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XIII

Preface

Exploring new orders of magnitude seems to be a part of human nature. This
tendency is reflected even in the language. If a particular “megadeal” is really
stunning, we feel more and more obliged to call it a “gigadeal”. It will not
take long before the first “terastar” pops up! Each new generation of particle
colliders, telescopes, or lasers, in fact of almost any scientific device or tech-
nique you can think of, extends the accessible interval of a physical quantity.
It is rather the rule than the exception that novel phenomena are discovered
in such a process, some of which have been anticipated, others of which have
not. Such an evolution seems to gain speed as soon as it gets classified as
useful, besides pure scientific interest. It is of course debatable what exactly
should be considered as “useful”.

In any case, the miniaturization of electronic circuits during the past 50
years has been both scientifically rewarding and useful in our daily life. It
is certainly not necessary to support this statement by examples. Scientifi-
cally, however, the expression “microstructure” no longer fuels our imagina-
tion. Meanwhile, the really exciting electronic circuits are nanostructures. As
this name already suggests, nanostructures are objects with structures in the
nanometer (nm) regime, which can mean just 1 nm, but also just a little less (in
fact, in some cases, even somewhat more) than 1000 nm. The point of nanos-
tructure science is that, within the last two decades, tremendous progress has
been made in fabricating, controlling and understanding structures in this size
regime. This is true for a wide variety of fields, including, for example, gene
technology, crystal growth or microchip – excuse me, nanochip – fabrication.
The resulting novel possibilities at hand are really breathtaking and get heav-
ily explored by a significant fraction of the scientific community. In many
cases, having control over the size and shape of an object in the nanometer
regime means being able to control its chemical and/or physical properties.
For example, the size of a semiconductor nanocluster determines its optical
emission spectrum via size quantization; while from introductory solid state
physics lectures, we have learned that this property is related to the bandgap,
an intrinsic feature of the material. By now, the size reduction has actually
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reached dimensions that are of interest for chemistry and biology, and there
is a rapidly growing overlap. For example, you can think of an ionic chan-
nel (they reside in cell membranes and control the electrochemical potential
of cells by selectively transferring certain types of ions across the membrane)
as a molecular transistor. On the other hand, nanostructure physicists have
started to use DNA strands as wires and templates for nanocircuit fabrication.

One branch of nanoscience deals with the electronic transport properties
of solid state nanostructures. This field is often referred to as “mesoscopic
transport”, an expression which indicates that the explanations for the ob-
served transport phenomena must be sought somewhere in between micro-
scopic and macroscopic models. The purpose of the present book is to intro-
duce the reader to this topic from an experimental point of view. “The reader”
is hereby assumed to be a student of physics or a related field, who has just
finished introductory courses, in particular those on solid state physics and
quantum mechanics, and plans to study nanoscience more closely. The reader
is picked up at the knowledge he/she is likely to have, and a ride is given
to ongoing research activities in the field of mesoscopic transport. Along the
way, the elementary concepts and nanostructures are introduced.

Selecting illustrative experiments for such a purpose is of course a highly
subjective matter. The author has tried to pick particularly instructive exam-
ples well known to him, which can furthermore be explained within the scope
of this book. These examples have thus not necessarily been of high relevance
for the evolution of the field, and I apologize for this shortcoming. It should
be remarked that, in some of the figures, the original data have been redrawn
for better reproduction quality and for a consistent presentation.

The text contains a somewhat unusual feature, namely “papers” in the ex-
ercises sections. Their purpose is to encourage the student to go through
selected, usually quite recent, original publications. They are referred to by
[P chapter.number] in the text. The student should be able to summarize the
beef of such a paper in a 15 minute talk. The reader is strongly encouraged
actually to do this. Besides collecting complementary information and getting
exposed to different styles of presentation, the experience of being able to un-
derstand the stuff written down not in a textbook but in an original paper can
be highly motivating.

I hope that after going through the text, the reader will not only be able
to join with some confidence an experimental research group working in this
field, but also feel well prepared for more advanced theoretical lectures on
mesoscopic physics.

This book, and with it the author, has enjoyed a lot of encouragement and
support from many sides. I would like to thank particularly Hermann Grabert
and Wolfgang Häusler, who read through parts of the manuscript and made
many valuable comments. I am grateful to my colleagues Klaus Ensslin,
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Andreas Fuhrer, Miha Furlan, Ryan Held, Thomas Ihn, Silvia Lüscher, Jörg
Rychen, and Volkmar Senz for countless fruitful discussions and stimulat-
ing ideas. Special thanks go to those who supplied figures for this book,
namely Günther Bauer, Mildred Dresselhaus, Andreas Fuhrer, Theo Geisel,
Adam Hansen, Roland Ketzmerick, Anupam Madhukar, Andy Sachrajda,
Elke Scheer, Jürgen Smet, and Horst Stormer. Furthermore, I thank my stu-
dents, whose critical but always constructive comments have shaped and
improved the presentation of the material. Last, but not least, I thank my wife
Ulrike. With her tremendous energy and selfless support, she managed to
supply the refuge I needed to transform my disorganized lecture notes into a
book.

Thomas Heinzel, Düsseldorf, 2006
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1

1
Introduction

1.1
Preliminary remarks

Over the past 30 years, the miniaturization of electronic devices has strongly
influenced the technological evolution. Just think of the progress made in
communication technology, or of the improvements in personal computers.
For the money spent on a pocket calculator (which was barely able to carry
out the four basic arithmetical operations) 30 years ago, you can buy today
a desktop computer able to solve quite sophisticated numerical tasks, which
in the 1970s could be tackled only by supercomputers. Moore’s law states that
roughly every three years the number of transistors per microchip doubles.
This law has been valid remarkably well in the past three decades, and it
is expected to hold for some more years to come, although probably with a
slightly reduced rate. This process, however, requires an ongoing reduction of
the sizes of features, which up to now has essentially been achieved by using
smaller wavelengths for optical lithography (the wavelength determines the
resolution limit via diffraction). This is much more challenging than it may
sound, for several reasons.

First of all, a quick glance in an optics textbook reveals that the index of
refraction of all common glasses diverges rapidly as the wavelength gets re-
duced to about 200 nm. In addition, metals become transparent at their plasma
frequencies, which typically fall in the same range of wavelengths. Hence,
constructing both lenses and mirrors for the 100 nm regime is not that easy.
Currently, the wavelengths used for lithography are of the order of 250 nm.
Alternative lithographic techniques are able to pattern significantly smaller
feature sizes. Although electron beam lithography is used in industry for
some fabrication steps, it is too expensive for mass production of microchips.
Novel patterning schemes, such as self-assembly or lithography with scan-
ning probe microscopes, are presently the subject of extensive studies in re-
search labs all around the world. It is, however, very unlikely that these tech-
niques will replace optical lithography within the foreseeable future.

Second, the patterns illuminated in an optical photoresist have to be trans-
ferred into a structured device. Processes like developing the photoresist,
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semiconductor etching, metal evaporation, alloying or selective doping must
be carried out without losing the resolution. Furthermore, the devices must
be connected to wires, and the inevitable heating generated during operation
must be kept under control.

Suppose that nanoscientists find adequate solutions to all these technolog-
ical problems – there is in fact little doubt that they will. Then, however,
another issue will become more and more important: all the above consid-
erations implicitly assume that the components of a microchip can be scaled
down arbitrarily without changes in their performance. This is not the case!
Conventional transport theory makes presumptions about certain length and
energy scales. For example, it is assumed that the electron mean free path
is small compared to the feature size of the device, like the gate length of a
transistor. The concept of resistivity is based on this assumption. Within the
Boltzmann theory of electronic transport, it is assumed that the acceleration of
the Fermi sphere by external electric fields gets compensated by many kinds
of relaxation processes, which generate friction. In a stationary state, these
friction forces balance the effects of the external field, and the resistivity of the
sample can be defined.

What happens for device sizes comparable to the mean free path, or to other
relevant length scales? Well, we then enter the regime of mesoscopic transport.
Novel effects occur, which may profoundly change the device performance.
Introducing these effects is the major goal of this book. In the following sec-
tion, we will look at the specific length and energy scales somewhat more
closely and give examples for typical transport properties of samples in the
mesoscopic regime.

1.2
Mesoscopic transport

What characterizes the mesoscopic regime? The answer depends on the par-
ticular quantity under study. For the above example, the criterion would be
that the device size must be comparable to or smaller than the electronic mean
free path �e. Other length scales are the de Broglie wavelength of the electrons
that carry the current, which in all cases studied in this book are those elec-
trons at the Fermi edge. Their de Broglie wavelength is the Fermi wavelength
λF = h/

√
2m∗EF, where m∗ denotes the effective electron mass (see Chap-

ter 2 for details), and EF is the Fermi energy. If the feature sizes of the sample
are comparable to λF, the wave character of the electrons will become essen-
tial, and their kinetic energies will quantize. This fact is often referred to as
size quantization, which is nothing but elementary quantum mechanics. If size
quantization takes place in one spatial direction only, the electron system is
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confined to two dimensions, and we speak of quantum films, which are the
topic of Chapters 3 and 6. Suppose we confine our electrons in a second spa-
tial direction. Their motion then becomes one-dimensional, and we have a
quantum wire. The basic properties of quantum wires are discussed in Chap-
ter 7. Finally, we can confine the electron in all directions, like in an atom.
The resulting objects are known as quantum dots or artificial atoms (see Chap-
ter 10). Another important length scale is the phase coherence length. Most of
us are aware of the diffraction pattern that electrons produce as they traverse
a double slit setup in a vacuum tube. However, we usually do not think of
electronic interference effects in solid state devices. Nevertheless, these effects
do occur and become particularly important in devices with dimensions of the
order of the phase coherence length. Phase coherent electrons are the topic of
Chapter 8. Furthermore, it has turned out that the granular character of the
electrons, which even in macroscopic samples plays an important role since
it is responsible for shot noise, becomes increasingly important in nanostruc-
tures. The point here is that the energy needed to charge a small island with a
single electron may become significant. The resulting effects are summarized
by single-electron tunneling, which is the topic of Chapter 9.

Fig. 1.1 gives an overview of the most important mesoscopic regimes, and
we continue with a brief survey of the phenomena to be discussed.

1.2.1
Ballistic transport

In order to enter the ballistic regime, the mean free path �e, which roughly
speaking is the average distance an electron travels before getting scattered,1

must be small compared to the relevant sample length L. At room tempera-
ture, a major source of scattering is electron–phonon interaction, with a mean
free path of the order of 20 nm. How are we supposed to describe electron
transport through a wire with L < �e? Elementary solid state physics tells us
that Bloch electrons in a perfect crystal lattice experience no resistance at all.
We are therefore tempted to expect an infinite conductance. This would mean
that in such small circuits, there is no dissipation, no heat generation and no
energy loss as the electronic signal is transferred, like in a superconductor!
Surprisingly, we cannot avoid resistances as we transfer electrons across bal-
listic wires, although, strictly speaking, the wire itself does have an infinite
conductance. It should surprise you even more that the conductance we mea-
sure is in fact quantized in multiple integers of 2e2/h (see Fig. 1.2). We do
not worry too much about the sample details for now. After going through
Chapters 3 and 4, we will know that below the sample surface shown in the
picture to the left, a quantum film of electrons resides that has been removed

1) A more accurate definition will be given in Chapter 2.
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Fig. 1.1 The left column summarizes what
we mean by a “conventional device”, like
the resistor sketched at the top. Electrons
can be thought of as strongly localized wave
packets without spin, which move through
a disordered device with the drift velocity.
Their mean free path is much smaller than
the device size L. Transport is diffusive.
Since the phase coherence length �φ is also
small compared to L, the transport is inco-
herent. Furthermore, the Fermi wavelength is
much smaller than L, and consequently size
quantization is absent. Moreover, the capaci-
tance of the device is so large that the energy
needed to charge it with a single electron is
negligibly small. In the right column, the con-
ditions necessary to enter the mesoscopic

regime are shown. The cartoon at the top in-
dicates a sample free of scatterers, except for
a manmade non-conducting structure (black).
Transport through the sample is therefore bal-
listic. If �φ ≥ L, the electrons pass through
the sample coherently, and we can expect
interference effects. Furthermore, the fea-
ture sizes may be comparable to λF, such
that size quantization occurs. The capaci-
tances may be sufficiently small, such that
single-electron charging effects may become
observable. Finally, the electron spin (de-
noted by the arrow) can have implications for
the transport properties in mesoscopics, pro-
vided the spin dephasing length �S is larger
than the device.

underneath the bright lines, which are oxide lines on a semiconductor (GaAs)
surface. You will then, hopefully, accept the fact that the whole area shown
here is free of scatterers, at least at low temperatures. The structure can thus
be thought of as a three-terminal device. If a voltage is applied between the
source and the drain terminals, a current will pass through the narrow con-
striction defined by the two oxide lines. Such ballistic constrictions with size
quantization in two directions are called quantum point contacts. The width
of this constriction is of the order of the Fermi wavelength and can be tuned
by applying an additional voltage to the third terminal, labeled as planar gate.
This works because of the field effect, which should again have become clear
after reading Chapters 3 and 4. The conductance of this device as a function
of the planar gate voltage is shown to the right. At temperatures of a few
kelvins, the conductance shows steps in units of 2e2/h, which vanish at more
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Fig. 1.2 Ballistic transport through a quan-
tum point contact. To the left, the surface
topography of a GaAs microchip is shown.
The picture has been taken with an atomic
force microscope. The chip hosts a quan-
tum film about 30 nm below its surface, which
is removed underneath the bright lines. A
small and short wire of length 140 nm and

width 80 nm connects source and drain. By
applying voltages to the planar gate elec-
trode, the width of the wire can be tuned. The
measurement to the right shows the conduc-
tance of the wire as a function of the gate
voltage. At low temperatures, a conductance
quantization in units of 2e2/h is visible, which
vanishes around 20 K.

elevated temperatures. This effect is one of the most fundamental observa-
tions [317, 326] in mesoscopic transport.

Where is the resistance and where does the voltage drop? After all, there are
no scatterers. What determines the energy scale of thermal smearing? How do
we model transport through ballistic samples in the first place? These issues
are discussed in Chapter 7.

1.2.2
The quantum Hall effect and Shubnikov–de Haas oscillations

Fig. 1.3 shows the resistance of a homogeneous electronic quantum film along
the direction of the current flow (the longitudinal resistance Rxx), as well as
perpendicular to it (the Hall resistance Rxy). Apparently, the Hall resistance
quantizes in units of h/(je2) in strong magnetic fields, and in units of h/(2je2)
at smaller magnetic fields (j is an integer). This is the quantum Hall effect, to
be discussed in Chapter 6. It was discovered by von Klitzing and cowork-
ers [176]. Soon afterwards, it became clear that this quantization of the Hall
resistance is independent of the material system, as long as the electron gas
is two-dimensional. In 1982, these observations were supplemented by the
discovery of the fractional quantum Hall effect by Tsui and coworkers [305].
This variation is observed only in samples with very high electron mobilities,
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and has its origin in strong electron–electron interactions. We will not discuss
the fractional quantum Hall effect in this book, though. It is tempting to sus-
pect that the quantum Hall effect is somehow related to the conductance steps
in quantum point contacts, which quantize in the same units. But how can
this be? The sample size here is hundreds of micrometers, which is certainly
larger than the mean free path. Second, the sample is two-dimensional. Also,
we are now looking at the Hall resistance, while in the previous example, we
looked at the two-terminal conductance (Gxx + Gxy strictly speaking), and the
magnetic field was zero. As we shall see in Chapter 7, there is in fact a close,
although by no means obvious, relation between these two effects.

Fig. 1.3 Shubnikov–de Haas oscillations and the quantum Hall effect.
We look at a measurement of the longitudinal and the Hall resistance
(Rxx and Rxy, respectively) of a two-dimensional electron gas as a
function of a magnetic field applied perpendicular to the plane of the
electron gas. The experiment has been performed at a temperature of
100 mK.

Note that the behavior of Rxx is strongly correlated to the quantum Hall
effect. We observe longitudinal resistance peaks at the steps in Rxy, while Rxx

becomes zero in the regions of quantized Hall resistances. These oscillations
are known as Shubnikov–de Haas oscillations. Any explanation for the quantum
Hall effect should therefore also explain these oscillations, in particular the
remarkable fact that the resistance vanishes! It should be remarked that the
quantum film does not become superconductive. You may further wonder
why the resistance of a diffusive two-dimensional electron gas can vanish,
while that of a ballistic one-dimensional electron gas remains non-zero; in fact,
it remains surprisingly large! It is an essential part of this book to answer
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these questions, and to reveal their interconnections. For now, we leave it
at the statement that, in quantum films placed in strong magnetic fields, the
scattering of electrons is strongly suppressed, and the transport develops a
one-dimensional character.

1.2.3
Size quantization

Particularly in modern semiconductor heterostructures (see Chapter 3 for
more on this), the Fermi wavelength can become as large as 100 nm, and may
thus be comparable to the size of the device. This strongly modifies the elec-
tronic density of states and changes the dimensionality of the electron system.
Size quantization plays an essential role for the phenomena presented above.
We will see that, in these semiconductor structures, many of the model po-
tentials treated in elementary quantum mechanics can be tailored, such that
we have some sort of a quantum mechanics construction kit at hand. We will
meet, for example, parabolic quantum wells, square wells, or triangular po-
tentials.

If you think about this, a non-trivial question probably springs to mind: the
electrons are in a crystal, after all. The wave functions must obey Bloch’s the-
orem. How is it that we can we speak of simple potentials and wave functions
as encountered in elementary quantum mechanics? The answer is actually
well established in elementary solid state theory and is most frequently used
in relation to the potential and energies of doping atoms in semiconductors. It
consists of the envelope function approximation and the concept of effective
masses. The effects of the crystal are thereby taken into account by a dielec-
tric constant, and by assigning an effective mass to the electron, which then
moves in the superimposed potential. This approximation is used throughout
this book, after its introduction in Chapter 2.

Size quantization and the corresponding change of the dimensionality (see
Table 1.1) are already sufficient to change the properties of an electron gas pro-
foundly. For example, the quantum Hall effect is absent in three-dimensional
electron gases.

Tab. 1.1 Effect of size quantization on the electronic properties.

Dimension Energy dependence of density of states Unit of resistivity

3 ∝
√

E Ω m
2 constant Ω
1 ∝ 1/

√
E Ω/m

0 δ functions n.a.
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1.2.4
Phase coherence

When we speak of an electron, we mean a wave packet which certainly has
some phase coherence length �φ. We expect interference effects of the elec-
tronic waves to play a role on length scales smaller than the phase coherence
length. The phase coherence is destroyed by inelastic scattering events, such
as electron–phonon scattering and electron–electron scattering, both of which
depend strongly on temperature. At low temperatures, �φ may actually be-
come as large as 100 µm. A prominent example of electronic interference is
the Aharonov–Bohm effect in small quantum rings (Fig. 1.4).

Fig. 1.4 The resistance of a small ring with a diameter of about 1 µm
(the light gray areas in the inset) as a function of a magnetic field
applied perpendicular to the ring plane shows periodic oscillations,
known as Aharonov–Bohm oscillations. They indicate that a signifi-
cant fraction of the electrons traverse the ring phase coherently. Taken
from [236].

This will be explained in more detail in Chapter 8. An important conse-
quence of phase coherence is that the resistance becomes a non-local quantity.
Suppose we apply a current to a sample and measure the longitudinal volt-
age drop. This setup yields the longitudinal resistance Rxx. In conventional
devices, it would just be the resistivity of the sample, multiplied by a geomet-
rical factor. In a phase coherent sample, however, scattering events outside
the probed region may influence the local electron density between the volt-
age probes. Just think of the increase of complexity in the operation of a circuit
of transistors within the phase coherence length, which then mutually influ-
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ence each other. It should be remarked that, on the other hand, the option of
building electronic circuits in a phase coherent electron gas offers fascinating
possibilities, which are outside the scope of this book, even though we outline
the road from quantum dots to quantum bits and quantum computation in
Chapter 10.

A phase coherent electron gas is not necessarily ballistic, since elastic scat-
terers do not cause dephasing. Situations can be established where the elec-
tronic dephasing is governed by electron–electron scattering, which does not
show up (or only marginally so) in the resistance. This is the case because
electron–electron scattering events do not modify the total momentum of the
electron gas. We can therefore ask how phase coherent, diffusive systems be-
have. Such systems show in fact some interesting phenomena, which are pre-
sented in Chapter 8 as well.

1.2.5
Single-electron tunneling and quantum dots

Size reduction goes along with a reduction of capacitances. Consider a paral-
lel plate capacitor of area L2 at a separation L. Its capacitance C scales with
L. At small sizes, the energy required to store an additional electron on it,
E = e2/2C, may become larger than the thermal energy. As a consequence,
the quantization of charge can dominate the behavior of suitable circuits, in
which tunneling of single electrons across leaky capacitors carries the current.
This so-called single-electron tunneling can be used to design new types of
devices, in particular the single-electron tunneling transistor. Probably, it is
Gorter who deserves the credit for giving birth to the field of mesoscopic
physics [123]. In 1951, he suggested that experiments by van Itterbeek and
coworkers [164], who measured the current through metal grains embedded
in an isolated matrix, could be explained by single-electron charging. The first
transistor that exploited this effect was built by Fulton and Dolan in 1987 [109].
Fig. 1.5 shows an experimental realization of such a transistor in a semicon-
ductor structure. We can call it a “transistor” since the gate voltage controls
the current flowing between two further contacts. Single electron tunneling
is a very important member of the family of mesoscopic effects and will be
presented in Chapter 9. The structure shown in Fig. 1.5 actually represents
also an example of a quantum dot. The electrons in the island are confined in
all spatial directions, while their Fermi wavelength is comparable to the dot
size. Quantum dots were “discovered” by chance during the investigations of
disordered quantum wires, which segregated into small islands [269]. Soon
afterwards, they were fabricated on purpose [209, 210]. The particular prop-
erties of such quantum dots are discussed in Chapter 10, where we will also
explain the data shown here in somewhat more detail.
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Fig. 1.5 The right inset shows again the sur-
face topography of a semiconductor with a
two-dimensional electron gas underneath.
Here, the bright lines enclose a small is-
land. It is coupled to source and drain via
two quantum point contacts, which in this
case are closed, i.e. they form tunnel barriers
for the electrons. This can be achieved by ad-
justing the voltages applied to gates Q1 and
Q2 accordingly. The main figure shows the

conductance through the island as a function
of the gate voltage V1 applied to region 1.
Voltage V1 tunes the potential of the island.
The conductance peaks indicate that only for
a particular island potential can electrons be
transferred between the island and the leads.
The left inset shows a fit to a function one
would expect for peaks that are governed by
thermal smearing of the Fermi function.

1.2.6
Superlattices

An interesting type of superpotentials are artificial crystals. They can be man-
ufactured by patterning periodic structures on top of a semiconductor, fol-
lowed by a transfer of the pattern into the electron gas. The resulting artifi-
cial lattices are either one- or two-dimensional and have been investigated in
many experiments, following [315] and [32]. An alternative route is to grow
layers of different semiconductor materials on top of each other [85]. In con-
trast to laterally patterned samples, these lattices are almost exclusively one-
dimensional.

We can not only build model potentials this way, but also study the effects
that occur in principle in periodic potentials, but remain inaccessible in natural
crystals. Some prominent examples of such effects are treated in Chapter 11.
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1.2.7
Spintronics

According to Fig. 1.1, the spin is irrelevant in conventional devices. The spin
of course plays a decisive role in many properties of the electron system. Most
importantly, it is the fermionic spin of 1/2 that determines the electron statis-
tics. We can only guess how our world would look if the charge carriers in
solids had integer spin! Also, ferromagnetism is basically spin physics. More-
over, important semiconductor properties like the valence band structure de-
pend in a very straightforward way on the spin. What we mean here, how-
ever, is that, once these basic implications of the electron spin have been taken
into account, our device performance no longer depends on sample-specific
spin properties. For example, the resistance is assumed to be independent of
the spin coherence length or the spin polarization of the current.

Spintronics (spin electronics) summarizes all effects for which this is no
longer true. For example, the resistance of a nanostructure that is smaller
than the spin dephasing length �s can depend on the spin polarization of the
injected current. The relevance of spin effects in commercial devices is increas-
ing. Giant magneto-resistance read heads are standard in hard disks, while
the concept of magnetic storage devices based on the tunneling magneto-
resistance is a very elegant one. We will become familiar with the most im-
portant concepts of spintronics in Chapter 12.

1.2.8
Samples, experimental techniques, and technological relevance

You will almost certainly have noticed that the temperature has been quite
low in all the examples. The highest temperature encountered so far was 20 K,
at which the remarkable conductance quantization in Fig. 1.2 was no longer
visible. Also, all the samples have been patterned semiconductors, so-called
Ga[Al]As heterostructures, to be more precise. This seems to be a very narrow
range of materials and temperatures. We live at room temperature, and the
semiconductor industry makes its living from silicon. There is no doubt that
these material systems and effects are fascinating from a purely scientific point
of view. But are they really relevant for applications?

As far as the material is concerned, it is true that the Ga[Al]As system is sort
of a workhorse for research in mesoscopic transport. Many groups work ex-
clusively with Ga[Al]As heterostructures. This material is very versatile, and
the electron gases can reach an almost incredible quality. For example, the
electronic mean free path at low temperatures can exceed 100 µm at low tem-
peratures. The foundation for achieving the corresponding ultra-high elec-
tron mobilities was laid by Dingle et al. in 1978, who invented a technique
called modulation doping [72]. As we shall see, this technique allows spatial
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separation of the doping ions from the mobile carriers in semiconductor het-
erostructures, and scattering is therefore greatly reduced. The details will be
presented in Chapter 3. Silicon, however, is the material of choice for fabricat-
ing microprocessors. First of all, silicon is readily available in large quantities.
A major advantage of Si is that it has a natural oxide with excellent mechanical
and electronic properties. It is therefore easy to fabricate high-quality insula-
tors on-chip. Also, the advantages of Ga[Al]As are particularly striking at low
temperatures; they are smaller at room temperature, although still quite rel-
evant. In fact, Ga[Al]As systems fill certain niches in the market. They are
used in optoelectronics (which is outside the scope of this book), since they
have a direct bandgap, in contrast to silicon. Also, Ga[Al]As is used in certain
applications where high speed and low noise are essential. You sometimes
hear that Ga[Al]As is, and will always remain, the material of the future. On
the other hand, Si has played, and still plays, an important role in mesoscopic
research as well. It is probably fair to state that transistor structures entered
the field of mesoscopic transport in 1966, when it was observed that the elec-
tron gas in a Si MOSFET (metal–oxide–semiconductor field effect transistor)
has in fact a two-dimensional character, due to size quantization at the in-
terface between the silicon and its oxide [89]. The quantum Hall effect, for
example, was discovered in a Si MOSFET [176]. In Chapters 2 and 3, we will
therefore predominantly discuss these two material systems. However, other
systems are by no means irrelevant in mesoscopic research! Each material has
its particular strengths and weaknesses, and sometimes more exotic systems
are best. For example, InAs offers an extremely high effective g-factor and a
very small effective mass. Hole gases in SiGe, on the other hand, have large ef-
fective masses. The choice of the material thus often depends on the particular
experiment one has in mind. It should furthermore be stressed that metallic
nanostructures play a very important role in the field as well. Several sem-
inal mesoscopic experiments have actually been performed in small metallic
structures. For example, Aharonov–Bohm oscillations were observed in metal
loops several years before they were seen in semiconductor rings. Also, the
first single-electron tunneling transistor was made from aluminum. We will
frequently meet metallic samples throughout the book.

Within the past few years, novel materials have moved to the focus of at-
tention. One example is carbon nanotubes (see Fig. 1.6). They were discovered
in 1991 by Iijima [160]. These rolled-up graphite sheets can be thought of as
extremely small quantum wires. We will study some of their properties in
Chapters 7 and 11. Furthermore, electronic quantum films can also be gen-
erated in organic polymers. These systems, which are among the potential
“materials of the future”, are briefly presented in Chapter 3 as well. Finally,
it should be said that, along with the advance of nanotechnology, transport
experiments on single molecules have become possible. Conductance quan-
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Fig. 1.6 Structure of a carbon nanotube. The circles denote carbon
atoms in a graphite sheet, which is rolled up and forms a tube with a
diameter of a few nanometers. The ends are supposedly capped by a
carbon hemisphere. After [257].

tization through a single hydrogen molecule has been reported by Smit and
coworkers [281], for example. We will occasionally mention such examples of
molecular electronics. It should be pointed out that the concepts exemplified on
semiconductor nanostructures can be transferred to molecules in a straight-
forward way.

Now, how about the relevance of the mesoscopic transport effects for appli-
cations? Well, there are already applications. For example, resistance quanti-
zation in the quantum Hall effect is so accurate that it is used as the resistance
standard in many countries. Second, there is no fundamental reason why
mesoscopic effects should not occur at room temperature. This is in contrast
to superconductivity, for example, since the critical temperature is well below
room temperature for all the superconductors known up to now. The temper-
ature at which a mesoscopic effect vanishes, on the other hand, is essentially
determined by the feature size. Just scale down your structure below, say, the
phase coherence length or the mean free path, and you will see the mesoscopic
behavior at room temperature. There are in fact several examples for meso-
scopic behavior at room temperature, some of which we will meet later on. In
many (but not all) cases, the samples are cooled down just because we are not
yet able to pattern them at sufficiently small length scales. Phonons are major
obstacles for the electronic motion, and often limit the mean free path at room
temperature. Optical phonons have typical energies around 10 meV, and are
thus frozen out below about 30 K. Also, the density of acoustic phonons is
greatly reduced by cooling the samples.

Smaller feature sizes also mean stronger size quantization and larger en-
ergy separations between adjacent discrete energy levels. We can resolve the
quantized structure as soon as the thermal smearing of the Fermi function be-
comes small compared to this energy level spacing. This is certainly the case
for atoms at room temperature, but not for the artificial atom of Fig. 1.5, for
example. Cooling the samples can therefore be regarded as a convenient way
to look to the future, i.e. how the devices to come will behave at room tem-
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perature once their size has been sufficiently reduced. Table 1.2 gives some
typical length scales.

Tab. 1.2 The typical length scale at which the mesoscopic regime is reached depends on the
temperature. The numbers just give an order of magnitude.

Temperature (K) L (nm)

4.2 (liquid helium) <5000
77 (liquid nitrogen) <100
300 (room temperature) <10

Even if we leave aside such extrapolations to the future, one important as-
pect of technological relevance remains. Joining the field of mesoscopic trans-
port not only means that the student is going to work in an extremely rich and
exciting field of research with many surprises and findings of fundamental
relevance to be discovered. He/she will moreover learn a lot about the mate-
rials, processing techniques, and measurement concepts that are of utmost rel-
evance in the present-day semiconductor industry with its world gross prod-
uct of hundreds of billions of dollars. This combination is highly appreciated
by the researchers in the field, since their range of career choices is unusually
large.

Both the technology of patterning nanostructures as well as performing
transport experiments at very low temperatures are very important issues.
It is furthermore of great help to have an idea of experimental and technolog-
ical boundary conditions to appreciate the measurements and the conditions
under which they have been performed. Chapter 4, which deals with such
issues, is therefore one of the central chapters.

A very limited selection had to be made for this book, but two missing top-
ics should probably be singled out. The large and extremely active field of
interacting electron gases (besides elementary screening and single-electron
tunneling) has been left out. It concerns issues such as the fractional quan-
tum Hall effect, coupled double layers of two-dimensional carrier gases, the
metal–insulator transition in two dimensions, Luttinger liquids or Kondo cor-
relations. Also, the fascinating topic of mesoscopic noise is not included.
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2
An Update of Solid State Physics

Mesoscopic systems are prepared from various materials, which are often, but
not always, semiconductors. Some basic knowledge of their bulk properties
is important and represents the major part of this chapter. Although this is
in many respects just a polishing up of solid state physics at an introduc-
tory level, we introduce relevant specific properties of the materials of interest
along the way, in particular of Si and GaAs. Occasionally, conventional metals
and carbon crystals are mentioned as well.

We begin with a brief recapitulation of the most relevant crystal structures
in Section 2.1, and proceed by looking at the corresponding electronic band
structures of the materials in Section 2.2. Here, it is of particular importance
to model the valence and conduction bands around their maximum and min-
imum, respectively. As always, we can approximate the energy dispersions
near the band extremal points by parabolas, which leads to the concept of
effective masses. We shall see that, within this approximation, the crystal prop-
erties can be “put aside” in many cases. Instead, the charge carriers behave
like free electrons with a modified mass. The properties of electrons and holes
within the effective mass approximation are looked at in Section 2.3. Also, the
effective mass approximation allows us to work with envelope wave functions.
Within this approach, superpotentials, like those frequently met in nanostruc-
tures, can be treated with a Schrödinger equation for just this superpotential.
The crystal potential enters only via the effective masses and its dielectric con-
stant. This is a very elegant concept, which simplifies our life substantially in
subsequent chapters. This approximation is the topic of Section 2.4.

Doping is the standard way to fill the bands of a semiconductor with a sig-
nificant and temperature-independent carrier density. The important issues
concerning doping are reviewed in Section 2.5. In the subsequent section, we
look at the transport properties of electron gases within the simplest version
of the Boltzmann model. We will occasionally use these results when looking
at diffusive samples. Furthermore, it is of help to know the approximations
that enter this model, in order to appreciate the deviations we will look at later
on. A non-vanishing resistance indicates that some type of scattering mech-



16 2 An update of solid state physics

anism must be present, which is the topic of Section 2.7. Finally, we spend a
few words on screening in Section 2.8.

Readers who discover that parts of this chapter are white spots on their
map of solid state physics knowledge are encouraged to consult one of sev-
eral excellent introductory textbooks for further information, like [12, 346]. If
everything sounds familiar, please consider this chapter as a warm-up exer-
cise!

2.1
Crystal structures

Many elements and compounds crystallize in a face centered cubic (fcc) lat-
tice. This is not surprising, since this crystal structure represents one of the
two possible realizations of close packings, which one might naively expect to
occur when identical or very similar spheres are piled up. Both Si and GaAs
have this lattice structure. The lattice constant a is the length of one edge of
a unit cell. Si is composed of two fcc lattices shifted relative to each other by
(a/4, a/4, a/4). This crystal structure is also known as the diamond structure.
GaAs also has a two-atom base, except that here one base atom is Ga and the
other is As. This is the zinc blende lattice. The lattice constants are 0.565 nm for
Si and 0.543 nm for GaAs (both numbers hold for room temperature). Fig. 2.1
shows the Si and the GaAs structures.

The reciprocal lattice of an fcc lattice is a body centered cubic (bcc) lattice.
Since the crystal momentum is invariant under translations by reciprocal lat-

Fig. 2.1 Crystal structures of GaAs (left) and Si (center), as well as
their first Brillouin zone (right), a truncated octahedron. Points of high
symmetry are labeled as K, Γ and L; see text.
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Fig. 2.2 Structure of a graphite sheet. Left: The unit cell (gray) of this
hexagonal lattice is spanned by the lattice vectors |�a1 | and |�a2|, with
a lattice constant of |�a1| = |�a2| = 0.246 nm. It contains a basis of
two carbon atoms (full circles) occupying non-equivalent sites. The
distance between two neighboring atoms is 0.142 nm. Right: The first
Brillouin zone of the graphite sheet with points of high symmetry.

tice vectors, we can represent the behavior of electrons and phonons within
one elementary cell of the reciprocal lattice, which is always chosen as the first
Brillouin zone. For an fcc lattice, this is a truncated octahedron, composed of
six squares and eight hexagons (see Fig. 2.1). The center of the first Brillouin
zone is labeled the Γ-point, while the centers of the hexagons and squares are
referred to as the L- and X-points, respectively. Occasionally, one hits upon
more exotic directions of lower symmetry, such as K, U, and W, which are
located at the center of the edges and at the corners of the first Brillouin zone.

Germanium crystallizes in a diamond structure like silicon. Any binary
combination of Al, Ga, or In with As, Sb or P (the so-called III–V compounds)
will result in a zinc blende lattice. Combining these group III elements with
nitrogen can lead to either an fcc lattice or a hexagonal lattice, depending on
the crystallization process and the subsequent treatment. This is also the case
for most II–VI compounds, such as CdSe or ZnS (which gave the zinc blende
structure its name, after all). Thus, when working with semiconductors, you
will barely ever meet any further crystal structures. To finish this section, let
us have a look at a particularly simple lattice, namely a sheet of graphite, the
second crystal structure that carbon forms besides diamond. It consists of a
hexagonal lattice of sp2-hybridized carbon atoms (Fig. 2.2).

Question 2.1: Calculate the reciprocal lattice of the graphite sheet and construct its
first Brillouin zone.
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The reciprocal lattice is again hexagonal. The center of the first Brillouin
zone is denoted by Γ, the corners by K, and the centers of the edges are labeled
L (Fig. 2.2).

2.2
Electronic energy bands

An electronic energy band is an energy interval in which electronic states exist
in the crystal. The bands are separated by bandgaps. This energy structure is
obtained by solving the Schrödinger equation for electrons in the crystal[
− h̄2

2m
∆ + Vcrystal(�r)

]
|φ(�k,�r)〉 = ε|φ(�k,�r)〉 (2.1)

Here, the electronic wave functions depend on both the wave vector �k and
the spatial coordinates �r. They are denoted by |φ(�k,�r)〉, while Vcrystal(�r) is
the crystal potential. Elementary solid state physics tells us that the wave
functions have to obey Bloch’s theorem, which states that they are of the form

|φ(�k,�r)〉 = |u�k(�r)ei�k�r〉 (2.2)

where u�k(�r) has the periodicity of the crystal lattice. Such wave functions are
Bloch functions. The task is to determine the eigenvalues ε(�k) and eigenvectors,
which is usually done by Fourier-transforming the differential equation into
an algebraic equation. An exact solution, though, is only possible for some
special cases. Some reasonable approximation is therefore called for. How
Eq. (2.2) is then solved in detail depends on the model. The nearly free electron
model starts from a free electron gas and treats a weak periodic crystal potential
within perturbation theory. Here, the bandgaps emerge from interferences of
the electronic waves that get scattered from the crystal potential, which results
in standing waves at the edges of the Brillouin zones. The reader is referred
to the extensive literature on solid state physics for details. Here, we look at
a different approach, which constructs the electronic eigenstates from those
of the individual atoms that form the crystal. This approach is known as the
tight binding model. Within this picture, the energy bands and the bandgaps
are remainders of the discrete energy spectrum of the atoms.

The tight binding model is based on the assumption that the atomic orbitals
|φa,n(�r)〉 belonging to an energy eigenvalue En are a good starting point for
constructing Bloch waves |ξn(�k,�r)〉. Let us assume that there is only one atom
per unit cell. We can define Bloch functions via

|ξn(�k,�r)〉 ≡ 1√
N

∑
�Rj

ei�k�Rj |φa,n(�r− �Rj)〉 (2.3)
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Here, the lattice vectors are denoted by �Rj. The crystal wave functions can be
expanded in these Bloch functions, such that

|φ(�k,�r)〉 = ∑
n

dn(�k)|ξn(�k,�r)〉 (2.4)

Suppose the energy level En is non-degenerate and there is no other en-
ergy level nearby. In that case, it is reasonable to assume that |φ(�k,�r)〉 ≡
|φ〉 = |ξn(�k,�r)〉 represents a very good approximation of the Bloch waves that
emerge from the atomic wave functions |φa,n(�r)〉. The Schrödinger equation
of the crystal for this scenario is now multiplied from the left by 〈φ|, with the
result

〈φ|H|φ〉 = ε〈φ|φ〉 (2.5)

Two integrals have to be evaluated: (i) 〈φ|φ〉 and (ii) 〈φ|H|φ〉. We write
down (i) in the more explicit form

〈φ|φ〉 =
1
N ∑

l,j
〈φa,n(�r− �Rl)|φa,n(�r− �Rj)〉ei�k(�Rj−�Rl) (2.6)

The integrals occurring in this sum are known as overlap integrals, since they
measure the overlap of wave functions centered at the lattice points �Rl and �Rj.
The atomic wave functions decay exponentially. It is therefore a reasonable
approximation to neglect overlap integrals for two different sites, i.e.

〈φa,n(�r− �Rl)|φa,n(�r− �Rj)〉 ≈ δl j (2.7)

It is actually here where the “tight” from the tight binding model enters, be-
cause Eq. (2.7) implies that the spatial extent of the atomic wave functions is
small compared to the lattice constant. Thus, in integral (i), we are left with
N identical terms equal to 1, since the atomic wave functions are normalized,
and we end up with

〈φ|φ〉 = 1 (2.8)

In integral (ii), let us first note that

〈φa,n(�r− �Rl)|H|φa,n(�r− �Rj)〉

depends only on �Rl − �Rj. Therefore, the summation over l and j can be written
as a summation over N terms only, where each term corresponds to the total
contribution to one difference vector. We can thus choose l ≡ 0 and obtain

〈φ|H|φ〉 = ∑
j
〈φa,n(�r)|H|φa,n(�r− �Rj)〉ei�k�Rj (2.9)



20 2 An update of solid state physics

This equation can be simplified by splitting up the crystal Hamiltonian into
the atomic Hamiltonian Ha(�r) (at �Rl = 0) and a contribution of all other atomic
potentials

δV(�r) ≡ ∑
m �=0

V(�r− �Rm) (2.10)

In addition, we treat the terms with j = 0 separately, such that integral (ii) can
be expressed as

〈φ|H|φ〉 = En + ∑
j �=0
〈φa,n(�r)|φa,n(�r− �Rj)〉︸ ︷︷ ︸

=0 ∀j, Eq. (2.7)

ei�k�Rj + · · ·

+ 〈φa,n(�r)|δV(�r)|φa,n(�r)〉︸ ︷︷ ︸
≡β

+ ∑
j �=0
〈φa,n(�r)|δV(�r)|φa,n(�r− �Rj)〉ei�k�Rj

(2.11)

where we denote the value of the first integral in the second line as β, while
the second integral is referred to as the transfer integral, which remains to be
discussed. Note that each term in the transfer integral is actually a sum that
runs over the contribution of all atomic potentials to that close to site l = 0:

〈φa,n(�r)|δV(�r)|φa,n(�r− �Rj)〉 = ∑
m �=0
〈φa,n(�r)|V(�r− �Rm)|φa,n(�r− �Rj)〉

Two final approximations are frequently made here. First of all, the influence
of potentials from non-nearest neighbors is neglected. Second, terms with
m �= j can be expected to be small compared to those with m = j, since they
contain functions centered at three locations instead of two. Under these as-
sumptions, the transfer integral reads

〈φa,n(�r)|V(�r− �Rj)|φa,n(�r− �Rj)〉 =
{

γ j nearest neighbor to 0
0 otherwise

(2.12)

The tight binding band emerging from the energy level En finally reads

En(�k) = En + β + γ ∑
j∈n.n.

ei�k�Rj (2.13)

The energy for the possible wave vectors has developed a dispersion, which
originates in the requirement that the wave functions have to obey the Bloch
theorem. It is worth emphasizing that, besides the approximations already
stated above, we have also assumed here that the atomic wave function has
(at least) the symmetry of the lattice. Otherwise, γ would be anisotropic.

The tight binding approach is rather general in nature and still works in
more complicated cases, which can be included by straightforward exten-
sions. Moreover, in situations where the atomic wave functions are not tightly
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bound, one can still construct Bloch waves from appropriately defined func-
tions (known as Wannier functions) localized at each lattice site.

Question 2.2: Determine the energy dispersion for the simplest case, namely for
a single band in one dimension, with a constant (and negative) transfer integral γ,
and a vanishing overlap integral. Show that the energy dispersion in that case reads
E(k) = E0 + 2γ cos(ka).

As a more elaborate example, we mention the graphite sheet, in which
atomic s and p orbitals generate the bands of relevance. Treating this system
in terms of the tight binding model requires several extensions to the basic
scheme outlined above. We have two atoms per lattice site and four atomic
wave functions of different symmetry. The result of this calculation [313] is
shown in Fig. 2.3. For the pz orbitals of the carbon atoms arranged in a honey-
comb configuration, a bonding and an antibonding π band results. To a first
approximation, its tight binding energy dispersion is

Eπ(�k) = ±T
√

1 + 4 cos( 1
2

√
3kxa) cos( 1

2 kya) + 4 cos2( 1
2 kya) (2.14)

Solids are usually classified as metals, semiconductors, or insulators. In a
metal, at least one of the bands is partly occupied with electrons. These bands
are called conduction bands in metals. In semiconductors and insulators, all
bands are either full or empty at zero temperature. Here, the full band with the
highest energy is the valence band, while the conduction band is the empty
band with the lowest energy. In a semiconductor, a significant density of elec-
trons can be transferred from the valence band into the conduction band by
thermal excitation, which requires a bandgap of less than, say, 4 eV. Conse-
quently, semiconductors are just small-bandgap insulators.

It turns out that the graphite sheet is a very special case in this classification
scheme. The bonding π band is in fact the valence band, while its antibond-
ing counterpart is the conduction band. As can be seen from Eq. (2.14), the
valence band can be mapped onto the conduction band by a reflection at the
planes defined by the K-points. The conduction band and the valence band of
a graphite sheet, represented by bold lines in Fig. 2.3, touch each other at the
K-points. It can thus be regarded as a semiconductor with zero bandgap.1

By adopting the tight binding method appropriately, the band structure of
other materials, like Si and GaAs, can be calculated. Naively, one might as-
sume that, due to the similar crystal structures, the band structures of the two

1) In bulk graphite, the interaction between adjacent graphite sheets
causes small energy shifts of both π bands, such that they overlap
somewhat around the K-points. It is therefore a metal with an ex-
tremely small carrier density.
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Fig. 2.3 Band structure of a graphite sheet. The valence band and
conduction band touch each other at the K-points. After [228].

semiconductors should be very similar as well. However, this is not the case,
mainly because the Ga–As base is polar, while the Si base is covalent. Fig. 2.4
shows the structures of the valence and conduction bands of both crystals. The
extremal points of the bands shown here dominate both the electronic and op-
tical properties. The number of electrons in the conduction band, as well as
the number of holes in the valence band, is small compared to the number of
available electronic states in all cases of relevance, and the few carriers will
find themselves in close proximity to the band extremal points. Around these
extremal points, we can expand the energy dispersion in a Taylor series up to
second order:

E(�k) = E0 +
1
2
�k ·

(
∂2E

∂ki∂kj

)
·�k (2.15)

By comparing this expression with the energy dispersion of the free electron
gas, E(�k) = h̄2�k 2/2m, we see that the tensor of second derivatives of the en-
ergy can be identified with the effective masses

1

h̄2

(
∂2E

∂ki∂kj

)
=
(

1
m∗

)
ij

(2.16)

which is therefore also known as the effective mass tensor. It can be diagonal-
ized, such that the extremal points of the energy bands can be characterized
by three effective masses along the principal axes. Carriers in semiconductors
therefore usually behave free-electron-like, except that their masses have been
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Fig. 2.4 Top: Electronic band structures of GaAs and Si close to the
bandgap. Bottom: Schematic location and shape of the regions the
electrons occupy at typical electron densities.

changed by the crystal structure. Throughout the rest of the book, we will use
effective masses to describe the behavior of carriers.

Question 2.3: What is the effective mass around the minimum of the energy band
obtained in Question 2.2?

Let us have a somewhat closer look at these band structures. Si has a con-
duction band minimum at 0.85

−→
ΓX. Around the conduction band minimum,

two different effective masses exist, a transverse mass in all directions per-
pendicular to the

−→
ΓX direction, me,t = 0.19m, and a longitudinal mass along

the
−→
ΓX direction, me,l = 0.92m. Since there are six X-points, the conduction

band minimum in Si shows a sixfold degeneracy known as “valley degener-
acy”. In GaAs, the conduction band minimum is located at the Γ-point. Here,
the three effective electron masses are identical: m∗e,1(GaAs) = m∗e,2(GaAs) =
m∗e,3(GaAs) = 0.067m. In both materials, there are two (nearly) degenerate va-
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lence bands at the Γ-point. As in most semiconductors of interest, the valence
band emerges from atomic p states, which have a threefold orbital degener-
acy and a spin degeneracy of 2. Typically, the corresponding σ band formed
by the atomic s orbitals has its maximum well below the maximum of the p
bands and does not have to be taken into account for transport considerations.
In the crystal, the degeneracy of the p orbitals is removed, and three different,
spin-degenerate bands are obtained. Two of them are shown in Fig. 2.4, while
the third one is split off and shifted to lower energies. This splitting has its
origin in the spin–orbit interaction. The spin–orbit Hamiltonian is given by

Hso =
h̄

4m2c2 σ · �∇V × �p (2.17)

where V is the electrostatic potential, and σ are the Pauli spin matrices. This
is a relativistic term, which means we have to replace the Schrödinger equa-
tion by the Dirac equation, and the wave function becomes a two-component
spinor. In a spherical symmetric potential, the spin–orbit Hamiltonian be-
comes proportional to the scalar product of the angular momentum and the
spin�L ·�S. To get an idea what the spin–orbit Hamiltonian does to the energies,
we assume that the interaction in the solid can be approximated by that in the
individual atoms. It is then clear from atomic physics that this term separates
the fourfold degenerate j = 3/2 states from the twofold degenerate j = 1/2
states, where j denotes the total angular momentum quantum number. The
j = 1/2 state is lowered in energy, by an amount that essentially depends on
the strength of the atomic Coulomb potential. The heavier the nucleus, the
stronger is this spin–orbit splitting ∆so. This tendency can be seen experimen-
tally: ∆so(graphite) ≈ 6 meV, ∆so(Si) ≈ 45 meV, and ∆so(GaAs) ≈ 340 meV.

The energy dispersions of the remaining four bands with j = 3/2 can be
conveniently described within the�k · �p approximation, a method to model the
dispersion around the extremal points of an energy band. We consider a semi-
conductor with a band maximum at�k = 0, as is the case for the valence bands
under study. Within the�k ·�p model, the spatial derivatives in the Schrödinger
equation of the crystal, Eq. (2.2), are carried out only for the plane wave com-
ponent of the Bloch function of the type (2.2). The equation{

p2

2m
+

h̄�k ·�p
m

+
h̄�k 2

2m
+ V(�r)

}
un,�k(�r) = En(�k)un,�k(�r) (2.18)

emerges. Here, n denotes the band index. For�k = 0, it simplifies significantly,
and we assume that an approximate solution can be found for all bands in-
volved. A non-vanishing but small wave vector can then be treated as a per-
turbation.

First of all, the term ∝ �k 2 produces an energy shift that depends on�k, but
does not couple the bands. Technically, it can just be added to the crystal
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Fig. 2.5 Warped surfaces of constant energy for heavy and light hole
bands in GaAs (left) and Si (right). A cross section through the plane
kz = 0 is shown for a typical Fermi energy of 10 meV. The wave num-
bers are measured in units of 108 m−1.

potential. The term containing�k ·�p, however, must be treated with degenerate
perturbation theory. It turns out that the second-order term is the leading one,
since the first-order term is linear in�k and must thus vanish at a maximum.
The matrix elements are given by

hij(�k) =
h̄2

m2

4

∑
q=1; q �=i,j

〈ni, 0|�k · �p|nq, 0〉〈nq, 0|�k · �p|nj, 0〉
εni,0 − εnq,0

(2.19)

The bands are labeled by ni,j,q here. This 4× 4 matrix equation gives energy
eigenvalues of the type

Elh,hh =
h̄2

2m

[
γ1k2 ±

√
4γ2

2k4 + 12(γ2
3 − γ2

2)(k2
xk2

y + k2
yk2

z + k2
zk2

x)
]

(2.20)

The γi are the Luttinger parameters, which depend on the material. For GaAs,
γ1 = 6.95, γ2 = 2.25, and γ3 = 2.86. In Si, γ1 = 4.29, γ2 = 0.34, and γ3 =
1.42. The “+” energy dispersion corresponds to a lighter effective mass for all
directions in�k-space. The band is therefore referred to as the light hole (lh) band.
Correspondingly, the “−” sign represents the energy dispersion for the heavy
hole (hh) band. To get an idea of the shape of the hole bands, consider a surface
of constant energy. The first term on the right-hand side in Eq. (2.20) describes
a sphere, which is warped by the second term. The warping is�k-dependent
and of opposite sign in the two bands for all directions. These surfaces are
therefore known as warped spheres (see Fig. 2.5).

Note that both bands remain twofold degenerate in this treatment at�k = 0.
This is known as the Kramers degeneracy. It is removed in polar crystals, such
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as GaAs or InP, due to the absence of an inversion center. The corresponding
correction to the Hamiltonian is known as the Dresselhaus term. The resulting
energy splitting, however, is small, i.e. in the range of µeV, although it causes
measurable effects to occur at very low temperatures.

As per the definition, the properties of a hole (characterized by energy Eh
and wave vector�kh) are those of a fully occupied band with the correspond-
ing electron, i.e. the electron of energy −Eh and wave vector −�kh, removed.
A hole is thus a quasi-particle with a positive effective mass and a positive
charge of q = +e. For the warped structure of the valence bands discussed
above, it is common to specify effective masses for the hh and the lh bands by
evaluating the band structure for very small wave vectors and averaging them
over all directions in reciprocal space. The literature values vary somewhat;
typical values are m∗hh(Si) = 0.54m, m∗lh(Si) = 0.15m, m∗hh(GaAs) = 0.51m,
and m∗lh(GaAs) = 0.08m.

GaAs has a direct bandgap, meaning that the minimum in the conduction
band is at the same location in k-space as the maximum of the valence band.
The bandgap of Si is indirect. A large momentum transfer is necessary for
exciting electrons from the valence band maximum into the conduction band
minimum.

Question 2.4: Compare the momentum of a photon with the energy of the Si
bandgap with the momentum difference between the Γ-point and the conduction band
minimum in Si.

Therefore, Si can absorb photons with an energy close to the bandgap only
if phonons are absorbed/emitted simultaneously. This is a rather unlikely
process, which makes crystalline Si a poor material for optoelectronics.

Owing to anharmonic contributions to the lattice vibrations, the crystals
shrink as they get cooled down. As a consequence, the bandgap increases
with decreasing temperature. Empirically, one finds (see Fig. 2.6)

Eg,Si(Θ) = 1.17 eV− 4.73× 10−4 Θ2 K−1

Θ + 636 K
eV

Eg,GaAs(Θ) = 1.52 eV− 5.4× 10−4 Θ2 K−1

Θ + 204 K
eV

For many applications, a fraction x of the Ga atoms in GaAs is replaced by
Al atoms, and the ternary AlxGa1−xAs results. For x ≤ 0.38, the bandgap
increases linearly with x, with a maximum at Eg(Γ, x=0.38) = 1.92 eV, and
can be tailored for a specific application. For x ≥ 0.38, however, the local
minimum close to the X-point becomes the global minimum of the conduc-
tion band, and the material becomes an indirect semiconductor. Pure AlAs
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Fig. 2.6 Sketch of the bandgap in AlxGa1−xAs as a function of the Al
concentration x.

has a bandgap of Eg = 2.16 eV. Note that the positions of the Al atoms are
random, which means that the ternary compound is not a crystal. Neverthe-
less, we can speak of band structures and effective masses, since such crystals
can be treated within an averaging procedure known as the “virtual crystal
approximation” (see [21]).

2.3
Occupation of energy bands

In this section, we study how the electrons occupy the valence and conduc-
tion bands. The electron density n in a band is obtained by integrating over
the spectral electron density n(E), i.e. the density of electrons in the interval
[E, E + dE]. The spectral electron density is given by the spectral density of
electronic states Dd(E) available, multiplied by their occupation probability.
Here, the index d denotes the dimensionality of the system. We will briefly
discuss these two quantities.

2.3.1
The electronic density of states

The electronic density of states Dd(E) is the number of electronic states in
[E, E + dE] and per unit volume. It depends on the dimensionality d of the
system and the energy dispersion E(�k) of the electronic band under consider-
ation. The usual way to calculate Dd(E) is to determine the electronic mode
density in k-space Dd(�k) of a cavity of size Ld and transform it into the energy
space via E(�k). We carry out this calculation for a two-dimensional system
with a parabolic energy dispersion, since this is what we will encounter most
frequently in the following.
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Consider a crystal square with a base length L, oriented along the x- and y-
axes. We assume periodic boundary conditions, and use plane waves as base
functions.2 An electronic state Ψ exists at wave vector�k if

Ψ(�r + (L, L)) = Ψ(�r) =⇒ �k =
2π

L
(nx, ny)

with ni being an integer. The allowed wave vectors form a simple square lat-
tice in k-space with a lattice constant of 2π/L. Each state is g-fold degenerate
due to spin and valley degeneracies. Hence, there are g states in the volume
(2π/L)2. States of equal |�k| are located on a circle. The number of states dN2
in an annulus of radius k and width dk is given by

dN2 = g
2πk

(2π/L)2 dk

with k = |�k|. This gives a density of states in k-space of

D2(k) =
1
L2

dN
dk

=
gk
2π

D2(E) is obtained from D2(k) by a coordinate transformation

D2(E) = D2(k)
dk
dE

=
gm∗

2πh̄
(2.21)

Here, we have used the energy dispersion for electrons with an isotropic ef-
fective mass m∗,

E(�k) =
h̄2�k2

2m∗

The density of states in one, two, and three dimensions are shown in Fig. 2.7.

Fig. 2.7 The electronic density of states within the effective mass ap-
proximation as a function of energy, in one, two, and three dimensions.

2) It can be shown that the results do not depend on the boundary
conditions.
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Question 2.5: Calculate D3(E) and D1(E). Show that

D3(E) = g
(2m∗)3/2

4π2h̄3

√
E (2.22)

and

D1(E) = g

√
2m∗

2πh̄
1√
E

(2.23)

What does the density of states look like for a zero-dimensional system?

2.3.2
Occupation probability and chemical potential

In equilibrium, fermions occupy states of energy E with a probability given
by the Fermi–Dirac distribution function

f (E, Θ) =
1

e(E−µ)/kBΘ + 1
(2.24)

Here, µ denotes the chemical potential, i.e. the energy for which the density
of occupied states with larger energies equals the density of empty states with
lower energies. This definition, by the way, also holds if the occupation prob-
ability is not a Fermi–Dirac distribution. Furthermore, Θ is the temperature.
The Fermi energy EF is the energy at which f (E, Θ=0) jumps from 1 to 0.
Clearly, µ = EF at Θ = 0. For Θ > 0, µ may differ from EF, depending on
the energy dependence of the density of states.

In a metal, at least one band is by definition partly occupied at Θ = 0.
Therefore, EF is located within an energy band. Semiconductors, on the other
hand, are defined as crystals where the conduction band is empty, and EF thus
resides in the bandgap. The same is of course true for insulators. The electron
density in a band ranging from Ebottom to Etop is obtained from

n =

Etop∫
Ebottom

n(E) dE =

Etop∫
Ebottom

Dd(E) f (E, Θ) dE (2.25)

Note that the dimensionality d of Dd(E) also determines the dimensionality of
n. The Fermi function and the spectral electron density are sketched in Fig. 2.8.

2.3.3
Intrinsic carrier concentration

The carrier concentration in a perfect, impurity-free semiconductor crystal is
called “intrinsic”. Here, the carriers are exclusively generated by thermal ex-
citation of electrons from the valence band into the conduction band, which
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Fig. 2.8 Thermal smearing of the Fermi function (left), and the density
of states (d = 3) as well as the spectral carrier density n(E) (right).

means that n = p (p denotes the hole density). Within the effective mass ap-
proximation and for a spin-degenerate system (g = 2), the carrier densities
are given by

n =
√

2m∗3/2
e

π2h̄3

∞∫
EC

√
(E− EC) f (E, Θ) dE

p =

√
2m∗3/2

h

π2h̄3

EV∫
−∞

√
(EV − E) [1− f (E, Θ)] dE (2.26)

The chemical potential is close to the center of the bandgap, slightly shifted
toward the band with the lighter effective mass.3 Therefore, it is safe to assume
that |EC,V − µ| � kBΘ. This tells us that only the tails of the Fermi function,
far away from the chemical potential, lie inside the bands, and can be well
approximated by a Boltzmann distribution, i.e.

f (E, Θ) = exp[−(E− µ)/kBΘ)]

A brief calculation gives

n = NCe−(EC−µ)/kBΘ, p = PVe(EV−µ)/kBΘ (2.27)

NC and PV are known as “effective densities of state”, and are given by

NC =
1
4

(
2m∗ekBΘ

πh̄2

)3/2

, PV =
1
4

(
2m∗hkBΘ

πh̄2

)3/2

An immediate consequence is the “law of mass action for charge carriers”

np = NCPVe−Eg/kBΘ =⇒ n = p =
√

NCPVe−Eg/2kBΘ

3) This is qualitatively clear as µ is given by the condition n = p, and
the density of states increases with increasing effective mass.
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Fig. 2.9 Fermi function, density of states, and spectral carrier densi-
ties q(E) (q = n, p) in an intrinsic semiconductor with m∗h = 2m∗e .
The temperature is Θ = 0.25Eg/kB, which corresponds to a chemical
potential µ = 0.39Eg/2.

Inserting p in Eq. (2.19) leads to

µ = EV + 1
2 Eg + 3

4 kBΘ ln(m∗h/m∗e) (2.28)

Fig. 2.9 summarizes the relations between density of states, Fermi function
and intrinsic carrier densities in a semiconductor.

The exponential dependence of n and p on temperature causes carrier freeze-
out as the temperature is reduced. At room temperature, we have an in-
trinsic electron density of nSi = 1.45 × 1016 m−3 for silicon and nGaAs =
1.8× 1012 m−3 for GaAs (see Exercise E2.7).

At these typical, small carrier densities, the electron Fermi surface consists
of six rotational ellipsoids in Si, of spheres in GaAs, as indicated in Fig. 2.4. In
the valence band, the warped surfaces in the previous section represent Fermi
spheres.

2.3.4
Bloch waves and localized electrons

By this time, you may be wondering how Bloch waves, which are extended
over the whole crystal, relate to the conventional picture of an electron of mo-
mentum�ke, that at the time t can be found at position�re, moving with a ve-
locity �ve through the crystal. In order to localize a particle, one has to build a
localized wave packet from the Bloch waves. The time dependence enters via
the solutions of the time-dependent version of the Schrödinger equation (2.1),
i.e.

|φ(�k,�r, t)〉 = |φ(�k,�r)〉e−iE(�k)t/h̄ (2.29)
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The electronic wave packet is constructed by

|Φe(�ke,�re, t)〉 =
∞∫
−∞

w(�k−�ke)|φ(�k,�r, t)〉 d�k (2.30)

where w(�k−�ke) ≡ δ�k is a weight function sharply peaked – on the scale of
the extension of the Brillouin zone – at�ke. An expansion of this integral in δ�k
around�ke to first order shows that Eq. (2.30) represents the time-independent
Bloch wave for�ke, strongly modulated by a window function located at (�re, t).
Furthermore, the window function moves through the crystal with velocity

�ve ≡ 1
h̄
�∇�kE(�k)|�ke

(2.31)

This construction implies that we can only speak of an electron as a localized
particle if there are sufficiently many Bloch waves available. This is not nec-
essarily the case in nanostructures. Here, the localized electron picture has to
be used with care. Furthermore, a consequence of the sharply peaked char-
acter of the weight function is that the spatial extension of such an electron
wave packet, i.e. the de Broglie wavelength, is always larger than the lattice
constant. The details related to this picture are the topic of Exercise E2.4.

2.4
Envelope wave functions

So far, the materials have been homogeneous. Real crystals are certainly not
perfect. Their translational symmetry can be perturbed, either by e.g. un-
wanted lattice imperfections, or by intentionally built-in superpotentials. We
will frequently see such superpotentials later on. How do the wave functions
and energy levels in such a perturbed crystal look?

Consider a lattice imperfection with the perturbation potential Vp(�r). For
simplicity, we take only one electronic band into account. The Schrödinger
equation for the imperfect crystal reads

[
− h̄2

2m
∆ + Vlattice(�r) + Vp(�r)

]
Φ(�r) = EΦ(�r) (2.32)

The solution Φ(�r) is no longer a Bloch function, but it can be expanded in the
Bloch wave functions of the unperturbed band

Φ(�r) = ∑
�k′

c�k′ξ(�k′,�r) (2.33)
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Inserting this expansion into Eq. (2.21), multiplying by ξ∗(�k,�r), and integrat-
ing over the whole crystal gives

ε(�k)c�k + ∑
�k′

c�k′a(
�k,�k′) = Ec�k (2.34)

with the matrix elements

a(�k,�k′) = 〈ξ(�k,�r)|Vp(�r)|ξ(�k′,�r)〉 (2.35)

We plan to rewrite Eq. (2.34) in the form of a Schrödinger equation with a
newly defined wave function, which will be the envelope function. This can
be done by making two approximations, namely (i) Vp(�r) varies slowly on the
scale of the lattice constant, and (ii) the effective mass approximation.

Our first task is finding an appropriate expression for a(�k,�k′). We have
assumed that Vp(�r) varies slowly on the scale of individual unit cells. This
means that we can keep Vp(�r) constant within each cell, which is referred to
by the corresponding lattice vector �R. In order to use this in Eq. (2.35), we
split the integral, which runs over the whole crystal, into integrals running
over unit cells, and sum them up:

a(�k,�k′) = ∑
�R

∫
cell �R

ξ∗(�k,�r)Vp(�r)ξ(�k′,�r) d�r

= ∑
�R

Vp(�R)
∫

cell �R

ξ∗(�k,�r)ξ(�k′,�r) d�r (2.36)

Since ξ(�k,�r) is of the form given by Eq. (2.2), i.e. ξ(�k,�r) = u�k(�r)ei�k�r, the cell
integral can be written as∫

cell �R

u∗�k (
�R +�r)u�k′(�R +�r)ei(�k′−�k)(�R+�r) (2.37)

The function u∗�k (�r)u�k′(�r) has the periodicity of the lattice and can thus, accord-
ing to the Fourier theorem, be expanded in harmonic functions with the same
periodicity:

u∗�k(�r)u�k′(�r) = ∑
�G

α(�G)ei�G�r, α(�G) =
1
V

∫
V

u∗�k (�r)u�k′(�r)e−i�G�r d�r (2.38)

where �G is a reciprocal lattice vector. With the Fourier expansion inserted in
Eq. (2.36), we obtain

a(�k,�k′) = ∑
�G,�R

α(�G)Vp(�R)
∫

cell �R

ei(�k′−�k)(�R+�r)ei�G(�R+�r) d�r (2.39)
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which can be simplified considerably. First of all, ei�G�R = 1. Second, since
Vp(�r) varies smoothly, only Bloch waves within a narrow interval of�k-vectors
will contribute to a(�k,�k′), and we can assume that�k′ −�k is small on the scale
of the smallest reciprocal lattice vector. Therefore, it is justified to approxi-
mate ei(�k′−�k)(�R+�r) ≈ ei(�k′−�k)�R. After taking these considerations into account,
Eq. (2.39) reads

a(�k,�k′) ≈ ∑
�G,�R

α(�G)Vp(�R)ei(�k′−�k)�R
∫

cell �R

ei�G�r d�r

In addition, Green’s theorem for functions with the periodicity of the lat-
tice [12] tells us that∫

cell �R

ei�G�r d�r = Vcellδ�G,0 (2.40)

where Vcell is the volume of the unit cell.

Question 2.6: Prove Eq. (2.40) for a one-dimensional crystal.

With Eq. (2.40), we obtain

a(�k,�k′) = α(0) ∑
�R

Vp(�R)Vcelle
i(�k′−�k)�R

Summing up the contributions of all cells can now be replaced by an integra-
tion over the whole crystal, such that

a(�k,�k′) = α(0)
∫
V

Vp(�r)ei(�k′−�k)�r d�r

It remains to determine α(0), which we approximate by

α(0) =
1
V

∫
V

u∗�k (�r)u�k′(�r) d�r ≈ 1
V

This is justified since�k′ ≈ �k, and the integral in the definition of α(0) should
give a value very close to 1 (recall that the functions {u�k} are orthonormal).
This finally leads to

a(�k,�k′) =
1
V

∫
V

Vp(�r)ei(�k′−�k)�r d�r (2.41)
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Inserting Eq. (2.41) in Eq. (2.34) and using the effective mass approximation
for the unperturbed crystal,

ε�k = EC + h̄2�k 2/2m∗ (2.42)

Eq. (2.34) changes to

h̄2�k 2

2m∗ c�k + [EC − E]c�k +
1
V ∑

�k′
c�k′

∫
Vp(�r)ei(�k′−�k) d�r = 0 (2.43)

We proceed by defining the envelope wave function as

ψ(�r) =
1√
V

∑
�k′

c�k′ e
i�k′�r′ (2.44)

We plan to insert the envelope wave function in Eq. (2.43) by substituting c�k
and�k 2c�k. This can be done via the relations

c�k = ∑
�k′

c�k′δ(
�k−�k′) =

1
V

∫
∑
�k′

c�k′e
i�k′�re−i�k�r d�r =

1√
V

∫
ψ(�r)e−i�k�r d�r

and

�k 2c�k = ∑
�k′

�k′ 2c�k′δ(
�k−�k′) =

1
V

∫
∑
�k′

�k′ 2c�k′e
i�k′�re−i�k�r d�r

=
1√
V

∫
(−∆ψ(�r))e−i�k�r d�r

The equation

∫
e−i�k�r

[
− h̄2∆

2m∗ + EC − E + Vp

]
ψ(�r) d�r = 0

is obtained, which is fulfilled for all�k only if[
− h̄2∆

2m∗ + Vp(�r)
]

ψ(�r) = [E− EC]ψ(�r) (2.45)

This is the envelope wave equation. For perturbation potentials that vary slowly
on the scale of the crystal unit cell, the energy eigenvalues of Vp(�r) in the crys-
tal correspond to the energy eigenvalues of Vp(�r) in a homogeneous medium
with the dielectric constant of the crystal, and for particles that have the ef-
fective mass of the corresponding electronic band. The energy eigenvalues
obtained from the envelope wave equation are relative to EC, the conduction
band bottom, in our case. The envelope wave functions are thus just regular
wave functions that solve Eq. (2.45).
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2.5
Doping

In many cases, it is desirable to have predominantly one type of mobile car-
rier, or to have a carrier density independent of temperature within a certain
range. This can be achieved by implanting suitable impurities, also known as
dopants, into the crystal. As an example, consider a Si atom replacing a Ga
atom in a GaAs crystal (Fig. 2.10). Only three of the four valence electrons of
Si can be placed in the covalent bonds with adjacent As atoms. The remaining
electron will be bound to the attractive potential of the Si ion in the GaAs en-
vironment. This model will resemble a Coulomb potential in a medium with
the dielectric constant of GaAs. It is straightforward to estimate the energy
levels and the wave functions of this potential by using the effective mass ap-
proximation.

Fig. 2.10 Schematic example of a donor atom in a semiconductor
(left). To the right, the energy levels of the donor and acceptor ground
states with respect to the band edges are sketched.

The envelope wave equation for the electron in the donor potential reads

[
− h̄2∆

2m∗e
− e2

4πεε0r

]
ψ(�r) = [E− EC]ψ(�r) (2.46)

The hydrogen-like energy levels of the doping atom are given with respect to
the conduction band bottom. Compared to hydrogen, the energy spectrum is
compressed by the factor (1/ε2)(m∗e/m),

ED,j = EC +
1
ε2

m∗e
m

EH = EC − 13.6 eV× 1
j2

1
ε2

m∗e
m

.

Since, for semiconductors, ε ≈ 10 and m∗e ≈ 0.1m, the binding energy of a
typical donor is reduced by a factor of ≈ 1000 as compared to the hydrogen
atom, and is just a few meV. The effective Bohr radius becomes very large. For
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the ground state of the dopant (j = 1), it is found that

a∗B = ε
m
m∗e

aB ≈ 5 nm,

which is much larger than the lattice constant. This in retrospect justifies our
assumption that the doping electrons actually see the average dielectric con-
stant of the host crystal.

Such weakly bound electrons can be easily thermally excited into the con-
duction band. Impurities that generate such levels are called donors. Simulta-
neously, states just above the valence band can be occupied by electrons from
the valence band by thermal excitation (suppose an Si atom replaces an As
atom). Impurities that generate this kind of state are called acceptors. Equiv-
alently, we can rephrase this process and say “the acceptor donates a hole to
the valence band”. In reality, the doping atoms usually do not replace the
crystal atoms. Rather, they are placed at interstitial sites, and it depends on
the local potential whether the atom acts as a donor or as an acceptor. Typical
n-dopants for Si are Sb and P, while B and Al are common p-dopants. In both
cases, the binding energy of the electrons (holes) is in the range of 50 meV. Si is
predominantly an n-dopant for GaAs, with a binding energy of about 6 meV,
while Be or Zn can be used for p-doping. Here, the hole binding energy is of
the order of 30 meV. Some dopants, such as oxygen or chromium, have deep
doping levels, which mean that they lie somewhere around the center of the
bandgap. This cannot be explained with the envelope function model, where
only the parameters of the semiconductor host enter. It remains to mention
that there are also excited dopant levels, which are of no further interest to us.

How do the carrier densities change due to the doping process? The law
of mass action still holds, but all doping atoms have to be included in the ef-
fective density of states. This, together with the charge neutrality condition,
determines the carrier densities. We denote by nD and pA the total density of
donors and acceptors, by n0

D and p0
A the density of neutral donors and accep-

tors, and by n+
D and p−A the density of ionized donors and acceptors. These

quantities are related via nD = n0
D + n+

D and pA = p0
A + p−A. In addition,

charge neutrality requires n + p−A = p + n+
D.

Let us take n-doping as an example and calculate n. Now, the assumption
made in the intrinsic case, kBΘ � EC − µ is no longer justified. The full solu-
tion of this problem is beyond the scope of this book. Instead, we look at a sim-
plifying approximation, which captures the main points. Suppose that pA = 0
and intrinsic carriers can be neglected. We further assume that EC − µ > kBΘ,
but ED − µ ≈ kBΘ. This means that the doping is so high that it pulls the
chemical potential very close to the energy level of the dopant. It is important
to note that, for typical doping energies close to the valence or the conduction
band, the occupation probability is no longer given by a Fermi–Dirac distrib-
ution. We discuss the origin qualitatively for a donor level. The derivation of
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Eq. (2.24) is based on the assumption that each energy level can be occupied
twice without an additional energy associated with double occupancy. This is
only true in the non-interacting case. In atoms, the Coulomb energy to be paid
for sticking two electrons in the same orbital state typically exceeds the bind-
ing energy of the doping atom. If the donor ground state were filled with two
electrons, its energy would increase above the conduction band edge, such
that this state is unstable. Therefore, only three occupations have to be in-
cluded in the quantum statistics leading to the probability distribution: the
donor state is either empty, or occupied with an electron with spin up or spin
down. The probability distribution

f (ED, Θ) =
1

1
2 e(ED−µ)/kBΘ + 1

results. By a similar argument, it can be shown that for acceptor levels, the
corresponding probability distribution reads

f (EA, Θ) =
1

1
2 e(µ−EA)/kBΘ + 1

For a detailed discussion of this issue, see Exercise E2.3. Therefore, the density
of occupied donor levels is given by

n0
D = nD(1 + 1

2 e(ED−µ)/kBΘ)−1

such that

n = n+
D = nD − n0

D =
nD

1 + 2e(µ−ED)/kBΘ
(2.47)

Also, within our approximation, we can write n = NCe−(EC−µ)/kBΘ, similar to
the intrinsic case. Inserting

eµ/kBΘ =
n

NC
eEC/kBΘ

in Eq. (2.47) results in a quadratic equation for n, the positive solution of which
reads

n =
NC

4
e(ED−EC)/kBΘ

[
− 1 +

√
1 +

8nD

NC
e(EC−ED)/kBΘ

]
(2.48)

Three regimes can be distinguished, which are summarized in Fig. 2.11.

• kBΘ� EC − ED (freezeout regime)
In this limit, Eq. (2.48) gives

n =

√
NCnD

2
e−(EC−ED)/2kBΘ
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By comparing this expression with the intrinsic case, one finds that the
energy levels of the donors play the role of the valence band edge. In
effect, the doping has reduced the apparent bandgap by three orders of
magnitude. Owing to the modified statistics, the effective donor density
of states is half the doping density.

• kBΘ� EC − ED, but kBΘ < Eg (saturation regime)
Expanding Eq. (2.48) with respect to (EC − ED)/kBΘ to first order gives
n ≈ nD. In this regime, the carrier density is constant, as long as intrinsic
carriers can be neglected.

• kBΘ ≈ Eg (intrinsic regime)
This case is not included in Eq. (2.48), but it is clear that now the carrier
concentration depends exponentially on the temperature, and the dop-
ing electrons can be neglected, since the doping density is by definition
much lower than the density of crystal atoms.

Fig. 2.11 Electron density of a doped semiconductor as a function of
the inverse temperature.

The chemical potential reacts accordingly to the temperature and can be
easily calculated. For low temperatures, it resides close to the donor level,
while at high temperatures, it approaches the middle of the bandgap.

We have already mentioned that not all impurities generate shallow dop-
ing levels. Impurities with deep levels can be used for “undoping” samples. In
some cases, it is desirable to have a semiconductor of extremely high resistiv-
ity at room temperature. Owing to unavoidable residual impurities which act
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as dopants, the resistivity of ultra-pure GaAs, for example, is no larger than
about 1 Ω m. Chromium acts as an acceptor in GaAs with an energy level
close to mid-gap. Hence, the residual doping electrons can be removed from
the conduction band by a rather small density of Cr doping, which is, how-
ever, much higher than the residual n-doping (typical doping densities are of
the order of nCr ≈ 2× 1023 m−3. This way, the resistivities can be increased
by more than three orders of magnitude. Therefore, such semiconductor ma-
terials are called semi-insulating. As a consequence, the Fermi level is typically
fixed at the energy of the deep dopant, and one speaks of pinning of the Fermi
level.

2.6
Diffusive Transport and the Boltzmann Equation

Before we discuss the conventional theory of diffusive transport, we briefly
summarize some important facts regarding electrons in solids.

• Neither full nor empty bands carry current.

• The resistance of a perfect, static crystal with at least one partially filled
electronic band vanishes. The electrons obey the semiclassical equations
of motion

�v(�k) =
1
h̄
�∇�kE(�k)

d�k
dt

= − e
h̄
(�E +�v(�k)× �B)

Resistance is generated by deviations from the perfect lattice, such as
phonons, impurities, lattice dislocations, but also by surfaces and inter-
faces.

• Electron–electron scattering changes the total momentum of the electron
gas only in exceptional cases, and therefore, to a good approximation,
does not contribute to the resistance.

• For small applied electric fields, only a tiny fraction of the electrons with
energies close to the Fermi level contribute to the current.

In an introductory solid state physics course, transport usually means diffu-
sive transport: a steady state is established between the external electromag-
netic fields and the friction inside the solid, which on a microscopic scale is
generated by various scattering events. The sample size investigated is much
larger that the mean free path, which is the distance an electron travels before
it is scattered. This means we observe a homogeneous friction which stems
from averaging over all microscopic scattering events.



2.6 Diffusive transport and the Boltzmann equation 41

The Boltzmann equation plays a central role in the theory of diffusive elec-
tronic transport. Even though electron–electron interactions and phase coher-
ence are neglected, the general version of the Boltzmann equation is a non-
trivial integro-differential equation. Only after its linearization, the relaxation
time approximation and some further assumptions does the equation give us
a simple picture of how an electric field acts on the carriers: essentially, the
Fermi sphere is displaced in k-space without changing its shape. The relax-
ation time approximation introduces a phenomenological parameter known
as “momentum relaxation time”, frequently also referred to as the “Drude
scattering time”, τ. All important scattering mechanisms are contained in this
parameter. We use it in the Drude model to include magnetic field effects.

Anything that disturbs the perfect lattice will lead to scattering of electrons.
Lattice imperfections, which we describe by a perturbation Hamiltonian Vp,
will scatter electronic waves from the initial state |�k〉 into a final state |�k′〉. The
scattering matrix elements W�k,�k′ have to be calculated from

W�k,�k′ ∝ |〈�k′|Vp|�k〉|2 (2.49)

A large subfield of transport theory is to calculate such matrix elements for all
kinds of scatterers. We will mention some important scattering mechanisms
below.

2.6.1
The Boltzmann equation

In general, both external fields as well as scattering will modify the Fermi
distribution, which we write here as f (�k) = [1 + e(E(�k)−µ)/kBΘ]−1. The electron
distribution function φ(�k,�r, t) is, in the most general case, not a Fermi function.
It may depend on�r and on the time t. Note that the points {�k,�r} constitute the
phase space, with

2
(2π)3 φ(�k,�r, t) d�k d�r

being the number of electrons in d�k d�r for systems with a spin degeneracy of 2.
We consider the evolution of φ(�k,�r, t) in the time interval dt after time t due

to an external, static electric field �E. We could add the effect of a magnetic
field, which is dealt with in a similar way, although this is somewhat more
elaborate [270]. Within dt, an electron located at (�k,�r) in phase space at time
t moves to (�k + δ�k, �r + δ�r), which, according to the semiclassical equations of
motion, equals (�k− (e/h̄)�E dt, �r +�v(�k) dt). This only holds if the electron is
not scattered into a different region of the phase space. Also, not all electrons
in (�k + δ�k, �r + δ�r) at time t + dt were at (�k,�r) at time t: they could have been
scattered into this volume within dt. These scattering events change δφ, which
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we write as

δφ =
[

∂φ(�k,�r, t)
∂t

]
scatter

dt

This results in

φ

(
�k− e

h̄
�E dt, �r +�v(�k) dt, t + dt

)
d�k d�r

= φ(�k,�r, t) d�k d�r +
[

∂φ(�k,�r, t)
∂t

]
scatter

dt d�k d�r

The size of the volume element d�k d�r cannot change, which is the statement of
Liouville’s theorem on the evolution of semiclassical systems in phase space.
Now, the general Boltzmann equation is obtained by expanding the left-hand
side in a Taylor series in dt up to first order:

�v(�k) · �∇φ(�k,�r, t)− e�E
h̄
· �∇�kφ(�k,�r, t) +

∂φ(�k,�r, t)
∂t

=
[

∂φ(�k,�r, t)
∂t

]
scatter

(2.50)

In principle, Eq. (2.49) can be calculated from the scattering matrix elements
for all scattering mechanisms of relevance (like e.g. electron–phonon scatter-
ing or impurity scattering; see [270] for a detailed discussion), each weighted
by the corresponding occupation probability of the initial state and the proba-
bilities for finding the final state empty. These probabilities, however, are just
the distribution functions φ(�k,�r, t), and 1− φ(�k,�r, t), respectively. Therefore,
the general Boltzmann equation is in fact a complicated integro-differential
equation, and models as well as approximations are needed to evaluate the
scattering term.

A rather crude approximation consists of putting all these scattering mecha-
nisms together and assuming that they generate an average “relaxation time”
τ, which we further assume to be independent of�k and�r. This is based on the
following picture. Provided the system is homogeneous in real space, we can
drop the spatial coordinates. If we switch off the external field at time t0, the
distribution function will exponentially relax to f (�k) with a decay time τ:

φ(�k, t) = f (�k) + (φ(�k, t0)− f (�k))e−t/τ

Since �E = 0, this relaxation will take place exclusively via scattering, and
hence

∂φ(�k, t)
∂t

=
[

∂φ(�k, t)
∂t

]
scatter

= −φ(�k, t)− f (�k)
τ

which simplifies the general Boltzmann equation considerably. In a stationary
state (no time dependence), this now reads

− e�E
h̄
· ∇�kφ(�k) = −φ(�k)− f (�k)

τ
(2.51)
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Eq. (2.51) can be further evaluated by considering small electric fields only. In
this regime, the deviation of φ from the Fermi function should be roughly lin-
ear in �E, and we can thus write �∇�kφ(�k) ≈ �∇�k f (�k). Now, Eq. (2.43) represents
a Taylor expansion of φ(�k) in (eτ�E/h̄) up to first order:

φ(�k) = f (�k) + �∇�k f (�k)
eτ�E

h̄

The right-hand side is a good approximation for f (�k + eτ�E/h̄), provided that
eτ�E/h̄ � �k. We thus finally find a simplified Boltzmann equation, which states
that, under all the approximations made, small electric fields displace the
Fermi surface in k-space by eτ�E/h̄ (Fig. 2.12):

φ(�k) = f
(
�k +

eτ�E
h̄

)
(2.52)

Fig. 2.12 The displaced Fermi sphere as obtained from the Boltzmann
equation. The electrons in the dark gray region carry the net current.

Electrons get accelerated and scatter into empty states via elastic or inelastic
processes, which emphasizes again the diffusive and dissipative character of
the Boltzmann model. As a consequence, this displacement is quasi-static. In
addition, we see that only electrons close to the surface of the Fermi sphere
contribute to the current. For states deep inside the Fermi sphere, the par-
tial current generated by an electron with momentum h̄�k is canceled by the
electron with momentum −h̄�k.
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2.6.2
The conductance predicted by the simplified Boltzmann equation

It remains to calculate the conductance σ predicted by the assumptions lead-
ing to Eq. (2.52). In general, σ is a tensor defined by

�j = σ�E

However, it makes sense to assume�j ‖ �E, such that σ is actually a scalar. It is
obtained from the current density via

�j = σ�E =⇒ σ =
�j�E
�E2

(2.53)

In order to calculate�j, we have to integrate over the�k-space, weighting each
state by its occupation probability. State�k contributes a partial current of

�j(�k) = −eφ(�k)�v(�k) = − eh̄
m∗

�kφ(�k)

The total current density is obtained by summing up the contributions of all
states. Since, for a spin degeneracy of 2, each state occupies a volume of 4π3

in�k-space, this summation can be written as the integral

�j =
∫

�j(�k) d�k = − eh̄
4π3m∗

∫
�k f (�k) d�k︸ ︷︷ ︸

=0

+
∫

�k�∇�k f (�k)
eτ�E

h̄
d�k

Since

�∇�k f (�k) =
∂ f (�k)

∂E
�∇�kE(�k) =

∂ f (�k)
∂E

h̄2�k
m∗

the current density equals

�j = − e2τh̄2

4π3m∗2
∫

�k
∂ f (�k)

∂E
[�k�E] d�k

With Eq. (2.53), we can write

σ = − e2τh̄2

4π3m∗2
∫ (�k�E)2

�E2

∂ f (�k)
∂E

d�k

For sufficiently low temperatures,

−∂ f (E)
∂E

= δ(E− EF) = δ(k− kF)
m∗

h̄2k
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which results in the surface integral

σ =
e2τ

4π3m∗
∫ (�k�E)2

�E2
δ(k− kF)

1
k

d�k

=
e2τ

4π3m∗

2π∫
θ=0

π∫
ϕ=0

k3
F cos2 ϕ sin ϕ dϕ dθ =

e2τk3
F

3π2m∗

Since the electron density n is given by n = 3π2k3
F, we find

σ =
ne2τ

m∗ = neµ (2.54)

Here, we have defined the electron mobility by µ ≡ eτ/m∗.

Question 2.7: Prove that σ = neµ also holds in two dimensions.

Result (2.54) is at first sight quite strange: the conductivity is proportional
to the total electron density, and it seems like all electrons would contribute
equally to the current. However, we know that only the electrons at the Fermi
surface carry current. The explanation is that a higher electron density in-
creases the number of electrons and the electron velocity at the Fermi surface,
which turns out to give a conductivity proportional to n.

We can use Eq. (2.54) to define a useful quantity, the drift velocity �vd as

�vd = − �j

en
= −µ�E (2.55)

The drift velocity is thus an effective average velocity, which leads to an equa-
tion for the current density that is formally identical to the Drude expression,
which was derived by assuming that all electrons contribute equally to the
current and move through the crystal with an average drift velocity.

Along similar lines, it can be shown that, in the additional presence of mag-
netic fields, the current density can be written as

�j = σ(�E +�vd×�B) (2.56)

This current density corresponds to the stationary solution of the classical
equation of motion

m∗ d2�r
dt2 +

m∗

τ
�vd = −e(�E +�vd×�B) (2.57)

Thus, electrons are moving at velocity �vd through the crystal and experience
a Stokes-type friction term given by m∗�vd/τ.
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2.6.3
The magneto-resistivity tensor

We proceed by studying the electron transport according to Eq. (2.57) in weak
magnetic fields, with “weak” being specified by

ωc = e|�B|/m∗e � 1/τ (2.58)

This condition means that the distance the electrons travel before getting scat-
tered (the mean free path �e ≡ vFτ) is small compared to the cyclotron circum-
ference 2πrc. We will see in Chapters 6 and 7 what happens when the electrons
can complete the cyclotron orbits without getting scattered. Suppose a mag-
netic field is applied in the z-direction, �B = (0, 0, B). In such a case, we obtain

jx = σEx + σvyB = σEx +
ne2τ

m∗e
vyB = σEx − jyωcτ

jy = σEy − σvxB = σEy − ne2τ

m∗e
vxB = σEy + jxωcτ

jz = σEz

where vi are the components of the drift velocity vector. Solving this system
of equations for�j gives�j = σ�E with

σ =
σ

1 + ω2
c τ2

⎛
⎝ 1 −ωcτ 0

ωcτ 1 0
0 0 1 + ω2

c τ2

⎞
⎠ (2.59)

Here σ is known as the magneto-conductivity tensor. Its components can be
experimentally determined by measuring four-probe resistances using “Hall
bar” shaped samples (Fig. 2.13). Voltage probes are attached to a rectangu-
lar thin film of the material, aligned parallel to the x- and y-directions, and
perpendicular to the magnetic field direction. The transport in the z-direction
remains unaffected by �B and is of no further interest to us. We can determine
the components ρxx and ρxy of the resistivity tensor by applying a current in
the x-direction and measuring the voltage drops Vx and Vy. Since(

Vx

Vy

)
=
(

ρxx ρxy

−ρxy ρxx

)
·
(

Ix

Iy

)
· S

and(
Ix

Iy

)
=
(

σxx σxy

−σxy σxx

)
·
(

Vx

Vy

)
· 1

S

where S is a geometry factor (see [235]), we can establish the relation between
the components of the resistivity and the conductivity tensors:

ρxx =
σxx

σ2
xx + σ2

xy
, ρxy =

−σxy

σ2
xx + σ2

xy
(2.60)
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Fig. 2.13 Top: Top view of a Hall geometry. The magnetic field is ap-
plied perpendicular to the sheet. Bottom: The components of the con-
ductivity and the resistivity tensors are shown to the left and to the
right, respectively.

We thus find that ρxx does not depend on �B, and ρxy = −B/en = RHB. Here
ρxy is the Hall resistivity, and RH = −1/en is known as the Hall coefficient.
Hall measurements are actually a standard tool to determine carrier densi-
ties. It may be counter-intuitive at first sight that, for ρxx = 0, σxx becomes
zero as well. Furthermore, the Onsager–Casimir symmetry relation should be
mentioned, which states that the result of a measurement is exactly the same
when all current and voltage sources are exchanged, and the polarity of the
magnetic field is reversed. One consequence is that two-probe measurements,
in which the voltage drop is measured between the source and drain contacts,
must be symmetric with respect to B = 0.

Question 2.8: Write down Eqs. (2.60) for an anisotropic sample.

2.6.4
Diffusion currents

In close analogy to the treatment of drift currents, the Boltzmann model can
be applied to diffusion currents, i.e. currents as a consequence of a position-
dependent varying chemical potential µ(�r), which can have its origin in a gra-
dient of the temperature or of the carrier density. Assuming constant tem-
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perature and no external electric fields, the Boltzmann treatment results in a
diffusion current density

�jdiff =
nσ0

e
�∇µ(�r) (2.61)

The diffusion current is frequently expressed in terms of the carrier density
gradient and the diffusion constant D,

�jdiff = eD�∇n(�r) (2.62)

Question 2.9: Show that for a quasi-free electron gas, the relation between D and
the mobility µ equals

D =
2EF

3e
µ in d = 3

D =
EF

e
µ in d = 2

D =
2EF

e
µ in d = 1 (2.63)

Such relations are known as Einstein relations.4

2.7
Scattering mechanisms

As mentioned in Section 2.6, many scattering mechanisms contribute to the
average momentum relaxation time τ. Each process has its characteristic ma-
trix element W�k,�k′ , Eq. (2.49). The relevance of a particular kind of scattering
varies greatly and depends on the carrier density as well as on the temper-
ature. How in detail the matrix elements are calculated is treated in several
excellent books, e.g. [254, 270]. Each scattering mechanism can be character-
ized by its contribution to the carrier mobility µi, which sum up to the total
mobility according to the Matthiesen rule, 1/µ = ∑i 1/µi. In pure crystals,
the sole source of scattering is lattice vibrations. Electron–phonon scattering
has several facets. In crystals with valley degeneracy, electrons may be scat-
tered between valleys, which requires absorption or emission of a phonon.
In polar and/or piezoelectric crystals, on the other hand, lattice vibrations go
along with strong oscillating electric fields. In real crystals, charged impuri-
ties may dominate the scattering rates. We briefly present the most important
scattering mechanisms below.

4) The Einstein relation for particles obeying the Boltzmann statistics is
Eq. (5.10).
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An impurity breaks the symmetry of the lattice and causes scattering. If the
impurity is neutral, the scattering rates are usually negligible. Charged impu-
rities, however, represent screened Coulomb scatterers, with peak potentials
that can become comparable to the Fermi energy.5 Clearly, an electron with a
larger kinetic energy will get deflected by a smaller angle as it gets scattered,
and we can expect that the mobility increases as the temperature, and with
it the average electron kinetic energy, increases. In fact, an evaluation of the
corresponding matrix element shows that, for weak Coulomb potentials and
within the Born approximation, the resulting mobility is ∝ Θ3/2, multiplied
by a logarithmic correction, i.e. a factor that depends logarithmically on Θ.

Electron–phonon scattering can be divided into deformation potential scat-
tering and scattering of electrons by the corresponding electric fields. By de-
formation potential scattering, we mean scattering at the lattice deformations
caused by the phonons. Here, scattering at acoustic phonons is the most im-
portant mechanism. Since the energy transfers are small in electron–acoustic
phonon scattering, it can be treated as quasi-elastic. A simple argument gives
the correct temperature dependence. The density of acoustic phonons nac is
proportional to the Bose–Einstein distribution, which, for large temperatures
compared to the phonon energy, varies as 1/Θ. Since the mobility is propor-
tional to nac/v̄ (v̄ is the average electron velocity, which is ∝

√
Θ), we expect

that the mobility due to electron–acoustic phonon scattering is ∝ Θ−3/2. This
is in fact observed experimentally.

Furthermore, both optical and acoustic phonons can assist the electron in
scattering between the valleys in a crystal with valley degeneracy, such as Si.
The corresponding momentum transfers are quite large, since the separation
of the valley in reciprocal space is of the order of the size of the Brillouin zone.

This completes the list of the scattering mechanisms relevant in Si. In this
material, ionized impurities dominate the mobility at low temperatures, while
quasi-elastic acoustic phonon scattering is the most important mechanism at
intermediate temperatures. For Θ > 200 K, inter-valley scattering becomes
significant as well. Consequently, the mobility in Si shows a maximum as a
function of temperature. Its position depends on both the impurity density
and the carrier density. Electron mobilities up to 1 m2/V s have been achieved
in Si.

GaAs is a polar material, and consequently lattice vibrations are always ac-
companied by oscillating electric fields. They are particularly strong for op-
tical phonons. The resulting scattering mechanism is called polar scattering.
Optical phonons vanish for temperatures below≈ 60 K, and consequently po-
lar scattering is relevant only above this temperature. In the limit kBΘ� h̄ωop
(ωop denotes the optical phonon frequency, which for GaAs is of the order of
5 meV; see Fig. 2.14), it can be shown that the resulting mobility varies as

5) The screened Coulomb potential is studied in Exercise E2.5.
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Fig. 2.14 Phonon dispersions for Si (top) and GaAs (bottom). After
[118].

Θ−1/2. If the crystal is piezoelectric like GaAs, a crystal deformation gener-
ates a polarization field as well, which is another source of scattering, called
piezoelectric scattering. As for the polar scattering, the mobility due to piezo-
electric scattering is ∝ Θ−1/2, although this temperature dependence holds for
a larger range of temperatures.

Fig. 2.15 summarizes the contributions of different scattering mechanisms
to the electron total mobility of GaAs. A comparison with measurements re-
veals that, at low temperatures, ionized impurity scattering dominates, while,
at higher temperatures, the mobility is entirely determined by polar scattering.
In a small temperature range around the emerging maximum of the mobil-
ity, piezoelectric scattering is significant. Furthermore, it is seen that acoustic
phonon scattering plays no role, in contrast to the scattering in Si.

2.8
Screening

The conduction electrons react to perturbations. They collect in the poten-
tial valleys and avoid the peaks. As a consequence, the external potential is
reduced to an effective potential in the crystal; the electrons “screen” the per-
turbation. The goal of this section is to present a qualitative picture of how
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Fig. 2.15 Measured electron mobility in GaAs (circles) as a function of
temperature, including the theoretical contributions of relevant scatter-
ing mechanisms (full lines). The sample contained a donor density of
nD = 4.8× 1019 m−3 and an acceptor density of nA = 2.1× 1019 m−3.
After [289].

the electron density is modified by perturbations. For a more detailed discus-
sion of screening and electron–electron interactions, the reader is refereed to
textbooks on solid state physics (see e.g. [12, 127, 346]).

By time-dependent perturbation theory, it can be shown that the screening
in a free electron gas depends on the wave vector�q and the frequency ω of the
perturbation. It can be expressed by a dielectric function ε(�q, ω) of the type

ε(�q, ω) = 1 + εlattice +
e2

ε0q2 ∑
�k

f (�k)− f (�k +�q)
E(�k +�q)− E(�k) + iα

(2.64)

Here, εlattice means the dielectric function of the lattice [12], and α → 0 is
the (small) convergence parameter, which can be related to a scattering time.
The dielectric function describes how the Fourier components of the external
potential energy Vext(�q, ω) are screened and result in an effective potential
energy Veff(�q, ω), namely

Veff(�q, ω) =
Vext(�q, ω)

ε(�q, ω)
(2.65)

In the static limit (ω → 0), within the effective mass approximation, and for
low temperatures kBΘ � EF, the sum in Eq. (2.64) can be calculated analyti-
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Fig. 2.16 The function F(s) (left) and the static dielectric function ε(�q)
(right) for free electrons with typical experimental parameters in doped
semiconductors (kF = 108 m−1).

cally, and one finds

ε(�q) = 1 +
k2

TF
q2 F

(
q

2kF

)

F(s) =
1
2

+
1− s2

4s
ln
∣∣∣∣1 + s
1− s

∣∣∣∣ (2.66)

Here, we have defined the Thomas–Fermi screening vector

kTF = e

√
D(EF)

ε0
(2.67)

The functions F(s) and ε(�q) are shown in Fig. 2.16. Most notably, ε(�q) drops
significantly as �q increases. Above 2�kF, it rapidly approaches 1. The reason is
simply that, for low temperatures, the wave vector of occupied states differs
by no more than 2�kF. The term f (�k) − f (�k +�q) means that only states con-
tribute where the occupation of the two states characterized by�k and�k +�q is
different. The number of contributing states thus increases as 0 ≤ �q ≤ 2�kF,
but remains constant for �q > 2�kF in Eq. (2.52), which means that ε(�q) drops
significantly at�q = 2�kF. This point in fact represents a logarithmic singularity,
which has important consequences for the screening. As an example, consider
the potential of a point charge with an external potential energy given by

Vext(r) = −Ze
r

= − Ze2

(2π)3

∫ 4π

q2 ei�q�r d�q

Correspondingly, the effective potential energy can be written as

Veff(r) = −Ze
r

= − Ze2

(2π)3

∫ 1
ε(�q)

4π

q2 ei�q�r d�q
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The induced charge density ρind(�r) is then given by the Poisson equation

∆Vind(�r) = ∆[Veff(�r)−Vext(�r)] = −e
ρind(�r)

ε0

such that

ρind(�r) =
Ze

(2π)3

∫ 1
ε(�q)− 1

ei�q�r d�q

Evaluating this integral shows that only terms with the argument �q ≈ 2�kF
contribute significantly, and that, for large r,

ρind(�r) =
Ze
π

k2
TF

k2
F(4 + k2

TF/2k2
F)

cos(2kFr)
r3 (2.68)

The charge density thus develops a periodic component, with a period of half
the Fermi wavelength. This can be understood in terms of a standing wave
due to a superposition of the incoming waves and the waves reflected at the
perturbation potential. These oscillations are known as Friedel oscillations.6

Papers and Exercises

P2.1 Transport in strongly disordered media has a very different character
as compared to transport in crystalline conductors, since all electronic
states are localized. It is frequently analyzed in terms of the variable range
hopping model, which predicts a characteristic temperature dependence
of the resistivity. Work out this expression using reference [4].

E2.1 A microchip factory processes “3-inch wafers”, i.e. monocrystalline,
cylindrically shaped semiconductor disks, with a diameter of 3 inches
and a thickness of 0.5 mm. Unfortunately, the silicon wafer badge and
the GaAs wafer badge have not been labeled. Someone suggests deter-
mining the material by weighing the wafers. Is this realistic?

Si has an atomic mass of 28.09 amu and crystallizes with a lattice con-
stant of 0.543 nm. For Ga and As, the atomic mass is 69.72 amu and
74.92 amu, respectively. GaAs has a lattice constant of 0.565 nm. Calcu-
late the weight of the two wafer types.

6) Friedel oscillations are not a special property of screened Coulomb
potentials. It can be shown [129] that, for large distances from the
perturbing potential,

ρind(�r) = A cos(2kFr+φ)
r3

where the phase φ and the constant A depend on the potential.
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E2.2 Suppose certain macromolecules form two-dimensional crystals. For
each unit cell, 2π/3 electrons are available for electronic bands. The unit
cell is defined by the lattice vectors�a1 = (4 nm, 0) and�a2 = (1 nm, 3 nm).

(a) Calculate the reciprocal lattice vectors �b1, �b2. Draw the reciprocal
lattice and construct the first and the second Brillouin zones.

(b) Suppose the energy dispersion can be approximated by that of free
electrons. What is the radius of the Fermi sphere? Draw the Fermi
surface in the reciprocal lattice.

(c) Which period(s) would you expect in a de Haas–van Alphen exper-
iment? The magnetic field is applied perpendicular to the crystal
plane.

E2.3 As noted in Section 2.5, double occupation of a typical doping level is
forbidden by the Coulomb repulsion. This causes the distribution func-
tion to deviate from a Fermi function.

(a) Reassure yourself that the average occupation number 〈nj〉 of a
state j with energy Ej is given by the Fermi function if the Coulomb
interaction is neglected. Recall from statistical mechanics that 〈nj〉
is given by

〈nj〉 = ∑n ne−n(Ej−µ)/kBΘ

∑n e−n(Ej−µ)/kBΘ

where n is the number of particles in state j.

(b) Derive the modified distribution function for donor states.

(c) What does the average hole occupation number for an acceptor
level look like?

E2.4 Carry out the calculation that leads to the interpretation of a localized
electron in terms of a Bloch function wave packet (Section 2.3.4). Show
that the wave packet is extended over several lattice constants.

E2.5 Study the dielectric function in the limit�q� 2�kF. Show that the potential
of a screened point charge can be written as

Veff(�r) = −Ze2

r
e−kTFr

Screening in this limit is known as Thomas–Fermi screening.

E2.6 Consider a periodic potential composed of δ functions

V(x) = −V0

∞

∑
n=−∞

δ(x + na)

with V0 > 0 and n integer.
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(a) Determine the eigenvalue E0 and the eigenfunction Φ0(x) of a sin-
gle δ function, Vsingle(x) = −V0δ(x).

(b) Show that the tight binding wave functions of the crystal

Ψk(x) =
∞

∑
j=−∞

Φ0(x− ja)eikja

satisfy Bloch’s theorem.

(c) Use the wave function and show by the method sketched in the text
that the dispersion relation takes the form

E(k) = E0 +
β + ∑∞

n=1 γn cos(kna)
1 + ∑∞

n=1 αn cos(kna)

Note that life gets easier if the term with j = 0 is treated separately.

(d) What is the effective mass around k = 0?

E2.7 Use the bandgap energies and the effective masses given in the text to
calculate the effective densities of states NC and PV, as well as the intrin-
sic carrier concentrations, for Si and GaAs at room temperature. What
happens to the carrier concentrations as the materials are cooled to liq-
uid nitrogen temperature?

Further Reading

There are several excellent books on solid state physics available, e.g. [12, 127,
346]. For particular properties of semiconductors, see [270, 342]. The material
parameters of the important semiconductors are listed in a condensed, yet
informative, way in [126].
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3
Surfaces, Interfaces, and Layered Devices

Infinite crystals are convenient for introducing solid state physics. Quite often,
surface effects can be neglected in real crystals, as the fraction of surface atoms
is vanishingly small. Surfaces play a very important role, though. First of
all, they are the interface between the crystal and the outside world. Across
surfaces, the energy bands relate to the vacuum level, which is the energy of
an electron at rest outside the crystal. It takes the energy ΦA, also known
as the work function, to transfer an electron at the chemical potential in the
crystal into the vacuum. In pure semiconductors and insulators, this is an
impossible process, since there are no states at the chemical potential. The
electron affinity ξe is therefore introduced in addition. It measures the energy
difference between the vacuum level and the bottom of the conduction band.
Their numerical values depend on both the bulk band structure and surface-
specific properties [12].

The regions of interest in most mesoscopic samples, as well as in the major-
ity of commercial microchips, are very close to surfaces and/or interfaces, the
influence of which on the active region is usually highly relevant. In fact, crys-
tal interfaces are frequently tailored to provide useful properties. The most
elementary interface is that between a crystal and vacuum, which is the topic
of Section 3.1. We will see that, at a surface, electronic states can exist that are
absent in the bulk, with typical energies in the bandgap of the bulk material,
as sketched in Fig. 3.1. These states are not additional states. Rather, they
emerge from valence and conduction band states. This is evident if we recall
that the number of electronic states in the crystal equals the number of states in
all the atoms the crystal contains. In order to appreciate the mechanism lead-
ing to surface states, a model calculation for a one-dimensional crystal within
the tight binding model is presented in Section 3.1.1. Generalizing the results
to three dimensions is conceptually simple, and results in surface bands that
are two-dimensional in character (see Section 3.1.2). Typically, surface bands
are partly filled. The chemical potential at the surface will usually be located
somewhere inside the surface band, which lies inside the bandgap of the bulk.
In equilibrium, the surface chemical potential will align with that in the bulk,
which in general requires a charge transfer between bulk states and surface
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Fig. 3.1 Schematic representation of the potential landscape in a finite
crystal, which gets modified close to the surface. Surface states (S)
may result, with typical energies inside the gap between the valence
band (VB) and the conduction band (CB).

states. The consequences of this mechanism are band bending and Fermi level
pinning, introduced in Section 3.1.3. Both effects are of utmost importance in
semiconductor nanostructures.

Generalizing the properties of crystal surfaces to other types of interfaces
is straightforward, once the concepts are at hand. Similar to surfaces, charge
rearrangements will align the two chemical potentials. Nevertheless, interface
states have a somewhat different character. Two types of interfaces are rele-
vant for us. Metal–semiconductor interfaces are studied in Section 3.2. They
come in two “flavors”, Schottky contacts and ohmic contacts. Equally impor-
tant is the semiconductor heterointerface, the topic of Section 3.3. As we shall
see, it is quite common to combine layers of different semiconductors and take
advantage of the band alignment.

After these preparations, we are ready to look at examples of devices that
rely on interface effects. The most important structures for our purposes are
the Si MOSFET (metal–oxide–semiconductor field effect transistor) and the
Ga[Al]As HEMT (high electron mobility transistor), which will be introduced
in Section 3.4. It will become clear that, due to band bending at interfaces,
carrier gases are formed which can be two-dimensional. Such systems will be
the workhorse for most of the experiments discussed in subsequent chapters.
There are, however, many more interesting ways to combine semiconductors
layers, and we will briefly present some examples in that section as well.
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3.1
Electronic surface states

3.1.1
Surface states in one dimension

A surface breaks the translational symmetry of the crystal. How this fact mod-
ifies the electronic structure can be studied in various models. Their lines of
arguing, however, are similar: Bloch’s theorem allows solutions with imagi-
nary wave vectors. However, they correspond to evanescent waves, which is
unphysical in an infinite crystal. This is no longer necessarily true at surfaces,
where two exponentially decaying wave functions, one for each material, may
match to form a localized state.

We use the tight binding model to study how surface states emerge from a σ

energy band of the bulk, i.e. a band formed from atomic s orbitals. This model
goes back to [121, 122] and [276]. We start from the Schrödinger equation of a
finite one-dimensional crystal composed of N atoms with a lattice constant a:

h̄2

2m
∆Ψ(z) + [E−V(z)]Ψ(z) = 0 (3.1)

where V(z) is the periodic lattice potential. The individual atoms are de-
scribed by

h̄2

2m
∆Φ(z− zn) + [E0 −U(z− zn)]Φ(z− zn) = 0 (3.2)

Here, E0 is the energy eigenvalue of the atom for the s state under considera-
tion. We insert the ansatz

Ψ = ∑
n

cnΦ(z− zn) (3.3)

in Eq. (3.1), multiply by Φ∗(z− zm) and integrate over space. If only nearest-
neighbor coupling is considered, the matrix elements

〈Φm|Φn〉 = δmn + βδm,n±1

〈Φm|V −U|Φn〉 =

⎧⎪⎪⎨
⎪⎪⎩
−α n = m /∈ {1, N}
−α′ n = m ∈ {1, N}
−γ m = n± 1
0 otherwise

(3.4)

are obtained. Since both (E − E0) and β are small, their product can be ne-
glected. With the definitions E − E0 + α = ε and α− α′ = ε0, the coefficients
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Fig. 3.2 Plot of y(k) for a crystal consisting of N = 10 atoms. For
−1 ≤ y ≤ 1, ten real wavenumbers k are obtained. For y > 1, two
values of k have non-vanishing imaginary components, k = π/a + iκ.
In this regime, eight real and two complex solutions are obtained.

cn obey the relations

γcn−1 + εcn + γcn+1 = 0, n ∈ {2, N − 1} (3.5)

(ε− ε0)c1 + γc2 = 0 (3.6)

γcN−1 + (ε− ε0)cN = 0 (3.7)

We write cn in the form

cn = Aeikna + Be−ikna (3.8)

For the bulk, Eq. (3.5) gives the well known dispersion relation

ε = 2γ cos(ka) (3.9)

which we use in Eqs. (3.6) and (3.7) to calculate the allowed wave numbers in
the finite crystal. After some algebra and by using the relations sin x sin y =
1
2 cos(x− y)− 1

2 cos(x + y) as well as cos(2x) = cos2 x− sin2 x, one finds the
condition

y ≡ − ε0

γ
=
− sin(Nka)± sin(ka)

sin[(N − 1)ka]
(3.10)

This function is plotted in Fig. 3.2 for N = 10. Clearly, an N-atom crystal
contains N electronic states that emerge from the atomic s states. In fact, for
−1 ≤ y ≤ 1, condition (3.10) delivers N real wave numbers. For |y| > 1,
however, only N − 2 real solutions are found!1 It can be shown that γ <

1) There is a small interval 1 ≤ |y| ≤ 1 + 2/N for which N − 1 real so-
lutions are obtained. As N is usually large, this region is irrelevant.
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0 for s bands [122]. We thus focus on the region y > 1. Apparently, two
states have formed with an imaginary component of the wave number, which
corresponds to states outside the σ band. Inserting k = π/a + iκ into (3.10)
gives

y =
sinh(Nka)± sinh(ka)

sinh[(N − 1)ka]
≈ eκa (3.11)

where the approximation holds in the limit of large N. In this case, the states
have the energy dispersion

E = E0 − α + 2γ cosh(κa) (3.12)

Since y > 1 and cosh[ln(y)] > 1, the energies of these states are larger than
those of the bulk states (see Fig. 3.2).

How do the wave functions of these split-off states look? The complex wave
numbers describe evanescent wave functions, localized at the crystal surface.
This is easily established by calculating the coefficients cn. Inserting the dis-
persion relation (3.12) in Eqs. (3.6) and (3.7) gives

c2 = −c1e−κa, cN−1 = −cNe−κa (3.13)

The remaining coefficients are obtained by recursively applying Eq. (3.5).
Since for symmetry reasons c1 = cN , one obtains

cn+1 = c1(−1)n[e−nκa + (−1)Ne−(N−n)κa] (3.14)

Such a wave function is sketched in Fig. 3.3 for our model crystal. Even for this
tiny 10-atom crystal, it is strongly localized at the crystal surfaces and extends
only a few lattice constants into the bulk! These are the surface states, which
have emerged from the bulk states of the σ band.

Question 3.1: Determine the wave functions of the bulk states using the dispersion
given by Eq. (3.9).

Shockley included the effect of band crossings in an extended version of
this model [276], and studied the energy of the surface states as a function of
the lattice constant. His famous results are summarized in Fig. 3.4. He found
that for lattice constants where the bands have crossed, a common case in real
crystals, both the upper band and the lower band contribute surface states
inside the bandgap. The energies of the surface states are typically close to
mid-gap.

Surface states of one-dimensional crystals are sometimes categorized into
“Maue–Shockley” states (following the models developed in [205] and [276]),
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Ψ(z) 2

1 3 5 7  90 2 4 6   8 z(a)

Fig. 3.3 Model wave function for a surface state in a 10-atom crys-
tal. The atomic wave functions Φn(z) = e−4(z−na)2

, and κa = 0.5,
corresponding to y ≈ 1.65, have been used.

Fig. 3.4 Energy of surface states in the one-dimensional Shockley
model, shown as a function of the lattice constant a. At a2, for exam-
ple, both donor-like and acceptor-like surface states are present. Af-
ter [276].

where the potential at the surface is not modified, except that the periodic
potential is interrupted, and “Tamm–Goodwin” states [122, 295], where the
surface states occur due to modifications of the surface potential as compared
to the bulk. From a more general point of view, these different types of surface
states are special cases of a symmetry requirement [343].

It is furthermore instructive to see how surface states are formed within the
nearly free electron model. Within this standard model of solid state physics,
the periodic potential V(z) is assumed to be weak compared to the kinetic
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energy of the electrons. It can thus be well approximated by its Fourier expan-
sion up to first order,

V(z) = V0 + Vgeigz (3.15)

Here, V0 is the constant part of the potential inside the crystal with respect
to the vacuum level, and g denotes the smallest reciprocal lattice vector,
g = 2π/a. Because V(z) is weak, it can be treated as a perturbation. The
states belonging to wave numbers k and k − 2π/a with k very close to the
edge of the first Brillouin zone are nearly degenerate.2 The effect of the weak
periodic potential on the energies of such states can be studied by degenerate
perturbation theory. The result of such a calculation for q = (π/a)− k� π/a
is the energy dispersion

E(q) = V0 + επ/a + εq ±
√

4επ/aεq + |Vg |2 (3.16)

with

εp =
h̄2 p2

2m
, p =

{
π

a
, q
}

At q = 0, a bandgap of 2|Vg| results [12, 346], which corresponds to the range
of energies where the wave number has an imaginary part. Owing to the
non-vanishing imaginary part of the wave vector, the corresponding wave
functions decay exponentially in space, which is unphysical in a crystal with
perfect periodicity. Therefore, no states exist within the bandgap.

Note that E(q) is a continuous function in the complex plane. For energies in
[επ/a − |Vg|, επ/a + |Vg |], q becomes imaginary, and by substituting q = −iκc

(κc is a real number), Eq. (3.16) can be rewritten as

E(κc) = V0 + επ/a − εκc ±
√
|Vg|2 − 4επ/aεκc (3.17)

This energy dispersion is shown in Fig. 3.5. It can be measured across the
whole bandgap in certain materials, for example in InAs, by tunneling exper-
iments [232].

The plot of E(κ) resembles a semicircle that connects EV and EC. How do
the surface states emerge from these considerations? Well, an eigenstate close
to the surface can exist, provided its wave functions can be properly matched
to a wave function that decays exponentially into the vacuum. This scenario
is schematically depicted in Fig. 3.6.

2) Of course, similar degeneracies exist at the boundaries of higher
Brillouin zones.
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Fig. 3.5 Left: Imaginary energy dispersion inside the bandgap as ob-
tained within the approximation of a weak periodic potential, according
to Eq. (3.1). Here εg/2 = 10 and Vg = 1 were used as model parame-
ters. Right: Measurement of the imaginary energy dispersion in InAs
by surface barrier tunneling experiments. After [232]. The symbols
correspond to different samples. Note that the energy is plotted vs. κ2.

Fig. 3.6 Sketch of a surface state
probability amplitude |Ψ(z)|2 in a
10-atom crystal within the nearly
free electron model. The potential
is approximated by a harmonic
function. The wave functions
decay exponentially into the vac-
uum. Inside the crystal, the wave

function oscillates with the period
of the lattice, while the amplitude
drops exponentially as the dis-
tance to the surface increases.
Note that there may be a phase
shift of Ψ(z) with respect to the
position of the atoms.

Consider a crystal with a surface at z = 0. For weak periodic potentials, the
total potential is given by

V(z) =
{

0 z ≤ 0
V0 + 2Vg cos(gz) z > 0

(3.18)
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The wave function Φs(z) of a surface state is composed of two components,

Φs(z) =
{

Φv(z) ∝ eκvz z ≤ 0
Φc(z) ∝ e−κcz cos [2(π/a)z + φ0] z > 0

where φ0 denotes a possible phase factor. From the continuity conditions for
Φs(z) and its first derivative with respect to z at z = 0, the condition

cos−2 φ =
V0 + Vg

επ/a
(3.19)

can be derived after some lengthy algebra. If a solution for φ exists, the finite
crystal has a surface state at energy

Es = − h̄2κ2
v

2m
(3.20)

with

κv =
π

a
tan φ− κc, κc =

mVga

πh̄2 sin2 φ

The details of these calculations can be found in the further reading at the end
of this chapter.

Thus, the model of nearly free electrons gives qualitatively the same result
as the tight binding model, namely that localized states may exist at the sur-
face, with typical energies inside the bandgaps.

3.1.2
Surfaces of three-dimensional crystals

Extending the previous results to three dimensions is straightforward, al-
though a quantitative treatment can be a formidable task. It requires not only
symmetry considerations, but also inclusion of surface recombinations. The
periodic pattern of chemical bonds is interrupted at the surface, and the un-
saturated bonds (so-called “dangling bonds”) rearrange themselves to form
a new electronic structure. This usually goes along with a change of the sur-
face crystal structure. A famous example for such a surface recombination is
the 7× 7 reconstruction of Si (111) [38]. Another common scenario is chemi-
cal binding to a monolayer of adatoms which saturate the dangling bonds. In
either case, it is clear that the electronic surface structure has little to do with
the bulk structure.

A perfect crystal surface is certainly periodic within the surface plane, and it
is reasonable to set up a tight binding model for the two-dimensional surface
layer. Each surface state obtained within a one-dimensional model now cor-
responds to a two-dimensional band, with a bandwidth given by the transfer
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Si (100) surface states:
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Fig. 3.7 Calculated energy dispersion of the two-dimensional bands of
a Si(100) surface. After [51].

and overlap integrals between surface atoms. The number of states per unit
area in a surface band corresponds to the density of surface atoms, ns, which
is of the order of 5 × 1018 m−2 [194]. Measurements of the surface density
of states give typical results of the order of 4× 1018 m−2 eV−1, such that the
width of the surface bands is of the order of the bandgap of the bulk mate-
rial. More quantitative calculations of surface band energy dispersions (an
example is given in Fig. 3.7) essentially confirm these simple considerations.
We will represent surface bands in graphical representations as shown later in
Fig. 3.8.

Independently of such issues, charge neutrality must be maintained at the
surface. For a semiconductor with a neutral surface, this means that the num-
ber of occupied surface states must equal the number of states that have been
removed from the valence band due to the formation of the surface band.
Since the surface band with valence character can overlap with the surface
band that has emerged from conduction band states, both types of surface
bands can be partially filled (see Fig. 3.8). Surface states with valence band
character can be regarded as donor-like. Likewise, we can call surface states
with predominantly conduction band character acceptor-like.3

An important quantity is the “charge neutrality level” µCN. At this energy,
the character of the surface states changes from predominantly donor-like to
predominantly acceptor-like. Typically, µCN has an energy close to the center
of the bandgap. For a neutral surface, the surface states are filled up to µCN.
In general, the surface can be charged, however, and the chemical potential at
the surface, µS, may differ from µCN.

3) In general, surface states do not have pure valence band (or conduc-
tion band, respectively) character. Rather, they are an admixture of
both types of band states. Surface states will be more valence-like
the closer their energies are to the valence band, and vice versa.
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3.1.3
Band bending and Fermi level pinning

So far, we have considered intrinsic materials, where the energy of the elec-
trons in the donor-like surface states increases as compared to their bulk value,
but the surface remains neutral. This situation changes in doped semiconduc-
tors. Let us take an n-doped semiconductor as an example (Fig. 3.8).

Fig. 3.8 Band bending at the surface of an n-doped semiconduc-
tor before equilibration. Gray areas indicate occupied states. Left:
Schematic representation of the band structure close to the surface
before equilibration. The sketched surface bands have a width of
roughly 0.2Eg. Right: After equilibration, the surface gets charged,
an upward band bending results, and the Fermi level gets pinned close
to the charge neutrality level µCN.

If only donor-like surface states existed, nothing would happen. However,
usually both donor- and acceptor-like surface states are present. In that case,
some donor electrons in the conduction band will reduce their energy by oc-
cupying the acceptor-like surface states. A negative surface charge is gener-
ated, counterbalanced by a positive space charge that originates from ionized
donors within a depletion length zdep away from the surface, such that overall
charge neutrality is maintained. Consequently, an electric field and the cor-
responding electrostatic potential will build up, and the energy bands bend
upwards as they approach the surface. It is self-evident that, in a p-doped
semiconductor, the band bending will occur toward lower electron energies,
since holes accumulate at the surface. In equilibrium, the chemical potential
is constant throughout the crystal. To be somewhat more quantitative, con-
sider an n-doped semiconductor with a band bending extending a distance
zdep from the surface into the bulk. In this region, the complete ionization of
the donors leads to a space charge density of ρ = enD. The missing electrons
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occupy the surface states, with a surface electron density of ns = nDzdep. The
Poisson equation gives us the z-dependence of the potential V(z) via

d2V
dz2 = − enD

εε0
=⇒ V(z) = − enD

εε0
(z− zdep)2 (3.21)

for z ∈ [0, zdep]. Note that this is the potential an electron feels as it approaches
the surface from z ≥ zdep without exiting the crystal. Therefore, the potential
maximum of the conduction band is reached at z = 0 and equals

V(0) = −
eNDz2

dep

2εε0

Assuming that the surface states that get filled lie close to the center of the
bandgap, we can estimate the depletion length for typical parameters, say
Eg = 1.4 eV ⇒ V(0) ≈ 0.7 eV, nD = 1024 m−3, and ε = 12, and find a de-
pletion length of zdep ≈ 30 nm. The band bending thus extends across many
lattice constants, and the depleted region is much larger than the spatial ex-
tension of the surface states.

For our model parameters, a surface charge density of ns ≈ 3× 1016 m−2

results, which is much smaller than the integrated density of surface states.
Since Ds(E) ≈ 5 × 1018 m−2, this means that the chemical potential at the
surface µS changes only by a few meV due to the charge transfer. Hence, to a
good approximation, µS does not depend on the doping density. This property
is often coined by the statement that the Fermi level is pinned by the surface
states at µCN. In that respect, surface states act similarly to deep dopants used
to generate semi-insulating materials – see Chapter 2.

3.2
Semiconductor–metal interfaces

The ideas of wave function matching and modified transfer integrals at sur-
faces are also applicable to the important metal–semiconductor interface. Be-
fore the metal and the semiconductor get in contact, their common energy
scale is the vacuum level, and the relative position of the bands in both mate-
rials is trivial. As the interface is formed, however,4 the local lattice structure
at the interface changes, which can give rise to interface states. We distinguish

4) We assume that the surfaces are clean, and contain no oxides. This is
in fact more or less the case in real devices, as possible oxide layers
can be etched away, and the metal is usually deposited on top of the
semiconductor in a high-vacuum environment. Furthermore, the
interfaces considered in theory are usually atomically flat. This is
quite hard to achieve experimentally.
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between Schottky barriers, where charge carriers have to tunnel through a bar-
rier as they move across the interface, and ohmic contacts, where such a barrier
is absent or highly penetrable.

3.2.1
Band alignment and Schottky barriers

The character of the previously mentioned interface states depends on the en-
ergy. At energies in the gap between the full bands of both materials, localized
states may form, with a character very similar to that of surface states. For en-
ergies inside a full band of both materials, the semi-extended wave functions
have to be matched. Both situations have no further consequences, as all the
states involved are filled anyway. A new scenario is obtained for energies
that lie in an energy band of one component, but in a gap of the second one.
The most relevant case is a semiconductor bandgap with energies inside the
conduction band of the metal, and we focus on this scenario.

Heine [147] has shown that the metallic wave function can be matched to the
evanescent wave functions in the semiconductor for all energies. Hence the
metal induces a continuum of interface states in the semiconductor bandgap,
so-called induced gap states (IGSs). Close to the interface, the semiconductor
thus develops a non-zero density of states at energies inside the metallic bands
(Fig. 3.9). Suppose that, at the beginning, both materials are well separated
and do interact. Clearly, their common energy scale is the vacuum level, and
the energy difference between the chemical potential in the metal µM and the
electron affinity in the semiconductor ξe,SC equals the energy difference be-
tween the semiconductor conduction band bottom and µM (Fig. 3.7). In many,
but not all, cases this means that µM is somewhere in between the top of the
valence band and the bottom of the conduction band of the semiconductor.
Next, we assume that the surfaces are so close to each other that IGSs are
formed in the semiconductor bandgap. Fig. 3.10 shows a calculation of the
density of states across a GaAs–Al interface. Within the first two GaAs dou-
ble layers away from the interface, a significant density of IGSs is generated,
while the Al density of states remains essentially unchanged even for the Al
layer at the interface.

Since the IGSs inside the semiconductor are built from the virtual gap states
of the semiconductor, their properties are semiconductor-specific. Like a sur-
face state, such an interface state is predominantly acceptor-like or donor-like.
A charge neutrality level and the interface work function of the semiconduc-
tor ΦS can be defined, and again the integrated density of states must remain
constant. How do the band structures of the metal and the semiconductor
align with respect to each other? In general, the charge neutrality level in the
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Fig. 3.9 Typical energy band alignment between a metal (left) and a
semiconductor (right) before charge transfer across the interface is
allowed. Extended states in the metal induce gap states in the semi-
conductor at all energies inside the bandgaps. The induced gap states
(IGSs) are filled up to µCN, and the common energy scale of both
band structures is the vacuum level.

Fig. 3.10 Calculated density of states across an Al–GaAs interface.
After [33].

semiconductor µCN will be different from µM, and a charge transfer will take
place.

We discuss the alignment using the interface between a metal and an n-
doped semiconductor as an example (Fig. 3.11(a)). In a gedanken experiment,
we assume that, for now, the donor electrons are not allowed to occupy surface
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states. Charge transfer across the interface forms a dipole and aligns, via the
dipole potential that obeys the Poisson equation, µM with µS. This dipole
is strongly localized, since the IGSs only extend over a few lattice constants
into the semiconductor (Fig. 3.11(b)). The semiconductor bands have been
bent upwards in the case drawn here, and this energy difference adds to the
difference between ΦM and ξe. The barrier at the interface is known as the
Schottky barrier VS. In an n-doped semiconductor, the IGSs will get occupied
by donor electrons as well. As in the previous section, a space charge layer
builds up in the semiconductor close to the interface and generates the band
bending sketched in Fig. 3.11(c). Since the region of depleted donor electrons
zdep is much larger than the width of the IGSs, the band bending due to the
interface dipole is often drawn as a step function, resulting in a band diagram
as shown in Fig. 3.11(d).

Fig. 3.11 Metal-induced gap states and band
alignment at a metal–semiconductor inter-
face. (a) Relative band energies of a metal
and an n-doped semiconductor after forma-
tion of IGSs, but before charge is transferred.
(b) Charge transfer across the interface gen-
erates an interfacial dipole, aligns µM with µS,

and generates a highly localized band bend-
ing. (c) The donor electrons will occupy the
IGSs as well, generating a depletion layer of
width zdep and an additional band bending.
(d) Since zdep is much larger than the width
of the IGSs, the interface band bending is
usually drawn as a sharp step, as indicated.
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Similarly, of course, an opposite bending can occur for a p-doped semicon-
ductor.

Within this picture, we would expect VS to depend upon ΦM, and this is
in fact the case. Fig. 3.12(b) shows that an approximately linear relation ex-
ists between VS and ΦM, with a slope characteristic for each semiconductor
(d(eVS)/dΦM ≈ 0.05 for n-GaAs and ≈ 0.25 for Si).

3.2.1.1 The Schottky model

The Schottky model neglects the consequences of interface states and models
the Schottky barrier formation entirely by using bulk parameters [266]. It is
frequently used, and we thus briefly sketch it here, using again an n-doped
semiconductor as an example. In a consideration similar to the previous one,
we start with the two materials separated by an impenetrable tunnel barrier,
such that charge transfer is impossible. As pointed out above, the difference
between the metal Fermi level and the conduction band bottom of the semi-
conductor is ΦM − ξe,SC. Bringing the materials closer together will at some
point allow for charge transfer. In the case depicted here, the donor electrons
get transferred into the metal until the chemical potentials µM and µSC are
aligned (Fig. 3.12(a)). The Schottky model thus predicts that VS = ΦM − ξe,SC,
which can be taken as a coarse approximation to the observed barrier heights
shown in Fig. 3.12(b).
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Fig. 3.12 (a) Positions of the Fermi levels of a metal and an n-doped
semiconductor in equilibrium as obtained within the Schottky model.
(b) Schottky barriers of Si and GaAs in contact with different metals,
plotted as a function of the metal work function. After [294].
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3.2.1.2 The Schottky diode

Semiconductor–metal interfaces with a Schottky barrier act as a diode. The
resistance of such a barrier is dominated by the depletion zone in the semi-
conductor, as well as by the Schottky barrier height. Applying a positive
voltage to the metal with respect to the grounded semiconductor pulls the
electrons in the semiconductor toward the interface, thus reducing the width
of the space charge layer, as well as the height of the barrier. The current is
typically dominated by electrons with a sufficiently large thermal energy to
diffuse across this barrier. Since the distribution function in this high-energy
tail can be approximated by a Boltzmann distribution, the density of such
electrons increases exponentially with applied voltage, and therefore an ex-
ponential (diode-like) I–V characteristic results (Fig. 3.13). Although we will
not make use of Schottky barriers as diodes in subsequent chapters,5 it is im-
portant to keep in mind how the band bending in a semiconductor close to a
metal can be modified by a voltage applied across the Schottky barrier.

Fig. 3.13 The tunnel barrier formed by the depletion layer at a Schot-
tky contact depends on the bias voltage (left), which results in a
diode-like current–voltage characteristic (lower right). The upper right
scheme shows the direction of the applied voltage.

3.2.2
Ohmic contacts

So far, we have assumed that the chemical potential at the interface in equilib-
rium is at some energy inside the semiconductor bandgap. This is not always
what we need. Operating a semiconductor device requires current carried

5) In some setups, the currents across Schottky contacts actually dis-
turb the experiment. Such currents are referred to as gate leakage,
for reasons that will soon become clear.
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by a metal wire to be fed into the semiconductor at some point. This should
be done with the lowest resistance possible, and a diode-like current–voltage
characteristic would certainly be an annoyance. The interface should behave
according to Ohm’s law.

Such ohmic contacts can be formed naturally at some metal–semiconductor
interfaces where the equilibrium Fermi level lies above EC,SC; see Fig. 3.14(a).
No tunnel barrier is formed in that case, and charge can flow freely across
the interface. An example is the interface between InAs and a metal. Most
material combinations of importance, however, form Schottky barriers, and
we have to design some sort of ohmic contact. This is done by reducing the
Schottky barrier to insignificant heights and widths by two means. First of
all, a metal is used for ohmic contact formation, such that VS is reduced as
much as possible. Second, the semiconductor is heavily doped, which reduces
the width of the tunnel barrier, according to Eq. (3.21); see Fig. 3.14(b). Since
the resistance across the Schottky barrier depends exponentially on both the
width and the height of the tunnel barrier, a current–voltage characteristic
results that is ohmic for practical purposes.

Fig. 3.14 (a) An ohmic contact without a Schottky barrier between the
metal and the semiconductor. (b) Scheme of a metal–semiconductor
interface with a Schottky barrier that works as an ohmic contact.

3.3
Semiconductor heterointerfaces

The probably best known example of a semiconductor interface is the p–n
junction, where a p-doped region meets an n-doped region of the same semi-
conductor host crystal. Close to the junction, donor electrons recombine with
acceptors and generate a space charge region, which can be tuned by apply-
ing a voltage across the junction. The p–n junction is the basis of bipolar de-
vices, but plays no role in our subsequent considerations; the interested reader
is referred to standard textbooks on solid state physics and semiconductor
physics [12, 270].
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Instead, the semiconductor devices we will study frequently contain het-
erointerfaces, i.e. interfaces between two different semiconductor crystals. As
in the metal–semiconductor interface, an important question is how the band
structures align with respect to each other. We can get a qualitative under-
standing of the alignment mechanism by modifying the above considerations
accordingly, and consider an interface between semiconductor 1 (n-doped)
and semiconductor 2 (p-doped) as an example (Fig. 3.15).6 Again we begin
with the relative band energies of the two semiconductors before charge trans-
fer has taken place (Fig. 3.15(a)). For energies inside the bandgap of one semi-
conductor and inside an energy band of the second semiconductor, IGSs are
generated. Additional states may arise for energies in the bandgap of both
materials, which we neglect for simplicity. In any case, surface chemical po-
tentials are defined for both materials, which may differ from the chemical
potentials of the bulk as well as from each other. Correspondingly, charge
transfer will take place across the interface. Fig. 3.15(b) shows the resulting
band alignment after electrons have been transferred from the valence band
in semiconductor 2 into the IGSs of semiconductor 1. Finally, the bulk chemi-
cal potentials will be aligned by electron transfer from the n-doped semicon-
ductor into the p-doped semiconductor, and a space charge dipole layer, with
a typical extension of several tens of nanometers into both materials, is ob-
tained. This is shown in Fig. 3.15(c), where the dipole potential due to the
occupation of IGSs has been included already in the band offsets, similar to
Fig. 3.9(d).

Question 3.2: Discuss the band alignment between two semiconductors when sur-
face effects are neglected, i.e. a model similar to the Schottky model for the metal–
semiconductor interface.

Phenomenologically, one distinguishes between several types of alignment
(see Fig. 3.16):

Type I The smaller bandgap lies completely inside the larger bandgap. An
important example is the GaAs–AlxGa1−xAs interface discussed below
in detail.

Type II Here, both bands of crystal 1 lie above the corresponding bands of
crystal 2. The InAs–AlSb interface has such a structure. In the “stag-
gered” alignment, one of the band edges of material 1 resides inside the

6) Doping is not necessary for the alignment mechanisms to work, but
simplifies the discussion somewhat. In intrinsic materials, polariza-
tion charges contribute significantly to the dipole at the interface.
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Fig. 3.15 Band alignment at a semiconduc-
tor heterointerface. (a) Both band structures
are drawn with respect to the vacuum level
before charge is transferred. Gap states
are induced, along with possible localized
states in the bandgap of both materials (not
shown). (b) The band alignment is modified
by a charge dipole, which aligns the surface
chemical potentials. Here, we have kept the
doping charges immobile, such that the re-

sulting band alignment is the same as for the
intrinsic case. (c) In the case of doped semi-
conductors, the bulk chemical potentials will
align by transfer of doping charges across
the heterointerface and the corresponding
formation of depletion layers, which are much
larger than the spatial extension of the IGSs.
Here, the band offsets are drawn as sharp
steps, neglecting the spatial extension of the
IGSs.

bandgap of material 2; while in the “misaligned” type, the top of the va-
lence band of material 1 lies above the bottom of the conduction band
of material 2. The most prominent example for this type of alignment is
the InAs–GaSb interface.

To finish this section, it should be mentioned that very similar considerations
give the band alignment between a semiconductor and an insulator.

Fig. 3.16 Different types of band alignments at semiconductor het-
erointerfaces: type I (left); type II staggered (center); and type II mis-
aligned (right).
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Several theoretical treatments of band alignments have been developed.
The concept of electronegativity, introduced by Pauling [234], has proved
highly useful in molecular physics and can be applied to crystal interfaces
as well. An instructive evaluation of this approach is given in Paper P3.1. Fur-
thermore, various extensive tight binding models for interfaces have turned
out to be highly successful. These concepts are developed in [142], and refer-
ences therein.

It should be remarked that agreement between theory and experiment is
often hampered by imperfect interfaces containing defects or impurity atoms.
A problem we have excluded is interface strain due to different lattice con-
stants. With state-of-the art technology, however, close-to-perfect interfaces
can be grown, and the measured band alignments agree well with more so-
phisticated theoretical considerations – see e.g. [213].

3.4
Field effect transistors and quantum wells

The properties of interfaces can be used to construct useful devices as well
as fascinating nanostructures. Field effect transistors are very important in
both respects. Many mesoscopic samples comprise some sort of field effect
transistor, which are frequently denoted by the acronym FET. These devices
rely heavily on interface effects. The two most important FETs in our context
are the Si MOSFET and the GaAs HEMT. These are by no means the only
systems though. Particularly in research, a wide variety of heterostructure
devices is used. Some examples are given at the end of this section.

3.4.1
The silicon metal–oxide–semiconductor field effect transistor

This type of FET is the basic building block of the vast majority of present-day
integrated circuits. A scheme of the Si MOSFET is shown in Fig. 3.17(a). A
silicon chip is, say, p-doped and electrically contacted with two ohmic con-
tacts that act as source and drain. A metal electrode resides in between the
ohmic contacts, separated by a SiO2 layer from the Si. This M–O–S layer se-
quence can be thought of a Schottky diode with an insulator inserted at the M–
S interface, in order to increase the resistance strongly. Currents between the
metal electrode and the semiconductor are neglected in the following. With
no voltage applied, the resulting band structure across the interface is shown
in Fig. 3.17(b). The p-doping is typically rather weak, say NA ≈ 1021 m−3,
such that the resistivity of the Si is high. By applying a voltage to the metal
electrode with respect to drain, a band bending is induced in the Si, and a
corresponding charge accumulation at the Si–SiO2 interface is generated, as
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Fig. 3.17 (a) Schematic illustration of a sil-
icon MOSFET. A source–drain voltage is
applied to a p-doped silicon wafer at two
ohmic contacts (OC). A metal electrode M
(“gate”) in between the ohmic contacts is
separated from the silicon by a SiO2 layer.
(b) Band alignment across the M–O–S inter-
face (dashed line in (a) for Vg = 0). (c) Ap-
plying a positive voltage to the gate increases

the band bending. Above a threshold gate
voltage, the conduction band bottom drops
below µ at the O–S interface, and an elec-
tron gas (EG) is induced (inversion). (d) A
sufficiently large negative gate voltage pulls
the top of the valence band above µ, and a
hole gas (HG) is generated at the surface
(accumulation).

depicted for the case of a positive voltage in Fig. 3.17(c). Here, EC of the Si
has dropped below the Fermi level, and electrons collect at the interface in the
conduction band. Hence, an electron gas is generated which is confined in the z-
direction, but free in the directions parallel to the surface. For sufficiently high
electron densities in this free electron gas, its conductance is much higher as
compared to the p-doped bulk. We speak of inversion if the free carrier gas has
the opposite sign than the carriers in the bulk due to doping. For appropriate
doping densities, we can generate a free hole gas at the O–S interface by ap-
plying negative voltages to the metal electrode. This situation is refereed to as
accumulation. Devices that offer the possibility of generating both electron and
hole gases are known as ambipolar.

The current that flows between source and drain can thus be controlled by
the voltage applied to the metal electrode, which is therefore known as the
gate. The oxide prevents a current flowing between the gate and the silicon,
which would reduce the performance of the switch. This three-terminal de-
vice thus represents a transistor that relies on the electrostatic field effect.



3.4 Field effect transistors and quantum wells 79

However, we are not so much interested in the technological applications
of MOSFETs in our context. Readers interested in the origin of the current–
voltage characteristics of MOSFETs or in other characterizations of technolog-
ical relevance are refereed to [294]. Rather, we focus on the electron gas that
can be formed at the O–S interface in Fig. 3.17(c). Apparently, its spatial ex-
tension in the z-direction is very small, as we have seen already above. Typi-
cally one finds that EC is below the Fermi level for about 20 nm. Furthermore,
the electron densities in such interface layers are much smaller than metal-
lic densities, and the Fermi wavelength is larger. A crude estimation gives
λF ≈ 20 nm. Therefore, we expect size quantization effects in the electron
gas. Fig. 3.18 shows a zoom-in of the conduction band structure at the oxide–
semiconductor interface. The potential is roughly triangular. By applying an
appropriate gate voltage, a situation can be established in which only the en-
ergy of the first quantized state is below the Fermi level. Since the electrons
are not confined parallel to the interface, a two-dimensional electron gas (2DEG)
results. The conduction band bottom of this 2DEG is at E0 in Fig. 3.18. We
sometimes speak of a two-dimensional subband. If more than one subband is
occupied, the electron gas is said to be quasi-two-dimensional.

Fig. 3.18 Energy diagram of the conduction band in a Si MOSFET
close to the O–S interface, as obtained from a self-consistent calcu-
lation that includes electron–electron interactions and screening. In
a potential well, quantized states are formed. The resulting electron
gas is effectively two-dimensional as long as only the first quantized
state lies below the Fermi level. Also indicated is the electronic wave
function. After [9].
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Like in three dimensions, this electron gas can be described by an effective
mass and by the two-dimensional density of states. However, some care is
required in adopting the bulk parameters to a two-dimensional carrier gas
at an interface. We will meet some of the related issues later on. For now,
we just look at the effective electron mass of the 2DEG in the Si MOSFET.
Suppose the Si crystal plane at the interface is a (100) plane, a very common
case. The electrons move freely parallel to this plane only. Therefore, it is
self-evident to project the valley-degenerate Fermi ellipsoids into that plane
(see Fig. 3.19), which results in four spin-degenerate ellipses and a twofold
valley-degenerate and spin-degenerate circle at the center. Owing to inter-
face effects, however, the degeneracy between the ellipses and the circles gets
removed, and the conduction band at the circle is about 20 meV below the
conduction band minimum in the ellipses [10]. At room temperature, both
types of minima are occupied. At low temperatures, however, the electrons
have a single effective mass of m∗ = 0.19me parallel to the surface, and the
valley degeneracy is reduced to 2.

Fig. 3.19 Projection of the Si Fermi surface for typical electron densi-
ties onto a (100) plane. Two ellipsoids get projected onto the Γ-point.
Their energy is reduced as compared to the four projected ellipses due
to interface effects.

The two-dimensional character of this interface electron gas has some most
surprising consequences, as will be seen in Chapter 6. But this is not the only
interesting property of such electron gases. Furthermore, the electron den-
sities are much smaller that in conventional metals, and can be tuned. The
Fermi wavelength is comparatively large, and size quantization effects can be
expected laterally also, provided the MOSFET is patterned accordingly. In
addition, low density means that electron–electron interactions are more im-
portant, due to reduced screening.
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Since the electrons are to some degree spatially separated from the ionized
donors, impurity scattering is reduced and the electron mobility increases. In
fact, the mobility of an electron gas at a O–S interface can be two orders of
magnitude larger than the mobility of bulk Si. The mobility is typically dom-
inated by scattering at impurities embedded in the oxide. Furthermore, the
oxide is amorphous. The oxide atoms are by no means periodically arranged,
which will cause additional electron scattering. However, due to size quanti-
zation, the probability of finding electrons right at the O–S interface is reduced
(see the wave function in Fig. 3.18). The maximum of the probability density
is several nanometers away from the interface.

3.4.1.1 The MOSFET and digital electronics

Microprocessors are essentially Si MOSFET circuits which can perform calcu-
lations in the binary system. A second major component of digital electronics
are random access memories (RAMs). They are also built from MOSFETs.
The Si MOS material system is the system of choice due to its vastly supe-
rior properties. First of all, extremely pure and large Si crystals can be grown,
while the material resource is abundantly available. Second, Si has a natural
oxide with excellent characteristics, such as a high breakdown electric field,
good mechanical stability, and inertness to most chemicals.
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Fig. 3.20 Symbols for n-channel (left) and p-channel (right) MOS-
FETs.

Within digital electronics MOS technology, the complementary MOS
(CMOS) concept has become dominant. Complementary means that both p-
doped and n-doped transistors – termed n-channel and p-channel transistors,
respectively (see Fig. 3.20), due to the carrier type in the interface channel
under inversion – are used in one circuit. It sounds much more expensive to
define two kinds of transistors on one chip, so we should expect to have a
good reason for doing this. In fact, CMOS circuits have a much lower power
consumption. This can be seen by looking at the realizations of a binary in-
verter, the NOT gate, in NMOS (i.e. in a circuit that uses n-channel MOSFETs
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exclusively) and in CMOS technology (see Fig. 3.21). This circuit is supposed
to deliver a zero as output for input 1 and vice versa. In CMOS technol-
ogy, the logic levels are defined as voltages V ∈ [−0.2 V, 1.6 V] ≡ 0 and
V ∈ [3.5 V, 5.5 V] ≡ 1. In NMOS, this task can be implemented as shown
in Fig. 3.21(a). The input (A) is applied to the gate of an n-channel MOSFET,
which is biased via a supply voltage (V = 5 V) that drops across the MOSFET
channel in series with a properly selected resistor R. The output (A) is picked
up between the resistor and the MOSFET entrance. For A = 0, the MOSFET
channel is closed and the output equals approximately the supply voltage.
For A = 1, the channel is open, which sets the output to ground. Suppose the
channel resistance is 100 Ω in the open and 10 MΩ in the closed configuration.
Then, a reasonable choice of R would be 100 kΩ, which means a power con-
sumption in the open channel state of P ≈ V2/R = 250 µW. This power can
be greatly reduced by using the corresponding CMOS circuit in Fig. 3.21(b):
there, the resistor is replaced by a p-channel MOSFET, with the gate connected
to the input as well. As can be easily seen, this setup also acts as an inverter,
but the power consumption is determined by a closed MOSFET channel in
both states. In our above example, P drops by two orders of magnitude.

A

G

V

R

A

V

AA

(a)    (b)

Fig. 3.21 The NOT gate (binary inverter), realized in (a) NMOS and
(b) CMOS technology.

It is straightforward to implement more complex circuit elements. As an
example, we consider a possible CMOS realization of a memory cell, which
is based on the flip-flop and finds an application in static random access memory
(SRAM). Such a cell can be designed by establishing a mutual feedback be-
tween two NAND gates that perform the NOT AND operation on two inputs
according to the truth table shown in Table 3.1.

A possible circuit layout for realizing a NAND gate is given in Fig. 3.22: two
p-channel MOSFETs are arranged in parallel between the supply voltage and
the output connection, while two n-channel transistors are located in series
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Tab. 3.1 Truth table for the NAND operation.

Input 1 Input 2 Output

0 0 1

0 1 1

1 0 1

1 1 0

Fig. 3.22 Layout of a CMOS NAND gate (left) and its symbolic repre-
sentation (right).

between the drain and the output. Each of the two input signals is applied
to the gates of one n-channel and one p-channel MOSFET. The output voltage
is on “0” if both n-channel MOSFETs are open, and on “1” if just one of the
p-channel MOSFETs is in the conducting state.

Two NAND gates can be the building blocks of a storage cell, when coupled
as shown in Fig. 3.23. The output of each NAND gate is coupled to one of the
inputs of the other gate, while the remaining inputs are the two external input
signals. The output of the upper gate is defined as the stored bit M. In the
“hold” configuration, both inputs are held at “1”, which allows two stable
configurations:

• M is at “1” and M is at “0”.

• M is at “0” and M is at “1”.

The stored bit M is fixed and can be read any time by, for example, applying
it to a gate of a MOSFET.

Suppose we would like to write M = 0. This is achieved by putting IN 1
to “0” for a short time, while keeping IN 2 at the “1” level. Independently of
the previously stored bit, M goes to “1” and M to “0”. After the bit has been
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IN 1

IN 2

M

M

Fig. 3.23 Realization of a flip-flop with two NAND gates.

written in the cell, IN 1 is set to “1” again. Similarly, M = 0 is deposited in
the cell by giving a “0” pulse to IN 2. Note that “0” at both inputs has to be
avoided, since an unstable situation arises.

This example concludes our brief excursion into the field of digital elec-
tronics. How the numerous elements required in a microprocessor are im-
plemented in CMOS technology is not only fascinating, but also of utmost
technological relevance. For more information, the reader is referred to the
specialized literature, like [325].

3.4.2
The Ga[Al]As high electron mobility transistor

In this system, the two-dimensional electron gas is generated inside the GaAs,
at the interface formed between AlxGa1−xAs and GaAs. The band alignment
of this interface is of type I. The band offsets depend on x (see Fig. 2.6). A
typical choice is x = 0.3. In that case, the conduction band of Al0.3Ga0.7As
is 300 meV above that of GaAs. The top of the Al0.3Ga0.7As valence band is
located about 160 meV below that of GaAs. This is of no further interest here,
as we are going to consider an electron gas again.

In contrast to Si, the GaAs remains undoped. Instead, the electrons are pro-
vided by a doping layer inside the Al0.3Ga0.7As. Usually, Si is used as a donor.
The doping layer can be spatially separated from the Al0.3Ga0.7As by sev-
eral tens of nanometers (see Fig. 3.24(a)). While most of the doping electrons
that get thermally excited into the conduction band occupy the nearby sur-
face states, some of them (typically about 10%) reduce their energy by falling
across the interface into the GaAs conduction band. This doping technique is
called modulation doping; it was first demonstrated by Dingle [72]. An accu-
rate doping density is essential in designing a good HEMT structure. Only a
few percent deviation from the correct doping density can have either of two
effects: mobile electrons are produced in the doping layer (a “bypass”), or
the triangular potential at the heterointerface remains empty. While the dop-
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Fig. 3.24 (a) Band alignment at a modulation-doped GaAs–
AlxGa1−xAs interface. (b) Schematic structure of a GaAs HEMT with
the gate electrode grounded. (c) For gate voltages below −400 mV,
EC at the interface moves above the chemical potential, and the elec-
tron gas is depleted.

ing density and the thickness of the spacer layer determine the density of the
2DEG, it can be tuned with a top gate over wide ranges.

Consequently, two charge dipoles build up, one between the surface and
the doping layer, and a second one between the GaAs–Al0.3Ga0.7As heteroin-
terface.7 This results in the band structure sketched in Fig. 3.24(b). As in the
Si MOSFET, the resulting electron gas can be two-dimensional, and its carrier
density can be tuned by applying voltages to a gate on top of the heterostruc-
ture (see Fig. 3.24(c)). Thus, the electron gas is present in this structure if no
gate voltage is applied, or if there is no gate at all. Modulation doping of GaAs
heterostructures caused great progress in the electron mobilities (Fig. 3.25).
The reason is twofold. First of all, AlxGa1−xAs is quasi-crystalline, in contrast
to the SiO2 layer in a Si MOSFET. Although the Al atoms replace the Ga atoms
at random sites, this ternary compound is a somewhat distorted zinc blende
crystal structure with a well defined lattice constant. The lattice mismatch be-
tween GaAs and Al0.3Ga0.7As is only 0.4%. Hence, the electrons in the 2DEG
see an almost perfectly periodic environment, and the interface causes much
less scattering as compared to the O–S interface in a Si MOSFET. Second, the
ionized donors, which are a strong source of scattering, are spatially separated
from the electron gas. Consequently, the screened Coulomb potentials that the
electrons see are much weaker and generate predominantly small-angle scat-

7) Note the thin GaAs cap layer at the surface. Its purpose is to avoid
oxidation of the Al0.3Ga0.7As layer when exposed to air.
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Fig. 3.25 Evolution of electron mobilities over time, after modulation
doping was introduced. After [240]. Please compare this graph to Figs.
2.15 and 3.31.

tering. In the years 1978 to 1985, the layer sequences and the compositions of
Ga[Al]As HEMTs were improved, and the increase in low-temperature elec-
tron mobilities achieved in this period was truly remarkable (see Fig. 3.25).
For example, an extremely high mobility of µ = 1440 m2/V s has been re-
ported [307]. This corresponds to a mean free path of 120 µm. Although very
similar devices can be built of several materials, like Ga[Al]N for example,
the Ga[Al]As heterostructure has remained unsurpassed in terms of electron
mobility.

Another advantage of the Ga[Al]As system is the possibility of designing
the spatial variation of the band structure by controlling the Al content dur-
ing sample growth. For example, quantum wells can be grown by embed-
ding a thin layer of GaAs in two Al0.3Ga0.7As layers. Varying the Al content
parabolically during growth, i.e. x ∝ (z− z0)2, results in a parabolic quan-
tum well in the growth direction (see Fig. 3.26). Hence, quantum mechanical
model potentials can be experimentally realized this way, as long as the en-
velope function approximation is reasonable. We will occasionally meet such
structures later on.
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Fig. 3.26 Sketches of (a) square and (b) parabolic quantum wells,
fabricated in the Ga[Al]As system. In (b), the Al concentration x is
varied ∝ z2 around the center of the well, up to x = 0.3.

3.4.3
Other types of layered devices

We conclude this section with a selection of further interesting heterostruc-
tures. In particular, the Si[Ge] and the InAs–AlSb quantum wells are pre-
sented. Also, we will have a look at organic FETs. The materials cannot be
combined arbitrarily, though. The lattice constants of the two components
that form the interface should differ as little as possible. Differences in the
lattice constants will inevitably lead to strained layers, which generates lat-
tice dislocations and thus additional scattering. If the strain gets larger than
≈ 1% homogeneous film growth is no longer possible, and strained islands
of one material form instead. While these islands have fascinating properties
(see the following chapter), they are of course unacceptable when a clean and
homogeneous interface is required. A plot of the bandgap of different semi-
conductors vs. their lattice constant is known as the bandgap engineer’s map.
It reveals what kind of materials can possibly be combined (see Fig. 3.27).

3.4.3.1 The AlSb–InAs–AlSb quantum well

The band alignment of this material system is type II misaligned. Fig. 3.28
shows the band structure of an InAs quantum well, sandwiched in between
two layers of AlSb. The surface is again capped with a binary crystal that does
not contain Al, GaSb in this case. Modulation doping of this system is a tricky
business. The standard donor for III–V systems is Si, which unfortunately acts
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Fig. 3.27 The bandgap engineer’s map shows what materials can be
combined such that the lattice mismatch remains tolerable. Apparently,
GaAs and AlAs match very well, while the combination of Si with Ge
will be accompanied by strain effects.
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Fig. 3.28 Schematic sketch of the band structure in an InAs–AlSb
quantum well. The surface is capped by a GaSb layer with a surface
chemical potential 180 meV below the bottom of the conduction band.

as an acceptor in GaSb and AlSb. Te is known to generate n-doping in AlSb,
but this element causes technological problems during sample growth.

Although there are ways to circumvent this problem (see e.g. [28]), doping is
not necessary to fill the quantum well with electrons. The reason is that, in this
system, the surface chemical potential in the GaSb layer is just 180 meV below
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the GaSb conduction band, well above the conduction band bottom of InAs.
Therefore, electrons get transferred from the surface band into the quantum
well. Rather large electron densities up to n ≈ 1.2× 1016 m−2 can be achieved
in such undoped quantum wells, by keeping the distance of the well from the
surface sufficiently small, e.g. of the order of 30 nm. In intentionally doped
systems, electron densities up to n ≈ 5.6× 1016 m−2 have been reported [28].
At room temperature, mobilities can be of the order of 3 m2/V s [43], which
increase to µ ≥ 30 m2/V s at liquid helium temperatures. This material is also
interesting because of its large effective electronic g-factor of g∗(InAs) = −14,
which is about 32 times larger than in GaAs (g∗(GaAs) = −0.44). The Zeeman
splitting of the energy levels in external magnetic fields is thus very strong.

3.4.3.2 Hole gas in Si–Si1−xGex–Si quantum wells

As an example of a hole gas, we consider the Si–Si0.85Ge0.15–Si quantum well
depicted in Fig. 3.29. The interface is type II staggered. The band offset de-
pends on x and occurs to a large fraction in the valence band. In our example,
a boron-doped layer was grown in between the quantum well and the sur-
face. Similar to the Ga[Al]As heterostructure discussed previously, the holes
partly fill the surface band, and are partly transferred into the quantum well.
Although hole mobilities in this system are rather low, namely of the order of
µ ≈ 1 m2/V s even at reduced temperatures, this system represents a way to
generate modulation doping in a Si-based material, which is of technological
importance. From a fundamental point of view, this material is interesting, for
example, because hole gases with greatly reduced screening properties can
be generated. Hence, it is a system suited to study effects based on strong
electron–electron interactions.8

3.4.3.3 Organic FETs

As a final example, we mention field effect transistors that use an organic
semiconductor, such as pentacene or polythiophene-based materials (see
Fig. 3.30), as host for the electron gas. These materials have several advan-
tages over their inorganic colleagues. They are soluble in organic solvents
and can thus be spin-coated over large areas, which makes the deposition in-
expensive. Organic light-emitting diodes are already commercially available,
so that more complex, all-organic optoelectronic circuits may become possi-
ble soon. Also, the properties of organic semiconductors are tunable to some
extent via their chemical synthesis. For example, alkyl side chains of various
lengths can be chemically attached to a polythiophene backbone, which re-

8) Two-dimensional electron gases can be generated in this material
system as well. Here, the electrons collect in a Si quantum well that
forms between two layers of Si1−xGex. The mobility of such electron
gases can reach µ ≈ 50 m2/V s [163].
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Fig. 3.29 Band alignment of a modulation-doped Si–Si0.85Ge0.15–Si
quantum well. A two-dimensional hole gas (2DHG) is formed in the
Si0.85Ge0.15 valence band. The horizontal “square bracket” denotes
the Si layer that was doped with B, which acts as acceptor. The doping
density was NA = 6.5 × 1025 m−3 over a height of 15 nm in the z-
direction. Adapted from [271].

Fig. 3.30 (a) Organic oligomers and polymers, like pentacene (top) or
polythiophene (bottom), are examples of plastic FET materials. (b) A
typical schematic layout of such a transistor.

sults in the family of poly(3-alkyl)thiophenes. By varying the length of the
side chains, the lattice constant, the bandgap, the resistivity, and many other
properties can be tuned. Moreover, the material is mechanically soft and can
be operated on flexible substrates.

The common characteristic feature of such molecules is a π-conjugated elec-
tron system, in which single and double π bonds alternate along the chain.
Novel types of applications can be thought of with such plastic transistors,
such as disposable electronics, as well as large-area devices. So far, how-
ever, their electronic performance does not match those of established tran-
sistors. Room-temperature mobilities of µ = 7× 10−6 m2/V s have been re-
ported [153], for example. A major present problem is the degradation of these
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materials under ambient conditions. Also, the understanding of the charge
transport in organic semiconductors is far from complete. Owing to the com-
bination of small dielectric constants, and therefore large screening lengths,
with the low electron densities and the inherently existing strong disorder,
the modeling of the transport in these systems poses a theoretical challenge.

3.4.4
Quantum confined carriers in comparison to bulk carriers

It has already been mentioned above that the effective mass of electrons in a
Si MOSFET differs from their effective mass in bulk silicon. This raises the
question as to what extent the bulk properties are relevant for mobile carriers
in heterostructures.

First of all, quantum confinement changes the band structure and the effec-
tive masses. Consider, for example, a 2DEG in a quantum well of finite height.
Clearly, the tails of the wave function extend into the barrier material, where
the electrons have a different effective mass. Nevertheless, the conditions of
the wave function and its derivative being continuous at the interface remain
valid. This implies that the energy dispersion of the electrons is changed;
see [83] for a discussion of such boundary conditions. Holes experience more
dramatic modifications. Since the quantized energies of a quantum well de-
pend on the effective mass, it is intuitively clear that the degeneracy of heavy
holes and light holes at the Γ-point is removed by the quantum confinement.
It can be shown that in fact the effective masses are reversed close to�k = 0,
i.e. the light holes in the bulk material become the heavy holes in the quantum
well. Furthermore, the confinement causes a mixing of the two bands, which
leads to further strong modifications of the hole energy dispersion. As a re-
sult, it is often quite misleading to speak of heavy and light holes in quantum
confined structures. For a quantitative discussion of these issues, the reader is
referred to [21].

All these descriptions implicitly assume that the envelope function approx-
imation and the concept of effective masses remain valid in heterostructures.
This requires that the superposed potential varies slowly on the scale of the
lattice constant, which is clearly not the case at a heterointerface or a narrow
quantum well. It has been shown, though, that the envelope wave equation
can also be derived for abrupt interfaces, as long as the envelope function still
varies slowly. This issue is addressed in Paper P3.2.

Second, the screening properties are modified in two dimensions, which is
intuitively easy to see, since the scattering potential is still three-dimensional,
but can be screened only in two dimensions by the electrons, while only po-
larization charges can screen in the third direction. It can be shown that, for a
strictly two-dimensional carrier system, the static dielectric constant in the
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limit of low temperatures (see Eq. (2.66) for the three-dimensional case) is
given by

ε(�q) =
{

1 + (kTF/q) q ≤ 2kF

1 + (kTF/q)
√

1− (2kF/q)2 q > 2kF
(3.22)

The resulting charge density induced by a Coulomb potential reads, at large
distances from the scattering center,

Veff(�r) =
Ze
εε0

4kTFk2
F

(2kF + kTF)2
sin(2kFr)
(2kFr)2 (3.23)

Thus, the screened potential drops with r−2 as compared to r−3 in three di-
mensions.

Furthermore, additional scattering mechanisms, which are absent in bulk
materials, are possible in quantum confined systems. The scattering of elec-
trons on ionized impurities has a somewhat different character in modulation-
doped systems as compared to bulk materials, since they are spatially sepa-
rated from the electrons by a spacer layer. The residual and usually small
density of ionized impurities inside the electron gas is comparatively small
in high-quality systems. One may be tempted to guess that the broader the
spacer layer, the higher the mobility. This is not the case, though, since as the
spacer thickness becomes larger, the carrier density gets smaller, and screen-
ing becomes less effective. Hence, a maximum in the mobility as a function
of the spacer thickness is observed. In Ga[Al]As HEMTs, the optimum spacer
thickness depends on the cleanliness of the material and the doping density. It
varies between ≈ 20 nm and ≈ 60 nm. Another scattering mechanism in FET
structures is interface roughness scattering. The interface clearly constitutes a
deviation from perfect periodicity and consequently generates scattering. In
the case of a Ga[Al]As HEMT, this is of minor importance. In narrow quan-
tum wells, however, where fluctuations at both interfaces are important, this
mechanism may become important. In Si MOSFETs, on the other hand, the
oxide is amorphous, and interface roughness scattering is not negligible.

Alloy scattering occurs in compound materials such as AlxGa1−xAs. The
replacement of Ga atoms by Al atoms takes place at random positions, and a
non-periodic potential results. This kind of scattering usually plays no signif-
icant role, as long as the carriers reside in a crystalline material, such as GaAs,
with a barrier made of a ternary compound, since only the evanescent tails of
the wave function feel this kind of disorder.

In Fig. 3.31 a model calculation adopted to some typical data is shown,
which surveys the relevance of various scattering mechanisms in a Ga[Al]As
HEMT. While alloy scattering and interface roughness scattering are irrelevant
except at very low temperatures and in extremely clean samples, the ionized
impurities are split into two components, namely a density of homogeneously
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Fig. 3.31 Significance of various scatter-
ing processes in a Ga[Al]As HEMT. Black
dots denote experimental results for a typ-
ical structure, with an electron density of
n = 2.2× 1015 m−2, and a spacer thickness
of d = 23 nm. The density of the modula-
tion doping was 8.6× 1022 m−3. This doping,

which causes the remote impurities, was
present within a 20 nm layer between the
surface and the spacer. In addition, a homo-
geneous density of background impurities of
9× 1019 m−3 was assumed, which is a typical
number for high-quality GaAs. After [314].

distributed background impurity, which can be reduced in principle by fabri-
cating cleaner samples, and a density of remote impurities, which is necessary,
since they are the donors that provide the electrons. The inherent limit in this
figure indicates the mobility that would be obtained in a sample in the absence
of background impurities, but with the remote donors still in the sample. The
absolute limit represents a situation where the remote donors do not influence
the mobility, which is then given by processes intrinsic to a perfect GaAs–
AlxGa1−xAs interface. It is worth comparing this behavior with the tempera-
ture dependence of bulk GaAs (Fig. 2.15) and Fig. 3.25. Most strikingly, the re-
duction of the mobility as the temperature is lowered in bulk GaAs is absent.
This is the effect of the modulation doping, which separates the conduction
electrons from the ionized donors, and thus breaks the µ ∝ Θ3/2 law. Second,
it becomes apparent that the best samples shown in Fig. 3.25 hit the absolute
mobility limit at intermediate and high temperatures (4 K ≤ Θ ≤ 400 K) set by
deformation potential scattering, piezoelectric scattering, and optical phonon
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scattering. The saturation at very low temperatures is due the residual impu-
rities, but it occurs not very much below the absolute limit. Thus we cannot
expect to see another huge increase in electron mobilities in this material.

Finally, inter-subband scattering should be mentioned (see Fig. 3.32), which
denotes scattering events for which the incoming carrier is scattered into an-
other subband of the confined potential. For elastic scattering events, this is
only possible if at least two subbands are already occupied, and the system is
thus not strictly two-dimensional.

Fig. 3.32 Electron mobilities in a GaAs HEMT as a function of the
gate voltage. Above a threshold electron density, the second two-
dimensional subband gets occupied, and the mobility drops due to
additional inter-subband scattering. After [291].

Papers and Exercises

P3.1 In [104], band alignments between semiconductor heterostructures are
predicted within the concept of electronegativities. Discuss the basic
idea of this approach.

P3.2 A highly instructive article on the validity of the envelope function ap-
proximation in semiconductor heterostructures is [44]. Work out the au-
thor’s line of arguing.
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E3.1 The wave functions of the ground state in a triangular potential can be
approximated by the Fang–Howard function

Φ(z) =
√

b3/2 ze−bz/2

Calculate the expectation value of the electron location. Discuss the con-
sequences of this result for a Si MOSFET, for example.

E3.2 Construct a NOR gate in CMOS technology with four MOSFETs.

Further Reading

Extensive and comprehensive reviews on the physics of surface states are [69]
and [213]. An introduction to the theory of crystal surfaces can be found
in [68]. For the quantum mechanical properties of layered devices, [21] is a
valuable source of information.
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4
Experimental Techniques

This chapter introduces the experimental tools and techniques involved in
preparing nanostructures and measuring their transport properties. The ma-
jority of mesoscopic devices are made of semiconductor heterostructures. Sec-
tion 4.1 describes how they are fabricated. This process usually includes
single-crystal growth, followed by lateral patterning of the crystal slices.
The lateral patterning is done by various lithographic techniques, while self-
assembly is used occasionally. Already in the Introduction, it has become clear
that many of the experiments are performed at liquid helium temperatures,
which is the regime below Θ = 4.2 K, the boiling temperature of 4He at 1 bar.
Therefore, the concepts and techniques of generating such a low-temperature
environment are discussed in Section 4.2. This includes the relevant prop-
erties of liquid helium as well as the essentials of helium cryostats. Finally,
some basic understanding of electronics is very helpful for the discussion of
the transport experiments. This is the topic of Section 4.3.

The present chapter cannot replace a thorough treatment of these issues,
which would require a bulky textbook for each section. Rather, our goal is
to provide the knowledge needed to appreciate the constraints of the experi-
ments set by the technology.

4.1
Sample preparation

Fabricating nanostructures for mesoscopic transport experiments is a major
technological challenge. The requirements concerning material purity, litho-
graphic resolution, and process control are at the edge of present-day technol-
ogy. We will exemplify the technology using Si and GaAs as examples, and
occasionally mention some special properties of other materials. As a rule,
we refrain from specifying process parameters and experimental recipes. For
details, the reader is referred to the specialized literature at the end of this
chapter.

Silicon dominates in industry, while GaAs and other materials are essen-
tially only used where silicon devices are significantly less useful, like in op-
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toelectronics or in ultra-high-speed, ultra-low-noise applications. From a tech-
nological point of view, Si has several major advantages. First of all, the raw
material is quartz sand, easily available and cheap. Second, its high mechan-
ical stability simplifies all process steps. A very important point is the fact
that Si can be easily oxidized into SiO2, which has excellent mechanical and
electronic properties, like high breakdown electric fields and large resistivi-
ties. GaAs oxides, on the other hand, have poor electronic properties, and are
more or less useless for electronic applications, like in capacitors.

During processing, we have to prevent dust particles hitting this crucial
area, since they may cause defects in the lithographic patterns, which get
transferred into the nanostructure in subsequent process steps. Therefore,
processing is usually done in a clean room in which the air is heavily fil-
tered. Clean rooms are classified by the number N of dust particles larger that
500 nm per cubic foot. For example, a class 100 clean room contains N = 100
such particles. It is true that feature sizes have been scaled down to well be-
low 500 nm, and, along with this, the size of the relevant dust particles has
decreased. Nevertheless, the clean room class as defined above is a useful
quantity, as the particle size distributions in air are well known.

Mesoscopic researchers typically prepare a small number of individual sam-
ples, with an active area below a square millimeter. Of course, it is much
harder to keep a 4-inch wafer free of dust particles, and the demands posed
on an industrial clean room are much higher. Furthermore, although a high
sample yield is desirable in research as well, a research lab has no problems
living with yields below 99%.

Fig. 4.1 shows a processed Ga[Al]As HEMT structure. It becomes immedi-
ately apparent that a whole bunch of fabrication steps is required. To begin
with, the semiconductor heterostructure must be grown. This involves single-
crystal growth, plus some sort of epitaxy to add the layers of different materi-
als. Next, a piece of the wafer has to be processed by lateral lithography. The
two-dimensional electron gas is contained in the mesa, which should have a
suitable geometry. Ohmic contacts and gate electrodes have to be patterned.
Finally, wires must be connected to the electrodes.

We will discuss these fabrication steps below. Although the details of the
processes depend on the material used, the technological concepts are almost
universal.

4.1.1
Single crystal growth

A standard method to grow silicon single crystals is the so-called Czochralski
method (Fig. 4.2(a)). A small single crystal (the seed, which also determines the
crystal direction) is immersed in a purified silicon melt (Si has a melting point
of 1412◦C at atmospheric pressure). The atmosphere should be inert; an argon
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Fig. 4.1 Left: Photograph of an assembled Ga[Al]As HEMT struc-
ture. The chip resides inside a ceramic chip carrier. Electrical contact
between the carrier and the chip is made by bonded wires. The chip
carrier has a size of 5 mm× 5 mm. Right: Schematic components of a
typical microchip designed for mesoscopic transport measurements.

Fig. 4.2 (a) The Czochralski scheme for crystal growth used to grow
Si single crystals. The angular velocity and the velocity are ω and v,
respectively. (b) The zone pulling technique.

atmosphere is often used. The seed is rotated (ω ≈ 2π s−1) and slowly (with
a speed of, say, 1 mm/s) pulled out of the melt. The pulling speed determines
the diameter of the crystal cylinder, which may be as large as 10 inches (25 cm).
A typical length is 1 m.

Another widely used technique is zone pulling (Fig. 4.2(b)). Here, the raw
crystal, which may be a Czochralski grown crystal, is molten locally via eddy
current heating with an RF coil. The temperature is about 1450◦C. The setup
resides inside a high vacuum chamber. For impurity atoms, it is energetically
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favorable to be in the melt. They collect in the molten zone, evaporate there
and can be pumped away. With this technique, impurity concentrations below
1013 cm−3 can be obtained. Undoped Si crystals can have resistivities above
10 Ω m, which reflect their high purity. If the crystal has to be doped, a doping
gas atmosphere is established in the growth chamber, e.g. a B2H6 atmosphere
for boron doping, or a PH3 atmosphere for phosphorus doping.

GaAs is a binary material and as such more difficult to grow. A general
problem with multi-component melts is the different vapor pressures of the
components. In order to avoid compositional changes of the melt over time,
the vapor pressures must be controlled. In the case of GaAs, As has an over-
pressure of 0.9 bar; while in InP, the P overpressure is 60 bar. Two methods
are common for compensating the overpressures. In the liquid encapsulated
Czochralski (LEC) technique, the melt is covered with a fluid that does not in-
termix (Fig. 4.3(a)). As a result, no gas can escape from the melt. In the Bridg-
man technique, the melt resides in a closed quartz tube, in which the correct
As overpressure is established by heating solid As outside the melt to the cor-
responding temperature (Fig. 4.3(b)). Here, the crystal is grown by moving
the melt along a suitable temperature gradient and at an appropriate speed.

Fig. 4.3 Schemes for growing of two-
component crystals, such as GaAs. (a) In
the LEC technique, the melt is covered by
an impenetrable liquid. The crystal is pulled
through this cover layer. (b) In the Bridgman
technique, a closed tube contains a crucible
that hosts the melt, a seed, and the freshly
grown crystal, as well as a piece of solid As.

The temperature of the solid As is kept at a
temperature that corresponds to an As over-
pressure of 0.9 bar. The melt solidifies at
the location where the spatially varying tem-
perature reaches 1238◦C. Crystal growth
is established by moving the tube along the
temperature profile.

4.1.2
Growth of layered structures

Pulling a crystal out of a melt is perfect for fabricating substrates, which
are usually obtained by cutting the crystal cylinder into thin disks called
wafers. A typical substrate thickness is 300 µm, while surfaces roughnesses
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of a few nanometers can be achieved by mechanical polishing. These tech-
niques are not suited to growing layered structures, such as Ga[Al]As het-
erostructures. Here, we need something that provides ultra-clean growth of
individual monolayers, and the material composition must be controllable.
Several techniques are established for the growth of layered semiconductor
structures, and we will briefly discuss two of them, metal organic chemical
vapor deposition (MOCVD) and molecular beam epitaxy (MBE).

4.1.2.1 Metal organic chemical vapor deposition (MOCVD)

In this technique, the substrate is mounted in a vacuum chamber (Fig. 4.4(a)).
The atoms of the semiconductor components to be grown are introduced via
suitable molecular gas flows. The gas molecules crack at the surface and de-
posit the semiconductor atom on the substrate. In the case of GaAs, a possible
chemical reaction with Ga(CH3)3 and AsH3 as input gases is

Ga(CH3)3 + AsH3 → GaAs + 3CH4

taking place around a temperature of 1120◦C. The advantage of MOCVD is its
relatively low cost. A disadvantage is the high toxicity of the gases involved.
In addition, the material grown is not as clean as that obtained with the second
technique we shall now look at.

Fig. 4.4 Schematic view into (a) an HV chamber for MOCVD, and
(b) a UHV chamber for MBE.

4.1.2.2 Molecular beam epitaxy (MBE)

Here, atomic layers are grown in an ultra-high-vacuum chamber, with pres-
sures of the order of 10−11 mbar. A substrate is inserted in the UHV chamber,
heated, and slowly rotated (Fig. 4.4(b)). The components of the semiconduc-
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tor are supplied by effusion cells, which can be individually heated to pro-
vide the flux needed, as well as opened and closed. For growing standard
GaAs HEMTs, for example, Ga, As, Al, and Si (for n-doping) effusion cells are
needed. In this way, the crystal can be grown monolayer by monolayer, and
can be selectively doped: the modulation doping encountered in Chapter 3
can be easily implemented. Typical growth rates are 0.1 nm/s. The growth
can be calibrated and monitored with reflection high-energy electron diffraction
(RHEED). Here, an electron beam with an energy of about 10 keV hits the sur-
face under a very small angle (a degree or so), and gets reflected at the surface.
Its penetration depth is a few monolayers only, such that the reflected inter-
ference pattern is highly sensitive to the roughness and the crystal structure
of the surface. The reflected intensity shows a minimum if the coverage of
the monolayer is 50%, which corresponds to maximum roughness. When a
monolayer has just been completed, the scattering has the highest specularity,
and the reflected intensity shows a maximum.

Although MBE is very expensive and time-consuming, it is widely used to
grow heterostructures for mesoscopic transport experiments, since the quality
of the samples is unsurpassed by any other method. The high pressure is
needed to make the residual gas monolayer formation time sufficiently large
(see Exercise E4.1).

Ga[Al]As heterostructures are frequently grown by MBE. After some sur-
face cleaning, the growth begins with a buffer layer, consisting of a series of
GaAs–AlAs superlattices with a short period (a short-period superlattice, SPS).
The purpose of the SPS is twofold. First of all, the mechanically polished
GaAs substrate is not atomically flat. It has been found that an SPS reduces
the roughness due to polishing to nearly atomic flatness [237]. Second, the
superlattice tends to trap impurities that may diffuse from the substrate into
the electronically active layers grown on top.

MBE can also be used to prepare more complicated structures than se-
quences of layers with translation invariance in two dimensions. These tech-
nologies are in the focus of present-day research. As a first example, we con-
sider a technique called cleaved edge overgrowth (CEO) (Fig. 4.5). Here, the layer
growth is interrupted at the right point, and the wafer is cleaved inside the
MBE chamber, such that the grown sequence of layers appears on an atomi-
cally flat surface. Cleaving includes scratching the wafer at its edge and sub-
sequently breaking it by mechanical pressure. The GaAs wafer breaks at the
scratched position along a single crystal plane. Subsequently, MBE growth is
continued on top of this freshly cleaved surface.

Extremely small nanostructures of effectively one- and even zero-dimen-
sional character, with atomically flat interfaces, have been produced in this
way. For a review, see [319]. We will discuss some properties of such nanos-
tructures in subsequent chapters.
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Fig. 4.5 Quantum wire production by CEO.
(a) A thin GaAs layer (white), embedded in
AlxGa1−xAs layers (gray), is shown. The
sample is partly covered with a tungsten
gate stripe. This structure has been ob-
tained by MBE growth in the z-direction. The
AlxGa1−xAs layer on top of the GaAs well is
modulation-doped with Si. After the growth
has been completed, the wafer is cleaved
perpendicular to the stripe. (b) MBE growth
is continued on the freshly cleaved surface,
i.e. in the y-direction. A modulation-doped

AlxGa1−xAs layer is covered by another tung-
sten layer. (c) The electrical connections to
the different elements. Voltages can be ap-
plied to the two gates T and S, and a current
is applied between the two areas separated
by gate T. (d)–(f) Sketches of how different
gate voltage combinations shape the electron
gas. In particular, a one-dimensional wire is
formed in (f), which extends along the quan-
tum well at the cleaved and regrown interface.
After [337].

Self-assembled quantum dots are a second example of ongoing MBE re-
search activities. Growing a semiconductor (B) on top of an appropriate sub-
strate (A) does not necessarily lead to atomically flat films that build up mono-
layer by monolayer. Rather, one distinguishes three growth modes: the one
we have just encountered is known as Frank–van der Merve growth [102]; al-
ternatively, growth of new material can take place in terms of isolated islands,
called the Volmer–Weber mode [311]; or in terms of islands connected via a
thin layer of the same material, the so-called wetting layer, called the Stranski–
Krastanov mode [293] (see Fig. 4.6).

Which kind of growth takes place depends on an interplay of different en-
ergy scales. In a strongly simplified view, we can assume that there are surface
energies per unit area EA and EB related to the surfaces of material A and B,
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Fig. 4.6 Growth of material B on top of material A in (a) the Volmer–
Weber and (b) the Stranski–Krastanov modes. (c) Atomic force mi-
croscope picture of PbSe islands on a PbTe (111) substrate. Note the
homogeneous size distribution and the orientation of the pyramids.
Part (c) has been reproduced from [242].

respectively. In addition, there is an interface energy per unit area EAB. Let S
be the fraction of the surface of A covered by B. The total energy is then given
by

E = (1− S)EA + SEB + SEAB

Here, we have assumed that the surface of B remains flat, and that none of
the materials get strained, i.e. that A and B have identical lattice constants.
This energy will get minimized. It follows that for EAB + EB < EA, S will
get maximized, and Frank–van der Merve growth takes place. On the other
hand, for EAB + EB > EA, a minimized S minimizes the energy, and we have
Volmer–Weber growth. In order to establish Stranski–Krastanov growth, we
need a lattice mismatch between A and B, which gives an elastic strain energy
per unit area in B in addition, given by Estrd, where d denotes the thickness
of the layer. Minimizing the total energy again predicts homogeneous film
formation for

d <
EA − EB

Estr

provided we can neglect the interface energy and material A suffers no strain.
This simple picture shows that after the wetting layer of thickness d (typically
two to four monolayers) is completed, it is energetically more favorable to
continue growth with island formation.

Experimental studies as well as theoretical considerations have demon-
strated that strain does not cause, as one might assume, dislocations inside
the dots; rather, the substrate gets elastically strained as well [81]. Such is-
lands, e.g. InAs grown on GaAs, are typically of pyramidal shape and have
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Fig. 4.7 Top: Transmission electron microscope picture of InAs layers,
separated by 36 monolayers of GaAs. The vertical direction is the
growth direction. The InAs SAQDs, seen as dark spots, align on top of
each other. The bottom figure shows a schematic sketch of the SAQDs
and the wetting layer. Adapted from [334].

very homogeneous size distributions with variances around 10% only [190].
Since their sizes are in the range of 20 nm in width and a few nanometers in
height,1 strong quantization effects can be expected inside, and have in fact
been observed in many experiments, some of which we will discuss later on.
Therefore, they are referred to as self-assembled quantum dots (SAQDs). In some
systems, the SAQDs even align with each other and form lattices of various di-
mensions. A three-dimensional SAQD superlattice is the topic of Paper P4.2.
Here, we look at growth of linear chains of InAs SAQD islands, embedded in
GaAs (Fig. 4.7).

In this example, the strain in the GaAs induced by the buried InAs islands
modulates the GaAs surface energy, and thus the freshly offered InAs will
preferentially form dots at locations where the lattice mismatch is minimum,

1) This is below the resolution limit of lithographic techniques, as we
will see shortly.
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which is above the locations of the SAQDs next to the surface. Clearly, the
spacing between adjacent InAs layers can be optimized for maximum prob-
ability of SAQD alignment. For large distances, the strain modulation at the
surface becomes too weak; while for very small spacings, neighboring points
of extremal strain begin to overlap.

A very different process for preparing a layered structure is thermal oxida-
tion of Si. For growing oxides used in electronic applications, the technique
of choice is usually dry oxidation. The Si wafer is placed in a furnace at a tem-
perature of about 1000◦C and exposed to oxygen. The wafer oxidizes via the
reaction

Si + O2 → SiO2

The oxygen diffuses through the already grown oxide layer and reacts with
the Si at the Si–SiO2 interface. The oxide growth rate therefore drops as its
thickness increases. Furthermore, the oxide penetrates into the Si; about 50%
of the oxide layer is located below the original wafer surface. Breakdown
electric fields for oxides grown with this technique can be of the order of 5×
108 V/m, and are thus well suited for electronic applications.

Fig. 4.8 Comparison of different lateral patterning schemes for semi-
conductors.
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4.1.3
Lateral patterning

The special MBE techniques CEO and SAQD growth are by no means stan-
dard technology. It is more usual to grow a heterostructure with two-
dimensional translation invariance parallel to the surface, and pattern the
nanostructure subsequently by some sort of lateral processing. Examples for
typical sequences of process steps are given in Fig. 4.8. Column (a) is typical
for many Si fabrication steps. The substrate is covered with a homogeneous
metal layer, which is subsequently coated with a suitable resist. Illumination
and development of the resist through a mask exposes some areas of the metal
layer, while others are protected by the resist. The illumination is usually car-
ried out with ultraviolet (UV) light or with electrons. An etch step follows,
which selectively removes the free metal surfaces. Here, the resist acts as an
etch mask. Finally, the resist gets removed, and a patterned metal layer on the
substrate results. This technique is rarely ever used in GaAs processing, since
essentially all suitable metal etchants attack GaAs as well. Therefore, fabrica-
tion scheme (b) is typically used. Here, the substrate is first covered by resist,
which gets illuminated and developed. Now, the metal is evaporated on the
substrate, with the patterned resist acting as evaporation mask. The lift-off
step follows, i.e. the resist is removed with the metal film on top. The final
result is identical to that of scheme (a). For selective etching of the substrate
(c), steps 1 to 3 are identical to (b). Then, the patterned resist is used as an etch
mask for the substrate. We now discuss these process steps in further detail.

4.1.3.1 Defining patterns in resists

The two standard techniques for imposing a pattern into a resist are optical
lithography and electron beam lithography.

Optical lithography By this we mean illumination of a photoresist by visible
or ultraviolet light. The sample is coated with a thin and homogeneous pho-
tosensitive resist. This is done by casting some resist solution onto the sample,
which is then rotated for about one minute at high speed, typically a few thou-
sand rpm. The spinning speed and the viscosity of the solution determine the
thickness of the resist layer, which is of the order of 1 µm.

After baking the resist, the sample is mounted into a mask aligner, a device
designed for adjusting the sample with respect to a mask that contains the
structure to be illuminated. The mask aligner is equipped with a light source
of high power that illuminates the resist film through the mask (see Fig. 4.9).
The pattern sizes are Doppler-limited, which means that the smallest feature
sizes are about half the wavelength (≈ 150 nm) divided by the index of refrac-
tion of the resist (≈ 1.5), which limits the resolution to roughly 100 nm. The
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Fig. 4.9 Top: Contact illumination. The mask pattern is transferred
to the resist via illumination and subsequent development. Center:
Resulting resist cross section for positive (left) and negative (right)
resist. Bottom: Solubility characteristics for the two resist types.

mask can be a quartz plate coated with a thin chromium film, which contains
the pattern to be illuminated. In the contact illumination scheme, the Cr film
is in mechanical contact with the resist and blocks the light, such that the resist
underneath the Cr remains unexposed.

During contact illumination, the mask suffers contamination due to dust
particles on top of the resist, as well as by resist adhesion. This can be avoided
by projection illumination, where the mask pattern is transferred to the resist
via lenses. This technique is widely used in industry, but somewhat unusual
in research labs.

Photoresists can be classified as positive and negative. The solubility of the
exposed areas increases for a positive resist, while it decreases for a negative
resist (see Fig. 4.9). Immersing the sample into a suitable developer removes
the corresponding sections of the resist film. Both types of resists have in com-
mon that their solubility as a function of the illumination dosage is a step-like
function. This ensures high resolution and sharp edge profiles. It may seem
irrelevant at first what kind of resist is used in a particular process. There
may, however, be some process-specific requirements that favor one type or
the other. Most importantly, a negative resist predominantly produces an un-
dercut profile, which means that after development the resist area in contact
with the sample is smaller than the area at the resist surface (Fig. 4.10). This is
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Fig. 4.10 Undercut (left) and overcut (right) resist profiles after illumi-
nation, development, and surface metallization.

a consequence of the approximately exponentially decreasing intensity of the
illuminating light as it penetrates into the resist. An undercut profile is highly
desirable for subsequent metallization steps, in which the resist itself serves as
mask. After the metallization, the resist including the metal film on top usu-
ally has to be removed in a lift-off step, which is bound to fail for resists with
an overcut profile, since the metal on the sample and that on top of the resist are
connected. An undercut profile avoids this problem, provided the thicknesses
of the metal layer and resist are properly selected.2

In principle, the resolution can be increased by using shorter wavelengths.
In X-ray lithography, resists are illuminated with wavelengths in the 10 nm
regime. While significant progress has been achieved over the past decade,
severe technological obstacles have to be overcome before this version of opti-
cal lithography can be widely used. Photoelectrons limit the resolution to sev-
eral tens of nanometers, and optical components as well as masks are difficult
to pattern, since metals get transparent in the ultraviolet. The ultimate limit
of such lithographic techniques is set by the resolution of the resists, which
contain organic polymers. The crosslinking of the polymers is enhanced or re-
duced by the light, which modifies their solubility accordingly. Thus, the res-
olution cannot become better than the size of the corresponding monomers,
which is of the order of 0.5 nm.

Electron beam lithography For feature sizes below ≈ 150 nm, electron beam
lithography is currently the technique of choice. Instead of light, electrons
may be used as well for illuminating resists, which are in this case poly-
mers like PMMA (polymethylmethacrylate) with a well defined molecular
weight. In a positive resist, the electron beam breaks the bonds between the
monomers, and an increased solubility results. In negative resists, on the other
hand, the electron beam generates inter-chain crosslinking, which decreases
the solubility. In that respect, electrons have a very similar effect to ultravio-
let light on the resist. A typical experimental setup is shown in Fig. 4.11. A
focused electron beam is scanned in a predefined pattern across the sample
using deflection coils in the electron optics. In contrast to optical lithography,
this is a serial and therefore a slow process. However, structure sizes of 50 nm

2) It should be mentioned that techniques exist for achieving undercut
profiles with positive resist as well.
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and even below can be fabricated. Many research groups use electron beam
lithography in the lab for all feature sizes below 2 µm or so, because the tech-
nique gives very good and reproducible results. One type of electron beam
lithography uses a high-energy beam of electrons (about 30 keV or larger),
which produces extremely small spot sizes of about 1 nm only. However, the
illumination resolution is worse than this, since the spatial distribution of sec-
ondary electrons backscattered from the substrate actually illuminates the re-
sist (Fig. 4.11). Since the intensity of those electrons drops from the substrate
toward the surface of the resist, an undercut profile is intrinsic to this process.
The undercut is often enhanced by a two-layer electron beam resist with dif-
ferent dosages.

Fig. 4.11 Left: A focused electron beam is scanned across the sample
surface with a pattern generator that drives the deflection coils, which
are part of the electron optics of the electron microscope. The elec-
trons get scattered both elastically and inelastically in the substrate,
and secondary electrons are generated, which have a large cross sec-
tion for resist illumination. Right: The resulting profile of a two-layer
electron-sensitive resist after illumination.

4.1.3.2 Direct writing methods

By definition, such methods do not require resists. Rather, the sample is pat-
terned directly by the exposure. The number of process steps (see Fig. 4.8) is
reduced from five or six to just one. We briefly discuss two methods.

Focused ion beam writing The experimental setup resembles the electron
writing system, with the electron source replaced by an ion source (e.g. gal-
lium). The ions are implanted in the substrate and localize the electrons in the
exposed areas. Highly resistive regions can be defined this way. However, the
lateral depletion is rather large, typically above 100 nm. Suitable ion beams
can also be used to dope the sample locally.

Scanning probe lithography As an example of current research activities, we
briefly discuss lithography techniques based on scanning probe microscopes
(SPMs) [36, 37]. Recently, tremendous progress has been made in this respect.
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Since SPMs achieve atomic resolution, they are highly promising tools for
achieving a further, significant, size reduction. Meanwhile, SPMs have been
used in a wide variety of operational modes in order to modify surfaces (for
a review see [202]). Moving single atoms with an SPM tip [82] and material
deposition from the tip on the substrate [201] have been demonstrated ex-
perimentally, for example. Amazing nanodevices can also be fabricated by
scratching [162]. Another widely investigated technique is local oxidation of
the substrate. In [63], a variety of substrates were oxidized locally by applying
a negative voltage to the tip of an SPM with respect to the grounded substrate.
Local oxidation with an atomic force microscope has also been used to pattern
the electron gas in Ga[Al]As heterostructures directly [149]. Anodic oxidation
is a standard process to oxidize surfaces of metals and semiconductors. The
setup for local oxidation with an AFM is essentially identical (Fig. 4.12). Here,
the water film forming under ambient conditions on top of the substrate pro-
vides the electrolyte. A conductive AFM tip acts as cathode, while the chip
to be nanostructured is grounded. As a result, the sample surface oxidizes
in close vicinity to the AFM tip. The 2DEG is depleted underneath the oxide
lines in shallow HEMT structures. The underlying mechanism can be under-
stood in a simple picture: As the cap layer is oxidized, the semiconductor
surface gets closer to the 2DEG, while the surface area, and thus the number
of surface states, is slightly increased. In samples with the 2DEG so close to
the surface, only ≈ 10% of the donor electrons from the doping layer go into
the 2DEG, while the remaining 90% fill the surface states. A small reduction of
the distance between surface and the 2DEG changes the internal electric fields
and can lead to depletion.

Fig. 4.12 (a) Scheme for conventional anodic oxidation of GaAs.
(b) Downscaled version of anodic oxidation, with the conductive tip
of an atomic force microscope as the cathode, and the water film on
top of the sample as electrolyte.



112 4 Experimental techniques

4.1.3.3 Etching

An important technique of transferring the resist pattern into the sample is
etching. Patterned resists can be used as etch masks, provided the etchant is
sufficiently selective. We distinguish between dry etching and wet chemical
etching.

Dry etching The setup for dry etching techniques consists of a vacuum cham-
ber with two electrodes at the top and the bottom. The sample is placed at the
bottom, which may be the anode or the cathode, depending on the process. A
gas discharge is ignited, and the ions of the etch gas hit the sample (Fig. 4.13).
One speaks of plasma etching if the reaction is purely chemical. Oxygen
plasma etching is often used to remove resist layers. The low-energy ions
avoid damage of the semiconductor and metal components of the sample. A
purely physical technique, on the other hand, is ion etching. Here, suitably
selected ions are generated and strongly accelerated toward the sample. The
physical impact removes sample atoms. Here, resists may serve as masks for
a limited time. Radiation damage in the sample, combined with the required
high vacuum and the large rate of material deposition at the walls, make this a
rather unusual technique. Widely used, however, is reactive ion etching. Here,
both the physical and the chemical aspects of the ionic bombardment are im-
portant. A very convenient side product in this kind of etching is polymer
formation at the etched walls, which prevents lateral removal of material. As
a consequence, very steep and deep grooves can be etched.

Wet chemical etching Wet chemical etching means immersing the sample in
a suitable etchant solution. In contrast to metals, the majority of the common
semiconductors are not attacked by pure acids. Therefore, the etch typically

Fig. 4.13 Scheme of a vacuum chamber for reactive ion etching.



4.1 Sample preparation 113

consists of a mixture of an oxidizer (such as H2O2), an acid (like HCl), and
water. H2O2 oxidizes the semiconductor, while the acid removes the freshly
formed oxide. The oxidation and etch rates depend on the etch composition
as well as on the crystal direction. The resulting edge profile can thus be tuned
accurately. For many purposes, an overcut edge profile is desirable, since of-
ten thin metal layers have to be deposited later on the surface. A metal layer
thinner than the etched depth may get disconnected across an etched step with
undercut profile.

4.1.4
Metallization

By “metallization”, we mean the deposition of metal films on the semicon-
ductor surface. This is usually done by evaporation of the metal in a vacuum
chamber. The metals are molten (or sublimed, respectively) in a crucible made
of tungsten or carbon, which can be done by heating the crucible with a cur-
rent, or by focusing an electron beam onto the metal (see Fig. 4.14). At suf-
ficiently high temperature, the metal vapor pressure is so high that a metal
film grows at the exposed surfaces with a rate of the order of a nanometer
per second. The film thickness is monitored by an oscillating quartz plate. As
the metal gets deposited on the quartz, its resonance frequency gets smaller.
This effect can be calibrated, and the film thickness can be measured with high
accuracy. For lift-off processes, the film thickness should be smaller than the
thickness of the resist, for obvious reasons. Typical metallization layers mea-
sure thicknesses between 20 nm and a few micrometers.

Of particular importance for the fabrication of nanostructures is the so-
called angle evaporation technique [74], because feature sizes below the litho-

Fig. 4.14 Scheme of an evaporation system for metallizations.
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Fig. 4.15 Angle evaporation. The right col-
umn shows a top view of a sample section af-
ter illumination by electron beam lithography,
development, and subsequent evaporation
of aluminum under a certain angle. To the
left, a cross section of the layers along the
dashed line in the right figure is shown. (a) A
layer of electron beam resist with low dosage
is covered by a resist with a higher dosage.
This leads to cage formation as an extreme
version of an undercut profile. The upper re-

sist layer is free-standing over a certain area.
(b) The Al gets oxidized, and a second Al
layer is evaporated on top at a different angle,
as indicated by the arrows. A sandwich struc-
ture with small overlap areas results, which
can be below the pattern sizes in the resist
mask. (c) The resulting structure, a small Al
island coupled to two leads via small-area
tunnel barriers, is shown after the resist lay-
ers have been removed. Such islands will be
investigated further in Chapter 9.

graphic resolution can be made this way. The trick is to evaporate successive
layers of metals from different angles and use the resist as a shadow mask. The
technique is illustrated in Fig. 4.15. Overlap areas as small as 30 nm× 30 nm
can be prepared routinely by angle evaporation.

As pointed out in the previous chapter, metal–semiconductor interfaces
form Schottky barriers for the vast majority of material combinations. In order
to obtain an ohmic contact, a suitable metal film is evaporated and afterwards
alloyed into the semiconductor. “Suitable” means that the Schottky barrier
should be small, and the metal should have a low melting point and should act
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as a dopant in the semiconductor. For GaAs, the Au0.88Ge0.12 eutectic alloy3 is
a standard ohmic contact material. The Schottky barrier of the Au0.88Ge0.12–
GaAs system is only 0.3 eV, In addition, eutectic AuGe has a melting point of
360◦C, and already at 420◦C it begins to alloy into GaAs. Ge atoms diffuse
into the Ga and act as donors. This diffusion can be enhanced by adding a
small fraction of Ni to the alloy. The resistivity of such a contact is of the order
of 10−6 Ω m. The low process temperatures are important, since they ensure
ohmic contact formation well below critical temperatures for other processes,
such as Si dopant migration in GaAs, which would damage the modulation
doping profile.

Finally, one small practical note should be made here. Since, in many
cases, mesoscopic transport experiments involve application of strong mag-
netic fields, it is very important that the ohmic contacts extend across the mesa
edge. Otherwise, the contact resistance increases sharply in strong magnetic
fields, since the electrons move in cyclotron orbits in the electron gas, and lo-
calize within a small area around the contact (see Fig. 4.16). This problem
arises in particular in two-dimensional electron gases and at cyclotron radii
below the mean free path.

Fig. 4.16 In strong magnetic fields, electrons move in cyclotron orbits
and thus remain localized close to the ohmic contact (a), unless the
contact crosses the mesa edge (b).

4.1.5
Bonding

Once the sample is patterned and everything looks good, the last step in the
fabrication process is to mount the sample into a chip carrier and to connect
wires to the ohmic contacts and to the gate electrodes. Two versions of this so-
called bonding are widely used. In ball bonding, the tip of a gold wire is molten
locally by a discharge or a flame, and is pressed against a bond pad defined

3) The numbers here give the weight fraction.
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on the sample surface. The sample is heated to a moderate temperature, say
200◦C, and a connection forms via thermo-compression. The second scheme
is known as wedge bonding (see Fig. 4.17). Here, the wire is pressed against
the bond pad and rubbed across it with an ultrasonic frequency. The friction
force is sufficient to locally melt the materials, and an alloy is formed that
holds the wire in place. After the second bond, the wire is pulled and breaks
at the weakest point, which is right after the position of the wedge.

Fig. 4.17 Wedge bonding. (a) The bond tip containing the wire is po-
sitioned on top of the bond pad on the sample. (b) The wire is wedged
onto the bond pad, and the tip is retracted with the wire clamp open.
(c) The second bond is performed on the pad integrated in the chip
carrier. (d) Here, the tip retracts with the clamp closed, and the wire
breaks behind the second wedge.

4.2
Elements of cryogenics

Helium is the only element that remains liquid when cooled to the lowest
possible temperatures (well below 1 mK) at atmospheric pressure. It is there-
fore the prime candidate as a refrigeration medium for temperatures below
the condensation temperature of nitrogen (77 K). The vast majority of meso-
scopic transport experiments are performed in this temperature range. The
latent heat that has to be paid when liquid helium is evaporated generates the
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cooling power made use of in helium cryogenics. Continuous evaporation of
liquid is possible by pumping off the vapor pressure. Therefore, we will look
at the properties of liquid helium (LHe), as well as cryostats, the devices used
to establish low temperatures.

4.2.1
Properties of liquid helium

The physics of LHe is extremely interesting and rich, and experimentalists
working on transport in nanostructures will almost inevitably come into con-
tact with its unusual properties.

Helium comes in two isotopes, the boson 4He and the fermion 3He. The
mono-isotopic liquids therefore have very few properties in common. As a
liquid is cooled, kinetic energy is taken away from the atoms. At the con-
densation temperature, the attractive interatomic van der Waals forces start to
dominate in any liquid other than LHe, and crystallization sets in. Helium is
the only element for which the van der Waals force is smaller than the kinetic
energy of the atoms due to zero-point fluctuations. The van der Waals forces
in He are particularly weak since the atoms have no dipole moment. On the
other hand, the zero-point fluctuation energy is particularly large, due to the
small atomic mass. Only by applying a pressure above≈ 30 bar are the atoms
squeezed sufficiently close together such that crystallization sets in.

So much for the common properties of 3He and 4He. We now look at some
properties of the pure isotopic liquids, before we turn to the interesting issue
of 3He/4He mixtures.

4.2.1.1 Some properties of pure 4He

Fig. 4.18 shows the phase diagram of 4He. Under atmospheric pressure, it liq-
uefies at Θ = 4.2 K. The density of the liquid is ρ(L4He) = 125 kg/m3. The
vapor pressure drops approximately exponentially as LHe gets colder, and
reaches 1 mbar at Θ = 1.2 K. As we cool the liquid, we cross the λ line at
some temperature, which for atmospheric pressure happens at Θλ = 2.17 K,
also known as the λ point. The λ point got its name from the specific heat
as a function of Θ around this transition, a function that looks like this om-
nipresent Greek letter. For Θ > 2.17 K, 4He behaves just like any ordinary
liquid. As we lower Θ and cross the λ point, 4He undergoes a phase tran-
sition and develops highly remarkable properties. 4He in this phase is often
referred to as He II. In fact, the phase transition at the λ point can be modeled
as a Bose–Einstein condensation, i.e. the condensation of a boson gas. Within
such a model, 4He above the λ point is described as a gas, which is not a bad
approximation, considering the weak interactions. At Θ = 0, on the other
hand, all atoms of He II are in the ground state. At higher temperatures, the



118 4 Experimental techniques

Fig. 4.18 Phase diagram of 4He.

Fig. 4.19 Superfluid fraction xsf of He II as a function of temperature.
After [11].

energy levels in a Bose–Einstein condensate (BEC) are occupied according to
the Bose–Einstein distribution function

fBE(E, Θ) =
1

e(E−µ)/kBΘ − 1

A pure BEC, however, cannot explain the observed behavior of He II.
Rather, in [192], a two-liquid model has been proposed, which treats He II as a
mixture of a normal fluid and a superfluid, which interpenetrate on a micro-
scopic length scale, similar to the electronic state in a type II superconductor.
The normal fluid behaves just like 4He above the λ point. In particular, it has
a non-vanishing entropy and viscosity. The superfluid, on the other hand, has
zero entropy and viscosity, which means, for example, that there is no flow re-
sistivity. Furthermore, the thermal conductivity of the superfluid is infinitely
large. How the composition of He II changes with temperature has been mea-
sured in a seminal experiment [11]: A torsion pendulum made of a stack of
thin disks was immersed in He II, and the damping of the oscillation was mea-
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sured as a function of temperature. Since the normal fluid is viscous, it adds
to the moment of inertia of the system via the Hagen–Poiseuille law, while the
superfluid does not. The measured composition of He II is shown schemat-
ically in Fig. 4.19. As the temperature is lowered, the normal fluid fraction
rapidly vanishes and an almost pure superfluid remains for Θ < 0.7 K. This
two-component mixture has some unique properties that we should know, in
order to appreciate its behavior in cryogenic equipment.

Absence of bubbling If we heat a conventional liquid, it starts bubbling, since
the liquid evaporates at some random spot, and the gas bubble rises to the sur-
face. In He II, the thermal conductivity is very large, and evaporation takes
place at the surface only. Hence, He II is perfectly quiet, even if it boils off. In
a simple picture, we can understand the extremely high thermal conductiv-
ity as follows. Imagine we connect heat reservoirs to both ends of a tube filled
with He II. At the end with higher temperature, superfluid is transformed into
normal fluid, with a final ratio in accordance with Fig. 4.19. The heat is trans-
ferred to the low-temperature end by normal fluid convection. Here, the nor-
mal fluid is re-transformed into superfluid. Since the superfluid carries no
heat (its entropy is zero), all the heat is thereby absorbed by the heat sink. The
heat transfer is therefore very efficient.

He II osmosis Consider two chambers filled with He II, connected to each
other by a superleak, i.e. a connection only permeable for superfluid helium
(see Fig. 4.20(a)). Such connections can be made by extremely fine capillaries,
or by tubes stuffed with powder. This setup immediately reminds us of an os-
motic pressure cell, with the semipermeable membrane being the superleak,
the solvent being the superfluid, and the normal fluid component starring as
the solute. Recall that, in osmosis, the solute can be thought of as a gas, and
that the osmotic pressure evolves due to the tendency of the solvent to equal-
ize the concentrations in both chambers. As we heat He II in one chamber, the
fraction of normal fluid increases, and superfluid will enter this chamber, in
order to dilute it. Consequently, a pressure difference is built up. In equilib-
rium, the hydrostatic pressure will compensate the osmotic pressure, and the
surface positions in the two chambers will differ by ∆h.

Superfluid film creeping He II tends to creep over any wall of reasonable
height, as long as its temperature stays below the λ point. Therefore, con-
tainers filled with He II to different heights will equilibrate their surface levels
(see Fig. 4.20(b)). This effect has its origin in the extreme adhesion of He II
to surfaces. Within the framework of liquid–solid interfaces, this is known as
“complete wetting”. Since the shape of the liquid surface is determined by the



120 4 Experimental techniques

Fig. 4.20 (a) Sketch of a He II osmotic cell. (b) Superfluid film creep-
ing across a wall.

condition that the tangential force vanishes, this effect occurs for −σls > σgl,
where σls (σgl) denote the liquid–solid (gas–liquid) interface tension.

4.2.1.2 Some properties of pure 3He

The phase diagram of 3He is sketched in Fig. 4.21. For our purposes, the
additional phase occurring at extremely low temperatures below 2 mK is ir-
relevant.4 The density of L3He is ρ(3He) = 59 kg/m3. Under atmospheric
pressure, it liquefies at Θ = 3.19 K. This boiling point is about 1 K below that
of 4He, which can be easily understood, since its mass is smaller, and thus the
atoms have a larger average velocity at the same temperature. Consequently,
the vapor pressure is also higher at identical temperatures (see Fig. 4.24). It
drops to 10−3 mbar at about Θ = 270 mK. 3He atoms are fermions, and the
liquid can be approximated by a Fermi gas, with many analogies to an electron
gas.

Question 4.1: Calculate the Fermi energy of 3He.

Within the Fermi liquid picture, we can imagine that each 3He is sur-
rounded by a screening cloud, which results in quasi-particles with an ef-
fective mass given by the interactions. At atmospheric pressure, m∗(3He) ≈
3m(3He). For practical cryogenic purposes, 3He behaves as an ordinary liq-
uid.

4) For Θ < 2 mK, the 3He atoms form Cooper pairs and undergo a
Bose–Einstein condensation into superfluid 3He. Further phases
exist at high pressures.
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Fig. 4.21 Phase diagram of 3He.

A further important point concerning 3He is its near-to-complete natural
absence on Earth. It can be produced by nuclear reactions and is extremely
expensive. Therefore, all 3He cryostats keep it in a closed cycle.

4.2.1.3 The 3He/4He mixture

Let us first look at the phase diagram of this mixture (Fig. 4.22(a)). For Θ >
860 mK, nothing spectacular happens. The main effect of the 3He is to reduce
the λ point of the homogeneous mixture. Below the λ line, 3He dissolved
in He II can just be thought of as an additional fraction of the normal fluid
component. For temperatures below 860 mK, a remarkable phase separation
into a 3He-poor phase (called the dilute phase, D) and a 3He-rich phase (called
the concentrated phase, C) takes place. At these temperatures, the pure He II
is almost completely superfluid, and the dissolved 3He forms a normal fluid
component.

A qualitative understanding of the phase separation can be obtained by re-
calling that 3He is a Fermi liquid, while 4He in this regime is a Bose–Einstein
condensate. The 3He dissolved in 4He can be thought of as a dilute Fermi gas
with an effective mass given by the interaction between the 3He atoms and
the surrounding 4He, which is m∗(3He in 4He) ≈ 2.4m(3He). Since super-
fluid 4He has zero viscosity, the 3He atoms can move around without friction,
once the 3He–4He interaction is included in the effective mass. L3He can be
regarded as a Fermi gas as well. We just have to establish the conditions for
which the chemical potentials of the C phase and the D phase are identical.
Here, the superfluid 4He plays no role, as all these atoms are in the ground
state. The problem somewhat resembles the alignment of chemical potentials
at interfaces discussed in the previous chapter. Here, the common energy level
is again the vacuum level, i.e. the energy of a 3He atom at rest in the vacuum.
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Fig. 4.22 Left: Phase diagram of the 3He/4He mixture vs. 3He con-
centration x and temperature Θ. The tricritical point is at x = 0.67
and Θ = 860 mK. At lower temperatures, the mixture segregates into
a 3He-rich concentrated (C) phase and a 3He-poor dilute (D) phase.
Right: Sketch of the chemical potential of the two phases at Θ = 0.

The chemical potential, µ(3), of the C phase is somewhat higher than that,
µ0(34), of a single 3He atom in 4He, which can be understood by the fact that
the (attractive) van der Waals forces are slightly larger in 4He, since the aver-
age separation of the atoms is smaller. Hence, 3He atoms will go into 4He until
the chemical potentials have aligned. This is the reason why even at Θ = 0,
the D phase still contains 6.4% of 3He atoms. Note that it is energetically un-
favorable for 4He atoms to reside in the C phase.

4.2.2
Helium cryostats

Helium cryostats can be classified according to the kind of helium mixture
for which they are designed. Occasionally, liquid nitrogen cryostats are used
as well, for temperatures above 77 K. However, from our discussion of the
4He cryostat, their design should be pretty obvious. We begin with the “high-
temperature” helium cryostats.

4.2.2.1 4He cryostats

Helium has a small latent heat, which means it boils off easily. Therefore, the
LHe cryostat has to be thermally decoupled from the environment. This is
achieved by several means. Separating the He vessel from the outer world by
a vacuum avoids heating via convection. Second, the LHe container is made
of a material with a poor thermal conductivity, such as glass or stainless steel.
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Fig. 4.23 Sketches of a 4He bath cryostat (left) and a 4He gas flow
cryostat (right).

Finally, the thermal radiation from the environment is shielded by surround-
ing the LHe vessel with liquid nitrogen, in order to reduce the temperature of
the blackbody radiation that hits the He dewar. Alternatively, it is possible to
wrap the dewar in “super-insulating” foil, which is a multilayer of insulating
foil, where each layer is coated with a metal on one side. Examples of L4He
cryostats are shown in Fig. 4.23.

In a bath cryostat, the sample is simply immersed in the LHe. The liquid, and
with it the sample, can be cooled by pumping away the He vapor. This causes
LHe to evaporate, which costs the latent heat and thus cools the liquid. The
pumping speed and the incoming heat flux essentially determine the lowest
possible temperature. To be somewhat more quantitative, recall the Clausius–
Clapeyron equation, which gives the slope of the liquid–gas transition line as
a function of temperature as

dp
dΘ

=
L

Θ(Vgas −Vliquid)
(4.1)
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Here, the latent heat per atom is given by L = Θ(Sgas − Sliquid), where Sgas
and Sliquid) denote the atomic entropy of the gas and the liquid, respectively.
We have further assumed here that L does not depend on temperature, which
is a reasonable approximation for LHe. If we neglect the volume of the liquid
(for LHe at 4.2 K, it is a factor of 750 smaller than the volume of the vapor),
and model the gas as an ideal gas, pV = nkBΘ, it is found by integration of
Eq. (4.1) that the vapor pressure p drops exponentially as Θ decreases, i.e.

p(Θ) = p0 exp
(
− L

kBΘ

)
(4.2)

The cooling power P is simply the latent heat taken from the liquid per evap-
orated atom, multiplied by the number of atoms evaporated per unit time,

P =
dn
dt

L (4.3)

Since dn/dt is determined by the pumping speed dV/dT of the pump used
via

dn
dt

=
1

mHe

dM
dt

=
1

mHe
ρ

dV
dt

=
p(Θ)
kBΘ

dV
dt

the cooling power drops exponentially as Θ decreases.

Question 4.2: The latent heat of 4He is 88 J/mol. What is the cooling power at Θ =
1.2 K when a pump with a pumping speed of 200 m3/h is used?

The steady state is reached when the cooling power equals the heat load of
the LHe. With a conventional pump with a pumping speed of, say, 10 m2/h,
a temperature of about 1.2 K can be reached. Lower temperatures somewhat
below 1 K are possible, but require very powerful pumps. Therefore, if this
temperature range is needed, people usually prefer a 3He cryostat or a dilution
refrigerator.

Sometimes, temperatures above 4.2 K are required. The device of choice then
is a gas flow cryostat. Here, the sample sits in a flow of cold helium gas, which
enters the sample chamber via a needle valve. The sample chamber itself is
thermally decoupled from the LHe by an additional vacuum chamber. The
sample temperature can be adjusted by controlling the power applied to a
heater for the gas, in combination with the gas flow rate. Continuous varia-
tion of the temperature between 1.2 K and room temperature is possible in gas
flow cryostats. Many cryostats are equipped with a superconductive mag-
net, which is cooled below the critical temperature by the LHe. Most of these
magnets are made from Nb alloys, since they have very large critical magnetic
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fields. A typical magnet is able to generate magnetic fields of the order of 10 T,
although magnets with maximum magnetic fields of 20 T and more are com-
mercially available. Experiments at higher magnetic fields can be carried out
at some national and international high magnetic field laboratories.

Fig. 4.24 Vapor pressure of 3He and 4He.

4.2.2.2 3He cryostats

Below 1K, the vapor pressure of 3He is much higher than that of 4He
(Fig. 4.24). Therefore, temperatures down to about 270 mK can be reached
easily by pumping L3He. In a 3He cryostat, the 3He is isolated from the 4He
precooling stage by an inner vacuum chamber (Fig. 4.25). As mentioned al-
ready, the 3He is kept in a closed cycle. The pumped 3He gas is collected in
a storage vessel. Measurements can be performed until all the L3He has been
pumped, which results in measurement intervals up to one day. The 3He gas
can be condensed by a small, pumped 4He pot, which is connected to the 4He
bath via a needle valve, such that its temperature stays well below 3.2 K, the
condensation temperature of 3He. Some cryostats are equipped with a con-
tinuous flow option. Here, the pumped 3He is immediately recondensed. For
the price of a somewhat higher base temperature due to the additional heat
load, the measurement period becomes unlimited this way.

4.2.2.3 3He/4He dilution refrigerators

This type of cryostat uses the special properties of 3He/4He mixtures in a
clever way, and makes possible temperatures as low as 1 mK and even lower.
Since the D phase of the mixture is approximately a dilute Fermi gas, it can be
thought of as the 3He vapor of the C phase, with a significant vapor pressure
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Fig. 4.25 Schematic sketch of a 3He cryostat.

even at Θ = 0. Since the C phase has a smaller density, the “liquid” will float
on top of the “gas”, though. Pumping the 3He atoms out of the D phase will
surely cause 3He from the C phase to evaporate, which pulls the correspond-
ing effective latent heat out of the mixture. This is the cooling mechanism in
a dilution refrigerator as sketched in Fig. 4.26. The mixture rests in the mixing
chamber. The D phase is connected through a tube with the still, a pot that
gets heated to about 600 mK. At this temperature, the vapor pressure of 3He
is significant, while that of 4He is negligible. The still therefore effectively dis-
tills 3He from the D phase. The missing 3He in the D phase gets delivered by
“evaporation” across the C–D phase boundary, and the mixture in the mix-
ing chamber gets colder. Usually, the evaporated 3He is recondensed into the
mixing chamber by a pot filled with 4He, which gets pumped to temperatures
below the condensation temperature of 3He. This is the “1 K pot”. The freshly
condensed 3He, of course, still has a much higher temperature than the mix-
ture. The heat flow in the mixing chamber is therefore optimized by a flow
impedance in the condenser line. In addition, the outgoing gas at the still
temperature is used to further precool the condensed 3He via heat exchang-
ers. Virtually all mesoscopic transport experiments below 270 mK have been
carried out by thermally coupling the sample to the mixing chamber, either by
immersing it directly, or by mounting it in the vacuum at the outside wall of
the mixing chamber.
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Fig. 4.26 Essential components of a 3He/4He dilution refrigerator.

4.3
Electronic measurements on nanostructures

Measuring the resistance and conductance of a sample requires the applica-
tion of currents and/or voltages, as well as the detection of voltage drops
and/or currents, respectively. Conceptually, these measurements are very
simple. The greatest efforts in practice are usually related to the reduction
of the electronic noise level. This is done by avoiding ground loops, filter-
ing, and choosing the right cables, among other important issues. As in the
previous section, we are not that much interested in these technical details.
This topic has been dealt with in great detail in excellent books (see the fur-
ther reading section at the end of this chapter). Our goal here is to present in
brief some basic setups, just enough for the reader to know what type of setup
has been used in the experiments to be discussed. In the previous section, we
have seen that the cryostats available set some limitations to the temperature
range. Likewise, the measurement setup limits the physical quantities, as well
as their ranges, that can be measured. The present section, together with the
previous one, should put us in a position to judge why a particular experi-
mental setup has been used, and how it affects the parameter ranges. We be-
gin by showing how the samples are actually mounted in the low-temperature
environment, before we discuss the most important electronic measurement
setups.
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4.3.1
Sample holders

A sample holder contains the sample in an appropriate way, and is mounted in
the sample space of the cryostat. Its basic components are sketched in Fig. 4.27.
The sample is mounted in some kind of carrier, which is placed inside the
cryostat, in the center of the magnetic field. Cables are brought into the sam-
ple space via a vacuum feedthrough at the top end. Typically, the wires run in
twisted pairs, which reduces the currents induced by the magnetic field due
to vibrations, since the magnetic flux through adjacent loops points in oppo-
site directions. Furthermore, the sample holder contains baffles, i.e. polished
metal plates which reflect the thermal radiation from the top. Some sample
holders are equipped with a rotator, which permits the sample to be tilted
with respect to the magnetic field (which points in the vertical direction in
most cryostats).

Fig. 4.27 Sketch of a sample holder used to place a specimen in the
sample space of a cryostat.

4.3.2
Application and detection of electronic signals

4.3.2.1 General considerations

For many experiments, measuring in a low-temperature environment only
makes sense when the electrical signals are kept sufficiently small. Suppose,
for example, that we plan to investigate the transmission properties of a tunnel
barrier. The low temperature reduces the thermal smearing of the Fermi func-
tion, which corresponds to an energy scale of δE = 3.52kBΘ ≈ 300 µeV/K ·Θ.
Therefore, the voltage drop across the barrier at, for example, Θ = 1 K should
be small compared to 300 µV. For larger voltage drops, the temperature no
longer determines the energy resolution.

Measurements can be performed AC or DC. AC measurements have the ad-
vantage that a lock-in amplifier can be used, a device that selectively detects
signals with the source frequency, within a narrow bandwidth. In addition,
phase-sensitive measurements are possible, such that, for example, capaci-
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tance measurements can be performed by measuring the voltage drop with a
phase shift of π/2 with respect to the source signal. Although the frequency
selection greatly reduces the noise, it is not always best to use an AC signal.
For example, imagine the sample has a very large resistance, such that the
capacitances, which are always present in the leads, cause significant phase
shifts. This makes it hard to determine the resistive part of the impedance.
Also, theoretical results are often obtained for DC transport.

Furthermore, the distinction between resistance and resistivity (conduc-
tance and conductivity, respectively) has to be clearly understood. The plain
result of, say, applying a current I and measuring the voltage drop ∆V is the
resistance, R = ∆V/I. If the sample is macroscopic, we can assume that
the voltage drops homogeneously in between the voltage probes, and we can
translate the resistance into a resistivity, an intrinsic property of the sample,
by taking the sample geometry into account. This is no longer true in meso-
scopic samples. Here, the measurement does not average over a large volume
of randomly distributed scatterers, and the sample simply does not have a
resistivity.

4.3.2.2 Voltage and current sources

High-quality commercial voltage sources typically provide voltages in the
range of volts, with an accuracy of, say, 10−6. Hence, some conversion to
smaller voltages, or to a small current, is often necessary. This is done by a
voltage divider, or a voltage-to-current conversion, respectively (see Fig. 4.28).
The voltage divider simply consists of two resistors in series connected to the
output voltage VS of the commercial voltage source. The potential in between
the two resistors is applied to the sample with respect to ground. This voltage
is given by

Vout = VS
R2

R1 + R2

In order to divide VS by a few orders of magnitude, R1 must be much larger
than R2. This immediately implies an experimental limitation, since R1 adds
to the effective internal resistance of the voltage source. Connecting a sample
with a resistance of RS causes the applied voltage to drop to

Vout =
R2

R1 + R2 + (R1R2/RS)

The circuit in Fig. 4.28(a) is only a good voltage source for RS � R1. So R1
should be chosen as small as possible. The required output voltage then de-
termines R2. These resistors cannot be arbitrarily small, however, since a min-
imum current of I = VS/(R1 + R2) must be provided by the voltage source.
Hence, only samples of high resistance should be voltage-biased with such a
setup.
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Fig. 4.28 A voltage divider (left) and a voltage-to-current conversion
(right).

An analog consideration holds for current biasing the sample – see the cir-
cuit of Fig. 4.28(b). The current Iout is simply given by Iout = VS/R. The setup
is a good current source only if the sample resistance is small compared to
the conversion resistance. On the other hand, the available voltage sources,
the noise, and the minimum currents needed limit R to R < 100 mΩ. Conse-
quently, samples with low resistance should be current-biased.

Question 4.3: Calculate how the sample resistance modifies the current in the setup
of Fig. 4.28(b).

4.3.2.3 Signal detectors

A signal detector should not modify the measurement, which implies that the
input resistance of a voltage detector should be large compared to the sam-
ple resistance, while that of a current detector should be small. The simpli-
fied setup shown in Fig. 4.29(a) shows the principle of voltage amplification
with a transistor, which we suppose to be a Si MOSFET or a Ga[Al]As HEMT.
Properly designed, they will operate at low temperatures as well, and can be
integrated into the chip that hosts the experiment, which is useful in some
cases. The advantage is an enhanced sensitivity and reduced thermal noise.
The voltage to be amplified is superimposed onto the gate voltage, which de-
fines the operating point of the transistor. The output voltage is the voltage
drop between source and drain, which is highly sensitive to the gate voltage.
A supply voltage is applied between source and drain, in series with a resistor
R at the source side. Hence,

Vout = Vsupply − RISD
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Fig. 4.29 Left: Scheme of a field effect transistor circuit used to am-
plify the input voltage Vin. Right: Symbol of an operational amplifier.
The supply voltage is typically ±15 V.

Here, ISD is the current that flows from the supply to drain. We have assumed
that the current that flows between the gate and source or drain is small com-
pared to the current provided by the supply, which is reasonable in field effect
transistors. A small5 input voltage Vin changes the current by

∆ISD = tVin

where t = ∂ISD/∂Vin denotes the transconductance of the transistor at the op-
erating point. Consequently, the output voltage changes according to

∆Vout = −RtVin

The amplification is thus a = −Rt. Since t is typically of the order of
10−3 A/V, an amplification by ≈ 103 can be obtained in this way.

More common, however, are detector circuits that rely on operational am-
plifiers. A scheme is shown in Fig. 4.29(b). Operational amplifiers are three-
terminal devices with two inputs and one output. In addition, they require
a bipolar supply voltage of typically ±15 V. Their internal structure is of no
further interest to us here. We consider them as a black box with the following
features.

• The input resistance is very high, e.g. 1012 Ω.

• The output resistance is small, typically of the order of 100 Ω.

• For the circuit of Fig. 4.29(b), the output voltage is proportional to the
difference of the two input voltages: Vout = a0(Vin,+ − Vin,−). The am-
plification a0 ≈ 106 to 108 is the open loop gain. Note, however, that the
output voltage cannot exceed the supply voltages.

5) By “small”, we mean voltages in the microvolt regime.
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Fig. 4.30 (a) A voltage amplifier, (b) a differential amplifier, and (c) a
current-to-voltage converter.

• If a fraction of the output is, via some circuit elements, fed back into one
of the inputs, the operational amplifier adjusts its output Vout such that
(Vin,+ −Vin,−) = 0.

These properties make operational amplifiers extremely useful. We study how
operational amplifiers can be used conceptually to measure voltages and cur-
rents. The circuit of Fig. 4.30(a) is a voltage amplifier. Why? Suppose R1 � R2.
The voltage to be amplified is connected to the “+” input, and the output as-
sumes the value Vout = a0(Vin − V−). The voltage divider connected to the
output determines V− = VoutR2/(R1 + R2). Hence,

Vout =
(

Vin −Vout
R2

R1 + R2

)
a0 =⇒ Vout

(
1
a0

+
R2

R1 + R2

)
≈ Vout

R2

R1
= Vin

The approximation is valid for a0 � R1/R2. Hence, we see that the feedback
reduces the open loop gain to the amplification R1/R2, which can be cho-
sen within wide ranges. Note that, in this circuit, the input resistance of the
voltmeter is very high, namely that of the “+” input. Note further that this
example implies that a0 = ∞ for an ideal operational amplifier, which leads to
the condition (Vin,+ −Vin,−) = 0.

In many experiments, voltage differences are to be measured, either to ex-
clude contact resistances (see below) from the measurements, or to measure
without a direct reference to ground. Also, differential measurements limit
the pickup noise, since a large fraction of this noise will be identical in both
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measurement wires. Differential measurements can be made with a differen-
tial amplifier as shown in Fig. 4.30(b). It should now be easy for you to work
out the amplification of this circuit.

Question 4.4: Verify that the amplification of the circuit in Fig. 4.30(b) is

Vout,1 −Vout,2

Vin,1 −Vin,2
= 1 + 2

R1

R2

To conclude this brief section on operational amplifiers, let us have a look
at the current meter depicted in Fig. 4.30(c). Here, the “+” input is grounded,
and an input current is applied to the “−” input. There is no place for the cur-
rent to go, and it thus charges up the input capacitance C−, which is inevitably
present. The total current that arrives at the “−” input is

I−(t) = Iin(t) +
1
R

Vout(t)

On the other hand,

Vout(t) = a0(V+
in −V−in ) = − a0

C−

t∫
t′=0

I−(t′) dt′

We differentiate this expression with respect to t and substitute I−(t) with the
previous equation. This gives

−C−
a0

dVout

dt
= Iin(t) +

1
R

Vout(t)

The left-hand side is approximately zero, due to the large open loop gain.
Consequently,

Vout(t) = −RIin(t)

The input current is converted into a voltage with a conversion ratio deter-
mined by the resistor. Its resistance can be very high, like R ≈ 1 GΩ, since
the condition is that R must be small compared to the input impedance. Thus,
the output voltage adjusts in such a way that there is no charge buildup at
the input. The current is effectively drained at the “−” input. For this reason,
the “−” input is sometimes referred to as virtual ground. In cryogenic experi-
ments, the conversion resistor R is sometimes mounted inside the cryostat, in
order to reduce the thermal noise.

4.3.2.4 Some important measurement setups

As we have just seen, low-resistance samples should be investigated by apply-
ing a current and detecting the voltage drop (Fig. 4.31). This can be done in a
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Fig. 4.31 (a) Two-point and four-point resistance measurements.
(b) Setup for a conductance measurement.

Fig. 4.32 Setups for measuring (a) the differential conductance, and
(b) the transconductance of a field effect transistor.

two-probe configuration, where the voltage drop is measured at the connec-
tions used to apply the current and ground the sample. This has the disadvan-
tage that not only the sample is measured, but also the leads and the contacts,
which in case of a 2DEG are the ohmic contacts between the sample surface
and the electron gas. In a quasi-four-probe setup, two wires are connected to
both contacts used. Applying a current Iin in Fig. 4.31(a) and measuring the
voltage between 4a and 4b eliminates the wire resistance, but not the contact
resistances. Therefore, a true four-probe configuration is preferable, where the
contacts used for measuring the voltage are different from those used to pass
the current through the sample. In Fig. 4.31(a), this setup corresponds to mea-
suring V4c − V4d. True four-probe setups are not always possible, though. It
is then difficult or even impossible to discriminate between the contact resis-
tances, which may be quite high, and the resistance of the sample. Note that,
in a two-probe measurement, we measure Rxx + Rxy. The individual compo-
nents of the resistivity tensor can be measured only with the corresponding
four-probe configurations.

A conductance measurement, on the other hand, is usually a two-terminal
experiment. Here, the current meter is in series with the sample. This setup is
preferable for samples with a high resistance above ≈ 1 MΩ.



Papers and exercises 135

Sometimes, it is convenient to be able to measure a differential quantity,
such as the differential conductance dI/dV, or the transconductance t =
dI/dVG, of a transistor. Here, I is the source–drain current, V the source–drain
voltage, and VG denotes the gate voltage. This can be done by superposing a
small AC voltage onto the DC voltage that is tuned, and detecting only those
signals with the superimposed frequency with a lock-in amplifier. Schematic
setups are shown in Fig. 4.32. Such differential measurements often give a
higher resolution and a lower noise level, since the lock-in technique can be
used where absolute measurements must be performed DC. Of course, we
obtain the current as a function of the gate voltage, or of the source–drain
voltage, by simple numerical integration of the measured differential trace.

Papers and Exercises

P4.1 The paper [320] reports the preparation of nanostructures of dimension
two, one and zero by cleaved edge overgrowth. Work out how the au-
thors managed to do this, and discuss their way of detecting the dimen-
sionality.

P4.2 A three-dimensional fcc lattice of self-assembled quantum dots has been
grown by Springholz and coworkers [286]. Focus on the mechanism
behind the ordering. How is the lattice constant tuned?

P4.3 A clever way of electron beam-assisted pattern transfer is presented
in [108]. Describe how it works and what advantages this technique
may offer.

P4.4 The van der Pauw technique, named after the author of the original pro-
posal [235], is an important concept for measuring semiconducting sam-
ples. Use [312] to discuss this technique.

E4.1 Pressure considerations for molecular beam epitaxy. Use the kinetic gas the-
ory to show that gas molecules hit a unit area with a rate F, given by

F =
p√

2πmkBΘ

where p is the partial pressure of molecules with mass m. How long
does it take until a monolayer of oxygen has been formed on the sur-
face? Assume an O2 partial pressure of p = 10−10 mbar. Assume further
that all molecules that hit the surface remain adsorbed (i.e. the sticking
coefficient is unity).
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E4.2 Some considerations concerning clean rooms. Dust particles with a size
above > 500 nm frequently cause trouble in microchip fabrication. They
rest on the resist and generate defects, like interrupted connections, or
short circuits. They are therefore also known as “killer defects”. The
yield Y is the fraction of working microchips, which can be written as

Y =
1

(1 + AD)n

where D denotes the density of killer defects, A is the chip area, and n is
the number of relevant process steps (steps that involve resist illumina-
tions).

(a) Suppose that n = 12 for fabricating a certain microchip. What is
the maximum D when a yield of at least 0.5 is needed for a chip of
size A = 2 cm2?

(b) Under these conditions, how many defects are acceptable on an 8-
inch wafer?

(c) For a rough estimate, assume that, during a process step, 1/6th of
all dust particles inside a volume of (8 in3) get deposited on the
wafer. What clean room class is needed in order to obtain a yield
above 90%? [The class of a clean room is the number of particles
with size above 500 nm in a volume of one cubic foot.]

E4.3 An electron beam resist has a sensitivity of S = 2 C/m2. The pattern
generator places the focus of the electron beam at positions in a grid of
213 × 213 points (a “13-bit resolution”). The writing field A is chosen via
the magnification of the electron microscope, and selected to an area of
100 µm× 100 µm. Calculate the dwell time, the time the electron beam has
to rest at each position. What is the minimum size of a single illuminated
spot that guarantees homogeneous illumination?

E4.4 Analyze the operational amplifier circuit of Fig. 4.33. How is the output
voltage related to a time-dependent input voltage? Discuss the response
of the output voltage to a step-like input voltage Vin(t) = V0θ(t − t0).
Can you imagine a possible application of this circuit?
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Fig. 4.33 Circuit for Exercise E4.4.

Further Reading

An overview of both the technology and the applications of semiconductor
devices is given in [294]. A review of silicon processing technology has been
given in [143]. For details of GaAs processing, see [331]. For both Si and GaAs
processing, see e.g. [116].

A very nice review of many aspects of matter at low temperatures can be
found in [206]. The book [329] treats the amazing properties of helium in a
more rigorous way. In [195], you will find an extensive discussion of dilution
refrigerators.

If you need recipes and practical tips for measurements in a cryogenic en-
vironment, you will find almost certainly what you need to know in [253] or
in [255].

You are encouraged to read through an introductory textbook on electron-
ics, like [154] or [101].
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5
Important Quantities in Mesoscopic Transport

As pointed out already in the Introduction, the mesoscopic regime is charac-
terized by certain scales in space, time, and energy. They will be introduced
in this short chapter. We will frequently refer to these definitions later on.

5.1
Fermi wavelength

The Fermi wavelength λF = 2π/kF is the de Broglie wavelength of the electrons
at the Fermi edge. Size quantization thus takes place at length scales compa-
rable to λF, although we will see systems with characteristic sizes of 10λF that
still show size quantization. The Fermi wavelength decreases as the electron
density nd (d denotes the dimensionality of the electron gas) increases, while
the exact relation depends on d. For a spin degeneracy of 2 and within the
effective mass approximation, one finds

in d = 3: λF = 23/2
(

π

3n3

)1/3

in d = 2: λF =
√

2π

n2

in d = 1: λF =
4
n1

(5.1)

Thus, the Fermi wavelength is directly obtained from the electron density,
which can be determined via Hall measurements. Note that λF does not de-
pend on the effective mass.

5.2
Elastic scattering times and lengths

The quantum scattering time τq is the average time between successive elastic
scattering events of arbitrary strength. It is related to the quantum scattering
length �q via �q = vFτq. Here, vF denotes the Fermi velocity of the electrons at
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the Fermi edge, i.e. vF =
√

2EF/m∗. Hence, �q is just the average distance the
electrons at the Fermi energy travel without being elastically scattered. The
quantum scattering length does not determine the resistivity, though. For mo-
mentum relaxation, the scattering angle is important as well. In fact, weighting
each scattering event with scattering angle φ by the factor (1− cos φ) leads to
the momentum relaxation time (which we will call the Drude scattering time)
τ as introduced in Section 2.6.

The elastic mean free path �e is defined as �e = vFτ and represents the aver-
age distance an electron moves in between two subsequent, strong scattering
events, also referred to as large-angle scattering events. In the case of a two-
dimensional electron gas,

�e =
h̄
e

µ
√

2πn2

Question 5.1: Write down the expressions for �e as a function of µ and n for one
and three dimensions.

Inserting typical numbers for a 2DEG in a GaAs HEMT at low temperatures,
one finds �e ≈ 8 µm. The ratio τq/τ is determined by the relevance of various
scattering mechanisms. Of course, τq/τ ≤ 1 must hold. If this ratio is small
compared to 1, the variance of the disorder potential is weak on the scale of
the Fermi energy. For GaAs HEMTs at low temperatures, for example, one
typically finds τq/τ ≈ 0.1.

The Drude scattering time follows directly from the resistivity, once the elec-
tron density is known. The quantum scattering time can be extracted from
ρxx(B), provided that magneto-resistivity oscillations can be observed. This,
by the way, is also a method to determine the effective mass. This analysis is
discussed in Section 6.3.

5.3
Diffusion constant

The diffusion constant D originates from the diffusion equation

dn
dt

= (�∇n)D(�∇n) (5.2)

which tells us that gradients in the electron density cause diffusion (see
e.g. [252]). We discuss the diffusion constant in a one-dimensional model;
the extension to higher dimensions is straightforward. Owing to the Brown-
ian motion, the electrons experience a fluctuating, Brownian force�b(t), which
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averages to zero in large time intervals. This can be included in the equation
of motion for the electrons (Eq. (2.57)) by simply adding�b(t) to the forces �F(t)
exerted by the external fields. The result is the Langevin equation

m∗
(

d�v
dt

+
�v
τ

)
= �F(t) +�b(t) (5.3)

Suppose the external forces are zero. From statistical physics [252], it is well
known that the diffusion constant is obtained from the correlation function1

Cvivj(t) of the electron velocities

Dij =
∞∫

t=0

Cvivj(t) dt, Cvivj(t) ≡ 〈vi(0)vj(t)〉 (5.4)

where 〈. . .〉 denotes an average over many electron trajectories, and i, j are the
coordinates x and y. We take the derivative of Cvivj(t) with respect to time and
replace d�v/dt using the Langevin equation, which gives

dCvivj(t)
dt

=
1

m∗Cvibj
(t)− 1

τ
Cvivj(t) (5.5)

Here, the first term on the right-hand side vanishes, as there is no correlation
between the velocity at time t = 0 and the Brownian force at time t. One
therefore obtains a differential equation for the velocity autocorrelation func-
tion with the solution

Cvivj(t) = Cvivj(0)e−t/τ (5.6)

Consequently, within the approximations made, the diffusion constant equals

Dij = Cvivj(0)τ (5.7)

Since all electrons move with the Fermi velocity, but in arbitrary directions
in a plane, Cvivj(0) for a two-dimensional system is obtained from

Cvivj(0) =
1

2π

2π∫
0

vi(0)vj(0) dφ =⇒
{

Cvivi(0) = 1
2 v2

F

Cvivj(0) = 0 (i �= j)
(5.8)

which gives the diffusion tensor

D = 1
2 v2

F

(
1 0
0 1

)
(5.9)

1) Correlation functions are introduced in Appendix B.
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Fig. 5.1 (a) An electrostatic potential gradient and (b) a chemical po-
tential gradient can generate identical gradients in the electrochemical
potential.

Note that we can make use of the equipartition theorem of statistical me-
chanics and write for two dimensions

1
2 mv2

F = kBΘ

which gives the classical Einstein relation

Dii =
kBΘ
m∗ τ =

kBΘ
e

µ (5.10)

whereas the Einstein relation for a Fermi gas (Eq. (2.65)) is obtained by replac-
ing vF with the Fermi energy.

A typical value for electron gases in Ga[Al]As HEMTs at low temperature
is D = 0.1 m2/s.

Diffusion constant and mobility are thus intimately related. For a simple
interpretation, look at Fig. 5.1. A gradient in the electrostatic potential, as well
as a gradient in the chemical potential, leads to a spatially varying electro-
chemical potential and causes drift or diffusion, respectively.

It is worth emphasizing that, due to the Einstein relation, we can calculate
the components of the conductivity tensor σij from the velocity autocorrelation
function. We recall that σij = neµij and write the classical conductivity as

σij =
ne2

kBΘ

∞∫
t=0

Cvivj(t) dt (5.11)

This is the simplest version of the Kubo formula [181]. It is frequently used
in numerical simulations of the conductivity, where electrons are injected in
random directions in the potential landscape and Cv(t) is calculated. For a
review of this technique, see [166].

For a degenerate electron gas (see Section 2.6.4) in two dimensions (a situa-
tion that we will encounter frequently below), we obtain instead

σij =
m∗e2

πh̄2

∞∫
t=0

Cvivj(t) dt (5.12)
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The diffusion constant enters in some of the scales to be introduced below.
The Einstein relation makes clear that D can be obtained experimentally from
the mobility.

5.4
Dephasing time and phase coherence length

Elastic scattering events, which determine the electron mobility at low tem-
peratures, do not cause dephasing, since the phase shift experienced by the
scattered electrons is reproducible. If the scattering event can, in any way, be
regarded as a measurement of the electron’s location, dephasing takes place.
This is the case in spin-flip scattering events at magnetic impurities, or for
electron–phonon scattering. Electron–electron scattering does cause dephas-
ing, since energy is transferred between the scattering partners. However, the
latter kind of scattering does not, in general, cause resistance, since the total
momentum of the electron system remains unchanged. Therefore, electron–
electron scattering gives to a first approximation no contribution to the resis-
tivity. Transport effects that rely on interference of electronic wave functions,
however, can be used to determine the dephasing time τφ. The theory for the
magnitudes and the parametric dependence of τφ is developed in [3]. For two
dimensions and in the diffusive regime, one finds

1
τφ

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

π

2
(kBT)2

h̄EF
ln
(

EF

kBT

)
, kBT > h̄/τD

kBT
2m∗D ln

(
m∗D

h̄

)
, kBT < h̄/τD

(5.13)

This linear relation between 1/τφ and T at low temperatures , which changes
to a quadratic dependence at higher temperatures, is found experimentally in
reasonable agreement with the theoretical expressions; see e.g. [55].

The phase coherence length �φ is the distance the electrons travel before their
phase is randomized. For τφ < τ, one has �φ = vFτφ. For τφ > τ, however,
the electrons get scattered elastically within the phase coherence time, and the
distance they travel within τφ gets reduced. For τφ � τD, which is often the
case at low temperatures, �φ =

√
Dτφ. Typical dephasing times in mesoscopic

samples are of the order of 1 ps.
We will meet the dephasing time in Chapter 8, where we will also see how

it can be determined experimentally.
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5.5
Electron–electron scattering time

The electron–electron scattering time τee is the average time of flight for the elec-
trons between successive electron–electron scattering events. In a simple pic-
ture [12], we expect that τee ∝ 1/T2. Let us assume that a single electron
(labeled 1) has an energy ∆ above the Fermi energy of an electron gas at zero
temperature: E1 = EF + ∆. Consider how this electron can scatter with an
electron (labeled 2) in the Fermi sea. For the energy of the second electron,
E2 ≤ EF holds. In addition, both the final states (with energies E3 and E4) that
the electrons occupy after the scattering must be empty: E3, E4 > EF. Since
E1 + E2 = E3 + E4 > 2EF, it follows that

(E1 − EF) + (E2 − EF) = ∆ + (E2 − EF) > 0

Therefore, only electrons within a shell of thickness ∆ below the Fermi edge
can scatter at 1. This is a fraction ∆/EF of all the electrons. Furthermore,
E3 and E4 must be inside [EF, EF + ∆. This means that the electron–electron
scattering probability is ∝ (∆/EF)2. For a thermally smeared Fermi gas, we
can identify ∆ ≈ kBΘ, and so τee ∝ 1/T2 results. This argument has been
verified to be approximately true by more sophisticated calculations in [119],
which derived for the ballistic regime

1
τee

=
EF

4πh̄

(
∆
EF

)2[
ln
(

EF

∆

)
+ ln

(
2kTF

kF

)
+

1
2

]

where kTF is the Thomas–Fermi screening vector; see Chapters 2 and 3.
Although interactions are not treated explicitly, τee will occasionally pop up,

in particular in Chapter 8. It can be determined experimentally by magneto-
resistivity measurements [54].

5.6
Thermal length

The thermal length �Θ specifies the length scale over which thermal smearing
takes place. From the uncertainty relation h̄ ≤ kBT · τT one obtains a “thermal
time”, below which it is not possible to determine the energy of the electron
better than kBΘ. This time scale corresponds to a length scale �Θ =

√
DτT =√

h̄D/kBT.
We will meet the thermal length in particular when phase coherence effects

are discussed, namely in Chapter 8.
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5.7
Localization length

The localization length �ξ is the average length over which an electronic state
extends in a sample. The disorder potential localizes the states on this length
scale. As we shall see in the following chapter, magnetic fields can tune the
localization length over wide ranges.

5.8
Interaction parameter (or gas parameter)

The interaction parameter rs is the ratio of the (unscreened) Coulomb energy
between two electrons at their average distance, and their kinetic energy at
the Fermi edge. In two dimensions,

rs =
e2/4πεε0r

m∗v2
F/2

=
e2m∗

εε0h2
1√
ne

For 2DEGs in GaAs, rs ≈ 1. In Si MOSFETs as well as in hole gases residing in
GaAs, rs can be much larger, and values up to rs ≈ 20 have been reported.

Although we essentially treat the electron gases as non-interacting or
weakly interacting, it is worth keeping in mind that this is not really true
in low-dimensional electron gases. Strictly speaking, the validity of Fermi
liquid theory in systems with rs > 1 is questionable.

5.9
Magnetic length and magnetic time

A magnetic field sets a length scale as well, namely the spatial extension of
wave functions in the magnetic field. It is given by the magnetic length �B =√

h̄/eB, which corresponds to the width of the ground state of a quantizing
magnetic field, as will be discussed in more detail in the next chapter. Also of
importance is the cyclotron radius rc, i.e. the radius of the circle the electrons
follow in a magnetic field: rc = kF�2

B, as can be easily checked. The magnetic
time τB is the time an electron needs to diffuse across the area 1

2�2
B. It is given

by τB ≡ �2
B/(2D).

The magnetic length will be of particular importance in Chapters 6 and 7.
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Exercises

E5.1 The quantities listed in Table 5.1 have been determined experimentally
in Si MOSFETs and in GaAs HEMTs. Calculate the scattering time τ,
the diffusion constant D, the Fermi wavelength λF, the phase coherence
length �φ, the inelastic scattering length �in, the thermal length �T, and
the interaction parameter rs.

Tab. 5.1 Data for Exercise E5.1.

Physical quantity/material GaAs (T = 4.2 K) Si (T = 4.2 K)

electron density (1015 m−2) 4 0.7
electron mobility (m2/V s) 100 4
effective mass, me 0.067 0.19
dephasing time (10−12 s) 30 10

Which material would you prefer for ballistic electron experiments,
which for investigations of phase coherent electrons, and which for
studying electron–electron interactions?

E5.2 Derive the magneto-resistivity tensor, Eq. (2.59), from Eq. (5.4) [Hint:
Note that, in a magnetic field, the velocity correlation function becomes
Cvivj(t, B) = 〈vi(0)vj(t, B)〉.]

Further Reading

More about the relevant quantities in mesoscopic transport can be found
in [65], as well as in the review article [27]. For an introduction to the Kubo
formalism, see [347].
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6
Magneto-transport Properties of Quantum Films

Transport experiments in external magnetic fields are very common in meso-
scopic physics. With the magnetic field, we can reversibly and – if we perform
our experiment carefully enough – non-destructively tune various scales, such
as the magnetic length, the effective mass, or the cyclotron energy. We have
seen already that measuring the Hall resistivity in small magnetic fields al-
lows us to determine the carrier density. In this chapter, we are mainly in-
terested in strong magnetic fields, such that ωcτ ≥ 1. This condition simply
means that the electrons can complete at least one cyclotron orbit before they
get scattered. It is immediately clear that new effects can be expected in this
regime. Recall Bohr’s atomic model: discrete states are obtained from inter-
ference of electronic waves circulating around the nucleus. For an interfer-
ence to be constructive, the circumference of the trajectory must be an integer
multiple of the electronic wavelength. A similar thing happens in strong mag-
netic fields. Here, the electrons are forced to circulate in cyclotron orbits. The
result, known as Landau quantization, is discussed in Section 6.1. In particu-
lar, it is a very important ingredient to the quantum Hall effect, which is the
topic of Section 6.2. In Section 6.3, we return to intermediate magnetic fields
and show how the magneto-oscillations observed in the longitudinal direc-
tion (Shubnikov–de Haas oscillations) can be analyzed to obtain the quantum
scattering time and the effective mass. In the subsequent section (Section 6.4),
we give a small selection of further magneto-transport experiments.

Up to that point, the magnetic field has been perpendicular to the plane of
the electron gas. The basic effects in parallel magnetic fields are presented in
Section 6.5, which concludes this chapter.

If not stated otherwise, the magnetic field is homogeneous and points in
the z-direction, perpendicular to the plane of the 2DEG. In this case, we call
it B. Magnetic fields in the plane of the electron gas are referred to as parallel
magnetic fields, and are denoted by B‖.
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6.1
Landau quantization

6.1.1
Two-dimensional electron gases in perpendicular magnetic fields

The Schrödinger equation of a free 2DEG in a magnetic field B reads1

[
(�p + e�A)2

2m∗ + V(z)
]

Φ(�r) = EΦ(�r) (6.1)

where �A denotes the vector potential. The z-direction is of no further interest
to us, since B does not influence the electronic motion in that direction. We
therefore assume that the z-direction can be treated separately, leading to a
quantized energy Ez, which is the conduction band bottom of the 2DEG. We
choose the Landau gauge, �A = (−By, 0, 0), for mathematical simplicity.2 The
x-y Hamiltonian emerging from Eq. (6.1) reads

Hxy =
1

2m∗ [(px − eBy)2 + p2
y] (6.2)

With the ansatz

Φ(x, y) = Ψ(y)eikxx (6.3)

a one-dimensional Schrödinger equation in the y-direction is obtained,[
− h̄2

2m∗
∂2

∂y2 +
h̄2k2

x
2m∗ −

h̄kxeBy
m∗ +

e2B2y2

2m∗

]
Ψ(y) = (E− Ez)Ψ(y) (6.4)

while plane waves are the eigenfunctions in the x-direction of the separated
Hamiltonian. The Schrödinger equation for the y-direction can be mapped
onto the harmonic oscillator equation[
− h̄2

2m∗
∂2

∂v2 + 1
2 m∗ω2v2

]
u(v) = Eu(v) (6.5)

by

ω → ωc =
eB
m∗ and v → y− h̄kx

m∗ωc
(6.6)

The cyclotron frequency ωc is the angular frequency of the electron in the
magnetic field.

1) We define e as positive; the electronic charge is thus −e.
2) It is instructive to solve this problem in the symmetric gauge, �A =

0.5(−By, Bx, 0), and use polar coordinates; see e.g. [87] for details.
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Fig. 6.1 Electronic states in a Landau level. The positions of the har-
monic oscillator potentials yn in the y-direction are given by the wave
numbers kx that satisfy the boundary condition.

For simplicity, let us consider a rectangular sample of area Lx × Ly. Since kx

quantizes as a consequence of the periodic boundary conditions according to

kx,n =
2nπ

Lx
(6.7)

the harmonic oscillators in the y-direction are centered at the positions

yn =
nπh̄

m∗ωcLx
(6.8)

The eigenfunctions of the x–y Hamiltonian are thus plane waves in the x-
direction, multiplied with Hermite polynomials in the y-direction, as shown
schematically in Fig. 6.1.

Question 6.1: Check that the full width at half-maximum (FWHM) of the ground
state in the y-direction equals the magnetic length.

The corresponding energy eigenvalues are

Ej = h̄ωc(j− 1
2 ) (6.9)

with j being a positive integer. Besides spin and valley degeneracies, the de-
generacy of each energy level is given by the number of allowed wave num-
bers in the x-direction. The states of energy Ej form the jth Landau level. In
order to determine the degeneracy of a Landau level, we can use the fact that
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Fig. 6.2 Ideal and real densities of states of a Landau-quantized
2DEG that is spin degenerate at B = 0. The δ functions broaden
due to fluctuations of the conduction band bottom, while the spin de-
generacy is lifted, and a Zeeman doublet results for non-zero effective
g-factors g∗.

the integrated density of states is independent of the magnetic field. Hence,
the number of states per unit area in a Landau level must be gsm∗/(2πh̄2),
multiplied by h̄ωc; see Fig. 6.2. A degeneracy of gs/(2π�2

B) per unit area in
each energy level is obtained (gs counts both the spin and valley degenera-
cies). Hence, the density of states of an ideal 2DEG in a perpendicular mag-
netic field reads

D(E) =
gs

2π�2
B

δ(E− Ej) (6.10)

with Ej given by Eq. (6.9).

Question 6.2: Calculate the degeneracy of a Landau level by counting the states
with Eq. (6.8). Use the condition that all the harmonic oscillators must have their
center yn inside the sample. Assume further that the magnetic length is small com-
pared to the sample size.

In real samples, the Landau levels are broadened with an approximately
Gaussian shape by potential fluctuations, and split via the two alignments of
the electron spin in the magnetic field (Fig. 6.2). The spin splitting is described
by the effective g-factor g∗. For bulk GaAs, g∗ = −0.44.3

In general, the Landau level at the Fermi energy is only partly occupied,
and it is thus useful to introduce a quantity that measures the degree of filling
of Landau levels. This is the task of the filling factor ν, defined as

ν =
gsEF

h̄ωc
(6.11)

3) A magnetic field can strongly modify g∗ .
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For the frequent case of gs = 2 (spin degeneracy), ν = 2j means that j Lan-
dau levels are completely filled. Furthermore, in sufficiently strong magnetic
fields, the spin degeneracy may be lifted due to the Zeeman effect. In that
case, an odd integer value of ν means that one spin direction of Landau level
j = ν/2 is full, while the other is empty.

6.1.2
The chemical potential in strong magnetic fields

In experiments, it is common to vary the Landau level occupation by tuning
either the electron density or the magnetic field. Suppose B is fixed, the tem-
perature is zero, and we tune the electron density. Let us for simplicity assume
that there is no valley degeneracy, i.e. gs = 2, and there is no spin splitting.
The integrated density of states in each Landau level DLL is then given by

DLL =
1

π�2
B

(6.12)

The Fermi level EF is independent of the electron density n as long as, in the
highest occupied Landau level, there are empty states left. In this case, EF =
(j− 1

2 )h̄ωc. At electron densities nj = jDLL, all Landau levels are either full
or empty, and the Fermi energy equals EF = jh̄ωc; see Fig. 6.3(a). In the latter
case, we would classify the system as an insulator, since the density of states
at the chemical potential is zero. Remarkably, a 2DEG in a magnetic field
experiences a sequence of metal–insulator transitions as a function of n. In our
ideal system with the density of states composed of δ functions (Eq. (6.10)), the
insulating phases are just points along the n-axis. As we will see shortly, the
insulating behavior extends over non-zero intervals in real samples, since the
electronic states in the wings of a peak in D(E) tend to be localized for a real
sample.

Similar parametric metal–insulator transitions are, of course, also found as
a function of B with the electron density fixed. Here, the insulating points
correspond to magnetic fields

Bj =
πh̄n

e
1
j

It is easily verified that at these magnetic fields, EF changes from

EF(Bj − δB) =
h̄eBj

m∗ (j− 1
2 )

via

EF(Bj) =
h̄eBj

m∗ j = EF(B=0)
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Fig. 6.3 Evolution of the Fermi level (a) as a function of electron den-
sity in a fixed magnetic field, and (b) as a function of the magnetic field
with n fixed. An ideal density of states is assumed. In both scenarios,
metal–insulator transitions exist, with insulating phases of zero width in
the parameter coordinate.

to

EF(Bj + δB) =
h̄eBj

m∗ (j + 1
2 )

where δB denotes an arbitrarily small magnetic field. This behavior is de-
picted in Fig. 6.3(b).

The density of states and its evolution in magnetic fields can be nicely de-
tected by a powerful tool known as capacitance spectroscopy. The experimen-
tal setup resembles somewhat that used to measure differential conductances
sketched in Fig. 4.32 (see Fig. 6.4(a)). The sample used for the experiment in
Fig. 6.4 was a GaAs–AlxGa1−xAs interface without modulation doping. In-
stead, a highly doped layer was defined 100 nm away from the heterointer-
face, toward the substrate. In this structure, a 2DEG can be generated at the
heterointerface by applying positive voltages between the top gate and the
doping layer. The electrons reach the interface by tunneling across the un-
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Fig. 6.4 (a) Schematic setup for measuring the capacitance of an
electron gas. The quantum well is empty at Vg = 0 and can be filled
with electrons by applying a positive voltage between the gate and the
doping layer. (b) The measured capacitance shows the filling of the
2DEG at Vg = 0.77 V, as well as the modulated density of states in
perpendicular magnetic fields. Adapted from [78].

doped GaAs spacer layer. In addition, a small AC signal is superimposed,
and the current at a phase difference of π/2 is measured with a lock-in ampli-
fier.

In order to deposit charge on the capacitor formed by the 2DEG and the
gate, the voltage source has to do both electrostatic and chemical work on the
system. The density of states in the metal electrode is very large. Hence, its
chemical potential will remain constant. The density of states of the 2DEG,
however, is much lower. As charge is added, the Fermi level in the electron
gas will therefore change significantly, namely by an amount that depends on
the density of states, as well as on the total charge added. Hence, the voltage
can be split into two parts, Vchem and Velstat, that perform the chemical and
the electrostatic work, respectively. Changing the charge on the capacitor by
dq thus requires

dVelstat =
1
C

dq

plus

dVchem =
1
e

dµ =
1
e

dµ

dn
dn =

1
e2

dµ

dn
dq =

1
e2D(E)

dq
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Here, dn is the electron density change in the 2DEG, and µ denotes its chemical
potential. Thus, the total voltage change equals

dV = dVelstat + dVchem =
[

1
C

+
1

e2D(E)

]
dq

It becomes apparent that the effective capacitance is the geometric capacitance
in series with a “chemical capacitance”, i.e.

1
Ceff

=
1
C

+
1

e2D(E)
(6.13)

and we can determine the density of states by capacitance measurements. This
explains the observations in Fig. 6.4(b). In the absence of magnetic fields, the
capacitance essentially experiences a jump as the gate voltage fills the poten-
tial well at the heterointerface. Since D(E) of a 2DEG is constant, no further
structure is observed. This changes as a magnetic field is applied, due to the
formation of Landau levels. Once the geometrical capacitance is known, it is
straightforward to extract the density of states.

Capacitance spectroscopy is also possible by applying the voltage directly
between the top gate and a 2DEG. This method is inferior in high magnetic
fields, though. For a discussion of this issue, see Paper P6.1.

6.2
The quantum Hall effect

6.2.1
Phenomenology

Back in 1980, K. von Klitzing and coworkers [176] discovered a quantization of
the Hall resistance in 2DEGs residing in Si MOSFETs. Examples are shown in
Fig. 1.3, as well as in Fig. 6.5. Plateaux were observed at integer filling factors,
i.e. for

ρxy(B) =
1
ν

h
e2

Subsequent experiments showed that this quantization is universal, in the
sense that it is observed in all kinds of materials, provided the electron gas
is two-dimensional. The accuracy δρxy/ρxy can be of the order of 3× 10−10

(Fig. 6.6), such that the ν = 1 quantum Hall plateau has been chosen as the
resistance standard, with a resistance of RQ = 25 812.807 Ω by definition [247].

Furthermore, another quantization of ρxy has been discovered [305]. In ex-
tremely high-quality samples, additional resistance plateaus are observed at
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Fig. 6.5 The quantum Hall effect and Shubnikov–de Haas oscillations
in a Ga[Al]As HEMT, measured in a dilution refrigerator at a temper-
ature of 100 mK. A filling factor of ν = 1 is reached at B ≈ 12 T.
Besides the integer quantum Hall effect, pronounced structures at frac-
tional filling factors are observed. After [330].

ρxy = h/ke2, with k being a rational number. This type of quantization is very
pronounced in Fig. 6.5, but its discussion is beyond our scope. Here, we re-
strict ourselves to the following remark. Consider the data of Fig. 6.5 around
ν = 1/2, i.e. B ≈ 24 T. The data resemble the integer quantum Hall effect
(QHE) around B = 0. This observation can be substantiated by theory. One
picture of the fractional QHE is that so-called composite fermions, which are
quasi-particles composed of one electron and two magnetic flux quanta, form
in strong magnetic fields. These quasi-particles (with an effective mass that
differs from m∗) then undergo Landau quantization in an effective magnetic
field which remains after the flux quanta used to form the composite fermions
are subtracted. For further information on this fractional quantum Hall effect,
the reader is referred to the specialized literature cited at the end of this chap-
ter.

Interestingly, the accurate determination of e2/h is highly relevant for quan-
tum electrodynamics, since this ratio is contained in the fine structure con-
stant, α = 1

2 µ0c(e2/h), which describes the coupling of elementary particles
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Fig. 6.6 The relative accuracy of ρxy in the ν = 1 quantum Hall
plateau, and the corresponding longitudinal voltage drop, measured
as a function of the electron density, which is changed via a gate volt-
age. After [167]. For the accuracy ∆RH/RH, a value of 3× 10−10 is
obtained.

to electromagnetic fields, and as such represents the expansion parameter in
this theory.

The QHE is closely connected to another highly remarkable effect, namely
the magneto-oscillation of the longitudinal resistivity ρxx (see Fig. 6.5). These
oscillations are known as Shubnikov–de Haas oscillations. In fact, in the regions
of quantized Hall resistance, ρxx becomes zero, with an accuracy comparable
to that of ρxy (Fig. 6.6). The striking correlation between ρxx and ρxy suggests a
common explanation. The relation between these two quantities will become
clear in Chapter 7.

6.2.2
Toward an explanation of the integer quantum Hall effect

Besides the Landau quantization, disorder is an essential ingredient in under-
standing the origin of the quantum Hall effect. Suppose we have adjusted the
2DEG to one of the insulating points, characterized by

Bj =
hn
2e

1
j
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The classical Hall resistivity at such a point is given by

ρxy,j = − Bj

en
= − h

2e2
1
j

(6.14)

which are the resistances of the observed plateaus.4 Clearly, in an insulat-
ing regime, charge cannot flow inside the sample, and the differential Hall
conductance should be zero. Therefore, we expect the Hall conductance to
remain constant and σxx = 0 (and thus ρxx = 0).

But in our model system, the insulating interval is only a point. It is here
that the “real” properties of the sample enter the explanation. There is dis-
order in the system, which broadens the δ functions in the density of states.
With the help of Fig. 6.7, we argue that the states in the wings of the peaks
of D(E) tend to be localized. Consider a cross section of the potential land-
scape in the y-direction. As long as the magnetic length is small compared to
the length scale of the potential fluctuations, the energies of the Landau levels
will just follow the potential fluctuations. We study the first Landau level as
an example. The same line of arguing holds for higher Landau levels. Clearly,
the states inside one Landau level now have different energies, and the shape
and width of the peak in the density of states reflect the energy distribution of
the disorder potential. Consider states in the low-energy wing of the peak in
D(E), i.e. at the energy E1 in Fig. 6.7. Apparently, the electrons reside in min-
ima of the potential landscape. Close to the center of such a puddle, where
the local electric field is weak or zero, the electrons move in cyclotron orbits.
At the puddle edge, though, they skip along the potential wall during their
cyclotron motion.

In order to see this, it pays to revisit the �E×�B drift, i.e. the motion of charged
particles under crossed electric and magnetic fields. In the equation of motion
for electrons in the diffusive regime (Eq. (2.46)), it was assumed that ωcτ �
1, such that the magnetic field deflects the electrons that move through the
sample with the drift velocity, which is determined by the electric field, on the
one hand, and by the friction term, on the other. Now, however, the magnetic
field is much stronger, and the electrons are able to complete cyclotron circles
without being scattered. Consider the motion on a time scale between 1/ωc
and τ. There is no diffusive scattering, and the classical equation of motion
now reads

m∗ d2�r
dt2 = −e

(
�E +

d�r
dt
× �B

)
(6.15)

4) Recall that, in our discussion of the Landau quantization, we have
assumed spin degeneracy. For spin-split Landau levels, we obtain

ρH,ν = − h
e2

1
ν

.
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Fig. 6.7 (a) Cross section of the potential
landscape in the y-direction across a Hall
bar. The first Landau level (LL 1) follows
the energy of the conduction band bottom.
The resulting peak in the density of states is
shown to the right. (b) Top views of the sam-
ples sketched at energies Ei, as indicated
in (a). Gray areas denote regions where the
energy of the first Landau level is larger than
Ei. At energy E3, the states are localized at
potential maxima. At low energy E1, the elec-
trons are caught in potential minima. At the
intermediate energy E2, however, the elec-

tron puddles merge, and electrons may travel
across the whole sample via skipping orbits
at the edges of the Fermi sea. This leads
to extended states around the center of the
peak in D(E). (c) A close-up of the electronic
motion in the presence of an electric field in
the y-direction. The cyclotron motion is su-
perimposed on the motion of the guiding cen-
ter, which moves perpendicular to both fields
at constant velocity. Note for the orientation
of the electronic motion that we are looking
at the sample in the −z-direction, opposite to
the direction of the magnetic field.

where�r is the position of the electron in the (x, y) plane. Suppose the electric
field points in the y-direction, �E = (0, Ey, 0), and the magnetic field, as usual,
points in the z-direction. Then Eq. (6.15) is solved by

x(t) =
Ey

ωcB
sin (ωct) +

Ey

B
t + X0

y(t) = − Ey

ωcB
cos (ωct) + Y0 (6.16)
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It is common to separate the motion into the motion of the guiding center

(X(t), Y(t)) = (X0 − vLt, Y0) (6.17)

and the motion relative to the guiding center

(xr(t), yr(t)) = (rc sin(ωct), −rc cos(ωct)) (6.18)

Here, vL denotes the drift velocity due to the Lorentz force, and rc =
Ey/ωcB = vL/ωc is the cyclotron radius. We thus see that the electrons per-
form a cyclotron motion around the guiding center, which moves at constant
velocity in the direction perpendicular to both fields, as sketched in Fig. 6.7(c).
It is straightforward to write down the components of the conductivity tensor
for such a situation. Here, we average over the (fast) cyclotron motion, such
that only the motion of the guiding center gives a contribution. Since

jx = −ne(dx/dt) = σxxEx + σxyEy

and

jy = σyxEx + σyyEy

it follows that

σxy =
−ne

B
and σyy = 0 (6.19)

Likewise, we obtain the remaining two components by considering an elec-
tric field in the x-direction. The corresponding components of the resistiv-
ity tensor are ρxx = ρyy = 0 and ρxy = −ρyx = −B/(ne). It may seem
strange that both the conductivity and the resistivity can be zero at the same
time. Remember, however, that we are dealing with a resistivity and conduc-
tivity tensor. The observation σxx = 0 implies that no current flows in the
x-direction when a voltage is applied in the x-direction. On the other hand,
ρxx = 0 means that applying a current in the x-direction causes no voltage
drop in the x-direction. This is no contradiction, provided the equipotential
lines are parallel to the x-direction if a voltage or current is applied along this
axis (Fig. 6.8). It has been verified experimentally that this is in fact the case
inside a quantum Hall plateau [177].

Suppose now that we change the electron density of a perfectly clean system
and apply a negligibly small voltage in the x-direction. The only electric field
of relevance is the Hall field in the y-direction. The electrons move parallel to
the x-direction, as long as we are in a metallic state. As we fill one initially
empty Landau level, i.e. δn = DLL, the Hall conductance changes by δσxy =
−2e2/h. Nevertheless, σxy(n) is a straight line, since the insulating regions are
just points on the n-axis. Also, σxx is zero for all electron densities.



160 6 Magneto-transport properties of quantum films

Fig. 6.8 Equipotential lines in a 2DEG at B = 0 (left) and in a strong
magnetic field (right).

The electrons in the low-energy tail of a peak in D(E), however, are local-
ized. They either perform cyclotron orbits, or they circle along the edge of the
puddle, in the direction of rotation opposite to that of the cyclotron motion.
Such orbits are called skipping orbits, which we will revisit in Chapter 7. In
any case, none of the electrons in such a puddle can carry a current across
the sample. Thus, we should modify our definition of a metal accordingly
and speak of a metal only if the density of extended states at the Fermi energy
is non-vanishing. In such a situation, we can fill the Landau level while the
system is in an insulating state, which means that δσxy(δn) = 0.

A somewhat different kind of localization occurs in the high-energy wing of
the peak in D(E). Consider the situation at energy E3. The states at this energy
correspond to skipping orbits that circle around maxima in the potential land-
scape. Hence, we conclude that, also for Fermi energies in the high-energy tail
of the density of states peak, the system behaves in an insulating manner.

At an intermediate energy E2, the electron puddles and the potential hills
have about equal sizes on average, and the localized skipping orbits of adja-
cent structures will merge. At this energy, the electron may percolate across
the whole sample, and consequently the sample behaves in a metallic way.
Under these conditions, σxy can change and σxx becomes non-zero, since the
electrons may traverse the sample from source to drain. That such a state does
in fact exist is shown more rigorously in the specialized literature (see the fur-
ther reading at the end of this chapter). Here, we just state that energy E2
represents a percolation threshold [288], and that the electron gas undergoes
a percolation transition as the Fermi energy is swept across energy E2.

Thus, the disorder does something truly remarkable: it increases the insu-
lating regions of the parameter range (the parameter is the electron density or
the magnetic field) from points (Fig. 6.3) to extended intervals in real samples,
while the extended metallic regions of the ideal sample are reduced to very
small intervals. This allows the observation of the conductance steps.
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Question 6.3: Sketch σxy(n) and σxx(n) for an ideal sample and for a real sample
with disorder. Here, n is the two-dimensional electron density.

We will revisit the QHE in Section 7.3, and provide an alternative view,
based on the observation that the current in the QHE regime is carried via
effectively one-dimensional states. A more fundamental explanation of the
quantum Hall effect has been provided in [187]. It derives the exact quanti-
zation from (i) the gauge invariance and (ii) the existence of a mobility gap
around the Fermi energy. A different approach by Thouless [301] derives
the exact quantization of the Hall resistance by treating the random poten-
tial within perturbation theory. These models are beyond our scope, however.
We will instead discuss another point of view in the following chapter, which
is based on transport in quantum wires that effectively form at the sample
edge [137] as indicated in Fig. 6.7(b).

6.2.3
The quantum Hall effect and three dimensions

By now, you may be wondering whether the quantum Hall effect occurs only
in quantum films. In fact, it vanishes in three-dimensional free electron gases.
The reason is illustrated in Fig. 6.9. A magnetic field pointing in the z-direction
quantizes the motion in the (x, y) plane. The motion in the z-direction, how-
ever, remains unaffected. The Fermi sphere “condenses” into cylinders of radii

kxy =
√

k2
x + k2

y =

√
2m∗ωc(j− 1

2 )
h̄

which extend along the z-direction. The Landau levels have evolved into Lan-
dau bands with a one-dimensional density of states. Thus, no matter what
magnetic field we apply or how large the Fermi energy is, there are always
states at the Fermi energy, there are no insulating regions in the parameter
space, and consequently there are no metal–insulator transitions. Confining
the electron gas in the z-direction corresponds to a Fermi circle parallel to
the (x, y) plane, the cylinders are projected on circles, and parametric metal–
insulator transitions are again possible. Note that this line of arguing is based
on a free electron gas in the z-direction. The density of states in this direction
has been modified by Stormer and coworkers [292], who grew a periodic se-
quence of GaAs quantum wells in the z-direction, separated by Al0.18Ga0.82As
barriers. This periodic superlattice generated bands of width b, with bandgaps
in the meV regime, i.e. comparable to h̄ωc for moderate magnetic fields. The
corresponding density of states, shown in Fig. 6.9(b), thus develops gaps in
sufficiently large magnetic fields, such that the quantum Hall effect should be
visible as soon as b gets smaller than h̄ωc. This has been experimentally ver-
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ified in [292]. Hence, although the electron gas does not need to be strictly
two-dimensional, a sufficiently large anisotropy is a prerequisite for the quan-
tum Hall effect to occur.

Fig. 6.9 Landau quantization in three-dimensional systems, drawn
for two occupied Landau bands. (a) Under sufficiently large magnetic
fields, the Fermi sphere of a free electron gas at B = 0 condenses into
Landau levels in the (x, y) plane, while kz remains continuous. (b) The
density of states for a free electron gas (bold line), and of a periodic
superlattice in the z-direction (dashed lines).

6.3
Elementary analysis of Shubnikov–de Haas oscillations

We now turn our attention to the Shubnikov–de Haas (SdH) oscillations at
small and intermediate magnetic fields, i.e. for ωcτ < 1. Here, the quantum
Hall effect is weak, and ρxx(B) oscillates, but does not vanish (see Fig. 1.3). In
this regime, the magnetic field causes just a weak modulation of the density
of states. As a consequence, the density of states at the Fermi level, as well as
the screening properties of the electron gas, oscillate as the electron density or
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the magnetic field is tuned. This is reflected in the longitudinal resistivity. The
scattering theory of such a system is hampered by several difficulties, which
are discussed in the papers of Ando [8]. For short-range scattering potentials
that are weak compared to the Fermi energy, however, Ando has derived an
analytic expression for ρxx(B), which in the limit ωcτ � 1 reads

ρxx(B) = ρxx(0)
[

1− 4 cos
(

πh̄n
eB

)
D(m∗, Θ) E(m∗, τq)

]
(6.20)

which we call the Ando formula. The resistivity according to this formula is
illustrated in Fig. 6.10. The expression D(m∗, Θ) is known as the Dingle term.
It contains the temperature dependence and depends on the effective mass:

D(m∗, Θ) =
x

sinh x
, x =

2π2kB

h̄eB
m∗Θ (6.21)

The exponential term E(m∗, τq) in Eq. (6.20) equals

E(m∗, τq) = e−π/(ωcτq) (6.22)

and depends on the quantum scattering time.
Therefore, both the effective mass as well as τq can be extracted from mea-

suring the temperature dependence of the SdH oscillations. We pick a single,
suitable SdH resonance. Its amplitude is given by

A = 8ρxx(0)D(m∗, Θ)E(m∗, τq) (6.23)

This can be rewritten as

ln
(

A
Θ

)
= C1 − ln

[
sinh

(
2π2kB

h̄eB
m∗Θ

)]
(6.24)

Here, C1 denotes a constant, which has no further interest for our purposes.
For sufficiently small magnetic fields and sufficiently high temperatures (this
is what we mean by “a suitable SdH resonance”), ln(sinh x) ≈ x. Thus, by
plotting ln(A/Θ) vs. Θ, a straight line with a slope of

2π2kB

eBh̄
m∗ (6.25)

is obtained. Besides analyzing cyclotron resonances, this is a common way to
determine effective masses. Once we know m∗, we can exploit the exponential
term and determine τq along similar lines. This time, a measurement of ρxx(B)
at fixed temperature, which extends over many SdH oscillations, is analyzed.
We rewrite the expression for the oscillation amplitude as

AB sinh
(

2π2kBΘm∗

eBh̄

)
= 8ρxx(0)

2π2kBΘm∗

eh̄
e−π/(ωcτq) =⇒

Y = ln
[

AB sinh
(

2π2kBΘm∗

eBh̄

)]
= C2 − πm∗

e
1
τq

1
B

(6.26)
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Fig. 6.10 Top: SdH oscillations of a 2DEG as a function of B, as de-
scribed by the Ando formula (Eq. (6.20)). Bottom: Temperature depen-
dence of some oscillations. The temperatures are Θ = 1, 2, 4, 6, 8,
10, 12, 15, and 20 K. See also Exercise E6.2.

and plot Y as a function of 1/B (known as a Dingle plot). The slope of this
straight line equals

πm∗

eτq
(6.27)

Fig. 6.11 shows the results of such an analysis performed on a GaN–AlxGa1−xN
HEMT structure.
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Fig. 6.11 Standard analysis of SdH oscillations (a), performed
on two different samples (R1 and R2) of a 2DEG at a modulation-
doped GaN–AlxGa1−xN interface. The electron density was n =
4.8× 1016 m−2 (b). A quantum scattering time of τq = 0.5 ps (c) and
an effective mass of m∗ = (0.215± 0.006)me (Dingle plot, (d)) have
been found. After [262].

6.4
Some examples of magneto-transport experiments

There are many further interesting magneto-transport experiments on quan-
tum films, and we provide a few examples.5

6.4.1
Quasi-two-dimensional electron gases

For Fermi energies above the second quantized energy level of the confin-
ing potential in the z-direction, the electron gas is no longer strictly two-
dimensional, and we speak of a quasi-2DEG. While the Hall slope measures

5) We will see another very important example in Chapter 8, namely
how electronic phase coherence manifests itself in the magneto-
resistivity.
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Fig. 6.12 Longitudinal magneto-resistivity of
a 2DEG in a GaAs–AlxGa1−xAs HEMT with
two occupied subbands (left). Here, “light”
indicates that the sample has been illumi-
nated by light of a frequency below the GaAs
bandgap. This ionizes residual neutral donors
and thus increases the electron density in the

2DEG. The magneto-oscillations are modu-
lated in both cases. The two SdH frequencies
correspond to the partial electron densities
in the two subbands. In addition, a positive
magneto-resistivity around B = 0 is observed
(right). After [156].

the total electron density, each two-dimensional subband causes a Shubnikov–
de Haas oscillation, provided the scattering times are sufficiently large. This
results in a modulation of SdH oscillations (Fig. 6.12). The scattering times in
the upper subband, however, can be small, such that the corresponding SdH
oscillation may not be observable. In this case, their occupation can be de-
tected as the difference between the total electron density (as obtained from
the Hall slope) and the density of the lowest subband (determined from the
SdH oscillation period of the lower subband).

A further signature of multi-subband occupation is a parabolic and positive
magneto-resistivity around B = 0. The subbands can be regarded as resistors
in parallel, such that the total conductivity tensor is obtained by simple ad-
dition of the individual subband conductivity tensors. The two subbands are
characterized by different scattering times τ1 and τ2. We further assume that
the effective masses in both subbands are identical, and that inter-subband
scattering can be neglected, i.e. the scattered electrons remain in their original
subband during scattering events.6 The total magneto-conductivity tensor is
then given by

(σ) =
n1e2τ1

1 + (ωcτ1)2

(
1 −ωcτ1

ωcτ1 1

)
+

n2e2τ2

1 + (ωcτ2)2

(
1 −ωcτ2

ωcτ2 1

)

6) Inter-subband scattering can be included in the analysis, see [344].
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The longitudinal resistivity ρxx is obtained by matrix inversion as discussed in
Chapter 2. For small magnetic fields, a Taylor expansion gives the expression

ρxx(B) = ρxx(0)
[

1 +
n1τ1n2τ2(τ1 − τ2)2e2

m∗2(n1τ1 + n2τ2)2 B2
]

(6.28)

Typical experimental results show such a behavior, as illustrated in Fig. 6.12.

Question 6.4: Derive Eq. (6.28), and determine the conditions for which the Hall
slope measures the total electron density n = n1 + n2 of both subbands.

6.4.2
Mapping of the probability density

Perturbation theory tells us that inserting a δ function U0δ(z − z0) in a po-
tential generates, to first order, energy shifts ∆Ei of the energy eigenvalues
Ei, where ∆Ei is proportional to the probability density of the corresponding
eigenstate at z0:

∆Ei = U0|ψ(z)|2 (6.29)

With U0 known, |ψ(z)|2 can therefore be determined by measuring ∆Ei
(see [204]). If we could scan the δ function across the potential, the proba-
bility density could be mapped this way. This idea can in fact be realized
experimentally in parabolic quantum wells, where the conduction band bot-
tom varies parabolically in the growth direction. It is a unique property of
a parabolic potential that superposition of a constant electric field displaces
the potential without changing its shape – see Exercise E6.3. In the sample
depicted in Fig. 6.13, the quantum well contains a Al0.3Ga0.7As spike at its as-
grown center, while the parabola can be shifted by applying a voltage applied
to the two electrodes haloing the parabola [259]. In the experiment shown in
Fig. 6.13, two subbands were occupied, and, by measuring the two subband
densities via SdH oscillations, the energy shifts have been detected. Hence,
|ψ2(z)|2 − |ψ1(z)|2 has been measured (see Figs. 6.13(c) and (d)).

6.4.3
Displacement of the quantum Hall plateaux

According to our model in Section 6.2, the quantum Hall plateaus are centered
around integer filling factors. In other words, if we extrapolate the classical
Hall slope into the quantum Hall regime, it should intersect the plateaus at
their center. Here, we have implicitly assumed that the peaks of the density
of states are symmetrical, which is not necessarily the case. Their shape de-
pends on the character of the scatters. For example, predominantly repulsive
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Fig. 6.13 (a) Conduction band of a parabolic
Ga[Al]As quantum well. A potential spike has
been grown at the center of the parabola,
which shifts the energy levels as compared to
the same potential without the spike (dashed
lines). The shift is proportional to |Ψ2 | at
the position of the spike. (b) By applying a
constant electric field in the z-direction, the
confining parabola is displaced with respect

to the spike, and the energy levels shift ac-
cordingly. (c, d) Measured differences of the
probability density between subbands 1 and
2 as a function of z for two different electron
densities. The different symbols denote differ-
ent spike heights, i.e. an Al concentration of
x = 0.05, 0.1, and 0.15, respectively. Adapted
from [259].

scatterers shift the center of gravity of a Landau level toward higher energies,
as shown schematically in Fig. 6.14(a). This asymmetry affects the position of
the quantum Hall plateaus. Suppose the scatterers are predominantly repul-
sive, we start out from LL j completely filled, and we increase the magnetic
field. As long as we deplete localized states, no changes in the resistivities are
observed. As can be seen from Fig. 6.14(c), this means that the delocalized
states reach the Fermi level at larger magnetic fields as compared to the sym-
metric situation, and the jump in ρxy, as well as the peak in ρxx, are shifted
correspondingly with respect to the classical Hall slope. This effect has been
studied systematically in [144] (Fig. 6.15) and is occasionally used to obtain
further information on the scatterers.
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Fig. 6.14 Repulsive scatterers shift a fraction of the states within a
peak of the density of states to higher energies, which results in a
shift of the quantum Hall plateaus to larger magnetic fields. Likewise,
predominantly attractive scatterers shift the quantum Hall plateaus to
smaller magnetic fields.

6.5
Parallel magnetic fields

In comparison to the quantum Hall effect, a magnetic field in the plane of the
2DEG produces much less spectacular results. Nevertheless, investigating the
transport properties as a function of a parallel magnetic field B‖ is a useful
tool. The density of states can be tuned, and spin effects can be investigated
without being buried in the dominating orbital effects. Here, we discuss how
B‖ affects the density of states and discuss the consequences.
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Fig. 6.15 Quantum Hall plateaus can be shifted with respect to the
extrapolated classical Hall trace (dashed line). Adapted from [144].

A 2DEG in a homogeneous magnetic field of arbitrary orientation is a very
complicated problem in its most general form. For example, the classical dy-
namics of a square well in tilted magnetic fields is chaotic [105], which leads
to the corresponding quantum mechanical signatures. The evolution of the
energy levels as a function of a tilted magnetic field can be studied using per-
turbation theory [34, 260]. An analytical solution is possible for a parabolic
confinement [198]. Besides tuning the spin splitting, B‖ has two effects. First
of all, the parabolic confinement generated by B‖ adds to the electrostatic con-
finement, such that the subbands shift to higher energies. This is sometimes
referred to as diamagnetic shift. Second, the effective mass in the direction per-
pendicular to B‖, but in the plane of the electron gas, increases. We have seen
this behavior already in its extreme version in the QHE, where the effective
mass goes to infinity.

Here, we restrict ourselves to a simple case, which reveals these proper-
ties analytically. Other potential shapes show a similar qualitative behavior.
We consider a parabolic quantum well with an electrostatic potential in the
growth direction, given by

V(z) = 1
2 m∗ω2

0z2 (6.30)

The magnetic field is applied in the x-direction, and we choose the gauge �A =
(0,−zB‖, 0), which gives �B = �∇× �A = (B‖, 0, 0). The Schrödinger equation
now reads

1
2m∗ [p

2
x + (py − eB‖z)2 + p2

z]Ψ(�r) +
1
2

m∗ω2
0z2Ψ(�r) = EΨ(�r) (6.31)
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Fig. 6.16 Left: Definition of the coordinate
system and the magnetic field directions for
a parabolic quantum well in perpendicular
and parallel magnetic fields. Center: Corre-
sponding shape of the two-dimensional Fermi
sphere in a magnetic field applied in the x-
direction (full line), in comparison to the Fermi
sphere for B = 0 (dashed line). Right: The

confining potential in the z-direction for B = 0
(dashed line) shifts and narrows for a state
with wave number ky when a parallel mag-
netic field is applied (full line). This leads to
a diamagnetic shift of the energy levels, and
an increase in the subband separation, as
indicated for the first two subbands.

By applying the momentum operators to the wave function ansatz

Ψ(�r) = exp(ikxx) exp(ikyy)Φ(z)

this can be written as[
h̄2k2

x
2m∗ +

h̄2k2
y

2m∗ +
1
2

m∗ω2(B‖)
(

z2− 2h̄kyωc

m∗ω2(B‖)
z
)

+
p2

z
2m∗

]
Ψ(�r) = EΨ(�r) (6.32)

with

ω(B‖) =
√

ω2
0 + ω2

c (6.33)

To complete the square, we add and subtract

z2(ky) =
[

h̄kyωc

m∗ω2(B‖)

]2

(6.34)

and obtain[
h̄2k2

x
2m∗ +

h̄2k2
y

2m∗
ω2

0(B‖)
ω2(B‖)

+
1
2

m∗ω2(B‖)[z− z(ky)]2 +
p2

z
2m∗

]
Ψ(�r) = EΨ(�r) (6.35)

where

m∗y(B‖) = m∗
ω2(B‖)

ω2
0

(6.36)

The solution of Eq. (6.23) consists of free electrons in the x- and y-directions,
with an effective mass in the y-direction which increases as B‖ is increased.
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Intuitively, we can think of the electron trajectories being bent by B‖ in the
z-direction, such that the electron has more difficulties moving in the y-
direction. Hence, the Fermi sphere is deformed into an ellipse (Fig. 6.16).
As we have seen already during the discussion of the Fermi surface of Si in
Chapter 3, the average effective mass is given by

m∗(B‖) =
√

m∗xm∗y = m∗
ω(B‖)

ω0
(6.37)

Therefore, the density of states increases for each subband as B‖ increases. The
total density of states is given by

DPQW(E, B‖) =
m∗(B‖)

πh̄2

∞

∑
j=0

θ(E− Ej(B‖)) (6.38)

with the subband energies

Ej(B‖) = (j + 1
2 )h̄ω(B‖) (6.39)

Note further that the states in each subband are centered at positions given by
z(ky). Electrons that move in the +ky-direction (−ky-direction) are predom-
inantly located at more negative (positive) z (see Fig. 6.16). This effect just
describes the deflection of the moving electrons in a magnetic field.

In order to check this model experimentally, we can apply a parallel mag-
netic field to a parabolic quantum well and probe the effective mass by
temperature-dependent Shubnikov–de Haas measurements in an additional
perpendicular magnetic field. True, the Hamiltonian has to be modified, but
as long as the perpendicular magnetic field B⊥ is sufficiently small, we can
treat it as a perturbation, which leaves the modifications imposed by B‖ un-
changed. If more than one subband is occupied at B = 0, we should be
able to see the magnetic depopulation of the upper subbands as B‖ increases.
In a standard experimental setup, however, there is only one magnetic field
direction available. This problem can be solved by measuring the magneto-
resistivity with the sample tilted with respect to the magnetic field direction.
After performing this experiment for a sequence of different tilt angles, the
magnetic field can be disentangled into its parallel and perpendicular compo-
nents and we are able to analyze ρxx(B⊥, B‖).

In Fig. 6.17, some raw data of such an experiment are shown. Here, three
subbands were occupied in the parabolic quantum well at B‖ = 0. At zero
tilt angle, the effect of a purely parallel magnetic field on the resistivity can
be studied. One observes a minimum in ρxx(B‖) at B‖ ≈ 0.7 T, and a sharp
decrease at B‖ = 2.2 T, which are attributed to the depopulation of the third
and second subbands, respectively. While the origin of the minimum is not
well understood, the resistivity drop at the depletion of the second subband
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Fig. 6.17 Magneto-resistivity measurements in a parabolic quantum
well in tilted magnetic fields. (a) Plot of ρxx(B) for a tilt angle of zero
(θ = 0). The minima can be attributed to the depletion of subbands
3 and 2, respectively. As the sample is tilted, a perpendicular mag-
netic field component generates SdH oscillations. (b) Temperature-
dependent measurements allow one to determine the effective elec-
tron mass. After [88].

has two reasons. First of all, the electrons in the second subband suffer a lot of
scattering at low subband densities N2, which increases the resistivity. Second,
inter-subband scattering is no longer possible for B‖ > 2.2 T. As the sample
is tilted, the perpendicular magnetic field induces Shubnikov–de Haas oscil-
lations, which can be used to determine the subband densities, once the oscil-
lations have been attributed to a particular subband. In the example shown in
Fig. 6.17, the oscillation in 1 T < B < 2 T is attributed to the second subband,
while oscillations at higher magnetic fields stem from the first subband.

In addition, Hall measurements can be performed in order to determine the
total electron density. Hence, the electron densities N1 and N2 can be deter-
mined, as shown in Fig. 6.18(a). As expected, the upper subband is depleted
by B‖, while N1 approaches the total electron density at strong parallel mag-
netic fields. Furthermore, temperature-dependent measurements can be used
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Fig. 6.18 Analyzing data of the type as
shown in Fig. 6.17 gives not only electron
densities of the lowest two subbands (a), but
also the effective mass (b) and the scattering
times (c) as functions of B‖. While m∗(B‖)
is in reasonable agreement with the model

described in the text (full line in (b)) and the
behavior of τ is as expected, it is somewhat
surprising that τq increases strongly in the
second subband as this band gets depleted.
After [88].

to determine the effective mass and the quantum scattering time, as shown
in Figs. 6.18(b) and (c), respectively. While the average effective mass agrees
reasonably well with the model described above, it is found that the quantum
scattering time τq increases strongly as the second subband gets close to de-
pletion, an effect that is poorly understood. Apparently, the electrons screen
the small-angle scattering potential much better when they are in the first sub-
band.
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Papers and Exercises

P6.1 Go through [282] and discuss the difficulties encountered when capac-
itances in high magnetic fields are measured by applying a voltage di-
rectly between a top gate and the electron gas.

P6.2 The helium fountain effect (see Section 4.2) has been used in [173] to
detect the spatial distribution of dissipation in the quantum Hall effect.
Discuss this entertaining experiment in relation to the equipotential lines
sketched in Fig. 6.8.

P6.3 An interesting relation between Shubnikov–de Haas oscillations and the
quantum Hall effect has been reported in [290]. What is the explanation
suggested by Simon and Halperin [278]?

P6.4 Discuss the quantum Hall effect observed in graphene, as reported in
[223].

E6.1 Analyze the data of Fig. 1.3, measured on a 2DEG in Ga[Al]As. Enu-
merate the quantum Hall plateaus. Determine the electron density both
from the Hall slope and from the Shubnikov–de Haas oscillations. Ex-
tract the mobility and the scattering time. Estimate the effective g-factor.

E6.2 Figure 6.10 shows measurements of the resistivity of a two-dimensional
electron gas as a function of magnetic field and temperature. The elec-
tron density has been determined from the Hall slope to be n = 6.2×
1015 m−2, while from measuring ρxx(B = 0) the mobility is found to be
µ = 77 m2/V s.

(a) Determine τ, m∗, and τq.

(b) What material could it be? What does the ratio τ/τq tell you?

E6.3 A one-dimensional harmonic oscillator (characterized by ω0) is placed
in a constant electric field F.

Solve the Schrödinger equation. Show that the parabola gets displaced
in both space and energy, but maintains its shape. Determine the loca-
tion and the energy of the potential minimum as a function of F.

Further Reading

The full story of the quantum Hall effect is much more complicated than the
simple picture developed here would suggest. The fractional quantum Hall
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effect has been left aside. For a full theoretical discussion, the reader is referred
to [87]. More elementary introductions are given in [136, 246, 341]. More on
quantum films in general can be found in [90].
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7
Quantum Wires and Quantum Point Contacts

Quantum wires are quasi-one-dimensional systems, i.e. their width w must be
comparable to the Fermi wavelength. In analogy to our previous notation in
two dimensions, the wire is strictly one-dimensional if only the mode with the
lowest energy is occupied. The wire is called diffusive if its length L is much
larger than the elastic mean free path �e (Fig. 7.1(a)). In this case, the electrons
will suffer many elastic scattering events during their trip along the wire. Note
that the trajectories indicated by an arrow are only meaningful for λF � w,
which means that the number of occupied modes is sufficiently large, and a
localized wave packet can be constructed. This is not necessarily true in quan-
tum wires. If only a few modes are occupied, the semiclassical picture breaks
down, and we should think of the electrons as plane waves inside the quan-
tum wire. We will study the basic magneto-resistance properties of diffusive
quantum wires in Section 7.1. In the opposite limit, L � �e, there is no elastic
scattering in the wire, except for boundary scattering at the walls (Fig. 7.1(b)).
Such wires are often very short and form a point-like contact between the left
and the right reservoir. Such short ballistic quantum wires are usually called
quantum point contacts (Fig. 7.1(c)).

One of the central questions in this chapter is the resistance of ballistic quan-
tum wires. “Well,” you might say, “there should be no resistance in a ballis-
tic wire.” Whether this is true or not depends on what exactly we mean by
“the resistance of the wire”. It turns out that a two-terminal measurement
gives quantized resistances, which very closely resemble the quantum Hall
effect, and there is in fact a surprising relation. If, however, the resistance is
measured in a four-terminal geometry using suitable voltage probes, the re-
sistance is in fact zero. The formalism used to describe transport in ballistic
wires has been developed by R. Landauer and M. Büttiker. An introduction
to ballistic quantum wires is given in Section 7.2. In Section 7.3, we will dis-
cuss the quantum Hall effect and the Shubnikov–de Haas (SdH) oscillations
in terms of transport through ballistic quantum wires. This includes introduc-
ing the Landauer–Büttiker formalism. It will be established that quasi-one-
dimensional edge states carry the current in the quantum Hall regime.
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All the quantum wires we will have discussed up to this point reside in
semiconductor hosts, but this is not the only way of realizing a quantum wire
experimentally. Some alternative approaches will be presented in Section 7.4,
which rounds off our discussion of quantum wires.

Throughout this chapter, the wires extend in the x-direction, while the mo-
tion in the y- and z-directions is quantized. Furthermore, we use the effec-
tive mass approximation, except when carbon nanotubes are discussed in Sec-
tion 7.5. Hence, the density of states of a quantum wire (QWR)1 is given by

DQWR(E) =
∞

∑
j=1

D1(E− Ej) (7.1)

where D1(E− Ej) denotes the one-dimensional density of states with a band
bottom at energy Ej (see Fig. 7.2). The singularities at the mode bottoms are in
reality smeared out by both disorder and temperature, and thus do not cause

1) The acronym QWR is used for “quantum wire” to make a distinc-
tion from QW for “quantum well”.

Fig. 7.1 (a) A diffusive wire contains many scatterers. Its transport
properties can be described by the Boltzmann equation. This clearly
becomes questionable for wires of length L ≈ �e. (b) A wire with
L > �e is called ballistic. The electrons are scattered at the confining
walls only. (c) A ballistic wire with w ≈ L � �e is called a “quantum
point contact”. Adapted from [27].
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any difficulties. The electron density in the ideal QWR is given by

nQWR =
2
πh̄

∞

∑
j=1

√
2m∗(E− Ej) θ(E− Ej) (7.2)

Here, we have assumed a spin degeneracy of 2, and θ(E − Ej) denotes the
Heaviside step function.

Fig. 7.2 Schematic energy spectrum of a parabolic quantum wire, and
the corresponding density of states.

7.1
Diffusive quantum wires

7.1.1
Basic properties

An experimental realization of a diffusive quantum wire in a Ga[Al]As HEMT
is shown in Fig. 7.3. For such wires, a parabolic confinement in the y-direction
is an excellent approximation (z is, as usual, the growth direction):

V(y) = 1
2 m∗ω2

0y2 (7.3)

In fact, it is not easy to detect experimentally a non-parabolic confinement.
The characteristic quantities of the wire can be determined by – you guessed
right – magneto-transport experiments. How does a magnetic field influence
the energy levels in a quantum wire? The problem is similar to that of a par-
abolic quantum well in a parallel magnetic field, as studied in Section 7.5. We
have to add the potential (7.3) to the Hamiltonian

H =
1

2m∗ p2
y +

1
2

m∗ω2
c(y− yn)2 (7.4)

known from the Landau quantization. We use the ansatz for the wave function

Φ(x, y) = eikxxψ(y) (7.5)
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Fig. 7.3 Top view of a diffusive quantum wire (L = 40 µm, geometric
width wg = 150 nm), patterned into a Ga[Al]As HEMT by local oxida-
tion. The bright lines define the walls (a close-up is shown in the inset).
The electrostatic wire width w can be tuned by applying voltages to the
two in-plane gates IPG1 and IPG2.

and obtain (see Exercise E7.1)

Hxy =
1

2m∗ p2
y +

1
2

m∗ω(B)2(y− ȳn)2 +
h̄2k2

xω2
0

2m∗ω(B)2 (7.6)

with

ω(B) =
√

ω2
0 + ω2

c and ȳn = yn
ω2

c
ω2(B)

(7.7)

The last term in Eq. (7.6) describes plane waves in the x-direction. They have
the usual free electron dispersion, with the magnetic mass

m∗(B) = m∗[ω(B)/ω0]2 (7.8)

which is larger than the effective mass at B = 0. The remaining terms in
Eq. (7.6) give an effective confinement in the y-direction, characterized by
ω(B). The energy eigenvalues therefore depend on B and are given by

Ej(B) = h̄ω(B)(j− 1
2 ) (7.9)

with j = 1, 2, . . . enumerating the one-dimensional modes. The resulting den-
sity of states is sketched in Fig. 7.2.

Question 7.1: How do the wire modes evolve into Landau levels in the limit
ωc � ω0? What happens to the magnetic mass and to the electron velocity in the
x-direction?
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The magnetic field thus increases the confinement strength and may depop-
ulate the magnetoelectric modes by squeezing them above the Fermi level,
very similar to the diamagnetic shift discussed in Chapter 6. The density of
states at the Fermi level therefore oscillates as a function of B, which is re-
flected in the resistivity. In contrast to the SdH oscillations, the correspond-
ing magneto-oscillations are not periodic in 1/B. At large magnetic field
(ω0 � ωc), the electrons feel an effectively two-dimensional potential gov-
erned by the magnetic confinement. In this case, the magneto-transport prop-
erties should approach those of a 2DEG in the quantum Hall regime. At small
magnetic fields, on the other hand, the mode spacing approaches h̄ω0 as B is
decreased, and the level spacing becomes approximately independent of B.
The number j of occupied modes as a function of B, ω0 and nQWR has been
calculated by Berggren [30]. The authors obtain (see Exercise E7.1)

j(nQWR, ω0, 1/B) =
(

3π

4
nQWRω0

)2/3( h̄
2m∗

)1/3 1
ω(B)

(7.10)

This equation can be used to determine the characteristic wire parameters by
fitting j(nQWR, ω0, 1/B), using ω0 and nQWR as fit parameters. A measure-
ment of ρxx(B), performed on the quantum wire of Fig. 7.3, including the
result of such a fitting procedure, is shown in Fig. 7.4.

7.1.2
Boundary scattering

In quantum wires, the electrons hit the confining wall much more frequently
than in a 2DEG. Whether this boundary scattering contributes to the resis-
tivity is a legitimate question. This would be the case if boundary scattering
changed the electron momentum in the x-direction. Smooth walls, i.e. walls
that show spatial variations only on length scales much larger than the Fermi
wavelength, scatter the electrons specularly and thus do not cause additional
resistivity. The smoothness of the wall is hence a critical quantity. It has
been experimentally demonstrated that, usually, boundary scattering is al-
most completely specular, unless the walls are made intentionally rough.
Such wires with highly diffusive walls have been fabricated by ion implan-
tation [300]. Here, a maximum in ρxx(B) at w ≈ 1

2 rc, known as a “wire peak”,
can be observed (see Fig. 7.5). It can be shown that the magnetic field deter-
mines how sensitive the electrons are to the specularity of the confinement.
The highest sensitivity is reached for cyclotron radii of roughly twice the elec-
tronic wire width w, in detail w = 0.55rc. In a simple picture, we can imagine
that, at this magnetic field, the fraction of the electron trajectories close to the
wire edge is maximized. For the details of this effect, which is beyond our
scope here, see [27] and [300], as well as references therein.
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Fig. 7.4 The magneto-resistivity of the wire
shown in Fig. 7.3. The most prominent fea-
ture is an oscillation as a function of B, which
detects the magnetic depopulation of the wire
modes. Further structures are a pronounced
maximum at B = 0, and fluctuations at small
magnetic fields. These are due to phase

coherence effects and will be discussed in
Chapter 8. The positions of the oscillation
minima are plotted vs. 1/B as full circles in
the inset. Here, the line is a least squares fit
to Eq. (7.10), which gives an electronic wire
width of 158 nm.

The measurements in Fig. 7.5 show a specularity of only 70% (which means
that 70% of the boundary scattering events take place in a specular fashion),
while in top gate defined wires the specularity is so high that observing a wire
peak is quite hard (inset in Fig. 7.5). In fact, a wire peak is not visible in Fig. 7.4,
although this particular wire is 40 µm long. Therefore, for QWRs defined by
top gates, by cleaved edge overgrowth, or by local oxidation, we can safely
neglect boundary scattering.

7.2
Ballistic quantum wires

7.2.1
Phenomenology

In 1988, van Wees et al. [317] and Wharam et al. [326] investigated the trans-
port properties of quantum point contacts (QPCs), of the shape sketched in
Fig. 7.1(c). The QPCs were created by applying suitable voltages to a split



7.2 Ballistic quantum wires 183

Fig. 7.5 Diffusive scattering at wire boundaries causes a magneto-
resistivity peak at w = 0.55rc. The main figure shows these peaks
for wires of different widths (stated in the figure), studied at QWRs
made by ion beam implantation, which generates particularly rough,
diffusive walls. Wire peaks in QWRs defined by top gates of similar
widths (shown in the inset) are much weaker. The length of the wires
was L = 12 µm. After [300].

gate (see the inset in Fig. 7.6) on top of a Ga[Al]As HEMT structure. With
such geometries, the QPC is imposed on the 2DEG by tuning the gate voltage
to negative values, such that the electron gas underneath gets depleted. By
further decreasing the gate voltage, the lateral electric stray field, and with it
the lateral depletion zone around the gates, increases. This can be used to tune
the electronic width, and with it the number j of occupied modes of the QPC,
ideally all the way down to zero.

Once a small background resistance, which stems from the 2DEG between
the QPC and the voltage probes, has been subtracted, the conductance of such
QPCs turned out to be quantized in units of j×2e2/h, in the absence of magnetic
fields – see Fig. 7.6 (and Fig. 1.2, by the way). This quantization, of course, very
closely resembles the quantum Hall effect as a function of the electron density.
In QPCs, however, we must remember the following:

• There is no Landau quantization, and there are no scatterers in the region
of interest.

• The accuracy is typically of the order of δR/(h/2e2) ≈ 10−2, much
smaller than the accuracy of ρxy inside a quantum Hall plateau.

• Subsequent studies further revealed that the conductance quantization
vanishes in longer quantum wires, typically for L > 2 µm, although
signatures of quantization have been observed in wires up to 20 µm
long [333]. This is also in contrast to the quantum Hall effect (QHE),
which can be observed in samples of millimeter sizes.
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Fig. 7.6 Inset: Scanning electron micro-
graph of a split gate structure used to define
a quantum point contact. The brighter ar-
eas are gold electrodes on top of a Ga[Al]As
HEMT. Main figure: Resistance as a func-
tion of voltage Vg applied to the split gates
with respect to the 2DEG. At a threshold
voltage Vg,th = −500 mV, the resistance
sharply increases by about 1 kΩ. Here, the

2DEG underneath the gates is depleted
and the QPC is defined. As Vg is further
reduced, quantized steps in the resistance
at Rj = (1/j)(2e2/h) are observed. The
two traces are taken for two different carrier
concentrations in the 2DEG, which has been
changed by illumination with an infrared light-
emitting diode. The temperature was 60 mK.
The measurements are adapted from [326].

As we shall see, there is in fact a close relation between the QHE and the
conductance quantization in a QPC. Before we study this connection, some
more obvious questions need to be discussed: Why is there a resistance at all
in QPCs, although there are no scatterers around? Should we not just measure
the resistance in series with the QPC? And why is the conductance quantized
in units of 2e2/h?

7.2.2
Conductance quantization in QPCs

Essentially, the previous questions can be answered in two steps:

1. There is no backscattering either inside the QPC or at its exit.

2. The occupation of the states in close proximity to the QPC is not de-
scribed by a Fermi–Dirac distribution.2

2) This is actually true for many mesoscopic transport scenarios.
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Fig. 7.7 A QPC attached to source and drain (left) and its idealized
model (right), where the transition regions are one-dimensional leads,
and the constriction is a barrier with transmission probability T.

To begin with, we look in more detail at the geometric shape of a QPC
(Fig. 7.7). Clearly, the QPC is connected to source S and drain D via two tran-
sition regions, which are quasi-one-dimensional. In a rather crude, but nev-
ertheless very insightful, approximation, we replace the transition region by
ballistic, strictly one-dimensional QWRs and the QPC itself by a barrier with
transmission probability T. We do so since we plan to calculate the conduc-
tance of the QPC from a scattering approach, where incoming electronic plane
waves are scattered into outgoing plane waves, which are eigenfunctions of
the one-dimensional wires. For simplicity, we assume an energy-independent
transmission probability. The QPC is open for T = 1.

We now calculate the conductance for our model QPC. For this purpose,
recall that the current density in its simplest form is given by j = −nev,
where n is the three-dimensional carrier density and v is the velocity of the
electrons. The corresponding one-dimensional expression is obtained by in-
tegrating over the cross section of the current; it reads I = −n1ev. Here, I
is the current and n1 is the one-dimensional electron density. This simple
relation is generalized to our model system as follows. Suppose a voltage
V = (µS − µD)/(−e) drops between source and drain. The reservoirs fill the
connected states of the wire with k-vectors pointing away from the reservoir
(outgoing states), up to their respective electrochemical potentials. Now, I, n1
and �v depend on energy. Furthermore, the density of right-moving electrons
at energy E is given by the density of states on the side j = S, D of the barrier,
multiplied by the corresponding Fermi function:

−→nj (E) =
−→
Dj(E) f (E− µj)

Similarly, we have for the density of left-moving electrons:

←−nj (E) =
←−
Dj(E) f (E− µj)

Here,
−→
Dj(E) (

←−
Dj(E)) is the density of states for right-moving (left-moving)

electrons. An electron contributes to the current if it traverses the barrier.3

3) We consider a coherent scenario. In the case where the transmission
is incoherent, the probability of the states on the other side being
empty has to be included, i.e. the transmission probability has to be
multiplied by [1− f (E− Ej)].
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The spectral current I(E) is therefore given by

I(E) = eT[−→nS(E)vS(E)−←−nD(E)vD(E)]

= eT[
−→
DS(E) f (E− µS)vS(E)−←−DD(E) f (E− µD)vD(E)] (7.11)

where T is taken to be independent of energy. Assuming just a spin degener-
acy of 2, we have

−→
Dj(E) =

←−
Dj(E) = 1

2 D1(E− E1,j) =
1

2πh̄

√
2m∗

E− E1,j
(7.12)

where E1,j denotes the bottom of the mode on side j. Since the electron velocity
in the mode is given by

vj(E) =

√
2(E− E1,j)

m∗ (7.13)

Eq. (7.11) simplifies to

I(E) =
eT
πh̄

[ f (E− µS)− f (E− µD)] (7.14)

For zero temperature,4 the Fermi functions become Heaviside step functions
θ(µj − E), and we obtain a total current of

I =
eT
πh̄

∞∫
E=0

[θ(µS − E)− θ(µD − E)] dE =
2e2

h
TV (7.15)

Therefore, the conductance for a mode with T = 1 equals

G =
2e2

h
(7.16)

It is quantized because the energy dependence of the one-dimensional density
of states and that of the electron velocity cancel each other.

Apparently, the quantized conductance follows quite naturally from this
simple consideration. The result is nevertheless quite surprising. For T = 1,
the electrons suffer no scattering at the QPC. A finite conductance for such a
scenario is counter-intuitive. The answer can be found in the subtlety that the
voltage drop across the QPC is not the difference between the source and the
drain potentials, divided by e. Within the mean free path around the barrier,
transport is ballistic, and therefore states moving away from the barrier are
only occupied if an electron has been scattered into them by reflection at the

4) The effect of Θ > 0 is considered in Exercise E7.2.
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Fig. 7.8 Electrochemical potentials of the system of Fig. 7.7, both at
the reservoirs and close to the barrier (dashed lines).

barrier. Clearly, the occupation probability of the states does not have the form
of a Fermi–Dirac distribution. This point has been quantified in [49].

In order to explain how this fact can shed light on the issue, we again al-
low 0 ≤ T ≤ 1 and consider the open channel as a special case later on. For
the sake of simplicity, let us assume that the source–drain bias voltage is suffi-
ciently small, which means that the density of states can be set constant in this
small energy range of interest. Therefore, we obtain

−→
DS(E) =

←−
DS(E) =

−→
DD(E) =

←−
DD(E)

Consider the scenario depicted in Fig. 7.8. To the left side of the barrier,
all right-moving states are occupied up to µS, since they are connected to the
source potential. On this side, a left-moving state close to the barrier is occu-
pied only if an electron has scattered into it, which can happen by backscatter-
ing at the barrier, or by forward scattering of drain electrons across the barrier.
Hence, the electrochemical potential at the left side must be smaller than µS.
We denote this local chemical potential by µ�

S. Likewise, some right-moving
states on the right side with energies within [µD, µS] are occupied by electrons
that have been transmitted through the barrier. This results in a local potential
at the right side µ�

D > µD.
Recall that the chemical potential µ of a metal can be defined as that energy

for which the number of empty states below µ equals the number of occupied
states above µ. This definition is very convenient here, and we use it to calcu-
late µ�

S and µ�
D. On the left side, the only empty states with E < µ�

S are those
left-moving states that have not been occupied by reflection of electrons at the
barrier. The density of these can now be obtained from

nS,empty(E<µ�
S) =

∫ µ�
S

µD

←−
DS(E)T dE =

←−
DST(µ�

S − µD) (7.17)
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Here, we do not count states below µD, since these contributions cancel each
other. The density of occupied states nS,occ(E>µ�

S) is the sum of two compo-
nents. First, all right-moving states on the left side in [µ�

S, µS] are occupied,
since they get filled by the source reservoir. Second, there are left-moving
states that got populated by backscattering at the barrier. Hence,

nS,occ(E>µ�
S) =

−→
DS(µS − µ�

S) + (1− T)
←−
DS(µS − µ�

S) (7.18)

Since
←−
DS =

−→
DS

we obtain the local chemical potential at the left side via

nS,empty(E<µ�
S) = nS,occ(E>µ�

S) =⇒
µ�

S = µS − 1
2 T(µS − µD) (7.19)

A corresponding consideration for the part of the wire attached to drain gives

µ�
D = µD + 1

2 T(µS − µD) (7.20)

Question 7.2: Derive Eq. (7.20).

The local voltage drop at the barrier is thus given by

V� =
1
e
(µ�

S − µ�
D) =

1
e
(µS − µD)(1− T) (7.21)

and we find the conductance of the barrier to be

Gbarrier =
eI
V�

=
2e2

h
T

1− T
(7.22)

which certainly makes a lot of sense: as T approaches unity, the barrier con-
ductance goes to infinity. Since the overall conductance between source and
drain equals

GSD =
2e2

h
T (7.23)

there must be a resistance in series with the barrier of

Rcontact =
1

GSD
− 1

Gbarrier
=

h
2e2 (7.24)

This is called the contact resistance, since it occurs at the interface between the
reservoirs and the one-dimensional wire. It arises from the electrons that have
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passed the quantum wire and enter the contacts in a distribution that differs
from the Fermi function. The electrons coming from S are injected into the
drain contact at energies above µD, dissipate their excess energy via inelastic
scattering events, and finally end up in a Fermi–Dirac distribution. This re-
laxation causes the contact resistance at the drain side. Similarly, the electrons
that pass the wire from D to S find all states at their energy in S occupied, so
scattering is required to let them enter. For T = 1, the right-moving states in
the wire are occupied up to µS, while the left-moving states are populated up
to µD. The local chemical potential inside the wire is (µS + µD)/2. The voltage
thus drops by V/2 at both the entrance and the exit.

Our purpose here was to shed some light on the conductance quantization
in quasi-one-dimensional systems. Along the way, many questions remain,
and a lot of assumptions have certainly been made. To work out all these
details is a formidable task, and we briefly outline some of them below.

First of all, we have considered only a single mode. The Landauer formula
[186] (see also [45])

G =
2e2

h ∑
α,β
|tαβ|2 (7.25)

gives the conductance of a multimode QPC. The transmission amplitude from
mode β to mode α is tαβ. The partial conductances of the individual modes are
thus additive for negligible coupling between different modes. This assump-
tion implies that the electrons remain in their initial mode throughout their
trip across the QPC. This kind of transport is called adiabatic. It requires that
the width of the channel changes smoothly on the scale of the Fermi wave-
length, which is usually the case in the experiments under discussion. The
properties of adiabatic constrictions and the consequences of non-adiabaticity
in experimental realizations are discussed in [335].

Another effect not considered are reflections of the electronic wave func-
tions, which may take place at the entrance and the exit of the wire. Multiple
reflections may lead to transmission resonances, as we will discuss in more
detail in Chapter 8. It is intuitively clear that a smooth potential shape in the
above sense suppresses backscattering of electrons at the exit, and interference
effects are absent. Extensive numerical simulations have quantified how the
QPC conductance depends on the potential shape. An example is shown in
Fig. 7.9. In some experiments, weakly pronounced oscillations, superimposed
on conductance steps, have been observed, but the agreement with theoret-
ical considerations is poor. It has turned out to be very difficult to fabricate
samples with sufficiently sharp contact regions. Thermal smearing further
hampers a clear observation.

The conductance steps vanish at a characteristic temperature given by the
energy spacing of the modes. As can be seen in Exercise E7.2, a sharp trans-
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Fig. 7.9 Transmission as a function of the Fermi wavenumber, kF,
and the electronic width at its narrowest point, W0, calculated with
the recursive Green’s function technique [94], for zero temperature. A
QPC with a smooth transition region (left; the geometry is shown in the
inset) shows smooth transmission steps. In longer wires with sharp
contacts to the reservoirs, resonances due to interference effects are
found (right). After [199].

mission step at Θ = 0 is thermally smeared at higher temperatures according
to

G =
2e2

h
f (E1 − µ) (7.26)

which gives a characteristic temperature of

Θchar =
∆

2kB ln(3 + 2
√

2)
≈ ∆

3.52kB
(7.27)

In the sample shown in Fig. 1.2, for example, the temperature for which the
steps vanish is roughly 20 K, and the mode spacing is therefore of the order
of 6 meV. One might thus expect that the steps become infinitely sharp as the
temperature approaches zero. This is not observed experimentally. Rather, the
steepness of the conductance steps tends to saturate as Θ is reduced below a
few hundred mK. In [48], the potential step of our model is replaced by a
saddle-shaped potential,

V(x, y) = 1
2 m∗(ω2

yy2 −ω2
xx2) (7.28)

which should represent an excellent approximation for typical QPC geome-
tries. The transmission probability of this potential is given by

T(ε) =
1

1 + πε
(7.29)
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Fig. 7.10 Conductance of a QPC with a saddle point potential, char-
acterized by ωx and ωy, calculated for zero temperature. The steps
vanish as soon as ωy becomes smaller than ωx. After [48].

In this model, the energy separation between the modes equals h̄ωy, while h̄ωx

determines the width of the transition range between adjacent conductance
steps (Fig. 7.10).

7.2.3
Magnetic field effects

As in diffusive quantum wires, the modes of a QPC get depleted by perpen-
dicular magnetic fields (Fig. 7.11), since the magnetic field increases the con-
finement and the energy separation between the modes becomes larger. Si-
multaneously, quantum Hall states are formed in the 2DEG, which influences
the resistance measurements. We can elegantly explain the data of Fig. 7.11,
once the Landauer–Büttiker formalism has been introduced, and we will come
back to this issue later. In weak perpendicular magnetic fields, QPCs show
a negative magneto-resistance in addition, an effect discussed in Paper P7.2.
Diamagnetic shifts of the QPC modes can, however, be conveniently studied
in parallel magnetic fields, since here the effect that B exerts on the 2DEG is
negligible.

This kind of spectroscopy has been performed in [261] on a QPC residing in
a parabolic quantum well with two occupied subbands in the growth direction
(Fig. 7.12). Transverse modes in both the y- and z-directions contribute to the
current. We label the channels in the y-direction by l and in the z-direction by
m, respectively. Since the confinement in the z-direction is significantly larger



192 7 Quantum wires and quantum point contacts

Fig. 7.11 Depopulation of QPC modes by a magnetic field. As B is
increased, the width of the conductance plateaus increases. This re-
flects the increasing magnetoelectric confinement in the y-direction. At
B = 1.8 T and above, the spin degeneracy gets lifted and additional
plateaus evolve at odd integers of e2/h. After [318].

than in the y-direction, we can think of the mode structure as being composed
of ladders denoted by m, each with rungs labeled by l.5 The total number of
modes carrying current is given by

j =
∞

∑
m,l=1

θ(µ− Em,l) (7.30)

Here, µ is the chemical potential (we assume that the source–drain voltage is
negligibly small), and Em,l is the energy of the mode bottom.

To keep things simple, we restrict ourselves to the case of two occupied
subbands in the growth direction. We again expect conductance quantization
in units of 2e2/h. However, if two degenerate modes (belonging to different
ladders) cross the chemical potential, the conductance will change by 4e2/h.
Such a degeneracy shows up in the experiment as a suppression of conduc-
tance steps (Fig. 7.12). Via diamagnetic shifts, the energies of the modes, and
thus the degeneracies, can be tuned by in-plane magnetic fields. The transcon-
ductance dG/dUsg (Usg is the voltage applied to the split gates) emphasizes
the diamagnetic shift of the modes, and is a good representation of the QPC’s

5) This is possible only if the Hamiltonian is separable.
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Fig. 7.12 The left inset shows a schematic
mode spectrum of a QPC, located in a par-
abolic quantum well with two occupied sub-
bands in the growth direction, plotted as a
function of the spatial coordinate r. Each sub-
band contains a ladder of equidistant modes;
m is the subband index, while l labels the
mode within a ladder. The main figure shows

the conductance as a function of the QPC
gate voltage Usg, measured for magnetic
fields B⊥ = 0 to 6 T applied in the y-direction
(see right inset). Conductance steps can
be suppressed and recovered by the mag-
netic field, as in the encircled region. The
labels [k1, k2] denote the number of occupied
modes in subbands 1 and 2. After [261].

energy spectrum at the same time. In Figs. 7.13(a) and (b), such measurements
are shown for B applied in the y- and x-directions, respectively. Dark regions
correspond to low transconductance: here, the chemical potential lies in be-
tween two adjacent modes. The bright lines (high transconductance) reflect
the mode spectrum.

For both magnetic field directions, the two subband ladders are visible, with
each ladder having its own characteristic dispersion. As a function of By, the
levels of both ladders show a positive dispersion, which is much stronger in
the m = 2 ladder. For magnetic fields in the x-direction, the dispersion of the
m = 1 states is reversed: their energy decreases as Bx is increased. In both
cases, mode crossings are clearly visible. The measurements in Figs. 7.13(a)
and (b) are compared to model calculations in Figs. 7.13(c) and (d). It is
reasonable to assume that the energy in the QPC is proportional to Usg. The
lever arm α = dE/dUsg can be estimated by temperature-dependent mea-
surements, which give the energy spacing between adjacent modes according
to Eq. (7.27). A value of α ≈ 0.02 eV/V is found. Furthermore, we assume
parabolic confinement in the y-direction as well. The confining potential at
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Fig. 7.13 Gray scale plot of the transconductance dG/dUsg as a func-
tion of (a) By and (b) Bx. The bright lines represent the QPC modes.
(c, d) The measurements are compared to the energy spectrum of an
elliptical parabolic confinement. After [261].

the narrowest point of the QPC, which determines the number of transmitted
modes, is then given by

V(y, z) = 1
2 m∗(ω2

yy2 + ω2
z z2) (7.31)

After our previous discussion of parallel magnetic fields in Section 6.5, it is
intuitively clear that By causes magnetic shifts of the modes’ z-component and
enhances the effective mass in the x-direction, while Bx does not modify the
effective mass, but causes magnetic shifts of the y- and z-components. In [264],
the Schrödinger equation has been solved for a magnetic field By applied in
the y-direction. The energy eigenvalues are found to be

Ey
ml = h̄ωy(l − 1

2 ) + h̄
√

ω2
z + ω2

c (m− 1
2 ) (7.32)
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For a magnetic field Bx in the x-direction, the energy levels are given by [267]

Ex
ml = h̄ω1(l− 1

2 ) + h̄ω2(m− 1
2 )

where

ω2
1,2 = 1

2 (ω2
c + ω2

y + ω2
z)±

√
(ω2

c + ω2
y + ω2

z)2 −ω2
yω2

z (7.33)

For ωy = ωz, Eq. (7.33) becomes the Fock–Darwin spectrum [64, 99]. The cal-
culated spectra agree very well with the experimental result for ωy = 2 meV
and ωz = 5 meV.

7.2.4
The “0.7 structure”

In [299] a very clearly pronounced additional conductance plateau at G ≈
0.7×(2e2/h) has been reported (the “0.7 structure” or “0.7 feature”). Subse-
quent experiments have confirmed this observation and studied its parametric
behavior. Not only does this plateau remain unexplained within our model, it
has some additional puzzling features (see Fig. 7.14), namely:

• as the temperature is increased, it does not suffer from thermal smear-
ing, but becomes more prominent instead;

• it emerges from the spin-split plateau at G = e2/h as a strong parallel
magnetic field is reduced;

• its presence or absence seems to depend randomly on the sample.

In fact, the origin of this plateau has not yet been clarified unambiguously,
although there is strong evidence that it is caused by electronic correlation
effects known as Kondo correlations [62].

7.2.5
Four-probe measurements on ballistic quantum wires

Measuring the resistance of a ballistic QWR without the contact resistance
clearly requires voltage probes to be attached in between the two contacts.
This has to be done without disturbing the current flow. For example, if the
electrons get backscattered at the probes along their trip from source to drain,
the resistance will be increased. In other words, the resistance Rwp between
the wire and the probe has to be large compared to RSD. Such an experiment
has been performed on quantum wires defined by cleaved edge overgrowth
(see Chapter 5). The sample layout is reproduced in Fig. 7.15. With all gates
grounded, a wire extends along the cleaved edge, which is coupled to the
2DEG that resides in the quantum well. The length scale for scattering be-
tween the wire modes and the states in the 2DEG is �2D–1D ≈ 6 µm.
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Fig. 7.14 Conductance of a QPC as a function of the split-gate volt-
age. (a) The “0.7 structure” shows a different temperature dependence
than the conventional conductance steps. (b) In strong parallel mag-
netic fields, the spin degeneracy is removed and additional plateaus
are visible at odd integers of e2/h. As B is reduced, the spin-split
plateau at G = 0.5e2/h evolves into the “0.7 structure”. After [62].

Fig. 7.15 (a) Sample geometry for four-
terminal resistance measurements on a bal-
listic quantum wire. A quantum well is grown
in the [100] direction, and three tungsten gate
stripes of width W = 2 µm, separated by
L = 2 µm, are evaporated on top. The wafer
is then cleaved, and a modulation-doped
layer of Al0.3Ga0.7As is grown along the [110]

direction. The wire extends along the cleave.
(b) Conductance quantization as a function
of the voltage at gate 2, with the other gates
grounded. (c) Spatial variation of the electro-
chemical potentials of left- and right-moving
electrons along the wire, as discussed in the
text. In addition, the corresponding potential
drop φ is shown. After [241].
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Fig. 7.16 Main figure: The two-terminal resistance of the wire (upper
trace) along gate 2 and its four-terminal resistance (lower trace) are
compared. The inset shows the ratio between the four-terminal resis-
tance and the two-terminal resistance as a function of the probability
T for electrons to be transmitted between the wire and the probe. The
lower trace in the main figure has been performed at Rwp = 250 kΩ,
i.e. T ≈ 0.05 in the inset. After [241].

Negative voltages applied to the tungsten gate stripes deplete the 2DEG un-
derneath. The ballistic wire of length L = 2 µm can be tuned by activating gate
2, while gates 1 and 3 remain grounded. In this operation mode, the 2DEG ar-
eas to the left and right of gate 2 serve as source and drain. Clear resistance
quantization is observed (upper trace in Fig. 7.16; this trace is equivalent to
the conductance trace in Fig. 7.15). The plateaus deviate from the expected
G = je2/h by up to 25%, an effect that has its origin in non-ideal contacts to
source and drain in this particular sample geometry. By additionally activat-
ing gates 1 and 3 to appropriate voltages, strictly one-dimensional leads are
generated along the corresponding regions of the wire. Also, the 2DEG re-
gions between the gates now form two voltage probes that couple weakly to
the wire, since their width is smaller than �2D–1D. Clearly, the voltage probes
are located in between the contact regions of the wire to source and drain, and
the measured voltage difference between A and B in Fig. 7.16 should be zero.
This is in fact the case for all plateaus, except close to pinch-off around a gate
voltage of −4.6 V.
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These measurements have confirmed in a beautiful way the model of con-
tact resistances and ballistic transport in one-dimensional systems. There
is actually a quite different kind of experiment which proves this as well,
namely four-terminal resistance measurements on 2DEGs in the quantum Hall
regime. This is the topic of the following sections.

7.3
The Landauer–Büttiker formalism

In the previous section, we have argued that the quantized conductance of
ballistic quantum wires stems from contact resistances. We have also seen that
four-probe measurements give a resistance of zero, as expected from their in-
terpretation in terms of contact resistances. In fact, a conceptually very similar
system is a 2DEG in the quantum Hall regime. As already indicated in Sec-
tion 6.2, the electrons skip along the edge of the Hall bar in strong magnetic
fields. The origin of this dynamics is illustrated in Fig. 7.17.

Fig. 7.17 Modification of the magnetoelectric confinement of the elec-
trons as they approach the edge of the 2DEG (top left). The undis-
turbed cyclotron motion at y1 is increasingly squeezed as the guiding
center approaches the edge (positions y2 and y3). As a consequence,
the energy of the Landau level increases (right), while the electrons
delocalize along the x-direction (bottom).
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7.3.1
Edge states

At the edge of the 2DEG, the conduction band bottom increases sharply and
modifies the combined potential of the Landau harmonic oscillators and the
electrostatic confinement. The increased confinement shifts the Landau levels
to higher energies. Each LL crosses the Fermi level at some point, and con-
sequently the density of states at the Fermi level is always larger than zero.
As sketched in Fig. 7.17 as well, the electrons skip along the edge. There-
fore, we speak of skipping orbits and edge states. Edge states have several pe-
culiar features, which become self-evident immediately. First of all, they are
one-dimensional: the electron motion is confined perpendicular to the sample
edge, but is free in the direction parallel to it. Second, all the electrons at one
sample edge move in the same direction, while the electrons at the opposite
edge move in the opposite direction. In the bulk, all electrons are localized
at potential modulations, except for special filling factors, as already shown
in Section 6.2. The resulting edge state configuration with the directions of
current flow is shown in Fig. 7.18.6

Fig. 7.18 Top view of a Hall bar in a strong magnetic field. Current
flows in one-dimensional edge states only, in the directions indicated
by the arrows. Here, two Landau levels are occupied.

There is no backscattering in edge states, i.e. the elastic mean free path ap-
proaches infinity. Suppose an electron in an edge state hits a scatterer close to
the edge. Its momentum right after the scattering event may be reversed, but
the strong magnetic field bends the momentum back into the forward direc-
tion. In order to be backscattered, the electron has to traverse the whole Hall
bar and reach the opposite edge! Hence, backscattering is greatly reduced. It

6) Since the electrons circulate around the edge, one speaks of a chiral
Fermi liquid.
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follows that a 2DEG in the quantum Hall regime comes very close to an ideal
ballistic quantum wire: it is one-dimensional and backscattering is absent. We
can even attach voltage probes inside the quantum wires without inducing
backscattering. Therefore, the voltage drop between, for example, contacts 1
and 2 in Fig. 7.18 should be zero. You will have realized, of course, that this
is exactly what we measure in a Shubnikov–de Haas experiment. In [47], the
Landauer formula has been generalized to an arbitrary number of contacts,
such that circuits of ballistic quantum wires can be treated. The concept is
known as the Landauer–Büttiker formalism.

Consider a circuit of ballistic quantum wires, like, the system of Fig. 7.18.
We define the direct transmission probability of contact p into contact q as
Tq←p = Tqp. It is possible to have Tqp > 1, since more than one mode may
connect the two contacts. Note that Tqp does not have to be an integer. Note
further that, within this notation, Tpp is a backscattering probability. The total
current emitted by contact p is denoted by Ip, while µp is the electrochemical po-
tential of contact p. Again, an “ideal” contact absorbs all incoming electrons
and distributes the emitted electrons equally among all outgoing modes, such
that they are filled up to µp , assuming zero temperature.

In this notation, the Landauer formula generalizes to the Büttiker formula

Ip =
2e
h ∑

q
(Tqpµp − Tpqµq) (7.34)

which is a direct consequence of current conservation. We proceed by apply-
ing the Büttiker formula to the sample shown in Fig. 7.18. It gives a system of
six linearly dependent equations, one for each contact:⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Is
Id
I1
I2
I3
I4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

G 0 −G 0 0 0
0 G 0 0 0 −G
0 0 G −G 0 0
0 −G 0 G 0 0

−G 0 0 0 G 0
0 0 0 0 −G G

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Vs
Vd
V1
V2
V3
V4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

with G = j(2e2/h). By choosing µd = 0 as a reference potential, and after
eliminating the drain current as a consequence of current conservation (re-
member that the voltage probes measure the potentials without drawing cur-
rent), we can eliminate the drain row and column, and the following matrix
equation results:⎛
⎜⎜⎜⎜⎝

Is
I1
I2
I3
I4

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

G −G 0 0 0
0 G −G 0 0
0 0 G 0 0

−G 0 0 G 0
0 0 0 −G G

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

Vs
V1
V2
V3
V4

⎞
⎟⎟⎟⎟⎠
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Its solution gives

Vs = V3 = V4, V1 = V2 = 0, Is = GVs (7.35)

a result that you may have guessed, considering, for example, that probes 1
and 2 are resistanceless connected to drain. Therefore, we find the longitudi-
nal resistance

Rxx =
V1 −V2

Is
=

V3 −V4

Is
= 0 (7.36)

and the Hall resistance

Rxy =
V3 −V1

Is
=

V4 −V2

Is
=

h
2je2 (7.37)

Within the edge state picture, the quantized Hall resistance is obtained, and
the longitudinal resistance vanishes. The accuracy of the quantization is so
much more accurate than in a QPC because backscattering is greatly sup-
pressed. Let us now consider what happens as we increase the magnetic field,
such that the uppermost occupied LL gets depleted. The corresponding edge
state, which is the innermost occupied one, is depopulated as well. Since the
velocity in the x-direction of the electrons in edge state j is given by

vj(kx) =
1
h̄

∂Ej(kx)
∂kx

=
1
h̄

∂V(y(kx))
∂y

∂y
∂kx

=
1

eB
∂V(y)

∂y
(7.38)

where we have used y(kx) = h̄kx/eB, the velocity of the electrons approaches
zero as the edge state gets depleted. As a consequence, the edge state begins
to soften and the electron trajectories penetrate into the bulk. Finally, the elec-
trons can percolate all the way to the opposite edge, backscattering sets in,
and the conductance quantization vanishes.

Haug et al. [145] have performed an instructive experiment related to this
picture (see Fig. 7.19). A gate stripe extends across a Hall bar inside an area
that can be measured by four voltage probes. Biasing the gate tunes the elec-
tron density, and thus the number of occupied Landau levels, underneath. If
the filling factor under the gate is smaller than outside the gated area, edge
states get redirected at the gate. This changes the transmission probabilities in
Eq. (7.34).
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Fig. 7.19 Left: Sample geometry to control
backscattering between edge states. A top
gate covers the Hall bar in between four volt-
age probes. At suitable gate voltages, the in-
ner one of the two edge states gets reflected.
Right: For a 2DEG in the regime of filling vec-
tor 2, with spin-split edge states, a plateau

at Rxx = h/2e2 is observed as a function
of the gate voltage, once the reflection of the
inner edge state at the gate is complete. Af-
ter [145]. The dip around a gate voltage of
−0.2 V can be explained within a trajectory
network formed below the gate.

In Exercise E7.3 the resistances of this system will be calculated. The result
for filling factor N in the ungated region and M in the gated region is

R12 = R34 =
h
e2

(
1
M
− 1

N

)

R13 = R24 =
h
e2

1
N

R14 =
h
e2

(
1
M
− 2

N

)

R23 =
h
e2

1
M

(7.39)

Note that the results of some measurements now depend on the direction of
the magnetic field.

The Landauer–Büttiker formalism is a powerful tool, which allows to treat
a variety of problems very elegantly. Further examples are treated in the exer-
cises.

7.3.2
Edge channels

So far, we have interpreted edge states as guiding centers of electron trajecto-
ries in strong magnetic fields. Within this picture, the trajectories of electrons
moving in different edge states intersect, and we may expect a strong inter-
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Fig. 7.20 (a) Guiding center trajectories
within the edge state picture, for the case of
filling factor 2. Along these lines, the system
is metallic, while it is insulating everywhere
else. (b) The corresponding energies of the
Landau levels. Full circles denote occupied
states. (c) The resulting spatial variation of
the electron density. (d) In the edge channel
picture, the potential gets screened in the

metallic regions, and (e) the potential drop
concentrates within the insulating regions.
The edge states evolve into metallic stripes
of non-zero width, separated by insulating
stripes. The stripe width is determined by
the electrostatics of the configuration. (f) The
resulting electron density close to the edge.
After [53].

edge state scattering rate. In fact, the edge states are spatially separated in suf-
ficiently strong magnetic fields, and inter-edge state scattering is suppressed.7

This can be understood by studying the effects of screening at the edge (see
Fig. 7.20). At points where the edge states intersect the Fermi level, the system
has a metallic character. Here, the electrons in the edge state are able to screen
the confining potential, and edge channels are formed. The potential drop is
concentrated in the insulating regions. The electrostatics of edge states, which
is the topic of Paper P7.3, was considered first in [53]. Note that just before the
innermost occupied edge channel gets emptied, its width approaches infinity
and extends all the way to the opposite edge. As within our picture of the
previous section, backscattering becomes possible under these circumstances.

7) Note that this kind of scattering does not show up in the resistance,
unless special geometries are considered, like that of Exercise E7.4.
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7.4
Further examples of quantum wires

Conductance quantization was first detected in QPCs defined in 2DEGs by
gate voltages, and the vast majority of experiments have been performed on
such systems. But these results have also triggered the search for similar ef-
fects in other materials, in particular conventional metals and carbon nano-
tubes. Even quantized transmission of light through a pinhole has since been
discovered [214].

7.4.1
Conductance quantization in conventional metals

Once the behavior of QPCs in semiconductors was known, observing conduc-
tance quantization turned out to be possible in a very simple experiment: Just
pull a metallic wire and measure its resistance simultaneously. Right before
it breaks, you will observe quantized conductance. This experiment is per-
formed in several undergraduate lab courses, and you can even do it on your
kitchen table using a household wire [60].

Most of these experiments, however, are done in a more controlled setup.
For example, a thin metal wire is mounted as the tip of a scanning tunneling

Fig. 7.21 A mechanically controlled break junction for observing con-
ductance quantization in an Al QPC. The elastic substrate is bent by
a pushing rod with a piezoelectric element. The thin Al bridge, fabri-
cated by electron beam lithography, can be broken and reconnected
for many cycles. Taken from [263].
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microscope (STM) and pushed toward a metal surface. Fig. 7.21 shows a me-
chanically controlled break junction, another widely used setup. Fig. 7.22 re-
produces a typical experimental current trace as a function of time over which
the junction is deformed. Clear conductance steps can be observed, although
they do not necessarily have the “right” values. This is attributed to the de-
tails of the breaking process: possibly, several QPCs are generated in parallel.
Disorder in the junction may modify the plateau values as well. Conductance
histograms taken over many cycles of breaking and reconnecting the junction,
however, show that the conductance is predominantly quantized in units of
≈ 2e2/h. The details of these experimental results contain a lot of informa-
tion. To a crude approximation, it may be assumed that, right before the wires
break, the current is carried via a single atom. The degeneracies of the con-
ducting modes of the atomic junction can be material-specific, as has been
demonstrated, e.g. in [196].

Fig. 7.22 Top: Conductance as a function of the deformation time of
a gold junction (an STM setup was used). The observed steps are
usually not quantized in units of 2e2/h. Bottom: A histogram of many
consecutive sweeps of the upper type, however, reveals that steps of
the expected height dominate. Adapted from [61].
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7.4.2
Molecular wires

The possibilities of molecular design are absolutely amazing. The synthesis
techniques are of utmost importance for a tremendously wide range of appli-
cations, ranging from, say, foams for thermal isolation through novel medica-
tions to applications in semiconductor processing, such as photo- or electron
beam resists. Should it not also be possible to design molecules with an elec-
tronic functionality relevant for applications? It is in fact possible, and a re-
search branch named molecular electronics has emerged from this question. In
its broadest sense, it spans all electronic applications of materials composed
of molecules, including, for example, organic semiconductors like those pre-
sented in Chapter 3. It has already been demonstrated that elementary op-
erations like switches [75] or memory cells [59, 251] can be made from single
molecules attached to wires. In a different kind of application, molecules are
also used as templates for the preparation of metallic wires [339] and even
more complicated structures like quantum interference devices [152].

Here, we consider individual objects that can be regarded as single-molecule
quantum wires. The most prominent and best studied example is carbon
nanotubes, provided we classify them as “molecules”. Carbon nanotubes are
comparatively large and can therefore be processed in relatively straightfor-
ward ways. As a downside, they do not represent an absolute size limit, since
other suitable, typically aromatic, molecules are still smaller. However, these
systems typically do not show the behavior of quantum wires, but instead
that of quantum dots; they are therefore discussed in Chapter 10.

7.4.2.1 Carbon nanotubes

Carbon nanotubes (CNs) have enjoyed wide popularity since 1992. They have
unique structural, mechanical, and electronic properties, which are treated in
several excellent books, as well as in review articles (for references, see the
further reading at the end of this chapter). Before we look at the quantum
wire aspects of CNs, we should defined what we actually mean by a carbon
nanotube.

We have seen in Chapter 2 that graphite consists of two-dimensional,
weakly coupled sheets of honeycomb lattices. By laser ablation, for example,
it is quite easy to produce individual graphite sheets. In 1991, it was dis-
covered that, under certain experimental conditions, these sheets roll up and
form hollow carbon cylinders (carbon nanotubes, CNs) with diameters of a
few nanometers only [160]. Their length, however, can be many micrometers.
One distinguishes between single-walled and multi-walled CNs, depending
on the number of concentric carbon cylinders. Of particular interest are single-
walled CNs, since these well defined systems can be treated theoretically to a
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Fig. 7.23 Scheme of a sheet of graphite used to roll up a CN.

considerable depth. In Fig. 7.23, a graphite sheet used to form a CN is shown.
The chirality vector �C defines a stripe that is cut out of the 2D lattice. The CN
is formed by connecting the edges of this stripe, located at the bottom and
the top of �C. Hence, |�C| is the diameter of the CN. It has become common
practice to characterize the structure of a CN by the coordinates (n1, n2) of �C
with respect to the lattice vectors�a1 and�a2 of the graphite sheet. For example,
the CN shown in Fig. 1.6 is a (10, 5) tube, which means that �C = 10�a1 + 5�a2.
Note that it suffices to consider tubes with 0 < n2 < n1.

For apparent reasons, CNs with cross sections along the bold lines are called
“zigzag” and “armchair” tubes, respectively. The elementary lattice vector of
the resulting CN, which is perpendicular to �C in the graphite sheet, is denoted
by �A. Its length is the minimal distance for which top and bottom see iden-
tical environments. The additional periodic boundary condition modifies the
electronic band structure. Clearly, a CN is a quasi-one-dimensional system.
It is furthermore obvious that the wave vector ky perpendicular to the tube
axis gets quantized, such that one-dimensional modes emerge from the two-
dimensional energy dispersion of the graphite sheet (Fig. 2.3). Depending on
the direction of the CN axis (parallel to �A) and the circumference of the CN,
the kx of one mode may or may not hit a K-point of the graphite sheet’s Bril-
louin zone (see Fig. 7.24), and hence a metallic or a semiconducting CN results.
It can be shown that CNs are metallic if (2n1 + n2) is an integer multiple of 3
(see e.g. the further reading at the end of this chapter). The energy dispersion
of these two classes of CNs are reproduced in Fig. 7.25.

The calculated densities of states (Fig. 7.26 gives an example) agree very
well with experimental results [224,328] obtained by scanning tunneling spec-
troscopy. The quasi-one-dimensional character is apparent. The mode separa-
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Fig. 7.24 By periodic boundary conditions in the y-direction, the Bril-
louin zone of the graphite sheet (dashed hexagon) gets partly quan-
tized, and one-dimensional modes (lines) in the x-direction, i.e. along
the CN axis, result. Left: If some K-points fall on the modes, the CN is
metallic. Right: The 1D modes miss the K-points. The CN is semicon-
ducting.

Fig. 7.25 Band structures of (a) metallic and (b) semiconducting CNs.
After [138].

tion is of the order of 100 meV, much larger than in lithographically patterned
QWRs.

Making low-resistance contacts to CNs has turned out to be very difficult.
Such samples are typically prepared by depositing CNs on an insulating sub-
strate that contains some metallic electrodes. By chance, a CN will make con-
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Fig. 7.26 The calculated density of states of (a) semiconducting
and (b) metallic carbon nanotubes. The Fermi energy is at E = 0.
The bandgap equals 0.7 eV in the semiconducting CN. Adapted from
[257].

tacts with two or more electrodes, and multi-terminal transport measurements
become possible. Usually, the contact between, say, a gold electrode and a CN
in such a sample is a tunnel barrier. It has been shown that the contact resis-
tance can be reduced by electron beam irradiation of the contact region [18];
also, the contact becomes much better when the electrodes are patterned on top
of the deposited CNs. In neither of these setups, however, could conductance
steps be observed. An experiment that demonstrates conductance quantiza-
tion in multi-walled CNs has been performed in [103]: the authors immersed
a CN attached to the tip of an STM into liquid mercury, and observed conduc-
tance steps as a function of the tip position at room temperature.

In metallic CNs, there are two spin-degenerate modes at the Fermi level,
and we expect a quantized conductance of G = 4e2/h, in the case when a
single cylinder of a multi-walled CN couples to the reservoir. Instead, steps
of height 2e2/h are observed. The origin of this discrepancy has remained
unexplained. Possibly, the spin degeneracy is lifted by electron–electron inter-
actions.
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7.5
Quantum point contact circuits

7.5.1
Non-Ohmic behavior of QPCs in series

Combinations of QPCs offer a variety of experimental options. Even the most
elementary one, namely just two QPCs, already raises interesting questions.
In Fig. 7.27, the resistance of two QPCs in series, with a separation much
smaller than the elastic mean free path, is shown as a function of the voltages
applied to the two split gates. It is immediately apparent that Ohm’s law is
violated: the series resistance is much smaller than the sum of the individual
QPC resistances. We denote the individual conductances of QPC1 and QPC2
by G1 and G2, respectively. The series resistance of both QPCs between the in-
jector and the collector is denoted by Gic. Experimentally, Gic ≈ min{G1, G2}
was found in this experiment. Apparently, the QPC that is narrower deter-
mines the total resistance, while the electrons pass the second one with no
or little further resistance. One is therefore tempted to guess that the contact
resistance of the second QPC is strongly reduced.

This behavior can be explained by the ballistic character of the electron mo-
tion in between the QPCs, in combination with the adiabatic coupling men-
tioned in Section 7.2.2. Suppose the electrons exit the QPC in an adiabatic
fashion, i.e. they remain in the mode they used to pass through the QPC. As
the width of the constriction gets wider, the energy of the mode, and with it

Fig. 7.27 (a) Sketch of two QPCs in series. (b) The resistance as a
function of the voltages Vg1 and Vg1 applied to the split gates 1 and
2. The behavior is non-ohmic, and indicates that the total resistance
roughly equals the individual resistance of the QPC with fewer occu-
pied modes. The temperature was about 300 mK. Adapted from [327].
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Fig. 7.28 Adiabatic spreading of the wave function belonging to the
lowest mode of a QPC at its exit. As the channel gets wider, the trans-
verse electron momentum ky is reduced. The result is sketched to the
right: compared to the uncollimated beam, the probability density p(α)
for the electrons to be emitted in the x-direction peaks around α = 0.

the transverse momentum py, gets reduced. Consequently, the electrons in
that mode get collimated as they exit the first QPC: the ejection angle is smaller
than ±π/2, while the angular probability distribution of the electrons in the
2DEG reflects the sum of the probability densities of the QPC modes that carry
the current (see Fig. 7.28). This spatial distribution has been verified experi-
mentally by an ingenious experiment described in [304]. Thus, the electrons
more or less already have the correct transverse momentum needed for enter-
ing the second QPC.

To be more quantitative, we once again use the Landauer–Büttiker formula.
There is a direct transmission of electrons from the injector to the collector Tic.
However, since, in the setup of Fig. 7.27, the central region in between the
QPCs floats and the collector is grounded, current conservation tells us that
the injected flow of electrons will either escape back into the injector or finally
make it into the collector, after some scattering events that will take place far
away from the QPC region. If we assume that the middle area is large enough
for equilibrating these electrons, we can speak of the chemical potential of the
middle µm. Thus, either electrons are transmitted directly from the injector
into the collector, or they get absorbed and re-emitted by an effective reservoir
at potential µm.
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For the sake of simplicity, let us study the case of equal QPC conductances,
i.e. G1 = G2 = N×2e2/h. The Landauer–Büttiker equations then read

h
2e2 Ii = NVi − TmiVm − TciVc

h
2e2 Ic = NVc − TmcVm − TciVi

0 = [Nm − (1− Tmm)]Vm − TmiVi − TmcVc (7.40)

If we assume Tmi = Tmc and use Ii = −Ic, addition of the first two equations
of (7.40) gives

Ric =
Vi −Vs

Ii
= 2

h
2e2

1
(N + Tic)

(7.41)

This tells us that the series resistance is just the resistance of one QPC if Tic =
N, when all the electrons are directly transmitted. If Tic = 0, the resistances
follow Ohm’s law.

If the electrons were ejected from the first QPC with equal probability
into all directions, only a fraction ≈ w/(2πL) would be directly transmitted
for w � L. Here, L is the separation of the QPCs, and w is the effective
QPC width.

That the collimation effect actually determines the non-ohmic addition of
QPC resistances in series can be seen by studying Tic as a function of mag-
netic field. We expect that the collimated electron beam pattern gets de-
flected due to the Lorentz force, and Tic should show a strong peak at B = 0,
haloed by smaller side peaks at non-zero magnetic fields for QPCs with more
than just one conducting channel. Such experiments have been performed by
Molenkamp et al. [212] and by Shepard et al. [273].

7.5.2
QPCs in parallel

The resistance of QPCs in parallel in a ballistic circuit (see Fig. 7.29(a)) is a pe-
riodic function of the magnetic field. The electrons ejected from the first QPC
are forced on cyclotron orbits. For the correct polarity of the magnetic field,
the deflected electron beam is directly injected into the second QPC, provided
the separation between the QPCs is a integer multiple j of the cyclotron di-
ameter. A fraction of the electrons thus gets caught at the QPCs and circulates
around the separating barrier. Consequently, the resistance shows maxima for
jrc = s, where s is the separation. This can be nicely seen in Fig. 7.29(b), where
these resistance maxima have been measured in a one-dimensional array of 43
QPCs in parallel, with a spacing of s = 4.6 µm. Since the electron density was
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Fig. 7.29 The magneto-resistance of QPCs in parallel (a) shows peri-
odic peaks (b), due to commensurability between the cyclotron orbits
and the QPC spacing s (a, c). Adapted from [217].

n = 2.2× 1015 m−2, a peak spacing of

∆B =
√

8πn
h̄
es
≈ 34 mT

is observed. Note that the peak resistance is significantly larger than the re-
sistance at B = 0, while it is known that the resistance of an individual QPC
drops as B is increased – see Paper P7.2. Owing to the arrangement of many
QPCs in parallel, additional resonances are found in Fig. 7.29, which are la-
beled by m and correspond to trajectories that obey the resonance condition
for next-nearest-neighbor QPCs.

In this apparently simple explanation, two crucial assumptions have been
implicitly made. First of all, the scattering at the separating barrier must have
a large specularity. Here, the barriers have been defined by a shallow etch of
the Ga[Al]As surface, which gives a specularity of 1, to a good approxima-
tion [217]. Second, despite the collimation effect, the electrons are not strictly
ejected in the x-direction from the first QPC. However, a simple geometric
consideration shows that electrons that exit the QPC at an arbitrary angle in
the x-direction all get focused at separations δy = j

√
8πn/(eB), where δy de-

notes the distance of the focus from the QPC in the y-direction. Further details
of this magnetic electron focusing, which is well known from normal metals as
well as from charged particles in vacuum tubes, can be found in Paper P7.4.
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7.6
Semiclassical limit: Conductance of ballistic two-dimensional systems

Armed with the Landauer–Büttiker formalism, we are now in a position to
discuss how the conductance of a ballistic, quasi-two-dimensional sample can
be treated. Recall that, at liquid helium temperatures, the elastic mean free
path in 2DEGs can easily become as large as 10 µm, which allows us to de-
fine rather complex ballistic electronic circuits. But how shall we model this?
Clearly, the Boltzmann model is of no help: it is based on momentum relax-
ation by random scattering. On the other hand, we have just seen how, in
quasi-1D systems, the conductance is obtained from transmission probabili-
ties. As the QWR width becomes wider, it approaches a 2D sample, and the
number of occupied modes becomes very large. They will no longer be resolv-
able at some point, since their natural width in energy is larger than the mode
spacing. Nevertheless, there is no fundamental reason why the Landauer–
Büttiker formalism should not be applied to such a quasi-2D system. This
consideration gives us a powerful tool to analyze ballistic, two-dimensional
structures: (i) determine the number of modes from the sample width and the
electron density, (ii) calculate the transmission from lead p into lead q by an
appropriate method (e.g. by classical simulations), and (iii) insert both into
Eq. (7.34). This approach goes back to [26], where it was applied to calculate
the components of the resistance tensor of ballistic crossovers.

Here, we demonstrate this technique by studying a simple yet interesting
example known as a magnetic barrier [188], which is a strongly localized mag-
netic field peak in the transport direction (x-direction), oriented perpendicu-
lar to the plane of the 2DEG (see Fig. 7.30). A magnetic barrier can be pre-
pared by a ferromagnetic disk on top of a Hall bar, which is magnetized in
the x-direction by an in-plane magnetic field B‖. The fringe field can be ap-
proximated by a magnetic dipole field. At the location of the 2DEG, its z-
component is strongly localized, with extremal points below the edge of the
disk (Fig. 7.30(a)). We call one of the two peaks in Bz(x) the magnetic barrier.
That one centered at x = 0 is given by

Bz(x) =
µ0 M(B‖)

4π
ln
(

x2 + z2
0

x2 + (z0 + h)2

)
(7.42)

where µ0 M is the magnetization and h is the thickness of the ferromagnetic
disk, while z0 denotes the distance of the 2DEG from the surface (Fig. 7.30(b)).
We can measure the barrier resistance by supplying a current in the x-direction
and probing the voltage drop at contacts 1 and 2 [182].

As |B‖| is increased, an increase in Rxx is observed in Fig. 7.31(a), which
is very steep around B‖ = 0 and saturates at larger magnetic fields. The
minimum is not exactly at x = 0, which is a consequence of the hysteretic
behavior of the magnetization. This measurement is readily understood qual-
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Fig. 7.30 Experimental realization of a magnetic barrier. (a) Top view
and cross section. (b) Shape of the barrier Bz(x) that emerges around
x = 0 according to Eq. (7.42).

Fig. 7.31 (a) Measurement of a magnetic barrier resistance as a func-
tion of B‖ (full line), in comparison with the calculation obtained from
the Landauer–Büttiker formalism (dashed line). Adapted from [310].
(b) Trajectories of electrons injected toward the magnetic barrier (gray
area) at different angles α0 = 15◦ and 60◦, respectively.

itatively: As the electrons enter the magnetic barrier region, they experience a
Lorentz force with an x-dependent cyclotron orbit. Depending on the angle of
incidence and on the magnetic barrier height, i.e. on B‖, they get transmitted
or reflected (see Fig. 7.31(b)). Once the magnetization of the ferromagnet is
saturated, B‖ has no further effect on the magnetic barrier, and Rxx remains
constant.
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We proceed by describing the resistance of the barrier with the adapted
Landauer–Büttiker formalism. For simplicity, we consider a two-terminal con-
figuration and assume that the resistance in series with the magnetic barrier is
negligible. For this scenario, Eq. (7.34) reads

h
2e

I = T(µS − µD) =⇒ G =
2e2

h
T (7.43)

We have a large number of modes N, and express T as

T = N〈T〉 (7.44)

where 〈T〉 denotes the transmission probability of the electrons at the Fermi
level, averaged over all modes. To establish a connection to a semiclassical
scenario, we can construct wave packets by superposition of the electronic
wave functions of the occupied modes, which will result in classical particles
moving with the Fermi velocity and which are injected at, say, x = x0, toward
the barrier with a constant angular distribution. Thus, 〈T〉 is obtained from
averaging over the transmission probabilities T(x0, y, α0), where α0 denotes
the angle between the injection wave vector and the x-direction. In addition,
each angle of incidence has to be weighted by the partial flux it carries in the x-
direction, which is proportional to vx and hence to cos α0. According to these
considerations, the conductance is given by [170]

G =
2e2

h
N〈T〉

with

〈T〉 =
W∫

y=0

π/2∫
α0=−π/2

1
W

cos α′0
2

T(x0, y, α′0) dα′0 dy (7.45)

where the factor 1/2 originates from the normalization condition for the inci-
dent flux, i.e.

〈vx〉 = vF

π/2∫
α0=−π/2

cos α′0 dα′0 = 1
2 vF

Moreover, N can be expressed as N = kFW/π.
The transmission probability 〈T〉 may be obtained from a numerical simu-

lation of an ensemble of trajectories, for example. The case of the magnetic
barrier, however, can be solved analytically. Consider the effect of the bar-
rier on an electron injected toward the barrier at x0 in a direction given by α0.
As the barrier is approached, the electron experiences an increasing Lorentz
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force, which results in an x-dependent cyclotron motion, with decreasing cy-
clotron radius. The electron will be reflected if, at some position x, the electron
moves in the +y-direction. This depends not only on the shape and strength
of the barrier, but also on the angle of incidence. The magnetic barrier can thus
be thought of as a ballistic angular filter. Above a critical angle of incidence
α0 = αc, all electrons will be reflected. We can obtain αc from a geometric con-
sideration. Consider the cyclotron orbit of infinitesimal length ds = rc(x) dα

that the electron performs at x. Along ds, it moves dx = ds cos α dα in the
transport direction. Since rc(x) = vFm∗/(eBz(x)), we can determine the angle
α(x) of the electron velocity with respect to the x-direction from

e
m∗vF

x∫
x0

Bz(x′) dx′ =
α∫

α0

cos α′ dα′

Reflection occurs if α = π/2 is reached at any position x. The critical angle of
incidence is therefore given by

sin αc = 1− e
m∗vF

∞∫
x0

Bz(x′) dx′ (7.46)

which also implies that the barrier is closed for all electrons if

∞∫
x0

Bz(x′) dx′ ≥ 2m∗vF

e

With this result, it is straightforward to calculate 〈T〉 for a magnetic bar-
rier, provided we neglect corrections due to effects at the edge of the Hall bar.
Clearly, T(x0, y, α0) = 1 for −π/2 ≤ α0 < αc, and = 0 otherwise. Thus,

G =
2e2

h
kFW
π

(
1− eΦb

2m∗vF

)
, αc > −π/2

G = 0, αc = −π/2 (7.47)

with

Φb =
∞∫

x0

Bz(x′) dx′

If the electrons are injected well before the magnetic barrier, one obtains

Φb =
∞∫
−∞

Bz(x′) dx′ = 1
2 µ0 Mh
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In this approximation, the conductance is independent of z0. Then Eq. (7.47)
describes the experimental data reasonably well (see Fig. 7.31(a)). Note that,
in order to compare experiment and model, the magnetization characteristic
of the ferromagnet µ0 M(B‖) has to be determined independently, which can
be done by the technique of Hall magnetometry [215].

What happened to the contact resistance in this picture? In Eq. (7.47), it is
included since we started from the two-terminal configuration. Alternatively,
we could perform a more complicated calculation modeling the four-probe
geometry of Fig. 7.30, and determine the chemical potential of the two voltage
probes under the condition that they draw zero current [26]. In such a case,
the result, G = (µ1 − µ2)/eI, would not contain the contact resistance. In our
classical model in a two-terminal configuration, it enters implicitly via the as-
sumption of point-like electrons. Such a wave packet can only be constructed
from an infinite number of wave functions, which means that the electron gas
must have an infinite width at the point of injection.

The method presented here is one way to determine the conductance of non-
diffusive samples, i.e. of samples with scattering properties that do not lead
to an exponential and homogeneous momentum relaxation. It is a powerful
tool that can be applied to a wide variety of systems. We will get to know a
different, complementary, technique applicable to such cases in Chapter 11,
where we investigate transport through artificial crystals.

7.7
Concluding Remarks

As the feature size of our electronic devices keeps decreasing, the quantum
wire aspect of an electrical connection will become more and more impor-
tant. Conductance quantization in quantum wires is one of the milestones in
mesoscopic physics, and its detailed explanation is not trivial. Throughout
this chapter, we have treated the electrons as non-interacting. It is known,
however, that the Landauer formula remains valid for an interacting region
connected to non-interacting leads, which host the eigenstates of the incom-
ing and outgoing waves.

Both non-interacting and interacting electron gases in one dimension can be
mapped onto non-interacting bosons, as long as the energy of the excitations
is small, i.e. the energy dispersion can be assumed as linear. The resulting sys-
tem is a Luttinger liquid. Luttinger liquids are distinctly different from Fermi
liquids. For example, they show spin–charge separation, which means that
the spin and the charge are decoupled and have different group velocities. The
Luttinger liquid aspects of one-dimensional electron systems are currently an
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active field of research. The interested reader is referred to [265] as a starting
point for further studies.

Papers and Exercises

P7.1 In [120], the authors derive the QPC conductance quantization by as-
suming that the narrowest point of the constriction determines the resis-
tance. Discuss what determines the conductance in this model, and why
it is quantized.

P7.2 At weak magnetic fields, QPCs show a negative magneto-resistance, as
reported first in [157]. Develop a picture of this effect.

P7.3 In [53], the electrostatics of edge channels is developed. Quantify the
edge channel geometry illustrated in Fig. 7.20.

P7.4 The paper by van Houten et al. [158] discusses in detail the effect of
magnetic electron focusing in 2DEGs. Start by studying the formation of
caustics (appendix C therein). Next, follow the instructive derivation of
the expressions for the four-terminal experiments of section IV, as elab-
orated in appendix D and section V of that paper [158].

E7.1 An infinitely long quantum wire extends along the x-direction. In the z-
direction, only the lowest subband is occupied. The confinement in the
y-direction is parabolic: V(y) = 1

2 m∗ω2
0y2. A magnetic field is applied

in the z-direction.

(a) Write down the two-dimensional Schrödinger equation (use the
Landau gauge �A = (By, 0, 0), and ignore the z-direction). Solve
the equation using the ansatz Φ(x, y) = eikxxψ(y). Show that, by
suitable substitution, the problem is equivalent to a harmonic oscil-
lator.

(b) Interpret the above results. Focus in particular on the evolution
of the energy levels as a function of B, as well as on the energy
dispersion in the x-direction. Discuss further the limits ω0 → 0
and ωc → 0.

(c) Derive Eq. (7.10). [Hint: Use the density of states of a parabolic
quantum wire and approximate the sum by an integral.]

E7.2 Consider the transmission of the lowest mode of a QPC, modeled by the
transmission function T(E) = θ(E− E1). Show that the conductance G
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as a function of the chemical potential in the reservoirs and of E1 has
the form of Eq. (7.17). Calculate also the characteristic temperature for
which the conductance quantization is thermally smeared. Assume that
adjacent modes are separated by an energy difference ∆. Assume that
the source–drain bias voltage is infinitely small.

E7.3 In this exercise, the resistances measured on the sample shown in
Fig. 7.19 will be calculated. We assume that the filling factor in the un-
gated region is N; below the gate, the filling factor is given by M ≤ N.
Both filling factors are integers. The spin degeneracy is lifted in all edge
states.

(a) Set up the matrix equation obtained within the Landauer–Büttiker
formalism.

(b) Calculate the resistances Rij, for i, j = 1, . . . , 4. Explain the plateau
at Rxx = h/2e2 in Fig. 7.19.

E7.4 Conventional Hall geometries are insensitive with respect to electron
scattering between edge states at the same edge. Nevertheless, such
scattering exists, and can be characterized by a coupling p between ad-
jacent edge states along a distance L. This coupling p is defined as
p = (∆µ−∆µ∗)/∆µ, where ∆µ and ∆µ∗ denote the potential differences
between the edge states at the beginning and at the end, respectively, of
the distance L. (Is this a meaningful definition?) We study the coupling
between the two spin-split edge states of the first Landau level. Exper-
imentally, a Hall bar is adjusted in the regime of filling factor 2. The
sample contains two gates across the Hall bar (see Fig. 7.32). These gates
are biased to a regime where edge state 1 is transmitted, while edge state
2 is reflected. The distance between the gates is our length L.

Fig. 7.32 Sample geometry for Exercise E7.4.
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(a) Assume that p is equal for both edges. Write down the matrix
equation and determine µi (i = 1, . . . , 4, 2∗, 3∗, c, and c∗), as well
as the current IS = ID. Note that, due to charge conservation,
µ3 + µ∗c = µ∗3 + µc, and, similarly, µ2 + µc = µ∗2 + µ∗c .

(b) The equilibration length Leq is defined as the distance the electrons
have to travel before the potential difference ∆µ between two adja-
cent edge states decreases to 1/e = 0.368 of its initial value. Deter-
mine Leq from p. How large is Leq for typical experimental num-
bers of R12 = 0.53h/e2 and L = 50 µm?

E7.5 This exercise is about forming carbon nanotubes.

(a) Express the �C shown in Fig. 7.23 in terms of the lattice vectors �a1
and�a2 of the graphite sheet. Determine n1 and n2. Give the general
condition for (n1, n2) for (i) armchair and (ii) zigzag tubes.

(b) Calculate �A(n1, n2) for the �C in Fig. 7.23.

(c) Calculate the fundamental reciprocal lattice vector �B of the CN.
Draw the first Brillouin zone of the CN in the Brillouin zone of a
graphite sheet. What is the mode spacing ∆ky due to quantization
along the CN circumference? Illustrate these modes in the Brillouin
zone.

(d) Is this particular CN metallic or insulating?

(e) Consider the energy dispersions of Fig. 7.25. The metallic and semi-
conducting tubes are (12, 0) and (13, 0), respectively. Estimate the
effective mass in the conduction/valence band of the semiconduct-
ing tube close to the band extremal points. What is the effective
mass at the Fermi level of the metallic tube? Calculate the density
of states around the Fermi level for the metallic CN. Why is it con-
stant, although the system is one-dimensional? Does the chemical
potential depend on temperature?

E7.6 Use the Landauer–Büttiker formalism to calculate Vc/I in Fig. 7.33(a),
and Ic/Vi in Fig. 7.33(b). Assume identical QPCs in both cases. Discuss
the advantages and disadvantages of both these setups.
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Fig. 7.33 Measurement configurations considered in Exercise E7.6.

Further Reading

More on quantum wires in general can be found in [27]. The reader is also
referred to [65], which in particular provides a detailed discussion of many
aspects related to conductance quantization, as well as to [90]. An excellent
review on QPCs is the article [159]. Finally, carbon nanotubes are the topic of
two recent books, namely [258] and [141].
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8
Electronic Phase Coherence

In the previous chapters, we have implicitly assumed that the electrons are
phase coherent in the confined directions, but have not considered the pos-
sible consequences of phase coherence in the extended directions. Do such
effects exist at all? The answer is “Yes”, as you may have guessed. Coher-
ence manifests itself in electronic interferences, which can take place within
the time scale τφ and the corresponding length scale �φ. Interference effects
remind us of wave optics, and there are in fact many analogies. The most
important signatures of electronic phase coherence in diffusive systems are
Aharonov–Bohm type effects, weak localization, and universal conductance
fluctuations, which are the topic of Sections 8.1, 8.2, and 8.3, respectively. In
Section 8.4, we have a look at phase coherence in ballistic systems. The final
section (Section 8.5) introduces the resonant tunneling effect, i.e. the transmis-
sion barriers of tunnel barriers in series with a spacing smaller than the phase
coherence length.

8.1
The Aharonov–Bohm effect in mesoscopic conductors

In 1959, Aharonov and Bohm published a seminal gedanken experiment [1].
The authors predicted that the partial waves of a charged particle enclosing
an electrostatic or magnetic potential experience a magnetic phase shift, even
if the electric and magnetic fields vanish in the regions of non-zero probability
density. This phase should be distinguished from the dynamic phase, which
is the frequency of the plane wave electronic states at the Fermi energy, inte-
grated over time. Interferences as a function of the relative phase shift occur,
which are known as the electrostatic and the magnetic Aharonov–Bohm (AB)
effect, respectively.

In Fig. 8.1, an experimental setup suited to test this prediction is shown. A
ring is patterned out of a metal or a 2DEG, with a circumference smaller than
the phase coherence length. Suppose a conducting ring encloses a magnetic
vector potential �A that generates a constant magnetic field perpendicular to
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Fig. 8.1 Sketch of a sample used to study the Aharonov–Bohm effect.
Interfering trajectories that cause h/e and h/2e oscillations are drawn
to the left and to the right, respectively.

the plane of the ring.1 The phase collected by the electrons during their pas-
sage through branch j of the ring (j denotes the upper or the lower semicircle)
is given by

φj =
e
h̄

∫
j
�A dΓ

φupper =
eBS
2h̄

, φlower = − eBS
2h̄

(8.1)

Here, S denotes the area enclosed by the ring, and Γ is the parameterized tra-
jectory. The total transmission probability T is obtained by summing up all the
probability amplitudes and calculating the absolute value of the square. For
now, we neglect multiple reflections at the entrance and exit of the ring. Let
us further assume that, for �A = 0, both branches have identical transmission
amplitudes t0. The total transmission probability T is obtained from

tj = t0eiφj =⇒
T = (tupper + tlower)∗(tupper + tlower) = 2T0

[
1 + cos

(
eBS

h̄
+ φ0

)]
(8.2)

Apparently, T oscillates as a function of B, with a period of one magnetic flux
quantum Φ0 = h/e that penetrates the ring. Experimentally, the AB effect on
metallic loops was first observed in gold rings [316] (see Fig. 8.2). It was later
reproduced in rings defined in a Ga[Al]As heterostructure [303] (see Fig. 1.2
for such data). In these experiments, the amplitudes were much smaller than
predicted by Eq. (8.1), since �φ was smaller than the ring circumference, and
thus only a fraction of the electrons could pass the ring coherently.

So far, interferences have been taken into account to first order only. For
sufficiently large �φ, there are of course also higher-order interferences, for ex-
ample, between two partial waves that have traversed both arms clockwise

1) This is not exactly the original proposal in [1], since the branches
of the ring are penetrated by the magnetic field. For very narrow
arms compared to the ring diameter, however, this modification is
irrelevant.
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Fig. 8.2 AB effect as observed in a gold ring (the sample is shown in
the inset). In (b) the Fourier spectrum of the raw data in (a) is shown.
A strong eS/h frequency is observed, while the second order 2eS/h is
much weaker. After [316].

and counterclockwise, respectively (see Fig. 8.1). Owing to their interference
at the ring’s entrance, the reflection probability is a periodic function of B. The
period of these oscillations is half the AB period, h/2eS. They are known as
Altshuler–Aronov–Spivak (AAS) oscillations [2] and are of particular relevance
in mesoscopic physics. Since both trajectories traverse exactly the same path,
their phase difference at the ring’s entrance is always zero, independent of the
size and shape of the loop. The interference is constructive, which leads to
a backscattering probability that is enhanced compared to the classical value.
One speaks of coherent backscattering. In an ensemble of AB rings, all the initial
phases φ0 are randomly distributed, while they are always zero for the AAS
oscillations. We therefore expect that, in ensembles of rings, the AB oscilla-
tions average to zero, while the AAS oscillations survive ensemble averaging.
This was demonstrated first in [272] (Fig. 8.3), long before the AB oscillations
could be detected in individual rings. This experiment was carried out with
an insulating cylinder (diameter about 1.5 µm), coated with a thin Mg film.
Measuring the resistance between the top and the bottom of the cylinder in a
magnetic field along the cylinder axis can be thought of as ensemble averag-
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Fig. 8.3 The experiment of Sharvin and Sharvin [272]. The resistance
as a function of the magnetic field along the cylinder axis oscillates
with a period of h/2eS, i.e. it shows AAS oscillations. AB oscillations
are absent. After [272].

ing over many rings in parallel. Owing to the small variations in the diameter,
several oscillation periods can be observed.

Ensemble averaging was systematically investigated in [308]. Different
numbers (j = 1, 3, 10, and 30) of silver rings were patterned in series, and
the amplitudes of the various oscillation periods were investigated. It was
found that the amplitude of the AB oscillations drops with 1/

√
j while the

amplitude of the AAS oscillations remains constant (Fig. 8.4).

8.2
Weak localization

Imagine an experiment where a lot of rings with a broad size distribution are
measured simultaneously. What will remain of the magneto-oscillations? We
surely can no longer expect to observe them, since each loop area has its own
period, which will ensemble average.2 Note, however, that all the resonant
backscattering waves are in phase at B = 0, and the resistance is enhanced as
compared to the incoherent case.

To be a bit more specific, we follow the line of arguing presented in [27]
and consider the probability P(�r1,�r2, t) for the electron to move from�r1 to�r2

2) Small magnetic fields are assumed, such that Shubnikov–de Haas
oscillations are absent.
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Fig. 8.4 Top right: Three Ag loops in series. The size of the loops is
940 nm × 940 nm. The width of the Ag wires is about 80 nm. Left:
The Fourier spectra of the magneto-resistance oscillations observed
in one ring (top) shows both h/e and h/2e components. For 30 loops
in series (bottom), however, the h/e component is absent, while a
weak h/4e component has emerged. Right: The relative strengths
of the Fourier peaks are plotted vs. the number N of rings in series.
After [308].

within the time t. Thus P(�r1,�r2, t) is the squared sum of all the probability
amplitudes Ai for this propagation within t:

P(�r1,�r2, t) =
∣∣∣∣∑

i
Ai

∣∣∣∣2 = ∑
i
|Ai|2 + ∑

i �=j
Ai A

2
j (8.3)

The first term on the right-hand side is the classical probability for the electron
to propagate between the two points along any path within t. The second term
results from interferences. Since the phases of Ai are uncorrelated, the inter-
ference term averages to zero, with one exception: for�r1 = �r2, we can form
pairs of trajectories that correspond to identical paths, traversed in opposite
directions. In other words, the two paired propagators can be mapped on each
other by time inversion. At B = 0, their phases are identical, and interference
is constructive. Such pairs thus give a non-vanishing contribution to the inter-
ference term. Since |Ai + Atime reversed

i |2 = 4|Ai|2, we find an enhancement of
the backscattering probability by a factor of 2, compared to the classical value,
for such propagators. As the magnetic field is increased, the contribution of
the largest rings in the ensemble to the resistivity will oscillate rapidly, while
the phase difference in the smallest rings will remain essentially unchanged.
Hence, the larger the magnetic field, the fewer rings will contribute to the
constructive interference, and the resistance should drop to its classical value,
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Fig. 8.5 Inset: A fraction of the electronic trajectories in a diffusive
2DEG form closed loops and lead to coherent backscattering. Main
figure: WL peak as a function of B, and for various temperatures be-
tween 170 and 940 mK. The sample was a Si–SiGe quantum well
containing a hole gas. Adapted from [271].

once the phase shift in the smallest rings is of the order of π. This is exactly
the situation encountered in a diffusive electron gas. The ensemble of loops is
formed by the elastic scatterers (see Fig. 8.5). This coherent backscattering at
randomly distributed scatterers is called weak localization (WL). The localiza-
tion of the electrons due to coherent backscattering is thereby distinguished
from strong localization, which takes place in highly disordered samples.

Experimentally, we can thus expect an increased resistivity in diffusive sam-
ples due to WL at zero magnetic field, which is reduced to its classical value
as the magnetic field increases. Of course, there will be no AAS oscillation
because of the averaging. This is observed in experiments (see Fig. 8.5). The
functional form of this WL peak depends on several parameters. For a two-
dimensional system, i.e. for a sample width larger than �φ, Altshuler et al. [3]
have derived the magnetic field dependence of the WL correction to the clas-
sical conductivity:

∆σWL
xx (B) =

e2

2π2h̄

[
Ψ
(

1
2

+
τB

2τφ

)
−Ψ

(
1
2

+
τB

2τ

)
+ ln

(
τφ

τ

)]
(8.4)

which at B = 0 reduces to

δσWL
xx = −gs

e2

4π2h̄
ln
(

1 +
τφ

τ

)
(8.5)

Here, Ψ(x) is the digamma function. For large arguments, it can be approxi-
mated by

Ψ(x) ≈ ln(x)− 1
x
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Fig. 8.6 (a) The data of Fig. 8.5 (circles), translated into longitudi-
nal conductivity σxx(B). The lines are least squares fits according
to Eq. (8.4). (b) Temperature dependence of τφ, as determined from
these fits. The line represents the theoretically expected 1/T depen-
dence. Adapted from [271].

Fig. 8.6 shows that typical data can be fitted very well to the Altshuler for-
mula.3 The fit parameter is the phase coherence time.

It is widely accepted that, at low temperatures, the dephasing occurs via
quasi-elastic electron–electron collisions [3]. For such a type of dephasing,
one expects a characteristic τφ ∝ 1/T dependence, which is usually found in
experimental data (see Fig. 8.6), except at very low temperatures. Here, τφ

saturates in most experiments. A plausible explanation is that the electron
temperature deviates from the bath temperature of the helium mixture in di-
lution refrigerators at very low temperatures.

8.3
Universal conductance fluctuations

Let us take another look at the quantum wire already presented in Figs. 7.3 and
7.4. In Fig. 8.7, its two-probe conductance as a function of the electron density
and of magnetic fields in the regime ωc < 0.45ω0, where Landau quantization
can be neglected, is shown. Around B = 0, a pronounced dip in the conduc-
tance can be seen, which is due to weak localization. In addition, conductance
fluctuations are observed as a function of both parameters outside the weak
localization peak. Cross sections of the conductance as a function of only one
parameter with the second parameter fixed show this more clearly.

Note that these fluctuations are not noise: the features are fairly symmetric
with respect to magnetic field inversion, and the features shift toward larger

3) Note that, in order to transform ρxx into σxx, the Hall resistivity has
to be measured as well.
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Fig. 8.7 Main figure: Conductance of the
quantum wire shown in Figs. 7.3 and 7.4, as
a function of the one-dimensional electron
density n and the magnetic field B. The gray
scale ranges from G = 1.4e2/h (dark) to
2.5e2/h (light). Cross sections as a function
of B for constant n = 6× 10−8 m−1, and as

a function of n at B = 0, are shown to the top
and to the right, respectively. The tempera-
ture is 90 mK. The figure on the right shows
the thermal smearing of the fluctuations as
the temperature is moderately increased to
850 mK.

electron densities as |B| is increased. In addition, the fluctuations smear out
rapidly as the temperature is increased to about 1 K. The typical fluctuation
amplitude is of the order of 0.2e2/h. Characteristic fluctuation periods are
≈ 20 mT and 5 × 106 m−1, respectively. These fluctuations are parametric,
i.e. they are perfectly reproducible as a function of the parameters, but they
are nevertheless fluctuations, since there is no way to control their individual
appearance. Also, the fluctuations look different in other samples with iden-
tical macroscopic properties, and they change in an individual sample when
we warm it to room temperature and cool it down again.

Apparently, the fluctuations depend on the mesoscopic structure of the sam-
ple. It is known that thermal cycling changes the impurity configuration of
the sample, but not the macroscopic features, like the impurity density or the
scattering times. It can thus be assumed that the fluctuations somehow char-
acterize the specific impurity configuration in the sample during a particular
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cooling down. Note that the amplitude and the width of the weak localiza-
tion peak fluctuate as well. This is an indication that the measurement does
not average over a huge number of weak localization loops, but just a few of
them. Furthermore, the fluctuations show a very strong temperature depen-
dence at ultra-low temperatures below 1 K, while the elastic scattering times
are essentially independent of temperature in this regime. This suggests that
these fluctuations are again a manifestation of electronic phase coherence: we
have just seen in Section 8.2 on weak localization that τφ ∝ 1/Θ in this tem-
perature range. This very qualitative line of arguing essentially sketches the
generally accepted interpretation of these conductance fluctuations.

Similar fluctuations can be observed in many mesoscopic samples where
the sample size is comparable to the phase coherence length, but larger than
the elastic mean free path. The quantum wire under consideration here, for
example, has a length of L = 40 µm, while �d = 5.7 µm and �q = 460 nm for
the 2DEG of which the wire was made. The phase coherence length inside
the wire is �φ ≈ 7 µm. In most samples with �e < L < �φ and for negligi-
ble temperature, it is found that the average fluctuation amplitude depends
on neither the sample size nor the strength and configuration of the elastic
scatterers. This is quite remarkable; apparently, more scatterers does not im-
ply more pronounced smearing of the fluctuations. Therefore, they are often
referred to as universal conductance fluctuations (UCF).

Unfortunately, there is no simple, intuitive picture for UCF, in contrast to
weak localization. Furthermore, the quantitative description of the fluctua-
tions strongly depends on many length scales, in particular the width and
length of the sample, as well as on �e, �φ and �T. We therefore refrain from a
discussion of UCF in all these regimes, and exemplify it by some qualitative
arguments for our wire. All theoretical models for parametric UCF are based
on the ergodicity theorem. Suppose that we measure the resistivity of various
samples with identical macroscopic parameters and sample sizes of a few elas-
tic mean free paths only. Furthermore, the samples are cooled to a regime
where �φ > �e. Even with identical resistivities over macroscopic length
scales, we can no longer expect to measure identical resistances in different
samples, since the exact number of scatterers will be sample-dependent. In
addition, the microscopic configuration of elastic scatterers is sample-specific,
even if their numbers are identical, and consequently the interference pattern
of the electron waves, and with it the transmission and reflection probabili-
ties, will be unique for each sample. As in weak localization, the interferences
of the electronic wave functions generate localization and reduce the conduc-
tance.

Experimentally, it is a rather tedious task to fabricate and measure suffi-
ciently many samples for good statistics. It is, however, generally accepted
that the systems under consideration here behave ergodically. Suppose that we
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measure a quantity q in an ensemble of samples with identical macroscopic
parameters, and determine the variance of q. In a second experiment, we
measure the same quantity in only one member of the ensemble as a function
of a parameter p (which can be, for example, the electron density or the mag-
netic field), and average the quantity over p. By definition, a system is called
ergodic (with respect to q) if the two averaging procedures give the same mean
value and the same variance. This definition assumes that both the number
of samples in the ensemble and the scan range of the parameter are infinite.
In a simple picture, we can imagine that, in both experiments, we average
over many micro-states of the system. Non-ergodic samples are thus samples
where tuning the external parameter does not induce sufficient transitions be-
tween micro-states. This can be due to metastable states, for example. For a
more detailed discussion of ergodicity, see for example [229].

By what amount do we have to change p before the micro-state of the sys-
tem can be regarded as different, or before the values q(p) of the measured
quantity can be regarded as statistically independent, respectively? The an-
swer is given by the autocorrelation function4 Cq(∆p). At ∆p = 0, we have
Cq(0) = C0. For a fluctuating q as a function of p, typically Cq(∆p) drops
to zero within a certain range of ∆p. The autocorrelation value pC is the pa-
rameter value for which the autocorrelation function has dropped to 0.5C0,
and the data can be considered as statistically independent as soon as p dif-
fers by at least pC. As long as �φ > L, the average UCF amplitude has been
found to be of the order of e2/h, independent of the number of elastic scat-
terers and of L. This is quite surprising, since it means that averaging over
disorder does not weaken the fluctuations, as long as the sample is phase co-
herent. This result can be derived if one assumes strong correlations between
the transmission amplitudes of different paths across the whole sample, while
the reflection amplitudes are uncorrelated. An intuitive argument for such a
scenario would be that electrons that manage to cross the sample do so via
identical sections of trajectories which contain many scatterers, while a single
backscattering event suffices for reflection [189].

In many circumstances, however, the non-zero temperature cannot be ne-
glected. Its effect on the length scales is twofold. First of all, it may reduce
�φ to the regime of �e < �φ < L. Second, the thermal length comes into play.
In [25], it has been argued that, for a quantum wire with w � �φ, the fluctua-
tion amplitude can be approximated by

δG =
1
β

e2

h

√
12(�φ/L)3

1 + [9/(2π)](�φ/�T)
(8.6)

4) For a brief introduction to correlation functions, see Appendix B.



8.3 Universal conductance fluctuations 233

which, for the QWR under study here, agrees fairly well with experiment if a
phase coherence length inside the wire of �phi ≈ 7 µm and a thermal length of
�T ≈ 11 µm are assumed.

We conclude this section by discussing an experiment in which the impu-
rity configuration has been changed parametrically [148]. The QWR under
discussion was tuned by varying the two in-plane gates (see Fig. 7.3) such
that δVas = δV1 = −δV2. In Exercise E6.3, it was shown that a constant electric
field displaces a parabolic potential without changing its shape. By analyzing
the magneto-conductance oscillations in large magnetic fields, one can ensure
that ω0 remains constant in such an experiment. Within the approximation of
a parabolic confinement, the QWR is thus spatially displaced in the y-direction
as δVas is scanned (Fig. 8.8(a)). The displacement δy equals the change of the
wire width as a function of one in-plane gate voltage with the second gate
voltage fixed. Shifts up to δy = 12 nm are possible before a leakage current
between wire and in-plane gates sets in. Furthermore, δy is linear in δVpgi
(i = 1, 2) within experimental accuracy, and a lever arm δy/δVas = 80 nm/V
is measured.

In Fig. 8.8(b), the conductance of the wire is shown as a function of its dis-
placement. Again, reproducible conductance fluctuations are observed, with
a temperature dependence similar to the fluctuations as a function of B and n.
The average period and amplitude are δy ≈ 2 nm and δG ≈ 0.15e2/h, respec-
tively. Apparently, the interference pattern can also be changed by shifting
the wire through the crystal. Intuitively, this is quite clear, since the inter-
ference pattern depends on the potential landscape at which the electronic
waves scatter. As the wire is shifted through the crystal, the scattering po-
tential is scanned, and the interference pattern changes accordingly. But what
determines the fluctuation period of δy ≈ 2 nm?

We denote the relevant density of bumps in the scattering potential by 1/d2

and try to relate d to a characteristic length scale of the sample. On average,
the number of bumps inside the wire should change by one as the wire is dis-
placed by δy = d2/2L. The factor of 1/2 enters because the bumps may enter
the wire on one side as well as exit it on the other. One finds δy = 2.7 nm
for d = �q, the quantum scattering length. This indicates that the conductance
fluctuations are caused by all scatterers, and not just by the large-angle scatter-
ers that determine �e, which enter or leave the wire region as it is displaced. It
should be mentioned that shifting the impurity configuration within the wire
also generates conductance fluctuations, which, however, have a characteristic
fluctuation period of the order of the Fermi wavelength λF,1 of the electrons in
the lowest one-dimensional subband, as has been numerically demonstrated
in [50] for the case of displacing a single scatterer. In the experiment under
discussion here, however, this length scale cannot be seen, since λF,1 ≈ 30 nm,
which is larger than the displacement range.
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Fig. 8.8 (a) Magneto-resistance of the QWR
(the sample is shown in Fig. 7.3) for dif-
ferent combinations of in-plane gate volt-
ages (V1, V2). Adjacent traces are offset by
5 kΩ, and the dashed lines denote the cor-
responding zeroes. Fitting the oscillations to
Eq. (7.10) shows that the wire width w and

ω0 do not alter for antisymmetric gate voltage
changes, i.e. for V1 + V2 = constant. The
potential shape and position of the QWR are
indicated by the sketches outside the main
figure. (b) Measured conductance fluctua-
tions as a function of the wire displacement
δy, shown for two temperatures.

Question 8.1: How do you explain that in Fig. 8.7, the features in the conductance
shift to larger electron densities as |B| is increased?

8.4
Phase coherence in ballistic 2DEGs

Electronic phase coherence in ballistic 2DEGs is a relatively unexplored terri-
tory. All the experiments discussed so far in this chapter have relied on the
diffusive character of the sample; scattering at impurities was essential for
obtaining information on τφ. An important experiment addressing the issue
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of phase coherence in the ballistic regime has been performed in [336] (see
Fig. 8.9). Electrons were injected into a ballistic 2DEG via a quantum point
contact acting as an emitter (E), and collected using a second QPC (C). Since
the sample in between the emitter and collector is ballistic, only those elec-
trons that move very close to the straight line that connects E and C contribute
to the voltage buildup. The upper half-plane of the 2DEG was partly covered
by a gate of length L, which could be used to tune the electron density, and
hence the phase shift, of the electrons underneath. Hence, approximately 50%
of the electrons entering the collector have passed below the gate. Assuming
a linear relation between the gate voltage VG and the Fermi energy EF in the
2DEG, the phase shift that the electrons acquire underneath the gate is given
by

δφ = LkF,0δ(
√

1−VG/VT) (8.7)

where kF,0 denotes the Fermi wave vector below the gate for VG = 0, and
VD = −290 mV is the threshold gate voltage, at which the 2DEG below the
gate gets depleted.

Fig. 8.9 (a) Sketch of the experimental setup
used to investigate the dephasing in ballistic
2DEGs. The 2DEG is enclosed by two split
gates acting as emitter (E) and collector (C),
separated by a distance L < �e. Note that
the ballistic 2DEG is grounded, and the AC
voltage buildup is measured behind the col-

lector QPC. (b) Voltage buildup at C, as a
function of

√
1−VG/VT. Periodic oscillations

are observed, with a period that drops as the
gate width W is increased. The measure-
ments were performed at Θ = 1.4 K. Adapted
from [336].

Question 8.2: Check Eq. (8.7) with the assumptions stated in the text.
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The phase shifted electrons that traversed underneath the gate interfere
with those that bypass the gated region, and the resulting current should
therefore be periodic with a period of

δφ = 2π =⇒ δ(
√

1−VG/VT) = 2π/kF,0 (8.8)

In fact, the voltage buildup at the collector as a function of the gate volt-
age showed quasi-periodic oscillations with the expected period, as shown
in Fig. 8.9(b). The data shown here have been obtained for a pure AC exci-
tation at E, i.e. for the special case of VE,DC = 0. The experiment, however,
has been carried out for a variety of DC excitation voltages, in order to com-
pare the experiment with theoretical considerations. Note that only the AC
component was measured at the collector.

From the relative oscillation amplitude a(L, VE,DC), which is the peak-to-
peak amplitude divided by the average voltage buildup, the phase coherence
length was calculated via the relation

�φ = − L
ln[a(L, VE,DC)]

(8.9)

This equation has its origin in the assumption that complete dephasing takes
place via single electron–electron scattering events, which occur randomly.5

This conclusion is drawn because the theoretical expression for the electron–
electron scattering length in ballistic 2DEGs, derived in [119], shown as full
lines in Fig. 8.10, agrees very well with the experimental data.

The data imply that �φ ∝ 1/V2
E,DC in this case. If we, somewhat sloppily,

identify VE,DC with an effective temperature via eVE,DC ≈ kBΘ, this result
indicates that, in the ballistic regime, �φ ∝ 1/Θ2, which is different from
the result in the diffusive regime. Furthermore, �φ ≈ 100 µm was found for
VE,DC = 0, which corresponds in the ballistic regime to a dephasing time of
τφ = �φ/vF ≈ 37 ps, which is the same order of magnitude as found in diffu-
sive systems.

8.5
Resonant tunneling and s-matrices

Tunnel barriers are an essential part of many nanostructures. They represent
small, often tunable, resistors with little or no dissipation.6 The transmission

5) The concept behind this relation is the Poisson distribution of un-
correlated events, an issue discussed in further detail in Exercise
E8.2.

6) The electrons that tunnel elastically through a barrier are injected
into the collector at an energy eV above the Fermi level. Dissipation
occurs inside the collector, within the inelastic scattering length.
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Fig. 8.10 The symbols denote the oscillation amplitudes as measured
for various gate lengths L and under different DC emitter voltages
VE,DC. The solid lines are theoretical curves as expected for complete
dephasing in single electron–electron scattering events at random
locations. The good agreement suggests that this is in fact the actual
dephasing mechanism. (Taken from [336]).

probability T of a rectangular barrier of height V0 and width a as a function
of the energy E of the incident particle is a standard example in elementary
quantum mechanics. It is given by

T(E) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

4E(V0 − E)
4E(V0 − E) + V2

0 sinh2[
√

2m(V0 − E) a/h̄]
, E ≤ V0

4E(E−V0)
4E(E−V0) + V2

0 sin2[
√

2m(E−V0) a/h̄]
, E ≥ V0

(8.10)

(see Fig. 8.11). We speak of tunneling if E ≤ V0. In semiconductors, such bar-
riers can be designed by incorporating an AlAs layer in GaAs during growth.
Another widespread experimental realization is by quantum point contacts in
the pinch-off regime, as discussed in Chapter 7. In metallic nanostructures, a
tunnel barrier can be easily formed by depositing a metal layer on top of an
oxidized metal.

The s-matrix s of a tunnel barrier relates the outgoing wave functions to the
incoming wave functions via

�b = s�a,
(

b1
b2

)
=
(

r11 t12
t21 r22

)(
a1
a2

)
(8.11)

The coefficients of the s-matrix can be calculated from elementary quantum
mechanics. How exactly they depend on the barrier parameters is of marginal
interest only for our purposes. Here, we simply note that the off-diagonal ele-
ments tii correspond to transmission amplitudes, while the diagonal elements
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Fig. 8.11 Transmission of a single rectangular barrier (sketched to the
left), plotted for a = 8h̄/

√
2m (m is the mass of the particle). The inset

shows a logarithmic plot of the tunneling regime, showing that, in the
tunneling regime, T increases approximately exponentially with energy.

rii represent reflection amplitudes. Owing to conservation of probability cur-
rent density, s has to be unitary:

sT∗s = 1 =⇒
|r11| = |r22|, |t12| = |t21|, r∗11r11 + r∗22r22 = 1, r11t∗12 + t21r∗22 = 0

Since the tunnel barrier in Fig. 8.11 is invariant under reflection, the relations

r11 = r22 = r, t12 = t21 = t

hold in this case. For tunnel barriers of a different shape, the transmission
probabilities of course differ from the simple expressions in Eq. (8.10).

Methods for calculating such transmission coefficients are well established
in elementary quantum mechanics. For our purposes, however, the relation
between barrier shape and the s-matrix is of no further interest. Any barrier
can be characterized by an s-matrix of the type (8.11). We will combine the
s-matrices of individual barriers to calculate the transmission probability of
more complicated structures, in particular systems with two tunnel barriers in
series. The double barrier is sketched in Fig. 8.12. Each barrier is characterized
by its s-matrix. We are interested in the transmission of the double barrier
structure.

Suppose the transport between the barriers is completely coherent, i.e. the
distance L between the barriers is much smaller than the phase coherence
length. As the electrons travel between the barriers, they collect a phase θ.
Each time the wave hits barrier j, a fraction (1− tj) gets reflected, which leads
to interference. The total transmission amplitude from source to drain tsd is
obtained by summing up the partial transmission amplitudes along all the
trajectories the electron wave can take. There are infinitely many such trajec-
tories, since the electron can experience an arbitrary number of round trips



8.5 Resonant tunneling and s-matrices 239

Fig. 8.12 Sketch of a resonant tunneling structure, formed by two tun-
nel barriers in series separated by a distance L, and the corresponding
wave function amplitudes.

between the barriers before leaving the structure. Therefore,7

tsd = t1eiθt2 + t1eiθr2eiθr1eiθt2 + · · ·

= t1t2eiθ
[

1 +
∞

∑
j=1

(r1r2e2iθ)n
]

=
t1t2eiθ

1− r1r2e2iθ

which gives the transmission probability

T = t∗sdtsd =
T1T2

1 + R1R2 − 2
√

R1R2 cos θ
(8.12)

This transmission is plotted as a function of θ in Fig. 8.13.
Eqation (8.12) is nothing other that the well known Airy formula describ-

ing the transmission of coplanar optical resonators, so-called etalons. The
properties of T are therefore extensively discussed in textbooks on wave
optics. In optical resonators of this type, the finesse F∗ = (π

√
1− T)/T,

which essentially measures the average number of partial waves interfer-
ing with each other, is an important quantity. For sufficiently small T, the
full width at half-maximum (FWHM) of a resonance is given by FWHM =
4 arcsin[T/(2

√
1− T)]. For Ti � 1, the FWHM can be approximated by

FWHM ≈ 2T/
√

1− T. Furthermore, in this regime, the system can be ap-
proximated by a damped harmonic oscillator, where the oscillation is the wave
bouncing back and forth between the two barriers, and the damping is pro-
vided by tunneling out of the resonator. Such systems have resonances at an
energy E0 and a homogeneous linewidth of Lorentzian shape, which can be
written as

T(E) =
Γ1Γ2

1
4 (Γ1 + Γ2)2 + (E− E0)2

(8.13)

7) The electron waves experience phase shifts during the reflection at
the barriers, which are neglected here.
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Fig. 8.13 Left: Coherent transmission of a double barrier as a function
of the phase collected during one round trip between the barriers,
shown for equal individual barrier transmissions Tb = 0.9, 0.5, and
0.1, respectively. Right: Lorentzian fit (bold lines) for Ti = 0.5 and
0.1 (thin lines). For the latter barrier transmission, the fit according to
Eq. (8.13) is essentially indistinguishable from Eq. (8.13).

Here, Γi denotes the coupling constant of barrier i. It is given by Γi = h̄νTi, and
ν is known as the attempt frequency, i.e. the frequency at which the electron
hits barrier i and tries to tunnel. It is given by ν = v/2L = h̄k/2Lm∗, with v
being the velocity of the electron. Hence, Γi/h̄ represents the tunnel rate, or
in other words the number of tunnel events across barrier i per unit time. In
addition, the electron phase θ has been mapped onto the electron energy via
energy

E(θ) =
h̄2θ2

2m∗L2

in Eq. (8.13). The quality of this approximation even for not so small Ti is
demonstrated in Fig. 8.13.

Thus, the double barrier can be thought of as an electron interferometer.
A resonance occurs when the Fermi wavelength is commensurable with L,
i.e. n×λF/2 = L.8 Within the s-matrix formalism, this equation is easily
obtained by multiplication of the s-matrices for the two barriers with that de-
scribing the electron transfer from one barrier to the other.

With s-matrices, we can treat the double barrier transmission in a more gen-
eral way. The s-matrices of the two individual barriers read(

b1
b2

)
=
(

r1 t1
t1 r1

)(
a1
a2

)
,

(
b3
b4

)
=
(

r2 t2
t2 r2

)(
a3
a4

)

8) Note that this is not exactly true, since the wave function penetrates
into the barrier. However, for small transmission amplitudes, this is
an excellent approximation.
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while the incoming wave functions are related to the outgoing wave func-
tions via a3 = b2eiθ and a2 = b3eiθ. Let us further assume that a wave is
incoming only from the left with amplitude 1, a1 = 1, and no left-moving
wave exists to the right-hand side of the double barrier, a4 = 0. This results
in a vector �b of outgoing amplitudes as a function of incoming amplitudes
�a = (1, b3eiθ, b2eiθ, 0), related by⎛
⎜⎜⎝

b1
b2
b3
b4

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

r1 t1 0 0
t1 r1 0 0
0 0 r2 t2
0 0 t2 r2

⎞
⎟⎟⎠
⎛
⎜⎜⎝

1
b3eiθ

b2eiθ

0

⎞
⎟⎟⎠

Solving for the transmission amplitude b4 gives

b4 =
t1t2eiθ

1− r1r2e2iθ

leading to the transmission amplitude T = b∗4 b4 of Eq. (8.12). In this particular
example, we could easily guess the result by summing up the interference
paths. In more complex structures, however, it may not be so easy to do this,
and the s-matrices prove to be very useful. We will see an example of this
below.

Note that thermal smearing has been neglected. It will be discussed in Ex-
ercise E8.4.

Owing to inelastic scattering events, electrons may lose their phase coher-
ence as they traverse the double barrier. In the case of complete incoherence,
we do not have to sum up the transmission amplitudes, but rather the trans-
mission probabilities of all trajectories. In that case, the result is

Tinc
sd = T1T2 + T1R2R1T2 + · · · = T1T2

1− R1R2
(8.14)

It should be noted that, in real samples, transport is quite often partly coher-
ent. M. Büttiker found an elegant model for this general situation [46]. The
incoherent part of the transmission is modeled by a reservoir in between the
barriers, which absorbs and re-ejects those electrons whose phase coherence
gets lost.

We conclude this section by discussing the transmission of a quantum ring
in terms of the s-matrix formalism. Earlier on, we already studied the trans-
mission of an open ring as a function of the magnetic field, which revealed the
Aharonov–Bohm effect. The spectrum of an isolated ring is also well known:
in the simplest model, a one-dimensional wire (length 2πR) is bent into a ring,
imposing periodic boundary conditions

�λ = 2πR, � = 0,±1,±2, . . .
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Fig. 8.14 Schematic sketch of the quantum ring under study and the
nomenclature of the partial wave functions.

where λ is the electronic wavelength. As a consequence, the wave number
is quantized in units of 1/R. A magnetic field perpendicular to the plane
of the ring induces a phase shift of ∆φ = 2πΦ/Φ0, where Φ = BA is the
magnetic flux through the ring (A denotes the ring area), and Φ0 = h/e is
the magnetic flux quantum. This corresponds to a magnetic wave vector of
km = ∆φ/2πR = (1/R)Φ/Φ0, and the energy spectrum is given by

E� =
h̄2

2m∗R2 (k� + km)2 =
h̄2

2m∗R2 (� + Φ/Φ0)2 (8.15)

The states are characterized by their angular momentum h̄�. This energy spec-
trum is treated in Exercise E8.3.

Suppose we now couple the ring to two reservoirs to the left and right via
tunable tunnel barriers. How will the spectrum of the isolated ring evolve
into the Aharonov–Bohm effect observed in open rings? The s-matrices offer
a very elegant way to study this evolution. For simplicity, we assume that
both tunnel barriers are equal and that the two branches of the ring have the
same length (Fig. 8.14).

The junction can be described by the so-called Shapiro matrix

(
sSh

)
=

⎛
⎝ c

√
ε
√

ε√
ε a b√
ε b a

⎞
⎠

Here c (a) represent the reflection amplitudes for electrons hitting the junction
from lead 1 (2 or 3, respectively), while

√
ε and b are transmission amplitudes.

Unitarity of the s-matrix is given for

ε = 1
2 (1− c2), a = − 1

2 (1 + c), b = 1
2 (1− c)

or

ε = 1
2 (1− c2), a = 1

2 (1− c), b = − 1
2 (1 + c)
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The second set of relations corresponds to two ring branches which become
decoupled from each other as c approaches zero. Therefore, the first solu-
tion describes the situation of interest. Since c is a measure of the coupling
of the ring to the leads, we will express the transmission Tring of the ring as a
function of c. The matrix (sSh) is the s-matrix for the left and right junction.
The incoming amplitudes are coupled to the outgoing ones via�bl,r = (sSh)�al,r

with �bl = (b1, b2, b3), �br = (b4, b5, b6), �al = (a1, a2, a3), and �ar = (a4, a5, a6).
As above, we assume a wave incoming from the left only, with amplitude 1,
and denote the phase collected from the vector potential by φ, such that the
incoming and outgoing waves inside the ring are related via

�a = (�al,�ar) = (1, b4eiθeiφ, b5eiθe−iφ, b2eiθe−iφ, b3eiθeiφ, 0)

This leads to the system of equations⎛
⎜⎜⎜⎜⎜⎜⎜⎝

b1
b2
b3
b4
b5
b6

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

c
√

ε
√

ε 0 0 0√
ε a b 0 0 0√
ε b a 0 0 0

0 0 0 a b
√

ε

0 0 0 b a
√

ε

0 0 0
√

ε
√

ε c

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1
b4eiθeiφ

b5eiθe−iφ

b2eiθe−iφ

b3eiθeiφ

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(8.16)

The transmission probability is given by Tring(c, θ, φ) = b∗6 b6. After solv-
ing Eq. (8.16) for b6 and after some algebra, one finds the somewhat lengthy
expression

Tring(c, θ, φ) = b∗6 b6 =
16(1− c2)2 cos2 φ sin2 θ

A + B + C + D + E
(8.17)

with

A = 5− 4c + 6c2 − 4c3 + 5c4

B = (1 + c)4 cos2(2φ)

C = −4(1− c)2(1 + c2) cos(2θ)

D = −2(1 + c)2 cos2 φ[2(1 + c2) cos(2θ)− (1− c)2]

E = 8c2 cos(4θ)

Fig. 8.15 shows how the transmission as a function of the dynamic phase
θ and the magnetic phase φ evolves as the reflection amplitude is reduced.
Fig. 8.15(a) corresponds to an open ring, showing essentially Aharonov–
Bohm oscillations. Note that here the phase coherence length is infinite. In
order to recover the sinusoidal magneto-oscillations typical for the Aharonov–
Bohm effect, we would have to expand Eq. (8.17) in a Fourier series and plot
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Fig. 8.15 Transmission of an ideal quantum ring as a function of θ
and φ for different reflection amplitudes at the ring entrances. Black
corresponds to Tring = 0, white to Tring = 1.

the first order only. The second order gives the Altshuler–Aronov–Spivak os-
cillations. Fig. 8.15(d) shows the transmission for a reflection amplitude close
to 1 (namely c = 0.99). Here, the parabolas of Eq. (8.15) are found (remember
that E ∝ θ2). In Figs. 8.15(b) and (c), the transmission is plotted for c = 0.2 and
0.4, respectively. Hence, as c increases, the transmission gets more and more
concentrated at the edges of the ellipsoidal regions of high transmission in
Fig. 8.15(a). Simultaneously, the shape of these ellipsoid-like regions evolves
into diamond-like structures.
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Papers and Exercises

P8.1 Go through [25]; explain the flux cancellation effect and the theoretical
expression for the autocorrelation function of UCF in magnetic fields.

P8.2 What is weak antilocalization? To answer this question, consult [77].

E8.1 Consider the geometry depicted to the left in Fig. 8.1. Assume a con-
stant magnetic field is present in the z-direction, and calculate the phase
difference between partial waves that traverse the upper and the lower
branch. Show that Φupper−Φlower = 2πΦ/Φ0, where Φ0 = h/e denotes
the magnetic flux quantum.

E8.2 The relation between random events and the Poisson distribution is ap-
plicable to many situations. Here, it will be discussed using Eq. (8.9)
as an example: within the assumptions described in the text, random
electron–electron (e–e) scattering events determine the amplitude of the
Aharonov–Bohm type oscillations of Fig. 8.9.

(a) We denote the average number of e–e scattering events per unit
time, i.e. the e–e scattering rate, by γ. Clearly, the exact number of
scattering events j within a time t will fluctuate around its average,
which equals simply tγ. What is the probability P(j) that exactly
j events take place within t (P(j) is the Poisson distribution)? [Hint:
Divide the time interval into a large number of sections of equal
size, such that more than one event per interval does occur. Count
all the possible arrangements of the sections under the constraint
that j of them are occupied.]

(b) Use P(j) to define a meaningful e–e scattering length. How does
Eq. (8.9) emerge from this?

E8.3 Consider a ring (radius r) with only one radial mode occupied (i.e. the
ring has been formed out of a strictly one-dimensional wire).

(a) Calculate the energy spectrum of the ring as a function of a homo-
geneous magnetic field perpendicular to the ring area. It makes
life easier to use cylindrical coordinates and gauge the vector po-
tential as �A = (0, rB/2, 0). Use the wave function ansatz Ψ(φ) =
(2πr)−1/2ei�φ with � being an integer. [What is the physical mean-
ing of �?]

(b) Calculate the current flowing in the ring as a function of � for zero
temperature. How do you interpret this result? Compare the result
to a current generated by a single electron circulating in the loop.
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(c) Estimate the current for an odd number of electrons in the ring at
B = 0. Assume realistic ring diameters and electron densities. How
could one measure this current?

E8.4 Thermal smearing of resonant tunneling peaks. Calculate, in analogy to our
treatment of the thermal smearing of quantized conductance steps in
Chapter 7, how a transmission resonance of a double barrier is modified
by a non-zero temperature.

(a) Consider the limiting case of a purely thermally broadened reso-
nance, i.e. T(Θ=0, E) = δ(E− Er). Show that the line shape is the
derivative of the Fermi function. Calculate its linewidth (FWHM).

(b) How does the line shape look like for a Lorentzian-shaped reso-
nance T(Θ = 0, E)? How would you determine experimentally the
thermal and the Lorentzian contribution to the line width?

Further Reading

The reader is encouraged to study the excellent treatment of phase coherent
electrons in mesoscopic samples in Section 6 of the book by Beenakker and
van Houten [27].
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9
Single-Electron Tunneling

The charge stored on a capacitor is not quantized: it consists of polarization
charges generated by displacing the electron gas with respect to the positive
lattice ions and can take arbitrary magnitudes. The charge transfer across a
tunnel junction, however, is quantized in units of the electron charge (single-
electron tunneling), and may be suppressed due to the Coulomb interaction
(Coulomb blockade). These simple facts lay the foundation for a new type of
electronic device called single-electron tunneling (SET) devices. Coulomb
blockade was first suggested back in 1951 by Gorter [123], who explained ear-
lier experiments [164]. It remained largely unnoticed until, almost 40 years
later, Fulton and Dolan built a transistor based on single-electron tunnel-
ing [109]. After introducing the concept of Coulomb blockade in Section 9.1,
we will discuss basic single-electron circuits, in particular the double barrier
and the single-electron transistor, in Section 9.2. Some examples and applica-
tions are given in Section 9.3.

9.1
The principle of Coulomb blockade

Consider a tunnel junction biased by a voltage V. The equivalent circuit of a
tunnel junction consists of a “leaky” capacitor, i.e. a resistor R in parallel with
a capacitor C (Fig. 9.1). For charges |q| < e/2, an electron tunneling across
the barrier would increase the energy stored in the capacitor. This effect is
known as Coulomb blockade [191]. For |q| > e/2, the tunneling event reduces
the electrostatic energy, and the differential conductance is given by dI/dV =
1/R. Experimentally, it is far from easy to observe Coulomb blockade at a
single tunnel barrier, for two reasons.

First of all, in order to avoid thermally activated electron transfers, e2/(8C)≥
kBΘ is required.

Question 9.1: A typical tunnel junction patterned by angle evaporation is formed
by a thin oxide layer (thickness 5 nm, dielectric constant ε ≈ 5). Estimate the maxi-
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Fig. 9.1 Equivalent circuit and energy diagram of a single tunnel junc-
tion. The resistor Re represents the low-frequency impedance of the
environment.

mum area of the capacitor plates for Coulomb blockade to be observed at (a) 4.2 K and
(b) 300 K.

Second, the resistance of the tunnel junction has to be “sufficiently large”.
We can speak of individual electrons tunneling through the barrier only if
the tunnel events do not overlap, which means that the time between two
successive events δt ≈ eR/V must be large compared to the duration τ of
a tunnel event, which can be estimated as τ ≈ h̄/eV [178]. This leads to
the condition R � h̄/e2. Furthermore, quantum fluctuations can destroy the
Coulomb blockade as well. So far, we have neglected the fact that the tunnel
junction is coupled to its environment, which is modeled by the resistance Re
in Fig. 9.1. More generally, the environment represents a frequency-dependent
impedance, although here we restrict ourselves to very small frequencies, such
that the impedance can be replaced by Re.

In fact, our above line of arguing implicitly assumes the so-called local rule,
which states that the tunneling rate across the junction is governed by the dif-
ference in electrostatic energy right before and right after the tunnel event.
According to the global rule, on the other hand, the tunnel rate is determined
by the electrostatic energy difference of the whole circuit. Since the environ-
ment inevitably includes some capacitances much larger than the capacitance
of the tunnel junction, we may expect that, in this case, the Coulomb blockade
vanishes.

The influence of the electromagnetic environment on the performance of
tunnel junctions is discussed in detail in [125]. Here, we just give a simple
argument. The local rule holds provided the tunnel junction is sufficiently
decoupled from the environment. In the leads, quantum fluctuations of the
charge take place. An estimate based on the Heisenberg uncertainty rela-
tion tells us what “sufficiently decoupled” actually means: for quantum fluc-
tuations with a characteristic energy amplitude δE, the uncertainty relation
δE δt ≥ h̄/2 holds. Coulomb blockade is only visible for energy fluctuations
at the junction much smaller than e2/8C, while the time scale is given by the
time constant of the circuit: δt ≈ τ = ReC.
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Hence, Coulomb blockade can be observed on a single tunnel junction only
if the resistance of the environment is of the order of the resistance quantum
h/e2 or higher. The influence of the environmental resistance on the Coulomb
blockade has been calculated in [70] and is shown in Fig. 9.2. These consid-
erations imply that it is not so easy to observe Coulomb blockade at a single
tunnel junction. Since the environment has to be sufficiently decoupled, the
resistance of the leads has to be larger than h/e2. This generates Joule heat-
ing, which in turn makes it difficult to keep the electron temperature below
e2/2CkB. Nevertheless, Coulomb blockade has been observed in single tunnel
junctions biased via wires of sufficiently high resistance (Fig. 9.3).

Fig. 9.2 Evolution of the I–V characteristic of a single tunnel junction
as the resistance of the environment Re is increased. For Re > h/2e2,
the Coulomb gap becomes clearly visible. The traces are shown for
Re/R = 0, 0.1, 1, 10, and ∞. After [70].

Fig. 9.3 The I–V characteristic of Al–Al2O3–Al tunnel barriers, fabri-
cated by angle evaporation. In order to suppress quantum fluctuations,
the cross section of the Al wires is only 10 nm × 10 nm. The super-
conductive state has been destroyed by applying a magnetic field.
After [57].
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The limitations imposed by the need to decouple the environment from the
tunnel junction can be relaxed by using two tunnel junctions in series (Fig. 9.4),
since here quantum fluctuations at the island in between the junctions are
strongly suppressed [125]. The number of electrons at the enclosed island
can change only by tunneling across one of the barriers, an event essentially
free of dissipation. The energy relaxation will take place somewhere in the
leads, far away from the island. The resistance of relevance for the suppres-
sion of the quantum fluctuations is now that of a tunnel barrier, while the
capacitance corresponds to the total capacitance of the island to its environ-
ment. Therefore, quantum fluctuations at the island can be suppressed easily
without running into heating problems.

Fig. 9.4 A double barrier structure attached to source (S) and drain
(D). CSD denotes a residual capacitance between the two leads.

Question 9.2: The self-capacitance of a metallic grain is sometimes estimated by
Cself = V/q, where V denotes the potential of the grain and q the charge transferred
onto it from infinity (at zero potential). For a sphere, Cself equals 4πεε0r, whereas,
for a circular disk, Cself = 8εε0r (r denotes the radius of the island). Estimate Cself
and the charging energy for some reasonable grain radii.

9.2
Basic single-electron tunneling circuits

Before we discuss single-electron tunneling in the double barrier system, it is
useful to have a look at the problem from a more general point of view, which
is then used to analyze specific examples including the circuit of Fig. 9.4.

Consider an arrangement of (n + m) conductors embedded in some insu-
lating environment. Each conductor i is at an electrostatic potential Vi, has a
charge qi stored on it, and has a capacitance CiD to drain (ground).1 Between

1) In publications, one frequently encounters an “antisymmetric bias
condition”, where a voltage of VS = +V/2 is applied to the source,
and the drain voltage is VD = −V/2. The electrostatics is different in
that case.
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each pair of conductors i and j, there is a mutual capacitance Cij. Some of these
capacitances may belong to tunnel junctions, which allow electron transfers
between the corresponding conductors. Furthermore, we assume that m con-
ductors are connected to voltage sources, which we call electrodes, while the
n remaining ones are islands.2 For convenience, we enumerate the n islands
from 1 to n, and the m electrodes from n + 1 to n + m.

The charges and potentials of the islands can be written in terms of an is-
land charge vector �qI and potential vector �VI, respectively. Similarly, charge
and potential vectors can be written down for the electrodes, �qE and �VE. The
state of the system can be specified by the total charge vector �q = (�qI,�qE).
Equivalently, it can be characterized by the total potential vector defined as
�V = (�VI, �VE). Charge and potential vectors are related via the capacitance
matrix C:

�q = C�V (9.1)

We write C as

C =
(

CII CIE
CEI CEE

)
(9.2)

The capacitance submatrices between type A and type B conductors (A, B can
be electrodes or islands) are denoted by CAB. Note that the ground is not a
conductor in terms of our definition, and that C is symmetric. The matrix
elements of C are given by (see Appendix B)

(C)ij =

⎧⎪⎪⎨
⎪⎪⎩
−Cij j = 1, . . . , n + m; j �= i

CiD +
n+m
∑

k=1; k �=i
Cik j = i

The electrostatic energy3 E is given by the energy stored at the islands, minus
the work done by the voltage sources. Minimizing this energy gives us the
ground state.

As we shall see, in single-electron circuits, usually the voltages applied to
the electrodes are parametrically changed, and the initial island charge vector
�qI given. As �VE is changed, the potential difference between two conductors
connected by a tunnel junction may become sufficiently large for electrons to
tunnel, resulting in a new charge configuration. Such charge rearrangements
will take place as soon as the electrostatic energy of the new configuration is

2) The electrostatics of such systems in terms of the capacitance matrix
is discussed in Appendix C.

3) The electrostatic energy is the free energy E = U − µN, where U
is the total energy, µ is the electrochemical potential, and N is the
number of electrons.
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equal to, or smaller than, the energy of the original configuration. The charge
transfer can be specified by the change of the charge vector ∆�q = �qnew−�q. For
a system initially in its ground state, we can find the parametric transition to
a new ground state from the condition

∆E = Enew − E ≤ 0 (9.3)

It may look very cumbersome to calculate the energy differences of all the
possible charge transfers and find its minimum. Usually, however, only very
few electron transfers have to be considered.

In Eq. (9.3) ∆E is given by4

∆E[�VE,�qI, ∆�q] = ∆�qIC
−1
II [�qI + 1

2 ∆�qI − CIE�VE] + ∆�qE�VE (9.4)

This equation is an important relation, which can be used to analyze Coulomb
blockade in all systems that can be characterized by a capacitance matrix. Note
that it cannot be used to study Coulomb blockade at the single junction, since
the crucial time scale involved there does not enter the formalism leading to
Eq. (9.4). We are now ready to study the double barrier shown in Fig. 9.4.

9.2.1
Coulomb blockade at the double barrier

The system consists of one electrode (source S) and one island (1). In the fol-
lowing, islands will be labeled by arabic numbers and electrodes by capital
letters. The capacitance matrix reads

C =
(

C11 −C1S
−C1S CSS

)
with C11 = C1S + C1D and CSS = C1S + CSD. The charge on the island is given
by the number n of electrons tunneled onto it, plus an arbitrary background
charge q0, induced by the environment: q = q0 − ne. Four different charge
transfers are relevant. An electron can hop in both directions across C1S or
C1D. For electron transfers across C1S, we have �V = (V1, V), �q = (q0 − ne, qS),
and ∆�q = ±e(−1, 1). Here “+ (−)” corresponds to a transfer of one electron
from S to 1 (1 to S). Consequently, the energy difference reads, according to
Eq. (9.4),

∆E[V, q0 − ne,±e(−1, 1)] =
e

C11

[
e
2
± (ne− q0 + C1DV)

]
(9.5)

For tunnel events across C1D, ∆�q = ±e(−1, 0). Here, “+ (−)” corresponds to
a transfer of one electron from D to 1 (1 to D). This gives

∆E[V, q0 − ne,±e(−1, 0)] =
e

C11

[
e
2
± (ne− q0 − C1SV)

]
(9.6)

4) For a derivation of Eq. (9.4), see Appendix C.
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Coulomb blockade is established only if all four energy differences are pos-
itive. This defines a voltage interval of vanishing current:

Max
{

1
C1S

[−q0 + e(n− 1
2 )],

1
C1D

[q0 − e(n + 1
2 )]

}

< V < Min
{

1
C1S

[−q0 + e(n + 1
2 )],

1
C1D

[q0 − e(n− 1
2 )]

}
(9.7)

Let us study some special scenarios.

1. No background charges. The simplest situation is n = 0, no background
charges (q0 = 0), and identical junction capacitances C1S = C1D =
C11/2. Now Eq. (9.7) reads −e/C11 ≤ V ≤ e/C11. For V = 0, we
get

∆E[0, 0, e(∓1,±1)] = ∆E[0, 0, e(±1, 0)] = e2/(2C11)

All four charge transfer processes are suppressed (Fig. 9.5(a)). Applying
a positive voltage V = e/C11 to the source means that

∆E[V, 0, e(−1, 1)] = e2/C11 > 0

∆E[V, 0, e(1,−1)] = 0 = ∆E[V, 0, e(−1, 0)]

and

∆E[V, 0, e(1, 0)] = e2/C11 > 0

At this voltage, an electron can either tunnel from drain to the island
or from the island to source (Fig. 9.5(b)). Both processes have the same
probability.

Question 9.3: Suppose that an electron has just tunneled from drain onto the
island under these conditions. The system is in the state depicted in Fig. 9.5(b).
Show that, now, an electron will tunnel from the island to source, and a current
is established. Calculate the energy differences indicated in Fig. 9.5(c).

The system thus oscillates between the situations depicted in Figs. 9.5(b)
and (c). In each oscillation cycle, a single electron is transferred from
drain to source. In addition, the tunnel events show a pair correlation.
Shortly after an electron has tunneled from drain to the island, a tunnel-
ing process from the island to drain will take place, and vice versa.
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Fig. 9.5 Energy differences of
the four electron transfers at
the double barrier. Open circles
denote empty states, while full
circles correspond to occupied
states. (a) No voltage is applied
(V = 0), and Coulomb blockade
is established. (b) V = e/C11.

Electrons can hop from drain onto
the island, as well as from the is-
land to source. (c) Differences in
the electrostatic energy after an
electron has, starting from the sit-
uation in (b), tunneled from drain
onto the island.

2. Effect of a background charge q0. Let us assume that n = 0, and C1S = C1D,
which leads to the condition for Coulomb blockade

Max
{

2
C11

(
− q0 − e

2

)
,

2
C11

(
q0 − e

2

)}

< V < Min
{

2
C11

(
− q0 +

e
2

)
,

2
C11

(
q0 +

e
2

)}

This means that, by a non-zero q0, the Coulomb gap can be reduced, but
never be increased. In fact, for q0 = (j + 1

2 )e with j being an integer, the
Coulomb gap vanishes completely. Background charges can seriously
hamper the observation of the Coulomb blockade, especially when they
are time-dependent.

Question 9.4: Draw the energy diagram corresponding to Figs. 9.5(a)–(c) for
q0 = e/4. Assume equal capacitances.

Question 9.5: Show that for C1S �= C1D, the larger capacitance determines
the Coulomb gap, which gets reduced compared to the Coulomb gap for identical
junctions.
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Coulomb blockade in metallic islands has been known for a long time. As
an example of the early indications, we take a look at an experiment of Gi-
aever and Zeller [117]. The authors measured the current–voltage characteris-
tic of a granular Sn film sandwiched between an oxide layer and metallic elec-
trodes (Fig. 9.6). The average diameter of the Sn granules was 11 nm, such that
single-electron tunneling is expected to play a role at low temperatures. The
system contains an ensemble of double barriers in parallel. Therefore, we ex-
pect to observe a gap in the I–V characteristic around V = 0 that corresponds
to the average single-electron charging energy. Leakage currents through the
oxide in between the islands are quite small, since the conductance of tun-
nel barriers decreases exponentially with increasing barrier thickness. At zero
magnetic field, both the Al electrodes as well as the Sn granules are in the su-
perconductive state, and the superconductive energy gap strongly influences
the transport measurements.5 However, by applying a magnetic field, the
superconductive state is destroyed and our previous model becomes applica-
ble. The Coulomb gap manifests itself in an increased differential resistance
around V = 0, compared to that observed at larger voltages.

Fig. 9.6 The experiment of Giaever and Zeller. After [117]. A granular
Sn film was embedded in an oxide layer and covered on both sides by
Al, which acted as source and drain.

9.2.2
Current–voltage characteristics: The Coulomb staircase

Besides the Coulomb gap around V = 0, the Coulomb blockade generates un-
der certain conditions a staircase-like structure in the current–voltage charac-
teristic, known as a Coulomb staircase. In contrast to our earlier considerations
concerning transport through mesoscopic structures, we study here a system
of interacting electrons, and a charge transfer changes the electrostatic energy

5) Some information about the interplay of superconductivity and
single-electron tunneling can be gained from Paper P10.4.
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as well. To include the interaction, we use the so-called transfer Hamiltonian
model, which allows us to relate the change in energy ∆E due to a tunnel
event with a tunnel rate Γ(∆E). For the transmission coefficients calculated in
earlier chapters, we always assumed that the energy is conserved. Here, how-
ever, the electrostatic energy changes as an electron tunnels, and the voltage
sources do some work on the system.

Such situations can be conveniently dealt with by using Fermi’s golden
rule, which originates in time-dependent perturbation theory. The transfer
Hamiltonian model starts from an impenetrable barrier, separating two elec-
tron gases. Tunneling is treated as a perturbation and is described by a per-
turbation Hamiltonian Ht, which is of no further interest to us here. The inter-
ested reader is referred to [90] for details. Applied to a tunnel barrier, Fermi’s
golden rule states that the transition rate for an electron in the initial state |i〉
to a final state | f 〉 on the other side of the tunnel barrier is given by

Γi→ f =
2π

h̄
|〈i|Ht| f 〉|2 δ(Ef − Ei − ∆E) (9.8)

Here, Ei and Ef denote the energies of the initial and final states with respect to
the bottom of the conduction band, and the matrix element 〈i|Ht| f 〉 describes
the coupling of the left-hand side to the right-hand side of the tunnel barrier.
This transition rate is just the transmission probability per unit time. In order
to determine the total transition rate Γ(∆E), we have to make the following
considerations.

1. The tunneling rate at energy E will be proportional to the spectral elec-
tron density n(e) = Di(E) f (E). Here the index i denotes the side of the
barrier that hosts state i, Di is the relevant density of states, and f (E)
denotes the Fermi–Dirac distribution function.

2. Since we are dealing with fermions, the electrons can tunnel only into
an empty state | f 〉. The transfer rate for an electron in |i〉 will thus be
proportional to D f (E + ∆E)[1− f (E + ∆E)].

3. We have to integrate over all energies at which states with non-zero tun-
neling probability exist. These are all the states above the maximum of
the conduction band bottoms on both sides Ecb,max.

Therefore, the total transition rate is given by

Γ1→2(∆E) =
2π

h̄

∞∫
Ecb,max

|〈i|Ht| f 〉|2Di(E)D f (E− ∆E)

× f (E)[1− f (E− ∆E)] dE (9.9)
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Now, 1 and 2 denote the conductors that contain the initial and final states,
respectively. For large energy barriers, we can safely assume that the matrix
elements of Ht will be approximately independent of energy. Second, we as-
sume that the density of states does not depend on energy, either since the
electron gas is two-dimensional, or since the voltage drop is sufficiently small.
Furthermore,

f (E)[1− f (E− ∆E)] =
f (E)− f (E− ∆E)
1− exp(∆E/kBΘ)

If we further consider only cases where the temperature is sufficiently low,
we can approximate the Fermi functions by step functions, and obtain

Γ1→2(∆E) =
1

Re2
∆E

1− exp(∆E/kBΘ)
(9.10)

Here, the resistance R of the tunnel barrier has been defined as

R =
h̄

2πe2|〈i|Ht| f 〉|2D2 (9.11)

(see Exercise E9.2). The current is then obtained from the difference of tunnel
rates in both directions,

I = e[Γ1→2(∆E1→2)− Γ2→1(∆E2→1)]

Let us apply this result to the island of Fig. 9.4. For a steady state, the aver-
age charge at the island is constant, and the current from source to the island
is given by

I(V) = e
∞

∑
n=−∞

p(n)[Γ1→S(∆E1→S(n))− ΓS→1(∆ES→1(n))] (9.12)

Equivalently, I(V) can be expressed in terms of the drain tunneling rates.
Here, we denote the tunneling rate from 1 to source by Γ1→S(∆E1→S(n)), while
the reverse process is denoted accordingly.

Of course, the energy differences now depend on the number of excess elec-
trons n stored on the island. The probability of finding n electrons on the
island is denoted by p(n). We expect this function to be peaked around one
number, which is given by the sample parameters and by V. The steady state
condition furthermore requires that the probability for making a transition
between two charge states (characterized by n) is zero. This means that the
rate of electrons entering the island occupied by n electrons equals the rate of
electrons leaving the island when occupied by (n + 1) electrons:

p(n)[Γ1→S(∆E1→S(n)) + Γ1→D(∆E1→D(n))]

= p(n + 1)[ΓS→1(∆ES→1(n + 1)) + ΓD→1(∆ED→1(n + 1))] (9.13)
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Fig. 9.7 Coulomb staircase as calculated from Eq. (9.12), for different
background charges q0. The structure is periodic in q0, with a period
of one elementary charge. Typical sample parameters have been as-
sumed, namely C1S = C1D = 0.1 fF, R1S = 20 MΩ, R1D = 1 MΩ, at
a temperature of T = 10 mK. The inset shows the thermal smearing of
the Coulomb gap (for q0 = 0) as the temperature is increased to 1 K.

We are now ready to calculate the I(V) characteristic. Equation (9.13), together
with the normalization condition

∞

∑
n=−∞

p(n) = 1

allows us to obtain p(n), which we insert in Eq. (9.12). This requires some nu-
merics, which is considerably simplified by the fact that only a few occupation
numbers have non-vanishing probabilities.

Fig. 9.7 shows staircases calculated from Eq. (9.12) for different background
charges. The staircases are periodic in q0 with a period of one elementary
charge. Qualitatively, the staircase can be understood as follows: Suppose the
tunnel rate across junction S is much larger than that across junction D, and the
voltage applied is positive. The voltage now drops completely across junction
D, i.e. V1D ≈ V. From Eq. (9.4), we calculate from ∆E[V,−ne, e(−1, 0)] = 0 the
threshold voltages V(n0) and V(n0 + 1), which differ by ∆V = e/C1S ≈ e/C11.
If the voltage is increased by this amount, an additional electron can jump on
the island via the drain junction. This increases the current (which is governed
by Γ1→D and by ΓD→1) by ∆I = e/R1DC11 for sufficiently low temperatures,
as can be seen by inserting

e∆V = ∆E[V,−(n + 1)e, e(−1, 0)]− ∆E[V,−ne, e(−1, 0)]
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Fig. 9.8 Steps of the Coulomb staircase for various sample para-
meters, as calculated for T = 10 mK. Left: C1S = C1D = 0.1 fF,
R1D = 1 MΩ. For R1S = R1D, the steps are absent, while for
R1S = 100R1D, they are quite pronounced. Right: Coulomb stair-
case of an island with two junctions of both different capacitances and
different resistances, i.e. C1S = 0.1 fF, C1D = 1 aF.

in Eq. (9.12). The markedness of the staircase steps strongly depends on the
sample parameters (Fig. 9.8). The steps become most pronounced if both the
resistance and the capacitance of one junction are large compared to those of
the second junction. Experimentally, however, this is hard to achieve, since
small tunnel resistances tend to correspond to small capacitances as well. An
analytical model for the Coulomb staircase in this limit is discussed in Paper
P9.2.

Particularly beautiful Coulomb staircases have been observed in scanning
tunneling experiments on clusters, where the experimental setup consists of
a conducting granule or cluster, deposited on an insulating layer on top of a
conducting substrate. The tip of a scanning tunneling microscope (STM) is
positioned on top of the cluster (Fig. 9.9(a)) and the current is measured as a
function of the voltage applied to the STM tip with respect to the substrate [6].
In such experiments, the resistance of one barrier is given by the distance be-
tween tip and granule, which can be changed over a wide range. Fig. 9.9(b)
shows typical experimental data.

9.2.3
The SET transistor

In 1987, Fulton and Dolan [109] published a seminal experiment: By angle
evaporation, a small metallic island was patterned, coupled to source and
drain via tunnel barriers with cross sections in the range of 50 nm× 50 nm. In
addition, a third electrode (the gate electrode) was defined such that the gate–
island resistance approaches infinity, and thus couples to the island only ca-
pacitively. In this way, the effective background charge and thus the width
of the Coulomb gap can be tuned continuously with the gate voltage, and,
for sufficiently small source–drain voltages, the current flowing from source
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Fig. 9.9 (a) One experimental setup for measuring the Coulomb stair-
case. (b) Experimental data, a least squares fit of which gives the pa-
rameters CS = 2 aF, CD = 4.14 aF, RS = 34.9 MΩ, RD = 132 MΩ,
and an offset charge of 0.12e. Here, the granule was a small indium
droplet on top of an oxidized conducting substrate. The temperature
was 4.2 K. The measurement is adapted from [6].

Fig. 9.10 Schematic diagram of a SET transistor.

to drain can be controlled. The system constitutes a transistor based on the
Coulomb blockade and is known as a single-electron tunneling (SET) transis-
tor. Its equivalent circuit is shown in Fig. 9.10.

For simplicity, let us assume that the background charge vanishes for zero
gate voltage. This is no restriction of generality, since additional background
charges can always be compensated for by a gate voltage offset. The inverse
capacitance matrix now reads (C−1)11 = 1/C11, and (C−1)ij = 0 otherwise.
Furthermore, CIE = (−C1S,−C1G). The electrode voltage vector is given by
�VE = (V, VG), while the island charge vector reads �qI = −ne. The Coulomb
gap is given by the onset of the same tunneling events as for the single is-
land studied above. Now, however, the Coulomb gap depends upon the gate
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Fig. 9.11 Stability diagram of a single-electron transistor. Within the
diamonds, Coulomb blockade is established, while outside, a current
flows between source and drain. The slopes of the boundaries are
given by C1G/(C11 − C1S), and by −C1G/C1S, respectively.

voltage. The corresponding energy differences are

[∆E[(V, VG),−ne,±e(−1, 1)] =
e

C11
[ 1

2 e± (C11 − C1S)V ± ne∓ C1GVG]

∆E[(V, VG),−ne,±e(−1, 0)] =
e

C11
[ 1

2 e∓ C1SV ± ne∓ C1GVG]

Coulomb blockade is established if all four energy differences are positive. For
each n, this condition defines a stable, diamond-shaped region in the (VG, V)
plane, with the four boundaries given by the onset conditions:

∆E[(V, VG),−ne,±e(−1, 1)] = 0 =⇒

V(VG, n) =
C1G

C11 − C1S
VG −

e(n± 1
2 )

C11 − C1S

∆E[(V, VG),−ne,±e(−1, 0)] = 0 =⇒

V(VG, n) = −C1G

CS
VG +

e(n± 1
2 )

C1S
(9.14)

These stable regions are known as Coulomb diamonds, and line up along the
VG-axis (Fig. 9.11).

Fig. 9.12 shows a measurement of the stability diagram of a Al–Al2O3
single-electron transistor. The experimentally obtained shape of the Coulomb
diamonds, as well as the current–voltage characteristic, agree very well with
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Fig. 9.12 Stability diagram of an Al–Al2O3 SET transistor (its dimen-
sions are shown to the left), measured at a temperature of 30 mK. At
the bottom, Coulomb blockade oscillations are shown for V = 10 µV.
Adapted from [111].

the model just developed. For |V| < e/C11, the current oscillates strongly as
a function of the gate voltage, an effect known as Coulomb blockade oscillations.
Current peaks occur at VG = (e/C1G)(n + 1

2 ). In each gate voltage period
∆VG = e/C1G, n changes by one. It is important to point out that these oscil-
lations have nothing to do with resonant tunneling. Neither did we assume
phase coherence, nor does the nearest-neighbor spacing of the energy levels
have to be larger than kBΘ! In fact, for the system shown in Fig. 9.12, the level
spacing is well below 1 µeV. We shall see in the following chapter on quan-
tum dots how single-electron tunneling coexists with size quantization. The
weak structures outside the diamonds correspond to Coulomb staircases for
each gate voltage, telling us that the two tunnel barriers are not identical.

The line shape of the Coulomb blockade resonances in the limit of negli-
gible source–drain voltage has been derived in [184] and in [23]. The typical
experimental situation is characterized by hΓ � ∆ � kBΘ � EC. This is
known as the metallic regime. Here, Γ denotes the coupling of the island to the
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leads, while ∆ is the spacing of the discrete (kinetic) energy levels of the is-
land. Coulomb blockade is well pronounced in this regime, but many energy
levels carry current. The line shape of the conductance resonances is given to
a good approximation by

G(E) =
e2Disland

2
ΓSΓD

ΓS + ΓD cosh−2
(

E− Emax

2.5kBΘ

)
(9.15)

Here, Disland is the density of states in the dot, ΓS,D denote the couplings
of the dot to source and drain, while Emax is the energy at the peak am-
plitude. Note that the gate voltage can be transformed into an energy via
δE = eC1G/C11δVG. Increasing the temperature thus broadens the resonances,
but does not change the peak conductance. Since the conductance of an indi-
vidual energy level of the island scales as 1/Θ (see Exercise E8.4), and the
number of contributing states is proportional to Θ, the total temperature de-
pendence of the peak conductance just cancels [23].

It is important to realize that Coulomb oscillations do not measure the den-
sity of states of the island, but the addition spectrum. The density of states
tells us how many electrons can be in the system at a particular energy, for a
fixed number of electrons. The addition spectrum, on the other hand, tells us
at which energies electrons can be added to the system. If the system is inter-
acting, these two quantities are different, a fact that is clearly demonstrated
here. Besides being a somewhat unconventional transistor with an oscillatory
transconductance dI/dVG, this device is extremely sensitive to charges in the
vicinity of the island and can thus be used as an electrometer, as used, for
example, to study the electrochemical potential in semiconductor heterostruc-
tures [161, 321]. Particularly appealing is the integration of a SET transistor
in the tip of a scanning probe microscope, which results in an electrometer
of both high spatial and charge resolution [131, 340]. The charge resolution
is ultimately limited by shot noise; a sensitivity of 10−4 electrons has been
demonstrated experimentally in [348].

Question 9.6: Estimate the charge resolution δq achievable with the single-electron
transistor of Fig. 9.12. Assume the operation point is in the wing of a Coulomb block-
ade resonance, and assume a current resolution of 10 fA.

In transistor operation, its advantage is low power consumption, since,
for switching, the charge needs to be changed by only a small fraction of e.
Schemes for a digital logic based on single-electron tunneling have been de-
veloped, and experimental implementations are being investigated [7, 178].
One problem is to reduce the island size sufficiently in order to operate the
devices at room temperature. To date, there are several reports on SET tran-
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Fig. 9.13 Current–voltage characteristics of a resistively coupled
single-electron transistor. Shown is both the source current (solid
lines) and the gate current (dashed lines) for VG varying from −e/2C
to e/2C in steps of e/8C. The traces are offset vertically for clarity.
(Adapted from [179].)

sistors operating at room temperature (see e.g. [275]), but production of such
devices is by no means standard. In addition, the switching is strongly dis-
turbed by fluctuating background charges, although a charge stability of 0.01
elementary charges over weeks has been demonstrated in silicon-based SET
transistors [349]. Furthermore, the voltage gain in such transistors is limited.

These limitations can be overcome, in principle, by using resistively coupled
single-electron transistors. The circuit is shown in Fig. 9.13: the gate couples
to the island via a gate resistance RG � h/(2e2). In describing this device,
Eq. (9.10) has to be modified, since charge can also flow from the gate onto the
island:

p(q)
[

ΓS→1(∆E(q)) + ΓD→1(∆E(q)) +
1

RGC11

∂

∂q
(q−VGC11 + VC1D)

]
= p(q + e)[Γ1→S(∆E(q + e)) + Γ1→D(∆E(q + e))] (9.16)

Now p(q) is the probability density of finding the total charge q on the island.
The corresponding current–voltage characteristics are shown in Fig. 9.13.

In this device, the gate voltage keeps the island potential fixed at long time
scales (t � 1/RGC11). If, however, V is sufficiently large and an electron
can tunnel from S into the island, the gate response is too slow to prevent
an additional voltage buildup at the drain junction, and the electron is able
to tunnel to drain. If |VG| > e/C1D, a gate current starts to flow, and the is-
land is open. Therefore, there is only one Coulomb diamond, centered around
(V, VG) = (0, 0). The transconductance is no longer oscillatory in VG, and the
device is much less sensitive to fluctuating background charges. Fabricating
such a transistor, however, hits some experimental difficulties that have yet to
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be overcome: the heating problem is similar to that in a single tunnel junction,
and the stray capacitance between gate and island should be negligible. In
addition, this Coulomb diamond is much more sensitive to thermal smearing
and noise than those in “conventional” SET transistors [179].

9.3
SET circuits with many islands: The single-electron pump

As an example of a more complex SET circuit, we study the system of two
islands in series, also known as a single-electron pump (Fig. 9.14).

Fig. 9.14 Circuit of two islands in series. Each island can be tuned by
a nearby gate electrode.

Via a tunnel junction, island 1 is coupled to source and island 2 to drain.
The total capacitances C11 of both islands are assumed to be equal. Further-
more, we neglect several capacitance matrix elements (except those shown in
Fig. 9.14) and assume that electrode A (B) couples only to island 1 (2), with
equal capacitances. Nevertheless, VB influences V1 via the inter-island capac-
itance C12 and vice versa. We will not study the effect of a source–drain bias
voltage. Rather, we are interested in the ground state of the system as a func-
tion of VA and VB. We assume that we can probe this state by applying a neg-
ligibly small source–drain voltage. Hence, we set VS = 0. The island charge
vector is given by −e(n1, n2), and the electrode voltage vector by (VA, VB, 0).
The capacitance matrices of interest are

CII =
(

C11 −C12
−C12 C22

)

CIE =
(−CG 0 −C1S

0 −CG 0

)
with C11 = C22 = C1S + C12 + CG = C2D + C12 + CG. Six electron transfers are
of importance.
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1. An electron tunnels between source and 1, ∆�qI = e(±1, 0), ∆�qE =
e(0, 0,∓1). The onset of this transfer is determined by

∆E[�VE,−e(n1, n2), ∆�q] = 0 =⇒
C11[CGVA − (n1 ∓ 1

2 )e] = −C12[CGVB − n2e] (9.17)

2. An electron is transferred between drain and 2, ∆�qI = e(0,±1), ∆�qE =
(0, 0, 0), which gives

C11[CGVB − (n2 ∓ 1
2 )e] = −C12[CGVA − n1e] (9.18)

3. Finally, electrons can be exchanged between 1 and 2, ∆�qI = e(±1,∓1),
∆�qE = (0, 0, 0), leading to

VA − e
CG

(n1 ∓ 1
2 ) = VB − e

CG
(n2 ± 1

2 ) (9.19)

These boundaries define regions of stable electron configurations in the
(VA, VB) plane, each of which is characterized by the island charge vector
that corresponds to the lowest energy. For C12 → 0, islands 1 and 2 are no
longer coupled. It becomes impossible to influence island 1 by VB and vice
versa. In this limit, the stability diagram consists of squares given by condi-
tions 1 and 2. Condition 3 plays no role, since the corresponding lines just
touch two corners of the square (Fig. 9.15(a)).

Question 9.7: Investigate the stability diagram of the double island in the limit of
connected islands.

Fig. 9.15 Stability diagram of the two-island system of Fig. 9.14,
(a) for completely decoupled islands and (b) for an inter-dot capaci-
tance C12 = CG.
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The general situation is shown in Fig. 9.15(b): the boundaries (1) and (2) tilt
for C12 > 0, and the stable regions develop a hexagonal shape. A current can
pass from source to drain only if electrons can tunnel between the two islands
as well as between island 1 (2) and source (drain). This degeneracy exists only
at the corners of the elongated hexagons.

Question 9.8: Study the effect of cross capacitances on the stability diagram. Con-
sider equal capacitances between gate A (B) and island 2 (1), which are much smaller
than CG.

The charge configuration of the double island system can be directly mon-
itored by coupling a SET transistor to each island (Fig. 9.16). In this setup,
the SET transistor labeled by 3 (4) serves as an electrometer to measure the
charge on island 1 (2) [5]. In Fig. 9.16(a), the current through the double island
is shown as a contour plot. As expected, current flows predominantly at the
corners of the stable regions. Figs. 9.16(b) and (c) show the conductance of
the electrometers 3 and 4, respectively, which is a measure of the charge on
island 1 (2). The transition of the island charges is clearly visible as a sharp in-
crease of the electrometer conductance along the direction that corresponds to
changing the charge at the measured island. In Fig. 9.16(d), the difference sig-
nal of the two electrometers is shown, which emphasizes that, in each stable
region, the charge configuration is really a different one.

In [245], it has been demonstrated for the first time that, with this device,
electrons can be “pumped” by the gate voltages. The current can even be
made to flow in the opposite direction of the source–drain bias voltage drop.
In order to understand this experiment, we first consider the effect of a non-
zero bias voltage: it shifts the boundaries of the stability diagram and gen-
erates triangular regions at the corners of the hexagons. Inside the triangles,
Coulomb blockade becomes impossible. In order to operate the pump, the DC
component of the gate voltages VA and VB are adjusted such that the device is
located within one of these triangles (Fig. 9.17(a)).

Question 9.9: Calculate the shifts of the boundaries given in Fig. 9.17(a).

In addition, an AC voltage is applied to gates A and B, with a phase shift
of (not necessarily exactly) ±π/2. For sufficiently large AC amplitudes, the
trajectory of the device state is a circle enclosing the triangle. Circling around
the triangle labeled “P” in the positive direction corresponds to a sequence of
states (n1, n2) → (n1 + 1, n2) → (n1, n2 + 1) → (n1, n2). This means that, for
each round trip, one electron is transferred from source to drain, independent
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Fig. 9.16 Measurement of the stability diagram of the double island
system. Left: Equivalent circuit of the double island system 1 and 2,
with each island coupled to a SET transistor acting as an electrom-
eter. Right: (a) conductance of the double island as a function of the
gate voltages VA and VB in a contour diagram; (b, c) conductance of
electrometer 3 (4), respectively; (d) difference signal of the two elec-
trometers. (Adapted from [5].)

Fig. 9.17 (a) A non-zero bias voltage shifts
the boundaries of the stability diagram in the
VB direction by

∆V1S = − VS

CG

(
C +

C2

C12
− C12

)

∆V2D = − VS

CG

C2
12

C

∆V12 =
VS

CG
C12

respectively. As a result, triangular shaped re-
gions are formed in which Coulomb blockade
no longer exists. The circles denote the tra-
jectories of the device as small AC voltages
are applied to gates A and B. (b) Operation
of the electron pump at different frequen-
cies. The actual phase shift of the AC signal
was ±130◦. Also shown are the I–V char-
acteristics in the center and at a corner of a
stable region, without an AC voltage applied.
After [193].
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of the direction and magnitude of the bias voltage. The current plateaus of the
single-electron pump are shown in Fig. 9.17(b) as a “P” point is encircled with
two different frequencies in positive (phase shift π/2) and negative (phase
shift −π/2) directions. Note that the current is independent of the sign of VS
within a window around VS = 0.

Also shown is the current–voltage characteristic when no AC signal is ap-
plied. Here, the current plateaus are absent. Provided the trajectory encloses
the triangle completely and the AC amplitude is sufficiently small, such that
other electron transfers are impossible, the current is coupled to the frequency
via

I = e f

Furthermore, for the system to follow the frequency, f has to be smaller than
the inverse time constant 1/τ of the device, given by roughly τ = R12C12.
Encircling type “N” points in the same direction, or switching the direction in
type “P” points, respectively, reverses the sign of the current.

Frequencies are the most accurate quantities we have in physics (the “NIST-
F1 standard” is currently the frequency standard in the US and has an accu-
racy of 10−15). This raises the question whether the single-electron pump can
be used as a current standard, with the current coupled to a frequency (at
present, currents can be defined with a relative accuracy of 10−6 [203]). Here,
the low current that can be pumped through a single-electron pump consti-
tutes a problem. We may, however, rephrase this question and ask: How
accurate is the number of electrons pumped? It turns out that the accuracy
is dominated by multi-junction tunneling events, so-called cotunneling. Even
with Coulomb blockade established, an electron may tunnel onto the island
virtually. If this electron, or a different one, tunnels off the island across the
second barrier, a real current results. Cotunneling can be suppressed by in-
creasing the number of tunnel junctions [14, 15, 203]. Fig. 9.18 shows an ex-
ample where the cotunneling has been suppressed by placing high on-chip
resistors in series with the SET device [193].6

Keller and coworkers [172] used an electron pump (see Fig. 9.19) that con-
sists of six islands in series to charge a capacitor with an accuracy of 10−8,
i.e. the uncertainty is one electron for 108 pumped electrons. By measuring
the voltage drop V across the capacitor after pumping N electrons, the capac-
itance C = Ne/V could be determined with a standard deviation of 3× 10−7.

6) The results shown in Figs. 9.16 and 9.17 have actually been obtained
with a thin-film Cr resistor located at the entrance and exit of the
electron pump (see [193]).
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Fig. 9.18 Comparison between the observed current plateau of the
single-electron pump (circles) and the current I expected from I = e f .
Close to the center of the plateau, a relative error of 10−6 is found.
Here, cotunneling has been suppressed by resistors in series with the
single-electron pump. Adapted from [193].

Fig. 9.19 Principle of the capacitance standard: the single-electron
pump, consisting of several SET transistors in series, transfers a well
defined number of electrons onto the plate of a capacitor, and the volt-
age drop is measured.

Papers and Exercises

P9.1 In [110], a single-electron transistor is used for detecting charge re-
arrangements in the substrate. How does this work?

P9.2 Hanna and Tinkham [140] developed an analytical model for the Cou-
lomb staircase in the limit of strongly differing junction couplings. Work
out their model and reconstruct the authors’ “I(V) phase diagram” in
Fig. 1b of that paper.

P9.3 Geerligs et al. [113] demonstrated the operation of a single-electron turn-
stile, a slightly different concept for counting electrons than the single-
electron pump. Explain the pumping mechanism of the single-electron
turnstile.
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P9.4 Superconductivity adds a new and exciting twist to single-electron tun-
neling. Work out the basic modifications due to superconductivity. A
good starting point is Fitzgerald et al. [96].

E9.1 The “single-electron tunneling box consists of an island in between a tun-
nel barrier and a capacitor with infinite resistance (see Fig. 9.20). The
tunnel resistance is sufficiently high to suppress quantum fluctuations.
Calculate the number of excess electrons on the island as a function of
the voltage.

Fig. 9.20 Equivalent circuit of the SET box for Exercise E9.1.

E9.2 Calculate the current through a tunnel barrier in the absence of single-
electron charging effects. Show that our definition of the resistance in
Eq. (9.11) is reasonable for small voltages applied, since Ohm’s law is
obtained.

E9.3 Modify the double island system of Fig. 9.14 such that both source and
drain couple to island 1 only. Island 2 “dangles” (see Fig. 9.21). In the
limit of zero source–drain bias voltage, what does the phase diagram
in the (VA, VB) plane look like? Discuss the relevance of direct electron
transfers between island 2 and the source/drain contacts. Assume iden-
tical capacitances.

Fig. 9.21 Sketch of the double island system of Exercise E9.3.
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Further Reading

A classic review article was written at the beginning of the “single-electron
tunneling age” by Averin and Likharev [13]. A stimulating book containing
collections of articles on various aspects of single-electron tunneling phenom-
ena is [124]. Furthermore, [178] is an article entitled “Coulomb blockade and
digital single electron devices”, which focuses on the relevant aspects of a fu-
ture single-electron logic.
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10
Quantum Dots

A conducting island of a size comparable to the Fermi wavelength in all spa-
tial directions is called a quantum dot. The properties of quantum dots are
very similar to those of atoms, and sometimes you hear that quantum dots
are artificial atoms. The differences are essentially the size (0.1 nm for atoms
vs. ≈ 100 nm for quantum dots), and the shape and strength of the confining
potential. In atoms, the electrons are bound by the attractive forces exerted
by the nucleus; whereas in quantum dots, a mean electric field generated by
background charges and gate voltages holds the electrons together. The num-
ber of electrons in an atom can be changed by ionizing it, which can be done
by irradiating it with electromagnetic waves, or by applying a strong electric
field. In quantum dots, the electron number is typically altered by tuning the
confinement potential. An equivalent process in atoms would be to replace
the nucleus by a neighbor in the periodic table.

The length scales imply characteristic energy scales in quantum dots that
differ from those in atoms by roughly four orders of magnitude. The energy
level spacing in atoms is of the order of 1 eV, while in quantum dots it is typ-
ically 0.1 meV. The ionization energy is in the range of 10 eV for atoms and
about 1 meV in quantum dots. Therefore, quantum dots open up novel exper-
imental possibilities not available in atoms. For example, it is easy to break
Hund’s rules in a quantum dot by applying a magnetic field. Doing this in an
atom requires a magnetic field of the order of 104 T, two orders of magnitude
larger than the strongest magnetic fields available in the laboratory. Such pos-
sibilities, combined with the high tunability of quantum dots, have boosted
quantum dot research in the past 10 years. The option of tailoring their optical
and electronic properties promises a variety of applications as well. Quantum
dot lasers with particularly low threshold currents have been built, and it is
envisaged to transfer many concepts of quantum optics related to the interac-
tion of photons with atoms into a solid state environment, a goal that would
pave the road for novel applications, such as quantum computation.

Here, we restrict ourselves to the basic transport properties of quantum
dots. From a fundamental point of view, the possibility to probe a small entity
of confined, interacting electrons by transport experiments is exciting. Clearly,
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this aspect is essential for any kind of optoelectronic quantum dot devices
as well.

We begin this chapter with a brief survey of the transport phenomenology
of quantum dots. The elementary constant interaction model will be intro-
duced in Section 10.2. It offers a crude and simple way to separate the interac-
tion effects from size quantization, and allows the interpretation of a variety
of observations in a straightforward manner. However, many experiments
contradict this simple model, as demonstrated in Section 10.3. In Section 10.4,
we will have a look at the line shapes of the conductance resonances, which
offer additional information and complement the information on the discrete
energies that is extracted from the resonance positions. Finally, the chapter is
concluded with a look at further experimental realizations of quantum dots
that do not rely on semiconductor heterostructures.

10.1
Phenomenology of quantum dots

The majority of transport experiments on quantum dots have been performed
on samples made by the top-down approach, namely by lateral patterning of
a semiconductor heterostructure. We pick this realization as an example to
introduce the transport phenomenology of quantum dots. Other systems are
mentioned in Section 10.5.

Fig. 10.1 Atomic force micrograph of a gate geometry used to gener-
ate a quantum dot in a Ga[Al]As heterostructure. The gold electrodes
(bright) have a height of 100 nm. The two QPCs formed by the gate
pairs F–Q1 and F–Q2 can be tuned into the tunneling regime, such
that a quantum dot forms in between the two barriers. Its electrostatic
potential can be varied by changing the voltage applied to the center
gate.
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Fig. 10.2 Parametric conductances of dif-
ferent pairs of gates of the sample shown in
Fig. 10.1. Sweeping the gate pairs F–Q1 and
F–Q2 show typical QPC characteristics. Here,
all remaining gates have been grounded.
Gate pair F–C forms a somewhat poorly de-

fined QPC, which cannot be pinched off. Nev-
ertheless, the formation of the channel due
to depletion is clearly seen. “WP” denotes
the working point of the gates F, Q1, and Q2
used to operate the dot as a single-electron
transistor.

The gate structure of Fig. 10.1, defined on top of a Ga[Al]As heterostruc-
ture, is designed to impose and tune a quantum dot in the 2DEG underneath.
In combination with the finger gate F, the gates Q1 and Q2 form two quan-
tum point contacts (QPCs), which can be tuned independently (see Fig. 10.2).
Suppose we now adjust the finger gate and the center gate such that the elec-
tron gas underneath is depleted. As the conductance of both QPCs is reduced
below 2e2/h by tuning the Q gates, the electron puddle in between the gates
gets disconnected from the environment, and a closed quantum dot is formed,
weakly coupled to source and drain via tunnel barriers. In this regime, con-
ductance oscillations as a function of any of the gate voltages are observed
(Fig. 10.3). The voltages applied to F, Q1 and Q2 strongly change the QPC
conductances as well, which limits the tuning range of the dot. Therefore, the
dot is usually tuned with a center gate voltage. This gate is designed to cou-
ple well to the dot, with little influence on the QPC transmission. A typical
conductance trace as a function of center gate voltage was shown earlier in
Fig. 1.5 in the Introduction.

Qualitatively, such oscillatory behavior is expected from both single-electron
tunneling, as well as from the resonant tunneling discussed in Chapter 8. In
fact, when this kind of oscillation was first observed, its explanation was not
immediately clear. Only additional experimental studies revealed that, in
fact, both of these effects play an important role. For typical experimental
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Fig. 10.3 Gate voltage characteristics with the dot defined (all gates
are activated). Short-period transmission resonances are seen, which
are modulated with a much larger period. Note that the resonances set
in at a threshold gate voltage.

parameters, the Coulomb blockade determines the coarse features, while size
quantization, i.e. the quantization of the kinetic energy inside the dot, is re-
sponsible for the fine structure [155, 210, 269]. A large amount of information
on quantum dots has been collected by investigating their conductance as a
function of gate voltage and a second, independent, parameter. In Fig. 10.4,
the peak positions of the conductance resonances are plotted as a function
of the gate voltage and a (perpendicular) magnetic field. While the raw data
look rather structureless at first sight, a further investigation reveals a rich fine
structure. First of all, the peak spacing in gate voltage is not constant – see the
inset in Fig. 10.4(a). There is a general trend toward smaller peak spacings as
the gate voltage is increased. This is partly due to a geometrical effect, since
the edge of the dot approaches the gate electrode as we fill in electrons. As a
consequence, the capacitance between the dot and the gate increases. On top
of this effect, fluctuations in the peak spacings are apparent, as we saw already
in Fig. 1.5 in the Introduction. The fine structure becomes more visible once a
constant amount of the peak spacings has been subtracted (Fig. 10.4(b)). We
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Fig. 10.4 (a) Positions of 22 consecutive
conductance resonances as a function of the
gate voltage and the magnetic field. The gate
geometry of the sample is shown in the lower
inset. The quantum dot has an approximately
triangular shape with a width and height of
about 450 nm. The center gate is in the cen-
ter at the bottom. The upper inset shows the
peak spacings at B = 0. The numbers in-

dicate dot occupations for which particularly
large spacings are expected within the Fock–
Darwin model (see text). (b) The data of (a)
up to 45 electrons in the dot, with a constant
peak spacing removed. N = 0 indicates the
region where the dot is empty, while ν = 2
denotes the Landau level filling factor inside
the dot; see text. After [56].

divide this pattern into three regimes. At very low magnetic fields, the spac-
ings fluctuate, with a certain tendency to bunch together for small occupation
numbers. At intermediate magnetic fields (B ≈ 1 T; and occupation numbers
N > 20 in this example), the peak positions show quasi-periodic cusps. This
pattern changes abruptly as B is increased, with a transition magnetic field
that increases with the occupation number.

While the details of this overall pattern depend on the sample, and many
additional effects have been found in particularly designed quantum dots and
under appropriate experimental conditions, such a phenomenology is a com-
mon feature of most samples. In the following, we focus on the interpretation
of this overall pattern. Before we begin, however, further experimental results
need to be mentioned that contain additional information. Let us first look at
the current through a quantum dot as a function of a gate voltage and of the
source–drain bias voltage V (Fig. 10.5).
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Fig. 10.5 (a) Sketch of the current through a quantum dot as a
function of the gate voltage and the source–drain bias voltage V.
Diamond-shaped regions of suppressed current exist. (b) As V is in-
creased from A to C, the gate voltage sweeps reveal a fine structure of
the conductance resonances. After [169].

Regions of suppressed current are observed, as sketched in Fig. 10.5(a).
They resemble the Coulomb diamonds encountered already in Chapter 9.
Here, however, their size fluctuates, while their shapes are essentially identi-
cal. At small source–drain voltages, the conductance resonances as a function
of the gate voltage look similar to Coulomb blockade oscillations, although
their amplitude fluctuates from resonance to resonance. As the bias voltage
is increased, however, a fine structure emerges (Fig. 10.5(b)), which is absent
in single-electron transistors. Finally, the amplitude of the resonances can be
tuned by a magnetic field (see Fig. 10.6). In fact, it may change by orders of
magnitude and can be suppressed below the noise level.
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Fig. 10.6 Evolution of five consecutive conductance resonances in
a magnetic field. The peak positions fluctuate by about 20% of their
spacing, while the amplitude varies by up to 100%. After [197].

10.2
The constant interaction model

How shall we interpret these observations? Clearly, a quantum dot is a quasi-
zero-dimensional system. Within a single-particle picture, its density of states
consists of a sequence of peaks, with positions determined by the size and
shape of the confining potential, as well as by the effective mass of the host
material. A very simple estimation for the average nearest-neighbor spacing
∆ of these energy levels is obtained by starting from the two-dimensional den-
sity of states, D2(E) = m∗/πh̄2. For a spin degeneracy of 2, there are m∗A/πh̄2

states per energy interval of unit length in an area A, and thus a spin-resolved,
average energy level spacing of

∆ ≈ πh̄2/m∗A (10.1)

is expected. The second energy scale of relevance is set by the single-electron
charging energy. For a sufficiently weak coupling to the leads, i.e. when the
conductances of the barriers that connect the dot to source and drain are below
2e2/h, the electrons of the dot are strongly localized, and Coulomb blockade
comes into play.
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Question 10.1: Show that Eq. (10.1) is obtained from the energy spectrum of a two-
dimensional square well in the limit of large quantum numbers; estimate ∆ and the
single-electron charging energy for a GaAs quantum dot with a diameter of 300 nm.

Apparently, in order to add an electron to the dot, the addition energy is re-
quired, which is the sum of the electrostatic and the kinetic parts of the en-
ergy, as discussed already during our discussion of capacitance spectroscopy
in Section 6.1. One estimate for the addition energy of the jth electron would
be simply to add the single-electron charging energy and the single-particle
separation of the jth energy level from its occupied neighbor. This approach
seems perfectly satisfactory at first sight, but in fact makes the crucial assump-
tion that the kinetic energy of the dot states is independent of the number of
electrons in the dot. Owing to the electron–electron interactions, screening, as
well as exchange and correlation effects, this is not strictly the case. It is well
known that interactions strongly modify the energy spectra of atoms. Even
in the case of the helium atom with just two electrons, the addition spectrum
is tremendously complicated. The approach outlined above, known as the
constant interaction (CI) model, disregards such difficulties. The CI model is a
valuable tool for analyzing quantum dot addition spectra, and it provides a
good explanation of the data in several cases.

It is straightforward to include the additional discrete energy levels in our
single-electron tunneling model of Chapter 9. Suppose state j with single-
particle energy εj is the highest occupied state in the quantum dot. An addi-
tional electron will occupy the empty state with the lowest energy, εj+1. This
energy can simply be added to the energy difference ∆E in Eq. (9.4). Likewise,
for processes that reduce the electron number in the dot, we subtract εj, the
energy of the highest occupied level, in that equation. In the previous chap-
ter, we took it for granted that the number of electrons in the island is large
compared to the number of additional charges we forced on the island with
the gate voltage. This is no longer necessarily the case in quantum dots, since
the electron densities are smaller by a factor of ≈ 1000. Typical occupation
numbers range between 0 and 100. It is thus natural to define the number j
of electrons as zero for the empty dot. In principle, the dot can be filled with
holes, but this would require the dot potential to be tuned across the bandgap
of the semiconductor host. We do not consider this possibility.1

For simplicity, let us assume that there is no background charge. The bound-
aries of the stable regions that form the diamonds (Eqs. (9.13)) are modified
and now read as follows.
For δ�q = e(−1, 1):

1) Note that, although we speak of quantum dots in electron gases,
everything is analogous for hole gases.
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V(VG, j) >
C1G

C11 − C1S
(VG −Vdep)− e(j + 1

2 )
C11 − C1S

− εj+1
C11

e(C11 − C1S)

For δ�q = e(1,−1):

V(VG, j) <
C1G

C11 − C1S
(VG −Vdep)− e(j− 1

2 )
C11 − C1S

− εj
C11

e(C11 − C1S)

For δ�q = e(−1, 0):

V(VG, j) < −C1G

C1S
(VG −Vdep) +

e(j + 1
2 )

C1S
+ εj+1

C11

eC1S
(10.2)

For δ�q = e(1, 0):

V(VG, j) > −C1G

C1S
(VG −Vdep) +

e(j− 1
2 )

C1S
+ εj

C11

eC1S

Here, Vdep denotes the depletion voltage as indicated in Fig. 10.5, while VG is
the gate voltage used to tune the dot.

For the special case of j = 0, of course, we cannot remove a further electron
from the island, and thus the second and fourth inequalities in (10.2) do not
apply. The stability diagram thus consists of a semi-infinite set of diamonds of
equal shape. Their sizes vary due to the varying single-particle level spacings.
In addition, a “semi-diamond” is obtained for j = 0 (see Fig. 10.5). In analogy
to the diamonds in the pure electrostatic case, their maximum extension in the
V-direction equals

∆V =
1
e

(
e2

C11
+ εj+1 − εj

)

The peak spacing in gate voltage at V ≈ 0 is given by

∆VG = α

(
e2

C11
+ εj+1 − εj

)
(10.3)

The ratio α = C11/eCG is a lever arm that translates the addition energies into
gate voltages, while the dot’s total energy changes by (e2/C11) + εj+1 − εj as
one electron is added.

Question 10.2: The quantum dots of Figs. 10.1 and 10.4 have more than one gate.
How does this enter in Eq. (10.3)?

Within the CI model, we can subtract EC from the measured peak spacings
according to Eq. (10.3), as has been done to get Fig. 10.4(b) from Fig. 10.4(a).
The remainder should correspond to the single-particle energy spectrum of
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the dot. In order to appreciate the effect of a magnetic field, we consider a
model that has the advantage of being analytically solvable, namely the Fock–
Darwin model [64, 99] encountered already in Chapter 7. Now, the electron
motion is no longer free in the third direction, and the parabolic potential is
orientated in the (x, y) plane. The energy spectrum in this plane is not changed
by these modifications.

Hence, we assume that the quantum dot is circular in shape and has a par-
abolic confinement potential,

V(x, y) = 1
2 m∗ω2

0(x2 + y2) = 1
2 m∗ω2

0r2

with r being the radius of the dot. The corresponding Schrödinger equa-
tion can be solved analytically, even with a magnetic field applied in the z-
direction [165]. The energy spectrum is given by

En,l(B) = (2n + |l|+ 1)h̄
√

ω2
0 + 1

4 ω2
c − 1

2 lh̄ωc ± g∗µBB (10.4)

The radial quantum number is n = 0, 1, 2, . . . , while l is the angular momen-
tum quantum number, i.e. l = 0,±1,±2, . . . . At B = 0, the energy levels
are located at (j + 1)h̄ω0, with j = 2n + |l|, and with an orbital degeneracy
of j. In addition, there is a twofold spin degeneracy. In analogy to atomic
energy spectra, we can speak of the jth Fock–Darwin shell. The orbital de-
generacies in each shell get removed by a perpendicular magnetic field, since
all states within one shell have different angular momenta and thus respond
differently to the magnetic field. For now, let us assume that the effective g-
factor of the dot g∗ is negligible, such that the levels remain spin-degenerate.
This spin-degenerate Fock–Darwin spectrum is shown for ωc ≤ ω0 to the
left in Fig. 10.7. We see that a sufficiently strong magnetic field induces level
crossings. For the confining strength shown in this figure (h̄ω0 = 1 meV),
for example, a crossing of level (n, l) = (0, 2) with (n, l) = (0,−1) occurs at
B ≈ 0.4 T, and the ground state configuration of the dot changes. Similar level
crossings occur more frequently at higher energies.

Sometimes, the behavior expected within the Fock–Darwin model agrees
even quantitatively with the experimental observations; see Paper P10.1.
In the typical experiment shown in Fig. 10.4, of course, one cannot ex-
pect perfect agreement, since the dot’s confining potential is neither circu-
lar nor strictly parabolic.2 The Fock–Darwin model predicts filled shells
for N = 2, 6, 12, 20, . . . . Although these spacings are slightly enhanced in
Fig. 10.4(b), there is certainly no 1 : 1 correspondence. Note further that there
is also no spin pairing visible. The CI model is thus a reasonable first ap-

2) Numerical simulations have revealed that, in many samples, a cir-
cular dot shape and a parabolic confinement are actually better ap-
proximations than might be expected from the gate geometry [185].
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Fig. 10.7 A section of the Fock–Darwin spectrum (left), calculated
for h̄ω0 = 1 meV, and the predicted evolution of the conductance
resonances as a function of the gate voltage and the magnetic field
(right), when the single-electron charging energy equals 1 meV as well.
The labeling is explained in the text.

proximation for this regime, although it cannot explain all the details of the
experimental observations.

10.2.1
Quantum dots in intermediate magnetic fields

We proceed by looking at the quasi-periodic cusps of the peak positions that
can be seen in Fig. 10.4(b). To begin with, it is useful to transform the Fock–
Darwin model to a different set of quantum numbers, which emphasizes the
behavior of the energy levels in magnetic fields. Intuitively, we expect that the
stronger B is, the less important the electrostatic confinement should be, and
the Fock–Darwin levels should bunch together and form Landau levels. It is
therefore appropriate to relabel the energy levels by the Landau level quantum
number m = 1, 2, 3, . . . , and a quantum number p that enumerates the energy
levels within a Landau level. With the transformation [165]

p = n + 1
2 (|l|+ l)

and

m = n + 1
2 (|l| − l) + 1

the energy levels of the Fock–Darwin spectrum read

Em,p = h̄(m + p)
√

ω2
0 + 1

4 ω2
c + 1

2 h̄(m− p− 1)ωc (10.5)

Here, we again neglect spin splitting. In the regime of filling factors 2 < ν < 4,
this spectrum develops a very simple structure (see Fig. 10.8).



284 10 Quantum dots

Fig. 10.8 (a) Two Landau levels in a par-
abolic quantum dot. Below the Fermi en-
ergy, the discrete states of each Landau level
are occupied, as indicated by the full circles.
Higher Landau levels are not shown, since
all their states are empty. The filling factor is
thus in the regime 2 < ν < 4. (b) A sec-
tion of the corresponding energy spectrum,
calculated for a circular dot with a parabolic
confinement of h̄ω0 = 1 meV. States be-

longing to LL 1 (thin full lines) reduce their
energy as B is increased, while those states
belonging to LL 2 (dashed lines) are running
upwards in energy. The bold lines represent
the Fermi level as a function of the magnetic
field B, for a constant number of electrons in
the dot. (c) The conductance of a quantum
dot as a function of the gate voltage and the
magnetic field in this regime. Bright areas
correspond to a high conductance.

States with m = 1 decrease in energy as B is increased, while Landau level 2
(LL 2) states show a positive magneto-dispersion. This fact simply reflects the
increasing degeneracy of LL 1 and the depopulation of LL 2 as B is increased.
The energies as a function of B develop a quasi-periodic pattern of diamonds
(see Fig. 10.8(b)). At constant electron number, the electrochemical potential of
the dot, and with it the energy of the transmission resonance, moves in zigzag
lines as B is tuned. The period can be approximated by ∆B ≈ (ω0/ωc)2B.
Furthermore, the energy levels are approximately equally spaced in energy,
with a spacing of

∆E = Em,p+1 − Em,p ≈ h̄
ω2

0
ωc

which is independent of the energy level quantum numbers. These approxi-
mate expressions are part of Exercise E10.1. The spatial location of these states
is shown schematically in Fig. 10.8(a). At the Fermi level, the m = 1 states are
close to the edge of the dot, while states with m = 2 are located toward the
dot center. This means that states belonging to LL 1 couple much better to the
leads than do LL 2 states.



10.2 The constant interaction model 285

Although we have developed this scenario within the Fock–Darwin model,
most conclusions remain valid for other dot shapes and confining potentials.
Independently of these details, the LL 2 states couple more weakly to the
leads, since they are further inside the dot, and thus the tunnel barrier they
form with the reservoirs is larger. These states will get depopulated as B is
increased, independently of the confinement shape. In fact, the measurement
shown in Fig. 10.8(c) agrees reasonably well with the Fock–Darwin model.
Bright lines of high conductance with a negative slope are observed. They
measure the magnetic field dispersion of LL 1 states. The LL 2 states couple
very weakly to the leads, owing to the exponentially suppressed tunneling.
The conductance via those states is not detectable at the low source–drain bias
voltages used in the experiment. For a further interpretation of these data, see
Exercise E10.1.

Experimentally, different confinement potentials can be established by, for
example, varying the parameters of the sample and of the fabrication process
accordingly. The corresponding data in a quantum dot with an approximate
hard-wall confinement are discussed in Fig. 10.9. The energy spectrum of a cir-
cular disk with hard walls cannot be solved analytically. Rather, the spectrum
is obtained by numerical calculation of the zeros of the hypergeometric func-
tion usually denoted as 1F1 in the literature of special functions [112]. This
energy spectrum is shown schematically in Figs. 10.9(a) and (b): most strik-
ingly, the density of states at the Fermi level in LL 2 is higher than in LL 1,
provided the Fermi level is not far above the energy of LL 2 at the center of the
dot. Fig. 10.9(c) shows a corresponding measurement [106].

The reconstruction of the energy spectrum of this dot reveals that the spac-
ing between LL 1 states is significantly larger as compared to that for LL 2
states, which indicates a steep-wall confinement.

10.2.2
Quantum rings

As a third example, we have a look at the reconstructed energy spectrum of a
quantum ring in moderate magnetic fields (Fig. 10.10) [107]. From the single-
particle spectrum of a one-dimensional quantum ring (the topic of Exercise
E8.3), we expect a pattern formed by a set of parabolas

El,n =
h̄2

2m∗r2 (l + n)2 (10.6)

Here, n = eBr2/2h̄ is the number of magnetic flux quanta that penetrate the
ring, and l = 0,±1,±2, . . . is the angular momentum quantum number. This
is partly observed in the data of Fig. 10.10. The periodicity and the amplitude
of the well pronounced zigzag lines are in agreement with the expectations
from the single-particle spectrum. In addition, quasi-dispersionless states are
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Fig. 10.9 (a) Landau levels in a quantum dot with an approximate
hard-wall confinement. (b) A section of the calculated energy level
diagram for 2 ≤ ν ≤ 4. (c) A corresponding set of experimental data.

Fig. 10.10 Left: Sample geometry of a quantum ring, defined in the
2DEG of a Ga[Al]As HEMT by local oxidation of the surface. As usual,
the QPC gates tune the dots coupling to source and drain, while the
ring can be tuned with the center gates. The ring contains about 100
electrons. Right: The reconstruction of the energy spectrum.

observed, which most likely reflect the imperfections of the ring. Owing to
azimuthal thickness variations, the actual states may be an admixture of vari-
ous eigenstates with different l, which damp the amplitude of the zigzag lines.
Although strong deviations from the single-particle spectrum of a perfect one-
dimensional ring are observed, the CI model thus seems to be a good approx-
imation.
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10.3
Beyond the constant interaction model

The CI model is bound to fail if residual interactions come into play, like ex-
change and correlation effects, or like screening that depends on the number
of electrons in the dot. Actually, the absence of spin pairing in Fig. 1.5 is a good
example for exchange and correlation energies which can be dealt with only
numerically. We now look at some effects in quantum dots that remain unex-
plained within the CI model, but can be interpreted within simple models for
residual interactions.

10.3.1
Hund’s rules in quantum dots

Hund’s rules tell us in what sequence the states within an atomic shell are
filled with electrons. Hund’s first rule states that the total spin gets maxi-
mized, without violating the Pauli principle. This rule originates in the ex-
change interaction, due to which electrons with parallel spin are kept spa-
tially separated, which reduces their mutual Coulomb energy. Hund’s sec-
ond rule forces the electrons to maximize the total orbital angular momen-
tum, under the constraint of Hund’s first rule. How the first six electrons
are filled in a Fock–Darwin potential at B = 0 according to Hund’s rules is
shown in Fig. 10.11. The third electron filled in this potential occupies the
level (n, l) = (0, 1).3 The fourth electron occupies the (0,−1) level, with the
same spin direction as the third electron. In analogy to the nomenclature used
in atomic physics, we denote the electronic configurations by 2S+1LJ , where S
is the total spin, J the total angular momentum, and L the total orbital momen-
tum, which is usually denoted by S for L = 0, P for L = 1, and so on. Forcing
the fourth electron in the (0, 1) level as well requires the exchange energy ∆xc
to be paid, and the configuration 3D3 results. The fifth electron goes again in
level (0, 1), with its spin in the opposite direction, while the sixth one fills the
last empty state in this shell. How Hund’s rules can be broken in quantum
dots by applying magnetic fields is the topic of Paper P10.1.

10.3.2
Quantum dots in strong magnetic fields

An obvious failure of the CI model occurs in quantum dots under strong mag-
netic fields, i.e. for filling factors ν < 2. In Fig. 10.4, this regime is located
above the upper magnetic field threshold for the cusps. The experimental
findings are summarized in Fig. 10.12. In the previous section, we have seen

3) The spin orientation is determined by Hund’s third rule, which
states how the total spin and the total angular momentum couple.
This depends on the host material.
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Fig. 10.11 Schematic occupation of the Fock–Darwin energy levels
(n, l) as the dot is filled with N electrons, according to Hund’s rules.

that frequent and quasi-periodic level crossings are observed in quantum dots
for filling factors just above 2, which is in agreement with a single-particle
spectrum. For filling factors below 2, there are no orbital level crossings. Only
the spin splitting causes slightly different magneto-dispersions for spin-down
states as compared to spin-up states. Very infrequent level crossings are there-
fore expected within a single-particle picture and for reasonable effective g-
factors. However, in [207], frequent level crossings have been observed in this
regime, which remain unexplained within the CI model.

To understand this effect, we revisit the Chklovskii picture of edge chan-
nels mentioned in Section 7.3, and adapt it to a quantum dot. Imagine that
the edge channel configuration of Fig. 7.20 is bent to form a circle. Qualita-
tively, we see right away that, owing to the spin splitting and the modulated
screening properties at the edge and the resulting electronic structure, a dot
with only the spin-up and spin-down sublevels of one Landau level occupied
segregates into a metallic ring around its edge and a metallic disk at its cen-
ter, separated by an insulating stripe.4 The resulting structure is sketched in
Fig. 10.13. The location and width of the insulating stripe are determined by
the effective g-factor inside the dot. From an electrostatic point of view, an ad-
ditional capacitance is formed between the ring and the disk. The system can
be thought of as a variation of a double island system discussed in Exercise
E9.3: the ring corresponds to the first island coupled to the leads. The second
island, i.e. the central disk, couples only indirectly to the leads, via the ring.

4) This picture is, as in the case of straight edge channels, only physi-
cally meaningful if the insulating stripe is wider than the magnetic
length.
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Fig. 10.12 (a) The dotted lines represent the
magnetic field dispersion of the levels 30–50
of the Fock–Darwin spectrum, including spin
splitting. The bold line follows the energy of
the 39th state. Below filling factor 2, levels
cross only because the two spin directions
have different magneto-dispersions. Hence,

very rare level crossings are expected in this
regime. (b) Experimentally, however, rapid
oscillations of the conductance peak positions
are found, as exemplified by a resonance
observed for about 39 electrons in the dot.
After [207].

Fig. 10.13 Electrostatic structure of a quan-
tum dot in strong magnetic fields (left). The
dark regions denote metallic areas of the dot,
while the white stripe in between is insulating.
The metallic ring close to the dot’s edge is
formed by the edge channel of the spin-up
sublevel of Landau level 1, while the disk at

the dot’s center is formed by the spin-down
sublevel. An intra-dot capacitance emerges,
and the capacitance of the dot with respect
to the gates is split up into two components
stemming from the disk and the ring. The
system is equivalent to the double island cir-
cuit shown to the right.
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The analogy is not complete, though. First of all, the intra-dot capaci-
tance C12 is a function of the magnetic field and of the electron density. Sec-
ond, tuning both islands independently with two gate voltages is impossible,
Rather, the gate voltage couples differently to the two islands, with a ratio
that changes with the gate voltage. As the magnetic field is increased, the
spin-down sublevel gets depopulated, and the electrons get transferred to the
spin-up sublevel. Such a transfer, however, requires the intra-dot charging
energy to be overcome, since the electron cannot be transferred to the spin-
up sublevel within the disk, as all the states of this sublevel lie well below
the Fermi level and are thus occupied.5 The period of the zigzag lines of the
transmission peaks as a function of B are now a measure for the intra-dot ca-
pacitance. Quantitative calculations within such a model agree well with the
experimental data (see Fig. 10.14).

Fig. 10.14 The measured (left) and calculated (right) evolution of con-
secutive conductance peak positions for quantum dot filling factors
below 2 agree reasonably well, in particular with respect to the period-
icity, if this electrostatic dot structure is taken into account. After [207].

10.3.3
The distribution of nearest-neighbor spacings

Above an occupation number of about 20 and for small magnetic fields, ana-
lytical single-particle energy spectra bear no resemblance to the observed en-
ergy level spacings of quantum dots. This experimental fact is usually ex-
plained in terms of quantized chaos. Owing to the tremendous relevance of the
underlying theory for all kinds of mesoscopic phenomena, we introduce the
concept using some properties of quantum dots as an example.

A classical system is chaotic if its evolution in time depends exponentially
on changes of the initial conditions. To make the connection, consider a point-
like mass confined in a two-dimensional box. The point mass moves in a con-

5) The electrostatics of this system is the topic of Paper P10.2.
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Fig. 10.15 In a classically chaotic geometry like the Sinai billiard
(right), trajectories diverge exponentially as the initial conditions
change by arbitrary small amounts. This is not the case for regular
structures, like the square to the left.

stant potential, i.e. along straight lines, and experiences specular reflection at
the walls. The trajectory of the point mass can be parameterized in a suit-
able way, and its position at time t can be written as p1(t). Now, suppose
we start the motion of the point mass with a slightly changed initial condi-
tion p2(0) = +p1(0)δp, and we ask how ∆p(t) = p2(t)− p1(t) evolves over
time. It turns out that there are two fundamentally different kinds of evolu-
tions, which depend on the shape of the box. If, for long time scales (“long”
meaning that the point mass has hit the wall many times), ∆p(t) diverges ex-
ponentially, the box is called chaotic. If the divergence is non-exponential, the
box is regular. It turns out that only very few structures are regular, e.g. a
square box, or a circle. Most shapes show a chaotic classical dynamics. A fa-
mous example widely discussed in the literature is the so-called Sinai billiard,
which consists of a square box with a circular pillar at its center (see Fig. 10.15).
Quantizing a classically chaotic system can be done by using the Gutzwiller
trace formula [132]. The properties typical for classically chaotic systems, like
the exponential sensitivity on initial conditions, get lost during the quanti-
zation process, but there are nevertheless remnants of classical chaos in the
quantum regime.6

The two most widely investigated remnants of chaos in quantum dots are
the probability distribution of nearest-neighbor peak separations (the NNS
distribution), which we will discuss below, and the distribution of the trans-
mission resonance amplitudes, which is the topic of Paper P10.3.

Experimentally, the NNS distribution p(s) is obtained in a straightforward
way: determine the spacings sj of adjacent energy levels Ej and Ej+1, plot
them in a histogram, and normalize the distribution properly. For randomly
placed energy levels, a Poisson distribution is obtained, i.e. p(s) = exp(−s).
For some quantum mechanical systems, we can say right away what the NNS
distribution looks like. For the Fock–Darwin potential at B = 0, for example,

6) The subfield of chaos theory that investigates these remnants is
referred to as quantized chaos. For further information, see [133]
and [134].
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it consists of two δ functions, one at s = 0, which contains the degenerate
levels including spin degeneracies, and one at s = h̄ω0. Each regular system
has its characteristic p(s), i.e. p(s) is non-universal. This is not the case for
classically chaotic systems. Naively, one is probably tempted to assume that,
in a chaotic system, the positions of the energy levels are completely random,
and thus p(s) would be a Poisson distribution. This, however, is not the case.
Rather, p(s) takes one of three universal forms, which depends solely on the
symmetry properties of the Hamiltonian. These distributions can be calcu-
lated within the so-called random matrix theory (RMT), which has turned out
to be highly successful in many branches of physics, including several aspects
of mesoscopic transport [24].

We now take a look at the concept of RMT by sketching the derivation of
p(s). Suppose we represent the Hamiltonian of our quantum dot in some
basis, such that it can be written as a Hamiltonian matrix H. For a Hamil-
tonian that is invariant under time inversion (i.e. no magnetic field should
be present), the matrix is Hermitian, and p(H) should be invariant under
orthogonal basis transformations. If time reversal symmetry is broken, the
Hamiltonian matrix is unitary, and p(H) should not change under unitary
transformations. These conditions clearly set some constraints on the matrix
elements. It is assumed that, within these constraints, the matrix elements
are completely random for classically chaotic systems. The above conditions
define the orthogonal and the unitary ensemble of random matrices, called
Gaussian orthogonal ensemble (GOE) and Gaussian unitary ensemble (GUE), re-
spectively. For an arbitrary large number of levels, the Wigner–Dyson distrib-
utions for p(s) result from the ensemble properties. The calculation is carried
out in [211]. These complicated distributions can be very well approximated
by the Wigner surmises, which are the corresponding distributions for a two-
level system with the same symmetry properties [42]. One distinguishes be-
tween pure distributions, where a spin degeneracy is absent, and bimodal
distributions, where a δ function at s = 0 is introduced ad hoc, which takes
a twofold spin degeneracy into account. Their most important features are
summarized in Table 10.1.

The Wigner surmises for spin-degenerate systems are plotted in Fig. 10.16.
Furthermore, calculating the Wigner surmise for the orthogonal ensemble is
the topic of Exercise E10.3.

Up to now there has been no strict proof that quantized chaos should obey
the predictions of RMT. The crucial point is whether the Hamiltonian matrix
elements of a chaotic system are really random. Empirically, however, the
agreement between RMT and experimental results is overwhelming. For ex-
ample, the measured NNS distributions of microwave cavities and the exci-
tation spectra of nuclei or of a hydrogen atom in a strong magnetic field are
indistinguishable to the Wigner surmise. Numerical simulations show very
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Tab. 10.1 Properties of the Wigner surmises of relevance. The average spacing is denoted by
s̄, while σ is the standard deviation.

Ensemble GOE GUE Bimodal GOE Bimodal GUE

p(s)
π

2
se−πs2/4 32

π2 s2e−4s2/π 1
2
[δ(s) + p(s)]

1
2
[δ(s) + p(s)]

s̄ 1 1 0.5 0.5

σ

√
4
π
− 1

√
3π

8
− 1

√
2
π
− 1

4

√
3π

16
− 1

4

Fig. 10.16 Bimodal Wigner surmises for the Gaussian orthogonal
(GOE) and the Gaussian unitary (GUE) ensembles.

good agreement as well (see Fig. 10.17). Most strikingly, small level separa-
tions are suppressed in chaotic systems, an effect known as level repulsion. It
can be traced back to more anticrossings in systems with reduced symmetry.

In quantum dots, however, the experimentally obtained NNS distributions
deviate from the bimodal Wigner–Dyson distribution expected within the
constant interaction model. Experimentally, one subtracts the single-electron
charging energy from the measured addition spectrum and plots a histogram
of the remaining peak spacings. A typical example of such a measurement
is shown in Fig. 10.18. There P(s) does not resemble the expected traces at
all. There is no signature of a bimodal distribution, nor does the FWHM agree
well with the RMT prediction (see e.g. [233], [277] or [280]). It is natural to sus-
pect that residual electron–electron interactions beyond the CI model cause
the discrepancy. Clearly, the spin degeneracy is removed by such interactions,
which broadens the spin peak and displaces it to a non-zero value. If these



294 10 Quantum dots

Fig. 10.17 Numerically calculated NNS distribution of a Sinai billiard
(histogram, about 1000 eigenvalues have been used) vs. the GOE
Wigner surmise (full line). For comparison, the Poisson distribution
(dashed line) is shown as well. After [41].

residual interactions are strong enough, they can deform the bimodal Wigner
surmise distributions into singly peaked distributions of a different shape. In
that respect, the experimental NNS distributions serve as a reference measure-
ment, to optimize various models for residual interactions in small electronic
systems [306].

10.4
Shape of conductance resonances and current–voltage characteristics

As we have just seen, tuning a quantum dot with a gate voltage and looking
at its conductance as a function of small source–drain bias voltages is an im-
portant experimental technique. So far, we have extracted information from
the peak positions. It is self-evident to ask what kind of information is con-
tained in the line shapes and the amplitudes of the conductance resonances.
Clearly, the fluctuating amplitude is a measure for the coupling of the current-
carrying state in the dot to the leads, and hence of the corresponding wave
function amplitude close to the tunnel barriers. It varies from state to state
and as a function of magnetic field. This fact can be used to compare the sta-
tistical properties of the wave functions with RMT – see Paper P10.3. Note
that this is in marked contrast to the single-electron transistors discussed in
Chapter 9, where many states couple very weakly to the leads, which results
in an approximately constant peak amplitude.
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Fig. 10.18 Measured NNS distribution of a quantum dot in GaAs (his-
togram), in comparison to the Wigner surmise. The distribution look
more like a Gaussian, and the bimodal structure is absent. After [277].

First of all, these considerations allow us to interpret the results of Fig.
10.5(b) qualitatively, as shown in Fig. 10.19. In (a), no current flows, since the
source and drain electrochemical potentials µS and µD lie inside the Coulomb
gap. As VG is increased (b), level 2 gets aligned with µD, and an electron
may tunnel into this level, a process that establishes the scenario depicted in
(c). Now, one of the electrons in state 1 or 2 may tunnel into the source, such
that both levels contribute to the coupling between the dot and source. As
VG is increased further, scenario (d) gets established at some point. Here, only
level 2 contributes to the current, and the system oscillates between (d) and (e).
Hence, the overall conductance will be smaller than in (b) and (c). Finally, con-
sider the situation depicted in (f) and (g) at higher gate voltages. Here, the two
empty states 2 and 3 lie in between µS and µD, which increases the coupling
between the dot and drain. One of them will get occupied and re-emptied
by the electron tunneling into the source. Hence, we expect a conductance
resonance with a doublet shape, as observed in Fig. 10.5(b), trace B.

From these considerations, it becomes clear that the single-particle level
spacings can be determined by high-bias transport experiments. In fact, a
gate is not even necessary. As we increase the source–drain voltage, additional
quantum dot states subsequently become accessible for transport, which is re-
flected in current steps, or in peaks in the differential conductance dI/dV, as
a function of V (see Fig. 10.20). This is an important experimental tool for in-
vestigating quantum dots where a gate electrode is impossible to define; some
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Fig. 10.19 Free energy diagrams of a quantum dot with a bias voltage
comparable to the level spacing ∆ applied. Full circles denote occu-
pied dot states, while open circles indicate empty states. To the lower
left, the resulting conductance resonance and the corresponding ener-
gies for each scenario (a)–(g) are sketched. This should be compared
to the observed trace B in Fig. 10.5(b).

examples will be mentioned in the next section. The underlying theory has
been developed in [16].

We have already discussed the resonance line shape at negligible source–
drain voltages in the metallic regime hΓ � ∆ � kBΘ � EC. This situation
is usually not encountered in quantum dots. In many experiments, kBΘ, ∆ as
well as hΓ are actually of the same order of magnitude. There is no general
expression for the line shape for arbitrary values of these quantities. Compli-
cations arise due to the Coulomb interactions, which correlate the tunneling
events across the two barriers, and due to the fact that the distribution function
inside the quantum dot is usually not a Fermi–Dirac function. For small cou-
plings hΓ � kBΘ, ∆, the corresponding theory has been worked out in [23].
Even in this regime, the line shapes have to be calculated numerically. An an-
alytical result is available, however, for one important limiting case, namely
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Fig. 10.20 (a) Spectroscopy on quantum dots by I–V measurements.
At the voltage V1, two energy levels can carry current. (b) Tuning the
voltage changes the number of current-carrying states, which is ob-
served as steps in the I–V characteristic.

for hΓ � kBΘ � ∆ � EC. In this regime, only a single level of negligible
homogeneous broadening carries current. Now, the line shape equals

G(E) =
e2

4kBΘ
ΓSΓD

ΓS + ΓD cosh−2
(

E− Emax

2kBΘ

)
(10.7)

which is a generalization of the line shape discussed in Exercise E8.4. Note
that the peak conductance now increases as 1/Θ, as long as hΓ � kBΘ, in
contrast to the peaks in the metallic regime.

10.5
Other types of quantum dots

A laterally confined region in a semiconductor heterostructure is just one vari-
ation of a quantum dot. In this section, some other types are presented. It
should be noted that large ensembles of quantum dots have been investigated
for a long time – see, for example, the experiment by Giaever and Zeller [117]
in Fig. 9.6. Later on, capacitance measurements on self-assembled quantum
InAs dots embedded in GaAs have demonstrated for the first time experi-
mentally that the single-particle level spacing ∆ can be larger than the single-
electron charging energy [79]. Also, single-electron charging of individual
atoms which are part of metal-organic molecules has been demonstrated by
measurements on arrays of such molecules [93]. Below, we will have a glance
at experiments in which individual quantum dots are probed.



298 10 Quantum dots

10.5.1
Metal grains

As pointed out in the previous chapter, the very first experiments related to
single-electron tunneling have been performed on granular films of extremely
small metal grains, which were embedded in an insulating matrix. In princi-
ple, the size of the Sn grains fabricated by Giaever and Zeller [117] (Fig. 9.6),
for example, is small enough to observe discrete energy levels. As a rule of
thumb, a grain radius of 10 nm suffices to observe size quantization in metals
at a temperature of 100 mK. The challenge consists in contacting individual
grains in order to avoid ensemble averaging. The length scale is clearly below
the resolution limit of conventional lithographic techniques.

In principle, one way to access an individual grain is by contacting it with
a scanning tunneling microscope, like in the experiment of Fig. 9.9. Discrete
energy levels in individual InAs nanocrystals have in fact been observed with
this approach [20]. In [248], the first transport experiment on single metallic
quantum dots are reported. The authors used an ingenious fabrication tech-
nique, which combines self-assembly of nanometer-sized grains with conven-
tional electron beam lithography (see Fig. 10.21). In a first step, a Si3N4 layer
is etched. A patterned resist on top of the layer serves as etch mask. The
etch is stopped at a point where a tiny hole of a few nanometers in diameter
only has been formed. Subsequently, the bowl-shaped hole is filled with Al
by thermal evaporation, and the Al is oxidized. Now a granular film of the
metallic quantum dots to be investigated is evaporated on the bottom. This
layer is subsequently covered by another oxide layer and a homogeneous Al
electrode. By chance, one obtains devices this way where one grain sits right
below the hole. A combination of self-assembly with the angle evaporation
technique (Fig. 4.15) also produced working samples [67].

In none of these schemes could a gate electrode be defined, so that up to
now all the information has been collected by current–voltage characteristics
or by differential conductance measurements. Typical grain diameters range
between 5 and 20 nm. The single-electron charging energies can be estimated
from the self-capacitance of a sphere, C = 4πεε0r, while measurements give
values of EC ≈ 5–50 meV. The single-particle level spacings depend on the
energy in three dimensions and scale with the radius and the Fermi wave
vector according to

∆ ≈ 2π2h̄2/(m∗kFr3)

Typical values of ∆ ≈ 0.1–1 meV have been measured. Gold particles, as
well as CdSe particles, have been attached to leads also by a hybrid assembly
method, which is based on a combination of angle evaporation with organic
layer deposition by wet chemistry. In this scheme, two metal electrodes with a
gap of a few nanometers are patterned by electron beam lithography and an-
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Fig. 10.21 Experimental setups for measuring individual metallic
quantum dots. Scheme (a) has been demonstrated in [248], while
scheme (b) has been successful in [67].

gle evaporation. Next, an organic molecule is deposited on the electrodes. The
molecule 1,6-hexanedithiol can be used for this purpose. It has the property
of binding with one end to the electrodes, while the molecules are oriented
perpendicular with respect to the surface. Hence, the electrodes are covered
with a molecular monolayer this way. In a subsequent step, the nanoparti-
cles are deposited on this substrate from a solution. They bind to the second,
dangling endgroup of the monolayer molecules, and there is a good chance
that one grain gets deposited in between the two electrodes. In this case, the
organic molecules to which the grain is bound serve as tunnel barriers. This
approach has been used in [174, 175].

What can we learn from such experiments? First of all, it is no doubt of
fundamental interest to investigate size quantization in metals. Up to now,
Al [248], Au [67], Cu and Ag [238] as well as Co [130] grains have been inves-
tigated. Second, these experiments offer a variety of novel options not readily
available in semiconductor quantum dots. The leads can be made supercon-
ductive [248], or energy levels of ferromagnetic grains like Co can be studied.
In contrast to semiconducting quantum dots, the energy levels in metallic dots
have been found to be spin-degenerate at B = 0, which suggests that exchange
interactions are less important. Energy levels in Al grains show a remarkable
clustering, while the effective g-factors in the grains are found to be reduced
as compared to the bulk metal.

10.5.2
Molecular quantum dots

Single-electron tunneling transistors have also been built from carbon nano-
tubes [39,296], as well as from the C60 fullerene [231]. Since carbon nanotubes
(CNs) are usually several micrometers long, it is possible to contact them by
wires fabricated by conventional electron beam lithography. In several exper-
iments, a suitable array of gold electrodes was defined on an insulating sub-



300 10 Quantum dots

strate, and the carbon nanotubes were deposited from a suspension on the sur-
face. By chance, a CN makes contact with two electrodes, while a third metal
finger can be used as a gate [296]. Since CNs are quasi-one-dimensional struc-
tures, both EC and ∆ scale with 1/L, where L denotes the length of the CN.
Elementary considerations give ∆ = hvF/(4L), while EC ≈ 5∆ (see [58]). A
unique picture of the electronic properties of CNs has not yet emerged. While
some experiments indicate deviations from a Fermi gas behavior [40], others
show excellent agreement with the constant interaction picture, including spin
degeneracy and shell filling [58].

The C60 quantum dot measured in [231] shows not only an extremely large
single-electron charging energy of 0.27 eV, but also a vibrational excitation of
the C60 molecule as its charge is altered. These samples were made by deposit-
ing a C60 in between two electrodes with a separation as small as 1 nm. This
electrode geometry has been fabricated by passing a large current through a
thin gold wire made by an angle evaporation technique. The current induces
migration of the gold atoms in the wire, which finally breaks, and a gap in the
regime of 1 nm opens up. This phenomenon is known as electro-migration.
The same kind of technique has also been used in [230] to contact individual
CdSe clusters. Both types of carbon-based quantum dot devices are the sub-
ject of ongoing research, and a lot of further fruitful scientific results can be
expected here.

As the size of the molecule becomes smaller, making electrical contact to it
gets more and more difficult, and we are well advised to look for schemes in
which the molecule does this job for us. This is why thiol-terminated mole-
cules, in particular aromatic ones, have taken a prominent role in the field
of molecular electronics. A prominent example is benzene-1,4-dithiol (BDT),
i.e. a benzene ring with thiol units (SH−) attached at carbons 1 and 4. In the
presence of a gold surface, the hydrogen atoms of the thiols get desorbed,
leaving behind benzene-1,4-dithiolate, whose sulfur atoms can form chemical
bonds with Au atoms. Reed et al. [250] managed to sandwich a BDT molecule
between two gold wires of a break junction (Fig. 10.22). Measurements of the
current–voltage characteristic reveal a Coulomb-type gap of 0.7 eV, qualita-
tively similar to the one shown in Fig. 9.9, which can be observed very clearly
at room temperature.

Fig. 10.22 Scheme of a BDT molecule contacted by two gold elec-
trodes. After [250].
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Interpreting such measurements, however, is far from trivial. First of all,
the chemical bonds to the gold strongly modify the energy spectrum of the
molecule. The geometry and the chemistry of the S–Au connection, as well as
the geometry of the gold tips themselves, are not well under control, but influ-
ence the conductance of the molecular bridge. Self-consistent simulations of
the BDT–gold structure [73] reveal qualitative agreement between the shapes
of the I–V traces, but deviate strongly in terms of the absolute value of the
current. This discrepancy is most likely determined by the details of the S–Au
connection. Moreover, the gap observed in the I–V characteristics cannot be
solely attributed to Coulomb blockade, but also reflects the configuration of
the molecular orbitals. Heurich et al. [150] have shown that, in similar mole-
cules, the contribution of a molecular level to the current across the molec-
ular bridge depends on three factors: namely, its energy with respect to the
Fermi level of the leads, its coupling to the leads, and the degree of localiza-
tion within the molecule. As a result, many orbitals, even with energies far
away from the Fermi level, may give significant contributions to the current.

This brief survey has attempted to show that scientists are about to establish
novel fabrication techniques and assembly schemes to overcome the limita-
tions posed by conventional lithographic techniques; and that they are learn-
ing how to attach wires and gates to particles as small as a nanometer, as well
as to individual molecules. These are important steps toward routine opera-
tion of quantum dots at room temperature in electronic circuits, and toward
molecular electronics.

10.6
Quantum dots and quantum computation

Quantum computation [219] offers several potential advantages in compari-
son to conventional computation schemes. Important concepts have been ex-
perimentally demonstrated already. The most impressive results so far have
been obtained with trapped ions and photon systems – see, for example, [135]
and [309], respectively. The application of quantum dot systems for quan-
tum information processing is still in its infancy. Even very elementary opera-
tions have not yet been demonstrated experimentally. Quantum dot systems,
however, have – at least potentially – some advantages. First of all, it seems
desirable that a quantum computer would be defined in a solid state mate-
rial. While superconductive circuits look promising as well in this respect,
they will be limited to temperatures well below 300 K. In contrast, at least
in principle, it may be possible to realize a room-temperature quantum dot
quantum computer. Moreover, a quantum dot quantum processing module
embedded in an otherwise conventional semiconductor processor is a con-
cept of potential interest to the semiconductor industry. Theoretical studies
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discuss how quantum computation may be brought to reality with quantum
dot circuits [298].

A system suited for quantum computation must enable the three key tasks
outlined in the following subsections.

Preparation, manipulation, and detection of single qubits The preparation,
manipulation, and detection of a single qubit, i.e. a two-level state

|ψ〉 = α|0〉+ β|1〉, |α|2 + |β|2 = 1 (10.8)

with a sufficiently long lifetime is considered to be possible in principle with
quantum dots.

Imagine that the two eigenstates of the qubit are the two spin states of the
first orbital energy level of a quantum dot. Filling one electron in the dot forms
a qubit. It has been demonstrated that the spin lifetime in such quantum dots
is very large and may exceed 100 µs, much longer than required for a typical
computational operation. But how can the dot be prepared in the requested
superposition? For a pure state like |0〉, this could be done by letting an elec-
tron tunnel onto the dot from a spin-split edge state in the lead, or from a QPC
that transmits only one spin direction.

A unitary transformation (a quantum gate) is a manipulation of the qubit,
which can also be part of the preparation of the initial state. For example, a
very important operation is the Hadamard gate, represented by the matrix

H ≡ 1√
2

(
1 1
1 −1

)

It generates states with equal probabilities |α|2 and |β|2 from pure states, e.g.

H|0〉 =
1√
2
(|0〉+ |1〉)

Such unitary transformations (which can be thought of as rotations on the
Bloch sphere – see Exercise E10.3) could be performed by applying a magnetic
field pulse of appropriate polarization, strength, and duration to the quantum
dot, which causes the spin to precess around the direction of this field about
the desired angle. Here, the concept of universal quantum gates is of great
help. In quantum computation, like in classical digital electronics, it is possible
to find a small number of quantum gates from which any unitary operation
can be composed.

A different kind of necessary manipulation is the transport of the qubit in
the circuit. While the gate structure defining the quantum dot is fixed, a gate
sequence that is able to displace the dot potential as a local potential minimum
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Fig. 10.23 (a) An experimental setup (inset) for the charge readout of
a quantum dot. The dot’s charge influences the confining potential of
the QPC to its left. The main figure shows that the Coulomb blockade
oscillations (bottom trace) are reflected in the QPC resistance (top
trace), which can be translated into the variation of the dot potential
(b). After [92].

over large distances, similar to the readout process in charge coupled devices,
may be suited to provide such a tool.

As an example for a detection, the quantum dot could be emptied via an
outgoing channel which is constructed like the incoming one just sketched. In
order to decide that the electron has actually come from the specific quantum
dot, it may be necessary to detect the charge of the dot with a nearby, sensi-
tive detector. This could be a metallic SET transistor, or more simply just a
quantum point contact close by (see Fig. 10.23).

Generation of entanglement between at least two qubits Entanglement is a
property of some states that exist in (tensor) product spaces, like that formed
by the vector spaces of two spins. An entangled state in our example is a state
that cannot be written as a product of states of the individual spin spaces. A
famous entangled state is the first Bell state

|B1〉 ≡ 1√
2
(|00〉+ |11〉)
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Entangled states have some remarkable properties, one of which is that their
elements of the individual spaces have correlations that exceed those possi-
ble within classical physics. These properties are key ingredients in almost all
quantum computation schemes, and one has therefore to find ways to prepare
entangled states with quantum dots. A possible path is to use adjacent quan-
tum dots whose coupling can be tuned by gates in between, in combination
with the appropriate quantum gates.

Taking quantum errors into account Quantum errors must be taken into ac-
count. All kinds of external influences can, for example via a spin transition,
cause the loss of information. Such errors must be corrected. This has devel-
oped to a major research topic in quantum information technology. Moreover,
one can make the qubit inherently less sensitive to errors by choosing the ad-
equate physical implementation in a given concept. For the quantum dot con-
cept, for example, it has been suggested to use the singlet and triplet states of
a double dot as the basis states of a qubit [298].
The implementation of quantum computation circuits will be one of the
driving forces of the field in the next few years, and the reader is encour-
aged to become acquainted with the principles of this fascinating field via the
specialized literature. Quantum information not only challenges our under-
standing of how the world works, but also draws semiconductor physics and
technology into new territory.

Papers and Exercises

P10.1 In [297], the density of states is reconstructed from the transmission res-
onances of a quantum dot. Describe the sample design and the recon-
struction of the dot’s energy spectrum. How do Hund’s rules influence
the data?

P10.2 Evans et al. [86] have developed an electrostatic model for a quantum
dot with a filling factor below 2. Explain the dot’s “phase diagram”
within this model.

P10.3 The statistical properties of the transmission resonance amplitudes of
quantum dots are discussed in [100] and [52]. What are the results?

P10.4 Describe the experiment carried out in [31].

P10.5 In [244], a DNA quantum dot has been measured. Summarize the sam-
ple fabrication and the results.

E10.1 This exercise deals with the Fock–Darwin model.
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(a) Show that Eqs. (10.4) and (10.5) are equivalent. What happens for
B→ ∞?

(b) Consider the Fock–Darwin spectrum for ω0 � ωc/2. Show that
adjacent states with identical m have an energy spacing of

∆E = Em,p+1− Em,p ≈ h̄
ω2

0
ωc

and a spacing of

∆B ≈ B
ω0

ωc

2

(c) Use these approximate expressions to analyze the data of Fig. 10.8.

E10.2 In this exercise, the Wigner surmise will be derived for a 2× 2 Hamil-
tonian matrix in the orthogonal case.

(a) Consider the Hamiltonian of a chaotic system, which, in some ba-
sis, can be written as

(H) =
(

H11 H12
H12 H22

)
Assume that the matrix has eigenvalues λ+ and λ−. Express these
in terms of the matrix elements Hij.

(b) Each matrix element is supposed to be random, which – by defin-
ition – means that the probability for a certain matrix to occur can
be written as a product of the probabilities for the matrix elements,
i.e.

p(H) = p11(H11)p12(H12)p22(H22)

Further p(H) has to be invariant under orthogonal basis transfor-
mations, which means that

p(OTHO) = p(H)

with

(O) =
(

cos α sin α

− sin α cos α

)
For our purposes, it suffices to consider only very small transfor-
mation angles α� 2π.
Approximate O to first order in α, and derive a system of differ-
ential equations for pij(Hij) [use the requirement that OTHO must
be equal to H, independent of α].
Solve the differential equations.
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(c) Show that by a suitable choice of the zero-point of the energy, one
can write

p(H) = c1 exp(−Tr[H2])

(d) Substitute the variables in p(H), such that it becomes a function of
∆ = λ+ − λ−, plus a second variable. Recall that the transforma-
tion law for probability densities, p(y) = p(x) |∂y/∂x| generalizes
to

p(y1, . . . , yn) = p(x1, . . . , xn) det
(

∂(y1, . . . , yn)
∂(x1, . . . , xn)

)

where(
∂(y1, . . . , yn)
∂(x1, . . . , xn)

)

denotes the Jacobian matrix of the transformation. To determine it,
consider a suitable transformation that maps H onto its diagonal
form.

(e) Finally, integrate over the second variable that comes into play.

E10.3 Fig. 10.24 reproduces the Bloch sphere as a graphical representation of
a qubit state. In this picture, the qubit state is defined by two angles, θ

and φ, according to

|ψ〉 = cos( 1
2 θ) |0〉+ eiφ sin( 1

2 θ) |1〉 (10.9)

Derive this expression starting from Eq. (10.8).

Note that states that differ only by a global phase factor give identical
measurement results.

Note further that after mapping Eq. (10.8) onto spherical coordinates
in the most natural way, each qubit state occurs twice on the resulting
sphere.

E10.4 Prove that the first Bell state cannot be written as a tensor product of
two arbitrary members of the individual qubits’ state spaces.
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Fig. 10.24 Representation of a qubit state as a point on the Bloch
sphere (for Exercise E10.3).

Further Reading

A good introduction to all aspects of quantum dot physics is given in the book
by Jacak et al. [165]. A must-read contribution related to the transport prop-
erties of quantum dots is [180]. As an introduction to quantum computation
and quantum information, the outstanding book [219] is recommended.
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11
Mesoscopic Superlattices

In the previous chapters, we have been mostly studying individual quantum
films, wires, or dots, respectively. A rich phenomenology emerges from pack-
ing these structures into periodic arrays. In Section 6.2.3, for example, a stack
of quantum films was used to investigate the behavior of the quantum Hall
effect as the dimension is gradually changed from two to three. Multilayers
of epitaxially grown quantum films are fascinating objects, but beyond our
scope here. In fact, the elementary Kronig–Penney potential, i.e. a periodic
array of rectangular barriers, can be easily prepared by molecular beam epi-
taxy. Such samples have been used to demonstrate fundamental effects, like
the Wannier–Stark localization, or Bloch oscillations. The reader is referred to
textbooks on solid state physics for further information, like e.g. [127].

In this chapter, we focus on the most elementary mesoscopic phenomena
that occur in lateral periodic structures, lateral superlattices, which are imposed
onto a 2DEG by lithographic techniques. Here, the superlattice period is much
larger than the lattice constant of the crystal, but comparable to mesoscopic
length scales, in particular to the Fermi wavelength and the elastic mean free
path.

What, the esteemed reader may ask, can be interesting in such systems?
Are we not just rebuilding conventional solids on a different length scale, and
moreover with reduced quality? Well, not quite. For example, recall that, dur-
ing the construction of a localized electronic wave packet in Section 2.3.4, it
emerged that the wave packet extends over many lattice constants. In artifi-
cial superlattices, however, the wave packet can be localized on the scale of
the superlattice constant, and a classical picture of the electron motion is jus-
tified. In this picture, the superlattice potential Vsl plays the role of scatterer
for the electrons, but the random character assumed in the Boltzmann model
(via the relaxation time approximation) is absent. Therefore, deviations from
Eqs. (2.59) can be expected. Moreover, magnetic fields of moderate strength
may force the electrons on cyclotron orbits with diameters comparable to the
lattice constant, a scenario that is impossible for natural crystals.

This does not mean that the superlattice band structures are beyond exper-
imental reach, though. Recently, impressive progress has been made in this
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respect, and striking signatures of superlattice bands, in particular of their
fascinating behavior in quantizing magnetic fields, have been observed. In
the future, we may want to design band structures not only in the direction
of epitaxial growth, but in all directions, which will most likely require some
lateral patterning.

Fig. 11.1 Sketch of various techniques to define a periodic lateral
superlattice. (a) A photoresist is illuminated by the periodically mod-
ulated intensity of the pattern that emerges from the interference of
two partial laser beams. The resist can be used (b) as a mask for a
lift-off process, (c) to modulate the distance between the 2DEG and a
homogeneous top gate, or (d) simply as an etch mask.

11.1
One-dimensional superlattices

Lateral superlattices can be patterned by holographic schemes (see Fig. 11.1)
or by electron beam lithography. While the interference pattern of a laser gen-
erates extremely accurate periodicity, the superlattice constants a are subject
to the usual limitations, which means a ≥ 200 nm. Smaller periods can be
generated by electron beam lithography or scanning probe lithography, but
the deviations from perfect periodicity become larger. If the one-dimensional
superlattice on the sample surface is used to impose a weak density modula-
tion in the 2DEG, novel magneto-resistivity oscillations are observed in ρxx,
i.e. perpendicular to the modulated direction (y-direction) [322, 332]. At first
sight, they resemble Shubnikov–de Haas oscillations (see Fig. 11.2). They oc-
cur only at small magnetic fields and vanish for cyclotron radii above the su-
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Fig. 11.2 Top: Measured and calculated longitudinal magneto-
resistivities ρxx of a 2DEG with a density modulated in the y-direction.
Oscillations are observed in ρxx at small magnetic fields. The
Shubnikov–de Haas oscillations are visible above B = 0.4 T. After [22].
The resistivity in the y-direction remains essentially unaffected by the
superlattice. Bottom: Cyclotron orbits in a maximum (left) and in a min-
imum (right) of ρxx. The gray scale indicates the electric field strength
in the y-direction.

perlattice period. Note that in Fig. 11.2 the Shubnikov–de Haas oscillations
set in at B = 0.4 T. The additional oscillations are periodic in 1/B as well. Es-
sentially no effect is observed in the y-direction. These oscillations are known
as Weiss oscillations.

It seems strange that a density modulation of only a couple of percent is
able to produce such a strong modification of ρxx. Theoretical considerations
revealed that the Weiss oscillations can be understood in terms of a resonant
drift of the cyclotron orbits induced by the electric field of the superlattice.
The drift can be calculated by treating the superlattice electric field as a pertur-
bation to the Hamiltonian for the cyclotron motion of free electrons [115, 332].
The effect can also be understood in a semiclassical picture, by considering the
total �E×�B drift that an electron experiences during one complete cyclotron or-
bit [22]. We assume rc � a. At certain cyclotron radii, this drift will average to
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zero. At slightly different magnetic fields, however, the drift will average out
along those parts of the cyclotron trajectory where the electron moves in the y-
direction and thus crosses many modulation periods. A large integrated �E× �B
drift is collected for the motion in the x-direction, though. If this drift has the
same sign for the electron motion in the positive and negative x-direction, a
net drift will remain for a complete cyclotron motion. The result from the
calculation in the limit of rc � a reads

ρxx ∝
V2

slB

aE5/2
F

cos2
(

2πrc

a
− π

4

)
(11.1)

This expression predicts minima in ρxx for rc/a = (4j + 3)/8, and maxima at
rc/a = (4j + 1)/8, where j is an integer, including zero. The corresponding
cyclotron orbits are sketched for j = 2 in Fig. 11.2. Furthermore, it predicts that
the oscillations are periodic in 1/B, that the oscillation amplitude increases as
B is increased, and that the oscillations vanish for rc < a, in good agreement
with the experiment. This result holds only for rc � a, however. It emerges
from approximating the Bessel function

J0(x) ≈
√

2/(πx) cos(x− π/4)

which is a good approximation for large arguments only. In Fig. 11.2, the
correct expression containing the Bessel functions is compared to the experi-
mental data. The agreement is excellent. It should be noted that the theory
assumes a sinusoidal superlattice potential. Other potential shapes will give
phases that differ from π/4 in Eq. (11.1), without changing the overall appear-
ance.

11.2
Two-dimensional superlattices

After the previous discussion, it is self-evident to ask what happens to 2DEGs
with potential modulations in both directions. Corresponding gate structures
can be easily made by adopting the schemes mentioned in relation to Fig. 11.1,
for example by performing a second illumination with the interfering laser
beam, after rotating the sample by 90◦.

11.2.1
Semiclassical effects

We first focus on antidot lattices, which are two-dimensional arrays of holes in
a 2DEG. In a simple semiclassical picture, one would expect that there exists
a set of discrete magnetic fields at which the cyclotron orbits fit in the lattice
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Fig. 11.3 (a) Longitudinal magneto-resistivity of (b) a square antidot
lattice (black circles). Peaks in ρxx are observed if the cyclotron orbit
fits in between the antidots. The arrows and numbers in (a) denote the
magnetic fields at which the cyclotron orbit is commensurate with the
antidot lattice, and the number of antidots enclosed in the cyclotron
orbit, respectively. The lattice period in this experiment was 300 nm.
Adapted from [323].

without hitting a scatterer. These orbits are called commensurate with the lat-
tice. For such magnetic fields, the antidot lattice localizes the electrons, and we
expect an increased resistivity. As can be easily verified, for a square lattice,
this is possible for cyclotron orbits that enclose 1, 2, 4, 9, 21, . . . antidots. Note
that this would be in striking contrast to the magneto-resistivities obtained
within the Boltzmann model, which predicts ρxx to be independent of B.

This behavior has in fact been observed (see Fig. 11.3). A closer look, how-
ever, reveals that this is not the end of the story. First of all, the resistance max-
ima are not exactly at the expected positions. Also, a negative Hall resistance
is observed [323], which cannot be understood in this simple picture [98]. Fi-
nally, the experiments have been carried out at non-zero forward bias volt-
ages, which should disturb the commensurate electronic cyclotron motion and
destroy its pinning to the superlattice. To resolve this set of questions, we will
apply the Kubo formalism mentioned in Chapter 5. Along the way, we will
get to know further useful tools and techniques.

In a generalized version of Eq. (5.12), the Kubo formula tells us that the com-
ponents of the conductivity tensor can be calculated by averaging the velocity
correlation functions according to

σij =
m∗e2

πh̄2

∞∫
0

e−t/τCvivj(t) dt (11.2)

Here, the term e−t/τ is included, which models the momentum relaxation af-
ter the scattering time τ within the relaxation time approximation. In a nu-
merical simulation, electrons are randomly placed within a unit cell of the an-
tidot lattice. Their velocity vector has the amplitude of the Fermi velocity, and
points in an arbitrary direction within the (x, y) plane. Of course, points where
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Fig. 11.4 A calculated trajectory of an electron moving in a model
potential. After [256].

the antidot potential is above the Fermi level are not starting points. The mo-
tion of an ensemble of electrons in the antidot potential and the magnetic field
is calculated. The antidot potential of a square lattice can be approximated,
for example, by

V(x, y) = V0[cos(πx/a)]2β[cos(πy/a)]2β (11.3)

where β tunes the steepness of the antidot walls. After time τ, the direction
of the velocity can be randomized numerically, in order to take residual scat-
tering at random positions into account. If the antidot potential is set to zero,
the Drude result is recovered.1 In Fig. 11.4, a model potential and a sample
trajectory are shown.

After a time that is large compared to τ and after the trajectories of a suffi-
cient number of electrons have been simulated, the velocity correlation func-
tion, and hence the components of the conductivity tensor, can be determined.
The agreement between such simulations and the observations is quite good
in many cases, although the walls are soft in real samples, which may displace
the commensurability peaks along the magnetic field axis. But why is the elec-
tric field due to the source–drain bias voltage apparently not destroying the
pinning? This question has been answered in detail in the seminal paper of
Fleischmann et al. [97]. The authors incorporated the driving electric field

1) This is demonstrated in Exercise E5.2.
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Fig. 11.5 (a) Scheme of a Poincaré section in the (y, vy) plane.
(b) Poincaré section of numerically simulated electron trajectories in
a square lattice. Taken from [97].

in the simulations and studied the electron motion in the four-dimensional
phase space spanned by (x, y, vx, vy). This was done by means of Poincaré
sections (see Fig. 11.5). In this representation, the trajectory of the electron
motion in phase space is mapped onto the (y, vy) plane by the following rules
(see Fig. 11.5(a)):

1. Define the (y, vy) plane at x = 0 as the monitoring plane; y extends over
the unit cell of the lattice in which the electrons were injected, while the
relevant range of vy is limited to [−vF, vF].

2. Watch the electron motion in phase space; as soon as it passes one of the
x = ja planes, mark the point of intersection in the monitoring plane as
its projection parallel to the x-axis.

Interestingly, in this way one observes that, in the absence of driving electric
fields, the phase space consists of two separate regions, called the chaotic and
the regular regions (see Fig. 11.5(b)).

Electrons that started inside a certain interval of initial conditions generate
spots that are homogeneously distributed across one region, which is called
chaotic, since these electrons follow a chaotic motion. Those electrons that
started in the remaining interval of initial conditions, on the other hand, gen-
erate closed loops or even just single points in the monitoring plane, which
indicates a trajectory residing on the surface of a torus in phase space (known
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Fig. 11.6 (a) The initial conditions of 5000 electrons in a square lattice
and under the influence of a driving electric field in the x-direction,
represented in the Poincaré section. (b) Poincaré section of the setting
of (a), representing only those electrons that pass through the planes
within a time interval with a length of one cyclotron time, long after
the initial conditions. Only electrons inside the regular region remain.
Taken from [97].

as Kolmogorov–Arnold–Moser tori), or a time-independent cyclotron orbit,
respectively. The system is said to have a mixed phase space, where regular
islands are embedded in a sea of chaotic motion.

In [97], the Poincaré section mapping has been used to investigate the effect
of a driving electric field on the electron dynamics (see Fig. 11.6). An ensemble
of electrons was injected in the antidot lattice in a weak electric field, and those
electrons were monitored that, after a long time, generated a point monitoring
plane within a time window with a length of the cyclotron time. It turned out
that, even with a weak electric field applied, the electrons that started out
inside a regular region remain therein, while all other electrons have escaped
the monitored region (in the y-direction). This numerical result indicates that
even a bias voltage does not mix the chaotic and regular regions of the phase
space.

Based on this observation, it is clear that the electrons in the regular regions
cannot carry current, which is rather carried by electrons with chaotic dynam-
ics. Therefore, the conductance is obtained from the contribution of the chaotic
electrons, i.e.

σij = (1− fr)σchaotic
ij (11.4)
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Fig. 11.7 (a) Fraction of the phase space volume of the regular re-
gions of the phase space for a square antidot lattice, (b) the longitu-
dinal resistance of the chaotic electrons, and (c) the calculated resis-
tance (full line) as compared with that measured in [323] (dashed line).
Adapted from [97].

where fr is the volume fraction of the regular phase space and σchaotic
ij denotes

the conductivity of the electrons in the chaotic regions. Therefore, the struc-
ture observed in the magneto-resistivity can originate either from a varying
size of the regular phase space or from the dependence of σchaotic

ij on the mag-
netic field. By comparison of fr(B) with ρxx(B), it can be concluded that the
chaotic electron dynamics, and not the size of the regular regions, dominates
the magneto-transport in antidot lattices (see Fig. 11.7).
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11.2.2
Quantum effects

In hexagonal antidot lattices, additional oscillations can be observed, which
are periodic in B (see Fig. 11.8) [220]. The strong temperature dependence of
these oscillations is in contrast to the very weak temperature dependence of
the commensurability peaks and indicates a phase coherent origin. This ob-
servation is thus explained in terms of an enhanced classical backscattering
probability in hexagonal lattices as compared to that in square or rectangu-
lar lattices. The resulting enhanced backscattering due to phase coherence
generates Altshuler–Aronov–Spivak (AAS) oscillations (see Chapter 8) of sig-
nificant amplitude.

Fig. 11.8 (a) Longitudinal magneto-resistivities in square and hexag-
onal antidot lattices (the lattice geometries are shown in the inset).
(b) Enlargement of ρxx for the hexagonal lattice around B = 0, which
oscillates with a period of ∆B = h/2eA, where A is the average area
of one antidot. The strong temperature dependence indicates a phase
coherent origin. After [220].

We conclude our excursion to lateral superlattices with a glance at the in-
teresting quantum mechanics of a weak, two-dimensional, superlattice with a
square geometry. In the limit of a free electron gas in a magnetic field, highly
degenerate Landau levels are obtained – see the Landau fan reproduced in
Fig. 6.3(b). The electrons move in cyclotron orbits, and the wave functions are
thus rotationally invariant. In a periodic potential modulation and in the ab-
sence of a magnetic field, the wave functions are Bloch functions and have the
corresponding discrete translational invariance. It has been predicted that the
combination of periodic potentials and quantizing magnetic fields leads to a
very rich phenomenology – see [239] for an introduction to this problem. We
consider one interesting limit in more detail, namely the limit of weak periodic
potentials in strong magnetic fields. Here “weak” refers to a scenario where
the Landau splitting is larger than the amplitude of the modulation potential.
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Fig. 11.9 (a) Calculated energy spectrum for one Landau band in a
square superlattice. The ratio p/q ∝ 1/B measures the number of flux
quanta h/e in units of BA, where A denotes the area of the unit cell.
The numbers inside the figure indicate the value of the Hall resistance
in the corresponding minigaps, in units of e2/h. After [287]. (b) Effect
of the superlattice on the Landau fan. Reprinted from [114].

Theoretically, it is well established that such a weak periodic potential lifts
the degeneracy of the Landau levels and induces minibands separated by
bandgaps, as you may have expected. This structure has quite unusual prop-
erties, though. The essential structure of these minibands is represented for
a square lattice in Fig. 11.9(a). The band extends over an energy range that
equals the amplitude of the superlattice potential and is periodic in 1/B, with
a period that corresponds to adding one flux quantum Φ0 = h/e per super-
lattice unit cell. It is thus convenient to plot the spectrum as a function of
Φ0/Φ, where Φ = a2B. This structure is known as a Hofstadter butterfly and
has been predicted by Hofstadter [151] for natural crystals, where its observa-
tion requires extremely strong magnetic fields of thousands of teslas. Scaling
up the lattice constant has brought this spectrum within experimental reach.
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Fig. 11.10 Transport signatures of the Hofstadter butterfly as ob-
served by Geisler et al. [114]. While the Shubnikov–de Haas reso-
nances show a fine structure, the Hall resistance jumps correspond-
ingly between different steps within one quantum Hall plateau (the
integer numbers indicate the Landau level index). This fine structure
reflects the motion of the Fermi level across a butterfly within a Landau
level. Reprinted from [114].

Most interestingly, the spectrum has a fractal structure. For magnetic fields
where Φ0/Φ is a rational number represented by p/q with p and q both inte-
gers with no common divisor, the Landau level splits up into p subbands. A
more detailed analysis reveals that, in addition, the subbands get modulated
by an analytic function, such that the Landau fan of Fig. 6.3(b) evolves into
the structure shown in Fig. 11.9(b). Moreover, as has been shown in [302],
each minigap inside a Landau level makes a specific contribution to the Hall
conductance, which is also quantized in units of 2e2/h. Hence, the quantum
Hall plateaus should show internal steps according to

σxy =
2e2

h
(j + k)

where the integers j and k denote the Landau level index and the contribution
specific to the minigap at which the Fermi energy resides.

This behavior has been clearly observed in a beautiful experiment [114] (see
Fig. 11.10). As expected, the minibands generate steps in the Landau plateaus
as well as the corresponding minima in the Shubnikov–de Haas oscillations.

In the future, we can expect that the lateral superlattices are driven further
into the quantum regime, such that the details of this aspect of mesoscopic
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physics can be investigated. Here, probably self-assembly techniques will be
required to reduce the lattice constants well below 100 nm.

Papers

P11.1 In [268], rectangular antidot lattices with a � b have been investigated.
Discuss the observations and relate them to the experiments on quan-
tum wires with non-specular walls (Section 7.1.2). Compare the results
also to those of Section 11.1.

P11.2 Arrays of antennas in microwave fields are very similar to electrons in
periodic superlattices. Discuss this analogy; use [183] as an example.

P11.3 In [324], Weiss et al. report the finding of magneto-oscillations in anti-
dot lattices that are periodic in B. Explain their origin.
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12
Spintronics

A recent branch of mesoscopic physics investigates the control and manipula-
tion of the electron spin in metals and semiconductors. The name spintronics
has become established for this field. Spin effects that show up in the resis-
tance are not really new. The anisotropic magneto-resistance (AMR) effect, for
example, was used in the magnetic read heads of earlier generations. Mean-
while, however, it has become possible to prepare nanostructures in which a
spin polarization of the current adds a dramatic new functionality to devices
and raises hopes for a whole family of novel applications, which range from
spin-based field effect transistors (FETs), through permanent magnetic stor-
age devices without moving parts like read/write heads, to quantum compu-
tation.

One reason for this new functionality is the fact that the spin allows one
to establish polarization-based electronic schemes in addition to charge-based
schemes, just like the polarization of light widens the field of optics dramat-
ically. A good illustration of these possibilities and the underlying concepts
is provided by the Datta–Das spin FET. A second reason is the increased scat-
tering length: under a wide range of circumstances, the spin interacts only
weakly with its environment. The majority of the electron scattering events
are spin-conserving, and it can therefore be expected that spin is conserved
over distances that are much larger than the elastic mean free path. This means
that, in principle, spin is superior to charge in terms of coherent effects and for
quantum computation applications.

A key parameter in spintronics is the spin polarization of the relevant quan-
tity q, which could be the density of states or the current density, for example.
It is defined as

Pq ≡ q↑ − q↓
q↑ + q↓

(12.1)

where ↑ and ↓ denote the majority and the minority spin, respectively. This
definition makes a lot of sense: for q↓ = 0, we have a polarization Pq = 1;
while for q↓ = q↑, we have Pq = 0.
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12.1
Ferromagnetic sandwich structures

In this section, we will look at the properties of layered structures comprising
two ferromagnets separated by a non-magnetic metal or insulator. Two mile-
stones in the field of spintronics are the discovery of the tunneling magneto-
resistance (TMR) and the giant magneto-resistance (GMR).

12.1.1
Tunneling magneto-resistance (TMR) and giant magneto-resistance (GMR)

Tunneling magneto-resistance The TMR effect refers to the resistance of a
ferromagnet–insulator–ferromagnet (FIF) tunnel junction (see Fig. 12.1). The
two ferromagnets are defined in such a way that their coercive magnetic fields
differ by a significant amount, which is easily achieved by using different ma-
terials or layer thicknesses. In such a sample, the relative orientation of the
magnetizations can be changed by sweeping a magnetic field aligned paral-
lel to the layers. It was found that, for the magnetizations of the two layers
aligned parallel to each other, the tunnel resistance is lower than for antipar-
allel alignment. The model of Jullière, who discovered the TMR effect in 1975,
provides a simple explanation [171]: it is assumed that the spin does not flip
during tunneling. Furthermore, the tunneling rate for each spin direction is
proportional to the product of the corresponding densities of states in the two
ferromagnets. The total resistance can therefore be thought of as two spin-
resolved tunneling resistances in parallel.

We define conductances Gp and Gap for the parallel and antiparallel con-
figurations. The densities of states for the source and drain ferromagnetic
electrodes are labeled D↑(↓)S and D↑(↓)D. Within the model, we then have

Gp ∝ D↑SD↑D + D↓SD↓D

Gap ∝ D↑SD↓D + D↓SD↑D
(12.2)

Since, in a ferromagnet, D↑ > D↓, we have Gp > Gap. The tunneling magneto-
resistance (TMR) is usually defined as

TMR ≡ Rap − Rp

Rap + Rp

where Rj denotes the resistance of the corresponding configuration. Inserting
the conductances gives

TMR =
2PSPD

1− PSPD
(12.3)

where P denotes the polarization of the density of states. In cobalt, for exam-
ple, PCo = 0.34, which gives a TMR of 0.26 in an ideal system.
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Fig. 12.1 Bottom: Magneto-resistance of a TMR structure formed
by a CoFe–Al2O3–Co sandwich, with the magnetization directions of
the two films as indicated in the schemes. Also shown in the top two
traces are the much weaker anisotropic magneto-resistances of the
corresponding individual films. Adapted from [216].

One application of TMR is in memory chips. In a magnetic random access
memory (MRAM) chip, each bit is stored in a small column of a TMR layer se-
quence. The lower ferromagnetic layer is hard, i.e. not reversible by the mag-
netic fields acting on the layers. This can be achieved by taking advantage of
the exchange bias effect [208, 222], which is the displacement of the hysteresis
trace of a ferromagnet along the magnetic field axis when the ferromagnetic
layer is sitting on top of an antiferromagnetic film. The TMR column is con-
nected to two wires on its top and bottom. The two states of the bit correspond
to the two values of the measured current. Hence, this memory can be read
out without a magnetic read head. Rather, square arrays of TMR columns are
contacted by one-dimensional arrays of wires on the top and on the bottom,
which are rotated by 90◦ with respect to each other. In this way, each element
of the array can be addressed individually (see Fig. 12.2). The writing, which
means defining the orientation of the top magnetic layer, can be done by cur-
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Fig. 12.2 Principle of an MRAM device. Two ferromagnetic layers with
different coercive magnetic fields, separated by a tunnel barrier, are
electrically accessed by two crossed wires. The resistance (high or
low) across the TMR structure is attributed to the stored bit. The bit
can be written by a current pulse in the wires that magnetizes the top
layer while leaving the bottom layer in its initial state.

rent pulses. The currents have to be chosen such that the individual magnetic
fields generated (Oerstedt fields) are insufficient to orientate the magnetiza-
tion, but their superposition is sufficient. At very small column cross sections,
it is actually not the Oerstedt field that switches the magnetization, but the
torque the conduction electrons exert on the layer [29].

The advantage of this MRAM scheme compared to present memory devices
is twofold. First, the delicate read/write head in hard disks becomes obsolete,
and no moving parts are required. Second, in comparison to static random
access memory (SRAM), the stored data does not get lost when the power is
turned off. At present, though, it looks like, despite the beauty of the MRAM
concept, it will not become the storage device of the next generation because
of limitations regarding the storage density. MRAMs may, however, become
important for niche applications.

Giant magneto-resistance The GMR effect, discovered by Grünberg et al.
[128] and by Baibich et al. [19], is similar to the TMR effect, although its physi-
cal origin is somewhat different: replace the insulator in a TMR layer sequence
by a normal metal, and you have a GMR structure. Again, a resistance is ob-
served that depends on the relative orientation of the magnetizations of the
ferromagnetic layers (see Fig. 12.3). It has been established that this depen-
dence originates mostly from spin-dependent transmission of the conduction
electrons across the ferromagnet–normal metal interfaces, the origin of which
we will discuss in the next section. Assuming this as a fact for the moment, we
can interpret such a GMR structure qualitatively in the two-current model [91]
(Fig. 12.4). If both ferromagnetic layers are magnetized parallel to each other,
one spin channel sees two low interface resistances in series, and the second
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Fig. 12.3 The GMR effect as observed on a Fe–Cr–Fe sandwich
structure. The anisotropic magneto-resistance of a ferromagnetic thin
film is shown in comparison. Adapted from [35].

Fig. 12.4 Mott’s two-current model.

one sees two large resistances. In the antiparallel configuration, the resistances
for the two spin channels are equal. Within this model, the two spin channels
can be thought of as being parallel and, if spin-flip processes are neglected, in-
dependent of each other. We see that, in the parallel configuration, the highly
transmissive spin channel dominates the resistance; whereas, in the antiparal-
lel configuration, both spin channels contribute equally to the resistance. This
results in a lower overall resistance for the parallel configuration.

In contrast to the TMR effect, the GMR effect can also be observed when the
current flows parallel to the layers. One speaks of the current perpendicular to
plane (CPP) and the current in plane (CIP) configurations. Also, in a CIP setup,
the electrons pass through the layers with a certain probability, thereby prob-
ing the magnetization configuration. The effect is, however, much weaker.
This is nevertheless an important configuration, since using the GMR effect
for applications in a CPP structure is tricky because of the very small overall
resistance.

The GMR effect is used presently in the read/write heads of magnetic hard
disks, where it serves to enhance the sensitivity of the read part (compared to
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the anisotropic magneto-resistance effect used previously) to the magnetiza-
tion of the bits on the disk.

An important point in the interpretation of the GMR effect is the origin of
the interface resistance. Since this issue is also highly relevant for spin injec-
tion into semiconductors, we discuss it in some detail.

12.1.2
Spin injection into a non-magnetic conductor

In order to inject a spin-polarized current into a conductor, it is self-evident
to use a ferromagnetic contact. Consider an interface between a ferromagnet
(F) and a normal conductor (N). The current density (flowing parallel to the x-
axis) across the interface is composed of two spin components, j = j↑+ j↓. The
spin current density is given by js = j↑ − j↓. Here, we denote by ↑ the majority
spin in the ferromagnet. Please note that, in a normal conductor, there is no
spin current associated with a charge current.

In the normal conductor, the conductivities can be assumed to be spin-
independent, i.e.

σN↑ = σN↓ = 1
2 σN (12.4)

which means that the current density spin polarization in the normal conduc-
tor far away from the interface is zero. However, close to the interface, the
spin currents may be different and we write

jN↑ = −σN

2
1
e

∂µN↑
∂x
≡ βN jN

jN↓ = −σN

2
1
e

∂µN↓
∂x
≡ (1− βN)jN (12.5)

Here, βN is the fraction of the current density carried by the spin-up channel
in the normal metal.

In the ferromagnet, the two spin directions experience different conductivi-
ties:

σF↑ = e2DF↑(EF)DF↑ ≡ αFσF

σF↓ = e2DF↓(EF)DF↓ ≡ (1− αF)σF (12.6)

whereDF↑(↓)(EF) and DF↑(↓) denote the spin-resolved densities of states at the
Fermi energy and the diffusion constants, respectively, while αF represents the
fraction of the total ferromagnet conductance that is contributed by the spin-
up channel. Note from Eq. (12.4) that αN = 1/2. Correspondingly, the current
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is split among the spin channels according to

jF↑ = −σF↑
1
e

∂µF↑
∂x
≡ βF jF

jF↓ = −σF↓
1
e

∂µF↓
∂x
≡ (1− βF)jF (12.7)

where βF is the fraction of the current density carried by the spin-up channel
in the ferromagnet.

The following derivation of the interface resistance is based upon [283]. A
spin-polarized current density arrives from the ferromagnet at the interface.
In the normal metal, however, both spin channels have equal conductances,
to a very good approximation. It is thus clear that the spin accumulates close
to the interface, and a spin density gradient builds up in both materials. This
means that, in the interface region, the two spin directions have different elec-
trochemical potentials. We first calculate this difference µSF ≡ µF↑ − µF↓ in the
ferromagnetic part, where it is given by

∂µSF

∂x
= − e

σF↑
jF↑ +

e
σF↓

jF↓ (12.8)

The continuity equation, on the other hand, relates the current densities to
the spin-flip scattering times according to

∂jF↑
∂x

= e
(

nF↓
T↓↑
− nF↑

T↑↓

)
∂jF↓
∂x

= e
(

nF↑
T↑↓
− nF↓

T↓↑

)
(12.9)

Here, nF↑(↓) denotes the spin-resolved electron densities; and T↑↓ (T↓↑) are the
spin-flip scattering times from ↑ into ↓ (respectively, from ↓ into ↑).

Inserting Eqs. (12.9) in the spatial derivative of Eq. (12.8) results in

∂2µSF

∂x2 = µSF

(
DF↑T↑↓ + DF↓T↓↑

DF↑T↑↓DF↓T↓↑

)
(12.10)

The law of detailed balance requires that

T↑↓ =
DF↑(EF)

DF↓(EF)T↓↑

With the spin relaxation time T1F for the ferromagnet of

T1F ≡
T↑↓T↓↑

T↑↓ + T↓↑
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we find the diffusion equation

∂2µSF

∂x2 =
1

Deff
F T1F

µSF (12.11)

with the effective diffusion constant for the ferromagnet

Deff
F ≡

DF↑DF↓[DF↑(EF) +DF↓(EF)]
DF↑DF↑(EF) +DF↓(EF)DF↓

= αFDF↑ + (1− αF)DF↓ (12.12)

Of course, the same type of diffusion equation holds for the normal metal,
where the effective density of states is just DN. The solution is

µSF(x) =

{
µSF(0)exλF x ≤ 0

µSN(0)e−xλN x ≥ 0
(12.13)

where λF(N) is the spin relaxation length in the corresponding material, given
respectively by

λF =
√

Deff
F T1F, λN =

√
DNT1N

We are now in a position to obtain expressions for PjN as a function of
PjF and for the emerging interface resistance. As far as the boundary con-
ditions are concerned, first of all, the total current density has to be constant.
We also assume that there is neither enhanced spin-flip scattering nor a con-
tact resistance at the interface. In that case, β must be continuous at x = 0.
Also, the spin-resolved electrochemical potentials must be continuous, and
µSF(0) = µSN(0). From Eq. (12.8), we find for the current density at the ferro-
magnetic side

∂µSF

∂x
(0) =

µSF(0)
λF

= − ej↑
σ↑

+
ej↓
σ↓

=
ej

σ↑σ↓
[σ↑ − (σ↑ + σ↓)β(0)] (12.14)

For the normal metallic side, we find accordingly

∂µSN

∂x
(0) =

µSN(0)
λN

=
2ej
σN

[1− 2β(0)] (12.15)

We solve both equations for the current density and set them equal. We
obtain an equation for β(0), which we express as

2β(0)− 1 =
2αF− 1

1 + 4αF(1− αF)(λN/σN)(σF/λF)
(12.16)

The corresponding spin-resolved electrochemical potentials close to the inter-
face are depicted in Fig. 12.5.
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Fig. 12.5 Schematic spin accumulation at the ferromagnet–normal
metal interface, expressed in terms of the spin-resolved electrochem-
ical potentials. The step of the averaged electrochemical potentials
across the interface is denoted by ∆µ. Adapted from [283].

Please note that [2β(0)− 1] equals PjN, the current spin polarization induced
in the normal metal. Note further that (2αF − 1) is the current spin polariza-
tion in the ferromagnet, and we can write

PjN(x=0) =
PjF

1 + (1− P2
jF)(λN/σN)(σF/λF)

(12.17)

This equation tells us the extent to which the spin polarization in the ferromag-
net can be transferred into the normal conductor. Of course, PjN(x=0) ≤ PjF.
It is easily seen that, for a ferromagnet with PjF = 1, the spin polarization
is perfectly injected into the normal metal. Conventional ferromagnets, how-
ever, have a spin polarization significantly smaller than 1, like the value of
cobalt mentioned above. We can still aim for a large spin polarization in the
normal conductor by making the second term in the denominator as small as
possible, in other words by choosing materials with λN/σN � λF/σF.

This is not particularly difficult for many conventional metals, as the ob-
servation of the GMR effect proves. Moreover, numbers for the quantities of
interest have been obtained in various experiments. In [168], for example, a
spin-polarized current is injected from permalloy (Ni80Fe20) into copper, and
a value of Pj,Cu = 0.02 was extracted. A spin-flip time T1,Cu of 42 ps was found
at 4.2 K, which corresponds to λCu ≈ 1 µm. Since the Drude scattering time in
copper is 30 fs at 4.2 K, these results show that the electrons experience 1000
elastic scattering events on average before they experience a spin flip. Even at
room temperature, a relatively large value of λCu ≈ 350 nm remains.

Deriving the interface resistance Ri from Eq. (12.17) is the topic of Exercise
E12.1.
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12.2
The Datta–Das spin field effect transistor

In the following, we treat the Datta–Das proposal [66] of a spin field effect
transistor (spin FET) as a paradigm and use it as a motivation to discuss vari-
ous aspects of spintronics.

12.2.1
Concept of the Datta–Das transistor

In a way, the spin FET is a modification of a GMR structure. Suppose we re-
place the metal of such a structure by a semiconductor with all its advantages,
in particular the tunability of the band bending in the conduction channel by
a gate voltage (see Fig. 12.6).

Fig. 12.6 The scheme for a spin field effect transistor. The evolution of
the spin in the semiconductor is denoted for two gate voltages by the
two sequences of arrows.

The suggestion is based on a close analogy to an electro-optical polarization
rotator for linearly polarized light, also known as a Pockels cell [146]: spin-
polarized electrons are injected into a semiconductor, a gate is used to rotate
the spin direction, and a ferromagnetic drain contact acts as analyzer. This
kind of transistor can be switched by rotating the electron spin by 180◦. It is
thus not necessary to remove the electrons from the conducting channel as in
a conventional transistor (see Chapter 3) and it is expected to consume less
power.

Up to now, a spin FET has not been realized experimentally. In order to
understand the details as well as the problems that have to be solved for its
experimental realization, we are going to elaborate the elements of the spin
FET. The major issues are injection of a spin-polarized current into the semi-
conductor, and rotation of the electron spin by a gate voltage.
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12.2.2
Spin injection in semiconductors

Equation (12.17) indicates that injecting a spin-polarized current into a semi-
conductor is not trivial. Typically, not only is the conductivity of the semicon-
ductor much lower than that of the ferromagnet, but also the spin-flip length is
much longer. Therefore, low current spin polarizations will be the result. Two
approaches have been pursued in order to overcome this difficulty. The idea
of the first approach is immediately clear from Eq. (12.17): a ferromagnet with
a spin polarization of PjF = 1 would generate an equally perfect value for PjN.
Such a large spin polarization is not available in conventional ferromagnets,
but can be achieved in ferromagnetic semiconductors. Inserting tunnel bar-
riers at the ferromagnet–semiconductor interface is the second approach. In
this way, a spin-selective interface resistance is generated which can increase
the injected PjN dramatically.

12.2.2.1 Interface tunnel barriers

In the derivation of Eq. (12.17), we have neglected possible influences of in-
terface properties. The interface resistance found stems solely from the differ-
ences in the bulk parameters of the two materials. This is not always justified.
Instead, interface roughness, interface states or other parameters may gener-
ate an additional interface resistance Ri↑(↓), which is localized at the interface
and may depend upon the spin. We will not discuss the details of these con-
siderations here; the interested reader is referred to [249]. Qualitatively, such
an interface resistance makes the spin-resolved electrochemical potentials dis-
continuous at the interface, i.e.

µF↑(↓)(x→0) �= µN↑(↓)(x→0)

and the spin components of the current densities across the interface are given
by

j↑(↓) =
1

eRi↑(↓)
[µF↑(↓)(x→0)− µN↑(↓)(x→0)] (12.18)

Inclusion of a tunnel barrier, which we consider a part of the interface, can
increase the difference between j↑ and j↓: owing to the difference in their elec-
trochemical potentials, the barrier height and thus the transmission probabil-
ity are not the same for the two spin directions. As a consequence, the injected
spin polarization increases.

But how can an injected spin-polarized current be detected? A frequently
used technique is based upon conversion of the spin polarization into circular
polarization of photons. In close proximity to the spin injector, a LED-type p–n
junction can be defined, for example. At the junction, photons are emitted as a
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consequence of electron–hole recombination. The dipole selection rules allow
only transitions between electron and hole states that emit photons of left or
right circular polarization, with a weight given by the corresponding dipole
matrix elements (see Fig. 12.7). Light emitted from the ms = −1/2 (+1/2)
electronic state in bulk GaAs, for example, gives a σ+ (σ−) polarization of 0.5.

Fig. 12.7 Selection rules for photon emission by electron–hole recom-
bination in GaAs. The relative intensities and the orientation of the
circular polarization are indicated at each transition.

Question 12.1: Show that the polarization of the emitted light intensity I, defined
as

Pσ ≡ Iσ+ − Iσ−
Iσ+ + Iσ−

depends on the injected current spin polarization according to

Pσ = − 1
2 Pj (12.19)

The experiment performed by Hanbicki and coworkers [139] is an elegant
proof that this technique actually works: the spin current is injected via an
Fe–AlxGa1−xAs heterolayer. The spin-dependent interface resistance at the
interface is provided by the Schottky barrier. In close proximity to this in-
terface, a GaAs quantum well (instead of a p–n junction) is embedded in
the AlxGa1−xAs. Here, electron–hole recombination takes place, and the cir-
cularly polarized emitted light reflects the spin polarization of the injected
current.1 The authors found a value of Pj = 0.13 at the quantum well at a
temperature of 4 K, which decayed to 0.04 at 240 K. Taking into account the
(temperature-dependent) spin dephasing that occurs between the interface
and the quantum well, the injected polarization at the interface was estimated
to be as high as Pj = 0.3 and independent of the temperature.

1) Note that the selection rules in quantum wells are modified as com-
pared to Fig. 12.7, which results in Pσ = − 1

2 Pj.
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12.2.2.2 Ferromagnetic semiconductors

The combination of the special properties of semiconductors (like controlling
the transport properties by doping or by external parameters) with those of
ferromagnets (storage capabilities due to bistable magnetization traces, spin-
polarized currents) is a particularly exciting field. Just imagine what kind
of devices could be realized. Data could be stored in a non-volatile way on
the monolithic processor, with the (maybe TMR-based) storage array made
from the same semiconducting material as the processor circuit. If the onset
of ferromagnetism depends on the electron density, it could be turned on and
off by a gate voltage.

Moreover, and most relevant to our impedance mismatch problem, the
Fermi energy in semiconductors is small compared to that in metals, and can
become smaller than the spin splitting of the conduction band. This results
in a spin polarization of 1. Consequently, the impedance mismatch problem
would not occur.

Meanwhile, a variety of ferromagnetic semiconductor systems have in fact
been discovered. The most studied one [225] is certainly Ga1−xMnxAs. Here,
Mn atoms replace Ga atoms on their lattice sites [274] and act as a deep accep-
tor [227]. The Mn ions interact with each other and order themselves ferro-
magnetically, while the interaction is mediated by the conduction holes. The
interaction strength, and thereby the Curie temperature, is consequently a
function of the hole density [71]. In Fig. 12.8, an experiment is reproduced
in which the remanence and the coercive magnetic field could in fact be tuned
by a gate voltage.

Fig. 12.8 Magnetization traces of Ga1−xMnxAs as a function of the
gate voltage. Adapted from [226].

As expected, a significant degree of spin polarization can be achieved
as electrons are injected from a ferromagnetic semiconductor into a non-
magnetic one. This has been demonstrated by the electron spin to pho-
ton polarization conversion scheme outlined above. In the structure shown
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in Fig. 12.9, for example, a spin polarization of the current injected from
Ga1−xMnxAs into GaAs of Pj = 0.82 at liquid helium temperatures has been
found.

It can thus be concluded that the impedance mismatch problem has been
solved, at least conceptually.

Fig. 12.9 Spin injection from a ferromagnetic semiconductor into a
GaAs quantum well. A significant circular polarization of the emitted
light is detected. After [76].

12.2.3
Gate-induced spin rotation: The Rashba effect

The Rashba effect denotes the spin–orbit coupling experienced by moving
electrons in electric fields. The Rashba Hamiltonian can be written as

H =
�p 2

2m∗ −
η

h̄
�σ · (�ez × �p) (12.20)

where�ez = (0, 0, 1), �p = (px, py, 0), and�σ is the Pauli spin matrix vector. This
gives

H =

⎛
⎜⎜⎝

�p 2

2m
η

h̄
(ipx + py)

η

h̄
(−ipx + py)

�p 2

2m

⎞
⎟⎟⎠ (12.21)

Since for plane electron waves, the spinor is of the form

Ψ = ei�k�r
(

α

β

)
= ei�k�r(α|↑〉+ β|↓〉) (12.22)

we can replace pj with h̄kj. The problem has cylindrical symmetry, and we can
express the Hamiltonian in cylindrical coordinates:

H =

⎛
⎜⎜⎝

h̄2k2

2m
iηke−iφ

−iηkeiφ h̄2k2

2m

⎞
⎟⎟⎠ (12.23)
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From the characteristic polynomial, we find the eigenvalues

λ± =
h̄2k2

2m
± ηk (12.24)

This energy dispersion is represented graphically in Fig. 12.10. The corre-
sponding eigenspinor components are

λ+:β = −ieiφα = ei(φ−π/2)α

λ−:β = ieiφα = ei(φ+π/2)α (12.25)

From the normalization condition and by choosing the global phase factor
such that α is real,2 we find the eigenspinors (we omit the real-space plane
wave in the following)

|λ+〉 =
1√
2
|↑〉+ 1√

2
ei(φ−π/2)|↓〉

|λ−〉 =
1√
2
|↑〉+ 1√

2
ei(φ+π/2)|↓〉 (12.26)

These states lie on the equator of the Bloch sphere and are rotated with respect
to�k by +90◦ for λ+ and by −90◦ for λ−, respectively.

We calculate the momentum vectors at the Fermi energy in a given direction
from

EF = λ+kF,+ = λ−kF,−

and get

∆kF ≡ kF,+ − kF,− =
2ηm∗

h̄2 (12.27)

Note that ∆kF does not depend on the energy for E > 0. For a Fermi energy of
EF = 10 meV and a spin–orbit coupling constant η = 10−11 eV m, we find

∆kF = 1.7× 107 m−1 ≈ 0.13kF

The energy splitting due to the Rashba term has been observed in several
transport experiments, like the one shown in Fig. 12.11. In magneto-transport,
the splitting manifests itself in a modulation of the Shubnikov–de Haas oscilla-
tion, very similar to a quasi-2DEG with two subbands occupied, as discussed
in Section 6.4.1.

The superposition of the two spins propagating with different wave vectors
is obtained from

|ψspin〉 =
1√
2
(|λ+〉+ |λ−〉) (12.28)

2) In case you wonder why, please go through Exercise E10.3.
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Fig. 12.10 The energy dispersion of a free 2DEG in an
In0.53Ga0.47As–In0.52Al0.48As quantum well as used in [221], i.e. with
η = 10−11 eV m and m∗ ≈ 0.05me, with the Rashba effect taken into
account. The arrows depict the corresponding spin directions. Note
that the plot range is only a small fraction of a typical Fermi wave vec-
tor.

Inserting the expressions and again multiplying the coefficient in front of |↑〉
by a global phase factor to make it real, we obtain after some algebra

|ψspin〉 = cos( 1
2 ∆kFr)|↑〉+ sin( 1

2 ∆kFr)eiφ|↓〉 (12.29)

This is a rotation along a circle formed by the intersection of the Bloch sphere
with the plane given by φ. In real space, the spinor rotates around the direction
of the magnetic field seen by the electron, i.e. around the axis in the (x, y) plane
that is perpendicular to�k.

For the above values, we find from ∆kFL = 2π a rotation about π over a
distance

L = π
h̄2

ηm∗ = 350 nm

The analysis above provides further insight into the design requirements for
a Datta–Das transistor. The transistor only works when the spin directions are
well defined, which means that the channel should be quasi-one-dimensional.
Second, the channel should be ballistic. Even though elastic scattering does
not flip the spin, it changes the continuous spin rotation abruptly.
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Fig. 12.11 Modulation of Shubnikov–de Haas oscillations due to the
Rashba effect. Adapted from [221].

12.2.4
Spin relaxation and spin dephasing

It is clear that the spin relaxation length must be larger than the channel length
in a Datta–Das transistor. But how does a spin relax? Here, one has to distin-
guish between two different time scales. First of all, there is a characteristic
time over which a spin-up state experiences a spin-flip scattering event and
ends up in a spin-down state (or vice versa). This is the spin relaxation time
T1 encountered already in the discussion of spin injection. A second mecha-
nism is spin dephasing, which refers to the loss of the correlation of the spin
precession around the quantization axis. The spins precess with the Larmor
frequency ωL = eB/2m∗ around the effective magnetic field. As the electrons
move, they may experience a varying magnetic field and thus their preces-
sional motion loses its coherence. This happens during the dephasing time T2.
This time is also frequently described as the time over which the superposition
of two states, a situation encountered frequently in quantum computational
schemes, decays into a pure state.

The following mechanisms can, among more exotic ones, generate spin
relaxation and spin dephasing. The Elliot–Yafet (EY) mechanism was first
pointed out in [84] and [338]. In a system with significant spin–orbit inter-
actions, the conventional Bloch states are not eigenstates of the crystal Hamil-
tonian. Rather, the eigenstates can be expressed as a linear combination of
the outer products of two Bloch wave functions with the two spin eigenstates.
As a consequence, even spin-independent interactions can induce transitions
between these eigenstates and thereby generate spin dephasing. This type of
spin relaxation increases both with the spin–orbit coupling as well as with the
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electron scattering rate. In GaAs, for example, Elliot–Yafet spin relaxation is
very strong for holes due to the large spin–orbit coupling. The relation be-
tween the spin relaxation time τs according to the Elliot–Yafet mechanism and
the other material parameters has been derived in [243] as

τs,EY ≈
(

Eg + ∆SO

∆SO

)2 Eg

E
τ (12.30)

where E is the energy of the electron and ∆SO is the spin–orbit splitting.
The Dyakonov–Perel (DP) mechanism emerges from the fact that, as we

have seen in Section 2.2, the spin degeneracy is lifted for k �= 0 in crystals
without inversion symmetry, due to the Dresselhaus term. Electrons with
identical wave vectors but different spins therefore have different energies
in general. Owing to this energy difference, the electrons precess with dif-
ferent frequencies, very similar to the precession caused by the Rashba term.
Scattering changes the wave vectors and with it the precession frequencies.
In contrast to the Elliot–Yafet mechanism, however, the dephasing occurs not
during the scattering but during the electron motion in between scattering
events. It turns out that, because of this, the spin relaxation time is inversely
proportional to the Drude scattering time [284],

τs,DP ∝
(kBT)3

h̄2Eg

1
τ

(12.31)

This kind of spin relaxation was first discussed in [80]. Note that, by studying
the spin relaxation time as a function of the mobility, one can easily distinguish
between Elliot–Yafet and Dyakonov–Perel spin relaxation.

Hyperfine interactions can be an important source of spin relaxation as well.
The spin-polarized electron gas interacts with the nuclear spins via

H ∝ ĨS̃

thereby polarizing the nuclei while experiencing spin relaxation itself. It has
been calculated in [95] that

τHF ∝
√

EF

which means that hyperfine interactions are particularly important at low car-
rier densities. Also, note that, in a confined system like a ballistic quantum
dot, the first two mechanisms, which rely on extended motion of the elec-
trons, should be of minor importance, while the hyperfine interaction remains
relevant. This is an important factor and the reason why extremely long spin
relaxation times can be observed in such systems.
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Exercises

E12.1 Calculate the interface resistance

Ri =
µF(x→0)− µN(x→0)

ej

at a ferromagnet–normal conductor junction due to spin accumulation.

E12.2 Represent the eigenspinors of Eq. (12.26) graphically on the Bloch
sphere. Also indicate the motion of the spinor in Eq. (12.29).

Further Reading

A broad introduction to the field of spintronics is provided in [345]. An ex-
cellent overview of the emerging field of semiconductor spintronics can be
obtained from the Special Issue on Semiconductor Spintronics of “Semiconductor
Science and Technology” [285], as well as from [17].
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A
SI and CGS Units

Some people use the cgs (Gaussian) unit system, while others prefer the SI
system (also known as the MKSA system). This results in both a constant
source of irritation for students as well as an inconvenience for researchers.
The following remarks should allow the reader to switch between them with
confidence.

The cgs and SI systems originate in a different choice of units in equations
containing electrodynamic quantities. Table A.1 lists how the prefactors must
be replaced as the unit system is changed.

Tab. A.1 Prefactors in cgs and SI units.

Quantity cgs SI

speed of light c 1/
√

ε0µ0

electric field �E
√

4πε0 �E

dielectric shift �D
√

4π/ε0 �D

polarization �P (1/
√

4πε0 ) �P

magnetic field �B
√

4π/µ0 �B

magnetizing field �H
√

4πµ0 �H

magnetization �M
√

µ0/4π �M

dielectric constant ε ε/ε0

permeability µ µ/µ0

current I (1/
√

4πε0 ) I

resistance R 4πε0 R

inductance L 4πε0 L

capacitance C [1/(4πε0)] C



344 A SI and cgs units

Examples

• In cgs units, the generalized momentum is given by

�p +
e
c
�A = �p− e

2c
�r× �H

In order to switch to SI units, we make the following replacements:

e −→ e/
√

4πε0, �H −→ √
4πµ0 �H, c −→ 1/

√
ε0µ0

such that the generalized momentum is

�p− e
2
�r× µ0 �H

• In cgs units, the Bohr magneton reads

µB =
eh̄

2mc
This changes to

µB =
eh̄
2m

on replacing the magnetization, the charge and the speed of light.

Occasionally, quantities have to be transformed as well. Table A.2 lists the
most important transformation factors.

Tab. A.2 Numerical factors in cgs and SI units.

Quantity cgs unit SI unit

length 1 cm 0.01 m

weight 1 g 10−3 kg

force 1 dyn 10−5 N

energy 1 erg 10−7 J

charge 1 esE (1/3)× 10−9 C

potential 1 statvolt 300 V

capacitance 1 cm (1/9)× 10−11 F

magnetic flux 1 Mx 10−8 Wb

magnetic flux density 1 G 10−4 T

magnetic field 1 Oe (1/4π)× 103 A/m

Question A.1: Sodium has an electric polarizability of 0.4× 10−24 cm3. Express
this quantity in SI units.
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B
Correlation and Convolution

B.1
Fourier Transformation

The Fourier transform of a function f (x) is the continuous version of its ex-
pansion into a Fourier series, namely

F(X) =
1√
2π

∞∫
−∞

f (x)ei2πXx dx (B.1)

and, respectively,

f (x) =
1√
2π

∞∫
−∞

F(X)e−i2πXx dX (B.2)

The units of the variables are inverse to each other. Fourier transformations
are used frequently, owing to their efficiency and versatility in performing
certain analytical tasks. Examples can be seen in Chapters 2, 8, and 14, as well
as below.

B.2
Convolutions

The convolution of two functions f (x) and g(x) is defined as

h(x) = f ∗ g(x) =
∞∫
−∞

f (ξ)g(x− ξ) dξ (B.3)

The effect of the convolution is to “smear out” f (x) with g(x). This is illus-
trated in Fig. B.1, where we convolute

f (x) = θ(x− 1)− θ(x− 2)

with

g(x) = θ(x)− θ(x− 1)
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ξ

x

1 2
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1

x-ξ

1

3

x

h(x)

1

2

f(ξ)=1

g(x
-x)

=1
00

Fig. B.1 Graphical representation of a convolution. The functions
f (x) = θ(x− 1)− θ(x− 2) and g(x− ξ) = θ(x− ξ) − θ(x− ξ − 1)
are drawn in the (x, ξ) plane in gray scale. Note that the x − ξ axis
is rotated with respect to the ξ-axis by 135◦. For these functions, the
convolution h(x) is given by the extension of the overlapping area of
f (ξ) and g(x− ξ) parallel to the x-axis, as sketched to the right.

Hence, g(x− ξ) = θ(x− ξ)− θ(x− ξ − 1). One finds for the convolution

h(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 x < 1
x− 1 1 ≤ x < 2
3− x 2 ≤ x < 3
0 x ≥ 3

The convolution theorem states that

H(X) = F(X)G(X) (B.4)

i.e. the Fourier transform of the convoluted functions is the product of the
Fourier transforms of the individual functions. This is useful for a process
called deconvolution. Suppose we know that a signal, e.g. a QPC characteristic,
is thermally smeared. We can then obtain the characteristic at Θ = 0 by nu-
merically Fourier transforming the measured data, dividing it by the Fourier
transform of the derivative of the Fermi function, and transforming back the
result.
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B.3
Correlation Functions

In mathematical terms, the correlation function of the two functions f (x) and
g(x) is defined as

Cf g(x) =
∞∫
−∞

f (ξ)g(x + ξ) dξ (B.5)

For f = g, we speak of the autocorrelation function Cf (x). An example of an
autocorrelation function is shown in Fig. B.2.
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Fig. B.2 The autocorrelation function of the conductance G(B) of
a quantum wire as a function of a magnetic field (the raw data are
shown in the inset). The shape is typical for autocorrelation functions
of experimental parametric fluctuations. The autocorrelation field is
Bc ≈ 50 mT. After [25].

In mesoscopics, this notation is frequently used for the correlation function
of the fluctuations around an average, i.e.

Cf g(x) = 〈δ f (ξ)δg(ξ + x)〉 (B.6)

with δ f (ξ) = f (ξ)− 〈 f (ξ)〉. The angle brackets denote the ensemble average.
This means that

Cf g(x) = lim
N→∞

1
N

N

∑
j=1

δ fj(ξ)δgj(ξ + x)

with j enumerating the N ensembles. Since, however, we assume that the
system is ergodic, we can also average over the parameter. Assuming that the
variable is continuous, the correlation function is then obtained by

Cf g(x) = lim
ξ0→∞

1
ξ0

ξ0∫
0

δ f (ξ)δgj(ξ + x) dξ (B.7)
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This, by the way, also indicates how the correlation function is obtained for
finite measured intervals of the parameter ξ, which can be a magnetic field, a
gate voltage, or time, for example.

Effectively, Cf g(x) compares f with g and measures the degree of similar-
ity: g is shifted with respect to f along the x-axis, and the product function
is integrated. Therefore, the autocorrelation function of a fluctuating function
has a characteristic structure. For very small shifts, the original and the shifted
function have approximately identical values at each x. Almost everywhere,
both functions have the same sign. For large shifts, however, the signs of the
two curves are no longer correlated, and the average area under the product
function averages to zero. Consequently, Cf (x) will drop to zero within the
generalized correlation length xc. Usually, it is defined as the value of x where
Cf (x) has dropped to 1/e (e = 2.718 28) of Cf (0), although sometimes dif-
ferent definitions are used, which, however, do not change the order of mag-
nitude. Note that this continuous drop occurs only for random fluctuations.
An oscillatory function, for example, also has an oscillatory autocorrelation
function. Generally speaking, xc becomes smaller as the bandwidth of the
fluctuations increases. For x = 0, the autocorrelation function is simply the
variance:

Cf (0) = 〈(δ f (ξ))2〉 (B.8)

The Wiener–Khintchine theorem states that the spectral power Sf (X) is just
twice the Fourier transform of the autocorrelation function of f (x):

Sf (X) = 2Cf (X) (B.9)

Furthermore, the variance must be the spectral power, integrated over all X:

〈(δ f (ξ))2〉 =
∞∫

X=0

Sf (X) (B.10)
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C
Capacitance Matrix and Electrostatic Energy

In this appendix, the electrostatic energy of a system of conductors is calcu-
lated. Consider a system of n + m conductors, with n islands (floating con-
ductors) and m electrodes (connected to voltage sources). See Fig. C.1.

Ground (Drain)

I,V1 I,V2

I,V3
E,
     V4

E, V5

V5

V4

Ground (Drain)

V5

V4

C15

C3D

C
5D

V1 V2

V3

 V5

V4

C25

Fig. C.1 Left: A system of islands (floating) and electrodes (connected
to voltage sources). Right: The corresponding equivalent circuit com-
posed of potential nodes and mutual capacitances.

As in Chapter 12, the charge distribution is given by the charges at the elec-
trodes, which can be written as a charge vector �q = (�qI,�qE) composed of the
island charge vector �qI and the electrode charge vector �qE. Similarly, a poten-
tial vector can be constructed: �V = (�VI, �VE), with Vi being the potential of
conductor i with respect to drain (ground). The charge at each conductor is
given by the potentials of all conductors. This can be expressed by

qi =
n+m

∑
j=1

dijVj (C.1)

with coefficients dij determined by the electric field distribution [279].
We would like to express this relation in terms of capacitance coefficients,

which express the effect of conductor j on the charge at conductor i as a func-
tion of the voltage between the two conductors:

qi =
n+m

∑
j=1

Cij(Vi −Vj) + CiD(Vi −VD) (C.2)
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Since VD = 0, we can rearrange the sum. In order to express all dij in terms of
Cij, we write Eq. (C.1) as

qi =
n+m

∑
j �=i
−CijVj +

[( n+m

∑
j �=i

Cij

)
+ CiD

]
Vi

Thus, it is immediately obvious that dij = −Cij for i �= j, and that

dii = CiD +
n+m

∑
k=1, k �=i

Cik

This allows us to define the capacitance matrix C by

�q = C�V (C.3)

The coefficients of the capacitance matrix are given by

(C)ij =

⎧⎪⎨
⎪⎩
−Cij i �= j

CiD +
n+m
∑

k=1, k �=i
Cik i = j

So far, there has been no distinction between electrodes and islands. The
definition of an ideal voltage source requires that the potential of electrodes is
constant, no matter what. If, for example, an electron tunnels from electrode k
to an island, the potential of the electrode must not change. The voltage source
has to do some work to replace the electron. For the islands, this looks as if the
electrode has an infinitely large capacitance with drain, CkD = ∞ ⇒ Ckk = ∞:
no matter how the island potentials change, this will not modify the electrode
potential.

We will proceed by applying this formalism to a single-electron tunneling
circuit. We are interested in studying how the electrostatic energy changes
as �VE changes, which may induce charge transfers across “leaky” capacitors,
i.e. those capacitors that allow tunneling. Since the voltage sources represent
electron reservoirs, the electrostatic energy is in fact a free energy, given by
the total energy stored in the system, minus the work W done by the voltage
sources. Typically, it is convenient to specify the initial state by �qI and �VE. A
transition to a different state can be characterized by a change of the charge
vector, ∆�q. We therefore write

∆E[�VE,�q, ∆�q] = 1
2 (�q + ∆�q)(C)−1(�q + ∆�q)− 1

2�q(C)−1�q− ∆W

= ∆�qC−1�q + 1
2 ∆�qC−1∆�q− ∆W (C.4)
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Inverting C results in

C−1 =

1
...
n

n + 1
...

n + m

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

C−1
II 0

0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Hence, only the n× n submatrix of C−1 that describes inter-island coupling
contains non-vanishing elements. Note that (C−1)II = C−1

II . The energy dif-
ference in Eq. (C.4) is thus independent of �qE. This equation now reads

∆E[�VE,�qI, ∆�q] = ∆�qIC
−1
II �qI + 1

2 ∆�qIC
−1
II ∆�qI − ∆W (C.5)

It remains to calculate the work done by the voltage sources as the charge
vector is changed. This work is made up of two components:

1. As the charge of one island i changes, all islands that couple to island
i will change their potentials accordingly, and their potential difference
to an electrode k will change as well. In order to keep Vk constant, the
voltage source connected to it has to take care of the charge changes
influenced at electrode k. The work done is given by

∆Wk,1 = ∆qkVk =
n

∑
j=1

∆VjCjkVk

where

∆Vj =
n

∑
i=1

(C−1
II )ij∆qi

The work done by all voltage sources can therefore be written as

∆W1 = ∆�qIC−1
II CIE�VE (C.6)

The capacitance coefficients between islands and electrodes form the
matrix CIE.

2. Some electrodes may be connected to some islands via tunnel junctions.
In the case when electrons tunnel between electrode k and an island, the
voltage source has to neutralize this charge change ∆qk, which requires
the work ∆Wk,2 = −∆qkVk. Note that such a process will also change the
charge configuration at the islands, and the voltage source will therefore
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have to perform the corresponding work ∆Wk,1 in addition. The con-
tribution to the work done by all voltage sources due to such tunnel
processes is given by

∆W2 = −∆�qE�VE (C.7)

Therefore, the total work done by the voltage sources in response to a change
in the island charge configuration is given by

∆W = ∆W1 + ∆W2 (C.8)

We therefore obtain the final result (Eq. (9.4)):

∆E[�VE,�qI, ∆�q] = ∆�qIC
−1
II [�qI + 1

2 ∆�qI − CIE
�VE] + ∆�qE�VE



Mesoscopic Electronics in Solid State Nanostructures. Thomas Heinzel
Copyright © 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40638-8

353

D
The Transfer Hamiltonian

Occasionally, one cannot make the assumption that the energies before and
after the tunnel event are identical. This may be due to tunneling induced by
photons or phonons, or due to electron–electron interactions, as in Chapter 9.
In such cases, the transfer Hamiltonian model is useful, which is based upon
time-dependent perturbation theory.

The problem can be elegantly dealt with within the so-called transfer Hamil-
tonian model. We start from two electron gases separated by an impenetra-
ble barrier. Now, a time-dependent perturbation Hamiltonian is considered,
which allows transfer of electrons across the barrier. Time-dependent per-
turbation theory shows that the transfer rate can be described with Fermi’s
golden rule, which we consider in the static limit:

Γi→ f =
2π

h̄
|〈i|Ht| f 〉|2 δ(Ef − Ei) (D.1)

This is just the transmission probability per unit time for a single electron in
state |i〉, with energy Ei, to be transferred into state | f 〉, with energy Ei, on the
other side of the barrier. The δ function ensures an elastic event. In order to
relate the transfer rate to a current at a voltage drop V across the barrier, we
have to consider the following.

1. The electron density in [Ei, Ei + dEi] is given by the density of states
Di(Ei) times the Fermi–Dirac distribution fi(Ei). Here the index i de-
notes the side of the barrier that hosts state i.

2. Since we are dealing with fermions, the electron can tunnel only into
an empty state | f 〉. The transfer rate for an electron in |i〉 will thus be
proportional to D f (Ef )[1− fi(Ef )].

3. Electrons can tunnel in both directions. The current is the sum of the two
partial currents in opposite directions.
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Let us assume that the voltage drop is from left to right (Fig. 9.5). The spectral
current at energy E is given by

I(E) = e
2π

h̄
|〈i|Ht| f 〉|2{Dl(E) f (E− EF)Dr(E + eV)[1− f (E− EF − eV)]

− Dr(E + eV) f (E− EF − eV)Dl(E)[1− f (E− EF)]}

For large energy barriers, the matrix elements of the perturbation Hamiltonian
will be independent of energy.

Second, we assume that the density of states does not depend on energy,
either since the electron gas is two-dimensional, or since the voltage drop is
sufficiently small. In this approximation, the total current is obtained by inte-
gration over all relevant energies:

I(V) = e
2π

h̄
|〈i|Ht| f 〉|2D2

∞∫
Ecb,l

[ f (E− EF)− f (E− EF − eV)] dE

If the thermal energy and eV are small compared to EF, the Fermi functions
can both be approximated by step functions, and the integral simply gives eV,
resulting in

I(V) =
2πe2

h̄
|〈i|Ht| f 〉|2D2V

Hence, large tunnel barriers show a linear I–V characteristic for small volt-
ages, with a resistance given by

R =
h̄

2πe2|〈i|Ht| f 〉|2D2

and consequently we can speak of a voltage-independent conductance, which
is directly related to transmission T = 4π|〈i|Ht| f 〉|2D2.

Now let us study a tunnel event in an SET device. Here, the electrostatic
energy may change, and Ef can differ from Ei. In that case, we have to change
Fermi’s golden rule accordingly:

Γi→ f =
2π

h̄
|〈i|Ht| f 〉|2δ(Ef − Ei − ∆E) (D.2)

The tunneling rates as a function of the voltage applied now read:

Γ±(V) =
1

e2R

∞∫
Ecb,l

f (E)[1− f (E + ∆E±] =
1

Rie2
∆E

1− exp(∆E/kBΘ)
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E
Solutions to Selected Exercises

Chapter 2

E2.1 A zinc blende lattice hosts four atoms of each type per unit cell. There-
fore, mGaAs = 12.12 g. The unit cell of the diamond lattice contains eight
atoms, hence mSi = 5.58 g.

E2.2

(a) The reciprocal lattice vectors are

�b1 =
π

6 nm
(3,−1) and �b2 =

π

6 nm
(0, 4)

(b) The electron density is

n =
2π

3× 12 nm2 =⇒ |kF| =
√

2πn =
π

3
nm−1

The Fermi circle just touches the edge of the first Brillouin zone in the�b2-
direction (see Fig. E.1(a)). Both the first and the second Brillouin zones
are partly filled. We do have a metal here, as always for materials where
the number of conduction electrons per unit cell is not an even integer.

(c) The repeated zone scheme of Fig. E.1(b) reveals that there is one hole-
type de Haas–van Alphen (dHvA) oscillation. From the enclosed area, a
dHvA period of ∆(1/B) ≈ 2πe/h̄A ≈ 0.035 T−1 is expected. In addition,
the Fermi surface in the second Brillouin zone gives an electron-type
orbit with ∆(1/B) ≈ 0.024 T−1.
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1.BZ

2.BZ

holes

electrons

(a)     (b)

Fermi circle

Fig. E.1 (a) Reciprocal lattice, first and second Brillouin zones, and
Fermi circle for Exercise E2.3. (b) The repeated zone scheme reveals
the regions filled with holes (dark gray) and those filled with electrons
(light gray). Also shown is how the elements of the second Brillouin
zone combine to the reduced zone scheme.

E2.3

(a) We have

〈nj〉 =
2e−(Ej−µ)/kBΘ + 2e−2(Ej−µ)/kBΘ

1 + 2e−(Ej−µ)/kBΘ + e−2(Ej−µ)/kBΘ

=
e−(Ej−µ)/kBΘ[1 + e−(Ej−µ)/kBΘ]

[1 + e−(Ej−µ)/kBΘ][1 + e−(Ej−µ)/kBΘ]
= 2

1

1 + e(Ej−µ)/kBΘ

(b) In analogy to (a) one finds

〈nj〉 =
2e−(Ej−µ)/kBΘ

1 + 2e−(Ej−µ)/kBΘ
=

1

1 + 1
2 e(Ej−µ)/kBΘ

(c) The state cannot be occupied by two holes. In other words, the spin-
degenerate acceptor state can be occupied by one or by two electrons:

〈nj〉 =
2e−(Ej−µ)/kBΘ + 2e−2(Ej−µ)/kBΘ

2e−(Ej−µ)/kBΘ + e−2(Ej−µ)/kBΘ

= · · · = 2− 1

1 + 1
2 e−(Ej−µ)/kBΘ
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Defining the average hole occupation number 〈pj〉 ≡ 2− 〈nj〉, one ob-
tains

〈pj〉 =
1

1 + 1
2 e(µ−Ej)/kBΘ

E2.4 Expanding the quantities that vary slowly over the interval of non-
vanishing weight function in Eq. (2.30), namely E(�k) and u�k(�r), in a Taylor
series to first order in δ�k gives

|Φe(�ke,�re, t)〉 ≈ |φe(�ke,�re, t)〉

×
∞∫
−∞

δ�k w(�k−�ke) exp
[

iδ�k
(
�r− 1

h̄
�∇�kE(�k)

∣∣
�ke

t
)]

d�k

which is the Bloch wave for�ke, seen through a window function given by the
integral. The important point to realize is that the window function moves
with a velocity given by Eq. (2.31) across the Bloch wave.

As far as the width of the window function is concerned, please note that
1/a � δ�k ≈ 1/λde Broglie, according to the Heisenberg uncertainty relation,
where a is the lattice constant in real space.

E2.5 For �q → 0, the function F(s) (see Eq. (2.50)) approaches unity, and the
dielectric function can be approximated by

ε(�q) ≈ 1 +
k2

TF
q2

The potential of the point charge is

Vext(�r) = −Ze2

r

where Z is the number of protons. Fourier transformation yields

Vext(�r) = − Ze2

(2π)3

∞∫
−∞

4π

q2 ei�q�r d�q

The Fourier components are thus given by

Vext(�q) = −4πZe2

q2

The Fourier components of the screened potential are given by

Veff(�q) = − 4πZe2

q2ε(�q)
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The Fourier transform of the screened potential thus reads

Veff(�r) = − Ze2

(2π)3

∞∫
−∞

4π

q2 + k2
TF

ei�q�r d�q

An evaluation of this integral gives the Yukawa potential

Veff(�r) = −Ze2

r
e−ikTFr

E2.6

(a) The Schrödinger equation reads

− h̄2

2m
d2Φ(x)

dx2 −V0δ(x)Φ(x) = EΦ(x)

Φ(x) must be continuous at x = 0; this requirement can be written as
limη→0 Φ(η) = limη→0 Φ(−η). The second necessary condition is ob-
tained from integrating the Schrödinger equation, with the integration
limits approaching x = 0:

lim
η→0

[
− h̄2

2m

∫ η

−η

d2Φ(x)
dx2 dx−V0

∫ η

−η
δ(x)Φ(x) dx = E

∫ η

−η
Φ(x)dx

]
thus

− h̄2

2m
[Φ′(+0)−Φ′(−0)]−V0Φ(0) = 0

Since the wave function is evanescent everywhere except for x = 0, the
ansatz Φ(x) = Ae−κ|x| makes sense. By inserting this expression in the
conditions above, we obtain κ = mV0/h̄2. From the normalization con-
dition

∫ |A|2e−2κ|x| = 1, the amplitude A =
√

κ is found. Hence,

Φ(x) =
√

κ e−κ|x|

The eigenvalue is obtained from

E0 =
(h̄iκ)2

2m
= −mV2

0

2h̄2

(b) Ψk(x) satisfies the Bloch theorem if Ψk(x + na) = eiknaΨk(x). This is in
fact the case:

Ψk(x + na) =
∞

∑
j=−∞

Φ0(x + na− ja)eikja

= eikna
∞

∑
j=−∞

Φ0[x− (j− n)a]eik(j−n)a

= eiknaΨk(x)
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(c) We carry out the integration as suggested in the exercise:

〈Φ0|H0 + ∆V|Ψk〉 = E(k)〈Φ0|Ψk〉
Here H0 denotes the Hamiltonian of a single δ function at x = 0, and
∆V(x) is the residual crystal potential without the δ potential at the ori-
gin. The last equation can be rewritten as

E0 I0(k) + I1(k) = E(k)I0(k) =⇒ E(k) = E0 +
I1(k)
I0(k)

We proceed by calculating I0:

I0(k) = 〈Φ0|Ψk〉

= 1 +
∞

∑
j=1

[eikja〈Φ0(x)|Φ0(x− ja)〉+ e−ikja〈Φ0(x)|Φ0(x + ja)〉]

The first term stems from the contribution of j = 0. The two integrals
entering here are identical, therefore

I0(k) = 1 +
∞

∑
j=1

2 cos(jka)〈Φ0(x)|Φ0(x + ja)〉

where the overlap integral 〈Φ0(x)|Φ0(x + ja)〉 = αj is given by

αj = κ〈e−κ|x||e−κ|x+ja|〉

= κ

[
eκja

∫ −ja

−∞
dx e2κx + e−κja

∫ 0

−ja
dx + e−κja

∫ ja

0
dx e−2κx

]
= (1 + jκa)e−jκa

We finally obtain

I0(k) = 1 + 2
∞

∑
j=1

(1 + jκa)e−jκa cos(jka)

For I1, the expression reads

I1(k) = 〈Φ0|∆V|Ψk〉 = β + 2
∞

∑
j=1

γj cos(jka)

with β = 〈Φ0|∆V|Φ0〉 and γj = 〈Φ0(x)|∆V|Φ0(x + ja)〉. This is a trans-
fer integral. Inserting the wave function leads, via a geometric series,
to

β =
E0

1− e2κa
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and after some algebra, one finds

γj = E0

[
− je−jκa +

2 cosh(κa)
1− e2κa

]
We have determined E(k) for this model potential exactly. For an in-
terpretation, we make two approximations. First of all, only nearest-
neighbor transfer integrals are assumed to be non-vanishing. Second,
terms of the order e−2κa are neglected, i.e. 1/κ � a is assumed. We
obtain

α1 = (1 + κa)e−κa ≈ e−κa, β = 0, γ1 = E0e−κa

and from this

E(k) = E0 +
2γ1 cos(ka)

1 + 2α1 cos(ka)

(d) Since 1/κ � a, α1 � 1, the denominator in the dispersion relation can
be set to unity. A Taylor expansion to second order gives

E(k) = E0 + γ1(1− 1
2 k2a2)

Hence,

m∗ = − h̄2

γ1a2 =
2h̄4

mV2
0 a2

Intuitively, this is a very reassuring result: the effective mass depends
exponentially on κa. As the nearest-neighbor overlap increases, it be-
comes easier for the electron to move from site to site, and its effective
mass decreases.

E2.7 The effective densities of states are

Nc(T) = g
1
4

[
2m∗c kBT

πh̄2

]3/2

and Pv(T) = g
1
4

[
2m∗vkBT

πh̄2

]3/2

where m∗c,v is the geometric mean of the eigenvalues of the effective mass ten-
sor, i.e. m∗c,v = (∏3

i=1 m∗c,vi)1/3). This can be seen as follows: We intend to
substitute the Fermi ellipsoid given by

h̄2

2EF

(
k2

x
mx

+
k2

y

my
+

k2
z

mz

)
= 1

by a Fermi sphere with isotropic effective mass meff, such that the volume is
maintained:(

2EF

h̄2

)3/2 4π

3
(mxmymz)1/3 =

(
2EF

h̄2

)3/2 4π

3
(meff)3/2
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so that

meff =
√

mxmymz

Furthermore, g is the degeneracy of the band in addition to spin degeneracy.
Thus, g = 6 for electrons in Si, and g = 1 otherwise. For Si, this gives m∗c =
(m∗l (m∗t )2)1/3 = 0.321me and thus Nc = 2.76× 1025 m−3.

In the case of the holes, we simply have to add up the two effective densities
of states: Pv = Pv,lh + Pv,hh = 1.14× 1025 m−3, such that an intrinsic carrier
concentration of ni,Si(300 K) =

√
NcPve−Eg/2kB×300 K = 7× 1015 m−3 is found.

There is no valley degeneracy in GaAs, and one obtains Nc = 4.35 ×
1023 m−3, Pv(300 K) = 9.72× 1024 m−3, and ni,GaAs(300 K) = 2.42× 1012 m−3.

At Θ = 77 K, ni,Si(77 K) ≈ 10−15 m−3, and ni,GaAs(77 K) ≈ 10−26 m−3,
which is irrelevant in both cases.

Chapter 3

E3.1 The expectation value for the electron position in the z-direction is
given by

〈z〉 =
∫ ∞

0
Φ∗(z)zΦ(z) dz =

∫ ∞

0

b3

2
z3e−bz dz =

b3

2
Γ(4)

b4 =
3
b

Here, we have used∫ ∞

0
xne−ax dx =

Γ(n + 1)
an+1

with Γ(n + 1) = n! for integer n. This means that the size quantization re-
moves the electrons from the O–S interface, which increases the mobility.

Chapter 4

E4.1 Consider a gas at low pressure in a vacuum chamber. The number of
molecules Nc that hit an area A of the wall within a time interval t is given by

Nc = nv̄xtA

Here, n denotes the density of the gas, and v̄x is their average velocity in the x-
direction, which is perpendicular to the wall. The quantity v̄xtA is the volume
that contains all the molecules that hit the area A within time t. On the other
hand, the pressure is given by p = nkBΘ, and thus

Nc =
p

kBT
v̄xtA =⇒ nc =

p
kBT

v̄x
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where nc is the scattering rate at the wall (number of hits per unit area per unit
time). We obtain v̄x from the Maxwell velocity distribution

f (�v) d�v =
(

m
2πkBT

)3/2

exp
(
− mv2

2kBT

)
d�v

Since we are only interested in the x-component, we integrate over dvy and
dvz and find

g(vx) =
(

m
2πkBT

)1/2

exp
(
− mv2

x
2kBT

)

In order to get v̄x from g(vx), we have to calculate the expectation value of vx

under the constraint vx > 0:

v̄x =
∫ ∞

0
vxg(vx) dvx = · · · =

√
kBT
2πm

=⇒ nc =
p√

2πmkBT

We estimate the time it takes until a monolayer of oxygen has formed at the
wall. A sticking coefficient of 1 is assumed, which means that all molecules
that hit the wall remain there. We denote the area density of molecules within
a monolayer by Ns. The time required to form a monolayer is tm = Ns/Nc.
As a simple guess, assume that an oxygen molecule has an effective diam-
eter of d = 0.36 nm. Suppose further that the molecules form a hexagonal
lattice, which means that the area Am = d2

√
3 /2 contains one O2 mole-

cule. Then, Ns = 1/Am = 8.7× 1018 m−2, which means that, at a pressure
of p = 10−10 mbar, a monolayer forms within tm = 6.5 h; at a pressure of
p = 10−6 mbar, this only takes 2.4 s! This simple estimate shows that really
high vacuum is needed for molecular beam epitaxy!

E4.2

(a) Inserting gives D ≤ 0.03 cm−2.

(b) N ≤ 9.

(c) Y ≥ 0.9 ⇒ D ≤ 44.1 m−2. Within 8 inch3, we must have fewer than
6A× D = 0.0528 particles. Since 1 ft = 12 inch, and the class of a clean
room is given by the number of particles per cubic foot with sizes larger
than 500 nm, then R ≈ 0.18 is necessary.

E4.3 The dosage is distributed among 226 points, such that a dosage per
point of d = 3 × 10−16 C is required. The dwell time is therefore tdwell =
d/Ibeam = 30 µs. The spots form a square lattice with a lattice constant
of 12.2 nm. Hence, each spot must have an illuminating diameter of about
12.2 nm×√2 = 17 nm for complete coverage.
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Finally, increasing the current means shorter dwell times, which is limited
by the speed of the beam control. This can be circumvented by reducing the
bit resolution, but then the spatial resolution is lost as well.

E4.4 Applying the rules for operational amplifiers gives the condition

Vout(t) = −
[

R2

R1
Vin(t) +

1
R1C

t∫
0

Vin(τ) dτ

]

For Vin = 0, the output voltage is constant. Suppose that the input voltage
changes as indicated in the question. The response is

Vout(t) = −V0

[
R2

R1
θ(t− t0) +

t− t0

R1C

]

This circuit as known as a proportional-integral (PI) controller. Suppose some
parameter, like the temperature in a gas flow cryostat, has to be held constant.
The difference between the measured temperature and the required tempera-
ture is translated by some circuit into a voltage, which is applied at the input.
The output voltage is then used to adjust the temperature to the desired value
by some control function, like, in our example, the He gas flow through a nee-
dle valve of a gas flow cryostat. Suppose the temperature is too high. The
gas flow must be increased, and the output voltage is used to open the nee-
dle valve with a step motor. This opening increases with time, until the input
voltage has reached zero again, which means that the temperature is back at
its required value. PI controllers are widely used for such tasks.

Chapter 5

E5.1 With the dielectric constants εGaAs ≈ 13 and εSi ≈ 11, one finds the val-
ues listed in Table E.1. Note that, in Si MOSFETs, there is an additional valley
degeneracy of 2! Apparently, GaAs HEMTs are perfect for investigating ballis-
tic and phase coherence effects, while Si MOSFETs are particularly interesting
for studying interaction effects.

E5.2 We have to calculate 〈vi(0)vj(t, B)〉 and insert it into Eq. (5.4). The cy-
clotron motion causes oscillations of the velocity components given by

vi(t) = vi(0) cos (ωct)

Therefore, one finds

〈vx(0)vx(t, B)〉 = v2
F〈cos (φ) cos (φ + ωct)〉
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Tab. E.1 Results for Exercise E5.1.

GaAs (T = 4.2 K) Si (T = 4.2 K)

Drude scattering time (10−12 s) 38 4.3

Fermi velocity (104 m/s) 27 1.3

diffusion constant (m2/s) 1.43 0.00035

Fermi wavelength (nm) 40 95

phase coherence length (nm) 6500 59

inelastic scattering length (nm) 8200 127

thermal length (nm) 1610 25

interaction parameter 0.87 13.8

〈vx(0)vy(t, B)〉 = v2
F〈cos (φ) sin (φ + ωct)〉

Averaging over φ by evaluation of the integrals results in

Dxx(B) =
1
2

v2
F

τ

1 + ω2
c τ2

Dxy(B) = −1
2

v2
F

ωcτ2

1 + ω2
c τ2

The expressions for Dyy(B) and Dyx(B) are obtained similarly. Replacing the
diffusion coefficients with the conductivity components via the Einstein rela-
tion for Fermi gases gives Eq. (2.59).

Chapter 6

E6.1 The filling factor ν = 4 is at B = 6.4 T, as can be seen directly from
the position of the Hall plateau. Analyzing the Hall slope at small magnetic
fields gives dρxy/dB ≈ 1060 Ω/T = −1/n2De, which corresponds to n2D =
5.8× 1015 m−2. This is close to the upper limit of electron densities possible in
Ga[Al]As HEMTs, if the second subband must remain empty. The figure tells
us that ρxx(B=0) ≈ 8 Ω. Since ρxx(B=0) = (n2Deµ)−1, we find an electron
mobility of µ = 134 m2/V s. Because µ = eτ/m∗ and �e = vFτ, the elastic
mean free path �e = (h̄/e)µ

√
2πn2D = 16.8 µm is obtained. This corresponds

to the elastic scattering time of τ = 51 ps.
Spin splitting states set in at B = 1.6 T. This allows us to estimate the effec-

tive g-factor via

2g∗µBBsplit start ≈ h̄/τq =⇒ g∗ ≈ 5.5.
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Here, it is assumed that the peaks in the density of states have width h̄/τq,
which is a reasonable approximation.

E6.2

(a) The effective mass is obtained from the slope of ln(A/Θ) vs. Θ as:
m∗ = 0.032me. The Dingle plot gives a quantum scattering time of τq =
0.18 ps. Once we know m∗, a Drude scattering time τ = µm∗/e = 14 ps
is calculated.

(b) The ratio τ/τq = 78 is extremely large. This means that the dominant
source of scattering is remote scattering centers. In fact, the sample is
an InAs quantum well 30 nm below the surface, embedded in an AlSb
barrier, and capped with a GaSb layer (see Fig. 3.25). It is known that,
in this material system, the charge neutrality level of the GaSb surface
states lies above the conduction band bottom of InAs, and thus electrons
are transferred from the surface into the quantum well. The remaining
space charge region close to the surface represents the scattering poten-
tial.

E6.3 The potential is given by U(z) = −eεz, where z denotes the growth
direction, and ε is the electric field. The Schrödinger equation thus reads

(
− h̄2

2m
d2

dz2 + 1
2 mω2

0z2 − eεz
)

Ψ(z) = EΨ(z)

which, by completing the square and substituting

z = u +
eε

mω2
0

can be rewritten as(
− h̄2

2m
d2

du2 + 1
2 mω2

0u2
)

Ψ(u) = E∗Ψ(u)

with

E∗ = E +
q2ε2

2mω2
0

The energy eigenvalues are

En = (n + 1
2 )h̄ω0 − e2ε2

2mω2
0
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The electric field thus displaces the parabolic potential without modifying its
shape. The minimum is given by

zmin(ε) =
eε

mω2
0

Emin = 1
2 h̄ω0 − q2ε2

2mω2
0

Chapter 7

E7.1

(a) The problem is very similar to the discussion of the effects of a parallel
magnetic field on a 2DEG given in Chapter 6. Using the gauge given in
the question, we obtain[
− h̄2

2m∗
∂2

∂x2 + i
eBh̄y
m∗

∂

∂x
+

e2B2

2m∗ y2 − h̄2

2m∗
∂2

∂y2 + 1
2 m∗ω2

0y2
]

ψ(y)eikxx

= Eψ(y)eikxx

Carrying out the partial differentiation with respect to x gives[
h̄2

2m∗ k2
x −

eBh̄y
m∗ kx +

e2B2

2m∗ y2 − h̄2

2m∗
∂2

∂y2 + 1
2 m∗ω2

0y2
]

ψ(y) = Eψ(y)

With the cyclotron frequency ωc = eB/m∗, we can write[
− h̄2

2m∗
∂2

∂y2 + 1
2 m∗(ω0 + ωc)2y2 − eBh̄y

m∗ kx +
h̄2

2m∗ k2
x

]
ψ(y) = Eψ(y)

Completing the square by adding and subtracting ȳ2
0, with

ȳ0 =
h̄kx

m∗
ωc

ω2 = y0

(
ωc

ω

)2

(this relation holds since y0 = h̄kx/m∗ωc), it follows that[
− h̄2

2m∗
∂2

∂y2 + 1
2 m∗ω2(y− ȳ0)2 +

h̄2

2m∗ k2
x

(
ω0

ω

)2]
ψ(y) = Eψ(y)

(b) The third term on the right-hand side of the previous equation repre-
sents the energy dispersion in the x-direction. The electron mass now
depends on B and is known as the magnetic mass, m∗(B) = m∗(ω/ω0)2.
For large B, the solution approaches the Landau quantization, with the
magnetic mass going toward infinity.
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(c) With the above solution, the electron density of a quantum wire in a
magnetic field can be written as

nQWR =
2
πh̄

∞

∑
j=0

√
2m∗(ω/ω0)2(EF − Ej) [1−Θ(EF − Ej)]

For integer filling factors N, EF = h̄ω(N + 1
2 ), such that

nQWR =
2
πh̄

N

∑
j=0

√
2m∗(ω/ω0)2h̄ω(N − j)

≈ 2
π

√
2m∗

h̄

(
ω3/2

ω0

) ∫ N

l=0
l1/2 dl

This gives the relation

nQWR =
4

3π

√
2m∗

h̄

(
ω3/2

ω0

)
N3/2

The fit parameters are ω0 and nQWR (⇒ EF). Since EF = 1
2 m∗ω2

0(w/2)2,
we can determine the electronic wire width w.

E7.2 We write down the current that flows at a bias voltage V:

I =
∫ {−→

D1(E)v(E) f (E− µ)[1− f (E− µ + eV)]

−←−D1(E + eV)v(E + eV) f (E− µ + eV)

× [1− f (E− µ + eV)]
}

Θ(E− E1) dE

=
2e
h

∫
Θ(E− E1)[ f (E− µ)− f (E− µ + eV)] dE

With

f (E− µ + eV) ≈ f (E− µ) +
∂ f

∂eV
(eV=0)eV

= f (E− µ) +
∂ f
∂E

(eV=0)eV

we find

I =
2e2V

h

∫
− ∂ f

∂E
(eV=0)Θ(E− E1) dE

Partial integration gives

I =
2e2

h
f (E1 − µ)V =⇒ G = I/V =

2e2

h
f (E1 − µ)

The steps are thermally smeared as soon as the full width at half-maximum of
∂ f /∂E equals ∆. This is the case for ∆ = 2kBΘ ln(3 + 2

√
2) ≈ 3.52kBT.
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E7.3

(a) From the Landauer–Büttiker formalism, the system⎛
⎜⎜⎜⎜⎜⎜⎜⎝

IS
ID
I1
I2
I3
I4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=
e2

h

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

N 0 −N 0 0 0
0 N 0 0 0 −N
0 0 N −M M− N 0
0 −N 0 N 0 0

−N 0 0 0 N 0
0 0 0 M− N −M N

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

VS
VD
V1
V2
V3
V4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

is obtained. We set the drain potential to zero and use the fact that
IS + ID = 0. The remaining 5× 5 matrix equation has the solution

⎛
⎜⎜⎜⎜⎝

VS
V1
V2
V3
V4

⎞
⎟⎟⎟⎟⎠ =

hIS

e2

⎛
⎜⎜⎜⎜⎝

1/M
1/M− 1/N

0
1/M
1/N

⎞
⎟⎟⎟⎟⎠

(b) The resistances are obtained from (a) as Rij = (µi − µj)/eIS:

R12 = R34 =
h
e2

(
1
M
− 1

N

)

R13 = R24 =
h
e2

1
N

R14 =
h
e2

(
1
M
− 2

N

)

R23 =
h
e2

1
M

By a proper choice of our setup, we can measure just the barrier.

E7.4

(a) The Landauer–Büttiker matrix is⎛
⎜⎜⎜⎜⎜⎜⎜⎝

IS
ID
I1
I2
I3
I4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=
e2

h

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2 0 −2 0 0 0
0 2 0 0 0 −2
0 0 2 0 −1 0
0 −2 0 2 0 0
−2 0 0 0 2 0

0 0 0 −1 0 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

VS
VD
V1
V2
V3
V4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+
e2

h

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
0
−V∗2

0
0
−V∗3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
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Next, we have to find the V∗i . They depend on p, V2 and V3. Current
conservation and using the definition of p lead to

V3 + V∗c = V∗3 + Vc

V∗2 + V∗c = V2 + Vc

p = 1− V∗2 −V∗c
V2 −Vc

p = 1− V∗3 −Vc

V3 −V∗c
and we obtain the system of equations⎛
⎜⎜⎝

V2
V3
V2
V3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1 0 −1 1
0 1 1 −1

1/(1− p) 0 1 1/(p− 1)
0 1/(1− p) 1/(p− 1) 1

⎞
⎟⎟⎠
⎛
⎜⎜⎝

V∗2
V∗3
Vc
V∗c

⎞
⎟⎟⎠

with the solution⎛
⎜⎜⎝

V∗2
V∗3
Vc
V∗c

⎞
⎟⎟⎠ =

1
p− 4

⎛
⎜⎜⎝

(2p− 4)V2 − pV3
−pV2 + (2p− 4)V3

(p− 2)V2 − 2V3
−2V2 + (p− 2)V3

⎞
⎟⎟⎠

Inserting this in the above linear system gives⎛
⎜⎜⎜⎜⎜⎜⎜⎝

IS
ID
I1
I2
I3
I4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=
e2

h

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 0 −2 0 0 0
0 2 0 0 0 −2
0 0 2 − 2p−4

p−4 −1 + p
p−4 0

0 −2 0 2 0 0
−2 0 0 0 2 0

0 0 0 −1 + p
p−4 − 2p−4

p−4 2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

VS
VD
V1
V2
V3
V4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Again, we reduce the matrix by the drain column and row (as in the
previous exercise) to⎛
⎜⎜⎜⎜⎝

VS
V1
V2
V3
V4

⎞
⎟⎟⎟⎟⎠ =

hIS

2e2

⎛
⎜⎜⎜⎜⎝

(p− 4)/(p− 2)
2/(2− p)

0
(p− 4)/(p− 2)

1

⎞
⎟⎟⎟⎟⎠

(b) From (a), we find immediately that

Rxx =
V1 −V2

IS
=

h
e2

1
2− p
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The other resistances are not of interest here.

Inserting the numerical values given in the question, one gets R12 =
0.53h/e2 ⇒ p = 0.113. To define the equilibration length Leq, we require
that along the distance L = Leq the potential difference between the edge
states has been reduced to 1/e = 0.368 of its initial value:

∆µ∗

∆µ
=

1
e

,
∆µ− ∆µ∗

∆µ
= p ⇒ p = 1− 1

e

or, more generally,

p = 1− e−L/Leq

For the numbers given, we thus obtain Leq = 0.42 mm. Equilibration
between spin-polarized edge states takes place on macroscopic length
scales, see e.g. [218].

E7.5

(a) �C = n1�a1 + n2�a2, with (n1, n2) = (4, 1). For symmetry reasons, it suffices
to consider n1 ≥ 0 and 0 ≤ n2 ≤ n1. For zigzag tubes, (n1, n2) = (n, 0);
for armchair tubes, (n1, n2) = (n, n).

(b) We write �A = m1�a1 + m2�a2. From �A�C = 0, m1 = N/(2n1 + n2) and
m2 = N/(n1 + 2n2) are found, where N is the smallest common multiple
of (2n1 + n2) and (n1 + 2n2).

(c) Since �A�B = 2π, we obtain

�B =
2π

m2
1 + m1m2 + m2

2
(m1�a1 + m2�a2)

For an illustration, we express �B in terms of the reciprocal lattice vectors
of the graphite sheet:

�b1 =
4π

3a2 (2�a1 −�a2)

�b2 =
4π

3a2 (−�a1 + 2�a2)

where a denotes the lattice constant of the graphite sheet, and find

�B =
a2

2(m2
1 + m1m2 + m2

2)
[(2m1 + m2)�b1 + (m1 + 2m2)�b2]

The mode spacing in the ky-direction is found to be

∆ky =
a2

2(n2
1 + n1n2 + n2

2)
[(2n1 + n2)�b1 + (n1 + 2n2)�b2]
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(d) This condition is derived in the further reading on CNs given at the end
of Chapter 7. The CN under study here is therefore metallic.

(e) For these zigzag CNs, we can estimate the distance Γ–X to be about π/a.
Assuming a parabolic dispersion around Γ, one estimates m∗ ≈ 0.8m.
For the metallic tube, the concept of effective mass is not good, since
a parabolic dispersion is a very poor approximation. To calculate the
density of states, we set E(k) = αk, ∆k = π/L ⇒ D(k) = 2L/π ⇒
d(k) = 2/π. This is translated in energy via

d(E) = d(k) dk/dE =
2
π

1
α

From the figure, we estimate α ≈ 4 eV/(π/a) ⇒ d(EF) ≈ 1.25× 1028

J−1 m−1. Hence, in 1D, a linear energy dispersion gives a constant den-
sity of states. Consequently, the chemical potential does not depend on
temperature.

E7.6 Let us add a real ohmic contact to the middle region and connect it to
ground, while we connect the collector to a voltmeter. The current is now
flowing via m, and the Landauer–Büttiker equations now read

h
2e2 Ii = NVi − TciVc

h
2e2 Im = TcmVc − TimVi

0 = NVc − TicVc

Since we consider a situation where Tic � N, we can approximate N ± Tic ≈
N and find for Tcm = Tim

Vc

Ii
=

h
2e2

Tic

N2

The quantity of interest is thus no longer a small signal on a large background.
This setup is frequently used for measurements on ballistic samples.

Chapter 8

E8.1 For the upper branch, one obtains

θupper = − e
h̄

∫
Γ

�A d�Γ = − e
h̄

∫ π

α=0
R

⎛
⎝ sin α

cos α

0

⎞
⎠
⎛
⎝ 0
−BR cos α

0

⎞
⎠ dα

= πR2B
e
h̄

∫ π

α=0
cos2 α dα = πR2 e

2h̄
B = π

Φ
Φ0
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Correspondingly, an electron collects a phase of θlower = πΦ/Φ0 as it traverses
the lower branch. The interference between these two waves generates the
Aharonov–Bohm effect:

t =
√

ε(eiφ + e−iφ)
√

ε =⇒ T = t∗t = 4ε cos2 φ

E8.2

(a) We divide the time t into N intervals of equal length. N is so large that
none of the intervals hosts two scattering events. An individual inter-
val is occupied with a probability of p = γt/N The probability for j
scattering events follows from the probability that j of the intervals are
occupied, times the number of possible arrangements of the occupied
intervals among all intervals. Hence,

P(j) = pn(1− p)n × N!
j!(N − j)!

In the limit N → ∞, this probability becomes

P(j) =
γjtj

j!
e−γt

This is the Poisson distribution of random processes.

(b) Clearly, �e–e should be the average distance an electron travels before it
hits one of its colleagues. Therefore, we require j = 0 in the Poisson
distribution, which then reads P(0) = e−γt. Mapping γ and t on length
scales is easy: t = L/vF and γ = 1/τe–e = vF/�e–e. Here, vF is the Fermi
velocity and L is the flight distance under consideration (remember that
we are in the ballistic regime). This gives

P(0) = e−L/(�e–e)

Since the amplitude as defined in the text equals P(0), and the assump-
tion has been made that complete dephasing occurs in individual e–e
scattering events, Eq. (8.9) follows.

E8.3

(a) The Schrödinger equation of the system reads

1
2m∗ (�p + e�A)2Ψ(φ) = EΨ(φ)

In cylindrical coordinates,

�∇× �A =
(

1
r

∂Az

∂φ
− ∂Aφ

∂z
,

∂Ar

∂z
− ∂Az

∂r
,

1
r

∂(rAφ)
∂r

− 1
r

∂Ar

∂z

)
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and

�∇Ψ =
(

∂

∂r
,

1
r

∂

∂φ
,

∂

∂z

)
Ψ

The vector potential in the question gives �∇× �A = (0, 0, B). With the
ansatz for the wave function

Ψ(φ) =
1√
2πr

ei�φ

the Schrödinger equation becomes

1
2m∗

(
− ih̄

1
r

∂

∂φ
+

erB
2

)2

ei�φ = Eei�φ

leading to the energy eigenvalues

E�(B) =
h̄2

2m∗r2

(
� +

eBr2

2h̄

)2

Using the magnetic flux quantum Φ0 = h/e, we can rewrite this as

E�,n =
h̄2

2m∗r2 (� + n)2

with n being the number of magnetic flux quanta penetrating the ring.
Of course, � is the angular momentum quantum number (Fig. E.2). Note
that the probability density is independent of �, φ and B.

en
er

gy
 

10 2 3 4 5
magnetic flux n

l=0

l=1

l=-1

Fig. E.2 Energy spectrum of a one-dimensional quantum ring
(Exercise E8.3).
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(b) The current is obtained from

I� = − ih̄e
2m∗ (Ψ∗�∇Ψ−Ψ�∇Ψ∗)

Inserting a wave function gives

I� =
h̄e

4πm∗r2 �

Since�L =�r× �p = h̄
√

�(� + 1) ≈ h̄�, we can write this as

I� =
evF

2πr
= eν

Here, ν denotes the circulation frequency of the electron in the ring.
States with � and −� are degenerate, such that the corresponding cur-
rents cancel each other. If, however, the number of electrons in the ring
is odd, an equilibrium current flows in the ring. This current is known as
persistent current.

(c) Suppose that there are about 100 electrons (� = 50) in the ring with
radius r = 300 nm. A persistent current of 24 nA is found. This is a large
current. It can be, and has been, measured by different techniques. One
way is to detect the magnetic field generated by the current loop, using
a superconductive quantum interference device (SQUID) [200]. Another
way becomes apparent as soon as one realizes that

I� =
1

2Aring

∂E�(B=0)
∂B

Hence, the magnetic field dispersion of E� directly measures the persis-
tent current. This can be done in a resonant tunneling experiment (see
Chapter 10).

E8.4

(a) In analogy to Chapter 8, one finds

I =
2e
h

∫
− ∂ f

∂E
(eV=0)δ(E− Er) dE =⇒

G = I/V =
2e2

h
− ∂ f

∂E
(Er − µ)

The peak transmission at Er = µ equals T(Er) = 1/4kBΘ. For the
FWHM, one obtains

1
8kBΘ

=
1

kBΘ
e(E1/2−µ)/kBΘ

(1 + e(E1/2−µ)/kBΘ)2
=⇒
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E1/2 = kBΘ ln(3± 2
√

2) = ±1.7627kBT

[Note the remarkable relation a2 − b2 = 1 ⇒ − ln(a− b) = ln(a + b).]

(b) The general line shape is a convolution of a Lorentzian with the deriva-
tive of the Fermi function:

G(µ, Er) =
2e2

h
ΓaΓb

Γ

∫
− ∂ f

∂E
(E− µ)L(Γ, E) dE

L(Γ, E) is the Lorentzian. Experimentally, either one can fit the data to
the above expression, using both Θ and Γ as fit parameters, or one can
vary the temperature and plot the FWHM as a function of Θ. The satu-
ration temperature should give a good estimate for Γ.

Chapter 9

E9.1 The single-electron box consists of one electrode and one island. The
capacitance matrix of the circuit in Fig. 9.20 reads

C =
(

C11 −C1G
−C1G CGG

)
with C11 = C1G + C1D and CGG = C1G. The island charge equals q = q0 − ne,
such that the charge vector is �q = (q0 − ne, qG). The voltage vector is just VG.
Here, n is the excess number of electrons at the island.

Two charge transfers are possible via the leaky capacitor between island and
drain, ∆�q = e(±1, 0), which means that the energy relation

∆E[V, q0 − ne, e(±1, 0)] ≥ 0

has to hold. Therefore, n excess electrons are on the island for

1
CG

(n(e− 1
2 )− q0) < VG <

1
CG

(n(e + 1
2 )− q0)

Fig. E.3 shows n(VG) for q0 = 0.

E9.2 In that case,

Γi→ f =
2π

h̄
|〈i|Ht| f 〉|2δ(Ef − Ei)

which means that

Γ1→2(∆E = 0) =
2π

h̄

∞∫
Ecb,max

|〈i|Ht| f 〉|2Di(E)D f (E) f (E)[1− f (E− eV)] dE
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VG (e/CG)

n
3

2

1

0
-1

1 2-1

Fig. E.3 Number of excess electrons in a single-electron box (circuit of
Fig. 9.20; Exercise E9.1).

For low temperatures, we approximate the Fermi functions by step functions.
Furthermore, in the limit of small voltages, the densities of states on both sides
of the barrier are identical (in d = 2, this is the case anyway), and we obtain

I = eΓ1→2 =
2π

h̄
|〈i|Ht| f 〉|2D2(E)V

E9.3 Although the circuit resembles somewhat the double dot in series, it
behaves quite differently. The current through island 1 can be tuned by both
gate voltages, although VB couples to it only via island 2. Since all capacitances
are supposed to be equal, we have

CII =
(

4C −C
−C 2C

)

CIE =
(−C 0 −C

0 −C 0

)
For the exchange of electrons between island 1 and the electrodes the charge
transfers to be considered are

∆�q = (∆�qI, ∆�qE) = (∆q1, ∆q2, ∆qA, ∆qB, ∆qS) = e(±1, 0, 0, 0,∓1)

for transfers between 1 and S, and

∆�q = (∆�qI, ∆�qE = e(±1, 0, 0, 0, 0)

for transfers between 1 and D. Since we consider only the case of VS = 0,
transfers between S and 1 should be equivalent to those between D and 1. In
other words, ∆�qE will be irrelevant below.

For the exchange of electrons between the islands, we have

∆�qI = e(±1,∓1)

In addition, the processes

∆�qI = e(0,±1)
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corresponding to a direct electron transfer between island 2 and S or D are
taken into account, for reasons that will become apparent below. The condi-
tions for a stable configuration (n1, n2) are obtained by evaluating the system
using Eq. (9.4). One gets the stability conditions

VB ≤ −2VA +
e
C

(2n1 + n2 + 1)

VB ≥ −2VA +
e
C

(2n1 + n2 − 1)

for electron transfers between 1 and S or D, and

VB ≤ 1
3 VA +

e
C

(n2 − 1
3 n1 + 2

3 )

VB ≥ 1
3 VA +

e
C

(n2 − 1
3 n1 − 2

3 )

for inter-island transfer. For the direct transfer between 2 and S or D, one finds

VB ≤ − 1
4 VA +

e
C

(n2 + 1
4 n1 + 1

2 )

VB ≥ − 1
4 VA +

e
C

(n2 + 1
4 n1 − 1

2 )

respectively. The stability diagram in the (VA, VB) plane is shown in Fig. E.4.
Leaving the condition for transfers between 2 and S or D aside for the moment,
we find a set of intersecting diamonds.

Fig. E.4 Stability diagram of the circuit considered in Exercise E9.3.

As for the relevance of the direct charge transfer between island 2 and the
reservoirs, we follow the arrow in Fig. E.4, and increase VB at constant VA ≈ 1
(in units of e/C). As we cross VB = 1/2 (point i), the free energy of the con-
figuration (1, 1) becomes smaller than that of the initial (1, 0) configuration.
But the charge transfer should not be possible. It will nevertheless take place
via tunneling with a large time constant, in order to relax the system into the
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ground state. If it can be neglected, the system will remain in a metastable
state within the region bounded by the dashed lines, until the energies of the
configurations (1, 0) and (0, 1) are equal. This is the case at point ii, and fi-
nally allows island 2 to obtain an electron from the reservoirs via island 1. As
we go back, the system has to wait until the intermediate state (2, 0) becomes
accessible, which happens at point iii. Via this state, the electron is transferred
back into the reservoir. Hence, if the direct charge transfer between island 2
and the reservoirs is not possible, the system shows hysteresis effects within
the diamonds formed by the dashed lines.

Chapter 10

E10.1

(c) Only states with m = 1 couple sufficiently strongly to the leads, such
that a current can be detected. In Fig. 10.8, we thus see the fraction of
zigzag lines that corresponds to Landau level 1 states. Removing the
charging energy gives the discrete spectrum of the island. Suppose it is
approximately a Fock–Darwin spectrum. The beginning and the end of
each bright line correspond to level crossings of a Landau level 1 state
with a Landau level 2 state. One finds (∆B)measured = 75 mT at B ≈ 7 T.
So far, we have neglected the spin, though. The spin splitting of both
Landau levels reduces the average period in B by a factor of 2. Hence,
we find

ω0 = ωc

√
(∆B)measured

B
= 1.9× 1012 s−1

The reconstructed energy spectrum is shown in Fig. E.5.

Fig. E.5 Left: The data of Fig. 10.8(c) with the single-electron charg-
ing energy removed, and the measured level spacings. Right: The
corresponding reconstruction of the data in Fig. 10.9 shown for com-
parison.
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E10.2

(a) From det(H− λ1) = 0, one finds

λ± = 1
2 (H11 + H22)± 1

2

√
(H11 − H22)2 + 4H2

12

(b) For small transformation angles, the transformation matrix becomes

(O) =
(

1 α

−α 1

)

From p(OTHO) = p(H), the condition

p(H) = p(H)
[

1− α

(
2H12

d ln p11

dH11
− 2H12

d ln p22

dH22

− (H11−H22)
d ln p12

dH12

)]

is obtained. Since α is arbitrary, this requires that the coefficient in front
of α vanishes. The set of differential equations has the solution

p11(H11) = c1e−c2H2
11−c3H11

p12(H12) = c1e−2c2H2
12

p22(H22) = c1e−c2H2
22−c3H22

where the ci are integration constants.

(c) Now p(H) reads

p(H) = c1e−c2(H2
11+2H2

12+H2
22)−c3(H11+H22)

Choosing the energy reference such that H11 + H22 = 0, we see right
away that this can be written as

p(H) = c1e−c2Tr(H2)

(d) Let β be the transformation angle that maps H onto a diagonal matrix
via an orthogonal transformation, namely

ODOT = H

with

(D) =
(

λ+ 0
0 λ−

)
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and

(O) =
(

cos β sin β

− sin β cos β

)

Note that here we cannot assume that a transformation by a small angle
will do the job. This transformation gives the functional dependence of
Hij on λ+, λ−, and α. Hence, the determinant of the Jacobian transfor-
mation matrix

J =
∂(H11, H12, H22)

∂(λ+, λ−, β)

can be calculated, which gives

det(J) = λ+ − λ−

In terms of the eigenvalues λ± of H, Tr(H2) equals λ2
+ + λ2−.

We can write

p(H) = p(H11, H12, H22)

= p(λ+, λ−, α) det[J(H11, H12, H22, λ+, λ−, α)]

We can therefore write

p(λ+, λ−) = c1(λ+ − λ−)e−c2(λ2
++λ2−)

We transform variables here and write

∆ = λ+ − λ− and Σ = λ+ + λ−

such that

p(∆, Σ) = c1∆e−
1
2 c2(∆2+Σ2)

Integration over Σ gives

p(∆) =
∞∫
−∞

p(∆, Σ) dΣ =

√
2π

c2
c1∆e−

1
2 c2∆2

(e) The two normalization conditions read

∞∫
0

p(∆) = 1 and
∞∫

0

∆p(∆) = 1

Hence, c1 = π/4 and c2 = π/2, which gives the corresponding expres-
sion in Table 10.1 for normalized peak spacings s.
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E10.3 The qubit is an element of the two-dimensional, complex vector space
with coordinates α and β. Each of them can be written in polar coordinates
of a complex plane: α = |α| exp(iφα) and α = |β| exp(iφβ). We multiply the
qubit by the global phase factor exp(−iφα) and obtain

|ψ〉 = |α| |0〉+ eiφ|β| |1〉
with φ ≡ φβ − φα. This can be rewritten as

|ψ〉 = x|1〉+ iy|1〉+ z|0〉
with

x = |β| cos φ ≡ sin θ cos φ

y = |β| sin φ ≡ sin θ sin φ

z = |α| ≡ cos θ

where 0 ≤ θ ≤ π and 0 ≤ φ ≤ 2π. The qubit is a point on the sphere given by
|x|2 + |y|2 + |z|2 = 1, and can be written as

|ψ〉 = cos θ |0〉+ sin θ eiφ|1〉
which is not quite the Bloch sphere representation yet. Note that, now, the
equator consists of pure |1〉 states, up to a global phase factor, while north and
south poles are pure |0〉 states. In fact, all states on the northern hemisphere
can be found also on the southern hemisphere up to global phase factors. To
remove this double representation, the convention is to map the sphere onto
the Bloch sphere by the transformation θ → θ/2 with the new θ running from
0 to π. This mapping is unique even for the equator since global phase factors
do not matter.

E10.4 Suppose that the first Bell state |B1〉 can be constructed by tensor mul-
tiplication as |a1a2〉 from

|ai〉 = cos( 1
2 θi)|0〉+ eiφi sin( 1

2 θi)|1〉
with i = 1, 2. The coefficients have to obey

cos( 1
2 θ1) cos( 1

2 θ2) = 1/
√

2 (E.1)

cos( 1
2 θ1) sin( 1

2 θ2)eiφ2 = 0 (E.2)

cos( 1
2 θ2) sin( 1

2 θ1)eiφ1 = 0 (E.3)

sin( 1
2 θ1) sin( 1

2 θ1)ei(φ1+φ2) = 1/
√

2 (E.4)

Since eiφ �= 0 for all φ, we require from (E.2) and (E.3) that

cos( 1
2 θ1) sin( 1

2 θ2) = 0
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and

cos( 1
2 θ2) sin( 1

2 θ1) = 0

However, none of the factors can be zero because of (E.1) or (E.4).

Chapter 12

E12.1 Our task now is to determine the difference of the spin-averaged elec-
trochemical potentials µF(x→0) and µN(x→0) in both materials at the inter-
face, from which we obtain the interface resistance RI from

RI =
µF(x→0)− µN(x→0)

ej

Since

µF(x→0) =
1
σF

(σF,↑µF,↑ + σF,↓µF,↓)

= αFµF,↑ + (1− αF)µF,↓ = αFµS(0) + µF,↓

and similarly

µN(x→0) = 1
2 µS(0) + µN,↓

we find, using the continuity of µ↓ at the interface, that

µF(x→0)− µN(x→0) = ej
λN

σN
[1− 2β(0)](1− 2αF)

Inserting β(0) gives an interface resistance of

RI =
(2αF− 1)2λN/σN

1 + 4αF(1− αF)(λN/σN)(σF/λF)
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