattering vector K, and

γ =
FMz(K)

FN (K)
. (3.63)
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K is the vector difference between the propagation vectors of the incident and
scattered beams. FN is the nuclear structure factor

FN (K) =
∑

j

bje
iK.rj e−Wj (3.64)

where the sum is over all the atoms of the unit cell, bj is the nuclear scattering
factor for the element j, rj gives the coordinates in the unit cell, and wj is the
thermal Debye–Waller factor. FM is the magnetic structure factor:

FM (K) =

∫

cell

M(r)eiK.rd3r. (3.65)

In the case of a paramagnetic sample, where the value of γ is much smaller than
1, equation (3.62) can be approximated as R ∼= 1 + 4(P sin2 α)γ. The intensity
scales linearly with γ in the polarized beam, while for the unpolarized case it
scales as γ2. Therefore magnetic moments as small as 10−3 µB can easily be
detected.

The first step for a PND experiment is the measurement of the crystal
structure in the absence of an applied magnetic field. Then a given number
of additional reflections are measured in the presence of the field and with polar-
ized neutrons. The interpretation of the data is far from being simple, and a
short discussion is needed for critically understanding the reported ‘experimental’
results.

There are several different methods for obtaining the direct space magnetiza-
tion starting from the reciprocal lattice data obtained from experiment. They can
be reduced to two approaches, namely the direct (model-free) methods and the
parameterized models. Among the latter the most common approaches are the so-
called wavefunction approach and the multipole expansion. In the wavefunction
approach the spin density is calculated starting from model wavefunctions, using
Hartree–Fock type magnetic wavefunctions constructed as linear combinations
of atomic orbitals. The parameters are the spin populations at each magnetic
site, the coefficients of the linear combinations and the radial exponents of the
Slater orbitals.

The multipole expansion provides more flexibility. It uses an expansion of the
spin density using spherical harmonic functions centred at the atomic positions
for the angular part and Slater-type functions for the radial part:

M(r) =
∑

atoms

∑

l

Rl(r)

+l
∑

m=−l

PlmYlm(θ, ϕ) (3.66)

where Rl(r) is a radial function, Plm is the statistical weight of the spherical
harmonic, Ylm(θ, φ) is a spherical harmonic. The parameters are the radial expo-
nents of the Slater functions and the populations of the spherical harmonics. It
is apparent that these models depend dramatically on the starting model, given
also the small excess of experimental data points compared with the parameters
which are needed for the fit of the experimental data.
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In order to avoid this inconvenience, in the last few years a model-free
approach has been introduced, the so-called maximum entropy approach (Gull
and Daniell 1978; Papoular and Gillon 1990). This is a general approach for the
treatment of experimental data. Given the limited number of data points, and
the error bars on them, there are infinite numbers of maps of spin density which
approximately satisfy them. The maximum entropy approach defines a probab-
ility for each map, as the product of the likelihood, which is the agreement with
the observed data, and the prior, which represents the intrinsic probability of
the map and is related to its Boltzmann entropy. The best map is identified
as the one which gives the maximum Boltzmann entropy and agrees with the
experimental data.

PND data have been used for several molecular magnetic materials, and in
the case of clusters they have provided useful information on the mechanism of
exchange interaction which is difficult to obtain otherwise. Perhaps the most
exciting result has been obtained from the analysis of Fe8 (Pontillon et al.
1999). The magnetic data of this compound provide clear evidence of a S = 10
ground state. Since the cluster comprises eight iron(III) ions, each with S = 5

2
(Wieghardt et al. 1984), it is a simple matter to suggest that the S = 10 ground
state originated from having six individual spins parallel to each other (S = 15),
and two antiparallel (S = 5). However it is by no means trivial to understand
which are the spin-up and the spin-down ions. The analysis of the temperature
dependence of the magnetic susceptibility suggested that the spin-down ions are

(a) (b)

Fe7

Fe2

Fe6

Fe3

Fe5

Fe1

Fe8

Fe4
Fe3

Fe5

Fe1

Fe4

Fe8

Fe6
Fe2

Fe7

Fig. 3.36. (a) Structure of the Fe8 cluster with the spin structure of the ground
S = 10 state schematized by the arrows. (b) Spin density map obtained by
polarized neutron diffraction experiments. Spin density contours are drawn at

0.7 µB/Å
2
. Negative spin density is represented by dashed lines. Spin density

map reprinted with permission from Pontillon et al. (1999). Copyright (1999)
American Chemical Society.
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Fig. 3.37. Oriented-crystals 57Fe NMR spectra of Fe8 at 1.5K in zero field and
with the field applied along the easy axis (a) and perpendicular to it (c).
Kindly provided by F. Borsa. More information is available in Furukawa
et al. (2003).

the ones labelled as Fe3 and Fe4 in Fig. 3.36. The PND data were collected at
T = 2 K using a single crystal of 2.9 × 1.8 × 1.0 mm size in magnetic field of 4.6
T. At the qualitative level the answer provided by the PND experiment is very
simple: the spins of the ions Fe1, Fe2, Fe5, Fe6, Fe7, Fe8 are up and the spins
of the Fe3 and Fe4 ions are down, thus confirming the results obtained by the
analysis of the magnetic data.

It is interesting to compare the PND data with those obtained by 57Fe NMR
(Furukawa et al. 2003) shown in Fig. 3.37. The spectra are recorded on oriented
crystals of 57Fe enriched Fe8. Eight signals are observed in agreement with the
lack of symmetry elements in the Fe8 molecule. The field dependence of the
signals clearly shows that two spins are antiparallel and six are parallel to
the applied field.

Another useful application of PND to magnetic clusters has been obtained
(Caneschi et al. 1997) with [Et3NH]2 [Mn(CH3CN)4(H2O)2][Mn10O4(biphen)4
Br12], Mn10 (Goldberg et al. 1995). The compound comprises isolated
manganese(II) ions, and a cluster with ten metal ions, whose structure is sketched
in Fig. 3.38. The cluster has tetragonal symmetry, and can be described as a
central octahedron of manganese ions, with four faces capped by an additional
metal ion. The ten metal ions have a total positive charge corresponding to
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Mn2

Mn3

Mn1
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Fig. 3.38. Left: sketch of the structure of the core of Mn10. The Mn3+ ions
are drawn as darker spheres and the arrows represent the spin structure.
Right: spin density map of Mn10 projected on the plane perpendicular to the
tetragonal axis. Broken lines are used to represent negative spin densities.
Redrawn from Caneschi et al. (1997). Copyright (1997) Elsevier.

24 electrons. Four manganese(III) ions, labelled as Mn3, define the equatorial
plane of an octahedron while and two manganese(II) ions, Mn1, define the axial
vertices of the octahedron. Four faces of the octahedron are capped by man-
ganese(II) ions, labelled as Mn2. The assignment of the oxidation states are
made on the basis of charge compensation and bond distances. The manganese
ions are connected by oxide and bromide bridges. The maximum spin value for
the ground state is S = 23, for parallel orientation of all the spins. In the case
of antiferromagnetic interactions many different ground states can be observed.

The temperature dependence of the magnetic susceptibility provides clear
evidence for the presence of antiferromagnetic interaction, but the nature of the
ground state could not be unambiguously determined, given also the presence
of an additional manganese(II) ion in the lattice. It was, however, suggested
that in the ground state the spin is quite high, S ≥ 12. PND data provided
a pictorial view of the nature of the ground state, as shown in Fig. 3.38. In
fact the magnetization density, shown in the plane orthogonal to the tetragonal
axis, is positive in all the manganese ions, except the two manganese(II) on the
vertices of the octahedron. A simple account, considering only spin-up, spin-
down configurations suggest S = 13. Interestingly the spin density around the
Mn3+ sites appears much more distorted from spherical symmetry, in agreement
with the electronic configuration of a d4 ion exhibiting Jahn–Teller distortion.
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3.4.2 Inelastic neutron scattering

Inelastic neutron scattering, INS, is a very powerful tool for examining the low-
lying energy levels of magnetic clusters. At the basis of this spectroscopy is
the fact that neutrons have S = 1

2 and they can induce transitions between
spin states |f〉 and |i〉 according to a magnetic scattering function I(Q, h̄ω)
defined as:

I(Q, h̄ω) ∝ F 2(Q)
∑

i,f

pi |〈f |S⊥ |i 〉|2 P (h̄ω − ∆fi, Γfi) (3.67)

where F (Q) is the magnetic scattering factor of the metal ion, pn is the
Boltzmann population of the n level, pn = exp(−En/kT )/Z and S⊥ is the spin
component perpendicular to the neutron scattering vector Q. P (h̄ω − ∆fi, Γfi)
describes the lineshape for a peak of full width at half maximum Γfi and energy
transfer centred at ∆fi. The selection rules for the allowed transitions can be
resumed as ∆S = 0, ±1,∆m = ±1.

The first case of successful use of INS for the analysis of the low-lying levels
of a cluster was provided by Fe8 (Caciuffo et al. 1998), where they confirmed the
splitting of the ground S = 10 state obtained through HF-EPR analysis. The
spectra at various temperatures are shown in Fig. 3.39.

The assignment of the transitions is easily made on the basis of band position
and temperature dependence of the intensity. Compared to HF-EPR at any rate
INS has an additional advantage, that of providing not only the energies of
the states between which transitions are observed, but also the nature of the
wavefunctions. These provide extremely important information which can put
on a firm basis the speculations on the mechanisms of magnetic relaxation.

A complete analysis of the INS data can be performed using a method
developed by Borras-Almenar et al. (1999). This was first applied to a tetra-
nuclear nickel(II) cluster [Ni4(H2O)2(PW9O34)2]

10−, which has the structure
sketched in Fig. 3.40 (Clemente-Juan et al. 1999).

The temperature dependence of the magnetic susceptibility and of the mag-
netization provided clear evidence that the ground state has S = 4, with a
zero-field splitting leaving the M = 0 component lowest. The INS spectra were
analysed using the spin Hamiltonian:

H = −J(S1 · S3 + S1 · S4 + S2 · S3 + S2 · S4)

− J ′(S1 · S2) + D(S2
z1 + S2

z2) + D′(S2
z3 + S2

z4). (3.68)

The best fit of the INS data, which provide the scheme of energy levels sketched
in Figure 3.41, requires J/kB = 19.3 K;J ′/kB = 9.1 K;D/kB = 5.4 K;D′/kB =
7.0 K. The comparison between the observed and calculated data, and the nature
of the wavefunctions, are shown in Table 3.4. The wavefunctions are labelled
as :|(S12)(S123)SM〉, with M an eigenvalue of Sz.

The observed separations between the |S ± M〉 levels of the ground S = 4
state follow a 1:2.9:6.64:11.6 pattern to be compared to the expected 1:3:5:7 for a
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Fig. 3.39. Inelastic neutron scattering spectra of Fe8 at 4.8 K (upper) and 9.6 K
(lower). Adapted from Caciuffo et al. (1998). Copyright (1998) American
Physical Society.
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Fig. 3.40. Sketch of the structure of [Ni4(H2O)2(PW9O34)2]
10−(a) and exchange

pathways (b). Reprinted with permission from Clemente-Juan et al. (1999).
Copyright (1999) American Chemical Society.
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Fig. 3.41. Calculated energy level diagram derived from the fit of the INS data.
Reprinted with permission from Clemente-Juan et al. (1999). Copyright
(1999) American Chemical Society.

Table 3.4. Experimental and calculated energy levels for Ni4 from the
analysis of the INS data.

Experimental
energy (meV)

Calculated energy
(meV)

Main contributions to the functions
|(S12)(S123)SM〉

0 0 0.997|(2)(3)40〉
0.11(1) 0.09 0.997|(2)(3)4 ± 1〉
0.32(2) 0.33 0.999|(2)(3)4 ± 2〉
0.73(2) 0.73 1.000|(2)(3)4 ± 3〉
1.28(2) 1.27 1.000|(2)(3)4 ± 4〉
Band centred
at 3.6 3.75 −0.576|(2)(2)3 0〉 + 0.815|(2)(3)3 0〉

3.76 ∓0.576|(2)(2)3 ± 1〉 ± 0.813|(2)(3)3 ± 1〉
3.82 −0.575|(2)(2)3 ± 2〉 + 0.813|(2)(3)3 ± 2〉
3.98 ∓0.577|(2)(2)3 ± 3〉 ± 0.816|(2)(3)3 ± 3〉

Band centred
at 5.1 5.17 |(1)(2)3 0〉

5.20 ±0.990|(1)(2)3 ± 1〉
5.37 0.996|(1)(2)3 ± 2〉
5.66 |(1)(2)3 ± 3〉

Band centred
at 7.0 From 6.76 to 9.06 Linear combinations of |(2)(2)3 ± M〉,

|(2)(3)3 ± M〉, |(2)(2)2 ± M〉, |(2)(3)2 ± M〉
and |(2)(1)2 + M〉
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pure S = 4 multiplet. Therefore a fitting of the |S = 4±M〉 levels with only one
parameter Dcluster cannot be made, and the Hamiltonian (3.67) appears to be
more appropriate. The role of the admixtures of total spin levels with different
S cannot be neglected. If we use the spin projection techniques of the individual
spin on the total spin S we expect for the ground S = 4 state:

Dcluster =
(D + D′)

14
. (3.69)

Using the best-fit D and D′ values Dcluster = 0.076 meV is calculated which
is significantly smaller than the energy difference between the |(2)(3)4 0〉 and
|(2)(3)4 ± 1〉 levels. The origin of the difference is due to the fact that the zero
field splittings of the individual nickel(II) ions are not negligible compared to the
isotropic coupling constants J and J ′.

Another interesting example of the use of INS to get precious information
on the magnetic exchange in molecular nanomagnets is a detailed study of an
equatorial triangle of antiferromagnetic spins S = 1

2 in the polyoxocluster known
as V15 (Chaboussant et al. 2004). The magnetic properties of this cluster will be
discussed in more detail in Section 14.3.2.



4

SINGLE-MOLECULE MAGNETS

In the physical literature on SMMs the molecules that are the object of the
investigation are often over-schematized. Classes of molecules are nicknamed
principally according to their metal nuclearity. More recently it has, however,
emerged that what is around the magnetic centres plays a major role in the
dynamics of the magnetization of these objects, especially in the quantum tun-
nelling regime. These aspects will be addressed in the following chapters. The
aim of this chapter is rather to provide the reader with some basic tools to
understand what is behind a long and unpronounceable formula.

The molecular aggregate object of this book represents a mesoscopic phase
between the isolated paramagnetic metal ion, for instance the aquo-ion in acid
aqueous solution, and the extended oxide or hydroxide lattices that precipitate at
higher pH. This intermediate nuclearity in fact results from a complex balance of
different interactions, and many parameters need to be controlled during the syn-
thetic process. The many different groups involved in the synthesis of SMMs, or
more generally of molecular clusters, have developed their own strategies. Some
of these have led to aesthetically remarkable objects, some others have provided
simple and predictable results that have, however, significantly improved our
understanding of the dynamics of the magnetization in these materials.

When looking at a complex structure where tens of metal ions are wonderfully
arranged to form rings, doughnuts, spheres, Archimedean solids, and in general a
large variety of polyhedra (Alvarez 2005), a question comes to the mind: has that
particular structure been predicted, or is it the outcome of a synthetic process
that is mainly out of our control? We will try, as far as possible, to shed some
light on this delicate point.

4.1 Serendipity versus rational design of SMMs

It is undeniable that chemists have the ambition to reach full control over the
outcome of the synthetic process they are carrying on. This achievement can
only occur through a long, and not always easy, process of rationalization of
the factors that determine the molecular structure. Such a goal has certainly
been achieved in some special, fortunate, cases, mainly where the polynuclear
structure of the cluster results from the self-assembly of stable or, more precisely,
inert building blocks. A well-known example, that we will discuss in detail in the
next paragraph, is the use of polycyanometalate. For instance, the Cr(CN)3−

6

building block has six dangling CN− groups that can bind six metal ions to form
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a cluster which has the shape of an octahedron with the chromium in the centre.
The outcome is in this case quite predictable and the number of metal atoms, the
nuclearity, of these clusters can be controlled. Is this the winning strategy? Some
scientists are not of this opinion (Winpenny 2002). The rational design approach
has a major drawback: the outcome is limited by the scientist’s imagination. The
solutions nature can provide are instead much more numerous.

Instead on relying only on rationality, chemists have generally also some con-
fidence in their good luck. This is called ‘serendipity’. It has been claimed that
the serendipity approach is a promising strategy for the discovery of compounds
of pharmacological relevance. The casual discovery of the cytotoxicity of the
complex Pt(NH3)2Cl2, also known as cis-platin, during the investigation of the
effect of an electric field on Escherichia coli bacteria, is a well-known example
of serendipitous success (Rosemberg et al. 1969). After some decades of very
active research in anticancer drugs, thousands of people have still to cope with
the heavy side-effects of this powerful drug.

In a much less dramatic scenario, something similar has happened in the field
of SMMs. Mn12ac, obtained as an unexpected product of the reaction of Mn2+

and MnO−
4 in the presence of acetic acid (Lis 1980), still retains the record of

the highest blocking temperature despite ten years of strenuous synthetic efforts
towards SMMs with enhanced properties.

The serendipitous approach, even when successful, might appear as rather
frustrating, minimizing the active contribution from scientists working in the
field. It will be clearer in the following that, on the contrary, the ingenuity of
chemists has played a major role, forcing nature to go towards unprecedented
structures. Very successful examples are the synthesis and structure character-
ization of clusters that approach the size of small proteins (Müller et al. 2002;
Tasiopoulos et al. 2004), or the formation of ring structures with an odd number
of members thanks to the templating effect of cations of the appropriate size
(Cador et al. 2004).

4.2 Synthetic strategies to SMMs

In order to design magnetic clusters it is necessary to have available both con-
necting blocks, which provide efficient bridges and determine the growth of the
cluster, and terminal blocks, which stop the growth of the cluster at a finite
size. The bridging blocks must not only provide the right connection between
the metal ions but also provide efficient exchange pathways thus assuring strong
magnetic coupling. The sign and intensity of the exchange interaction, para-
meters of paramount importance, depend dramatically on geometrical factors as
already mentioned in Chapter 2.

In the design and synthesis of molecular clusters, indeed polynuclear
coordination compounds, the choice of the appropriate ligand is probably the
most important step. The ligand (from the latin word ligare, to bind) is any
molecular moiety that has at least one donor atom, i.e. an atom with a non-
bonding electron pair, like oxygen and nitrogen atoms in the molecules of Fig. 4.1.
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Fig. 4.1. Schematic structure of some commonly employed chelating ligands and
their abbreviated names.

A ligand is called mono-, bi-, tri-, etc., dentate, if it possess one, two, etc.,
donor atoms. The use of different types of ligands is often what differentiates the
research of the many groups involved in molecular magnetism. Depending on its
molecular and electronic structure the ligand can have different functions.

Monoatomic ligands, like O2−, S2−, F−, Cl−, etc., or ligands with one donor
atom, like OH− or alkoxides, the anions of alcohols, can be coordinated to one
or more than one metal atom, and in the last case they act as bridges. They
are particularly efficient in transmitting the magnetic interactions, allowing a
significant overlap of the magnetic orbitals of the metal centres. Due to the small
steric hindrance they are suited to bridge more than two metal ions. The O2−

ion can bridge up to six metal ions (Cornia et al. 1994), but two and three metal
ions are the most common cases, as is the case for OH−- or OR−, where R is a
generic organic group.

When these types of ligands are the only bridges the polynuclear struc-
ture tends to resemble that of a pure inorganic extended lattice. A remarkable
example is the cluster [Fe19(metheidi)10(OH)14(O)6(H2O)12]

+, shown in Fig. 4.2
(Goodwin et al. 2000). The OH− and O2− ions are the bridging building blocks,
while H2O and the polydentate ligand metheidi, discussed later in more detail,
are the terminal ones. We focus on the central part of Fig. 4.2 neglecting for the
moment the metheidi ligand. The central iron(III) is connected to six surround-
ing iron(III) through six OH− bridges, each OH− bridging three iron(III) ions
in a layer structure that resembles that of Mg(OH)2 in the Brucite mineral. The
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Fig. 4.2. View of the cluster [Fe19(metheidi)10(OH)14(O)6(H2O)12]
+. The iron

atoms are drawn as big spheres, nitrogen as white spheres, oxygen as dark
grey spheres. The coordination bonds to the metal ions are represented as
broken lines. Redrawn from Goodwin et al. (2000) by permission of the Royal
Society of Chemistry.

Brucite structure is, however, confined to the central part of the cluster because,
at the periphery, the organic ligand metheidi forms a sort of shell that encapsu-
lates the inorganic core. The heptanuclear core with the Brucite-like structure
is quite common in polynuclear clusters and is encountered, for instance, in an
interesting mixed valence [FeII

6 FeIII] characterized by S = 29/2 in the ground
state (Oshio et al. 2003).

Commonly employed however are polydentate ligands that possess more than
one donor atom. If the different donor atoms coordinate the same metal ion it
is called a ‘chelating’ ligand, from the Greek word χηλή for claw. Given the
directionality of the coordinating bonds there are some structural conditions to
fulfil in order to observe chelation. In octahedral complexes it is a common rule
to consider that a polydentate ligand is almost exclusively acting as a chelating
one if the metal ion with the two donor atoms and the other atoms that connect
the donor ones form a five- or a six-member ring. If this is the case the complex
formed by the chelating ligand is more stable than the analogue where the two
donor atoms belong to different ligand molecules. The reason is quite intuitive.
When the complex is formed its dissociation is less probable when the ligand
is chelating. In fact this process requires that both claws are detached at the
same time.

Looking at the thermodynamics of the process one can consider the two chem-
ical reactions below. They both involve as starting material the hexa-aquo-ion,



112 SINGLE-MOLECULE MAGNETS

but the first one concerns the formation of a complex with six ammonia molecules
as ligands while in the second two molecules of a generic L ligand containing
three nitrogen atoms belonging to amine groups replace the coordinated water
molecules:

[M(H2O)6]
n+ + 6NH3 ⇆ [M(NH3)6]

n+ + 6H2O

[M(H2O)6]
n+ + 2L ⇆ [M(L)2]

n+ + 6H2O.
(4.1)

The equilibrium is significantly more shifted towards the products, the right-
hand side, in the second reaction. The reason is not a different enthalpic
contribution to the free energy. In fact the number and type of chemical bonds
that are formed and destroyed are the same in the two reactions. The entropic
contribution to the free energy is, on the contrary, very different in the two
cases. The formation of the chelate complex is in fact strongly favoured by
the increase of the number of uncoordinated, and therefore more disordered,
molecules when the six coordinated water molecules are released and replaced
by only two molecules of a polydentate ligand. No significant gain in entropy is
expected in the first reaction.

In Fig. 4.1 we have reported some commonly employed chelating ligands based
on oxygen and nitrogen donor atoms. As chelating ligands have a tendency to
coordinate one metal ion rather than to bridge more metal ions, they are used
any time it is necessary to block two or more coordination sites around the metal,
for instance to hamper the growth of an extended structure.

The library of ligands is practically unlimited, but looking at the few examples
of Fig. 4.1 one can realize that each ligand is particularly well suited to a given
function. For instance the ligand triazacyclononane, commonly abbreviated as
tacn, has a rather rigid structure imposed by the closed ring that can only fit on a
face of the coordination octahedron. The metal coordinated to tacn is expected to
occupy a peripheral site of a cluster, because all the dangling bonds not occupied
by tacn are pointing in the same hemisphere. On the contrary cyclam is better
suited to occupy the four equatorial sites of an octahedron leaving the two trans
coordination sites available for further connections that often develop in a linear
extended structure (Mossin et al. 2004).

In some other cases the chelating mode is not the only possible one. The most
common example is provided by the anion of carboxylic acids, RCOO−. The
negative charge is equally shared on the two oxygen atoms that can either be
coordinated to the same metal ions or to more than one. In Fig. 4.3 some of the
many possible coordination modes of carboxylates are represented.

In order to indicate the coordination mode two notations are commonly used.
The first one uses the Greek letter µ to indicate the bridging mode with sub-
scripts. These numbers indicate which atoms of the ligand are involved in the
bridge. If the same oxygen atom is involved in the bridge, the bridging mode
is indicated as µ1,1, while it is called µ1,3 if one oxygen is coordinated to one
metal ion and the second oxygen to the other metal. The situation becomes more
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Fig. 4.3. Coordination and bridging modes of the carboxylate ligand in the
Harris notation.

complex if the same polydentate ligand bridges more metal centres. A different
notation, shown in Fig 4.3, has been developed by Harris (Coxall et al. 2000;
Winpenny 2004). This notation uses a code [X.Y, Y′, Y′′ . . .] where X is the
overall number of metal atoms bound by the whole ligand, and each value of Y
refers to the number of metal ions attached to the different donor atoms. The
ordering of Y is listed by the Cahn–Ingold–Prelog priority rules mainly based on
decreasing atomic number, hence O before N (Stoll et al. 2004).

A well-known example of bridging carboxylate in the [2.11] mode is the dimeric
form of copper(II) carboxylates. Bleaney and Bowers (1952) from EPR experi-
ments deduced that the structure of copper(II) acetate consisted of dimeric units
and for the temperature dependence of the magnetic susceptibility they derived
the well-known homonym formula reported in (3.4). The dimeric structure was
promptly confirmed by X-ray diffraction analysis (van Niekerk and Schoening
1953).

In most of the systems discussed in this book the carboxylates build the skel-
eton of the cluster acting as [2.11] bridges, but give rise to only a weak magnetic
interaction, often overwhelmed by the one mediated by different bridging groups,
like O2−, OH− or alkoxides, F−, etc. Nevertheless carboxylates have been widely
employed, also because the R group can be easily varied, enabling modification
of important properties, like solubility, electron density on the donor atom, steric
hindrance, etc.

Other widely used polydentate bridging ligands are shown in Fig. 4.4. It is
important to stress that these types of ligands, even if they are not bridging in
the µ1,1 mode, are quite efficient in transmitting the magnetic interaction, thanks
to the conjugation and delocalization of the π orbitals. Cyanide and azide ions
are well known for their capability to mediate a moderately strong magnetic
interaction, that can be either ferro- or antiferromagnetic.

Oxalate and its derivative oxamidate (Girerd et al. 1980) are two bridging
ligands used in molecular magnetism since the very beginning. Both of them
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Fig. 4.5. The possible chelating and bridging modes of the pyridonate ligand
listed according to Harris notation. From Winpenny (2002) by permission of
the Royal Society of Chemistry.

are, however, particularly well suited to connect only two metal ions, and are
thus rarely used to obtain clusters, but mainly to obtain chains and extended
structures. Very simple ligands, like the pyridonate, that carries one pyridine
nitrogen, and one alkoxide oxygen as donor atoms, are able to provide a large
variety of coordination and bridging modes, as shown in Fig. 4.5. For their ver-
satility pyridonates have been widely exploited in the serendipitous approach to
metal cages (Winpenny 2002).

An important class of polydentate ligands is constituted by polyalcohols,
polymines, polycarboxylates or in general organic molecules where the differ-
ent donor atoms are connected through aliphatic chains, as in the two ligands
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shown below:
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NH2
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O
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O

HO

Fig. 4.6. View of the cluster [V8O14(Htaci)2], the first example of a V(IV)-oxo
cluster with the spin of the ground state larger than 1/2. From Hegetschweiler
et al. (2004) by permission of Wiley-VCH.

In this case a significant magnetic interaction is only present among the
metal centres bridged by the same donor atom, that is in a µ1,1 bridging mode.
However the geometrical constraints imposed by the ligand structure to the dif-
ferent bridging atoms play a major role in determining the structure of the
cluster. This strategy, which employs structure-directing ligands, is the one that
more closely mimics the biological processes of mineralization of clusters and
aggregates (Mandel et al. 1999).

A nice example of ligand-directed structure is encountered with the lig-
and 1,3,5-triamino-1,3,5-trideoxy-cis-inositol (abbreviated as H3taci and shown
above) which contains six coordination sites, and three of them (i.e. the oxy-
gen atoms) can act as bridging atoms. In the octanuclear vanadyl cluster
[V8O14(Htaci)2], shown in Fig. 4.6, this ligand bridges four metals (VIV = 0) and
forces the vanadyl groups to assume an unprecedented orthogonal configuration
that leads to a strong ferromagnetic interaction of the S = 1/2 of vanadium(IV)
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centres. It is worth noticing that the behaviour of any ligand strongly depends
on the metal ions, in particular on its ionic radius. The same taci ligand, used
with lanthanides ions, can bridge only three of them, giving rise to compounds
with smaller nuclearity.

The heidi family of ligands, to which belongs also the metheidi ligand com-
prised in the cluster of Fig. 4.2 and schematized above, contains a central amine
nitrogen atom, one alcohol, and two carboxylic groups. These last three groups,
when deprotonated, are able to act as bridging units and the whole molecule is
quite flexible. It is therefore not surprising that large and irregular aggregates
can be formed as in the cluster shown in Fig. 4.2.

Rigid ligands can also be employed and in this case more regular and pre-
dictable structures are obtained. One of the most fascinating examples is the
grid structures obtained with ligands based on a diazine backbone with inserted
alkoxide fragments as in the ligand 2POAP shown in Fig. 4.7. In this type of
ligand, contrary to H3taci or heidi, contiguously arranged coordination pockets
are present, where the metal can be stably chelated. The metal ions are bound
in close proximity and can interact through a bridging atom of the ligand or
through other fragments, i.e. the usual O2− or OH− bridges.

2POAP
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Mn1

Mn3

O11

Mn6

Mn9
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Fig. 4.7. Top: structure of the azine-based ligand 2POAP and its three chelat-
ing coordination modes. Bottom: structure of a nonanuclear manganese(II)
cluster with a [3 × 3] grid arrangement of the metal ions. On the right, the
metal–oxygen core is highlighted. Adapted from Thompson (2002). Copyright
(2002) Elsevier.
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The 2POAP ligand can therefore arrange three metal ions in a single array,
as shown below, but each metal ion is only triply coordinated. The other three
coordination sites can be occupied by another 2POAP ligand. Three linear tri-
mers can thus be connected by orthogonal self-assembly of the ligands, as shown
in Fig. 4.7, to form a [3×3] grid. This type of molecule has been recently invest-
igated and a novel quantum effect in the magnetization has been observed and
will be discussed in Chapter 14 (Waldmann et al. 2004).

Another interesting example of the use of structure-directing ligands has
been provided by Pecoraro and co-workers (Dendrinou-Samara et al. 2003).
They have used MnCl2 in an alkaline solution of methanol with the ligand
pdol2− = dipyridylketone-diolate, schematized below,

pdol2– =

N N

O
–

O
–

The outcome of this reaction is a very high nuclearity MnII
4 MnIII

22 cluster,
which shows an out-of-phase signal of the ac susceptibility below 2.5 K. The
most important feature of this cluster is the fact that the 12 pdol ligands and
10 manganese ions form four strands that are connected in a sort of giant tetra-
hedron. Each vertex of the tetrahedron corresponds to a MnIII ion while the six
edges are formed by pdol-MnII-pdol chains. These types of cages are also known
as ‘metallo-cryptands’ because they can host and wrap up a secondary structure,
thus forming a sort of crypt. Dendrinou-Samara et al. (2003) have shown that
thanks to the dangling oxygen atom of the 12 pdol2− ligands an other 12 MnIII

ions can be hosted, which, in their turn, surround a cubane structure an other
4 MnIII ions connected by oxide and methanolate bridges. The structure of the
cluster can be schematized as that of an onion that allows a high density of metal
ions, actually one of the major advantages of this synthetic strategy.

Some more complex ligands have been tailored on design to transmit a fer-
romagnetic exchange interaction when coordinating more than one metal ion.
An interesting example is the ligand H6talen = 2,4,6-tris(1-(2-salicylaldimino-2-
methyl-propylimino)-ethyl)-1,2,5-trihydroxybenzene shown below (Glaser et al.
2003):

H6 talen  = 
OH N

NOH

OHOH

N

N

OH

N

N

OH
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The deprotonated form, talen6−, can coordinate three metal ions thanks to
the chelating pockets formed by two oxygen and two nitrogen atoms. The three
pockets are inserted in meta-positions on the benzene ring. According to the
spin polarization mechanism discussed in Chapter 2, the even number of bonds
separating the pockets on the benzene ring induces spin polarization of the same
sign and therefore ferromagnetic coupling.

In this short survey of coordination chemistry we have shown how chemists
involved in the synthesis of SMMs have access to a sort of library from which
they can select the building blocks that are better suited for the desired function.
However, other parameters can be easily tuned to further increase the variability
in the products that can be obtained. The first one is the different acidity of
the various donor atoms of polydentate ligands. It is therefore a rather common
strategy to play on the pH of the solution to selectively protonate or deprotonate
some donor atoms, thus controlling their coordinating ability. Also the ligand to
metal ratio in the reagents can modify the outcome of a reaction. A nice example
has been provided by Saalfrank et al. (2001). The change of this ratio from 1.5 to
2 shifts the outcome of the reaction from a tetranuclear iron(III) cluster similar
to that of Fig. 3.4 to a hexanuclear iron(III) ring. Moreover the transformation
appears to be reversible.

We will survey in the next sections the most frequently employed rational
synthetic strategies towards high nuclearity magnetic clusters.

4.3 The use of preformed building blocks

It is quite common, when describing the structure of a large and complex cluster,
to split it into building blocks. In most cases these subunits are not present in the
reaction environment. They are simply a tool to describe the structure and have
no relation to the mechanism of cluster formation. A certain ambiguity about
the meaning of the term building block is often encountered in the chemical
literature.

4.3.1 Cyanide-based clusters

One of the best examples of the use of preformed building blocks that have a tend-
ency to interact and organize in a regular structure, also known as self-assembly
synthesis, is the preparation of polynuclear clusters based on a central polycy-
anometalate. Hexacyanochromate(III) and hexacyanocobaltate(III) are the most
used among the first series transition metal ions, while octacyanomolybdate and
octacyanotungstate have provided nice examples of very large spin molecules
containing heavier elements.

The use of the cyanide ligand has several advantages: cyanide is a non-
symmetric bridging molecule, and can therefore bind selectively to two different
metal ions. The polycyanometalates form stable building blocks, which in the
case of chromium(III) are also inert (Sharpe 1976), in the sense that the
complexes are not involved in a dynamic process of dissociation and reassociation.
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The linear CN− bridge is very efficient in mediating the magnetic exchange
interactions, and the sign of the interaction is often predictable simply on a
symmetry basis (see also Chapter 2). The use of CN− is well known in solid state
chemistry for its ability to form extended 3D structures analogous to the well-
known Prussian blue (Verdaguer et al. 1999b). When paramagnetic metal ions are
involved, long-range magnetic order is observed with critical temperatures that,
in some cases, exceed room temperature (Ferlay et al. 1995). These insulating
and transparent magnets have also been shown to be optically switchable, in the
sense that their magnetic properties vary when the material is irradiated at a
suitable frequency (Sato et al. 1996).

The growth of the extended cyanide-based lattice is blocked by the use of
appropriate ligands on the peripheral ions. The use of neutral polyamines, like
the tetradentate tren or the pentadentate tetren of Fig. 4.1, with pentaco-
ordinate copper(II) or hexacoordinate manganese(II) and nickel(II), respectively,
leaves only one free site to be coordinated by the cyanide (Marvaud et al.
2003a).

This strategy starts from an aqueous solution of [M′L(H2O)]2+, where L
stands for the polyamine ligand. Adding the hexacyanometalate precursor yields
directly the polynuclear complex of formula [M(CN-M′)6]9+ complex ion, as
shown in Fig. 4.8.

The high positive charge of the cluster also plays an important role, as has
been stressed by Marvaud et al. (2003a). The compounds of this class are in fact
highly soluble in polar solvents, thus allowing the slow precipitation of relatively
large crystals. The presence of counter-ions in the lattice represents another
parameter to play with: the size of the counter-ion controls the intercluster sep-
aration, but it can also be exploited to selectively precipitate one of the several
types of clusters that can be present in solution. It is in fact well known that the
more the anions and cations have similar size the less the salt is soluble.

+

Fig. 4.8. Schematic view of the formation of the cluster [Cr(CN-Mn(tetren)6]
9+.

From Marvaud et al. (2003a). Reprinted with permission of Wiley-VcH.
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As far as the magnetic properties are concerned when M and M′ in [M(CN-
M′)6]9+ are paramagnetic a high-spin ground state is expected for either the
ferro- or antiferro- M-M′ interaction. In this last case a ferrimagnetic spin
structure of the cluster is warranted. The possibility of obtaining isostructural
compounds based on the diamagnetic Co(CN)3−

6 building block allows a better
characterization of the magnetic properties of the peripheral metal ions.

In clusters of the [Cr(CN-M′)6]9+ type, a ground state spin as high as
S = 27/2 has been observed for M′ = MnII, originating from the antiferromag-
netic interaction of the six manganese(II) spins with the central chromium(III),
S = 6×5/2−3/2. Despite the many advantages of this approach, the octahedral
symmetry of the cluster strongly quenches the magnetic anisotropy and so, even
if their spin value is very large, the cluster does not behave as a SMM. It is
possible anyhow to play with the ligand, to reduce the symmetry by reducing
the nuclearity of the cluster. Marvaud et al. (2003b) have in fact used more
bulky ligands, shown in Fig. 4.9, instead of tren and tetren to sterically hinder
the MIII centre and to hamper the coordination of all six CN− groups (Marvaud
et al. 2003b). An example is the hexanuclear complex with formula [Co(CN)}CN-
Ni(dipropy2)}5]

7+ shown in Fig. 4.9 where one of the cyanide ions is terminal
and not bridging.

A very interesting synthetic approach to obtain large cages based on cyanide
has been developed by Long and co-workers. They employ the [(tacn)M(CN)3]
unit as a building block. The tacn ligand and its derivatives, as already men-
tioned, coordinate in the facial mode and therefore the three CN− groups are
orthogonal to each other as shown in the scheme below.
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Fig. 4.9. Left: derivative of the tren and tetren ligands of Fig. 4.1 with more
bulky pyridine groups replacing the terminal NH2 groups. Right: structure of
the hexanuclear [Co(CN-NiL)5] cluster where one of the cyanide groups acts
as a terminal ligand. Adapted from Marvaud et al. (2003b) with permission
of Wiley-VCH.
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Fig. 4.10. Views of the structure of the clusters based on the combination
of facial ligands tacn (and related ones) and cyanide bridging ligands:
(a) [(tacn)8Co8(µ-CN)12]

12+; (b) [(tach)8Cr8Ni6(CN)24]
12+; (c) [(Me3-

tacn)12Cr12 Ni12 (CN)48]
12+. From Yang et al. (2003) and Sokol et al. (2002a).

Copyright (2002 and 2003) American Chemical Society.

This building block is thus suited to form a vertex of a cube, where the
edges are formed by the bridging cyanide, as shown in Fig. 4.10a for the cluster
[(tacn)8Co8(µ-CN)12]

12+, which results from this simple reaction:

4[(tacn)Co(CN)3] + 4[(tacn)Co(H2O)3]
3+ → [(tacn)8Co8(CN)12]

12+ + 12H2O.
(4.2)
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Clusters with higher nuclearity based on this cubic structure have been
obtained. For instance in Fig. 4.10b is shown the cluster compound with for-
mula [(tach)8Cr8Ni6(CN)24]

12+, with tach = 1,3,5-triaminocyclohexane, where
every face of the cube is formed by a M(CN)4 unit, raising the nuclearity to
14 (Yang et al. 2003). The nuclearity can be increased to 24 if each CN− con-
stituting an edge of the cube is replaced by a metal bridge N≡C–M–C≡N as in
the cluster [(Me3-tacn)12Cr12 Ni12 (CN)48]

12+ shown in Fig. 4.10c (Sokol et al.
2002a).

Other types of interactions, often underestimated, can play a crucial role in
determining the structure. For instance the interaction of terminal CN− ligands
with the K+ cation in the crystal lattice seems to be at the origin of the unusual
trigonal prismatic geometry around the Mn(CN)4−

6 central ion in the compound
with formula K[(Me3tacn)6MnM6(CN)18](ClO4)3, with M=CrIIIor MoIII. AF
interactions between the central S = 5/2 spin and the S = 3/2 peripheral spins
stabilize an S = 13/2 ground spin state. The clusters do not posses the cubic
symmetry imposed by the octahedral environment and in the case of molyb-
denum they show a sizeable easy axis anisotropy with D/kB = − 0.47 K (Sokol
et al. 2002b).1 Non-zero χ′′ in zero dc fields has been observed, suggesting that
indeed the compound behaves as a SMM.

Tripodal phosphorus containing ligands have been employed by Dunbar and
co-workers to obtain a cubane type cluster of abbreviated formula Mn4Re4, which
also behaves like a SMM. The low-spin ReII ions, S = 1/2, and the high-spin
MnII ions, S = 5/2, are antiferromagnetically coupled to give a ground spin state
with S = 8 (Schelter et al. 2004). The use of heavier (4d or 5d) metals seems
better suited for the synthesis of SMMs. Stronger exchange interactions are
expected because the valence shell orbitals are very diffuse, thus allowing for
a large overlap with the orbitals of the bridging ligands. Moreover the larger
spin–orbit coupling, compared to 3d ions, induces a significantly larger magnetic
anisotropy.

Other important building blocks employing 4d and 5d metal ions are octacy-
anomolybdate and octacyanotungstate. The most relevant example is the cluster
with formula [MnII{MnII(MeOH)3}8(µCN)30 {MoV(CN)3}6]·5MeOH·2H2O pre-
pared and characterized by Decurtins and co-workers (Larionova et al. 2000).
The cluster, represented in Fig. 4.11 can be schematized as formed by a cent-
ral Mn(CN-Mo)6 octahedron, with each face capped with another MnII centre
bridged by cyano groups to the three MoV defining the face. The crystals of this
compound lose molecules of the crystallization solvent and therefore the assign-
ment of the spin ground state is not straightforward. In the original work a
ferromagnetic interaction between MnII and MoV spins was suggested thus lead-
ing to a ground spin state S = 9 × 5/2 + 6 × 1/2 = 51/2, the highest spin state
ever observed, only encountered later in a Mn25 cluster (Murugesu et al. 2004a).

1 For the sake of simplicity, from now on the spin Hamiltonian parameters are given in
temperature units without indicating that the parameter has been divided by kB.



THE USE OF PREFORMED BUILDING BLOCKS 123

Fig. 4.11. Two schematic views (rotated by 45◦) of the cluster
[MnII{MnII(MeOH)3}8(CN)30{MoV(CN)3}6] (scheme: Mo, large dark;
Mn, large light; N, black rod; C grey rod. The terminal methoxides are
represented as small grey spheres.) Redrawn from Larionova et al. (2003) by
permission of Wiley-VCH.

A successive investigation (Ruiz E. et al. 2005) of the spin density distribution
in virgin crystals by means of polarized neutron diffraction and DFT calcu-
lations has revealed that MnII and MoV spins are antiparallel aligned to give
S = 9×5/2−6×1/2 = 39/2, the same spin value encountered in the WV derivative
(Zhong et al. 2000).

Not all the cyanide ligands around the molybdenum atoms in the cyanide-
based cluster of Fig. 4.11 are involved in a bridge. The loss of crystallization
solvent molecules can lead to short intermolecular contacts of these terminal
ligands probably responsible of the significant intercluster interactions and of
the magnetically ordered state establised around 40 K.

The substitution of the rather isotropic MnII with NiII has again provided
isostructural clusters characterized by S = 12 as a result of the ferromagnetic
intracluster interaction (Bonadio et al. 2002). Despite the larger magnetic aniso-
tropy of NiII that can exhibit D values as large as a few kelvin, HF-EPR spectra
have shown that D of the cluster is only 0.022 K. The symmetry of the molecule
has quenched, as in the case of hexacyanometalates, the magnetic anisotropy of
the building blocks.

4.3.2 The disruption of oxocentred carboxylate triangles

Preformed building blocks are not always employed because they retain their
structure in the final products. An example is the use, as starting species during
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Fig. 4.12. Structure of the basic manganese carboxylate with general formula
[MnO(O2R)6(L)3]

n+. The metal atoms are represented by large shaded
spheres, oxygen by empty spheres, and the donor atom of the L ligand by
grey spheres.

the synthesis, of the trinuclear species with formula [M3O(RCOO)6L3]
n+, where

RCOO is a carboxylate and L a monodentate ligand. A schematic structure of
the trinuclear complex is shown in Fig. 4.12.

These trinuclear species, also called ‘basic metal carboxylates’ are known for
several metal ions of the transition first row, like vanadium, chromium, man-
ganese and iron, which can be found in both the +3 and +2 oxidation states
(Cannon and White 1988). Their magnetic properties have been extensively
investigated because, in the presence of AF interactions, the triangular topology
leads to spin frustration.

Christou and co-workers recognized that the addition of a chelating ligand, for
instance the bipy ligand shown in Fig. 4.1, to a solution containing the trinuclear
complex (Vincent et al. 1987) could not replace the mondentate ligand without
strongly perturbing the structure of the trinuclear cluster (Christou 1989). An
opening of the quite rigid trinuclear cycle is then expected, thus providing a
route for the formation of higher nuclearity species. This is true if the chelat-
ing ligand is not added in strong excess, otherwise the monomeric product is
obtained.

The first type of reaction that has been observed is the increase by one unit
in the nuclearity of the cluster. Within the same Mn4 nuclearity, for instance,
several types of geometries have been observed, the most common of which are
schematized in Fig. 4.13.

The cubane structure is encountered in a series of compounds of general for-
mula Mn4O3Cl4(RCO2)3(L)3, an extensively investigated family of SMMs that
we will discuss in more detail in the rest of this chapter.
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Fig. 4.13. Most common tetranuclear geometries obtained from the disruption
of the [M3O(RCOO)6L3]

n+ cluster.

The butterfly structure, common in Mn and Fe, is often encountered as a
fragment of a larger structure, like in Fe8, one of the most frequently investigated
SMMs. The tetranuclear butterfly clusters on their own are characterized by a
competition of AF interactions. The two metal atoms that are linked by two oxo
groups are considered as the body of the butterfly while the two peripheral ones
are the wings. If the body–wing AF interaction dominates the cluster has a singlet
ground state, which is the case encountered in the case of iron(III) clusters. In
the case of dominating body–body interaction intermediate spin states can be
stabilized, as observed for the manganese(III) derivatives (McCusker et al. 1991).

The use of a trinuclear starting material has been, and remains, a success-
ful strategy to obtain high-nuclearity clusters of mixed valent manganese ions
(Aromi et al. 1998). To give an idea here below are schematized the differ-
ent cluster nuclearities that have been obtained from the disruption of the
[Mn3O(RCOO)6L3]

n+, (n = 0, or 1) core. We can see that different nuclearity,
as high as 22, has been obtained, by playing with parameters like the nature of
the carboxylate, the starting ligand L or the added chelating ligand.

Mn18

Mn21

Mn22
Mn4cubane

[Mn3O(RCOO)6L3]n+

Mn4butterfly

Mn6

Mn8Mn9

Mn12

Such a large variety of products could appear as surprising but indeed it
is not. In fact most reactions to form molecular clusters are carried at relat-
ively low temperatures. At these temperatures not only the thermodynamically
most stable compound is formed but also metastable compounds that are
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kinetically favoured. This is one of the major differences from conventional solid
state chemistry.

4.4 Polyoxometalates

These clusters, usually abbreviated as POMs, can be visualized as formed by
MOn polyhedra that share vertexes or edges, seldom faces, to form a large poly-
anion. They are mainly based on high valence V, Mo, and W metal centres
but can incorporate also S, P, and As oxoanions. They show a natural trend
to form discrete species of high nuclearity and this field dates as far back as
the eighteenth century with the studies of Scheele and Berzelius on the highly
soluble blue compounds of molybdenum. The interest in POMs is rather general
and goes from catalysis, to materials science. POMs have also found potential
applications as antiviral agents. In the Literature, comprehensive reviews can be
found (Müller et al. 1998; Müller and Roy 2003; Cronin 2004) and the aim of
this chapter is only to present the very basic concepts of the chemistry of POMs.

The tendency of polyoxometalates to form discrete species can be partially
attributed to the presence at the surface of the clusters of M=O double bonds
that make the oxygen atom rather electron-deficient and therefore unable to act
as a bridge by coordinating another metal atom. When the metal atoms are in
their highest oxidation state the cluster is diamagnetic, but the metal ions can
be easily reduced.

The formation of POMs is generally driven by a decrease of the pH. At very
high pH the monomeric oxoanions are stable, but reducing the pH partial proton-
ation and elimination of H2O molecules induces the formation of the polynuclear
species. Several parameters can be tuned to force the reaction towards a given
product: the concentration of the reagents, the pH of the solution, the presence
of reducing agents, the polarity of the solvent, and the nature of the cations.
This approach has been extremely successful in providing very large nuclearity,
up to 368 metal centres in a molybdenum-based cluster synthesized by Müller
and co-workers (Müller et al. 2002). They have also shown that it is possible to
organize such big objects in chains and monolayers, or to use them to encapsulate
other clusters.

In many molecules of this class the magnetism is dominated by hetero-metal
ions inserted in the POM′s structure, mainly CuII and FeIII (Müller et al. 1998).
In the case of POMs based on VIV, a d1 ion with a slightly anisotropic S = 1/2,
interesting phenomena have been observed (Gatteschi et al. 1991; Chiorescu et al.
2000a). However low-spin ground states are usually observed, singlet or doublet
states depending whether the cluster contains an even or odd number of VIV

centres, respectively. An exception is constituted by the octanuclear cluster of
Fig. 4.6, which has a S = 3 ground state, but this results from the use of the
organic ligand taci (Hegetschweiler et al. 2004). The most interesting magnetic
properties observed in POMs will be briefly discussed in Chapter 14, while here
we will focus on the formation mechanisms of these mesoscopic molecules.
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Fig. 4.14. Polyhedral representation of the [XM12O40]
n− Keggin ion. It can be

schematized as a tetrahedron where each vertex is occupied by three vertex
sharing octahedra forming a {M3O13} fragment. The rotated {M3O13} frag-
ments are shown without shading to emphasize the differences between the
five isomers. Reprinted with permission from Müller et al. (1998). Copyright
(1998) American Chemical Society.

Clusters of a wide class have a structure based on the so-called Keggin
ions (Coronado and Gomez-Garćıa 1998). These ions have the general formula
[XM12O40]

n−, e.g. X=P and M = Mo or W, and are formed by 12 vertexes and
edges sharing octahedra, arranged in groups of three placed at the vertex of a
tetrahedron as shown in Fig. 4.14. The Keggin ions can adopt up to five skeletal
isomers (α, β, . . . , ε) and these isomers are related to each other by the rotation
by π/3 of one or more groups.

The process schematized in Fig. 4.15 shows how a big cluster can be assembled
starting from the reduction of the Keggin ion, which becomes electron rich
and therefore nucleophilic, thus attracting electrophilic MoO3 groups. These,
reduced in turn, act as templates towards electrophilic polyoxometalate frag-
ments. Depending on the degree of protonation asymmetric structures, like the
{Mo37} cluster of Fig. 4.15, can be obtained.

4.4.1 The role of pentagons

A fascinating example of designing or tailoring the final structure is represented
by the family of Keplerate clusters (Müller et al. 2001a). The name is given by
the structural similarity to Kepler’s early model of the universe, according to
which the ratios between the successive orbits of the planets were equivalent to
that of the spheres circumscribed around and inscribed within the five Platonic
solids. Keplerates have a spherical shape and are based on 12 pentagons and 20
triangles or hexagons, as shown in Fig. 4.16.

The pentagon unit is based on the heptacoordinated MoO8−
7 unit, which is

surrounded in the equatorial plane by five MoO6 octahedra. It is well known
that pentagons alone cannot cover a flat surface, and in fact none of the 230
crystallographic space groups is based on five-fold basic unit.

The use of pentagons as building blocks leads necessarily to a curved surface,
like in the case of spheres or rings. In the case of Fig. 4.16b each of the 30 linkers
corresponds to a FeIII ion, thus forming a {Mo72Fe30} cluster, an interesting
antiferromagnetic molecule that will be discussed in detail in Chapter 14. In



128 SINGLE-MOLECULE MAGNETS

+4 {MoVIO3}

{MoV
12O40}20–

e-Keggin fragment

{H14MoV
12MoVI

4}6–

(isolation possible)

{Mo10} fragment

{Mo16} core

{Mo11} fragment

vacancy

+14 H+

re
du

ct
io
n

+ 
fra

gm
en

ts

Fig. 4.15. Schematic view of the reaction that leads to the formation of a
{Mo37} cluster starting from the molybdenum-based Keggin ion. Adapted
from Müller et al. (1998). Copyright (1998) American Chemical Society.

Fig. 4.16c the linkers are constituted by {Mo2} units and the cluster has a
{Mo132} type nuclearity.

Starting from these simple building blocks it has been possible to encapsulate
preformed clusters, like Keggin ions, inside the larger cavities of the Keplerates.

The interest in these giant molecules goes beyond their magnetic properties.
For instance {Mo72Fe30} clusters have been used to catalyse the formation of
nearly uniform single-walled carbon nanotubes (An et al. 2002; Huang et al.
2003).

It is important to stress that most POMs are obtained in a one-pot synthesis
from a solution where many different building blocks are present and involved in
rapid dynamic equilibria. Why such regularly shaped large molecules can be so
easily isolated among hundreds of possible different fragments remains an open
question. A possible explanation is that uniform, curved, and rigid structures
do not present any site with highest reactivity; once they are formed they are
harder to decompose, compared to less rigid fragments. Alternatively it could be
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(a){(Mo)Mo3}

{(Mo)Mo5}

(b) (c)

Fig. 4.16. Schematic view of the formation of spherical structures, also known
as Keplerates, starting from the pentagonal fragment {(Mo)Mo5} (a). The
30 linkers can be constituted by a single metal centre, like in the case of
{Mo72Fe30} (b), or by 30 {Mo2} groups as for {Mo132} cluster (c). Adapted
from Müller and Roy (2003). Copyright (2003) Elsevier.

argued that regular polyhedra and spheres pack efficiently and therefore have a
greater tendency to crystallize than more irregular molecules.

To conclude this brief overview of POMs we want to quote the words of
Leonardo da Vinci ‘Where nature finishes producing its own species, man begins,
using natural things and with help of this nature, to create infinity of species.’
that open a fascinating recent review of Müller and Roy (2003) to which the
interested reader is referred.

4.5 The templating effect

We are accustomated to modelling our electronic documents using a template.
The same can be done in synthetic chemistry if the interactions with an added
chemical species, the templating agent, drive the formation of a complex molecule
towards the desired structure. The use of such structure-directing agents is rather
common in synthetic organic and inorganic chemistry, especially in the prepara-
tion of rings and closed structures. The forming polymeric species wrap around
the template and this favours the proximity and reaction of the two edges and
thus the formation of a closed structure.

In molecular magnetism the role of a templating cation has been shown
in the formation of metal carboxylate-alkoxide ring structures, such as those
described in detail in Chapter 14. Saalfrank and co-workers (1997) have shown
that the size of iron(III) rings depends on the size of the alkali cation that
is used in the template synthesis. They have reacted a tetradentate ligand
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Fig. 4.17. Schematic view of the interconversion of the 12-member iron(III) cycle
in two six-member ones, due to the addition of alkali metal ions. Iron atoms
are black spheres, oxygen atoms are empty spheres, sodium or lithium ions
are represented by hatched spheres. Kindly provided by A. Cornia.

L, i.e. L = triethanolamine, with FeCl3 and by using the strong base NaH to
deprotonate the ligand they have obtained a hexanuclear cluster of formula
[Na⊂(Fe8L8)]

+, where the symbol ⊂ means that the Na+ ions is in the middle
of the ring. On the contrary, an octanuclear cluster of formula [Cs⊂(Fe8L8)]

+

forms when Cs2CO3 is employed. Interestingly, if Fe3+ ions are in excess they
act as a templating agent and a tetranuclear cluster of formula [Fe(FeL2)3] is
formed, which has the star structure already shown in Fig. 3.25. Like other iron
stars this tetranuclear cluster behaves as a SMM at low temperature.

The template effect can also affect the stability in solution of a cluster.
An interesting example is the conversion of the dodecanuclear iron(III) ring of
Fig. 4.17 in the hexanuclear derivative thanks to the addition of alkali ions, Li+

or Na+, to the solution containing the dodecanuclear species (Caneschi et al.
1999).

The driving force of this transformation is provided by the six M+–O interac-
tions that can be active if the hexanuclear ring is wrapped around the cation. In
the dodecanuclear cluster the hole in the middle is too large and the alkali ion
cannot interact at the same time with six oxygen atoms of the bridging ligands.

The templating agent can be also an anion, as has been found in a fam-
ily of copper(II) large nuclearity clusters that are encapsulating a KCl5−

6 unit
(Murugesu et al. 2004b).

A sort of template synthesis has also been used by Winpenny and
co-workers to modify the octanuclear ring structure of the compound of for-
mula [Cr8F8(O2CCMe3)16], where a fluoride and two pivalates bridge the CrIII

ions (Van Slageren et al. 2002). Most rings with an even number of members
behave as antiferromagnets and have a diamagnetic ground state, as shown in
detail in Chapter 14. It would be therefore interesting to replace a metal ion
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(b)(a)

Fig. 4.18. Schematic view of the etherometallic rings: (a) [(CH3)2NH2]
[Cr7MF8(O2CCMe3)16]; (b) [(C6H11)2NH2][Cr7(VO)2(O2CCMe3)18]. Cour-
teously provided by R. Winpenny.

with one having a different spin in order to have an uncompensated magnetic
moment at low temperature. Doping with a tripositive diamagnetic ion is a
possible route. These authors have, however, adopted a different approach: to
replace a single CrIII centre by a dication (M2+) thus to form the monoan-
ionic species [Cr7MF8(O2CCMe3)16]

− that can be precipitated as a salt of the
dimethyl ammonium ion. For instance in the dimethyl-ammonium salt the cation
is located inside the cycle and is hydrogen-bonded to three fluorine atoms, as
shown in Fig. 4.18a (Larsen et al. 2003).

This finding has suggested that the use of larger substituents on
the ammonium cation could increase the size of the ring as already
observed in the template synthesis of iron rings. Reaction of hydrated
chromium(III) fluoride with vanadyl acetate in pivalic acid in the pres-
ence of bulkier dicyclohexylamine, produced a nonanuclear ring of for-
mula [(C6H11)2NH2][Cr7(VO)2F9(O2CCMe3)17], whose structure is shown in
Fig. 4.18b (Cador et al. 2004). Odd-member rings containing more than three
centres are extremely scarce compared to the richness of the even-member
family. The first example is constituted by a ring of five copper(II) ions that
surround an uranyl cation (Stemmler et al. 1996). A possible explanation for
odd-member rings being so infrequent can be found in the fact that even if
usually all the metal ions of the ring are on the same plane, this does not cor-
respond to a mirror plane in respect of the bridging ligands. There is a sort
of alternation of up- and down- arrangements of the bridges that results in an
incommensurate structure in odd-member rings. Therefore only if additional
interactions are present, like the interactions with the encapsulated cation, can
this unfavourable structure be formed. Odd-member rings of antiferromagnetic-
ally interacting spins are extremely interesting to investigate spin-frustration
effects in low-dimensional systems. Particularly interesting are the magnetic
properties of the nonanuclear ring obtained by replacing vanadyl acetate with



132 SINGLE-MOLECULE MAGNETS

OO

OH Mn

C

OO

C

CH3

CH3

OO OO

OH OHMn Mn

C C
OO

C

OO OO
C C

OO
C

CH3 CH3

CH3 CH3 CH3

OH

+ Ce4+

Mn

Ce

O

CH3

Fig. 4.19. Schematic view of the formation of the saddle-like core of the clusters
[CeIVMnIII

8 O8(O2CMe)12(H2O)4]·4H2O starting from a Mn3+ chain struc-
ture and using Ce4+ as templating agent. Reprinted with permission from
Tasiopoulos et al. (2003). Copyright (2003) American Chemical Society.

nickel(II) basic carbonate in the above reported synthesis. The compound with
formula [(C6H11)2NH2][Cr8NiF9(O2CCMe3)18] has been obtained, which has
been described as the magnetic analogue of the Möbius ring, as discussed in
more detail in Chapter 14.

Even if very interesting, the ring structures described in this section do not
behave as SMMs. On the contrary a SMM with a large spin ground state, S = 16,
has been obtained by Christou and coworkers (Tasiopoulos et al. 2003) through
the conversion of a MnIII carboxylate-hydroxide chain into an octanuclear cluster
by adding oxophilic Ce4+ ions as a template agent. The chain wraps in a saddle-
like closed structure, as shown in Fig. 4.19. Interestingly this cluster is one of
the very few examples exhibiting ferromagnetic spin structure of the cluster. The
S = 16 is associated with a moderate axial magnetic anisotropy, D = − 0.14 K,
and the behaviour of SMMs has been observed with magnetic hysteresis below
0.6 K The template approach seems to hold great potential for the synthesis of
SMMs as it allows us to play with other parameters, like the size and chemical
nature of the template agent.

4.6 Solvothermal synthesis

The conventional synthetic approaches described above are based on hydrolysis
and condensation of fragments in the ‘self-assembly’ of complex products. They
use soluble starting materials that allow low reaction temperatures favouring
the kinetic trapping of a large variety of interesting metastable compounds. The
reaction temperature is in fact limited by the boiling point of the solvent at
atmospheric pressure.

Less exploited but quite interesting are higher temperature routes to form
clusters using solvo-thermal techniques. This approach involves heating the
solvent and reagents in a sealed vessel. This results in autogenous high pres-
sure with increase of the boiling temperature of the solvent. When the solvent
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is water, temperatures in the range 140–260◦C are usually employed, and the
technique is called hydro-thermal. Lower temperatures (100–160◦C) are instead
reached with most common organic solvents, for which thick-walled quartz or
glass tubes are usually employed. The technique is thus suitable for air and mois-
ture sensitive reactions. A review of recent results obtained with this technique
has been provided by Laye and McInnes (2004).

The advantages of solvothermal synthesis rely upon two main properties of
super-heated solvents: the reduced viscosity and the different solubilizing prop-
erties. The lower viscosity increases the diffusion rates and consequently solid
reagents are more reactive. It has also been suggested that it enhances the crystal
growth from solution (Khan and Zubieta 1995).

The different solubility in super-heated solvents is determined also by major
physical modification. For instance, the dielectric constant of water decreases
rapidly with temperature and therefore under hydrothermal conditions a dif-
ferent chemical reactivity can be expected (Rabenau 1985). In general, the use
of solvothermal conditions minimizes the different solubility of metal salts and
organic ligands. A large variety of metal salts, unreactive at ambient condition,
can be employed without the necessity to prepare intermediates. In some reac-
tions the most thermodynamically stable products are not obtained because the
kinetics of the reaction are too slow. The sensibly higher reaction temperatures
used in solvothermal synthesis can lead to different kinetically trapped products,
compared to those obtained at ambient pressure, without leading to the com-
pounds formed at the higher temperatures employed in solid state inorganic
chemistry.

In the field of solvothermal synthesis of large oxoclusters, incorporating also
organic ligands, Zubieta and co-workers have done a remarkable systematic
investigation of the reactivity of vanadium and molybdenum in the higher oxid-
ation states (Khan and Zubieta 1995). Clusters with nuclearity as high as 18 and
42 for vanadium (Salta et al. 1994) and molybdenum (Khan et al. 1996) atoms,
respectively, have been obtained. The advantages of this synthetic approach are
relevant. For instance, the octanuclear cluster of Figure 4.6 has been obtained
under solvothermal conditions. At ambient pressure the same reaction leads to
a monomeric complex.

Examples of iron clusters have also been reported by the same group (Finn
and Zubieta 2000). More recently McInnes and co-workers (Laye and McInnes
2004) have combined the use of preformed triangular clusters, the basic metal
carboxylates already discussed in Section 4.3.2, in superheated alcohols that act
at the same time as a solvent and as a source of bridging ligand. The quite inert
[Cr3O(O2CR)6(H2O)3]

+ species if heated in alcohol (R′OH) at 200◦C yields the
decanuclear cyclic cluster [Cr10(OR′)10(O2CR)10] (McInnes et al. 2001), where
the metal ions are now bridged by one carboxylate and two alkoxides. The use of
solvothermal techniques has overcome the problems related to the kinetic inert-
ness of chromium(III), problems not encountered in the synthesis of the iron(III)
analogues that can be easily obtained at ambient conditions (Taft et al. 1994).
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As far as SMM behaviour is concerned solvothermal techniques have
provided some examples of very high spin molecules. For instance by reacting
[Fe3O(O2CMe)6(H2O)3]Cl in MeOH at 100◦C in the presence of benzotriazole
(btaH) the tetradecametallic FeIII cluster of formula [Fe14O6(bta)6(OMe)18Cl6],
where a ring of six iron ions is sandwiched between two {Fe4(bta)3} moieties
(Low et al. 2003). The competing antiferromagnetic interactions stabilize, in this
compound, a large spin ground state that has been evaluated to range between
23 and 25.

4.7 A survey of the most investigated SMMs

Even taking into account only a limited number of synthetic strategies, an enorm-
ous variety of molecular clusters have been obtained. On the contrary, most
physical studies have been focused on a small number of compounds, and till
now the most frequently investigated compound is the archetypal Mn12ac cluster.
Several reasons can be found for this choice. It has already been shown that the
control of the nuclearity and the achievement of a very high spin for the ground
state are not sufficient conditions to observe SMM behaviour. In Chapter 2 we
have already shown that the magnetic anisotropy is the result of a tensorial com-
bination of the contributions of the single ions and of the pair interactions. An
additional control on the relative orientation of the single ion anisotropy axes is
therefore necessary, but very hard to achieve, even employing the more rational
synthetic strategies illustrated above.

Nevertheless a discrete number of molecular clusters have a magnetic aniso-
tropy comparable to that of Fe8, the other widely investigated SMM, but have
only been partially characterized. To investigate the dynamics of the magnetiza-
tion, and in particular the quantum effects on it, is necessary to have high-quality
crystalline materials. Often solvent molecules of crystallization are weakly bound
in the lattice and their release causes a disorder in the lattice that only in excep-
tional cases can be well modelled. Moreover in many crystal space groups the
orientation of the molecule is not unique, even if symmetry related.

Another requirement is that intercluster interactions must be vanishingly
small, otherwise bulk 3D magnetism is observed. Many polycyanometalates have
terminal monocoordinated CN− groups that can be involved in hydrogen bond
networks, thus providing a pathway for intercluster interactions. This is not the
only case. For instance, the cluster structure reported in Fig. 4.2 differs substan-
tially from the structure of Mn12ac reported in Fig. 1.8. In fact, while in Mn12ac
the inorganic core is completely surrounded by the hydrophobic shell of the acet-
ate ligands, some oxygen atoms of the metheidi ligands of {Fe19} clusters are
not coordinated to the metal ions but involved in hydrogen bonds that connect
different clusters. An antiferromagnetic phase transition is thus observed around
1 K, hiding the single molecule magnetic behaviour expected for this slightly
anisotropic S = 31/2 cluster (Affronte et al. 2002a).



A SURVEY OF THE MOST INVESTIGATED SMMs 135

4.7.1 The archetypal Mn12 acetate cluster

As stated in the introduction [Mn12O12(CH3COO)16(H2O)4] was the first SMM
to be reported. Lis first reported in 1980 the structure of the molecule that is
obtained by addition of permanganate to a solution of Mn(CH3COO)2·4H2O
(Lis 1980).

The actual formula of the compound is [Mn12O12(CH3COO)16(H2O)4]
·2CH3COOH ·4H2O. The possibility of formation of dodecanuclear manganese
acetate complexes was suggested as early as 1921 (Weinland and Fischer 1921)
but it was only when X-ray structure determination became routine that it was
possible to clearly prove the structure. The crystal has tetragonal symmetry
(space group I4̄) and the dodecanuclear cluster has S4 symmetry.2 The structure
of the latter has already been shown in Fig. 1.8. The space group is acentric, but
the molecule is not optically active.

Since the molecule has tetragonal symmetry there are three independent man-
ganese ions, namely two manganese(III) and one manganese(IV), which are
octahedrally coordinated as shown in Fig. 4.20. The manganese(III) ions can
be easily recognized by the bond lengths and by the elongated structure typical
of these distorted ions. The structural evidence is for a localized mixed-valence
compound, where a well-defined charge can be associated to each metal ion.
This situation is often referred to as Class I of the Robin and Day (Robin and
Day 1967) classification (see Section 2.3). Class I behaviour is further corrob-
orated by the bond valence sums (Brown and Wu 1976), which are close to 4
and to 3, respectively, for the two types of ions. Mn1, which corresponds to a
manganese(IV), is coordinated to five oxide ions and to one oxygen of acetate.
Mn2, which corresponds to a manganese(III), is bound to two oxide ions and
to four oxygens of acetate molecules, while Mn3, which also corresponds to a
manganese(III), is bound to two oxides, three oxygens of acetate molecules and
a water molecule. All the oxides form µ3 bridges. The manganese(III) ions show
the typical elongated octahedral coordination seen in most complexes.

The distortion from octahedral symmetry is usually associated to the Jahn–
Teller effect that removes the orbital degeneracy of the 5Eg electronic state,
as discussed in Section 2.2. The elongation axis of Mn2 makes an angle of 11◦

with the tetragonal axis, while that of Mn3 makes an angle of 37◦. The value
of these angles is important as they determine the height of the barrier to the
reorientation of the magnetization as will be discussed below.

Another important feature of the structure is the presence of acetic acid and
water molecules of crystallization. Thermogravimetric studies (Lis 1980) showed
that loss of solvated molecules starts at 308 K and continues up to 463 K.
Above this temperature decomposition of the compound sets in. The acetic
acid molecules of solvation lie between adjacent clusters and close to a two-
fold axis and are therefore statistically distributed between the two symmetry

2 Crystallographic cell parameters for Mn12ac at 83 K: a = b = 17.1688(3)Å, c = 12.2545(3)Å,

α = β = γ = 90◦, V = 3611.39(13)Å
3
.
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Mn 1

Mn 3

Mn 2

Fig. 4.20. Structure of the [Mn12O12(CH3COO)16(H2O)4] ·2CH3COOH ·4H2O
cluster at 83 K viewed slightly off the S4 axis. The manganese atoms are rep-
resented as black spheres, oxygen atoms are white, carbon grey and hydrogen
as smaller white spheres. The acetic acid of crystallization is disordered on
two positions related by a binary axis (curved arrow). When the acetic acid
occupies the position shown by the same colour scheme a hydrogen bond
(dashed line) with the core of the cluster is formed. In the position shown
by hatched spheres the same bond is formed with the neighbour cluster. The
four symmetry-related acetic acid molecules independently occupy one or the
other position. The water molecules of crystallization are not shown.

equivalent positions. They are at hydrogen-bond distances from the coordinated
water molecule and the acetate ligand, as shown by low-temperature neutron
diffraction studies (Langan et al. 2001). The original crystal structure solution
of Lis (1980) showed some disorder of this acetate ligand. This disorder has later
been well characterized thanks to a low-temperature (83 K) X-ray data collection
(Cornia et al. 2002a).

In fact, through the low-temperature X-ray crystal structure, it has been pos-
sible to model the disorder induced by the presence of acetic acid. Two different
positions, A and B, of the acetate ligand bridging Mn2 and Mn3 have been
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Fig. 4.21. (a) View of the two sites of the acetate ligand involved in the hydrogen
bond with the disordered acetic acid of crystallization. When the acid is
present, site A is occupied. (b) Schematic view of the six possible isomers
of Mn12ac. The black arrow indicates the presence of the acetic acid and
therefore the A coordination mode.

assumed as shown in Figure 4.21a. The site occupation factors are very close
to 0.5 like that of the acetic acid of crystallization, which, when present, forms
a hydrogen bond with the acetate ligand slightly bending it (B position). Six
possible isomers can be formed, as shown in Fig. 4.21b depending on the num-
ber and position of H-bonds that are formed. Only in two of them the fourfold
symmetry is retained. The main effect of the disorder is thus to reduce the real
symmetry of most molecules present in the crystals, even if the crystals maintain
the tetragonal symmetry due to random orientation of the distorted species. We
will discuss later in more detail these findings for their relevance to the tunnelling
behaviour.

We briefly describe here the magnetic properties of Mn12ac. To compare the
experimental magnetic susceptibility χ with the Curie law, χ∝ 1/T , it is con-
venient to plot the product of χ by the temperature. This is shown in Fig. 4.22
for a polycrystalline sample of Mn12ac. At room temperature it has a value
that is smaller than expected for eight S = 2 and four S = 3/2 uncoupled spins
(31.5 emu mol−1 K ). This indicates the presence of antiferromagnetic interac-
tions. On decreasing temperature χT goes through a round minimum typical
of ferrimagnetic behaviour originated by the antiferromagnetic interaction with
non-compensation of the individual magnetic moments. On further lowering
the temperature χT goes through a plateau at about 55 emu mol−1 K. This
value is very far from that expected for ferromagnetic coupling (S = 22, 253 emu
mol−1 K), but corresponds to a spin S = 10, confirming that the cluster has a
ferrimagnetic spin arrangement.
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Fig. 4.22. Left: temperature dependence of the product of the magnetic suscept-
ibility with temperature for a powder sample of Mn12ac. Right: magnetization
curves recorded at 2 K on an oriented single crystals of Mn12ac. Solid squares
correspond to the data with the magnetic field applied along the tetragonal
c axis.

The S = 10 ground state has been confirmed by high-field magnetization stud-
ies, which show saturation of the magnetization around the value of 20 µB

(Caneschi et al. 1991). Single-crystal magnetization data, as shown in Fig. 4.22,
provide evidence of a very large easy axis type magnetic anisotropy (Novak and
Sessoli 1995). Both the parallel (to the tetragonal axis) and perpendicular mag-
netization reach a saturation value of about 20 µB but for the last one a field as
high as 100 kOe is required, while the parallel magnetization goes to saturation
for much smaller fields.

The S = 10 ground state can be modelled at the simplest level by assum-
ing that all the manganese(III) spins are up and the manganese(IV) spins are
down. Polarized neutron diffraction experiments performed on a single crystal
confirmed this view (Robinson et al. 2000). Even if the calculated total magnetic
moment well agrees with the 20 µB expected for S = 10, the spin density on each
metal centre is significantly reduced compared to the spin-only value. Such a
trend was indeed predicted by density functional theory calculations (Pederson
et al. 2000; Pederson and Khanna 1999). No significant spin density was found
on non-metal atoms.

Several attempts have been made to calculate the complete spectrum of the
spin levels of Mn12ac (Sessoli et al. 1993b; Tupitsyn and Barbara 2002; Raghu
et al. 2001). The task is far from being simple, because the total number of spin
states is 100,000,000. Initially several attempts have been made by using some
ad hoc assumptions. For instance, it was assumed (Sessoli et al. 1993b) that
the J1 coupling constant, defined in the scheme of Fig. 4.23 and corresponding
to the interaction between manganese(III) and manganese(IV) mediated by two
bridging O2− ions (double oxo bridge), is strongly antiferromagnetic. In the same
scheme J2 is the coupling constant between manganese(III) and manganese(IV)
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J1

J2

J4

J3

Fig. 4.23. Scheme and labelling of the intracluster exchange interactions in
Mn12ac: MnIV sites are in black. J1 corresponds to the interaction mediated
by the double µ-oxo-bridges between Mn1 and Mn2.

ions mediated by a single oxo-bridge, J3 is that between manganese(IV) ions,
while J4 corresponds to the exchange between manganese(III) ions.

In this approximate model it may be assumed that the four MnIII–MnIV pairs
are in the ground S = 1/2 state, and that the contributions from the excited
S = 3/2, 5/2, and 7/2 states may be neglected. Using this assumption sample
calculations were performed, by varying the J2, J3, and J4 constants in a relat-
ively small range. It was observed that the calculated ground states could vary
their S from 8 to 10, depending on the actual values of the parameters.

Recently more powerful calculation techniques have been implemented (Raghu
et al. 2001). These methods first of all use an efficient system for representing a
state in a computer by using a single number. Further the spatial symmetry (S4

in the case of Mn12ac) is exploited by using the Valence Bond method, which
employs the Rumer–Pauling rule (Soos and Ramasesha 1990). Using the com-
plete set it was shown that the values of the constants obtained by the previous
approximate calculations fail to give the correct ground state. Sample calcula-
tions showed that, fixing J1 = −214 K, J2 = −85 K, the spin of the ground state is
very sensitive to J4 for a fixed value of J3. It is a pity that the data have not been
used to calculate the temperature dependence of the susceptibility, which might
have provided a check of the goodness of the parameters. The chosen values of
the parameters were based on the assumption of a S = 10 ground state with an
S = 9 state lying 35 K above. In the reported calculations, with J3 = − 85 K,
J4 = 85 K. Calculations have also been performed (Regnault et al. 2002) in the
Lanczos formalism (Cullum and Willoughby 1985) providing the best fit para-
meters: J1 = −89 K, J2 = −88 K, J3 = 0 K, J4 = −17 K. A similar set of exchange
coupling constants (J1 ≈ J2 = − 65 K and J3 ≈ J4 = − 7 K) has been obtained
through the simulation of inelastic neutron scattering experiments (Chaboussant
et al. 2004). In particular these authors have observed a signal corresponding to
∆E/kB ≈ 61 K that has been attributed to the |10,±10〉 → |9, ±9〉 transition.
The presence of a second S = 9 spin state at slightly higher energy has also been
shown by these experiments.
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The strong Ising-type magnetic anisotropy observed in the magnetization
curves discussed above has been confirmed by HF-EPR spectra. The spectrum
reported in Fig. 3.23 provides a first estimation of the axial anisotropy para-
meter D by simply measuring the separation between the low-field lines as
D ≈ 1/2 gµB∆H. Actually the separation between pairs of neighbouring lines
is not a constant, indicating that the higher order terms of the anisotropy play
some relevant role here. Single-crystal HF-EPR spectra (Hill et al. 1998), inelastic
neutron scattering (Hennion et al. 1997; Mirebeau et al. 1999; Zhong et al. 1999),
and torque magnetometry (Cornia et al. 2000) have confirmed the necessity of
using fourth-order terms in (2.15). In tetragonal symmetry only B0

4 and B4
4 are

different from zero.
The spin Hamiltonian that describes the magnetic anisotropy becomes

HA = DS2
z + B0

4O
0
4 + B4

4O
4
4 (4.3)

where O0
4 and O4

4 are the Steven’s operators listed in Appendix A.5.
A comparison of the second and fourth order parameters evaluated with the

above-mentioned techniques is listed in Table 4.1.
The largest contribution to the magnetic anisotropy comes from the single

ion anisotropy of the Jahn–Teller distorted manganese(III) ions. In fact dipolar
interactions are too weak, and so are the anisotropic exchange contributions,
due to the small spin–orbit coupling of the manganese ions. However, to evalu-
ate how the single-ion anisotropy reflects on the anisotropy of the ground state
the projection techniques introduced in Sections 2.1.3 and 2.5.2 must be used.
Assuming that the ground state is well described by a coupling scheme in which
the eight manganese(III) ions are ferromagnetically coupled to give a total spin
SA = 16, and the four manganese(IV) to give a total spin SB = 6, the iterative
use of the procedure described in Section 2.5.2 gives for the S = 10 ground state:

DS=10 = a2D2 + a3D3 (4.4)

where a2 = a3 = 0.02845 and the index refers to the manganese(III) site, having
neglected the contribution of manganese(IV) ions. If, for the sake of simplicity,

Table 4.1. Magnetic anisotropy parameters of Mn12ac evaluated
from six different experiments.

D(K) B0
4 (K) B4

4 (K) Ref

−0.66(2) −3.2(2) × 10−5 ±6(1) × 10−5 (Barra et al. 1997b)
−0.657(3) −3.35(6) × 10−5 ±4.3(7) × 10−5 (Mirebeau et al. 1999)
−0.76 −2 × 10−5 −1.2 × 10−4 (Hill et al. 1998)
−0.66(1) −3.4 × 10−5 — (Cornia et al. 2000)
−0.66 −3.2 × 10−5 — (Mukhin et al. 1998)
−0.65 −3.0 × 10−5 ±4.6 × 10−5 (Del Barco et al. 2005)
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the single-ion anisotropy of the two metal sites is assumed identical, i.e. D2 =D3,
its value can be easily extracted from the experimental D value using (4.4).
The estimated value using the available data of Table 4.1 is D2,3 ≈ −3.9 K,
in good agreement with the experimental D parameters observed in isolated
manganese(III) complexes exhibiting a Jahn–Teller elongation of the octahedron
(Barra et al. 1997a; Krzystek et al. 2001).

Analogous relations have been worked out also for the projection of the single-
ion fourth-order terms (Hartmann-Boutron et al. 1996), although in this case no
safe values are available for the individual ions.

In (4.4) the magnetic anisotropy is treated as a scalar quantity, while expres-
sion (2.26) involves tensors. In a more sophisticated treatment it is thus necessary
to know also how the anisotropy tensors of the local spins are oriented in the
crystal reference frame. This information can be retrieved experimentally only
in very few cases, for instance when each metal site lies on a symmetry element
of the crystal space group, or when the single-ion contribution can be experi-
mentally investigated by doping the diamagnetic analogue cluster. Unfortunately
a diamagnetic analogue of Mn12ac is not available and thus the orientation of
the single-ion anisotropy tensor can only be conjectured. In this respect a very
powerful technique is the angular overlap model (Bencini et al. 1998) as outlined
in Section 2.2 It has been shown (Barra et al. 1997a) that the magnetic aniso-
tropy of MnIII ions can be predicted with great accuracy by taking into account
the crystal field generated by the ligands and introducing the real geometry of
the coordination sphere. The application to Mn12ac has been particularly useful
to evaluate the effects of the disorder in the structure described in Fig. 4.21 on
the magnetic anisotropy (Cornia et al. 2002b). The four different coordination
environments of the MnIII ions provided by X-ray analysis have been used to
calculate the magnetic anisotropy using the AOM approach. The values of the
eσ and eπ parameters for each donor atom, taken from literature data, have
been corrected for the actual metal–ligand distance assuming an exponential
dependence.

In Table 4.2 the results obtained from the AOM calculation are reported. As
can be seen, the interaction with the acetic acid molecule induces only minor

Table 4.2. Calculated second-order magnetic aniso-
tropy parameters for the MnIII ions in Mn12ac.

Site D (K) E (K) δ(◦)a

Mn2A −4.92 0.40 11.6
Mn2B −5.27 0.27 10.7
Mn3A −4.57 0.10 37.2
Mn3B −4.40 0.07 37.1

aδ is the angle between the easy-axis direction of each manganese site
and the crystallographic c axis.
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changes in the single-ion D and E parameters as well as in the direction of the
local easy axis. However the effects on the deviation from tetragonal symmetry
of the cluster can be sizeable. In fact four of the six different isomeric forms of
Mn12ac in Fig. 4.21 have symmetry lower than tetragonal. The ZFS parameter
of the six different isomers can be easily calculated using (4.4) where the D2,3

parameters are now replaced by tensors:

Dtot = d2

4
∑

i=1

RT
i D

α(i)
2 Ri + d3

4
∑

i=1

RT
i D

α(i)
3 Ri (4.5)

where α(i) = A or B differentiate the two environments observed in the presence

or absence of hydrogen-bonded acetic acid, respectively. In (4.5) D
α(i)
2 and D

α(i)
3

are the single-ion ZFS tensors for the Mn2 and Mn3 sites generated by the i-th
symmetry operation of the S4 point group, described by the rotation matrix Ri.
The resulting Dtot tensor turns out to be axial and diagonal in the crystal axes
reference frame only for n = 0 and n = 4. In the other four cases non-zero off-
diagonal terms are present and diagonalization of the matrices provided the D
and E parameters reported in Table 4.3. It is also possible to evaluate the angle θ
between the easy axis and the crystallographic c axis and the angle ϕ formed by
the hard axis with the crystallographic a axis. It is interesting to notice here that
the principal axes of the second-order transverse anisotropy, due to its extrinsic
nature, do not necessarily coincide with those of the fourth order ones. Indeed
the origin of the four-fold anisotropy remains to be clarified. What is certain is
that the principal transverse anisotropy axes do not necessarily coincide with
the crystallographic axes.

The easy axis of the different species does not deviate significantly from the
c crystallographic axis. The six species have very similar D values (within ±2%),

Table 4.3. Calculated second-order magnetic anisotropy of the
six disorder-induced isomers of Mn12ac.

Isomer Concentration % D (K) E (K) θ(◦)a ϕ(◦)b

n = 0 6.25 0.759 0 0 —
n = 4 6.25 0.797 0 0 —
n = 1 25 0.769 2.34 × 10−3 0.3 50
n = 2 cis 25 0.778 1.87 × 10−4 0.4 60
n = 2 trans 12.5 0.778 4.70 × 10−3 0 50
n = 3 25 0.788 2.35 × 10−3 0.3 50

a θ is the angle between the easy-axis direction of each species and the crystal-
lographic c axis.
b ϕ is the angle between the hard-axis direction and the crystallographic a axis.
Given the four-fold symmetry of the crystal the hard axis is encountered at
nπ/2 + ϕ, with n = 0, 1, 2, 3.
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in acceptable agreement with the experimental values reported in Table 4.1,
considering the approximations involved (definition of the ground-state wave-
functions and the related projection coefficients, neglect of higher-order terms,
etc.). The E parameters for the low symmetry species are very small but their
effect will be far from negligible at low temperature, as discussed in Chapter 12.

A high-resolution INS study has demonstrated that an average E term, ran-
ging from 6 to 8 mK, is necessary to satisfactorily reproduce the spectra (Bircher
et al. 2004). The order of magnitude well compares to the estimated values of
Table 4.3.

The magnetic anisotropy of Mn12ac has been calculated by using a first-
principles treatment based on the DFT approach (Pederson and Khanna 1999).
Interestingly the calculated ground state of the complete cluster is S = 10, as
experimentally observed. The unpaired spin density is essentially localized on
the manganese ions, being negative for the inner tetrahedron and positive for the
outside ring, but significant spin density is also calculated on the bridging oxo-
groups. Introducing spin–orbit coupling in the calculations the authors estimated
the second-order contribution to the barrier in very good agreement with the
experimental data. A refined calculation has allowed workers also to evaluate the
fourth-order terms of the magnetic anisotropy (Pederson et al. 2002). The same
authors have also taken into account the presence of different isomers induced
by the acetic acid of crystallization. Their calculated values are also in good
agreement with those reported in Table 4.3. In particular the same trend in the
D, E, and θ parameters for the different isomers is observed (Park 2004).

Other contributions, including that from spin–spin interactions, to the mag-
netic anisotropy can be taken into account. Among these the intracluster dipolar
interactions seem to play only a minor role, as stated above, while those
determined by antisymmetric exchange may provide a significant contribution.
Detailed calculations have been performed assuming that isotropic J1 is dom-
inant (Katsnelson et al. 1999). In order to justify the experimental zero-field
splitting an antisymmetric exchange interaction ranging from −15 to +1.5 K was
included. Unfortunately this result cannot be compared with any independent
estimation of the antisymmetric contribution to the exchange.

As already mentioned, Mn12ac is the first compound to have shown slow
relaxation of the paramagnetic magnetization. The ac susceptibility measured in
zero field is characterized by the appearance of an out-of-phase signal, typical
of the slowing down of the relaxation rate that becomes comparable to the ac
frequency, as discussed in Section 3.1.5.

The typical outcome of an ac susceptibility experiment on Mn12ac is reported
in Fig. 4.24. The position of the peaks shifts to higher temperature on increasing
the frequency as the relaxation rate increases with temperature. The data, if
reported on the Argand plot, suggest a small dispersion in the relaxation times,
the parameter α being defined in (3.27) smaller than 0.1. However, below 5–10 K,
the temperature region of the main frequency-dependent peak, a second and
much smaller peak appears in Fig. 4.24. This peak has been associated with



144 SINGLE-MOLECULE MAGNETS

4
0.4

0.2

2 3 4 5

3

2

χ�
(e

m
u
 m

o
l–

1
)

1

0
5 10

T (K)
15

Fig. 4.24. Imaginary component of the ac susceptibility of Mn12ac measured
here with frequency ranging from 200 Hz (light grey) to 20 kHz (black). In
the inset an enlargement of the low-temperature peaks is shown.

the presence in the crystals of a small fraction of molecules (2–5%) exhibiting a
significantly faster relaxation (Evangelisti and Bartolomé 2000). This fast relax-
ing species cannot be associated to one of the six isomers of Table 4.3 because
they present a significantly reduced barrier. They probably correspond to the
presence in the crystals of some molecules with a significantly smaller magnetic
anisotropy originating in the flipping of the elongation axis of a manganese(III)
octahedron. Given the small concentration, this type of disorder cannot be seen
in the crystal structure analysis. It has, however, been observed in other Mn12

derivatives and it will be discussed in more detail in the next paragraph.
On lowering the temperature the relaxation time increases and can be directly

evaluated from the time decay of the magnetization experiments described in
Section 3.1.2. The relaxation time, τ , extracted from a single-exponential decay,
together with that derived from ac susceptibility, are shown in Fig. 4.25. They
are well reproduced by an Arrhenius law (1.2). The physical meaning of this
observation will be the main topic of the next chapter.

It is interesting here to stress that at sufficiently low temperature, ca. 2.5 K,
the magnetization relaxes so slowly that a magnetic hysteresis appears (Sessoli
et al. 1993a). The width of the hysteresis loops increases on lowering the tem-
perature and depends on the rate at which the field is swept. The origin of the
opening of a hysteresis cycle is not due to a collective behaviour, like the irrevers-
ible deplacement of magnetic domains. Experiments on frozen diluted solutions
of Mn12ac in organic solvents like CH3CN or CH2Cl2 have also been performed
(Sessoli 1995; Cheesman et al. 1997; McInnes et al. 2002; Domingo et al. 2004).
They have shown that the slow relaxation is retained even when the clusters are
very far apart one from the other. The hysteresis thus appears to be a property
of the isolated molecule.
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Fig. 4.25. Temperature dependence of the relaxation time on a log scale of
Mn12ac extracted from ac susceptibility data (solid symbols) in the fre-
quency range 1-270 Hz and from time decay of the magnetization (empty
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Fig. 4.26. Typical stepped hysteresis loop recorded on a single crystal of Mn12ac
with the applied field parallel to the tetragonal c axis.

Since the very early stages of research on molecular nanomagnets, anomalies
in the field dependence of the relaxation time have been noted in ac susceptibility
experiments (Novak and Sessoli 1995). It was only later, from accurate hysteresis
loop measurements on a bunch of field aligned crystals (Friedman et al. 1996) and
then on a single crystal (Thomas et al. 1996) that well-defined regularly spaced
steps have been observed by applying the field parallel to the c axis. This unusual
shape of the hysteresis, shown in Fig. 4.26, is now commonly considered the
fingerprint of quantum tunnelling of the magnetization and will be extensively
discussed in the next few chapters
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4.7.2 The Mn12 family

From the chemical point of view one of the most exciting properties of Mn12

clusters is their stability in solution, as shown by proton NMR measurements
(Eppley et al. 1995) as discussed in Section 3.3.2.

Other Mn12 derivatives with different carboxylates are therefore generally
obtained by treating a slurry of the acetate derivative in a suitable solvent with
the desired carboxylic acid. Christou and co-workers demonstrated that it is
possible to exploit the different acidity of the carboxylic acid to substitute the
acetate, as the equilibrium is shifted towards the production of the weakest acid.
Carboxylate groups in axial position are in general more prone to substitution by
less basic incoming ligands as compared with their equatorial counterparts (Soler
et al. 2001a; Chakov et al. 2003). However, the synthesis of mixed-ligand deriv-
atives often results in partial substitution of both axial and equatorial positions
(Boskovic et al. 2001).

A typical reaction is that described for the preparation of the benzoate deriv-
ative (Sessoli et al. 1993b). Treatment of Mn12ac with a 100% excess of benzoic
acid in CH2Cl2 leads to a majority, but not all, of the CH3COO− groups being
exchanged. The black solid obtained, which contains both acetate and benzoate,
is further treated with a ten-times excess of benzoic acid to give the com-
pletely substituted derivative. A different strategy employs, as starting material,
the derivative [Mn12O12 (tBu-COO)16(H2O)4] because the tert-butyl group,
−C(CH3)3, strongly increases the solubility of the cluster in organic solvents
(Gerbier et al. 2003). It is interesting to note that not all the numerous Mn12

derivatives seems to be characterized by an S = 10 ground state. This spin state
in fact results from competition of antiferromagnetic interactions, and minor
changes of their relative strength can stabilize smaller spin states, commonly
S = 9 (Sessoli et al. 1993b).

In Table 4.4 are reported some of the Mn12 derivatives whose struc-
tures have been fully characterized. They all have the general formula
[Mn12O12(RCOO)16(H2O)x]·Y, where Y = solvent molecules (Aromi et al. 1998).
The main structural difference is the presence of derivatives with a different num-
ber of coordinated water molecules. An example of the latter category is provided
by [Mn12O12(Et-COO)16(H2O)3], which crystallizes either in a monoclinic space
group, without solvent molecules, or in a triclinic space group, with four solvated
water molecules (Aubin et al. 2001).

Also the clusters with x= 4 show significant structural differences. In all cases
the manganese(III) ions are either doubly bridged to one MnIV, type I, or singly
bridged to two MnIV, type II. The water molecules are bound to type II ions.
The coordination in Mn12ac is such that one water molecule per type II ion is
present (Lis 1980). The manganese–water direction roughly indicates the Jahn–
Teller distortion axis. In other derivatives some of the type II manganese ions
have no water molecule, and some have two. In Table 4.4, as in the chemical
literature, a notation has been adopted that indicates the water coordination



Table 4.4. Some Mn12 derivatives with reported structures. General formula
[Mn12O12(RCOO)16(H2O)x]·Y.

R group/La x Space Solvent. Molecules Water Ref
group of crystallization coord.

1 CH3 4 I4̄ 2CH3COOH·4H2O 1:1:1:1 (Lis 1980)
2 CH2CH3 3 P1̄ 4H2O 1:1:1 (Eppley et al. 1995)
3 CH2CH3 3 P21/c 1:1:1 (Aubin et al. 2001)
4 CH3; CH2CH3 4 I4̄ 2H2O ·4EtCOOH 1:1:1:1 (Wei et al. 1997)
5 CH2C(CH3)3 4 P1̄ CH2Cl2·CH3NO2 1:2:1 (Sun et al. 1998)
6 CH2C(CH3)3 4 P1̄ CH2Cl2·CH3CN 1:2:1 (Soler et al. 2003)
7 C6H5 4 P1̄ 2:0:2 (Sessoli et al. 1993b;

Boyd et al. 1988)
8 C6H5 4 Fdd2 2C6H5COOH 2:0:2 (Takeda et al. 1998)
9 C6H4-p-CH3 4 C2/c HO2C-C6H4-p-CH3 1:2:1 (Aubin et al. 2001)

10 C6H4-p-CH3 4 I2/a 3H2O 1:1:2 (Aubin et al. 2001)
11 C6H4-p-Cl 4 C2/c 8CH2Cl2 2:0:2 (Aubin et al. 2001)
12 C6H4-m-Cl 4 P1̄ HO2C- C6H4-m-Cl 1:1:2 (An et al. 2000)
13 C6H4-o-Cl 4 Pnn2 CH2Cl2·5H2O 1:1:2 (Ruiz-Molina et al. 1998)
14 CH2-C6H5 4 P1̄ 1:2:1 (Sun et al. 1998)
15 CHCHCH3 4 Ibca H20 2:0:2 (Ruiz-Molina et al. 2002)
16 CF3 4 P1̄ 2.5H20 1:1:2 (Gomez-Segura et al. 2005)
17 CF3 4 I4̄ 2CF3COOH ·4H2O 1:1:1:1 (Zhao et al. 2004)
18 CF3 4 P21/n CF3COOH ·7H2O 2:0:2 (Zhao et al. 2004)
19 CH2Cl;CH2C(CH3)3 3 P1̄ CH2Cl2·H2O 2:0:1 (Soler et al. 2001a)
20 CH2Cl;CH2CH3 3 P1̄ CH2Cl2 2:0:1 (Soler et al. 2001a)
21 CH2Br 4 I42d 4CH2Cl2 1:1:1:1 (Tsai et al. 2001)
22 CH2C(CH3)3/NO3 4 C2/c CH3NO2 2:0:2 (Artus et al. 2001)
23 CH3/Ph2PO2 4 P42/n 12CH2Cl2 1.1:1:1 (Boskovic et al. 2001)
24 CH3/PhSO3 4 P1̄ 4CH2Cl2 2:0:2 (Chakov et al. 2003)
25 CH3/CH3SO3 3 Pbca 3CH3CNl2·4H2O 1:1:1 (Kuroda-Sowa et al. 2004)
26 CH3/Ph2PO2 — P21/n 6.1 CH2Cl2·0.4H2O — (Bian et al. 2004)
27 C6H4-p-SCH3 4 I4̄ 8CHCl3 1 :1 :1 :1 (Zobbi et al. 2005)
28 C6H5/ adcb 4 I41/amd 8CH2Cl2 1 :1 :1 :1 (Pacchioni et al. 2004)

a When appropriate L indicates the non carboxylate ligand.
b adc = 10-(4-acetylsulfanylmethyl-phenyl)-anthracene-1,8-dicarboxylic acid.
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number of neighbouring sites. The 1:1:1:1 isomer type is encountered in Mn12ac
(Lis 1980). The other three different isomers have been experimentally observed,
corresponding to the schemes 1:2:1 (Sun et al. 1998; Aubin et al. 2001), 1:1:2,
(Aubin et al. 2001; Ruiz et al. 1998), and 2:0:2 (Sessoli et al. 1993b; Boyd et al.
1988; Takeda et al. 1998; Aubin et al. 2001; Zhao et al. 2004; Artus et al. 2001;
Chakov et al. 2003).

There are some exceptions to the rule that the elongation axis of the
MnIII ions does not involve the bridging oxide ligands. For instance, the
Jahn–Teller distortion axis in compound 9 of Table 4.4, [Mn12O12(OOC-C6H4-
p-CH3)16(H2O)4]·HO2C- C6H4-p-CH3, involves one of the bridging oxide ions in
such a way that for one MnIII ion the elongation axis is almost orthogonal to the
elongation axes of the other MnIII ions (Aubin et al. 2001). It is interesting to note
that with the same carboxylate a different formulation, [Mn12O12(OOC-C6H4-
p-CH3)16(H2O)4]·3H2O, can be obtained (compound 10 in Table 4.4), where the
elongation axes are now essentially parallel to each other (Aubin et al. 2001). A
view of the cores of compounds 9 and 10 of Table 4.4 given in Fig. 4.27. The two
clusters therefore can be considered as distortion isomers as frequently observed
for instance in copper(II). Distortion isomerism is also encountered for the pairs
5–6 and 17–18 of Table 4.4. A distortion isomer of this type may be responsible
of the presence of the fast-relaxing species observed even in single crystals of
Mn12ac.

The magnetic properties are strongly affected by the tilting of the elonga-
tion axis of one manganese ion. The magnetic anisotropy of the whole cluster
results from a tensorial sum, as in (4.5), and the tilted MnIII ion provides a
contribution which is of easy-plane rather than easy-axis type, even if the single

Fig. 4.27. Views of the structure of two distortion isomers of [Mn12O12(OOC-
C6H4-p-CH3)16(H2O)4] with MnIII ions evidenced by the shadow. Cluster
compounds 9 and 10 of Table 4.4 are shown on the left and on the right,
respectively. The elongation axes of the MnIII coordination polyhedra are
indicated by full bonds. The dashed lines identify an unusual orientation for
the elongation axis in 9. Redrawn with permission from Aubin et al. (2001).
Copyright (2001) American Chemical Society.
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spin anisotropy remains of Ising type. A strongly reduced anisotropy is thus
encountered for compound 9, and therefore a reduced barrier for the reorientation
of the magnetization.

The compounds with x= 3 have one manganese(III) which is five-coordinated
(An et al. 2000). The overall temperature dependence of χT is not much different
from that observed in Mn12ac, but an S = 9 ground spin state was suggested from
the analysis of the magnetization. The fit of the reduced magnetization versus
H/T is not really satisfactory, so the ground state is not unequivocally estab-
lished. A somewhat better agreement was observed in the case of R = −C6H5,
Y =−C6H5COOH·CH2Cl2. It must also be mentioned that several derivatives
show some chemical instability, like solvent loss, which provide ambiguity in the
interpretation of experimental data.

Interesting variations on the theme of the carboxylate derivatives has been also
reported. By treating [Mn12O12(RCOO)16(H2O)4] derivatives with nitric acid
in acetonitrile, new compounds of formula [Mn12O12(NO3)4(RCOO)12(H2O)4]
were obtained, with R = CH2tBu, Ph. The four nitrate groups are not disordered
and are bound in bridging modes at positions occupied by bridging carboxylate
groups in the parent compound. The ground state is still S = 10, and SMM
behaviour is observed at low temperature. The zero-field splitting and the barrier
are very similar to those observed in Mn12ac (Artus et al. 2001). Eight acetates
have been replaced by diphenylphosphinates (Ph2PO−

2 ) (Boskovic et al. 2001)
but these last ones occupy both equatorial and axial positions. Christou and co-
workers have succeeded in selectively substituting the eight axial acetates with
sulfonates as PhSO−

3 . Again an S = 10 state has been assigned to the ground
state and the D parameter has been evaluated as −0.49 K (Chakov et al. 2003).

The easy substitution of the carboxylate ligands in Mn12 clusters can also be
exploited to insert additional functional groups, for instance sulphur-containing
groups able to interact with a gold surface (Cornia et al. 2003; Pacchioni et al.
2004; Zobbi et al. 2005).

4.7.3 The reduced species of Mn12 clusters

An interesting feature of Mn12 clusters is their rich redox chemistry. Dif-
ferential pulsed voltametry investigations have been reported for Mn12ac in
acetonitrile, showing two reversible processes, an oxidation and a reduction,
and four redox processes altogether (Sessoli et al. 1993b). Very similar results
were observed for the benzoate derivative in CH2Cl2. The oxidation process
occurs at 0.79 V and the reduction process at 0.11 V. The values are referred to
the Cp2Fe/Cp2Fe+ pair where Cp stays for cyclopentadiene. The corresponding
processes are summarized according to the scheme below:

[Mn12]
+ → [Mn12] → [Mn12]

− → [Mn12]
2− → [Mn12]

3−. (4.6)

[Mn12] is a shorthand notation for [Mn12O12(RCOO)16] so the uncharged spe-
cies correspond to Mn12ac. A series of benzoate derivatives, which have similar



150 SINGLE-MOLECULE MAGNETS

solubility in a given solvent, allowed a comparative analysis of the role of the
carboxylate in the redox potentials (Aubin et al. 1999). It was found that the
potentials satisfactorily correlate with the electron withdrawing properties of
the para substituent in the benzene ring. An electron withdrawing substituent
causes the carboxylate to become less basic, reducing the electron density on
the metal ions thereby making the cluster easier to reduce and at the same time
harder to oxidize.

The first reduction potential is so easily accessible that mild reductants
like iodide can be used. The PPh+

4 derivatives of the R = Et and R = Ph
were directly obtained by adding the iodide to the appropriate unreduced
Mn12 clusters. The cation is magnetic with a moment corresponding to one
unpaired electron. (PPh4)[Mn12O12(Et-COO)16(H2O)4] crystallizes in the mono-
clinic P21/c space group (Eppley et al. 1995). The overall structure of the
anion is very similar to that of the unreduced species. The reduction yielded
a valence-localized species, one of the external MnIII ions being reduced to
manganese(II). The identification of the reduced ion has been made on the
basis of structural features and confirmed by bond valence sums (Brown and
Wu 1976).

It has been suggested that the reduction of MnIII rather than of MnIV is due
to the fact that the reduction of the latter would introduce a distorted MnIII

site creating a strain in the apparently rigid [Mn4O4] structure of the core. The
temperature dependence of the χT product is qualitatively similar to that of
Mn12ac, suggesting a ferrimagnetic ground state. The ground state is suggested
to correspond to S = 19/2, with a large negative zero-field splitting. The mag-
netic data require, however, a physically unreasonable g = 1.74. It is apparent
that the ground spin state cannot be simply obtained by changing one of the
S = 2 spins to a S = 5/2 spin, because one would expect either S = 21/2, for par-
allel or S = 11/2 for antiparallel alignment of this spin with the manganese(III)
ones. A more frustrated structure, analogous to that which gives rise to S = 9
in some Mn12 derivatives is dominant for [Mn12]

−. Similar results were obtained
for the R = Ph derivative. HF-EPR spectra have been used to obtain the zero-
field splitting parameter D(Aubin et al. 1999). The spectra were recorded on
loose polycrystalline samples. It was assumed that a complete orientation of the
powders was achieved and the spectra were assigned on the assumption of the
strong field limit. With this simplified treatment the zero-field splitting D was
found to be −0.63 K.

Beyond derivatives with diamagnetic cations recently the structure of
a compound comprising an organic cation radical, m-N -methylpyridinium
nitronyl nitroxide, [m-MPYNN]+, and the [Mn12O12(O2CC6H5)16(H2O)4] anion
(Takeda and Awaga 1997), or the paramagnetic [Fe(C5Me5)2]

+ cation and
the [Mn12O12(O2CC6F5)16(H2O)4] anion (Kuroda-Sowa et al. 2001), have also
been reported. The ground state for the latter was found to be S = 21/2, with
axial zero-field splitting parameters D =−0.52 K and B0

4 =−5.2 × 10−7 K, as
determined through HF-EPR spectroscopy.
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Using carboxylates with more electron withdrawing derivatives it was also
possible to obtain the [Mn12]

2− derivatives (Soler et al. 2000; Soler et al. 2001b)
[Cat]2[Mn12O12(O2CR)16(H2O)4], where Cat+ = PPh+

4 , NnPr+4 , R = CHCl2,
C6F5, 2,4-C6H3(NO2)2. The second reduced manganese(II) is also localized on
the external ring. The ground state is reported to be S = 10, with an axial
zero-field splitting D ∼ −0.45 K. A different approach to obtain the reduced
form of Mn12 clusters is based on an exchange reaction between the acet-
ate precursor and a carboxylate carrying a positive charge as the quaternary
ammonium cation in the betaine cation schematized below, which is associated
with the hexafluorophosphate anion (Coronado et al. 2004). The reaction leads
to [Mn12O12(bet)16(EtOH)4](PF6)14 clusters, with only 14 PF−

6 anions, which
means a two-electron reduced species is formed. The spin ground state appears
to be S = 11 but the presence of MnII reduces the anisotropy to D ∼ −0.32 K.

N
+

O
–

O

= betaine

CH3
CH3

CH3

4.7.4 Fe8 clusters

The second molecule that has been intensively investigated for its behaviour as an
SMM is commonly indicated as Fe8 and its structure has already been presented
in Fig. 3.36. The complete formula is [Fe8O2(OH)12(tacn)6]Br8(H2O)9, (tacn =
1,4,7-triazcyclononane), and the compound is prepared by controlled hydrolysis
of Fe(tacn)Cl3 in a mixture of water and pyridine with the addition of sodium
bromide. Only a cluster molecule is contained in the elementary cell, as the
compound crystallizes in the acentric P1 space group of the triclinic system
(Wieghardt et al. 1984).3

The internal iron(III) ions are octahedrally coordinated to the two oxides and
to four hydroxo bridges. Fe3 and Fe4 coordinate three nitrogen atoms of the
tacn molecules two hydroxides and one oxide ion, while the external iron(III)
coordinate three nitrogen atoms and three hydroxides. The presence of three
different Fe sites has also been confirmed by Mössbauer spectroscopy (Barra
et al. 1996; Cianchi et al. 2002).

The oxides form µ3 bridges, while the hydroxide ligands are involved in µ2

bridges. Fe1, Fe2, Fe3, Fe4 form a structure often encountered in polynuc-
lear metal complexes, which has been indicated as a butterfly structure (see

3 Crystallographic cell parameters for Fe8 at 113 K: a = 10.521(1)Å, b = 14.088(1)Å,

c = 15.089(1)Å, α = 89.83(1)◦, β = 109.80(1)◦, γ = 109.43(1)◦, V = 1968.8(3)Å
3
.
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Fig. 4.13). From the magnetic point of view this structure gives rise to spin frus-
tration effects, which make the prediction of the most stable spin arrangement
difficult.

The temperature dependence of χT , shown in Fig. 4.28, clearly indicates a
ferrimagnetic structure as already observed for Mn12ac. The high-temperature
value of χT is in fact much lower than the value expected for eight uncoupled
S = 5/2 spins, χT = 35 emu K mol−1 for g = 2. Strong antiferromagnetic inter-
actions must therefore be active, but at low temperature χT increases and goes
through a round maximum at χT ≈ 54 emu K mol−1. Such behaviour can be
rationalized with an S = 10 ground state confirmed by high-field magnetization
measurements. In the simplest possible approach this ground state can be jus-
tified by putting six S = 5/2 spins up and two down. In idealized D2 symmetry
only four different exchange interactions are present, as schematized in the inset
of Fig. 4.28.

The Heisenberg exchange Hamiltonian becomes:

Hex = −J1S1 · S2 − J2(S1 · S3 + S1 · S4 + S2 · S3 + S2 · S4)

− J3(S1 · S5 + S1 · S8 + S2 · S6 + S2 · S7)

− J4(S3 · S5 + S3 · S7 + S4 · S6 + S4 · S8). (4.7)

Using the irreducible tensor operators approach described in Section 2.5 it has
been possible to evaluate the magnetic susceptibility even if a true fitting pro-
cedure up to now has never been attempted. Starting from magneto-structural
correlation (Gorun and Lippard 1991) it can be expected that between the AF
interactions mediated by the oxo-ions J2 dominates because it corresponds to
the largest Fe–O–Fe angle (128.8◦ versus 96.8◦). This angular dependence of the
exchange interaction in Fe(III) polynuclear compounds is now well established
(Weihe and Güdel 1997b; Le Gall et al. 1997). Similar reasoning suggests that
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Fig. 4.28. Temperature dependence of the χT product for Fe8. The solid line
corresponds to the calculated values using the exchange Hamiltonian (4.7)
and the labelling scheme is shown in the inset of the figure.



A SURVEY OF THE MOST INVESTIGATED SMMs 153

the interaction described by J4 is stronger than J3. A reasonable agreement
with the experimental data of Fig. 4.28 has been obtained with the parameters
J1 = − 200 K, J2 = − 36 K, J3 = − 26 K, J4 = − 59 K. The low temperature
decrease of χT is reproduced by introducing magnetic anisotropy effects (vide
infra). With this set of parameters the spin structure of the ground state is that
described in Fig. 3.36, with the spins of Fe3 and Fe4 oriented antiparallel to the
other spins.

As already mentioned in Chapter 3, the fitting of the magnetic susceptibility
with many independent parameters, four in the present case, often results in
overparametrization with a large uncertainty on the parameters. Polarized neut-
ron diffraction provides unambiguous information on the spin structure through
the reconstruction of a spin density map such as that shown in Fig. 3.36 for Fe8

(Pontillon et al. 1999), which confirm the proposed spin structure.
The ground S = 10 state is largely split in zero field as shown by the HF-EPR

spectra reported in Fig. 3.28 (Barra et al. 1996; Barra et al. 2000), inelastic
neutron scattering data reported in Fig. 3.39 (Caciuffo et al. 1998; Amoretti
et al. 2000), and far-infrared spectroscopy (Mukhin et al. 2001). The temperature
dependence of the far-infrared spectra is shown in Fig. 4.29. Four clear transitions
are observed corresponding to energy values, divided by kB, of 3.2, 3.5, 4.2,
and 5.3 K. The four peaks show different temperature dependence with the
one at higher energy strongly gaining intensity at low temperature. It has then
been associated to the transition involving the ground doublet and thus to the
m = ± 10 → m′ = ± 9 transitions.

Since the cluster has no symmetry the spin Hamiltonian describing the mag-
netic anisotropy is more complex than that used for Mn12ac. The experimental
data were fit with the following zero-field Hamiltonian defined in the basis set of
the S = 10 functions of the ground state:

HA = DS2
z + E(S2

x − S2
y) + B0

4O
0
4 + B2

4O
2
4 + B4

4O
4
4 (4.8)

which assumes D2 symmetry. The values of the relevant parameters obtained
by fitting of data provided by different experimental techniques are shown in
Table 4.5.

The differences between HF-EPR and INS data have been attributed to the
presence of low-lying excited spin states that can be admixed with the ground
state, an effect that has been named S-mixing (Liviotti et al. 2002). Single-
crystal HF-EPR spectra have also provided information on how the directions
of the principal axes of the D tensor are oriented in respect of the molecular
reference frame as shown in Fig. 4.30. The easy axis of magnetization is almost
perpendicular (ca. 10◦) to the normal to the plane of the ‘butterfly’ core of the
cluster defined by Fe1, Fe2, Fe3, and Fe4, while the intermediate axis passes
through the Fe1 and Fe2 ions, this direction being an idealized binary axis of the
molecule. The hard axis is obviously orthogonal to the other two.

The above results show that the magnetic anisotropy has a large rhombic com-
ponent, mainly determined by the large value of the ratio |E/D|. Consequently



154 SINGLE-MOLECULE MAGNETS

E (meV)

0.3

1

1

10–1

10–1

10–1

10–2

10–3

10–4

1

1

2.0 2.5 3.0 3.5

E (cm–1)

4.0 4.5

0.4 0.5

35 K

5.7 K

4.0 K

1.79 K

10 K

Fe8

4 3 2 1

Fig. 4.29. Far-infrared spectra in zero field of Fe8 at different temperatures. The
peaks labelled as 1, 2, 3 and 4 correspond to the m → m′ transitions, ±10 →
±9, ±9 → ±8, ±8 → ±7, ±7 → ±6, respectively. From Mukhin et al. (2001).
Copyright (2001) American Physical Society.

Table 4.5. Magnetic anisotropy parameters for Fe8 evaluated from HF-
EPR, neutron scattering, and far-infrared spectroscopy. The spin
Hamiltonian is defined in (4.8) where the Zeeman term has been added
to reproduce the HF-EPR experiments.

D (K) |E/D| B0
4 (K) B2

4 (K) B4
4 (K) Ref

−0.295 0.19 2.3 × 10−6 −7.2 × 10−6 −1.2 × 10−5 (Barra et al. 2000)
−0.292 0.16 1.0 × 10−6 1.2 × 10−7 8.6 × 10−6 (Caciuffo et al. 1998)
−0.295 0.15 2.0 × 10−6 1.2 × 10−7 8.6 × 10−6 (Mukhin et al. 2001)
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Fig. 4.30. Left: view of the molecular structure of the Fe8 cluster superimposed
with the principal axes of the magnetic anisotropy. The intermediate axis,
not shown, passes through Fe1 and Fe2. Right: orientation of the easy axis
in respect of the unit cell. The shape of the crystals reflects the triclinic unit
cell and is that of thin slabs with the faces (0, 0,±1) being the largest ones.
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Fig. 4.31. (a) Calculated energy levels of the split components of the S = 10
ground multiplet of Mn12ac (grey) and Fe8 (black). The levels of the latter
in the upper part are strongly admixed and their m assignment in the graph
is arbitrarily chosen for the sake of clarity. (b) Wavefunction composition of
the formally labelled 〈+6〉, 〈−6〉, 〈+5〉, and 〈−5〉 eigenstates of Fe8 in the m
basis. A weak longitudinal field has been considered to localize the eigenstates
on one side of the graph.

the energies of the m levels are very different from those calculated for Mn12ac,
as shown in Fig. 4.31a. The lowest lying levels are almost degenerate in pairs
±m, but approaching the top of the barrier the levels are strongly admixed, as
shown in Fig. 4.31b, and the m labelling loses any significance. In fact above
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the levels which can be loosely indicated as +5 and −5 there are three non-
degenerate levels, admixtures of states with small m. Above these states three
pairs of quasi-degenerate levels are again observed but they do not correspond,
not even approximately, to ±m pairs .

The origin of the magnetic anisotropy responsible of the observed zero-field
splitting is presumably a mixture of dipolar and single-ion contributions. The
intracluster dipolar contributions can be easily and rather accurately calculated
assuming that the magnetic moments are localized on the iron ions and using
the point dipolar approximate formula (2.50) with the generalization outlined in
section 2.5.2. In this frame the calculated zero-field splitting parameters D and
E are much smaller than the experimental values, suggesting that the single-
ion anisotropy of the FeIII centres is relevant. This is not an unexpected result,
because similar trends were observed in other polynuclear iron(III) compounds
(Abbati et al. 2001).

Contrary to Mn12, Fe8 does not seem to be stable in solution. This has pre-
vented the synthesis of different derivatives as encountered in the Mn12 family.
Only minor variations are possible for Fe8, involving either pseudopolymorphs,4

i.e. crystallization with different unit cell and with different solvation molecules,
or replacement of the Br− counterions with ClO−

4 (Barra et al. 2001).

4.7.5 Mn4 clusters

Several different topologies are encountered in tetranuclear manganese clusters
and some of them are shown in Fig. 4.13. The most frequently investigated
class, showing SMM behaviour at relatively high temperature (Aubin et al.
1998), comprises a mixed valence cubane core of formula [Mn4(µ3-O)3(µ3-X)]6+

schematized in Fig. 4.32 (Wemple et al. 1993). Structural evidence suggests a
[MnIVMnIII

3 ] localized charge distribution. Three carboxylates bridge the MnIV

centre to the MnIIIones. The coordination octahedron of MnIII centres is com-
pleted either by a chelating ligand, like β-diketonates, or by two monodentate
ligands, usually a Cl− and an N-based neutral ligand such as pyridine. The
general formula is therefore [Mn4(µ3-O)3(µ3-X)( µ2-O2CR)3L3] or [Mn4(µ3-
O)3(µ3-X)( µ2-O2CR)3L3 L′

3], respectively, where X is a mono-negative ion like
F−, Cl−, Br−, N−

3 etc.
The clusters possess either strict trigonal symmetry, when they crystallize

in trigonal space groups, or idealized trigonal symmetry. In some clusters, like
[Mn4O3(O2C-C6H4 −p-R′)4(dbm)3] with R′ = H, CH3, OCH3, the unique bridge
X− is replaced by a carboxylate. This last one acts as a [3.2,1] bridge destroying
the three-fold symmetry as shown in Fig. 4.32.

The first Mn4 cluster of this type was obtained in 1987 in a synthetic effort
aimed at the modelling of the photosynthetic oxidation centre in photosystem
II (Bashkin et al. 1987). From the very beginning it was noticed that these

4 Crystals of Fe8 with a more complex morphology can be obtained and have the unit
cell parameters: a = 13.27 Å, b = 13.57 Å, c = 15.08 Å, α = 114.8◦, β = 108.1◦, and γ = 101.4◦

(unpublished results corteously provided by C. Sangregorio).
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Fig. 4.32. Schematic view of the structure of [Mn4(µ3-O)3(µ3-X)(µ2-
O2CR)3]

3+clusters (right) and of [Mn4(µ3-O)3(µ3-O2CR)(µ2-O2CR)3]
3+

clusters (left). The MnIV centre is shown in grey.

clusters are all characterized by a ground state with spin S = 9/2. This ferrimag-
netic structure results from the ferromagnetic interaction between MnIII ions
and antiferromagnetic coupling with MnIV. Typical exchange interactions range
between 20 K and 45 K for JIII−III and −55 to −90 K for JIII−IV. The ground
spin state is well isolated, being the first excited state, characterized by S = 7/2,
at least 250 K above in energy.

The ground spin state is split by the magnetic anisotropy, and the major
contribution is provided by the single-ion anisotropy of MnIII centres, which
show a pronounced Jahn–Teller elongation along the M-X bond. The ground
state ZFS tensor D is related to the single-ion contribution according to

DS=9/2 = di

3
∑

i=1

Di. (4.9)

The di coefficients can be calculated using the projection techniques presen-
ted in Chapter 2, provided that the spin ground state wavefunction is known.
In the present case the S = 9/2 state is well represented by a coupling scheme
where the MnIII spins are first coupled ferromagnetically to each other to give
an intermediate spin SIII

Mn = 6, and then antiparallel to that of MnIV. This results
in di = 35/242 for every i. As already emphasized above (4.9) involves tensors
and therefore their relative orientation is of paramount importance. In fact, if
the clusters had strict cubic symmetry the M-X bonds would be perpendicu-
lar to each other and the magnetic anisotropy would be quenched. In trigonal
symmetry (4.9) can be rewritten in a simpler form:

DS=9/2 =
3

2

35

242
DMnIII(3 cos2 α − 1) (4.10)
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where D is now a scalar quantity representing the axial anisotropy parameter
and α is the angle formed by the elongation axis of MnIII and the trigonal axis
passing through MnIV and X.

The larger the deviation from the magic angle, α = 54.7356◦ (for which arcos
α = 1/

√
3 and the term in parenthesis of (4.10) goes to zero) the larger is the

projection of the single-ion anisotropy on the ground state.
The large variety of similar clusters has stimulated many physical charac-

terizations in order to establish correlations between structure and magnetic
properties. In particular a INS study has been performed on four derivatives
of the [Mn4O3X(O2CMe)3(dbm)3] series, with X− = F−, Cl−, Br−, and MeCO−

2

while dbm− is the anion of dibenzoylmethane (Andres et al. 2000). None of these
compounds has rigorous trigonal symmetry and the spin Hamiltonian that has
been used to fit the data includes a rhombic E term, even if |E/D| does not
exceed 0.04. Good agreement between the trends of α and D in the four com-
pounds has been observed. D ranges between −0.545 K for X = F and −0.761
K for X = Cl, while α is 54.2◦ and 45.1◦, respectively. Of course the crystal field
generated by the different X− ligands plays a role not only in determining the
α parameter but also the amplitude of the single-ion magnetic anisotropy. The
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Fig. 4.33. (a) HF-EPR spectra of an oriented sample of
[Mn4O3Cl(O2CMe)3(dbm)3] recorded at 327.9 GHz with the applied
field parallel to the easy axis (after Aubin et al. 1998). (b) Inelastic neutron
scattering data for the same compound at 18 K (after Andres et al. 2000).
(c) Assignment of the peaks with m → m′ transitions. In the case of INS
data the assignment only refers to the absolute value of m. Copyright (1998
and 2000) American Chemical Society.
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blocking temperature, as determined from ac susceptibility, scales well with the
D values.

In Fig. 4.33 are reported, for comparison, the HF-EPR spectra on an oriented
sample of the X = Cl derivative (Aubin et al. 1998) and the INS spectra (Andres
et al. 2000), together with the assignment of the observed peaks. What is evident
in both experiments is the non-regular separation of the lines, while a regular
spacing should indeed be observed if only axial second-order magnetic aniso-
tropy is present. As line separation decreases on going towards the centre of the
spectra, i.e. decreasing |m| of the involved transitions, a sizeable fourth-order
axial term, O0

4, is expected to be active and with a negative B0
4 parameter.

Very good agreement between parameters estimated from the two techniques
has been observed: D = − 0.76 K, B0

4 = − 1.1 × 10−4 K and D = − 0.76 K,
B0

4 = −9.4 × 10−5 K, for HF-EPR and INS, respectively. The better agreement
between the two techniques, compared to that observed for Fe8, could reflect
the presence of a much weaker S-mixing, given the large separation observed in
Mn4 clusters between the ground and the first excited spin state. In the case of
neutron data an E term, E = 0.032 K, has been included in the analysis, but
this term could not be evaluated from HF-EPR spectra because these last ones
have been recorded with the applied field along the easy axis of magnetization.



5

THERMALLY ACTIVATED MAGNETIC RELAXATION

5.1 Relaxation and relaxation time

In the previous chapters, especially in Section 3.1, it was shown how the dynamic
properties of a magnetic material can be experimentally investigated. An essen-
tial feature is the relaxation time τ , which in the simplest case is defined by (3.9).
In the present chapter a quantitative interpretation of the experimental results
will be presented. The simplest case is when the relaxation is so slow that the
decay of the magnetization can be directly measured. This is generally so at
low enough temperature. Typically, one takes a magnetic material and applies
a strong magnetic field H1 in the easy magnetization direction. One waits some
time until the magnetization has reached its equilibrium value. Then, at time
t = 0, one switches the field off, or one applies a field H in the opposite direction,
and one measures the magnetization M(t) at time t. The field H1 is such that
the initial magnetization is negative and close to its saturation value. The field
H is weak or even equal to 0. In this and the next chapters, the material will be
assumed to be a single, perfectly periodic crystal.

This chapter is mainly devoted to situations where the relaxation is
exponential,

M(t) = Meq(H) + δM0 exp(−t/τ). (5.1)

This relation generalizes (3.9) and defines the relaxation time τ . The equilib-
rium magnetization Meq(H) has been introduced. The materials which will be
considered are generally paramagnetic, so that if the field H vanishes, then
Meq(0) = 0.

If τ is measured at different temperatures T , a decrease is observed which is
often well represented by the Arrhenius formula

τ = τ0 exp
T0

T
. (5.2)

Since one likes to have a straight line, it may be of interest to plot 1/ ln(τ/τ0)
as a function of T . If the Arrhenius formula (5.2) holds, then

1

ln(τ/τ0)
=

T

T0
. (5.3)

Figure 5.1 gives a schematic picture of measurements on Mn12ac (Paulsen
et al. 1995; Hernández et al. 1996) and Fe8 (Caneschi et al. 1998; Barra et al. 2001;
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1/ln(�/�0)

T1 T

Fig. 5.1. Typical behaviour of the relaxation time τ of the magnetization as a
function of temperature. The Arrhenius law is verified at high enough tem-
perature while τ is constant at low temperature. The cross-over value T1 is
of the order of 2 K in Mn12ac, 0.5 K in Fe8.

Gatteschi and Sessoli 2003). It has been shown in Section 4.7.1 that this beha-
viour is indeed observed for Mn12ac, with τ0 ≃ 10−7 s and T0 ≃ 60 K. It
follows from (5.3) that the relaxation of the magnetization becomes slow at low
temperature.

Formula (5.3) is only satisfied for temperatures larger than a threshold T1.
The reason for that will be seen in the next few chapters. The present chapter
is devoted to temperatures larger than T1 but appreciably lower than T0, say
between T0/20 and T0/2. The corresponding relaxation times are moderate. The
experimentalist can measure the time with an ordinary watch, but does not need
to spend several weeks for each measurements.

5.2 Potential barrier

The Arrhenius law (5.2) suggests the presence of a ‘potential barrier’. It will now
be argued that such a barrier does exist for the magnetization of each molecular
group Mn12ac.

Inside such a molecular group, the dominant magnetic interaction is the
exchange. We are in the strong exchange limit defined in Chapter 2. At low
enough temperature, only the states with lowest exchange energy can be reached.
Since the isotropic exchange Hamiltonian commutes with the total spin S, these
states have a well-defined value of S2, which in the following chapters will be
called s(s + 1) (to avoid confusion between the operator S and the number s).
Thus, the magnetic properties of the molecule are those of a spin of modulus s.
As seen in the preceding chapter, S = 10 in the case of Mn12ac, and also in
the case of Fe8 which also corresponds to the strong exchange limit. This spin
is subject to an anisotropy, or crystal field which, in the case of a tetragonal
crystal like Mn12ac, is well described by the Hamiltonian (2.10), Han = DS2

z . In
Mn12ac, the constant D turns out to be negative, as discussed in Section 4.7.1.
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m m

S–S S–S

Energy Energy(a) (b)

Fig. 5.2. Right-hand side of (2.10) as a function of Sz, in zero magnetic field (a)
and in a negative magnetic field parallel to the easy axis (b). Horizontal lines
indicate the energies −|D|m2 + gµBHzm of the quantum states. The graph
(a) can be considered as the quantum analogue of Fig. 1.4.

Therefore, the curve representing DS2
z as a function of Sz is a parabola (Fig. 5.2)

whose maximum at Sz = 0 is indeed a potential barrier. At low temperature, the
spin should be in one of the two sides of a double potential well. This description
is similar to that of a particle in a double potential well.

In this chapter and in the following ones until chapter 12, the properties of a
large spin s subject to a double well anisotropy will be studied. Moreover, D will
be replaced by −|D|, not to forget its sign.

The eigenvectors of the Hamiltonian (2.10) are the eigenvectors |m〉 of Sz The
eigenvalues of the Hamiltonian (2.10) are therefore quantized and equal to

Em = −|D|m2 (5.4)

where m = −s,−(s− 1), −(s− 2), . . . , (s− 1), s designates the eigenvalues of Sz,
therefore Sz|m〉 = m|m〉. There are (2s+1) eigenvectors and (2s+1) eigenvalues.

Formula (2.10) is only an approximation. In a crystal of symmetry lower than
tetragonal, the anisotropy Hamiltonian is given by (2.5) at lowest order and it
is not easy to obtain its eigenvalues and eigenvectors.

The simplest idea is to treat the E-term in (2.5) as a perturbation, although
in practice |E/D| is not always very small, as seen from Table 4.5. In particular,
for the states |m〉 with small values of m, the level spacing is of the order of D
while the off-diagonal perturbation is of the order of Es2 which is much larger!
As seen in Chapter 4, numerical calculations confirm that formula (5.4) is quite
a bad approximation for small values of |m|, although it is still acceptable for
the lowest states.

It is easily understood that the relaxation of the magnetization becomes slow
at low temperature. Indeed the spin can hardly get out of its half-potential well
to go into the other one. On the other hand, it can more easily do that at higher
temperature, because it receives a lot of energy from phonons, which help it to
climb to the top of the barrier and then go down on the other side. This process
is called thermal activation.

At equilibrium, the probability p0
m that the spin is in state |m〉 is given

by (3.21), p0
m = (1/Z) exp[−β(Em)]. Intuitively, it may be expected that the
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relaxation rate 1/τ is proportional to the probability to be at the top of the
barrier. Therefore, at low temperature and in vanishing field, introducing a
proportionality constant 1/τ0,

1/τ = (1/τ0)p
0
0 = (1/Z)(1/τ0) exp(−βE0)

≈ (1/τ0) exp[−β(E0 − Es)] ≈ (1/τ0) exp(−β|D|s2).

This is exactly the Arrhenius formula (5.2) with

kBT0 = |D|s2. (5.5)

This quantity kBT0 is called the activation energy. The above formulae hold for
an integer spin. If s is half-integer, then in vanishing field kBT0 = |D|s2 − |D|/4.

In the presence of a field Hz parallel to the easy axis, the energy as a function
of Sz = m is

E(0)
m = −|D|m2 + gµBHzm (5.6)

which has its maximum for 2|D|m = gµBHz or

mmax = (gµBHz)/(2|D|). (5.7)

This energy maximum is

Emax = (gµBHz)
2/(4|D|). (5.8)

The spin has been initially placed in the state m = −s where its energy is

E−s = −|D|s2 − gµBHzs. (5.9)

Formula (5.5) must therefore be replaced by

kBT0 ≈ |D|s2 + gµBHzs + (gµBHz)
2/(4|D|) = |D|[s + gµBHz/(2|D|)]2. (5.10)

Therefore, the field lowers the potential barrier for a spin situated in the ‘wrong’
well (m < 0 if Hz < 0).

Formulae (5.5)–(5.10) will be modified in Chapter 10. They clearly give no
information on the prefactor τ0 of formula (5.2). To obtain this information, it
is necessary to take time explicitly into account. The simplest way to do that is
to postulate the existence of transition probabilities.

5.3 Transition probabilities and the master equation

In this section we wish to formulate a simple picture of the evolution of a par-
ticular molecular spin S. As a first approximation, its energy or Hamiltonian is
a function of its components Sx, Sy, Sz only. This Hamiltonian is a result of
anisotropy. It may have the simple form (2.10) and then its eigenvectors are the
eigenvectors |m〉 of Sz. Or it may have a more complicated form as (2.5), but
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the eigenvectors

|m∗〉 =
∑

m′

ϕ
(m)
m′ |m′〉 (5.11)

will be assumed not to be very different from |m〉. This is only correct for low
energy states (|m| large) as seen in Fig. 4.31. It should be stressed that the aster-
isk modifies the state vector, not the number m. For instance, the notation |10∗〉
has a meaning, but 10∗ would mean nothing else than the complex conjugate of
10, which is of course also 10.

In this chapter, the following picture will be used. At a given time t, the spin
has a certain probability pm(t) of being in state |m∗〉. But in a short time dt it
has a certain probability γm′

m dt to make a transition to some other state |m′∗〉.
If the transitions are independent of each other, the probabilities pm(t) evolve
according to the equation

d

dt
pm(t) =

∑

q

[

γm
q pq(t) − γq

mpm(t)
]

(5.12)

which is called the master equation. Such an evolution is called a Markov process.
In the present case the master equation is a system of (2s + 1) equations, or an
equation for the matrix of the coefficients pm(t).

Though it is intuitive, equation (5.12) cannot be easily justified. ‘We face
a fundamental problem: the (classical or quantum) equations which determine
the motion of the system at the microscopic scale are invariant by time reversal;
however the macroscopic evolution of the system, which follows the master equa-
tion (5.12), has not this property’ (Diu et al. 1989). This problem has been much
debated since the time of Ludwig Boltzmann and Henri Poincaré, and the debate
involves highly complicated mathematics. A flavour of the solution in a particular
case is given in Appendix C.

In fact, equation (5.12) is only acceptable for times larger than a microscopic
time τcol, necessary for the establishment of irreversibility in a macroscopic sys-
tem. Irreversibility is typical of a large, macroscopic system. For short times,
each microscopic element (spin, molecule, atom) is reacting with its neighbours
and does not know that it is in a large system. For instance, in a gas, irrevers-
ibility is a result of the collisions. For short times, the evolution is a result of
the collisions which are taking place, and are microscopic processes described by
time-reversible equations. In that case τcol is the duration of a collision. Only for
t > τcol can the Boltzmann equation be applied.

The reality of time irreversibility is unfortunately obvious in daily life. Fugit
irreparabile tempus, as Latins said.

Coming back to spin, its transitions in (5.12) are effects of its interaction
with its environment, and especially collisions with phonons. The transition
probabilities γm

q arising from the interaction with phonons will be calculated
in Section 5.6.
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Independently of the interaction mechanism, equation (5.12) has general
properties. A simple one is that the equilibrium value p0

m = (1/Z) exp(−βEm)
of pm (see formula 3.21), is a trivial solution of (5.12),

∑

q

[

γm
q p0

q − γq
mp0

m

]

= 0. (5.13)

Another general property is the principle of detailed balance. It states that not
only the sum (5.13), but each individual term vanishes. Thus, γm′

m p0
m = γm

m′

p0
m′ , or

γm′

m /γm
m′ = p0

m′/p0
m = exp[β(Em − Em′)]. (5.14)

The above argument looks a priori rather poor. Clearly, although the sum
(5.13) must vanish at equilibrium, this does not oblige each term of that sum
to vanish! However, in second-order perturbation theory, the detailed balance
condition can be proven, and will be shown in Sections 5.6 and 5.7.

5.4 Solution of the master equation

The reader, who hopefully has full confidence in the authors of this book, will
probably expect to find a solution of (5.12) which has the exponential form
(5.1). As a matter of fact, anybody who has some knowledge of linear differential
equations will easily find (2s + 1) exponential solutions of (5.12), with (2s + 1)
characteristic times τk labelled by an index k = 0, 1, ..., 2s. Indeed, substituting
the exponential form

pm(t) = ϕ(k)
m exp(−t/τk) (5.15)

into (5.12), one obtains

− 1

τk
ϕ(k)

m =
∑

q

[

γm
q ϕ(k)

q − γq
mϕ(k)

m

]

=
∑

q

⎡

⎣γm
q − δm

q

∑

q′

γq′

m

⎤

⎦ϕ(k)
q (5.16)

where the Kronecker symbol δm
q (=1 if q = m, while δm

q = 0 if q �= m) has been
introduced. Equation (5.16) expresses the fact that −1/τk is an eigenvalue of the
‘master’ matrix defined by its (2s + 1) × (2s + 1) elements

Γm
q = γm

q − δm
q

∑

m′

γm′

m . (5.17)

Thus there are (2s+1) characteristic times τk which are the roots of an algebraic
equation of order (2s + 1), namely det(Γ − 1/τ)=0. One of the characteristic
times, τk = τ0, is infinite according to (5.13). It corresponds to equilibrium.
If the system is at equilibrium at some time, it will still be in the same state
at t = ∞.
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The eigenvector in (5.16) is
⎡

⎢

⎢

⎢

⎣

ϕ
(k)
−s

ϕ
(k)
−s+1

.............

ϕ
(k)
s

⎤

⎥

⎥

⎥

⎦

. (5.18)

The master matrix (5.17) is a square, (2s + 1) × (2s + 1) matrix which is not
Hermitian. This is unfortunate because Hermitian matrices have simple prop-
erties. However, the eigenvalue equation (5.16) can be written in terms of the
Hermitian, real matrix

Γ̃m′

m = Γm′

m exp[β(Em′ − Em)/2] = Γ̃m
m′ . (5.19)

The Hermiticity of that matrix results from (5.14).
The eigenvalue equation (5.16) can be written as

∑

q

Γ̃m
q ϕ̃(k)

q = − 1

τk
ϕ̃(k)

m (5.20)

where

ϕ̃(k)
m = ϕ(k)

m exp(βEm/2). (5.21)

Since Γ̃ is Hermitian, it has (2s+1) real eigenvalues 1/τk and (2s+1) eigenvectors.
The matrix (5.16) has obviously the same property.

It follows from (5.13) that one eigenvalue is equal to 0. The corresponding
eigenvector of (5.17) is p0

m. It is shown in Appendix D that all other rates 1/τk

are positive.
The general solution of (5.12) is a linear combination of all exponential

solutions,

pm(t) =
∑

k

λkϕ(k)
m exp(−t/τk) (5.22)

where the parameters λk are determined by the initial values pm(0).
Now, the magnetization M(t) has the form M(t) =

∑

pm(t)Mm which was
already encountered in Chapter 3. Substituting in this formula pm(t) as expressed
in (5.22), M(t) is seen to be a sum of exponentials exp(−t/τk) and an addit-
ive constant (since 1/τ0 is 0). This seems to contradict the experimental result
(5.1), according to which there is a single exponential. However, at low temperat-
ure, most of the exponential functions vanish rapidly, except one of them which
vanishes slowly, in agreement with (5.1). In other words, one of the negative
eigenvalues −1/τk is very small at low temperature.

This property is a consequence of the shape of the potential, more precisely
of the existence of a potential barrier. Since the spin requires a very long time
to jump over that barrier, one eigenvalue must be very small while the (2s − 1)
other ones correspond to spin motion inside the left or right hand well, and have
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no reason to depend much on temperature. They give rise to transients which
are only important at short times.

Thus, the experimental result (5.1) is understood. The constant corresponds
to the vanishing eigenvalue of (5.17), and the exponential corresponds to the
very small eigenvalue.

The derivation of the Arrhenius law (5.2) from the master equation is done
in Appendix E. The conclusion is in agreement with (5.5).

The Arrhenius law is not correct at too high temperature because the solution
of the master equation is a sum of several exponential functions of time. It is
not correct at too low temperature either, because of tunnelling, as will be seen
in the next chapter.

The theory which has been presented in this section is purely phenomeno-
logical. If one wants to go further and to calculate the prefactor τ0 of the
Arrhenius law (5.2), it is necessary to know the source of the energy which
allows the spin to reach the top of the barrier. This energy comes from phonons.

5.5 Spin–phonon interaction

5.5.1 Basic features

The mechanism of the interaction between molecular spins and lattice vibrations
(‘phonons’) can be described as follows. Under the effect of phonons, each molecu-
lar group undergoes a time-dependent transformation which can be analysed as
the superposition of a local rotation and a local strain. These two effects produce
a time-dependent modification (or ‘modulation’) of the anisotropy energy. The
new terms of the Hamiltonian induce transitions between the eigenstates |m∗〉
of the static Hamiltonian Han defined by (2.10) or (2.5) or any more accurate
approximation. In this chapter, it will be assumed that Han is well approximated
by (2.10), so that its eigenstates are those of Sz, namely |m〉.

As a matter of fact, phonons modulate all terms of the spin Hamiltonian,
including the intramolecular isotropic exchange which is larger than the aniso-
tropy. However, the spin–phonon interaction resulting from the modulation of
exchange is of minor importance. Indeed, as will be seen in Section 5.9, it does
not induce transitions inside the (s = 10) space of lowest exchange energy.

The above statements will now be translated into equations. This just requires
a slight reformulation of the first chapter of any elasticity textbook. Elastic waves
(‘phonons’) transform any vector r into r+u(r), where the displacement is u(r).
To first order in u, the change of an infinitesimal length in this transformation
depends only on the symmetric combinations

ǫαγ = (1/2)(∂αuγ + ∂γuα) (5.23)

of the derivatives ∂αuγ , which will be assumed to be small. The tensor of com-
ponents ǫαγ is called the strain. The antisymmetric combinations (∂αuγ −∂γuα)
do not modify lengths, and therefore correspond to rotations. To determine the
relation between these combinations and the rotation vector Ω, one can write,
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for a homogeneous rotation in the absence of strain, ux = zΩy − xΩz and
similar relations for uy and uz. Hence, Ωy = ∂zux = −∂xuz. It follows that
Ωy = (∂zux − ∂xuz)/2, which is still correct in the presence of a strain. The
corresponding vector equation is

Ω = −(1/2)rot u. (5.24)

Formulae (5.23) and (5.24) hold to first order for small values of the derivatives
∂αuγ . Thus Ω is a small quantity. In this book, terms of second or higher order
with respect to elastic displacements will generally be ignored (as they are in
standard elasticity). Such high-order terms will be briefly discussed in Section 5.8,
and it will be seen that they can be important in certain cases.

5.5.2 Local rotation

For the sake of simplicity, tetragonal symmetry will be assumed. If the crystal is
rotated by a rotation vector Ω, the new easy axis Z is parallel to a unit vector
eZ related to the fixed basis vectors eα by eZ = ez +Ω×ez = ez +Ωyex −Ωxey.
The anisotropy energy which replaces (2.10) is thus, to first order,

Hrot = −|D|S2
Z = −|D|(eZ .S)2 = −|D|(Sz + SxΩy − SyΩx)2. (5.25)

Inserting (5.24) and retaining only linear terms, (5.25) reduces to the original
anisotropy term (2.10) plus a correction

δHrot = |D/2|{Sz, Sx}(∂xuz − ∂zux) + |D/2|{Sz, Sy}(∂yuz − ∂zuy). (5.26)

In this equation, valid for a tetragonal crystal only, S is the spin S(R) of the
molecule situated in the unit cell R, u is the displacement u(R) in the unit cell
R, and δHrot is a Hamiltonian δHrot(R) acting on the spin S(R). The true effect
of local rotations is the sum

∑

δHrot(R) on all R. For the sake of simplicity,
this complication has been and will be ignored.

In the derivation of (5.25), the rotation has been assumed uniform. The for-
mula holds as well for a local rotation resulting from phonons (the case of interest
here) but in that case there is another contribution to the energy, which results
from the strain and will be calculated in the next section.

5.5.3 Local strain

For a tetragonal crystal, the anisotropy energy −|D|S2
z (formula 2.10) depends

on a single parameter D if restricted to quadratic terms. When writing the
anisotropy energy −|D|S2

z + E(S2
x − S2

y) (formula 2.5) for a triclinic crystal, two
energetic parameters E and D were sufficient, although there are also geomet-
ric parameters which define the orientation of the easy and hard axes. In the
presence of phonons, there is a local strain tensor ǫα,γ(r), and it is reasonable
to expand the magnetic anisotropy energy as a power series of this strain. Only
linear terms in ǫ will be kept. On the other hand, they will be assumed to be
quadratic in the spin operators. Indeed, for a static strain, time-reversal sym-
metry imposes that linear terms vanish in vanishing magnetic field, in agreement
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with Chapter 2. It will be assumed that the magnetic field is never strong enough
to introduce an appreciable spin–phonon interaction linear in the spin operators.
As to the applicability of the rule valid for static strains, this will be examined
in Section 5.5.4. Under these hypotheses, and keeping only terms linear in the
displacements, the spin–phonon interaction, involving a spin at point r, is

Hs-ph =
∑

α,γ,ξ,ζ

Λ̃α,γ,ξ,ζ ∂αuγ(r) SξSζ . (5.27)

This formula takes both strain and rotation into account.
Each index α, γ, ξ, ζ can take three values x, y, z, so that the number of

coefficients Λα,γ,ξ,ζ cannot be larger than 34 = 81, which is already quite large.
The reduction of these coefficients by various symmetries has been discussed
by Lüthi (1980). See also Hartmann-Boutron et al. (1996). As to the order of
magnitude of the Λ coefficients, it is presumably that of D; anyway it cannot be
smaller, as follows from Section 5.5.2.

Hamiltonian (5.27) is a perturbation to be added to the steady anisotropy
term (2.10) and to the Hamiltonian of free phonons.

Hamiltonian (5.27) contains a term in S2
z which just modifies quantitatively

the static Hamiltonian, e.g. (2.10), but is unable to produce transitions. More
interesting terms are those in SzSx and SzSy, which change m by ±1, and terms
in S2

x, S2
y and SxSy which change m by ±2. Thus, the spin can climb the s steps,

either step after step, or skipping a step from time to time. Thus

|m − m′| = 1 or 2. (5.28)

This selection rule is exact if the Hamiltonian is the sum of the spin Hamiltonian
(2.10) and a spin–phonon Hamiltonian which one treats perturbatively at lowest
order as explained in the following section. However, if the spin Hamiltonian
contains terms which do not commute with Sz as in (2.5), its eigenvectors are
not |m〉, but |m∗〉, and the selection rule (5.28) is only approximate. For instance,
in Fe8, a single phonon has some probability to produce a transition from |m∗〉 to
|(m+3)∗〉. This probability is weak if E/|D| is small. The method of working with
the true eigenvectors |m∗〉 in a numerical treatment is explained in Appendix F.

The terms (5.27) have been derived for a constant strain, following the scheme
of the Born–Oppenheimer approximation. In the next section, it will be seen that
another type of spin–phonon interaction exists, which cannot be derived from
the Born–Oppenheimer approximation.

In addition to (5.27), there may be terms containing spin operators Sα
R Sγ

R′

corresponding to two different spins. These terms are presumably less important.
They will be addressed in Section 5.9.

5.5.4 Terms linear in the spin operators

This section addresses a question of fundamental interest which, however, is
probably not essential for the interpretation of experimental data. It can be
skipped by the uninterested reader.
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In this section, the magnetic field will be assumed to vanish. Thus, the
Hamiltonian should be even with respect to angular momenta. However, angu-
lar momenta do not reduce to their electronic part, responsible for magnetism.
In the presence of phonons, each magnetic molecule has an additional angular
momentum, which is mainly that of nuclei, and is a sum of phonon creation and
annihilation operators. It is proportional to the rotation vector Ω (defined by
the fact that the velocity of an atom at point r is −Ω × r).

While, in vanishing field, invariance under time reversal prevents the
Hamiltonian from containing terms linear with respect to angular momenta,
it does not forbid a spin–phonon interaction of the form

Fgyr = −
∑

αγ

λαγΩαSγ (5.29)

which has been proposed by Chudnovsky (1994). The subscript ‘gyr’ refers
to ‘gyromagnetic’ effects, i.e. the interaction between rotation and magnetism
(Barnett 1935; Landau and Lifshitz 1969).

Actually, a term of the form (5.29) appears if one wishes to write the equations
of motion of a mechanical system in a rotating frame of coordinates. As shown
in textbooks (Landau and Lifshitz 1960), if a particle has a kinetic moment M,
its Hamiltonian in the rotating frame is

Hrot = H0 − M · Ω (5.30)

where H0 is the Hamiltonian in the fixed frame and Ω is the rotation vector, so
that a point r of the rotating frame has velocity Ω × r.

The second term of the right-hand side of (5.30) is the same as would result
form a magnetic field Ω. This is easily understood in the particular case H0 = 0.
Then the magnetic moment is immobile in the fixed frame, but precesses in the
rotating frame. This is the same motion as the Larmor precession in a magnetic
field.

Conversely, if a magnetic moment is in a magnetic field H, one can simplify
its equation of motion by writing it in a rotating frame, so that the term −M ·Ω

of (5.30) cancels the Zeeman term −M · H. This trick is commonly used in the
theory of magnetic resonance.

However, the term −M · Ω is only present in the rotating frame. Although
it has been proposed to write the spin–phonon interaction in such a time-
dependent and space-dependent frame (Chudnovsky 1994, Chudnovsky and
Martinez-Hidalgo 2002) this would lead to high algebraic complications. To avoid
them, the spin–phonon interaction should be written in the fixed frame of ref-
erence, where the Hamiltonian is H0. This does not exclude terms of the form
(5.29) in the spin–phonon Hamiltonian, but these terms are much more difficult
to derive than (5.30).

This section will be closed by a digression about gyromagnetic effects (Barnett
1935; Landau and Lifshitz 1969; Cagnac and Pébay-Peyroula 1983). The simplest
gyromagnetic effects are the Barnett effect and the Einstein–de Haas effect, which
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is the inverse effect. The Barnett effect is the following phenomenon: a magnetic
material (e.g. Fe) which undergoes a rapid rotation acquires a magnetization.
The experimental observation is in agreement with (5.30). As Barnett wrote,
‘rotating a body at 100 revolutions a second is equivalent to putting it in a
magnetic field which is one fifteen-thousandth as intense as the earth’s field’.

5.6 Transition probabilities and the golden rule

The existence of a spin–phonon interaction, which does not commute with the
single-spin Hamiltonian (2.10) or (2.5) or else, implies the possibility of trans-
itions from a state |m∗〉 to a state |m′∗〉 through phonon absorption or emission.
An intuitive picture is that the spin has a certain probability per unit time
of capturing a phonon of wavevector q, and another probability of emitting a
phonon. More precisely, the system (spin + phonons) is characterized by the
state |m∗〉 of the spin, and the number nq,ρ = b+

qρbqρ of phonons of each ‘mode’.
A phonon mode is characterized by its wavevector q and an additional index ρ.
The definition of a phonon mode results from the phonon Hamiltonian which
can be written as

Hph =
∑

qρ

h̄ωqρb
+
qρbqρ (5.31)

where b+
qρ and bqρ are phonon creation and annihilation operators and satisfy

Bose commutation rules.
The number ν of phonon modes is equal to three times the number of atoms

in the unit cell. However, we are interested in relatively low temperatures (more
precisely, much lower than the Debye temperature) where only low-frequency
phonons are available, i.e. acoustic phonons of small wavevector. Since a three-
dimensional crystal has three acoustic phonon branches, ρ=1, 2 or 3.

Although there are many spins, their interaction is sufficiently weak to be
neglected in the phonon emission or absorption process, so that attention can
be focused on a single spin which is initially in state |m∗〉. Also, there are many
phonon modes, but the interaction will be treated in second-order perturbation
theory, so that attention can be first focused on the mode q, ρ of the absorbed
or emitted phonon, and then one should sum over all modes. Thus, a state
|m∗, nqρ〉 of the total system (spin + phonons) is characterized by the state |m∗〉
of the spin and the number nqρ of phonons. It has a certain probability per unit
time, p(m, nqρ → m′, nqρ ± 1), of making a transition to state |m′∗, nq ± 1〉 by
absorbing or emitting a phonon. This stochastic picture is not very easy to justify
but, if it is accepted, the probability p(m, nqρ → m′, nqρ ± 1) can be obtained
from perturbation theory. The formula is Fermi’s golden rule (Cohen-Tannoudji
et al. 1986).

p(m, nqρ → m′, nqρ ± 1) =
2π

h̄
|〈m, nqρ | Hs-ph|m′, nqρ ± 1〉|2

× δ(Em′ − Em ± h̄ωqρ) (5.32)
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where h̄ωqρ is the energy of a phonon. The asterisks have been omitted to simplify
both the typography and the underlying algebra.

Apart from the factor 2π/h̄, formula (5.32) is easy to remember. The delta
function expresses energy conservation and the first factor vanishes if there is no
interaction.

As already stated, |Em′ −Em| will be assumed to be so small that only acoustic
phonons can safisfy the relation

E′
m − Em = ±h̄ωq (5.33)

implied by the delta function in (5.32).
Formula (5.27) may be more conveniently written in terms of the creation and

annihilation operators b+
qρ and bqρ as

Hs-ph = N−1/2
∑

qρ

Uqρ(S)bqρ + N−1/2
∑

qρ

U∗
qρ(S)b+

qρ (5.34)

where N is the number of unit cells, q designates the vectors of the reciprocal
space, ρ designates the various phonon modes and

Uqρ(S) = i(ωqρM/h̄)−1/2
∑

αξζ

qαΛαρξζSξSζ (5.35)

where M is the mass of the unit cell. The factor (ωqρM/h̄)−1/2 has been intro-
duced in order that the coefficients Λαρξζ have the same order of magnitude as

Λ̃α,γ,ξ,ζ in (5.27), as seen in Appendix F.
For the reader who is not familiar with such formulae, it may be of interest

to notice that for a macroscopic crystal, the factor N−1/2 is very small but
the number of terms in the sum over q is very large. In the final expressions
of physical quantities, both infinities cancel and the summation over q can be
replaced by an integration.

Insertion of (5.34) into (5.32) yields

p(m, nqρ → m′, nqρ − 1) =
2π

h̄N

∣

∣〈m | U∗
qρ(S)|m′〉

∣

∣

2 〈nqρ | b+
qρbqρ|nqρ〉

× δ(Em′ − Em − h̄ωqρ). (5.36)

The delta function implies Em′ > Em, i.e. the final state has a higher energy
Em′ than the initial state. Therefore we are calculating an absorption probability.
To obtain the transition probability γm′

m which appears in (5.12), one must

(i) multiply (5.36) by the probability P (nq) that the number of phonons of
wavevector q is nq, then sum over all values of nq; in other words one should
average nq;

(ii) sum over q and over modes ρ.
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The effect of (i) is to replace the second matrix element by the average value
〈nqρ〉. Thus

γm′

m =
2π

h̄N

∑

qρ

〈nqρ〉
∣

∣〈m | U∗
qρ(S)|m′〉

∣

∣

2
δ(Em′ − Em − h̄ωqρ).

The sum over q can be transformed into an integral through the formula
(1/V )

∑

q = (2π)−3
∫

d3q, where V is the total volume. Thus

γm′

m =
v

4π2h̄

∑

ρ

∫

d3q〈nqρ〉
∣

∣〈m |U∗
qρ(S)|m′〉

∣

∣

2
δ(Em′ − Em − h̄ωqρ) (5.37)

where v is the volume of the unit cell. Replacing 〈nqρ〉 by its average value
according to Bose-Einstein statistics

〈nq,γ〉 =
1

exp(βh̄ωq,γ) − 1
(5.38)

one obtains for m′ > m

γm′

m =
v

4π2h̄

∑

ρ

∫

d3q

exp(βh̄ωq,ρ) − 1
|〈m′ | Uqρ(S)|m〉|2 δ(Em′ − Em − h̄ωqρ).

(5.39)

The same calculation for m′ < m yields

γm′

m =
v

4π2h̄

∑

ρ

∫

d3q

1 − exp(−βh̄ωq,ρ)
|〈m′ |Uqρ(S)|m〉|2 δ(Em′ − Em + h̄ωqρ).

(5.40)

Formulae (5.39) and (5.40) satisfy the detailed balance relation (5.14).
When writing (5.38), it is assumed that the dynamics of the phonon bath

are much faster than that of the magnetization. The occupation number of each
phonon state thus depends only on the temperature of the bath. This approx-
imation neglects the possibility of avalanches, in which the heat which is locally
produced by the reversal of a spin does not diffuse rapidly enough, and produces
reversal of neighbouring spins.

5.7 Qualitative formulae

These general formulae are rather complicated. In all calculations where phonons
appear (e.g. the specific heat of a solid) it is usual to make the (qualitatively
acceptable) assumption ωq,ρ = csq, where cs is the sound velocity, assumed to
be the same for the three acoustic modes. This is Debye’s model, which yields
correct orders of magnitude. In (5.39) and (5.40) all contributing vectors q lie
on the sphere of radius q = (Em′ − Em)/h̄. The squared matrix element of
Uqρ(S) can just be replaced by its average value on that sphere. As seen from
(5.35), it is proportional to h̄

√
q/(csM) times a quadratic form of the spins which
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involves anisotropy constants D̃αγ , presumably of the order of D. Replacing d3q
by 4πq2dq, one finds

γm′

m =
3v

πcsM

∫

q3dq

exp(βh̄csq) − 1

∣

∣

∣

∣

∣

〈m′ |
∑

αγ

D̃αγSαSγ |m〉
∣

∣

∣

∣

∣

2

δ(Em′ − Em − h̄csq)

or after integration with referred to q

γm′

m =
3v

πh̄4Mc5
s

(Em′ − Em)3

exp[β(Em′ − Em)] − 1

∣

∣

∣

∣

∣

〈m′ |
∑

αγ

D̃αγSαSγ |m〉
∣

∣

∣

∣

∣

2

. (5.41)

This formula is valid for both signs of (Em′ − Em).
Analogous formulae (using for instance particular expressions of the D̃αγ coef-

ficients) have been written by Abragam and Bleaney (1986), Villain et al. (1994),
Garanin and Chudnovsky (1997), Leuenberger and Loss (1999), and Chudnovsky
and Garanin (2002).

Two observations can be made.

(i) When m and m′ are close to 0 (i.e. near the top of the barrier), the matrix
elements 〈m |SξSζ |m ± 1〉 (which correspond to ξ, ζ = z, x or ξ, ζ = z, y)
are small in comparison with the matrix elements 〈m | SξSζ |m ± 2〉 (which
correspond to ξ, ζ = x, y). The situation is just opposite when |m| and |m′|
are close to s.

(ii) When Em − Em′ is small (which also corresponds to the top of the barrier)
the transition probability is small because of the factor (Em − Em′)3, which
mainly reflects the fact that there are few phonon states of very low energy.

These two qualitative properties demonstrate the interest of formula (5.41).
However, its derivation contains many shortcomings. Moreover the coefficients
D̃αγ are not known. Therefore, (5.41) is only appropriate for a qualitative evalu-

ation. In the following attempt, the unknown coefficients D̃αγ will be assumed
to be of the order of |D| and for the sake of simplicity the external field will be
assumed to vanish. The population of the various levels of the left-hand well will
be assumed to satisfy pm(t) = p−s(t) exp[−β(Em −E−s)] as would be the case at
equilibrium. The escape rate from the left-hand well is equal to the escape rate
from the upper levels of the left-hand well, which is roughly given by p−1γ

0
−1.

A contribution proportional to p−2γ
0
−2 is ignored in this very rough evaluation.

Thus the relaxation time τ is roughly given by 1/τ ≈ γ0
−1 exp[−β(E−1 − E−s)].

Using formula (5.41) with m = −1 and m′ = 0, one obtains

1/τ ≈ kB

c5
s

v

M

(

kB

h̄

)4 (

δE

kB

)3 ( |D|s2

kB

)2

exp[−β(E0 − E−s)] (5.42)

where δE = E0 − E−1 = |D| ≃ 0.6 K for Mn12ac. The Boltzmann constant has
been introduced because it is customary to evaluate energies in kelvin.
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Unfortunately, in (5.42), the magnitude of the sound velocity cs in Mn12ac
is, to our knowledge, not known. Since it appears with the power 5, this is the
main cause of uncertainty. Tentatively, the value cs ≃ 1000 m/s, which is the
right order of magnitude for silicon, will be used. The ratio v/M will be taken
equal to 0.001 m3/kg, as for water. Then (5.42) yields, in s−1,

τ ≈ 10−7 exp
T0

T
. (5.43)

For T0 = 60 K and T = 2 K, the Arrhenius factor is 1013 and the relaxation time
is 106 seconds ∼=10 days, to compare with the experimental value (2 months).
Since the above argument contains a number of guesses one can only conclude
that the relaxation is extremely slow, in agreement with experiment.

The detailed formula (5.39) might allow for a precise experimental check. This
would require a precise knowledge of the elastic constants and of the spin–phonon
interaction.

Formulae (5.39) and (5.41) provide a qualitative idea of the effect of a magnetic
field and of temperature (Fort et al. 1998; Leuenberger and Loss 1999). This
point will be addressed again in Section 10.3. Information on the spin–phonon
interaction can be obtained by nuclear magnetic resonance (Furukawa et al.
2001a).

5.8 Multiphonon processes

In (5.41) and in the following formulae, there is a factor (Em′ − Em)3 which
becomes very small if the energy difference is small (as it is at the top of the bar-
rier). This factor results in particular from the fact that multiphonon processes
have been ignored, so that the phonon density of states near zero energy (which
is weak) appears. This factor is not present in the two-phonon contribution.

Actually, the theory developed in the previous section is that of the so-called
‘direct’ relaxation processes (Abragam and Bleaney 1986). Other processes are
familiar to the experts of electron paramagnetic resonance. If the spin–phonon
interaction (5.27) is just expanded to second order with respect to the strain, and
if the golden rule is applied, one obtains the so-called first-order ‘Raman pro-
cesses’. Another possibility addressed in textbooks corresponds to the excitation
to an intermediate state followed to the deexcitation to the final state. This is
called an ‘Orbach process’. As a matter of fact, the relaxation process described in
this chapter is a high-order Orbach process since it involves successive excitations
to higher states followed by a cascade of deexcitations.

The decision to ignore Raman processes is reasonable at low temperature. It is
also motivated by the wish to simplify the presentation. Two-phonon relaxation
processes can be handled in the same way as direct processes. The simple theory
presented in this chapter is useful, but qualitative. The number of parameters
is indeed very large. Including multiphonon processes into elementary transition
probabilities would just make the situation worse.
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5.9 Spin–phonon interactions resulting from exchange

As a matter of fact, spin–phonon interactions can arise from the modulation
by phonons of any term of the Hamiltonian which act on spins: the anisotropy
energy, the exchange and dipole interactions. So far, we have focused our atten-
tion on the anisotropy although isotropic exchange inside a molecule is stronger.
In this section it will be shown that isotropic exchange modulation is indeed of
minor importance. Anisotropic exchange and dipole interactions are very small.

Such a modulation is represented by a Heisenberg Hamiltonian (2.53), i.e.
a sum of terms Jijsi · sj with exchange integrals Jij which depend on space
and time. The indices i, j denote the atoms of the same molecule and si is the
spin of the atom i. The problem is whether a modulation Jij(t)si · sj can induce
transitions between two eigenstates of the static spin Hamiltonian. These states
will be denoted |s, m, p〉, where s(s+1) and m are the eigenvalues of S2 and Sz,
S =

∑

i si and p designates the other parameters which are necessary to specify
the spin states of the molecule (68 in the case of Fe8). In other words, p labels
the various values of the exchange energy inside a molecule; one might say, the
various ‘exchange multiplets’.

The transition probability per unit time from |s, m, p〉 to |s′, m′, p′〉 induced by
the modulation of Jij by phonons is given by a golden rule analogous to (5.32),
and vanishes if the matrix element 〈s, m, p | si · sj |s′, m′, p′〉 is zero. Moreover,
it also vanishes if the energy difference between |s, m, p〉 and |s′, m′, p′〉 is larger
than the energy of thermal phonons. If the temperature is not too high (typically,
less than 50 K), this implies that p = p′. In practice both states should correspond
to the lowest exchange energy, and therefore to s = 10 in Mn12ac and Fe8.

Now, for any pair (i, j), the product si · sj = sz
i s

z
j + (1/2)s+

i s−
j + (1/2)s−

i s+
j

commutes with Sz =
∑

sz
i . Of course, it also commutes with Sx, Sy, S+ S− and

S2 = S2
x + S2

y + S2
y . Therefore,

〈s, m, p | [si · sj , S
z]|s′, m′, p′〉 = (m′ − m) 〈s, m, p | si · sj |s′, m′, p′〉 = 0,

and

〈s, m, p | si · sj |s′, m′, p′〉 = 0 if m′ �= m.

Similarly, 〈s, m, p | si · sj |s′, m′, p′〉 = 0 if s′ �= s.
The only non-vanishing elements are therefore 〈s, m, p | si · sj |s, m, p′〉.

Moreover, S+|s, m, p〉 is equal to
√

(s + m + 1)(s − m)|s, m+1, p〉 and therefore
〈s, m + 1, p | si · sj |s, m+1, p′〉 is equal to [(s + m + 1)(s − m)]−1 〈s, m, p | S−si ·

sjS
+|s, m, p′〉. The scalar product commutes with S−, so that this expression

can be written as [(s + m + 1)(s − m)]−1 〈s, m, p | si · sjS
−S+|s, m, p′〉, which is

equal to 〈s, m, p | si ·sj |s, m, p′〉. By recursion, this matrix element is independent
of m and

〈s, m, p | si · sj |s′, m′, p′〉 = App′

ij δmm′δss′
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In particular, inside the lowest exchange multiplet (with s = 10 in Mn12ac
and Fe8), si ·sj reduces to a constant Aij times the unit matrix. The modulation
of exchange integrals by phonons can therefore not induce transitions between
the (2s+1) states of the lowest exchange multiplet. The transitions allowed by
the matrix element are to excited exchange multiplets with the same s, which
are presumably at such high energies that no phonons are available except at
quite high temperatures.

5.10 Effect of photons

5.10.1 Phonons and photons

In the previous paragraphs, the lifetime of excited states (and, more generally,
the transition probabilities) has been assumed to result from acoustic phonon
emission (and adsorption, at higher temperature). Of course, photon emission is
also possible. If the photons are at thermal equilibrium, the transition probability
may be calculated in the same way as that which results from phonons, and it
will be shown in the next subsection that it is much weaker.

On the other hand, while phonons are generally at thermal equilibrium, it is
possible to irradiate a sample with a high photon flux. This is done in EPR,
already addressed in Section 3.3.

5.10.2 Photons at thermal equilibrium

The interaction of a spin with the electromagnetic field is given by (2.1), where
the g tensor will be approximated by a scalar g ≃ 2, i.e.

Hint = gµBδH · S = gµBS · rotA. (5.44)

Here, δH is the variable part of the field and A is the corresponding vector poten-
tial. The uniform part is irrelevant for photons. The field δH may be emitted by
the spin or it may be the microwave field in an EPR experiment.

According to textbooks, e.g. Cohen-Tannoudji et al. (2001) in Section I.C.6,
the magnetic field can be expressed in terms of photon creation and annihilation
operators αq,ρ and α+

q,ρ as

H(r) = iN−1/2
∑

q,ρ

[

h̄µ0cq

2v

]1/2 [

αq,ρ
q

q
× eq,ρe

iq·r − α+
q,ρ

q

q
× eq,ρe

−iq·r

]

(5.45)

where the polarization index ρ is 1 or 2, v is the volume of the unit cell, c is
the speed of light, while eq,1 and eq,2 are two orthogonal unit vectors which are
perpendicular to q.

Formulae (5.44) and (5.45) yield

Hint = iN−1/2gµB

∑

q,ρ

[

h̄µ0cq

2v

]1/2

αq,ρ

[(

q

q
× eq,ρ

)

· S

]

eiq·r

− iN−1/2gµB

∑

q,ρ

[

h̄µ0cq

2v

]1/2

α+
q,ρ

[(

q

q
× eq,ρ

)

· S

]

e−iq·r. (5.46)
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This has just the form (5.34). Of course the phonon operators bqρ must be
replaced by photon operators αqρ. The operators Uqρ(S) are now defined by

Uqρ(S) = gµB

[

h̄µ0cq

2v

]1/2 [(

q

q
× eq,ρ

)

· S

]

(5.47)

where the spin has been assumed to be at the origin, r = 0.
The photon absorption probability can be obtained by insertion of (5.47) into

(5.36), which can also be written as

p(m, nqρ → m′, nqρ − 1) =
2π

h̄N

∣

∣〈m |U∗
qρ(S)|m′〉

∣

∣

2 〈nqρ〉δ(Em′ − Em − h̄ωqρ).

(5.48)

If photons are at thermal equilibrium, averaging over all photons yields (5.40).
The calculation of Section 5.7 can then be reproduced. Qualitatively, the result
can be written as

γ̃m′

m ≈ w0vs2

πh̄4c3

(Em − Em′)3

1 − exp[−β(Em − Em′)]
(5.49)

where v is the volume per spin (i.e. the volume of the unit cell, assumed to
contain a single magnetic molecule) and w0 is of the order of magnitude of the
dipole energy between two neighbouring spins.

The ratio γ̃m′

m /γm′

m of the photon-induced and phonon-induced transition
probabilities are given by the ratio of expressions (5.49) and (5.41), namely

γ̃m′

m

γm′

m

=
w0

|D̃|s2

ρvc2
s

|D̃|
c3
s

c3
(5.50)

where D̃ is the typical value of the coefficients D̃αγ which appear in (5.41). This
expression is presumably dominated by the last factor (cs/c)3, which is very
small, so that spontaneous photon emission is negligible.

5.10.3 The beauty of light

The interest of photons with respect to phonons is that they are more versatile.
It is easier to have them out of thermal equilibrium, with a high number of
photons of a particular frequency ω. If their energy h̄ω is equal to the energy
difference (Em−1 − Em) between two states |m〉 and |m − 1〉 of the spin, and
if the lowest level (one can suppose it is |m〉) is populated, then a transition to
state |m − 1〉 is induced, and this is detected as an absorption of the electro-
magnetic wave. This is electron paramagnetic resonance (EPR) and has been
addressed in Section 3.3.1. The standard method is to apply a magnetic field
and to change the strength of this field while irradiating at a constant frequency.
The electronic levels are strongly modified and the interpretation of the experi-
mental data requires a model. A more direct method is to apply a constant field
but to change the radio frequency. This requires more elaborate instruments
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(Schwartz et al. 1995) but allows for the determination of the various resonances
for a given field. It is of interest to observe that the above theory is applicable,
and formula (5.48) holds.

Another advantage with respect to phonons is that the photons emitted from
a solid can be analysed. In particular, they have a well-defined polarization. Even
though photon emission is usually weak, it has been suggested that it might be
enhanced by means of resonant cavities (Amigó 2003a,b). It should be necessary
in that case to take this polarization into account. The electromagnetic field
may be decomposed into plane waves of all wavevectors q, and the spin–photon
interaction is the sum of all interactions Hq with each wave. As an example, if
q is parallel to the easy axis z, it follows from (5.46) that

Hq = (1/2)(i/c)gµBN−1/2

[

h̄cq

2ǫ0v

]1/2

× (Sxex + Syey) · (αq,xey − αq,yex − α+
q,xey + α+

q,yex)

= (1/2)(i/c)gµBN−1/2

[

h̄cq

2ǫ0v

]1/2

× [S+(αq,x − α+
q,x − iαq,y + iα+

q,y) + S−(−αq,x + α+
q,x − iαq,y + iα+

q,y)]

(5.51)

where ex and ey are the unit vectors along the x and y axes, v is the volume
of the unit cell, N is the number of unit cells, and αq,x and αq,y are photon
annihilation operators.

In order to simplify the argument, let the action of this Hamiltonian on the
state |m−1, 0〉 be considered, where |m−1, 0〉 designates the state with 0 photon
and the spin in state |m − 1〉. One has to introduce the state |q, x〉 with one
photon of wavevector q and magnetic field along x. The photon energy h̄ωq will
be assumed to be close to (Em − Em−1). Assuming the spin–photon interaction
(5.44) to be small, one finds

Hq|m − 1, 0〉 = −(1/2)(1/c)gµBN−1/2

[

h̄cq

2ǫ0v

]1/2

[|m,q, y〉 − i|m,q, x〉] (5.52)

where states of the form |m − 2,q, y〉 have been neglected because their energy
is very different from that of the initial state |m − 1, 0〉.

Thus, Hq transforms |m− 1, 0〉 into |m,q, y〉− i|m,q, x〉. The vector |m,q, y〉
corresponds to a magnetic field proportional to ey exp(iqz − iωqt), where ey is
the unit vector along the y axis. Similarly |m,q, x〉 corresponds to a magnetic
field proportional to ex exp(iqz − iωqt). Multiplying the ‘ket’ by i is equivalent
to multiply the exponential by i. Therefore, |m,q, y〉 − i|m,q, x〉 corresponds to
a magnetic field proportional to

[ey − iex] exp(iqz − iωqt)

and therefore to circularly polarized light.
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5.10.4 Classical electromagnetism and quantum electrodynamics

Some of the above results may be derived from an at least partly classical treat-
ment: a quantum spin interacts with a classical electromagnetic field, which
appears as a scalar in the equations. The book of Abragam and Bleaney (1986)
uses this approach. Also, the power emitted by a magnetic moment can be calcu-
lated from classical electromagnetism. A molecular spin in an excited state |m〉
undergoes a Larmor precession with a frequency ωm, where h̄ωm = Em −Em′ , as
in the case of phonons. Here, |m′〉 designates the state just below |m〉 (m′ = m+1
in the right-hand well). The rotating spin emits electromagnetic radiation of fre-
quency ωm, as an antenna would do. This emission has a certain power P0.
Coming back to quantum mechanics, one can say that the probability per unit
time of emitting a photon is P0/(h̄ωm). Indeed the emitted photons have fre-
quency ωm. The power is given in textbooks (for instance Toraldo di Francia
and Bruscaglioni 1988). One can thus retrieve (5.50), at least at low temperat-
ure (when there is no stimulated emission). To summarize, the quantization of
the electromagnetic field is not absolutely necessary to obtain the results neces-
sary for this book, but it provides a unified, coherent, and elegant formalism
which is finally simpler than the description of quantum phenomena by semi-
classical methods. Of course, certain phenomena which are outside the scope
of this book, such as the anomalous magnetic moment of the electron, require
quantum electrodynamics.

5.10.5 Coherence and superradiance

A privilege of photons is the possibility of coherence. It has been suggested
by Chudnovsky and Garanin (2002) that photon emission can become import-
ant when a large number of spins are in phase, and thus emit coherent light.
Indeed the electromagnetic field emitted by N spins is proportional to N , and
therefore the power is proportional to N2. This is superradiance (Dicke 1954).
However, it looks incredible that the spins can remain in phase during a time
comparable to the period 1/ω of the emitted light. The most intrinsic source of
dephasing is the dipole interaction between spins. In the more usual case of elec-
tric dipole emission too, interactions between atoms generally (but not always)
destroy superradiance (Gross and Haroche 1982). In the absence of external
radiation (present in magnetic resonance) it is unlikely that the factor (cs/c)3

of formula (5.50) can be compensated by amplification schemes, e.g. resonant
cavities, as proposed by Tejada et al. (2003).

5.11 Limitations of the model

The present chapter suffers from various approximations.

• The molecule has been considered as a spin (s = 10 in Mn12ac and Fe8). This is
strictly correct only at low enough temperature. The effect of higher exchange
energies will be addressed in Section 10.7.
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Fig. 5.3. Fit of the experimental relaxation time of Mn12ac by two different
Arrhenius laws. From Novak et al. (2005).

• The evolution of the spin has been described by transition probabilities between
its eigenstates. This disregards the quantum-mechanical possibility of being in
a coherent superposition of two or more eigenstates. A full description should
make use of the density matrix as will be seen in Chapter 11. However, this is
only necessary at short times and low temperatures.

• Spin relaxation does not always require climbing to the top of the barrier by
phonon absorption. At low temperature, when few phonons are available, it
can be easier to cross the barrier by quantum tunnelling. This effect will be
studied in the next chapters.

On the other hand, a more precise treatment reported in Appendix E, as
well as a numerical treatment discussed in Appendix F, suggest deviations from
the Arrhenius law (5.2) at high temperatures. Experimental data for Mn12ac
obtained over a wider temperature range by using high-frequency ac suscepto-
metry can be fitted by two different Arrhenius laws with different parameters τ0

and T0 as shown in Fig. 5.3 (Novak et al. 2005).
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MAGNETIC TUNNELLING OF AN ISOLATED SPIN

6.1 Spin tunnelling

6.1.1 Particle tunnelling: a reminder

In this section, as in the preceding one, we consider a spin subject to a double
potential well (Fig. 5.2) which results from an anisotropy Hamiltonian, e.g.
H = −|D|S2

z . However attention will be focused on low temperatures, when
few phonons are available, so that the spin can hardly jump over the potential
barrier.

This spin is comparable to a particle in the double potential well, treated
in textbooks of quantum mechanics. This model has natural realizations in the
hydrogen bond of ice and certain ferroelectrics.

Textbooks of quantum mechanics tell us that a particle in a symmetric double
potential well V (x) (analogous to that of Fig. 5.2) undergoes a ‘tunnel effect’ or
‘tunnelling’. This means that (1) if the particle is put into the left-hand side, it
goes to the right-hand side, then back to the left-hand side, etc., with a frequency
ωT which depends on the shape of the potential. (2) The eigenfunctions of the
Hamiltonian are delocalized, i.e. they have a component in the left-hand side, and
a component in the right-hand side, with equal probabilities of being in either
side. This delocalization is a consequence of the symmetry V (x) = V (−x). The
solutions of the Schrödinger equation [V (x) − (1/2)(h̄2/m)d2/dx2 − E]ψ(x) = 0
are symmetric or antisymmetric, i.e. ψ(x) = ψ(−x) or ψ(x) = −ψ(−x). In both
cases they are delocalized.

As will be seen in the following sections, a spin subject to a spin Hamiltonian
can possess the same properties. The spin has, however, an additional feature,
namely its sensitivity to a magnetic field.

In the case of a spin as in that of a particle, it is possible to define a wavefunc-
tion ϕ(m). This definition is just contained in (5.11), | m∗〉 =

∑

m′′ ϕ(m′′) | m′′〉.
This function satisfies the equation

∑

m′

〈m | H | m′〉 ϕ(m′) = Eϕ(m) (6.1)

which is nothing but the Schrödinger equation with a discrete variable m.
Spin tunnelling is especially important at low temperature, when the spin is

in its ground state with a high probability.
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The following pages do not contain many experimental results. This is because
an isolated spin does not really exist. However, its study is an unavoidable
preliminary to that of realistic situations.

6.1.2 An example

An example is a spin subject to the Hamiltonian (2.10) if a transverse magnetic
field (i.e. perpendicular to the easy axis) is added. Adding also a longitudinal
field (i.e. parallel to the easy axis), the Hamiltonian is now

H = −|D|S2
z + gµBHzSz + gµBHxSx (6.2)

The field will generally be assumed small, gµB|Hα| ≪ |D|s.
If Hx = 0, the eigenvectors are the eigenvectors | m〉 of Sz. If Hx = Hz = 0,

the eigenvectors | m〉 and | −m〉 are degenerate. More generally, if Hx = 0,
degeneracy of two eigenvectors | m〉 and | m′〉 is possible for certain values of Hz.

Indeed the energy is then given by (5.6), E
(0)
m = −|D|m2 + gµBHzm. This value

will be called unperturbed. For Hx = 0, degeneracy occurs (Fig. 6.1a) if

E(0)
m − E

(0)
m′ = 0. (6.3)

This condition implies that Hz is equal to

gµBH(mm′) = |D|(m + m′). (6.4)

In the important experimental cases, m + m′ is small, 0, 1, 2 . . ., Fig. 6.2 shows
the levels in the double well when (6.3) is satisfied for m = −s and m′ = s − 1.

An essential point, as will now be seen, is that these degeneracies can be
removed by a perturbation which does not commute with Sz. They are replaced
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correspond to Fe8. Part of the level crossings are suppressed and replaced by
maxima and minima. For low energies the distance between maxima and
minima is too small to be visible.
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m

–s s
E

Fig. 6.2. Energy levels of a spin subject to a (negative) longitudinal field which
satisfies condition (6.4) with m = −s and m′ = s−1. Tunnelling is possible (in
the presence of an appropriate transverse field Hx or Hy) between the lowest
state of the left-hand well and the first excited state of the right-hand well.

by tunnelling. Figure 6.1b shows the effect of a low-symmetry perturbation of
the anisotropy. In the remainder of this section, The Hamiltonian (6.2) will be
investigated. Then, the perturbation which does not commute with Sz is the
transverse field Hx �= 0.

6.1.3 The case s = 1/2

The absence of degeneracy in a non-vanishing field is easily seen in the simple,
but instructive case of a spin 1/2.

The first term −|D|S2
z of (6.2) reduces to the constant −|D|/4. The direction

of the total magnetic field (Hx, 0, Hz) may be called Z, and (6.2) reads

H = gµBHSZ − |D|/4 (6.5)

where H =
√

H2
x + H2

z . The Hamiltonian (6.2) has two eigenvalues

E± = ±(gµB/2)
√

H2
x + H2

z = ±(gµB/2)H. (6.6)

These eigenvalues are never degenerate except if all field components
Hx, Hy, Hz vanish. If one plots the energies as a function of Hz for a fixed value
of Hx, one obtains Fig. 6.3. The curves E+(Hz) and E−(Hz) do not cross at
Hz = 0. Instead, their difference has a minimum. One of the eigenvalues has a
maximum and the other one has a minimum.

6.1.4 Case of an arbitrary spin

The above property has no reason to be special to spin 1/2. The generalization
is the following.

For a given values of |D| and s, the eigenvalues of (6.2) are non-degenerate,
except for a finite set of values of Hx and Hz.
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Fig. 6.3. Behaviour of two eigenvalues Em and E′
m of a spin Hamiltonian as

functions of Hz near the value H(mm′) where these values would be equal for
Hx = Hy = 0.

More generally, for a given anisotropy Hamiltonian, the eigenvalues of the
Hamiltonian in an external field are non-degenerate, except for a finite set of
values of the field Hx, Hy, Hz.

As will be seen in Section 6.8, this property is a special case of a theorem
of Wigner and von Neumann (1929). In the case of a spin 1/2, it may be
viewed as a consequence of the fact that the Hamiltonian matrix is a 2 × 2
Hermitian matrix. Its eigenvalues are equal if and only if 〈1/2 | H | 1/2〉 =
〈−1/2 | H | −1/2〉 and if the real and imaginary parts of the off-diagonal ele-
ments vanish, ℜ 〈1/2 | H | −1/2〉 = ℑ 〈1/2 | H | −1/2〉 = 0. These three conditions
determine the three variables Hx, Hy, Hz.

As seen in Section 6.1.2, the Hamiltonian (6.2) is degenerate for Hx = 0
if Hz satisfies (6.3). The theorem of Wigner and von Neumann implies that
this degeneracy is removed by any small field Hx �= 0. This will be checked by
perturbation theory in Section 6.4.

The non-degeneracy of the Hamiltonian in the general case will be now
be assumed, and its justification postponed to Sections 6.4 and 6.8. Let the
consequences of this property be addressed.

6.1.5 Delocalization

Let two eigenvalues Em and Em′ of (6.2) be plotted as a function of Hz (Fig. 6.3)
for a small, fixed value of Hx. The case of interest in this section is when Hz is
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close to the level crossing value H(mm′) given by (6.4). One can assume m < 0
and m′ > 0.

It follows from the previous section that the two curves do not cross if Hx �= 0.
Instead, one of the eigenvalues has a maximum and the other one has a minimum.
This is called the anticrossing. The difference between the maximum and the

minimum will be called the tunnel splitting and denoted 2h̄ω
(mm′)
T or ∆(mm′). It

vanishes for Hx = 0. The quantity ω
(mm′)
T will be called the tunnel frequency,

for reasons which will become clear in Section 6.5, when kinetic properties will
be investigated.

For the sake of simplicity, the indices m, m′ will often be omitted in ω
(mm′)
T .

The notation ωT will generally denote ω
(−s,m′)
T , where m′ is related to the

magnetic field by the level-crossing condition (6.3), with m = −s.
Rather than calling the eigenvalues Em and Em′ , it is preferable to call the

lower eigenvalue Eℓ and the larger eigenvalue EL. Indeed, for H ≈ H(mm′), the
two eigenvalues cannot be assigned to m or m′.

The absence of actual crossing has important consequences on the correspond-
ing eigenvectors | Φℓ〉 and | ΦL〉 and on the wavefunctions ϕℓ(m

′′) and ϕL(m′′),
related to the eigenvectors by

| Φℓ〉 =
∑

m′′

ϕℓ(m
′′) | m′′〉 (6.7)

and a similar formula for | ΦL〉.
For H ≪ H(mm′), ϕℓ(m

′′) is localized near m′′ = m, i.e. in the left-hand well.
For H ≫ H(mm′), ϕℓ(m

′′) is localized near m′′ = m′, i.e. in the right-hand well.
What can happen for H ≈ H(mm′)? Continuity implies (Fig. 6.4 and 6.5) that
ϕℓ(m

′′) is delocalized on both sides, with two maxima of |ϕℓ(m
′′)| at m′′ = m

and m′′ = m′. An analogous argument shows that ϕL(m′′) is also delocalized for
H ≈ H(mm′).

a

c

b

–s s
m


(m)

Fig. 6.4. Schematic representation of the ground state wavefunction ϕ(m) of
Hamiltonian (6.2). (a) Hz = 0. (b) Hz is slightly negative and favours positive
values of Sz = m. (c) Hz is more strongly negative. Since the spin modulus
s is large, m is approximated by a continuous variable.
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Fig. 6.5. Numerically calculated eigenfunctions ϕ(m) of Hamiltonian (6.2) for a
spin s = 5, with D/kB = 1 K and µ0Hx = 0.4 T. Left: Hz = 0. Centre:
µ0Hz = −0.1 mT is slightly negative and favours positive values of Sz = m.
Right: µ0Hz = +0.1 mT. The two lowest lines show the amplitude of the
two lowest eigenfunctions, which are | 5∗〉 and | −5∗〉 for µ0Hz = ±0.1 mT
and linear combinations of | 5∗〉 and | −5∗〉 for Hz = 0. The next two lines
show the next two eigenfunctions, etc. Very weak amplitudes do not appear
although they are very important for the tunnelling process.

In practice, it will generally be assumed that

m + m′ ≪ s, s + m ≪ s, s − m′ ≪ s (6.8)

which is the situation of interest at low temperature. In that case, the
wavefunction is very small near the top mmax of the barrier given by (5.7).

This behaviour of the spin wavefunction ϕ(m′′) (equal localization in both
wells, with two maxima of |ϕ(m′′)| separated by a minimum) is called the spin
tunnelling or magnetic tunnel effect. This expression is used only for large s; it
would not make sense for s = 1/2. Magnetic tunnelling is present for Hz = 0,
disappears if a longitudinal magnetic field Hz is applied, then reappears for a
particular value, then disappears again, etc. The field values which allow tun-
nelling are the ‘level crossing’ values (6.4). The level scheme is illustrated in
Fig. 6.2.

6.1.6 Large spin = classical spin?

As said above in the case of the Hamiltonian (6.2), the tunnel frequency ωT van-
ishes when the Hamiltonian has no term which does not commute with Sz, i.e.
when Hx = 0 in the case of the Hamiltonian (6.2). What is perhaps more unex-
pected is that it also vanishes for a given value of Hα/|D|, if s goes to ∞. As will
be seen in Section 6.4, the ground state splitting even vanishes exponentially as
[Hx/(4|D|s)]2s. Thus, ωT is small if s is large and the typical transverse Zeeman
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energy Hxs is smaller, but not necessarily much lower than the anisotropy energy
|D|s2. This is related to the general fact that a very large spin behaves as a clas-
sical spin. Indeed, tunnelling is a quantum effect, related to the representation
of non-commuting physical quantities by non-commuting operators. The quasi-
classical nature of large spins results from the fact that the commutator [Sα, Sγ ]
of two components is of the order of s while the anticommutator is of the order
of s2.

6.1.7 Approximate localized eigenstates

As seen in Section 6.1.5, tunnelling is characterized by exact eigenfunctions
ϕℓ(m

′′) and ϕL(m′′) which are delocalized on both sides of the double well.
The modulus |ϕℓ(m

′′)| or |ϕL(m′′)| has two maxima at m < 0 and m′ > 0.
Figure 6.6 gives a schematic representation of ϕℓ(m

′′) and ϕL(m′′) in vanishing
magnetic field.

This picture is not always convenient, and it is often preferable to express the
exact eigenfunctions in terms of approximate eigenfunctions which are localized
in the left-hand well (‘left-localized’) or in the right-hand well (‘right-localized’).
This approximation becomes excellent when the tunnel splitting becomes very
small. More details on the quality of the approximation will be given in a special
case in Section 6.7.2.

Since inequalities (6.8) are satisfied, ϕℓ(m
′′) and ϕL(m′′) are very small at

the top mmax of the barrier given by (5.7). Therefore, it is reasonable to write
them as sums of a left-localized part ϕ(g)(m′′) (which vanishes for m′′ > mmax)








L

–s s m

Fig. 6.6. Schematic representation of the two wavefunctions of lowest energy in
vanishing magnetic field. They are approximated by continuous curves as in
Fig. 6.4. The wavefunction is assumed to be real, which is only possible for
particular spin hamiltonians such as (6.2).
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and a right-localized part ϕ(d)(m′′).

ϕℓ(m
′′) = ϕ

(g)
ℓ (m′′) + ϕ

(d)
ℓ (m′′) (6.9)

ϕL(m′′) = ϕ
(g)
L (m′′) + ϕ

(d)
L (m′′). (6.10)

The four localized functions ϕ
(g)
ℓ (m′′), ϕ

(d)
ℓ (m′′), ϕ

(g)
L (m′′) and ϕ

(d)
L (m′′) are

approximate solutions of the Schrödinger equation (6.1), i.e.
∑

m′′′

〈m′′ | H | m′′′〉 ϕ(m′′) = Eϕ(m′′).

Actually, for all values of m′′, except near the the top of the barrier, m′′ ≃
mmax, this equation is exactly satisfied, however with slightly different energies
Eℓ and EL. For m′′ ≃ mmax, the above equation is not exactly satisfied, but only
approximately since ϕ(m′′′) and ϕ(m′′) are very small.

Moreover, ϕ
(g)
ℓ (m′′) and ϕ

(g)
L (m′′) must be approximately proportional to each

other, because they are two approximate solutions of the same Schrödinger equa-
tion with almost the same eigenvalue and the same localization. This situation
is indeed analogous to a particle in a square or harmonic well. There cannot
be two independent eigenfunctions with two almost equal energies. Analog-

ously, ϕ
(d)
ℓ (m′′) and ϕ

(d)
L (m′′) are proportional. They have a single maximum

for m′′ = m′ while ϕ
(g)
ℓ (m′′) and ϕ

(g)
L (m′′) have a single maximum for m′′ = m.

From (6.9), (6.10) and the approximate proportionality of ϕ
(g)
ℓ (m′′) and

ϕ
(g)
L (m′′), and of ϕ

(d)
ℓ (m′′) and ϕ

(d)
L (m′′), it follows that ϕ

(g)
ℓ (m′′), ϕ

(g)
L (m′′),

ϕ
(d)
ℓ (m′′) and ϕ

(d)
L (m′′) are approximate linear combinations of the exact eigen-

functions ϕℓ(m
′′) and ϕL(m′′). It is, however, preferable to introduce exact linear

combinations which are approximately localized. The corresponding vectors will
be called | m∗〉 and | m′∗〉. The linear combinations will be written for normal-
ized vectors, 〈Φℓ | Φℓ 〉 = 〈ΦL | ΦL 〉 = 〈m∗ | m∗ 〉 = 〈m′∗ | m′∗ 〉 = 1. They will
assume the orthogonality of | m∗〉 and | m′∗〉, and take into account the orthogon-
ality of | Φℓ〉 and | ΦL〉. Moreover, each of the vectors | Φℓ〉, | ΦL〉, | m∗〉, | m′∗〉
can be multiplied by any constant exp(iθ) of modulus 1. Using this possibility,
the appropriate linear combinations can be chosen as

| m∗〉 = | Φℓ〉 cos φ − | ΦL〉 sinφ (6.11)

and

| m′∗〉 = | Φℓ〉 sinφ + | ΦL〉 cos φ (6.12)

where the parameter φ should be chosen such that it optimizes the localization
of | m∗〉 and | m′∗〉. The reciprocal relations of (6.11 ) and (6.12) are

| Φℓ〉 = | m∗〉 cos φ + | m′∗〉 sinφ (6.13)

and

| ΦL〉 = − | m∗〉 sinφ + | m′∗〉 cos φ (6.14)
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The localization of | m∗〉 in one well and of | m′∗〉 in the other well is approx-
imate. Both vectors have a small component in the wrong well. Far from level
crossing, φ = 0 on one side, φ = π/2 on the other side. At level crossing, φ = π/4
and delocalization has its maximum.

Formulae (6.13) and (6.14) demonstrate the possibility of defining localized
approximate eigenvectors | m∗〉 and | m′∗〉 of H near a level crossing. However,
if | Φℓ〉 and | ΦL〉 are not known, they do not provide an explicit determination
of | m∗〉 and | m′∗〉. This task will be done in Sections 6.4 and 6.7.

In the case of a real spin, which interacts with its environment, the nature
of tunnelling is deeply modified. The main features of tunnelling are kinetic.
Anticipating Section 6.5, tunnelling of an isolated spin would be characterized
by oscillations of Sz between positive and negative values. For a real spin, these
oscillations are generally not observed. However, tunnelling is observed as a faster
relaxation. Indeed, as will be seen in Chapter 10, the spin does not need to jump
to the top of the barrier, but to a state where tunnelling is possible. This state is
lower if the field is close to a level crossing. Thus, the characteristic property (the
‘signature’, as is sometimes said) of magnetic tunnelling is a succession of sharp
maxima (Fig. 6.7) of the relaxation rate (i.e. minima of the relaxation time) as Hz

is varied (Friedman et al. 1996; Thomas et al. 1996; Fominaya et al. 1997b). These
maxima, which will be called resonances, are well described by formula (6.4).
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Fig. 6.7. Relaxation time τ as a function of the longitudinal field in Mn12ac
at 2.1 K. The sharp minima demonstrate tunnelling. The insert shows τ
as a function of temperature (from Thomas et al. 1996). Reprinted with
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6.2 Symmetry and selection rules for tunnelling

Tunnelling can be produced by any terms in the Hamiltonian which do not
commute with Sz. These terms can result from a transverse magnetic field as
seen before. However, in Fe8, which is the material where magnetic tunnelling has
been most clearly observed at low temperature, the dominant source of tunnelling
is the biaxial anisotropy. The relevant Hamiltonian is generally assumed to have
the form (2.9) or, in a ‘longitudinal’ magnetic field,

H = −|D|S2
z + (B/2)(S2

x − S2
y) + gµBHzSz. (6.15)

The second term does not commute with Sz, and therefore can produce tun-
nelling. However the Hamiltonian (6.15) has particular symmetry properties.
The consequences are that tunnelling does not occur for any field value which
satisfies (6.4).

The peculiarity of (6.15) is that its matrix elements 〈m | H | m′〉 vanish if
|m − m′| is odd. It follows that the general expression (6.7) of the eigenvectors
has either the form

| Ψ〉 =
∑

p

ϕ(s − 2p) | s − 2p〉 (6.16)

or the form

| Ψ〉 =
∑

p

ϕ(s − 2p − 1) | s − 2p − 1〉 . (6.17)

The sum is over the values of the argument (s − 2p or s − 2p − 1) between −s
and s, and p is an integer.

It will now be assumed that, for B = 0, two eigenvectors | m〉 and | m′〉 have

equal, or approximately equal unperturbed energies, E
(0)
m −E

(0)
m′ ≈ 0. Is tunnelling

possible for B �= 0? The wavefunction should then contain both a component
φ(m) | m〉 and a component φ(m′) | m′〉. This is only compatible with (6.16) and
(6.17) if

either m = s − 2p and m′ = s − 2p′;

or m = s − 2p − 1 and m′ = s − 2p′ − 1.

Therefore, tunnelling between | m〉 and | m′〉 occurs only if the selection rule

m − m′ = 2k (6.18)

is satisfied, where k is an integer.
Only half of the level crossings of Fig. 6.1a correspond to tunnelling. In half

of the cases, there is an exact degeneracy.
In particular, in zero field (Hz = 0), tunnelling is impossible if s is half-integer.

All states are twice degenerate. This is Kramers’ degeneracy.
Let the case of tetragonal symmetry now be considered. As in Chapter 2,

fourth-order terms will be introduced into the spin Hamiltonian, but for simpli-
city, only those which do not commute with the main term will be retained. The
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Hamiltonian reads

Han = −|D|S2
z + C(S4

+ + S4
−) + gµBHzSz. (6.19)

This formula includes the familiar, quadratic anisotropy, the effect of the field
and the quartic anisotropy (2.18) in which the S4

z term has been omitted for
simplicity, because it is a mere correction to the first term. On the contrary,
the other quartic terms have the essential property that they do not commute
with Sz.

The eigenstates of the first and last terms in (6.19) are | m〉, and the matrix
elements of the second term between | m〉 and | m′〉 vanish unless m − m′ is a
multiple of 4. Therefore, tunnelling is possible only between | m〉 and | m′〉 if the
selection rule

m − m′ = 4k (6.20)

is satisfied, where k is an integer.
The selection rules obtained in this section are the effect of symmetry. Exper-

imentally, they are in many cases not satisfied. The only explanation seems to
be that symmetry is destroyed by crystal defects, e.g. dislocations, impurities,
etc. This problem will be considered in Chapter 12.

6.3 Tunnelling width for an isolated spin

In formula (6.13), even though | m∗〉 and | m′∗〉 are not precisely known, it may
be assumed that they do not vary much through the resonance, while φ varies
from 0 to π/2.

If the Schrödinger equation H | Φℓ〉 = E | Φℓ〉 is multiplied by 〈m∗ |, then by
〈m′∗ |, one obtains the system of two equations

⎧

⎪

⎨

⎪

⎩

[〈m∗ | H | m∗〉 − E] cos φ + 〈m∗ | H | m′∗〉 sinφ = 0

− 〈m′∗ | H | m∗〉 cos φ + [〈m′∗ | H | m′∗〉 − E] sinφ = 0.

(6.21)

It is appropriate to introduce the quantity δE defined by

E =
〈m∗ | H | m∗〉 + 〈m′∗ | H | m′∗〉

2
+ δE (6.22)

and the quantities

∆ =
〈m∗ | H | m∗〉 − 〈m′∗ | H | m′∗〉

2
(6.23)

and

h̄ω
(mm′)
T = | 〈m∗ | H | m′∗〉 | = | 〈m′∗ | H | m∗〉 |. (6.24)

It will be seen that (6.24) is consistent with the definition of ω
(mm′)
T given in

Section 6.1.



TUNNELLING WIDTH FOR AN ISOLATED SPIN 193

The energy E is obtained by noting that the determinant of the coefficients
of (6.21) vanishes. This yields

δE = ±
√

∆2 + h̄2ω2
T (6.25)

where the indices m and m′ have been omitted. Formula (6.25) generalizes (6.6).
The two eigenvalues are Eℓ and EL, so that their difference is 2|δE|.

Formula (6.25) is useful in a field interval where the matrix element (6.24)
does not vary much. Then, ωT may be regarded as a constant. The minimum
separation of the two levels corresponds to ∆ = 0 and is equal to 2h̄ωT, in
agreement with the statement of Section 6.1.

If the states | Φ1〉 and | Φ2〉 of interest correspond to the crossing of the
unperturbed states | m〉 and | m′〉, (6.23) can be replaced by the approximate
expression

∆ ≈ 〈m | H | m〉 − 〈m′ | H | m′〉
2

= gµB(m − m′)δHz/2 (6.26)

where δHz is the difference between the field and its value at level crossing.
This approximation of order 0 is not very ambitious, but sufficient for current
experimental needs. The quantity ∆ will be called the ‘Zeeman splitting’ It
vanishes at level crossing.

It results from (6.21) that

| tanφ| =
h̄ωT

|δE − ∆| . (6.27)

This quantity characterizes the localization of the wavefunction (6.13).
If |∆| ≫ h̄ωT and E corresponds to the − sign in (6.25), then | tanφ| ≃ 0,

and the spin is localized on the left.
If |∆| ≫ h̄ωT and E corresponds to the + sign in (6.25), then | tanφ| ≫ 1,

and the spin is localized on the right.
If | tanφ| = 1, the spin is completely delocalized and has the same probability

to be in the left or right hand side of the well. This case corresponds to ∆ = 0.
The wavefunctions are localized for all values of Hz, except near an inter-

section of unperturbed levels in a field interval of width δH
(mm′)
0 given by the

following equation where the indices m and m′ have been restored.

gµBδH
(mm′)
0 s ≃ h̄ω

(mm′)
T (6.28)

since condition (6.8) implies m′ − m ≃ 2s.

It will be seen in Chapter 9 that the ‘bare’ width δH
(mm′)
0 given by (6.28)

is actually smaller than other contributions, which result, in particular, from
interactions with nuclear spins and other molecular spins.

When the longitudinal field Hz is close to the value H
(mm′)
z which corresponds

to level crossing, and when 2|Hz −H
(mm′)
z | is less than the width, it will be said

that there is a resonance.
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Formula (6.25) shows that the true levels generally do not cross. They only
cross if both ∆ and ωT vanish. This requires many conditions, which are generally
not satisfied. This point will be addressed in Section 6.8.

The essential results of this section are the level spacing (6.25), and formula
(6.27) which says how localized or delocalized the wavefunction is. The variation
of the matrix elements (6.24) is proportional to the variation of the magnetic
field, and therefore it is weak in the resonance region if its width is small, i.e. if
the tunnel splitting is small.

In the following sections, it will be seen how the tunnel splitting can be
calculated.

6.4 Tunnel splitting according to perturbation theory

The spin Hamiltonians considered in the previous sections have the form

H = H0 + δH (6.29)

where the ‘unperturbed’ Hamiltonian H0 commutes with Sz, e.g.

H0 = −|D|S2
z + gµBHz (6.30)

while δH may assume various forms. Important examples are

(i) the effect of a transverse magnetic field

δH = gµBHxSx; (6.31)

(ii) an anisotropy of symmetry lower than tetragonal, see formula (2.8)

δH = (B/4)(S2
+ + S2

−); (6.32)

(iii) the same tetragonal anisotropy as in (6.19)

δH = C(S4
+ + S4

−). (6.33)

All these examples have the property that diagonal elements vanish in the basis
which diagonalizes Sz,

〈m | δH | m〉 = 0. (6.34)

This simplifies the calculation.
What happens if one tries to calculate by standard perturbation theory the

coefficients ϕ(m)(m′) defined by (5.11)?
To order 0, ϕ(m)(m′) = δmm′ . To first order, textbooks tell us that

ϕ(m)(m′) = δmm′ + (1 − δmm′)
〈m′ | δH | m〉
E

(0)
m − E

(0)
m′

(6.35)

Generally, a denominator E
(0)
m −E

(0)
m′ appears to all orders. Therefore, the method

fails near a level crossing, defined by (6.4). However, at low orders, if |m − m′|
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is large, and if only terms of low order with respect to spin operators are taken
into account in δH, then the numerator also vanishes. In the case of Hamiltonian
(6.32), a non-vanishing tunnel frequency ωs,−s

T between | −s〉 and | s〉 (ground
doublet) can only be obtained by treating the anisotropy in perturbation theory

to order s. More generally, the calculation of ω
(mm′)
T requires us to go to order

|m′ − m|. How to do this has been explained by Korenblitt and Shender (1978)
and Garanin (1991). Hartmann-Boutron (1996) has given the formulae relevant
for the three cases (6.31), (6.32) and (6.33),

The Hamiltonian matrix H can be conveniently written in the basis of the
eigenvectors | m′〉 of Sz, however, writing the lines and columns m and p as the
first lines.

H =

[

M B∗

B A

]

(6.36)

where M is a 2 × 2 diagonal matrix of elements 〈m | H | m〉 and 〈p | H | p〉, A is
a (2s− 1)× (2s− 1) square matrix of elements 〈m′ | H | p′〉 (m′, p′ �= m, p) and B
is a (2s − 1) × 2 matrix of elements 〈m | H | m′〉 and 〈p | H | m′〉. The eigenvalues
E of (6.36) and the eigenvectors (| ϕ〉 , | Φ〉) are given by

H =

⎧

⎪

⎨

⎪

⎩

(M − E) | ϕ〉 + B∗ | Φ〉 = 0

B | ϕ〉 + (A − E) | Φ〉 = 0.

(6.37)

Eliminating | Φ〉, it follows that

[M − E + B∗(E − A)−1B] | ϕ〉 = 0. (6.38)

Thus, the energy E is the eigenvalue of a 2 × 2 matrix which is the sum of
a diagonal part M and a small perturbation B∗(E − A)−1B. In analogy with
(6.24), one can write

h̄ω
(mm′)
T = 〈m | B∗(E − A)−1B | m′〉 . (6.39)

The problem is that E appears in this expression. This would make equation
(6.39) difficult to solve exactly. However, the problem simplifies in perturba-
tion theory, if we stop at the lowest order that yields a non-vanishing tunnel
splitting, hereafter called the lowest significant order. Then, E can just be

replaced by its zero-order approximation E
(0)
m , given by (5.6) in the case of the

Hamiltonian (6.30).
Let A = A0 + δA be split into its diagonal part A0 and a small off-diagonal

part δA. The matrix elements of M and A0 can be identified with those of H0,
while the non-vanishing elements of B and δA are those of δH. Then

(E − A)−1 = (E − A0)
−1 + (E − A0)

−1δA(E − A0)
−1

+ (E − A0)
−1δA(E − A0)

−1δA(E − A0)
−1 + . . . (6.40)
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This infinite sum looks horrible, but only the lowest non-vanishing term will
be kept. Which one is it? This depends on m, m′ and δH. For definiteness,
the remainder of the calculation will be restricted to the zero-field ground state
splitting, which means that we assume m = −s and m′ = s. The general case is
treated in Appendix G. Moreover, δH will be assumed to have the form (6.31).

Replacing E in (6.39) by E0 = E
(0)
s = E

(0)
−s = −|D|s2, one obtains a first term

〈−s | B∗ | −s + 1〉 〈−s + 1 | (E0 − A0)
−1 | s − 1〉 〈s − 1 | B | s〉

which is 0 except if s = 1, since A0 is diagonal. The second term is

〈−s | B∗ | −s + 1〉 〈−s + 1 | (E0 − A0)
−1 | −s + 1〉

〈−s + 1 | δA | s − 1〉 〈s − 1 | (E0 − A0)
−1 | s − 1〉 〈s − 1 | B | s〉 .

If δA is given by (6.31), its matrix element vanishes unless s = 3/2. For a general
value of s, it is easily seen that the first non-vanishing term is that of order (2s−2)
in δA. This term is of degree 2s in Hx because B is also linear in Hx. Ignoring
the higher order terms, (6.39) reduces to

h̄ω
(−s,s)
T = h̄ωT = 〈−s | B∗[(E0 − A0)

−1δA]2s−2B | s〉 . (6.41)

The calculation is straightforward and performed in Appendix G. It yields
(Hartmann-Boutron 1996) the zero-field ground state splitting as 2h̄ωT where

h̄ωT = 4|D|s2

(

gµBHx

2|D|

)2s
1

(2s)!
. (6.42)

When δH is given by (6.32), the formula for integer s is, as seen in Appendix G,

h̄ωT = 4|D|s2

(

B

16|D|

)s
(2s)!

(s!)2
. (6.43)

When δH is given by (6.33), the formula for even s is (Hartmann-Boutron 1996)

h̄ωT = 4|D|s2

(

C

16|D|

)s/2
(2s)!

[(s/2)!]2
. (6.44)

Of course, in agreement with the selection rules (6.18) and (6.20), ω
(−s,s)
T vanishes

in case (6.32) when s is half-integer and in case (6.33) when s is half-integer
or odd.

For large s, the above formulae can be simplified by using Stirling’s formula
s! ≃ ss+1/2e−s

√
2π. For instance (6.43) reduces to

h̄ω
(−s,s)
T = 4s2|D|

(

B

4|D|

)s
(2s)2s+1/2e−2s

√
2π

[

2sss+1/2e−s
√

2π
]2 =

4|D|√
π

s3/2

(

B

4|D|

)s

. (6.45)

Perturbation theory also allows us to treat the case where the off-diagonal
terms of the Hamiltonian are linear combinations of (6.31), (6.32), (6.33),. . .
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An example is given in Appendix G. It is also possible to obtain a rough determ-
ination of the maximum value of C below which C can be neglected if the
perturbation is a linear combination of (6.32) and (6.33):

δH = (B/4)(S2
+ + S2

−) + C(S4
+ + S4

−).

For C = 0, ωT has a value ω
(B)
T given by (6.43). For B = 0, ωT has a value ω

(C)
T

given by (6.44). The ratio of the two values is

ω
(B)
T /ω

(C)
T =

Bs

(16|D|C)s/2

(

(s/2)!

s!

)2

.

In the case s = 10, this is equal to

ω
(B)
T /ω

(C)
T = (6 × 7 × 8 × 9 × 10)−2

(

B2

16|D|C

)s/2

or

ω
(B)
T /ω

(C)
T =

1

914 457 600

(

B2

16|D|C

)5

. (6.46)

The correction C can be neglected if expression (6.46) is much larger than 1.
This implies that a very small value of C has sizeable effects. This is not too
surprising since C acts at order 5 and B only at order 10.

It follows from (6.42), (6.43) and (6.44) that, in all cases, ωT is small if s is
large, even if the ratio B/|D| is not particularly small, provided it is not too large
(<4). An analogous result may be established if the tunnel effect is produced by
a transverse field as assumed in Section 6.1.

As a conclusion to this section, perturbation theory is an extremely powerful
and effective method. It can be tested numerically or by the analytical methods
presented in the following sections. These tests are positive. This was not obvious
a priori.

Indeed, as pointed out in Section 5.2, for the states | m〉 with small values
of m, the off-diagonal perturbation is of the order of Es2 which is much larger
than the level spacing. Now, the perturbative calculation of tunnelling between
states | m〉 and | m′〉 with large values of m, m′ involves all states | m′′〉 with m′′

between m and m′, and these states are strongly perturbed. The success of high-
order perturbation theory is therefore rather strange, and it is of great interest
to compare this method with other ones as explained below in Section 6.7, as
well as in the next chapter.

6.5 Time-dependent wavefunction: magnetic tunnelling

To observe the evolution of a spin, the experimentalist puts it initially in one of
the wells, e.g. the left-hand one. At low temperatures, at which tunnelling takes
place, the spin is then with a high probability in the lowest state of this well, i.e.
| −s∗〉. In this section, more generally, the spin will be assumed to be initially
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in a quantum state | m∗〉 of the left-hand well (m < 0). The case of interest in

this section is when the unperturbed energy E
(0)
m is close to another unperturbed

energy E
(0)
m′ (m′ > 0). Then, as seen in Section 6.3, | m∗〉 is the combination of

two eigenvectors | Φ〉 and | Φ′〉 of energies E0 ± δE, where δE, given by (6.25),
is small. The wavefunction at time t is therefore

| Ψ(t)〉 = λ1 | Φℓ〉 exp[i(E0 − δE)t/h̄]

+ λ2 | ΦL〉 exp[i(E0 + δE)t/h̄]

where | Φℓ〉 and | ΦL〉 are given by (6.13) and (6.14) and the constants λ1 and
λ2 are given by the initial condition | Ψ(0)〉 = | m∗〉. One obtains

| Ψ(t)〉 = [| m∗〉 cos φ + | m′∗〉 sinφ] cos φ exp[i(E0 − δE)t/h̄]

+ [| m∗〉 sinφ − | m′∗〉 cos φ] sinφ exp[i(E0 + δE)t/h̄]

or

exp[−iE0t/h̄] | Ψ(t)〉 = | m∗〉 [cos(tδE/h̄) − i cos(2φ) sin(tδE/h̄)]

− i | m′∗〉 sin(2φ) sin(tδE/h̄). (6.47)

This formula shows that:

(i) At resonances, cos(2φ) = 0 and sin(2φ) = ±1, the spin oscillates between
the left and right hand sides of the double potential well of Fig. 5.2. This is
the magnetic tunnel effect. The oscillation frequency is then, according to
(6.25), equal to ωT. This justifies the expression ‘tunnel frequency’.

(ii) Far from any resonance, sin(2φ) = 0, the spin remains in its initial position,
assumed to be the left-hand side.

(iii) Near a resonance, the spin is the sum of a component which remains in the
initial well, and an oscillating component.

Formula (6.47) can also be deduced from Schrödinger’s equation

ih̄
d

dt
| Ψ(t)〉 = H | Ψ(t)〉 . (6.48)

If

| Ψ(t)〉 = x(t) | m∗〉 + y(t) | m′∗〉 (6.49)

(6.48) can be written as
{

ẋ(t) = 1
ih̄ (E0 + ∆)x(t) − iωTy(t)

ẏ(t) = −iωTx(t) + 1
ih̄ (E0 − ∆)y(t).

(6.50)

The solution of this system just reproduces (6.47), i.e. x(t) = exp[iE0t/h̄]
[cos(tδE/h̄) − i cos(2φ) sin(tδE/h̄)] and y(t) = −exp[iE0t/h̄] sin(2φ) sin(tδE/h̄).
But the differential equations (6.50) will turn out to be useful.
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6.6 Effect of a field along the hard axis

This case has already been treated in Section 6.2 in the case of quadratic,
tetragonal anisotropy. The simplest Hamiltonian is

H = −|D|S2
z + gµBHxSx (6.51)

which is a special case of (6.2) when Hz = 0. Tunnelling is absent when Hx = 0,
and present when Hx �= 0. Numerical calculation shows that ωT increases uni-
formly with |Hx|. The resulting tunnel frequency ωT can be made so high that
oscillations at this frequency are directly observed. The experiment was done by
Bellessa et al. (1999) in Mn12ac; the resulting tunnel frequency ωT can be made
so high that oscillations at this frequency are directly observed.

The uniform increase of ωT with |Hx| can look intuitive. However, a surprise
appears in the case of a lower symmetry, when it is necessary to add a term BS2

x

to (6.51). The result is that ωT oscillates as |Hx| increases! Only for sufficiently
high values of |Hx|, is the increase of ωT uniform. This effect, observed in Fe8

(Wernsdorfer and Sessoli 1999) will be studied in Section 6.8. It is a typical
quantum effect, somewhat related to Bohm–Aharonov oscillations of the current
in a loop, or to the current oscillations of a Josephson junction with magnetic
field. This analogy appears in a particularly precise way through the path integral
formalism which will be presented in Chapter 7.

6.7 Evaluation of the tunnel splitting for large spins

6.7.1 General methods

The tunnel splitting 2h̄ωT becomes very small for large s. It can be calculated
numerically for all experimentally accessible values of s, and even for s up to,
say, 50. However, since the numerical evaluation has no transparency, it is of
interest to have an analytic formula. Such a formula does exist for particular
forms of the Hamiltonian. An example is Hamiltonian (2.9) in a field along the
intermediate axis y. The anisotropy can be written (Schilling 1995) as

Han = −D′S2
z + BS2

x + gµBHySy. (6.52)

In that case, Schilling (1995) demonstrated that, neglecting corrections which
are small for large s,

2h̄ωT =
16D′
√

π
s3/2 a5/4b3/4

(b − a)1/2

(
√

b − a
√

a +
√

b

)2s+1

cosh

(

πs
Hy

Hc

√

D′

B

)

× exp

[

−2s
Hy

Hc

√

D′

B
arctan

(

Hy

Hc

√

D′b

Ba

)]

(6.53)

where

gµBHc = 2D′S, a = 1 −
(

Hy

Hc

)2

, b = 1 +
B

D′ .
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In vanishing field, Hy = 0, a = 1 and

h̄ωT = Ks3/2

[

1 +
2D′

B
+ 2

√

(

1 +
D′

B

)

D′

B

]−s

(6.54)

where

K =
8D′
√

π

(1 + B/D′)3/4

1 +
√

1 + B/D′
(6.55)

is independent of s.
These formulae are in agreement with the result (G.12) of perturbation theory.

They have been reproduced by Garg (1999) by a ‘discrete WKB method’.
In the case of Fe8, h̄ωT/kB ≃ 10−10K or ωT ≃ 10 rad s−1. As will be seen

in Section 8.3.2, the experimental result is 1000 times as large. This presum-
ably indicates that the Hamiltonian (2.5) is inadequate for the description of
tunnelling in Fe8.

Schilling’s derivation of (6.54) is based on a path integral method whose
principle will be explained in the next chapter.

Another method is to calculate the wavefunction directly. This calculation
can only be approximate. Since the spin s is large, and therefore quasiclassical
as seen in Section 6.1, Van Hemmen and Sütö (1986,1995) proposed to apply the
quasiclassical (WKB) approximation of Wenzl, Kramers and Brillouin. However,
the energy levels are discrete and this typically quantum property requires an
extension of the original WKB method. This point was clarified by Braun (1993)
and Garg (1999).

However, the dominant factor of (6.54), an exponential function of s, can be
obtained rather easily as will now be seen. The wavefunction ϕ(m) should satisfy
Schrödinger’s equation (6.1),

∑

m′

〈m | H | m′〉 ϕ(m′) = Eϕ(m).

The spin s is assumed to be large. Then, most of the equations of this system
satisfy the condition

s − |m| ≫ 1. (6.56)

If this condition is satisfied, the coefficients of (6.1) have a weak relative variation
when m changes by one unit, m → m ± 1. This suggests looking for solutions of
(6.1) which also have a weak relative variation of the ratio

ϕ(m + 1)/ϕ(m) ≃ ϕ(m)/ϕ(m − 1) = ξ(m). (6.57)

Then, (6.1) approximately reads
∑

m′

〈m | H | m′〉 ξm′−m(m) = E. (6.58)

This is an algebraic equation whose solution can be easy or not according to the
form of the Hamiltonian.
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6.7.2 Example: the Hamiltonian (2.5)

In the remainder of this chapter, particular attention will be given to the aniso-
tropy Hamiltonian (2.5), in which E will be replaced by B/2 in order to avoid
confusion with the energy. Thus the anisotropy is Han = −|D|S2

z + (B/4)(S2
+ +

S2
−). Now the left-hand side of (6.58) has only three terms:

〈m | H | m − 2〉 ξ−2(m) + 〈m | (H − E) | m〉 + 〈m | H | m + 2〉 ξ2(m) = 0. (6.59)

The problem of interest is the tunnelling process, which mainly depends on the
behaviour of the wavefunction inside the barrier, when s − |m| ≫ 1. Then the
first and the last coefficient in (6.59) are nearly equal,

〈m | H | m − 2〉 ≃ 〈m | H | m + 2〉 ≃ (B/4)(s2 − m2). (6.60)

The other coefficient in (6.59) is 〈m | (H − E) | m〉. Attention will be focused on
the ground state, and E will be approximated by the unperturbed eigenvalue
(5.6), i.e. E = −|D|s2, Then, for s − |m| ≫ 1

〈m | H − E | m〉 ≃ |D|(s2 − m2). (6.61)

For s − |m| ≫ 1, according to (6.60) and (6.61), (6.59) reads

ξ−2 + (4|D|/B) + ξ2 = 0. (6.62)

This second-degree equation in ξ2 does not even depend on m! It has two
solutions

ξ2 = − exp[±2κ0] (6.63)

where

exp[±2κ0] = (2|D|/B) ± 2
√

(4|D|2/B2) − 1. (6.64)

If the upper sign is chosen, two increasing wavefunctions are obtained. In other
words, they are (almost completely) localized in the right-hand well (m > 0).
These functions read

ϕ±
d (m) = (±i)s−mϕd(s) exp[−κ0(s − m)]. (6.65)

If the lower sign is chosen in (6.64), two wavefunctions of decreasing modulus
are obtained, which are localized in the left-hand well (m < 0).

ϕ±
g (m) = (±i)s−mϕg(s) exp[−κ0(s + m)]. (6.66)

The vectors
∣

∣ ϕ±
g

〉

and
∣

∣ ϕ±
d

〉

do not have the form (6.16) or (6.17) which is
required for the Hamiltonian (2.5). However, it is easy to form linear combina-
tions of the two solutions (6.65), which do satisfy, respectively, (6.16) and (6.17),
namely

ϕ4(m) = ϕ4(s) exp[−κ0(s − m)] cos[π(s − m)/2] (6.67)
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and

ϕ3(m) = ϕ3(s − 1) exp[−κ0(s − m)] sin[π(s − m)/2] (6.68)

and linear combinations of the two solutions (6.66), which satisfy (6.16) and
(6.17), namely

ϕ1(m) = ϕ1(−s) exp[−κ0(s + m)] cos[π(s + m)/2] (6.69)

and

ϕ2(m) = ϕ2(−s + 1) exp[−κ0(s + m)] sin[π(s + m)/2]. (6.70)

These formulae are approximate, but exact values can be obtained using
Schrödinger’s equation (6.1) for m′′ �= ±s,±(s− 1). Applying (6.1) for m′′ = −s
to ϕ1 yields a good approximation of the corresponding eigenvalue E0. This
approximation does not take tunnelling into account. Tunnelling can be obtained
if an eigenfunction of (6.1) is assumed to have the form

ψ(m) = ϕ1(m) + ǫϕ2(m) (6.71)

where, in the situation of interest, ǫ = ±1. Insertion into (6.1) yields, replacing
m by s and m′ by m,

∑

m

〈s | H | m〉 ϕ1(m) − Eϕ1(s) = ǫ[Eϕ2(s) −
∑

m

〈s | H | m〉 ϕ2(m)]. (6.72)

The left-hand side is not very sensitive to small variations of E. It can be written
as kE0ϕ1(s), where k is a constant, presumably of order unity. The right-hand
side vanishes for E = E0 and may be assumed to be proportional to δE = E−E0.
It will be written as k′ǫδEϕ2(s), where k′ is a constant, presumably of order unity.
Thus (6.71) can be written as kE0ϕ1(s) = k′ǫδEϕ2(s), or, since ϕ2(s) = ϕ1(−s),

ǫδE = E0
k

k′
ϕ1(s)

ϕ1(−s)
. (6.73)

If now (6.1) is applied to the case m = −s, one obtains in a similar way

δE = E0ǫ
k

k′
ϕ1(s)

ϕ1(−s)
(6.74)

Equations (6.73) and (6.74) yield ǫ = ±1 as already known, and

δE = ±E0
k

k′
ϕ1(s)

ϕ1(−s)
(6.75)

or, replacing ϕ1(s) by its approximation (6.69),

h̄ωT ≈ |D| exp(−2κ0s) (6.76)

where the symbol ‘≈ X’ means ‘equal to X multiplied by a factor whose diver-
gence with s is weaker than an exponential of s’. Formula (6.76) is in agreement
with Schilling’s more precise formula (6.54).
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The factor s3/2 present in (6.54), and lacking in (6.76), can be obtained from
(6.75) if a better approximation than (6.69) is used for ϕ1(s). The proof is
available in Anna Fort’s (2001) thesis.

One would like to identify the vectors ϕ1 and ϕ4 with the localized vectors
| −m∗〉 and | m∗〉. For the sake of definiteness, s will be assumed to be integer
and even, and E will be assumed to be the ground state energy, so that the
relevant localized vectors are | −s∗〉 and | s∗〉. The identification of | −s∗〉 and
| s∗〉 requires some care because these vectors must be orthogonal and ϕ1 and
ϕ4 are not. Therefore the required formulae are

| −s∗〉 = C (| ϕ1〉 − ǫ | ϕ4〉)
| s∗〉 = C (| ϕ4〉 − ǫ | ϕ1〉)

(6.77)

where ǫ is given by

(1 + ǫ2) 〈ϕ1 | ϕ4 〉 = ǫ (〈ϕ1 | ϕ1 〉 + 〈ϕ4 | ϕ4 〉) (6.78)

and C is given by

C
(

(1 + ǫ2) 〈ϕ1 | ϕ1 〉 − 2ǫ 〈ϕ1 | ϕ4 〉
)

= 1. (6.79)

The tunnel splitting is now given by equation (6.24),

h̄ω
(−s,s)
T = | 〈−s∗ | H | s∗〉 |

= |C|2 (〈ϕ1 | H | ϕ4〉 + 〈ϕ1 | H | ϕ4〉 − ǫ 〈ϕ1 | H | ϕ1〉 − ǫ 〈ϕ4 | H | ϕ4〉) .
(6.80)

If | ϕ4〉 and | ϕ1〉 are substituted from (6.67) and (6.69) one obtains, by another
method, formula (6.76).

6.8 Diabolic points

6.8.1 Degeneracy with and without symmetry

In the previous sections, it has been seen that the levels of a Hamiltonian which
acts on a spin are generally not degenerate. In the present section, attention will
be paid to exceptions to this general rule.

Some exceptions have already been encountered in Sections 6.1 and 6.2. They
are related to some particular symmetry. For instance

• If s is half-integer and the magnetic field is 0, degeneracy is possible. This is
Kramers’ degeneracy.

• If the field is longitudinal, the states | m∗〉 and | m′∗〉 are degenerate for
appropriate field values of the longitudinal field if m + m′ is odd.

• For tetragonal symmetry, the states | m∗〉 and | m′∗〉 are degenerate for
appropriate values of the longitudinal field unless m + m′ is a multiple of 4.

A symmetry-breaking perturbation often has the effect of raising an existing
degeneracy. This occurs for instance in the Jahn–Teller effect, when an elastic
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distortion raises an electronic degeneracy. Another example is the raising of
the Kramers degeneracy by a magnetic field (which breaks the time-reversal
symmetry). For that reason, one might believed that a degeneracy is always a
consequence of some symmetry. This is wrong, as will now be seen.

6.8.2 The von Neumann–Wigner theorem

Indeed, it may happen that the tunnel splitting 2h̄ω
(mm′)
T between two local-

ized states | m∗〉 and | m′∗〉 vanishes although there is no symmetry reason. This
problem has been clarified by a theorem of von Neumann and Wigner (1929)
according to which two adjustable parameters are necessary (but not always suf-
ficient) to produce the degeneracy of a real (Hamiltonian) matrix. For a complex
matrix, three parameters are necessary.

In the case of a spin 1/2 treated in Section 6.1.3, this property is a con-
sequence of the fact that the Hamiltonian matrix has two eigenvalues which
are equal if and only if 〈1/2 | H | 1/2〉 = 〈−1/2 | H | −1/2〉, ℜ 〈1/2 | H | −1/2〉 = 0
and ℑ 〈1/2 | H | −1/2〉 = 0. These three conditions determine the three variables
Hx, Hy, Hz.

This argument may be extended to a general spin s. The question is the
possible degeneracy of two eigenvectors contained in a two-dimensional space
(defined for instance by two localized vectors | m∗〉 and | m′∗〉). This degeneracy
implies the conditions 〈m′∗ | H | m′∗〉 = 〈m∗ | H | m∗〉, ℜ 〈m′∗ | H | m∗〉 = 0 and
ℑ 〈m′∗ | H | m∗〉 = 0. These three equalities between quantities which are real
(because the Hamiltonian is Hermitian) determine three parameters, which in
the case of a spin can generally be identified with the components of the magnetic
field.

In practice, Hz is defined, at least approximately, by the level-crossing con-

dition E
(0)
m = E

(0)
m′ . The other two components are determined by the condition

ωT = 0.
A point of the parameter space where degeneracy occurs without sym-

metry reasons is called a diabolic point, probably because it is an unexpected
phenomenon which can only be an effect of the Devil.

A simple case is the Hamiltonian (2.8) in the presence of a field which has
components on the easy and hard axes:

H = −|D|S2
z + (B/2)(S2

x − S2
y) + gµBHzSz + gµBHxSx. (6.81)

With the usual representation of spin operators 〈s, m + 1, p |S+ | s, m, p〉 =
√

(s + m + 1)(s − m), this Hamiltonian is real. The von Neuman–Wigner the-
orem therefore states that it can be degenerate for certain values of Hx and
Hz. Actually, it is, as proven by (Garg 1993). Later, Wernsdorfer and Sessoli
(1999) experimentally observed that the tunnel frequency in Fe8 was an oscillat-
ing function of Hx (Fig. 6.8). Their next task, to explain this strange result, was
to extract Garg’s article from a literature which was becoming thick!

How can the diabolic points of (6.81) in the (Hx, Hz) plane be calculated?
Of course, these points must correspond to a level crossing, and therefore be on
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Fig. 6.8. Tunnel frequency ωT as a function of Hx according to Wernsdorfer and
Sessoli (1999): (a) numerical calculation; (b) experiment on Fe8. The field
component along the easy axis is either 0 (curve ‘n = 0’) or given by (6.87)
with p = 0 (curve ‘n = 1’) or given by (6.86) with p = 1 (curve ‘n = 2’).

lines which are approximately given by (6.4). This is a condition on Hz. Then,
one has to determine the field Hx along the hard axis. Garg (1993) and then
Chiolero and Loss (1998) did that by using path integrals. This method, which
uses the concept of Berry phase often associated to the oscillations of Fig. 6.8,
will be described in the next chapter. However, partial results can be obtained
from the method of Section 6.7 as will now be seen.

6.8.3 The quest of the Devil

In Section 6.7, Schrödinger’s equation (6.1) was applied to the Hamiltonian (6.81)
with H = 0. It was found that, if restricted to the region s − |m| ≫ 1, equations
(6.1) have four independent solutions ϕr(m) given by (6.67)–(6.70). These solu-
tions exist for any value of E. The eigenvalue E can only be determined if the
whole system (6.1) is solved for −s ≤ m ≤ s. However, in the region s−|m| ≫ 1,
the solution of this system is a linear combination of the four functions ϕr(m).
Their definition by (6.67)–(6.70) is only approximate, but more precise formulae
(which depend on E) can be deduced from the exact formulae (6.59). Four func-
tions ϕr(m) are thus obtained, which satisfy relations (6.1) exactly, except for
m = ±s and m = ±(s − 1). In zero field, assuming s to be even, these functions
are real and such that:

• ϕ1(m) is localized to the left (m < 0) and is ‘even-valued’, i.e. ϕ1(m) �= 0
implies that m is even;

• ϕ2(m) is localized to the left (m < 0) and is ‘odd-valued’;

• ϕ3(m) is localized to the right and ‘odd-valued’;

• ϕ4(m) is localized to the right and ‘even-valued’.
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These properties hold for H = 0. When Hz and Hx do not vanish, the method
of Section 6.7 can be applied too (Villain and Fort 2000). As a first approxima-
tion, (6.58) can still be used. It is an equation of fourth degree in ξ(m). If H is
small, the following results are easily obtained:

• The system (6.1) (still truncated from its first two and last two equations) has,
for E ≈ −|D|s2, four independent, real solutions ϕr(m).

• ϕ1(m) and ϕ2(m) are left-localized, ϕ3(m) and ϕ4(m) are right-localized, as
in case H = 0.

• The field does not modify each function ϕr(m) much in the region where it
is large, i.e. in the bottom of the left-hand well for ϕ1(m) and ϕ2(m), in the
bottom of the left-hand well for ϕ3(m) and ϕ4(m).

• However, for Hx �= 0, the functions ϕr(m) have a phase which depends on m
(Fig. 6.9). For instance, (6.69) is replaced by

ϕ1(m) = ϕ1(−s) exp[−κ0(s + m)] cos[π(s + m)/2 + Φ1(m) − Φ1(−s)]. (6.82)

The phase Φ1(m) varies slowly with m if Hx is small. Its presence has
spectacular consequences if

Φ1(s) − Φ1(−s) = π/2 + kπ (6.83)

where k is an integer. Indeed, in that case, ϕ1(m), which on the left-hand side
has even values, has odd values on the right-hand side. In particular ϕ1(s) ≃
ϕ1(s − 2) ≃ 0 since s is even.

Let the case Hz = 0 be considered first. It corresponds to a level crossing
between ϕ1 and ϕ4. Generally, Schrödinger’s equation (6.1) can only be satisfied
for m = s, if the wavefunction is a combination of ϕ1 and ϕ4 (the sum or the
difference). This follows from (6.73) and (6.74). However, if (6.83) is satisfied,
then ϕ1(s)/ϕ1(−s) = 0, and (6.73) and (6.74) are satisfied for δE = ǫ = 0. This
implies that both ϕ1(m) and ϕ4(m) are eigenfunctions of the Hamiltonian for
the same energy E0. In reality, a more refined derivation is necessary because
(6.73) and (6.74) were derived for Hx = 0, when the Hamiltonian has no matrix
elements between ϕ1 (or ϕ4) and ϕ3 (or ϕ2). If Hx �= 0, the wavefunction is
therefore not exactly ϕ1 or ϕ4, but contains small corrections proportional to ϕ3

and ϕ2. The calculation is slightly more complicated but the result is the same:
there is an exact degeneracy for particular values of Hx.

These values can be deduced from (6.83) using the calculation of the function
Φ1(s) (Villain and Fort 2000) and one obtains

gµBHx = (2n + 1)
√

B(|D| + B/2). (6.84)

This relation was obtained for the first time by Garg (1993) by means of path
integrals.

The above argument can be generalized to all fields which correspond to the
crossing of two even values m, m′ or of two odd values, so that m + m′ is even
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Fig. 6.9. Schematic representation of the lowest, left-localized wavefunction
ϕ1(m). Only the values for m = −s + 4p are represented. The field Hz is
close to 0. (a) Hx = 0; (b) Hx larger than the first ‘diabolic’ value. (c) Hx

equal to the first diabolic value. At resonance (Hz = 0) the eigenfunction is
obtained by adding to ϕ1(m) its symmetric ϕ4(m). This figure is schematic
and the proportions are not respected.

in (6.4). That equation and (6.84) define (in an approximate way) a family of
diabolic points. It is easily seen that another family of diabolic points (for s an
even integer) is defined for odd values of m + m′ by (6.4) and

Φ1(s) − Φ1(−s) = kπ. (6.85)

To summarize, diabolic points of the Hamiltonian (6.81) are approximately
given by

{

gµBHz = 2p(|D| − B/2) (a)

gµBHx = (2n + 1)
√

B(|D| + B/2) (b)
(6.86)
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and
{

gµBHz = (2p + 1)(|D| − B/2) (a)

gµBHx = 2n
√

B(|D| + B/2) (b)
(6.87)

In these formulae, n cannot be larger than s.
The derivation of (6.86b) and (6.87b) is not exact, but numerical calcu-

lations confirm that they are very good approximations, for the anisotropy
(2.5). Is the anisotropy really given by (2.5) in real materials? As seen from
Fig. 6.8, the experimental results of Wernsdorfer and Sessoli (1999) agree with
formulae (6.86b) and (6.87b) except for a constant factor of the order of 1.5.
Moreover, the highest value compatible with Wernsdorfer’s experimental facil-
ities has not allowed to verify that all the 10 zeros predicted by the theory are
indeed observable.

Is theory able to explain that? Yes indeed, according to Keçecioǧlu and Garg
(2002 and 2003). They introduce into the Hamiltonian (6.81) an additional term
C(S4

+ + CS4
−), with C/kB = 29 × 10−6K. They obtain four zeros of the tunnel

splitting for Hx > 0, with a distance of the order of the experimentally observed
one. Furthermore, the value of the tunnel splitting is multiplied by a factor of
the order of 1000, and becomes quite comparable with the experimental value.
This last result can be compared with perturbation theory. Using (6.46), and
the values |D|/kB = 0.292 K, B/kB = 0.092 K, C/kB = 29 × 10−6 K, the tunnel
splitting which results from (6.44) (if B is neglected) is actually much larger
than the one calculated from (6.43) if C is ignored, as can be seen from (6.46).

Thus, Keçecioǧlu and Garg drastically reduce the number of diabolic points by
introducing a fourth-order anisotropy, and in that way obtain good agreement
with experiment. A nasty question would be: what happens with sixth-order
anisotropy? This would attract the nasty reply: try to do the calculation!
That of Keçecioǧlu and Garg introduces qualitatively new features, such as
discontinuities in the quasiclassical trajectory.

For Hz = 0, the Hamiltonian (6.81) reduces to H = −D′S2
z +BS2

x+gµBHxSx.
This Hamiltonian is easy to study in the limit 0 < D′ ≪ B (Weigert 1994).
This case has perhaps no important experimental applications, but it is inter-
esting because the number of diabolic points for given values of B and D can be
determined by a simple, analytical argument.

The interested reader will discover many fascinating features of tunnelling in
condensed matter in the books of Kagan and Leggett (1992) and Razavy (2003).
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INTRODUCTION TO PATH INTEGRALS

7.1 General ideas

This chapter describes an alternative approach to the calculation of the
tunnelling frequency. It makes use of mathematical methods which are very much
used by theoreticians. They are technically very efficient, but make use of various
mathematical tricks, e.g. an imaginary time, so that it is hard to retain contact
with physical reality. On the other hand, they help to make a link with other
quantum phenomena.

Path integrals were introduced by Feynman (1948) as providing an alternat-
ive presentation of quantum mechanics. Feynman and Hibbs (1965) published a
complete book on this approach, where no discrete variables are a priori intro-
duced. It is particularly appropriate to the study of nearly classical systems such
as large spins.

Following the article of Schilling (1995) the method will first be explained
in the case of a one-dimensional anharmonic oscillator. From there to a spin,
there are well-known transformations, the best known of them (but not the
most appropriate for us) being that of Holstein and Primakoff. The forthcoming
presentation is neither rigorous not complete. It only aims at an explanation of
the main concepts without giving mathematical details.

7.2 The anharmonic oscillator

Let a particle of mass1 m in one-dimensional space be subject to a potential
V (x). We wish to know the probability amplitude

G(x′, t′|x, t) = 〈x′ | exp[i(t′ − t)H/h̄] | x〉 (7.1)

that the particle is at point x′ at time t′ if it was at point x at time t. The
corresponding probability is of course the square of the absolute value of (7.1).

Feynman and Hibbs (1965) have shown that G(x′, t′|x, t) (also called the
‘propagator’) can be expressed as the ‘path integral’

G(x′, t′|x, t) =

∫

D[x′′(t′′)] exp{iS([x′′(t′′)])/h̄}. (7.2)

In this formula, [x′′(t′′)] represents a path from x to x′, i.e. a function of t′′

subject to conditions

x′′(t) = x x′′(t′) = x′, (7.3)

1 Pay attention to the notation m which, in this chapter, is a mass, not the Sz component
of a spin!
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while

S([x′′(t′′)]) =

∫ t′

t

duL(ẋ(u), x(u)) (7.4)

is the Maupertuis action which involves the classical Lagrangian

L(ẋ(u), x(u)) =
m

2
ẋ2 − V (x). (7.5)

Finally,
∫

D[x′′(t′′)] is an integral on all paths from x to x′ which satisfy (7.3).
The definition of this integral is similar to that of the usual Riemann integral:
the interval [t, t′] is discretized into N equal intervals t, t1, . . . , tN−1, t′ and
∫

D[x′′(t′′)] is defined as the limit for infinite N of the N-fold integral.

N−1
∏

n=1

∫ ∞

−∞
dxn

where xn = x(tn). More precisely
∫

D[x′′(t′′)] = LimN→∞

∫ ∞

−∞

dxn

A
(7.6)

where

A =

√

2πh̄(t′ − t)

mN
. (7.7)

According to Maupertuis’ principle, the classical motion of the particle is
determined by the minimization of the action (7.4). This formulation implies

md2x

dt2
=

−dV (x)

dx
(7.8)

but it is slightly more precise since (7.4) might also correspond to a maximum
of the action.

Let Maupertuis’ principle be applied to formula (7.2) in the classical limit
h̄ → 0. When the action in (7.2) is much greater than h̄, the phase is rapidly
variable and produces destructive interference except for the stationary classical
trajectory.

If the action were not multiplied by i, the integral would be dominated by
the path which minimizes it, which is the classical trajectory. One might then
improve the classical approximation by replacing the action by a Taylor expan-
sion near its minimum. This is the saddle-point method. As a matter of fact,
there is a simple possibility to get rid of the i factor, namely one can take an
imaginary time, t = iτ .

7.3 Tunnel effect and instantons

We shall now address the case where the potential V (x) has two equal minima,
and thus allows tunnelling. An example is

V (x) = −Bx2 + Ax4 (7.9)
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where A and B are real and positive. In classical mechanics, there are two
equilibrium positions at x = ±x0, where x0 =

√

B/(2A).
To calculate the tunnelling frequency ωT and the ground state energy E0, a

possible way is the calculation of the propagator (7.1). Indeed, using (6.47), it is
easy to see that

G(−x0, t|x0, 0) = exp(iE0t/h̄) sin(ωTt). (7.10)

or for an imaginary time t = iτ

G(−x0, iτ |x0, 0) = i exp[−E0τ/h̄] sinh(ωTτ). (7.11)

To calculate this propagator near the classical limit, it is appropriate to solve
the classical equation of motion (7.8). A first integral, familiar to those who
remember the pendulum equation, can be obtained by multiplying both sides by
dx/dt. Integration then yields

m(dx/dt)2 = −2V (x) + C (7.12)

where C is an integration constant. In classical mechanics, there is equilibrium
when dx/dt = 0, which implies C = 2V (x0). If this value is chosen, (7.12) and
(7.9) yield

(m/2)(dx/dt)2

= Bx2 − Ax4 − Bx2
0 + Ax4

0

= (x2 − x2
0)

[

B − A(x2 + x2
0)

]

= −A
(

x2 − x2
0

)2
. (7.13)

The goal is to describe tunnelling, i.e. a path from the left-hand minimum,
x = −x0, to the right-hand minimum, x = x0. With a real time, this is impossible
since (7.13) has no solution. This is no surprise. The surprise is that (7.13) has
a solution if t = iτ is imaginary. Introducing an integration constant τ1, one
obtains

τ =
√

m/(2A)

∫ x

0

du

x2
0 − u2

+ τ1 = (1/x0)
√

m/(2A) ln
x0 + x

x0 − x
+ τ1 (7.14)

which corresponds to x = −x0 for τ = −∞ and to x = x0 for τ = ∞.
The solution (7.14) of the equation of motion (7.8) is called an instanton

because the particle needs a short instant (1/b)
√

m/(2A) to go from the neigh-
bourhood of point −b to the neighbourhood of point b. The instanton solution
is mathematically identical to that which is called a soliton in other physical
problems.

The next task is the evaluation of the propagator (7.2) for x = −x0, x′ = x0,
and t′ −t large with respect to the duration

√

m/(2A) of the instanton. One may
be tempted to choose t′−t = ∞, but this is not possible because the integral (7.2)
would diverge. The reason for this divergence is just that there are an infinity



212 INTRODUCTION TO PATH INTEGRALS

of possible choices of the instanton position τ1. For a finite value of t′ − t, the
number of choices is proportional to t′ − t, and therefore the propagator should
contain a factor t′ − t. As a matter of fact, this is only true if t′ − t is not too
large, otherwise more than one soliton may be present.

The propagator also contains a factor exp(−SE/h̄), where the ‘Euclidean’
action SE of the instanton2 can be deduced from (7.4) by the substitutions
t = −i∞, t′ = i∞, t′′ = iτ . Thus

SE =

∫ ∞

−∞
dτLE (ẋ(τ), x(τ)) (7.15)

where the ‘Euclidean’ Lagrangian LE is obtained by multiplying the first term
of the usual Lagrangian (7.5) by i2 = −1, i.e.

LE(ẋ, x) = −m

2
(dx/dτ)2 − V (x) (7.16)

and dx/dτ is given by (7.13). The result is

SE =

∫ ∞

−∞
dτ [(m/2)(dx/dτ)2 + V (x) − V (b)] (7.17)

where an additive constant has been inserted between the brackets. The result is
a change of the energy origin and a modification of the phase of the wavefunction,
and has no physical consequences. Using (7.12) with C = 2V (b), (7.17) becomes

SE = m

∫ ∞

−∞
dτ(dx/dτ)2 = m

∫ b

−b

dx(dx/dτ) = m

∫ x0

−x0

dx
√

2m[V (x) − V (b)].

(7.18)

The imaginary-time (‘Euclidean’) propagator GE(−x0, τ
′|x0, τ) is thus dom-

inated, for small (τ ′−τ), by a factor (τ ′−τ) exp(−SE/h̄). This factor is expected
to be the first term of the short time expansion of the hyperbolic sine in (7.11).
Actually, the full formula has the form (Schilling 1995)

GE(−b, τ ′|b, τ) = C exp[−(1/2)(τ ′ − τ)
√

V ′′(x0)/m] sinh[(τ ′ − τ)∆ exp(−SE/h̄)
(7.19)

where C and ∆ have complicated expressions which will not be reproduced here.
Comparison with (7.11) shows that

ωT = ∆ exp(−SE/h̄) ≈ exp(−SE/h̄) (7.20)

where the sign ≈ means that factors are ignored, which, in the classical limit
m → ∞, go less rapidly to 0 than exp(−SE/h̄), or go less rapidly to ∞ than
exp(SE/h̄).

2 The word ‘Euclidean’ is used when the time t = iτ is imaginary, because the relativistic
ds2 = dx2 + dy2 + dz2 − dt2 thus becomes Euclidean, ds2 = dx2 + dy2 + dz2 + dτ2.
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Formula (7.19) results from adding the contributions of all solutions with
1, 2, 3, . . . instantons. It is clearly not the simplest way to obtain (7.20) unless
one wants to have the precise expression of ∆. Then the path integral method is
not necessarily more complicated than alternative methods.

When dealing with a spin instead of a particle, the complication increases
again, as will now be seen.

7.4 The path integral method applied to spins

Until now, in this chapter, the problem treated was that of a particle, more
precisely an oscillator. Harmonic or not, an oscillator is described in quantum
mechanics by creation and destruction operators which obey the Bose commut-
ation rules. Their eigenvalues go from −∞ to ∞. However, in this book, we are
interested in spin operators, which have a finite number of eigenvalues.

We shall follow the articles of Garg (1993) and Schilling (1995).
We shall consider the Hamiltonian (6.81) for Hz = 0. One wishes to write the

‘Euclidean’ action (i.e. for an imaginary time, as above) analogous to (7.15) for
a classical spin whose polar angles θ and φ are defined by the spin components
Sx = s cos θ along the hard axis, Sz = s sin θ cos φ along the easy axis, and
Sy = s sin θ sinφ along the intermediate axis. The motion between times −t1/2
and t1/2 in classical mechanics corresponds to the minimum of the action. An
expression which has this property can be shown to be

SE =

∫ t1/2

−t1/2

dτ [−ih̄s(1 − cos θ)φ̇(τ) + H(θ(τ), φ(τ))]. (7.21)

This expression turns out to be correct, and may be justified. However, the
justification which has been given here is not sufficient, because one might add
any constant to SE without modifying the property that its minimization gives
the classical equation of motion. For instance, as noticed by Schilling (1995), the
following (wrong) expression might be used (with a real time).

S =

∫ t

0

dt[h̄sφ̇(t) cos θ(t) − H(θ(t), φ(t))]. (7.22)

The essential difference between (7.21) and (7.22) is the expression
sh̄

∫

dtφ̇(t) = sh̄[φf − φi], where φi and φf are the initial and final values of
φ, i.e. the values at equilibrium. This expression is independent of the path
which joins the equilibrium points. It is therefore a constant. It turns out that
(7.21) is correct while (7.22) would lead to wrong results, e.g. it would violate
Kramers’ theorem.

In the case of particle tunnelling, there was only (with an imaginary time)
one classical path from one equilibrium point to the other. This is the instanton
(7.14). In the case of a spin, we have the surprise to find two paths. In vanishing
field, they both correspond to θ = π/2, but to two different sign of sinφ (Fig. 7.1).
This is related to the topology of the sphere, because the end of the S vector
moves on a sphere.
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Fig. 7.1. The vector S which represents a classical spin lies on a sphere. It makes
an angle θ with the hard axis x, and its projection on the yz plane makes
an angle φ with the easy axis z. The equilibrium points in zero field are the
top (Sz = s) and the bottom (Sz = −s) of the sphere. Those points are
linked by two imaginary time trajectories which are the two halves (marked
by arrows) of the section Sx = s cos θ = 0 by the plane defined by the easy
axis z and the intermediate axis y. Kramers’ degeneracy can be interpreted as
an interference between both trajectories. The diabolic points which appear
in a non-vanishing field can be obtained by an analogous argument with more
complicated trajectories.

It will be seen that the two paths can interfere. Destructive interference leads
to a vanishing tunnel splitting. Thus, the diabolic points of the previous chapter
are obtained in a different way, which establishes an unexpected analogy with
other quantum phenomena such as the Bohm–Aharonov effect, or a SQUID. In
the case of a half-integer spin in vanishing magnetic field, the interference gives
rise to Kramers degeneracy.

The interference effect appears via formula (7.2). It is dominated by the two
classical paths defined above in vanishing field. In the argument of the hyperbolic

sine in (7.19), the action is therefore replaced by the sum of the actions S
(1)
E and

S
(2)
E which correspond to the two paths. They are given by (7.21), where the

second term has the same value for both paths. In the first term, cos θ vanishes,
and what remains is −ih̄s

∫

dφ, with an integration from 0 to π for one path

and from 0 to −π for the other path. Therefore, the actions S
(1)
E and S

(2)
E differ

by a factor exp(2πis). Since this factor is −1 when s is even, Kramers’ theorem
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is recovered. The same argument using (7.22) instead of (7.21), would yield a
result in contradiction with Kramers’ theorem, therefore (7.22) is wrong.

In the case of an integer spin, similar interferences appear in a field parallel
to the hard axis. The calculation is a little more complicated than in vanishing
field, but since alternative methods are also quite complicated, path integrals are
really useful.

It is of interest to look more carefully at the term −ish̄[φf −φi] which appears
in (7.21). This term is independent of the Hamiltonian. Its nature is ‘geometrical’.
It is of no interest in the purely classical case s = ∞, when there is no tunnelling.
If one looks at formula (7.2), in real time this term can be seen to be related
to the phase of the wavefunction. Instead of considering an interference between
two paths, one can consider the closed path constituted by the two paths. The
variation of the phase of the wavefunction along such a closed path is a famous
problem treated by Berry (1984). For that reason, the first term of (7.21) is
often called the ‘Berry phase’. However, the paths considered by Berry were in
the parameter (Hx, Hz, Hy, B), with a very slow (‘reversible’) variation of these
parameters with time.

In this very simplified and incomplete presentation, the difficulties related to
the commutation rules between spin operators have been ignored. The detailed
calculation can only be performed if this problem is solved, and this is not very
easy. There are two possibilities (Schilling 1995). The first one is to use ‘coher-
ent spin states’, which are quantum states which mimic the classical states.
An alternative method is the transformation of the spin operators into boson
operators b, b+. Among these ‘bosonization’ procedures, the best known is the
Holstein–Primakoff representation Sz = s − b+b. However, it can only be used
when the spin has a single favoured direction, not if the spin tunnels between two
positions. A transformation which is appropriate to this case has been described
and applied by Schilling (1995).

The extension of the path integral method to Hamiltonians more complic-
ated than (6.81) requires additional complications. In the presence of quartic
terms, Keçecioǧlu and Garg (2003) have argued that the classical path should
be replaced by a discontinuous path.



8

TUNNELLING IN A TIME-DEPENDENT MAGNETIC FIELD

AT LOW TEMPERATURE

8.1 Advantages of a time-dependent magnetic field

In Chapter 5 the evolution of a molecular magnet in a constant magnetic field
was studied. One can get more information, especially at low temperature, by
measuring its magnetization M(t) in a time-dependent magnetic field. In this
chapter, the field will be assumed parallel to the easy magnetization axis z and
linear in time,

Hz(t) = H1 − αt. (8.1)

At low temperatures, the magnetization curve exhibits a succession of steep
parts separated by regions where dM/dt is much smaller. This is displayed by
Fig. 8.1 in the case of Fe8 and was already seen from Fig. 4.26 in the case of
Mn12ac. It turns out that the steep parts correspond to the level crossings found
in Chapter 6, when tunnelling is possible. The magnetization variation dM/dt is
accelerated in those regions because the relaxation is faster. Thus, the physical
content of Fig. 8.1 is the same as that of Fig. 6.7. Both figures show that at
low temperature the evolution toward equilibrium is easier if it does not require
excitation to the top of a barrier, but just tunnelling through the barrier. One
can also mention that Fig. 8.1 exhibits hysteresis. The determination of the
magnetization curve allows the detection of resonances by a single experiment.
It has other advantages, as will be seen.

At low temperatures, as seen in Chapter 6, there are sharp maxima of the
relaxation rate (or ‘resonances’) at particular values H(mm′) of Hz. It is not
surprising to find (Fig. 8.1) that the variation dM/dt is steeper near resonances.
Thus, the method allows the detection of resonances by a single experiment.
It has other advantages, as will be seen.

In the remainder of this chapter, the effect of a time-dependent field on a single
spin at low temperature is considered. The spin is described by a wavefunction
| Φ(t)〉 which satisfies the time-dependent Schrödinger equation

ih̄
d

dt
| Φ(t)〉 = H(t) | Φ(t)〉 (8.2)

where

H(t) = H0 + gµBHz(t)Sz. (8.3)
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Fig. 8.1. Magnetization as a function of the field H for Fe8 at two different values
of dH/dt and T = 80 mK. Courteously provided by W. Wernsdorfer

The differential equation (8.2) should be complemented by an initial condition
to specify the value of | Φ(t)〉 at the initial time, which can be chosen as t = 0.
At t = 0 the system will be assumed to be at equilibrium, and since the tem-
perature is low, | Φ(0)〉 is, with a very good approximation, the lowest state
of one of the wells. If H1 > 0, then | Φ(0)〉 = | −s∗〉. However, for the sake of
generality, | Φ(0)〉 will be assumed to be any eigenvector | m∗〉 of H(0), with
m < 0. It will be assumed that tunnelling is negligible at t = 0. Then the field
evolves according to (8.1) and crosses a region where tunnelling to a state | m′∗〉
is possible, with m′ > 0. The experiment is stopped at a time tf where tunnel-
ling is again impossible. No other tunnelling process to a state | m′′∗〉 is possible
between 0 and tf . The value m′ depends on H1. The field region in which tun-

nelling is important has a width 2δH(mm′) ≈ 2h̄ω
(mm′)
T /(gµB|m′ −m|) as follows

from (6.28).
Equation (8.2) is a satisfactory description of tunnelling near the zero-field

resonance, i.e. for m′ = − m = s. For other resonances, when at least one of the
two tunnelling states is an excited one, one has to take into account the possib-
ility of deexcitation with emission of phonons. That case will be investigated in
Section 10.6.

In the present chapter, on the contrary, the spin is assumed to be alone, only
subject to its anisotropy Hamiltonian and to the time-dependent magnetic field.
In Chapter 5, it was stressed that this is a very poor approximation. In the
present chapter it will be a good approximation for |m|= |m′|= s, at least if the
sweeping velocity α is large enough. At low sweeping velocity, the spins have
time to interact in a dynamic way between themselves and with nuclear spins,
as will be seen in Chapter 9. But if α is large enough, this interaction may be
viewed as a static field. Thus, each spin feels a local field Hloc which is the
sum of the external field and the field produced by the other spins (electronic
and nuclear). Therefore, the quantity H1 in (8.1) is different for different spins.
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However, if α is large enough, it can be assumed to be independent of time during
the experiment, i.e. for 0< t < tf . In that case, the wavefunction at tf is the same
for all spins apart from phase factors which have no physical significance. This
can be seen from the equations of the next sections, or directly from Schrödinger’s
equation (8.2). The only difference between different spins is that they begin to
tunnel at different times, stop tunnelling at different times, but the duration of
tunnelling is the same and the net evolution is the same.

If the local field changes during the experiment, it may be expected that
its variation has a weaker effect than that of the external field, provided the
sweeping velocity α is large enough.

In other words, the measurement of the variation δM of the magnetization
across a resonance gives access to the properties of an isolated spin subject to
its crystal field. In the absence of crystal defects, as will be seen in Section 8.3,
it gives access to the tunnel splitting h̄ωT which corresponds to each resonance.

The method described above has been applied by Wernsdorfer et al. (2000a)
with α between 0.001 and 1 T/s. It has also been used by Del Barco et al. (2002).

8.2 Fast sweeping and adiabatic limit

From textbooks we learn that, if a quantum mechanical system with discrete
energy levels subject to a time-dependent Hamiltonian is at a particular time in
its ground state, it remains in its (time-dependent!) ground state provided the
Hamiltonian varies very slowly. The precise condition is that the energy ∆E(t)
of the first excited level (counted from the ground state) satisfies the relation

h̄
d

dt

1

∆E(t)
≪ 1. (8.4)

When this condition is satisfied, the evolution is said to be adiabatic. This adia-
baticity introduced by Ehrenfest is different from, though related to, adiabaticity
in thermodynamics. The latter meaning was relevant in chapter 3, where the sus-
ceptibility and the specific heat were studied. This concept can be extended to
excited states, but it is of greatest experimental interest for the ground state.

In the case of the experiments described in this chapter, condition (8.4) is
satisfied, except near a level crossing, especially when the field passes through the
value H = 0. Then the ground state crosses over from a left-localized state | g(t)〉
to a right-localized state | d(t)〉 (Fig. 8.2). Since the evolution is not adiabatic,
the actual wavefunction, which satisfies (8.2), is a linear combination

| Φ(t)〉 = x(t) | g(t)〉 + y(t) | d(t)〉 . (8.5)

If y(0) = 0 at the initial time t = 0, the reversal probability at time tf is

δP = |y(tf )|2 (8.6)
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Fig. 8.2. Effect of a time-dependent magnetic field when two levels cross. The
system goes from state | m∗〉 to state | m′∗〉 (on the figure the stars are omit-
ted) with a probability Pmm′ which is equal to 1 in the adiabatic limit (slow
velocity).

and does not appreciably depend on tf if the field at tf is far from any reson-
ance. The state vectors | g(t)〉 and | d(t)〉 will be assumed to be orthogonal and
normalized.

It should be stressed that the evolution of the spin in the experiments of
interest (Wernsdorfer et al. 2000b) is always adiabatic with respect to the states
which do not cross. Apart from | g(t)〉 and | d(t)〉, other states play no part and
can be ignored. For instance, if the system is at equilibrium at the beginning of
the experiment, and if the zero-field resonance is swept, then the system remains
in the space of the lowest states | −s∗〉 and | s∗〉 of both wells. In that space, the
evolution can be adiabatic or non-adiabatic, depending on the sweeping velocity
α defined by formula (8.1). There is an evolution from the adiabatic limit (α → 0)
to the opposite limit which will be called ‘rapid sweeping’ (α → ∞).

8.3 Calculation of the reversal probability

8.3.1 Equations of motion

Inserting the wavefunctions (8.5) into the Schrödinger equation (8.2), one obtains

x(t) | ġ(t)〉 + ẋ(t) | g(t)〉 + y(t) | ḋ(t)〉 + ẏ(t) | d(t)〉

=
1

ih̄
x(t)H | g(t)〉 +

1

ih̄
y(t)H | d(t)〉 . (8.7)

Multiplying by 〈g(t) |, then by 〈d(t) |, one obtains the system of two equations

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

x(t) 〈g(t) | ġ(t) 〉 + ẋ(t) + y(t)〈g(t) | ḋ(t)〉
= 1

ih̄x(t) 〈g(t) | H(t) | g(t)〉 + 1
ih̄y(t) 〈g(t) | H(t) | d(t)〉

x(t) 〈d(t) | ġ(t) 〉 + y(t)〈d(t) | ḋ(t)〈+ẏ(t)
= 1

ih̄x(t) 〈d(t) | H(t) | g(t)〉 + 1
ih̄y(t) 〈d(t) | H(t) | d(t)〉 .

(8.8)
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Far from a resonance, | g(t)〉 and | d(t)〉 separately satisfy the Schrödinger
equation, and ẋ(t) = ẏ(t) = 0.

On the contrary, near a level crossing between | m∗〉 and | m′∗〉, the com-
ponents x(t) and y(t) vary abruptly and ẋ(t) and ẏ(t) are so large that | ġ(t)〉
and

∣

∣

∣ ḋ(t)
〉

can be neglected. The localized state vectors | g(t)〉 = | m∗〉 and

| d(t)〉 = | m′∗〉 are almost independent of time t.
The system (8.8) now reads

⎧

⎪

⎨

⎪

⎩

ẋ(t) = 1
ih̄x(t) 〈m∗ | H(t) | m∗〉 − iω̃

(mm′)
T y(t)

ẏ(t) = −iω̃
(mm′)
T x(t) + 1

ih̄y(t) 〈m′∗ | H(t) | m′∗〉
(8.9)

where ω̃
(mm′)
T is given by

h̄ω̃
(mm′)
T = 〈m∗ | H | m′∗〉 = 〈m′∗ | H | m∗〉∗

.

This quantity is practically independent of time although H = H(t) contains a
time-dependent field parallel to z. This can be seen for instance by perturbation

theory. The tunnel frequency ω
(mm′)
T defined by (6.24) is the modulus of ω̃

(mm′)
T ,

which will be assumed real to make the equations slightly simpler. Extension to
complex values would create no difficulty.

The system (8.9) can be simplified by introducing new variables X(t) and
Y (t) defined by

⎧

⎨

⎩

x(t) = exp[−iu(t)]X(t)

y(t) = exp[−iw(t)]Y (t)
(8.10)

where u(t) and w(t) are defined by
⎧

⎪

⎨

⎪

⎩

u(t) = 1
h̄

∫ t

t0
dt′ 〈m∗ | H(t′) | m∗〉

w(t) = 1
h̄

∫ t

t0
dt′ 〈m′∗ | H(t′) | m′∗〉

(8.11)

where the time t0 may be arbitrarily chosen. The system (8.9) now takes the
simple form

{

Ẋ(t) = −iω̃
(mm′)
T Y (t)eiU(t) (a)

Ẏ (t) = −iω̃
(mm′)
T X(t)e−iU(t) (b)

(8.12)

where

U(t) = u(t) − w(t) =
1

h̄

∫ t

t0

dt′ [〈m∗ | H(t′) | m∗〉 − 〈m′∗ | H(t′) | m′∗〉] . (8.13)

This expression simplifies because (8.3) can be written as

H(t) = H′
0 + gµBδHz(t)Sz
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where H′
0 is independent of time and δHz(t) = Hz(t) − H(mm′) is the distance

from the field value at which levels cross. Expression (8.13) reads

U(t) =
gµB

h̄
(m̃ − m̃′)

∫ t

t0

dt′δHz(t
′) (8.14)

where m̃ = 〈m∗ |Sz | m∗〉 will generally be approximated by m.
The time t0 can be chosen such that δHz(t0) = 0. Then (8.1) implies δHz(t) =

α(t − t0), and integration of (8.14) yields

U(t) =
vmm′

2h̄
(t − t0)

2 (8.15)

where

vmm′ = gµB(m′ − m)α = gµB(m − m′)dHz/dt. (8.16)

8.3.2 The solution of Landau, Zener, and Stückelberg

The solution of (8.12) when U(t) is given by (8.15) has been given independently
by Landau (1932), Zener (1932), and Stückelberg (1932). The problem is to solve
the time-dependent Schrödinger equation in a two-dimensional Hilbert space,
and this looks simple. Actually it is a pretty hard algebraic exercise (Grifoni
and Hänggi 1998). The clearest derivation is that of Kayanuma (1984), which
is reproduced in Appendix H. Only the result will be given here. The spin-flip
probability when crossing a resonance is

δP = 1 − exp

(

− π∆2
mm′

2h̄vmm′

)

(8.17)

where the tunnel splitting ∆mm′ = 2h̄|ω(mm′)
T | takes very different values at the

various resonances, as seen from Section 6.4. For a given value of α = dHz/dt,
vmm′ has a relatively weaker dependence on m and m′, given by (8.16).

Formula (8.17) interpolates between both extreme limits which are the
adiabatic case (δP = 1 if v is small) and the fast sweeping case (δP = 0 if
v =∞).

The experiments of Wernsdorfer et al. (2000a) on Fe8 are in agreement with
(8.17) for a sweeping rate dH/dt > 0.001 T/s (Fig. 8.3) and yield 2h̄ωT/kB ≃
10−7K for the ground doublet in zero field (m = −m′ = 10).

For a slower sweeping rate, experimental results are not in agreement with
(8.17). At least two explanations are possible. The first one is that a too slow
sweeping velocity enables the spin to interact with other (nuclear and electronic)
spins. Thus, the Landau–Zener–Stückelberg theory, valid for a single spin, can-
not be applied. Another possible explanation is that the crystal contains defects.
In that case, there is a distribution of tunnel frequencies (Chudnovsky and
Garanin 2001, Mertes et al. 2001), and the experimental result is an average
over the tunnel frequencies. For a high velocity v, (8.17) reduces (omitting the
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Fig. 8.3. The quantity ∆ = ∆s,−s in Fe8, as deduced from (8.17) and the exper-
imental data (Wernsdorfer et al. 2000a). Identification with the tunnel
splitting is only possible if the result is independent of the sweeping velo-
city v. It is only so at sufficiently high velocity. The arrows show particular
values of the spin-flip probability δP (8.17), here denoted P . Copyright (2000)
American Institut of Physics.

indices m, m′) to

δP =
2πh̄

v
ω2

T. (8.18)

The average over the tunnel frequencies is

δP =
2πh̄

v

〈

ω2
T

〉

. (8.19)

With or without averaging, δP is proportional to 1/v. The experiment-
alist who makes that observation may be tempted to claim an agreement with
the Landau-Zener–Stückelberg theory. However, there is no agreement at lower
velocity, because averaging destroys the form of (8.17).

8.3.3 Fast sweeping

In this section, the derivation of formula (8.18), valid in the fast sweeping limit,
will be given. It is in fact easy while the derivation of the exact formula (8.17)
is more difficult and therefore given only in Appendix H.

It results from (8.15) that the exponential e−iU(t) in (8.12) oscillates rapidly
with time if the sweeping velocity v is fast. In that case the integral

Y (tf ) =

∫ tf

0

Ẏ (t)dt (8.20)

is small, and the flipping probability δP = |Y (tf )|2 is weak. The calculation easily
follows from (8.12b) when X(t) is replaced by X(0) = 1 and U(t) by its expression
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(8.15). One obtains

Y (tf ) = −iωT

∫ tf

0

dt exp

[−iv

2h̄
(t − t0)

2

]

. (8.21)

The exponential has a real part and an imaginary part which both fluctuate
around 0. For t < 0 and t > tf , the fluctuations are so fast that the exponential
can be replaced by its mean value 0, in agreement with the statements made at
the beginning of this chapter. Thus, the integration bounds may be replaced by
−∞ and ∞, and a definite integral is obtained, which is easily found in books
or in software:

Y (tf ) = −iωT

∫ ∞

−∞
dt exp

[−iv

2h̄
(t − t0)

2

]

= −(1 − i)ωT

√

πh̄

v
. (8.22)

Therefore

δP = |Y (tf )|2 =
2π

v
h̄ω2

T

which coincides with (8.18).
As stressed at the beginning of this chapter, the above calculation is only

correct when sweeping the zero-field resonance. For the other resonances, the
spin tunnels from the lowest state of the left-hand well to an excited state of the
other well, whose lifetime is rather short. The spin de-excites rapidly from that
state to lower energy states, so that it is not possible to consider only two states
| m∗〉 and | m′∗〉. It turns out that in that case too, formula (8.18) still applies.
This will be shown in Section 10.6.

8.3.4 Sweeping back and forth through the resonances

As seen in Section 8.3.2, the basic formula (8.17) is based on the hypothesis of
an isolated spin, which is only justified for a fast sweeping velocity α = dH/dt.
But if α is large, the reversal probability δP is weak. However, it is easy to
enhance the sensitivity of the experiment by sweeping back and forth several
times through the same resonance instead of increasing the field at a uniform
velocity. The observed resonances are between | m∗〉 and | m′∗〉, but in practice
m is equal to −s in a real experiment, so that each resonance is characterized
by N = |m + m′|= |m′ − s|. At any sweep a fraction δP of the molecules which
are still in the metastable well escape from that well, so that the fraction RN

remaining in the metastable well is multiplied by (1−δP ). After n cycles around
the (m − m′) resonance (Fig. 8.4) the fraction of magnetization that has not yet
relaxed is given by

R
(n)
N =R

(0)
N (1 − δP )2n = exp

( −nπ∆2
mm′

h̄gαµB|m − m′|

)

. (8.23)
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Fig. 8.4. An example of experimental application of a time-dependent longit-
udinal field to extract the tunnel splitting from the LZS model. The main
picture shows the variation of the magnetization when the magnetic field is
swept back and forth around a tunnelling resonance. In the upper inset is
an enlargement of the main picture. The lower inset helps to define the frac-
tion of the magnetization that has tunnelled, TN , and that associated to the
molecules that are still in the metastable well, RN . Modified from Mertes
et al. 2003. Copyright (2003) American Institut of Physics.

The factor 2 in the exponent 2n accounts for the fact that at any cycle

the resonance condition is met twice. It is interesting to note that R
(n)
N should

decay exponentially with the number n of cycles. Deviations from this behavi-
our have been encountered and attributed to a distribution of tunnel splitting, in
agreement with the hypothesis made in Section 8.3.2. This point will be discussed
in more detail in Chapter 12.



9

INTERACTION OF A SPIN WITH THE EXTERNAL

WORLD AT LOW TEMPERATURE

9.1 Coherence, incoherence, and relaxation

9.1.1 Low temperatures

The present chapter is devoted to the study of a real molecular spin S at low
temperature, when no phonons are available but tunnelling is possible. A real
spin interacts with its environment, especially the other electronic spins, and also
the nuclear spins. The properties of this spin are very different from those of the
isolated spin considered in Chapter 6. Of course the latter has no real existence.
However, its study was an unavoidable preliminary to that of real spins.

The case of a constant external field will first be considered. The tunnel motion
of an ideal, isolated spin is then characterized by a periodic oscillation between
the left-hand and the right-hand well, as described by formula (6.47). The phase
tδE/h̄, or at resonance 2ωTt, is well defined. This tunnelling with a precise
phase is called coherent. It is quite different from relaxation, which is a stochastic
evolution toward equilibrium.

In contrast, when the spin interacts with its environment (as it always does!)
the wavefunction loses the memory of its phase. This phenomenon is called loss of
coherence or decoherence (Zurek 2003). This implies that the wavefunction is no
longer an appropriate description of the spin. Even at low temperature, a spin in
contact with the external world can usually not be described by a wavefunction,
but only by its probability to be in state | −s∗〉 or in state | s∗〉. This probability
goes to its equilibrium value, and this is relaxation.

At the low temperatures which are of interest in the present chapter, phonon
absorption is negligible since no phonons are available. However, phonon emission
is still possible and is responsible for the finite lifetime of the excited states of
each well. A typical situation is shown in Fig. 6.2, when the field is such that
tunnelling can take place between the lowest state of one well, here | −s∗〉, and an
excited state of the other well, which is | (s − 1)∗〉 in Fig. 6.2. The ideal, isolated
spin of Section 6.5 would oscillate between | −s∗〉 and | (s − 1)∗〉. For the real
spin, these oscillations are damped because the excited state | (s − 1)∗〉 deexcites
to the ground state | s∗〉 with emission of phonons. This implies decoherence and
relaxation. The inverse lifetime γ = 1/τ1 of the excited state is given at low
temperature by (5.41) with m = s − 1, m′ = s and β = ∞.

The case of weak fields and low temperatures is more difficult. In that case,
tunnelling occurs between | −s∗〉 and | s∗〉, and no phonons can be emitted
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because | s∗〉 is the ground state and no energy is available. Of course, no phonons
can be absorbed either because the temperature is low and no phonons are
available. Thus, phonons have no effect on the molecular spin. Decoherence and
relaxation are mainly the result of the interaction of each spin with other spins,
molecular or nuclear.

9.1.2 The window mechanism

This interaction may be represented by a local, time-dependent field Hloc(t)
acting on each spin. If there is an external field H, the total local field is H′

loc(t) =
H + Hloc(t) while Hloc(t) can be called the internal local field. As in Chapter 6,
tunnelling is only possible when two levels cross, but the local field has to be
taken into account in the level-crossing condition.

More precisely, it was seen in Chapter 6 that tunnelling is possible for an
isolated spin when the external field Hz in the z direction satisfies H(mm′) −
δH

(mm′)
0 < Hz < H(mm′) + δH

(mm′)
0 , where gµBδH

(mm′)
0 s ≃ h̄ω

(mm′)
T according

to (6.28), while H(mm′) is the field for which the levels | m∗〉 and | m′∗〉 cross.
This field is given by (6.4) if the anisotropy Hamiltonian has the form (2.10).

Thus, tunnelling is possible if the external field lies in a window of width h̄ω
(mm′)
T

centred about one of the level-crossing fields H(mm′).
For a real spin, the possibility of tunnelling requires the same condition, except

that the external field should be replaced by the total local field Hz +Hz
loc. Thus

tunnelling is possible if

H(mm′) − δH
(mm′)
0 < Hz + Hz

loc < H(mm′) + δH
(mm′)
0 . (9.1)

This ‘window condition’ gives a very special character to the relaxation
mechanism. It was called ‘degeneracy blocking’ by Prokofev and Stamp (1996).

A reasonable assumption is that the local field Hz
loc is a random variable,

whose distribution is characterized by its width δH. Then, (9.1) can be satisfied,
and tunnelling is possible, if

H
(mm′)
0 − 〈Hz

loc〉 − δH < Hz < H
(mm′)
0 − 〈Hz

loc〉 + δH. (9.2)

Thus, there is a resonance width of the order of δH, which may be much larger

than the natural width 2h̄ω
(mm′)
T .

In the relaxation mechanism, the time dependence of the local field Hz
loc(t) is

essential. If Hz
loc does not depend on time, the few spins which satisfy (9.2) do

tunnel, and most of the spins do not move (Prokofev and Stamp 1996). Thus,
a complete theory of relaxation has to worry about why and how the local field
depends on t. This question will be addressed in Section 9.2.6, but it can already
be said that it is not yet really solved.

Another important feature to be taken into account is the decoherence of
the tunnel process. Coherent tunnelling, as studied in Section 6.5, would indeed
imply a periodic motion rather than relaxation toward the equilibrium state
(Prokofev and Stamp 1996). Decoherence can arise from the time dependence of
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Hz
loc(t), and this will generally be assumed to happen, thus following Fernández

(2003). However, faster decoherence processes can also take place as will be seen
in Section 9.4.2.

Consequences of the above remarks are the following:

• Relaxation cannot arise from ‘frozen’ impurities or defects, e.g. motionless
dislocations.

• If relaxation arises from interactions with nuclear spins (the ‘hyperfine’ inter-
actions introduced in Chapter 2) the relaxation time τ of the molecular spins
depends on the relaxation time τν of the nuclear spins, and goes to infinity
when τν goes to infinity.

• If relaxation arises from interactions with other molecular spins, it is a
complicated many-body problem. This mechanism will be seen to lead to
non-exponential relaxation.

As a matter of fact, magnetic relaxation arises from both interactions with
nuclear spins, and interactions with other molecular spins. However, to simplify
the analysis, the two mechanisms will be studied separately.

9.2 Hyperfine interactions

9.2.1 The hyperfine field and its order of magnitude

As seen in Section 2.1, ‘hyperfine’ interactions between nuclear spins and elec-
tronic spins include ‘contact’ and dipole interactions. Contact interactions are
mainly important between a nucleus and electrons of the same ion. They are
essential for Mn12ac because all Mn nuclei are 55Mn, with nuclear spin 5/2 and
magnetic moment

µMn = 3.47µn = 1.89 × 10−3µB (9.3)

where the nuclear magneton µn is about 1/1837 times µB.
The dipole interaction energy between two magnetic moments m and m′ is

given by formula (2.50):

W =
µ0

4π

∑

αγ

1

r3

[

δαγ − 3

r2
rαrγ

]

mαm′
γ

where µ0/(4π) = 10−7 Henry/m.
The magnetically active nuclei which do not carry the unpaired electrons, like

the hydrogen atoms in Mn12ac, do give a contribution to the hyperfine field, also
called super- or transfer-hyperfine, with contact (through bonds) and dipolar
(through space) terms. The first one is proportional to the contribution of the
s orbitals of atoms with magnetic nuclei to the molecular orbitals carrying the
unpaired electron.

In Mn12ac, the most significant contribution to the hyperfine field is provided
by the manganese and the hydrogen nuclei. Indeed, natural carbon contains
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98.9% of 12C isotope which has spin 0, and natural oxygen contains 99.76 % of
16O isotope which also has spin 0. In contrast, natural manganese contains 100%
of 55Mn isotope which has spin 5/2. The actual formula

Mn12O12(CH3COO)16(H2O)4].2CH3COOH.4H2O

indicates that there are 72 hydrogen nuclei. Protons have a spin 1/2 and a
magnetic moment

µH = 2.79µn = 1.5 × 10−3µB (9.4)

while deuterons have a spin 1 and a magnetic moment

µD = 0.86µn = 0.47 × 10−3µB. (9.5)

The order of magnitude of the magnetostatic energy between a Mn ion of
magnetic moment 4µB and a proton at distance 0.3 nm (a typical value) is
thus

|W | ≈ 10−7 1

r3
mm′ = −10−7 × 0.04 × 1030 × 6 × 10−3µ2

B ≈ 0.24 × 10−26 J.

(9.6)

By an oversimplification of the discussion presented in Section 3.3.2, the corres-
ponding field Hhf felt by the manganese moment can be obtained by identifying
(9.6) with gµBHhf , namely

Hhf ≈ 10−3 tesla (9.7)

where the factor 0.24 has been dropped, because several protons contribute sig-
nificantly to the hyperfine field. For that reason, the actual typical value of the
hyperfine field of dipolar origin is a few mT. Contact interactions provide an
approximately 10 times higher value, which can be evaluated with satisfactory
accuracy, from nuclear magnetic resonance data in different materials where the
Mn ions have a similar environment and electronic state.

Thus the typical hyperfine field (energy divided by gµBs) can be evaluated in
Mn12ac, and turns out to be between 20 and 40 mT. This is of the same order of
magnitude as the dipole interactions between molecular (electronic) spins. This
is an exciting peculiarity of molecular magnetism.

In Fe8 the most abundant iron isotope 56Fe has spin I = 0, while the only
magnetic isotope is 57Fe, with spin I = 1/2, and an abundance of 2.12%. Only
one molecule in about six contains a 57Fe nucleus. The main contribution to the
hyperfine field comes from other nuclei, mainly H and N while 78Br and 81Br
can be neglected. The hyperfine field is therefore expected to be much smaller
than in Mn12ac. Actually, it is about 10 times as small.

The energy (9.6) corresponds to W/kB ≈ 1 mK. Even though it must be
multiplied by a factor of about 10 in the case of a contact interaction, nuclear
spins are not oriented by the neighbouring molecular spins at the temperatures
reached in usual experiments.
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9.2.2 Experimental evidence of hyperfine interactions

The role of the nuclear magnetic moment in promoting tunnelling has been exper-
imentally confirmed by isotopically modifying the Fe8 clusters (Wernsdorfer et al.
2000c). In particular both 57Fe and D enriched samples of Fe8 have been synthe-
sized. In the former the hyperfine field is larger than in the natural abundance
species while a weaker field is operative in the latter. As seen in the previous
subsection, 2H has nuclear spin I = 1 which is larger than that of the proton
(I = 1/2) but has a significantly smaller gyromagnetic factor, thus reducing the
nuclear magnetic moment. The two isotopically substituted samples showed the
same oscillations of the tunnelling rate with the transverse field, as displayed
in Fig. 6.7 for natural Fe8. The position of the quenching of the tunnelling rate
remains unchanged in the three samples confirming that the magnetic anisotropy
is not influenced by the isotopic enrichment. On the contrary, the relaxation
time of the magnetization is significantly changed. In Fig. 9.1 is reported the
temperature dependence of the time needed to relax 1% of the saturation mag-
netization. In the tunnelling regime of low temperature the 57Fe enriched sample
shows the fastest relaxation while the slowest relaxation is observed for the deu-
terium enriched crystal. This marked isotopic effect does not depend on the
mass, which is increased in both isotopically enriched samples, but rather on the
nuclear magnetism.
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Fig. 9.1. Time needed to relax 1% of the saturation magnetization for the three
isotopic Fe8 crystals versus the inverse of temperature. The inset shows the
time dependence of the magnetization of the three crystals measured after
cooling in zero field and then applying a longitudinal field of 42 mT in the pure
tunnelling regime (T = 40 mK). From Wernsdorfer et al. (2000c). Copyright
(2000) by American Physical Society.
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It is interesting to verify experimentally if the increased relaxation corres-
ponds also to an increase of the linewidth of the resonance and particularly that
is the effect of the hyperfine field. This has been possible thanks to an exper-
imental procedure developed by Wernsdorfer and coworkers that exploits the
possibility to have access not to the entire sample experiencing a distribution of
local field but to address a fraction of it by digging, or burning, a hole in the
distribution (Wernsdorfer et al. 1999). In view of the relevance of the technique
for the following discussion, it will be briefly presented here.

The hole digging method consists of three steps as schematized in Fig. 9.2

(1) Preparing the initial state. A well-defined initial magnetization state of
the crystal of molecular clusters can be achieved by cooling the sample from
high to low temperatures in a magnetic field H0 parallel to the easy direction
z. For definiteness, this field will be assumed strong, so that the saturated
magnetization state is reached.
(2) Modifying the initial state–hole digging. After preparing the initial state,

a field Hdig is applied during a time tdig, called the ‘digging field’ and ‘digging
time’ respectively. For definiteness, this field will be assumed to be close to 0,
so that a fraction of the molecular spins feel a vanishing local field and relax to

T

t

T0 > 5 K

T – 0.04 K

H

t

H0
H1

H2

H3

M

t

Min

Hdig

tdig

ta

ta

t = 0 t = 0

Preparing Digging Probing

Fig. 9.2. Schematic representation of the temperature (top), applied field
(middle), and magnetization (bottom) variation during the three steps of the
hole-digging procedure. The temperature of the sample is rapidly quenched
from high temperature to the investigated temperature (top). The magnetic
field is kept at H0 during the cooling process then a field Hdig is applied for
a time period tdig and after the measuring field H1 is set. The procedure is
repeated for different measuring fields H2, H3, etc.
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their equilibrium magnetization by tunnelling. Thus a hole opens in the curve
representing the number of unrelaxed spins as a function of the local field. The
field sweeping rate from H0 to Hdig should be fast enough to minimize the
change of the initial state.
(3) Probing the final state. To see the hole, a tunable field Hz is applied to

measure the short-time relaxation as a function of Hz. The velocity of that
relaxation gives information about the number of spins which have not yet
relaxed. Technically, as will be seen later in this chapter, the relaxed fraction

is proportional to t1/2 and the proportionality coefficient Γ
1/2
sqrt(Hz, Hdig, tdig) is

the quantity to measure. It is displayed as a function of Hz in Fig. 9.3 for tdig =
0, while Fig. 9.4 shows the hole which opens for a non-vanishing value of tdig.

In practice, the initial state is not necessarily the saturated one. If not, the
quench should be fast (of the order of 1 s) in order to avoid partial relaxation,
which in some cases might qualitatively perturb the internal field distribution.
In Fig. 9.3 the field dependence of Γsqrt(Hz) for three different values of the ini-
tial magnetization are reported. The narrowest distribution is observed for the
almost saturated sample which had initial magnetization Min = −0.998Ms. A
proof of the power of the method in providing information on the bias field distri-
bution is given by the remarkable structure seen for Min = −0.870Ms. The peak
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Fig. 9.3. Dependence of the short-time tunnelling rate as a function of the lon-
gitudinal field for three different initial states characterized by the initial
magnetization Min = −0.998Ms (circles), Min = −0.870Ms (squares), and
equal to 0, Min = 0 (triangles). The structure observed at intermediate
magnetization is due to clusters which experience the dipolar environment
generated by the reversal of one neighbouring cluster along the a (−0.04
T), b (0.035T), and c (0.025T) crystallographic directions. From Wernsdorfer
et al. (1999). Copyright (1999) by the American Physical Society.
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Fig. 9.4. The hole observed by Wernsdorfer et al. in the function Γsqrt(H) at very
low temperature for Fe8. Since relaxation is only possible when the external
field compensates the local field it can be assumed that Γ(H) is proportional
to the probability that the local field has the value −H. From Wernsdorfer
et al. (1999).

at −0.04 T as well as the shoulder at +0.02 T and +0.04 T originate from the
clusters which have one nearest neighbour cluster with reversed magnetization.
Taking into account the variation of the dipolar field due to the flipping of a
nearest-neighbour spin it is possible to attribute the peak at negative field to the
reversal of the neighbouring cluster along the crystallographic a axis, this one
being almost coincident with the easy axis of magnetization z. The two shoulders
at positive field are due to the reversal of the spin of a nearest-neighbour along
b or c, the one at smaller field corresponding to the reversal of the spin of the
nearest-neighbour cluster at larger distance and therefore along c. These results
are in good agreement with simulations (Ohm et al. 1998; Cuccoli et al. 1999).
The experimental results suggest that when a hole is dug in a saturated sample,
it is dominated by the change of intermolecular dipolar fields during the digging.
However, in special conditions, it is possible to reduce the change of intermolecu-
lar dipolar fields in order to be sensitive to local field fluctuations coming from
nuclear spins. This can be done for instance by digging a hole into the tail of the
dipolar distribution of a demagnetized sample as shown in Fig. 9.5.

In these conditions almost all molecules are out of resonance and only a very
small fraction (<10−4) might be brought into resonance by the hyperfine field
fluctuations. Therefore, for short digging times, the variation of the intermolecu-
lar field is negligible and the hole width directly reflects the hyperfine field
fluctuations (Wernsdorfer et al. 2000c). The described procedure allows us to
get rid of the dipolar contribution to the linewidth and thus to show the con-
tribution of the hyperfine field to the broadening of the intrinsic linewidth. The
hole-digging method previously described has been used to compare the intrinsic
linewidth of the tunnelling resonance for the three isotopic samples. The con-
ditions that minimize the dipolar broadening have been selected so that the
observed linewidth is essentially dominated by the hyperfine contribution. The
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Fig. 9.6. Linewidth of the hole burnt in the distribution of tunnel rate for the
three isotopic crystals of Fe8 as a function of the fraction of magnetization
reversed during the hole-digging procedure. The insert shows the experi-
mental hole line-shape. The experimental conditions of Hz = 42 mT and
Hx = 200 mT have been selected as those for which the narrowest hole is
obtained. From Wernsdorfer et al. (2000c). Copyright (2000) by the American
Physical Society.

linewidth of the hole depends on the amount ∆Mdig of magnetization that has
been reversed. By extrapolating the linewidth to ∆Mdig = 0 it is possible to get
the intrinsic linewidth. These results are 0.6 ± 0.1 mT, 0.8 ± 0.1 mT, and 1.2
± 0.1 mT for the deuterated, natural, and 57Fe enriched samples, as reported
in Fig. 9.6.
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The hyperfine interaction between a nuclear spin Ii and the spin σr of a single
Fe ion can be expressed as in (2.19). Summing over the eight Fe ions yields

Hhf =
∑

i

8
∑

r=1

σr · Air · Ii. (9.8)

One would like to have a formula involving the total spin S =
∑

σr rather than
the eight spins σr. This is possible because, at the low temperatures of interest,
only the lowest exchange multiplet s = 10 is populated. Inside this multiplet, σr

may be replaced by crS, where cr is a numerical constant. This is the projection
theorem, mentioned in Chapter 2 and derived in textbooks (Cohen-Tannoudji
et al. 1986). An equivalent statement is

PσrP = crPSP (9.9)

where P is the projection operator onto the lowest exchange multiplet s = 10.
This property is a special case of the more general Wigner–Eckart theorem
mentioned in Chapter 2. Insertion of (9.9) into (9.8) yields

Hhf =
∑

i

S · Ai · Ii (9.10)

with

Ai =

8
∑

r=1

crAir. (9.11)

The projection coefficients cj can be roughly evaluated as follows. The ground
state of Fe8 is approximately given (with the notation of Fig. 3.36) by σz

1 =
σz

2 = −σz
3 = −σz

4 = σz
5 = σz

6 = σz
7 = σz

8 = 5/2. This is often called the ‘Néel
ground state’. In that state, Sz = 10 and therefore cr = −1/4 for r = 3 or
4, and cr = 1/4 for other values. A quantum treatment, using a better ground
state, can be performed by using recurrently the projection technique for coupled
angular momenta as explained in Chapter 2. One finds c3 = c4 = −5/22 and
c1 = c2 = c5 = · · · = c8 = 8/33.

9.2.3 Linewidth of hyperfine origin

An important effect of nuclear spins is to give to the resonance a width which
is appreciably larger than the natural width, which is of the order of h̄ωT as
seen from (6.28). Indeed, tunnel occurs between hyperfine states | m∗, ν〉 and
| m′∗, ν′〉, where | m∗〉 and | m′∗〉 are local states of the molecular spin, as before,
while | ν〉 and | ν′〉 are states of the nuclear spins. The states | m∗〉 and | m′∗〉
of an isolated molecular spin have a well-defined energy. In contrast, since there
are many nuclear spins which interact with that molecular spin, there are many
hyperfine states (Fig. 9.7) which correspond to | m∗〉 and | m′∗〉. If the distance
between hyperfine levels is smaller than h̄ωT, the energy levels can be regarded
as forming a continuous band.



HYPERFINE INTERACTIONS 235

E
ne

rg
y

|m�*>

|m*>

Hhf

|m*, n�>

|m*, n>

Fig. 9.7. Hyperfine splitting of electronic levels. In the absence of hyperfine inter-
actions, the localized states | m∗〉 and | m′∗〉 have a well-defined energy (if
tunnelling is neglected). They give rise to hyperfine states which practically
form two bands. These bands are much broader than the natural width h̄ωT.
Tunnelling can occur if the bands have at least a partial overlap.

The exploitation of (9.11) requires knowledge of the single-spin hyperfine
coupling constant Air. It contains both through-space (dipolar) and through-
bond (contact) contributions. While the former are easily calculated using the
point-dipole approximation, the latter can only be roughly estimated. The dens-
ity functional approach can been used to evaluate the contact term of the
hyperfine coupling on the proton of the bridging OH groups on the nitrogen and
proton of the NH group of the ligands by using a model species (Wernsdorfer et al.
2000c; Sessoli et al. 2001). The results, even though semiquantitative, reveal that
the contact term has the same order of magnitude as the dipolar one, as confirmed
by 1H NMR experiments performed at low temperature (Furukawa et al. 2001b).

A more quantitative analysis can be performed in the case of a completely
substituted 57Fe8 cluster, because in this case the interaction Arr between the
nuclear and electronic spin of the same iron atom is dominated by the the con-
tact term. It can be measured in other materials and is of the order of 1 mT
(McGarvey 1966). The NMR data of Fig. 3.37 confirm this value.

Using (9.10), the hyperfine field resulting from 57Fe is found to be a (roughly
Gaussian) random variable whose linewidth σ57 is about 0.9 mT. This contribu-
tion is to be added to the contribution σ0 of the other magnetic nuclei, already
present in natural Fe8. The widths of the two independent random variables add
to give a total width

σtot =
√

σ2
0 + σ2

57. (9.12)

Formula (9.12) yields σtot ≃ 1.1 ± 0.1 mT, in good agreement with the
experimental value of 1.2 ± 0.1 mT.

As stated above, the hyperfine states can be approximated by a continuous
band. Let this statement be quantitatively justified. The width of this band,
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expressed in terms of the hyperfine field Hhf seen by a molecular spin, is of the
order of one millitesla in Fe8 (see Fig. 9.6) and about 10 times more in Mn12ac.
The corresponding energy is whf = gµBsHhf , so that the distribution of whf/kB

in Fe8 (for instance) has a width of 0.01 K. Since the tunnel splitting, as seen
in Section 8.3.2, is 10−7 K, the ratio is 105 ≈ 217, so that an interaction with
17 spins 1/2 is sufficient to justify the continuum approximation. The number of
nuclear spins is higher than 17, but a proper discussion should take into account
their distance to the molecular spin. This calculation is left as an exercise to
the reader. Even if the distance between hyperfine levels is not so small, the
fluctuations of the magnetic field are probably larger than this distance, so that
it is legitimate to treat the hyperfine field as a continuous variable.

Since the hyperfine energy distribution in Fe8 is 105 times broader than h̄ωT,
this suggests that the resonance width arising from hyperfine interactions is
105 times larger than the natural width 2h̄ωT. This is correct, but it should
be mentioned that the conditions for tunnelling between two hyperfine states
are more complicated than might be expected from the above argument. This
argument uses states of the molecular spin localized in the Sz > 0 region or in
the Sz < 0 region, and takes into account their anisotropy energy, their Zeeman
energy and their hyperfine energy. Tunnelling between two such localized states,
and thus delocalization, can only be possible if their energy is the same with
a precision of h̄ωT. However, this is a necessary, but not sufficient condition!
Tunnelling is only possible if the matrix element of the Hamiltonian between
the two hyperfine states is large enough. This point is discussed in Appendix I
and the above assertion is justified. The resonance width arising from hyperfine
interactions is 105 times larger than h̄ωT in Fe8. In Mn12ac the ratio is even
larger.

9.2.4 Relaxation of hyperfine origin

While the evaluation of the resonance width due to nuclear spins is simple, the
relaxation is a more difficult problem. What is the type of relaxation (exponential
or not)? What is the relaxation time τ? The hyperfine field is generally replaced
by a randomly fluctuating field of root mean square amplitude δH and relaxation
time τH (Tupitsyn and Barbara 2002; Fernández and Alonso 2000,2002).

In this section, for definiteness, the external field will be assumed to be 0 and
the temperature will be assumed so low that the component Sz of any spin is
close to either −s or s. Initially, it may be assumed to be s.

The probabilities P+(t) = |X(t)|2 and P−(t) = |Y (t)|2 that a spin is up or
down can in principle be obtained from equations (8.12) which determine X(t)
and Y (t). The initial condition will be assumed to be P+(0) = 1 and P−(0) = 0.
For instance, (8.12b) reads Ẏ (t) = −iωTX(t)e−iU(t), where U(t) is given by
(8.13) and (8.3) or, in zero external field,

U(t) =
2gµBs

h̄

∫ t

t0

dt1Hz(t1). (9.13)
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Here, Hz(t) is the hyperfine field. It will be assumed to undergo random
fluctuations characterized by their mean square δH2 and their relaxation time
τH . The average value is 〈Hz〉 = 0.

It is convenient to investigate first short times during which X(t) is almost
equal to X(0) = 1. Thus

Ẏ (t) = −iωTe−iU(t). (9.14)

Since U(t) is real, Ẏ (t) fluctuates between its initial value −iωT and iωT. It is
important to calculate the time τ1 it requires to change sign. Roughly speaking,
this time is the time required for U(t) to reach the value π. It follows from (9.13)
that U(t) is the sum of t/τH random, uncorrelated quantities δUn which have
average value 0 and variance δU2 ≈ (2gµBs/h̄)2δH2τ2

H . The time τ1 is thus
approximated by (τ1/τH)δU2 = π2 or

τ1 =
h̄2

(2gµBs)2δH2τH
. (9.15)

It is now possible to study spin relaxation. It is determined by the behaviour of
Y (t). Roughly speaking, this quantity is the sum of (t/τ1) random, uncorrelated
quantities of the order of iωTτ1. Therefore

〈|Y (t)|2〉 ≃ ω2
Ttτ1 (9.16)

The relaxation time τ is determined by 〈|Y (τ)|2〉 ≃ 1/2. Hence

1/τ ≃ 2ω2
Tτ1 ≃ 2h̄2ω2

T

(2gµBs)2δH2τH
(9.17)

This formula should not be understood as a recipe which can be systematically
applied. Its derivation just gives a flavour of the type of methods which can
be applied when the relaxation process results from a sequence of uncorrelated
stochastic processes, each of which is a small perturbation. In that case the
relaxation is exponential, P±(t) = ((1/2)[1 ± exp(−t/τ)].

The validity of (9.17) is actually very limited. It relies on (9.15) and (9.16).
These relations are valid if τH ≪ τ1 ≪ τ . This implies ωTτH ≪ ωTτ1 ≪ 1 or

h̄2ωT

(2gµBs)2δH2
≪ τH ≪ h̄

2gµBsδH
. (9.18)

At low temperature, τH may become very long, as discussed in Section 9.2.6,
and the second condition (9.18) may fail to be satisfied. On the other hand, if
the first condition (9.18) is not satisfied, the coherence time τ1 given by (9.15)
can become very long, and other sources of decoherence can become important
as will be seen in Section 9.4.2.

9.2.5 Effect of hyperfine interactions in the case of time-dependent fields

As already said, the tunnel frequency ωT is a property of the isolated spin, which
is just a virtual concept, so that ωT can only be measured indirectly. When,
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as reported in Chapter 8, Wernsdorfer had the idea to apply a longitudinal,
time-dependent field to a magnetized sample, his hope was that the demagnet-
izing effect of this field should be independent of the hyperfine field, and more
generally of the local field. Indeed, the external field at which partial demagnet-
ization occurs depends on the external field, but in all cases it takes place by the
same amount (except if complex interaction mechanism are considered).

On the other hand, the hyperfine field also has a transverse component, which
can contribute to tunnelling. The best way to assess the effect of this component
is to measure the effect of an external transverse field of the same magnitude.
The results of Wernsdorfer and Sessoli (1999a) clearly show that this effect is
negligible (see Fig. 6.8).

However, Wernsdorfer et al. (2000d) measured the tunnel frequency by the
Landau–Zener method on several Fe8 samples with different isotopic com-
positions. These samples were the same as in the experiments mentioned in
Section 9.2.2 but now the field was time-dependent. The demagnetization was
found to depend very much on the isotopic composition. Essentially, the tunnel
splitting is larger when the nuclear magnetic moment is larger. Three samples
were studied. (i) The natural material, where Fe is 56Fe (with no nuclear spin)
at a concentration of 98% while hydrogen is mainly 1H. (ii) A sample enriched in
57Fe (nuclear spin 1/2). (iii) A sample enriched in deuterium, which has a weaker
nuclear magnetism than 1H. Magnetic relaxation is ten time faster in sample (ii)
than in sample (i). Relaxation in standard Fe8, sample (i), is intermediate.

The effect of a time-dependent field (Landau–Zener method) was also investig-
ated (Wernsdorfer et al. 2000b). The effect of isotopic substitution on tunnelling
is found to be quite strong. This result is disturbing since the motivation of the
Landau–Zener method was to get rid of the local field. A lazy explanation would
be that the quality of the samples is different because the chemists are unable to
make crystals of identical quality for different isotopic concentrations. The effect
of crystal defects will be addressed in Chapter 12.

9.2.6 How do nuclear spins relax?

If the local field is attributed to hyperfine interactions, its relaxation time τH

(which is a very important quantity as seen above) should be the relaxation time
of nuclear spins. This is a familiar object in nuclear magnetic resonance.

In the literature on NMR, nuclear spins are usually characterized by two relax-
ation times T1 and T2. The former corresponds to the longitudinal component,
i.e. parallel to the external field (which is usually high in NMR). The longitud-
inal relaxation usually results from interactions with phonons. The relaxation
time T2 corresponds to the transverse component and is related to interactions
between nuclear spins. However, interactions between nuclear spins can also flip
the longitudinal components Iz

1 and Iz
2 of a pair of nuclear spins if they have

the same Zeeman energy. This is spin diffusion. Its characteristic time is, in the
simplest cases, of the order of T2.
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For molecular nanomagnets, at the low temperatures of interest in this
chapter, the effect of phonons is very small (Prokofev and Stamp 1996;
Morello et al. 2004). Consequently, the relaxation of the hyperfine interactions,
characterized by the time τH , is attributed to spin diffusion.

However, this picture leads to difficulties. Each nuclear spin is mainly subject
to the dipole (or contact) field Hint created by the nearest electronic spins. Even
if an external field is applied, it does not dominate Hint except, perhaps, for a
small proportion of nuclear spins for which Hint turns out to vanish. For the
sake of simplicity, the external field will be assumed to vanish. The interaction
with molecular spins creates for each nuclear spin I a local field Hint in some
direction Z (which is not the same for all nuclear spins). The component IZ can
be flipped by phonons when phonons are available. The corresponding relaxa-
tion time may be called T1, and it is extremely long at low temperature. The
transverse components, with respect to Z, have a relaxation time T2 which is
not particularly long.

Can this time be identified with the relaxation time τH of the z-component of
the hyperfine field seen by the nuclear spins? This identification is acceptable if
spin diffusion is easy, i.e. if the longitudinal components IZ

1 and IZ
2 of a pair of

nuclear spins can flip. This double flip is only possible if the local fields H
(1)
int and

H
(2)
int on the two nuclei have the same modulus, and this is a severe restriction.
More precisely, in the absence of an external field, the interaction between a

molecular spin S and a nuclear spin Ik is

Hk = −gzZ
k SzI

Z
k −

∑

α=xy

∑

γ=XY Z

gαγ
k SαIγ

k (9.19)

where gk takes into account the dipole and contact interactions and the gyro-
magnetic ratios of the two spins This formula is easily extended to the case of a
non-vanishing external field, see formula (I.7) of Appendix I. In (I.7) the domin-
ant term is the first one, where Sz plays the part of the external field in NMR. If
other terms are neglected, the eigenstates are those of IZ

k , and their spacing sgzZ
k

is generally fairly large in comparison with interactions between nuclear spins.
These are therefore not expected to produce transitions between the levels, and
spin diffusion should be hindered.

The actual situation is probably complicated. In Mn12ac, for instance, it might
be necessary to clarify the respective role of Mn nuclei, which have a strong
interaction with a single molecular spin S, and the other nuclei which interact
more weakly with several Mn12ac clusters.

An article of Morello et al. (2004) gives precise experimental information on
the puzzle to solve in Mn12ac, and some theoretical suggestions about the way
to solve this puzzle. They confirm that ‘extrapolating the observed high-T nuc-
lear spin–lattice relaxation to the millikelvin range would lead to astronomically
long relaxation times.’ Nevertheless, they ‘observe that, upon cooling down to
20 mK, the nuclear spin–lattice relaxation saturates to a roughly temperature-
independent plateau’. Moreover, the nuclear spin temperature remains equal to



240 INTERACTION OF A SPIN WITH EXTERNAL WORLD

the lattice temperature. Morello et al. suggest that the contact with the lattice
is ensured by the interaction with particular molecules which can more easily
flip, while nuclear spin dynamics results from nuclear ‘spin diffusion’. Spin diffu-
sion would be an effect of the interactions between nuclear spins, which, as seen
above, raises certain questions.

A last remark about extremely low temperatures will close this section. At
such temperatures, nuclear spins would order and T2 would become infinite,
but such temperatures cannot be reached experimentally. Ordered phases of
nuclear spins can be obtained in certain materials as a transient phenomenon,
by imposing a nuclear spin temperature which is temporarily much lower
than the temperature of the other degrees of freedom, such as phonons or
electrons.

9.3 Relaxation by dipole interactions between molecular spins

In this section, the relaxation of the magnetization at low temperature in the
presence of dipole interactions between molecular spins will be considered. As
before, ‘low temperature’ means that only the lowest level of each well can be
populated. However, the stable equilibrium state is assumed to be paramagnetic.

The contribution of nuclear spins to the local field will be assumed to be
small with respect to that of the dipole interactions between molecular spins.
This assumption seems correct for Fe8, as seen before.

The spins will be treated as classical Ising spins with a flipping probability
per unit time which is 0 unless the local field Hloc satisfies |Hloc| < δH0, where
δH0, in the absence of hyperfine interactions, is the natural half-width 2h̄ωT. The
flipping probability per unit time for |Hloc| < δH0 is assumed to have a constant
value α. This scheme gives rise to a very peculiar, non-exponential relaxation
discovered by Prokofev and Stamp (1998a,b).

In a first stage, the following assumptions will be made: (i) all spins are in the
−z direction at time t = 0; (ii) constant and uniform external field; (iii) ellipsoidal
sample with an axis parallel to the easy direction z. Thus, the total local field
Hloc is uniform at time t = 0.

If Hloc is small enough to satisfy |Hloc| < δH0 the spins start flipping. Note
that Hloc designates the total local field previously called H ′

loc in Section 9.1.
The novel feature is that this reversal of the spins causes a modification of

the dipole field, so that the local field no longer satisfies the flipping condition
|Hloc| < δH0 for all spins. However, the flipping condition can be satisfied for a
few spins. The question is: how many?

The local field at time t is the sum of the initial field Hloc(0) and the variation
of the dipole field which results from the reversal of a certain number δN(t) of
spins in time t. Since Hloc(0) ≃ 0, the local field is twice the dipole field created
by the reversed spins. This field has a distribution centred at Hloc = 0, with a
width δHloc(t) whose order of magnitude is the typical order of magnitude of
the dipole field. Therefore, it is proportional to the reciprocal of the cube of the
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typical distance ℓ(t) between reversed spins. Introducing the unit cell volume a3,
one obtains (assuming a cubic symmetry for simplicity)

δHloc(t) = Const × a3/ℓ3(t). (9.20)

That is very nice, because a3/ℓ3(t) is (apart from a geometrical factor of order
unity) the proportion δN(t)/N of reversed spins, which is equal, apart from a
factor −2, to the relative variation δM(t)/M(0) of the magnetization. Indeed,
δM(t)/M(0) = −2δN(t)/N = −a3/ℓ3(t). Thus, (9.20) reads

δHloc(t) = Const × δM(t). (9.21)

The local field distribution has a width δHloc(t) and a spin can flip if its local field
is smaller than δH0. This quantity is small, so that, after a small time, δHloc(t)
becomes larger than δH0 (Fig. 9.8). The proportion of spins which can flip is then
δH0/δHloc(t). For those spins, the flipping probability per unit time is α. The
proportion of spins which flip in time dt is therefore αδH0dt/δHloc(t). But it is
also equal to half the relative magnetization variation −(1/M)dM/dt. For short
times, M may be replaced by its initial value and dM/dt = Const×δH0/δHloc(t)
or, according to (9.21),

dM

dt
= Const/δM(t) (9.22)

where the constant depends on α and δH0. Multiplying both sides of (9.22) by
δM(t) and noticing that dM/dt = d(δM)/dt, one obtains d(δM)2/dt = Const
and therefore (Prokofev and Stamp 1998a,b)

|δM(t)| =
√

Γsqrtt (9.23)

where Γsqrt is a constant.

n(H)

dHlOC

dH0

H

Fig. 9.8. Proportion of spins which feel a local field H. The width δHloc of the
distribution increases with time according to formula (9.20). On the other
hand, a spin can flip by tunnelling only if its local field is in the grey window,
whose width is given by (6.28).
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Of course, δM(t) cannot be infinite, and (9.23) applies only to short enough
times. On the other hand, it does not apply to too short times, when (9.21) is
smaller than δH0. For those very short times, δM(t) is proportional to t. For
long times, the relaxation has either an exponential form (Tupitsyn and Barbara
2002), or that of a stretched exponential (Sangregorio et al. 1997). The latter
can be reproduced by simulations (Cuccoli et al. 1999).

The hypotheses made in the above argument are very restrictive. As a first
extension, let the sample have a non-ellipsoidal shape. Even if the initial mag-
netization is uniform, the local field is not. However, if the external field is in
the appropriate range, there is a region (R) where the local field vanishes and
relaxation can begin. One can redo the preceding result, replacing the sample by
the region (R). For short times, the evolution still has the form (9.23). For longer
times, simulations of Cuccoli et al. (1999) predict a relaxation which depends on
the shape of the sample.

The representation of the system by Ising spins with a flipping probability
is an extension of a time-dependent Ising model devised by Glauber (1963).
The new feature with respect to Glauber’s model is the crucial dependence of
the flipping probability on the local field. The justification of this model is not
easy. However, the theoretical result (9.23) is in nice agreement with experiment
as will now be seen.

Formula (9.23) describes quite well the experimental results of Ohm et al.
(1998) on Fe8, displayed in (Fig. 9.9). It also fits the results of Wernsdorfer et al.
(1999) who, however, used an experimental procedure which is rather different
from that described in the beginning of this section. They quench the system
in vanishing external field, so that the magnetization is 0, and then they sud-
denly apply a field along the easy z axis. At short times, the magnetization
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Fig. 9.9. Experimentally observed magnetic relaxation at short times and low
temperature for various values of the final magnetic field in Fe8 according to
Ohm et al. (1998b). There is a good agreement with the

√
t law of Prokofev

and Stamp.
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Fig. 9.10. Experimentally observed magnetic relaxation from zero magnetization
at short times and low temperature in Fe8 according to Wernsdorfer et al.
(1999). Copyright (1999) by the American Physical Society.

δM(t) (Fig. 9.10) is well described by the
√

t law (9.23). In contrast with the
assumptions made at the beginning of this section, the initial magnetization
is not saturated. Is initial saturation essential in the argument of Prokofev and
Stamp? How universal is the square-root behaviour? Prokofev and Stamp (1998a)
already pointed out the possibility of an exponential relaxation, and gave a
precise expression (their formula 13) in certain cases. Experimentally, the

√
t

behaviour is often observed (e.g. Thomas et al. 1999; Tupitsyn and Barbara
2002) in cases where a theoretical explanation is not easy to find. Using simula-
tions, Fernández and Alonso (2003, 2004) obtain the

√
t behaviour even with an

unsaturated initial state, but find that it is neither general nor universal. Their
results were criticized by Tupitsyn and Stamp (2004). Another contribution to
the theoretical debate was that of Chudnovsky (2000), also criticized by Prokofev
and Stamp (2000).

In Fe8, the hyperfine field is but a weak part (10%) of the local field. Therefore
the

√
t behaviour is not expected to arise from hyperfine interactions except in

diluted samples, when the hyperfine field dominates the dipole field.
As expected from (9.2), the measured relaxation rate depends on the field. In

Fe8, if one increases the field from the value 0, the relaxation becomes very slow
for H > 0.04 tesla, which is twice the resonance half-width (Wernsdorfer et al.
1999).

Square-root relaxation was also observed in Mn12ac by Bokacheva et al.
(2000), who applied a transverse magnetic field to accelerate the dynamics.

As explained before in this section, the
√

t law is not applicable to very short
times. At these times, the only spins which can relax are those whose local
dipole field is exactly compensated by the external field plus the hyperfine field.
Therefore, as seen in Section 9.2, a hole should appear in the distribution P (Hdip)
of the dipole fields, and the width of the hole is the typical hyperfine field.
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9.4 Other theoretical approches

9.4.1 The theory of Caldeira and Leggett

Caldeira and Leggett (1983) elaborated the first theory of tunnelling with fric-
tion. Their calculation, which is detailed and rather long, remains a basic
reference for the topic. However, the problem is different from that addressed
in this book, and their results are different. They indeed considered a particle in
a single potential well, e.g.

V (x) = Ax2 − Bx3

so that the tunnelling particle escapes and never comes back. Tunnelling takes
place between localized states, which are quantized, and delocalized states, which
form a continuum. There is no level-crossing condition to satisfy. There is no
resonance. Instead, if friction is introduced, for instance through the interaction
with phonons, the escape rate is always reduced. This result is easy to remem-
ber since friction decreases the velocity when there is no tunnelling. It is not
surprising that the result is similar when tunnelling is active.

9.4.2 Hyperfine interactions according to Prokofev and Stamp

Prokofev and Stamp (1996) have investigated in great detail the ‘quantum relax-
ation of magnetization in magnetic particles’. Their result in the case of a ‘giant
spin’ interacting with a large number N of nuclear spins will be reproduced here.
They assume ‘the hyperfine couplings to be tightly clustered’ (with a spread Γµ)
‘around a principal value ω0 ≪ ∆0’, where ∆0 = h̄ωT in our notation. This
assumption is not appropriate to a molecular spin interacting with nuclear spins,
but it is worth giving a flavour of the results obtained by Prokofev and Stamp.
The probability P (t) that the giant spin is in state | s∗〉 at time t if it was in
state | s∗〉 at time 0 is given by formula (4.44) of Prokofev and Stamp (1996)

P (t) − 1

2
≈

∑

p

C
(N+p−pH)/2
N

exp[−βω0(p − pH)/2]

2NZ(β)

×
{

1 − exp

[

− p2

λe2

(

π2Γµ

2∆2
0t

)1/p
]}

(9.24)

where λ characterizes the relative modulation of the tunnel frequency by nuclear
spins. The factor Z(β) (with β = 1/(kBT )) ensures that P (0) = 1. The summa-
tion is over the number p of nuclear spins which flip together with the giant spin
during tunnelling. The quantity pH is proportional to the external field.

When deriving (9.24), Prokofev and Stamp assume that nuclear spin dynam-
ics, at low temperature, results from nuclear spin diffusion, i.e. the simultaneous
flip of two nuclear spins, and is fast. The characteristic time for nuclear spin dif-
fusion, called τH in Section 9.2, is identified with the transverse coherence time
T2. This identification is not always correct.

It is remarkable that the time T2 does not appear in (9.24). According to
(9.24) the parameters which rule the dynamics are Γµ and λ. At time t, the
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spins which have relaxed correspond to p values such that

p2

λe2

(

π2Γµ

2∆2
0t

)1/p

< 1

or

p2

λe2
<

(

2∆2
0t

π2Γµ

)1/p

,

or

ln
p2

λe2
< (1/p) ln

2∆2
0t

π2Γµ
,

or finally

p < ln
2∆2

0t

π2Γµ

/

ln
p2

λe2
(9.25)

Thus, for short times, (9.24) can be approximated by a linear function of ln t.
This behaviour results from a summation over many values of p.

The theory of Prokofev and Stamp (1996) differs from the scheme outlined
in Section 9.2.4 in (at least) two respects. First, it takes into account the com-
bined flip of nuclear and electronic spins. Second, the cause of decoherence is the
coupling between transverse components of the nuclear and electronic spins,
rather than the variation of the longitudinal hyperfine field. Thus, the time
T2 or τH , which characterizes the velocity of this variation, does not appear
in (9.24), in contrast with (9.17). The former difference may correspond to
a difference between the physical problems. Combined flips are probably less
important for molecular nanomagnets than for superparamagnetic grains invest-
igated by Prokofev and Stamp (1996). The latter difference probably corresponds
to different values of the hyperfine relaxation time.

9.4.3 Hyperfine interactions as a random walk

In the previous sections it has been assumed, in agreement with (9.18), that the
relaxation of nuclear spins is relatively fast in comparison with tunnelling. This
is not necessarily a good approximation at low temperature since the nuclear
relaxation time becomes very long. In this paragraph, the opposite limit will be
considered. It will be assumed that a spin which starts relaxing at t = 0 has
totally relaxed to its equilibrium value at time t if its local field has taken the
value 0 between times 0 and t. The argument can be extended to any field which
allows tunnelling, but in the next argument the case value m = s, m′ = −s is
considered. The external field will be assumed to vanish, and dipole interactions
with other spins will be neglected.

The magnetization at time t thus depends on the probability p(h, t) that the
hyperfine field Hz(t′) has taken the value 0 for 0 < t′ < t if the initial field was
Hz(0) = h. The field Hz is the sum of contributions Hz

i of many nuclei. These
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nuclei will be assumed to flip by random, uncorrelated jumps. Thus, they are
similar to the steps of a random walker, which may be forward or backward, and
the evolution of the total field Hz(t) is equivalent to a random walk. This is a
classical problem. The quantity which is generally calculated is the probability
ρ(h, h′, t) that the random walker is at h′ at time t if he started from h at time 0.
In the simplest case, the random walker has the same probability to go forward
or backward, and ρ(h, h′, t) obeys the diffusion equation

∂

∂t
ρ(h, h′, t) = α

∂2

∂h′2 ρ(h, h′, t) (9.26)

where α is related to the relaxation time of nuclear spins. The solution is

ρ(h, h′, t) =
1

2
√

παt
exp

−(h − h′)2

4αt
. (9.27)

This suggests that, during the time t, the hyperfine field has fluctuated by an
amount of the order of

√
αt. Therefore, it has taken the value 0 if |h| is smaller

than
√

αt, and the proportion of spins which has relaxed is proportional to
√

αt.
Thus the magnetization Mz(t) varies at short times as

Mz(t) = Mz(0) + [Mz(∞) − Mz(0)]A
√

t (9.28)

where A is a constant. The result δMz(t) ∼
√

t is identical to that obtained in
Section 9.3 but the physical mechanism is very different.

Miyashita and Saito (2001) derived for the first time the
√

t behaviour from a
random walk mechanism. However, they did not notice that the argument is only
correct if nuclear spin relaxation is very slow. They assumed the initial local field
Hz(0) to be tuned at a level crossing, exactly at resonance. Then, it goes away
from resonance and comes back and forth, so that the resonance value is crossed
n(t) times, on the average, in time t. At each crossing event, the spin has a
weak probability to flip, so that the magnetization change δMz(t) at time t is
proportional to n(t), which is proportional to

√
t. However, in practice, the initial

local field Hz(0) does not correspond to resonance, and the probability p(t) that
the resonance condition has been satisfied between times 0 and t is proportional
to

√
t. In a realistic description, δMz(t) is proportional to the product n(t)p(t)

which is proportional to t for short time. The assumption that the spin has a weak
probability to flip at each resonance event is correct if nuclear spin relaxation
is sufficiently fast. In the opposite case, the electronic, molecular spin follows
adiabatically the hyperfine field and δMz(t) is proportional to n(t), and therefore
to

√
t.

The above argument is oversimplified. As a matter of fact, the number of
nuclei which contribute appreciably to the hyperfine field is finite. Therefore
the hyperfine field |Hz| cannot increase beyond a bound δH. Alternatively, the
random walker is kept near the origin by a force f(h′) which, for short time, may
be replaced by f(h) and imposes a drift velocity proportional to f(h). Therefore,
a term proportional to tf(h) has to be added to the right-hand side of (9.28).
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However for small t, this term is negligible with respect to
√

t and (9.28) is
still valid.

9.4.4 Tunnelling as an effect of hyperfine interactions

In this chapter, spin tunnelling has always been assumed to be mostly an effect
of single ion anisotropy, and hyperfine interactions can only modulate this effect.
In principle, hyperfine interactions alone can produce tunnelling. This possibility
has been investigated by Garanin et al. (2000).



10

TUNNELLING BETWEEN EXCITED STATES

10.1 The three relaxation regimes

In the preceding chapters two relaxation regimes have been encountered
(Fig. 10.1).

• A ‘high’-temperature regime (T larger than 7 or 8 K in Mn12ac) in which the
spin climbs to the top of the barrier by absorbing phonons (Fig. 5.2) then
goes down emitting phonons. This regime was addressed in Chapter 5 and
corresponds to the dashed arrows of Fig. 10.1.

• A low-temperature regime (T lower than 2 K in Mn12ac) in which the
spin crosses the barrier without exchanging energy with the external world
and without going through an excited state. This regime was addressed in
Chapters 6 and 9. It corresponds to the dotted arrow of Fig. 10.1.

It was experimentally demonstrated by Friedman et al. (1996) that in Mn12ac,
at intermediate temperatures, another regime is possible. As displayed by the
dot-dashed arrows of Fig. 10.1, the spin absorbs energy from phonons, however
not enough to reach the top of the barrier, but enough to reach an approximate
eigenstate | m∗〉 (see Sections 5.3 and 6.1.7) where tunnelling into a state | m′∗〉
is possible in a reasonably short time 1/ω

(mm′)
T . Indeed, even if ωs,−s

T is very

small as it is in Mn12ac, ω
(mm′)
T can be much larger for lower values of |m| and

|m′|. This can be seen by applying the perturbative treatment of Section 6.4. For

instance, if tunnelling is the result of a transverse field Hx, ω
(mm′)
T is obtained

at order |m′ − m|, through a formula analogous to (6.42) where the exponent is
now |m′ − m| instead of 2s. Thus, for Hz = 0,

h̄ω
(mm′)
T = K(s, m, m′)|D|

(

gµBHx

2|D|

)|m′−m|
(10.1)

where the calculation of the coefficient K(s, m, m′) is left as an exercise to the

reader. Thus, in the limit gµBHx ≪ |D|, the tunnel frequency ω
(mm′)
T decreases

exponentially when |m′ −m| increases. In Mn12ac, it is negligible for −m = m′ =
s = 10, but may be appreciable for −m = m′ = 4.

10.2 Tunelling at resonance

As seen in Chapters 6 and 8, tunnelling between | m∗〉 and | m′∗〉 is only possible
near a particular value Hmm′

0 of the magnetic field Hz in the easy direction.
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–s s m
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b

a

Fig. 10.1. The three possible relaxation processes in vanishing field. (a) The
spin, initially in the left-hand well, absorbs phonon energy and goes to the
highest level which is delocalized, so that the spin can deexcite into the right-
hand well (dashed arrows). (b) The spin tunnels without change of energy
(dotted arrows). (c) The spin absorbs phonon energy, goes to an excited level
and then tunnels into the right-hand well (dot-dashed arrows).

This value is determined by the equality E
(0)
m = E

(0)
m′ , which is the level crossing

condition (6.3). More precisely, in agreement with (6.28), tunnelling is negligible

if gµB|(m′ − m)(Hmm′

0 − Hz)| is much larger than h̄ω
(mm′)
T . In this expression,

Hz designates the local field, which has to include the interaction with other
spins (electronic and nuclear). When the external field varies, the domains where

tunnelling is important (‘resonances’) may be broader than h̄ω
(mm′)
T but are still

pretty narrow as can be seen from Chapter 9.
Since tunnelling is only possible near level crossings, the relaxation time has

a succession of minima when Hz is varied. The observation of these minima
(or, equivalently, of steps in the hysteresis curve) by Friedman et al. (1996)
and Thomas et al. (1996) is the experimental proof of the intermediate regime
(Fig. 6.7).

If, instead of changing the field at constant temperature, one changes the
temperature at constant field, one expects the relaxation time to follow the
Arrhenius formula (5.2). However, in contrast with Chapter 5, the activation
energy kBT0 is now the energy difference between the ground state and the
state where tunnelling is possible (dash-dotted arrow in Fig. 10.1). Therefore,
in vanishing field, kBT0 can be appreciably lower than its value |D|s2 predicted
by (5.5). More generally, it can be appreciably lower than (5.10) for all values
of Hz which correspond to level crossings. In conclusion, kBT0(Hz) has to show
minima at level crossings. Experimentally, this has actually been observed by
Novak and Sessoli (1995).

The next section is devoted to magnetic tunnelling in a constant magnetic
field, when one of the localized states is an excited one. Since the other localized
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state may be the lowest state in its well, the theory also applies to resonances in
non-vanishing field at very low temperature.

10.3 Tunnel probability into an excited state

To take tunnelling into account, an extension of the master equation (5.12) is
necessary. The additional ingredient to be introduced into the master equation
is intuitive. One needs a transition probability per unit time Γm′

m when the levels
m and m′ cross (see formulae 6.3 and 6.4). These new coefficients are not given
by the golden rule and do not satisfy the selection rule δm = ±1 or ±2, which
results from second-order perturbation theory. Tunnelling requires a high order
in perturbation theory. In the present section the new transition probability Γm′

m

will be calculated without using high-order perturbation theory, but just the
following ingredients:

(1) the lifetimes τm and τm′ calculated without tunnelling;

(2) the tunnel frequency ω
(mm′)
T calculated for an isolated spin, i.e. for τm =

τm′ = ∞. As seen in Section 6.4 , ω
(mm′)
T can be calculated using high-order

perturbation theory.

General, approximate formulae for Γm′

m have been derived by Garanin and
Chudnovsky (1997), Fort et al. (1997), and Villain et al. (1997). Before writing
them, it is of interest to examine a few particular cases which shed some light on

this problem. In all these cases, the unperturbed energies E
(0)
m and E

(0)
m′ of two

particular levels are assumed to be exactly equal to each other. The spin is ini-
tially assumed to be in a state | m∗〉 localized in the left-hand well. It can deexcite
into this well with probability (1−α) or into the other well with probability α. We
wish to calculate the total reversal probability α and the reversal probability per
unit time Γ as functions of the lifetimes τm and τm′ and of the tunnel frequency

ω
(mm′)
T (sometimes abbreviated as ωT in the following) of the ideal, isolated spin.

First example

ω
(mm′)
T τm < ω

(mm′)
T τm′ < 1.

The reader will perhaps be surprised that the tunnel period may be longer than
the lifetime. But it should be kept in mind that ωT is the tunnel frequency
that the spin would have if it were isolated. The case studied in this example
is that of ‘overdamped’ tunnel oscillations, which are not oscillations at all.
Similarly, elastic waves (phonons) are sometimes overdamped, and it is of interest
to attribute them a frequency although they are not really waves.

For t < τm, equations (6.50) can be used to get a rough approximation of

ẏ(t) = −iωTx(t) ≃ −iωTx(0) = −iωT (10.2)

so that |y(t)| ≃ ωTt. This formula, as well as (10.2), only holds approximately for
t < τm at resonance. At t ≈ τm the reversal probability is α ≈ |y(τm)|2 ≃ ω2

Tτ2
m.
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This is the total reversal probability. The reversal probability per unit time at
resonance is Γ ≈ α/τm ≈ ω2

Tτm.

Second example

ω
(mm′)
T τm′ < ω

(mm′)
T τm < 1.

Again, equations (6.50) can be used, but only for t shorter than the smaller
lifetime, i.e. t < τm′ . On the other hand, the spin is still able to flip for
τm′ < t < τm. In order to represent the evolution for such times, one can add a
phenomenological damping term into (10.2):

ẏ(t) ≃ −iωT − y(t)/τm′ . (10.3)

After some time, y saturates at the value y = −iωTτm′ . The first equation (6.50)
reads ẋ(t) = 1

ih̄ (E0 + ∆)x(t) − iω2
Ty. The first term vanishes at resonance if the

origin of the energies is suitably chosen, and one obtains ẋ(t) = −ω2
Tτm′ and

x(t) = 1 − ω2
Tτm′t. The probability to be in state | m〉 at time t is |x(t)|2 =

1 − 2ω2
Tτm′t. Since the possibility of deexcitation in the left-hand well is ignored

in the first equation (6.50), this corresponds to a spin reversal probability per
unit time Γ ≈ 2ω2

Tτm′ , at resonance. The total reversal probability is α ≈ Γτm ≈
2ω2

Tτmτm′ .

Third example

ω
(mm′)
T τm and ω

(mm′)
T τm′ are much greater than 1.

The spin, which is initially in state | m〉, has enough time to perform several
oscillations from one side to the other. It spends the same time on both sides
but the deexcitation probability per unit time is 1/τm when it is on the left-hand
side and 1/τm′ when it is on the right-hand side. Therefore, at resonance,

α =
1/τm′

1/τm + 1/τm′

=
τm

τm + τm′

(10.4)

which is independent of ω
(mm′)
T . It is more difficult to define a reversal probability

per unit time Γ. However, if the purpose is to calculate the relaxation time τ , this

does not matter because τ depends only on τm′ , not on ω
(mm′)
T and Γ. Indeed,

before it deexcites, the spin spends half of its time in each well, regardless of the
value of Γ. Thus any sufficiently large value of Γ (more precisely, Γ ≫ 1/τm′ ≫ 1)
is acceptable.

The general formula for the reversal probability per unit time proposed by
Garanin and Chudnovsky (1997), and Villain et al. (1997), Leuenberger and
Loss (1999) is

Γm′

m =
2ω2

Tτmm′

1 + τ2
mm′(Em − Em′)2/h̄2

2

1 + exp[β(Em′ − Em)]
(10.5)
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where

1

τmm′

=
1

τm
+

1

τm′

. (10.6)

The second factor in (10.5) accounts for detailed balance. As will now be shown
it is not important in a relaxation process, so that (10.5) takes the simplified form

Γm′

m =
2ω2

Tτmm′

1 + τ2
mm′(Em − Em′)2/h̄2 . (10.7)

Indeed, if (Em − Em′) is small (smaller than kBT ), (10.5) and (10.7) coincide
to a good approximation. If (Em − Em′) is not small (larger than h̄/τmm′),
both expressions are small and Γm′

m ≈ 0. Problems could only arise in the case
kBT < |Em − Em′ | < h̄/τmm′ , a condition which would require an unphysically
short lifetime τmm′ < βh̄, i.e. τmm′ < 10−11 s if T > 1 K.

Formula (10.5) has been criticized because, for large values of ωT, the resulting
value of Γm′

m can be larger than ωT. This is clearly absurd, but leads to a correct
relaxation time as explained above (for Em = Em′) when discussing the third
example. A way to avoid this difficulty (Luis et al. 1998) is to work with the true
eigenvectors of the Hamiltonian of the isolated spin, which are delocalized at
resonance. Thus, one has to calculate the effect of phonons on these delocalized
states. This approach is the best one for strongly excited states, when tunnelling
is not a weak effect with respect to damping by phonons.

The general result for the total reversal probability α from the state | m∗〉 can
be deduced from (10.7) and is (Villain et al. 1997)

α =
τmm′

2τm′

{

1 +
1

2ω2
Tτmτm′

[1 + τ2
mm′(Em − Em′)2/h̄2]

}−1

. (10.8)

The reader will easily check that the three particular cases considered at the
beginning of this section are in agreement with the general formulae (10.5) and
(10.8). These three cases correspond to Em = Em′ , so that (10.8) reads α =
ω2

Tτmτmm′ in examples (1) and (2), and α = τmm′/2τm′ in example (3).
The approximation used in formula (10.3), where a damping of the wavefunc-

tion was introduced, is not recommended. It does not allow us, for instance, to
describe the possibility for the spin to deexcite from state | m′∗〉 and then to
reexcite to that state. The correct formulation of the problem involves writing a
master equation for the density matrix. This method will be seen in Section 11.2.

The use of the density matrix makes the analysis more complicated. If the
problem of interest is the long-time behaviour, it is simpler to use the ordin-
ary master equation of Section 5.3, just introducing new transition probabilities
which allow tunnelling. They are given by (10.5) and therefore they are only
important near a level crossing (formula 6.4). Their effect is that the temper-
ature T0 which appears in the Arrhenius relation (5.2) is lower than expression
(5.5) near a level crossing.
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10.4 A remark about the dynamic susceptibility

While it can be neglected in the relaxation process, the second factor of (10.5)
is important, for instance, in the calculation of the dynamic susceptibility
(Fernández, unpublished). To show that, it is sufficient to consider two states
| m∗〉 or state | m′∗〉 which are decoupled from the other ones (as occurs for
m = −s and m′ = s at very low temperature). Their probabilities pm(t) = p(t)
and pm′(t) = 1 − p(t) satisfy the equations ṗm(t) = Γm

m′pm′(t) − Γm′

m pm(t) and

ṗm′(t) = Γm′

m pm(t) − Γm
m′pm′(t) which reduce to

ṗ(t) = Γm
m′ − [Γm′

m + Γm
m′ ]p(t). (10.9)

If the spin fluctuates around equilibrium under the influence of a field Hz(t) =
H̄ + δh(t), where δh(t) = δh0 cos ωt, one can write Γm

m′ = Γ̄m
m′ + (∂/∂h)Γm

m′δh(t)

and a similar formula for Γm′

m . Then p(t) = p̄ + δp(t) where p̄ can be obtained
by writing that the terms of order 0 in (10.9) vanish. The terms of order 1 yield

ṗ(t) = (∂/∂h)Γm
m′δh(t) − [Γ̄m′

m + Γ̄m
m′ ]δp(t) − p̄[∂/∂h)Γm′

m + ∂/∂h)Γm
m′ ]δh(t).

(10.10)

The derivatives (∂/∂h)Γm
m′ and ∂/∂h)Γm′

m are easily deduced from (10.5). In
particular, at resonance, the last term of the right-hand side of (10.10) vanishes,
and the second factor in (10.5) is essential. Formula (10.7) would yield no term
linear in (10.10), and a vanishing susceptibility.

10.5 Two different types of relaxation

It is of interest to note the difference between the novel type of relaxation
observed in vanishing field and very low temperature, and the classical relax-
ation which takes place in other cases as high or moderate temperatures and
resonances in non-vanishing field.

We have seen that an isolated spin would be able to oscillate periodically
between two localized states. When interactions with its environment are taken
into account, these oscillations are destroyed, and this is decoherence. When
spin tunnelling occurs between the lowest two states of the two potential wells,
decoherence gives rise to unusual phenomena, e.g. the

√
t behaviour of formula

(9.23), discovered by Prokofev and Stamp (1998a,b).
If at least one of the tunnelling states is an excited state, the situation is

different, and simpler. In that case, decoherence results from deexcitation, which
mainly results from the emission of phonons. The theory (given in Section 5.7)
is well established and not very complicated. Moreover, as far as tunnelling is
concerned, a single result of the theory is required, namely the lifetime τm of
the excited state or states. It is related to the coefficients γq

m of Section 5.7 by
1/τm =

∑

q γq
m. This lifetime and the coefficients γq

m do not take tunnelling into
account.
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10.6 Effect of a time-dependent field at T �= 0

Up to now, we used the master equation (5.12) for a time-independent
Hamiltonian, i.e. a constant field. This is correct, as seen in Section 5.3, for
times larger than a microscopic time τcol, necessary for the establishment of local
equilibrium. Equation (5.12) can also be applied in a variable field provided the
variation is slow enough. The solution of the master equation is not very simple
except at very low temperature, when only the lowest states in both wells are
populated. In this case, tunnelling occurs when the initially populated state
(which will be assumed to be | −s∗〉) crosses a level | (s − k)∗〉 of the opposite
well, with k > 0. If k = 0, coherence is essential, (5.12) cannot be applied, and
the Landau–Zener–Stückelberg theory of Chapter 8 should be used. For k �= 0,
at low temperature, in the vicinity of the level crossing, (5.12) implies the very
simple equation (Leuenberger and Loss 1999; Chudnovsky and Garanin 2001)

d

dt
p−s(t) = −Γs−k

−s p−s(t) (10.11)

or, using (10.5), where the second factor is neglected:

d

dt
ln p−s(t) = − 2ω2

Tτk

1 + τ2
k (E−s − Es−k)2/h̄2 . (10.12)

Assuming (E−s −Es−k) = vkt as in Chapter 8 one obtains the ratio of the initial
and final probabilities p−s(ti) and p−s(tf ):

ln
p−s(tf )

p−s(ti)
=

∫ ∞

−∞

−2ω2
Tτkdt

1 + τ2
k (E−s − Es−k)2/h̄2 =

−2h̄ω2
T

vk

∫ ∞

−∞

du

1 + u2
. (10.13)

The extension of the integration from −∞ to ∞ is correct if the (natural)
width of the resonance is much smaller than the distance between resonances,
as in the Landau–Zener–Stückelberg theory. Replacing the integral by its value,
(10.13) reads

p−s(tf )

p−s(ti)
= exp

−2πh̄ω2
T

vk
. (10.14)

This formula coincides with (8.17) although the derivation and the physical con-
text are quite different. Formula (10.14) holds if the relaxation time τk of the
state | s − k〉 to the state | s〉 is very short. If this is not so, the problem is still
easy to solve, and left as an exercise to the reader.

The experimental curve of Fig. 8.1 indeed shows very steep parts for field
values which correspond to level crossings.

10.7 Role of excited spin states

Until now, in Chapters 5–9, the exchange interaction inside each molecular group
has been assumed so strong that, for a given molecule only the states with low-
est exchange energy can be reached and the magnetic properties of the molecule
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s = 10

s = 9

Fig. 10.2. A possible additional tunnelling pathway involving an excited spin
state.

are those of a large spin – a spin s = 10 in the case of Mn12ac and Fe8. At
very low temperature (below 3 or 4 K) this is certainly a correct approxim-
ation. At high temperatures, when tunnelling plays no part, this is certainly
not true, but the effect of the excited states with higher exchange energies is
just a quantitative correction, and generates no characteristic property. At inter-
mediate temperature, it may be different, if tunnelling can occur between a
‘high’-energy state of the exchange multiplet s = 10 and a ‘low’-energy state of
the first excited exchange multiplet s = 9, if both have approximately the same
energy, as schematized in Fig. 10.2. Low-symmetry components of the magnetic
and exchange anisotropy can promote tunnelling, as (S)2 is not a good quantum
number.

This mechanism might explain the maxima observed in specific heat (Gaudin
et al. 2002) and ac susceptibility of Fe8 (Anfuso et al. 2004), at fields where no
level crossing is expected, but clear evidence of the presence of a low-lying s = 9
state has not yet been provided.

10.8 Magnetic specific heat in the presence of spin tunnelling

In Section 3.2.3 the measurement of the specific heat in an alternating current
was described. This method is especially adequate for molecular magnets in view
of the small size of the available crystals. Moreover, the specific heat of these
materials has the interesting property of depending on the frequency ω and thus,
to provide information on the magnetic relaxation time τ by a method which
may be cheaper and easier than others.

If ωτ ≪ 1 the specific heat C(ω) measured by the method of Section 3.2.3 is
the equilibrium specific heat Ceq. Each spin has time to explore all states of both
potential wells (see Fig. 5.2). On the other hand, if ωτ ≫ 1, during a period,
the spin has only time to explore a single well. The specific heat C(ω) is that
of a particle trapped in a single well Cuni, which can be called the ‘unilateral’
specific heat. In vanishing field, Cuni = Ceq. In a magnetic field, however, both
specific heats have different values as seen in Appendix J, and Cuni < Ceq. In that
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appendix it is also shown that (Fernández et al. 1998, Fominaya et al. 1999)

|C(ω)| =

√

C2
uni +

C2
eq − C2

uni

1 + ω2τ2
. (10.15)

This formula interpolates between the obvious limits C(0) = Ceq and C(ω) =
Cuni for ωτ ≫ 1. The frequency is always assumed low with respect to the
reciprocal equilibration time within each well.

From the measurement of |C(ω)| it is possible to deduce the magnetic
relaxation time τ by relation (10.15) which can more explicitly be written as

ω2τ2 =
C2

eq − C2
uni

C2(ω) − C2
uni

− 1. (10.16)

Thus, the sharp minima of τ at the field values which correspond to level cross-
ings, Em(Hz) = Em′(Hz), can give rise to sharp maxima of |C(ω)| for appropriate
values of the frequency ω and of the temperature. This occurs if ωτ is higher
than 1 far from resonances, and smaller than 1 near resonances. The maxima
of the specific heat have been observed in Mn12ac by Fominaya et al. (1997b,
1999).

At the frequency of about 25 s−1 used by Fominaya et al., C(ω) coincides with
Cuni below 4 K, and coincides with Ceq above 5.5 K, so that there are no sharp
peaks and no frequency dependence. Only between these temperatures can the
relaxation time be evaluated from specific heat data, because it is of the order
of the period of the heating modulation.

Typical results (after subtraction of the phonon specific heat, which should
be suitably evaluated) are displayed at various temperatures in Fig. 10.3. The
resonances (sharp peaks) are as impressive as in magnetic measurements, but the
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Fig. 10.3. Experimental specific heat measured on a single crystal of Mn12ac at
various temperatures and at fixed frequency (25.3 s−1) with the magnetic
field applied along the easy axis. From Fominaya et al. (1999).
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Fig. 10.4. Relaxation time τ of Mn12ac as a function of the longitudinal magnetic
field. From Fominaya et al. (1999).

applicability of the method is limited because of the experimental limitations on
the frequency.

The peaks of the specific heat can be related to maxima of the relaxation
rate. 1/τ , which can then be deduced from (10.15). The result is displayed by
Fig. 10.4.

10.9 Tunnelling out of resonance

The sharp peaks displayed by so many figures in this book, e.g. Fig. 6.7, are spec-
tacular. However, between the peaks, relaxation takes place although it is much
slower. Indeed, if a spin is in the down position in a field Hz which favours the up
position, this spin can tunnel to the up position with emission of a phonon which
ensures energy conservation (Hartmann-Boutron et al. 1996). The probability of
this process per unit time is given by the golden rule.

Actually, this golden rule is just the same formula (5.32) as in Chapter 5. It
should just be kept in mind that the vector | m, nq〉 which appears in this formula
should be built from the eigenvectors | m∗〉 of the spin Hamiltonian, not from
the eigenvectors | m〉 of Sz. The vectors | m∗〉 are only approximately localized
on the right or on the left, and the matrix element

〈m, nqρ | Hs-ph | m′, nq ± 1〉
which appears in (5.32) does not strictly vanish even if | m∗〉 and | m′∗〉 are
(approximately) localized on different sides. It is expected to be proportional
to the tunnel frequency, times a quantity which depends on the spin–phonon
interaction. Since the square of this matrix element appears in the trans-
ition probability, tunnelling out of resonance is expected to be much weaker
than resonant tunnelling.

Information about the numerical calculation of the relaxation rate are
available in Appendix F.2.
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COHERENCE AND DECOHERENCE

11.1 The mystery of Schrödinger’s cat

The study of coherence destruction (‘decoherence’) sheds some light on
uncertainty, which is the most mysterious feature of quantum mechanics.
A recent review is that of Zurek (2003).

While Heisenberg’s relations give a mathematical form to uncertainty,
Schrödinger formulated it as the striking paradox of a cat whose wavefunction
can be a linear combination of the living state and the dead state. Obviously,
this idea contradicts our daily experience that a cat can be alive or it can be
dead, not both. In the early developments of quantum mechanics, this contra-
diction was explained by the interaction of the system (cat or whatever) with
the laboratory instrument during the measurement process.

More recently an alternative explanation was proposed (Zurek 1991; Brune
et al. 1996). If the system has a well-defined Hamiltonian with two possible
eigenstates | 1〉 and | 2〉 (e.g. | alive〉 and | dead〉) then it can be in an ‘entangled’
state such as [| 1〉 + | 2〉]/

√
2. However, there is generally an interaction with the

external world, which destroys entanglement. This is decoherence. Decoherence
is a very general phenomenon, which goes far beyond molecular magnetism.
If it can be avoided, this will open the way to quantum computers. In these
computers, the information will not be contained in ordinary bits as a binary
variable (+ or −) but in quantum bits (or q-bits) as a continuous phase of a
wavefunction (+ or −). Because of uncertainty relations, a q-bit does not carry
more information than a bit, but quantum computers should provide a convenient
way to do parallel computing.

As far as we understand, the new interpretation of quantum uncertainty does
not replace the old one based on the measurement process. In some cases the
old explanation may be right, in other cases the new one applies. In particular,
it generally applies to a macroscopic system. Rather than a cat, which is a com-
plicated object, one can imagine a billiard ball which can be in either one of two
bowls and is initially prepared in an entangled state which is a superposition of
the two possible states.

11.2 The density matrix

An isolated quantum system is described by a wavefunction. If it interacts with
the external world, this is no longer possible. The spin considered in Chapters 5
and 6 is a good example. In Chapter 6 it was described by a wavefunction.
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In Chapter 5 it was described by a probability. One can imagine that at
a particular time it has a well-defined wavefunction, but after some time, the
interaction with the external world will make this description impossible. Even
at very low temperature, we are almost sure that the spin is in its ground state,
but the phase of the wavefunction is no longer known after some time. This is
decoherence.

How can decoherence be described? How can a quantum system be described
at intermediate times, when the wavefunction has already partly, but not com-
pletely lost the memory of its phase? An appropriate tool is the density matrix
(Zurek 1991).

The density matrix ρnn′(t) is defined in textbooks of statistical mechanics by
the property that the average value of a real observable quantity a at time t is
〈A(t)〉 = Tr(ρ(t)A), where A is the Hermitian operator associated to a. For any
set of orthonormal basis vectors | n〉 this can be written as

〈A(t)〉 =
∑

nn′

ρnn′(t) 〈n′ |A | n〉 (11.1)

where A is the operator associated to a.
The density matrix has to be Hermitian. This can be seen by choosing an oper-

ator A which has only two non-vanishing elements 〈n′ | A | n〉 = 〈n |A | n′〉∗
=

eiϕ. Then 〈A(t)〉 = ρnn′(t)eiϕ + ρn′n(t)e−iϕ. This should be real for any value of
the real quantity ϕ, therefore ρnn′(t) = ρ∗

n′n(t).
For an isolated system subject to a Hamiltonian H(t), the density matrix is

ρnn′(t) =

∫ t

0

dt′ exp(−it′H(t′)/h̄) | n′〉 〈n |
∫ t

0

dt′′ exp(it′′H(t′′)/h̄)

= exp[it(En′ − En)/h̄] | n′〉 〈n | (11.2)

and satisfies the equation

ih̄
d

dt
ρ(t) = [H, ρ] (11.3)

which is equivalent to the Schrödinger equation. This equation can for instance
represent the evolution of an isolated spin subject to an anisotropy Hamiltonian
H = −|D|S2

z .
Equation (11.3) includes neither decoherence nor energy dissipation. Those

two effects result from the interaction with the external world. The interaction
we have in mind in this chapter is the spin–phonon Hamiltonian as in Chapter 5.
Interactions with other spins will be ignored for the sake of simplicity.

If a spin (or another system) is initially prepared in some state (for instance
| −s〉) and is then left in contact with a thermal bath, it evolves to equi-
librium. In this equilibrium state, if the basis vectors | n〉 are those which
diagonalize the Hamiltonian, the density matrix is diagonal, ρnn′ = ρnδnn′ , and
ρn = exp(βEn)/Z is the Boltzmann distribution.
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11.3 Master equation for the density matrix

The spin–phonon interaction will be taken into account by adding phenomeno-
logical terms into (11.3). These terms will be assumed linear, for simplicity and
in analogy with the classical master equation (5.12). The new master equation
reads

h̄
d

dt
ρ(t) = −i[H, ρ(t)] − Λρ(t). (11.4)

For a spin s, the density matrix ρ(t) is a (2s + 1) × (2s + 1) matrix, and the
‘master matrix’ Λ has (2s + 1)4 components λnn′

mm′ .
In the following, the Hamiltonian will be assumed to be independent of time.

Then, using the basis of vectors | n〉 which diagonalize the spin Hamiltonian H,
equation (11.4) reads

d

dt
ρnn′(t) = −

∑

pp′

λpp′

nn′ρpp′(t) − i

h̄
(En − En′)ρnn′(t). (11.5)

In this basis, the diagonal elements ρnn of the density matrix are the prob-
abilities that the system is in state | n〉. They coincide with the probabilities ρn

of Chapter 5. Thus, (11.5) should coincide with (5.12) if off-diagonal elements
ρnn′ are ignored. For n �= n′, one concludes that λn′n′

nn = −γn′

n , where γn′

n are the
coefficients which appear in (5.12). Since they are real, equation (11.4) violates
time reversal invariance and, just as (5.12), it can only be valid for t larger than a
microscopic time τcol, introduced in Section 5.3. Thus, equation (11.4) provides a
satisfactory description of decoherence only if decoherence is slow, and develops
in a time longer than τcol. A more general formalism has been given by Würger
(1998).

A non-vanishing off-diagonal element ρnn′ indicates that the system has some
probability to be in a linear combination | n∗〉 cos ϕ + | n′∗〉 sinϕ exp(iθ), with a
non-uniform probability distribution of the phase θ.

For instance, if the system is in state (| m∗〉 + | m′∗〉)/
√

2 or in state
(| m∗〉 − | m′∗〉)/

√
2, it is easily seen that ρmm′ has a non-vanishing value which

is different in the two cases (and respectively equal to 1/2 and −1/2). At equi-
librium, all values of θ have the same probability since θ has no effect on the
energy, and ρnn′ = ρnδnn′ is diagonal. However, a diagonal density matrix does
not imply thermal equilibrium, but a less restrictive property which is the absence
of information on the phases (e.g. the wavefunction θ in the above example). This
absence of information is called quantum incoherence, while the knowledge of all
phases is called quantum coherence, in analogy for instance with coherent light,
characterized by the knowledge of the phases of all Fourier components.

Of course, uncertainty is still present in the diagonal density matrix, but it
is a classical uncertainty which is not contrary to our intuition, in contrast with
the quantum uncertainty of Schrödinger’s cat.
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11.4 Properties of the master matrix Λ

As seen in the previous section the elements λn′n′

nn in equation (11.4) are (apart
from the sign if n �= n′) identical to the coefficients γn

n′ of (5.12). They were
evaluated in Chapter 5. It will now be seen that many of the other matrix
elements of Λ vanish, if one works in the basis of the eigenvectors | n〉 of H.

Assume indeed that, at t = 0, all off-diagonal elements ρpp′(0) vanish except

for a pair of values, e.g. p, p′ = 1, 2. If λpp′

nn′ �= 0 for n, n′ �= 1, 2, this implies that
coherence, which was absent for t = 0, appears at t �= 0. This is contrary to our
intuition that coherence should decrease with increasing time. Therefore, if one
of the four indices p, p′, n, n′ is not equal to another one, then

λpp′

nn′ = 0. (11.6)

More precisely it was shown by Garanin and Chudnovsky (1997) within certain
approximations, and it is proven in Appendix K, that for n �= n′

λnn′

nn′ = (1/2)λnn
nn + (1/2)λn′n′

n′n′ =
1

2

(

1

τn
+

1

τn′

)

(11.7)

where τn is the lifetime of the state | n〉, namely

1

τn
= λnn

nn =
∑

p�=n

∣

∣λnn
pp

∣

∣ =
∑

p

γp
n. (11.8)

Formula (11.7) expresses a relation between the loss of coherence between
states | n〉 and | n′〉, and the decay of these states into other states. However,
this is only an approximate result, a consequence of our decision to neglect mul-
tiphonon processes briefly addressed in Section 5.8. In reality, while relaxation
implies decoherence, the opposite is not true. This can be seen as follows. Let
the spin Hamiltonian have the simple form (2.10), Han = DS2

z , and let the
spin–phonon interaction have the form

Hs-ph =
∑

α,γ

Λ̃α,γ,ξ,ζ ∂αuγ(r) S2
z (11.9)

which corresponds to formula (5.27) with ξ = ζ = z. This Hamiltonian is unable
to produce transitions and therefore it is unable to produce relaxation. But
it does produce decoherence since the phonons modulate the energy difference
between the eigenstates of the spin Hamiltonian.

Using (11.5) and (11.8), one finds for n �= n′

ρnn′(t) = ρnn′(0) exp
it(En − En′)

h̄
exp

[

−t(τ−1
n + τ−1

n′ )/2
]

. (11.10)
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11.5 Coherence and muon spectroscopy

It is first appropriate to give a microscopic formula for the density matrix, using
the total Hamiltonian Htot, e.g. Htot = H + Hphon + Hint, where Hphon is
the phonon Hamiltonian and Hint is the spin–phonon interaction. These three
Hamiltonians will be assumed independent of time. One can choose basis vectors
| nk〉 which are direct products of basis vectors | n〉 of the spin (or more gener-
ally of the small system) of basis vectors | k〉 of the phonons (more generally, the
thermal bath). To exploit (11.1), one can write

〈A(t)〉 =
1

Zθ

∑

nn′k

ρnn′(0) exp(−βEk) 〈n′k | exp(itHtot)A exp(−itHtot) | nk〉

(11.11)

where the thermal bath is assumed to be at thermal equilibrium, while the small
system is not necessarily at equilibrium. In formula (11.11) it is assumed that the
small system perturbs the thermal bath and its eigenenergies Ek in a negligible
way. The partition function Zθ =

∑

exp(−βEk) of the thermal bath has been
introduced. Formula (11.11) can be rewritten as

〈A(t)〉 =
1

Zθ

∑

nn′k

ρnn′(0)
∑

mm′k′

exp(−βEk)

〈n′k | exp(itHtot) | mk′〉 〈mk′ |A | m′k′〉 〈m′k′ | exp(−itHtot) | nk〉 .
(11.12)

Comparison with (11.1) yields

ρm′m(t) =
∑

nn′

ρnn′(0)Qm′m
nn′ (t) (11.13)

where

Qm′m
nn′ (t) =

1

Zθ

∑

kk′

exp(−βEk) 〈n′k | exp(itHtot) | mk′〉 〈m′k′ | exp(−itHtot) | nk〉 .

(11.14)

Comparison with (11.6) shows that, if n �= n′, expression (11.14) differs from 0
only if n′ = m and n = m′. It results from (11.10) that, if n �= n′,

Qm′m
nn′ (t) = δn′mδnm′ exp

it(En − En′)

h̄
exp

[

−t(τ−1
n + τ−1

n′ )/2
]

. (11.15)

In Chapter 3, when discussing muon spectroscopy, the correlation function
〈S−(t)S+(0)〉 was encountered. It can be written as

〈S−(t)S+(0)〉 =
1

ZZθ

∑

nn′k

∑

mm′k′

exp(−βEn) exp(−βEk)

〈nk | exp(itHtot) | mk′〉 〈m |S− | m′〉
〈m′k′ | exp(−itHtot) | n′k〉 〈n′ |S+ | n〉 (11.16)
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or

〈S−(t)S+(0)〉 =
1

Z

∑

nn′

∑

mm′

exp(−βEn)Qm′m
n′n (t) 〈m |S− | m′〉 〈n′ |S+ | n〉 .

(11.17)

If the spin Hamiltonian H commutes with Sz (e.g. H = DS2
z ) the only non-

vanishing terms are those with m′ = m + 1 and n′ = n + 1, and (11.15) implies
n = m. Thus, (11.17) reads

〈S−(t)S+(0)〉 =
1

Z

∑

m

exp(−βEm)Qm+1,m
m+1,m(t) 〈m |S− | m + 1〉 〈m + 1 |S+ | m〉

or, according to (11.15),

〈S−(t)S+(0)〉 =
1

Z

∑

m

exp(−βEm) | 〈m |S− | m + 1〉 |2

exp
it(Em+1 − Em)

h̄
exp

[

−t(τ−1
m + τ−1

m′ )/2
]

. (11.18)

This formula can be inserted into formula (3.59) which gives the muon spin
relaxation time. The result is in agreement with that of Lancaster et al. (2004)
apart from the factor 1/Z (forgotten by these authors) and a slight modification
of the last factor.

11.6 Case of spin tunnelling

The case of a spin in a double well is an instructive illustration of the density
matrix formalism. Far from a resonance, there is no major difficulty (Luis et al.
1998). The eigenvectors | n〉 of the spin Hamiltonian H may be identified with
the localized states | m∗〉 introduced in the earlier chapters. At t = 0 the matrix
elements ρmm′(0) may be assumed to vanish except for m = m′ = −s. It follows
from (11.5) and (11.6) that all off-diagonal elements remain equal to 0 at all
times t. Therefore, (11.5) reduces to (5.12). However, the selection rules (5.28)
are not strictly valid since | m∗〉 is not exactly an eigenvector of Sz. This is not
a consequence of the use of the density matrix.

The master matrix Λ is a (2s + 1)2 × (2s + 1)2 Hermitian matrix, which
therefore has (2s + 1)2 eigenvectors and eigenvalues. Since its use in the absence
of tunnelling is equivalent to the method of Chapter 5, this implies that there
are 2s(2s + 1) eigenvectors and eigenvalues which play no part.

The situation is more complicated at a resonance. Let the case of a vanishing
field be considered, Hx = Hy = Hz = 0. For the sake of simplicity, only the
lowest two eigenvectors,

| sym〉 =
1√
2

(| s〉 + | −s〉)
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and

| anti〉 =
1√
2

(| s〉 − | −s〉)

will be considered. The non-vanishing matrix elements of Sz are

〈sym |Sz | anti〉 = 〈anti | Sz | sym〉 = s (11.19)

while 〈sym |Sz | sym〉 = 〈anti | Sz | anti〉 = 0. Thus

〈Sz(t)〉 =
1√
2

〈sym | ρ(t) | anti〉 +
1√
2

〈anti | ρ(t) | sym〉 . (11.20)

If one wishes to study the relaxation of Sz, what should now be done? In
Chapter 5, the relaxation rate was the lowest of the 2s non-vanishing eigenvalues
of the ‘master matrix’. Now the master matrix has (2s + 1)2 eigenvalues. In the
absence of tunnelling, many of them have no physical relevance. In the presence
of tunnelling, the method does not look reliable.

A safer approach is to give a non-vanishing value to the off-diagonal elements
of the density matrix, e.g.

〈sym | ρ(0) | anti〉 = 〈anti | ρ(0) | sym〉 = 1/2. (11.21)

The relaxation time τ is defined at low temperature (when only | sym〉 and | anti〉
are appreciably populated) by

〈sym | ρ(τ) | anti〉 = 1/(2e) (11.22)

and the extension to higher temperatures is not difficult.
It is now absolutely necessary to take into account the second term of the right-

hand side of (11.5) which is responsible for tunnelling, even though the Λ matrix
also takes tunnelling partially into account a phonon-assisted tunnelling which,
at resonance, is smaller than direct tunnelling.

11.7 Spin tunnelling between localized states

At resonance, it may be more transparent to work in the basis of the local-
ized, quasi-eigenstates | m∗〉 defined in Section 6.1.7. For an exact, numerical
calculation, this is not very convenient. But this method is suitable to make
approximations.

The initial condition is now ρ−s,−s = 1 and τ is defined at low temperature by

〈−s | ρ(τ) | −s〉 = 1/(e). (11.23)

These conditions only involve diagonal elements of the density matrix. How-
ever, off-diagonal elements do appear in the master equation. Indeed, additional
terms should be introduced because the Hamiltonian H has off-diagonal matrix
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elements h̄ωmm′′ . Therefore (11.5) is replaced by

d

dt
ρmm′(t) =

∑

pp′

Γpp′

mm′ρpp′(t) − i

h̄
(Em − Em′)ρmm′(t)

+ i
∑

m′′

[ωmm′′ρm′′m′(t) − ωm′′m′ρmm′′(t)]. (11.24)

The third term has the main responsibility in the generation of off-diagonal
matrix elements ρmm′(t). Assuming these elements to be small, they can be
neglected in the third term of the right-hand side of (11.24) which can be
rewritten as

d

dt
ρmm′(t) =

∑

pp′

Γpp′

mm′ρpp′(t) − i

h̄
(Em − Em′)ρmm′(t)

+ iωmm′ [ρm′m′(t) − ρmm(t)]. (11.25)

An additional approximation is possible. Indeed the off-diagonal elements
ρmm′(t) which are created oscillate with a frequency (Em − Em′)/h̄ because
of the second term of the right-hand side. Therefore they remain small except
near a resonance. Thus, the third term can be omitted except if (Em − Em′) is
small.

Note that in the basis of the localized states | m∗〉, the equilibrium dens-
ity matrix ρ(∞) is not diagonal. If one defines a pseudospin 1/2 operator
σx by 〈sym |σx | sym〉 = 〈anti |σx | anti〉 = 1/2 and 〈sym |σx | anti〉 =
〈anti |σx | sym〉 = 0, the Hamiltonian can be written at low temperature
in the ground doublet as H = −h̄ωTσx plus a constant. Therefore 〈σx〉 =
〈sym | ρ(∞) | anti〉+ 〈anti | ρ(∞) | sym〉 does not vanish. However, it is extremely
small at all temperatures which can be reached.

11.7.1 Decoherence by nuclear spins in zero field

In the case of tunnelling between the lowest two states of the double well in
very weak field, decoherence is a many-body problem which cannot be treated
by writing a phenomenological master equation for the density matrix.

A possible approach starts from equation (8.12b), which yields the probability
|Y (t)|2 that the spin has tunnelled at time t. Equation (8.12b) reads Ẏ (t) =
−iωTX(t)e−iU(t). Integration is easy for times much shorter than both τ and
1/ωT. Since Y (0) = 0, one obtains

Y (t) = −iωTX(0)

∫ t

0

e−iU(t′)dt′. (11.26)

It is appropriate to write this expression as

Y (t) = −iωTX(0) exp[−iU(0)]

∫ t

0

exp{−i[U(t′) − U(0)]}dt′. (11.27)
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The average value of this quantity for a given value of X(0) and U(0) is

〈Y (t)〉 = −iωTX(0) exp[−iU(0)]

∫ t

0

〈exp{−i[U(t′) − U(0)]}〉dt′. (11.28)

The small fluctuations of the small quantity [U(t′) − U(0)] around its mean
value 0 are responsible for decoherence. The average value at the right-hand side
of (11.28) will be approximated by its first cumulant

〈Y (t)〉 = −iωTX(0) exp[−iU(0)]

∫ t

0

dt′ exp
{

−(1/2)〈[U(t′) − U(0)]2〉
}

(11.29)

Using the definition (9.13) of U(t′),

U(t) =
2gµBs

h̄

∫ t

t0

dt1Hz(t1)

expression (11.29) reads

〈Y (t)〉 = −iωTX(0) exp[−iU(0)]

∫ t

0

dt′

exp

[

−2
(gµBs

h̄

)2
∫ t′

0

dt1

∫ t′

0

dt2〈Hz(t1)Hz(t2)〉
]

(11.30)

Assuming τ ≫ t ≫ τH where τH has been introduced in Section 9.2.4, (11.30)
can be approximated as

〈Y (t)〉 = −iωTX(0) exp[−iU(0)]

∫ t

0

dt′ exp

[

−
(

2
gµBs

h̄

)2
∫ t′

0

dt1τH〈H2
z 〉

]

= −iωTX(0) exp[−iU(0)]

∫ t

0

dt′ exp

[

−2
(gµBs

h̄

)2

τH〈H2
z 〉t′

]

or finally, integrating the exponential,

〈Y (t)〉 = − ih̄2ωTX(0)

2g2µ2
Bs2τH〈H2

z 〉 exp[−iU(0)]

{

1 − exp

[

−2
(gµBs

h̄

)2

τH〈H2
z 〉t′

]}

.

(11.31)

This expression increases linearly at short times, exactly as it would in the
absence of fluctuations, i.e. in the absence of decoherence. Decoherence sets in
when the expression between curly brackets saturates to the value 1. This occurs
at a time of the order of τcoh defined by

1

τcoh
= 2

(gµBs

h̄

)2

τH〈H2
z 〉. (11.32)
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11.8 Potential applications of quantum coherence:

quantum computing

If decoherence can be sufficiently reduced, then one can build quantum com-
puters. One day, perhaps, this will be possible.

What is a quantum computer? What has it to do with molecular magnet-
ism? Before giving an oversimplified answer, it is convenient to recall that, in
a classical computer (the one we all have on our desks), numbers are written
in the binary system, so that the digits are 0 or 1, and they are represen-
ted by the state of a system, e.g. a MOSFET transistor. Each bit may be
in state 0 or in state 1, not both. In a quantum computer, bits are replaced
by quantum bits (‘qubits’ or ‘q-bits’) which can be in a linear combination
of the two states. A spin 1/2 is a good candidate to the function of a q-
bit since it can be in state | +〉, in state | −〉, or in a linear combination
| +〉 cos ϕ + | −〉 sinϕeiθ. Although this state depends on two continuous para-
meters, the information accessible from it is restricted by quantum uncertainty,
and a q-bit cannot yield more information than a classical bit. The advant-
age of a quantum computer is that it operates on several numbers at the
same time. For instance, integers from 0 to eight can be represented by the
states of three spins 1/2, namely | + + +〉, | + + −〉, | + − +〉 , . . . , | − − −〉.
If the system is initially in a combination of these eight states, operations
on this state involve simultaneous operations (additions, multiplications, for
instance) on the eight integers. A quantum computer makes something like
parallel computing.

The advantage of parallel computing is illustrated by the following example
taken from Leuenberger and Loss (2001). Suppose you want to find the name
of the citizen who has, in your country, the social security number 11 547 672.
Your classical computer will write this number in base 2, and requires 23 figures
to do this. Then the computer needs 23 operations to give the answer. A parallel
computer can do that in a single operation, doing all 23 classical ones at the
same time, in a parallel way. And this spares computer time.

However a quantum computer does not make really parallel computing since,
at the end, a single result can be read and not the results of all parallel calcu-
lations. But a quantum computer can be very efficient in certain cases, and a
convincing example is the factorization of a large number. Suppose you want to
find the prime factors of a number of 130 digits. If it turns out to be the product
of two prime numbers of 65 figures, at the beginning of the 21st century an array
of supercomputers (which of course had to be classical) required several months
to find them! An algorithm to do that in a much shorter time with a quantum
computer was proposed by Shor (1994) and investigated in detail by Ekert and
Jozsa (1996). There was just one problem: a quantum computer did not exist!
The first implementation of Shor’s algorithm (Vandersypen et al. 2001) was done
by researchers from IBM and Stanford University directed by Isaac Chuang and
published in Nature. Unfortunately, their ‘quantum computer’ was a mere toy
of seven q-bits, and it was not able to factorize a number larger than 15, with
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the expected, but uninteresting result that 15 = 3×5. The seven q-bits were the
spins of seven magnetic nuclei in a solution, and were triggered by a magnetic
resonance system. One works with an ensemble of quantum computers rather
than a single one.

The factorization problem is just one of those which are difficult for classical
computers. Quantum computers might be useful for other issues, e.g. (i) the
search of the ground state of a glass or a spin-glass; (ii) deciphering of encrypted
messages without knowing the key; (iii) chess. The last two points deserve some
comments. While quantum computing may be a weapon against cryptography,
quantum physics can also help cryptography, and quantum cryptography might
soon become operational. Regarding chess, already in the year 1997 the classical
computer Deep Blue from IBM was able to defeat the world champion Kasparov.
Quantum computers might put an end to chess championships by proving either
that white can always win, or that black can always win, or that a draw is
unavoidable if both players play as well as possible.

Is the quantum toy computer constructed in the USA in 2001 the prototype
of an operational one? This is not at all sure. Many bits, i.e. many spins, are
required, and the simultaneous manipulation of all these spins, without losing
quantum coherence, will not be easy. The 2001 experiment demonstrates that
spins in molecules may at least in principle be used for quantum computing.
However, those spins are nuclear ones, their interaction is weak, and we are far
from the subject of this book! The use of single-molecule magnets for quantum
computation was proposed by Leuenberger and Loss (2001). They considered a
single molecule of spin 10 and assumed one can populate the lowest levels of
a single well, using appropriate electromagnetic radiation. Technically, the real-
ization of such a computer would probably be more difficult than with nuclear
spins since the interactions are stronger and decoherence is faster. As these lines
are written, in the year 2005, an experimental proof of the possibility of using
electronic spins for quantum computing is still lacking, but there is active spec-
ulative research on the subject. For instance Troiani et al. (2005a) propose using
antiferromagnetic rings as quantum gates. The following statement of Troiani
et al. (2005b) sheds light on the time-scales in a future quantum computer based
on electronic spins: ‘Our simulations of the single q-bit gates provide negligible
values for the leakage . . . even for gating times of the order of 100 picoseconds,
i.e. well below the tens of nanoseconds estimated for the spin decoherence time.’
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DISORDER AND MAGNETIC TUNNELLING

12.1 Experimental evidence of disorder

In the tetragonal material Mn12ac, in the absence of impurities, tunnelling should
satisfy the selection rule (6.20). Experimentally, this selection rule is not satisfied,
and all minima of the relaxation time corresponding to level crossings show up.
In this chapter, it will be seen that experimental results are consistent with the
existence in the spin Hamiltonian of a pretty large anisotropy term of the form
E(S2

x − S2
y). Such a term can only be due to disorder.1 Moreover, Mertes et al.

(2003), employing the experimental procedure described in Section 8.4 based on
sweeping back and forth the longitudinal field across a tunnel resonance, have
shown (Fig. 12.1) that the plot of the logarithm of the magnetization of oscillation
cycles is not linear as would be expected from (8.23) for a pure material.

At least two types of disorder have been invoked. Chudnovsky and Garanin
(2001) have suggested that dislocations, which are present in almost all crystals
(apart from Si crystals used in microelectronics) might play the dominant part.
On the other hand, as explained in some detail in Section 4.7.1, more peculiar
microscopic defects are always present in Mn12ac, as shown by low-temperature
X-ray diffraction data (Cornia et al. 2002a). In the remainder of this chapter,
the effect of disorder will be theoretically analysed.

12.2 Landau–Zener–Stückelberg experiment with a distribution

of tunnel frequencies

Assume all spins are initially polarized in the −z direction, as an effect of a strong
magnetic field along the z axis. The temperature will be assumed so low that
all spins are in state | −s∗〉. Then, the magnetic field is lowered with a constant
velocity and changes sign. When the field goes through the level-crossing value
between m = −s and p = s − k, the reversal probability pk of a spin is given by
formula (8.17), which will be written as

pk = 1 − exp

(−2πh̄ω2
Tk

vk

)

(12.1)

where 2h̄ωTk is the tunnel splitting and

vk = gµB(2s − k)dHz/dt. (12.2)

1 Remember that, in this chapter, E is the anisotropy parameter, not the energy!
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√
vk); From Mertes et al.

2001 and 2003.

Following Chudnovsky and Garanin, we shall consider the case of a broad
distribution of tunnel frequencies. Spins which have a large enough tunnel fre-
quency flip, and the other spins do not. The value ωTk = ωmin

k (k, vk) which
separates the two behaviours depends on k and v. As a first approximation, these
authors assume that the only term of the Hamiltonian which does not commute
with Sz, and therefore is responsible for tunnelling, is the term E(S2

x − S2
y) of

formula (2.5).
In this model, tunnelling occurs only if k is even, and the relation between E

and ωTk is given according to perturbation theory by formula (G.11) which can
be written as

2h̄ωTk = gk

(

E

2|D|

)s−k/2

(12.3)

where

gk =
2|D|

[(2s − k − 2)!!]2

√

(2s − k)!(2s)!

k!

=
2|D|

22s−k−2[(s − k/2 − 1)!]2

√

(2s − k)!(2s)!

k!
(12.4)

where n!! = n(n − 2)(n − 4)(n − 6)....., so that (2n)!! = 2nn! and (2n + 1)!! =
(2n + 1)!/(2nn!).

According to (12.1), ωmin
k is given by 2πh̄ω2

Tk = vk, so that

ωmin
k =

√

vk

2πh̄
. (12.5)
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Formulae (12.5) and (12.3) yield the order of magnitude of the lowest value
of |E| which allows for an observable tunnel effect, namely

Emin ≈ |D|
(

vk

gk

)1/(s−k/2)

. (12.6)

12.3 The scaling law of Chudnovsky and Garanin

Chudnovsky and Garanin (2001) have proposed an approximation based on the
fact that, when |E| increases for a given value of vk, the reversal probability
(8.17) changes fairly abruptly from 0 to 1. Therefore, for a distribution of the
anisotropy parameter E, they approximate the reversal probability p by

p = 2

∫ ∞

Emin

P(E)dE (12.7)

where P(E) is the probability that E has a particular value. It has been assumed
that P(−E) = P(E) and the factor 2 accounts for negative values of E.

The function P(E) is not known. The interest in (12.7) is that it states
that p is a function of Emin. Therefore, according to (12.6), pk is a function
of (

√
vk/gk)1/(s−k/2) only. It may be preferable to take the logarithm of this

quantity and to state that

pk is a function of (s − k/2)−1 ln(
√

vk/gk) only

This property will be called the ‘Chudnovsky–Garanin scaling law’. The function
can depend on the sample, because the disorder is generally irreproducible in a
solid, but it is independent of k and vk (see also Garanin and Chudnovsky 2002).

Experimental results of Mertes et al. (2001) on Mn12ac are in good agreement
with the Chudnovsky–Garanin scaling law. They have monitored the magnetiza-
tion at different sweeping rates for the longitudinal field. They have then tested if
all the curves, detected for different resonances k, scale on the same curve, as pre-
dicted by the Chudnovsky–Garanin scaling law. The results, plotted in Fig. 12.1,
show good agreement with the theoretical expectations. This strongly suggests
that the assumptions made to derive this law are correct, namely: (i) tunnel-
ling is mainly produced by a quadratic term E(S2

x − S2
y) in the Hamiltonian;

(ii) the distribution of E is broad. The domination of the quadratic term, which
results from disorder, on the quartic term, is a bit surprising since other experi-
mental data (e.g. NMR or X-ray diffractometry) suggest that the crystals are
of good quality. The surprise is increased when one remembers that a relat-
ively small high-order anisotropy can produce a relatively strong tunnelling as
seen in Section 6.4. Chudnovsky and Garanin (2001) suggested that the strong
effect of disorder might be a result of long-range disturbances which enhance the
effect of a rather low concentration of defects. Actually, a crystal defect neces-
sarily produces a disturbance of the elastic deformation, which is long-ranged.
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Fig. 12.2. Left: tunnel probability for the resonances k = 6 and k = 7 as a
function of the angle φ of the transverse field H⊥ = 0.3 T with respect to one
of the faces of the crystal. The material is Mn12ac and the temperature is T =
0.6 K. The solid line corresponds to the trend due to a small misalignment
of the crystal. Right: a similar experiment where the investigated molecules
have been selected by applying a longitudinal field at φ = 60◦. Two different
subsets of the population, corresponding to the 50% and 10% fraction with
the largest tunnel splitting, respectively, have been investigated. The two-fold
symmetry is evident. (After del Barco et al. 2003.)

As an example, the strain produced by an infinite, straight dislocation
decreases as

ǫ ∼ 1/r (12.8)

while a dislocation loop of radius R produces at distance r ≫ R a strain

ǫ ∼ R2/r3. (12.9)

The theory of Chudnovsky and Garanin (2001) is attractive although it
encounters several difficulties. First, the elastic strain generates interactions
between defects, which tend to decrease their effect at long distance. For
instance, in a pair of straight, parallel dislocations, the state with opposite
signs is favoured. Moreover, the Chudnovsky–Garanin theory predicts that the
distribution P (E) of the anisotropy E should have a maximum at E = 0, in
disagreement with experiment, as will be seen. The maximum at E = 0 pre-
dicted by Chudnovsky and Garanin is an extension of the central limit theorem
which applies to a random variable X =

∑

xi which is the sum of many inde-
pendent random variables xi with the same distribution p(xi) centred at xi = 0)
(but not necessarily maximum at xi = 0). Obviously, the most probable value of
X is its average value, namely 0. In the present case, E =

∑

Er is the sum
of the effects of defects at various distances r, and the distribution pr(Er)
depends on r. However, if the decrease with r is slow as in formula (12.8),
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a maximum at E = 0 is expected as indeed found in the theory of Chudnovsky and
Garanin (2001).

The experimental data of Mertes et al. (2001) allow also an evaluation of the
distribution of the transverse anisotropy E. This distribution, shown in the inset
of Fig. 12.1, is well approximated by two Gaussians centred at E = ±0.03D, and
not at 0 as predicted by Chudnovsky and Garanin. This value is much larger than
those calculated in Table 4.3 taking into account the different isomers present
in Mn12ac. It therefore suggests that other sources of tunnelling are present.
Certainly the quartic anisotropy term (C/2)(S4

x+S4
y) must be taken into account,

although it violates the Chudnovsky–Garanin scaling law.
Del Barco et al. (2002) have repeated the previous experiment and they have

found that, comparing the data for resonance with k = 6 and k = 8, the latter
has a narrower distribution. The resonance k = 8 is in fact permitted in four-
fold symmetry and the quadratic term plays a minor role. The same authors
have ingeniously designed a more sophisticated experiment in order to high-
light the presence of a local quadratic anisotropy. If a transverse anisotropy
is present, Pk should be affected by a transverse field, promoting tunnelling
if applied along the intermediate axis or depressing it if applied along the
hard axis. A standard experiment with H⊥ = 0.3 T gives the result repor-
ted on the left of Fig. 12.2. An overall π

2 periodicity is observed even though,
according to the model suggested by Cornia et al. (2002a) and described in
Section 4.7.1, most molecules experience a two-fold symmetry. This is not sur-
prising because positive and negative E values are equally probable, so that
on the average the four-fold symmetry of the crystal is preserved. However,
if the sample is prepared by applying a positive longitudinal field together
with a transverse field, only those molecules that experience the largest tun-
nel splitting would be selectively magnetized. Those are characterized by the
transverse field applied parallel to their intermediate axis. After having pre-
pared the sample with a transverse field of 0.6 T applied at 60◦ from a crystal
face, they repeated the first experiment monitoring the reversal of the mag-
netization on application of a negative field. This time the largest contribution
comes from those molecules that have been previously selected, and their tun-
nel probability Pk now shows π periodicity, as displayed in the right part of
Fig. 12.2. The angle at which a maximum in Pk is observed agrees with those
calculated in Table 4.3. These results strongly support the hypothesis that the
tunnel distribution in Mn12ac is primarily due to the presence of different iso-
mers, even if a slightly larger quadratic transverse anisotropy, E, up to 10 mK,
is necessary to reproduce the experimental data. The data of Mertes et al.
(2001) can be reconciled with those of Del Barco et al. (2003) if a large con-
centration of defects was present in the crystal, thus overwhelming the intrinsic
disorder due to the presence of different isomers. HF-EPR experiments have fur-
ther confirmed this picture and have demonstrated the role of mismatching in
the principal axes of transverse two-fold and four-fold anisotropies (Del Barco
et al. 2005).
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Although the previous analysis explains many experimental features, some
refinements are necessary in view of minor details. As noticed in Section 12.2, for-
mula (12.3) predicts tunnelling only if k is even. However, Mertes et al. observed
it for odd values too. They could explain that by the random transverse fields
induced by disorder. This implies an appropriate redefinition of gk.

12.4 Other distortion isomers in Mn12ac

As seen at the end of Section 4.7.1, any sample of Mn12ac contains a small
fraction of molecules which exhibit a much faster relaxation. In those molecules
the barrier is reduced to 35 K or even 15 K, yielding much faster tunnelling
dynamics.

This type of disorder is quite different from that described by Cornia et al.
(2002a,b). It affects a limited proportion of molecules (5% have a barrier of 35
K and 0.5% have a barrier of 15 K) but the affected molecules are strongly per-
turbed since the barrier is reduced by a factor of the order of 2 and 4, respectively.
Geometrically, the anisotropy axes might be rotated by an angle of the order
of 10◦ (Wernsdorfer, private communication). In contrast, the type of disorder
described by Cornia et al. (2002a,b) affects all the molecules which have the
anisotropy axis nearly along the crystallographic four-fold axis.

According to Morello et al. (2004), this type of disorder might play an essential
part in nuclear spin relaxation at low temperature. It should also contribute to
destroy the four-fold symmetry.

12.5 Spin glass phases?

Structurally, a ‘spin glass’ (Binder and Young 1986) is the magnetic equivalent
of a glass. In a glass, atoms are disordered as in a liquid, but immobile as in
a crystal. In a spin glass, the magnetic moments are disordered as in a para-
magnet, but hardly flip. A magnetic moment which is up at time t = 0 has a
large probability to be up a long time later. In contrast with ordinary glasses
which result from a rapid cooling which do not allow the atoms to find the right
place, spin glasses arise from atomic disorder, e.g. impurities. Another condition
is necessary, namely competing interactions. This property is called frustration.
A simple example of a frustrated system is a triangle of magnetic atoms with
three equal, antiferromagnetic pair interactions. Another example is a triangular
lattice of Ising spins with equal antiferromagnetic interactions between nearest
neighbours. It is easy to see that this system is disordered at any temperature.
However, if impurities are present, it can order at T = 0. The magnetic structure
depends on the position of the impurities and is not periodic. The most com-
mon examples of spin glasses (Binder and Young 1986) are non-magnetic metals
with magnetic impurities interacting through Rudermann–Kittel interactions.
In molecular magnets, the interactions between molecular spins are presumably
dipolar, and at low-temperature the spins are ‘Ising’ spins, i.e. they have two
possible states m = 10 and m = −10. Frustration does exist in an array of Ising
spins with dipolar interactions. Thus, the low temperature phase of Fe8 and
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Mn12ac might well be a spin glass. If it is a spin glass, this has consequences for
the spin dynamics, e.g. the relaxation of the magnetization should be very slow.
In practice, since a slow relaxation may have various causes, it is difficult to say
whether the very slow relaxation observed at low temperature in these systems
is related to a spin glass structure. It is of interest to note that particularly slow
relaxation has been observed in frozen dilute solutions of Mn12ac, as seen in
Section 4.7.1.

The kind of spin glass order that might appear in Fe8 will be briefly discussed.
This material may be roughly described as an array of parallel chains of clusters
which are almost parallel to the easy axis z. The distance between chains is
appreciably larger (50%) than the distance between molecules on the chain.
An isolated chain would be ferromagnetically ordered under the effect of dipole
interactions. If the chains were exactly parallel to the easy axis, and if the spin
density were uniformly distributed along each chain, then the interaction between
chains at distance x would vanish since it would be equal, apart from a constant
factor, to

∫ ∞

−∞

dz

(x2 + z2)3/2
−

∫ ∞

−∞

3z2dz

(x2 + z2)5/2
(12.10)

which vanishes, as can be seen by integrating the second term by parts. This
vanishing interchain interaction is a manifestation of frustration. The frustrated
system hesitates between ferro- and antiferromagnetism. If defects are present,
they can have a decisive influence. For instance, if the chains are interrupted,
the interaction between the pieces of chains can become non-vanishing.

12.6 Conclusion

Three types of disorder have been considered to account for the properties of
Mn12ac: (i) dislocations; (ii) intrinsic, localized defects which are weak perturb-
ations; (iii) dilute defects which produce strong local perturbations. In the light
of the above discussion, dislocations do not quite fit the experimental proper-
ties well. Del Barco et al. (2003) have found an ‘excellent accord with the isomer
model of Cornia et al.’ (2002b) and claim that their observations are ‘not consist-
ent with the dislocation model’. In view of the very small perturbations related
to model (ii), it might be of interest to include also model (iii).

The picture of single-molecule magnets as non-interacting identical molecules,
adopted in Chapters 5 and 6, is now seen to be strongly oversimplified. In
Chapter 9, interactions between molecules were seen to be important. In the
present chapter, disorder was found to be essential. Nevertheless, it is gratifying
to see that the above-discussed experiments of del Barco et al. make it possible
to distinguish the type of disorder, as well as to exploit it to select a subset of
molecules by a kind of magnetic distillation. We will see in the following chapter
that also intercluster interactions have been shown to be a precious tool for the
investigation of the tunnelling of the magnetization.
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MORE EXPERIMENTS ON SINGLE-MOLECULE MAGNETS

SMMs have been experimentally investigated using many different techniques and
only a small fraction of these experiments have been discussed in the previous
chapters. An exhaustive overview of the wide literature is not the goal of this
book, nevertheless there are a few other experiments that we want to discuss here
briefly, while more details can be retrieved from the original literature. They have
been selected mainly for their relevance to the theoretical background provided
in the previous chapters.

13.1 The advantages of complexity

For the sake of simplicity we have often limited our analysis of the resonant
quantum tunnelling of the magnetization to the second-order spin Hamiltonian
(2.5). However in Chapter 4 we have already seen that both Mn12ac and Fe8

are better described if fourth-order axial and transverse anisotropy terms are
included in the spin Hamiltonian. The present section is focused on the axial
term B0

4O0
4 defined in Appendix A.5, which can be replaced by 35B0

4S4
z if B0

4 is
much smaller than D. This term modifies the energies of the |m〉 and |m′〉 levels,
which now cross for

gµBHz = |D| (m + m′) + 35B0
4(m3 + m2m′ + mm′2 + m′3) (13.1)

as shown in Fig. 13.1, and the level-crossing field does not depend only on n =
m + m′ as was the case in Fig. 6.1.

This complication, which might look undesirable, has, however been, suc-
cessfully exploited to investigate which is the most relevant channel for the
mechanism of thermally activated resonant tunnelling, schematized in Fig. 10.1.

The hysteresis loop of a Mn12ac crystal at different temperatures has been
carefully investigated, using a micro-Hall probe (Bokacheva et al. 2000; Kent
et al. 2000) or using a cantilever torquemeter (Chiorescu et al. 2000b). Through
the derivative of these curves the authors were able to better quantify the field
at which the fastest relaxation was observed. In Fig. 13.2a the derivative of M
vs. H curves taken at several temperatures is reported. For each resonance n the
peak shows an up-field shift on lowering the temperature and develops a complex
structure below 1 K. The effect is more evident when the fields of the maxima are
reported vs. temperature as in Fig. 13.2b and c. These curves, being extracted
from the hysteresis loop, necessarily correspond to a variable magnetization state
of the sample.
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Fig. 13.1. Longitudinal field Zeeman level splitting of the S = 10 state of
Mn12ac assuming a fourth-order spin Hamiltonian for the spin anisotropy.
The parameters are those of Table 4.1 extracted from INS data.
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Fig. 13.2. (a) Derivative of the magnetization of a crystal of Mn12ac with respect
to applied longitudinal field at temperatures from 2.4 K to 0.4 K. (b) The
same data plotted as the position of the resonant peak versus temperature.
The solid line shows the approximate temperature below which peak positions
are temperature independent. From Kent et al. (2000). (c) Similar results up
to the tenth resonance. From Chiorescu et al. (2000b). The observed data are
compared with the calculated fields assuming that the tunnelling involves the
metastable state mesc = 10, 9, or 8. With permission of EDP Sciences and
the American Physical Society.

As already emphasized in Chapters 8 and 9, the effective field experienced
by the molecule differs from the applied one because of the internal field gener-
ated by the other spins in the crystals and the hyperfine field. If the hyperfine
field is ignored, the largest variation of the internal field cannot exceed 8π|Ms|,
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where |Ms| is the saturation magnetization per unit volume, which is about
0.064 T for Mn12ac. This value is significantly smaller than the observed shift of
Fig. 13.2. This observed shift also overwhelms the expected distribution in reson-
ance fields due to the presence of the different isomers described in Section 4.7.1.
The up-field shift of the peaks on decreasing the temperature is due to the fact
that tunnelling pathways involving lower and lower energy states in the double
well become more efficient when the population of the highest levels decreases
(Bokacheva et al. 2000; Chiorescu et al. 2000b; Kent et al. 2000). For Mn12ac,
B0

4 is negative, and the lower levels cross at higher field, as shown in Fig. 13.1. In
Fig. 13.2 are also reported the crossing fields for different pairs of levels involved
for resonances going from n = 5 to n = 9 for micro-Hall experiments, and from
n = 6 to n = 10 for torque measurements. Within the limit of the estimation
of the internal field, the results at low temperatures agree with the calculated
fields for the resonances where the escape from the metastable well occurs from
the lowest state, mesc = 10. It is thus possible to monitor the transition from a
thermally activated tunnelling to pure tunnelling. This transition occurs gradu-
ally, and the temperature of this crossover depends on the investigated transition,
decreasing on increasing n because the levels of the metastable well get closer
and closer on increasing the field. The resonance in zero longitudinal field cannot
be directly investigated in the pure tunnelling regime, because the process is too
slow; however from an extrapolation of the crossing temperature of the resonance
for higher n Chiorescu et al. (2000b) estimated a cross-over temperature of 1.7 K
in zero field.

13.2 Intercluster interactions in Mn4 clusters

The class of compounds nicknamed Mn4 and briefly described in Section 4.7.5
has been demonstrated to be a spectacular playground for the investigation of
the interplay of intercluster interactions and quantum tunnelling of the mag-
netization. A key role is surely played by the large variety of Mn4 clusters that
have been synthesized, thus allowing a fine tuning of the magnetic anisotropy
and of the intercluster interactions. Another important feature is the well iso-
lated S = 9/2 ground state that makes the ‘giant spin’ approach a very good
approximation.

13.2.1 The effects of intercluster interactions on magnetic tunnelling

We have already seen in Chapter 9 that the other clusters of the crystal generate
an internal dipolar field which evolves in time as the magnetization relaxes,
thus being responsible for the square-root time decay of the magnetization. Here
we want to summarize the effects of an exchange interaction that couples two
‘giant spins’. The practical realization of this model has been found in the Mn4

cluster of formula [Mn4O3Cl4(O2CEt)3(py)3]2, where EtCO−
2 is the anion of

propionic acid and py stands for pyridine. The unusual feature of this compound
is the H-bond that connects C−H groups to the chlorine atoms that belong to
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two Mn4 moieties. Also the short Cl · · ·Cl is shown. Right: Zeeman splitting
of the |m1, m2〉 states arising from the coupling of the two S = 9/2 of the
[Mn4]2 dimer. A weak antiferromagnetic interaction is added to the axial
anisotropy of each spin. (a) The entire energy spectrum is reported. (b) An
enlargement of the low-lying levels in the field range −1.2 up to 1.2 T is
shown. The dotted lines labelled from 1 to 5 indicate the strongest tunnel
resonances which involve the change of sign of only one m. The curled arrows
show the tunnel resonances that involve excited states of the stable well. The
process leading to the reversal of the magnetization, i.e. from |−9/2,−9/2〉 to
|9/2, 9/2〉, is shown by light arrows. From Wernsdorfer et al. (2002). Reprinted
with permission of Nature (http://www.nature.com).

another Mn4 unit, thus forming the dimeric [Mn4]2 structure reported in Fig 13.3
(left).

While the intradimer interaction has been found to be antiferromagnetic and
of the order of 0.1 K the interdimer interaction is negligible, especially in one
pseudopolymorph that contains two molecules of hexane of crystallization in the
crystal lattice.

The spin Hamiltonian for the pair of spins can be written as:

H = H0 + H′ + H′′ (13.2)

http://www.nature.com
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where, taking into account only the second-order magnetic anisotropy

H0 = D(S2
1z + S2

2z) + gµBHz(S1z + S2z) + Jz(S1zS2z) (13.3)

H ′ = E(S2
1x + S2

2x − S2
1y − S2

2y) + gµBHx(S1x + S2x) + gµBHy(S1y + S2y)

(13.4)

H ′′ = Jxy(S1xS2x + S1yS2y). (13.5)

The spin Hamiltonian matrix is now written on the basis of the |m1, m2〉 states
and has dimension (2S+1)2 = 100. In the case of Jz = Jx,y ≫ D the states can be
expressed in the coupled basis of the total spin |ST , M〉, as already shown in
Section 2.1.3, but this condition is not met in the present case. In the Hamiltonian
matrix of (13.2) the terms of H0 are diagonal while those of H′ couple elements
of the basis that have δm1 = ±1,±2 provided that δm2 = 0 (and vice versa).

Let us start from the case where H′ ≪ H0 and H′′ = 0. The |m1, m2〉 states
are eigenstates of the system, except close to an anticrossing where admixing
occurs. However pairs of levels, namely |M,M′〉 and |M′,M〉 remain degenerate.
Even in this oversimplified scheme important effects can be expected, and have
indeed been investigated by Wernsdorfer et al. (2002). In Fig. 13.3 (right) is
reported the axial Zeeman splitting of the |m1, m2〉 states calculated for [Mn4]2.
The lowest energy state in zero field is characterized by MT = m1 + m2 = 0,
as expected given the antiferromagnetic intradimer interaction. However, the
exchange is weak compared to the magnetic anisotropy and many level crossings
occur at low field. It is particularly important to notice that all level crossings
in zero field involve pairs of levels where both m1 and m2 change sign. The zero-
field anticrossing corresponds to a mechanism that implies cotunnelling of the
two Mn4 clusters, and therefore a much lower amplitude is expected than that
involving pairs of level where only m1 or m2 changes sign.

A confirmation of this picture comes from the comparison of the hysteresis
loops of [Mn4]2 with that of isolated Mn4 clusters. In the latter a significant step
at H = 0 is observed even if forbidden for a half-integer spin state. We have
already seen that a transverse field of various origin (i.e. dipolar or hyperfine)
relaxes this selection rule. On the contrary, when [Mn4]2 is investigated the step
in zero field is found to be completely suppressed, because a transverse field does
not remove the requirement of cotunnelling of the two giant spins of [Mn4]2.

Within the scheme of level crossings of Fig. 13.3 it has been possible to justify
the field position and temperature dependence of the many steps observed in
the hysteresis loop (Wernsdorfer et al. 2002). Beyond the fundamental interest
of these results it is worth stressing their relevance for potential application.
The switching of a weak intercluster interaction has suppressed the magnetic
relaxation in zero field, a crucial point in magnetic data storage where a remnant
magnetization stable in time is required

Equally interesting is the case with H′′ �= 0. The pairs of levels with |M,M′〉
and |M′,M〉 are now admixed and the eigenstates are now symmetric and anti-
symmetric combinations of the pure states. The degeneracy is lifted and the
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splitting depends on the strength of the transverse exchange Jxy. The value of
the transverse exchange interaction has been determined independently by Tiron
et al. (2003) and Hill et al. (2003). In the first case the authors have performed
a detailed investigation of the hysteresis loop, exploiting also the hole digging
method already described in Section 9.2.2. They have been able to distinguish
between the tunnelling resonances involving the symmetric and antisymmetric
combinations of the |−9/2, 7/2〉 and |7/2,−9/2〉 states. The two steps in the
hysteresis loops are separated by about 0.1 T. Hill et al. (2003) have used HF-
EPR to investigate both field position and intensity of the many transitions that
arise from the coupling of the two S = 9/2 spins, also providing some interesting
hints for the potential use of dimers of SMMs for quantum computation. Both
techniques have provided a value of Jxy very close to Jz ≈ 0.1 K. An almost iso-
tropic exchange interaction is expected given the small orbital contribution and
the g value very close to that of the free electron for these clusters comprising
MnIII and MnIV, which both have an orbitally non-degenerate ground state.

In conclusion, two important observations have been originated by the study of
weakly coupled Mn4 clusters. The first is the possibility to significantly reduce the
tunnelling in zero field as cotunnelling of the two spins of the dimer is required.
Tunnelling in zero field is directly related to the loss of magnetic information
in nanomagnets and the possibility of controlling it could have great potential
interest for magnetic memory applications. The second point concerns the obser-
vation of entaglement of the two spins, thus providing some interesting hints
for the potential use of dimers of SMMs for quantum computation (Hill et al.
2003).

13.2.2 The effects of magnetic tunnelling on long-range magnetic order

In Chapter 4 we have already shown that the intercluster interactions are small
because of the organic shell provided by the terminal ligands. Dipolar interactions
are, however, present, unless the molecules are diluted in a non-magnetic matrix.
If r is the distance between magnetic groups in Å the order of magnitude of
dipolar interactions, in K, is ∼(gs)2/r3. Thus, if g = 2, s = 10, and r = 20 Å,
the ordering transition is expected to be of the order of 50 mK, or possibly lower
because of frustration. The magnetic properties have been investigated down to
the millikelvin temperature region where a magnetic ordered state should be
attained. Magnetic ordering has indeed been observed in a few cases, for the
Fe19 cluster already reported in Chapter 4 (Affronte et al. 2002a), in a Mn6

cluster (Morello et al. 2003), and in a Fe6 cluster (Affronte et al. 2004a). In all
these cases the dynamics of the magnetization of the cluster is relatively fast
and the equilibrium state corresponding to magnetic order can be reached. On
the contrary, Mn12ac and Fe8 are characterized by such a long relaxation time
at low temperature and zero field that the magnetization freezes before reaching
the ordering temperature. It would be interesting to address the question of the
nature of this frozen state, that could in some respects resemble that of spin
glasses (Martinez-Hidalgo et al. 2001), as seen in Section 12.5. Here, however,
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we want to describe an interesting study performed on two Mn4 clusters of the
family discussed in the previous section (Evangelisti et al. 2004).

These authors have measured the specific heat of two Mn4 clusters of
formula [Mn4O3Cl(O2C-CH3)3(dbm)3] and [Mn4O3(O2C-C6H4-p-CH3)4(dbm)3]
respectively. The first one, abbreviated to Mn4Cl hereafter, has the three-fold
symmetry typical of these clusters and already discussed in Section 4.7.5. In
the second case the apical bridging Cl− ion is replaced by the bridging anion of
the p-methyl-benzoic acid, and the compound is thus referred to as Mn4Me. In
the case of Mn4Me the three-fold symmetry is removed (see Fig. 4.32) and this
gives rise to a much stronger transverse anisotropy.

The |E/D| ratio is 0.21 for Mn4Me, almost five times larger than for Mn4Cl,
while the axial anisotropy remains substantially unchanged. The larger trans-
verse anisotropy results in a faster tunnelling in the low-temperature regime.
Mn4Me is thus expected to attain in a shorter time the equilibrium state, that
at very low temperature could be an ordered state due to the weak intercluster
interactions. However, the phase transition becomes observable only if the time
required to attain equilibrium is comparable, or smaller, than the time window
of the experimental technique.

Evangelisti et al. (2004) have measured the low-temperature specific heat
using three different experimental time-scales, τe = 2 s, 8 s, and 300 s, in the
thermal relaxation method described in Section 3.2.3. The results for the two
clusters are compared in Fig. 13.4. For Mn4Cl a non-magnetic transition, prob-
ably a structural one, is observed at T ≈ 7 K. The specific heat between 1 K
and 7 K is well reproduced taking into account the Schottky anomaly due to
the zero-field splitting of the S = 9/2 ground state. The increase of the specific
heat at low temperature has been attributed to the hyperfine contribution. It is
worth noting that the specific heat measured for the shortest experimental time
is lower than that calculated for the nuclear contribution.

This observation suggests that the nuclear spin relaxation is strongly connec-
ted to the electron spin–lattice relaxation. In the specific heat of Mn4Cl there is
no evidence of a λ-anomaly due to magnetic ordering, which, on the contrary, is
visible at Tc = 0.21 K in the case of Mn4Me. The magnetic origin of this anom-
aly has been confirmed by its disappearance when a magnetic filed is applied,
as shown by the empty circles in Fig. 13.4. It is also possible to evaluate the
entropy change as a function of temperature. The magnetic contribution of the
specific heat is obtained by a subtraction of the lattice part. However, two types
of magnetic degree of freedom, the electronic and the nuclear ones, contribute to
the specific heat. Evangelisti et al. (2004) evaluated the entropy of the electronic
spins:

∆S(T ) =

∫ T

0

CM(T ′) − Cnucl(T
′)

T ′ dT ′ (13.6)

where CM is the magnetic contribution to the specific heat and Cnucl is the
magnetic contribution responsible of the upturn observed at low temperature.
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Interestingly the electronic magnetic entropy tends to the value R ln(2S+1), with
S = 9/2, at high temperature, where the 10 levels of the ground spin multiplet
are all populated. Higher spin multiplets for this type of molecule are in fact
more than 200 K higher in energy. On lowering the temperature ∆S reaches
the value of 2R expected for a two-level system, only the m = ±9/2 pair being
populated. This entropy is suddenly lost at Tc, due to the magnetic ordering.

The fastest tunnelling relaxation of Mn4Me has allowed us to observe the
ordering phenomena in the time-scale of the experiment. The nuclear contribu-
tion to the specific heat also agrees with the calculated one, confirming that
the nuclei are now rapidly relaxing thanks to the faster relaxation time of the
electronic spins.
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These results clearly show how the possibility to observe the magnetic order
of these non-diluted magnetic materials is strongly connected to the dynamics
of the electron spins. The only efficient mechanism of relaxation at very low
temperature is through incoherent tunnelling in the ground doublet. The tun-
nelling rate is, in turn, dominated by the transverse magnetic anisotropy and
thus directly related to the structural symmetry of the molecule.

13.3 Tunnelling and electromagnetic radiation

The interplay between the electromagnetic radiation and the magnetic moment is
at the basis of the magnetic resonance techniques discussed in Section 3.3, while
its role in the dynamics of the magnetization has been discussed Section 5.9.
Here we want to describe a type of experiment where the relaxation of the
magnetization under applied electromagnetic radiation is monitored.

The principle of the experiments can be schematized as in Fig. 13.5. At very
low temperature and zero field the only populated states are those with m = ±S.
If electromagnetic radiation of the appropriate frequency that matches the energy
gap with the first excited states with m′ = ± (S − 1) is applied, it can act as
a pump thus populating these states. The spin temperature becomes different
from the temperature of the thermal bath. As tunnelling involving states higher
and higher in the barrier is more and more efficient, an acceleration of the overall
relaxation rate is expected under irradiation. It is well known from EPR spec-
troscopy that the use of circular polarized radiation allows one to distinguish
the sign of ∆m of the promoted transition. In Fig. 13.5 it is shown that right
polarization induces transitions with ∆m = −1, thus is only efficient to pump
the population in the right well, and vice versa.

Tunnelling

Quantum number ms
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y

–10 –5 0 5 10

h� h�
�ms = +1 �ms = –1

H = 0

Fig. 13.5. Schematic diagram showing the double well potential in zero field of a
SMM with S = 10. The electromagnetic radiation with matching frequency
induces a transfer of population from the m = ±10 to ±9 states where
tunnelling is more efficient. Circularly polarized radiation selects the sign of
∆m of the transition. From Sorace et al. (2003). Copyright (2003) of the
American Physical Society.
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In the experiment of Sorace et al. (2003) a microcrystal of Fe8 was mounted
on a micro-Hall probe and inserted in a dilution refrigerator equipped with a
superconducting magnet. Thanks to an oversized waveguide the sample is irradi-
ated with the radiation emitted by a Gunn-diode source. This type of source is
not tuneable but the gap in zero field between m = ±10 and m′ = ±9 nicely
matches the 115 GHz of a rather common source used in HF-EPR. In Fig. 13.6
the magnetic hysteresis loops under decreasing attenuation of the Gunn diode are
shown. The typical stepped curves are observed, but, on increasing the power
of the radiation, the zero-field step becomes more and more pronounced and
the loops become narrower. In principle these effects are also encountered on
heating the sample. Therefore, it can be hard to distinguish between an overall
heating of the sample or a selective pump effect of the radiation. In Fig. 13.6 it is,
however, clear that the loops become strongly asymmetric, as only the descending
branch of the hysteresis loop is significantly affected by the increasing power of
the radiation. This is a direct consequence of the use of highly polarized (97%)
radiation, and nicely confirms the expected resonant effect of the radiation.

The combined use of magnetometry and microwave radiation is, at the time of
writing, one of the hottest topics in molecular nanomagnetism. While in the pre-
vious example the electromagnetic radiation has been used to promote transitions
within the same well, a lower frequency can be employed to monitor the effect of
the radiation on the tunnelling rate at an avoided level crossing (Del Barco et al.
2004). In order to do so, these authors have employed a sample, a tetranuclear
Ni(II) cluster of formula [Ni(hpm)(t-Bu-EtOH)Cl]4 (Yang et al. 2003), which has
a significantly larger splitting, further increased by the application of a transverse
field.
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The magnetization state of these quantum objects can therefore be manipul-
ated thanks to electromagnetic radiation, thus opening new horizons in the field
of molecular nanomagnetism. The outcome of this lively research goes even bey-
ond the results shown above. In fact the change in magnetization under the effect
of electromagnetic radiation represents a new type of EPR detection as shown
in Fig. 13.7 (Cage et al. 2005). When this technique is associated with micro-
Hall probes, extraordinary sensitivity can be achieved (Bay et al. 2005; Petukhov
et al. 2005).
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OTHER MAGNETIC MOLECULES

Beyond molecules with slow relaxation of the magnetization at low temperature,
several other classes of molecules have attracted widespread interest. In par-
ticular we will focus our attention on rings, grids, and large antiferromagnetic
clusters, showing how they can provide interesting magnetic properties even if
they do not show slow relaxation of the magnetization.

Rings were initially devised as theoretical tools (not to say toys) to help
understand the magnetic properties and the spin dynamics of one-dimensional
materials. However, at the end of the twentieth century, real rings were synthes-
ized, and it became possible to test theories on real objects. Often these new
materials are labelled Ferric wheels, after the first widely investigated system,
namely a decanuclear iron(III) derivative of formula [Fe(OCH3)2(O2CCH2Cl)]10
whose structure is shown in Fig. 14.1 (Taft et al. 1994). The name is associ-
ated with the well-known Ferris wheel, also depicted in Fig. 14.1, which was the
attraction of the 1893 exhibition in Chicago, the American answer to the Eiffel

Ferric wheel Ferris wheel

Fig. 14.1. The Ferric wheel, left, with the iron atoms drawn as large black
spheres, oxygen white, and chlorine as large grey spheres. On the right, a
picture of Ferris wheel.
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tower built for the Paris exhibition in 1889. The wheel was created by the bridge
builder George W. Ferris.

The Ferric wheel is the archetype of antiferromagnetic rings, exactly as Mn12ac
is the archetype of SMM. The interest in antiferromagnetic rings increased
when it was suggested that it should be possible to observe quantum coher-
ent oscillations (Meier and Loss 2001). These points will be worked out in
Section 14.1.

The largest wheel reported so far, in the form of a torus of 84 manganese
ions (Tasiopoulos et al. 2004), was described by Christou and co-workers and
its structure was shown in Fig. 1.5. The compound behaves as a SMM at low
temperature.

While the rings are models for one-dimensional materials, grids are models
for two-dimensional magnetic materials (Lehn 1995; Thompson et al. 2003). The
schematic structure of a grid is shown below.

The bars indicate suitable ligands which can bind to three different metal ions,
while the circles represent the metal ions. Clearly the 3 × 3 grid is an excellent
model of a square lattice.

Grids, however, are not the only type of two-dimensional clusters. Fe8, which
has been widely described above (Wieghardt et al. 1984), after all is a planar
molecule comprising a layer of iron ions. Larger clusters comprising more than
15 ions arranged as in the brucite structure have also been reported (Heath and
Powell 1992), and the structure of one of them has been discussed in Section 4.2.
The Brucite structure is essentially one layer of close packed metal ions separated
from other layers. A more regular structure was observed in a Mn19 cluster (Pohl
et al. 2001). The sketch in Fig. 14.2 shows how the metal ions are arranged. First
we can imagine having a ring of six ions around a central one. The expansion of
this shell requires 12 additional ions. This defines a set of ‘magic numbers’, 1, 7,
and 19. The next step would be to add another ring of 18 ions, yielding a magic
number 37, but so far no such cluster has been reported.

The metal ions in these typical structures are connected by suitable bridges,
for instance oxygen atoms, which form a close packed layer even if they are
connected to organic moieties (Caneschi et al. 1995).

Also, more complex structures can be observed, which correspond to three-
dimensional arrangements of the magnetic ions. These spin topologies are
more frequently met in polyoxometallates (Coronado and Gomez-Garćıa 1998;
Müller et al. 1998), including oxovanadium(IV) ions, spin S = 1

2 , and
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Fig. 14.2. Sketch of the metal ion layers in a brucite structure. The first, second,
and third shells are drawn in a grey scale and provide finite structure with
7, 19, and 37 spins, respectively.

iron(III), spin S = 5/2. These systems will be treated in Section 14.3.
Among them perhaps the most fascinating from the esthetical point of view is
[Mo72Fe30O252(Mo2O7)(H2O)2(Mo2O8H2(H2O))(CH3COO)12(H2O)91]·150H2O,
Mo72Fe30, whose structure was described in Chapter 4 (Müller et al. 1999). The
molybdenum ions can be considered to be diamagnetic, while the 30 iron(III)
ions have S = 5/2.

14.1 Magnetic wheels

The most numerous class of antiferromagnetic wheels reported so far contain
iron(III) ions, but other metal ions, like copper(II) and chromium(III), have also
been described. Rings with a number of magnetic centres N = 6, 8, 10, 12, and
18 have been reported and their properties analysed in some detail (Caneschi
et al. 1996; Caneschi et al. 1999; Saalfrank et al. 1997; Taft et al. 1994; Watton
et al. 1997; Van Slageren et al. 2002; Waldmann 2002a; Waldmann et al. 2003).
Beyond being of interest as models for low-dimensional magnets antiferromag-
netic rings are attracting interest for the hypothesis that they may provide good
opportunities for observing quantum coherence in the oscillation of the Néel
vector. A representation of this last one is shown in Fig. 14.3 for a six-member
ring. Some relevant references are available (Meier and Loss 2001; Honecker et al.
2002; Waldmann 2002b) and only a sketchy description will be given below.

The Néel vector operator is defined as:

n =
1

Ns

N
∑

i=1

(−1)isi. (14.1)

There are several advantages of antiferromagnetic rings compared to ferro- or
ferrimagnetic clusters. The main advantage is associated to the fact that in
principle the tunnel frequency between almost degenerate states in AF rings,
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Fig. 14.3. The Néel vector in a six-member AF ring. In classical terms there
are two degenerate configurations, left and right, and the system can tunnel
between them.
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Fig. 14.4. Field effect on the energy levels of a ring with an even number of
antiferromagnetically coupled spins.

∆, is much larger than in ferro- or ferrimagnetic clusters. In order to observe
coherence the decoherence frequency, Γ, must be significantly smaller than the
tunnel frequency, therefore a larger tunnel splitting makes AF clusters better
suited than the FM, in this respect.

In fact the gap between levels for AF rings is large, being determined by
isotropic exchange. The external field can be used to tune the tunnel splitting.
This phenomenon has already been described in Chapter 3. Figure 14.4 shows
the levels of a ring of antiferromagnetically coupled spins, and the effect of a
magnetic field applied parallel to the Zaxis, this last corresponding to the unique
axis normal to the ring.

At zero field the ground state is S = 0, and then several cross-overs can
be observed (Taft et al. 1994). The situation is analogous to that described in
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Section 3.1.1 for antiferromagnetic dimers. It will be seen in Section 14.1.1 that
the energies E(S) of the zero-field levels above the ground state scale according
to the formula

E(S) = −Jeff

2
S(S + 1) (14.2)

where Jeff is an effective coupling constant (Caneschi et al. 1996). Formula (14.2)
turns out to coincide with the Landé interval rule valid for atoms. It implies that
the cross-overs from the S to S + 1 ground state occur with identical spacing:

HS→S+1 = − Jeff

gµB
(S + 1). (14.3)

In the neighbourhood of the cross-over at sufficiently low temperature the system
behaves as a two-level system, an ideal one to observe quantum tunnelling related
phenomena provided that the tunnelling splitting is not too small.

Level crossing can also be induced by transverse fields applied in the ring
plane, and it is this type of configuration which is under investigation for
observing the tunnelling of the Néel vector. The ideal conditions would consist
in choosing a field such that the AF ring can be described by a two-level state,
|0〉, |1〉. The system must be prepared in a superposition of energy eigenstates of
the Hamiltonian, Ψ = 1√

2
[|0〉 + |1〉]. This corresponds to a Néel vector oriented

in the +Z direction. The state has a temporal evolution such that after every
odd number of half-cycles it evolves into the degenerate state Ψ′ = 1√

2
[|0〉− |1〉],

with the Néel vector oriented in the −Z direction.

14.1.1 Iron rings

This is so far the most complete series of AF rings. The Ferric wheel was the first
to be characterized, in particular for its typical stepped magnetization. The origin
of this behaviour has been discussed above. The experimental data were obtained
at low temperature, both in a static, up to 20 T, and in a dynamic, up to 50 T,
magnetic field and they are shown in Fig. 14.5 (Taft et al. 1994).

The steps in the static field correspond to the cross-overs S = 0 → 1, 1 →
2, 2 → 3, while those in the right-hand side show also the transitions up to S = 9.
The energies of the excited states were fitted using (14.3) to give Jeff = −13.8 K.

Very detailed studies were performed on six-member rings, taking advant-
age of the smaller number of states, which allow the diagonalization of the
Hamiltonian matrix in a relatively simple way. Perhaps one of the most thor-
oughly investigated systems is [NaFe6(OMe)12(pmdbm)6]ClO4, Hpmdbm= 1,3-
bis(4-methoxyphenyl)-1,3-propanedione, whose structure is shown in Fig. 14.6
(Caneschi et al. 1996). The ring of six iron(III) ions has a sodium ion in the
centre. In fact the centre of the ring comprises six oxygen atoms which define an
octahedral coordination site for an additional ion. The compound crystallizes in
the R3̄ space group, with the cluster in an S6 symmetry site, which makes the
iron ions all equivalent to each other.
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Fig. 14.5. Left: magnetization of Fe10 at 0.7 K as a function of the applied field
in a static experiment; right derivative of the magnetization recorded in a
pulsed field. From Taft et al. (1994). Copyright (1996) American Chemical
Society.

Fig. 14.6. Structure of [NaFe6(OMe)12(pmdbm)6]ClO4. The grey scheme of
Fig. 14.1 has been employed. From Caneschi et al. (1996) with permission of
Wiley-VCH.

The temperature dependence of the magnetic susceptibility was satisfactorily
fitted with J = −28.6 K. From the analysis of the high-field magnetization of
[NaFe6(OMe)12(pmdbm)6]ClO4 at low temperature the coupling constant Jeff

defined by (14.3) was found to be equal to −33.0 K (Cornia et al. 1999).
The origin of Jeff is associated with an approximate treatment of the low-

lying levels. For classical spins, the ground state is the so-called Néel state, all
odd spins are parallel and all even spins are antiparallel to the odd spins. Thus
Sz

2i+1 = s and Sz
2i = −s, where z is an arbitrary direction. The total spin S is

thus 0. To increase S by a given amount with a minimal energy increase, the
recipe is to keep the odd spins parallel and the even spins parallel too, but to
tilt the direction of the odd spins with respect to the even spins by an angle 2θ,
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Fig. 14.7. Left: the energy spectrum of the spin levels for an antiferromagnetic
ring of six s = 5/2, where the first rotational band, or L-band, is shown in
grey. Right: a schematization of how the L-band is generated by the relative
tilting of the two sublattices (of an angle 2θ in the classical picture), the spins
of one sublattice remaining however parallel to each other.

as shown in Fig. 14.7. Thus, the energy is increased by

E = |J |Ns2(1 − cos 2θ) (14.4)

while

S = Ns sin θ = Ns

√

1

2
(1 − cos 2θ). (14.5)

Introducing (14.4) in (14.5) yields E = 2|J |S2/N . This coincides with (14.2),
with

Jeff =
4J

N
. (14.6)

The same formula for Jeff is obtained using the ITO formalism associated
with a partition of the individual quantum spin in odd and even sites. The total
spins of the two sublattices are given as

SA =

N/2−1
∑

i=0

S2i+1 and SB =

N/2
∑

1

S2i (14.7)

and the lowest lying states correspond well to those arising from the coupling of
these two intermediate spins:

H = −JeffSA · SB (14.8)
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where SA = SB = (N/2)s correspond to the parallel alignment of all the spins
of a sublattice. The validity of the approximate treatment leading to (14.6)
increases on increasing the s value of the individual spins. Moreover, it decreases
on increasing the size of the ring, N . In fact these low-energy excitations, schem-
atized as a coherent rotation of the spins of the two sublattices, are typical of
finite systems. In the infinite chain the lowest excitations are described by spin
waves that delocalize the excitations due to flipped spins. A discussion of the
limitation of this approach is also available (Santini et al. 2005).

The low-lying levels calculated for a ring of six s = 5/2 ions is shown in
Fig. 14.7. It is apparent that there are regularities in the low-lying levels. Looking
at the lowest levels of each S value we note a parabolic behaviour, as suggested
by (14.2). The sequence of levels is also called a rotational band, as the energy
of the spin levels scales as those of a rigid rotor. Similar behaviour is observed if
we look at the second lowest lying levels of each S value. The lowest band, also
called the L-band, corresponds to SA = SB = (N/2)s, the first excited band
to SA = [(N/2) − 1]s, SB = (N/2)s, and SB = [(N/2) − 1]s, SA = (N/2)s, and
so on. This observation has been extended to other spin topologies and will be
discussed in more detail below.

Information on the lowest lying levels of [NaFe6(OMe)12(pmdbm)6]ClO4 was
obtained using several different techniques (Abbati et al. 2001), like torque mag-
netometry and neutron measurements. In particular it was possible to measure
the zero-field splitting parameters of the first excited S = 1 state as D = 6.22(3) K
from Inelastic Neutron Scattering experiments and D = 6.58(3) K from torque
magnetometry. Attempts to reproduce this value using the dipolar approximation
were unsuccessful, showing that single-ion contributions may be operative.

In order to obtain first-hand information on the single-ion anisotropy the
analogous and isomorphous diamagnetic gallium(III) derivative was synthesized.
By doping the gallium derivative with iron(III) ions mixed species with stoi-
chiometry GaN−nFen are obtained (n ≤ N) whose relative abundance can be
calculated if a statistical distribution of the two metal ions is assumed. In fact it
can be shown that the probability of a given species, PNn, is given by a binomial
distribution:

PNn =
N !

n!(N − n)!
Pn(1 − P )N−m (14.9)

where P is the iron mole fraction. By choosing the mole fraction of iron it
was possible to obtain rings where the predominant species is Ga5Fe1 and the
magnetic data, in particular high-field magnetic torque measurements, and high-
field EPR spectra, provided direct information on the single-ion anisotropy. The
zero-field splitting tensor was found to be rhombic with D = 0.62(2) K, E/D =
0.15. The Z axis of the tensor is not parallel to the unique axis of the Fe6 cluster,
z, but makes an angle of 79.2(4)◦ with it.
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Using the formalism developed in Chapter 2, the zero-field splitting
component of the single-ion anisotropy parallel to the Z axis is given by:

DS=1,ZZ =

6
∑

i=1

diDZZ (14.10)

where DS=1 is the tensor for the first excited S = 1 state, D is the single-ion
tensor and di is a coefficient which depends on the nature of the S = 1 spin state.
Assuming that it can be described as |SASBS〉, where SA = SB = 15/2, S = 1
the di coefficients are calculated as −12/5 using iteratively (2.27), as shown in
Section 2.5.2. Since the individual D tensors of the iron ions have their local
anisotropy axis, z, essentially perpendicular to the unique Z axis of the ring,
and D is positive, a negative component is projected parallel to Z. Using the
coefficients given above and the experimental values the single-ion contribution
is calculated as DS=1 = 5.2(1) K. It must be remarked that the positive D value
derives from a negative single-ion contribution along the unique Z axis and a
negative projection on the total spin S. Adding, with the same procedure, the
calculated values of the dipolar contributions, DS=1 is calculated as 6.8(1) K in
excellent agreement with the experimental data (Abbati et al. 2001).

One of the open problems is bound to the phenomenon of the crossing of
the levels. In fact as already seen in the previous chapters two quantum levels
can either simply cross each other or go through an anti- (or avoided-) crossing
depending of whether there is a matrix element connecting them or not. Clearly
this point is relevant for the observation of quantum effects and tunnelling in
this type of material.

Evidence of anticrossing of the low-lying levels in a field has been
achieved for [NaFe6(OMe)12(pmdbm)6]ClO4 and for [LiFe6(OMe)12(dbm)6]
B(C6H5)4 · 5CH2Cl2, where Hdbm=di-benzoylmethane. For the latter the best
evidence came from specific heat measurements performed at 0.78 K (Affronte
et al. 2002b), shown in Fig. 14.8.

Two pronounced peaks are observed at 10.4 and 13.0 T with a relative min-
imum at the crossing field between the ground S = 0 and the first excited S = 1
state, Bc1 = 11.7 T. A single broad peak is observed at Bc2 = 22.4 T. The
observed behaviour is associated with a Schottky-type anomaly which occurs
because two levels are populated in the crossing regions. The corresponding
expression for the specific heat CS is given by:

CS =

(

∆

kBT

)2
exp(∆/kBT )

[1 + exp(∆/kBT )]2
(14.11)

where ∆ is the separation between the pair of populated levels, which is field
dependent. Close to the cross-over fields, Bcn∆ is given by ∆(B) = gµB|Bcn−B|.
The specific heat must show two peaks at B ≈ Bcn ± kBT/(gµB) and go to zero
at Bcn if the levels cross. In fact at Bcn the two levels are degenerate and the
contribution to the specific heat is zero. The experimental data were fitted with
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Fig. 14.8. Specific heat measurements of [LiFe6(OMe)12(dbm)6]B(C6H5)4·
5CH2Cl2 at 0.78 K. The solid and dotted curves are calculated with the
models described in the text. From Affronte et al. (2002b). Copyright (2002)
of the American Physical Society.

two different models, one taking into account the presence of a distribution of
cross-over fields due to sample inhomogeneity (shown as dotted lines) and the
other introducing avoided crossing of the levels, shown as a solid line. For the
latter, which gives the best fit, the field dependence of the level separation is
given as:

∆(B) = {[gµB(Bcn − B)]2 + 4K2
n}1/2 (14.12)

where Kn is the matrix element connecting the two states. The best-fit para-
meters are: Bc1 = 11.81(1) T,K1 = 0.43 K;Bc2 = 22.43(1) T ;K2 = 1.18 K. The
second peak does not show any double structure because the tunnel splitting is
larger than the thermal energy, thus the Schottky contribution to the specific
heat reaches its maximum at Bc2.

The physical origin of the coupling responsible of the avoided crossing is not
yet clarified. In fact a perturbation which is capable of coupling states of dif-
ferent parity is needed, because S and S + 1 states are involved. The obvious
candidate for such behaviour is the antisymmetric exchange, but it requires a
non-centrosymmetric structure. The crystal structure of the compounds does not
fulfil this requirement, so it has been postulated that distortions are operative at
low temperature (Nakano and Miyashita 2001). This is a feature which perhaps
occurs more often than anticipated. For instance in the interpretation of the
neutron data and of the EPR spectra of a Cr8 ring, which at room temperature
has tetragonal symmetry, it was necessary to include a rhombic term (Carretta
et al. 2003a; Van Slageren et al. 2002). Low-temperature structural data showed
that indeed at low T the structure is no longer tetragonal.
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14.2 Grids

The synthesis of grids is a beautiful example of self-assembly (Baxter et al. 1994;
Lehn 1995; Thompson 2002), which gives the required cluster with high yield.
The structure of the largest magnetic grid reported so far (Zhao et al. 2000a,b),
the [Mn9(2-POAP-2H)6]

6+ cation, was shown in Fig. 4.7.
The temperature dependence of the magnetic susceptibility clearly shows that

the predominant coupling is antiferromagnetic. Low-temperature magnetization
suggests a ground S = 5/2 state, with low-lying excited states with higher spin
multiplicity. Using qualitative considerations it is rather easy to give a schematic
representation of the ground state, as shown in Fig. 14.9. Full-scale calculations
confirmed this view (Carretta et al. 2003b; Guidi et al. 2004).

An important piece of information also came from INS experiments (Guidi
et al. 2004). These showed that the first excited state is a S = 7/2 state, while
the second is a S = 3/2. The zero-field splitting factor for the ground S = 5/2
was found to be D5/2 = −0.48 K, while that of the first excited state is D7/2 =
−2.9 × 10−2 K. A convenient form for the Hamiltonian was found to be:

H = −JR

(

7
∑

i=1

Si · Si+1 + S8 · S1

)

− JC (S2 + S4 + S6 + S8) · S9

+ DR

8
∑

i=1

S2
i,z + DCS2

9,z + gµBS · H (14.13)

where R refers to spin in the external ring of eight ions and C to the central ion.
In order to describe the low-temperature behaviour the simplified effective spin
Hamiltonian shown below was used:

Heff = −Jeff
R SA · SB + Deff

R (S2
A,z + S2

B,z) − JCSR · S9 + DCS2
9,z + gµBS · H

(14.14)
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Fig. 14.9. Schematic structure of the magnetic core structure of [Mn9(2-POAP-
2H)6]

6+ with the labelling of the magnetic sites and the spin orientation in
the ground state.
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where

SA = S1 + S3 + S5 + S7;SB = S2 + S4 + S6 + S8;SR = SA + SB;S = SR + S9.
(14.15)

The lowest lying SR levels can be obtained by antiferromagnetically coupling
SA = SB = 10. The SR levels approximately follow a Landé interval rule. In the
assumption Jeff

R > JC the order of the low-lying levels can be easily approximated
assuming that the energies of the S states can be obtained by combining the
SR = SA + SB states with S9. Using spin projection techniques it turns out
that for the lowest lying states Jeff

R = 0.526 JR and Deff
R = 0.197 DR.

An interesting feature of Mn9 is the observation of peaks in the torque curves
at 0.4 K (Carretta et al. 2003; Waldmann et al. 2004), as shown in Fig. 14.10.

The torque rapidly increases at low field, reaching a maximum at about 2 T.
This is due to the zero-field splitting of the ground S = 5/2 state. At higher fields
oscillations are observed. The torque decreases on increasing field and eventually
changes sign. The change in sign was initially associated to a change in magnetic
anisotropy on passing from the ground S = 5/2 state in zero field to the first
excited state S = 7/2. These features are only observed in the torque and not
in the magnetization. Actually the INS data described above showed that there
is an admixture of the S states with the higher lying S = 9/2 state, which
has different sign in the anisotropy and determines the observed change in the
torque. The oscillations are determined by the admixing of states according to
the model outlined below.

In the level-crossing region only two states |S, m = −S〉 and |S + 1, m =
−S − 1〉 are thermally populated and the energy spectrum can be described by
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Fig. 14.10. Torque versus magnetic field for a single crystal of Mn9. The applied
field is in the grid plane. From Waldmann et al. (2004). Copyright (2004) of
the American Physical Society.
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the following Hamiltonian matrix:
[

εs ∆/2
∆/2 εs+1

]

(14.16)

where εS(B, ϕ) and εS+1(B, ϕ) describe the field and angular dependence of
the two levels taking into account the magnetic anisotropy (zero-field split-
ting) but excluding level mixing at the cross-over field. The level mixing is
parametrized by ∆.

14.3 Three-dimensional clusters

14.3.1 Spherical antiferromagnets

As anticipated above the most symmetrical large cluster reported so far is
Mo72Fe30. The geometry of the 30 iron(III) ions is particularly interesting
because it defines an icosidocahedron, as sketched in Fig. 14.11.

In a sense it can be considered as a half-fullerene. The iron ions are on the
vertices of 12 pentagons, like in fullerene, but each pentagon is directly connected
with five nearest-neighbour pentagons, giving rise to 20 triangles on the whole.
It is apparent that the structure is extremely spin frustrated, due to the number
of antiferromagnetic interactions in rings with an odd number of members. Con-
sequently it must be expected that the ground state is characterized by a high
degeneracy.

The temperature dependence of the magnetic susceptibility has been meas-
ured, showing that indeed a weak antiferromagnetic coupling is operative
between nearest neighbour iron ions. Approximate calculations, due to the
impossibility of using exact approaches for the 630 states, suggested a coupling

Fig. 14.11. Left: sketch of the icosidodecahedral arrangement of iron(III) ions
in Mo72Fe30. Right: planar projection. Classically each spin of a triangle
forms an angle of 120◦ with the two neighbours, thus defining three magnetic
sublattices that are highlighted with different shades. From Axenovich and
Luban (2001). The icosidodecahedron is a convex quasiregular polyhedron
(i.e. all corners are identical) with 32 faces, 20 of which (εικoσι) are triangles
while 12 (δoδεκα) are pentagons.
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Fig. 14.12. Field dependence of the magnetization of Mo72Fe30 in a pulsed field.
The nominal temperature is 0.46 K, but the spin temperature has been estim-
ated to be close to 4 K. From Axenovich and Luban (2001); original data in
Müller et al. (2001b).

constant J = −1.57 K (Müller et al. 2001b). These were based on classical
vectors, including only nearest-neighbour coupling constants.

Beyond the fit of the temperature dependence of the susceptibility, the most
interesting feature of Mo72Fe30 is that down to 100 mK the magnetization is not
expected to show any evidence of a gap between the S = 0 ground state and the
first excited S = 1 state. Pulsed magnetization measurements seem to support
this view, although it was impossible to control accurately the spin temperature
in the pulsed field measurements reported in Fig. 14.12 (Müller et al. 2001b).

The theoretical model used to describe the low-lying levels is a generalization
of the treatment used above for the antiferromagnetic rings. We recall that the
low-lying levels of the rings can be described by dividing the N spins into two
subsets, the odd and even sites. The conjecture of Luban (Schnack and Luban
2001) is that this approach can be extended to all the systems of N identical spins
s which can be divided into nsl sublattices according to a symmetry transform-
ation. In the case of the icosidodecahedron there are three sublattices, defined
by the white, grey, and black shading in Fig. 14.11. The spins in each sublattice
must be coupled to their maximal values Ssl = Ns/nsl, and the energies of the
lowest lying states for each S spin are given by:

ES,min ≈ −J

2

[

A(N, s)

N

]

S(S + 1) + Ea (14.17)

where A(N, s) is a coefficient, to be discussed below. Ea is a normalization factor
which guarantees that (14.17) gives the right energy for the ferromagnetic state,
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S = Ns. The low-lying levels are indicated as rotational bands because the
energies of the levels vary quadratically with the total spin like in a rigid rotor.
For the icosidodecahedron the coefficient A(N, s) can be obtained either from a
comparison with the diagonalization of the Hamiltonian matrices or from first
principles following an approach similar to that outlined in Section 14.1 for rings.
For Mo72Fe30 the lowest rotational band takes the form:

ES,min = − J

10
S(S + 1) + 30Js

(

s +
1

10

)

(14.18)

which can be rewritten in an equivalent way to express the energies also of the
excited rotational bands, as:

ES = − J

10
[S(S + 1) − SA(SA + 1) − SB(SB + 1) − SC(SC + 1)] (14.19)

where SA, SB, and SC are the three sublattice spin vectors. For the ground band
SA = SB = SC = 25; for the first excited band SA = 24;SB = SC = 25, and all
the required permutations, and so on.

The calculated magnetization at 0 K yields a staircase with 75 steps which
terminates at the critical field Bc = 15|J |/(gµB). Above Bc the magnetization
saturates and all the spins are parallel to each other. Introducing the above
value of J the critical field is calculated as 17.7 T, in excellent agreement with
the experimental data of Fig. 14.12.

14.3.2 Vanadium cluster

Another three-dimensional cluster containing a high symmetry distribution of
magnetic ions is provided by [VIV

15 As6O42(H2O)], V15. The oxovanadium(IV)
ions, s = 1

2 , are arranged in three layers, containing six, three, and six ions,
respectively, as sketched in Fig. 14.13.

The coupling in the hexagonal layers is strongly antiferromagnetic, in such a
way that at relatively high temperature the spins in the hexagons freeze into the
ground Sh = 0 state, as shown in Fig. 14.13. The coupling between the spins in
the middle triangular layer is very weak, while they are coupled to the spins in
the hexagons. As a consequence the two St = 1

2 and the St = 3/2 levels for the
triangle are thermally populated down to low temperature. The quartet state
was reported to lie 3.8 K above the doublets. INS measurements in the presence
and in the absence of an applied magnetic field showed that the ground pair of
doublets is actually split by about 0.31(4) K (Chaboussant et al. 2004).

From the structural point of view the triangle is equilateral, so that elementary
theory predicts that the two ground St = 1/2 states are degenerate. However,
the presence of degenerate ground levels always gives rise to some instability,
because perturbations tend to break it. The possible perturbations are spin–
orbit coupling and phonon coupling. In general one of the two is dominant and
quenches the effect of the other. If phonon coupling dominates the system will
lower its symmetry, transforming the equilateral triangle into an isosceles or
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Fig. 14.13. Spin alignment in the three layers of V15. The spins in the middle
triangle are frustrated.

scalene one. In the isosceles case two different coupling constants must be taken
into consideration. If we assume that the coupling between S1 and S2 is different
from the other two, then we will have J = J13 = J23 and J ′ = J12. As a
consequence of symmetry breaking the double degenerate ground state is split
into two St = 1

2 levels separated by (J − J ′).
Spin–orbit coupling operates through the antisymmetric exchange term of

Chapter 2.

H = Σi<jdij · Si × Sj . (14.20)

The symmetry requirements of antisymmetric exchange impose that the only
components of dij different from zero are those parallel to the trigonal axis,
which can be assumed to be the Z axis of the cluster. Also in this case the
ground state is split into two Kramers doublets, separated by the energy 2d,
where d = dZ

12 = dZ
13 = dZ

23. Detailed treatments of triangular systems have
been made by Tsukerblat et al. (1987), and thorough investigations of simple
trinuclear species have been performed. The analytical expression for the energies
of the two Kramers doublets, in the simplifying assumption of isotropic Zeeman
interaction, is given by

E±
1(2) = ±

√

d2 +

(

gµBH

2

)2

± dgµBH cos θ (14.21)

where H is the applied magnetic field and θ is the angle between the field and the
trigonal axis of the cluster. 1 and 2 identify the Kramers doublets and ± the spin
components. If the field is parallel to the trigonal axis the two Kramers doublets
are split exactly like in the absence of antisymmetric exchange, and four levels
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are observed. If the field is orthogonal to the trigonal axis the Zeeman splitting
goes to zero and the two levels become degenerate. This is due to the competition
between the antisymmetric exchange which tends to orient the spins parallel to
the trigonal axis, and the field which orients it perpendicular. The application
of high fields again generate the four split sublevels. The consequence of (14.21)
is that the magnetization of the system becomes anisotropic at low field:

χ⊥ =
N(gµB)2

6
√

4d2 + (gµBH)2
tanh

√

4d2 + (gµBH)2

2kBT
. (14.22)

This kind of behaviour was experimentally observed in a trinuclear copper(II)
derivative (Tsukerblat et al. 1987) and in a vanadyl polyoxomolybdate (Gatteschi
et al. 1996).

Formula (14.21) shows that the splitting of the two low-lying spin doublets
is field dependent when the field is not applied parallel to Z. Since no field
effects can be observed in the INS spectra of polycrystalline powder of V15 the
antisymmetric exchange can be considered to be not influential in that case. The
analysis of the spectra showed that the data can indeed be interpreted with a
scalene deformation of the triangle occurring at low temperature (Chaboussant
et al. 2004).

14.3.3 Mixed-valence systems

Most of the compounds we have described so far have localized valences, i.e. the
oxidation state of each metal ion is well described assuming a given number of
electrons. However, it is possible to imagine situations in which the charges are
not rigidly localized on the individual ions, but they can hop from one site to the
other. This is indeed a very interesting case, because the corresponding clusters
can be considered as tiny models of magnetic conductors, while the localized
charge clusters are examples of magnetic insulators. Perhaps the most versatile
mixed-valence clusters are those of general formula [V18O42]

n−, whose structure
is sketched in Fig. 14.14. There are two forms which can be obtained by rotation
of 45◦ along the tetragonal axis. The cage can contain also solvent, indicating
the possible operation of a template effect in the synthesis of the clusters (Müller
et al. 1997).

According to the synthetic conditions the negative charge n can be 4, 6, and 12.
The case with n = 12 corresponds to a localized charge configuration, with all the
vanadium ions formally having a +4 charge. In the n = 6 case six vanadium(IV)
are oxidised to vanadium(V), non-magnetic, and in the n = 4 there are eight
vanadium(V) and 10 vanadium(IV). From the analysis of the X-ray diffraction
data the charges are delocalized, in the sense that it is impossible to indicate
which vanadium is +5 and which is +4. Therefore the clusters can be considered
as examples of class III of the Robin and Day classification of mixed-valence
systems.

The magnetic data for the completely reduced VIV
18 and for the two par-

tially oxidized species are shown in Fig. 14.15. The data are reported as χT
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Fig. 14.14. Sketch of the structure of [V18O42]
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Fig. 14.15. Temperature dependence of the χT product of [V18O42]
n− clusters.

From Müller et al. (1997). Copyright (1997) American Chemical Society.

per mole of cluster and it is immediately apparent that the system with more
unpaired electrons is less antiferromagnetically coupled than the systems with
fewer unpaired electrons. At first this may seem to be counterintuitive, because
with more formally non-magnetic ions one would expect that the average dis-
tance between unpaired electrons should be greater, thus reducing the coupling.
Several qualitative arguments have been suggested.

One possibility is the increase of the exchange due to change of the global
charge on the cluster. A second one is related to spin frustration effects which
hamper the antiparallel orientation of the spins. These should be comparatively
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stronger in the clusters with higher numbers of magnetic centres. Finally a third
possibility is the combination of magnetic exchange and electron transfer, which
is present in the partially oxidized systems. Recent calculations performed at the
ab initio level suggest that indeed it is the increase of the interaction through
the delocalization which increases the effective interactions (Gaita, 2004).
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EMERGING TRENDS IN MOLECULAR NANOMAGNETISM

At the time of writing, the field of SMMs is experiencing fast evolution. As more
and more accurate control of the synthetic process is achieved, new systems
with unprecedented and interesting magnetic phenomena are being produced.
An interesting example is the evolution of the AF rings discussed in the previous
chapter. Thanks to the template effect discussed in Section 4.5 large odd-member
antiferromagnetic rings have recently become available. It is rather intuitive that
these rings represent ideal models to investigate frustration effects at the nano-
scale (Cador et al. 2004), as all the antiferromagnetic interactions cannot be
satisfied at the same time. It has also been suggested that the spin structure of
such rings has some analogies to the Möbius strip, as shown in Fig. 15.1.

Up to now only odd-member rings containing one metal ion with a different
charge on the remaining ones have been investigated, as the templating technique
described in Section 4.5 requires the presence of an unbalanced charge on the
ring. Equally interesting is the selective substitution of just one metal centre of an
even-member ring, with an ion carrying a different spin. The ground state of the
ring is therefore no longer zero. The dynamics of this uncompensated spin seems

Fig. 15.1. The spin frustration in an odd-member antiferromagnetic ring is
reminiscent of the Möbius strip. In fact, if the antiferromagnetic interactions
are satisfied in a region of the ring a ‘knot’ is found where the two ends of
the string meet. In ideal systems the ‘knot’ is delocalized on the entire ring.
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particularly appealing for its relevance in quantum computing (Troiani et al.
2005a,b) and for low-temperature magnetocaloric effects (Affronte et al. 2004b).

As far as slow relaxing magnetic clusters are concerned the competition to
obtain higher spin ground states and stronger anisotropy is expected to continue.
However, even if molecular nanomagnets with blocking temperatures suitable
for applications were successfully obtained, this would not be enough to fully
exploit the potential of these materials. The magnetization of each molecule
must become addressable to reach information storage at the molecular level.
The organization of SMMs on surfaces represents a first step in this direction,
as scanning probe techniques used in surface science are the only ones that, at
the moment, can reach such a high spatial resolution. Moreover, scanning probe
techniques, and in particular scanning tunnel microscopy, are in principle able
to modify the properties of an individual molecule (Park et al. 2000).

The very first attempts to organize SMMs were based on the inclusion of
Mn12 derivatives in Langmuir–Blodgett films (Clemente-Leon et al. 1998). Some
successful attempts to obtain thin films or monolayers of SMMs have recently
been presented. We can divide them into two categories based on the strength of
the interaction of the SMM with the surface, which is significantly weaker when
simple physical adsorption is occurring, compared to the case where a chemical
bond is formed. This last case is mainly based on the strong affinity of gold
towards metal surfaces (Cornia et al. 2003; Abdi et al. 2004; Zobbi et al. 2005)
or on the reactivity of unsaturated C=C bonds with a native silicon surface
(Condorelli et al. 2004; Fleury et al. 2005). A more relevant difference for the
aims of this book is the distinction between those approaches that employ non-
modified SMMs and those that are based on the specific functionalization of
SMMs with linker groups that are able to graft the surface. The second examples
concern Mn12 derivatives where the acetate has been substituted by carboxylic
acid carrying a sulphur atom on the aliphatic or the aromatic residue. This type
of encapsulation with functionalized ligands is quite common for a wide range
of particles but in molecular nanomagnets it can reach ‘surgical’ precision. An
interesting example of tailored on-demand molecule is shown here.

It is quite intuitive that, given the large magnetic anisotropy intrinsic of
SMMs, their organization on surfaces requires controlling also the orientation
of the molecules on the surface. A possible solution is the controlled substi-
tution of only some ligands by playing on their different reactivity (Fleury
et al. 2005), thus favouring anchorage in a preferred direction. A different
strategy has been used that relies on the design of bicarboxylate ligands
based on anthracene-1,8-dicarboxylic acid (Pacchioni et al. 2004). As shown
in Fig. 15.2a the separation between the two −COO–groups (∼5.2 Å) nicely
fits the distance between the axially coordinated carboxylates in Mn12 clusters.
Indeed two possible substitutions of the axial carboxylates can be expected,
as depicted in Fig. 15.2b, but bridging mode I is observed in the cluster
of formula [Mn12O12(O2CC6H5)8(L)4(H2O)4]·8CH2Cl2, with H2L = 10-(4-
acetylsulfanylmethyl-phenyl)-anthracene-1,8-dicarboxylic acid. Grafting of this
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(a) (b) (c)

Fig. 15.2. (a) Structure of 10-(4-acetylsulfanylmethyl-phenyl)-anthracene-1,8-
dicarboxylic acid. (b) Two possible coordination modes of the bicarboxylic
acid replacing axial ligand of Mn12 clusters. (c) X-ray structure of
[Mn12O12(O2CC6H5)8(L)4(H2O)4]·8CH2Cl2. Adapted from Pacchioni et al.
(2004) by permission of the Royal Society of Chemistry.

molecule is expected to favour the orientation of the easy axis of magnetization
perpendicular to the surface.

The organization on surfaces of SMMs does not differ substantially from that
of organic molecules but the discussion of these aspects goes far beyond the goals
of this book. Many texts and reviews are available on the matter (Ulman 1991;
Xia and Whitesides 1998). On the contrary, data on the magnetic properties
of monolayers of SMMs are unfortunately not yet available, despite the great
relevance that the interplay of magnetic quantum tunnelling and the tunnelling
of conducting electrons through the anchored molecules could have for potential
applications (Kim and Kim 2004).

We are therefore abandoning here this fascinating subject to dedicate the
last few pages to other molecular systems exhibiting slow relaxation of the
magnetization.

15.1 SMMs based on a single metal ion

The synthetic approaches to molecular nanomagnets described in this book have
provided fascinating examples of giant clusters that approach the dimensions
of small proteins or those of conventional magnetic nanoparticles. The opposite
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trend is, however, also observed: the search for smaller and smaller SMMs, down
to the ultimate limit, a single magnetic centre that shows magnetic memory.
The largest spin value that can be observed for a metal ion is S = 7/2 for Gd3+.
More promising is, however, the use of more anisotropic rare earth ions, which
can reach a multiplicity as high as J = 8 for Ho3+ (Benelli and Gatteschi 2002).
Rare earths have been introduced in molecular clusters containing also transition
metal ions, with the aim to increase the magnetic anisotropy, and mixed clusters
with nuclearity Cu2Tb2 (Osa et al. 2004), or Dy6Mn6 (Zaleski et al. 2004) have
been obtained. A non-vanishing value of χ′′ has been observed at low frequency,
and this is a fingerprint of SMM behaviour as seen in Section 3.1.5. However, no
real increase in the energy barrier, compared to Mn12 clusters, has been obtained
up to now.

A separate discussion is necessary for the class of molecules investigated
by Ishikawa and co-workers (2003a) comprising one lanthanide metal ion,
e.g. Dy3+, Ho3+, or Tb3+, in double decker compounds with phthalocyanine.
Phthalocyanine are macrocyclic flat molecules that contain eight nitrogen atoms,
but only four act as coordinating sites (see Fig. 15.3a). The donor atoms are in
the five-member rings. Two bis-deprotonated phhtalocyanine molecules, abbre-
viated as Pc, coordinate a rare earth metal ion forming a mononegative anion
of general formula [(Pc)2M]− with the metal sandwiched between two ligands,
as shown in Fig. 15.3b. The environment around the lanthanide is strictly tet-
ragonal and the strong spin–orbit coupling induces a large splitting in zero field
of the J = 6, 15/2, and 8 for Tb3+, Dy3+, and Ho3+, respectively. According to
Ishikawa et al. (2003b), the ground doublet, which assumes the maximum |mJ |
value for Tb3+ and intermediate values for Dy3+ and Ho3+, is separated from
the first excited doublets by 627 K, 50 K, 21.6 K, for the three ions, respectively.

These compounds, even when diluted in a diamagnetic matrix constituted by
[(Pc)2Y]−TBA+ (TBA+ = tetrabutylammonium cation) show a non-zero χ′′.

N

N

N HN

N

N N

NH

–

M3+

(a) (b)

Fig. 15.3. (a) View of the structure of the phtalocyanine molecule. (b) Schematic
structure of the double-decker [(Pc)2M]− anion.
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The fingerprint is observed at higher temperature than in SMM based on 3d
metal ions (Ishikawa et al. 2004), hysteresis is only observed well below 1 K and
is significantly narrower than that of SMMs. The hysteresis is characterized by
a structure of equally spaced steps, with a field separation of about 20 mT for
[(Ho)2Y]−TBA+ (Ishikawa et al. 2005).

The molecular nature of the material seems to play a minor role here, and
indeed a similar stepped hysteresis was previously observed in the inorganic
compound LiYF4 doped with Ho3+ magnetic ions (Giraud et al. 2001). The origin
of these close steps cannot be due to the level crossing of the states of ground
doublet with the excited ones because these crossings occur at much higher
fields. This suggested a different nature of the steps: the crossing or avoided
crossing of the hyperfine sublevels. Let us take as an example the Ho3+ ion. The
163Ho isotope has a natural abundance of 100% and is characterized by I = 7/2.
The ground doublet is characterized by mJ = ±5, and each of these states is
split into eight hyperfine levels, as shown in Fig. 15.4. The hyperfine splitting is
described by

Hhf = AJJ · I (15.1)

where AJ is of the order of 40 mK for Ho3+ (Abragam and Bleaney 1986).
The level crossings thus show a separation of about 20 mT and can become

–178,5

(a) (b)

(c)

–179,0

–179,5

–180,0

–200 –150 –100 –50 0 50 100 150 200
m0HZ (mT)

E
(K

)

E
(K

)I = 7/2 5/2 3/2 1/2

–1/2

–3/2

–5/2

–5/2

–3/2

–1/21/23/25/27/2

–7/2

–7/2

–179,5

–180,0

1,0

0.5

0,0

M
/M

s

–0,5

–1,0

–80 –60 –40 –20 0 20 40 60 80

m0HZ (mT)
–80 –60 –40 –20 0 20 40 60 80

T= 50 mK

Fig. 15.4. (a) Calculated longitudinal field Zeeman splitting of the ground
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same graph to show the coincidence between the field value of the hyper-
fine level crossings and the steps in the hysteresis cycle (c) recorded with a
micro-SQUID at 50 mK and with a sweeping rate of 0.11 mT/s. Courteously
provided by B. Barbara.
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avoided level crossings if the crystal field effects, allowed by tetragonal sym-
metry and described by the Stevens operators of Appendix A.5, are taken into
account.

Acceleration of the reversal of the magnetization, and thus steps in the hys-
teresis cycle shown in Fig. 15.4, are observed at level crossings, giving rise to a
phenomenon similar to the resonant quantum tunnelling described in Chapter 6
(Giraud et al. 2001; Ishikawa et al. 2005).

15.2 Single chain magnets

Despite much effort, which we hope has been efficiently highlighted in the pre-
vious pages of this book, the critical temperatures needed to observe SMM
behaviour are still lower than 4 K. The route to increase the anisotropy bar-
riers in zero-dimensional magnets, the clusters described so far, is a difficult one,
therefore alternative roads deserve to be explored. A rather obvious idea is that of
employing one-dimensional systems, because they may afford extended correla-
tion lengths of the magnetization at relatively high temperature, especially if they
are associated to Ising type magnetic anisotropy. Indeed a time-dependent ver-
sion of the Ising model was proposed as early as 1963 by Glauber, who assumed
that each spin can independently flip with a probability which depends on its
environment and temperature, as will be discussed in detail below. The Glauber
dynamics, predicting an exponential dependence of the relaxation time on the
ratio between exchange interaction and temperature, was widely used by the-
orists in different fields even besides magnetism, but until the beginning of the
twenty-first century there was no application to the original objects, namely
to one-dimensional ferromagnets. This can be justified by the fact that at the
low temperatures where slow Glauber dynamics becomes observable in real time
or in ac susceptibility, most systems have already undergone a cross-over to
three-dimensional magnetic order (Steiner et al. 1976).

In fact ideal Ising one-dimensional ferromagnets do not order above 0 K, but
real systems do show transitions to three-dimensional order due to the combined
effect of the long correlation developed at low temperatures and the weak residual
interchain interactions (dipolar and/or exchange in nature). Therefore the recipe
to observe Glauber dynamics is to assemble Ising-type magnetic building blocks
in chains and isolate the chains as efficiently as possible. The latter requirement
can be achieved by using molecular building blocks, where the magnetic active
centre, for instance a metal ion, is embedded in a cover of an essentially magnet-
ically inert organic moiety which allows having interchain metal distances longer
than 1 nm.

The compound with the structure sketched in Fig. 15.5 was the first
reported to show Glauber dynamics (Caneschi et al. 2001). It has formula
[Co(hfac)2(NITPhOMe)], CoPhOMe, where hfac = hexafluoroacetylacetonate,
and NITPhOMe = 4′-methoxy-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-
oxide). This material does not show evidence of long-range order although the
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Fig. 15.5. Sketch of the structure of CoPhOMe. The cobalt ions are shown as
large dark grey spheres, while oxygen atoms are drawn as smaller black
spheres and nitrogen as white spheres. The helix winds up along the
crystallographic c axis.

intrachain exchange interaction is as large as 200 K. It can be considered as an
analogue of the ring comprising six manganese(II) and six radicals described in
Chapter 1, whose structure was given in Fig. 1.17. An interesting feature of the
crystals is that they either comprise right or left helices, with a spontaneous
resolution of the enantiomers from solution. The chains have imposed crystal
symmetry C3 and they are formed by cobalt(II) ions bridged by the NITPhOMe
radicals.

As previously described, cobalt(II) in octahedral symmetry has a ground 4T1g

state which is split by crystal field and spin–orbit coupling effects to yield an
anisotropic Kramers doublet which is the one populated at low temperature. In
a spin Hamiltonian approach this corresponds to an effective anisotropic S = 1

2
state, which couples to the isotropic S = 1

2 spin of the radical. The overall coupl-
ing between the two spins is antiferromagnetic but, since the g values of the cobalt
and of the radical are very different from each other, the system behaves like a
one-dimensional ferrimagnet. Experimentally the out-of-phase ac magnetic sus-
ceptibility goes through a frequency-dependent maximum as shown in Fig. 15.6,
showing that the magnetization relaxes slowly below 15 K. In fact the relaxa-
tion time of the magnetization, deduced from the frequency and temperature
dependence of the position of the maximum of χ′′, follows an Arrhenius law with
∆ = 154(2) K and τ0 = 3.0(2) × 10−11 s. Compared to Mn12ac the barrier is
more than doubled, while the pre-exponential factor is faster by four orders of
magnitude. Magnetization measurements on single crystals below 4 K show a hys-
teresis loop when the field is parallel to the trigonal axis and no hysteresis when it
is applied perpendicular to that. The frequency dependence of the magnetic sus-
ceptibility rules out the transition to long-range magnetic order and is compatible
with either ‘superparamagnetic’ or ‘spin glass’ behaviour. It must be recalled that
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Fig. 15.6. Temperature dependence of the in-phase (a) and out-of-phase
(b) ac magnetic susceptibility of CoPhOMe, in the frequency interval
0.18Hz–95 kHz. (c) The temperature dependence of the relaxation time.
Triangles correspond to data extracted from the time decay of the rem-
nant magnetization. Redrawn from Caneschi et al. (2001) and Caneschi et al.
(2002). With the permission of Wiley-VCH and EDP Sciences.

spin glass behaviour had previously been associated with the slow relaxation of
the magnetization of [MnTPP][TCNE], where TPP2− is tetraphenylporphinate
and TCNE− is the radical anion of tetracyanoethylene, also described in Chapter
1 (Hibbs et al. 2001). On the other hand, spin glass behaviour is in general asso-
ciated with very fast, sometimes unphysical, pre-exponential factors, suggesting
that indeed CoPhOMe follows Glauber dynamics.

Shortly after the report of the unusual magnetic properties of CoPhOMe, a
French–Japanese team reported another example, formed by the repetition in
space of a binuclear manganese(III) species bridged by nickel(II) complex, as
sketched in Fig. 15.7 (Clerac et al. 2002).

Also in this case the organic groups efficiently separate the chains one from
the other, with the shortest interchain Mn-Ni distance of 10.39 Å. The dominant
exchange interaction is the antiferromagnetic one between nickel and the two
nearest-neighbour manganese ions, thus at low temperature the system behaves
as a collection of S = 3 spins, which interact ferromagnetically thanks to the
manganese–manganese ferromagnetic coupling (Miyasaka et al. 2004). At low
temperature the uniaxial magnetic anisotropy of the S = 3 units warrants
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the Ising behaviour of the chain, which is characterized by slow relaxation of
the magnetization and the opening of the hysteresis loop. The expression ‘single
chain magnets’ was suggested in analogy to single molecule magnets (Clerac
et al. 2002). The same comments on the real meaning of the expression which
were made for SMMs at page 11 can be repeated here. The Arrhenius behaviour
of the relaxation time was fitted with τ0 = 5.5(1) × 10−11,∆ = 72(1) K. Sev-
eral other examples of SCM have been reported since and the list keeps growing
(Lescouezec et al. 2003; Miyasaka et al. 2003; Liu et al. 2003; Chakov et al. 2004;
Shaikh et al. 2004; Miyasaka et al. 2004; Costes et al. 2004; Pardo et al. 2004;
Ferbinteanu et al. 2005).

The key idea of the Glauber dynamics is based on the consideration of
the probability of reversing a spin in a chain where only nearest-neighbour
interactions of the Ising type are operative according to the spin Hamiltonian:

H = −JΣk=1,N σk σk+1 (15.2)
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where σk = ±1. Indicating with α the intrinsic probability of reversal for an
isolated spin, three types of transitions must be taken into account, depending
on the orientations of the neighbouring spins σk±1, as schematized below:

ωσk→−σk
=

1

2
α(1 − γ) (15.3a)

ωσk→−σk
=

1

2
α (15.3b)

ωσk→−σk
=

1

2
α(1 + γ) (15.3c)

where γ is a factor which depends on the strength of the nearest-neighbour
interaction:

γ = tanh(2J/kT ). (15.4)

For a ferromagnetic coupling, J > 0, γ tends to 1 when the temperature
approaches zero, and the probability in (15.3a), the one involved in the relaxation
of a saturated sample, goes to zero too.

The average time τ needed to completely reverse the magnetization starting
from a saturated configuration can be obtained considering that there must be a
sequence of events. At a given site k the magnetization is reversed with a cost of
energy equivalent to the break of the two bonds with the two nearest neighbours,
as shown in Fig. 15.8b. This, according to (15.2), corresponds to a barrier

∆ = 4J. (15.5)

After the first reversal the successive steps cost zero, because the flip occurs at
a site with a positive and a negative interaction, respectively.

(a)

(b)

(c)

∆E = 4J

∆E = 2J

Fig. 15.8. Schematic view of the mechanism of relaxation in 1D Ising systems.
The sample is prepared in the saturated state (a) and the relaxation starts
with the reversal of one spin in the infinite chain with an energy cost ∆E = 4J
(b). When the chain has a finite length the reversal of the spin at one edge
has a halved energy cost (c).
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The relaxation time is therefore given by:

τ = τ0 exp(4J/kT ) (15.6)

where τ0 is directly related to α, τ0 = α−1.
Comparing with the Arrhenius behaviour of SMM, Single Chain Magnet are

in principle able to show a larger barrier than SMM because for SCM its height
depends on the strength of the exchange interaction. In fact CoPhOMe has a
much larger barrier than Mn12ac, and also Mn2Ni described above has a higher
barrier. In both cases, however, the pre-exponential factor is much shorter than
observed in SMM, thus the increase of the blocking temperature TB, assuming
that TB corresponds to the temperature at which τ = 100 s, is sizeable but not
dramatic, as shown in Fig. 15.9 where the calculated temperature dependence of
the relaxation times of Mn12ac and CoPhOMe is compared.

Many questions remain open in SCMs. One important point is that of reconcil-
ing the absence of long-range order and the Ising-type behaviour of the chains.
In fact the exponential divergence required by one-dimensional Ising magnets
is such that even very small dipolar interactions between chains might trigger
the cross-over to three-dimensional magnetic order. A possible explanation of
this might lie in the role of defects. It is well known that one-dimensional mag-
nets are much more sensitive than three-dimensional magnets to the presence of
defects. In fact if in a one-dimensional system a defect is present it breaks the
chain of magnetic interactions and produces large finite size effects. For three-
dimensional systems it is always possible to find alternative pathways in the
presence of a concentration of defects that remains below the percolation limit.
On the contrary, the infinite chain will be cut in a number of segments whose
average length depends on the concentration of defects. For a system with con-
centration c of non-magnetic defects the probability PL of having a segment of
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Fig. 15.9. Calculated temperature dependence of the relaxation time of the mag-
netization of Mn12ac (black solid line) and CoPhOMe (black broken line)
assuming an Arrhenius behaviour. The estimated blocking temperatures,
assumed to corresponds to τ = 100 s, are also shown.
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length L, expressed in lattice steps, is given by:

PL = c2(1 − c)L. (15.7)

The presence of defects has major effects on the dynamics of the magnetization,
because the reversing of a spin next to a non-magnetic site halves the barrier to
be overcome, being ∆ = 2J . This is clearly seen in Fig. 15.8c. The magnetization
reversal is likely to occur at the end of the segment because this costs only the
break of one interaction, however only a small fraction of spins is located next
to a defect. Two regimes are therefore expected, depending on the temperature
and the defect concentration. When the length of the segment, L, is much longer
than the correlation length of the spins, ξ, the reversal of the spin occurs at
random and the barrier is given by (15.5). This situation corresponds to the
high-temperature limit. On the other hand, when ξ is much longer than L, the
reversal occurs preferentially at the defective sites and the barrier is halved
(Kamphorst Leal da Silva et al. 1995; Luscombe et al. 1996). For the process to
be efficient, thus leading to magnetization reversal, the wall that is nucleated at
one edge of the segment must reach the other end. The number of steps required
is proportional to the length of the segment, providing a linear dependence on
L of the relaxation time.

Investigations on doped systems where diamagnetic zinc(II) replaces randomly
cobalt(II) confirm this view, and show that even in nominally pure compounds
defects still play a role (Bogani et al. 2004). In real systems, however, a distribu-
tion of lengths is observed centred around the value L̄ = 1/c. It is therefore
necessary to take into account this distribution but the results are not very dis-
similar from those obtained assuming an average value, L̄. This fact arises from
the peculiar linear dependence of the relaxation time on the size of the sys-
tems that strongly differentiates SCMs from SMMs. These latter in fact show an
exponential dependence on S2. The same difference is encountered with single-
domain magnetic particles, where the relaxation time scales exponentially with
the volume of the particle. Therefore SCMs seem to offer the possibility of storing
information on segments of interacting spins. SCMs are characterized by com-
paratively higher blocking temperatures and higher magnetization than SMMs
and show, at the same time, a less dramatic sensitivity to the dimensions.

The field of single chain magnets merges with that of single molecule mag-
nets in some cases. In fact examples have been reported of SCMs built up with
building blocks that show, on their own, slow relaxation of the magnetization
(Ferbinteanu et al. 2005). The relaxation time has been found to follow the Arrhe-
nius law with a barrier which appears to be the sum of the Glauber barrier, due
to the magnetic exchange along the chain, and the anisotropy barrier of the slow
relaxing building blocks (Coulon et al. 2004). This composite effect is expected
to be exploited in the future to sensibly increase the blocking temperature of
molecular nanomagnets.
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APPENDIX A

SYSTEMS OF UNITS, PHYSICAL CONSTANTS AND

BASIC MATHEMATICAL TOOLS

A.1 International system of units, electromagnetic CGS and

electrostatic CGS systems

In these three systems the Coulomb interaction energy between two electric
charges q and q′ at distance r in vacuum can be written as

Wcou =
qq′

ǫ̃0r
(A.1)

while the interaction energy between two magnetic dipoles µ and µ′ at distance r

in vacuum is

Wmag = −µ̃0

∑

αγ

r−3

[

δαγ − 3

r2
rαrγ

]

µαµγ . (A.2)

The usual constants ǫ0 and µ0 are related to ǫ̃0 and µ̃0 in the international system
(SI) by

ǫ̃0 = 4πǫ0, µ̃0 =
µ0

4π
(A.3)

while, in the electrostatic (es) and electromagnetic CGS systems, one has simply

ǫ̃0 = ǫ0, µ̃0 = µ0. (A.4)

In vacuum, the electric and magnetic fields and inductions E, H, D, B are
related by the relations

D = ǫ0E, B = µ0H (A.5)

and satisfy the Maxwell equations

∂

∂t
B = −rotE,

∂

∂t
D = rotH (A.6)

and

divD = divB = 0. (A.7)

From the above equations it is easy to deduce ǫ0µ0∂
2H/∂t2 = −∇2H and

therefore, in the three systems of units,

ǫ0µ0c
2 = ǫ̃0µ̃0c

2 = 1 (A.8)

where c is the speed of light.
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In the international system, µ0/(4π) = µ̃0 = 10−7 henry/m and ǫ0 can be
deduced from (A.8). In the emCGS system, µ0 = 1 emCGS unit and ǫ̃0 can
be deduced from (A.8). In the esCGS system, ǫ0 = 1 esCGS unit and µ0 can be
deduced from (A.8).

A.2 Gauss’ system of units

In this system, also called symmetric CGS, (A.1) and (A.2) hold with
µ0 = ǫ0 = 1, so that (A.8) is not valid. The Maxwell equations (A.6) are
replaced by

∂

∂t
B = −c rot E,

∂

∂t
D = c rot H (A.9)

where the value of c is equal to that of the speed of light.
For those who are afraid to make mistakes and want to be able to check that

their formulae have the correct dimension, Gauss’ system should be prohibited
since it seems to imply that ǫ0 and µ0 have the same dimensions.

In this book, the magnetic induction B is usually called the field and
designated by H.

A.3 Other common units

In aircraft and on the roads of the USA, miles and yards are still used as length
units. Physicists do not use them, but do use the Ångström, which is 0.1 nm.
More complicated are the energy units used by physicists in various areas. To
measure an energy W in statistical physics, it is common to give the ratio W/kB

of W to Boltzmann’s constant and very often a physicist will say that W is a
certain number of kelvin, e.g. 2.3. This means that W/kB = 2.3 K. A spectro-
scopist will alternatively say that W is a certain number of cm−1, e.g. 3. This
means that k defined by W = h̄ck is 3. A specialist of electrons in solids will
measure W in electron-volts (eV), and 1 eV is the energy W = e of an electron
of charge −e subject to a potential of 1 volt. Neutron spectroscopists often use
the milli-electron-volt (meV) and high-energy physicists use the kev, the MeV
or the GeV etc. The conversion is easily performed if one knows the essential
physical constants.

A.4 Physical constants

Velocity of light:

c = 2.998 × 108 m/s

Charge of an electron: −e, with

e = 1.602 × 10−19 coulomb

Mass of an electron:

m = 0.9109 × 10−31 kilograms
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Planck constant:

h̄ =
h

2π
= 1.054 × 10−34 Js (A.10)

Boltzmann constant:

kB = 1.3806 × 10−23 JK−1 (A.11)

Bohr magneton:

µB =
eh̄

2m
= 0.9274 × 10−23 JT−1 (A.12)

Energy units:

1 eV = 1.602 × 10−19 J

is equivalent to 1.16 × 104 kelvin and 0.807 × 104 cm−1.

A.5 Stevens operators

The Om
n operators are defined as:

O0
2 = 3S2

z − s(s + 1) (A.13)

O2
2 =

1

2
(S2

+ + S2
−) (A.14)

O0
4 = 35S4

z − [30s(s + 1) − 25]S2
z + 3s2(s + 1)2 − 6s(s + 1) (A.15)

O2
4 =

1

4
[7S2

z − s(s + 1) − 5](S2
+ + S2

−)

+
1

4
(S2

+ + S2
−)[7S2

z − s(s + 1) − 5] (A.16)

O3
4 =

1

4
Sz(S

3
+ + S3

−) +
1

4
(S3

+ + S3
−)Sz (A.17)

O4
4 =

1

2
(S4

+ + S4
−). (A.18)

A.6 3j- and 6j-symbols

The 3j-symbols and 6j-symbols arise when considering, respectively, two and
three coupled angular momenta. They can be found in the textbook by
Messiah (1965) or on the web sites http://mathworld.wolfram.com/Wigner3j-
Symbol.html and http://mathworld.wolfram.com/Wigner6j-Symbol.html.

The 3j-symbols are given by the formula
⎛

⎝

S J S′

M Q P

⎞

⎠ = (−1)S−J−P
√

Γ(S, J, S′)
∑

t

(−1)t

× [(S + M)!(S − M)!(J + Q)!(J − Q)!(S′ + P )!(S′ − P )!]1/2

t!(S′ − J + t + M)!(S′ − M + t − Q)!(S + J − S′ − t)!(S − t − M)!(J − t + Q)!
(A.19)

http://mathworld.wolfram.com/Wigner3j-Symbol.html
http://mathworld.wolfram.com/Wigner3j-Symbol.html
http://mathworld.wolfram.com/Wigner6j-Symbol.html
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with M + P + Q = 0 and |S − J | ≤ S′ ≤ S + J . The quantity

Γ(S, J, S′) =
(S + J − S′)!(S′ + J − S)!(S − J + S′)!

(S + J + S′ + 1)!

has been introduced. Finally, the sum is extended to all integers t for which all
the factorials are non-negative. The number of terms is µ + 1 where µ is the
smallest of the nine numbers S ± M , J ± Q, S′ ± P , S + J − S′, S′ + J − S and
S′ + S − J .

The 6j-symbols are defined as
⎧

⎨

⎩

J1 J2 J3

J4 J5 J6

⎫

⎬

⎭

= [Γ(J1, J2, J3)Γ(J1, J5, J6)Γ(J4, J2, J6)Γ(J4, J5, J3)]
1/2

∑

t

(−1)t

× (t + 1)!

(t − J1 − J2 − J3)!(t − J1 − J5 − J6)!(t − J4 − J2 − J6)!(t − J4 − J5 − J3)!

× 1

(J1 + J2 + J4 + J5 − t)!(J2 + J3 + J5 + J6 − t)!(J3 + J1 + J6 + J4 − t)!
(A.20)

where the sum over t has the same meaning as for the 3j symbols. Now the
number of terms is µ+1 where µ is the smallest of the 12 numbers J1 +J2 −J3;
J1 + J5 − J6; J4 + J2 − J6; J4 + J5 − J3; J2 + J3 − J1; J5 + J6 − J1; J2 + J6 − J4;
J5 + J3 − J4; J3 + J1 − J2; J6 + J1 − J5; J6 + J4 − J2; J3 + J4 − J5.

A.7 Different notation

Not all authors use the same notation. For some authors, the electron charge is
e < 0, while in this book it is assumed to be −e.

Kinetic moments, called h̄L, h̄S, h̄J, in this book, may be called L, S, J by
other authors.

A majority of authors agree to write the magnetic moment of an orbital
moment h̄L as

m = −µBL (A.21)

but for a spin S some authors, for instance Ibach & Lüth (1999), use a + sign
and write

m = g0µBS

with g0 ≃ 2.
In this book, the − sign is always used, so that the kinetic moment J, has

magnetic moment

m = −gJµBJ (A.22)

with J = L + S.
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It follows that the magnetic energy of a kinetic moment in a magnetic field
H is

W = gµBH · S (A.23)

with a + sign. As a matter of fact, a − sign appears in the literature approx-
imately as frequently! This is (generally!) not a mistake, but an indication
that g is negative, g ≃ −2 (Mohr and Taylor 2003) or that µB is negative,
µB = −eh̄/2m = 0.9274×10−23 joules/tesla (Cohen-Tannoudji et al. 1986). Our
choice to define e > 0, µB > 0, g > 0 seems to be most widely used (e.g. Cohen
and Taylor 1987).

A detailed analysis of these discrepancies will be found in the review of Villain
(2003).



APPENDIX B

THE MAGNETIC FIELD

B.1 A complicated vocabulary

In books and articles about magnetism several kinds of magnetic fields are
encountered:

the external field;
the demagnetizing field (resulting from dipole interactions);
the local field (also resulting from dipole interactions);
the ‘Maxwellian’ field and induction (those which appear in the Maxwell

equations).

This appendix is intended to reduce the unavoidable confusion which arises from
these various concepts.

In this book, what is officially called ‘external magnetic induction’ has gener-
ally been called magnetic field and designated by the symbol H (however,
measured in teslas, which are units of induction). This terminology is appropriate
to a microscopic, statistical mechanical description, which allows fluctuations.

In this appendix, the legal terminology is used. The relation between the
external field (which will be called H0), the ‘Maxwellian’ field H and the
‘Maxwellian induction’ B = µ0[H+M] will be recalled. The international system
(SI) of units will be used and M is the magnetization.

B.2 Demagnetizing field and local field

As seen in Chapter 2, the interaction between magnetic moments mi localized
at lattice sites i may be assumed to have the bilinear expression

W = −1

2

∑

ij

∑

αγ

Γαγ
ij mα

i mγ
j (B.1)

where Γαγ
ij is the sum of the long-range dipole interaction (2.50) and of the

short-range exchange interaction (2.53).
In (B.1), the sum of the terms which contain a particular moment mi can be

written as

W = −µ0Hi · mi (B.2)

where

µ0Hiα =
∑

j

∑

γ

Γαγ
ij mα

i mγ
j . (B.3)
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Expression (B.2) is the same as the energy of a spin subject to a field Hi.
However, Hi can fluctuate, in contrast with a magnetic field. In macroscopic
magnetism, fluctuations are ignored and (B.3) can be identified with a field which
is called the ‘local field’. The evaluation of the electrostatic local field in fluids at
thermal equilibrium is a classical problem investigated in various cases by many
authors from O.F. Mossotti in the middle of the nineteenth century to L. Onsager
in 1936, not forgetting H.A. Lorentz at the beginning of the twentieth century.

The contribution of the long-range dipole interaction in (B.3) is particularly
important. It systematically tends to decrease the magnetization and for that
reason it is called the demagnetizing field. Its expression can be obtained from
(2.50). Assuming a continuous variation of the magnetization in space, it can be
transformed into

Hα
dem =

1

4π

∫

d3r′ [(r′
α − rα)|r′ − r|−3

]

divM(r′). (B.4)

A particularly simple case is that of a uniformly magnetized ellipsoid in a field
parallel to one of its axes. Then the demagnetizing field is uniform and equal to

Hdem = −dM (B.5)

where the ‘demagnetizing factor’ d depends on the sample shape and is different
for the three axes. Formula (B.5) is also correct for an arbitrary field direction,
but d is now a tensor. For a sphere d = 1

3 in the international systems of units.
For an infinitely long ellipsoids, d = 0 for a field parallel to the long axis, while
d = 1

2 for a field orthogonal to that. For an infinitely large disk d = 1 for a field
parallel to the short axis, while d = 0 for a field orthogonal to that axis. If CGS
units are used, these values must be multiplied by 4π.

The use of the Maxwellian field H = H0 − Hdem is a great advantage in
macroscopic magnetism since, for instance, the magnetization M is related to H
by the relation M = χH. However, for a microscopic calculation, fluctuations
have to be taken into account and the relevant magnetic field is the external field.

B.3 Free energy

It is therefore of interest to be able to evaluate the free energy as a function
of the external field (as is done in quantum mechanics or statistical mechanics)
or as a function of the Maxwellian field (as is generally done in magnetostat-
ics, electrostatics, or electrodynamics). The link between both pictures is well
explained by Landau and Lifshitz (1969) in their Section 31.

Let the point of view of statistical mechanics be recalled first. One starts from
the energy or Hamiltonian of the system in an external field H0, e.g.

H = −µ0

∑

i

H0
i · mi − 1

2

∑

ij

∑

αγ

Γαγ
ij mα

i mγ
j + Han. (B.6)

Then one deduces the partition function

Z = TrH (B.7)
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and the free energy

F̃ = −kBT lnZ. (B.8)

The tilde corresponds to the notation of Landau and Lifshitz (1969).
It follows from formulae (B.6)–(B.8) that at thermal equilibrium

〈mα
i 〉 = − d

dB0
iα

F̃ (B.9)

where the derivative is at constant temperature and volume, and B0
i = µ0H

0
i is

the external induction (generally called Hi in this book). Comparison of (B.9)
with formula (31.3) of Landau and Lifshitz (1969) shows that their free energy F̃
coincides with the above-defined function. However, Landau and Lifshitz (1969)
define F̃ in a different way, namely in terms of the Maxwellian field rather than
the external field. They state that in an infinitesimal transformation at constant
volume and temperature, the variation of F̃ is

dF̃ = −
∫

d3rB · dH. (B.10)

This establishes the relation between a description in terms of the external field
and the Maxwellian field.

The variation of F̃ in an isothermal, reversible transformation at constant
uniform field is the work provided to the magnetic system. It is a minimum at
equilibrium. It is appropriate to introduce another free energy F̃ :

F = F̃ +

∫

d3rB · H. (B.11)

The variation of F̃ when magnetizing a system is the work which should be
provided. In the simple case of a paramagnet of susceptibility χ and volume V
in a uniform field H0, without demagnetizing field, F̃ = −χV H2

0 and F = χV H2
0 .

If one wants to magnetize a system by a magnetic field, one has to provide energy
to create the field, but in a constant magnetic field, the magnetization of a system
provides energy.
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HOW IRREVERSIBILITY COMES IN

Microscopic equations of motion are invariant under time reversal, at least
in classical mechanics and without a magnetic field, while the master
equation (5.12), which correctly describes the behaviour of a macroscopic system
(at least for long time as will be seen) does not have this invariance. To shed
some light on this phenomenon, a simple example will be considered.

In the present appendix, we consider the case of a binary mixture and follow
the evolution of the concentration ρ(r, t) of one of the components. This concen-
tration will be assumed to satisfy a diffusion equation with a diffusion constant Λ.
In terms of the Fourier transform ρq(t) the diffusion equation reads

∂ρq(t)/∂t = −Λq2ρq(t). (C.1)

This is a particularly simple type of master equation. The solution is

ρq(t) = ρq(0) exp(−Λq2t). (C.2)

It is appropriate to introduce the correlation function 〈ρq(0)ρq(t)〉. It follows
from (C.2) that

〈ρq(0)ρq(t)〉 = 〈ρq(0)ρq(0)〉 exp(−Λq2t). (C.3)

On the other hand, the microscopic equations of motion are invariant under
time reversal (at least in the simplest cases, excluding for instance charged
particles in a magnetic field). This implies

〈ρq(0)ρq(t)〉 = 〈ρq(0)ρq(−t)〉 (C.4)

in contradiction with (C.3). This contradiction is solved if one notices that the
argument which leads to the master equation implies an increasing, not decreas-
ing time t. Therefore, (C.3) has no reason to be valid for negative time (and can
obviously not be valid!). If we believe in (C.3) for positive time, and if we believe
in (C.4) too, we must replace t by its absolute value in (C.3), which now reads

〈ρq(0)ρq(t)〉 = 〈ρq(0)ρq(0)〉 exp(−Λq2|t|). (C.5)

But we now face a new problem. The equations of motion are analytic and
therefore 〈ρq(0)ρq(t)〉 should be an analytic function of t. Expression (C.5) is
not analytic for short time t. This means that it is not correct for short times.



328 HOW IRREVERSIBILITY COMES IN

Near t = 0, the Taylor expansion

〈ρq(0)ρq(t)〉 = 〈ρq(0)ρq(0)〉 − (t2/2)〈ρ̇q(0)ρ̇q(0)〉 (C.6)

applies. The cross-over to (C.5) takes place for a time τcoll which can be deduced
from (C.5) and (C.6).

The argument can be extended to quantum mechanics but this requires various
mathematical tricks; in particular, one has to introduce an imaginary time as
in chapter 7. The quantum version of linear response theory has been given by
Kubo (1957) and can be found in the lectures of Noelle Pottier on the web site
http://www.lpthe.jussieu.fr/DEA/pottier.html.

http://www.lpthe.jussieu.fr/DEA/pottier.html
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BASIC PROPERTIES OF THE MASTER EQUATION

In this appendix, it is shown that all eigenvalues of the ‘master matrix’

Θji = γji − δji

∑

ℓ �=i

γiℓ (D.1)

are real and negative, except that which corresponds to equilibrium and is
equal to 0. The indices i, j denote the eigenstates of the (time-independent)
Hamiltonian and the Θ matrix appears in equation (5.12) which can be written as

d

dt
p(t) = Θp(t). (D.2)

The transition probabilities γji are real and positive and satisfy the principle of
detailed balance

γji = γij exp[β(ǫj − ǫi)]. (D.3)

It is appropriate to introduce the real, symmetric, and therefore Hermitian
matrix

Γij = γij exp[β(ǫj − ǫi)/2] = Γji. (D.4)

Let vi be an eigenvector of Θ with the eigenvalue λ:
∑

j �=i

γjivj − vi

∑

ℓ �=i

γiℓ = λvi. (D.5)

Substituting (D.4) one obtains
∑

j �=i

Γjiuj − αiui = λui (D.6)

where

ui = vi exp[βǫi/2] (D.7)

and

αi =
∑

ℓ �=i

γiℓ =
∑

ℓ �=i

Γiℓ exp[β(ǫi − ǫℓ)/2]. (D.8)

Thus, any eigenvalue λ of Θ is also an eigenvalue of the matrix Γji − δjiαi,
which is real, symmetric, and therefore Hermitian. This implies that λ is real.
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To show that these eigenvalues are non-positive, it is sufficient to show that the
quadratic form

Φ =
∑

ij

Γjixixj −
∑

i

αix
2
i (D.9)

cannot be positive. Indeed, it is easily shown that (D.9) reads

Φ = −(1/2)
∑

ij

Γji{xi exp[β(ǫi − ǫj)/4] − xj exp[β(ǫj − ǫi)/4]}2. (D.10)

The only non-vanishing contributions are those of coefficients Γij with i �= j
which are positive equal to zero. Therefore, expression (D.10) is negative except
for xi = exp(−βǫi/2), which corresponds to thermal equilibrium.

The desired property is thus proven.
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DERIVATION OF THE ARRHENIUS LAW

As seen in Section 5.4, the general solution of the master equation is a sum
of exponentials of time t, and at low temperature this sum is dominated
by a single exponential exp(−t/τ1), where 1/τ1 is the smallest non-vanishing
eigenvalue of the Hermitian matrix Γ̃ defined by (5.19). The corresponding

eigenvector ϕ̃
(1)
m should be orthogonal to the eigenvector ϕ̃

(0)
m which corresponds

to the eigenvalue 0, and is given, according to (5.14) and (5.21), by

ϕ̃(0)
m = (1/Z) exp(−βEm/2) (E.1)

where

Z =
∑

m

exp(−βEm). (E.2)

It is convenient to write

ϕ̃(1)
m = λm exp(−βEm/2) (E.3)

The advantage of this expression is that, as will be seen, the variation of λm with
m is slow.

The orthogonality of both vectors implies
∑

m

λm exp(−βEm) = 0 (E.4)

while normalization implies
∑

m

λ2
m exp(−βEm) = 1. (E.5)

The coefficients λm are determined by a variational principle, which is a standard
method in quantum mechanics, when −Γ̃ is a Hamiltonian. They should minimize

−
〈

ϕ̃(1)

∣

∣ Γ̃
∣

∣ ϕ̃(1)

〉

= −
∑

mq

ϕ̃(1)
m Γ̃m

q ϕ̃(1)
q (E.6)

and the minimum of this quantity is just 1/τ1, the quantity one wants to calculate
Inserting (E.3) in (E.6), the sum over q can be written as
∑

q

Γ̃m
q ϕ̃(1)

q =
∑

q

Γ̃m
q λq exp(−βEq/2) =

∑

q

Γ̃m
q (λq − λm) exp(−βEq/2).

In the last expression, the subtracted term containing λm is 0 according to (E.1).
Coming back to the original master matrix, one obtains

∑

q

Γ̃m
q ϕ̃(1)

q = exp(βEm/2)
∑

q

Γm
q (λq − λm) exp(−βEq).
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Insertion into (E.6) yields
〈

ϕ̃(1)

∣

∣ Γ̃
∣

∣ ϕ̃(1)

〉

=
∑

mq

Γm
q λm(λq − λm) exp(−βEq). (E.7)

According to the detailed balance principle (5.14), this can also be written as
〈

ϕ̃(1)

∣

∣ Γ̃
∣

∣ ϕ̃(1)

〉

=
∑

mq

Γq
mλm(λq − λm) exp(−βEm)

or interchanging m and q:
〈

ϕ̃(1)

∣

∣ Γ̃
∣

∣ ϕ̃(1)

〉

=
∑

mq

Γm
q λq(λm − λq) exp(−βEq). (E.8)

Combining (E.7) and (E.8), one obtains

−
〈

ϕ̃(1)

∣

∣ Γ̃
∣

∣ ϕ̃(1)

〉

=
1

2

∑

mq

Γm
q (λq − λm)2 exp(−βEq). (E.9)

This should be minimized with respect to the λm with the constraints (E.4)
and (E.5). The qualitative behaviour of the solution is clear: λm should be
approximately constant except near the maximum m0 of Em. If λm varies
from λ−s to λs in an interval of width ∆m around m0, then in this interval,
exp(−βEq) ≈ exp(−βEm0±∆m) and (λq − λm) ≈ |λ−s − λs|/∆m. Since there
are ∆m terms, (E.9) reads

−
〈

ϕ̃(1)

∣

∣ Γ̃
∣

∣ ϕ̃(1)

〉

≈ |Γm0
m0

||λ−s − λs|2 exp(−βEm0±∆m)/∆m. (E.10)

At sufficiently low temperature, in a sufficiently weak magnetic field, |λ−s −
λs|2 ≈ 4|λs|2 ≈ 4|λ−s|2, which, according to (E.5), should be of the order of
exp(βEs) ≈ exp(βE−s). If the temperature is still low, but the magnetic field
is so strong that β(E−s − Es) ≫ 1, then the orthogonality condition requires
|λ−s − λs|2 ≈ |λ−s|2 ≈ exp(βE−s). In both cases

−
〈

ϕ̃(1)

∣

∣ Γ̃
∣

∣ ϕ̃(1)

〉

≈ |Γm0
m0

| exp[−β(Em0
− E−s)] exp[β(Em0

− Em0±∆m)]/∆m.
(E.11)

This can now be identified with 1/τ1, provided it is minimized with respect
to ∆m. Assuming Em0

− Em0±∆m ≈ |D|∆m2 as in Chapter 5, and treating m
as a continuous variable, one finds that the relaxation time is

1/τ1 ≈ |Γm0
m0

|
√

β|D| exp[−β(Em0
− E−s)]. (E.12)

The exponential factor corresponds to the Arrhenius law but the pre-
exponential one is not temperature independent and deviations from the
Arrhenius law are therefore expected. These are not essential, as argued in
Appendix F.2. In fact, the correction induced by the

√
β term is overcom-

pensated by another one, hidden in the first factor |Γm0
m0

|. Actually the transition
probability (5.41) is proportional to T if β|Em − Em′ | ≪ 1.



APPENDIX F

PHONONS AND HOW TO USE THEM

F.1 Memento of the basic formulae

Lattice vibrations involve the elastic displacement u and the associated
momentum p. There are several possible descriptions of these fields.

• Each atom i has a mass Mi, a displacement ui, a velocity vi, a momentum
pi = Mivi.

• If the high-frequency, optical modes are ignored, all atoms of each unit cell R

have approximately, in classical mechanics, the same displacement ui = uR and
the same velocity vR. The momentum pR can be defined in classical mechanics
as

pR =

i(R)
∑

pi =

i(R)
∑

Mivi =

i(R)
∑

MivR = MvR (F.1)

where M =
∑i(R)

Mi is the mass of the unit cell and the symbol
∑i(R)

denotes
a sum over the atoms i of the cell centred at R. The displacement operators
may be assumed to satisfy the relation

uR =

i(R)
∑

λiui (F.2)

where
∑i(R)

λi = 1.

• In classical elasticity, within the same assumption that ui and uR do not vary
much from one lattice site to the next one, a continuous field u(r) can be
defined at each point r of the space.

In a periodic crystal, it is appropriate to introduce Fourier transforms of these
fields. For a crystal of N unit cells, they will be defined as

uq = N−1/2
∑

R

uR exp(iq · R)

= N−1/2
∑

i

λiui exp(iq · Ri)

= v−1N−1/2

∫

d3ru(r) exp(iq · r) (F.3)
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where v = V/N is the volume of the unit cell. The vectors q form a discrete set
of N elements within the reciprocal unit cell (or Brillouin zone). Similarly

pq = N−1/2
∑

R

pR exp(iq · R) = N−1/2
∑

i

pi exp(iq · Ri). (F.4)

The kinetic energy can be written as

Hkin =
∑

i

p2
i

2Mi
=

∑

i

Miv
2
i

2
=

∑

R

Mv2
R

2
=

∑

R

p2
R

2M
=

∑

q

|pq|2
2M

. (F.5)

The elastic energy or free energy has the form

Hel =
∑

q

∑

α,γ

∑

ξ,ζ

Ωξ,ζ
α,γqαqγuξ

qu
ζ
q . (F.6)

where Ωξ,ζ
α,γ are elastic constants. Note that, if the summation is over the whole

Brillouin zone, as will be assumed, each vector q appears twice. The alternative
would be to sum over half a Brillouin zone.

In order to avoid the tedious process of diagonalization of the matrix Ω, one
often assumes an ‘isotropic’ elastic medium characterized by its Lamé coefficients
λ and µ. This is totally unrealistic but there are so many parameters that there
is not much hope to really solve the full problem. The ‘isotropic’ elastic solid
has, in real space, a free energy density

fel =
λ

2
(div(u)2 + µ

[

(∂xux)2 + (∂yuy)2 + (∂zuz)
2
]

µ

2

[

(∂xuy + ∂yux)2 + (∂yuz + ∂zuy)2 + (∂zux + ∂xuz)
2
]

. (F.7)

The energy per unit cell is obtained by multiplying fel by the volume v of the
unit cell. The total elastic free energy is obtained by adding the contribution of
all cells R. As a function of the Fourier transform uq, the elastic free energy is
therefore

Hel =
λv

2

∑

q

∣

∣qxux
q + qyuy

q + qzu
z
q

∣

∣

2
+ µv

∑

q

[

|qxux
q |2 + |qyuy

q |2 + |qzuqz|2
]

+ µv
∑

q

[

|qxqyux
quy

q | + |qyqzu
y
quz

q | + |qzqxuz
qu

x
q |
]

+
µ

2

[

(q2
y + q2

z)|ux
q |2 + (q2

z + q2
x)|uy

q |2 + (q2
x + q2

y)|uz
q |2

]

or

Hel = v
∑

q

[

λ + µ

2
|q · uq|2 +

µ

2
q2 |uq|2

]

. (F.8)

The sum of (F.8) and (F.5) will be treated as a Hamiltonian,

Hph = (v/2)
∑

q

{

q2
[

(2µ + λ)q2 |uq1|2 + µq2
∣

∣utr
q

∣

∣

2
]

+ (1/M)|pq|2
}

(F.9)
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where uq,1 = q(q·uq)/|q| is the longitudinal component of uq and utr
q = uq −ulg

q

is the transverse component. The longitudinal component pq,1 and the transverse
component ptr

q of pq can be defined in a similar way.
Quantum mechanics can now be introduced via the usual commutation rule

[pα
i , uγ

j ] = ih̄δijδαγ (F.10)

where α, γ = x, y, z
It follows from (F.10), (F.1) and (F.2) that

[pα
R, uγ

R′ ] = ih̄δRR′δαγ . (F.11)

It follows from (F.3), (F.4), (F.1) and (F.2) that

[pα
q , uγ

−q′ ] = ih̄δq,q′δαγ . (F.12)

The Hamiltonian (F.9) is the sum of Hamiltonians of independent harmonic
oscillators which can be diagonalized as explained in textbooks on quantum
mechanics. In order to avoid mistakes by factors of 2, it should be remembered
that each Fourier component, e.g. uq1, has a real part u′

q1 = u′
−q,1 and an

imaginary part u′′
q1 = −u′′

−q,1. A typical term of the sum (F.9) is

Hq1 = (2µ + λ)vq2
(

u′
q1

)2
+ (1/M)

(

p′
q1

)2
. (F.13)

where the factor 2 has disappeared because the terms q and −q of (F.9) are both
included in (F.13).

Following textbooks, the harmonic oscillator Hamiltonian (F.13) is put into
the standard or ‘canonical’ form

Hq1 = h̄ωq1b
∗
q1bq1 (F.14)

via the transformation

bq1

√
h̄ = u′

q1[(2µ + λ)Mvq2]1/4 − ip′
q1[(2µ + λ)Mvq2]−1/4. (F.15)

The longitudinal phonon frequency is

ωq1 = c1q (F.16)

where the longitudinal sound velocity is

c1 = 2[(2µ + λ)v/M ]1/2. (F.17)

Similarly, the frequency of the two transverse phonon modes is

ωq2 = ωq3 = c2q (F.18)

where

c2 = (2µv/M)1/2. (F.19)

It follows from (F.15) and (F.17) that

bq1

√
h̄ = u′

q1(c1Mq/2)1/2 − ip′
q1(c1Mq/2)−1/2. (F.20)
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From (F.20) it is easily deduced that

uqρ = (cρMq/h̄)−1/2[bqρ + b∗
qρ]. (F.21)

A similar formula holds for the imaginary parts u′′
q1 and p′′

q1. One can for
instance separate the Brillouin zone B into two parts B1 and B2, such that, if q

is an element of B1, −q is an element of B2. Then decide that, for any element
q of B1, (F.20) defines bq1 while b−q,1 is defined by the same relation where real
parts are replaced by imaginary parts.

The total phonon Hamiltonian is

Hph =
∑

q

3
∑

ρ=1

h̄ωqρb
∗
qρbqρ (F.22)

where q (which, strictly speaking, should be written q) denotes N vectors of
the reciprocal space, which fill the unit cell (or ‘Brillouin zone’) with a uniform
density 8π3V = 8π3vN , N being the number of unit cells, v the volume of the
unit cell, and V the volume of the crystal. Finally, the index ρ labels the three
phonon modes of a three-dimensional crystal.

F.2 Numerical calculation of the relaxation rate

It can be useful to give the reader some suggestions about how to develop a
simple routine to estimate the temperature or field dependence of the relaxation
time of a spin system with known spin Hamiltonian parameters describing the
magnetic anisotropy. It is convenient to use the eigenvectors | m〉 of Sz as a basis
to write the spin Hamiltonian. If an anisotropy or a transverse field is present,
the Hamiltonian matrix is obviously no longer diagonal and a diagonalization
procedure must be used. If a transverse field with a component along y is applied
in conjunction with a transverse anisotropy, the Hamiltonian matrix turns out
to be complex (but of course Hermitian) and the appropriate diagonalization
subroutine must be chosen, even though the eigenvalues are real. However, this
case will not treated here. Such a routine can be found in any eigenpackage,
available in libraries such as EISPACK, or proprietary implementations such
as the IMSL and NAG libraries. But it can simply be the Jacobi subroutine
any student has written in the first course of informatics. The routines we refer
to are those provided in Numerical Recipes by Press et al. (1989), where the
algorithms are also discussed in detail. In order to write the master matrix we
need to evaluate the true eigenstates | m∗〉 of the spin Hamiltonian. Each of the
(2s+1) eigenvalues E(i) (where i = 1, 2, . . . , 2s+1) is associated to an eigenstate
that is given by a linear combination equivalent to (5.11), except that the index
m = −s,−s + 1, ..., s − 1, s is replaced by the index i. Similarly, the coefficients
ϕm′

m , for the eigenstates in (5.11), are replaced by matrix elements O(i, j), i.e.
the elements of the ith row of the matrix of the eigenvectors.

All standard routines also provide the eigenvector matrix, but special care
must be paid to the accuracy of the calculation of this one. In particular this
simple numerical calculation is not suited to evaluate the relaxation time when
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a pair of levels are almost degenerate, first because the accuracy in the determ-
ination of the eigenvectors is too poor and second because tunnelling is not
correctly treated at the resonance. However, the application of a longitudinal
field as strong as that of the Earth, and therefore present in most experimental
set-ups, is often enough to get out of this dark zone.

In a simplified form the master matrix Γ is now written on the basis of the
eigenstates | p∗〉 and | q∗〉 of the spin Hamiltonian by taking into account terms
of (5.27) that couple states with |m − m′| = 1 or 2. Thus the element γp

q of the
master matrix is given for p �= q by:

γp
q =

3v

πh̄4Mc5
s

(Ep − Eq)
3

exp[β(Ep − Eq) − 1]
{

|D̃a|2
[

∣

∣〈p |S2
+ | q〉

∣

∣

2
+

∣

∣〈p | S2
− | q〉

∣

∣

2
]

+ |D̃b|2
[

|〈p | {S+, Sz} | q〉|2 + |〈p | {S−, Sz} | q〉|2
]}

(F.23)

where Ep and Eq are the eigenvalues corresponding to | p∗〉 and | q∗〉, D̃a and

D̃b are spin–phonon coupling coefficients,

〈p |S2
+ | q〉 =

∑

mm′

(ϕm′

p )∗ϕm
q 〈m′ |S2

+ | m〉

=
∑

m

(ϕm+2
p )∗ϕm

q

√

[s(s + 1) − m(m + 1)][s(s + 1) − (m + 2)(m + 1)]

= 〈q |S2
− | p〉∗

(F.24)

and

〈p | {S+, Sz} | q〉 =
∑

mm′

(ϕm′

p )∗ϕm
q 〈m′ | {S−, Sz} | m〉

=
∑

m

(2m + 1)(ϕm+1
p )∗ϕm

q

√

[s(s + 1) − m(m + 1)]

= 〈q | {S−, Sz} | p〉∗
. (F.25)

The diagonal terms are given by Γp
p =

∑

k γp
k in agreement with (5.17).

The stars which designate the complex conjugate quantities in (F.24) and
(F.25) can be be omitted in the case addressed here since these quantities are
real.

This simplified form is also based on the assumption that the dynamics of
the phonon-bath is much faster than that of the magnetization. The occupation
number of each phonon state thus depends only on the temperature of the bath.

As said in Section 5.4 the master matrix is not symmetric and thus a different
diagonalization procedure must be used. Non-symmetric matrices are difficult to
handle and much more sensitive to rounding errors. This difficulty might be over-
come by transforming the master matrix into a symmetric one as explained in
Section 5.4. Another method is, before diagonalization, to transform the matrix
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in order to have rows and columns of about the same norm. This can be done with
a routine called BALANC that requires N2 iterations, N being the dimension of
the matrix. The matrix is then reduced to a simpler form, called Hessenberg. An
upper Hessenberg matrix has non-zero elements in the upper triangle, the diag-
onal, and the first subdiagonal. This can be done by the ELMHES routine that
requires a number of iterations proportional to N3. The matrices we are hand-
ling are, however, reasonably small and computation time is not at all a problem.
The final step is the search of the eigenvalues done by using the so-called QR
algorithm performed by the HQR routine also available in Numerical Recipes.
The eigenvalues are then ordered by modulus. The smallest one is found equal
to zero and neglected, while the first nonvanishing one, λ1, is used to calculate
the relaxation time as τ = −1/λ1. This approximation of a unique contribution
to the description of the overall process is correct at low temperature as already
discussed. We have not mentioned the role played by the spin–phonon coupling
coefficients. Their value acts on the relaxation time as a multiplicative coefficient.
If, for instance, we are interested in calculating the temperature dependence of
the relaxation time because we want to analyse it in the simple terms of the
Arrhenius law, the choice of this coefficients only affects τ0 and not the T0. It is
therefore common use to leave these as adjustable parameters to reproduce the
observed behaviour. This numerical method can be used to calculate the relaxa-
tion time for a spin s = 10 subject to Hamiltonian (2.10) with D = −0.7 K, as in
Mn12ac and to a small longitudinal field µ0Hz = 0.1 mT to localize the states in
the wells. We want to compare the numerical result with the Arrhenius law (5.3).
The relaxation rate is approximated by the smallest nonvanishing eigenvalue |λ1|
of the master matrix Γ. The calculation is repeated at several temperatures and
we plot in Fig. F.1 the logarithm of the calculated relaxation time vs. 1/T .

Fig. F.1. On the left, temperature dependence of the relaxation time (open sym-
bols) reported in the Arrhenius plot. The solid line corresponds to the linear
fit of the lowest temperature data. On the right, the temperature depend-
ence of the parameters T0 and τ0. The relaxation time has been numerically
calculated assuming s = 10 and D = −0.7 K.
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The behaviour is well described by a straight line as predicted by the Arrhenius
law. The relaxation time at high temperature tends to be slightly shorter than
that predicted by extrapolating the linear behaviour observed at low temperat-
ure. This is in agreement with (E.12). The deviation is, however, significantly
smaller than that observed experimentally in Mn12ac (Novak et al. 2004) and
reported in Fig. 5.3. Changes in the efficiency of the spin-phonon coupling or the
population of excited spin states could be responsible of the behaviour observed
in Mn12ac.

It is also interesting to quantify the deviations from the Arrhenius law already
qualitatively discussed at the end of Appendix E and here evaluated from the
numerical calculation of the relaxation time. To do that we plot on the right
of Fig. F.1 the temperature dependence of both the barrier, T0, defined as the
derivative of ln(τ) with respect to 1/T , and of the pre-exponential factor τ0

defined by ln(τ0) = ln(τ) − T0/T .



APPENDIX G

HIGH-ORDER PERTURBATION THEORY

The details of the calculation presented in Section 6.4 will first be given in the
case of the perturbation (6.31). The non-vanishing elements of the matrices which
appear in (6.39) and (6.40) are

〈m ± 1 | B | m〉 = 〈m ± 1 | δH | m〉 = 〈m ± 1 | gµBHxSx | m〉 (G.1)

〈p ± 1 | B | p〉 = 〈p ± 1 | δH | p〉 (G.2)

〈m′ ± 1 | δA | m′〉 = 〈m′ ± 1 | δH | m′〉 . (G.3)

Inserting these relations into (6.39) and (6.40), one obtains at the lowest
significant order, assuming m < p,

〈m | B∗(E − A)−1B | p〉 = 〈m | δH | m + 1〉 〈m + 1 | (E − H0)
−1 | m + 1〉

〈m + 1 | δH | m + 2〉 〈m + 2 | (E − H0)
−1 | m + 2〉 . . .

〈p − 2 | δH | p − 1〉 〈p − 1 | (E − H0)
−1 | p − 1〉

× 〈p − 1 | δH | p〉 . (G.4)

At the lowest significant order, which is the order (p−m), the quantity E can

be replaced by the unperturbed value E
(0)
m which is close to E

(0)
p at resonance.

This value is given by (5.6) if (6.30) holds. Thus, identifying the left-hand side
with ωmp

T in agreement with (6.39), (G.4) reduces to

h̄ωmp
T =

∣

∣

∣

∣

∣

〈m | δH | m + 1〉 1

E
(0)
m − E

(0)
m+1

〈m + 1 | δH | m + 2〉 1

E
(0)
m − E

(0)
m+2

. . .

1

E
(0)
m − E

(0)
p−2

〈p − 2 | δH | p − 1〉 1

E
(0)
m − E

(0)
p−1

〈p − 1 | δH | p〉
∣

∣

∣

∣

∣

. (G.5)

In contrast with the off-diagonal elements of B∗(E −A)−1B, the evaluation of
the diagonal elements, which also enter in (6.38), would be much more difficult
at the same order (p − m). However, they are not important for the tunnelling
frequency. They just shift the resonance as seen from Section 6.3.
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If, instead of (6.31), δH is given by (6.32), the calculation is very similar and
yields, if (m − p) is a multiple of 2,

h̄ωmp =

∣

∣

∣

∣

∣

〈m | δH | m + 2〉 1

E
(0)
m − E

(0)
m+2

〈m + 2 | δH | m + 4〉 1

E
(0)
m − E

(0)
m+4

. . .

1

E
(0)
m − E

(0)
p−4

〈p − 4 | δH | p − 2〉 1

E
(0)
m − E

(0)
p−2

〈p − 2 | δH | p〉
∣

∣

∣

∣

∣

. (G.6)

If δH is given by (6.33), a similar calculation yields, if (m − p) is a multiple
of 4,

h̄ωmp = | 〈m | δH | m + 4〉 1

E
(0)
m − E

(0)
m+4

〈m + 4 | δH | m + 8〉 1

E
(0)
m − E

(0)
m+8

. . .

1

E
(0)
m − E

(0)
p−8

〈p − 8 | δH | p − 4〉 1

E
(0)
m − E

(0)
p−4

〈p − 4 | δH | p〉
∣

∣

∣

∣

∣

. (G.7)

Then, the case of a weak transverse field acting together with a quadratic
anisotropy BS2

x will be considered. It is sufficient to treat it at the lowest possible
order. For example, if δH is the sum of a strong term δH2 of the form (6.32) and
a weak term δH1 of the form (6.31), the tunnelling frequency is given by (G.6)
if (p − m) is even, while for odd values,

h̄ωmp = |
p−1
∑

q=m

〈m | δH2 | m + 2〉 1

E
(0)
m − E

(0)
m+2

〈m + 2 | δH2 | m + 4〉

1

E
(0)
m − E

(0)
m+4

. . .
1

E
(0)
m − E

(0)
q−2

〈q − 2 | δH2 | q〉 1

E
(0)
m − E

(0)
q

〈q | δH1 | q + 1〉 1

E
(0)
m − E

(0)
q+1

〈q + 1 | δH2 | q + 3〉

1

E
(0)
m − E

(0)
q+3

〈q + 3 | δH2 | q + 5〉 . . .

1

E
(0)
m − E

(0)
p−4

〈p − 4 | δH | p − 2〉 1

E
(0)
m − E

(0)
p−2

〈p − 2 | δH | p〉 |. (G.8)

Explicit forms of formulae (G.5)–(G.8) are easily obtained if H0 is given by
(6.30). The level-crossing condition (6.3) imposes gµBHz = |D|(m + p), so that

E(0)
m − E(0)

q = |D|(q2 − m2) + gµBHz(m − q)

= |D|(q2 − m2) + |D|(m + p)(m − q)

= |D|(m − q)(p − q). (G.9)
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For instance, insertion into (G.6) yields

h̄ωmp
T = |D|

(

B

4|D|

)(p−m)/2

[(p − m − 2)!!]
−2 | 〈m |S2

− | m + 2〉 〈m + 2 |S2
− | m + 4〉

〈p − 4 |S2
− | p − 2〉 〈p − 2 |S2

− | p〉 |. (G.10)

Since 〈m | S− | m + 1〉 =
√

(s − m)(s + m + 1), this formula reads

h̄ωmp
T = |D|

(

B

4|D|

)(p−m)/2

[(p − m − 2)!!]
−2

√

(s − m)!(s + p)!

(s − p)!(s + m)!
. (G.11)

For instance, the ground state splitting 2h̄ω−s,s in zero field is obtained for
p = −m = s, namely

h̄ω−s,s
T = |D|

(

B

4|D|

)s
(2s)!

[(2s − 2)!!]
2

= 4s2|D|
(

B

4|D|

)s
(2s)!

[(2s)!!]
2 = 4s2|D|

(

B

4|D|

)s
(2s)!

[2s(s)!]
2 .

or, using Stirling’s formula s! ≃ ss+1/2e−s
√

2π for large s,

h̄ω−s,s
T = 4s2|D|

(

B

4|D|

)s
(2s)2s+1/2e−2s

√
2π

[

2sss+1/2e−s
√

2π
]2 =

4|D|√
π

s3/2

(

B

4|D|

)s

. (G.12)



APPENDIX H

PROOF OF THE LANDAU–ZENER–STÜCKELBERG

FORMULA

The solution of system (8.12) which satisfies the initial condition X(0) = 1,
Y (0) = 0 can be written as

⎧

⎪

⎪

⎨

⎪

⎪

⎩

X(t) = 1 − iωT

∫ t

0

dt′ exp [iU(t′)]Y (t′) (a)

Y (t) = −iωT

∫ t

0

dt′ exp [−iU(t′)]X(t′) (b)

(H.1)

Eliminating Y (t) in (H.1) one obtains

X(t) = 1 − ω2
T

∫ t

0

dt′ exp [iU(t′)]

∫ t′

0

dt′′ exp [−iF (t′′)]U(t′). (H.2)

The lower integration bound can be replaced by −∞ because there are no
transitions between t = −∞ and t = 0.

Equation (H.2) can be solved by iteration. One obtains a series which will
only be written for t = ∞, namely

X(∞) = 1 +
∞
∑

n=1

(−ω2
T)nIn (H.3)

where

In =

∫ ∞

−∞
dt2n

∫ t2n

−∞
dt2n−1 . . .

∫ t2

−∞
dt1 exp f({t}) (H.4)

with

f({t}) = i

n
∑

j=1

ξ
(

t22j − t22j−1

)

(H.5)

and ξ = v/(2h̄).
The following change of variables, introduced by Kayanuma (1984), will now

be made:
⎧

⎨

⎩

x1 = t1 (a)

xp = t1 +
∑p−1

j=1 (t2j+1 − t2j) (2 ≤ p ≤ n) (b)

yp = t2p − t2p−1 (1 ≤ p ≤ n) (c)

(H.6)
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The inverse transformation is
{

t2p = xp + y1 + y2 + · · · + yp (a)
t2p+1 = xp+1 + y1 + y2 + · · · + yp (b)

(H.7)

It follows that

t22j − t22j−1 = yj(t2j + t2j−1) = 2yj(xj + y1 + y2 + · · · + yj−1 + yj/2)

and f({t}) = g({x}, {y}), with

g({x}, {y}) = iξ

⎡

⎢

⎣
2

n
∑

j=1

xjyj +

⎛

⎝

n
∑

j=1

yj

⎞

⎠

2
⎤

⎥

⎦
. (H.8)

Since tp ≥ tp−1, the quantities xj and yj satisfy the relations

x1 ≤ x2 ≤ · · · ≤ xj ≤ xj−1 ≤ · · · ≤ xn (H.9)

and

y1, y2, . . . , yj , . . . , yn ≥ 0 (H.10)

so that

In =

∫ ∞

−∞
dx1

∫ ∞

x1

dx2 · · ·
∫ ∞

xn−1

dxn

∫ ∞

0

dy1

∫ ∞

0

dy2 · · ·

×
∫ ∞

0

dyn exp g({x}, {y}). (H.11)

The derivation of (H.11) makes use of the fact that the Jacobian of the trans-
formation is equal to 1, as can be easily checked. This relation can also be written
as

In =

∫

(D)

DxDy exp g({x}, {y}) (H.12)

where the integration domain (D) is defined by (H.9) and (H.10).
It will now be shown that the variables xj can be replaced in (H.9) by any

perturbation (thus changing the domain (D)) without modifying the integral
(H.12). Indeed, the integral is not modified by replacing the variables xj and yj

since this is just changing the name of the variables. But the function (H.8)
is symmetric, and does not change if the inverse permutation is done. This
proves the proposition. For instance, in the case n = 2, the definition (H.12)
is I2 =

∫ ∞
−∞ dx1

∫ ∞
x1

dx2

∫ ∞
0

dy1

∫ ∞
0

dy2 exp g(x1, x2, y1, y2, ). Changing the name

of the variables yields I2 =
∫ ∞

−∞ dx2

∫ ∞
x2

dx1

∫ ∞
0

dy1

∫ ∞
0

dy2 exp g(x2, x1, y2, y1),
and since g is a symmetric function, this is equal to the expected expression

I2 =

∫ ∞

−∞
dx2

∫ ∞

x2

dx1

∫ ∞

0

dy1

∫ ∞

0

dy2 exp g(x1, x2, y1, y2).
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It follows that (H.11) can be written as

In =
1

n!

⎛

⎝

n
∏

j=1

∫ ∞

0

dyj

⎞

⎠ exp

⎡

⎢

⎣
iξ

⎛

⎝

n
∑

j=1

yj

⎞

⎠

2
⎤

⎥

⎦

⎡

⎣

n
∏

j=1

∫ ∞

−∞
dxj exp(2iξxjyj − ǫ|yj |)

⎤

⎦

(H.13)

where ǫ = 0. Indeed that integral can be written as a sum of n! integrals of
the form (H.12), with n! different definitions of the integration domain (D)
corresponding to all permutations of the xj , and all those integrals are equal.

In (H.13), the parameter ǫ = 0 has been introduced to facilitate the
calculation. Integrating over the xj , one obtains

In =
1

n!

n
∏

j=1

(∫ ∞

0

dyj

)

exp

⎡

⎢

⎣
iξ

⎛

⎝

n
∑

j=1

yj

⎞

⎠

2
⎤

⎥

⎦

n
∏

j=1

2ǫ

ǫ2 + 4ξ2y2
j

. (H.14)

In the limit ǫ → 0, the fraction becomes a delta function and the exponential
may be replaced by 1. It follows that

In =
1

n!

n
∏

j=1

(

∫ ∞

0

dyj
2ǫ

ǫ2 + 4ξ2y2
j

)

=
1

n!

(∫ ∞

0

dy
2ǫ

ǫ2 + 4ξ2y2

)n

=
1

n!

(

(1/ξ)

∫ ∞

0

dy
1

1 + y2

)n

=
1

n!

(

π

2ξ

)n

. (H.15)

Using this result in (H.3) and replacing ξ by v/(2h̄), one obtains

X(∞) = 1 +

∞
∑

n=1

1

n!

(−πh̄ω2
T

v

)n

= exp

(−πh̄ω2
T

v

)

(H.16)

The probability 1 − δP of still being in the left-hand well at t = ∞ is the square
of this quantity. Formula (8.17) follows.



APPENDIX I

TUNNELLING BETWEEN HYPERFINE STATES

In the absence of hyperfine interactions, tunnelling takes place between two loc-
alized states, e.g. | −s∗〉 and | −m∗〉, which are approximate eigenvectors of the
spin Hamiltonian, which is the sum of an anisotropy term Han and a Zeeman
term HZ. If hyperfine interactions are taken into account, one has to consider
the eigenvectors of the Hamiltonian

H = Han + HZ + Hhf + Hν

where Hhf = −∑

αγ=xyz gαγ
k SαIγ

k is the hyperfine interaction and Hν is the inter-
action between nuclear spins. The last two terms are small, and the eigenvectors
of H can be approximated by | m∗, ν〉, where | ν〉 designates nuclear spin states.
Generally, the nuclear spin states associated with different electronic states m
are different. Strictly speaking, nuclear spins mediate an interaction between the
molecular spins, but this effect will be ignored. A single molecular spin is taken
into account, and the other ones will be approximated by a field acting on the
nuclear spins.

Tunnelling takes place between hyperfine states | g, ν〉 and | d, ν′〉, where
| g〉 = | m∗〉 and | d〉 = | m′∗〉 are, respectively, left-localized and right-localized.
The calculation of Sections 8.3.2 and 8.3.3 will now be extended to this case.
If the initial, hyperfine state is | g, ν0〉, the state at time t is X(t) | g, ν0〉 +
∑

ν Yν(t) | d, ν〉, with X(t) ≃ X(0) ≃ 1.
Equation (8.12) should now be replaced by a number of equations equal to the

number of hyperfine states. Assuming, as usual, that | g〉 and | d〉 are independent
of t, these equations are

Ẏν(t) =
1

ih̄
X(t) 〈d, ν | H | g, ν0〉 e−i[u(t)−w(t)]. (I.1)

The Hamiltonian H will be approximated by its greatest term, the anisotropy
Hamiltonian which acts on the molecular spin. Thus

〈d, ν | H | g, ν0〉 = 〈d | H | g〉 〈ν | ν0 〉 = ω0
T 〈ν | ν0 〉 (I.2)

where ω0
T is the tunnel frequency in the absence of hyperfine interactions. The

reversal probability which replaces (8.18) is

δP =
∑

ν

2πh̄

v
ω2

T| 〈ν | ν0 〉 |2 (I.3)

and this is equal to (8.18).
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One can wonder what nuclear spins do during tunnelling: do they tunnel with
the molecular spin or are they motionless? One can first consider the simple case
when nuclear states | ν〉 and | ν′〉 associated to hyperfine states | g, ν〉 and | d, ν′〉
are the same. In that case, | 〈ν | ν0 〉 |2 = δν,ν0

. Then, (I.2) implies that nuclear
spins are not modified. The interaction energy between nuclear spins and the
molecular spin goes from the value gµBsHhf to the opposite value −gµBsHhf .
The Zeeman energy of the molecular spin goes from a value close to gµBHs
to the opposite value −gµBHs. Other contributions are small. Tunnelling is
possible if the change in total energy is close to 0, i.e. if H + Hhf ≃ 0. Thus, the
resonance width due to hyperfine interactions is of the order of 〈Hhf〉, as claimed
in Section 9.2.

As a matter of fact, nuclear spins are not the same when the molecular spin is
localized on the left or right hand side. Nevertheless, the factor 〈ν | ν0 〉 in (I.2)
favours final nuclear spins which are close to the initial state. The resonance
width should therefore be close to 〈Hhf〉.

The behaviour of nuclear spins during tunnelling has been discussed by
Prokofev and Stamp (1995) and Tupitsyn et al. (1997). They conclude, in
agreement with the above statement, that only a few nuclear spins flip.

The second part of this appendix regards the impossibility of relaxation
in the absence of interactions between nuclear spins. At a given time, as seen in
Section 9.2, most of the molecular spins cannot tunnel because the local field in
the anisotropy direction z is too far from a level crossing, i.e. at a distance lar-
ger than the natural width h̄ωT. Let this distance be smaller than the hyperfine
width gµBHhf . The problem is whether the local field can change under the effect
of the interaction between molecular and nuclear spins. The answer is ‘no’. Only
an approximate, simplified argument will be given, and a more elaborate proof
will be found in the article of Prokofev and Stamp (1995). Neglecting interactions
between nuclear spins, the Hamiltonian acting on Ik can be written as

Hk = γkH.Ik −
∑

αγ=xyz

gαγ
k SαIγ

k (I.4)

where γk is the gyromagnetic ratio of nucleus k. In the case of a dipole inter-
action between two localized spins at distance rk, gαγ

k would be given by
gαγ

k = (C/r3
k)(δαγ − rα

k rγ
k/r2

k) where C is a constant. Here, the story is more
complicated because the molecular spin is the sum of single ion spins at different
places.

Since the average value of the molecular spin S is in the easy direction z, it
is convenient to separate the Sz component in (I.4):

Hk = γkH.Ik −
∑

γ=xyz

gzγ
k SzI

γ
k −

∑

α=yz

∑

γ=xyz

gαγ
k SαIγ

k . (I.5)

The nuclear spin feels a local field of components

Hγ − gzγ
k 〈Sz〉/γk. (I.6)
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It is appropriate to define a local, k-dependent axis Z along this direction, and
two other axes X, Y perpendicular to Z. Formula (I.5) can be approximately
written as

Hk =
(

γkHZ − gzZ
k Sz

)

IZ
k −

∑

α=xy

∑

γ=XY Z

gαγ
k SαIγ

k . (I.7)

Within an acceptable approximation, Sx and Sy can be replaced by their average
value which is 0, so that the last term of the right-hand side can be ignored. Then
the nuclear spin precesses around its local field. In this motion, the component
IZ
k is constant. Now, if (I.7) is regarded as acting on the molecular spin S, this

means that the z component of the local field is constant. Therefore, if the level-
crossing condition is not satisfied at a given time, as is the case for most of the
spins, it will never be satisfied. The precession of I does modify the second term
of (I.7), thus producing a modulation of the tunnel frequency, but this has no
effect on the relaxation time.



APPENDIX J

SPECIFIC HEAT

J.1 Specific heat at equilibrium and at high frequency

The equilibrium specific heat Ceq of a spin is given, as seen in Chapter 3, by

Ceq =
∂

∂T
〈H〉. (J.1)

The quantity of interest is the magnetic specific heat, but the subscript ‘mag’
has been omitted because there is no ambiguity. The magnetic specific heat is
assumed to be decoupled from the lattice, and the lattice specific heat is never
considered in this appendix.

If the spin has (2s+1) energy levels Em, the mean energy 〈H〉 is

〈H〉 =

∑s
m=−s Em exp[−βEm]
∑s

m=−s exp[−βEm]
(J.2)

which is a generalization of the formulae seen in Chapter 3. The calculation
yields

Ceq =
1

kBT 2

1

z

∑

m

E2
m exp(−βEm) − 1

kBT 2

[

1

z

∑

m

Em exp(−βEm)

]2

(J.3)

where z =
∑

m exp(−βEm).
As in Section 3.2.3 we now wish to consider a spin in a double potential well,

and a high frequency ω ≫ 1/τ , when the spin has almost no chance to go jump
to the other part of the double well. Then one has to consider the specific heat
C+ (resp. C−) of a spin confined in the right-hand (resp. left-hand) well. The
eigenstates | m〉 will be assumed to be localized. In analogy with (J.3)

C± =
1

kBT 2

1

z±

±
∑

m

E2
m exp(−βEm) − 1

kBT 2

[

1

z±

±
∑

m

Em exp(−βEm)

]2

(J.4)

where
∑+

m and
∑−

m, respectively, designate states localized in the right and left

hand well, and z =
∑±

m exp(−βEm).
At equilibrium, the spin has probabilities z+/z and z−/z to be in the right or

left-hand well, respectively. Therefore the high-frequency specific heat C(ω) =
Cuni as defined in section 10.8 is

Cuni =
z+

z
C+ +

z−

z
C−
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or according to (J.4)

Cuni =
1

kBT 2

1

z

∑

m

E2
m exp(−βEm)

− 1

zkBT 2

⎧

⎨

⎩

1

z+

[

+
∑

m

Em exp(−βEm)

]2

+
1

z−

[ −
∑

m

Em exp(−βEm)

]2
⎫

⎬

⎭

.

(J.5)

Subtraction of (J.5) from (J.3) yields

Ceq − Cuni =
1

z2kBT 2

{ z

z+
Σ2

+ +
z

z− Σ2
− − [Σ+ + Σ−]

2
}

(J.6)

where

Σ± =

±
∑

m

Em exp(−βEm). (J.7)

Since z = z+ + z−, (J.6) reads

Ceq − Cuni =
1

z2kBT 2

{

z−

z+
Σ2

+ +
z+

z− Σ2
− − 2Σ+Σ−

}

=
1

z2kBT 2

{
√

z−

z+
Σ+ −

√

z+

z− Σ−

}2

(J.8)

which is positive.

J.2 Frequency-dependent specific heat

The next problem is to interpolate between the low-frequency specific heat
C(0) = Ceq and the high-frequency specific heat Cuni. It is appropriate to intro-
duce a frequency-dependent specific heat C(ω) which should first be defined.
The definition should be an extension of the equilibrium definition C = ∂U/∂T
(at constant magnetic field, for instance). In the presence of a sinusoidal thermal
excitation of frequency ω, the energy U(t) and the temperature T (t) are functions
of time,

T (t) = T0 + δT (t) = T0 + δT0 cos(ωt) = T0 + Re[δT0 exp(iωt)] (J.9)

and

U(t) = U0 + δU(t) = U0 + δU0 cos(ωt − ϕ) = U0 + ℜδU0 exp[(−iϕ) exp(iωt)].
(J.10)

An appropriate definition of C(ω) is

C(ω) =
δU0 exp(−iϕ)

δT0
(J.11)

which generalizes the equilibrium property C = ∂U/∂T .
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The next task is to calculate δU(t) when δT (t) is known. This requires
knowledge of the probability pm(t) to be in state m at time t. Indeed

U(t) =
s

∑

−s

pm(t)Em (J.12)

where pm(t) is the probability to be in state m at time t. This probability
depends on a single quantity p+(t), the probability to be in the right-hand well at
time t. Indeed, inside each part of the double well, there is thermal equilibrium.
Therefore, for all states | m〉 of the right-hand well,

pm(t) =
p+(t)

z+
exp(−βEm) (J.13)

while for all states of the left-hand well,

pm(t) =
p−(t)

z− exp(−βEm) (J.14)

with p−(t) = 1 − p+(t).
The only additional thing needed is an equation which determines the

evolution of p+(t). This equation is

∂

∂t
p+(t) = −1

τ

[

p+(t) − p+
T (t)

]

(J.15)

where τ is the relaxation time already introduced before, and p+
T is the prob-

ability to be in the right-hand well when the system is at equilibrium at
temperature T . It depends on t because T is given by (J.9). Of course, p+

T is
readily written as the sum of the Boltzmann probabilities z−1 exp[−Em/(kBT )]
on all states m of the right-hand well.

The above equations are easy to solve. Straightforward algebra (Fominaya
et al. 1999) leads to (10.15).



APPENDIX K

MASTER EQUATION FOR THE DENSITY MATRIX

K.1 Basic hypotheses

The motion of a system described by a Schrödinger equation is invariant under
time reversal. This is true indipendently on the size. However, if one considers a
part of a large system, its motion becomes irreversible after a microscopic time τ1.
In a gas, the order of magnitude of τ1 is the time between two collisions of a par-
ticular particle. In this book, the large system is a spin interacting with phonons.
The small system is the spin. It is subject to a spin Hamiltonian Hsp, e.g.

Hsp = DS2
z + gµBHSz − C

[

S4
+ + S4

−
]

(K.1)

the eigenvectors of which will be called | m∗〉. The probability for the spin to
be in a particular state is given by a 2s × 2s density matrix ρmn(t). The basic
hypothesis is that, for a time longer than a microscopic time τ1, it satisfies the
master equation (11.4). In the basis of the eigenvectors | m∗〉, this equation reads

d

dt
ρmn(t) = i(ωn − ωm)ρmn(t) −

∑

rr′

Λrr′

mnρrr′(t). (K.2)

For times much shorter than the relaxation time, but much longer than τ1, this
equation reads

ρmn(t) = exp[it(ωn − ωm)]ρmn(0) − t
∑

rr′

Λrr′

mnρrr′(0). (K.3)

This equation can be matched with a microscopic equation obtained by per-
turbation theory. This is the principle of the calculation of the coefficients Λrr′

mn,
performed in this appendix.

The unperturbed Hamiltonian

H0
tot = Hsp + Hph (K.4)

is the sum of the spin Hamiltonian and the free phonon Hamiltonian (5.31).
The perturbation is the spin–phonon interaction defined by (5.34) and here-

after called H1. The notation is that of Section 5.6 except that the phonon modes
will be labelled α rather than ρ to avoid confusion.

The total wavefunction is, at time t,

|Ψ(t)〉 = exp(−itHtot/h̄)|Ψ(0)〉 (K.5)

where Htot = H0
tot + H1.
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K.2 An expression for the density matrix of a spin system

It will first be assumed that the initial wavefunction |Ψ(0)〉 of the total system
is well defined. It is the product

| Ψ(0)〉 = | ψ(0),ΦQ〉 (K.6)

of a spin function | ψ(0)〉 by a phonon function | ΦQ〉, which will be assumed to
be an eigenfunction of the free phonon Hamiltonian Hph

The quantum average value of an operator σ̃ at time t is

〈Ψ(t) | σ̃ | Ψ(t)〉 = 〈Ψ(0) | exp(itHtot/h̄)σ̃ exp(−itHtot/h̄) | Ψ(0)〉 . (K.7)

It will now be assumed that σ̃ is a spin operator. One wishes to calculate the
average value of σ̃ at time t for a given initial spin wavefunction | ψ(0)〉, but
assuming phonons to be in thermal equilibrium. To do that, Ψ(0) can be replaced
by (K.6) in (K.7), and multiplied by the Boltzmann factor ρQ which gives the
probability of the phonon state ΦQ. The sum over Q is then performed. The
result is

〈σ̃(t)〉 =
∑

Q

ρQ 〈ψ(0),ΦQ | exp(itHtot/h̄)σ̃ exp(−itHtot/h̄) | ψ(0),ΦQ〉 . (K.8)

On the other hand, the operator σ̃ may be written as

σ̃ =
∑

mnQ

| n∗,ΦQ〉 〈n∗, ΦQ | σ̃ | m∗,ΦQ〉 〈m∗,ΦQ | (K.9)

so that (K.8) reads

〈σ̃〉 =
∑

mnQ

〈n∗,ΦQ | σ̃ | m∗,ΦQ〉 ρmn(t) (K.10)

where

ρmn(t) =
∑

QQ′

ρQ 〈m∗,ΦQ′ | exp(−itHtot/h̄) | ψ(0), ΦQ〉

〈ψ(0),ΦQ | exp(itHtot/h̄) | n∗,ΦQ′〉 (K.11)

is an element of the density matrix as defined in Section 11.2.
This expression must be identified with (K.3). Thus, neglecting terms or order

t2 or higher,

t
∑

rr′

Λrr′

mnρrr′(0) = ρmn(0) exp[it(ωn − ωm)]

−
∑

Q

ρQ 〈m∗,ΦQ′ | exp(−itHtot/h̄) | ψ(0),ΦQ〉

〈ψ(0),ΦQ | exp(itHtot/h̄) | n∗,ΦQ′〉 exp[it(ωm − ωn)]
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or if | ψ(0)〉 =
∑

r ψr | r〉

t
∑

rr′

Λrr′

mnψrψ
∗
r′ = ψmψ∗

n exp[it(ωn − ωm)]

−
∑

QQ′

ρQ

∑

rr′

ψrψ
∗
r′ 〈m∗ | exp(−itHtot/h̄) | r∗,ΦQ〉

〈r′, ΦQ | exp(itHtot/h̄) | n∗〉 exp[it(ωm − ωn)]

or

tΛrr′

mn = δmrδnr′ exp[it(ωn − ωm)]

−
∑

QQ′

ρQ 〈m∗,ΦQ′ | exp(−itHtot/h̄) | r∗, ΦQ〉

〈r′, ΦQ | exp(itHtot/h̄) | n∗,ΦQ′〉 exp[it(ωm − ωn)] (K.12)

K.3 Perturbation theory

K.3.1 Diagrammatic expansion

Within second-order perturbation theory

exp(−itHtot/h̄) = exp(−itH0
tot/h̄)

− i

h̄

∫ t

0

dt′ exp
[

i(t′ − t)H0
tot/h̄

]

H1 exp
[

−it′H0
tot/h̄

]

−
∫ t

0

dt′

h̄2 exp
[

i(t′ − t)H0
tot/h̄

]

H1

×
∫ t

0

dt′′ exp

[

i(t′′ − t′)

h̄
H0

tot

]

H1 exp

[−it′′

h̄
H0

tot

]

. (K.13)

Let this expression be inserted into the second term of the right-hand side of
(K.12). At order 0 combination with the first term yields 0. At order 1, the result
is also 0 because the average value of a phonon creation or destruction operator
b±
qα is 0. The task is just to calculate the second-order contributions. They are

three, which correspond, respectively, to taking the first-order terms from both
exponentials, the second-order term of the first exponential and the second-order
term of the second exponential. Moreover each of the three contributions splits
into two, in which the phonon average values 〈nqα + 1〉 and 〈nqα〉, respectively,
appear. As first proposed by Feynman in the case of particle physics, the first
six terms of the perturbative expansion of (K.12) may be represented by six
diagrams as shown by Fig. K.1.
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Fig. K.1. The six diagrams for second-order terms in formula (K.12).

K.3.2 First and second diagrams

The explicit value of the first diagram is

t[Λrr′

mn]1 = − 1

Nh̄2

∫ t

0

dt′
∫ t

0

dt′′

∑

qα

〈m∗ | exp [i(t′ − t)Hsp/h̄] Uqα(S) exp [−it′Hsp/h̄] |r∗〉

〈r′∗ | exp [it′′Hsp/h̄]U∗
qα(S) exp [i(t − t′′)Hsp/h̄] |n∗〉

∑

QQ′

〈ΦQ | exp [i(t′ − t)Hph/h̄] bqα exp [−it′Hph/h̄] | ΦQ′〉

〈ΦQ′ | exp [it′′Hph/h̄] b+
qα exp [i(t − t′′)Hph/h̄] | ΦQ〉 ρQ (K.14)

It is by no means clear that this formula yields a time-independent value of
[Λrr′

mn]1. If our hypotheses are correct this should be true at long times.

Introducing the energy Eph
Q of the phonon state | ΦQ〉, (K.14) can be written as

t[Λrr′

mn]1 = − 1

Nh̄2

∫ t

0

dt′
∫ t

0

dt′′

∑

qα

〈m∗ | exp [i(t′ − t)Hsp/h̄]Uqα(S) exp [−it′Hsp/h̄] |r∗〉

〈r′∗ | exp [it′′Hsp/h̄] U∗
qα(S) exp [i(t − t′′)Hsp/h̄] |n∗〉

∑

QQ′

〈ΦQ | bqα | ΦQ′〉 〈ΦQ′ | b+
qα | ΦQ〉 ρQ exp

[

i(t′ − t′′)(Eph
Q − Eph

Q′ )/h̄
]
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Providentially, the difference Eph
Q −Eph

Q′ = −h̄ωqα is independent of the phonon
states so that this formula reads

t[Λrr′

mn]1 = − 1

Nh̄2

∫ t

0

dt′
∫ t

0

dt′′

∑

qα

〈m∗ | exp [i(t′ − t)Hsp/h̄] Uqα(S) exp [−it′Hsp/h̄] |r∗〉

〈r′∗ | exp [it′′Hsp/h̄] U∗
qα(S) exp [i(t − t′′)Hsp/h̄] |n∗〉

× 〈bqαb+
qα〉 exp [i(t′′ − t′)ωqα] (K.15)

Since the states | m∗〉, | n∗〉, | r∗〉 and | r′∗〉 are eigenstates of Hsp for the
eigenvalues h̄ωm, h̄ωn, h̄ωr and h̄ωr′ , formula (K.15) reads

t[Λrr′

mn]1 = − 1

Nh̄2

∑

qα

〈m∗ | Uqα(S)|r∗〉 〈r′∗ | U∗
qα(S)|n∗〉〈bqαb+

qα〉

∫ t

0

dt′
∫ t

0

dt′′ exp [i(t′′ − t′)ωqα] exp [i(t′ − t)ωm

−it′ωr + it′′ωr′ + i(t − t′′)ωn] (K.16)

It turns out to be convenient to introduce an additional variable ω through the
formula

1

N

∑

qα

→ 1

N

∑

α

∫ ∞

−∞
dω

∑

q

δ(ω − ωqα).

Formula (K.16) now becomes

t[Λrr′

mn]1 = − 1

Nh̄2

∑

α

∫ ∞

−∞
dω

∑

q

δ(ω − ωqα) 〈m∗ |Uqα(S)|r∗〉 〈r′∗ |U∗
qα(S)|n∗〉

〈bqαb+
qα〉

∫ t

0

dt′
∫ t

0

dt′′ exp [i(t′′ − t′)ωqα] exp [i(t′ − t)ωm

−it′ωr + it′′ωr′ + i(t − t′′)ωn] (K.17)

This expression contains the function

Fmrr′nα(ω) =
1

Nh̄2

∑

q

〈m∗ | Uqα|r∗〉 〈r′∗ | U∗
qα|n∗〉〈nqα + 1〉δ(ω − ωqα).

(K.18)

From the absence of phonons at frequency 0 follows the property

Fmpp′nα(0) = 0 (K.19)

which will be useful later.
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Inserting (K.18) into (K.17) one obtains

t[Λrr′

mn]1 = −
∑

α

∫ ∞

−∞
dωFmrr′nα(ω)

∫ t

0

dt′
∫ t

0

dt′′

exp [i(t′′ − t′)ω] exp [i(t′ − t)ωm − it′ωr + it′′ωr′ + i(t − t′′)ωn] .

Integration over t′′ yields

t[Λrr′

mn]1 = −
∑

α

∫ ∞

−∞
dωFmrr′nα(ω) exp [it(ωn − ωm)]

∫ t

0

dt′ exp [it′(ω − ωr + ωm)]
1 − exp [it(ωr′ − ωn − ω)]

i(ωn + ω − ωr′)
. (K.20)

One might integrate over t′ too, but the form (K.20) is adequate. It contains the
fraction

1 − exp [it(ωr′ − ωn − ω)]

i(ωn + ω − ωr′)
= 2 exp [it(ωr′ − ωn − ω)/2]

sin [t(ωn + ω − ωr′)/2]

ωn + ω − ωr′

.

(K.21)

This fraction has a maximum at ω = ωr′ − ωn. As noticed at the beginning
of this section, the region of interest is that of long times. Then the fraction is
large and proportional to t in a band of width 1/t around the maximum, and
oscillates around the value 0 outside this band. The fraction (K.21) can therefore
be replaced by

2
sin [t(ωn + ω − ωr′)/2]

ωn + ω − ωr′

→ 2δ(ωn + ω − ωr′)

∫ −∞

−∞
dx

sin [tx/2]

x

= 2πδ(ωn + ω − ωr′). (K.22)

Making this replacement in (K.20) yields

t[Λrr′

mn]1 = − 2π
∑

α

Fmrr′nα(ωr′ − ωn) exp [it(ωn − ωm)]

∫ t

0

dt′ exp [it′(ωr′ − ωn − ωr + ωm)] . (K.23)

The integral is generally finite for large t. This implies [Λrr′

mn]1 = 0. The exception
is when

ωr′ − ωr + ωm − ωn = 0 (K.24)

This condition is satisfied in particular if

m = n, r = r′. (K.25)

Condition (K.24) would also be satisfied for m = r and n = r′, but then (K.23)
vanishes because of (K.19).
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One can wonder whether other solutions of (K.24) are possible. This is gen-
erally not so and it will be assumed that it is not. However, there may be other
solutions of (K.24) for certain Hamiltonians, and an example is just, for instance,
the case Hsp = DS2

z . Then (K.24) yields r2 + n2 = r′2 + m2. Apart from the
trivial solutions (K.25), there are other solutions, namely |m|, |n|, |r|, |r′| ≤ 10,

m, r′ = 0 and ±5, n, r = ±3 and ±4
m, r′ = ±1 and ±7, n, r = ±4 and ±8
m, r′ = ±1 and ±5, n, r = ±5 and ±7
m, r′ = ±6 and ±7, n, r = ±2 and ±9.

However, these combinations are no longer solutions of (K.24) if more aniso-
tropy terms are added or if a magnetic field is applied. For an arbitrary
anisotropy, there are non-trivial solutions of (K.24) for particular values of the
field. This might be the cause of the unexpected relaxation maxima observed by
Gaudin et al. (2002). However, the matrix elements of Uqα are expected to be
small. For that reason, only the solution (K.25) will be retained.

Assuming (K.25) to hold and taking the limit t → ∞ in (K.23), one finds

[Λrr′

mn]1 = −2πδmnδrr′

∑

α

Fmrrmα(ωr − ωn). (K.26)

The second diagram of Fig. K.1 is given by a quite analogous formula

[Λrr′

mn]2 = −2πδmnδrr′

∑

α

Gmrrmα(ωr − ωn) (K.27)

where

Gmrr′nα(ω) =
1

Nh̄2

∑

q

〈m∗ |Uqα|r∗〉 〈r′∗ |U∗
qα|n∗〉〈nqα〉δ(ω + ωqα). (K.28)

K.3.3 Third to sixth diagrams

The contribution of the third and fourth diagrams of Fig. K.1 is, according to
(K.12) and (K.13),

t[Λrr′

mn]3 + t[Λrr′

mn]4 =
1

2h̄2 exp[it(ωm − ωn)]

∫ t

0

dt′
∫ t

0

dt′′
∑

QQ′

ρQ 〈m∗, ΦQ′ |

exp
[

i(t′ − t)H0
tot/h̄

]

H1 exp
[

i(t′′ − t′)H0
tot/h̄

]

H1

exp
[

−it′′H0
tot/h̄

]

| r∗,ΦQ〉 〈r′,ΦQ | exp
[

itH0
tot/h̄

]

| n∗,ΦQ′〉
or

t[Λrr′

mn]3 + t[Λrr′

mn]4 = δr′n
1

2h̄2 exp[it(ωm − ωn)]

∫ t

0

dt′
∫ t

0

dt′′
∑

Q

ρQ 〈m∗,ΦQ |

exp
[

i(t′ − t)H0
tot/h̄

]

H1 exp
[

i(t′′ − t′)H0
tot/h̄

]

H1

× exp
[

−it′′H0
tot/h̄

]

| r∗,ΦQ〉 〈n∗,ΦQ | exp
[

itH0
tot/h̄

]

| n∗,ΦQ〉 .
(K.29)
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Insertion of (5.34) yields two contributions, one of which corresponds to the
third diagram and reads

t[Λrr′

mn]3 = δr′n
1

2Nh̄2 exp[it(ωm − ωn)]

∫ t

0

dt′
∫ t

0

dt′′
∑

qα

∑

Q

ρQ 〈m∗,ΦQ |

exp
[

i(t′ − t)H0
tot/h̄

]

Uqα(S)bqα exp
[

i(t′′ − t′)H0
tot/h̄

]

U∗
qα(S)b+

qα

exp
[

−it′′H0
tot/h̄

]

| r∗, ΦQ〉 〈n∗,ΦQ | exp
[

itH0
tot/h̄

]

| n∗,ΦQ〉 . (K.30)

Intercalating the quantities
∑ | p∗,ΦQ′〉 〈p∗,ΦQ′ | and

∫ ∞
−∞ dωδ(ω − ωqα)

which are both equal to 1, (K.30) reads

t[Λrr′

mn]3 = δr′n
1

2Nh̄2

∑

p

∫ ∞

−∞
dωδ(ω − ωqα) exp[it(ωm − ωn)]

∫ t

0

dt′
∫ t

0

dt′′
∑

qα

∑

p

∑

QQ′

ρQ 〈m∗, ΦQ | exp
[

i(t′ − t)H0
tot/h̄

]

Uqα(S)bqα

exp
[

i(t′′ − t′)H0
tot/h̄

]

| p∗,ΦQ′〉
〈p∗,ΦQ′ |U∗

qα(S)b+
qα exp

[

−it′′H0
tot/h̄

]

| r∗,ΦQ〉
〈n∗,ΦQ | exp

[

itH0
tot/h̄

]

| n∗,ΦQ〉 . (K.31)

Treating this formula as (K.14), one obtains

t[Λrr′

mn]3 = δr′n
1

2Nh̄2

∑

p

∑

qα

∫ ∞

−∞
dωδ(ω − ωqα) exp[it(ωm − ωn)]

∫ t

0

dt′
∫ t

0

dt′′

〈m∗ | exp [i(t′ − t)Hsp/h̄]Uqα(S) exp [i(t′′ − t′)Hsp/h̄] | p∗〉
〈p∗ | U∗

qα(S) exp [−it′′Hsp/h̄] | r∗〉 exp [i(t′′ − t′)ω] 〈bqαb+
qα〉. (K.32)

Introducing the function (K.18) one obtains

t[Λrr′

mn]3 =
1

2
δr′n

∑

α

∑

p

∫ ∞

−∞
dωFmpprα(ω)

∫ t

0

dt′
∫ t

0

dt′′

exp [it′(ωm − ωp) + it′′(ωp − ωr)] exp [i(t′′ − t′)ω] (K.33)
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or, for long times, after integration over t′′,

t[Λrr′

mn]3 = πδr′n

∑

α

∑

p

∫ ∞

−∞
dωFmpprα(ω)

∫ t

0

dt′ exp [it′(ωm − ωr)] .

If both sides are divided by t and if the long t limit is taken, one obtains

[Λrr′

mn]3 = πδr′nδrm

∑

α

∑

p

Fmppmα(ωp − ωr). (K.34)

The fourth diagram of Fig. K.1 yields an analogous formula where Fmpprα(ω)
is replaced by Gmpprα(ω) defined by (K.28). Finally the fifth and sixth diagrams
are obtained from the third and fourth diagrams by permutation of m and n.
Therefore, if m �= n

Λrr′

mn = πδr′nδrm

∑

α

∑

p

[Fmppmα(ωp − ωr) + Gmppmα(ωp − ωr)

+Fnppnα(ωp − ωr) + Gnppnα(ωp − ωr)] (K.35)

while, if m �= r,according to (K.26) and (K.27)

Λrr′

mn = −2πδmnδrr′

∑

α

[Fmrrmα(ωr − ωn) + Gmrrmα(ωr − ωn)] . (K.36)

which is negative, so that the transition probability −Λrr
mm from | m∗〉 to | m∗〉

is positive.

K.3.4 Summary of this section

Thus the only non-vanishing coefficients are Λrr
mm and

Λmn
mn = −1

2

∑

p

[Λpp
mm + Λpp

nn] . (K.37)

As stressed in Chapter 11, this relation is not exact, but rather a consequence
of the approximations. In particular, relation (K.19) has been deduced from the
absence of phonons at frequency 0. It seems difficult to extend this argument
to a spin–phonon interaction which would not be linear with respect to phonon
operators.

Whatever the initial density matrix ρmn(0), the density matrix ρmn(t)
ultimately assumes the form

ρmn(t) = ρm(t)δmn (K.38)

which testifies to the loss of coherence and in particular corresponds to the
equilibrium distribution.
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K.4 Tunnelling

When deriving the above formulae, and in particular when deducing (K.25) from
(K.24), the possibility of exact or approximate degeneracy has been ignored. In
the case of tunnelling, there is an approximate degeneracy. For instance, in zero
field, the states | m∗〉 and | −m∗〉 are almost degenerate with a weak tunnel

splitting 2h̄ω
(m)
T . If this splitting is neglected, the spin–phonon interaction gives

a finite lifetime τm to the state | m∗〉. Formulae (K.35)–(K.37) are expected to

hold if ω
(m)
T τm ≪ 1, provided the localized vectors | m∗〉 are used in the formulae.

If ω
(m)
T τm ≫ 1, the exact, delocalized eigenvectors | m∗〉±| −m∗〉 should be used.

For instance, let equation (K.2) be written at very low temperature, making the
following assumptions. (1) Only the lowest four states are populated. (2) The
tunnelling splitting is negligible in the ground doublet but has an appreciable
value h̄ωT in the excited doublet. (3) The excited doublet has a lifetime τ which
satifies ωTτ ≪ 1. It is therefore appropriate to use localized states | s∗〉, | −s∗〉,
| (s − 1)∗〉, | −(s − 1)∗〉.

The density matrix has 16 elements and satisfies equation (K.2). However the
situation simplifies if, at t = 0, it is assumed to have a single non-vanishing
element, namely ρ−s,−s(0) = 1. The second (dissipative) term of (K.2) generates
a component ρ−(s−1),−(s−1). Then tunnelling, the first term of (K.2), generates
all components ρ−(s−1),±(s−1) and ρ(s−1),±(s−1). Then the dissipative term gen-
erates all components ρ−s,±s and ρs,±s. But components of the form ρ−s,±(s−1)

or ρs,±(s−1), etc. are never generated. Thus, the assumption ρ−s,−s(0) = 1
implies that ρ(t) has only eight non-vanishing components ρ(mm′), with (mm′)
= (−s,−s), (−s, s), (s,−s), (s, s), (−(s − 1), −(s − 1)), (−(s − 1), s − 1),
(s − 1,−(s − 1)), (s − 1, s − 1) and equation (K.2) reads

d

dt
ρ(t) = iρ(t) (K.39)

where the 8 × 8 matrix M is

M =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−ǫ/τ 0 0 0 1/τ 0 0 0

0 −ǫ/τ 0 0 0 0 0 0

0 0 −ǫ/τ 0 0 0 0 0

0 0 0 −ǫ/τ 0 0 0 1/τ

ǫ/τ 0 0 0 −1/τ −iωT iωT 0

0 0 0 0 −iωT −1/τ 0 iωT

0 0 0 0 iωT 0 −1/τ −iωT

0 0 0 ǫ/τ 0 iωT −iωT −1/τ

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(K.40)

where ǫ = exp(−β∆E) and ∆E is the energy of the excited doublet. The
imaginary elements are not diagonal because the basis vectors are not exact
eigenstates.
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heteroatom derivatives’, in: Lahti, M.P., (ed.), Magnetic properties of organic
materials. Marcel Dekker, New York Inc., pp. 61–102.

Borras-Almenar, J.J., Clemente-Juan, J.M., Coronado, E., Georges, R.,
Palii, A.V. and Tsukerblat, B.S. (1996). J. Chem. Phys. 105, 6892.

Borras-Almenar, J.J., Coronado, E., Palii, A.V., Tsukerblat, B.S. and
Georges, R. (1998a). Chem. Phys. 226, 231.

Borras-Almenar, J.J., Clemente-Juan, J.M., Coronado, E., Palii, A.V. and
Tsukerblat, B.S. (1998a). J. Phys. Chem A 102, 200.

Borras-Almenar, J.J., Clemente-Juan, J.M., Coronado, E., Palii, A.V. and
Tsukerblat, B.S. (1998c). Phys. Lett. A 238, 164.

Borras-Almenar, J.J., Clemente-Juan, J.M., Coronado, E. and Tsukerblat, B.S.
(1999). Inorg. Chem. 38, 6081.

Borras-Almenar, J.J., Clemente-Juan, J.M., Coronado, E., Palii, A. and
Tsukerblat, B.S. (2001a). ‘Magnetic properties of mixed-valence clusters: the-
oretical approaches and applications’, in: Miller, J.S. and Drillon, M., (eds.),
Magnetism: molecules to materials. Wiley-VCH, Weinheim, pp. 155–210.

Borras-Almenar, J.J., Clemente-Juan, J.M., Coronado, E., Palii, A.V. and
Tsukerblat, B.S. (2001b). J. Chem. Phys. 114, 1148.

Boskovic, C., Pink, M., Huffman, J.C., Hendrickson, D.N. and Christou, G.
(2001). J. Am. Chem. Soc. 123, 9914.

Bouwen, A., Caneschi, A., Gatteschi, D., Goovaerts, E., Schoemaker, D.,
Sorace, L. and Stefan, M. (2001). J. Phys. Chem B 105, 2658.



REFERENCES 367

Boyd, P.D., Li, Q., Vincent, V.B., Folting, K., Chang, H.-R., Streib, W.E.,
Huffman, J.C., Christou, G. and Hendrickson, D.N. (1988). J. Am. Chem. Soc.
110, 8537.

Braun, P.A. (1993). Rev. Mod. Phys. 65, 115.

Brown, I.D. and Wu, K.K. (1976). Acta Crystallogr. B32, 1957.

Brune, M., Hagley, E., Dreyer, J., Maitre, X., Maali, A., Wunderlich, C.,
Raimond, J.M. and Haroche, S. (1996). Phys. Rev. Lett. 77, 4887.

Caciuffo, R., Amoretti, G., Murani, A., Sessoli, R., Caneschi, A. and
Gatteschi, D. (1998). Phys. Rev. Lett. 81, 4744.

Cador, O., Gatteschi, D., Sessoli, R., Larsen, F.K., Overgaard, J., Barra, A.L.,
Teat, S.J., Timco, G.A. and Winpenny, R.E.P. (2004). Angew. Chem. Int. Ed.
43, 5196.

Cage, B., Russek, S. E., Zipse, D. and Dalal, N. S. (2005). J. Appl. Phys. 97,
10M507.
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Hermann, Paris.

Cohen-Tannoudji, C., Dupont-Roc, J. and Grynberg, G. (1987). Photons et
atomes. Les Ulis: EDP Sciences.

Cole, K.S. and Cole R. H. (1941). J. Chem. Phys. 9, 341.

Condorelli, G.G., Motta, A., Fragala, I.L., Giannazzo, F., Raineri, V.,
Caneschi, A. and Gatteschi, D. (2004). Angew. Chem. Int. Ed. 43, 4081.

Corbino, O.M. (1911). Phys. Z. 12, 292.

Cornia, A., Gatteschi, D. and Hegetschweiler, K. (1994). Inorg. Chem. 33, 1559.

Cornia, A., Jansen, A.G.M. and Affronte, M. (1999). Phys. Rev. B 60, 12177.

Cornia, A., Affronte, M., Jansen, A.G.M., Gatteschi, D., Caneschi, A. and
Sessoli, R. (2000). Chem. Phys. Lett. 322, 477.

Cornia, A., Fabretti, A.C., Sessoli, R., Sorace, L., Gatteschi, D., Barra, A.L.,
Daiguebonne, C. and Roisnel, T. (2002a). Acta Crystallogr., Sect. C: Cryst.
Struct. Commun. 58, m371.

Cornia, A., Sessoli, R., Sorace, L., Gatteschi, D., Barra, A.L. and
Daiguebonne, C. (2002b). Phys. Rev. Lett. 89, art. no. 257201.

Cornia, A., Fabretti, A.C., Pacchioni, M., Zobbi, L., Bonacchi, D., Caneschi, A.,
Gatteschi, D., Biagi, R., Del Pennino, U., De Renzi, V., Gurevich, L. and Van
Der Zant, H.S.J. (2003). Angew. Chem. Int. Ed. 42, 1645.

Cornia, A., Fabretti, A.C., Garrisi, P., Mortalo, C., Bonacchi, D., Gatteschi, D.,
Sessoli, R., Sorace, L., Wernsdorfer, W. and Barra, A.L. (2004). Angew. Chem.
Int. Ed. 43, 1136.
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Kent, A.D., von Molnàr, S., Gider, S. and Awschalom, D.D. (1994). J. Appl.
Phys. 76, 6656.

Kent, A.D., Zhong, Y.C., Bokacheva, L., Ruiz, D., Hendrickson, D.N. and
Sarachik, M.P. (2000). Europhys. Lett. 49, 521.

Khan, M. I. and Zubieta, J. (1995). Prog. Inorg. Chem. 43, 1.

Khan, M.I., Chen, Q., Salta, J., O’Connor, C.J. and Zubieta, J. (1996). Inorg.
Chem. 35, 1880.

Korenblitt, I.Ya. and Shender, E.F. (1978). Sov. Phys. JEPT 48, 937.

Kortus, J. and Pederson, M.R. (2000). Phys. Rev. B 62, 5755.

Kortus, J., Hellberg, C.S. and Pederson, M.R. (2001). Phys. Rev. Lett. 86, 3400.

Kortus, J., Baruah, T., Bernstein, N. and Pederson, M.R. (2002). Phys. Rev. B
66, art. no. 092403.

Kozlov, G. V. , Volkov, A. A. (1998). In: Gruner G. (ed.), Millimeter and
submillimeter wave spectroscopy of solid. Springer, Berlin, p. 51.

Kramers, H.A. (1930). Proc. Acad. Sci. Amsterdam 33, 959.

Kubo, R. (1957) J. Phys. Soc. Jpn. 12, 570.

Kubo, R., Toyabe, T. (1967). In: Blinc, R. (ed.) Magnetic resonance and
relaxation. North-Holland, Amsterdam, p. 810.

Kubo, T., Goto, T., Koshiba, T., Takeda, K. and Awaga, K. (2002). Phys. Rev.
B 65, art. no. 224425.

Kuroda-Sowa, T., Lam, M., Rheingold, A.L., Frommen, C., Reiff, W.M., Nakano,
M., Yoo, J., Maniero, A.L., Brunel, L.C., Christou, G. and Hendrickson, D.N.
(2001). Inorg. Chem. 40, 6469.

Kuroda-Sowa, T., Handa, T., Kotera, T., Maekawa, M., Munakata, M.,
Miyasaka, H. and Yamashita, M. (2004). Chem. Lett. 33, 540.
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INDEX

3j symbol 41–3
6j symbol 42, 44
9j symbol 43, 44
A tensor see hyperfine interaction
ac susceptometry 69–75
activation energy 6, 162–3, 249, 286, 338
adiabatic limit 218–19, 221
adiabatic susceptibility 71, 74
alkoxide 56, 114, 116, 129, 133
Anderson 31–2, 36
Angular Overlap Model 25–6, 141
anharmonic oscillator 209
anisotropy see magnetic anisotropy
antiferromagnetic interaction 21, 53–5,

274, 279, 299, 306
antisymmetric exchange 21, 38, 143, 296,

302–3
aquo-ion 23, 108, 111
Argand plot 72–3, 143
Arrhenius

experimental behaviour 144–5, 175,
181, 312, 314, 316–17

law 5, 160–3, 167, 249, 252, 331–2,
338–9

asterisk and notation |m∗〉 164, 189
aufbau 26
avalanche 173

Backward Wave Oscillator 88
Barnett effect 170–1
basic metal carboxylate 124, 133
Berry phase 11, 215
Berzelius 126
biquadratic exchange 22
Bleaney-Bowers 52, 113
blocking temperature 6, 60, 66, 75, 109,

159, 307, 316–17
Bohm-Aharonov 199, 214
Bohr magneton 16, 321
Boltzmann

distribution 52, 71, 85, 104, 164,
173–4, 259

entropy 101

population see Boltzmann
distribution

probability 351–3
bond valence sums 135, 150
Born-Oppenheimer approximation 27,

169
Bose commutation rules 171, 213
Bose-Einstein statistics 173
boson operator 215
Brillouin (see also WKB)

function 56–7, 200
zone 334–6

broken symmetry 37
brucite 110–11, 288–9
butterfly structure 125, 151, 153

Caldeira and Leggett theory 244
cantilever 64–5
Casimir and Du Pré 71–4
cgs 52, 319–20
ci coefficient see projection coefficient
classical spin 20, 187–8, 200, 213–15,

240, 292, 299
cluster 4, 8, 39–48, 56, 108, 287
Co

cobalt(II) 27, 312, 317
cobalt(III) 118

coercitive field 5
coherence 12, 180, 215, 225–7, 237, 245,

254–68, 289, 360
Cole-Cole plot 72
collision 95, 164, 352
commutation rules 171, 213, 215, 335
configuration interaction (CI) 33, 36
contact interaction see hyperfine

interaction
Cooper pair 50
Coulomb interaction 32, 319
coupling scheme 42–3, 45, 140, 157, 293,

294, 298, 300
Cr

chromium(III) 2, 108, 118, 120, 130,
133, 289



390 INDEX

creation and annihilation operators
170–2, 177, 213, 354

cross over
field 53–4, 290–9
temperature 161, 278

crystal defects 192, 218, 221, 227, 271–5,
316

crystal field
anisotropy 66, 141, 158, 161, 218,

311–12
Hamiltonian 16–20
Hamiltonian–fourth order 19–20, 89,

140–3, 159, 191, 208, 276
theory 23–30

Cu
copper(II) 34, 36, 113, 119, 126,

130–1, 148, 289, 303
cubane 117, 122, 124–5, 156
Curie law 51, 137
cyanide see ligand cyanide

D tensor 16, 22–3, 29–30, 45, 82–6, 140,
142, 153–5, 157, 295

Debye 71, 76, 171, 173, 283
Debye-Waller 100
decay see relaxation
decoherence 13, 225–6, 237, 258–68, 290
deexcitation 175, 217, 251, 253
delocalized eigenstate 182, 186
demagnetization factor 52, 325
demagnetizing field 51–2, 324–6
Density Functional Theory 14, 23, 36,

37, 123, 138, 143, 235
density matrix 18, 252, 258–65, 352–61
detailed balance 165, 173, 252, 329, 332
deuterium see isotope 2H
di coefficient see projection coefficient
Diabolic point 203–8, 214
dij coefficient see projection coefficient
dipolar interaction see magnetic

interaction, dipolar
dislocations 192, 227, 269, 272, 275
disorder 75, 86–7, 134–44, 269–74
domain (magnetic) 4–5, 11, 144, 317
donor atom 15, 25, 110–15
double exchange see magnetic interaction
double well potential 162, 182–3, 188,

263, 284, 339, 349–51
Dq 25
Dy

dysprosium(III) 309

Ehrenfest 218
eicosane 55
eigenvalues, eigenvectors 16–18, 104,

162–7, 183–6, 190–5
Einstein-de Haas 170
electron correlation 33
electron-electron repulsion 24
ENDOR 81
energy barrier see potential barrier
EPR 81–9, 113, 177, 178, 284 (see also

HF-EPR)
Euclidean action 212–13
exchange

kinetic 32, 37
potential 32, 37
interaction see magnetic exchange

interaction
exponential relaxation see relaxation

Faraday 49
Fe

iron(II) 27, 111
iron(III) 27, 38, 53, 56–8, 85, 110–11,

118, 125–7, 129, 130, 133, 287,
289, 291, 294, 299

Fe8

chemistry 11, 151, 156
magnetism (dynamic) 73, 75, 199, 217,

221, 229–40, 242–3, 285
magnetism (static) 78, 88, 101–4,

152–5, 183, 191
structure 101, 125, 155

ferrimagnetic 137, 150, 152, 157
ferritin 7
ferromagnetic interaction 9, 14, 21, 32,

34–36, 115, 117, 122, 137, 157,
313, 315

Feynman 209, 354
field induced orientation 55
fine structure 83
flux quantum 50
Foner 51
fourth-order crystal field see crystal field
free energy 112, 325–6
free induction decay (FID) 94
frustration see spin frustration
full rotation group 40–1
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g tensor 16, 23, 27, 28–30, 38, 81, 177
of pairs and clusters 22, 45

Gaussian
distribution 97, 235
lineshape 82, 273
units see cgs

giant spin approximation 244, 278, 280
Glauber’s model 242, 311, 313–7
golden rule 84, 171–6, 250, 257
Goodenough-Kanamori rules 15, 31
Gorter 70
gradiometer 50–1, 69
grid (molecular) 116, 117, 287–8, 297–9
gyromagnetic

factor 95–6, 229, 239
effect 170

Hahn echo 94
Haldane 3
Hall

effect 62–3
probe 12, 61–4, 71, 276, 278, 285, 286

Hartree-Fock 33, 36, 100
Heisenberg

exchange 21, 37, 39, 152, 176
principle 258

Hermitian operator 166, 185, 204, 259,
263, 329

HF-EPR 85–9, 123, 140, 150, 153, 158–9,
273, 285 (see also EPR)

high spin configuration 26
Ho

holmium(III) 309–10
hole digging 230–4, 243, 281
HOMO 33
Hund 25, 32, 34
hyperfine field 93, 227–8, 243

fluctuation 232, 236–8, 244–7 (see also

relaxation time, nuclear)
hyperfine interaction 20, 91, 227

contact term 20, 91, 227–8, 235, 239
dipolar 20, 91, 227, 235
pseudo contact 20, 21, 91

hysteresis magnetic 4, 11, 60–1, 132,
144–5, 216, 249, 276, 280–1, 285,
310–14

imaginary time 209–14
induction see magnetic induction

Inelastic Neutron Scattering (INS) 69,
104–7, 139, 140, 143, 153, 158–9,
277, 294, 297–8, 301, 303

instanton 210–13
interference 50, 210, 214–15
intermediate spin state 42, 45–8, 125,

157
iron star 56–8, 66, 85, 130
iron sulphur protein 37
Irreducible Tensor Operators (ITO)

40–4, 152, 293, 382
irreversibility 60, 164, 327, 352

temperature 60
Ising 5, 11, 39, 140, 240, 274, 311, 314–16
isotope

2H 92, 229–34
55Mn 92, 95, 227
57Fe 102, 228–9, 233–5, 238–40

Jahn-Teller 27, 30, 35, 103, 135, 140–1,
146–7, 157, 203

Josephson 50, 63, 199

Kagome 3
Kambe 39–40
Keggin 127–8
Keplerate clusters 127–9
Kohlraush 58
Kramers

degeneracy 191, 203, 213–5
doublet 17, 27, 302, 312

Kubo-Toyabe 97

lagrangian 210, 212
Lanczos 138
Landau-Zener-Stückelberg (LZS) theory

221–4, 238, 254, 269–71, 343–8
Larmor frequency 97, 170–1, 180
level

avoided crossing 186, 280, 285, 295–6
crossing 186, 190, 193–4, 204, 218,

220, 226, 244, 269, 276, 298, 341
lifetime 96, 223, 225, 250–3, 261, 361
ligand 15, 109

azide 113–14
betadiketonate 9, 85, 110, 120, 156,

291–5, 311
carboxylate 11, 112–13, 124–5, 146–51,

156, 307–8
chelate 87, 110–14, 118, 124–5, 156
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ligand (Cont.)
cyanide 30, 108, 113, 118–23, 134
orbital 23–4
phthalocyanine 309
tacn 113, 120–2, 151, 229

Ligand Field
theory 23–30, 91

linewidth 88, 192–4 (see also tunnel
width)

local field see magnetic field
local rotation 167–8
localized eigenstate 186–90, 193, 201
low dimensional magnetism 3, 131, 289
low spin

configuration 27, 122

magnet
hard 5
soft 5

magnetic anisotropy 5–6, 44–8, 55, 140,
153, 156, 168, 280, 309

axial 17, 20, 55, 67, 75, 132, 159, 313
dipolar 37–8, 47, 143, 156, 227
easy axis 5–6, 11, 20, 56, 66, 122, 138,

163, 213, 216
easy plane 17, 148
hard axis 61, 67, 199, 214, 273
intermediate axis 57, 199, 214, 273
rhombic 17–18, 153, 296
single ion 29, 46–7, 134, 140–2, 156–8,

247, 294–5
transverse 20, 53, 75, 142, 273, 276,

282, 284, 336
magnetic domain see domain
magnetic field

gradient 65
induction 52, 62, 319, 320, 324, 326
local 74, 97, 218, 226, 230, 238, 240–9,

324, 347–8
longitudinal 183, 187, 191, 224, 257,

269, 272, 277, 286, 310
transverse 75, 96, 183, 191, 194, 197,

205, 243, 248, 272–3, 291, 341
magnetic interaction

dipolar 37–9, 180, 227, 232, 240–3,
325, 347

double exchange 35, 36, 305
exchange 15, 22, 30–4, 36–7, 52–3, 81,

101–4, 109, 138–9, 152, 157, 176,
290

exchange anisotropic 38, 140, 176

exchange antisymmetric 21, 36, 143,
296, 302–3

super-exchange 15
magnetic phase transition 74, 134, 282–3
magnetic relaxation see relaxation
magnetic resonance see EPR, muonSR,

NMR
magnetic susceptibility 51–2, 54, 137,

152
ac 11, 49, 72, 74, 143–5, 181
adiabatic 71–2, 74
imaginary component 72, 74, 312
isothermal 71, 74

magnetic torque 49, 64–9, 140, 276, 294
magnetite 1, 7
magnetization

dynamics 58–61, 80
equilibrium 60
field cooled 60
thermo-remnant 59
zero field cooled 59–60

magnetochemistry 3, 52
Markov process 164
master equation 163–7, 250, 252, 254,

260, 264–5, 327–32, 336–8
Maupertuis 210
maximum entropy 101
Maxwell equations 319–20, 324
Maxwell field 52, 324–6
micro Hall probe see Hall probe
micro SQUID 61–4, 310
mixed valence 36, 111, 125, 135, 156, 303
Mn

manganese(II) 102–3, 116, 119–20,
122, 123, 150–1

manganese(III) 11, 23, 30, 34, 35, 47,
90, 92–4, 102, 117, 125, 132,
156–8, 313

manganese(IV) 11, 26, 35–7, 90, 92–3,
138–9, 156–8

Mn10 102–3
Mn12

chemistry 109, 134, 146–51
magnetic resonances 84, 89, 92, 94,

97–8, 227
magnetism (dynamic) 144–5, 161, 174,

181, 190, 199, 243, 256, 257,
270–4, 277, 278, 316, 338

magnetism (static) 67, 78, 137, 140,
143, 147, 148, 155

reduced species 149–51
structure 9, 11, 134, 137, 141, 269
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Mn4 124–5, 156–9, 278–83
Mo

molybdenum 122–3, 126, 128, 133, 289
Möbius 306
molecular orbital 14, 23, 33, 227
monodisperse particles 7
Moriya 38
Mössbauer 151
multi-phonon processes 175, 261
muon spin resonance (µSR) 12, 49, 95–9,

262

nanoparticle magnetic 7, 61–2, 308
Néel ground state 234
Ni

nickel(II) 104, 107, 119, 122–3, 132,
313

NIT-R see organic radical,
nitronyl-nitroxide

NMR 89–99, 102, 146, 235, 238–9, 271
non-exponential relaxation see relaxation
nuclear relaxation time see relaxation

time

one-dimensional magnet 3, 9, 311–16
Orbach relaxation process 74, 175
orbital

magnetic 2, 9, 14, 30–4, 36–7, 110
HOMO 33
natural 30
SOMO 14, 32–3
moment 15, 21, 91, 322

organic ferromagnet 1
organic radical 1, 20, 23, 28

carbene 9
nitronyl-nitroxide 1–2, 9–10, 33, 114,

150, 311
TCNE 2, 313

overlap density 30, 34

paramagnet 3, 6, 60, 73, 160
particle tunnel 182, 213
partition function 71, 76, 325
path integral 199, 206, 209–15
Pauli 36
pendulum equation 211
perturbation theory 171, 194–7, 270,

340–4, 352–4
phase sensitive detector 51, 62
phonon 27, 71–7, 162–76, 248–57, 333–9

bath 73, 173, 337
creation and annihilation operator

170–1, 354
emission and absorption 162, 171, 217,

225, 248
photon 177–80, 284–6

creation and annihilation operator 177
photosystem II 8, 156
physical units see systems of unit
Planck constant 321
Poincaré 164
point dipolar approximation 37, 156, 235
Polarized Neutron Diffraction 99–103,

123, 138, 153
polyoxometalates 126–9, 288, 299–305
potential barrier 6, 47, 155, 161–3, 182,

309, 317
potential exchange 32, 37
projection coefficient 22, 45–8

ci 22, 45, 234
di 22, 45–8, 140, 142, 157, 295
dij 22, 46, 48

propagator 209–12
Prussian blue 2, 30, 119

quadrupolar interaction 92–3
quantum Hall effect 63
quartic anisotropy 192, 215, 271, 273

(see also crystal field)
quenching

of the magnetic anisotropy 120, 123,
157

of the orbital moment 15, 24, 27, 91

Racah 24
Raman relaxation process 74, 175
random field 236, 274
random walk 245–7
rare earths 9, 23–4, 28, 309
Re

rhenium(II) 122
reduced matrix element 41- 2

(see also ITO)
relaxation

exponential 58, 97, 144, 160, 165–6,
224, 237, 242–3, 311

non-exponential 227, 240
square root 94, 231, 241–3
stretched exponential 58, 97, 144

relaxation rate see relaxation time
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relaxation time 58–61, 72, 80, 144–5,
160, 163, 174, 190, 227, 229, 312,
316, 336–8

muon 97
nuclear 94–7, 238–9, 245–6, 266
T1 97, 238–40
T2 238–40, 244–5

remnant magnetization 5, 58–60, 280,
313

resonance see tunnel resonance
resonant cavity 179–80
ring

antiferromagnetic 47, 54, 129–32,
290–6

ferrimagnetic 9
ferromagnetic 47, 132
odd-member 109, 131, 306

Robin and Day classification 35, 135, 303
rotating frame 170
rotational band 293–4, 301
Rumer-Pauling 138
Russell-Saunders 25, 28

scaling law 271–3
scattering vector 99, 104
Scheele 126
Schottky anomaly 77, 282, 292, 295–6
Schrödinger equation 182, 189, 192, 216

time-dependent 198, 216, 219–21
selection rule 82, 104, 169, 191–2, 250,

269, 280
self-assembly 108, 117–18, 132, 297
Single Molecule Magnet (SMM)

definition 11
Slater 100
soliton 211–12
solvothermal synthesis 132–3
SOMO see orbital
sound velocity 173–5, 335
specific heat 75–80, 173, 255–7, 282–3,

295–6, 349–51
spectrochemical series 25
spherical harmonics 100
spin autocorrelation function 97
spin density 21, 30, 33, 91–4, 100–3, 123,

138, 143, 153, 275
spin diffusion 238, 244
spin frustration 124, 131, 150–2, 274–5,

281, 299–306
spin glass 60, 75, 268, 274–5, 281, 312–13
spin Hamiltonian 15–22

spin polarization 32–4, 37, 93, 96, 118
spin-lattice relaxation 74, 97, 239, 282

(see also relaxation time, T1)
spin-orbit coupling 24, 27–30, 38, 81,

122, 140, 143, 301–2, 309, 312
spin-phonon interaction 27, 167–71, 175,

259–62, 337
spin-photon interaction 179
spin-spin

interaction see magnetic interaction
exchange

relaxation 74 (see also relaxation time,
T2)

spin-spin Hamiltonian
anisotropic 21–2, 38
antisymmetric 21–2, 38
isotropic 21–2, 38, 39

SQUID 50–1, 58, 61–2, 71, 214
Stevens operators 19–20, 311, 321
strain 88, 150, 167–9, 272
stretched exponential see magnetic

relaxation
strong exchange limit 22, 45, 161
strong-field limit 66
superparamagnetism 6–7, 245, 312
superradiance 180
susceptometry see ac susceptometry
system of units 52, 319–20

Tb
terbium(III) 309

templating effect 129–32
tetracyanoethylene see organic radical,

TCNE
tetragonal

crystal 19–20, 28, 199, 269
distorsion 27, 30, 34

thermal activation see Arrhenius
thermal irreversibility 59
thermo-remnant magnetization 59–60
tight-binding see molecular orbital
time reversal 17, 164, 168, 170, 204, 260,

327, 352
time-dependent magnetic field 216–21,

226–38, 254
torque magnetometry see magnetic

torque
transfer integral 32, 36
transition probability 75, 84, 163–4,

171–3
transverse field see magnetic field

transverse
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tunnel 182–208, 248–57
frequency 195–9, 205, 220–1
resonance 190, 193–4, 216–23, 225,

228–32, 234
splitting 186, 194, 208,

221, 236
width 192–4, 230–6, 204–43, 347

(see also linewidth)
two dimensional electron gas 63

uranyl 131

V
vanadium(II) 2
vanadium(III) 2
oxovanadium(IV) 34, 115, 126, 131,

301–4
V15 107, 301–3
valence orbital 9, 122
Vibrating Sample Magnetometer (VSM)

51, 58
vibronic coupling

see spin-phonon coupling
von Neumann-Wigner theorem 185,

204–5

W
tungsten(V) 123

W-band 82, 86 (see also EPR)
weak ferromagnet 2
weak-field limit 66
Wigner-Eckart 41, 234, 321
window mechanism 226, 241
WKB 200

X-band 82 (see also EPR)

Zeeman
interaction 15, 41, 82–3, 91, 170, 187,

236, 322, 346, 347
nuclear 89, 238
splitting 78, 193, 277, 279–80, 303, 310

zero field splitting 17, 29, 45–8, 81–6, 91,
150, 157, 295, 299

zero field splitting parameters 16, 22–3,
55–6, 66–83

iron clusters 87, 154, 294–5
manganese clusters 68–9, 122, 140–2,

149–51, 158–9, 282, 297–8
nickel clusters 104, 107, 123

zero-dimensional magnet 3, 11


