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1
Introduction

In here the key words in the title of the book, namely
nanostructured matter and magnetic anisotropies, are crit-
ically examined and defined.

Nanosystems and nanostructured matter are terms that presently are very
much en vogue, although at best semi-qualitative definitions of these expres-
sions seem to exist. The prefix nano only makes sense when used in connection
with physical units such as meters or seconds, usually then abbreviated by
nm (nanometer) or ns (nanosecond):

1 Å= 10−8cm= 0.1 nm
1 nm = 10−9m

Quite clearly the macroscopic pre-Columbian statue in Fig. 1.1 made from
pure gold nobody would call a nanostructured system because in "bulk" gold
the atoms are separated only by few tenths of a nanometer. Therefore, in

FIGURE 1.1: Left: macroscopic golden artifact, right: microscopic structure
of fcc Au.

1
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2 Magnetic Anisotropies in Nanostructured Matter

order to define nanosystems somehow satisfactorily the concept of functional
units or functional parts of a solid system has to be introduced. Functional in
this context means that particular physical properties of the total system are
mostly determined by such a unit or part. In principle two kinds of nanosys-
tems can be defined, namely solid systems in which the functional part is
confined in one dimension by less than about 100 nm and those where the
confinement is two-dimensional and restricted by about 10 - 20 nm. For mat-
ters of simplicity in the following, nanosystems confined in one dimension will
be termed 1d-nanosystems, those confined in two dimensions 2d-nanosystems.
Confinement in three dimensions by some length in a few nm does not make
sense, because this is the realm of molecules (in the gas phase). In soft matter
physics qualitative definitions of nanosystems can be quite different: so-called
nanosized pharmaceutical drugs usually contain functional parts confined in
length in all three directions, which in turn are part of some much larger car-
rier molecule. Since soft matter physics is not dealt with in this book, in the
following a distinction between 1d- and 2d-nanosystems will be sufficient.
A diagram of a typical 1d-nanosystem is displayed in Fig. 1.2 reflecting the

situation, for example, of a magnetically coated metal substrate such as a few
monolayers of Co on Cu(111). Systems of this kind are presently very much
studied in the context of perpendicular magnetism. Very prominent examples

FIGURE 1.2: Solid system, nanostructured in one dimension.

of 1d-nanosystems are magnetoresistive spin-valve systems, see Fig. 1.3, that
consist essentially of two magnetic layers separated by a non-magnetic spacer.
As can be seen from this figure the functional part refers to a set of buried slabs
of different thicknesses. It should be noted that in principle any interdiffused
interface between two different materials is also a 1d-nanosystem, since usually
the interdiffusion profile extends only over a few monolayers, i.e., is confined
to about 10 nm or even less.
Fig. 1.4 shows a sketch of a 2d-nanosystem in terms of (separated) clusters

of atoms on top of or embedded in a substrate. These clusters can be either
small islands, (nano-) pillars or (nano-) wires. "Separated" was put cau-
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Introduction 3

FIGURE 1.3: Transition electron micrograph of a giant magnetoresistive spin-
valve read head. By courtesy of the MRS Bulletin, Ref. [1].

FIGURE 1.4: Solid system, nanostructured in two dimension.

tiously in parentheses since although such clusters appear as distinct features
in Scanning Tunnelling Microscopy (STM) pictures, see Fig. 1.5, in the case
of magnetic atoms forming these clusters they are connected to each other,
e.g., by long range magnetic interactions.
It was already said that a classification of nanosystems can be made only in

a kind of semi-qualitative manner using typical length scales in one or two di-
mensions. There are of course cases in which the usual scales seemingly don’t
apply. Quantum corrals for example, see Fig. 1.5, can have diameters exceed-
ing the usual confinement length of 2d-nanosystems. Another, very prominent
case is that of magnetic domain walls, which usually in bulk systems have a
thickness of several hundred nanometers. However, since in nanowires domain
walls are thought to be considerably shorter, but also because domain walls



© 2009 by Taylor & Francis Group, LLC

4 Magnetic Anisotropies in Nanostructured Matter

FIGURE 1.5: Three-dimensional view of a STM image of one-monolayer-
high islands with a Pt core and an approximately 3-atom-wide Co shell. By
courtesy of the authors of Ref. [2].

FIGURE 1.6: Theoretical image of a quantum corral consisting of 48 Fe atoms
on top of Cu(111). From Ref. [3].

are a kind of upper limit for nanostructures, in here they will be considered
as such.
Theoretically 1d- and 2d-nanosystems require different types of description.

While 1d-nanosystems can be considered as two-dimensional translational in-
variant layered systems, 2d-nanosystems have to be viewed in "real space",
i.e., with the exception of infinite one-dimensional wires (one dimensional
translational invariance) no kind of translational symmetry any longer ap-
plies.
It should be very clear right from the beginning that without the concept of

nano-sized "functional parts" of a system one cannot speak about nanoscience,
since — as the name implies — they are part of a system that of course is not
nano-sized. In the case of GMR devices, e.g., there are "macro-sized" leads,
while for 2d-nanosystems the substrate or carrier material is large as compared
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FIGURE 1.7: Series of SP-STM images showing the response of 180 ◦ domain
walls in magnetic Fe nanowires to an applied external field. By courtesy of
the authors of Ref. [4].

to the "functional part", see Figs. 1.2 and 1.4. For this reason it is utterly
important to state in each single case by what measurements or in terms of
which physical property nano-sized "functional parts" are recorded (identified,
"seen"). There is perhaps another warning one ought to give right at the
beginning of a book dealing with nanostructured matter: nanosystems are not
interesting per se, but only because of their exceptional physical properties,
some of which will be discussed in here.

The other key words in the title of the book, namely magnetic anisotropies,
also need clarification. Per definition anisotropic physical properties are direc-
tion dependent quantities, i.e., are coupled to an intrinsic coordinate system.
As probably is well known in the case of the electronic spin (magnetic proper-
ties) the directional dependence arises from the famous spin-orbit interaction,
the coupling to a coordinate system most likely best remembered from the
expressions easy and hard axes.

Unfortunately, the term spin-orbit interaction seems to be used very often
only in a more or less "colloquial" manner, not to say used as a kind of deus
ex machina. For this very reason the next chapter provides very preliminary
remarks on (a) the concept of parallel and antiparallel, (b) the distinction
between classical spin vectors and spinors, and (c) the actual form of the
spin-orbit interaction as derived starting from the Dirac equation [5]. These
remarks seem to be absolutely necessary because very often concepts designed
for classical spins are mixed up with those of spinors: only the use of symme-
try (Chapter 3) will then provide the formal tools to properly define magnetic
structures.
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Scheme of chapters

Once this kind of formal stage is set methods suitable to describe (aniso-
tropic) physical properties of magnetic nanostructures are introduced. All
these methods will rely on a fully relativistic description by making use of
Density Functional Theory, i.e., are based on the Dirac equation correspond-
ing to an effective potential and an effective exchange field (Chapters 4 and 5).
From there on the course of this book is directed to the main object promised
in the title of this book, namely magnetic anisotropy energies (Chapter 6),
exchange and Dzyaloshinskii & Moriya interactions (Chapter 7), temperature
dependent effects (Chapter 8), spin dynamics (Chapter 9), and related prop-
erties of systems nanostructured in one (Chapters 11, 12) and two (Chapters
13, 14) dimensions.
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Not only because magnetic anisotropy energies are not directly measured,
but also because of their own enormous importance, methods of describing
electric and magneto-optical properties are then shortly discussed (Chapter
16) and applied to magnetic nanostructured matter (Chapters 17 and 18). As
a kind of outlook on upcoming magnetic anisotropy effects, concepts of how
to deal with time-dependent (anisotropic) magnetic properties will finally be
discussed (Chapter 19).
In order to make this book more "handy", the above scheme of chapters

is supposed to help to direct the attention either to a particular topic or to
leave out theory-only parts.

[1] I. R. McFadyen, E. E. Fullerton, and M. J. Carey, MRS Bulletin 31, 379
(2006).

[2] S. Rusponi, T. Cren, N. Weiss, M. Epple, P. Buluschek, L. Claude, and
H. Brune, Nat. Mat. 2, 546 (2003).

[3] B. Lazarovits, B. Újfalussy, L. Szunyogh, B. L. Györffy, and P. Wein-
berger, J. Phys.: Condens. Matter 17, 1037 (2005).

[4] A. Kubetzka, O. Pietsch, M. Bode, and R. Wiesendanger, Phys. Rev. B
67, 020401 (R) (2003).

[5] P. A. M. Dirac, Proc. Roy. Soc. A117, 610 (1928); Proc. Roy. Soc.
A126, 360 (1930)
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2
Preliminary considerations

In preliminary considerations basic definitions concerning
frequently used colloquial terminologies are introduced.
In particular the "geometrical" origin of terms like par-
allel and antiparallel or collinear and non-collinear and
the difference between "spin" viewed as a classical vec-
tor or as a spinor are emphasized. Also introduced is an
explicit formulation for the spin orbit interaction for a
central field as derived from the Dirac equation by means
of the elimination method.

2.1 Parallel, antiparallel, collinear & non-collinear
Parallel, antiparallel and for that matter collinear and non-collinear are geo-
metrical terms that have to be "translated" into algebraic expressions in order
to become useful "formal" concepts. Consider two vectors n1 and n2,

n1 =

⎛⎝n1,x
n1,y
n1,z

⎞⎠ , n2 =

⎛⎝n2,x
n2,y
n2,z

⎞⎠ , n2,z = n1,z + a , (2.1)

and a transformation matrix∗ D(3)(R) corresponding to a rotation R around
the z axis⎛⎝D11(R) D12(R) 0

D12(R) D22(R) 0
0 0 1

⎞⎠⎧⎨⎩
⎛⎝n2,x
n2,y
n2,z

⎞⎠−
⎛⎝ 00
a

⎞⎠⎫⎬⎭ =

⎛⎝n02,x
n02,y
n1,z

⎞⎠ . (2.2)

If the transformation matrix D(2)(R),

D(2)(R) =

µ
D11(R) D12(R)
D12(R) D22(R)

¶
, D(3)(R) =

µ
D(2)(R) 0
0 1

¶
, (2.3)

∗The dimensions of rotation matrices are indicated by a superscript.

9
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is the (two-dimensional) unit matrix I2 then n1 and n2 are said to be parallel
to each other. If on the other hand D(2)(R)= − I2 then these two vectors are
oriented antiparallel.

FIGURE 2.1: The geometrical concept of "parallel" and "antiparallel" ex-
pressed in terms of rotations.

Furthermore, consider a given vector n0 = (n0,x, n0,y, n0,z) and the follow-
ing set S of vectors nk = (nk,x, nk,y, nk,z)

S = {nk| D(2)(R)

µ
nk,x
nk,y

¶
=

µ
n0,x
n0,y

¶
,

nk,z = n0,z ± ka, k = 0, 1, 2, ...,K} . (2.4)

This set consists of vectors nk that are collinear to n0 (with respect to the z
axis, z = (0, 0, 1)), if in Eq. (2.4) D(2)(R)= ±I2, i.e., if for all k, R is either
the identity operation E or the "inversion" i,

D(n)(E) = In , D(n)(i) = −In , n = 2 . (2.5)

If this is not the case then S is said to be non-collinear to n0.
Obviously the above description is not restricted to rotations around the

z axis. The only requirement is that the three-dimensional rotation matrix
can be partitioned into two irreducible parts, namely a one-dimensional and a
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two-dimensional one. The one-dimensional part reflects the rotation axis. It
should be noted that although these definitions already sound like a descrip-
tion of magnetic structures they are not: what is meant is a simple geometrical
construction with no implications for physics.

2.2 Characteristic volumina
Suppose the configurational space is partitioned into space filling cells of volu-
mina Ωi centered around atomic or fictional sites i. The total volume is then
given by the sum over all individual cells N ,

Ω =
NX
i=1

Ωi . (2.6)

Suppose further that Ω̄(n) is the volume of n connected cells,

Ω̄(n) ⊂ Ω , Ω̄(n) =
nX
i=1

Ωi , (2.7)

and Fi represents a physical property corresponding to an operator whose
representation is diagonal in configuration space, F (r, r). The quantity F (n),

F (n) =
1

Ω̄(n)

nX
i=1

Fi , Fi =

Z
Ωi

F (r, r)dr . (2.8)

is called intrinsic (a materials specific constant) and Ω̄(n) the characteristic
volume if

F (n+m)− F (n) ≤ δ , (2.9)

where m is a positive integer and δ an infinitesimally small number.
The above definition is immediately transparent if in a bulk system Ωi is

identical to the unit cell Ω0, since the very meaning of a unit cell is that

Fi = F0 , ∀i . (2.10)

Quite clearly Eq. (2.10) can easily be achieved in terms of three-dimensional
cyclic boundary conditions. If, however, translational invariance applies in less
than three dimensions then Eqs. (2.8, 2.9) have to be checked for each physical
property in turn. As an example simply consider the magnetic moments in
bulk Fe and for Fe(100). In the bulk case (infinite system) in each unit cell
the same magnetic moment pertains, while in the semi-infinite system Fe(100)
the moment in surface near layers is different from the one deep inside the



© 2009 by Taylor & Francis Group, LLC

12 Magnetic Anisotropies in Nanostructured Matter

system. As is well known, sizeable oscillations of the moment with respect to
the distance from the surface can range over quite a few atomic layers. If no
translational symmetry is present at all, see Figs. 1.4 and 1.5, characteristic
volumes are even more difficult to define, since individual clusters (islands)
can interact with each other.

2.3 "Classical" spin vectors and spinors
2.3.1 "Classical vectors" and Heisenberg models

Suppose the “spin” is viewed as a “classical” three-dimensional vector,

si = (si,x, si,y, si,z) , (2.11)

where i denotes “site-indices”, referring to location vectorsRi in “real space”,
i = 1, 2, . . . , N . As is well known, very often spin models based on a semi-
classical Hamilton (Heisenberg) function such as

H = −1
2
J

NX
i,j=1

(si · sj) +
1

2
ω

NX
i,j=1

"
(si · sj)
R3ij

− 3(si ·Rij)(sj ·Rij)

R5ij

#

− λ
NX
i=1

s2i,z , (2.12)

are used with considerable success [1]. In Eq. (2.12) Rij = Ri − Rj , and J , ω
and λ refer in turn to the exchange interaction parameter, the magnetic dipole-
dipole parameter and the spin-orbit interaction parameter. Quite clearly by
the terms "collinear" or "non-collinear spins" transformation properties of
classical vectors are implied, however, in a very particular manner.
Consider an arbitrary pair of “spins”, si and sj . In principle, since they

refer to different origins (sites Ri) they have to be shifted to one and the
same origin in order to check — as shown in Sect. 2.1 — conditions based on
rotational properties, i.e.,

si = D(3)(R)(sj −Rij) . (2.13)

Clearly enough si and sj−Rij are identical only if the rotation R is the iden-
tity operation E. If the x- and y-components of Rij are zero then obviously
the same simple case as in Eq. (2.2) applies, namely a rotation around z.
Suppose nowN = {ni| ni = n0, i = 1, 2, . . . N} denotes a set of unit vectors

in one and the same (chosen) direction n0 centered in sites Ri "carrying the
spins" in the set S = {si| i = 1, 2, . . . N} such that for an arbitrarily chosen
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sk ∈ S, sk/ |sk| = n0. Any given pair of "spins", si and sj ∈ S, is then said
to be parallel to n0, if

bsi = I3ni ; bsj = I3nj , (2.14)

antiparallel, if bsi = I3ni ; bsj = −I3nj , (2.15)

and collinear , if

bsi = ±I3ni ; bsj = ±I3nj ; (2.16)bsi = si
|si|

, i = 1, . . . ,N .

All other cases have to be regarded as a non-collinear arrangement.
It is important to note that opposite to quantum mechanical formulations

there are no symmetry restrictions connected with Eq. (2.12), since J , ω and
λ are scalars, which have to be supplied externally, and of course also the rest
in this equation consists of numbers only,

(si · sj) = |si| |sj | (bsi ·bsj) ; (si ·Rij) = |si| |Rij |
³bsi · R̂ij

´
. (2.17)

Imposing therefore a certain symmetry such as, for example translational
invariance, such a restriction has to be regarded as a "variational" constraint.

2.3.2 Spinors and Kohn-Sham Hamiltonians

In an effective one-electron description such as provided by Density Functional
Theory [2] with V eff (r) = V (r) and Beff (r) = B(r) referring to the effective
potential and exchange field,

V eff [n,m] = V ext + V Hartree +
δExc[n,m]

δn
, (2.18)

Beff [n,m] = Bext +
e~
2mc

δExc[n,m]

δm
, (2.19)

where Exc[n,m] is the exchange-correlation energy, n the particle density, m
the magnetization density, and V ext and Bext external fields, the correspond-
ing Hamiltonian is given by

H(r) = (T + V (r) + S ·B(r))In , (2.20)

T =

⎧⎨⎩−∇
2 ; non-relativistic

cα·p+βmc2 ; relativistic
, (2.21)
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S =

⎧⎨⎩σ ; non-relativistic

βΣ ; relativistic
. (2.22)

In Eq. (2.21) α and β are Dirac matrices, Σ is the so-called spin operator,

α=

µ
0 σ
σ 0

¶
, β =

µ
I2 0
0 −I2

¶
, Σ =

µ
σ 0
0 σ

¶
, (2.23)

and σ is a formal vector consisting of Pauli spin matrices:

σ = (σx, σy, σz) , (2.24)

σx =

µ
0 1
1 0

¶
, σy =

µ
0 −i
i 0

¶
, σz =

µ
1 0
0 −1

¶
. (2.25)

It should be noted that S ·B(r) is not a "proper" scalar product, but only
an abbreviation, since B(r) is a classical vector while the components of S in
the simplest case are Pauli spin matrices, i.e.,

σ ·B(r) ≡ σxBx(r)+σyBy(r)+σzBz(r) . (2.26)

In using the so-called local (spin) DFT (LS-DFT) to obtain computable ex-
pressions for the effective potential and the effective exchange field, the latter
one is defined only with respect to an artificial z axis; i.e., in using LS-DFT
the Hamiltonian in Eq. (2.20) reduces to

H(r) = (T + V (r) + SzBz(r))In . (2.27)

One thus is faced with the necessity to eventually transform H(r) such that
B(r) can point also along a direction other than the z axis.

2.4 The famous spin-orbit interaction

Consider for matters of simplicity a Dirac-type Hamiltonian for a non-magnetic
system, see Eq. (2.21), in atomic units (~ = m = 1),

H = cα · p+ (β − I4) c
2 + V I4 , (2.28)

where c is the speed of light. In making use of the bi-spinor property of the
wavefunction |ψi = |φ, χi, the corresponding eigenvalue equation,

H |ψi = � |ψi , (2.29)
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can be split into two equations, namely

cσ · p |χi− V |φi = � |φi ,

(2.30)

cσ · p |φi+
¡
V − 2c2

¢
|χi = � |χi .

Clearly, the spinor |χi can now be expressed in terms of |φi:

|χi = (1/2c)B−1σ · p |φi , (2.31)

B = 1 +
¡
1/2c2

¢
(�− V ) , (2.32)

leading thus to only one equation for |φi:

D |φi = ε |φi , (2.33)

D = (1/2)σ · pB−1σ · p+ V . (2.34)

The normalization of the wave function |ψi, by the way, can also be expressed
in terms of the spinor |φi:

hψ| ψi = hφ| φi+ hχ| χi
hφ| 1 +

¡
1/4c2

¢
σ · pB−2σ · p |φi . (2.35)

2.4.1 The central field formulation

For a central field the operator D in Eq. (2.34) has the same constants of
motion [5] as the corresponding Dirac Hamiltonian, namely the angular mo-
mentum operators J2, Jz, and K = β (1 + σ · L). Eq. (2.33) is therefore
separable with respect to the radial and angular variables. The differential
equation [3], [4] for the radial amplitudes of |φi, Rκ (r) /r, is given by∙

1

2

µ
− d2

dr2
+

c (c+ 1)

r2

¶
+ V (r)− �

¸
Rκ (r) =

=
1

4c2

½
B−2(r)

dV (r)

dr

κ

r
+

∙
[�− V (r)]B−1(r)

µ
− d2

dr2
+

c (c+ 1)

r2

¶¸
+ B−2(r)

dV (r)

dr

d

dr

¾
Rκ (r) , (2.36)

where c is the "usual" angular momentum quantum number, and κ is the
quantum number corresponding to K,

κ = c , j = c− 1/2
κ = −c− 1 , j = c+ 1/2

, (2.37)

see also Eqs. (4.60) - (4.65) in Chapter 4.
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Equation (2.36) shows a remarkably “physical structure” , namely

1. For c = ∞ (non-relativistic limit) this equation is reduced to the well-
known radial Schrödinger equation.

2. By approximating the elimination operator B in Eq. (2.32) by unity
(B = 1) the so-called (radial) Pauli-Schrödinger equation is obtained.
The terms on the right-hand side of Eq. (2.36) are then in turn the
spin-orbit coupling, the mass velocity term, and the Darwin shift.

3. For B 6= 1 relativistic corrections in order higher than c−4, enter the
description of the electronic structure via the normalization, Eq. (2.35).

It should be noted that although all three terms on the right-hand side of
Eq. (2.36) have a prefactor 1/4c2, i.e., are of relativistic origin, the only one
which explicitly depends on a relativistic quantum number, namely κ, is spin-
orbit coupling. This term, however, because of dV/dr, has the unpleasant
property of being singular for r → 0. For this very reason throughout this
book a fully relativistic description will be used, namely a description based
on the Dirac equation, see Eq. (2.20) or Eq. (2.28), which of course contains
all relativistic corrections to all orders of n in an expansion of the solutions
of the Dirac equation in c−n.

[1] For an excellent treatment and use of Heisenberg models see E.
Y. Vedmedenko, Competing Interactions and Pattern Formation in
Nanoworld, Wiley-VCH Verlag GmbH & Co.KGaA, Weinheim, Ger-
many, 2007.

[2] See in particular: R. G. Parr and Y. Weitao, Density-Functional Theory
of Atoms and Molecules, Oxford University Press, 1994; R. M. Dreizler
and E. K. U. Gross, Density Functional Theory. An Approach to the
Quantum Many-Body Problem, Springer, 1996; H. Eschrig, The Funda-
mental of Density Functional Theory, Teubner Verlag, 1997.

[3] P. A. M. Dirac, Proc. Roy. Soc. A117, 610 (1928); Proc. Roy. Soc.
A126, 360 (1930)

[4] F. Rosicky, P. Weinberger, and F. Mark, J. Phys.: Molec. Phys. 9, 2971
(1976).

[5] M. E. Rose, Relativistic Electron Theory, Wiley, New York 1961.
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Symmetry considerations

Translational and rotational symmetry is used to unambiguously
define magnetic configurations. In particular from the translational
invariance of the Dirac equation terms such as "parallel" and "an-
tiparallel" finally will become clear and turn into quantum mechan-
ical concepts.

3.1 Translational invariance

A three-dimensional complex lattice is defined quantum mechanically in the
following way,

L(3) = {ti | H(r+ ti+aj) = H(r+ aj) , j = 1, N } , (3.1)

r = rxx+ ryy+ rzz , ti = ti,xx+ ti,yy+ ti,zz , (3.2)

where H(r) is a Hamiltonian that is diagonal in configuration space (as is the
case in DFT, see Eq. 2.20) and the vectors aj are the so-called non-primitive
lattice vectors, which specify inequivalent sites, i.e., generate sublattices. Sim-
ple lattices refer then "simply" to the case

N = 1 ; aj = 0 , ∀j . (3.3)

In the following, for matters of simplicity, only simple lattices shall be dealt
with; extensions to complex lattices do not pose further formal difficulties,
but they occasionally will be mentioned.
Suppose one defines the following two-dimensional vectors

rk = rxx + ryy , (3.4)

ti,k = ti,xx + ti,yy , ti = ti,k + ti,zz , ti,z = 0 , ∀i , (3.5)

then a difference vector r− ti is given by

r− ti = (rx − ti,x)x + (ry − ti,y)y + rzz = rk − ti,k + rzz . (3.6)

17
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Consequently a two-dimensional (simple) lattice has then to be defined by

L(2)(rz) = {ti | H(r+ ti) = H(r) , ti,z = 0}
≡
©
ti,k | H(r+ ti,k) = H(r)

ª
. (3.7)

Note that in principle because of Eq. (3.6) rz appears as an argument in the
definition of such a lattice!

3.2 Rotational invariance

Suppose the following group of (rotation) operators leaves the Hamiltonian
in Eq. (2.20) invariant,

G(3) =
©
R | H(R−1r) = H(r0) = H(r)

ª
, (3.8)

the representatives of the group elements in R(3) being three-dimensional ma-
trices,

D(3)(R)r = r0 , R ∈ G(3) . (3.9)

G(3) is usually called the three-dimensional point group. Similarly a two-
dimensional point group with respect to z (rotational invariance group along
z) is defined as

G(2)(rz) =
©
R | H(R−1r) = H(r) , R−1 (rzz) = rzz

ª
. (3.10)

From Eq. (3.10) it follows immediately that such a two-dimensional point
group with respect to z can only contain rotations around z and mirror planes
that include the z-axis, but not, e.g., a mirror plane perpendicular to z.
Consider now the case that translational as well as rotational symmetry

applies then — in the case of symmorphic space groups, which was assumed
anyhow, see Eq. (3.3) — the corresponding three-dimensional space group is
defined by

S(3) =
©
[R|t] | H(R−1r+ t) = H(r)

ª
, (3.11)

and a two-dimensional spacegroup with respect to z as

S(2)(rz) =
©
[R|t] | H(R−1r+ t) = H(r) , R−1 (rzz) = rzz

ª
. (3.12)

3.3 Colloquial or parent lattices
Eq. (3.1) refers to a proper quantum mechanical definition of lattices, namely
to the invariance properties of a given Hamilton operator. In principle, how-
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ever, lattices can also be constructed as particular subspaces in R(3),

L(3) = {tn | A n + aj , j = 1, N } , (3.13)

n = (n1, n2, n3), n1, n2, n3 ∈ Z ,

with A usually being called the Bravais matrix. For example, for simple
lattices (aj = 0,∀j) A is of the form

Asc= a

⎛⎝1 0 0
0 1 0
0 0 1

⎞⎠ , Afcc=
a

2

⎛⎝0 1 1
1 0 1
1 1 0

⎞⎠ , (3.14)

Abcc=
a

2

⎛⎝−1 1 1
1 −1 1
1 1 −1

⎞⎠ , (3.15)

where a is a scaling factor ("lattice constant") and sc, fcc and bcc refer in
turn to simple cubic, face centred cubic and body centred cubic. It should be
noted that Eq. (3.13) is entirely a "formal" construction that a priori has
nothing in common with a given physical system: L(3) refers to an icon of a
particular lattice.
Suppose now that according to Eq. (3.12) a given system can be viewed as

a stack of translational invariant atomic planes such that

L(2)(rn,z) =L(2) , ∀rn,z , (3.16)

where the rn,z specify the individual atomic layers. Furthermore, suppose
that

L(2) ⊂ L(3) , (3.17)

(rn+m,z − rn,z) z ∈ L(3) , m ∈ Z , (3.18)

then L(3) has to be called a parent or underlying three-dimensional lattice.
Such a system very often is colloquially called an fcc or bcc lattice or what ever
the respective Bravais matrix A corresponds to. It should be noted, however,
that L(3) refers to an infinite system, while a parent three-dimensional lattice
L(3) comprises not only the case of a semi-infinite system (solid system with
a surface), but also covers the case that the atomic species in different atomic
planes can be different. A parent lattice can be viewed as an icon of a lattice
with — in contradiction to translational invariance — equivalent lattice sites
being decorated with atoms of different kind. Consider for example Cu(100):
if no relaxation is present then this system may colloquially be referred to as
fcc, although it is only a semi-infinite system, i.e., a system with a surface. If
condition (3.18) is not met then further specifying adjectives are frequently
introduced such as, e.g., a distorted parent lattice ("distorted fcc lattice").
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3.4 Tensorial products of spin and configuration
Although up-to-now quite a few geometrical concepts and general transfor-
mation properties were already introduced in order to define magnetic con-
figurations properly, one still has to investigate explicitly the transformation
properties of H(r) in Eq. (2.20).

3.4.1 Rotational properties

Consider first the relativistic form of H(r) and a rotation R. Invariance by R
implies that

S(R)H(R−1r)S−1(R) = H(r) , (3.19)

where S(R) is a 4× 4 matrix transforming the Dirac matrices αi, β, and Σi.
Since β is a real matrix, see Eq. (2.23), it can be shown [1] that S(R) is of
block-diagonal form,

S(R) =

µ
U(R) 0
0 det[±]U(R)

¶
, (3.20)

where U(R) is a (unimodular) 2× 2 matrix and det[±] = det[D(3)(R)] is the
determinant of D(3)(R).
Using now the invariance condition in Eq. (3.19) explicitly,

S(R)H(R−1r)S−1(R) =

= S(R)
£
cα·p+ βmc2 + I4V (R

−1r) + βΣ ·B(R−1r)
¤
S−1(R) ,

(3.21)

one can see immediately that the condition

S(R)
£
I4V (R

−1r)
¤
S−1(R) = I4V (R

−1r) = I4V (r) (3.22)

yields the usual rotational invariance condition for the potential discussed
previously, while the terms S(R) [cα·p]S−1(R) and

S(R)
£
βΣ ·B(R−1r)

¤
S−1(R) (3.23)

have to be examined with more care. Considering the scalar product in (3.23)
explicitly term-wise, i.e., inspecting terms such as

S(R)

∙µ
σi 0
0 −σi

¶
Bi(R

−1r)

¸
S−1(R) , i = x, y, z , (3.24)

it is clear that matrix products of the form

S(R)

µ
σi 0
0 −σi

¶
S−1(R) =

µ
U(R) 0
0 det[±]U(R)

¶µ
σi 0
0 −σi

¶µ
U−1(R) 0
0 det[±]U−1(R)

¶ (3.25)
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are needed, which — as easily can be seen from (3.25) — reduce to matrix
products of the following kind:

U(R)σiU
−1(R) = σ0i . (3.26)

In essence one has to deal therefore with the transformation properties of
Pauli spin matrices, which can be either formulated using a quarternion-like
description [2] or in a more pedestrian way described, e.g., in [1], which for
matters of simplicity is used in the following. If n = (n1, n2, n3) denotes a
unit vector along a rotation axis whose components are the direction cosines
of this axis, and ϕ is the rotation angle in a right-hand screw sense about n,
0 ≤ ϕ ≤ π, then ±U(R) is given [1] by∗

±U(R) = ±U(n, ϕ) , (3.27)

U(n, ϕ) =

⎛⎝ C − in3S −(n2 + in1)S

(n2 − in1)S C + in3S

⎞⎠ , (3.28)

S = sin(ϕ/2) , C = cos(ϕ/2) . (3.29)

U(R) is a transformation in spin space only, i.e., U(R) ∈ SU2. Returning
now to (3.24) and using the invariance condition in (3.19),

S(R)

∙µ
σi 0
0 −σi

¶
Bi(R

−1r)

¸
S−1(R) =

µ
σ0i(R) 0
0 −σ0i(R)

¶
Bi(R

−1r)

≡
µ
σi 0
0 −σi

¶
Bi(r) ,

(3.30)

one easily can see that this implies that

Bi(R
−1r) =Bi(r) ∧ U(R)σiU

−1(R) = σi , i = 1, 2, 3 , (3.31)

or, writing the second part of this condition in a short-hand notation,

U(R)σU−1(R) = σ . (3.32)

It should be noted that of course also the term S(R) [cα·p]S−1(R) has to be
inspected, µ

S(R)

µ
0 σ
σ 0

¶
S−1(R)

¶
· p =

µ
0 σ
σ 0

¶
· p , (3.33)

which in turn yields the condition

det[±]U(R)σU−1(R) = σ . (3.34)

Since the same invariance condition has to apply simultaneously for both
terms, only the positive sign in Eq. (3.20) applies.

∗Quaternions are not really avoided here, since (n, ϕ) is a quaternion, namely an object
containing a vector n and a scalar ϕ [2].
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3.4.2 Local spin density functional approaches

It was already mentioned in Sect. 2.3.2 that in using a local spin density
functional (LS-DFT) approach the exchange field is only defined with respect
to a fictional z axis,

H(r) =cα·p+βmc2 + V (r)I4 + βΣzBz(r) , (3.35)

βΣzBz(r) =

µ
I2 0
0 −I2

¶µ
σz 0
0 σz

¶
Bz(r) , (3.36)

Denoting this fictional z axis by say n ∈ R3 such that B(r) is of the form

B(r) = B(r)n , n =(0, 0, 1) , (3.37)

Eq. (3.35) can formally be rewritten as

H(r) =cα·p+βmc2 + (βΣ ·B(r)n) . (3.38)

Considering only the last term in Eq. (3.38) an arbitrary rotation T of this
particular Hamiltonian can be viewed in the following way

U(T )
£¡
σ· B(T−1r)n

¢¤
U−1(T ) =

£¡
U(T )σU−1(T )

¢
·B(T−1r)n

¤
= (σ0 ·B(T−1r)n)
= (σ· B(r0)n0)
= (σ· B0(r0)) , (3.39)

i.e., such a transformation can be interpreted as a change in the direction of
the exchange field. Clearly enough, also the other parts in Eq.(3.35) have to
be transformed, i.e., the transformed Hamiltonian is given by:

S(T )H(T−1r)S−1(T ) = S(T )
£
cα·p+βmc2

¤
S−1(T )+V (r0)I4+ βΣ·B0(r0) .

(3.40)
If T happens to be a symmetry operator, see Eqs. (3.30) - (3.31), then of
course H(r) remains unchanged; i.e., the point group of H(r) is given by the
condition

GH =
©
R| S(R)H(R−1r)S−1(R) = H(r)

ª
. (3.41)

Furthermore, if Bz(r) is a spherical symmetric function, Bz(|r|), as is the case
whenever the so-called Atomic Sphere Approximation (ASA) is used, then Eq.
(3.39) reduces to

B(r)(σ0 · n) = B(r)(σ · n0) . (3.42)

From Eq.(3.40) it is obvious that a "change in the direction" of the exchange
field is of course also coupled to corresponding changes in configurational
space.
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3.4.3 Induced transformations

Going back to the rhs of Eq. (3.39) one easily can see that for a given
transformation

U(R)σU−1(R) = σ0 ,

the occurring identities can be rewritten as

(σ0 ·B(R−1r)n) = (σ· B(r0)n0) = (σ· B(R−1r)D(3)(R)n) ,

and Eq.(3.42) as

B(r)(σ0 · n) = B(r)(σ ·D(3)(R)n) ,

i.e., a rotation in spin space by U(R) induces a transformation of the orien-
tation n of the exchange field by D(3)(R).
For n = (0, 0, 1), see Eq. (3.37), the identity rotation D(3)(E) for example

is induced by a transformation in spin space by

U(ẑ, 0) = I2 =

µ
1 0
0 1

¶
, (3.43)

while D(3)(i) = −I3 is induced by

U(ŷ, 0) = σy =

µ
0 −i
i 0

¶
, (3.44)

since
U(ŷ, 0)U(ŷ, 0)−1 = σ2y = I2 , (3.45)

and
σyσzσy = −σz . (3.46)

However, since the same arguments apply for

U(ζ, ϕ) ≡ U(x̂, 0) = σx =

µ
0 1
1 0

¶
, (3.47)

σ2x = I2 , σxσzσx = −σz , (3.48)

it is obvious from Eq. (3.42) that an inversion of n can be obtained either by
a rotation around x̂ or around ŷ with a rotation angle of ϕ = 0.

3.4.4 Non-relativistic approaches

Within LS-DFT, in the non-relativistic case of Eq. (2.21), an arbitrary ro-
tation R in spin space (no transformations in configurational space!) implies
the following invariance properties,

U(R)H(r)U−1(R) = U(R)
£
−∇2 + V (r)+ B(r)(σ · n)

¤
U−1(R)

= −∇2 + V (r)+ B(r) (σ0 · n)
= −∇2 + V (r)+ B(r) (σ · n0) . (3.49)
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Note that because U(R) is a transformation in spin space, see Eqs. (3.27)
- (3.29), such a transformation leaves the configurational part unchanged.
Considering therefore all rotational properties discussed up to now — including
"classical spins" s — one arrives at the following compact characterization of
the rotational properties of "spins":

level "spin" rotation matrices restrictions

classical s D(3)(R) , R ∈ SO3

DFT, non-relativistic σ U(R) ≡ U(n,ϕ) , R ∈ SU2

DFT, relativistic Σ S(R) =

µ
U(R) 0
0 det[±]U(R)

¶
, R ∈ GH

3.4.5 Translational properties

Recalling that the elements of the translation group can be viewed as space
group elements, [E | tj ], where E is the identity rotation, invariance of the
relativistic form of H(r) with respect to [E | tj ] simply reduces to

S(E)H([E | tj]−1r)S−1(E) =

= S(E)
£
cα·p+ βmc2 + I4V ([E | tj ]−1r) + βΣ ·B([E | tj ]−1r)

¤
S−1(E)

,

(3.50)
where S(E) = I4, namely a 4× 4 unit matrix.
Eq. (3.50) has considerable consequences for the concepts of collinear and

non-collinear magnetic structures: if translational invariance applies then in
all lattice points belonging to one and the same sublattice the exchange field
has to point along the same direction; i.e., the orientations of the exchange
field in these lattice points have to be parallel to each other. If only two-
dimensional translational invariance is present, see Eq.(3.12), as, e.g., is the
case in layered systems, then the orientation of the exchange field has to be
uniform in each particular layer. Spacially different layers can of course have
different uniform orientations.

3.5 Cell-dependent potentials and exchange fields

Now we shall return for a moment to the concept of individual volumina
discussed in Sect. 2.2. Suppose V (r) is given in terms of a superposition of
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individual potentials,

V (r) =
NX
i=1

Vi(ri) , r = ri +Ri , (3.51)

and B(r) is of the same form:

B(r) =
NX
i=1

Bi(ri) , (3.52)

such that the domains ∆Vi ,∆Bi
of the individual operators V and B are

disjoint in the configurational space ∆,

∆Vi = ∆Bi ,∀i ; ∆Vi ∩∆V j = 0,∀i 6= j ; ∆ =
[
i

∆Vi . (3.53)

The Hamiltonian in Eq. (2.20) is therefore of the following form:

H(r) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−∇2I2 +

NP
i=1
{I2Vi(ri) + σ ·Bi(ri)}

cα · p+ βmc2 +
NP
i=1
{I4Vi(ri) + βΣ ·Bi(ri)}

. (3.54)

Consequently in the case of two-dimensional translational invariance one gets
in the relativistic case the following definition of a (two-dimensional) lattice

L(2)(Ri,z) =
©
Rj,k | Vk(rk−Rj,k;Riz) = Vk(rk;Riz) ,

Bk(rk−Rj,k;Riz) = Bk(rk;Riz)
ª

,
(3.55)

whereas the corresponding point group with respect to z (rotational invariance
along z) is defined as

G(2)(Ri,z) =
n
R | bR(V (rk +Rk,k +Ri,zz)) = Vk(rk;Ri,z) ,

bR ¡B(rk +Rk,k +Ri,zz)
¢
= Bk(rk;Ri,z) ,

U(R)σU−1(R) = σ ,

R−1 (Ri,zz) = Ri,zz
ª

,

(3.56)

where an arbitrary index k simply serves to specify the origin.
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3.6 Magnetic configurations
Now we are in the proper stage to define magnetic configurations formally cor-
rect. Suppose a system consists of N atomic layers, whereby each of the layers
is two-dimensionally translational invariant. If the two-dimensional lattice in
each layer consists of J sublattices, then the orientation of the exchange fields
in each layer i can be specified by a set of directions

ni = {m1,m2,m3, . . . ,mJ} , (3.57)

in which the mj denote the orientations of the exchange fields in each sublat-
tice j. The magnetic configuration of the whole system is then given by

{n1,n2,n3, . . . ,nN} . (3.58)

Consider the case of J = 2. The orientations m1 and m2 can then for exam-
ple be parallel or antiparallel to each other. Different planes (ni 6= nj) can
show different sublattice orientations. One thus can have the case of antifer-
romagnetism within the atomic planes and/or antiferromagnetism between
planes. If J = 1 then in each atomic layer only one and the same (uniform)
orientation applies. Different planes, however, can have different orientations.
It should be understood by now that because of Eq. (3.50) the term par-

allel can apply only to one particular sublattice. Antiparallel arrangements,
however, can be present either within the atomic planes (implying more than
one sublattice, J ≥ 1) or between atomic planes.
Rather well-known examples of non-collinear magnetic configurations are,

e.g., domain walls and spin spirals. In both cases the orientation of the
exchange field in the various atomic planes can be grouped in various regimes.
Suppose that only a simple parent lattice is present and let L be either the
domain wall width or the length of a spin spiral (in atomic monolayers); then:

domain wall: {nl,n1,n2,n3, . . . ,nL,nr} , (3.59)

spin spiral:
½
. . . , {n1,n2,n3, . . . ,nL = n1} , . . . ,
{n1,n2,n3, . . . ,nL = n1} , . . .

¾
(3.60)

= {n1,n2,n3, . . . ,nL = n1}N .

where in the case of domain walls the orientations in two neighboring domains
are denoted by nl and nr (l denoting "left" and r "right") and in that of spin
spirals the spiral is repeated N times.
If no translational symmetry is present then of course the orientation of

the magnetization in each individual site has to be specified. This definitely
is the case for magnetic nanostructures on top of suitable substrates (2d-
nanosystems). Clearly enough it can turn out that in finite chains of magnetic
atoms the orientations of the exchange field are parallel to each other; however,
by symmetry restrictions they don’t have to.
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4
Green’s functions and multiple scattering

The basic concepts of multiple scattering and of the so-
called Screened Korringa-Kohn-Rostoker method are
shortly reviewed.∗ These concepts will serve as the theo-
retical basis for most aspects to be discussed in the con-
text of magnetic anisotropies of nanostructured matter.
In particular since a fully relativistic formulation of single-
particle Green’s functions can be given, related physical
quantities such as transport properties of such systems
will also be accessible.

4.1 Resolvents and Green’s functions
The resolvent of a Hermitian operator (Hamilton operator) is defined as fol-
lows

G(z) = (zI −H)−1 , z = �+ iδ , G (z∗) = G (z)† , (4.1)

where I is the unity operator. Any representation of such a resolvent is called
a Green’s functions, e.g., also the following configuration space representation
of G(z),

< r |G(z)| r0 > = G(r, r0; z) . (4.2)

The so-called side-limits of G(z) are then defined by

lim
|δ|→0

G(z) =

⎧⎨⎩G
+(�) ; δ > 0

G−(�) ; δ < 0
, (4.3)

G+(�) = G−(�)† , (4.4)

and therefore lead to the property,

ImG+(�) = 1

2i

¡
G+(�)− G−(�)

¢
, (4.5)

∗For a more complete discussion, see Refs.[1, 2, 3]

29
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or — assuming for matters of simplicity only a discrete eigenvalue spectrum
{�k} of H,

ImTrG±(�) = ∓π−1
X
k

δ(�− �k) , (4.6)

n(�) = ∓ImTrG±(�) , (4.7)

where Tr denotes the trace of an operator and n(�) is the density of states.

4.2 The Dyson equation
Suppose H is given in terms of an unperturbed Hamiltonian H0 and a (Her-
mitian) perturbation V,

H = H0 + V . (4.8)

The resolvents of H and H0

G (z) = (zI −H)−1 , G0 (z) = (zI −H0)−1 , (4.9)

are then coupled in terms of a Dyson equation,

G (z) = G0 (z) + G (z)VG0 (z) = G0 (z) + G0 (z)VG (z) , (4.10)

which can be reformulated as

G (z) = G0 (z) + G0 (z) (V + VG0 (z)V + . . .)G0 (z) . (4.11)

The so-called T -operator is then defined as

T (z) = V + VG0 (z)V + VG0 (z)VG0 (z)V + . . . , (4.12)

such that
G (z) = G0 (z) + G0 (z) T (z)G0 (z) , (4.13)

or, alternatively, as

T (z) = V + VG0 (z)T (z) = V + T (z)G0 (z)V . (4.14)

Since V is assumed to be Hermitian, the T -operator satisfies the relation,

T (z∗) = T (z)† , (4.15)

and, in particular, for the side-limits the below property applies:

T + (ε)† = T − (ε) . (4.16)
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4.3 Scaling transformations
Clearly enough, by introducing a "scaling potential" W, the Hamilton oper-
ator H in Eq. (4.8) can be rewritten as

H = H0 + V ≡ H0 + V +W −W ≡ H0
0 + V 0 , (4.17)

where
H0
0 = H0 −W , V 0 = V +W . (4.18)

From the resolvent of H0
0,

G00(z) = (z −H0
0)
−1 = (z −H0 +W)−1 , (4.19)

written below in terms of a Dyson equation,

G00(z) = G0(z)[1−WG00(z)] , (4.20)

then follows directly that the Dyson equation for G(z) can be expressed either
in terms of G0(z) or G00(z),

G(z) = G0(z)[1 + VG(z)] = G00(z)[1 + V 0G(z)] . (4.21)

4.4 Integrated density of states
Rewriting Eq. (4.7) in terms of Eq. (4.13) yields

n (ε) = − 1
π
ImTr

¡
G+0 (ε) + G+0 (ε)T + (ε)G+0 (ε)

¢
(4.22)

= n0 (ε) + δn (ε) , (4.23)

where

n0 (ε) = −
1

π
ImTr

¡
G+0 (ε)

¢
, (4.24)

δn (ε) = − 1
π
ImTr

¡
G+0 (ε)T + (ε)G+0 (ε)

¢
(4.25)

= − 1
π
ImTr

³
G+0 (ε)

2 T + (ε)
´

(4.26)

=
1

π
ImTr

µ
dG+0 (ε)

dε
T + (ε)

¶
, (4.27)
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and use was made of the following identity

dG (z)
dz

= −G (z)2 . (4.28)

Furthermore, it can be shown that

dT (z)
dz

= T (z) dG0 (z)
dz

T (z) , (4.29)

and therefore

T (z)−1 dT (z)
dz

=
dG0 (z)
dz

T (z) , (4.30)

which substituted into Eq. (4.27) yields

δn (ε) =
1

π
ImTr

µ
T + (ε)−1 dT

+ (ε)

dε

¶
(4.31)

=
d

dε

µ
1

π
ImTr lnT + (ε)

¶
. (4.32)

The integrated DOS,

N (ε) =

εZ
−∞

dε0 n (ε0) , (4.33)

can then be directly expressed as

N (ε) = N0 (ε) + δN (ε) , (4.34)

where

N0 (ε) =

εZ
−∞

dε0 n0 (ε
0) , (4.35)

and

δN (ε) =
1

π
ImTr lnT + (ε) , (4.36)

or, in terms of Eq. (4.12) as

δN (ε) = − 1
π
ImTr ln

¡
I − G+0 (ε)V

¢
. (4.37)

The above expression is usually referred to as the Lloyd formula or Lloyd’s
formula [4]. Later on this expression will be of great help in formulating,
e.g., exchange and Dzyaloshinskii-Moriya interactions as well as temperature
dependent effects for magnetic anisotropy energies.
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4.5 Superposition of individual potentials
In general for an ensemble of N scatterers, not necessarily confined to atoms,
the Kohn-Sham Hamiltonian is given by an appropriate expression for the
kinetic energy operator (K), which can be either non-relativistic or relativistic,
and the effective single particle potential V (r),

H(r) = K + V (r) , V (r) = hr| V |ri , (4.38)

which in turn can be viewed as a sum of individual (effective) potentials
measured from particular positions Ri,

V (r) =
NX

n = 1

Vn(rn) , rn= r−Rn , (4.39)

such that the domains DVn of these potentials are disjoint in R3,

DVn ∩DVm = δnmDVn . (4.40)

4.6 The scattering path operator
4.6.1 The single-site T-operator

If only a single potential, Vn, is present the corresponding T -operator is termed
single-site T-operator, and, in dropping for a moment the complex energy
argument z, is usually denoted by tn,

tn = Vn + VnG0tn = (I − VnG0)−1 Vn . (4.41)

4.6.2 The multi-site T-operator

For an ensemble of N "scatterers" the T -operator,

T =
X
n

Vn +
X
n,m

VnG0Vm +
X
n,m,k

VnG0VmG0Vk + . . . ; n,m, k, .. ≤ N ,

(4.42)
can be rewritten in terms of single-site T -operators, see Eq. (4.41),

T =
X
n

tn +
X
n,m

tnG0 (1− δnm) t
m +

X
n,m,k

tnG0 (1− δnm) t
mG0 (1− δmk) t

k

+
X

n,m,k,j

tnG0 (1− δnm) t
mG0 (1− δmk) t

kG0 (1− δkj) t
j + . . . . (4.43)
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4.6.3 The scattering path operator

A different kind of summation over sites for T , namely in terms of the so-called
scattering path operators (SPO),

T =
X
nm

τnm , (4.44)

τnm = tnδnm + tnG0 (1− δnm) t
m +

X
k

tnG0 (1− δnk) t
kG0 (1− δkm) t

k

+
X
k,j

tnG0 (1− δnk) t
kG0 (1− δkj) t

jG0 (1− δjm) t
m + . . . , (4.45)

or, equivalently for G,

G = G0 +
X
n,m

G0τnmG0 , (4.46)

is in particular useful, since the following Dyson equation applies

τnm = tnδnm +
X
k

tnG0 (1− δnk) τ
km (4.47)

= tnδnm +
X
k

τnkG0 (1− δkm) t
m . (4.48)

4.7 Angular momentum and partial wave representa-
tions

In order to use the above discussed operator relations in practical terms angu-
lar momentum and partial wave representations need to be formed. Consider
the following Hamiltonian in atomic Rydberg units: m = 1/2, ~ = 1, e2 = 2,
c ∼ 274.072 (speed of light)

H(r)ψ(�; r) = (H0 (r) + U(r))ψ(�; r) (4.49)

=Wψ(�; r) ,

H0 =

⎧⎨⎩−∇
2 ; non-relativistic

cα · p+ βmc2 ; relativistic
, (4.50)

where α = (αx, αx, αx) and β are Dirac matrices, see Eqs. (2.23) - (2.25).
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4.7.1 Solutions of H0
In the non-relativistic case partial waves with respect to a chosen origin Rn,
r = rn +Rn, are of the general form

fL(z; rn) = fc(zrn)YL(r̂n) , (4.51)

W = � , p2 = � , Im p > 0 , fc(zrn) =

⎧⎨⎩ jc(zrn)
nc(zrn)
h±c (zr)

, (4.52)

where jc(prn), nc(prn) and h±c (prn) = nc(prn) ± ijc(prn) are in turn spherical
Bessel, Neumann and Hankel functions, the YL(r̂n) denote (complex) spherical
harmonics, c = 0, 1, 2, . . . , m = 0,±1,±2, . . . , and

L = c(c+ 1) +m+ 1 (4.53)

is a collective index for c and m. At rn → 0 the Bessel functions are so-called
regular functions, while the Neumann functions are irregular.
By using L, see Eq. (4.53), as a counting index the following compact vector

notation for partial waves can be introduced

f(z; rn) = ( f1(z; rn), f2(z; rn), . . . ) , f(z; rn)
× =

⎛⎜⎝ f1(z; rn)
×

f2(z; rn)
×

...

⎞⎟⎠ ,

(4.54)
in terms of which the configuration space representation of G0 (z), see Eq. (4.9),
can now be written as

G0 (z; rn +Rn, r
0
m +Rm) = (4.55)

(1− δnm) j (z; rn) G
nm
0 (z) j (z; r0m)

×

− ipδnm

n
j (z; rn) h

+ (z; r0n)
×
Θ (r0n − rn)

+ h+ (z; rn) j (z; r
0
n)
×
Θ (rn − r0n)

o
,

where Θ (x) denotes a Heavyside step-function and Gnm
0 (z) = {Gnm

0,LL0 (z)}
is the so-called structure constants matrix,

Gnm
0,LL0 (z) = −4πi p

X
L00

ic−c
0−c00 h+L00(z;Rnm)C

L0

LL00 . (4.56)

In Eq. (4.56) Rnm denotes the difference vector between sites (origins) Rm

and Rn,
Rnm = Rm −Rn , (4.57)

and the CL00

LL0 refer to the so-called Gaunt coefficients,

CL00

LL0 =

Z
dx̂YL(x̂)

∗YL0(x̂)
∗YL00(x̂) =

Z
dx̂YL(x̂)YL0(x̂)YL00(x̂)

∗ . (4.58)
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In the relativistic case

W 2 = c2p2 +m2c4 , � =W −mc2 , (4.59)

by using the so-called weak relativistic limit (p¿ mc), which shall be applied
throughout this book, namely p2 ≈ �, partial waves (with respect to Rn) are
of the form

fQ(�; rn) =

⎛⎝ fc(zrn)χQ(r̂n)

(iSκp/c)fc(zrn)χQ(r̂n)

⎞⎠ , Q = (κμ) , Q = (−κμ) ,

(4.60)
where the functions fc can be either spherical Bessel, Neumann or Hankel
functions and the χκμ(r̂n) refer to so-called spin spherical harmonics

χQ(r̂n) ≡ χκμ(r̂n) =
X

s=±1/2
C(c, κ,

1

2
| μ− s, s)Yc,μ−s(r̂n)Φs . (4.61)

In Eq. (4.61) the Φs denote the well-known spinor basis functions,

Φ1/2 =

µ
1
0

¶
, Φ−1/2 =

µ
1
0

¶
, (4.62)

the C(c, κ, 12 | μ − s, s) being the famous Clebsch-Gordan coefficients. The
various relativistic quantum numbers in Eq. (4.60) are defined as follows

κ =

½
c , j = c− 1/2

−c− 1 , j = c+ 1/2
, (4.63)

μ ∈ {−j, −j + 1, . . . , j − 1, j} , (4.64)

c = c− Sκ , Sκ = κ/ |κ| . (4.65)

By using now Q as a counting index again a compact vector notation for the
partial waves,

fQ(z; rn) =
¡
fc(zrn)χQ(r̂n), (iSκp/c)fc(zrn)χQ(r̂n)

¢
, (4.66)

can be introduced,

f(z; rn) = ( f1(z; rn), f2(z; rn), . . . ) , f(z; rn)
× =

⎛⎜⎝ f1(z; rn)
×

f2(z; rn)
×

...

⎞⎟⎠ ,

(4.67)
that in turn leads to the partial wave representation of G0 (in the weak rela-
tivistic limit,

¡
W +mc2

¢
/2mc2 ∼ 1), which because of Eq. (4.66) is formally
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a 2× 2 matrix

GD
0 (z; rn +Rn, r

0
m +Rm) = (1− δnm) j (z; rn)G

D,nm
0 (z) j (z; r0m)

×

− ip δnm

n
h+ (z; rn) j (z; r

0
n)
×
Θ (rn − r0n)

+ j (z; rn) h
+ (z; r0n)

×
Θ (r0n − rn)

o
, (4.68)

GD,nm
0 (z) =

n
GD,nm
0,QQ0 (z)

o
. (4.69)

The matrix elements GD,nm
0,QQ0 (z) are easily obtained from their non-relativistic

counterparts in Eq. (4.56), since only a transformation in terms of Clebsch-
Gordan coefficients is required

GD,nm
o,QQ0 (z) =

X
s=±1/2

c (cj1/2;μ− s, s)Gnm
0,LL0 (z) c (c

0j01/2;μ0 − s, s) ,

(4.70)
Q = (κμ) , Q0 = (κ0μ0) , L = (c, μ− s) , , L0 = (c0, μ0 − s) .

(4.71)

4.7.2 Solutions of H
Going back to Eq. (4.49), in order to proceed first the operator U(r) has to
be specified and also possible requirements for V (r) have to be stated. In
principle again a non-relativistic or relativistic level can be chosen. Since the
topic of this book is devoted to magnetic systems, the presence of an exchange
field B(r) will automatically be assumed. In general U(r) is of the form

U(r) =
NX
n=1

⎧⎨⎩Vn(rn) +

⎧⎨⎩ σ ·Bn(rn) , non-relativistic spin-polarized

βΣ ·Bn(rn) , relativistic spin-polarized

⎫⎬⎭ ,

(4.72)
DV n ∩DVm = δnmDVn , DBn ∩DBm = δnmDBn , rn= r−Rn ,

(4.73)
where as before σ refers to the vector consisting of Pauli spin matrices and Σ
is the so-called spin operator

Σ = (Σx,Σy,Σz) , Σν =

µ
σν 0
0 σν

¶
, ν = x, y, z . (4.74)

As already mentioned in Sections (2.3.2) and (3.4.2) within Local Density
Functional Theory (LDFT) the exchange field is provided only with respect
to a fictitious z axis; i.e., in Eq. (4.72) a priori only terms σzBn(rn) or
βΣzBn(rn) are available.
For the Vn(rn) and Bn(rn) different levels of sophistication can be cho-

sen. Suppose the domains DVn and DBncorrespond to convex polyhedra Dn

(regions in configuration space)
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DVn = DBn = Dn ,

then Vn(rn) and Bn(rn) can be constructed such that

Vn(rn) =

⎧⎨⎩Vn(rn) , rn ∈ Dn

0 , rn /∈ Dn

, Bn(rn) =

⎧⎨⎩Bn(rn) , rn ∈ Dn

0 , rn /∈ Dn

.

Furthermore, let rnBS and rnMT be the circumscribing ("bounding") and in-
scribed ("muffin tin") sphere, respectively. The potential and the exchange
field can either reflect all directional and polarisational effects, or, for matters
of computational simplicity, be presented in an approximate form:

Vn(rn) =

⎧⎨⎩Vn(rn) |rn| = rn ≤ rnBS , full potential

Vi(|ri|) |ri| = rn ≤ rnMT , shape approximated potential
(4.75)

Bn(rn) =

⎧⎨⎩Bn(rn) |rn| = rn ≤ rnBS , full exchange field

Bn(|rn|) |rn| = rn ≤ rnMT , shape approximated exchange field.
(4.76)

It should be noted that the shape approximated functions are in particular
easy to deal with, since they are of spherical symmetry. Very often also a
further (shape) approximation is applied, namely the so-called Atomic Sphere
Approximation (ASA), in which rnMT is replaced by a radius r

n
ASA such that

4π

3
(rnASA)

3 = Ωn , (4.77)

where Ωn is the volume of the corresponding polyhedron Dn.
In the non-relativistic case for a given Vn(rn) and Bn(rn) the regular solu-

tions of Eq. (4.49) are of the general form

ψ(z; rn) =
X
L

Rn
L((z; rn)YL(r̂n) . (4.78)

Traditionally instead of the radial amplitudes Rn (z; rn), see also the notation
introduced in Eq. (4.54),

Rn (z; rn) = {Rn
1 (z; rn) , R

n
1 (z; rn) , . . .} , (4.79)

so-called scattering solutions are used

Zn (z; rn) =

⎧⎨⎩R
n (z; rn) t

n (z)
−1

, rn ∈ DVn

j (z; rn) t
n (z)−1 − ip h+ (z; rn) , rn /∈ DVn

(4.80)

Zn (z; rn) = {Zn
1 (z; rn) , Z

n
1 (z; rn) , . . .} (4.81)



© 2009 by Taylor & Francis Group, LLC

Green’s functions and multiple scattering 39

where tn (ε) is the already mentioned single site t matrix,

tn (ε) ≡ {tnL0L (ε)} . (4.82)

The form of the single site t matrix arises by the way from switching the
configuration space representation t(z; r, r0) to a partial wave representation
in terms of j (z; rn).
The irregular scattering solutions are usually normalized for rn /∈ DVn either

as
Hn (z; rn) = −ip h+ (z; rn) , (4.83)

or
Jn (z; rn) = j (z; rn) . (4.84)

The above two types of irregular scattering functions are related to each other
via

Jn (z; rn) = R
n (z; rn)− Hn (z; rn) tn (z) . (4.85)

Relativistically the regular scattering solutions of H(r) in Eq. (4.49) are given
by

Zn (z; rn) = {Zn
Q (z; rn)} = (Zn

1 (z; rn) , Z
n
2 (z; rn) , . . .) , (4.86)

where

Zn
Q (z; rn) =

X
Q0

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⎛⎝ gZ,nQ0Q (z; rn)χQ0 (r̂n)

ifZ,nQ0Q (z; rn)χQ̄0 (r̂n)

⎞⎠ , rn ∈ DVn

jQ (z; rn)P
n
Q0Q(z) + pnQ (z; rn) , rn /∈ DVn

, (4.87)

Pn
QQ0(z) =

¡
tnQQ0(z)−1 − ipδQQ0

¢
, (4.88)

and where the radial amplitudes gZ,nQ0Q (z; rn) (large component) and fZ,nQ0Q
(small components) have to be normalized according to the solutions for
rn /∈ D, i.e.,

gZ,nQ0Q (z; rn) = jc0 (prn)P
n
Q0Q (z) + pnc (prn) δQQ0 , (4.89)

fZ,nQ0Q (z; rn) =
Sκp

c

¡
jc̄0 (prn)P

n
Q0Q (ε) + pnc̄ (prn) δQQ0

¢
. (4.90)

With these particular matching conditions, see Eqs. (4.60) and (4.87), the
corresponding irregular solutions are simply given by

Jn (z; rn) = {JnQ (z; rn)} = (Jn1 (z; rn) , Jn2 (z; rn) , . . .) . (4.91)
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4.8 Single particle Green’s function
Finally, all that is needed now is to go back to the multiple scattering expan-
sion in Eq. (4.46), repeated for convenience below,

G = G0 +
X
n,m

G0τnmG0 ,

form a configuration space representation and switch on the rhs that repre-
sentation to the one corresponding to scattering solutions

G (z; rn +Rn, r
0
m +Rm) = Z

n (z; rn) τ
nm (z) Zm (z; r0m)

×

− δnm

n
Jn (z; rn) Z

n (z; r0n)
×
Θ (rn − r0n)

+ Zn (z; rn) J
n (z; r0n)

×
Θ (r0n − rn)

o
. (4.92)

Here Θ (rn − r0n) is a Heavyside step function and τnm (z) follows directly
from expressing Eq. (4.47), repeated for convenience below,

τnm = tnδnm +
X
k

tnG0 (1− δnk) τ
km

in a partial wave representation in terms of Jn (z; rn),

τnm (z) = δnmt
n (z) +

X
k

tn (z) Gnk
0 (z) (1− δnk) τ

km (z) , (4.93)

τnm (z) = {τnmΛΛ0 (z)} , tn (z) = {tnΛΛ0 (z)} ,

Gnm
0 (z) =

©
Gnm
0,ΛΛ0 (z)

ª
. (4.94)

It should be noted in particular that formally for the Green’s function one
and the same equation applies in a non-relativistic (Λ = L) and in a relativistic
approach (Λ = Q), just as formally it does not matter whether full or shape
truncated potentials and exchange fields are used.
Eq. (4.93) can be further compressed by using a supermatrix notation, since

then the Dyson equation for the scattering path operators is simply given by

τ (z) =
³
t (z)−1 −G0 (z)

´−1
, (4.95)

where

τ (z) = {τnm (z)} , t (z) = {tn (z) δnm} ,

G0 (z) = {Gnm
0 (z) (1− δnm)} . (4.96)
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Alternatively, a similar expression can be found for G (ε), namely

G (z) =G0 (z) (I− t (ε) G0 (z))
−1

, G (ε) = {Gnm (z)} . (4.97)

Eqs. (4.95) or (4.97) are very often called the fundamental equations of Mul-
tiple Scattering Theory.

4.9 Symmetry aspects
If the set of position vectors Rn in Eq. (4.39) that identify the position of
scattering centers, r = rn + Rn, corresponds to a simple two-dimensional
lattice L(2) (no sublattices), see Section 3.6,

Rn ≡ Rpn = Cp +Rn,k , Cp = Rn,zz , Rn,k ∈ L(2) , (4.98)

then it is implied that for a given "spanning vector" Cp

t(z; rn +Cp +Rn,k, r
0
n +Cp +Rn,k) = tpn(z; rn, r

0
n) (4.99)

≡ tp(z; rn, r
0
n) ,∀Rn,k ∈ L(2) ,

where the index n now simply defines the origin of L(2).
Eq. (4.99) states explicitly that all single site t matrices in an atomic layer

characterized by L(2) and specified by a particular Cp are identical. Further-
more, by recalling that

Cp+Rn,k−Cq+Rm,k = Cp−Cq+Rn,k−Rm,k ,
¡
Rn,k −Rm,k

¢
∈ L(2) ,

a so-called lattice Fourier transformation can be applied for the structure
constants

Gpq(kk; z) =
X

Rk∈L(2)
exp

£
ikk ·Rk

¤
G(Cp+Rk,Cq; z) , p, q = 1, . . . , n ,

(4.100)
where kk belongs to the Surface Brillouin zone corresponding to L(2) and p
and q number atomic layers. It should be noted that Eq. (4.100) is nothing but
a kk projection of the structure constants with respect to the translational
group corresponding to L(2), which of course also applies to the scattering
path operator

τpq
¡
kk, z

¢
=
h
tp (z)−1 δpq −Gpq(kk; z)

i−1
. (4.101)

The so-called "resolution of identity", namely the sum over all kk-like projec-
tions, is then usually expressed as an integral over the Surface Brillouin zone



© 2009 by Taylor & Francis Group, LLC

42 Magnetic Anisotropies in Nanostructured Matter

belonging to L(2),

τpn,qm (z) =
1

ΩSBZ

Z
SBZ

exp
£
−ikk · (Rn,k −Rm,k)

¤
τpq

¡
kk, z

¢
dkk . (4.102)

4.10 Charge & magnetization densities
The details of how to evaluate t matrices, structure constants for different
types of translational symmetry, k space integrations or contour integrations
in the complex plane will not be treated here, just as the problem of solving
the Poisson equation in order to perform self-consistent calculations is not
dealt with. Readers interested in the corresponding numerical aspects are
referred to the recent book by J. Zabloudil et al. [3].
It is probably rather well known that from the single-particle Green’s func-

tion in Eq. (4.92) immediately densities-of-states n(ε)

n(ε) =
NX
n=1

nn(ε) , nn(ε) = − 2
π
Im

Z
Ωn

drG+(ε; r+Rn, r+Rn) (4.103)

and charge (ρ(r))- and magnetization (m(r)) densities can be calculated,

ρ(r) =
NX
n=1

ρn(rn) , ρ
n(rn) = −

2

π
Im

EFZ
y

dz G (z; r+Rn, r+Rn) , (4.104)

m(r) =
NX
n=1

mn(r) , mn(r) = −μB
π
Im

EFZ
y

dzTr {βΣzG (z; rn +R, r+Rn)} .

(4.105)
In Eqs. (4.104) and (4.105) y denotes an integration along a contour in the
upper half of the complex plane starting in principle at −∞, which is closed at
the Fermi energy EF . The factor two in these two equations applies only in the
non-relativistic case (trivial spin degeneracy). The charge Qn corresponding
to Ωn is then given by

Qn =

Z
Ωn

drn ρ
n(rn) , (4.106)

the corresponding magnetic moment by

mn =

Z
Ωn

drnm
n(rn) . (4.107)
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The concept of a characteristic volume introduced in Sec. (2.2) now becomes
very obvious, since Ωn in Eqs. (4.106) and (4.107) not necessarily comprises a
characteristic volume, and therefore Qn andmn not necessarily are "intrinsic"
quantities!

4.11 Changing the orientation of the magnetization
It was said already several times that in using the local spin density functional
the exchange fields are given only with respect to a fictitious z direction. Sup-
pose tn(z) ≡ tnE(z), E denoting the identity rotation, is the single site t matrix
in site Rn for the case that at this site the orientation of the magnetization
points along bz. Furthermore, let S ∈ O(3) be a rotation, which transforms bz
into S bz. Recalling now that the basis functions of t(z; rn, r0n) are of the form
fΛ(z; rn), see Eqs. (4.51) and (4.60), it is easy to see that a transformation of
the single-site t-operator by S simply implies a transformation of the basis,

tnS(z) = D†(S)tn(z)D(S) , (4.108)

where tnS(z) refers to a single site t matrix with an orientation of the mag-
netization pointing along S bz, and D(S) contains blockwise the irreducible
(projective irreducible representations in the case of spin spherical harmon-
ics) representations [6] of S.
Clearly enough two-dimensional translational invariance then implies that

tpiS (z) = tp0S (z) , ∀i ∈ I(L(2)) , (4.109)

where i = 0 refers to the origin of L(2).
In a similar manner the structure constants Gij

0 (z) in Eq. (4.93) can be
transformed,

G0(z;S(ri +Ri), S(rj +Rj)) = j(z;Sri)G0(z;S(Rj −Ri))j(z;Srj)
× ,
(4.110)

since a transformation of the basis in Eq. (4.54) implies

G0(z;S (ri +Ri) , S (rj +Rj)) =

j(z; ri)D(S)G0 (z;S (Rj −Ri))D
†(S)j(z; rj)

× . (4.111)

In the presence of two-dimensional translational symmetry, the free Green’s
function is invariant under ∀S ∈ G(2)

G0(z;S(ri +Ri), S(rj +Rj)) = G0(z; ri +Ri, rj +Rj) , (4.112)
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where G(2) is the corresponding point group. Thus one immediately gets

G0 (z;Rj −Ri) = D(S)G0 (z;S (Rj −Ri))D
†(S) , (4.113)

a fact that can be used to evaluate efficiently Brillouin zone integrals; see
Eq. (4.102).

4.12 Screening transformations
Going now back to Section (4.3) use shall be made of scaling transformations.
Suppose W in Eq. (4.18) is a superposition of individual (non-overlapping)
potentials,

W (r) =
X
n

⎧⎨⎩Wr ; |rn| ≤ b

0 ; otherwise
, (4.114)

where Wr is a suitable constant, b denotes an appropriate radius such as, e.g.,
the respective inscribed (muffin-tin-) sphere radius rnMT .
If the single-site t matrices corresponding to Wr are denoted by tr(z), the

respective Green’s function matrix, Gr(z),

Gr(z) = {Gr,ij(z)} , Gr,ij(z) = {Gr,ijLL0(z)} , (4.115)

see in particular Eq. (4.97), is given by

Gr(z) =G0(z)
£
I− tr(�)G0(z)

¤−1
. (4.116)

By introducing the following difference,

t∆(z) = t(z)− tr(z) , (4.117)

a scattering-path operator τ∆(z),

τ∆(z) =
£
t∆(z)

−1 −Gr(z)
¤−1

, (4.118)

can be defined such that G(z) can be expressed as

G(z) =Gr(z) +Gr(z)τ∆(z)G
r(z)

= t∆(z)
−1
∆ τ (z)t∆(z)

−1 − t∆(z)−1 , (4.119)

and τ (�) as

τ (�) = t(z)
£
t∆(z)

−1
∆ τ (z)t∆(z)

−1 +
¡
t(z)−1 − t∆(z)−1

¢¤
t(z) . (4.120)

By choosing a suitable Wr, Eq. (4.116) can be solved such that
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Gr,ij(z) ∼ 0 for : ∀ |Ri −Rj | ≥ d , (4.121)

where the distance d has to be viewed as the radius of a sphere that comprises
only a few types of "neighboring" sites, such as, e.g., first- and second-nearest
neighbors. The matrix Gr,ij(z) is usually called screened structure constants.
Assuming for matters of simplicity a semi-infinite system with a simple two-
dimensional lattice, then the matrix structure of τpq

¡
kk, z

¢−1
is of tridiagonal

form, ⎛⎜⎜⎜⎜⎜⎜⎝
¤ ¥ ¥ 0 0 0 0 0 0
0 ¥ ¥ ¥ 0 0 0 0 0
0 0 ¥ ¥ ¥ 0 0 0 0
0 0 0 ¥ ¥ ¥ 0 0 0
0 0 0 0 0 ¥ ¥ ¥ 0
0 0 0 0 0 0 ¥ ¥°

⎞⎟⎟⎟⎟⎟⎟⎠ (4.122)

where the so-called missing elements, shown above as an empty square and
empty sphere, can be used for matching or continuation purposes [3, 5].
Quite clearly inverting a tri- or pentadiagonal matrix offers an enormous

computational advantage. The Screened Korringa-Kohn-Rostoker Method,
which is based on Eqs. (4.119) - (4.121), is in essence a so-called "Order N
Method".

4.13 The embedded cluster method
Finally, use shall be made of the Dyson equation in Section (4.2). Suppose
a semi-infinite system is two-dimensional translationally invariant, i.e., is a
system in which the atomic positions Rm are defined by

Rm = Rm,k + cp , Rm,k ∈ L(2) , cp /∈ L(2) , (4.123)

then the elements of the scattering path operator in Eq. (4.95) are given by

τmn
h (z) ≡ τpm,qn

h (z) =
1

ΩSBZ

Z
SBZ

e−ikk·(Rm,k−Rn,k)τpqh (kk, z)dkk , (4.124)

where an index h is augmented in order to indicate that this system serves as
host for a collection of impurities.
Let C be a finite set of sites in this system occupied by either impurities or

interacting host atoms, see Fig. 4.1,

C = {Rn} , (4.125)
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FIGURE 4.1: Schematic view of the geometry of a seven—atom Co chain along
a Pt(111) step edge. Full circles: Co atoms, shaded circles: Pt atoms, open
circles: empty spheres. Top: side view, bottom: top view of the surface Pt
layer with the Co chain. The embedded cluster is indicated by solid lines. The
coordinate systems give reference to the azimuthal and polar angles, θ and φ,
that characterize the orientation of the magnetization. From Ref. [7].

such that

tn(�) =

⎧⎨⎩ tn(z) ;Rn ∈ C

th(z) ;Rn /∈ C
. (4.126)

Furthermore, let th(z) denote a diagonal (super-) matrix of single-site t-
matrices in the case that only unperturbed host atoms would occupy C

th(z) = {tn(z)δnm | tn(z) = th(z) , ∀Rn ∈ C } , (4.127)

and let tC(�) be such a matrix referring to the actual occupation of the various
sites in C

tC(z) = {tn(z)δnm | tn(z) 6= th(�) , ∀Rn ∈ C } , (4.128)

then the scattering path operator τ C(z) comprising all sites in C is given by
the following Dyson like equation [8, 9],

τ C(z) = τh(z)
£
1− (t−1h (z)− t

−1
C (�))τh(z)

¤−1
, (4.129)

from which in turn all corresponding local quantities, i.e., charge and magne-
tization densities, spin— and orbital moments, as well as total energies can be
calculated.
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IfN denotes the number of sites in C, then the dimension of the supermatrix
τ C(z) is N ; the actual matrix size is therefore given by 2×N × cmax , where
cmax refers to the maximal c quantum number used in the angular momentum
representations and the factor two applies only in the case of a relativistic
description.

[1] P. Weinberger, Electron Scattering Theory for Ordered and Disordered
Matter, Clarendon Press, Oxford, 1990.

[2] A. Gonis, Green Functions for Ordered and Disordered Systems, North-
Holland, 1992.

[3] J. Zabloudil, R. Hammerling, L. Szunyogh and P. Weinberger, Electron
Scattering in Solid Matter, Springer Berlin Heidelber New York, 2005.

[4] P. Lloyd, Proc. Phys. Soc. London 90, 207 (1967).

[5] I. Turek, V. Drchal, J. Kudrnovský, M. Šob and P. Weinberger, Elec-
tronic Structure of Disordered Alloys, Surfaces and Interfaces, Kluwer
Academic Publishers, 1997.

[6] S.L. Altmann, Rotations, Quaternions and Double Groups (Clarendon
Press, Oxford, England 1986).

[7] B. Újfalussy, B. Lazarovits, L. Szunyogh, G. M. Stocks, and P. Wein-
berger, Phys. Rev. B 70, 100404(R) (2004).

[8] B. Lazarovits, L. Szunyogh, and P. Weinberger, Phys. Rev. B 65, 104441
(2002).

[9] B. Lazarovits, L. Szunyogh, P. Weinberger, Phys. Rev. B 67, 024415
(2003).



© 2009 by Taylor & Francis Group, LLC

5
The coherent potential approximation

In this chapter concepts of how to deal with disorder in
three- and two-dimensional translationally invariant sys-
tems are introduced. These concepts are of great impor-
tance in dealing theoretically with alloyed systems such
as, for example, permalloy parts of a nano-system or in-
terdiffusion effects at interfaces.

5.1 Configurational averages

Suppose a binary bulk alloy is of composition AcB1−c with cA = c being the
concentration of species A and cB = (1− c) the concentration of species B.
Assuming that there is no positional disorder and — for matters of simplicity
— that L refers to a simple lattice and I (L) denotes the set of indices i of L,
the potential can be written in the same manner as before, namely as

V (r) =
X

i∈I(L)
Vi (ri) , (5.1)

Vi (ri) = ξiVA (ri) + (1− ξi)VB (ri) , (5.2)

where ξi is an occupational variable such that ξi = 1 if site Ri is occupied by
species A and ξi = 0 if this site is occupied by species B. For a completely ran-
dom alloy the probability for ξi being 1 is cA and correspondingly for ξi = 0
the probability is cB . In Eq. (5.2) VA (ri) and VB (ri) are the individual
(effective) potentials of species A and B at the site Ri, respectively. A partic-
ular arrangement of atoms A and B, {ξi | i ∈ I (L)} , on the positions of L is
called a (occupational) configuration. Although for a particular configuration
the eigenvalue equation for H({ξi}) corresponding to V (r) can be solved, it is
not possible to average such an equation over all configurations. The configu-
rationally averaged (single particle) Green’s function hG+ (r, r0, �)i, however,
can be evaluated, since G+ (r, r0, �) is a so-called bilinear form.
If N denotes the total number of atoms in a binary bulk system AcB1−c

and NA and NB the number of A and B atoms, respectively, N = NA +NB,

49
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then∗

NA = cN , NB = (1− c)N . (5.3)

5.2 Restricted ensemble averages

Suppose now that in all cells (domains DVi of Vi (ri)) but a particular one (i),
an average over occupations is performed such that in the selected cell the
occupation is kept fixed first with an A atom and then with a B atom, i.e.,
that the configurational average is partitioned into two restricted ensemble
averages.

c

*°° ° °°
°° ° °°
°° A °°
°° ° °°
°° ° °°

+
+ (1− c)

*°° ° °°
°° ° °°
°° B °°
°° ° °°
°° ° °°

+
=

*°° ° °°
°° ° °°
°° ° °°
°° ° °°
°° ° °°

+

From this partitioning obviously a condition for the averaged Green’s function
can be generated, namely

c
­
G+ (ri, ri, �)

®
(i=A)

+ (1− c)
­
G+ (ri, ri, �)

®
(i=B)

=
­
G+ (ri, ri, �)

®
,

(5.4)

(ri ∈ DVi ) , ∀i ∈ I (L) .

Since the choice of this particular cell is irrelevant, i.e., since in a simple lattice
DVi is nothing but the unit cell, it is sufficient to restrict Eq. (5.4) to the cell
at the origin (i = 0) of L.

5.3 The coherent potential approximation

Suppose that in the formal definition of the averaged resolvent hG (z)i

hG (z)i =
D
(z −H)−1

E
= [z −H0 −Σ (z)]−1 , (5.5)

∗Provided that the occupation probabilities for different sites are independent from each
other ("statistical disorder").
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H is rewritten as

H = H0 + V −W (z) +W (z) = H (z) + V −W (z) ,

H (z) = H0 +W (z) , (5.6)

where V is given by a superposition of (real) individual site potentials Vi and
W (z) is a superposition of energy-dependent translationally invariant site
quantities Wi (z)

V =
X
i

Vi , W (z) =
X
i

Wi (z) , (5.7)

W (z; ri +Ri +Rj) =W (z; rj +Rj) , ∀i, j ∈ I(L) , (5.8)

V (z) =
X
i

Vi (z) =
X
i

(Vi −Wi (z)) . (5.9)

For a particular configuration G (z) is therefore given by

G (z) = [z −H (z)−V (z)]−1 . (5.10)

Let G (z) be the resolvent of H (z),

G (z) = [z −H (z)]−1 , (5.11)

the resolvent G (z) and the corresponding T operator, T (z), are then given
by the below Dyson equation,

G (z) = G (z) +G (z)T (z)G (z) . (5.12)

Since G (z) is translationally invariant, see Eq. (5.8), i.e.,

hG (z)i ≡ G (z) , (5.13)

averaging Eq. (5.9) over all configurations therefore yields

hG (z)i = G (z) +G (z) hT (z)iG (z)
≡ [1 +G (z) hT (z)i]G (z) . (5.14)

Finally, let hT (z;W (z))i denote the averaged T operator for a particularly
chosen medium W (z)and let G (z;W (z)) be the corresponding resolvent of
H (z) = H0 +W (z). Then from Eq. (5.14) one can see immediately that

hG (z)i = G (z;W (z)) , (5.15)

if and only if
hT (z;W (z))i = 0 . (5.16)

The condition in Eq. (5.16) is usually called the Coherent Potential Approxi-
mation (CPA).
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5.4 The single site coherent potential approximation
From the multiple scattering expansion for the T operator, see Eq. (4.43), it
can be seen that within the so-called single-site approximation (explicit ex-
clusion of short-range-order effects) to the CPA condition the above condition
is simply reduced to

hti (z;W (z))i = 0; ∀i ∈ I (L) , (5.17)

or, in using the expansion of T in terms of scattering path operators, see
Eq. (4.44),

τ ij (z) = ti (z) δij +
X
k 6=i

ti (z)G
ik (z) τkj (z) , (5.18)

by ­
τ ii (z;W (z))

®
= 0 ; ∀i ∈ I (L) . (5.19)

From the discussion of restricted averages and the relation of the site-diagonal
scattering path operator to the Green’s function G (r, r0, z) with r and r0

measured from the same origin, it is clear that for a binary system AcB1−c
(simple lattice, one atom per unit cell) the restricted averages

­
τ ii (z)

®
(i=α)

,

α = A,B, have to meet the condition

c
­
τ ii (z)

®
(i=A)

+ (1− c)
­
τ ii (z)

®
(i=B)

=
­
τ ii (z)

®
; ∀i ∈ I (L) . (5.20)

It is therefore sufficient to restrict Eq. (5.20), for example, to i = 0, i.e., to
the origin of the underlying lattice L. Since Eq. (5.20) can only be solved
iteratively, let tc (z) be a guess for the single site t matrix for the coherent
lattice L:

ti (z) = tc (z) ; ∀i ∈ I (L) . (5.21)

Then the corresponding site-diagonal scattering path operator τ00c (�) is given
by

τ00c (z) = Ω
−1
BZ

Z £
t−1c (�)−G (k, z)

¤−1
dk . (5.22)

Suppose now that in the unit cell at the origin (i = 0) restricted ensemble
averages are performed:­

τ00c (z)
®
(0=α)

≡ τ00α (z) ; α = A,B , (5.23)

where
τ00α (z) = D00

α (z) τ
00
c (z) , (5.24)

and
D00
α (z) =

£
1 + τ00c (z)

¡
t−1α (z)− t−1c (z)

¢¤−1
. (5.25)
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Then in the single-site approximation the CPA condition is given by

cτ00A (z) + (1− c) τ00B (z) = τ00c (z) , (5.26)

or,

cD00
A (�) + (1− c)D00

B (�) = 1 . (5.27)

The matrix D00
α (�) is usually called impurity matrix, since it is derived from

the case that a single impurity occupies a particular cell, namely the one in
the origin of the lattice, in an otherwise perfect host. In Eq. (5.24) this host
is the coherent lattice and the impurity an A or a B atom. For matters of
completeness it shall be mentioned that also a so-called double impurity can
be described, namely the case that cell i is occupied by species A (B) and cell
j by B (A). The corresponding scattering operator is then given by

­
τ ijc (z)

®
(i=α,j=β)

= Dii
α (z) τ

ij
c (z) eDjj

β (z) , α, β = A,B , (5.28)

where

Dii
α (z) =

£
1 + τ iic (z)

¡
t−1α (z)− t−1c (z)

¢¤−1
, (5.29)eDii

α(z) =
£
1 +

¡
t−1α (z)− t−1c (z)

¢
τ iic (z)

¤−1
. (5.30)

Double impurities have to be taken into account whenever physical properties
are to be evaluated that are based on products of Green’s functions, which is
the case, e.g., of electric transport.

5.5 Complex lattices and layered systems

Dealing with (statistically) disordered complex lattices or layered systems is
in principle very similar to the description for the single site CPA condition
discussed above, if a supermatrix notation is adopted. Suppose P denotes a
double index with the following meaning

P = ps ,

p =

½
unit cells, complex L(3)
atomic layers, simple L(2) ,

s =

½
inequivalent position in unit cell p
particular site in layer p
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The inverse single site t matrices can now be arranged in terms of a diagonal
supermatrix,

tα(z)
−1 =

⎛⎜⎜⎜⎜⎜⎜⎝

. . . 0 0 0 0
0 tPα (z)

−1 0 0 0
0 0 tQα (z)

−1 0 0
0 0 0 tRα (z)

−1

0 0 0 0
. . .

⎞⎟⎟⎟⎟⎟⎟⎠ , α = A,B, c , (5.31)

where because of translational symmetry

tPα (z)
−1 ≡ tPPα (z)−1 =

⎧⎨⎩ tps,psα (z)−1 ≡ t0sα (z)
−1 ≡ tsα(z)

−1 , complex L(3)

tps,psα (z)−1 ≡ tp0α (z)
−1 ≡ tpα(z)

−1 , simple L(2)
(5.32)

and A, B and c refer in turn to the constituents A and B and "coherent".
In a similar way the impurity matrices form a diagonal supermatrix,

Dα(z) =

⎛⎜⎜⎜⎜⎜⎜⎝

. . . 0 0 0 0

0 DPP
α (z) 0 0 0

0 0 DQQ
α (z) 0 0

0 0 0 DRR
α (z)

0 0 0 0
. . .

⎞⎟⎟⎟⎟⎟⎟⎠ , α = A,B , (5.33)

with

DPP
α (z) ≡ DP

α (z) ≡ D0s
α (z) =

£
1− τ0s,0sc (z)(tsc(z)

−1 − tsα(z)
−1¤ (5.34)

in the complex lattice case and

DPP
α (z) ≡ DP

α (z) ≡ Dp0
α (z) =

£
1− τp0,p0c (z)(tpc(z)

−1 − tpα(z)
−1¤ (5.35)

in the case of a layered system characterized by a simple two-dimensional
lattice.
The coherent scattering path operator, however, is a full supermatrix

τ c(z) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

. . .
...

...
...

. . . τPPc (z) τPQc (z) τPRc (z) · · ·

· · · τQPc (z) τQQc (z) τQRc (z) · · ·

· · · τRPc (z) τRQc (z) τRRc (z) · · ·
...

...
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (5.36)
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with elements

τPQc (z) =

⎛⎜⎜⎜⎜⎜⎜⎝

. . .
...

...
. . . τps,qsc (z) τps,qs

0

c (z) · · ·

· · · τps0qsc (z) τps
0,qs0

c (z) · · ·
...

...
. . .

⎞⎟⎟⎟⎟⎟⎟⎠ , (5.37)

that have to be evaluated using appropriate inverse lattice Fourier transfor-
mations; see e.g. Eq. (5.22). Finally by arranging the concentrations of A
and B in a diagonal matrix, e.g.,

cα =

⎛⎜⎜⎜⎜⎝
. . . 0 0 0
0 cαP 0 0
0 0 cαQ 0

0 0 0
. . .

⎞⎟⎟⎟⎟⎠ , α = A,B , (5.38)

one gets the following compact inhomogeneous (single site) CPA condition,

τPPc (z) =
X

α=A,B

cαPD
PP
α (z) , (5.39)

which reads in the case of a complex L(3) as

τ0s,0sc (z) =
X

α=A,B

cαpD
0s
α (z)τ

0s,0s
c (z) , (5.40)

s = 1, . . . ,N (number of sublattices) ,

and

τp0,p0c (z) =
X

α=A,B

cαpD
p0
α (z)τ

p0,p0
c (z) , (5.41)

s = 1, . . . , N (number of atomic layers) ,

for a layered system with a simple L(2). This condition is now inhomogeneous,
since a CPA condition has to be fulfilled simultaneously for all sublattices or
atomic layers.
It should be noted that the formulations in this subsection were chosen such

that more or less immediately the reader can guess how the case of a layered
system with a complex two-dimensional lattice has to be treated. In particular
Eq. (5.41) is of quite some importance, since in terms of that condition, e.g.,
interdiffusion of interfaces or 1d-nanosystems consisting of more than one type
of a magnetic alloy, see Fig. 1.3, can be described theoretically even on a fully
relativistic level.
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Double impurities can now refer to different types of sites, namely in the
case of a complex L(3) they can occupy sites in different sublattices or different
sites in one and the same sublattice:

­
τpi,qjc (z)

®
(pi=α,qj=β)

=

⎧⎪⎨⎪⎩
D0s
α (z) τ

pi,qj
c (z) eD0q

β (z) , ∀i, j

D0s
α (z) τ

pi,qj
c (z) eD0s

β (z) , i 6= j

. (5.42)

In layered systems (simple L(2)) the two impurities can occur either in different
atomic layers or in different sites of one and the same layer:

­
τpi,qjc (z)

®
(pi=α,qj=β)

=

⎧⎪⎨⎪⎩
Dp0
α (z) τ

pi,qj
c (z) eDq0

β (z) , ∀i, j

Dp0
α (z) τ

pi,qj
c (z) eDp0

β (z) , i 6= j

. (5.43)

5.6 Remark with respect to systems nanostructured in
two dimensions

It should be noted in particular that the CPA condition in Eq. (5.16) requires
translational symmetry at least in one direction. If therefore averaging over
configurations in solid systems nanostructured in two dimensions, see for ex-
ample Fig. 1.4, is required for certain purposes, one actually has to evaluate
first all possible configurations of the required cluster consisting of A and B
atoms, embedded into the substrate. Only then an average over all configu-
rations can be performed. Such a system can for example be present when
co-evaporating species A and B onto a suitable substrate.
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6
Calculating magnetic anisotropy energies

In this chapter the theoretical concept of magnetic aniso-
tropy energies is introduced. Furthermore, the so-called
magnetic Force Theorem, which most frequently is ap-
plied to evaluate the difference in total energy between
two magnetic configurations, is discussed making use of
the stationary properties of the Density Functional The-
ory. Since the magnetic dipole-dipole interaction, respon-
sible for the so-called shape anisotropy, is not contained
in DFT a magnetostatic version thereof is given.

In principle the magnetic anisotropy energy is determined by two kinds
of differences in energy, namely the difference in total energy, ∆Etot, with
respect to two given (uniform) directions n1 and n2 of the magnetization and
the corresponding difference in the magnetic dipole-dipole interaction energy,
∆Edd,

Ea = ∆Etot +∆Edd , (6.1)

∆Etot = Etot[n1]−Etot[n2] ,

∆Edd = Edd[n1]−Edd[n2] ,

since the latter one is not provided by the Density Functional Theory, and
usually is expressed classically.

6.1 Total energies
For a given orientation n of the magnetization the total energy per cell Ωi is
the sum of the kinetic, the Coulomb, and of the exchange-correlation terms,
see the detailed discussion in Chapter 22 of Ref. [1],

Etot(i) = Ec(i) +Ev(i)−
1

2

Z
Ωi

dri ρ(ri)

µ
V c(ri) +

2Zi
|ri|

¶

− 1

2
Zi V

inter(i) +

Z
Ωi

dri ρ(ri)
³
�xc [ρ(ri)]− V xc(ri)

´
. (6.2)

57



© 2009 by Taylor & Francis Group, LLC

58 Magnetic Anisotropies in Nanostructured Matter

In here Zi is the atomic number, ρ(ri) the charge density,

Ec(i) =
X
j

�cj(i) , (6.3)

Ev(i) =

EFZ
y

ni(z)�dz , (6.4)

V c(ri) = −
2Zi
|ri|

+ 2

Z
ρ(r0i)

|ri − r0i|
dr0i , (6.5)

V inter(i) = 2
X
j
j 6=i

⎡⎢⎣Z
Ωj

dr0j
ρ(r0j)

|rj − r0j |
− Zj
|rj |

⎤⎥⎦ , (6.6)

and εxc[ρ(ri)] and V xc(ri) are determined by the choice of a particular local
spin density functional. In Eqs. (6.3) - (6.6) the �cj(i) denote the core one-
electron energies corresponding to Ωi, and ni(z) is the density of states. The
starting point of the contour integral in Eq. (6.4) refers to the bottom of the
valence energy regime Eb. The term Ec(i) is usually called the core energy,
Ev(i) the band energy, V c(ri) is the Coulomb potential, and V inter(i) reflects
the contribution of the intercell potential to the total energy.
IfN denotes the number of cells Ωi that constitute the characteristic volume

Ω̄, then the total energy per Ω̄ is given by

Etot(n) =
NX
i=1

Etot(i) , (6.7)

i.e., depending on N the total energy with respect to Ω̄ can be very large
indeed. Typically per cell Ωi the total energy Etot(i) is of the order of 103 - 104

Ryd. Considering only 10 layers (two-dimensional translational symmetry)
Etot is at least of the order of 105 Ryd. The total energy of a domain
wall (several hundred atomic layers) can be up to 107 Ryd. Since magnetic
anisotropy energies are of the order of 10−7 to 10−4 Ryd it would be extremely
unwise to evaluate such tiny quantities in terms of differences in total energies.
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6.2 The magnetic force theorem

According to Eq. (6.2) the difference in total energies between orientations
n1 and n2 in cell Ωi is given explicitly as

Etot[n2]−Etot[n1] = Ec[n2]−Ec[n1]| {z }
1

+ Ev[n2]−Ev[n1]| {z }
2

− 1
2

Z
Ωi

dri {ρ(ri; [n2]− ρ(ri; [n1]) }
µ
V c(ri) +

2Zi
|ri|

¶
| {z }

3

− 1
2
Zi
©
V inter(0; [n2])− V inter(0; [n1]

ª
| {z }

4

+

Z
Ωi

dri ρ(ri; [n2])
³
�xc [ρ(ri; [n2])]− V xc(ri; [n2])

| {z }
5

−
Z
Ωi

dri ρ(ri; [n1])
³
�xc [ρ(ri; [n1])]− V xc(ri; [n1])

| {z }
6

.

(6.8)

Suppose now that the densities for these two different orientations of the
exchange field are defined in the neighborhood of some density ρ[ri], e.g.,
ρ[ri;n1],

ρ[ri;n1] = ρ[ri] + δρ[ri;n1] , (6.9)

ρ[ri;n2] = ρ[ri] + δρ[ri;n2] , (6.10)

ρ[r;n2]− ρ[r;n1] = δρ[r;n2]− δρ[r;n1] ' 0 , (6.11)

then obviously the third and the fourth term in Eq.(6.8) vanish nearly exactly.
The last two terms vanish indirectly, since

�xc [ρ(ri; [n1])]− V xc(ri; [n1] ' �xc [ρ(ri; [n2])]− V xc(ri; [n2] . (6.12)

Furthermore, since the difference in the sum over the eigenvalues of the core
one-electron states does not matter — the Zeeman splitting for spherical sym-
metric potentials depends only on the magnitude of the magnetic field — one
is left with a computationally easy expression, namely the difference in the
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band energies,

Etot[n2]−Etot[n1] ' Ev[n2]−Ev[n1]

=
NX
i=1

⎛⎜⎝ EF (n2)Z
y

ni(n2, z)zdz −
EF (n1)Z
y

ni(n1, z)zdz

⎞⎟⎠ ,

(6.13)

since band energies differences are of the order of only a few mRyd. Fur-
thermore, in the case of a semi-infinite metallic substrate the Fermi energy is
determined by the substrate; i.e., Eq. (6.13) reduces to

Etot[n2]−Etot[n1] '
NX
i=1

EFZ
y

(ni(n2, z)− ni(n1, z)) zdz , (6.14)

where, as should be recalled, N refers to the number of cells Ωi that have to
be considered. It should be noted that even in a bulk system the difference
EF (n2) − EF (n1) can safely be neglected. Relation (6.13) is usually termed
magnetic force theorem [2]. Clearly, by keeping the particle density unchanged
(restricted to one given reference orientation),

ρ[ri;n2] = ρ[ri;n1] + δρ[ri;n2] , δρ[ri;n2] = 0 , (6.15)

see Eq. (6.11), Etot[n2]−Etot[n1] can be evaluated very efficiently. The error
caused by using the magnetic force theorem is usually around 5% or even less.

6.3 Magnetic dipole-dipole interactions

6.3.1 No translational symmetry

If one partitions the configurational space into cells centered around atomic
positions Rm, then within the dipole approximation the relativistic current—
current interaction energy is reduced to the magnetostatic dipole—dipole in-
teraction energy, which can be expressed in atomic Rydberg units as

Edd =
1

c2

X
Rm,Rn

(Rm 6=Rn)

½
m

m ·mn

|Rm−Rn|3
− 3 [mm ·(Rm−Rn][mn ·(Rm−Rn)]

|Rm−Rn|5

¾
,

(6.16)
where mm is the magnetic moment at site Rm; see (4.107).
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6.3.2 Two-dimensional translational symmetry

In a ferromagnetic system the magnetic moments are aligned uniformly along
a particular direction bn, i.e.

mm = mm
bn .

If two—dimensional translational invariance applies, see also Eq. (4.99), which
is the case for 1d-nanosystems, the location vectors Rm are defined by

Rm = Rpα +Rm,k , Rpα = cp + aα,k ,

Rm,k ∈ L(2) , cp /∈ L(2) , aα,k /∈ L(2) ,

whereRpα specifies a site in the unit cell of the system in layer p and sublattice
α, generated by the non-primitive translation aα,k. Eq. (6.16) can then be
rewritten [3] as

Edd =
X
pα,qβ

mpαmqβ

c2
bn Mdd

pα,qβ bn . (6.17)

In Eq. (6.17) the so—called 2D (ferromagnetic) dipole—dipole Madelung con-
stant matrix is defined by [3]

Mdd
pα,qβ =

X
Rm,k

(Rm,k 6=0)

1

|Rpα−Rqβ−Rm,k|3

×
½
I3 −

(Rpα−Rqβ−Rk)
N
(Rpα−Rqβ−Rm,k)

|Rpα−Rqβ−Rm,k|2

¾
, (6.18)

where I3 is a 3×3 unit matrix and
N
denotes a tensorial product of vectors and

where for Rpα=Rqβ the singular term corresponding to Rk=0 is excluded
from the summation.
Reformulating Rpα in the following manner as

Rpα = (Rpα;⊥,Rpα;k) , (6.19)

the magnetostatic Poisson equation can be solved for |Rpα;⊥−Rqβ;⊥| 6= 0 in
terms of a Fourier expansion that results into a fast convergent series

Mdd
pα,qβ = −

2π

A

X
Gk

(Gk 6=0)

¯̄
Gk
¯̄
exp

¡
−
¯̄
Gk
¯̄
|∆Rpα,qβ;⊥|

¢
exp

¡
iGk ·(∆Rpα,qβ;k)

¢

×

⎛⎝ −(Gk ⊗Gk)/
¯̄
Gk
¯̄2 −i sgn (∆Rpα,qβ;⊥)

¡
Gk ⊗ 1

¢
/
¯̄
Gk
¯̄

−i sgn (∆Rpα,qβ;⊥)1⊗Gk/
¯̄
Gk
¯̄

1

⎞⎠ ,

(6.20)
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where A is the 2D unit cell area, Gk is a two-dimensional reciprocal space
vector and

∆Rpα,qβ;⊥ = (Rpα;⊥−Rqβ;⊥) , ∆Rpα,qβ;k =
¡
Rpα;k−Rqβ;k

¢
. (6.21)

It should be noted that theGk=0 component does not contribute to off—plane
terms.
For the (001) and (111) surface orientations of simple cubic lattices (sc, bcc

or fcc) Eq. (6.20) can be further reduced to

Mdd
pq =Mdd

pq

⎛⎝−12 0 0
0 −12 0
0 0 1

⎞⎠ , (6.22)

where

Mdd
pq = −

2π

A

X
Gk

(Gk 6=0)

|Gk| exp
¡
−|Gk| |Rp;⊥ −Rq;⊥|

¢
cos
¡
Gk · (Rp;k −Rq;k)

¢
.

(6.23)
In this special case, the 2D (ferromagnetic) dipole—dipole Madelung constants
for p= q can be evaluated by using a standard Ewald summation technique,
namely

Mdd
pp =

X
Rk

(Rk 6=0)

(
erfc

¡
|Rk|/2σ

¢
|Rk|3

+
exp

¡
−|Rk|2/4σ2

¢
σ
√
π |Rk|2

)
−

− 2π
A

X
Gk

(Gk 6=0)

½
|Gk| erfc

¡
|Gk|σ

¢
− 1

σ
√
π
exp

¡
−|Gk|2σ2

¢¾

− 1

6σ3
√
π
+
2
√
π

Aσ
, (6.24)

where σ is the well-known Ewald parameter and erfc(x) = 1− erf(x).
Finally, the orientational dependence of the magnetostatic dipole—dipole

energy shall be discussed. By using polar coordinates for the unit vector bn,bn = (sin(Θ) cos(φ), sin(Θ) sin(φ), cos(Θ)), one immediately obtains that
bn
⎛⎝−12 0 0
0 −12 0
0 0 1

⎞⎠ bn = 3

2
cos2(Θ)− 1

2
, (6.25)

which implies that the orientational dependence of the magnetostatic dipole—
dipole anisotropy energy, ∆Edd, can simply be written as [4]

∆Edd(Θ) = (E
k
dd −E⊥dd) sin

2(Θ) . (6.26)
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7
Exchange & Dzyaloshinskii-Moriya interactions

In this chapter first and second order derivatives of the
grand canonical potential (free energy at zero tempera-
ture) will be formed which in turn can be related to (a)
anisotropy constants and (b) the famous Dzyaloshinskii-
Moriya interactions appearing in classical spin Hamilto-
nians. The concepts introduced here are essential for dis-
cussing, for example, chirality aspects of magnetic nano-
structured matter.

7.1 The free energy and its angular derivatives
In using the magnetic force theorem, see Section 6.2, the free—energy (grand
potential) at zero temperature can be approximated by

F =
EFZ
y

dz(z −EF )n(z) = −
EFZ
y

dzN(z) , (7.1)

where n(z) is the density of states (DOS) and N(z) is the integrated DOS,
z = �+ iδ, δ > 0.
In terms of Lloyd’s formula, see Eqs. (4.34) - (4.37) in Section 4.4, by

discarding there the constant term N0(�), the free—energy can be rewritten as

F = − 1
π
Im

EFZ
y

dzTr ln τ (z) , (7.2)

τ (z) =
¡
t−1(z)−G0(z)

¢−1
,

where as before

τ (z) =
©
τ ij (z)

ª
, t(z) = {ti (z) δij} , G0(z) =

©
G0,ij(z) (1− δij)

ª
.

65
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7.1.1 First and second order derivatives of the inverse single
site t matrices

In order to evaluate changes of F up to second order with respect to small
deviations from the orientations of the magnetization at sites i and j relative to
the (ferromagnetic) ground—state orientation (given with respect to a chosen
uniform direction), one has to remember that according to Eq. (4.108) the
orientational dependence of the single—site t matrix corresponds to a similarity
transformation that rotates the z axis of the reference system (the artificial z
axis inherent to LDFT),

ti(z)
−1 ≡ mi(z) = Rim

0
i (z)R

+
i , Ri ≡ R(ϑi, ϕi) . (7.3)

Changes of mi(z) up to second order in ϑi and ϕi,

∆m
(1)
i (z) = mϑ

i (z)dϑi +mϕ
i (z)dϕi , (7.4)

∆m
(2)
i (z) =

1

2
mϑϑ
i (z)dϑidϑi +mϕϑ

i (z)dϕidϑi +
1

2
mϕϕ
i (z)dϕidϕi , (7.5)

can therefore easily be expressed by means of the below derivatives of the
rotation matrices Ri,

mϑ
i (z) ≡

∂mi(z)

∂ϑi
=

∂Ri

∂ϑi
m0
i (z)R

+
i +Rim

0
i (z)

∂R+i
∂ϑi

, (7.6)

mϕ
i (z) ≡

∂mi(z)

∂ϕi
=

∂Ri

∂ϕi
m0
i (z)R

+
i +Rim

0
i (z)

∂R+i
∂ϕi

, (7.7)

mϑϑ
i (z) ≡

∂2mi(z)

∂ϑi∂ϑi
=

∂2Ri

∂ϑ2i
m0
i (z)R

+
i +Rim

0
i (z)

∂2R+i
∂ϑ2i

(7.8)

+ 2
∂Ri

∂ϑi
m0
i (z)

∂R+i
∂ϑi

,

mϕϑ
i (z) ≡ ∂2mi(z)

∂ϕi∂ϑi
=

∂2Ri

∂ϕi∂ϑi
m0
i (z)R

+
i +

∂Ri

∂ϕi
m0
i (z)

∂R+i
∂ϑi

(7.9)

+
∂Ri

∂ϑi
m0
i (z)

∂R+i
∂ϕi

+Rim
0
i (z)

∂2R+i
∂ϕi∂ϑi

,

mϕϕ
i (z) ≡ ∂2mi(z)

∂ϕi∂ϕi
=

∂2Ri

∂ϕ2i
m0
i (z)R

+
i +Rim

0
i (z)

∂2R+i
∂ϕ2i

(7.10)

+ 2
∂Ri

∂ϕi
m0
i (z)

∂R+i
∂ϕi

.

7.1.2 Diagonal terms

In order to evaluate the diagonal terms of the second derivative tensor of
F only an infinitesimal change of the orientation of the magnetization at a
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particular site i has to be considered such that by using the identity

m(z)−G0(z) +∆mi(z) = τ(z)−1 +∆mi(z) (7.11)

= τ(z)−1(1 + τ(z)∆mi(z)) ,

ln τ (z) in Eq. (7.2) can be written as

ln τ 0(z) = ln(m(z) +∆mi(z)−G0(z))
−1

= ln τ (z)− ln(1+ τ (z)∆mi(z)) , (7.12)

where m(z) is a site-diagonal matrix,

m(z) = {mi (z) δij} ,

and — quite clearly — the site-diagonal matrix ∆mi(z) has only one non-
vanishing block, namely ∆mi (z) corresponding to site i. Expanding the sec-
ond logarithm on the rhs of Eq. (7.12) and keeping only terms up to second
order one obtains,

ln τ 0(z)− ln τ (z) = −τ (z)∆m(1)
i (z)− τ (z)∆m(2)

i (z)

+
1

2
τ (z)∆m

(1)
i (z)τ (z)∆m

(1)
i (z) , (7.13)

where the first term on the rhs contributes to the gradient of F , the second
and the third term are related to the site—diagonal elements of the second
derivative tensor of F .

7.1.3 Off-diagonal terms

The site—off—diagonal part of the second derivative of F can be obtained in a
similar manner by (simultaneous) infinitesimal changes of the orientations of
the magnetization in two different sites, i and j (i 6= j), i.e.,

ln τ 0(z) = ln(m(z) +∆mi(z) +∆mj(z)−G0(z))
−1

= ln τ (z)− (1+ τ (z)(∆mi(z) +∆mj(z))) , (7.14)

or, rewritten as,

ln τ 0(z)− ln τ (z) = − ln(1+ τ (z)∆mi(z))

− ln(1+ τ (z)∆mj(z))− ln(1− τ (z)∆i(z)τ (z)∆j(z)) ,
(7.15)

where
∆i(z) ≡ ∆mi(z)(1+ τ (z)∆mi(z))

−1 .
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Expanding again the logarithms on the rhs of Eq. (7.15) up to second order
yields

ln τ 0(z)− ln τ (z) = −τ (z)(∆m(1)
i (z) +∆m

(1)
j (z))

+ τ (z)∆m
(1)
i (z)τ (z)∆m

(1)
j (z) . (7.16)

The second derivatives of F can now be related to the second term of the rhs
of Eq. (7.16); see Eq. (7.2).

7.1.4 An example: a layered system corresponding to a sim-
ple two-dimensional lattice

Since according to Eq. (4.109) two-dimensional translational invariance im-
plies that

tpiR (z) = tp0R (z) , ∀i ∈ I(L(2)) ,

where i = 0 refers to the origin of L(2) and R to the rotation matrix in Eq.
(7.3), explicit use of Eqs. (7.6) — (7.10) in Eq. (7.13) and Eq. (7.16) then
directly yields the second derivative tensor of F with respect to the site—
dependent orientations of the magnetization.

7.1.4.1 Diagonal terms:

∂2F
∂ϕri∂ϕri

= − 1
π
Im

EFZ
y

dzTr [−τr0,r0(z)mϕϕ
r (z) (7.17)

+ τr0,r0(z)m
ϕ
r (z)τr0,r0(z)m

ϕ
r (z)] ,

∂2F
∂ϕri∂ϑri

= − 1
π
Im

EFZ
y

dzTr
£
−τr0,r0(z)mϕϑ

r (z) (7.18)

+τr0,r0(z)m
ϕ
r (ε)τr0,r0(z)m

ϑ
r (z)

¤
,

∂2F
∂ϑri∂ϑri

= − 1
π
Im

EFZ
y

dzTr
£
−τr0,r0(z)mϑϑ

r (ε) (7.19)

+τr0,r0(z)m
ϑ
r (ε)τr0,r0(z)m

ϑ
r (ε)

¤
.



© 2009 by Taylor & Francis Group, LLC

Exchange & Dzyaloshinskii-Moriya interactions 69

7.1.4.2 Off—diagonal terms:

∂2F
∂ϕri∂ϕsj

= − 1
π
Im

EFZ
y

dzTr [τsj,ri(z)m
ϕ
r (ε)τri,sj(z)m

ϕ
s (ε)] , (7.20)

∂2F
∂ϕri∂ϑsj

= − 1
π
Im

EFZ
y

dzTr
£
τsj,ri(z)m

ϕ
r (ε)τri,sj(z)m

ϑ
s (z)

¤
, (7.21)

∂2F
∂ϑri∂ϑsj

= − 1
π
Im

EFZ
y

dzTr
£
τsj,ri(z)m

ϑ
r (z)τri,sj(z)m

ϑ
s (ε)

¤
. (7.22)

In Eqs. (7.17) — (7.22) the trace has to be performed in angular momentum
space.
It should be appreciated that the approach discussed in Chapter 4, namely

the Screened Korringa-Kohn-Rostoker method, immediately yields also the
second derivative tensor of the free energy. Since τ (z) is known from multi-
ple scattering theory, all that is needed is to evaluate derivatives of rotation
matrices, which then have to be combined with the already known inverse
single site t matrices: although the above expressions look "heavy" in terms
of computational efforts they are not!

7.2 An intermezzo: classical spin Hamiltonians
In order to make contact with well-known classical formulations such as Heisen-
berg-like spin Hamiltonians, first their meaning has to be discussed. Only
then a mapping between the derivatives of the free energy obtained via mul-
tiple scattering theory and the various terms in a classical formulation can be
established.

7.2.1 "Classical" definitions of exchange and Dzyaloshinskii—
Moriya interactions

In a quadratic approximation of (effective) spin—spin interactions, a (classical)
spin Hamilton function can be written as

H =
X
i

K(si) +
1

2

X
ij

siJijsj , (7.23)

where the si are classical spins, the parametersK(si) refer to on—site anisotropy
energies and the Jij are 3× 3 matrices, which in turn can be decomposed in
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three terms,
Jij = JijI3 + J S

ij + JA
ij , (7.24)

where I3 is the unit matrix and

Jij =
1

3
Tr (Jij) . (7.25)

The symmetric, traceless part of Jij , denoted in Eq. (7.24) by J S
ij , is defined

by

J S
ij =

1

2

¡
Jij + J t

ij

¢
− JijI3 , (7.26)

its antisymmetric part, JA
ij , by

J A
ij =

1

2

¡
Jij − J t

ij

¢
, (7.27)

where t denotes transposed matrices.
According to Moriya [1] a typical intersite interaction consists of the fol-

lowing three terms,

siJijsj = Jijsi · sj| {z }
1

+ siJ S
ij sj| {z }
2

+Dij (si × sj)| {z }
3

, (7.28)

where the first and second terms on the rhs are the isotropic and the sym-
metric anisotropic exchange interactions, respectively, while the third term
represents the Dzyaloshinskii—Moriya (DM) interactions [1, 2] with the DM-
vectors Dij being defined as

Dx
ij =

1

2

¡
Jyzij − Jzyij

¢
, Dy

ij =
1

2

¡
Jxzij − Jzxij

¢
, Dz

ij =
1

2

¡
Jxyij − Jyxij

¢
.

(7.29)

7.2.2 Second order derivatives of H
By taking now the second derivatives of the Hamiltonian in Eq. (7.23) with
respect to the polar and azimuthal angles one gets,

∂2H
∂αi∂βk

= δikK
αβ(si) + δik

X
j(6=i)

sαβi Jijsj + (1− δik) s
α
i Jiks

β
k , (7.30)

where α and β can be either ϑ or ϕ, and

Kαβ(si) =
∂2K(si)

∂αi∂βi
, sαi =

∂si
∂αi

, sαβi =
∂2si

∂αi∂βi
. (7.31)

It should be noted that all the derivatives have to be taken [3] at ϑi = π
2

and ϕi = 0 in a coordinate system with the z axis normal to the reference
orientation of the magnetization.
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7.2.2.1 Magnetization along x

Assuming for matters of simplicity a second order uniaxial magnetic aniso-
tropy,

K(si) = −K2,i sin
2(ϑi) , (7.32)

the constants Jμνik , μ, ν ∈ (x, y, z) in Eq. (7.29) can easily be derived:

∂2H
∂ϕi∂ϕi

= −
X
j(6=i)

Jxxij ,
∂2H

∂ϑi∂ϑi
= 2K2,i −

X
j(6=i)

Jxxij ,

∂2H
∂ϑi∂ϕi

=
∂2H

∂ϕi∂ϑi
= 0 , (7.33)

∂2H
∂ϕi∂ϕk

= Jyyik ,
∂2H

∂ϑi∂ϑk
= Jzzik ,

∂2H
∂ϕi∂ϑk

= −Jyzik ,

∂2H
∂ϑi∂ϕk

= −Jzyik . (7.34)

7.2.2.2 Magnetization along z

If the magnetization points along z, the uniaxial magnetic anisotropy is of the
form

K(si) = −K2,i sin
2(ϑi) cos

2(ϕi) , (7.35)

and thus again the Jμνik can be directly obtained:

∂2H
∂ϕi∂ϕi

=
∂2H

∂ϑi∂ϑi
= 2K2,i −

X
j(6=i)

Jzzij ,
∂2H

∂ϑi∂ϕi
=

∂2H
∂ϕi∂ϑi

= 0 , (7.36)

∂2H
∂ϕi∂ϕk

= Jyyik ,
∂2H

∂ϑi∂ϑk
= Jxxik ,

∂2H
∂ϕi∂ϑk

= Jyxik ,
∂2H

∂ϑi∂ϕk
= Jxyik , i 6= k . (7.37)

7.2.3 Non-relativistic description

Since in a non—relativistic description (absence of spin—orbit coupling) there
is no preferred orientation of the magnetization, see, e.g., Eq. (3.49), all off—
diagonal elements vanish and the diagonal elements are identical in value,
i.e.,

∂2H
∂αi∂αi

+
X
j(6=i)

∂2H
∂αi∂αj

= 0 (α = ϑ or ϕ) , (7.38)

Ji =
X
j(6=i)

Jij . (7.39)

This clearly corresponds to an isotropic exchange coupling.
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7.2.4 Relativistic description

In the relativistic case this sum rule does no longer apply. The lhs of Eq. (7.38),
however, can be used to define an effective second order magnetic anisotropy
constant λi. For example, for the case of the magnetization pointing parallel
to the z axis of the global coordination frame, one obtains

λi ≡
1

2

⎛⎝ ∂2H
∂ϑi∂ϑi

+
X
j(6=i)

∂2H
∂ϑi∂ϑj

⎞⎠ = K2,i −
1

2

X
j(6=i)

¡
J zz
ij − J xx

ij

¢
. (7.40)

The physical meaning of the above equation is immediately transparent: be-
yond the on—site anisotropy term (first term, rhs) the magneto—crystalline
anisotropy energy of the system contains contributions that arise from the
anisotropy of the intersite exchange interactions (second term, rhs).

7.3 Relations to relativistic multiple scattering theory

By mapping the free energy F onto the classical spin Hamiltonian in Eq. (7.23),

f : F → H , (7.41)

in terms of multiple scattering theory, see Eq. (7.19) in Section 7.1.4, the
layer—resolved anisotropies constants in Eq. (7.40) are simply given for the
case of the magnetization pointing along z by

λr = −
1

2π
Im

EFZ
−∞

dεTr
£
−τr0,r0(ε)mϑϑ

r (ε) + τr0,r0(ε)m
ϑ
r (ε)τr0,r0(ε)m

ϑ
r (ε)

¤

−
X
sj

1

2π
Im

EFZ
−∞

dεTr
£
τsj,r0(ε)m

ϑ
r (ε)τr0,sj(ε)m

ϑ
s (ε)

¤
, (7.42)

where for practical purposes the sum over sites sj can be rewritten in terms
of a lattice Fourier transformation [3], provided that one and the same two-
dimensional translational symmetry applies in all atomic layers.
Very clearly, the Dzyaloshinskii—Moriya (DM) interaction vectors,

Dij =
1

2

¡¡
Jyzij − Jzyij

¢
,
¡
Jxzij − Jzxij

¢
,
¡
Jxyij − Jyxij

¢¢
, (7.43)

can be evaluated only using a relativistic approach, since off-diagonal second
order derivatives ofH in Eq. (7.30) are required, which in turn can be obtained
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FIGURE 7.1: Orientations n of non-zero Dzyaloshinskii-Moriya vectors Dn
Rij

for (a) a bcc(001) (square lattice), (b) a sc(110) (rectangular lattice), (c) a
bcc(110) (lozenge lattice), and (d) an fcc(111) (triangular lattice) surfaces.
Panels (a) and (b): the n are from the Refs. [1, 2, 4, 5, 6, 7], the moduli of
the vectors can be different for different systems. Panel (c): the n are lying
in the lattice plane but the angle between n and Rij = Ri −Rj cannot be
determined [1, 2, 4, 5, 6, 7]. Panel (d): the n are in a plane perpendicular
to Rij, but their orientation cannot be determined. From Ref. [8].

from the second derivative tensor of F using a formulation shown for a simple
two-dimensional lattice in Eqs. (7.17) — (7.22).
As an illustration for Dzyaloshinskii-Moriya vectors the orientations of such

vectors are sketched in Fig. 7.1 for a few lattice types. In using a Hamiltonian
of the type given in Eq. (7.23) with ab-initio determined parameters including
Dzyaloshinskii-Moriya terms, it was shown for example that for a Cr trimer
on Au(111) actually configuration (a) in the top part of Fig. (7.2) is the
magnetic ground state. In this figure also the Dzyaloshinskii-Moriya vectors
are displayed (bottom part) that correspond to the ground state and to the
excited ferromagnetic configuration (perpendicular orientation of the magne-
tization). The anisotropy energy for the ground state configuration of a Cr
trimer on Au(111), by the way, is rather very small, namely only 0.03 meV.
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FIGURE 7.2: Top: Possible magnetic ground state configurations of a Cr
trimer on Au(111). Bottom: Dzyaloshinskii-Moriya vectors for a Cr trimer
on Au(111). The dark grey arrows correspond to the self-consistent calculation
for the ferromagnetic configuration, and the light gray arrows to that for an
in-plane configuration of the magnetization. From Ref. [9].
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8
The Disordered Local Moment Method (DLM)

In this chapter the so-called Disordered Local Moment
Method is shortly summarized which can be used to eval-
uate temperature effects for anisotropy energies and re-
lated quantities.

The Disordered Local Moment Method (DLM) is based on the idea that
in itinerant metallic magnets, on a certain time scale ζ, which is small as
compared to the characteristic time of spin fluctuations, but longer than the
electron hopping times, the spin orientations of the electrons leaving an atomic
site are sufficiently correlated with those arriving such that a nonzero mag-
netization exists when the appropriate quantity is averaged over ζ. In this
scheme the magnetic excitations are modeled [1] - [4] by associating local
spin-polarization axes with all lattice sites and the orientations {êi} vary very
slowly on the time-scale of the electronic motions. The approach given below
is again fully relativistic.

8.1 The relativistic DLM method for layered systems
As in Chapters 5 and 7 the key quantity of the DLM scheme is once again
the electronic grand potential of a ferromagnetic system (with at least two-
dimensional translational symmetry) corresponding to a given (uniform) di-
rection n̂ of the magnetization, this time, however, as a function of the orien-
tations êi of the local spins located at positions Ri.
In the case of a simple two-dimensional lattice L(2), Ri= cp+Ri,k the so-

called Weiss fields in a given layer p,

�h(n̂)p = h(n̂)p n̂ , �h(n̂)p = �h
(n̂)
pi , ∀i ∈ I(L(2)) , (8.1)

êp = êpi , ∀i ∈ I(L(2)) , (8.2)be0 = ẑ , ∀p,∀i ∈ I(L(2)) , (8.3)

are defined by [4]

h(n̂)p =
3

4π

Z
dêpi (êpi · n̂)

D
Ω(n̂)

E
êpi

, (8.4)
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where
­
Ω(n̂)

®
êpi
denotes the thermodynamical average over the orientations of

the spins centered in all sites of the system with the exception of a particular
site i in layer p for which

êpi = (sinϑpi cosϕpi, sinϑpi sinϕpi, cosϑpi) . (8.5)

It should be noted that this is exactly the same formal construction in terms
of restricted averages as before in the case of chemical disorder; see Chapter
5. Furthermore, as before the site index i serves to denote the origin of L(2);
Eq. (8.3) defines the reference configuration. The layer-resolved probabilities
in Eq. (8.4) are given by [4]

P (n)p (bepi) = βh
(n)
p

4π sinh(βh
(n)
p )

exp
³
−βh(n)p (bepi · bn)´ , (8.6)

where β = 1/kBT .
As in the previous chapter, in using the magnetic force theorem, the free

energy can be approximated by the single—particle grand potential (band en-
ergy),

Ω(n̂) ({bepi}) ' −Z
y

dz f (z;μ) N (n̂) (z; {bepi}) , (8.7)

where μ is the chemical potential, z = � + iδ, f (z;μ) is the Fermi-Dirac
distribution, and N (n̂) (z; {bepi}) denotes the integrated density of states ex-
pressed in terms of Lloyd’s formula; see Eq. (4.37). The Weiss field can now
be evaluated in terms of multiple scattering theory as

h(n̂)p =
3

4π2
Im

Z
dz f (z;μ)

∙Z
dêpi (êpi · n̂) ln detM (n̂)

p (z; êpi)

¸
, (8.8)

where M (n̂)
p (z; êpi) is the inverse impurity matrix, see, e.g., Eq. (5.25),

M (n̂)
p (z; êpi) = D(n̂)

p (z; êpi)
−1 , (8.9)

M (n̂)
p (z; êpi) = 1 +

³
tp (z; êpi)

−1 − tc(n̂)p (z)
−1
´
τ
c(n̂)
pi,pi (z) . (8.10)

In Eq. (8.10) τ c(n̂)pi,pi (z) is that layer- and site-diagonal scattering path operator,
which satisfies the following inhomogeneous Coherent Potential Approxima-
tion

τ
c(n̂)
pi,pi (z) =

Z
dêpi P

(n)
p (bepi)Dτ (n̂)pi,pi (z)

E
epi

, ∀p , (8.11)

with
D
τ
(n̂)
pi,pi (z)

E
epi
referring to the case that in site pi the orientation of the

magnetization is bepi ,D
τ
(n̂)
pi,pi (z)

E
epi
= τ

c(n̂)
pi,pi (z)D

(n̂)
p (z; êpi) . (8.12)
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In comparing Eq. (8.9) with Eq. (5.29) and Eq. (5.30) the formal analogy
between statistical disorder of spins and statistical chemical disorder becomes
obvious; however, the CPA condition is now much more complicated and — in
addition — for a layered system has to be solved simultaneously for all layers
p. In the case of spherically symmetric effective potentials and exchange fields
(Atomic Sphere Approximation, ASA) tp (ε; bepi) can easily be calculated by
means of the following, by now familiar similarity transformation,

tp (z; bepi) = R (bepi) tp (z; be0)R (bepi)+ , (8.13)

where tp (z; be0) refers to the case of an effective field pointing along be0 (z
axis, reference configuration) and R (bepi) contains block-wise the (projective)
irreducible representations of that element ∈ O(3) that rotates the z axis intobepi; see also Section 4.11.
Since the Weiss fields h(n̂)p are coupled to the grand canonical potential

Ω(n̂) ({bepi}) via Eq. (8.4), which in turn is determined by the CPA condition
in Eq. (8.11), use of the DLM scheme requires a particular self-consistent
treatment. First an initial (usually uniform) set of h(n)p has to be chosen. In
using as a start, e.g., êp = êo,∀p, the layer-resolved probabilities P (n)p (bepi)
in Eq. (8.6) can be evaluated and thus also the CPA condition in Eq. (8.11),
from which in turn a new set of Weiss fields, see Eq. (8.8), can be obtained.
Equations Eq. (8.8) and Eq. (8.11) have to be varied until in all atomic layers
the Weiss fields h(n)p no longer change.

8.2 Approximate DLM approaches
Since the above scheme is computationally rather demanding, an approxi-
mation for calculating the Weiss fields was suggested [5]. Suppose that in
Eq. (8.4)

­
Ω(n̂)

®
êpi
is approximated byD

Ω(n̂)
E
êpi
= Ωc(n̂) + h(n̂)p (êpi · n̂) +Kp sin

2 ϑpi , (8.14)

where Ωc(n̂) is the grand canonical potential of the completely disordered
effective medium and Kp is a (microscopic) uniaxial anisotropy constant; then
the Weiss field can be obtained from the derivative of

­
Ω(n̂)

®
êpi
with respect

to the average magnetization direction n̂.
For example, for n̂ = ẑ the corresponding Weiss fields are given by

h(ẑ)p = − 1
π
Im

Z
dε f (ε;μ) tr

"
∂tp (ε; êpi)

−1

∂ϑpi
τ
c(ẑ)
pi,pi(ε)D

(ẑ)
p (ε; êpi)

#
êpi=ẑ

,

(8.15)
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with
D(ẑ)
p (ε; êpi) ≡M (ẑ)

p (ε; êpi)
−1

. (8.16)

It was found [5] that Eq. (8.8) and Eq. (8.15) resulted in Weiss fields that
differed only by about 1% .
In order to evaluate Kp again the magnetic force theorem and Lloyd’s for-

mula in the context of infinitesimal rotations as discussed in Chapter 7 can
be used. For a system characterized by a simple two-dimensional lattice the
layer-dependent uniaxial anisotropy constants Kp are defined by

Kb =
X
p

Kb,p , (8.17)

where

Kb,p =
1

π
Im

Z
dε f (ε;μ)

Z
dbepiP (z)p (bepi)

×Tr
∙
∂mp (z; bepi)

∂ϑp

D
τ
(n̂)
pi,pi (z)

E
epi

¸
ϑp=

π
4 ,ϕp=0

, (8.18)

and according to Eq. (7.6)

∂mp (z; bepi)
∂ϑp

=

µ
∂Rp (bn)
∂ϑp

tp (z; bepi)−1Rp (bn)+
+Rp (bn) tp (z; bepi)−1 ∂R+p (bn)∂ϑp

!
. (8.19)

It should be noted that in Eq. (8.18) use was made of the fact that in this
particular case Eq. (7.13) reduces to

ln τ 0(z)− ln τ (z) = −τ (z)∆m(1)
i (z) , (8.20)

where ∆m(1)
i (z) simply is given by Eq. (8.19) at ϑp = π/4,∀p; see also the

discussion in the previous Chapter.
Unfortunately, up to now there are only very few publications using the

relativistic DLM scheme. The probably only one dealing with the magnetic
anisotropy energy of solid systems nanostructured in one dimension will be
discussed in Chapter 11.
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9
Spin dynamics

In this chapter an iterative multi-scale approach is in-
troduced by combining a semi-classical Landau-Lifshitz-
Gilbert equation with multiple scattering theory. This
scheme is in particular useful in determining the mag-
netic ground state of magnetic systems nanostructured
in two dimensions.

9.1 The phenomenological Landau-Lifshitz-Gilbert
equation

Magnetization or spin dynamics is usually described phenomenologically by
means of the well-known Landau-Lifshitz-Gilbert (LLG) equation [1] - [4]:

δ

δt
M(r,t) = −γM(r,t)×Heff (r)+

λ

m
M(r,t)×{M(r,t)×Heff (r)} , (9.1)

where γ is the gyromagnetic ratio, λ the Gilbert damping factor, and the ef-
fective forcing field is given by the derivative of the internal energy E(M(r,t))
with respect toM(r,t),

Heff (r) = δE(M(r,t))/δM(r,t) . (9.2)

For simulation purposes very often Heff (r) is decomposed into various terms,

Heff (r) = Hextern(r)+Hexch(r)+Hanis(r)+Hdipole(r)+Helast(r) , (9.3)

corresponding in turn to contributions from applied external fields, intrinsic
exchange interactions, the magneto crystalline anisotropy, magnetic dipole-
dipole interactions, and magneto-elastic effects.
For practical purposes the individual terms in Eq. (9.3) are then taken

either from experiment or by adopting parameters listed in the literature.
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9.2 The semi-classical Landau-Lifshitz equation
For a set of time-dependent magnetic moments,

{mi(t)} , mi(t) = mi(t)êi(t) , mi(t) = |mi(t)| , (9.4)

êi(t) =mi(t)/mi(t) , (9.5)

the precessional component of their motions is described by a microscopic,
quasi-classical equation of motion which is of the same form as the classical
Landau-Lifshitz equation

δM(r, t)

δt
= −γM(r, t)×Heff (r) , (9.6)

(Eq. (9.1) without the second term on the rhs), however, now with an effective
field, Beff

i (r), that is based on first principles theory:

δ

δt
mi(t) = −γmi(t)×Beff

i (r) , (9.7)

Beff
i (r) ≡ Beff

i (r;{mi(t)}) =
δELSDA({mi(t)})

δmi(t)
, (9.8)

where ELSDA({mi(t)}) is the energy obtained by solving the LSDF (Local
Spin Density Functional) equations for the instantaneous state corresponding
to a given set of moments {mi(t)}.

9.3 Constrained density functional theory
Ordinary Density Functional Theory, however, does not support such general
states [5, 6]. In order to overcome this difficulty a so-called Constrained
Density Functional Theory (CDFT) was developed [7], in which the LSDA
equations are solved subject to the following constraint,Z

Ωi

(mi(r)× êi) dr = 0 , (9.9)

where, as should be recalled,

êi = (sinϑi cosϕi, sinϑi sinϕi, cosϑi) . (9.10)

This condition ensures that the local magnetizations are aligned with the
directions specified by a given set {êi}. In order to maintain this specific ori-
entational configuration, however, a local transverse constraining field must
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be applied at each site in order to extinguish the components of the mag-
netization transverse to êi. The constraining field is then obtained from the
condition

δEcon[{êi}, {Bcon
i }]

δêi
= 0 , ∀i . (9.11)

The energy Econ[{êi}, {Bcon
i }] in the presence of the constraining field is given

by

Econ[{êi}, {Bcon
i }] = Eint[{êi}, {Bcon

i }] +
Z

dr M(r) ·B(r) , (9.12)

where M(r) and B(r) is the total magnetization and exchange field, respec-
tively. This formalism can be made into a practical computational scheme by
choosing Bcon

i (r) to be of the functional form

Bcon
i (r) = Bi

xc(r)ci , (9.13)

with Bi
xc(r) being the local (longitudinal) exchange correlation potential at

the site i and ci a unit vector normal to the local orientation êi.
The fact that Eq. (9.13) is a good approximation for the constraining field

can be monitored a posteriori by checking the extent to which the transverse
components of mi(r) are quenched. It should be noted, by the way, that
"standard" LSDA ground states are simply constrained local moment (CLM)
states for which Bcon

i = 0 in all sites.
In order to make use of the CLM model and a first principles spin dynamics

(FP-SD) scheme it is sufficient to note that the internal effective field that
rotates the spins is just the opposite of the constraining field, i.e., Beff

i =
−Bcon

i in Eq. (9.8). Furthermore, as obviously implied by the use of Eq. (9.8),
Eq. (9.7) does not include a torque term coupling the spin with the orbital
degrees of freedom [8]; see also Section 19.4.

9.4 The semi-classical Landau-Lifshitz-Gilbert equation

As easily seen, Eq. (9.7) only takes care of the precessional motion of the
moments: an equivalent expression for the Gilbert term does not occur. Since
up-to-now no quantum mechanical description of the Gilbert damping pa-
rameter λ is available and since FP-SD serves the sole purpose of finding
the (magnetic) ground state, it is sufficient to add a Gilbert damping term
phenomenologically as

δ

δt
mi(t) = −γmi(t)×Beff

i (ri) + λmi(t)× [mi(t)×Beff
i (ri)] , (9.14)
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where α is now a constant that can be adjusted to ensure rapid convergence to
the ground state (or, at least, the nearest local minimum). Dividing Eq. (9.14)
by mi(t) immediately leads to an equation of motion for the time-dependent
orientations êi(t),

dêi(t)

dt
= γêi(t)×Beff

i (ri) + λ
h
êi(t)×

h
êi(t)×Beff

i (ri)
ii

, (9.15)

with Beff
i (ri) being an effective magnetic field averaged over the cell centered

at Ri.

9.5 First principles spin dynamics for magnetic systems
nanostructured in two dimensions

Suppose that in Eq. (2.20) the Kohn—Sham—Dirac Hamiltonian is of the fol-
lowing form

H(r) = cα·p+ βmc2 + V (r) + β σ ·(B(r) +Bcon(r)) , (9.16)

where according to the requirements of multiple scattering

V (r) =
NX
n=1

Vn(rn) , B(r) =
NX
n=1

Bn(rn) , Bcon(r) =
NX
n=1

Bcon
n (rn) ,

DVn = DBn = DBcon
n

, DVn ∩DVm = DVnδnm ,

and the Bcon
n (r) are constraining fields,

Bcon
n (rn) = −Beff

n (rn) . (9.17)

9.5.1 FP-SD & ECM

Going back now to Section 4.13 dealing with the Embedded Cluster Method,
let th(z; êh(t)) denote a diagonal (super-) matrix of single-site t-matrices in
the case that only unperturbed host atoms would occupy a particular cluster
C comprising N sites of a system characterized by a simple lattice L(2),

th(z; êh(t)) = {tn(z; êh(t))δnm | tn(z; êh(t)) = th(z; êh(t)) , ∀Rn ∈ C } ,
(9.18)

where êh(t) refers to the uniform direction of the magnetization in all sites of
the host.
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FIGURE 9.1: Artificial time evolution of the angles θ (top) and the φ (bottom)
angles defining the orientation of the spin moments for the seven Co atoms
in the finite chain depicted in Fig. 4.1. The symbols refer to the following
Co atoms numbered from the left to the right in the bottom part of Fig. 4.1:
1: full squares, 2: open circles, 3: full triangles, 4: full diamonds, 5: open
triangles, 6: full circles and 7: open squares. Shown are the results for only
the first 100 time steps. During the next 900 time steps the angles converge
very smoothly. From Ref. [9].

Furthermore, let tC(z; {ên(t)}) be that matrix that refers to the actual
occupation and orientation ên(t) of the various sites in C,

tC(z; {ên(t)}) = {tn(z; ên)δnm | tn(z; ên) 6= th(�; êh(t)) , ∀Rn ∈ C } ;
(9.19)

then the scattering path operator τ C(z; {ên(t)}) comprising all sites in C is
given by the following Dyson-like equation,

τ C(z; {ên(t)) = τh(z; {ên(t))

×
£
1− (t−1h (z; êh(t))− t

−1
C (�; {ên(t)))τh(z; {ên(t))

¤−1
,
(9.20)

from which in turn iteratively all corresponding local quantities, i.e., charge
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ρn(z; ên(t)) and magnetization densitiesmn(z; ên(t)), see Eqs. (4.17) - (4.21),
can be calculated and thus self-consistently also a new set of potentials and
exchange fields. For an extended review article concerning first principles spin
dynamics in the context of the embedded cluster method, see Ref. [10].
From the point of view of searching for the magnetic ground state of a

system it is sufficient to consider only the second (damping) term on the rhs of
Eq. (9.15). The evolution of the orientations is then measured on a time scale
with a unit (time step) of the inverse Gilbert damping constant in Eq. (9.14),
1/λ. A stable ground state is achieved by a concomitant convergence of all θi
and φi to intrinsic constants and (additionally) of the constraining fields to
zero.
In Fig. 9.1 the evolution of the θi and φi is plotted for the first 100 steps

in this artificial time scale for each Co atom in a chain of seven Co atoms
along a Pt(111) edge; see also Fig. 4.1 in Chapter 4. In this calculation
the initial directions of the atomic magnetic moments were set by a random
number generator. It can be seen that after some oscillations both the θ and
φ angles approach a very similar value for all the Co atoms. Further details
of this study are discussed in Chapter 13, dealing with the properties of the
anisotropy energy in solid systems nanostructured in two dimensions.
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10
The multiple scattering scheme

This chapter essentially is intended to give an overview
over all those concepts that were introduced up-to-now.
It is also meant for all those readers that are not inter-
ested in formal details.

Multiple scattering can in principle be expressed in terms of the so-called
scattering path operator τ (z), which in turn is defined by two kinds of quan-
tities, namely single site t matrices t (z) and so-called structure constants
G0 (z):

τ (z) =
³
t (z)

−1 −G0 (z)
´−1

The quantities τ (z), t (z) and G0 (z) are matrices with rows and columns
labelled by sites defined by location vectors Rn,

τ (z) = {τnm (z)} , t (z) = {tn (z) δnm} , tn (z) = {tnΛΛ0(z)}

G0 (z) = {Gnm
0 (z) (1− δnm)} , Gnm

0 (z) =
©
Gnm
0,ΛΛ0 (z)

ª
each matrix element being itself a matrix labelled by angular momentum
quantum numbers, namely

Λ =

½
L = (cm) , non-relativistic
Q = (κμ) , relativistic

The location vectors Rn can refer to atomic positions in an infinite (bulk),
semi-infinite (bulk with surface) or finite solid (cluster) system, or specify po-
sitions in the vacuum. From the scattering path operator the single particle
Green’s function can directly be obtained and therefore all related physical
properties. In the presence of three- or two-dimensional translational symme-
try use can be made of lattice Fourier transformations.
In Fig. 10.1 all the options available in using a multiple scattering scheme

are compiled.
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10.1 The quantum mechanical approach

FIGURE 10.1: The various options to use a Korringa-Kohn-Rostoker (KRR)
type multiple scattering approach self-consistently within the framework of lo-
cal Density Functional Theory. For matters of magnetic anisostropy effects
only the (fully relativistic) options apply.
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10.2 Methodological aspects in relation to magnetic
anisotropies

The very reason for using a Green’s function approach of this type is quite
obvious from Fig. 10.2, since very important features not accessible in so-
called "wave function approaches" to the Density Functional Theory can be
included even on a fully relativistic level, namely disorder, temperature effects
and even time dependence. Disorder, for example, appears at a first glance
as an academic issue. However, since, e.g., permalloy, NicFe1−c, most likely
is the most prominent magnetic system used in spintronics, the possibility
to treat statistically disordered semi-infinite systems is of utter importance.
Similar arguments pertain for temperature effects.

FIGURE 10.2: Additional features of the multiple scattering scheme.
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10.3 Physical properties related to magnetic anisotropies
As already said at the very beginning of this book: magnetic nanostructured
systems are not interesting per se, but because of their extraordinary physical
properties. Additional concepts are therefore needed not only to describe elec-
tric and magneto-optical properties, but also to provide suitable parameters
for structural simulations.

FIGURE 10.3: Additional approaches based on the multiple scattering scheme.

In the following chapters particular aspects depicted either in Fig. 10.2 or
Fig. 10.3 are discussed, dealing, however, with transport properties in separate
chapters.
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11
Nanostructured in one dimension:
free and capped magnetic surfaces

Although a distinction between capped magnetic surfaces
and spin valves is a bit artificial, in terms of devices such
a separation does make sense. Here mainly properties of
the magnetic anisotropy energy in free and capped mag-
netic surfaces such as reorientation transitions, influence
of the orientation of the substrate or effects of alloying are
discussed. Furthermore, as a special case of an anisotropic
behavior the so-called interlayer exchange coupling is in-
troduced.

11.1 Reorientation transitions

In search of systems that show perpendicular magnetism in the last two
decades a large number of experimental studies was published in which the
magnetic properties of finite films of Fe, Co or Ni on noble metal substrates
were investigated. It turned out that in quite a few cases the experimen-
tal set-ups had to be improved considerably in order to produce laboratory-
independent results. There were (are) even a few systems that gave rise to
heated discussions concerning the reported findings. Most prominently in this
respect were (are?) the systems Ni and Fe on Cu(100), since not only the kind
of deposition mattered, but also the concentration of remaining gases in the
high vacuum chamber was (is) of crucial importance. In particular layer relax-
ation at and in surface near regions seemed to dependent strongly on growth
and vacuum conditions.
In the following, first two kinds of systems, namely Fen/Au(100) and Com/

Nin/Cu(100), are chosen in order to illustrate a very important property
of magnetically coated surface, the so-called reorientation transition, which
occurs at some materials-dependent critical thickness. The first example is
shown because later in Chapter 18 this system will be discussed again in terms
of ab-initio magneto-optics, i.e., in terms of theoretical concepts describing
the actually measured quantities. The second system, which in fact shows
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two reorientation transitions, serves to introduce the concept of layer-resolved
quantities, which turned out to be extremely useful not only for the interpre-
tation of experimentally determined magnetic anisotropy constants but also
for related properties such as electric transport.

Further on additional aspects like alloying effects or the use of "superstruc-
tures" will be discussed in order to characterize the diversity of phenomena
to be encountered in dealing with the magnetic anisotropy energy of free or
capped surfaces, i.e., in the search of perpendicularly magnetized systems.

11.1.1 The Fen/Au(100) system

In 1990 Liu and Bader communicated [1] that when grown at 100 K Fe films
on Au(100) have a magnetization perpendicular to the surface for thicknesses
of less then 2.8 monolayers (ML) and an in—plane magnetization beyond that.

FIGURE 11.1: Left: Magnetic field pointing into a general direction charac-
terized by angles Θ and φ, relative to a two—dimensional square lattice. Right:
Calculated magnetic anisotropy energies for Fe multilayers on Au(001). ∆Eb:
circles, ∆Edd: triangles, ∆E=∆Eb+∆Edd: squares. Solid lines serve as a
guide for eye. From Ref. [2].

Using the magnetic force theorem (Section 6.2) Szunyogh et al. [2] for the
first time applied the fully relativistic approach in terms of the Atomic Sphere
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Approximation in order to evaluate the difference∆Eb(n) of the band energies,

∆Eb(n)=Eb(n; k)−Eb(n;⊥) , (11.1)

where n denotes the number of Fe monolayers on Au(100), with the magnetic
field pointing (a) perpendicular to the surface (⊥) and (b) along the x axis
of the 2D square lattice (k); see the left part of Fig. 11.1. Taking also into
account the corresponding difference in the magnetic dipole-dipole energy
∆Edd(n) (Section 6.3), the resulting magnetic anisotropy,

∆E(n) = ∆Eb(n) +∆Edd(n) , (11.2)

displayed in Fig. 11.1 as a function of n, was found to reproduce the experi-
mentally observed reorientation transition rather well. This particular figure
confirmed the view that a reorientation of the magnetization from perpendic-
ular to in-plane is essentially caused by an increase in the shape anisotropy
∆Edd(n) with increasing thickness of the magnetic overlayer. The critical
thickness, however, at which this transition occurs is governed by ∆Eb(n).
The band energy contribution to the magnetic anisotropy energy has to be
positive and large enough in order to give rise to a reorientation transition.
Both ∆Eb(n) and ∆Edd(n) are materials-specific quantities. While ∆Edd(n)
is always negative and increasing with n, no a priori rules for ∆Eb(n) can be
given. In some systems ∆Eb(n) is positive, in others negative. The search for
suitable systems showing perpendicular magnetism is therefore a search for
systems with a large enough ∆Eb(n).

11.1.2 The system Com/Nin/Cu(100)

11.1.2.1 The first reorientation transition

Thin films of Ni on Cu(100) show an unexpected behavior of magnetic (re-
orientation) phase transitions, since in contrast to quite a few other magnetic
thin films on noble metal surfaces the moments first line up in-plane and then
reorient to an out-of-plane (perpendicular) direction. For free surfaces of Ni
on Cu(100) this reorientation occurs between n = 7 [3, 4] and n = 10 − 11
[5, 6]. For n > 37 [7] the magnetization eventually switches back to in-plane.
Experimentally it was found that adsorbates strongly influence the critical
thickness. In particular it was found that at 170 K the adsorption of about
2 Langmuir H2 reduces the critical thickness for the first reorientation from
about 10 to 7 ML.
In theoretical investigations it turned out [8, 9] that the magnetic anisotropy

energy as a function of the number of Ni layers is extremely sensitive to layer
relaxation. The left half of Fig. 11.2 shows these effects considering three
different uniform relaxations with respect to the interlayer distance of the
Cu(100) substrate, referred to in this figure as the unrelaxed case.
The reason for this behavior can easily be seen by considering layer-resolved

band energies. Since in Eq. (6.14) a sum over sites has to be performed, by
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FIGURE 11.2: Left: Magnetic anisotropy energy ∆Ea (top), band energy
difference ∆Eb (middle) and magnetic dipole-dipole energy difference ∆Edd

(bottom) versus the number of Ni layers on Cu(100). Triangles, squares and
circles refer in turn to a uniform relaxation by 0, -2.5 and -5.5%, i.e., to a c/a
ratio of 1, 0.975 and 0.945 with respect to the interlayer spacing in bulk Cu.
Right: Layer resolved band energy differences ∆En

b for 6 (top), 9 (middle)
and 12 (bottom) Ni-layers on Cu(100). Triangles, squares and circles refer in
turn to a uniform relaxation by 0, -2.5 and -5.5%. From Ref. [8].
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using an appropriate lattice Fourier transformation for a layered system this
sum reduces to a sum over layers. For a system with m magnetic layers on
top of a suitable substrate, the band energy part ∆Eb(m,N) of the anisotropy
energy can therefore be split into contributions arising from the individual
atomic layers. The summation extends over all contributing atomic layers,
i.e., includes also a sufficient number mS of the substrate and vacuum layers
mV ; see, e.g., Eq. (2.9) in section 2.2,

∆Eb(m;N) =
NX
i=1

∆Ei
b(m) =

NX
i=1

Ei
b(m; k)−Ei

b(m;⊥) , (11.3)

N = m+mS +mV , (11.4)

∆Ei
b(m) =

EFZ
y

(ni(m; k, z)− ni(m;⊥, z)) zdz . (11.5)

In Eq. (11.5) the ni(m; ξ, z) are layer-dependent densities of states correspond-
ing to ξ being either k or ⊥. These quantities can directly be evaluated using
Eq. (4.103).
In the following, mostly the below-short-term notation for the quantities in

Eqs. (11.2) and (11.5) will be used. Only in very particular cases necessary
specifications with respect to the number of certain atomic layers shall be
made.

∆Ea : anisotropy energy
∆Eb : band energy
∆Ei

b : layer-resolved band energy
∆Edd : magnetic dipole-dipole energy

In the right part of Fig. 11.2 the layer resolved band energy differences
∆Ei

b are shown for 6, 9 and 12 Ni-layers on Cu(100). One can see that the
surface and interface contributions are negative, the surface giving the larger
contribution, and that relaxation predominantly increases the contribution
from interior layers in the Ni films.
The anisotropic part of the free energy for magnetic multilayer systems,

see, e.g., Ref. [10] and references therein, is phenomenologically very often
described by

E = 2πM2 cos2 θ +K2 cos
2 θ , (11.6)

K2 = Kv
2 +Ks

2/d , (11.7)

where K2 refers to the second order term of the magnetic anisotropy energy
and θ denotes the angles of the magnetization M with respect to the surface
normal. As indicated in Eq. (11.7), where d refers to the film thickness, K2 is
thought to consist of two parts, namely a thickness-independent, "volume"-
like contribution Kv

2 and a thickness-dependent "interface-surface"-like con-
tribution Ks

2 .
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By picking up in Eq. (11.3) the individual contributions from (1) the Cu/Ni
interface (KS1

2 ), (2) the Ni/Vacuum interface (KS2
2 ), and (3) a layer averaged

contribution from the interior (KI
2 , remainder divided by the number of inte-

rior Ni layers), one easily can identify these quantities with the second order
constants in Eq. (11.6):

Kv
2 = KI

2 , Ks
2 = KS1

2 +KS2
2 . (11.8)

Although such an identification seems to be quite intriguing, one has to keep
in mind that the only well-defined quantity is ∆Eb. The grouping of terms
in the sum in Eq. (11.3) over layer dependent contributions merely serves
purposes of interpretation.

11.1.2.2 The second reorientation transition

By capping the Ni films with Co, measurements revealed that the orientation
of the magnetization switches to in-plane with an increasing number of Co
layers. Epitaxial Cu(100)/Ni(8 Å)/Co(2-10 Å)/Ni(17 Å)/Cu structures, e.g.,
did not show a perpendicular magnetic anisotropy; in fact, 2 Å Co turned
out to be the critical thickness for a perpendicular magnetization. Further-
more, the system Si(100)/Cu(1000 Å)/Ni(60 Å)/Co(step-wedge)/Cu(30 Å)
was studied [11] in an attempt to control the critical thickness for the per-
pendicular magnetization: it was found that the magnetization turns in-plane
at a critical Co thickness of 6.15±1.25 Å. As reported by O’Brien et al. [7]
strain relaxations in the Ni layers set in beyond about 13 of (-5.5%) uniformly
relaxed Ni layers.
In order to deal with this rather complex situation the concept of layer-

resolved contributions to the anisotropy energy is again of great help. Con-
sidering the following obviously quite different systems (Table 11.1), it turned
out that in fact, in terms of a simulation model, they can be stacked together.

Table 11.1: Second reorientation transition in Nin/Cu(100): stacking of dif-
ferent systems.

system A fcc Cu(100)/Ni15(-5.5%)/Ni12(0%)/Vac
system B fcc Cu(100)/Ni21(-5.5%)/Vac
system C fcc Ni(100)/Ni18(0%)/Vac
system D fcc Ni(100)/Ni12(0%)/Com/Vac
system E fcc Cu(100)/Nin1(-5.5%)/Nin2(0%)/Com

In the left part of Fig. 11.3 the layer-resolved band energies are displayed
for the uncapped systems. In the top part of this figure system A and B are
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compared with each other by viewing both systems from the side of the Cu
substrate (left-hand-side). Evidently, the layer-resolved band energies of the
first 13 Ni layers from the left (Cu/Ni interface) in system A hardly differ from
those of system B. In the bottom part of Fig. 11.3 system A is compared with
system C by viewing both from the vacuum (right-hand) side. Apparently
again, the first 12 layer-resolved contributions from the right in system A are
very close in value to those in system C.

FIGURE 11.3: Left: Comparison of the layer-resolved band energy contri-
butions ∆En

b of Cu(100)/Ni15(-5.5%)/Ni12(0.0%) (system A, squares) with
Cu(100)/Ni21(-5.5%) (system B, open squares, top), and in Ni(100)/Ni18
(system C, open squares, bottom). In all cases the first layers to the right
denote vacuum layers. In the case of system A the first three layers to left
refer to Cu layers. The view from the Cu/Ni and from the Ni/Vac inter-
face is indicated by arrows. The small boxes denote the last relaxed Ni layer
in system A. Right: Calculated band energy, ∆Eb and magnetic dipole-dipole
energy contributions, ∆Edd to the total magnetic anisotropy energy, ∆Ea in
Cu(100)/Ni13(-5.5%)/Ni17(0%)/Com. From Ref. [12].



© 2009 by Taylor & Francis Group, LLC

100 Magnetic Anisotropies in Nanostructured Matter

From Fig. 11.3 it is obvious that in system A a transition region of about
three layers can be identified (see thick vertical lines) situated between a
regime of layers corresponding to an in-plane lattice constant of fcc Cu and
a 5.5%-contracted interlayer spacing (regime 1 ) and a regime of layers corre-
sponding to a parent fcc Ni lattice (regime 2 ), since outside of this transition
region the layer-resolved contributions seem to be unaffected by the interface
between regime 1 and regime 2.
If therefore n1 denotes the number of tetragonally relaxed Ni layers on

fcc Cu(100) and n2 the number of unrelaxed Ni layers on top of fcc Ni(100)
the total band energy contribution to the magnetic anisotropy energy can be
estimated by adding up the corresponding contributions from both systems.
Since for ∆Edd similar arguments apply, an estimate of ∆Ea for system E
(m = 0) as a function of n1(> 8) and n2(> 10), n1 + n2 = n, can be given.
Experimental studies showed that the critical thickness for a reorientation

transition from perpendicular to in-plane in Cu(100)/Nin is between n = 37
[3] and n = 41 [7]. Furthermore, from these and related studies it seems that
about 13 ML of Ni on Cu(100) is the critical thickness for the pseudomor-
phic region. Using this value for n1, for free surfaces of Ni on Cu(100) the
above model predicted [12] the (second) reorientation transition to occur at
38 Ni layers which clearly enough is in good agreement with the experimental
findings.
For n1 = 13 and n2 = 17 the calculated results for ∆Eb, ∆Edd and ∆Ea

are displayed in Fig. 11.3 as a function of the number of capping Co layers,
m. Although, as to be expected, ∆Edd decays monotonously, the magnitude
of ∆Ea with respect to m is clearly governed by ∆Eb leading to a maximum
at m = 2 and a reorientation transition at about m = 4.

11.1.3 Influence of the substrate, repetitions

As can be imagined the orientation of the substrate is of quite some impor-
tance for the size and the sign of the anisotropy energy, just as well as prepar-
ing repetitions of overlayer structures ("superstructures") is an excellent tool
to design systems with a perpendicular orientation of the magnetization.
An example of this particular feature of the anisotropy energy is to be found

in Fig. 11.4. This figure shows in particular that independent of the surface
orientation free surfaces of Co on Pt are oriented always in-plane, the actual
anisotropy, however, being almost twice as large in value for Pt(111) than for
Pt(100).
Rather spectacular are the consequences when repeating double layers of

CoPt on top of Pt(100) and Pt(111). As can be seen from the right part
of Fig. 11.4 not only is the orientation of the magnetization now parallel
to the surface normal, but the differences between a Pt(111) and a Pt(100)
substrate are indeed striking. For both types of substrates, the anisotropy
energy is increasing nearly linearly with the number of repetitions; in the case
of a Pt(111) substrate it is by a factor of about 5 bigger than for Pt(100).
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FIGURE 11.4: Left: Magnetic anisotropy energy and its contributions for free
surfaces of Con on Pt(100) (top) and Pt(111) (bottom). Right: Magnetic
anisotropy energy and its contributions for free surfaces of the superstructure
(CoPt)n on Pt(100) (top) and Pt(111) (bottom). Ea, Eb and Edd are denoted
in turn by squares, circles and triangles. From Ref. [13].

This feature of "superstructures" was exploited in quite a few experimental
studies by generating (ConPtm) slabs r times repeated.
An interesting question is that of what happens if alloying between Co and

Pt occurs. In using the Coherent Potential Approximation, see Chapter 5, a
layer-resolved band energy contribution ∆Ei

b(m) in Eq. (11.3) is then of the
form

∆Ei
b(m) =

X
α=A,B

ciα∆E
i,α
b (m) =

X
α=A,B

ciα

³
Ei,α
b (m; k)−Ei,α

b (m;⊥)
´

,

(11.9)
where ciα is the concentration of constituent α = Co, Pt in the i-th atomic
layer. In the averaging of the magnetic dipole-dipole interaction, see Eq. (6.16),
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FIGURE 11.5: Magnetic anisotropy energy per repetition n for Pt(100)/Con
(circles), Pt(111)/Con (up triangles), Pt(100)/(CoPt)n (down triangles),
Pt(111)/(CoPt)n (diamonds) and (Co0.5Pt0.5)n (squares). From Ref. [13].

possible vertex corrections are usually neglected [14],

hmi ·mii ' hmii · hmji , (11.10)

hmii =
X

α=A,B

cαim
α
i . (11.11)

In all above-mentioned Co/Pt systems the magnetic anisotropy energy per
number of repetition n, Ea/n, see Fig. 11.5, tends to a constant for a suffi-
ciently large n, which in the case of the superstructure (CoPt) on Pt(111) is
surprisingly large, namely about 1.4 meV.
It is by now a rather well-known fact that in semi-infinite systems the

magnetic anisotropy energy is by orders of magnitude larger than comparable
bulk-values. For example, in an evaluation [16] of the magnetic anisotropy
energy of bulk CocPt1−c alloys the largest value was found for c = 0.50,
which, however, amounted to only 3 μeV.

11.1.4 Alloying, co-evaporation

Thin films of Fe and Co have different orientations of the easy axis on Cu(001):
Fe films up to a thickness of at least ten ML’s show experimentally an out-
of-plane magnetization [17], while thin Co films are magnetized in-plane [18].
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Thus, an interesting behavior is to be expected when alloying Fe with Co, i.e.,
to address the question, whether regions of different preferred orientations of
the magnetization can be identified as a function of the number of magnetic
layers and of the alloy composition.

Table 11.2: Calculated spin—only magnetic moments [ μB] of Fe in
CumFen/Cu(001) multilayers, n = 1, 2, . . . , 7, corresponding to the
antiferromagnetic ground state. The numbering of the Fe layers increases
from the vacuum (or capped) side towards the bulk. For comparison the case
of n = 2 is included here although the ground state refers to the ferromagnetic
configuration. A parallel or antiparallel orientation of the magnetization
along the surface normal is indicated by a plus and minus sign, respectively.
From Ref. [21].

n m Fe(7) Fe(6) Fe(5) Fe(4) Fe(3) Fe(2) Fe(1)
2 0 -2.340 2.355
∞ -2.207 2.207

3 0 -2.121 2.297 2.820
∞ 2.232 -1.428 2.232

4 0 2.262 -1.430 2.259 2.788
∞ -2.130 -2.094 2.094 2.130

5 0 -2.224 1.453 -1.506 2.245 2.793
∞ 2.507 2.147 -1.609 2.147 2.507

6 0 2.523 2.089 -2.029 -2.022 2.162 2.789
∞ 2.509 2.069 -2.029 -2.029 2.069 2.509

7 0 -2.232 1.534 -1.450 1.779 -1.457 2.264 2.802
∞ 2.520 2.264 -1.939 -1.753 -1.939 2.264 2.520

Since only antiferromagnetically coupled Fe-layers on Cu(001) exhibited
perpendicular magnetism up to a film thickness of at least seven atomic lay-
ers, see Table 11.2, while when ferromagnetically arranged the moments were
oriented in-plane [19], also for Fe-rich Fe/Co thin films the type of the mag-
netic interlayer coupling proved to be of crucial importance. Only after having
determined the correct magnetic ground state configuration this configuration
can be used for the determination of the magnetic anisotropy energy.

In Fig. 11.6 a "phase diagram" of reorientations in (FexCo1−c)n/Cu(100)
is shown with respect to the number of layers n and x, the concentration of
Fe. The corresponding experimental data [22], generated by co-evaporation
of Fe and Co in a temperature range between 120 and 300 K suggested, how-
ever, that the reorientation transition occurs already at a film thickness of
two monolayers, and that above four monolayers, only an in—plane magneti-
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FIGURE 11.6: "Phase diagram" of the reorientation transition in terms of re-
gions of perpendicular and in-plane magnetization. Solid circles in the shaded
region correspond to a positive magnetic anisotropy energy and therefore to
a perpendicular magnetization. Open circles indicate a negative magnetic
anisotropy energy and an in-plane orientation of the magnetic moments. From
Ref. [14].

zation is present (except for Fe concentrations close to one). Since at a given
composition finite temperatures most likely decrease the critical thickness of
the film at which the reorientation occurs, the "phase field" of perpendicular
orientation in the phase diagram of Ref. [22] is expected to move also in the
experiment to larger film thicknesses as the temperature approaches T = 0
K.

11.1.5 Oscillatory behavior of the magnetic anisotropy en-
ergy

Very often for matters of protection in experimental studies magnetic over-
layers (free surfaces) were covered by more or less thin caps of a suitable
chemically inert metal such as Cu or Au. However, this procedure caused
additional effects, since the magnetic anisotropy energy proved to depend
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FIGURE 11.7: Left: Band energy contribution to the magnetic anisotropy en-
ergy as a function of the number of Co layers in Cu(100)/Con (diamonds),
Cu(100)/Con/Cu(100) (squares), Cu(100)/AuConAu/Cu(100) (circles) and
Cu(100)/ConCu3Con/Cu(100) (triangles). Right: Magnetic dipole-dipole en-
ergy contribution to the magnetic anisotropy energy as a function of the
number of Co layers in Cu(100)/Con (diamonds), Cu(100)/Con/Cu(100)
(squares), and Cu(100)/AuConAu/Cu(100) (circles). From Ref. [20].

characteristically on the thickness of such a cap. It turned out that in fact Ea

oscillates with respect to the number of cap layers.
In the left part of Fig. 11.7 the oscillations of the band energy contribution

to the magnetic anisotropy energy with respect to the number of Co layers
are shown for free surfaces of Con on Cu(100), capped surfaces, and one
particular spacer system (Table 11.3). As one immediately can see from this
figure, there seem to be three different regimes of oscillations, namely for (I)
very thin films (n ≤ 4), (II) moderately thin films (4 < n < 10), and (III)
medium thick to thick films (n ≥ 10). Also obvious is that in regime III the
oscillations for free surfaces of Con on Cu(100) and for the systems with three
Cu-spacer layers are indeed very similar in shape and are closely related to the
oscillations for the capped surfaces. Set off in scale and also less pronounced
are the oscillations for the systems with Co/Au interfaces.
In the right part of Fig. 11.7 the magnetic dipole-dipole contribution to the

magnetic anisotropy energy for free and capped surfaces of Con on Cu(100)
is displayed versus the number of Co layers. From this figure it is evident
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Table 11.3: Free and capped surfaces of Con/Cu100).
system n, number of m, number of

Co layers Cu spacer layers
Cu(100)/Con 1 ≤ n ≤ 15 0
Cu(100)/Con/Cu(100) 1 ≤ n ≤ 15 0
Cu(100)/AuConAu/Cu(100) 1 ≤ n ≤ 15 0
Cu(100)/ConCumCon/Cu(100) 1 ≤ n ≤ 15 1 ≤ m ≤ 15

that very little variation with respect to the actual system — even in the case
of Co/Au interfaces — pertains to this quantity: Edd decreases nearly linearly
with the number of Co layers.
Keeping in mind that the anisotropy energy is the sum of Ea(n,m) and

Edd(n,m), it follows from Fig. 11.7 that only in the Cu(100)/Con/Cu(100)
sandwich and in the Cu-spacer system with three spacer layers and n = 1, i.e.,
for Co monolayers, the magnetization is perpendicular to the surface, while
in all other cases (n ≥ 2) the orientation of the magnetization is in-plane.

11.2 Trilayers, interlayer exchange coupling
As documented in many publications in the last 20 years, Fe/Cr multilayer
systems raised a lot of experimental and theoretical interest. There were es-
sentially Fe/Cr/Fe trilayers or Fe/Cr multilayers that produced a first sizeable
giant magnetoresistance (GMR) [24, 25], a discovery that in 2007 led to the
award of the Nobel prize in physics to Peter Grünberg and Albert Fert. All
Fe/Cr systems showed oscillations in the so-called interlayer exchange cou-
pling (IEC) [23]. Quite clearly since their discovery the experimental tech-
niques became much more sophisticated: variations of system parameters
(thickness studies etc.) and an increasingly careful recording of the growth
conditions gave quite some insight into the conditions causing a giant mag-
netoresistance (GMR) effect and led to a flood of technological applications,
which revolutionized for example the efficiency of hard disks drives. Since
some experimental measurements of interlayer coupling showed oscillations
that coincided with the peaks in the GMR both effects were assumed to be of
the same physical origin. The discovery [26] of the so-called long periods in
the IEC with respect to the number of Cr layers invoked further speculations
and interpretations, even in terms of related properties of bulk Cr.
Going back for a moment to Section 3.6 dealing with magnetic configura-

tions in magnetic multilayer systems, in the following a more general definition
shall be given of the band energy contribution to the anisotropy energy and
of the interlayer exchange energy, namely one that can be used also in the
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case of non-collinear magnetic configurations.
Suppose that in a particular magnetic configuration Ck the orientation of the

magnetization (unit vector) in each layer i of a layered system corresponding
to a simple parent lattice is denoted by nki ,

Ck = { nkl|{z}
left semi-
infinite
system

, nk1 , n
k
2 , . . . , n

k
L−1, n

k
L| {z }

functional
multilayer
system

, nkr|{z}
right semi-
infinite
system

} . (11.12)

Here nkl and nkr refer to the orientation of the magnetization in the left and
right semi-infinite system. The meaning of — for example — nkl is that in the
left semi-infinite system in each atomic layer one and the same orientation of
the magnetization applies, namely nkl :

nkl : substrate or lead

nkr : substrate, lead or vacuum
. (11.13)

Suppose now that bx and by refer to the in-plane unit vectors and bz is parallel
to the surface normal; then Eq. (11.1), used before to discuss various features
of the magnetic anisotropy energy in magnetically coated surfaces, can be
rewritten as

∆Eb = E(C1)−E(C2) , (11.14)

with

C1 : nkl = nkr = bx ; nki = bx ,∀i , (11.15)

C2 : nkl = nkr = bz ; nki = bz ,∀i ,

meaning that in C1 the magnetization is pointing uniformly along bx ("in-
plane"), while in C2 it is oriented uniformly along the surface normal ("per-
pendicular").
In trilayer systems which consist of a substrate and two magnetic slabs

separated by a non-magnetic spacer (metallic or non-metallic) the exact mag-
netic configurations start to matter, because of induced magnetic moments in
atomic spacer layers neighboring a magnetic slab. A typical magnetic config-
uration in a trilayer is of the form

Ck = { nks|{z}
substrate

, nk1 , n
k
1 , . . . , n

k
K−1, n

k
K| {z }

magnetic slab

, nk1 , n
k
2 , . . . , n

k
L−1, n

k
L| {z }

spacer

,

nk1 , n
k
2 , . . . , n

k
M−1, n

k
M| {z }

magnetic slab

, nk1 , n
k
2 , . . . , n

k
N−1, n

k
N| {z }

cap

, nkv|{z}
vacuum

} , (11.16)
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where nks contains also a sufficient number of buffer layers in order to guarantee
a smooth transition from the left magnetic slab to the bulk-like property of
the left semi-infinite system

nks = {nkl , nk1 , nk2 , . . . , nkB−1, nkB| {z }
buffer

} . (11.17)

The interlayer exchange energy is then the difference in band energy be-
tween two magnetic configurations, in one of which the orientation of the
second magnetic slab (better: half of all layers considered) points in the op-
posite direction.

11.2.1 The system Fe/Crn/Fe

The Fe/Crn/Fe trilayer system is already a very good example that even in
the case of collinear magnetic configurations the magnetic ground state has to
be obtained by minimizing the total energy (or the equivalent band energy)
with respect to all possible configurations, since Cr carries a magnetic moment.
Table 11.4 contains 5 different types of magnetic configurations. If the trilayer
system contains n layers of Cr then in these configurations

n = l1 + l2 . (11.18)

In the left half of Fig. 11.8 the following energy differences

∆Eb(r, n,m) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Eb(C1; r, n,m)−Eb(C0, r, n,m) "interlayer exchange

coupling energy"

Eb(C4; r, n,m)−Eb(C3; r, n,m) "perpendicular coupling
energy"

(11.19)

Table 11.4: Magnetic configurations of bcc Fe(100)/FerCrn/Fem/Vac trilay-
ers: bx, by are unit vectors in the planes of atoms, bz is a unit vector along the
surface. The index r refers to the number of Fe "buffer" layers, m denotes
the number of Fe cap layers.

C0 C1 C2 C3 C4 C(k)
Fe(100) bz bz bz bx bx bz
[Fe]r bz bz bz bx bx bz
[Cr]l1 bz bz bz bx bx bz
[Cr]l2 bz bz bz bx bx −bz
[Fe]m bz −bz bx bx −bx −bz
V ac
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are displayed. As can be seen there are two oscillation periods, a short one
of periodicity 2 ML’s (monolayers) and a long one with about 15 - 16 ML’s.
Furthermore, a kind of phase slip at the beginning of each long period seems to
occur. However, from this figure one also can see that there is a ferromagnetic
bias of about 11 meV for the IEC and about 5.5 meV for the perpendicular
coupling.
In the right half of Fig. 11.8 the energy difference

∆Eb(Θ; r, n,m) = Eb(Θ; r, n,m)−Eb(C0, r, n,m) ,

where Θ refers to a rotation of the orientation of the magnetization in the
second Fe slab (cap layer) by an angle Θ around the y-axis, is shown for
n = 17. Clearly enough a value of Θ = 90◦ implies a perpendicular alignment;
Θ = 180◦ an antiparallel alignment. As can be seen the calculated values
follow closely a (1− cosΘ) behavior, i.e.,

∆Eb(Θ; r, n,m) ∼
1

2
[Eb(C1; r, n,m)−Eb(C0, r, n,m)] (1− cosΘ) ,

(11.20)
the deviations from this functional form being only marginal. Also marked
in this figure is the result when for Θ = 180◦ the magnetic force theorem
is not used, i.e., when for both configurations, C0 and C1, self-consistency
was required. The computational error of using the magnetic force theorem
amounts therefore to about 3 - 5%. This confirms the statement about the
validity of the magnetic force theorem made in Chapter 6.
In order to interpret the bias mentioned above let ∆Eb(r;n;m) denote

the IEC for systems of the type Fe(100)/FerCrnFem/Vac. In principle this
quantity depends weakly on the number r of buffer layers considered. For a
large enough r, however, ∆Eb(r;n;m) becomes independent of r; i.e., r is only
a "technical" parameter. Suppose now that for a particular cap thickness m,
the number of Cr layers, becomes very large,

lim
n→N

∆Eb(r, n,m) = ∆Eb(r,N,m) , (11.21)

then for ∆Eb(r,N,m) > 0 the ferromagnetic configuration is the ground state
and consequently the anti-ferromagnetic configuration an excited state. It is
important to note that independent of the sign of ∆Eb(r,N,m) this quantity
always describes the energy difference between the ground state and an excited
state. In the limit of n→ N , N denoting a sufficiently large number, the bias
is defined in terms of the following arithmetic mean,

B(m) ∼ 1
2
[∆Eb(r,N,m) +∆Eb(r,N + 1,m)] . (11.22)

B(m) > 0 refers to oscillations around a ferromagnetic ground state, B(m) <
0 to oscillations around an antiferromagnetic ground state, and B(m) = 0
to alternating ground states. For n > 7 the oscillations in Fig. 11.8 are
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FIGURE 11.8: Left: Antiparallel (top) and perpendicular (bottom) inter-
layer exchange coupling in bcc-Fe(100)/Fe6CrnFe6/Vac. The reference fer-
romagnetic configuration is C0, the antiferromagnetic configurations refer
to C1 and C2; see Table 11.4. Right: Angular dependence of the inter-
layer exchange coupling energy in bcc-Fe(100)/FeCr17Fe6/Vac. The refer-
ence ferromagnetic configuration is C0, the antiferromagnetic configuration
C1. Circles refer to the calculated values, and the full line to the function
∆E(Θ) = ∆E(1− cosΘ)/2. The square refers to the absolute value of the in-
terlayer exchange coupling energy when the (selfconsistent) antiferromagnetic
configuration (C1) is used as reference configuration. From Ref. [31].

oscillations around a ferromagnetic ground state as n becomes large. The left
half of Fig. 11.9 illustrates the dependency of the interlayer exchange energy
defined in Eq. (11.19) on the number of Fe cap layers. For large enough n
once again, just as in all other cases of capped free surfaces, oscillations with
respect to n set in, seemingly with a periodicity of about 2 ML.
The best example for the importance of a strict definition of magnetic

configurations (and actual reason for the bias) is to be found in the right
half of Fig. 11.9. There energy differences of the type Eb(C(k); r, n,m) −
Eb(C0, r, n,m), see Table 11.4, are considered for m = 24, 25 such that the
number of Cr layers with orientations parallel to the one in the Fe substrate
is successively increased.
Even more pronounced is the effect of a proper choice of magnetic configu-
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FIGURE 11.9: Left: Interlayer exchange energy for bcc-
Fe(100)/Fe6CrnFem/Vac for n = 24 (circles) and n = 25 (squares) with
respect to increasing thickness (m) of the Fe cap. The reference ferromag-
netic configuration is C0, the antiferromagnetic configuration C1; see Table
11.4. Right: Interlayer exchange energy for bcc-Fe(100)/Fe6CrnFe6/Vac for
n = 24 (open circles) and n = 25 (open squares) with respect to an increasing
number k of Cr layers on top of and aligned magnetically parallel to the Fe
substrate. Full circles correspond to the bias. The reference ferromagnetic
configuration is C0, the antiferromagnetic configurations refer to C(k). From
Ref. [31].

rations when considering layer-resolved band energies. In Fig. 11.10 the layer-
resolved contributions toEi

b(C1; r, n,m)−Ei
b(C0, r, n,m) andE

i
b(C(k); r, n,m)−

Ei
b(C0, r, n,m) are shown for n = 24 and 25. In the first case one would con-
clude that the cause for interlayer exchange coupling is mainly an interface
effect that occurs at that boundary where the magnetization is reversed. From
the second case, however, the conclusion is that although there are substantial
interface effects the main contribution to the interlayer exchange energy arises
from contributions in the interior of the Cr spacer.

Interesting in this context are the Cr moments in rather thick Cr slabs. As
can be seen from Fig. 11.11 for n > 40 (in the ferromagnetic configuration,
C0) the moments not only oscillate with a period of 2 ML, but also show char-
acteristic long periods: for an even number of Cr layers a period of 8 ML is
building up while for an odd number of Cr layers this period is doubled; i.e.,
for a large enough odd number of Cr layers the same long period is observed
as in the interlayer exchange coupling. Whether or not this phenomenon con-
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FIGURE 11.10: Layer-resolved interlayer exchange energies for bcc-
Fe(100)/Fe6CrnFe6/Vac, n = 24 (top) and n = 25 (bottom). Squares refer
to Cr contributions, circles to Fe contributions, and diamonds to contribution
from the vacuum layers. The reference ferromagnetic configuration is C0, the
antiferromagnetic configurations are C1 (left) and C(k) (right), l1 = 12; see
Table 11.4. The Fe substrate (origin of counting) is to the left, vacuum to the
right. From Ref. [31].
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tributes to induce the long periods in the interlayer exchange coupling energy
for very thick Cr spacers is a matter of belief since ∆Eb refers exclusively to
an energy difference between two magnetic configurations.
The experimental facts for the Fe/Cr/Fe trilayer system seem to be already

well confirmed [28, 29]: (1) the exchange coupling shows a short period of
about 2 ML with respect to the Cr thickness (dCr, [ML]) and crosses to the
antiferromagnetic (AF) coupling at 4ML of Cr, (2) between 4 ≤ dCr ≤ 12
the samples are coupled antiferromagnetically [28, 29, 30], (3) opposite to
the expectation that because of the 2ML oscillation the antiferromagnetic
coupling would occur only for even numbers of Cr layers, independent mea-
surements proved that this is not the case: antiferromagnetic coupling occurs
at odd numbers of Cr layers, (4) the interlayer exchange energy depends on
the thickness of the Fe cap [27], and (5) there is a first phase slip [26, 27] at
24 - 25 (38 - 39) ML of Cr at 310 K (550 K) followed by phase slips at 44 -
45 and 64 - 65 layers of Cr (at 310 K).
It should be noted that in order to properly interpret these facts one has to

recall that the above cited experimental studies give only an indirect account
of the interlayer exchange energy. Exactly this indirect mapping of interlayer
exchange coupling is analyzed in the following for a well-defined system.

11.2.2 Trilayers: a direct comparison between theory and
experiment

For Cu4Ni8CuNNi9/Cu(001), N = 2 − 10 ML, an attempt was made [32]
to compare directly the results of experimental and theoretical studies and
to analyze the interpretation predominately used by experimentalists of the
experimental data in terms of anisotropy and exchange coupling constants
and a phenomenological model of the free energy E (per unit area),

E = K − Jinter
M1 ·M2

M1M2
, Mi = |Mi| , (11.23)

whereM1 andM2 denote the directions of the (macroscopic) magnetizations
in the two magnetic slabs and K is the anisotropy energy,

K =
2X

i=1

¡
2πM2

i −K2⊥,i
¢
di cos

2 θi . (11.24)

In Eq. (11.24) the di refer to the thicknesses of the individual Ni slabs, 2πM2
i

is the shape anisotropy and K2⊥,i = KV
2⊥,i + (K

S1
2⊥,i +KS2

2⊥,i)/di denotes the
intrinsic uniaxial anisotropy which in principle usually is split into a part
arising from the slab volume (KV

2⊥,i) and a contribution from the two sur-
faces (KS1

2⊥,i upper surface, K
S2
2⊥,i lower surface). The angles θi measure the

magnetization directions with respect to the surface normal. In the chosen
trilayer S1 = S2 = S, since in Cu4Ni8CuNNi9/Cu(001) the Ni slabs face Cu
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FIGURE 11.11: Cr magnetic moments in bcc-Fe(100)/Fe6CrnFe6/Vac for
a ferromagnetic configuration with the magnetization parallel to the surface
normal (C0, in Table 11.4) . The number of Cr layers is indicated explicitly.
From Ref. [31].



© 2009 by Taylor & Francis Group, LLC

Nanostructured in one dimension: free and capped magnetic surfaces 115

on both sides. For 2πM2
i −K2⊥,i > 0 (< 0) the easy axis of magnetization lies

in (out of) the planes of atoms. The interlayer exchange coupling energy cor-
responds then to the macroscopic coupling constant Jinter [33] in Eq. (11.23).

The layer-resolved contributions to the interlayer exchange energy for tri-
layers with N = 3 andN = 9 are displayed in Fig. 11.12 (a) and (b). The layer
numbering starts at the three Cu buffer layers (neighboring semi-infinite fcc
Cu(001)) and comprises the trilayer, 4 Cu capping layers and three vacuum
layers. The different parts of the system are separated in this figure by dotted
lines. The lower part of this figure shows the experimental results extrapo-
lated to T = 0 for (a) Cu4Ni8CuNNi9/Cu(001) trilayers (open squares) and
(b) Ni7CuNCo2/Cu(001) trilayers (open circles). Although the experimental
values for the latter system are larger by about a factor of three, the overall
behavior seems not to be smaller influenced upon substituting one Ni film with
Co. In order to obtain the best agreement with the experiment, the theoretical
curve had to be shifted by 0.7 ML, which in turn indicates that the effective
experimental thickness seems to be smaller by 0.7 ML than the nominal evap-
oration rate. This can easily be understood considering a small amount of
interdiffusion occurring during the film growth, a fact that is well known to
happen for Ni as well as Co on Cu(001). Although the principal behavior of
the IEC found experimentally is reproduced by the theoretical calculations
rather well, the absolute strength of the coupling (amplitude) calculated for
Cu4Ni8CuNNi9/Cu(001) is by a factor 10 larger than the experimental values.

This now is exactly the stage at which one has to separate clearly the actual
experimental data from an interpretation in terms of existing models. The
"measured values" displayed in Fig. 11.12 in fact refer to Jinter in Eq. (11.23),
namely to a macroscopic Heisenberg model. The interaction parameter Jinter
does not necessarily need to be identical with themicroscopically defined inter-
layer exchange energy. It is even questionable whether a thermodynamically
averaged microscopic Heisenberg model would eventually lead to a parameter
Jinter as introduced in Eq. (11.23):

hEi =
*P
i,j
Jij
mi ·mj

mimj

+
⇒
*
J
P
i,j

mi ·mj

mimj

+

⇒ hJi
*P
i,j

mi ·mj

mimj

+
⇒ Jinter

M1 ·M2

M1M2
. (11.25)

In Eq. (11.25) themi refer to magnetic moments at sites i, and Jij is the (mi-
croscopic) coupling energy between two such moments, block arrows denote
the assumptions made to arrive eventually at a global coupling parameter
Jinter. It is indeed important to note that Jinter is not measured but is the
result of an interpretation!
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FIGURE 11.12: Top: layer-resolved IEC for Cu4Ni8CuNNi9/Cu(001) with a)
N = 3 and b) N = 9. Bottom: the experimental results are indicated by the
open squares and circles; the theoretical IEC values (crosses) there have been
upshifted on the x-axis by 0.7 ML. From Ref. [32].
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FIGURE 11.13: Average magnetizations versus temperature for Co4/Cu(100).
The label S refers to the surface Co layer, and S−n, (n = 1, 2, 3) to the n-th
Co layer beneath the surface. From Ref. [34].

11.3 Temperature dependence
Chapter 8 gave a brief description of the so-called Disordered Local Moment
Method, which ought to be applied when describing temperature effects of the
magnetic anisotropy energy, so there is no need to repeat any kind of formal
description.
In Figure 11.13 the calculated layer-dependent magnetizations are shown as

a function of the temperature in the case of Co4/Cu(100). As can be seen from
this figure the magnetization vanishes in all layers at a critical temperature of
TC = 960 K. The shape of the curves, however, differs from layer to layer: the
largest overall magnetization corresponds to the surface layer (S), the lowest
to the interface layer (S − 3).
In the top part of Fig. 11.14 the calculated band energy contributions

to the magnetic anisotropy energy, denoted there as Kb(T ), are plotted as
a function of temperature. As in the few bulk systems studied so far [35,
36] the magnetic anisotropy constant decreases in the monolayer case almost
monotonically in magnitude with increasing temperature. For thicker films,
however, Kb(T ) shows a non-monotonic temperature behavior because of a
more or less pronounced maximum. For n ≥ 3, Kb(T) even changes sign at a
given temperature.
The magnetic dipole-dipole energy Kdd(T ) at finite temperatures can only

be evaluated approximatively by using the averaged disordered local mag-
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FIGURE 11.14: Top: Band energy part of the magnetic anisotropy con-
stant Kb(T ) for Con/Cu(100). Bottom: calculated total magnetic anisotropy
constant, K(T ) = Kb(T ) + Kdd(T ), as a function of temperature for
Con/Cu(100). From Ref. [34].
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netic moments, Eqs. (8.18) - (8.20), see Chapter 6, valid in principle only for
ordered magnetic systems at zero temperature. For Co on Cu(100) the mag-
netic anisotropy energies K(T ), namely the sum of the band and magnetic-
dipole-dipole contributions, are displayed in the lower part of Fig. 11.14; the
corresponding Curie temperatures are listed in Table 11.5.

Table 11.5: Calculated Curie temperatures for Con/Cu(100). From Ref. [34].

n 1 2 3 4 5 6
Tc 1330 933 897 960 945 960

It should be noted that for large thicknesses of Co on Cu(100) the experimen-
tal value [37] of TC is about 950 K. The Curie temperature of thin magnetic
films is perhaps a scientifically interesting quantity; however, more impor-
tant is the value of the magnetic anisotropy energy at about room tempera-
ture. Taking for example the case of 6 Co layers on Cu(100), from Fig. 11.14
one immediately can see that the reduction with respect to zero temperature
amounts to about 30%. This reduction of the magnetic anisotropy energy
with temperature is indeed an important issue if perpendicular magnetism is
used technologically.
Unfortunately, partially because of the computational effort involved, par-

tially also because the relativistic Disordered Local Moment Theory for sys-
tems with only two-dimensional translational symmetry was proposed only
very recently, further published studies of the temperature dependence of the
magnetic anisotropy energy in layered systems are not available at present.
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11.4 A short summary

Finally, a short summery of all the effects discussed in this chapter shall be
given, to provide a characterization of anisotropy and interlayer exchange
effects for free and capped magnetic surfaces in a nut-shell.

∆E =

⎧⎨⎩Ea = ∆Eb +∆Edd , anisotropy energy

EIEC = ∆Eb , interlayer exchange coupling energy

∆Eb ≡ ∆Eb(n,m, r, . . . , T ) = E(C1;n,m, r, . . . , T )−E(C0;n,m, r, . . . , T )

n,m, . . . thickness parameters, Ci magnetic configurations, T temperature

11.4.1 Magnetic anisotropy energy

∆Eb ≡ ∆Eb(n,m, r, T ) = Eb(C1;n,m, r, T )−Eb(C0;n,m, r, T )

∆Edd ≡ ∆Edd(n,m, r, T ) = Edd(C1;n,m, r, T )−Edd(C0;n,m, r, T )

C0 refers to a uniform perpendicular to the planes of atoms orientation of the
magnetization, C1 to a uniform in-plane orientation. For free surfaces and
"superstructures" Ea depends on

thickness parameters effects

n number of magnetic layers possible reorientation transition
m number of cap layers oscillations
r number of repetitions optimizing perpendicular magnetism

Characterization of magnetic anisotropy energies:

∆Eb(n,m, r, T )−∆Edd(n,m, r, T )

⎧⎨⎩> 0 : perpendicular
∼ 0 : reorientation
< 0 : in-plane
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11.4.2 Interlayer exchange coupling energy

EIEC = ∆Eb(n,m, r, s, T )

The reference magnetic configuration (C0) is either uniformly in-plane or
perpendicular to the planes of atoms. C1 needs to be stated carefully in
particular in the case of magnetic spacers: an appropriate number of atomic
layers has to have an opposite to C0 direction of the magnetization. The
interlayer exchange energy depends on

thickness parameters effects

n number of magnetic layers size of amplitudes
in the left magnetic slab

m number of spacer layers characteristic oscillations with one
or more periods

r number of magnetic layers size of amplitudes
in the right magnetic slab

s number of cap layers additional oscillations

• Both quantities, the magnetic anisotropy energy and as well as the inter-
layer exchange energy, are very sensitive with respect to interdiffusion
at interfaces and/or other alloying effects.

• Both quantities depend crucially on temperature

It should be noted that in the case of interlayer exchange coupling, also
a large number of publications dealing even with disorder or temperature
effects, see for example [38] - [41], appeared, all of them based on a non-
relativistic approach, since (mostly) only collinear magnetic structures had to
be considered.
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12
Nanostructured in one dimension: spin valves

Properties of the anisotropy and the interlayer exchange
energy of spin valve systems with metallic and non-me-
tallic spacers are discussed putting the emphasis in par-
ticular on interdiffusion effects at the interfaces. Fur-
thermore, the concept of twisting energies is introduced
and their interpretation in terms of a phenomenological
Landau-Lifshitz-Gilbert equation.

Perhaps the best way to explain that there are also quite a few physical
reasons to distinguish between capped surfaces and spin valves is to go back
to Table 11.2, from which a direct comparison between these two cases can be
found. As can be seen from the last two rows, for a thin film consisting of 7
Fe ML on Cu(100) the magnetic moment in the surface layer (m7) is oriented
antiparallel to the one neighboring the Cu substrate. In the case of a spin
valve (infinitely thick Cu cap) m7 is parallel to the first one, since symmetric
boundary conditions apply:

Cu(100)/Fe7/

⎧⎨⎩Vac m7 = −2.232

Cu(100) m7 = 2.520

If the substrate and the cap are very much thicker than the actual film as is the
case, e.g., when viewing these two parts of the system as leads in measurements
of electric transport properties, then the term spin valve is justified. Of course
there is another more practical difference between free magnetic surfaces and
spin valves, namely in spin valves interdiffusion between spacer and substrate
can occur at two interfaces, while interdiffusion effects for free surfaces of
magnetic thin films on top of a substrate are in principle restricted to one
interface.
It was already shown in the last chapter and will be again discussed in

this one that interfaces and boundaries are rather important for the physical
properties of systems nanostructured in one dimension. In particular a proper
use of boundaries in any kind of theoretical description has perhaps unforeseen
consequences. Take for example the case of Fe/Cr trilayers, Fen1CrmFen2 with
fixed numbers n1 and n2 of Fe layers on both sides of the Cr slab. Treated as
a "free standing" thin film for each combination of n1, n2 and m in principle a
different Fermi energy �F (n1, n2,m) applies. If m becomes large, sayM , then
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�F (n1, n2,m) tends to the Fermi energy of "bulk Cr", �F (Cr). Considered as a
semi-infinite system with Fe serving as substrate, e.g., Fe(100)/Fen1CrmFen2 ,
the Fermi energy is always that of the substrate (electron reservoir), namely
�F (Fe), i.e., remains constant for all finite m:

vac/Fen1CrmFen2/vac : lim
m→M

�F (n1, n2,m) ∼ �F (Cr)

Fe(100)/Fen1CrmFen2/V ac

Fe(100)/Fen1CrmFen2/Fe(100)

⎫⎬⎭ = lim
m→M

�F (n1, n2,m) ≡ �F (Fe) .

In the following section the importance of interdiffusion and/or alloying
shall be illustrated in terms of Fe/Cr spin valves before continuing with non-
collinearity aspects and heterojunctions.

12.1 Interdiffusion at the interfaces
Usually Fe/Cr interfaces are not perfect: interdiffusion effects lead to the for-
mation of FeCr alloys, the roughness of the interface being determined by the
growth temperature. For growth temperatures well above room temperature
the interface roughness is relatively small and the short period in the inter-
layer exchange coupling can be recorded even for finite interdiffusion, e.g., in
Fe/Cr whiskers by Brillouin Light Scattering (BLS) experiments [1]. Similar
results were reported [2] using other experimental probes.

Table 12.1: Different types of Fe/Cr/Fe spin valves: cd refers to the interdif-
fusion concentration, x to the homogeneous concentration.

System
Fe/Crm/Fe m ≤ 42
Fe/Fe1−cdCrcd/FecdCr1−cd/Crm−2/. . . /Fe cd ≤ 0.2 m ≤ 42
Fe/(Cr1−xMnx)m/Fe x ≤ 0.1 m ≤ 42

In Fig. 12.1 an at the two interfaces interdiffused trilayer Fe/Cr/Fe, see
Table 12.1, which corresponds to the experimental situation of frozen disorder
due to low growth temperatures, is compared to a (fictitious) trilayer with
ideal interfaces (no disorder, no roughness). The case of alloying the Cr
spacer homogeneously with Mn yields even another kind of oscillations in the
interlayer exchange coupling; see Fig. 12.2. In both alloyed cases a RKKY
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FIGURE 12.1: Fe/Cr/Fe. Interlayer exchange energy ∆E b versus the number
of spacer layers s without interdiffusion ( cd = 0, top) and with a two-layer
interdiffusion (cd = 0.2,bottom). In the latter case the full line corresponds to
a RKKY-type fit, see Eq. 12.1. From Ref. [3].

type expression

J(m) = A0
sin (2πm/T0 + φ0)

m2
+ A1

sin (2πm/T1 + φ1)

m
, (12.1)

was used to fit the calculated data points with respect to the number of Cr
layers m. In Eq. (12.1) the first term on the rhs corresponds to the usual
RKKY interaction, while the second term has to be related to the short pe-
riod [4]. It turned out that in the case of interdiffused Fe/Cr/Fe trilayers there
is only one period with T0 = T1 = 6.74ML. Since homogeneous alloying of the
Cr spacer with Mn gave about the same result, it seems that inhomogeneous
disorder at the interfaces or homogeneous disorder in the spacer immediately
suppresses the short period in the interlayer exchange coupling.
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FIGURE 12.2: Fe/CrxMn1−x/Fe. Interlayer exchange coupling energy ∆Eb

versus the number of spacer layers s for 5% (filled triangles) and 10% (open
triangles) of Mn. Solid lines mark fits to the RKKY-type expression in Eq.
12.1. From Ref. [3].

12.2 Spin valves and non-collinearity
Suppose for matters of simplicity that as indicated in Fig. 12.3 in a spin
valve of the type Cu(100)/Cux/Com1

CusCom2
/Cux/Cu(100),m1 > m2, the

following orientations of the magnetizations M1 and M2 in the individual
atomic layers apply

{n1, . . . nm1}, {n1, . . . , ns/2| {z }
= M2kẑ

, n(s/2+1), . . . ns}, {n1, . . . nm2}| {z }
= M1

. (12.2)

Suppose further that by switching on an external magnetic fieldM1 is rotated
around the y- or x-axis by an angle Θ whileM2 remains unchanged. The band
energy difference corresponding to these two magnetic configurations is then
defined by

∆E(Θ) ≡ ∆E(x,m1, s,m2,Θ)

= E(x,m1, s,m2,Θ 6= 0)−E(x,m1, s,m2,Θ = 0) , (12.3)

and very often is referred to as twisting energy. Note that this now is a
different case than shown in the previous chapter when discussing Fe/Cr/Fe
trilayers, since there a uniform direction of the magnetization (applying for
the whole system) was rotated around an in-plane axis. In the present case
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FIGURE 12.3: Rotation of the magnetization in the thin magnetic slab by
angle Θ around the y-axis.

the main interest is directed to the questions (a) whether ∆E(Θ) has any
extrema with respect to Θ, and (b) does the ground state always correspond
to a collinear configuration.

12.2.1 Co(100)/Cun/Co(100) & (100)Py/Cun/Py(100)

In Fig. 12.4 two almost spectacular cases are shown, namely the twisting en-
ergy for Co(100)/Cu25/Co(100) and Cu(100)/Py24/Cu20/Py6/Cu(100), where
Py (permalloy) refers to Ni85Fe15.
As can be seen, for 25 Cu spacer layers in the Co/Cu/Co system the twist-

ing energy shows a maximum at Θ = 90, indicating that in switching the
orientation in the right Co slab a positive anisotropy has to be overcome in
order to reach the antiparallel configuration when starting with the parallel
one. Furthermore, the energies for the parallel and the antiparallel configu-
ration are nearly degenerated which in the language of interlayer exchange
coupling means that at this spacer thickness there is a node in the oscillations
with respect to the number of spacer layers,

∆E(Θ) = (E(x,m1, s,m2,Θ = 180)−E(x,m1, s,m2,Θ)) ∼ 0 . (12.4)

However, this part of the figure implies also that once the external magnetic
field is switching off, because of the positive anisotropy energy, the system
remains in the switched configuration.
The other example in Fig. 12.4 shows just the opposite case. The anisotropy

energy is negative, i.e., the twisting energy has a minimum at Θ = 90. The
magnetic ground state in the Py/Cu/Py system with Cu leads corresponds to
a non-collinear magnetic configuration: the most favorable configuration is the
perpendicular one. It was shown [2], by the way, that in Py/Cu/Py between
20 and 30 Cu spacer layers the perpendicular arrangement always applies.
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FIGURE 12.4: Twisting energy as a function of the rotation angle Θ.
Left: Co/Cu25/Co. From Ref. [5]. Right: Py/Cu20/Py. From Ref. [6].

Switching on an external field can drive the system to either a parallel or an
antiparallel configuration depending which of them has the lower energy.

12.2.2 Spin valves with exchange bias

A typical commercial GMR device contains an antiferromagnetic (AF) part
used to pin a rather thick magnetic layer that in turn is separated by a metallic
spacer such as Cu from a thin magnetic layer usually called free layer. This
stack of layers very often is covered by a cap. The leads, which serve as
electron reservoirs, are mostly made from Cu; see also Fig. 1.3. In principle
the AF part can be any suitable material that combined with a metallic system
produces a reasonably large exchange bias. The critical thickness of the AF
part varies from about 400 Å in the case of NiO to only 80 Å for IrMn. The
magnetic layers very often consist of Co/Fe alloys (hard magnets) and Ni/Fe
alloys (soft magnets); the spacer material is usually Cu.
An exchange bias occurs when systems with ferro (F)-antiferromagnetic

interfaces are cooled through the Néel temperature (TN ) of the AF part,
whereby the Curie temperature (TC) of the F part has to be larger than TN .
After the field cool procedure, at a temperature T < TN , the hysteresis loop
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FIGURE 12.5: Left: Hysteresis loop, m(H), of a FeF 2/Fe bilayer at
T = 10 K after field cooling. The exchange bias, HE, and the coerciv-
ity, HC , are indicated. Right: (a) Schematic diagram of a spin valve de-
vice. (b) Hysteresis loop, m(H), and (c) magnetoresistance, ∆R/R(H), of
a Fe20Ni80/Cu/Fe20Ni80/FeMn spin valve at room temperature. From Ref.
[7].

of the F-AF system is shifted along the field axis generally in the opposite
direction of the cooling field, i.e., the absolute value of the coercive field for
decreasing and increasing field is different; see Fig. 12.5. This loop shift is
usually termed exchange bias and was found and investigated in quite a few
different experiments such as magnetization and magnetic torque measure-
ments, ferromagnetic resonance, neutron diffraction, magnetoresistance, etc.
For a review, see for example Ref. [7].
In the left part of Fig. 12.6 a prototype of such a GMR device is shown,

namely

Cu(111)/Cu6/(CoO)12/Co24/Cun/Co6/Cu6+m/Cu(111) , (12.5)

14 ≤ n ≤ 48, in which CoO, known to exhibit one of the largest exchange
bias effects [7], serves as AF part. The magnetic (spin only) moments in
the antiferromagnetic part are typically 2.05 μB and -0.05 μB for Co and O,
respectively. In the pinned Co layer they amount to about 1.71 μB . The
magnetic moment of the Co layers adjacent to the Cu spacer is reduced to
1.65 μB; that of the penultimate plane of Co atoms in the free layer is slightly
enhanced (1.72 μB) as compared to the moment of Co planes further off the
Cu/Co interface. Within the spacer the Cu atoms are very weakly polarized;
the magnitude of the induced moments oscillates approximately with a period
of two monolayers.
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FIGURE 12.6: Left: A typical Co/Cu/Co spin valve with semi-infinite Cu
leads and a "thick" Co layer pinned by an antiferromagnetic CoO slab. Right:
Layer-resolved band energies ∆Ek(Θ;n) for the case of 23 Cu spacer layers
and perpendicular coupling (Θ = 900). From Ref. [8].

The twisting energies for this set of systems, in which the thickness of the
functional part varies between 21 and 30 ML, are displayed in Fig. 12.7 with
respect to the rotation angleΘ. It is interesting to note that although there are
cases in which the twisting energy changes as perhaps expected proportional
to (1− cosΘ), in the majority of Cu spacer thicknesses a positive anisotropy
seems to be present. Just as in the much simpler Co/Cu/Co system discussed
above, at certain thicknesses the parallel and the parallel configuration are
almost degenerated in energy; the twisting energy at such a spacer thickness
is therefore entirely governed by the anisotropy energy.
Clearly enough in this context two questions have to be asked, namely (a)

from which part of the system does the anisotropy energy arise, and (b) would
it be destroyed if interdiffusion at the Co/Cu interface takes place. The first
question can be answered by employing again the concept of layer-resolved
band energies. In the right part of Fig. 12.6 these quantities are displayed for
23 Cu spacer layers and Θ = 90◦. Obviously, by changing the direction of the
magnetization in the thin magnetic slab, by far the largest contributions to
the anisotropy energy arise from the interface between the thin magnetic slab
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FIGURE 12.7: Twisting energies ∆E(Θ;n) for spacer thicknesses between 21
- 30 ML for the system shown in the left part of Fig. 12.6. From Ref. [8].

and the spacer.
It is well known that in the binary bulk system Co/Cu the solubility of Co

in Cu (and oppositely) is at best 1 - 2%. As this percentage not necessarily
also applies for a possible interdiffusion at Co/Cu interfaces in Fig. 12.8 the
following difference in total energies,

∆Etot(c, N) = Etot(c, N)−Etot(c = 0, N) , (12.6)

is shown for the system Co(100)/Cu/Co(100) corresponding to a spacer thick-
ness of 36.4 Å and a uniform orientation of the magnetization along the surface
normal. In Eq. (12.6) the argument N denotes the total number of atomic
layers considered in the functional part of Co(100)/Cu/Co(100), i.e., com-
prises all Co "buffer layers" and the Cu spacer layers. N serves as a reminder
that the characteristic volume is N times the unit volume in each atomic
layer. As can be seen from this figure, by assuming an error of about ±
0.025 mryd in the total energy calculations (indicated by horizontal dashed
lines) ∆Etot(c,N) ∼ 0 for all interdiffusion concentrations below about 1.5%.
Fig. 12.8 clearly indicates that in Co/Cu/Co spin valves interdiffusion at the
interfaces definitely has to be considered with interdiffusion concentrations
ranging between about zero and 2%.
Surprisingly, however, it turns out that the main band energy contributions

to the magnetic anisotropy energy in the spin valve listed in (12.5) come from
the penultimate Co layer at the interface between the rotated Co slab and the
spacer, and not from the Co layer immediately adjacent to the Cu spacer; see
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FIGURE 12.8: Total energy difference with respect to the interdiffusion con-
centration for a spacer thickness of 36.4 Å in Co(100)/Cu/Co; see also
Eq. (12.6). From Ref. [9].

the left part of Fig. 12.9. Even more surprising is the fact that interdiffusion at
the interfaces of the thin magnetic slab moves the maximum in the twisting
energy to values of Θ larger than 90◦. Altogether, however, the effects of
interdiffusion at the Co/Cu interface are minute and because of the special
behavior of the layer-resolved band energies (Fig. 12.9, right part) hardly
change the functional form of the twisting energy.

12.3 Switching energies and the phenomenological Lan-
dau-Lifshitz-Gilbert equation

In using the phenomenological Landau-Lifshitz-Gilbert equation with a damp-
ing parameter G,

1

γG

dM(t)

dt
= −M(t)×Heff +

G

γ2G |M(t)|2
µ
M(t)× dM(t)

dt

¶
, (12.7)

γG =
gμB
~

=
g |e|
2me

, (12.8)

where M(t) refers to the volume averaged total magnetic moment at a par-
ticular time t and Heff to the so-called effective field, it was found experimen-
tally [10, 11, 12] that in multilayer systems the Gilbert damping parameter G
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FIGURE 12.9: Left: Layer-resolved twisting energies ∆Ek(Θ;n) for Θ = 90◦

and n = 23 in the vicinity of the free layer of the spin valve specified in (12.5);
see also Fig. 12.7. Circles: no interdiffusion, squares: 1% interdiffusion.
Right: (top) n = 23, for the interdiffusion concentrations 0% (full squares),
1% (circles) and 2% (open squares) as a function of the rotation angle Θ.
Lower part: twisting energy ∆E(Θ;n) for n = 23 at Θ = 900 (squares) and
1800 (circles) versus the interdiffusion concentration. From Ref. [8].

varies linearly with the inverse film thickness. In Eq. (12.8) e is the elemen-
tary charge, me the mass of an electron, μB the Bohr magneton, and g the
(electronic) Landé—factor.
In the presence of two-dimensional translational invariance M can be re-

placed by a layer averaged magnetic moment m(t), or in terms of the magne-
tization direction n(t):

dn(t)

dt
= −γn(t)×Heff + αn(t)×

¡
n(t)×Heff

¢
, (12.9)

m(t) =
1

N

X
i=1,N

mi(t) , n(t) =
m(t)

|m(t)| , (12.10)

whereN is the total number of magnetic layers in those parts of a spin valve, in
which the averaged moment changes in time. It should be noted that obviously
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the same type of Landau-Lifshitz-Gilbert equation is used as in Chapter 9,
see, e.g., Eqs. (9.1) and (9.15), however, now for a different purpose.

12.3.1 Internal effective field

The local effective field Heff , which in principle includes the exchange energy,
the magnetic anisotropy energy, external magnetic fields, etc., can in the case
of layered systems be written in terms of the following derivative of the free
energy F,

Heff = −∇m(t)F , (12.11)

Mapping now at zero temperature Heff onto HE, namely onto changes of the
total energy (band energy when using the magnetic force theorem, free energy
at 0◦ K) with respect to m(t),

Heff →HE : HE = − ∂Eb

∂m(t)
= −∇m(t)Eb , (12.12)

Eq. (12.9) can be rewritten as [5]

dm(t)

dt
= γ

¡
m(t)×∇m(t)Eb

¢
− αm(t)×

¡
m(t)×∇m(t)Eb

¢
, (12.13)

where α and γ are the properly reformulated parameters from Eq. (12.7).
Expanding therefore Eb at a given initial reference direction of the magnetic

moment, m0, in terms of a Taylor series,

Eb(m0 +m(t)) ' Eb(m0) +

pX
k=1

1

k!

¡
m(t) ·∇m(t)

¢k
Eb(m0) , (12.14)

in principle Eq. (12.13) can be solved.
In particular, if the change in the moment m(t) is constrained to the yz-

plane, see also Fig. 12.3,

m(t) = my(t)ey +mz(t)ez , (mx = 0) , (12.15)

and m0 = m0ez is the initial ground state moment,

m2
0 = m2

y +m2
z = m2 , (12.16)

then by using Eq. (12.15) up to third order (p = 3), one gets [5]

∆Eb (m(t)) = Eb(m0 +m(t))−Eb(m0)

' a− a
mz(t)

m0
+ b

m2
z(t)

m2
0

+ c
m3
z(t)

m3
0

= a− anz(t) + b n2z(t) + cn3z(t) , (12.17)
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FIGURE 12.10: Top: Twisting energy as a function of both rotation angles
in fcc Co(100)/Cu25/Co(100). Bottom: precessional energy at Θ = 900.
From Ref. [5].

where the coefficients a, b and c can easily be obtained from the twisting
energy as a function of Θ. Therefore, the energy torque rotating the moment,
namely the first term on the rhs of Eq. (12.13) is given by

m(t)×HE = exmy(t)H
E
z = −ny(t)

¡
−a+ 2b nz(t) + 3cn2z(t)

¢
ex , (12.18)

and the second term by

m(t)×
¡
m(t)×HE

¢
= −ny(t)

¡
−a+ 2b nz(t) + 3cn2z(t)

¢
(mz(t) ey −my(t)ez)

(12.19)

12.3.2 The characteristic time of switching

Neglecting the energy torque term in Eq. (12.18) (absence of precession around
the z-axis) since the in-plane anisotropy is by orders of magnitude smaller than
the out-of-plane one, see Fig. 12.10, Eq. (12.13) is reduced to

dm(t)

dt
' α

m(t)

M0
×
¡
m(t)×HE

¢
, (12.20)
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which in turn leads to [5]

m0
dnx(t)

dt
= 0 , (12.21)

m0
dny(t)

dt
= −αny(t)nz(t)

¡
−a+ 2b nz(t) + 3cn2z(t)

¢
, (12.22)

m0
dnz(t)

dt
= αn2y(t)

¡
−a+ 2b nz(t) + 3cn2z(t)

¢
. (12.23)

Furthermore, since it was assumed that n2y(t)+n2z(t) = 1, only one equation,
namely

m0
dnz(t)

dt
= α

¡
1− n2z(t)

¢ ¡
−a+ 2b nz(t) + 3cn2z(t)

¢
, (12.24)

has to be solved. This equation can then be used to evaluate the time τ =
tf − ti that is needed to change nz from an initial direction at ti, niz = nz (ti) ,
to a particular direction at a given time tf , nfz = nz (tf ).
Of particular interest is the time that is needed to switch in a spin valve

system the orientation of the magnetization from the initial ground state
configuration to a final (collinear) configuration. This exactly is shown in
Fig. 12.11. There Θj = π/2 denotes the ground state (perpendicular arrange-
ment), Θi = 0 the parallel and Θi = π the antiparallel configuration. As can
be seen it takes the system about 35 picoseconds [ps] to switch from an excited
collinear configuration to the non-collinear ground state. It also can be seen
that there are indeed differences in time whether switching the direction of the
magnetization in the thin magnetic layer is from a parallel or an antiparallel
orientation to the non-collinear ground state; see the right part of Fig. 12.4.

12.4 Heterojunctions

Very soon it was found out [13] that not only metallic spacers showed os-
cillations in the interlayer exchange coupling, but also typical non-metallic
materials such as "semiconductors" or metal oxides. The technical expression
connected with this kind of system is Tunnelling Magnetoresistance (TMR)
devices or heterojunctions. It should be noted that the term semiconductor
was put in quotation marks, since colloquially a typical bulk property is used
to characterize spacer materials such as Si or ZnSe, even so few tens of an
Angstrom thick layers of such materials not necessarily are "semi-conducting".
In the following two typical examples are discussed, namely Fe/ZnSe/Fe and
Fe/Si/Fe, because different aspects of heterojunctions can be pointed out.
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FIGURE 12.11: Switching time t(Θi,Θj ;m) versus the number of Cu spacer
layers in Cu(100)/Py/Cum/Py/Cu(100). See also the right half of Fig. 12.4.
From Ref. [5].

12.4.1 Fe(100)/(ZnSe)n/Fe(100)

bcc-Fe(100)/ZnSe/Fe heterostructures can have two types of termination,
namely either Zn or Se forming the interface with Fe, which in fact makes
this system in particular interesting from a theoretical point of view. In the
left part of Fig. 12.12 the interlayer exchange coupling is displayed, corre-
sponding to an antiparallel configuration in which in the second (right) part
of the atomic layers the magnetization is oriented antiferromagnetically. As
can be seen from this figure, Zn-terminated heterostructures are antiferro-
magnetically coupled up to a spacer thickness of about 15 Å and then start to
oscillate weakly between the ferro- and the antiferromagnetic configuration.
The behavior of Se-terminated heterostructures is completely different: for
thin spacers there are distinct regions of ferro- and antiferromagnetic cou-
pling, only beyond about 20 Å weak oscillations set in.
The band energy part∆Eb of the magnetic anisotropy energy is displayed in

the right half of Fig. 12.12 for both types of termination. It is obvious that dif-
ferent terminations cause different characteristic behavior: for Zn-terminated
heterostructures the orientation of the magnetization is predicted to be mostly
in-plane, while for Se-terminated heterostructures a perpendicular orientation
is favored. In Fig. 12.12, for a typical example, namely for 12 repetitions of
ZnSe, a layer-wise decomposition of ∆Eb is shown. There one easily can see
that the spacer part of the heterojunctions adds very little to ∆Eb: it is essen-
tially the first 3 - 4 Fe layers next to the interface that account for the actual
value of ∆Eb. It is interesting to note that in Zn-terminated heterostruc-
tures the contribution from the Fe layer forming the interface has a negative
value, whereas from the same layer in the Se-terminated heterostructure the
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FIGURE 12.12: Fe(100)/ZnSe/Fe(100). Left: Interlayer exchange coupling
as a function of the spacer thickness. Squares: Zn-termination, circles: Se-
termination. Right: Band energy part of the magnetic anisotropy energy as
a function of the spacer thickness. Squares: Zn-termination, circles: Se-
termination. From Ref. [14].

contribution is reasonably large and positive: it is essentially this layer that
generates the differences to be seen in the left part of Fig. 12.13.

12.4.2 Fe(000)/Sin/Fe(100)

Trilayers as well as multilayers of Fe with nonmetallic amorphous Si [15] or
metallic Fe-Si alloys [16] have been investigated experimentally already in the
beginning 1990s. The occurrence of interlayer exchange coupling in antiferro-
magnetically coupled Fe/Si/Fe systems was first attributed to interdiffusion
effects causing the spacer to become metallic [17]. Low-energy electron dif-
fraction (LEED) and Auger spectroscopy measurements seemed to prove that
the interlayer exchange coupling was not only due to alloying effects at the
interface(s), but was also observed in systems with homogeneous Fe-Si al-
loy spacers [13, 18] with a slightly deformed B2 (c-FeSi) structure [19, 20].
Later on [16], Brillouin light scattering experiments, however, showed that
in Fe/Fe1−cSic/Fe, 0.4 ≤ c ≤ 1.0, the interlayer exchange coupling constant
increased with increasing Si content in the alloy, the oscillations in turn indi-
cating a typical metallic behavior. The interlayer distance, by the way, as ob-
tained from Bragg reflection experiments turned out to be about 1.4331Å [20],
which reflects closely the experimental bcc Fe lattice constant.
In the right part of Fig. 12.13 total energy differences E(cd) − E(cd = 0)
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for Fe/Si/Fe are shown for particular spacer thicknesses with respect to the
interdiffusion concentration cd when considering a two-layer interdiffusion,
i.e., considering a system with s Si layers of the following type

. . . Fe/Fe1−cdSicd/FecdSi1−cd/Sis−2/FecdSi1−cd/Fe1−cdSicd/Fe. . . .

It turned out [21] that for interdiffusion concentrations larger than 20% the
formation of interface alloys is preferred, while below 20% interdiffused inter-
faces as well as clean interfaces occur with equal probability.

FIGURE 12.13: Left: Layer-resolved band energy part of the magnetic
anisotropy energy for Fe(100)/(ZnSe)12/Fe(100). Top: Zn-termination, bot-
tom: Se-termination. Squares: Fe-layers, circles: spacer layers. From
Ref. [14]. Right: Total energy differences, E(cd) − E(cd = 0), in
Fe(100)/Si/Fe(100) with respect to the interdiffusion concentration cd. The
number of spacer layers s is marked explicitly. From Ref. [21].

In the left part of Fig. 12.14 the interlayer exchange coupling is displayed for
a variety of interdiffusion concentrations. As can be seen, increasing interdif-
fusion reduces the large oscillations for small spacer thicknesses dramatically,
while for larger spacer thicknesses interdiffusion effects seem to be less impor-
tant. For cd > 0.15 the regime of antiferromagnetic coupling is considerably
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FIGURE 12.14: Left: Changes of the interlayer exchange coupling with re-
spect to the number of spacer layers for different interdiffusion concentrations
cd. Right: Band energy part of the magnetic anisotropy energy for Fe/Si/Fe
systems with a two-layer interdiffusion at the interfaces versus the number of
spacer layers. The results are shown for different interdiffusion concentrations
cd, whereby cd increases from the top cd = 0.0 (squares) to the bottom cd =
0.2 (stars). From Ref. [21].

enlarged extending for cd = 0.2 from s = 4 to s = 12. Thus strong interdiffu-
sion at the interfaces helps to stabilize the antiferromagnetic coupling.

The right part of this figure contains the band energy contribution to the
magnetic anisotropy energy, ∆Eb, considering a two-layer interdiffusion at
the Fe/Si interfaces. With increasing interdiffusion concentration ∆Eb is re-
duced and shows an oscillation period of 3ML. For all spacer thicknesses and
interdiffusion concentrations ∆Eb favors a perpendicular orientation of the
magnetization. Fig. 12.15, showing the concentration-dependent changes of
the layer-resolved ∆Eb for the system with 9 Si layers, proves that again ∆Eb

is essentially determined by contributions from the interfaces.
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FIGURE 12.15: Layer-resolved band energy part of the magnetic anisotropy
energy for Fe(100)/Si9/Fe(100) with a clean interface (squares) and corre-
sponding to a finite interdiffusion concentration. From Ref. [21].

12.5 Summary
Just like magnetic free surfaces spin valves can also be considered as sys-
tems nanostructured in one dimension, i.e., can be characterized by two-
dimensional translational invariance and an orthogonal complement to the
in-plane coordinates. They differ from free (capped) surfaces or trilayers by
one important fact, namely the boundary conditions along the surface normal:

left boundary functional part right boundary r, s =∞

/Vacs : free surface

Cur/ . . . Con/Cum/. . .

/Cus : spin valve

• Spin valves show all the properties already encountered with free mag-
netic surfaces such as oscillations with respect to the number of spacer
layers in the interlayer exchange coupling as well as for the anisotropy
energy (the band energy part).
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• Again interdiffusion at the interfaces is a very important issue which
seems to be even more crucial in the case of heterojunctions than in
systems with a metallic spacer.

• The magnetic ground state of spin valves does not necessarily correspond
to a collinear configuration.

• The so-called twisting energy can have considerable anisotropy contri-
butions.

• The time needed to switch a spin valve from a given initial magnetic con-
figuration to final one can be estimated by interpreting the twisting en-
ergy in terms of a phenomenological Landau-Lifshitz-Gilbert equation.
Such switching times are typically of the order of a few ten picoseconds.
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13
Nanostructured in two dimensions: single
atoms, finite clusters & wires

Clusters (small ensembles of atoms, finite wires) on top of
metallic substrates show anisotropic properties exceeding
even those of systems nanostructured in one direction.
Once again it will turn out that a proper definition of
a characteristic volume is essential. The importance of
"rim" atoms and the consequences of covering these clus-
ters by protective metallic layers will be emphasized.

Surface-supported nanoparticles of magnetic atoms raised and still raise a
lot of interest, because of potential applications in non-volatile magnetic stor-
age media. In the last few years, magnetic nanostructures were investigated
experimentally in terms of various experimental methods [1, 2, 3, 4, 5, 6] such
as Scanning Tunnelling Microscopy (STM), X-ray Magnetic Circular Dichro-
ism (XMCD) and the Magneto-Optical Kerr Effect (MOKE). In interpreting
these techniques in terms of phenomenological models [7] and sum-rules [8],
e.g., high anisotropies and orbital moments of single magnetic adatoms on a
non-magnetic substrate were found or predicted. Eventually it was and is the
ambition of experimental methods to produce and manipulate nanostructures
on an atom-by-atom level using for example magnetic tunnel tips [9]. Further-
more, by combining magnetic and non-magnetic materials like Co and Pt [1],
or two different magnetic species like Fe and Co [10], see also the next chapter,
to form nanoclusters, tunable magnetic properties seem to be in reach.
A theoretical description of systems nanostructured in two dimensions is

even more complex than those in one dimension, since in principle two-
dimensional translational symmetry no longer helps to reduce the number of
possible magnetic configurations. In systems lacking any translational sym-
metry every single atom has to be characterized by an individual orientation
of the magnetization. In order to be still able to describe such systems one
has to go back to Section 4.13 in which a scheme was introduced to embed
an ensemble of adatoms on top of an otherwise perfect substrate (with two-
dimensional translational invariance).
Suppose that as indicated in Fig. 13.1 a certain section ("cluster") of a solid

system consisting of a substrate and adatoms is selected that contains the
actual adatoms, perturbed and unperturbed substrate atoms and of course
vacuum sites. Now let m be the total number of adatoms and perturbed

147
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FIGURE 13.1: Cluster section of a semi-infinite system.

substrate atoms, s the total number of unperturbed substrate sites and v the
number of included vacuum sites. A typical magnetic configuration in such a
system is then defined by

Cα = {n1,n2, . . . ,nm, {nk = nB, k = 1, . . . , s}} , (13.1)

C0 = {ni = ẑ, i = 1, . . . , (m+ s)} , (13.2)

where nB contains all the information about the orientation of the magneti-
zation in the unperturbed substrate (bulk). The total number N of atoms in
a particular cluster amounts therefore to

N = m+ s+ v . (13.3)

In order to evaluate the band energy part of a characteristic anisotropy energy,

∆Eα−0 = E(Cα)−E(C0) , (13.4)

one can choose for example as a possible reference configuration C0, see
Eq. (13.2), in which the orientation of the magnetization in all atoms points
uniformly along the z-axis (surface normal). Typically an anisotropy energy
of particular interest is then of the following type

∆Eμ−z = Eμ −Ez =

⎧⎨⎩> 0, z, preferred

< 0, μ, preferred
, μ = x, y , (13.5)
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where the axes x and y refer to in-plane unit directions,

Eα =
NX
i=1

Ei
α , α ∈ (x, y, z) , (13.6)

Ei
α =

�FZ
�b

d�(�− �F )n
i
α(�) , (13.7)

and �b and �F , denote the (valence) band bottom and the Fermi energy, respec-
tively. From Eq. (13.6) one immediately can guess that the by now familiar
problem of defining a characteristic volume

Ω =
NX
i=1

Ωi (13.8)

becomes an essential point, since a priori one cannot say how many unper-
turbed substrate and vacuum sites have to be included self-consistently in
order to obtain an intrinsic anisotropy energy (or for that matter any other
physical property).

13.1 Finite clusters
13.1.1 Fe, Co and Ni atoms on top of Ag(100)

Suppose that as indicated in Fig. 13.2 one considers a few atoms of Fe, Co or
Ni to form a cluster on top of Ag(100). Then immediately just by considering
the (two-dimensional) rotational symmetry of these clusters one can imagine
that the information to be obtained from actual ab-initio type calculations
simply explodes when increasing the number of adatoms, since in each site
spin and orbital moments can be different and so are the magnetic interactions
between the different sites within a particular cluster.
The above-mentioned problem of a characteristic volume is addressed in

the left part of Fig. 13.3, in which typical properties of a single atom of
Fe on Ag(100), such as the number of electrons, the spin and the orbital
moment, are investigated by increasing the number of neighboring shells, i.e.,
by including more and more substrate (and vacuum) sites. As can be seen
there, although the number of electrons in the cell corresponding to the Fe
atom hardly changes beyond the third shell of neighbors, the orbital magnetic
moment becomes intrinsic only after having included at least 4 shells. This
implies that even in a hardly polarizable substrate such as silver, the number
of perturbed substrate sites is quite high.
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FIGURE 13.2: Sketch of the planar clusters considered. For an orientation
of the magnetization along the x or y axis, equivalent atoms in a cluster are
labelled by the same number. From Ref. [11].

A completely different case is shown in the middle part of Fig. 13.3, namely
that of a cluster consisting of either two Fe or two Co atoms when changing the
distance between the two magnetic atoms, i.e., by placing them on different in-
plane positions of the parent Ag fcc lattice. Both the spin and orbital moments
(per site) seem to indicate that being separated by only one in-plane lattice
spacing they behave already like isolated atoms. The corresponding exchange
energies, however,

Ex = E(C0)−E(C1) , (13.9)

C1 = {n1 = ẑ,n2 = −ẑ,ni = ẑ, i = 3, . . . , (m+ s)} ,

C0 = {ni = ẑ, i = 1, . . . , (m+ s)} ,

where i = 1, 2 refers to the magnetic atoms, show that this is not quite the
case (right part of Fig. 13.3). With respect to an increase of the in-plane
distance between the Fe atoms they first align parallel, then antiparallel, and
from there on stay parallel. With the exception of being arranged as first
neighbors the two Co atoms are aligned antiparallel even up to the 5-th shell.
As regards the anisotropy energies for small clusters of Fe , Co and Ni on top

of Ag(100) the following situation applies (for the actual values see Ref.[11]):

n ≤ 4 ∆Ex−z ∆Ey−z
Fe clusters > 0 > 0
Co clusters > 0, n = 1 > 0, n ≤ 2

< 0, n > 1 < 0, n > 2
Ni clusters < 0 < 0
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FIGURE 13.3: Left: Calculated number of valence electrons (Nval), spin mo-
ment (Sz) and orbital moment (Lz) of a single Fe adatom on a Ag(100)
surface as a function of the number of self-consistently treated atomic shells
around the Fe atom. Middle: Calculated spin and orbital moments of two
adatoms of Fe or Co on Ag(100) as a function of their distance d measured
in units of the 2D lattice constant a. Right: Calculated exchange coupling en-
ergy, ∆Ex as a function of the distance d measured in units of the 2D lattice
constant a. The insets show the range 2a ≤ 5a on an enlarged scale. From
Ref. [11].

where for matters of simplicity n denotes the number of magnetic atoms in the
cluster. This means that in all Fe clusters the orientation of the magnetization
is perpendicular, in all Ni clusters it is in-plane, while in Co clusters not only
the size of the cluster matters but also the chosen in-plane direction.

13.2 Finite wires & chains of magnetic atoms

With the arrival of advanced Scanning Tunnelling Microscope (STM) tech-
niques, in particular spin-polarized versions thereof, it became very popular
to arrange atoms in chains along steps of suitable substrates and to analyze
their properties in terms of spectroscopy by means of selection-rule-based in-
terpretations. Since in these interpretations mostly the spin and the orbital
moments of the magnetic atoms were of main interest, in the following few
sections these quantities will almost dominate the discussion of (anisotropic)
magnetic properties of solid systems nanostructured in two dimensions.
A seriously meant warning, however, has to precede these sections: orbital
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FIGURE 13.4: Calculated spin moments (Sz) and orbital moments (Lz) of
the central (most symmetric) atom in Con (n = 1, . . . , 10) chains oriented
along the (110) direction on the top of Pt(111) as a function of the chain
length. From Ref. [12].

(and spin) moments are not measured; they are the result of an interpretation
using certain models ("sum rules"). If, therefore, in a particular publication
it is claimed that orbital moments were "measured", don’t believe it! Ask for
the ansatz and the parameters used there, before making use of the published
data.
The technological reason for all these investigations is quite clear: it is the

search of the laterally tiniest patterns of magnetic atoms that could eventually
serve as information medium.

13.2.1 Finite chains of Co atoms on Pt(111)

Suppose that a finite chain of n Co atoms is formed along the (110) direction
on top of Pt(111). Then the obvious questions to be asked are (1) how does
the spin and the orbital moment of a particular atom in the chain change
when the length of the chain is increased, (2) how do the moments change
viewing the various atoms in a particular chain of given length, and, of course,
(3) to what extent do the individual atoms contribute to the total anisotropy
energy.
The answer to the first question can be read immediately from Fig. 13.4,

in which the most interior Co atom is considered in Co chains of increasing
length. It is evident that only for n > 7 this particular Co atom becomes
nearly independent of the length of the chain. In a kind of Gedanken experi-
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FIGURE 13.5: Left: Calculated spin moments (Sz) of the Co atoms in Con
(n = 1, . . . , 10) chains on Pt(111) with the magnetization pointing perpendic-
ular to the surface. Right: Calculated orbital moments (Lz) of the Co atoms
in Con (n = 1, . . . , 10) chains on Pt(111) with the magnetization pointing
perpendicular to the surface. From Ref. [12].

ment the length of the Co chains can obviously be increased simply by putting
in more and more interior Co atoms into the chain without changing the total
moment per Co atom. As can be seen from Fig. 13.5 the interior Co atoms
were chosen intentionally, since they show an interesting behavior. For odd
n the moments of the central atom seem to oscillate with a period of two;
for even n it is the two most interior atoms that characteristically change.
This can be seen best from the right part of this figure, in which the orbital
moments are displayed.
Although this kind of very detailed information is of quite some interest,

in view of the magnetic structure of such chains, in terms of the magnetic
anisotropy energy as a function of the chain length it is of little importance,
since as is shown in Fig. 13.6 ∆Ex−z as well as ∆Ey−z become already
intrinsic beyond a chain length of n > 3.

13.2.2 Finite chains of Fe on Cu(100) & Cu(111)

Just as free surfaces of a magnetic element on a suitable substrate are ex-
tremely sensitive to oxidation and are very often covered by a cap of a chem-
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FIGURE 13.6: Calculated magnetic anisotropy energies (MAE) for Con
(n = 1, . . . , 10) chains on Pt(111) including also contributions from near-
est neighbor Pt sites and normalized to one Co atom. Up- and down-triangles
refer to ∆Ex−z and ∆Ey−z, respectively. From Ref. [12].

ically inert metal, clusters of magnetic atoms are only stable in ultrahigh
vacuum. The question that arises immediately in this context is therefore
whether or not they can be protected by a suitable cap, and of course would
a cap alter the magnetic properties in an undesirable manner.

In Fig. 13.7 the spin and orbital moments of a single Fe atom are considered
when moving from a position on top of Cu(100) or Cu(111) to the interior of
the substrate. As limiting cases the corresponding quantities of a single Fe
impurity in an otherwise perfect host of (bulk) fcc Cu is shown. Very clearly
the large orbital moment when positioned on top of the surface immediately
disappears when embedded in the first (top) substrate layer. At least in terms
of the orbital moment nearly no further changes occur when the Fe atom
is moved into Cu layers farther away from the surface. The spin moment,
however, approaches the limiting single impurity case much more slowly. Even
in the second Cu layer beneath the actual surface layer distinct differences
between a Cu(100) and Cu(111) substrate are visible. It is worthwhile to note
that placed on top of the surface the orbital moment in the Cu(111) case is
by about 0.2 μB larger than for the Cu(100) substrate!

A single atom is of course a very special case. However, considering a finite
chain of Fe atoms "sinking" into a Cu substrate, very much the same effects
occur. Concentrating on atom resolved anisotropy energies, see Eqs. (13.6)
and (13.7), displayed in Fig. 13.8, it is evident that the anisotropy is substan-
tially changed when covering these chains by additional layers of Cu. This
is shown in Figs. 13.9 and 13.10 in terms of the anisotropy energies ∆Ex−z,
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FIGURE 13.7: Calculated spin (Sz) and orbital moments (Lz) of a single
Fe impurity embedded at different distances from a Cu(001) and a Cu(111)
surface with a magnetization along the surface normal (z). The position of
the impurity is labelled as follows: on top — first vacuum layer, S — surface
layer, S-1 — 1st subsurface layer, S-2 — 2nd subsurface layer, in bulk — perfect
bulk host. From Ref. [13].

∆Ey−z and ∆Ey−x. It is interesting to note that while ∆Ex−z remains pos-
itive (perpendicular) for both surface orientations of the substrate when the
chains are moved into the interior of the substrate, ∆Ey−z changes sign from
in-plane to perpendicular. ∆Ey−x is always negative and shows a period of
two with respect to the number of Fe atoms in the chain.

From this computer experiment of sinking slowly finite chains of Fe into
the substrate two conclusions can be readily drawn, namely (1) the tendency
for being perpendicularly arranged is reduced drastically already when the
chains are embedded in the first substrate layer, and (2) the end ("rim")
atoms always seem to contribute more to the anisotropy energy than the
atoms in the interior of a chain. In particular the last observation can be
important for a possible technological use of very small magnetic structures
(supported by a substrate), since by increasing the number of rim atoms also
the perpendicular anisotropy can be increased. However, before discussing
a very special case of rim-only structures, namely quantum corrals, another
very important issue of systems nanostructured in two dimensions has to be
introduced, namely aspects of non-collinearity.
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FIGURE 13.8: Left: Calculated contributions to the magnetic anisotropy en-
ergy ∆Ex−z of Fe atoms in chains immersed at different distances from
a Cu(001) surface (5: on top ; 4: layer S; ♦: layer S-1; ¤: layer S-2;
◦: in bulk). Right: Calculated contributions to the magnetic anisotropy energy
∆Ey−z of Fe atoms in chains immersed at different distances from a Cu(111)
surface (5: on top ; 4: layer S; ♦: layer S-1; ¤: layer S-2;◦: in bulk). From
Ref. [13].

13.3 Aspects of non-collinearity

Consider a seven-atom chain of Co embedded into the topmost Pt layer as
schematically indicated in Fig. 9.1 in order to create a nascent step edge and
nested Co chain. In using the spin dynamics scheme introduced in Chapter
9 and choosing initially arbitrary directions of the magnetizations (random
number generator) for the Co atoms the magnetic ground state of this cluster
consisting of Co and Pt atoms and vacuum sites can be found in terms of
an iterative multi-scale approach. The time evolution of the orientations is
then measured on a time scale with a unit (time step) of 1/λ (λ: Gilbert
damping factor), since in the semi-classical Landau-Lifshitz-Gilbert equation,
see Eq. (9.15), only the damping term needs to be considered. A stable ground
state is achieved when the θi and φi angles of the individual Co atoms converge
to a constant. For exactly the system to be discussed now the convergence
was shown in Chapter 9 in order to illustrate there the methodological aspects
and is repeated for matters of convenience on a smaller scale in the left part
of Fig. 13.11.
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FIGURE 13.9: Calculated magnetic anisotropy energies ∆Ex−z and ∆Ey−z
(normalized to one Fe atom) for Fen (n = 2, . . . , 9) chains immersed at dif-
ferent distances from a Cu(111) and a Cu(001) surface. (4: layer S; ♦: layer
S-1; ¤: layer S-2; ◦: in bulk). From Ref. [13].

FIGURE 13.10: Calculated in-plane magnetic anisotropy energy, ∆Ex−y,
for Fen (n = 1, . . . , 9) chains on a Cu(001) and a Cu(111) surface includ-
ing also contributions from nearest neighbor Cu sites and normalized to one
Fe atom. (5: Cu(001) on top ; 4: Cu(001) layer S; ¤: Cu(111) on top;
◦: Cu(111) layer S). From Ref. [13].
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FIGURE 13.11: Left: Time evolution of the angles θi (top) and φi (bottom)
for i = 1: full squares, 2: open circles, 3: full triangles, 4: full diamonds,
5: open triangles, 6: full circles and 7: open squares. Right: Energy curves
calculated using the magnetic force theorem for a ferromagnetic seven—atom
Co wire at a Pt(111) surface step edge as a function of the azimuthal angle,
θ. squares : φ = 90◦ , triangles: φ = 0◦. Solid lines serve as a guide for eyes.
From Ref. [14].

In the left part of this figure the evolution of the θi and φi angles is plotted
for the first 100 steps in this artificial time scale for each Co atom in the
chain. The θi (φi) refer to the angle of orientation of the magnetization in an
individual Co atom with respect to the z-axis (in-plane x-axis). The rapidly
converging part (up to about 40 time steps) is caused by the strong ferromag-
netic exchange coupling between the Co atoms, the following slow convergence
is due to anisotropy effects. The final converged state is characterized by an-
gles φi very close to 90◦ and θi close to 42◦, see Table 13.1, which in turn is
in remarkable agreement with experiment [15], namely φ = 90◦, θ = 43◦.
Assuming a uniform magnetization characterized by a single angle θ and a

single angle φ clearly also the following general anisotropy energy

∆E(θ, φ) = E(θ, φ)−E(θ = 0, φ = 0)

can be calculated and compared to the results obtained using spin dynamics.
In the right part of Fig. 13.11 this kind of anisotropy energy is displayed for
the case of ∆E(θ, φ = 0◦) and ∆E(θ, φ = 90◦). From the results shown
there, once can see that the easy axis corresponds to θ = 38◦ and φ = 90◦,
the hard axis to θ = −52◦ and φ = 90◦, which is again in good agreement
with experiment [15]. It is therefore quite assuring that although being based
on quite different theoretical concepts, both approaches yield rather similar
results (and agree well with the data elucidated from experiment).
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Table 13.1: Calculated magnitudes and orientations of the spin and orbital
moments in a seven—atom Co chain along a Pt(111) step edge. From Ref. [14].

atom Spin moment Orbital moment
moment(μB) Θ(deg) moment(μB) Θ(deg)

1 2.23 41.1 0.25 39.1
2 2.18 42.5 0.20 41.5
3 2.18 42.3 0.19 40.1
4 2.18 42.4 0.20 41.3
5 2.18 42.3 0.19 40.2
6 2.18 42.5 0.20 41.5
7 2.23 41.1 0.25 39.1
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14
Nanostructured in two dimensions:
nanocontacts, local alloys

Besides mentioning briefly the electronic structure and
magnetic properties of quantum corrals and nano-con-
tacts, and discussing the occurrence of spin-polarized sur-
face states, the main emphasis in this chapter is put on
the (geometrical) shape-, occupation- and configuration-
dependence of spin and orbital magnetic moments and
consequences thereof for the magnetic anisotropy energy
of local alloys.

14.1 Quantum corrals

Quantum corrals are interesting examples of solid systems nanostructured
in two dimensions, not only because in the semi-classical limit they can be
associated with classical orbits of particles bouncing off confining walls giving
in turn rise even to chaotic motions [1], but also since they can be considered
as systems with only "rim" magnetic atoms. Experimentally single quantum
corrals with about 50 - 100 magnetic atoms were already detected with the first
generation of spin-polarized STM techniques; see e.g. Ref. [2]. Since quantum
corrals were for a few years, so to say, the "show pieces" of nanoscience, they
have to be mentioned in here at least shortly.
Fig. 14.1 shows the geometrical outlay of 48 Fe atoms on Cu(111) forming a

corral with a diameter of 28 a, where a is the two-dimensional lattice constant
of the fcc(111) Cu surface. It was found that the circular quantum well model,
discussed in detail in Ref. [3], fitted rather well with the peaks in the density
of states at the central site of the corral, see Fig. 14.2, a result that per se
was essentially of theoretical interest. Following the spatial distribution of the
density of states at the energy corresponding to the fifth peak in Fig. 14.2,
however, gave a surprisingly illustrative image of the radial oscillations with
respect to an increasing distance from the center. This particular view almost
looks like an experimental STM image, in particular since the chosen energy
E −EF ' 0.01 Ryd refers to slightly excited electronic states.

161
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FIGURE 14.1: Cross section of the surface showing the position of sites in the
"vacuum layers" (open circles), the Cu surface layers (gray circles) and an Fe
impurity in the first "vacuum layer" (black circle). Inset: the positions of the
Fe atoms (black dots) and the empty spheres (open circles) along a diameter
for a quadrant of the investigated corral. From Ref. [3].

14.2 Magnetic adatoms & surface states

Since first experimental observations of a surface band at Cu(111) in terms of
angle-resolved photoemission electron spectroscopy, electronic surface states
of noble metals have been at the center of much experimental and theoretical
attention. Unfortunately, until recently STM studies of adatoms on well de-
fined Cu, Ag and Au (111) surfaces could only produce images of the charge
distribution corresponding to these states. With spin-polarized STM, how-
ever, it is now possible to record also the spatial variation in the magnetization
density, and to raise the question of the existence of spin-polarized surface
states, see for example Ref. [4]. The problem to be addressed is therefore
closely related to the previous example of quantum corrals.
Placing single atoms of Cr, Mn, Fe, Co, Ni and Cu on top of Cu(111) clearly

gave the expected results [5], namely that with the exception of Cu all these
adatoms were magnetic:

adatom spin-only magnetic
moments [μB ]

Cr 4.21
Mn 4.39
Fe 3.27
Co 2.02
Ni 0.51
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FIGURE 14.2: Calculated local density of states (bottom) and local magnetic
density of states (top) at the center of a quantum corral. The dotted lines
indicate positions of maxima in the local density of states. Vertical solid lines
refer to the energy eigenvalues, predicted by the circular quantum well model.
From Ref. [3].

FIGURE 14.3: Spatial distribution of the density of states at the energy cor-
responding to the fifth peak in Fig. 14.2. The local density of states of the Fe
atoms is removed from the figure. From Ref. [3].
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As is probably well known and was amply discussed in the beginning, within
a relativistic description the spin is not a constant of motion, a projection
with respect to "up" and "down" spins, i.e., a projection with respect to the
eigenspaces of Sz, is therefore a bit qualitative. However, since for the chosen
magnetic adatoms the exchange splitting is much bigger than the spin-orbit
splitting, for a better understanding the ("traditional") spin-polarized view of
the electronic structure of these atoms is displayed in Fig. 14.4, putting the
emphasis on the s-like channel. Clearly enough, as expected, at the site of the
impurity also the s-like density of states is spin-polarized.
Then of course immediately the question arises: and how far out does this

spin polarization induced by a single magnetic atom extend into the neighbor-
ing vacuum sites? At a distance of seven two-dimensional lattice constants
(∼ 17.9 Å) the s—density of states is practically the same as calculated for
the clean Cu(111) surface. However, as the right part of Fig. 14.4 shows, a
long—ranged oscillatory behavior of the densities of states can still be resolved
even at distances much farther away from the impurity. In the right part of
Fig. 14.4 the density of states at a selected energy, namely 34 mRyd above the
bottom of the surface—state band is displayed for both spin channels as a func-
tion of the distance from an Fe adatom. A simple estimate of the wavelength
of the two-dimensional Friedel oscillation,

λ =
π

~
√
2m∗E

, (14.1)

where m∗ is the effective mass, gives λ ≈ 15 Å ≈ 6 a2D that immediately can
be read off from the right part of Fig. 14.4. As shown in the inset of this figure,
a single impurity of Fe on top of Cu(111) induces also long—range oscillations
in the magnetization density of states (difference between the spin—projected
densities of states) with the same period, which in turn lead to the well-known
long—range magnetic (RKKY) interactions on noble metal (111) surfaces as
discussed, e.g., in Ref. [6].

14.3 Nanocontacts
Because the possibility of using such systems in future nanoelectronic tech-
nologies, the number of theoretical and experimental investigations of the
electronic structure and the transport properties of atomic-sized conductors
has greatly been increased over the last decade. Widely applied methods for
fabricating nanocontacts between macroscopic electrodes are the mechanically
controllable break junction technique [7, 8, 9, 10] and scanning tunneling mi-
croscopy [11, 12, 13] by pushing the tip intentionally into the surface. The
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FIGURE 14.4: Left: Calculated minority spin (upper panel) and majority spin
(lower panel) s—like densities of states at a site in the same plane as a single
Fe impurity on a Cu(111) surface with respect to the distance between these
two sites. The distance (in units of the two—dimensional lattice constant) is
indicated in the legend of the lower panel. Right: Calculated minority spin
(solid line) and majority spin (dotted line) s—like densities of states at E −
EF = 0.012 Ryd of a site positioned in the same plane but at a certain distance
from a single Fe impurity on a Cu(111) surface. Inset: s—like magnetization
density of states. From Ref. [5].

crucial problems [14] for both methods consist in the presence of contaminants
and the mechanical stability. Since the electric properties of nanocontacts will
be dealt with in Chapter 17, in this section only the electronic and magnetic
properties of such contacts are discussed.
A schematic view of a typical contact is displayed in Fig. 14.5. In there C

refers to the central layer, C−1 and C+1 to the layers below and above, etc.
For the Au contacts shown in the top part of Fig. 14.6, e.g., the central layer
contains 1 Au atom (the other sites in this plane are empty), layers C−1 and
C + 1 contain 4 Au atoms, layers C − 2 and C + 2 contain 9 Au atoms and,
though not shown, all layers C − n and C + n (n ≥ 3) are completely filled
with Au atoms. All sites (Au, vacuum and impurity sites) correspond to an
ideal fcc(001) parent lattice with a lattice constant of bulk Au, a3D = 7.68
[a.u.].
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FIGURE 14.5: Schematic side view of a point contact between two semi-
infinite leads. The layers are labelled by C, C ± 1, etc. From Ref. [15].

Obviously, the question of the effect of magnetic impurities in Au point
contacts is perhaps the most interesting one. It turns out, see Table 14.1,
that as to be expected the position of the impurity atom with respect to
the actual contact atom is absolutely crucial: the orbital moments change
drastically when an Fe atom is moved from position A (being the contact
atom) to positions B or C, see also the lower part of Fig. 14.6.

Table 14.1: Calculated spin and orbital moments of magnetic impurities
placed at different positions in a Au point contact; see also the lower part of
Fig. 14.6. From Ref. [15].

position Sz[μB ] Lz[μB]
Fe Co Fe Co

A 3.36 2.01 0.47 0.38
B 3.46 2.17 0.04 0.61
C 3.42 2.14 0.07 0.22

In order to pinpoint the difference of being placed in position A or B in
Fig. 14.7 the minority d-like local densities of states of the Fe and Co impuri-
ties are resolved according to the canonical orbitals dx2−y2 , dxy, dxz,, dxy and
d3z2−r2 . Note that as already mentioned before, this kind of partial decompo-
sition, usually referred to as the (c,m, s) representation of the local density of
states, is not unique within a relativistic formalism, since due to the spin-orbit
interaction the different spin and orbital components are mixed. As can be
seen from this figure, the local density of states of an impurity in position A
is much narrower than in position C. This is an obvious consequence of the
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FIGURE 14.6: Top: Perspective view of some contacts between two fcc(001)
semi-infinite leads. Only the partially filled layers are shown. a) point contact
b) slanted linear finite chain c) 2 x 2 finite chain. Bottom: Impurity positions
(light grey spheres) in a Au point contact. From Ref. [15].

difference in the coordination numbers (8 for position A and 12 for positions
C). Thus an impurity in position A hybridizes less with the neighboring Au
atoms and, as can be seen from Fig. 14.7, the corresponding d states are fairly
localized. Also to be seen is a spin-orbit induced splitting of about 8 mRyd (∼
0.1 eV, about the spin-orbit splitting in an isolated atom) in the very narrow
dx2−y2-dxy states of the impurities in position A. The difference of the band
filling for the two kind of impurities shows up in a distinct downward shift of
the local density of states of Co with respect to that of Fe.

In particular the s-like density of states at position A shows a very interest-
ing shape which can indeed be correlated with the corresponding d3z2−r2-like
density of states at the impurity site; see bottom half of Fig. 14.8. Clearly, the
center positions and the widths of the d3z2−r2-like density of states peaks and
those of the respective (anti-)resonant s-like density of states shapes coincide
well with each other.

This kind of behavior in the density of states resembles the case studied by
Fano [16] for a continuum band and a discrete energy level in the presence of
configuration interaction (hybridization). Apparently in a Au point contact
the s-like states play the role of a continuum and the d3z2−r2-like state of
the impurity acts as quasi-discrete energy level. Since the two kinds of states
share the same cylindrical symmetry, interactions between them can occur
due to backscattering effects.
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FIGURE 14.7: Minority-spin orbital-resolved d-like local density of states of
Fe and Co impurities in position A (upper panels) and in position C (lower
panels) of a Au point contact; see lower part of Fig. 14.8. From Ref. [15].

14.4 Local alloys

In view of the fabrication of so-called bit-patterned media [17, 18] it became
the main goal of experimental methods to produce grains of controlled size
and position, of known composition, and with sharply defined magnetic prop-
erties [19, 20]. Clearly, this eventually would lead to increased achievable
areal densities [21] of magnetic recording media by several orders of magni-
tude [19, 22, 23, 24, 25].
One of the main issues is therefore the magnetic anisotropy energy which

determines the orientation of the magnetization of a cluster with respect to the
surface: a large enough magnetic anisotropy energy can stabilize the magneti-
zation direction in the cluster and a stable magnetic bit can be created [26, 27].
The actual size of the magnetic anisotropy energy can in turn be manipulated
by varying the shape, size and composition of clusters and — of course — is
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FIGURE 14.8: Top: minority-spin s-like local density of states at the center
site of a Au point contact with an impurity at position A ( left) and B (right);
see lower part of Fig. 14.8 (solid line: Co, dashed line: Fe). For matters
of comparison, in both figures the corresponding local density of states for a
pure Au contact (dotted line) is added. The solid vertical lines highlight the
position of the Fermi energy. Bottom: minority-spin d3z2−r2-like local density
of states of the impurities (solid line: Co, dashed line: Fe) at positions A
(left) and C (right). Vertical dashed lines mark the center positions of the
peaks in the d3z2−r2-like local density of states. From Ref. [15].

influenced by the choice of the substrate.

It is exactly the problem of the shape, size and composition that is ad-
dressed in the following by considering clusters consisting of Fe and Co atoms
on top of Cu(100) [28]. In this context an important question will be an-
swered, namely when in a cluster of a certain size, geometry and composition
(number of Fe and Co atoms), the magnetic anisotropy energy, averaged over
all possible configurations of the Fe and Co atoms occupying the positions in
the chosen cluster, resembles the magnetic anisotropy energy of a monolayer
of a statistically disordered alloy FexCo1−x on the same substrate, where the
concentration x corresponds to the composition in the cluster. Thus the mag-
netic anisotropy energy can be studied starting from two atoms, namely Fe
and Co, via local alloys (configuration averaged clusters) up to larger islands
of a certain composition, for which already statistical averages are justified.



© 2009 by Taylor & Francis Group, LLC

170 Magnetic Anisotropies in Nanostructured Matter

In the following, first a 2 x 2 cluster, see also Fig. 13.2, of Co and Fe
atoms with varying composition is considered, since the number of possible
configurations is still rather small. In the left part of Fig. 14.9 the spin and
the orbital moments of Fe and Co are displayed versus the configuration,
shown explicitly in the right part of this figure. Note that each geometrical
configuration has to be occupied with either Fe or Co atoms:

number of number of configuration
Co (A) atoms Fe (B) atoms

0 4 1B
1 3 2,3 (A,B)
2 2 4,5 (A,B)
3 1 6 (A,B)
4 0 1A

In principle the composition in a particular cluster consisting of NFe Fe
atoms and NCo Co atoms is then given by

ξ ≡ ξFe =
NFe

N
, ξCo = 1− ξ ,

N = NFe +NCo .

From this figure it is already evident that in comparison to a monolayer of
statistical disordered FexCo1−x on Cu(100),

x = lim
N→NL

ξ ,

where NL is a sufficiently large number (e.g. Avogardo number), the spin
moment of Co is hardly changed, while that of Fe is substantially increased.
Amazingly enough with increasing ξ the Lx- and Ly-type orbital moments
of Co show different slopes, the in-plane orbital moment (Lx) being much
enhanced when ξCo is large. The Fe orbital moments do not differ a lot from
each other and seem to be only little influenced by the actual composition
of the cluster. This behavior of the orbital moments indicates already that
great variations of the anisotropy energy can be expected when changing the
composition of clusters.
But before conclusions are made perhaps too soon, the next bigger cluster

with a total of 5 atoms shall be considered. In Fig. 14.10 first the spin and
orbital moments for Co are shown, when a Co atom is placed either in the
center (case A) or in a corner of a cross-like (case B) pentameter shaped
cluster; Fig. 14.11 refers then to Fe.
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} Co
} Co } } } }

} }

A B

The comparison between these two possibilities, namely of having a Co
(Fe) atom in the center and varying the occupation of the remaining sites or
placing it in a corner, is indeed striking, because it shows that both the spin
and the orbital moments can be greatly enhanced by fabricating clusters with
enough corner ("rim") atoms. Viewing, e.g., Fig. 14.10 it is evident that in
case A with increasing Co content the Co spin moment almost reaches its
bulk value, while in case B it remains about three times as large! The same
enormous differences apply for the orbital moments, which in case A hardly
differ from those in a statistically disordered monolayer FexCo1−x on Cu(100),
while in case B they vary between 0.3 and about 0.5 μB, i.e., are impressively
big. Nearly the same trends can be read from Fig. 14.11 featuring the Fe
component.
One can imagine now that the information to be obtained from this type

of atomistic description simply "explodes" when going to even bigger clus-
ters. Already in a "simple" 3 x 3 cluster three types of situations can be
distinguished, namely center, edge and corner positions:

} } } Co } } } } }
} Co } } } } Co } }
} } } } } } } } }

A B C

Since in experiments, but also in particular in view of any technological ap-
plications, such detailed arrangements of Fe and Co atoms are not very likely
to be realized and also since for clusters with even more atoms an atomistic
view becomes more and more intricate, an average over configurations can give
a more condensed view of the magnetic properties of clusters obtained, e.g.,
by co-evaporation. Such configuration averages are shown in Fig. 14.12 for
the spin and orbital moments and in Fig. 14.13 for the magnetic anisotropy.
From Fig. 14.12 one can see that the configuration-averaged spin moment

decreases almost independent of the cluster size and geometry almost linearly
with increasing Co content and follows rather closely the corresponding values
for a monolayer of statistically disordered FexCo1−x on Cu(100). The orbital
moments, however, show an impressive variation with respect to the cluster
type. The values for clusters of pentameter type are by about 0.1 μB larger
than those of the other types, which in turn is a consequence of the importance
of corner atoms.
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FIGURE 14.9: Spin and orbital magnetic moments of selected Co (left panel)
and Fe (right panel) atoms as a function of all cluster configurations possible
(Co: iA, Fe: iB, i = 1, . . . , 5); see the scheme to the right. Dashed horizontal
lines refer to the corresponding Fe/Cu(100) or Co/Cu(100) monolayer values
for a magnetization along the surface normal. Dash-dotted horizontal lines to
those with the magnetization along the in-plane x(y)-axis. The investigated
atom is indicated by boldface letters. From Ref. [28].
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FIGURE 14.10: Spin and orbital magnetic moments of a selected Co atom as
a function of its position in the cluster and of the number of Fe neighbors.
For the actual configuration see the panel to the right. Dashed horizontal lines
refer to the corresponding Co/Cu(100) monolayer values with the magnetiza-
tion along the surface normal. Dash-dotted horizontal lines to those with the
magnetization along the in-plane x(y)-axis. From Ref. [28].
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FIGURE 14.11: Spin and orbital magnetic moments of a selected Fe atom
as a function of the position occupied in the cluster and of the number of Co
neighbors. For the actual configuration, see the panel to the right. Dashed hor-
izontal lines refer to the corresponding Fe/Cu(100) monolayer values along the
surface normal. Dash-dotted horizontal lines to those with the magnetization
along the in-plane x(y)-axis. From Ref. [28].
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FIGURE 14.12: Spin and orbital moments averaged over all the configurations
for a given Co concentration. The dashed line refers to the case of a CoxFe1−x
monolayer on Cu(100). From Ref. [28].

The perhaps most surprising fact can be read from Fig. 14.13, in which not
only the averaged magnetic anisotropy energy, but also the values for the in-
dividual configurations are displayed together with the data for a correspond-
ing monolayer. The result is surprising, since (a) the reorientation transition
from perpendicular to in-plane happens at exactly the same Co composition
for the averaged clusters and the statistically disordered monolayer and (b)
the spread in energy of the configuration-dependent anisotropy energies on
the total scale from perpendicular to in-plane is perhaps less impressive than
originally thought. This figure, however, also shows that as compared to a free
surface of a monolayer of CoxFe1−x on Cu(100) anisotropy effects are quite
a bit more enhanced in the case of small clusters of Fe and Co on Cu(100):
there is a stronger tendency to be perpendicularly arranged for x ≤ 0.4 as
well as for an in-plane orientation for x > 0.4.
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FIGURE 14.13: Magnetic anisotropy energy as a function of the Co concen-
tration. Shown is the distribution of the anisotropy energies for 3×3 clus-
ters as a function of the clusters configuration (diamonds). The anisotropy
energy is defined as h∆E⊥i = h(∆Exz +∆Eyz) /2i, where hi refers to the
average over all configurations (solid line), z to the surface normal and x and
y to the in-plane coordinates. Also displayed is the anisotropy energy for a
CoxFe1−x/Cu(100) monolayer (dashed line). From Ref. [28].

14.5 Summary

• Clusters of magnetic atoms on suitable substrates have much higher
magnetic anisotropy energies than even free surfaces of the same atomic
species.

• The size of the magnetic anisotropy energy can be monitored by (a)
maximizing the number of corner and edge magnetic atoms, (b) the
geometric shape of clusters and (c) co-evaporation of two different types
of magnetic atoms, or, (d) by choosing at least a neighborhood of easy
polarizable material.

• Ensembles of magnetic atoms on top of a metallic substrate can induce
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spin-polarized surface states.

• The extraordinary anisotropic properties of magnetic clusters on top
of a metallic substrate are drastically reduced by the use of protective
(metallic) cap layers.
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15
A mesoscopic excursion: domain walls

Based on the Ginzburg-Landau expansion an expression is intro-
duced by which in a kind of multi-scale approach equilibrium do-
main wall widths of pure magnetic systems or binary magnetic al-
loys can be evaluated. This description will be important in partic-
ular for the discussion of domain wall resistivities in Chapter 17.

The interest in magnetic domains and domain-wall formation [1, 2] changed
in recent years, in particular since the discovery of the giant magnetoresistance
effect, from extended systems such as well-characterized thick layers on suit-
able substrates or single crystals to restricted systems in the form of thin
wires or spin valve type arrangements, i.e., to nano-sized systems with struc-
tural or geometrical restrictions. Since domain wall widths are typically only
between 100 to 500 nm, experimental techniques had to be improved contin-
uously in order to map out sufficiently well domain walls, and, by making use
of spin-polarized techniques. In the last few years they seem to head even for
a resolution necessary to trace the spread of orientations of the magnetization
within domain walls.
Suppose L denotes the width of a domain wall in a substitutional binary

alloy AcB1−c viewed as a layered system (only two-dimensional translational
symmetry) corresponding to the following magnetic configuration Ci

Ci = {nl, n1,n2, . . . ,nL−1,nL−1| {z }
domain wall

, nr} , (15.1)

where nl and nr denote the orientations of the magnetization in the "left"
and the "right" domain and the ni refer to those in the atomic planes forming
the wall; see also Section 3.6. Each domain represents a semi-infinite system
with a uniform orientation of the magnetization. Consider now the following
special case

Ci = {nl = x̂, n1,n2, . . . ,nL−1,nL−1, nr = −x̂} , (15.2)

namely that the magnetization in the left domain points uniformly along the
in-plane x-axis, and in the right domain the direction of the magnetization
is uniformly antiparallel to x. Then in terms of the magnetic force theorem
the energy difference between this configuration and the case that the system
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forms a single domain with a magnetization aligned uniformly along x̂,

C0 = {nl = x̂, ni = x̂, i = 1, L, nr = x̂} , (15.3)

is given by
∆E(Ci, L) = E(Ci, L)−E(C0, L) , (15.4)

where, as should be recalled, E(Ci, L) is defined by

E(Ci, L) =
EFZ
Eb

n(Ci, L; �)(�− EF )d� . (15.5)

In principle in order to obtain at a given width L the domain wall formation
energy the minimum over all configurations Ci has to be evaluated,

E(L) = min
{Ci}

[∆E(Ci, L)] , (15.6)

a procedure, which, however, is computationally beyond reach. The domain
wall formation energy E(L) is therefore approximated by a model in which
the magnetization changes quasi-continuously from x̂ to −x̂

E(L) ∼ E(Cd, L)−E(C0, L) , (15.7)

Cd = {nl = x̂, ni = D(Φi)x̂, nr = −x̂ ; Φi = 180i/L , i = 1, L} ,
(15.8)

where D(Φi) is a rotation by an angle Φi around the surface normal.
Based on the usual Ginzburg-Landau expansion [3] it was shown [4] that

the domain wall formation energy in a magnetic substitutional binary alloy
[5] AcB1−c can be written as

E(L, c) = A0(c)

µ
α(c)

L
+ β(c)L

¶
, (15.9)

where A0(c) is the unit area, and the constants α(c) and β(c) correspond to
the exchange and anisotropy energy, respectively.
At a given concentration c, from the condition dE(L)/dL = 0 follows im-

mediately that the equilibrium domain wall width L0 is given by

L0 =
p
α/β . (15.10)

The coefficients α and β in Eq. (15.9) can easily be obtained by evaluating
E(L) in Eq. (15.7) at two different values of L, say L1 and L2, L2 > L1, since

β = (L2E(L2)− L1E(L1)) /(L
2
2 − L21) ,

α = L1E(L1)− βL21 .
. (15.11)
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FIGURE 15.1: Domain wall formation energies E(L)/a2 for bcc Ni15Fe85
and fcc Ni85Fe15 as a function of the domain wall width L. Open squares
refer to calculated values. The full line corresponds to a Landau-Ginzburg fit
using L1 = 126 and L2 = 192 ML. The position of the equilibrium domain
wall width L0 is indicated as a full circle. The inset shows E(L)/a2 in the
vicinity of L0. From Ref. [5].
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FIGURE 15.2: Left: Equilibrium domain wall width L0 (full circles: bcc, full
squares: fcc) in NicFe1−x as a function of the Ni concentration. Note that
between about 17.5 and 55% Ni no domain wall formation occurs. The open
diamond, up-triangle and down-triangle refer respectively to the experimental
data given in Refs. [7, 8, 9]. Right: Evaluated constants α and β for the fcc
regime of NixFe1−x. From Ref. [5].

Furthermore, for L2 − L1 = n the corresponding energy difference ∆E(n) =
E(L1+n)−E(L1) is simply given by ∆E(n) = −αn/

¡
L21 + L1n

¢
+nβ ' nβ.

In Fig. 15.1 the domain wall formation energies E(L)/a2 are displayed ver-
sus L (in nm) for bcc Ni15Fe85 and fcc Ni85Fe15. Since the functional form in
Eq. (15.9) fits very well the ab-initio data evaluated fully relativistically, the
occurring deviations being minute, Eq. (15.11) indeed can be used to predict
L0 (indicated in this figure as a full circle; see also the respective insets, in
which E(L)/a2 is depicted in the vicinity of L0). The corresponding parame-
ters α and β in NicFe1−c are shown in the right part of Fig. 15.2.
It is probably well known that in the Ni/Fe phase diagram a famous struc-

tural phase transition from bcc to fcc occurs around 35% Ni. In viewing
Fig. 15.2, a perhaps surprising feature of this phase transformation becomes
apparent: in NicFe1−c domain walls are only formed in the bcc regime for x <
20% and in the fcc regime for x > 55%, since in the remainder of concentra-
tions α/β < 0.
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FIGURE 15.3: Exchange and anisotropy parameters α and β, see Eq.(15.9),
and equilibrium domain wall width [nm] in CocFe1−c and CocNi1−c with re-
spect to the Co concentration. From Ref. [6].
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In Fig. 15.3 the exchange and anisotropy energies α and β for CocFe1−c
and CocNi1−c are displayed versus the Co concentration together with the
corresponding equilibrium domain wall width L0. While for CocNi1−c α, β
and L0 vary fairly smoothly with c, in CocFe1−c both α and β show a break
in the vicinity of the phase transition: they change from higher values in
the bcc regime to lower values in the fcc regime. It is interesting to note
that although there is this discontinuity for α and β across the regime of the
phase transition, by continuing "artificially" the bcc regime to c = 0.8 no
obvious jump in L0 occurs at that concentration. Since the structural phase
transition extends over about 20% in concentration and since the α and β
are defined strictly only for either the bcc or the fcc regime, unfortunately
nothing can be said about how they would change in the concentration range
of the phase transition. Furthermore, since for CocFe1−c β reaches a minimum
while α increases continuously with c, there is a peak in L0 near c ∼ 0.4. This
minimum in β looks like the system attempts to head for a structural phase
transition.
The functional form of the equilibrium domain wall width versus concen-

tration can be classified very simply using Eq. (15.10)

L20 = α/β , α, β ≥ 0 :

⎧⎨⎩α 6= 0, β → 0 : L0 →∞

α→ 0, β 6= 0 : L0 → 0
. (15.12)

Quite clearly it is the interplay between the exchange energy and the mag-
netic anisotropy that determines the width of magnetic domain walls, or
expressed more drastically: in a non-relativistic description (no magnetic
anisotropy) all magnetic systems are per definition single domain systems,
since β = 0.
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16
Theory of electric and magneto-optical
properties

Here, linear response theory, the Kubo and Kubo-Luttinger equa-
tions, is introduced in quite a general context from which for in-
dependent particles, namely in the context of density functional
theory, a Kubo equation is derived that applies to electric as well
as optical transport. For both aspects (zero and finite frequencies)
a Green’s function formulation in terms of multiple scattering is
given. In particular, the importance of inherent boundary condi-
tions and the concept of layer-resolved conductivities are discussed.

16.1 Linear response theory
In the 1950s Kubo developed a method of evaluating the response of a quan-
tum mechanical system to an external potential, in particular to an electric
field [1]. To first order, known as linear response, this kind of response theory
[2, 3] is applicable to electric as well as to optical transport. In the following
the underlying theoretical approach is introduced and will then be cast into
a multiple scattering formulation [4, 5, 6].

16.1.1 Time-dependent perturbations

Assuming a time-dependent perturbation Ĥ 0(t), the Hamilton operator of the
perturbed system is of the form,

Ĥ(t) = Ĥ0 + Ĥ 0(t) . (16.1)

For a grand-canonical ensemble the density operator of the unperturbed sys-
tem can be written as

(̂0 =
1

Z e−βĤ0 , Ĥ0 = Ĥ0 − μN̂ , Z = Tr
³
e−βĤ0

´
, (16.2)

where μ is the chemical potential, β = (kBT )
−1, N̂ the (particle) number

operator, and Z is the grand canonical partition function.
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Since the expectation value of a physical observable A, associated with a
Hermitian operator Â corresponding to the unperturbed system, is given by

A0 = hAi =
1

Z Tr
³
Âe−βĤ0

´
= Tr

³
(̂0Â

´
, (16.3)

within the Schrödinger picture the equation of motion for the density operator
can be written as

i~
∂(̂(t)

∂t
=
h
Ĥ(t), (̂(t)

i
, Ĥ(t) = Ĥ(t)− μN̂ = Ĥ0 + Ĥ 0(t) . (16.4)

Clearly enough, in the absence of a perturbation, (̂(t) = (̂0. Therefore, parti-
tioning (̂(t) as

(̂(t) = (̂0 + (̂0(t) , (16.5)

and making use of the fact that
h
Ĥ0, (̂0

i
= 0, one gets in first order in Ĥ 0,

i~
∂(̂0(t)

∂t
=
h
Ĥ0, (̂0(t)

i
+
h
Ĥ 0(t), (̂0

i
, (16.6)

or, by switching to the interaction (Dirac) picture,

(̂D(t) = (̂0 + (̂0D(t) , (̂
0
D(t) = e

i
~ Ĥ0t(̂0(t)e−

i
~ Ĥ0t , (16.7)

i~
∂(̂0D(t)

∂t
=
h
Ĥ 0
D(t), (̂0

i
. (16.8)

This equation has to be solved now for a given initial condition. Turning on the
external field adiabatically at t = −∞, implies that the density operator of the
system at t = −∞ represents an ensemble of systems in thermal equilibrium,
i.e.,

lim
t→−∞

(̂(t) = (̂0 , lim
t→−∞

(̂0D(t) = 0 . (16.9)

Using this boundary condition for (̂0D(t) results the following integral equation

(̂0D(t) = −
i

~

tZ
−∞

dt0
h
Ĥ 0
D(t

0), (̂0
i

, (16.10)

such that in the Schrödinger picture the density operator can be approximated
in first order as

(̂(t) ≈ (̂0 −
i

~

tZ
−∞

dt0e−
i
~ Ĥ0t

h
Ĥ 0
D(t

0), (̂0
i
e
i
~ Ĥ0t . (16.11)



© 2009 by Taylor & Francis Group, LLC

Theory of electric and magneto-optical properties 187

Considering now the time evolution of a (time-dependent) physical observable
A(t),

A(t) = Tr
³
(̂(t)Â

´
= A0 −

i

~

tZ
−∞

dt0 Tr
³
e−

i
~ Ĥ0t

h
Ĥ 0
D(t

0), (̂0
i
e
i
~ Ĥ0tÂ

´

= A0 −
i

~

tZ
−∞

dt0 Tr
³h
Ĥ 0
D(t

0), (̂0
i
ÂD(t)

´
, (16.12)

where A0 is defined in Eq. (16.3) and the Dirac representation of operator Â
is given by

ÂD(t) = e
i
~ Ĥ0tÂe−

i
~ Ĥ0t . (16.13)

Then by making use of the identity,

Tr
³h
Â, B̂

i
Ĉ
´
= Tr

³
ÂB̂Ĉ − B̂ÂĈ

´
= Tr

³
B̂ĈÂ− B̂ÂĈ

´
= Tr

³
B̂
h
Ĉ, Â

i´
, (16.14)

one arrives at

δA(t) = A(t)−A0 = −
i

~

tZ
−∞

dt0 Tr
³
(̂0

h
ÂD(t), Ĥ

0
D(t

0)
i´

. (16.15)

Assuming finally that the perturbation Ĥ 0(t) is of the form,

Ĥ 0(t) = B̂F (t) , (16.16)

where B̂ is a Hermitian operator and F (t) is a complex function (classical
field), Eq. (16.15) transforms to

δA(t) = − i

~

tZ
−∞

dt0F (t0)Tr
³
(̂0

h
ÂD(t), B̂D(t

0)
i´

, (16.17)

which can be written in terms of a (retarded) Green’s function as,

Gret
AB(t, t

0) = −iΘ(t− t0)Tr
³
(̂0

h
ÂD(t), B̂D(t

0)
i´

, (16.18)

or, by introducing a so-called generalized susceptibility,

χAB(t, t
0) =

1

~
Gret
AB(t, t

0) , (16.19)
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as

δA(t) =
1

~

∞Z
−∞

dt0F (t0)Gret
AB(t, t

0) =

∞Z
−∞

dt0F (t0)χAB(t, t
0) . (16.20)

Suppose now that the operators Â and B̂ do not depend explicitly on time;
then Gret

AB(t, t
0) and χAB(t, t

0) are only functions of the argument (t − t0).
Consequently, the Fourier coefficients of δA(t) can be written as

δA(ω) =
1

~
F (ω)Gret

AB(ω) = F (ω)χAB(ω) , (16.21)

where

X(ω) =

∞Z
−∞

dtX(t)eiωt , X(t) =
1

2π

∞Z
−∞

dωX(ω)e−iωt , (16.22)

applies for any time-dependent quantity X(t).
Since by definition Gret

AB(ω) is analytical only in the upper complex semi-
plane, for a real argument ω the limit ' → ω + i0 has to be considered.
The complex admittance χAB(ω) can therefore be expressed in terms of the
retarded Green function as

χAB(ω) =
1

~
Gret
AB(ω + i0) = − i

~

∞Z
0

dt ei(ω+i0)tTr
³
(̂0

h
Â(t), B̂(0)

i´
.

(16.23)
The occurrence of the side-limit ω+ i0 in χAB (ω) is usually termed adiabatic
switching on of the perturbation, since it corresponds to a time-dependent
classical field,

F 0(t) = lim
s→+0

¡
F (t)est

¢
. (16.24)

16.1.2 The Kubo equation

Returning now to the second term on the rhs of Eq. (16.12),

δA(t) = − i

~

tZ
−∞

dt0 Tr
³h
Ĥ 0
H(t

0), (̂0
i
ÂH(t)

´
, (16.25)

where the operators are defined within the Heisenberg picture with respect to
the unperturbed system and using Kubo’s identity,

i

~

h
X̂H(t), (̂

i
= (̂

βZ
0

dλ
˙̂
XH(t− iλ~) , (16.26)
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(̂ =
e−βĤ

Tr
³
e−βĤ

´ , (16.27)

X̂H(t) = e
i
~ ĤtX̂(t)e−

i
~ Ĥt ,

˙̂
XH(t) = −

i

~

h
X̂H(t), Ĥ

i
, (16.28)

this term, namely Eq. (16.25), finally yields the famous Kubo formula:

δA(t) = −
tZ

−∞

dt0
βZ
0

dλTr
³
(̂0
˙̂
H 0
H(t

0 − iλ~)ÂH(t)
´

= −
tZ

−∞

dt0
βZ
0

dλTr

µ
(̂0
˙̂
H 0(t0)ÂH(t− t0 + iλ~)

¶
. (16.29)

16.1.3 The current-current correlation function

Suppose that the total electric field, E(r, t) is associated with the perturbation
Ĥ 0(t) in terms of a scalar potential φ(r, t) as

Ĥ 0(t) =

Z
d3r ρ̂(r)φ(r, t) , E(r, t) = −∇φ(r, t) , (16.30)

where ρ̂(r) = eψ(r)+ψ(r) is the charge density operator, ψ(r) a field operator
and e the charge of an electron. Then the time-derivative of Ĥ 0

H(t) can be
calculated as follows,

˙̂
H 0(t) =

Z
d3r

1

i~

h
Ĥ0, ρ̂(r)

i
| {z }
∂ρ̂H(r,t)

∂t |t=0

φ(r, t) = −
Z

d3r∇Ĵ(r)φ(r, t)

=

Z
d3r Ĵ(r)∇φ(r, t) = −

Z
d3r Ĵ(r)E(r, t) , (16.31)

where the current-density operator is given by

Ĵ(r) =

⎧⎪⎨⎪⎩
e~
2miψ(r)

+
³−→∇ −←−∇´ψ(r) , non-relativistic case ,

ecψ(r)+ α̂ψ(r) , relativistic case ,

(16.32)

and the α̂ denote Dirac matrices. Note that in Eq. (16.31) the continuity
equation was used and periodic boundary conditions were assumed such that
the corresponding surface term vanishes. The μ−th component of the current
density can thus be written as

Jμ(r, t) =
X
ν

Z
d3r0

∞Z
−∞

dt0σμν(r, r
0; t, t0)Eν(r

0, t0) , (16.33)
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where the occurring space-time correlation function is given by

σμν(r, r
0; t, t0) = Θ(t−t0)

βZ
0

dλTr
³
(̂0 Ĵν(r, 0)Ĵμ(r

0, t− t0 + iλ~)
´

, (16.34)

by which the linear response of the current density at (r, t) in direction μ
is correlated to the local electric field at (r0, t0) applied in direction ν. Note
that in the above equation the current-density operators are assumed to be
Heisenberg operators.
Consider now the Fourier components of the electric field,

E(q, ω) =

Z
d3r

∞Z
−∞

dtE(r, t)e−iq· r+i't , (16.35)

E(r, t) =
1

2πV

Z
d3q

∞Z
−∞

dωE(q, ω)eiq· r−i't , (16.36)

where ' = ω + i0 and V is the volume of the system. While σμν(r, r0; t, t0)
trivially depends only on (t−t0), in general, it is a function of the independent
space variables r and r0. In cases, however, when the current density is an
average of the local current density in Eq. (16.31) over a large enough region,
σμν(r, r

0; t, t0) can be assumed to be homogeneous in space, i.e., σμν(r, r0; t−
t0) = σμν(r − r0; t − t0). This usually is the case if |q| is small. The (q, ω)
component of the current density per unit volume,

Jμ(q, ω) =
1

V

Z
d3r

∞Z
−∞

dt Jμ(r, t)e
−iq· r+i't , (16.37)

can then be determined, i.e.,

Jμ(q, ω) =
X
ν

σμν(q, ω)Eν(q, ω) , (16.38)

where σμν(q, ω) is the wave—vector and frequency dependent conductivity
tensor,

σμν(q, ω) =
1

V

∞Z
0

dt ei't

βZ
0

dλ Tr
³
(̂0Ĵν(−q, 0)Ĵμ(q, t+ iλ~)

´
, (16.39)

and

Jμ(q, t) =

Z
d3r Jμ(r, t)e

−iq· r . (16.40)
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In using contour integration techniques one arrives at

σμν(q, ω) =
i

~V

∞Z
0

dt ei't

∞Z
t

dt0 Tr
³
(̂0

h
Ĵμ(q, t

0), Ĵν(−q, 0)
i´

, (16.41)

such that by introducing the below current-current correlation function,

Σμν(q,') =
1

~V

∞Z
0

dt ei't Tr
³
(̂0

h
Ĵμ(q, t), Ĵν(−q, 0)

i´
, (16.42)

the conductivity tensor can finally be expressed as

σμν(q, ω) =
Σμν(q,')−Σμν(q, 0)

'
. (16.43)

16.2 Kubo equation for independent particles
In the basis of the eigenfunctions of Ĥ0 (spectral representation),

Ĥ0 |ni = εn |ni , hm |n i = δnm ,
X
n

|n ihn | = Î , (16.44)

the equilibrium density operator and its matrix elements are given by

(̂0 =
X
n

f(εn)|nihn| , hn |(̂0| pi = f(εn)δpn , (16.45)

and the thermal average of the current—current commutator can be written
as

Tr
³
(̂0

h
Ĵμ(q, t

0), Ĵν(−q, 0)
i´
=
X
nm

{f(εn)− f(εm)} e
i
~ (εn−εm)t

0

× Jnmμ (q)Jmn
ν (−q) , (16.46)

with

Jnmμ (q) ≡
D
n
¯̄̄
Ĵμ(q)

¯̄̄
m
E
and Jmn

ν (−q) ≡
D
m
¯̄̄
Ĵν(−q)

¯̄̄
n
E

, (16.47)

and f(ε) being the Fermi-Dirac function. Substituting Eq. (16.46) into Eq.
(16.42) then yields

Σμν(q, ω) =
1

~V
X
nm

{f(εn)− f(εm)}Jnmμ (q)Jmn
ν (−q)

∞Z
0

dt e
i
~ (εn−εm+~')t .

(16.48)
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Since the integral with respect to t, however, is just the Laplace transform of
the below identity,

∞Z
0

dt e[
i
~ (εn−εm+~ω)−s]t =

(s>0)
− e[

i
~ (εn−εm+~ω)−s]

i
~ (εn − εm + ~ω)− s

, (16.49)

Eq. (16.48) can be transformed to

Σμν(q, ω) =
i

V

X
nm

f(εn)− f(εm)

εn − εm + ~'
Jnmμ (q)Jmn

ν (−q) . (16.50)

Together with Eq. (16.41) this now provides a numerically tractable tool to
calculate the conductivity tensor. Since

1

εn − εm + ~'
− 1

εn − εm
=

−~'
(εn − εm)(εn − εm + ~')

,

σμν(q, ω) can also be written in the following compact form,

σμν(q, ω) =
~
iV

X
nm

f(εn)− f(εm)

εn − εm

Jnmμ (q)Jmn
ν (−q)

εn − εm + ~'
, (16.51)

where
' = ω + iδ . (16.52)

16.2.1 Contour integrations

Considering a pair of eigenvalues, εnand εm, for a suitable contour C [5] in
the complex energy plane (see Fig. 16.1) the residue theorem implies thatI

C

dz
f(z)

(z − εn)(z − εm + ~ω + iδ)
= −2πi f(εn)

εn − εm + ~ω + iδ

+2iδT

N1X
k=−N2+1

1

(zk − εn)(zk − εm + ~ω + iδ)
, (16.53)

where the zk = EF + i(2k − 1)δT are the Matsubara-poles with EF being the
Fermi energy, δT ≡ πkBT , and T the temperature. In Eq. (16.53) it was
supposed that N1 and N2 Matsubara-poles in the upper and lower semi-plane
lie within the contour C, respectively. Eq. (16.53) can be rearranged as follows

i
f(εn)

εn − εm + ~ω + iδ
= − 1

2π

I
C

dz
f(z)

(z − εn)(z − εm + ~ω + iδ)

+i
δT
π

N1X
k=−N2+1

1

(zk − εn)(zk − εm + ~ω + iδ)
. (16.54)
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FIGURE 16.1: Integrations along the contours C (left entry) and C 0 (right
entry). From Ref. [5].

Similarly, by choosing contour C0, see Fig. 16.1, one gets [5]

−i f(εm)

εn − εm + ~ω + iδ
=
1

2π

I
C0

dz
f(z)

(z − εm)(z − εn − ~ω − iδ)

+i
δT
π

N2X
k=−N1+1

1

(zk − εm)(zk − εn − ~ω − iδ)
. (16.55)

Deforming the contours such that the real axis is crossed at ∞ and −∞,
Σμν(q,') can finally be expressed as

Σμν(q,') = −
1

2πV

(I
C

dz f(z)
X
mn

Jnmμ (q)Jmn
ν (−q)

(z − εn)(z − εm + ~ω + iδ)
−

I
C0

dz f(z)
X
mn

Jnmμ (q)Jmn
ν (−q)

(z − εm)(z − εn − ~ω − iδ)

)

+ i
δT
πV

(
N1X

k=−N2+1

X
mn

Jnmμ (q)Jmn
ν (−q)

(zk − εn)(zk − εm + ~ω + iδ)
+

N2X
k=−N1+1

X
mn

Jnmμ (q)Jmn
ν (−q)

(zk − εm)(zk − εn − ~ω − iδ)

)
. (16.56)
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16.2.2 Formulation in terms of resolvents

Consider now the resolvent of the unperturbed Hamilton operator, i.e., of the
Kohn-Sham Hamiltonian,

Ĝ(z) = (zÎ − Ĥ)−1 , (16.57)

and its adjoint,
Ĝ(z)† = (z∗Î − Ĥ)−1 = Ĝ(z∗) , (16.58)

Ĝ(z) =
X
n

|n ihn |
z − εn

; (16.59)

it is then straightforward to rewrite Eq. (16.56) as

Σμν(q,') = −
1

2πV

½I
C

dz f(z)Tr
³
Ĵμ(q) Ĝ(z + ~ω + iδ) Ĵν(−q) Ĝ(z)

´
−I

C0
dz f(z)Tr

³
Ĵμ(q) Ĝ(z)Ĵν(−q) Ĝ(z − ~ω − iδ)

´¾
+ i

δT
πV

(
N1X

k=−N2+1

Tr
³
Ĵμ(q) Ĝ(zk + ~ω + iδ) Ĵν(−q) Ĝ(zk)

´
+

N2X
k=−N1+1

Tr
³
Ĵμ(q) Ĝ(zk) Ĵν(−q) Ĝ(zk − ~ω − iδ)

´)
.

(16.60)

Introducing for matters of convenience the below quantities,

eΣμν(q; z1, z2) = − 1

2πV
Tr
³
Ĵμ(q)Ĝ(z1)Ĵν(−q)Ĝ(z2)

´
, (16.61)

eΣνμ(−q; z2, z1) = eΣμν(q; z1, z2) , (16.62)

eΣμν(q; z∗1 , z∗2) = eΣνμ(q; z1, z2)∗ = eΣμν(−q; z2, z1)∗ , (16.63)

because of the reflection symmetry of the contours C and C0, Eq. (16.60) can
be written as

Σμν(q,') =

I
C

dz f(z) eΣμν(q; z + ~ω + iδ, z)

−
µI

C

dz f(z) eΣμν(−q; z − ~ω + iδ, z)

¶∗
−2iδT

N1X
k=−N2+1

³eΣμν(q; zk + ~ω + iδ, zk)

+ eΣμν(−q; zk − ~ω + iδ, zk)
∗
´
. (16.64)
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16.2.3 Integration along the real axis: the limit of zero life-
time broadening

Deforming the contour C to the real axis such that the contributions from the
Matsubara-poles vanish Eq. (16.64) trivially reduces to

Σμν(q,') =

∞Z
−∞

dε f(ε)
neΣμν(q; ε+ ~ω + iδ, ε+ i0)

−eΣμν(−q; ε+ ~ω + iδ, ε− i0)
o

−
∞Z
−∞

dε f(ε)
neΣμν(q; ε− i0, ε− ~ω − iδ)

−eΣμν(−q; ε+ i0, ε− ~ω − iδ)
o

, (16.65)

or, by inserting the definition of eΣμν(q; z1, z2) in Eqns. (16.61) - (16.63),
Σμν(q,') = −

1

2πV

∞Z
−∞

dε f(ε)
n
Tr
³
Ĵμ(q)Ĝ(ε+ ~ω + iδ)Ĵν(−q)Ĝ+(ε)

´
− Tr

³
Ĵμ(−q)Ĝ(ε+ ~ω + iδ)Ĵν(q)Ĝ

−(ε)
´

− Tr
³
Ĵμ(q)Ĝ

−(ε)Ĵν(−q)Ĝ(ε− ~ω − iδ)
´

+Tr
³
Ĵμ(−q)Ĝ+(ε)Ĵν(q)Ĝ(ε− ~ω − iδ)

´o
.

(16.66)

Here Ĝ+(ε) and Ĝ−(ε) are the by-now-familiar up- and down-side limits of
the resolvent

Ĝ±(ε) = lim
θ→+0

Ĝ(ε± iθ) , Ĝ±(ε)† = Ĝ∓(ε) . (16.67)

By taking the limit δ → 0, Eq. (16.66) reduces to

Σμν(q, ω) = −
1

2πV

∞Z
−∞

dε f(ε)
n
Tr
³
Ĵμ(q)Ĝ

+(ε+ ~ω)Ĵν(−q)Ĝ+(ε)
´

− Tr
³
Ĵμ(−q)Ĝ+(ε+ ~ω)Ĵν(q)Ĝ−(ε)

´
− Tr

³
Ĵμ(q)Ĝ

−(ε)Ĵν(−q)Ĝ−(ε− ~ω)
´

+Tr
³
Ĵμ(−q)Ĝ+(ε)Ĵν(q)Ĝ−(ε− ~ω)

´o
,

(16.68)
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which for q = 0 yields

Σμν(ω) = −
1

2πV

∞Z
−∞

dε f(ε)
n
Tr
³
ĴμĜ

+(ε+ ~ω)Ĵν
h
Ĝ+(ε)−G−(ε)

i´
+Tr

³
Ĵμ

h
Ĝ+(ε)−G−(ε)

i
ĴνĜ

−(ε− ~ω)
´o

.

(16.69)

16.3 Electric transport — the static limit

Making use of the analyticity of the Green’s functions in the upper and lower
complex semi-planes this then leads to the famous Kubo-Luttinger formulation
[1, 7],

σμν = −
~
2πV

∞Z
−∞

dε f(ε)Tr

Ã
Ĵμ

∂Ĝ+(ε)

∂ε
Ĵν

h
Ĝ+(ε)− Ĝ−(ε)

i

−Ĵμ
h
Ĝ+(ε)− Ĝ−(ε)

i
Ĵν

∂Ĝ−(ε)

∂ε

!
. (16.70)

Integrating by parts yields

σμν = −
∞Z
−∞

dε
df(ε)

dε
Sμν(ε) (16.71)

with

Sμν(ε) = −
~
2πV

εZ
−∞

dε0Tr

Ã
Ĵμ

∂Ĝ+(ε0)

∂ε0
Ĵν

h
Ĝ+(ε0)− Ĝ−(ε0)

i
(16.72)

−Ĵμ
h
Ĝ+(ε0)− Ĝ−(ε0)

i
Ĵν

∂Ĝ−(ε0)

∂ε0

!
,

which has the meaning of a zero-temperature, energy-dependent conductivity.
For T = 0, σμν is obviously given by

σμν = Sμν(EF ) . (16.73)

A numerically tractable expression can be obtained only for the diagonal
elements of the conductivity tensor, the so-called Kubo-Greenwood equation
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[8, 9] for the dc-conductivity at finite temperatures,

σμμ = −
~
4πV

∞Z
−∞

dε

µ
−df(ε)

dε

¶
Tr
³
Ĵμ

h
Ĝ+(ε)− Ĝ−(ε)

i
× Ĵμ

h
Ĝ+(ε)− Ĝ−(ε)

i´
, (16.74)

which at T = 0 temperature obviously can be written as

σμμ = −
~
4πV

Tr
³
Ĵμ

h
Ĝ+(EF )− Ĝ−(EF )

i
Ĵμ

h
Ĝ+(EF )− Ĝ−(EF )

i´
=

~
πV

Tr
³
Ĵμ Im Ĝ+(EF )Ĵμ Im Ĝ+(EF )

´
. (16.75)

Recalling finally the spectral resolution of the resolvent,

Im Ĝ+(ε) = −π
X
n

|nihn| δ(ε− εn) , (16.76)

it is easy to see that Eq. (16.75) is identical with the original Greenwood
equation [8],

σμμ =
π~
V

X
n,m

Jnmμ Jmn
μ δ(EF − εn) δ(EF − εm) . (16.77)

16.4 The Kubo-Greenwood equation
Furthermore, for practical purposes Eq. (16.75) can be rewritten [9] as

σμμ =
1

4

©eσμμ(�+, �+) + eσμμ(�−, �−) − eσμμ(�+, �−)− eσμμ(�−, �+)ª ,

(16.78)
where �+ = �F + iδ, �− = �F − iδ; δ → 0,

eσμμ(�1, �2) = − ~
πN0Ωat

tr hJμG(�1)JμG(�2)i ; �i = �± ; i = 1, 2 ,

(16.79)
and G(z) refers to the Green’s function discussed at length in Chapter 4; see
also Chapter 10.

16.4.1 Current matrices

Let J
iα

μ (�1, �2) denote the angular momentum representation of the μ−th com-
ponent of the current operator according to component α of a binary substi-
tutional alloy in a particular site i. Using a non-relativistic formulation for
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the current operator, namely J = (e~/im)∇, the elements of J iα

μ (�1, �2) are
given by

J iαμ,ΛΛ0(�1, �2) =
e

m

~
i

Z
WS

Ziα
Λ (ri, �1)

† ∂

∂ri,μ
Ziα
Λ0 (ri, �2)d

3ri , Λ = (cm) ,

(16.80)
while within a relativistic formulation for the current operator, namely J =
ecα, one gets

J iαμ,ΛΛ0(�1, �2) = ec

Z
WS

Ziα
Λ (ri, �1)

†αμZ
iα
Λ0 (ri, �2)d

3ri , Λ = (κμ) .

(16.81)
In Eqns. (16.80) and (16.81) the functions Ziα

Λ (ri, z) are the usual (regular)
scattering solutions as introduced in Chapter 4.

16.4.2 Conductivity in real space for a finite number of scat-
terers

If no translational symmetry at all is present then in principle one has to
sum over all sites in the system including leads, contacts, etc.; i.e., a typical
contribution in Eq. (16.79) to the conductivity is given by

eσμμ(C; �1, �2) = N0X
i,j=1

eσijμμ(C; �1, �2) , (16.82)

eσijμμ(C; �1, �2) = (w/N0)tr
­
J iμ(�2, �1)τ

ij(�1)J
j
μ(�1, �2)τ

ji(�2)
®

, (16.83)

where C specifies the magnetic configuration and w = − (4m2/~3πΩat), N0 is
the total number of scattering sites in the system, i.e., is of the order of 1023

and the τ ij(�)refer to the scattering path operator; see Chapter 4. As this is
numerically not possible, one can define the following quantity

eσμμ(C; �1, �2;n) = nX
i,j=1

eσijμμ(C; �1, �2) , (16.84)

with n being the number of sites in a chosen region (“cluster”). This implies,
however, that the convergence properties of eσμμ(�1, �2;n) with respect to n
have to be investigated; i.e., once again the question of a characteristic volume
becomes crucially important.
It should be recalled that in the absence of any translational symmetry in

order to specify the magnetic configuration C the orientations of the magne-
tization in all sites of the chosen region have to be given.
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16.4.3 Two-dimensional translational symmetry

Assuming that (one and the same) two-dimensional invariance applies in all
layers under consideration, for a particular magnetic configuration C, a typical
contribution eσμμ(C; �1, �2) reduces to a double sum over all atomic layers (n)
that have to be incorporated,

eσμμ(C; �1, �2;n) = nX
p,q=1

eσpqμμ(C; �1, �2;n) , (16.85)

eσpqμμ(C; �1, �2;n) = w

⎧⎨⎩ X
j∈I(L(2))

tr
­
Jp0μ (�2, �1)τ

p0,qj(�1)J
qj
μ (�1, �2)τ

qj,p0(�2)
®⎫⎬⎭

(16.86)
where p0 specifies the origin of the two-dimensional lattice L(2) in the p-th
layer and I(L(2)) simply refers to the set of indices corresponding to L(2). The
lattice sum in Eq. (16.86) can then be evaluated in terms of a two-dimensional
lattice Fourier transformation. This implies, however, as already said, that
in all atomic layers (including the substrate layers) one and the same two-
dimensional translational invariance applies.

16.4.4 Vertex corrections

In the case of interdiffused interfaces, spacers, or substitutionally disordered
alloys serving as leads, configurational averages have to be performed. Con-
sider a typical contribution in Eq. (16.86). In principle the configurational
average over the occurring products can be formulated as a product of aver-
ages

­
Jp0μ (�2, �1)τ

p0,qj(�1)J
qj
μ (�1, �2)τ

qj,p0(�2)
®

=
­
Jp0μ (�2, �1)τ

p0,qj(�1)
®
(1−Ω)

­
Jqjμ (�1, �2)τ

qj,p0(�2)
®

. (16.87)

Omitting the so-called vertex corrections Ω, i.e., in using Ω = 0, one gets­
Jp0μ (�2, �1)τ

p0,qj(�1)J
qj
μ (�1, �2)τ

qj,p0(�2)
®

= Jp0μ (�2, �1)
­
τp0,qj(�1)

®
Jqjμ (�1, �2)

­
τ qj,p0(�2)

®
, (16.88)

since due to two-dimensional translational invariance­
Jp0μ (�2, �1)

®
= Jp0μ (�2, �1) . (16.89)

In order to average expressions of the type
­
τpi,qj(�)

®
usually the Coherent

Potential Approximation (CPA) introduced earlier in Chapter 5 is applied.
One then obtains for the layer-diagonal terms
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eσppμμ(�1, �2) = w
P

α=A,B

cαp

n
tr
h eJpαμ (�2, �1)τ

pp
c (�1)J

pα
μ (�1, �2)τ

pp
c (�2)

i
−

P
β=A,B

cβp tr
h eJpαμ (�2, �1)τ

pp
c (�1) eJpβμ (�1, �2)τppc (�2)i

)
,

(16.90)
while the layer-off-diagonal terms are given by

eσpqμμ(�1, �2) = (w/nΩSBZ)
×

P
α,β=A,B

cαp c
β
q tr

∙Z eJpαμ (�2, �1)τ
pq
c (k, �1)

eJqβμ (�1, �2)τ qpc (k, �2)d2k¸ ,

(16.91)eJpαμ (�2, �1) = Dpp
α (�2)

tJpαμ (�2, �1)D
pp
α (�1) , (16.92)

where the matricesDpp
α (�i) are defined in Chapter 5 and the symbol t indicates

a transposed matrix. Note that in Eq. (16.92) use has been made of a two-
dimensional lattice Fourier transformation: ΩSBZ is the unit area (“volume”)
in the surface Brillouin zone.

16.4.5 Boundary conditions

Although the summation within the layers is now exact, the convergence prop-
erties with respect to n, the number of layers, still have to be considered. In
viewing n as a parameter the conductivity tensor elements for a layered system
are then given by

σμμ(C;n) =
1

n

nX
p,q=1

σpqμμ(C;n) , (16.93)

σpqμμ(C;n) =
1

4

2X
i,j=1

(−1)i+jeσpqμμ(C; �i, �j ;n) . (16.94)

For illustrative purposes the double sum in Eq. (16.93) can be rewritten as

σμμ(C;n) =
1

n

nX
p=1

σpμμ(C;n) ,

σpμμ(C;n) =
nX

q=1

σpqμμ(C;n) , (16.95)

such that the σpμμ(C;n) can be regarded as layer-resolved conductivities.
A beautiful example for the importance of boundary conditions is to be

found in Fig. 16.2, considering the multilayer system Co12Cu12Co12 as a free
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FIGURE 16.2: Layer-resolved contributions σijxx to the CIP conductivity cor-
responding to an imaginary part of the Fermi energy of δ=2mRyd for the
parallel configuration of a model spin-valve structure with (top) reflecting
(Vacuum/Co12 Cu12 Co12 /Vacuum; open squares) and (bottom) outgoing
(Co(100) /Co12 Cu12Co12 /Co(100); full circles) boundary conditions. From
Ref. [10].
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standing film (reflecting boundary conditions) and with Co leads (outgoing
boundary conditions). In both cases the main contributions to the in-plane
(CIP) conductivity tensor element σxx is due to the Cu spacer. In the case of
reflecting boundary conditions the contributions from the Cu layers next to
the vacuum barrier suddenly increase, while for outgoing boundary conditions
only the contributions due to the imaginary part of the Fermi energy are
repeated (the peaks for outer Co layers). It is surprising to find out from this
figure that viewed from a particular site contributions from sites farther off
than about 15 atomic layers seem to be of little importance for the sum over
all layers.

16.5 Optical transport

In the case of finite frequencies, i.e., in the case of optical transport, one
only has to return to Eqns. (16.61) - (16.64), for a definition of the optical
conductivity tensor, repeated for matter of convenience below

Σμν(q,') =

I
C

dz f(z) eΣμν(q; z + ~ω + iδ, z)

−
µI

C

dz f(z) eΣμν(−q; z − ~ω + iδ, z)

¶∗
−2iδT

N1X
k=−N2+1

³eΣμν(q; zk + ~ω + iδ, zk)

+ eΣμν(−q; zk − ~ω + iδ, zk)
∗
´

,

eΣμν(q; z1, z2) = − 1

2πV
Tr
³
Ĵμ(q)Ĝ(z1)Ĵν(−q)Ĝ(z2)

´
,

' = ω + iδ ,

in which �q = 0 can be chosen, since in the visible regime the leading interaction
is the electric dipole one. In using, as before in the case of electric transport,
Green’s functions and multiple scattering, in principle a double sum over all
sites has to be performed,

Σμν(') =
nX

i,j=1

Σijμν(') , (16.96)

or, provided that two-dimensional translational symmetry applies, by making
use of two-dimensional lattice Fourier transformations, a double sum over
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FIGURE 16.3: Absorptive parts of the layer—resolved complex optical conduc-
tivity Σ p

μν(ω) for fcc(111)—Co | Pt5 as a function of the optical frequency ω
and the layer index p. Heavy line marks the Co—layer resolved optical con-
ductivity Σ p=1

μν (ω). From Ref. [11].

(atomic) layers

Σμν(') =
nX

p,q=1

Σpqμν(') . (16.97)

For reasons that will be become clear in Chapter 18 it is useful to define again
layer-resolved quantities

Σpμν(') =
nX

p,q=1

Σpqμν(') , Σμν(') =
nX

p=1

Σpμν(') . (16.98)

In Fig. 16.3 an example for layer-resolved optical conductivities is shown,
namely for fcc(111)—Co/Pt5 as a function of the optical frequency ω and the
layer index p.
A discussion of boundary conditions with respect to the number of atomic

layers to be included will be given in Chapter 18 in the context of the magneto-
optical Kerr effect. It should be noted in particular that in the case of finite fre-
quencies the off-diagonal elements of the conductivity tensor are well-defined
and can of course be calculated.
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17
Electric properties of magnetic nanostructured
matter

At least for the time being electric properties of mag-
netic nanostructures are probably the most important
outcome of nanoscience, creating even a new field of re-
search, usually termed now "spintronics" or "nanoelec-
tronics". This chapter comprises not only characteris-
tic aspects of current-in-plane (CIP) and current-perpen-
dicular to the planes of atoms (CPP) electric transport,
of the giant magnetoresistance (GMR) and the tunnelling
magnetoresistance (TMR), but also of nanocontacts and
domain wall resistivities.

All discussions in this chapter are based on the use of the fully relativistic
version of the Kubo-Greenwood equation, see Chapter 16,

σμμ =
~
πV Tr

³
Ĵμ Im Ĝ+(EF )Ĵμ Im Ĝ+(EF )

´
(17.1)

Ĵμ being the μ-th component of the current operator, μ ∈ (x, y, z), V the
characteristic volume, and Ĝ+(EF ) referring to the positive side-limit of the
resolvent of a single particle (Kohn-Sham) Dirac Hamiltonian.

17.1 The bulk anisotropic magnetoresistance (AMR)
Although not directly a nano-related quantity the so-called anisotropic magne-
toresistance (AMR) in bulk magnetic alloys is an important anisotropy effect,
well suited to demonstrate and check the realization of the Kubo-Greenwood
equation in terms of fully relativistic multiple scattering theory. This is in
particular valid, since it is quite well known by now that in disordered mag-
netic alloys the non-relativistic two-spin current model, in which each "spin
channel" is treated independently, fails. Considering for example statisti-
cally disordered fcc Ni1−cFec(001), c ≤ 0.5, as a layered system of the type
Ni1−cFec(001)/(Ni1−cFec)n/Ni1−cFec(001) and using a complex Fermi energy,

205
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EF = �F+iδ, the resistivity for a particular magnetic configuration C is given
by the following limiting procedure, which, as will be demonstrated further
on, can be used as a valuable computational tool,

ρμμ(C; c) = lim
δ→0

ρμμ(C; c, δ) , μ ∈ (x, y, z) , (17.2)

ρμμ(C; c, δ) =
nX

i,j=1

ρijμμ(C; c, δ) ,

since it turns out that ρμμ(C; c, δ) is linear in δ. The so-called residual resis-
tivity is therefore given as the analytical continuation of ρμμ(C; c, δ) to the
real axis. In Fig. 17.1 such a continuation is shown for the case of Ni80Fe20.
Adopting for a moment the more traditional notation,

ρav(c) = 1/3(ρk(c) + 2ρ⊥(c)) , ρk(c) = ρzz(ẑ; c) , ρ⊥(c) = ρzz(x̂; c) ,
(17.3)

the AMR ratio of bulk alloys is usually defined as

∆ρ(c)

ρav(c)
=

ρk(c)− ρ⊥(c)

ρav(c)
. (17.4)

The theoretical resistivities and the corresponding AMR ratios are displayed
in Fig. 17.2 for the fcc regime of Ni1−cFec(001) and compared to available ex-
perimental low temperature values. As can be seen the AMR ratios fit rather
well the corresponding experimental data. The experimental data, by the
way, are defined as an extrapolation of the measured results to zero applied
magnetic field. It should be noted in particular that experimental "bulk resis-
tivities" are in principle fictitious quantities, since they are usually determined
by growing films of the same material as the substrate and performing mea-
surements at different film thicknesses. So-called bulk values correspond to
an extrapolation of the obtained values for infinite thickness.
It will turn out later that the concept of anisotropic magnetoresistances will

be important once again when considering the electric properties of domain
walls.

17.2 Current-in-plane (CIP) & the giant magnetoresis-
tance (GMR)

The so-called giant magnetoresistance effect (GMR) not only revolutionized
the computer and storage media industry, but also its discovery was (finally)
awarded with the top academic honors, namely the Nobel Prize in Physics
in 2007 to Albert Fert and Peter Grünberg. Although today GMR switches
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FIGURE 17.1: Calculated resistivities ρzz(C; δ) of Ni80Fe20 with with respect
to the imaginary part of the Fermi energy δ. Circles and triangles refer to
the cases when the current is perpendicular or parallel to the direction of the
magnetization, pointing either uniformly along the in-plane x̂ axis or along
the surface normal ẑ. Solid lines correspond to a least square fit to the data.
The residual resistivity is defined by the interception of respective lines with
the ordinate. From Ref. [1].

are rather complicated systems nanostructured in one dimension, see, e.g.,
Fig. 1.3, and consist of different magnetic, spacer and capping materials, there
are a few typical effects that characterize the electric properties of such de-
vices.

17.2.1 Leads

When dealing with the electric properties of magnetic multilayer systems,
of course not only the problem of interdiffusion at the interfaces has to be
tackled, but also the question of an appropriate choice of leads has to be
addressed, since the leads (semi-infinite systems) serve as electron reservoirs,
i.e., provide the Fermi energy.

As reported in Ref. [6] for a carefully grown Au20Fe10Au7Fe28 multilayer
on GaAs(100) not only the temperature dependence of the GMR but also
the conductivities in the parallel and the antiparallel alignment were inves-
tigated experimentally using Au leads; see the left half of Fig. 17.3. In the
corresponding simultaneous theoretical study of the following quantities
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FIGURE 17.2: Left: Calculated (open symbols) and experimental (diamonds)
residual resistivities of Ni1−cFec alloys with respect to the concentration c.
For the definitions of ρk = ρzz(c; ẑ) (up-triangles) ρ⊥ = ρzz(c; x̂) (down-
triangles) and ρav = 1/3(ρk(c) + 2ρ⊥(c)) (circles), see Eq. (17.3). Right:
Calculated and experimental AMR ratios of Ni1−cFec alloys. Full circles: cal-
culations of [1], full squares: calculations of Ref.[2], up-triangles: experiment
[3], down-triangles: experiment [4, 5]. From Ref. [1].

ρxx(P) = lim
δ→0

ρxx(P; δ) , lim
δ→0

ρxx(AP) = ρxx(AP; δ) , (17.5)

GMR =
ρxx(AP)− ρxx(P)

ρxx(AP)
, (17.6)

P (AP) denoting a parallel (antiparallel) alignment of the magnetic slabs,
it was additionally assumed that in this system the electric contacts could
have been placed in the Fe or the Au layers; i.e., Fe leads as well as Au
leads were considered. Furthermore, a two-monolayer interdiffusion at the
Fe/Au interfaces was considered in order to study the dependence of the
GMR with respect to disorder; see Table 17.1. In particular from Eq. (17.6)
it is obvious that it is very important that not only GMR values are recorded
(or theoretically evaluated) but also the corresponding individual resistivities,
since the GMR value is independent of a uniform arbitrary scaling factor for
ρxx(AP) and ρxx(P).
As can be seen from the right part of Fig. 17.3 it does indeed make quite

a big difference what kind of leads are used. For system C, see Table 17.1,
which in fact corresponded to the experimental set-up, namely to the use
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FIGURE 17.3: Left: Experimental field- and temperature-dependent resistiv-
ities (top) and temperature-dependent giant magnetoresistance (bottom) in
Fe/Au/Fe multilayers. Right: calculated CIP-resistivity and GMR. Squares
refer to the parallel aligment, circles to the antiparallel aligment. For systems
A and C full symbols apply, for system B open symbols, see also Table 17.1.
From Ref. [6].

of Au contacts, not only the calculated GMR ratio fitted very well indeed
to the experimental data, but also the involved in-plane (CIP) resistivities.
Although the experimental characterization of the Fe/Au multilayer did not
show any traces of interdiffusion effects at the interfaces, it was the theoret-
ical investigations that in the end seemed to prove the quality of the grown
interfaces. As can be seen from Fig. 17.3, for system A as well as for system
C the resistivities do increase with increasing interdiffusion, creating in this
particular circumstance increased GMR values.
Even more striking are the differences between cases B and C when dis-

playing the difference between the parallel (P) and the antiparallel (AP) con-
ductivities in a layer-resolved manner:

∆i
xx(δ) = ρixx(P; δ)− ρixx(AP; δ)

=
nX
j=1

¡
ρijxx(P; δ)− ρijxx(AP; δ)

¢
, (17.7)

where i and j denote atomic planes. It has to be remembered that of course
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Table 17.1: Fe/Au multilayer systems with different leads. From Ref. [6].

system A system B system C

2 ML inter- 2 ML inter- 2 ML inter-
diffusion at two diffusion at all diffusion at all
Fe/Au interfaces Fe/Au interfaces Fe/Au interfaces

bcc-Fe(100) bcc-Fe(100) fcc-Au(100)
Fe11 Fe11 Au5

[FecAu1−c] [FecAu1−c] [AucFe1−c]
[AucFe1−c] [AucFe1−c] [FecAu1−c]
Au5 Au5 Fe8

[AucFe1−c] [AucFe1−c] [FecAu1−c]
[FecAu1−c] [AucFe1−c] [AucFe1−c]

Fe9 Fe8 Au5
Au5 [FecAu1−c] [AucFe1−c]
vac [AucFe1−c] [FecAu1−c]

Au4 Fe10
vac vac

in principle only the total sum,

∆xx(δ) =
nX
i=1

∆i
xx(δ) , ∆xx = lim

δ→0
∆xx(δ) , (17.8)

is well defined. From Fig. 17.4 one easily can see that ∆xx is of completely
different origin in systems B and C. While for a Fe/Au multilayer with Fe
leads (system B) most contributions come from the Au spacer, in using Au
leads the two Fe slabs contribute most to ∆xx.

17.2.2 Rotational properties

As is well-known a function f(Θ) can be fitted very accurately by means of
the following expansion in powers of cos(Θ), often used also for characterizing
the magnetic anisotropy energy,

f(Θ) = f(0) +
∞X

m=1

am (1− cosmΘ) , (17.9)

where the first two fitting coefficients can be approximated to first order by

a1 =
1

2
[f(π)− f(0)] , (17.10)

a2 = f(
π

2
)− 1

2
[f(π) + f(0)] . (17.11)
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FIGURE 17.4: Layer-resolved difference of conductivities, see Eq. (17.7), cor-
responding to an imaginary part of the Fermi energy of 2 mryd and an inter-
diffusion concentration of c = 0.05. From Ref. [6].

In Fig. 17.5 an interesting comparison between the twisting energy∆E(Θ;n)
and the magnetoresistance ratio GMR(Θ;n),

∆E(Θ;n) = E(Θ;n)−E(0;n) , (17.12)

GMR(Θ;n) =
ρxx(Θ;n)− ρxx(0;n)

ρxx(Θ;n)
, (17.13)

expanded up to second order using the above expansion, can be found for the
Co/Cun/Co spin valve listed in Table 17.2.
As can be seen these two coefficients characterize impressively the impor-

tance of anisotropy effects. For 6 Cu spacer layers the interlayer coupling
energy is very close to a node (with respect to the number of spacer layers);
the anisotropy term, i.e., coefficient a2, in the twisting energy is therefore by
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Table 17.2: Cu/Co spin valve with interdiffused magnetic slabs. From Ref.
[7].

Cu(100) lead
Cu3 buffer
Cu0.9Co0.1
Cu0.2Co0.8 magnetic slab
Cu0.9Co0.1
Cu6 spacer
Cu0.9Co0.1
Cu0.2Co0.8 magnetic slab
Cu0.9Co0.1
Cu3 buffer
Cu(100) lead

FIGURE 17.5: Left: MR ratio, GMR(Θ;n). Right: Twisting energy (denoted
as IEC(Θ)) for the system listed in Table 17.2. The magnetization is rotated
around the y-axis (out of the plane of the layers). Circles represent calculated
values, solid lines are the result of a two term fit according to Eqs. (17.10) -
(17.11), dashed and dotted lines display the first and second term, respectively.
From Ref. [7].
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far the leading one, whereas for the corresponding resistances and the mag-
netoresistance ratio the contributions from the second coefficient are minute.
This indicates very clearly, that although in this particular case the twisting
energy is governed mostly by anisotropy effects, for the magnetoresistance
ratio these effects are rather unimportant. The system shown in Fig. 17.5 is
again a nice example for a perfect switch, since after turning off the exter-
nal magnetic field, due to the anisotropy energy the system remains in the
switched state.
By the way, a similar behavior as shown in the left part of Fig. 17.5 was

found in quite a few other cases and seems to indicate that for current-in-plane
geometries the GMR changes essentially proportional to (1 − cosΘ), which
in fact confirms the usual experience made in experimental or technological
studies.

17.3 Current-perpendicular to the planes of atoms (CPP)
17.3.1 Sheet resistances

As the current is independent of z in the steady state one can write the CPP
resistivity within the Kubo approach as [8, 9, 10]

ρCPP =
1

L

Z Z
ρ(z, z0)dzdz0 , (17.14)

where ρ(z, z0) is the inverse of σ(z, z0),Z
σ(z, z00)ρ(z00, z0)dz00 = δ(z − z0) , (17.15)

and L is the distance between the two contacts used to measure the resistivity.
The sheet resistance r and resistance R are then defined by the following
relations

r = AR = LρCPP =

Z Z
ρ(z, z0)dzdz0 , (17.16)

with A being the unit area.
In the following the conductivity tensor σ(z, z0) as defined in terms of Eq.

(17.15) is mapped (f :) onto the (zz-components of the) conductivity tensor
for a layered system, σij(n), i, j = 1, n, with i and j denoting planes of atoms,

f : σ(z, z00), ρ(z00, z0)→ σij(n), ρij(n) (17.17)

such that the algebraic structure as defined by Eq. (17.15), namely

NX
k=1

σik(n)ρkj(n) = δij , (17.18)
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is conserved. Clearly enough the sheet resistance r then serves as measure
(g :)

g : r→ r(n) (17.19)

r(n) =
NX

i,j=1

ρij(n) , (17.20)

for the mapping f , since according to the Cauchy convergence criterion the
integral in Eq. (17.16) can be replaced by a sum, i.e., by r(n), if and only if,¯̄̄

r − lim
n→∞

r(n)
¯̄̄
< ∆ , n ∈ N+ , (17.21)

or
|r(n+m)− r(n)| < ∆; n,m ∈ N+ , (17.22)

where ∆ is an infinitesimal small number.
Using again complex Fermi energies, EF = �F + iδ, the sheet resistance for

a given magnetic configuration C is then defined by

r(C;n) = lim
δ→0

r(C;n; δ) , (17.23)

where

r(C;n; δ) =
nX

i,j=1

ρij(C;n; δ) . (17.24)

In addition to this sheet resistance, layer-resolved sheet resistances ri(C;n)
can be defined

ri(C;n; δ) =
nX
j=1

ρij(C;n; δ) , (17.25)

which relate the electric field in layer i qualitatively to the steady state current
(CPP) which is independent of the layer index j . It should be noted, however,
that only r(C;n; δ) in Eq. (17.24) is well-defined. Similar as in the case of the
in-plane elements of the resistivity (conductivity) tensor, see Fig. 17.4, these
layer-resolved sheet resistances are useful illustrative quantities in pursuing
the question from which part of a layered system the main contributions to
the sheet resistance of a given magnetic configuration arise.

17.3.2 Properties of the leads

Consider for matters of simplicity bcc Fe as a layered system, namely to be of
the form bcc Fe(100)/Fen/Fe(100). In principle, for a large enough n (n ≥ n0)
because of a given imaginary part δ of the complex Fermi energy �F + iδ, the
corresponding sheet resistance r(C;n; δ) varies linearly with n,

k1(C; δ) =
r(C;n+m; δ)− r(C;n; δ)

m
; m,n ∈ N+ , (17.26)



© 2009 by Taylor & Francis Group, LLC

Electric properties of magnetic nanostructured matter 215

FIGURE 17.6: Top, left: variation of the sheet resistance r(C;n; δ) for ferro-
magnetic bcc Fe(100)/Fen/Fe with respect to n for three values of the imag-
inay part δ to the Fermi energy. Bottom, left: numerical extrapolation (full
line) of the linear regime of the sheet resistance r(C;n; δ) for ferromagnetic bcc
Fe(100)/Fen/Fe. Top, right: variation of r(C;n; δ) for Fe(100)/Fe45/Fe with
respect to δ. The linear fit is shown as a full line. Bottom, right: variation of
k1(C; δ) with respect to δ for the same system. From Ref. [11].

i.e., the following relation applies

r(C;n; δ) = r0(C; δ) + nk1(C; δ) , (17.27)

with r0(C; δ) being the value of the linear form defined by Eq. (17.26) at
n = 0.
In the top left part of Fig. 17.6 the sheet resistance r(C;n; δ) for bcc Fe(100)/

Fen/Fe(100) is shown for three values of δ by varying n in terms of N −m,
N = 45, whereby C trivially refers to the ferromagnetic configuration. As can
be seen for n ≥ 9 the r(C;n; δ) vary indeed linearly with n; i.e., n0 ought to
be at least 9 in order to yield a linear behavior. The rapid fall off for n < n0
reflects the fact that the size of the σij(C;n; δ) matrix to be inverted becomes
too small: for n = 1 only one diagonal element, namely σii(C;n), survives. In
the lower left part of this figure the extrapolation defined in Eq. (17.27) is
performed numerically for n0 ≤ n ≤ 45, n0 = 12, for two different values of
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δ. As can be seen in both cases the extrapolation leads to virtually the same
value for n = 0.
Investigating now for a given value of n the dependence of r(C;n; δ) with

respect to δ one can see from the top right part of Fig. 17.6 that r(C;n, δ)
varies as in the cases discussed before linearly in δ:

k2(C;n) =
1

n

r(C;n; δ2)− r(C;n; δ1)
δ

, δ = δ2 − δ1 , (17.28)

i.e.,
r(C;n; δ) = r0(C;n) + nδk2(C;n) , (17.29)

where as will become clear in a moment the constant k2(C;n) is chosen to be
normalized per layer.
Combining now Eq. (17.26) with Eq. (17.29),

r0(C; δ) = r0(C;n) + n(δk2(C;n)− k1(C; δ)) , (17.30)

by taking the limit of δ → 0 it is easy to see that in demanding that

r0(C;n) = lim
δ→0

r0(C; δ) , (17.31)

this in turn implies that
lim
δ→0

k1(C; δ) = 0 , (17.32)

since δk2(C;n) trivially vanishes for δ → 0. In the lower left part of Fig. 17.6
k1(C; δ) is linearly extrapolated to δ = 0. As can be seen k1(C; δ) indeed tends
to zero for δ → 0. The very small remainder of k1(C; δ) at δ = 0 has to be
regarded as an inherent error of the applied numerical procedure.

17.3.3 Resistivities and boundary conditions

From Eqs. (17.27) and (17.31), it follows that for n ≥ n0

lim
δ→0

r(C;n+m; δ) = r0(C;n) ≡ r0(C) ; m,n ∈ N+ , (17.33)

which, however, is nothing but the Cauchy convergence criterion for the sheet
resistance stated in Eq. (17.22):

lim
δ→0

[r(C;n+m; δ)− r(C;n; δ)] = 0 ; m,n ∈ N+, n ≥ n0 . (17.34)

Quite clearly since r0(C) is a constant for a pure metal by performing the limit
n→∞ this leads to a correct resistivity ρCPP (C),

ρCPP (C) = lim
n→∞

∙
r0(C)
L

¸
=

r0(C)
d

lim
n→∞

1

n
= 0 , (17.35)
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where d is the interplanar distance. For a substitutionally disordered alloy
r(C;n; δ) has to vary with respect to n in the following manner, see also Eq.
(17.27),

r(C;n; δ) = r0(C; δ) + n
¡
k1(C; δ) + k1(C; δ)

¢
, n ≥ n0 , (17.36)

where
k1(C) = lim

δ→0
k1(C; δ) (17.37)

simply is the resistivity caused by disorder (residual resistivity). In general
for a bulk system ρCPP (C) can be formulated in terms of sheet resistances
such that

ρCPP (C) =
1

d
lim
δ→0

½
lim
n→∞

r(C;n; δ)
n

¾
. (17.38)

17.3.4 Rotational properties

Let R(Θ) be an angle-dependent resistance,

R(Θ) = r(Θ)/A0 , (17.39)

where A0 is the unit area and Θ denotes the rotation angle around the in-
plane y-axis (angle between the orientations of the magnetization in the two
magnetic slabs), by which the orientation of the magnetization is rotated from
perpendicular (parallel to the applied current) to in-plane (perpendicular to
the current), such that the following magnetoresistance can be defined by

MR(Θ) =
∆r(Θ)

r(Θ)
, ∆r(Θ) = r(Θ)− r(0) . (17.40)

As in the case of in-plane resistivities the difference in sheet resistances can
again be expanded in a power series in cosΘ of the following form,

∆r(Θ) = α(1− cos(Θ)) + β cos2(Θ) + γ cos3(Θ) + . . . , (17.41)

in order to discuss anisotropy effects in a CPP geometry. Examples for the
rotational properties of the magnetoresistance as well as for the dependence
on the thickness of the spacer will be shown later, but first another important
feature of electric transport in a CPP geometry has to be discussed, namely
the occurrence of tunneling.

17.4 Tunnelling conditions
Suppose that in the Kubo-Greenwood equation, see Eq. (17.1) or Chapter 16,
the current operator can be approximated by a constant,
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σ ∼ tr
­
ImG+(�F ) ImG+(�F )

®
∼ n2(�F ) , (17.42)

which in turn implies that the sheet resistance can approximately be written
as

r = Lσ−1 = Ln−2(�F ) . (17.43)

Furthermore, suppose the density of states is calculated for complex Fermi
energies, EF = �F + iδ,

r(δ) = Ln−2(�F + iδ) ; (17.44)

then from the properties of the density of states,

d [n(�F + iδ)]

dδ
=

⎧⎨⎩> 0; “non-metallic”

< 0; “metallic”
, (17.45)

follows immediately

d [r(δ)]

dδ
=

⎧⎨⎩> 0; “metallic”

< 0; “non-metallic”
. (17.46)

The functional form of the actually calculated sheet resistance with respect to
the imaginary part of the Fermi energy can therefore be used to qualitatively
interpret the underlying type of conductance

d [r (C; s; δ)]
dδ

=

⎧⎨⎩> 0; “metallic”

< 0; “non-metallic”
. (17.47)

The last equation means inter alia that in the case of a negative slope of
the sheet resistance with respect to δ "tunneling" might occur. The para-
meter δ obviously acts like a (small) constant self-energy: in the regime of
metallic conductance an increase of the self-energy implies an increased resis-
tivity (sheet resistance); in the non-metallic regime an increase of δ reduces
the resistance, and the system becomes more metallic.
It should be noted that from an experimental point of view the temperature

dependence of the resistance of a system is probably the only safe criterion
for the occurrence of tunnelling. Eq. (17.47) seems to pinpoint the experi-
mental experience, since the imaginary part of the Fermi energy can also be
interpreted as an additional "thermal energy".
This particular feature of sheet resistances (or resistances for that matter) is

illustrated in Fig. 17.7 for a model system consisting of two Fe leads separated
by vacuum, namely by

bcc-Fe(100)/Fen0VacsFen0/Fe(100)
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The sheet resistances r(C; 2n0+s; δ), 2n0+s being the total number of layers,
are displayed in this figure for the parallel as well as the antiparallel config-
uration of the two Fe subsystems for s ≤ 4. As can be seen in the parallel
configuration the slope of the sheet resistance with respect to the imaginary
part of the Fermi energy is positive only for one and three vacuum layers;
in all other cases this slope is negative. Beyond 4 vacuum layers all slopes
are always negative. Clearly the most interesting case arises with 3 vacuum
layers, since the parallel and the antiparallel configuration obviously behave
differently.
The fact that indeed in the parallel configuration a weak metallic conduc-

tance is predicted can be read also from Fig. 17.8, in which for the center
vacuum layer the density-of-states at the Fermi energy, n(�F ), is displayed
versus the imaginary part of the Fermi energy. For s = 3 a very weak neg-
ative slope is observed, while for s ≥ 4 the slope in n(�F ) is positive! It is
perhaps very informative to find out that only when the distance between the
two Fe is beyond 12 monolayers, n(�F ) is actually zero in the center layer,
i.e., only then the two Fe subsystems can be viewed as separated, individual
systems.
Equally amusing is to consider the usual so-called "exponential growth con-

dition for tunnelling". Abbreviating r(C; 2n0 + s; δ) for a moment simply by
rC(s), C referring to the parallel (P) or antiparallel configuration (AP), and
assuming that the growth of rC(s) with s (number of vacuum layers) is of
exponential form,

rP(s) = AP exp (KPs) and rAP(s) = AAP exp (KAPs) , (17.48)

then quite clearly the corresponding magnetoresistance R(s) is given by

R(s) = 1− C exp [(KP −KAP) s] , (17.49)

where C = AP/AAP . This now implies that the following cases have to be
distinguished

KAP < KP → lim
s→∞

R(s) = −∞ (17.50)

KAP = KP → lim
s→∞

R(s) = 1− C ∈ [0, 1) (17.51)

KAP > KP → lim
s→∞

R(s) = 1 (17.52)

leaving the conclusion that with “strict” exponential growth of the sheet re-
sistance in the limit of infinitely separated magnetic leads R(s) tends to zero
only in the particular case of AP = AAP (C = 1) and KP = KAP , i.e.,
rP (s) = rAP (s) (∀s). In physical terms this particular case implies that the
two Fe subsystems have to be independent of each other; i.e., the domains of
their Hamiltonians don’t overlap.
Finally the question can be posed of how much in this particular case the

vacuum barrier has to be reduced in order to force the system to conduct
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FIGURE 17.7: Analytical continuation of the sheet resistances r(C; 2n0+s; δ),
n0 ≥ 11, in bcc-Fe(100)/Fen0VacsFen0/Fe(100) to the real energy axis. Left:
parallel configuration. Right: antiparallel configuration. Full circles refer to
calculated values, dotted lines to the corresponding linear fit. From Ref. [12].
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FIGURE 17.8: Density of states of the center vacuum layer at the complex
Fermi energy �F+iδ as a function of δ in bcc-Fe(100)/Fe12VacsFe12/Fe(100)
for s = 3 (circles), s = 6 (squares; multiplied by 100), and s = 9 (diamonds;
multiplied by 250). From Ref. [12].

electrons like a metal. Again a computer experiment can help to solve this
question. Consider that the actually self-consistently determined Madelung
potentials for the 12 vacuum layers between the two Fe slabs are altered in
the following manner

V i
M =

⎧⎨⎩V i
M ; i ≤ n0 + 1; i ≥ n0 + s− 1

V i
M + VC ; otherwise

, (17.53)

where i denotes atomic layers. As can be seen from the top of Fig. 17.9 by
reducing the value of the potential barrier the layer-resolved sheet resistance
immediately drops in the interior of the vacuum barrier and the magnetoresis-
tance (bottom) increases. It should be noted that Fig. 17.9 offers an interest-
ing aspect of the transition between metallic behavior of electric transport and
tunneling: at V i

M + VC = 0 there is a cusp that separates these two regimes
of electric transport. Once V i

M + VC ≤ 0 a situation as in a (metallic) spin
valve is reached. If 0 ≤ V i

M + VC ≤ V0, where V0 is a reasonably small, but
a positive constant, a tunnelling magnetoresistance can be expected even for
very thick spacers, since the case of s = 12 already corresponds to a spacer
thickness of about 17 Å.
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FIGURE 17.9: Sheet resistance r(P ; δ) (top) and magnetoresistance R(δ)
(bottom), δ = 2 mryd, in bcc-Fe(100)/Fe12Vac12Fe12/Fe(100) as a function of
the constant shift VC, see also Eq. (17.53). In the top part squares, triangles,
circles and diamonds refer to VC = 0,−0.2,−0.3 and −0.4 ryd, respectively;
in the lower part the regimes of metallic and tunnelling behavior of electric
transport are separated by the condition V i

M = −VC (vertical line). From Ref.
[12].
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FIGURE 17.10: Sheet resistance r(Θ) as a function of the rotation angle Θ.
Left: Co/Cu25/Co, from Ref. [13]. Right: Cu/Py24/Cu20/Py6/Cu, from Ref.
[14].

17.5 Spin-valves

It turns out that in most cases investigated in the CPP geometry the angle
dependent difference in sheet resistances,∆r(Θ), see Eq. (17.41), is of the form
α(1 − cos(Θ)); i.e., it turned out that also in CPP anisotropy effects in the
magnetoresistance are of little importance. In Fig. (17.10) two very different
systems are shown. In both cases Cu leads are assumed; the magnetic parts,
however, are distinctly different and so are also the magnetic ground states. In
the Co/Cu system collinear magnetic configurations form the ground states,
whereas in the Cu/Py system a perpendicular arrangement is preferred; see
also Fig. 12.4.

Even for spin valves with antiferromagnetic parts serving for exchange bi-
asing purposes, little anisotropy effects in the CPP magnetoresistance as a
function of the rotation angle Θ can be traced; see the left part of Fig. 17.11.
The right part of this figure serves as a nice illustration of the ohmic proper-
ties of the sheet resistances, i.e., of the linearity of the product nr(n), where
n denotes the number of spacer layers.
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FIGURE 17.11: Cu(111)/Cu6/(CoO)12/Co24/Cun/Co6/Cu6+m/Cu(111):
Left: Variation of the sheet resistance (upper part) and the magnetoresistance
(lower part) with respect to the rotation angle for n=21 (squares), n=24 (cir-
cles), and n=30 (diamonds). Right: Upper part: variation of nr(Θ;n) for
Θ = 0◦ (parallel, diamonds) and Θ = 180◦ (antiparallel, circles) and of the
respective fits (full lines) with respect to the spacer thickness (ML). Lower
part: the magnetoresistance MR(Θ;n) at Θ = 180◦ for spacer thicknesses
between 14 and 48 ML. From Ref. [15].

17.6 Heterojunctions

It was already discussed in Chapter 12 that heterojunctions are extremely sen-
sitive with respect to interdiffusion at the interfaces or alloying in the spacer.
This applies in particular to spacer materials that easily form chemical com-
pounds with the magnetic slabs of a spin valve; i.e., this applies always when
the solubility of the spacer material in the magnetic parts is rather high. See
for example the right parts of Fig. 12.13 and Fig. 12.15. In the left part of
Fig. 17.12 the effect of a two-layer interdiffusion at the non-metal/magnetic
slab interface is shown for the system Fe(100)/Sin/Fe(100). In the right part
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of this figure two different "dirt effects" are assumed, namely homogeneous
alloying of Si with Fe and the case that the Si spacer is statistically rough,
i.e., contains statistically distributed holes. From all situations displayed in
Fig. 17.12 it is obvious that Si as a spacer material is not suitable to be used
in actual applications: any kind of disorder immediately pushes the magne-
toresistance into an uninteresting regime. Fig. 17.12 also suggests that the
magnetoresistance effect in the CPP geometry is mostly located in interface
near regions of spin valve type systems.

FIGURE 17.12: Left: Dependence of the magnetoresistance on the interdiffu-
sion concentration in Fe/Sis/Fe systems. Right: Magnetoresistance for sys-
tems with homogeneous FecSi1−c (circles) or VaccSi1−c (squares) spacers de-
pending on the Fe content c per layer. From Ref. [16].

Turning now to the second example for a heterojunction involving a spacer
material that considered as a bulk system is a semiconductor, namely to
bcc-(100)Fe/(ZnSe)t/Fe, one easily can show from the linearity of the sheet
resistance times spacer thickness that

r(P; 2 (n0 + t) + 1)t ≡ r(P; t)t = CP + kPt , (17.54)

r(AP; 2 (n0 + t) + 1)t ≡ r(AP; t)t = CAP + kAPt . (17.55)

In Eqs.(17.54) and (17.55) t denotes the number of repetitions of a ZnSe unit,
n0 the number of Fe layers that have to be included, see Section 17.3.2, and
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P and AP refer to the parallel and the antiparallel configuration of the Fe
subsystems. By using the above two equations the difference in the sheet resis-
tance between the antiparallel and the parallel alignments can be formulated
as

∆r(t) ≡ r(AP; t)− r(P; t) = CAP − CP
t

+ kAP − kP , (17.56)

which in turn implies that

lim
t→∞

[∆r(t)] = kAP − kP ; (17.57)

i.e., with increasing spacer thickness∆r(t) becomes a constant. It is important
to note that since ∆r(t) and r(AP; t) remain finite as t becomes very large,
the corresponding magnetoresistance also becomes a constant; see the left
part of Fig. 17.13.
By making use of the fact that for ∆r(t),

∆r(t) =
nX
i=1

⎛⎝ nX
j=1

(ρij(AP; t)− ρij(P; t))

⎞⎠ , (17.58)

the summation over i can be taken in parts — in the right part of Fig. 17.13
∆r(t) is partitioned into contributions arising from different parts of the het-
erostructure, namely the left and right electrodes (leads) Lleft and Lright,
the interface regions between electrodes and spacer, Ileft and Iright, and the
remaining spacer part S,

∆r(t; δ) = ∆rLleft(t; δ) +∆rLright(t; δ) +∆rIleft(t; δ)

+∆rIright(t; δ) +∆rS(t; δ) . (17.59)

In this part of Fig. 17.13 t = 21 repetitions of ZnSe are considered and the
interface region is chosen to consist of the actual interface plus three atomic
layers to the left and right of it; i.e., for the Zn-terminated heterostructure the
interface region is of the form Fe3/FeZn/SeZnSe. As can be seen for the Se-
terminated structure, the magnetoresistance ∆r(s; δ) is entirely determined
by the contributions from the two interface regions, while in the Zn-terminated
structure the spacer part reduces these contributions. From both cases it is
obvious that the interface regions contribute most to the difference in the
sheet resistances and therefore also to the magnetoresistance.
In an electric transport study [17] of Fe on top of ZnSe it was found that

the conductivities did not depend greatly on the thickness of the ZnSe layers.
When putting an 18 Å thick layer of Fe on top of 150 Å of ZnSe a "metallic
contribution" to the conductivity, was observed, whose temperature depen-
dence is still "semiconductor-like to some extent". Interestingly enough, in
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FIGURE 17.13: Left: Magnetoresistance R(t) in Fe(100)/ZnSe/Fe(100) het-
erostructures as a function of the spacer thickness. Top: Zn-termination,
bottom: Se-termination. The squares refer to the actual calculated val-
ues, the dashed lines to the magnetoresistance using the fitted sheet resis-
tances. Right: Normalized fractions of the difference in the sheet resis-
tance between the antiferromagnetic and the ferromagnetic configuration in
Fe(100)/(ZnSe)21/Fe(100); see Eq. (17.59). The various regions of the het-
erostructure are shown explicitly. From Ref. [18].

the theoretical Fe/(ZnSe)t/Fe study [18], it was found that in all cases inves-
tigated the constant k2(C;n) in Eq. (17.28) had the following properties,

k2(C;n) =

⎧⎨⎩> 0 ; parallel configuration

< 0 ; antiparallel configuration
; (17.60)

i.e., that in the parallel configuration metallic conduction applies, whereas in
the antiparallel configuration tunnelling seems to be present. This obviously
is exactly what was observed in the cited experiment.
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17.7 Systems nanostructured in two dimensions
Up-to-now only electric transport properties of magnetic nanostructures char-
acterized by two-dimensional translational symmetry were discussed. Once
lattice Fourier transformations can no longer be used, the summations in the
Kubo-Greenwood equation have to be performed over all sites i and j,

σμμ =
X
i,j

σijμμ . (17.61)

Computationally this implies to evaluate the following quantities

ρμμ = lim
δ→0

ρμμ(r0; δ) , (17.62)

ρμμ(r; δ) '
£
σ0μμ(r; δ)

¤−1
, σ0μμ(r; δ) =

X
|R0j |≤r

σ0jμμ(δ) , (17.63)

where |R0j | is the distance from a chosen origin in an embedded cluster to site
j, and r is a sufficiently large distance such that by increasing r the resistivity
ρμμ no longer changes.

17.7.1 Embedded magnetic nanostructures

As in the following only examples of square- or diamond-shaped clusters of
atoms on a (100) surface with C4v symmetry are chosen. The resistivity tensor
ρ(r; δ) is of the form

ρ(r; δ) =

⎛⎝ρxx(r; δ) 0 0
0 ρyy(r; δ) 0
0 0 ρzz(r; δ)

⎞⎠ . (17.64)

Taking for illustrative purposes the simple example of a Ag atom (origin)
"self-embedded" in the top (surface) layer of Ag(100), a two-dimensional map
of ρyy and ρzz is displayed in Fig. 17.14. By comparing with the corresponding
layer-resolved conductivity as obtained using two-dimensional translational
symmetry it turned out that a reliable convergence of the resistivity deter-
mined via Eq. (17.63) can be achieved only for r > 15 a2D, where a2D is the
two-dimensional lattice constant of Ag.
Of course much more interesting are magnetic structures such as short wires

embedded in the surface of Ag(100). In Fig. 17.16 the case of a short wire
consisting of 4 Co atoms is displayed. In this figure one can see very well the
difference between Ag and Co atoms neighboring a Co atom at the origin, i.e.,
the fall off of σ0jμμ with increasing distance of site j from the origin in different
directions. In this sense clearly σμμ is highly anisotropic!
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FIGURE 17.14: σ0jμμ(xj , yj) for bulk fcc-Ag. The atom labelled by 0 is at the
position (0, 0), while the position of atom j is varied in a (100)-oriented plane
( δ corresponds to 1 mryd). From Ref. [19].
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FIGURE 17.15: Residual resistivities of finite chains of Fe (circles) and Co
(triangles) atoms embedded in the surface plane of Ag(100). Open squares
refer to the difference between the Fe and the Co residual resistivity. The
length of the chains is shown explicitly. From Ref. [19].
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FIGURE 17.16: σojxx(xj , yj) for a chain of 4 Co atoms on Ag(100). The first
atom in the chain is at position (0, 0); all further atoms (index j) are varied
in the (100)-oriented surface plane, ( δ = 1 mryd). From Ref. [20].

Since clearly enough a summation over all sites in the embedded cluster
plus those of the semi-infinite substrate would yield only the resistivity of the
substrate, namely zero in the case of Ag(100), a kind of "residual resistivity"
for finite clusters has to be defined,

σαμμ(m;n) =
1

m

mX
i=1

nX
j=1

£
σijμμ

¤
i=α

, (17.65)

ραμμ(m;n) = σαμμ(m;n)
−1 , (17.66)

wherem denotes the number of impurities of type α at sites i. The summation
over the second index (j) is restricted as in the previous cases by a certain
length of the difference vector Rij , which in turn determines the convergence
of σαμμ(m;n) ¯̄

σαμμ(m;n+ k)− σαμμ(m;n)
¯̄
≤ ∆ . (17.67)

In Fig. 17.15 such residual resistivities are shown for finite chains of Fe
and Co embedded along the x (110) direction in the surface layer of Ag(100).
As can be seen in this figure, chains with an even number of atoms differ
distinctly from those with an odd number of atoms. Furthermore, for an odd
chain length (m > 1) there is almost no difference whether Fe or Co atoms
form the chains; i.e., the following difference,

∆ρxx(m;n) = ρFexx (m;n)− ρCoxx (m;n) . (17.68)

is nearly vanishing for all n considered, whereas in the case of even chain
lengths ∆ρxx(m;n) is finite and varies slowly with respect to the cluster size.
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17.7.2 Nanocontacts

17.7.2.1 Expression of the conductance

Let Ep
z be a constant electric field applied in all cells of layer p pointing along

the z axis; i.e., Ep
z is normal to the planes of atoms. Denoting the z component

of the current density averaged over cell i in layer q by jqiz , the microscopic
Ohm’s law is given by

jpiz =
1

Vat

X
j

σpi,qjzz Eq
z , (17.69)

where Vat is the volume of the unit cell in layer p. The total current flowing
through layer p can be written as

Itot = Ak
X
i

jpiz = gU , (17.70)

where the applied voltage U is

U = EJ
z d⊥ , (17.71)

and Ak and d⊥ denote the area of the two-dimensional unit cell and the
interlayer spacing, respectively (Vat = Ak d⊥). Assuming that the same Vat
applies in all layers and combining all three equations results in the following
expression for the conductance,

g =
1

d2⊥

X
i

X
j

σpi,qjzz , (17.72)

where the summations should, in principle, be carried out over all the cells in
layers p and q.
It has to be emphasized that because of the use of linear response theory

and current conservation, in principle the choice of layers p and q has to
be arbitrary in the above formula. By the way, if the layers p and q are
asymptotically far away from each other, the present formulation naturally
recovers the Landauer-Büttiker approach [21, 22].

17.7.2.2 Gold contacts

Nanocontacts made of gold show a dominant peak very close to the conduc-
tance quantum, 1 G0 = 2e2/h in the conductance histogram [23, 24].
A schematic view of a typical contact is displayed in Fig. 14.5; see also

section 14.3. In the left part of Fig. 17.17 for the particular contact depicted
there the numerically tedious required independence of the layer indices p and
q, see Eq. (17.72), is shown in terms of the convergence with respect to the
number of atoms in the layers. Convergence with about 20 atoms can already
be obtained placing p and q in the first two full layers (p = C − 3, q = C +3),
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FIGURE 17.17: Left: Conductance versus the number of sites included in the
sum in Eq. (17.72) for the contact shown as entry (a) in Fig. 14.6. The differ-
ent curves show conductances as calculated between different pairs of layers.
For a definition of the layer numbering see Fig. 14.5. Right: Conductance
versus the number of Au atoms in the central layer for the Au contacts. Zero
atoms refer to a broken contact. From Ref. [25].

C referring to the central layer, whereas the number of sites needed to get
convergent sums gradually increases if pairs of layers farther away from the
center of the contact are chosen. Since the current flows from the contact
atom forming a cone of some opening angle that cuts out sheets of increasing
area from the corresponding layers, this — at a first glance — strange kind of
convergence property is qualitatively quite understandable.
This part of Fig. 17.17 also implies that an application of the Landauer-

Büttiker approach to calculate the conductance of nanocontacts is numerically
more tedious than the above described one, since in principle two layers situ-
ated infinitely far from each other have to be chosen in order to represent the
leads.
For p, q = C±3 a linear continuation of the conductivities in Eq. (17.69) to

the real axis yielded a conductance for Au nanocontacts of 2.38 G0. Repeating
this calculation with an imaginary part of the Fermi energy of only 1 μRyd
resulted in g = 2.4 G0, which again proves that the use of complex Fermi
energies is a very valuable numerical tool. For a 2 × 2 Au chain of finite
length sandwiched between two semi-infinite Au systems, see entry (c) in
Fig. 14.6, a conductance of 2.58 G0 was obtained [25].
The right part of Fig. 17.17 shows the dependence of the conductance on

the thickness of the nanocontacts in terms of the number of Au atoms in the
central layer; see also Fig. 14.5. It should be noted in particular that the
case of zero Au atoms refers to a broken contact! It can be seen that the
conductance is nearly proportional to the number of Au atoms in the central
layer.
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17.7.2.3 Gold contacts with a magnetic impurity

As can be seen from Table 17.3, by placing impurities in the vicinity of the
contact atom, see entries (A) - (C) in Fig. 14.6, at position B the conductance
is changed only a little. Being placed at position A, however, Fe and Co atoms
increase the conductance by 11 % and 24 %, while at position C they decrease
the conductance by 19 % and 27 %, respectively.

Table 17.3: Calculated conductances of a Au point contact with impurities at
different positions in the vicinity of the contact atom, see entries (A) - (C)
in Fig. 14.6. From Ref. [25].

impurity Conductance [G0]
position Pd Fe Co
A 2.22 2.67 2.97
B 2.24 2.40 2.26
C 2.36 1.95 1.75

pure Au 2.40

The change in the conductance caused by the impurities at positions A and
C can qualitatively be explained by comparing the s-like density of states
at the contact atom, shown in Fig. 14.4, with the corresponding d3z2−r2-like
density of states at the impurity site in Fig. 14.5; see also the corresponding
section in Chapter 14.
The enhanced s-like density of states at the Fermi level of the contact atom

seem to correlate nicely with the enhancement of the conductance when an
Fe and Co impurity is placed at position A, while placed at position C a
decreased value of the s-like density of states at the Fermi level seemingly
causes a decreased conductance; see Table 17.3. However, since the effects
are larger in the case of a Co impurity than for an Fe impurity, this simple
picture can only serve as a very qualitative argument.

17.8 Domain wall resistivities

One of the most fascinating new ideas in the field of spintronics is the concept
of race track memories [26, 27, 28], which is based on the experimental finding
that in a given length of a nanowire the size of the anisotropic magnetoresis-
tance (AMR) changes whether a domain wall is present or not. Since domain
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walls can be moved in and out of such a predefined region by applying an
electric field [29], it was proposed to use this effect for a new, all-solid-state
archival storage with about the same density of magnetic disks, however, with
no moving parts at all.
Suppose that C0 and C1 denote the following magnetic reference configura-

tions corresponding to a magnetic domain wall of width L in a substitutional
magnetic alloy AcB1−c viewed as a layered system (only two-dimensional
translational symmetry)

C0 = {nl = x̂, ni = x̂, nr = x̂, i = 1, L} , (17.73)

C1 = {nl = ẑ, ni = ẑ, nr = ẑ, i = 1, L} , (17.74)

where nl and nr denote the orientations of the magnetization in the "left" and
the "right" domain, the ni in the atomic planes forming the wall, x̂ is parallel
to the in-plane x-axis, and ẑ is parallel to the surface normal. Consider further
a magnetic configuration Cd such that within the atomic layers forming the
domain wall the orientation of the magnetization in the individual planes
changes quasi-continuously from x̂ to −x̂

Cd = {nl = x̂, ni, nr = −x̂, i = 1, L} , (17.75)

ni = D(Φi)x̂ , Φi = 180i/L, i = 1, . . . , L, D(Φi) being a rotation by an
angle Φi around the surface normal.
As discussed in Chapter 15 the equilibrium domain wall width L0 can be

evaluated by minimizing the domain wall formation energy E(L;Cd, c) with
respect to L. It should be noted that by adding Ll and/or Lr layers from
the left or right domain, of course the domain wall formation energy has to
remain unchanged, i.e., E(L+ Ll + Lr;Cd, c) = E(L;Cd, c).
For large enough L the resistivity ρCPP (L;Ci, c) for a particular chosen

configuration Ci, see Eqs. (17.15) - (17.25), and the corresponding sheet re-
sistance r(L;Ci, c) or resistance R(L;Ci, c),

r(L;Ci, c) = LρCPP (L;Ci, c) = AR(L;Ci, c) , (17.76)

A being the unit area, can approximatively be obtained from the zz-component
of the conductivity tensor, σzz(L;Ci, c),

ρCPP (L;Ci, c) ∼ ρzz(L;Ci, c) = σ−1zz (L;Ci, c) . (17.77)

Furthermore, one can make use of the fact that r(L;Ci, c) is linear in L, see,
e.g., Eq. (17.54),

r(L;Ci, c) = Lρzz(L;Ci, c) = a(Ci, c) + b(Ci, c)L . (17.78)

In using Eq. (17.77) this linear form has to yield the below limiting properties
already discussed previously, namely

0 < c < 1 : lim
L→∞

ρzz(L;Cd, c) = b(Cd, c) = ρzz(C0, c) , (17.79)



© 2009 by Taylor & Francis Group, LLC

236 Magnetic Anisotropies in Nanostructured Matter

c = 0, 1 : lim
L→∞

ρzz(L;Cd, c) = ρzz(C0, c) = 0 , (17.80)

where ρzz(C0, c), 0 < c < 1, is the zz-component of the residual ("bulk")
resistivity corresponding to configuration C0; see Eq. (17.73). It should be
recalled that for pure systems (c = 0, 1) the constant b(C, c) has to be exactly
zero. Eq. (17.80) can therefore be used to check the accuracy of the applied
numerical procedure, in particular, since ρzz(L;C, c) is evaluated like in all
other cases discussed up-to-now by means of an analytical continuation of
resistivities defined for complex Fermi energies to the real axis.
Clearly enough the "standard" expression for the anisotropic magnetore-

sistance [1] for bulk cubic systems, c 6= 0, 1, see Eq. (17.4), no longer makes
sense in the presence of domain walls. However, one can define a similar ratio,

AMR(L0;Ci, c) =
ρzz(L0;C1, c)− ρzz(L0;Ci, c)

ρzz(L0;C1, c)
, (17.81)

Ci = C0,Cd, where L0 now refers to the equilibrium domain wall width.
Similarly, in the absence of domain walls use can be made of the procedure
indicated in Eq. (17.79), i.e.,

AMR(c) = (ρzz(C1, c)− ρzz(C0, c)) /ρzz(C1, c) . (17.82)

By combining the last two equations a difference in these anisotropic magne-
toresistances can be evaluated,

∆AMR = AMR(L0;Ci, c)−AMR(c)

=
(r(L0;Ci, c)− r(C0, c))

r(L0;C1, c)
=
(R(L0;Ci, c)−R(C0, c))

R(L0;C1, c)
, (17.83)

which indicates how much the AMR is changed due to the presence of a
domain wall. Obviously this reduction is determined by the difference in
sheet resistances (resistances) in the presence and absence of a domain wall,
normalized to the case that in the distance that separates the contacts, see
Fig. 17.18, no domain wall is present and the magnetization is parallel to the
electric current.
In Fig. 17.19 the resistivities ρ(C0, c) and ρ(C1, c), namely the so-called bulk

residual resistivities, see Eq. (17.79), are displayed versus the Co concentra-
tion together with the domain wall resistivities ρ(L0;C0, c), ρ(L0;C1, c) and
ρ(L0;Cd, c) for CocFe1−c (left) and CocNi1−c (right). In the case of CocNi1−c
also the experimental room temperature values [31] are shown. Note that for
illustrative purposes these values were shifted uniformly by -5 [μΩ.cm] such
that for pure Co the experimental value is zero. As can be seen from the
right part of Fig. 17.19 for CocNi1−c the experimental and the theoretically
calculated "bulk" resistivities vary in a similar manner with respect to the Co
concentration. There is a peak at about c = 0.15; for higher Co concentra-
tions the resistivities fall off continuously. In both systems ρ(L0;C0, c) and
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FIGURE 17.18: Electric contacts placed on a nanowire, separated by the equi-
librium domain wall width.

FIGURE 17.19: Domain wall resistivities ρzz(L0;Ci, c) and "bulk" resistivi-
ties ρzz(Ci, c) for CocFe1−c(left) and CocNi1−c (right). The various entries
are denoted explicitly; the experimental values [31] at 273 ◦ K, are shifted uni-
formly by -5 [ μΩ.cm]. From Ref. [30].



© 2009 by Taylor & Francis Group, LLC

238 Magnetic Anisotropies in Nanostructured Matter

FIGURE 17.20: Reduction of the AMR in the presence of a domain wall.
From Refs. [30, 32].

ρ(L0;Cd, c) are very similar in value, since the so-called in-plane anisotropy
is very small. It should be noted that in CocFe1−c there is a phase transition
from bcc to fcc in the concentration regime of about 70 - 90% Co. For these Co
concentrations the connecting lines in the left part of Fig. 17.19 serve merely
as a guide for the eye.
Finally in Fig. 17.20 the difference in the anisotropic magnetoresistance

with respect to the presence and the absence of a domain wall is shown for all
three possible binary alloy combinations of Fe, Co and Ni. From this figure one
immediately can see that CocFe1−c obviously is not suitable for technological
purposes, while the results for CocNi1−c suggest that for 0.15 ≤ c ≤ 0.75 on
the average a reduction of the AMR amounting to about 6% can be expected.
The best choice by far seems to be — one is almost tempted to say as usual —
permalloy with a Ni content of about 85%.

17.9 Summary

This chapter was based on the use of the "relativistic" Kubo-Greenwood equa-
tion, which can be uniformly applied to all the different topics mentioned.
Clearly enough, quite a few of these aspects, in particular CPP in the case of
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spin valves and heterojunctions, could have been discussed using also a non-
relativistic approach or applying the so-called "Kubo-Landauer" approach,
see e.g. [33].

• CIP, GMR: the interface conditions and the type of leads are impor-
tant; the GMR changes proportional to (1 − cosΘ) between the initial
and the final magnetic configuration. The stability of switching depends
on the switching energy. Close to a node in the interface coupling en-
ergy (with respect to the thickness of the metallic spacer), a positive
magnetic anisotropy energy guarantees that the system remains in the
switched state. The actual performance of GMR devices usually can be
tuned by making use of the dependence on the thickness parameter for
the free magnetic slab, the spacer, the antiferromagnetic pinning layer
and — of course — by combining different magnetic materials ("soft" and
"hard" magnets). The switching time most likely is below 100 ps.

• Heterojunctions, CPP, TMR: the interface conditions are essential
for the TMR ratio. A combination of materials with strong intermixing
tendencies such Fe and Si is not suitable for applications. The magne-
toresistance ratio changes proportional to (1−cosΘ) between the initial
and the final magnetic configuration. Conditions for the occurrence of
tunnelling can be best checked via the temperature dependence of the
resistance. Systems with oxidic spacers like MgO with nearly perfect
interfaces show by far the best results in terms of the TMR ratio.

• Nanocontacts: the conducting properties of nanocontacts depend very
much on the geometrical shape of the contact in the vicinity of the
contact atoms. Impurities, in particular magnetic ones, can enhance
or reduce the conductance. Au nanocontacts still seem to be the most
useful ones.

• Domain walls: the presence or absence of a domain wall between two
electric contacts can be used for a new type of nano-switching. In par-
ticular for permalloy the reduction in the anisotropic magnetoresistance
seems to be quite large.
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18
Magneto-optical properties of magnetic
nanostructured matter

A concept of evaluating Kerr rotation and ellipticity angles is in-
troduced based on a macroscopic model that takes into account all
possible reflections and interferences of incident light. This con-
cept is then applied to typical applications in the context of mag-
netic nanostructured matter, in particular to interlayer exchange
coupling and magnetic anisotropy-driven phenomena such as reori-
entation transitions.

In 1876 J. Kerr discovered [1] that reflected from iron the polarization plane
of linearly polarized light is rotated. Since in his first experiments the pole of
an Fe magnet was used, this magneto—optical effect has been called the polar
Kerr effect. Two years later Kerr demonstrated that the same effect shows up
even when iron is magnetized in—plane. This particular set up is known to-
day as the longitudinal geometry. Nowadays, the magneto—optical Kerr effect
(MOKE) is a widely used powerful experimental tool, e.g., for magnetic do-
main imaging, mapping of hysteresis loops, etc., and technologically is applied
in magneto—optical high—density recording.
MOKE is usually identified with a change in the polarization state of inci-

dent linearly polarized light when reflected from a magnetic system [2], namely
with a rotation of the main polarization plane (characterized by the Kerr ro-
tation angle θK) and the ellipticity of the reflected light (ellipticity angle �K)
[3]. In viewing linearly polarized incident light as a superposition of right—
and left—handed circularly polarized waves of equal amplitudes, from a purely
optical stand-point of view, the magneto—optical Kerr effect is caused by dif-
ferent reflections of these two circularly polarized components of the incident
light.
Based on the relative orientation of the magnetization with respect to the

surface of the system and the plane of incidence, one distinguishes between
three basic Kerr geometries, which are most frequently used in experiments.
In the polar Kerr effect, the magnetization of the system is in the plane of
incidence and perpendicular to the reflective surface. The longitudinal Kerr
effect occurs, when the magnetization is parallel to both, the plane of incidence
and the reflective surface. If the magnetization is in—plane and perpendicu-
lar to the plane of incidence, the Kerr effect is said to be transverse and,
unlike in other geometries [3], magnetization dependent intensity differences

243



© 2009 by Taylor & Francis Group, LLC

244 Magnetic Anisotropies in Nanostructured Matter

are measured. Because only the polar Kerr effect and a specific transverse
configuration go linearly with the magnitude of magnetization [2], presently,
all optical data storage technologies use these geometries [4]. The longitudi-
nal Kerr effect, on the other hand, is mainly applied for investigating domain
structures [3].
In this chapter all microscopic descriptions are based on the complex optical

conductivity tensor σμν(ω) [5], see Chapter 16, as given by

σμν(ω) =
Σμν(ω)−Σμν(0)

~ω + iδ
(18.1)

where the current—current correlation functions Σμν(ω) are defined by

Σμν(ω) =
i~
V

P
m,n

f(εm)− f(εn)

εm − εn + ~ω + iδ
JμmnJ

ν
nm (18.2)

with f(ε) being the Fermi—Dirac distribution function, εm and εn a pair of
eigenvalues of the effective one—electron (Kohn-Sham-) Dirac Hamiltonian, δ
the life-time broadening, Jμmn the matrix elements of the electronic current
operator (μ = x, y, z) and V the reference volume.

18.1 The macroscopic model
18.1.1 Layer—resolved permittivities

Within linear response theory the Fourier transformed macroscopic material
equations [6] averaged over a given reference volume V directly yield the total
electric displacement,

1

V

Z
V

d3r D (r, ω) =
1

V

Z
V

d3r

Z
V

d3r0 ² (ω; r, r0)E (r0, ω) , (18.3)

provided that the dielectric function ² (ω; r, r0) and the Fourier components of
the electric field E (r, ω) at a particular frequency ω are known. As is probably
well-known by now, by using non—overlapping cells in configuration space (the
multiple scattering requirement), the reference volume can be written as

V =
NX
p=1

Ã
Nk
X
i

Ωpi

!
≡

NX
p=1

Ωp , (18.4)

where Nk is the number of atoms per layer (order of the two-dimensional
translational group L(2), one and the same group has to apply in each layer
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p), N the total number of layers, and Ωpi is the volume of the i−th atomic
cell in layer p.
Assuming that (for matters of simplicity) the Atomic Sphere Approxima-

tion (ASA) is applied, that plane waves propagate in a layer like in a two—
dimensional unbound homogeneous medium,

Dpi (r, ω) = Dp (r, ω) , ∀i ∈ I(L(2)) , (18.5)

the integral on the left hand side of Eq. (18.3) can be written as [7]Z
V

d3r D (r, ω) = Nk

NX
p=1

Dp

X
i

Ωpi

"
1 + 6

∞X
k=1

(−1)k (k + 1)
(2k + 3)!

µ
2π

λ0
npSpi

¶2k#
(18.6)

In Eq. (18.6) the vector Dp is the amplitude of the electric displacement, np
the refraction vector,

np = qp/q0 , (18.7)

qp the wave vector (q0 = 2π/λ0 refers to the constant of propagation in
vacuum), and Spi is the radius of the i−th atomic sphere in layer p. The
double integral on the rhs of Eq. (18.6) reduces therefore toZ

V

d3r

Z
V

d3r0² (ω; r, r0)E (r0, ω) = (4π)2Nk

NX
p,q=1

Eq

X
i,j

Z Spi

0

dr r2

×
Z Sqj

0

dr0 (r0)
2
²pi,qj (ω; r, r0)

"
1 +

∞X
k=1

(−1)k

(2k + 1)!

µ
2π

λ0
nqr

0
¶2k#

,

(18.8)

where the vector Eq refers to the amplitude of the electric field in layer q, and
²pi,qj (ω; r, r0) is the dielectric function ² (ω; r, r0) at r ∈ Ωpi and r0 ∈ Ωqj .
In the case of visible light the wave vector dependence of the permittivity

is negligible [2]. Therefore, e.g., in Eq. (18.6), only the first term in the power
series expansion has to be kept, which immediately leads to

NX
p=1

"
Dp −

NX
q=1

²pq (ω)Eq

#X
i

Ωpi = 0 , (18.9)

where the inter— (p 6= q), intra—layer (p = q) permittivities are given by

²pq (ω) =
(4π)2P
iΩpi

X
i,j

Z Spi

0

drr2
Z Sqj

0

dr0 (r0)
2
²pi,qj (ω; r, r0) . (18.10)

By using the relation
Dp = ²

p (ω)Ep ,
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the layer—resolved permittivities ²p(ω) are then solutions of the following sys-
tem of equations:

²p (ω)Ep =
NX
q=1

²pq (ω) Eq , p = 1, . . . , N . (18.11)

18.1.2 Mapping: σ → ²

By mapping finally the inter (p 6= q)— and intra (p = q)—layer contributions of
the microscopically (quantum mechanically) well-defined optical conductivity
tensor σ (ω),

σ(ω) =
NX
p=1

NX
q=1

σpq(ω) , (18.12)

onto the corresponding contributions of the permittivity tensor

f : σ (ω)→ ² (ω)

such that

²pq (ω) =
1

N

∙
1− 4πi

ω
σpq (ω)

¸
, (18.13)

one then can establish a well—defined macroscopical model for the evaluation
of Kerr spectra.

18.1.3 Multiple reflections and optical interferences

By assuming that when put between two boundaries each atomic layer acts as
a homogeneous, anisotropic medium and is characterized by a layer—resolved
dielectric tensor ²p all optical reflections and interferences within a multilayer
system (p = 1, . . . , N) can be determined [4, 8] using classical optics.

18.1.3.1 The Fresnel equation

First the Fresnel or characteristic equation [9]¯̄
n2pδμν − npμnpν − �pμν

¯̄
= 0 , (μ, ν = x, y, z) , (18.14)

has to be solved [3] in order to determine the normal modes of the electro-
magnetic waves in a particular layer p, where np = qp/q0 is the (complex)
refraction vector in layer p; see Eq. (18.7).

18.1.3.2 The Helmholtz equation

For each normal mode the Helmholtz equation,X
ν

¡
n2pδμν − npμnpν − �pμν

¢
Epν = 0 , (μ, ν = x, y, z) , (18.15)



© 2009 by Taylor & Francis Group, LLC

Magneto-optical properties of magnetic nanostructured matter 247

Table 18.1: Key quantities and relations for the polar and the longidutional
Kerr effect.

Layer-resolved polar logitudinal
quantity geometry geometry

Mp (0, 0,Mpz) (0,Mpy, 0)

qp = q0np (0, 0, npz) (0,− sinΘ, npz cosΘ)

²p (ω)

⎛⎝ εpxx εpxy 0
−εpxy εpxx 0
0 0 εpzz

⎞⎠ ⎛⎝ εpxx 0 εpxz
0 εpyy 0
εpzx 0 εpzz

⎞⎠

normal modes npz = ±
p
εpxx ± iεpxy n4pz + an2pz + b = 0

εpxx − εpzz ∼ 0 a =
¡
1 + εpyy/ε

p
zz

¢
sin2 θ

+ (εpxzε
p
zx)/ε

p
zz − εpxx − εpyy

b =
£¡
εpxx − sin2 θ

¢ ¡
εpzz − sin2 θ

¢
−εpzxεpxz] (εpyy/εpzz)

has then to be solved [3], from which the corresponding components of the
electric field Ep in layer p can be obtained.

18.1.3.3 The curl Maxwell equation

For a given set of layer-resolved electric fields the curl Maxwell equation [4, 8],

Hp = np ×Ep , (18.16)

provides then the amplitudes of the magnetic fields Hp for each normal mode
in layer p. It should be noted that in an anisotropic medium the refraction
vector np is direction and frequency dependent [9].

18.1.3.4 The 2× 2 matrix approach

Finally, continuity of the tangential components of the electric and the mag-
netic field at a boundary between adjacent layers leads to a set of equations,
which has to be solved recursively, e.g., by means of the 2 × 2 matrix tech-
nique [4, 8], in order to determine, e.g., the surface reflectivity. Inspecting
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Table 18.2: Permittivity tensor in a (cubic) homogeneous, paramagnetic
system and in vacuum.

Cubic paramagnetic Vacuum
homogeneous system

²p (ω)

Ã
εpxx 0 0
0 εpxx 0
0 0 εpxx

! Ã
1 0 0
0 1 0
0 0 1

!

for a moment the key quantities and relations for the polar and longitudinal
Kerr effect, compiled in Table 18.1, whereMp,qp,np and ²p (ω) refer in turn
to the layer-resolved magnetization, direction of the incident light, (complex)
refraction vector and the permittivity tensor for a system with cubic parent
lattice, one can see, e.g., that there are 4 normal modes, namely the solutions
of the Fresnel equation; see Eq. (18.14).

Table 18.3: Solutions of the Helmholtz Eq. (18.15) for polar geometry and
normal incidence neglecting for matters of simplicity the difference in the
diagonal elements of the layer—resolved permittivity. E(k)

pμ is the amplitude of
the electric field in layer p for solution (beam) k. From Ref. [10].

k 1 2 3 4

E
(k)
px arbitrary iE

(2)
py arbitrary iE

(4)
py

E
(k)
py iE

(1)
px arbitrary iE

(3)
px arbitrary

E
(k)
pz 0 0 0 0

Two of these four solutions are always situated in the lower half and the other
two in the upper half of the complex plane. The first two solutions, n(1)pz

and n
(2)
pz , correspond to a "downward" (negative z-direction) and the other

two, n(3)pz and n
(4)
pz , to an "upward" (positive z—direction) propagation of the

electromagnetic waves [4, 8].
For polar geometry these two different kinds of cases are given by⎧⎪⎨⎪⎩

n
(1)
pz = −

p
�pxx + i�pxy

n
(2)
pz = −

p
�pxx − i�pxy

,

⎧⎪⎨⎪⎩
n
(3)
pz =

p
�pxx + i�pxy

n
(4)
pz =

p
�pxx − i�pxy

. (18.17)

Since the polar Kerr effect is probably the conceptually easiest magneto-
optical phenomenon, in the following the so-called 2 × 2 matrix technique
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FIGURE 18.1: The macroscopic model for polar geometry and normal inci-
dence. The x−axis is perpendicular to the plane of the figure, �q (i) refers to the
incident, �q (r) to the reflected wave vector. �M denotes the total spontaneous
magnetization of the system. From Ref. [10].

shall be considered [10] only for this geometry. In all other cases reference
will be given to the original publications.
Consider as indicated in Fig. 18.1 a multilayer system, in which each in-

dividual atomic layer acts like an anisotropic optical medium. Each of these
media has two boundaries: a plane perpendicular to the surface normal at
positions zp and zp+1 separated by the layer thickness. The first plane to be
considered lies deep inside the substrate, the last one (N +1) in the vacuum.

For each solution n(k)pz , k = 1, . . . , 4, the Helmhotz equation, see Eq. (18.15),
has to be satisfied. Because not all of the equations there are independent,
only two components of the electric field can be determined, keeping the others
arbitrary. Following the approach originally proposed by Mansuripur [4, 8],
for n(1)pz and n

(3)
pz the x−components of the corresponding electric field E

(k)
px

are chosen arbitrarily, while for n(2)pz and n
(4)
pz the y−components E(k)

py are
arbitrary.
For polar geometry and normal incidence, the solutions of the Helmholtz

equation, Eq. (18.15), are given in Table 18.3 and the corresponding compo-
nents of the magnetic field as obtained from Eq. (18.16) are listed in Table
18.4.
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Table 18.4: Solutions of the curl Maxwell equation, see Eq. (18.16), for
polar geometry and normal incidence neglecting the difference in the diag-
onal elements of the layer—resolved permittivity �p. H

(k)
pμ is the amplitude

of the magnetic field in layer p for solution ("beam") k. From Ref. [10].

k 1 2

H
(k)
px iE

(1)
px

p
�pxx + i�pxy E

(2)
py

p
�pxx − i�pxy

H
(k)
py −E(1)px

p
�pxx + i�pyx −iE(2)py

p
�pxx − i�pxy

H
(k)
pz 0 0

k 3 4

H
(k)
px −iE(3)px

p
�pxx + i�pxy −E(4)py

p
�pxx − i�pxy

H
(k)
py E

(3)
px

p
�pxx + i�pxy iE

(4)
py

p
�pxx − i�pxy

H
(k)
pz 0 0

18.1.4 Layer-dependent reflectivity matrices

The 2× 2 reflectivity matrix Rp at the lower boundary zp of layer p is given
by [4, 8] Ã

E
(3)
px

E
(4)
py

!
= Rp

Ã
E
(1)
px

E
(2)
py

!
=

µ
rp 0
0 r0p

¶Ã
E
(1)
px

E
(2)
py

!
, (18.18)

such that the tangential components of the electric and magnetic field at z+p ,
namely just above the boundary zp, are defined by⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

µ
Epx

Epy

¶
z+p

= A (I +Rp)

Ã
E
(1)
px

E
(2)
py

!
µ
Hpx

Hpy

¶
z+p

= B12p (I −Rp)

Ã
E
(1)
px

E
(2)
py

! , (18.19)

where according to Tables 18.3 and 18.4,

A ≡
µ
1 i
i 1

¶
, B12p =

Ã
−in(1)pz −n(2)pz

n
(1)
pz in

(2)
pz

!
, (18.20)

and I is the 2× 2 unit matrix.
Using the lower boundary zp−1 as reference plane for the four beams in

layer p − 1, the tangential components of the electric and magnetic field at
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z−p , situated just below the boundary zp, are of the form⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

µ
Epx

Epy

¶
z−p

= A
¡
C12p−1 + C34p−1Rp−1

¢ÃE
(1)
p−1x

E
(2)
p−1y

!
µ
Hpx

Hpy

¶
z−p

= B12p−1
¡
C12p−1 − C34p−1Rp−1

¢ÃE
(1)
p−1x

E
(2)
p−1y

! , (18.21)

where

Ck,k+1p−1 ≡
Ã
e−iϕ

(k)
p−1 0

0 e−iϕ
(k+1)
p−1

!
, k = 1, 3 , (18.22)

with
ϕ
(k)
p−1 ≡ q0n

(k)
p−1zdp−1 , k = 1, . . . , 4 . (18.23)

Here dp ≡ zp+1 − zp is the thickness of layer p, and q0 is the propagation
constant in vacuum.
Based on Eqs. (18.19) and (18.21), the continuity of the tangential compo-

nents of the electric and magnetic field at the boundary zp implies⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(I +Rp)

Ã
E
(1)
px

E
(2)
py

!
=

¡
C12p−1 + C34p−1Rp−1

¢ÃE
(1)
p−1x

E
(2)
p−1y

!

B12p (I −Rp)

Ã
E
(1)
px

E
(2)
py

!
= B12p−1

¡
C12p−1 − C34p−1Rp−1

¢ÃE
(1)
p−1x

E
(2)
p−1y

! , (18.24)

such that by eliminating the electric field vectors, one immediately gets

Dp−1 (1 +Rp) = B12p (I −Rp) , (18.25)

where

Dp−1 ≡ B12p−1
¡
C12p−1 − C34p−1Rp−1

¢ ¡
C12p−1 + C34p−1Rp−1

¢−1
. (18.26)

The layer-dependent reflectivity matrices Rp are therefore given in terms
of the following simple recursion relation:

Rp =
¡
B12p +Dp−1

¢−1 ¡B12p −Dp−1
¢

, p = 1, . . . , N . (18.27)

To start this procedure one needs to know the 2×2matrix D0 corresponding
to the substrate. This in turn implies that the tangential components of the
electric and magnetic field at z−1 have to be taken into account properly.
However, since the substrate is considered to be (and treated as) a semi—
infinite bulk without any boundaries, R0 = 0 [4, 8] and therefore D0 = B120 ,
which according to Eq. (18.20) requires to specify the permittivity of the
substrate.
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18.1.4.1 Surface reflectivity matrix

In the vacuum region, see the corresponding permittivity tensor in Table
18.2, only the superposition of the incident (i) and reflected (r) electromag-
netic waves ("beams") has to be dealt with. For polar geometry and normal
incidence these beams are related to each other via the so-called surface re-
flectivity matrix Rsurf ,Ã

E
(r)
vac,x

E
(r)
vac,y

!
= Rsurf

Ã
E
(i)
vac,x

E
(i)
vac,y

!
≡
µ

rxx rxy
−rxy rxx

¶Ã
E
(i)
vac,x

E
(i)
vac,y

!
, (18.28)

The tangential components of the electric and magnetic field at z+N+1, namely
just above the interface between the vacuum and the surface, are given by⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

µ
Evac,x

Evac,y

¶
z+N+1

= (I +Rsurf )

Ã
E
(i)
vac,x

E
(i)
vac,y

!
µ
Hvac,x

Hvac,y

¶
z+N+1

=
¡
B12
vac +B34

vacRsurf

¢ÃE
(i)
vac,x

E
(i)
vac,y

! , (18.29)

where

B12
vac =

µ
0 1
−1 0

¶
, B34

vac =

µ
0 −1
1 0

¶
. (18.30)

The continuity of the tangential components of the electric and magnetic fields
at the vacuum and surface layer interface, zN+1 = 0, can now be written as⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(I +Rsurf )

Ã
E
(i)
vac,x

E
(i)
vac,y

!
= A

¡
C12N + C34N RN

¢ÃE
(1)
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(2)
Ny

!

¡
B12
vac +B34

vacRsurf

¢ÃE
(i)
vac,x

E
(i)
vac,y

!
= B12N

¡
C12N − C34N RN

¢ÃE
(1)
Nx

E
(2)
Ny

! ,

(18.31)
or, by eliminating the electric field vectors, as

FN (1 +Rsurf ) = B12
vac +B34

vacRsurf , (18.32)

where

FN ≡ B12N
¡
C12N − C34N RN

¢ ¡
C12N + C34N RN

¢−1A−1 = DNA−1 . (18.33)

Thus for the surface reflectivity matrix one finally gets

Rsurf =
¡
FN −B34

vac

¢−1 ¡
B12
vac − FN

¢
, (18.34)

where as defined in Eq. (18.28)

Rsurf =

µ
rxx rxy
−rxy rxx

¶
. (18.35)
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18.1.4.2 Self—consistent layer—resolved permittivities

In order to calculate for a homogeneous, anisotropic layer p the correspond-
ing dielectric tensor from the inter— and intra—layer permittivities based on
Eq. (18.13), the following linear system of equations,µ

�pxx �pxy
−�pxy �pxx

¶µ
Epx

Epy

¶
=

NX
q=1

µ
�pqxx �pqxy
−�pqxy �pqxx

¶µ
Eqx

Eqy

¶
, (18.36)

has to be solved; see Eq. (18.11). For Ep one can make the following ansatz
[11]:µ

Epx

Epy

¶
≡
µ
Epx

Epy

¶
z=z+p +

dp
2

= A
h¡
C12p
¢ 1
2 +

¡
C34p
¢ 1
2 Rp

iÃE
(1)
px

E
(2)
py

!
, (18.37)

where, as in Eq. (18.22),

¡
Ck,k+1p

¢ 1
2 ≡

Ã
e−iq0ñ

(k)
pz

dp
2 0

0 e−iq0ñ
(k+1)
pz

dp
2

!
, k = 1, 3 . (18.38)

By using the corresponding continuity equation of the tangential compo-
nents of the electric field at the boundaries, one then obtains the layer—resolved
permittivities as a weighted sum of permittivities,Ã

� pxx � pxy

−� pxy � pxx

!
=

NX
q=1

Wpq ²
pq . (18.39)

where

Wpq = A
Ã
N−qY
k=0

Wq+k

!Ã
N−pY
k=0

Wp+k

!−1
A−1 , (18.40)

with

Wp+k = (I +Rp+k)
¡
C12p+k + C34p+kRp+k

¢−1
, k = 1, . . . , N−p , (18.41)

and

Wp =
h¡
C12p
¢ 1
2 +

¡
C34p
¢ 1
2 Rp

i ¡
C12p + C34p Rp

¢−1
, k = 0 . (18.42)

Because the matrices Wp+k contain Rp, C12p and C34p , which in turn depend
on the layer—resolved permittivities �pμν (ω), Eq. (18.39) has to be solved it-
eratively. This self—consistent procedure can, e.g., be started by setting all
weighting matrices Wpq in Eq. (18.40) to unity, i.e., by neglecting the phase
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differences of the electromagnetic waves between the lower and upper bound-
aries in each layer p. In the zero-th iteration the layer-resolved permittivities
� pμν (ω) are simply given by

� pμν (ω)
(0)
=

NX
q=1

� pqμν (ω) . (18.43)

It turned out, however, that in most cases the � pμν (ω)
(0) differ only very little

from their self-consistent counterparts and can therefore be used as such to
describe magneto-optical phenomena sufficiently accurately [11].

18.1.5 Kerr rotation and ellipticity angles

It should be noted that in evaluating the surface reflectivity matrix in terms of
the approach outlined above for the polar Kerr effect, all (optical) reflections
and interferences have been taken into account.

18.1.5.1 Polar magneto-optical Kerr effect

Expressed in spherical coordinates, one immediately obtains the complex re-
flectivity of the right (+) and left—handed (-) circularly polarized light as

r± = rxx ∓ irxy =
E
(r)
±

E(i)
= |r±| ei∆± , (18.44)

where E(r)± is the complex amplitude of the reflected right- and left-handed
circularly polarized light and E(i) that of the incident light. The Kerr rotation
θK and ellipticity �K angles are then given by

θK = −
1

2
(∆+ −∆−) , (18.45)

�K = −
|r+|− |r−|
|r+|+ |r−|

, (18.46)

or, expressed as a complex Kerr angle, as

ΦK = θK + i�K . (18.47)

18.1.5.2 Longitudinal magneto-optical Kerr effect

In the case of the longitudinal magneto-optical Kerr effect and p-polarized
incident light the complex Kerr angle is given by

ΦK ∼ −
rxy
ryy

cosΘ , (18.48)

see also Table 18.1, where the elements of the surface reflectivity matrix have
to be calculated according to the procedure described in Ref. [12].
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18.1.5.3 Approximate formulations

In viewing a layered system to consist only of two media, namely vacuum
and the rest, an approximate formulation of the complex Kerr angle (polar
geometry) was suggested [2] in an attempt to extract the optical conductivity
tensor directly from experimental measurements,

Φ
[2]
K =

σxy(ω)

σxx(ω)
(1− 4πi

ω
σxx(ω))

−1/2 . (18.49)

Since this formulation can still be found in the literature, it has to be pointed
out that of course Φ[2]K in Eq. (18.49) cannot account for any contributions
from the interior or surface near layers in a multilayer system: the vacuum
and the actual system are considered as homogeneous bulk-like systems. For
matters of distinction to Kerr angles evaluated using the above introduced
2×2 matrix techniques, those based on the two-media approach carry a suffix
"two".

18.2 The importance of the substrate

Just as in the case of electric transport experimentally determined optical
properties are mostly only available for "bulk"-like systems. For this reason
in Fig. 18.2 the calculated reflectance of fcc bulk Pt for the (100), (110) and
(111) surface orientations is compared with available experimental data. In
the theoretical data shown there and in Fig. 18.3 bulk Pt was considered
as a layered system (two-dimensional translational symmetry!) of the type
(hkl)Pt/Ptn/Pt(hkl), where (hkl) denotes the surface orientation, and n layers
of Pt separate the two semi-infinite systems. For this system it was found that
for n ≥ 15 very good agreement with the various available experimental data
can be achieved.
Fig. 18.3, by the way, indicates that by using Eqs. (18.1) - (18.2) to calcu-

late the optical conductivity tensor the range of accessible photon energies is
restricted from below by δ, namely the so-called life-time broadening.
In Fig. 18.4 the convergence of the permittivity for fcc Cu with respect to

the number of Cu layers between the two semi-infinite Cu is displayed; i.e., the
permittivity of Cu(100)/Cun/Cu(100) is shown as a function of n. It should
be noted that — as was explained above — the permittivity of the substrate has
to be known in order to calculate the surface reflectivity matrix for a chosen
magnetic multilayer system. Again it seems that for n ≥ 15 the diagonal
elements of the permittivity tensor no longer change when increasing n. This,
as should be noted, is an equivalent way to express the boundary conditions
to be fulfilled in theoretical magneto-optical descriptions. Using, for example,
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FIGURE 18.2: Reflectance of fcc Pt bulk as calculated for the (100), (110) and
(111) surface orientation (diamonds, circles and squares). Crosses, pluses,
stars, and triangle right, left and up refer to various experimental data. From
Ref. [11].

Cu as a substrate implies, therefore, one must consider the following system
(boundary conditions)

Cu(100)/Cun≥15/magnetic multilayer

for a reliable evaluation of Kerr rotation and ellipticity angles.

18.3 The Kerr effect and interlayer exchange coupling
In Chapter 11 a direct comparison between the experimental data and the-
oretical calculations was shown for Cu4Ni8CunNi9/Cu(001) trilayers consid-
ering there the interlayer exchange and the magnetic anisotropy energy. The
type of coupling (ferromagnetic or antiferromagnetic) can in principle be also
determined experimentally by measuring Kerr angles at vanishing external
(magnetic) field as a function of the spacer thickness n.
In Fig. 18.5 a comparison between the calculated interlayer exchange energy

and Kerr rotation and ellipticity angles is displayed. As can be seen from this
figure the Kerr angles map very nicely to the different types of coupling:
in the case of antiferromagnetic coupling both Kerr angles are negative and
distinctly different in size from those when ferromagnetic coupling applies.



© 2009 by Taylor & Francis Group, LLC

Magneto-optical properties of magnetic nanostructured matter 257

FIGURE 18.3: Left: Optical constants of fcc Pt bulk as calculated for the
(100), (110) and (111) surface orientation (diamonds, circles and squares).
Available experimental data are displayed as grey circles. Right: Permittivity
of fcc Pt bulk as calculated for the (100), (110) and (111) surface orientation
(diamonds, circles and squares). Crosses, pluses, stars, triangles right and
down refer to various experimental data. The dotted line marks the photon
energy that equals the used lifetime broadening of δ = 0.653 eV . From Ref.
[11].

In order to find out which elements of the layer-resolved permittivity tensor
give rise to positive or negative Kerr angles, in Figs. 18.6 and 18.7 the xx- and
xy-elements are displayed for one particular system, namely Cu4Ni8Cu10Ni9/
Cu(001) considering a ferro- as well as an antiferromagnetic configuration. As
can be seen the xx-elements reflect hardly any dependence on the magnetic
configuration (the zz-elements, not shown here are even more boring), all
the differences to be eventually mapped in the Kerr angles arise from the
xy-elements in the rotated Ni slab and the adjacent half of the Cu spacer.
Although the Kerr angles cannot be directly related to the total magnetic

moment of the system,

m =
NX
p=1

mp ,
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FIGURE 18.4: Convergence of the permittivity of Cu bulk with respect to the
number of sandwiched Cu layers in Cu(100)/Cun/Cu(100). Circles, squares,
up and down triangles denote in turn Re(εxx), Im(εxx), Re(εzz) and Im(εzz).
From Ref. [14].

it is tempting to give at least an interpretation of Fig. 18.7 in terms of layer-
dependent magnetic moments weighted by "optical factors". Neglecting mul-
tiple reflections and interferences, it is simple to analyze an incident wave
reflected at a particular layer p. Assuming no further reflections, the light
travels back to the surface with a reduced amplitude A0. The space-like part
of a plane wave traveling in z direction is given by A exp(ikz). The wave num-
ber k is complex; thus the real part is responsible for the oscillation and the
imaginary part for the absorption of the wave. Using layer-resolved complex
wave numbers the damped amplitude A0p can be obtained as

A0p = A0

N−p+1Y
q=0

0Y
q=N−p+1

exp [i Im(kN−q) · dN−q]

= A0

N−p+1Y
q=0

exp [2i Im(kN−q) · dN−q] . (18.50)

If the penetration depth is defined as the thickness at which the amplitude
of the incident wave is reduced to A0/e, where e is Euler’s constant, the
number of layers s needed for this purpose has to be determined from the
below relation X

q=0∈{1,...,s}
Im(kN−q) · dN−q = −1 . (18.51)

It should be noted that for the penetration depth only light traveling in di-
rection of the substrate is considered; therefore in Eq. (18.51) the factor 2 is
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FIGURE 18.5: Comparison between the theoretical interlayer exchange energy
and the magneto-optical Kerr angles for Cu4Ni8CunNi9/Cu(100) with respect
to the number of Cu spacer layers. Triangles denote the theoretical interlayer
exchange energy results of Ref. [13], circles and squares the calculated Kerr
angles θK and εK , respectively. From Ref. [14].

dropped. The bulk-value of the refractive index of pure Cu, e.g., leads to a
penetration depth of s = 68.5 layers.
Assuming that the Kerr data in Fig. 18.5 can be interpreted by a sum of

layer-resolved magnetic moments weighted by the damping factor of a wave
reflected at the respective atomic layer, the total "damped" magnetic moment
is given by

m0 =
NX
p=1

m0
p , m0

p =
A0p
A0

·mp . (18.52)

As can be seen from Table 18.5 this total damped magnetic moment m0 turns
out to show the same pattern with respect to the coupling as the Kerr angles.
Clearly enough this is only a very qualitative interpretation, which, how-

ever, indicates strongly that whenever spectroscopic data are to be interpreted
appropriate penetration depths have to be taken into account.
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FIGURE 18.6: Comparison of the layer-resolved complex permittivity for
Cu4Ni8Cu10Ni9/Cu(100) in the antiferromagnetic (triangles) and the fer-
romagnetic (circles) configuration. Left: Re(εxx). Right: Re(εyy). From Ref.
[14].

FIGURE 18.7: Comparison of the layer-resolved complex permittivity for
Cu4Ni8Cu10Ni9/Cu(100) in the antiferromagnetic (triangles) and the fer-
romagnetic (circles) configuration. Left: Re(εxy). Right: Im(εxy). From Ref.
[14].
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Table 18.5: Comparison of the theoretical Kerr angles θK and �K with the
damped (m0) and undamped (m) total magnetic moments; see Eq. (18.52).
From Ref. [14].

FM AFM
θK , �K > 0 < 0
m0 > 0 < 0
m > 0 > 0

FIGURE 18.8: Kerr set-up in the case of p-polarized incident light. Here α
and β specify the orientation of the magnetization M and the direction of
the incident light, respectively. Both are specified with respect to the surface
normal. Note that the magnetization always lies in the plane of incidence.
From Ref. [16].

18.4 The Kerr effect and the magnetic anisotropy energy

Another system that was already discussed in the context of reorientation
transitions, namely Fen/Au(100), see Chapter 11, was first studied experi-
mentally using the Kerr effect. The experimental evidence [15] for the reori-
entation transition seemed to be quite clear: if the easy axis was in-plane then
the longitudinal Kerr signal yielded a square hysteresis loop while the polar
Kerr signal produced no hysteresis. If, however, the easy axis was normal to
the film surface then the polar signal yielded a square hysteresis loop and the
longitudinal one showed no hysteresis. In the regime of canted magnetiza-
tion, hysteresis loops related to both configurations occurred. At a given film
thickness the Kerr intensity was identified with the height of the hysteresis
loop in the remanent state.
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In order to describe this experiment properly, in principle both the angle of
the incident light as well as that of the orientation of the magnetization with
respect to the surface normal, see Fig. 18.8, has to be varied. In the theoretical
investigations reported in [16], however, the range of angles investigated was
restricted to the following cases:

angle range restriction
α : 0 ≤ α ≤ 90◦ ;β = 0
β : 0 ≤ β ≤ 90◦ ;α = 0, 90◦

Since in the experimental study [15] the polar and longitudinal Kerr inten-
sities are given by the height of the hysteresis loops in the remanent state, the
reorientation transition from a perpendicular to an in-plane orientation of the
magnetization shows up in a strong decrease of the Kerr intensity for normal
incidence (β = 00) and a rather moderate increase of the Kerr intensity for
grazing incidence (β = 900); see the upper part of Fig. 18.9. By consider-
ing the actual ground-state orientations of the magnetization resulting from
magnetic anisotropy energy calculations, see also Fig. 11.1, the lower part of
this figure shows the calculated Kerr rotation angles for two different angles of
incidence, namely, for β = 00 and 700. Although Kerr angles and Kerr inten-
sities cannot be directly related to each other, it is not surprising at all that
their respective dependence on the number of Fe layers is in good qualitative
agreement with the experimental data.
As can be immediately seen from Fig. 18.9, the calculated Kerr rotation

angles for the system Fen/Au(100) in the magnetic ground state, describe
remarkably well the magnetic reorientation transition: the perpendicular ori-
entation of the magnetization is preferred below 3 ML, whereas above this Fe
thickness the ground state is characterized by an in-plane orientation of the
magnetization, which for normal incidence yields zero Kerr rotation angles.
In the case of oblique incidence (say for β = 700) non-vanishing Kerr ro-

tation angles are obtained for both normal-to-plane (n ≤ 3) and in-plane
(n > 4) ground-state magnetizations and the reorientation transition appears
as a drop in θK . It is interesting to note that for β = 700 the value of θK is
by a factor of 2 to 3 larger than that for β = 00 (n ≤ 3).
It should be noted that the theoretical results shown in Fig. 18.9 are —

as already mentioned — based on the magnetic ground states (α = 0 or 90◦)
found from magnetic anisotropy calculations. Fig. 18.9 serves as an impressive
example for the claim that whenever all theoretical descriptions are included
on the same footing, quantities actually measured in experiment can be re-
produced very well.
As can be seen from the left part of Fig. 18.10 the Kerr rotation angle for

oblique incidence increases independent of the Fe thickness until β = 700,
where a maximum of θK is reached; increasing the incidence angle β beyond
700 causes a continuous decrease of the Kerr rotation angle. It seems therefore
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FIGURE 18.9: Left: Top: Surface magneto-optical Kerr experiments by Liu
and Bader [15]. Circles denote the measured data for the polar, triangles
for the longitudinal Kerr set-up. Bottom: calculated values of the Kerr rota-
tion angle θK in the case of p-polarized incident light and for the magnetic
ground state of Fen/Au(100). Circles mark the theoretical results for a nor-
mal incidence (β = 00) and triangles for an incidence of β = 700. Right:
Calculated Kerr rotation angle (upper part) and ellipticity angle (lower part)
for different angles of incidence for the corresponding magnetic ground state
of Fen/Au(100). See also Fig. 18.8. From Ref. [16].
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FIGURE 18.10: Left: Calculated Kerr rotation angle as a function of the
angle of incidence β and for different thicknesses of Fe films on Au(100).
Open circles, squares and triangles refer to 1, 2 and 3, full circles, squares
and triangles to 4, 5 and 6 ML of Fe on the top of Au(100). Right: Calculated
Kerr angles in the case of normal incidence for Fe4/Au(100), β = 00, as a
function of the angle α; see also Fig. 18.8. From Ref. [16].

that two regimes of θK(β) values can be distinguished: one for n ≤ 3 (α = 00)
where θK(β = 00) 6= 0, and one for n > 4 (α = 900) with θK(β = 0

0) = 0.

For the particular case of Fe4/Au(100) the Kerr angles are displayed in the
right part of Fig. 18.10 for normal incidence (β = 00) and different orientations
of the magnetization, 0 ≤ α ≤ 900. As can be seen from this figure, both
θK(α) and εK(α) show an almost perfect cos(α) dependence. This finding
supports independently the experimentally known fact that for normal inci-
dence the Kerr rotation angle is direct proportional to the normal component
of the magnetization.

For the case of normal incidence Fig. 18.11 offers an interesting view of
the Kerr angles, θK(α) and εK(α), since in this figure each entry refers to
a particular value of α, the abscissa being, however, the anisotropy energy
Ea(α). Obviously points along the ordinate (Ea = 0) correspond to α = 900,
while those along the abscissa belong to α = 00. For n ≤ 3 all curves fall
into the regime of positive anisotropy energies (perpendicular orientation of
the magnetization), while those for n ≥ 4 refer to that of negative anisotropy
energies (in-plane orientation). The reorientation transition in Fen/Au(100)
is thus particularly clearly visualized.
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FIGURE 18.11: Calculated Kerr angles displayed as a function of the mag-
netic anisotropy energy for different thicknesses of the Fe film on Au(100).
Full symbols refer to Kerr rotation, open symbols to Kerr ellipticity angles.
The data for this figure were obtained by varying the angle of magnetization
α while the angle of incidence is fixed to β = 00; see also Fig. 18.8. From
Ref. [16].

18.5 The Kerr effect in the case of repeated multilayers

Magneto-optical storage media still promise to provide the highest storage
densities with high data security at respectable data transfer rates. It is
generally believed that the highest areal densities can be achieved by means
of perpendicular recording. In particular, systems containing Co/Pd or Co/Pt
multilayers appear to be most suitable for this purpose.
Experimental investigations of Co/Pt superstructures showed that the mag-

neto-optical and the magnetic properties are not independent of each other:
the former scale with the ratio of the thicknesses of Co to Pt, tCo/tPt, the lat-
ter depend inversely on this ratio [17]. The superstructure with a Co thickness
of tCo = 4 Å and a Pt thickness of tPt = 12.7 Å showed the highest Kerr rota-
tion with a 100% remanence and a positive nucleation field at a wave length of
λ = 820 nm. Assuming a (111) surface orientation and a perpendicular lattice
spacing of 2.265 Å, the thicknesses of this superstructure in monolayers (ML)
are tCo = 1.8ML and tPt = 5.6ML. According to Ref. [18] a Co thickness tCo
of less than 4 Å (1.8 ML) and a Pt thickness tPt greater than 12 Å (5.3 ML)
is needed to achieve perpendicular magnetism and a 100% remanence.
Fig. 18.12 shows the diagonal elements of the dielectric tensor, εpxx and εpzz
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for (Co2Pt6)5/Pt(111), i.e., for a Co/Pt superstructure with the unit Co2Pt6
five times repeated. As can be seen the dielectric tensor is quite anisotropic,
since εpxx 6= εpzz. This difference results from effects of spin-orbit coupling in
the presence of an internal magnetic field. Note that εpxx = εpzz only for the
paramagnetic layers of the substrate Pt(111).
As was seen already in the previous example of the trilayer system Cu4Ni8

Cu10Ni9/Cu(001) it is mostly the non-vanishing off-diagonal elements of the
dielectric tensor εpxy that lead to magneto-optical effects. From Fig. 18.12,
it is evident that

¯̄
εpxy
¯̄
is not largest in the Co layers as the layer-dependent

moments in this figure perhaps suggest, but in the Pt layers adjacent to the
Co layers. This implies that the presence of the Pt slabs is decisive for the
magneto-optical Kerr effect.
Assuming a finite penetration depth with an exponential damping behavior

the Kerr rotation angle θK(n), n denoting the number of repetitions of the
unit Co2Pt6, can be extrapolated to an arbitrary large n in the following
manner

θK(n) = θK(1)
n−1X
l=0

e−γl = θK(1)
1− e−γn

1− e−γ
, (18.53)

where γ is the damping factor. From Eq. (18.53) it immediately follows that
the Kerr rotation angle shows the below asymptotic behavior

lim
n→∞

θK(n) = θK(1)
1

1− e−γ
. (18.54)

In the left part of Fig. 18.14 the Kerr angles θK and εK are shown versus the
number of repetitions of the unit Co2Pt5; the right part of this figure illustrates
the use of Eq. (18.54). In using this fitting procedure the asymptotic value
of θK for Co2Pt6 superstructures on Pt(111) amounts to 0.2106◦.
In Fig. 18.14 the experimental and the calculated data for the magneto-

optical Kerr rotation angle θK , the Kerr ellipticity angle εK , and the mag-
nitude of the complex Kerr angle ΦK =

p
ε2K + θ2K are displayed versus the

photon energy. As can be seen, θK exhibits a maximum at about 3.5 eV for
n = 1, 3, 6, for n = 6 a local maximum occurs at about 1.5 eV. The dependence
of θK on the repetition number is clearly visible: the peak at approximately
3.5 eV becomes more pronounced. Most experimental studies reported a peak
at about 4 eV, depending a bit on the Kerr geometrical set-up actually used
and — of course — on the composition of the Co/Pt units.

18.6 How surface sensitive is the Kerr effect?
ROTMOKE was originally suggested by Mattheis and Quednau [21] and is
based on the longitudinal magneto—optical Kerr effect using a sufficiently large
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FIGURE 18.12: (Co2Pt6)5/Pt(111). Top: diagonal elements of the layer-
resolved complex dielectric tensor εpxx and εpzz. Note that only one unit
Co2Pt6 is shown. Diamonds refer to xx-elements, triangles to the zz-
elements. Bottom, left: off-diagonal elements of the layer-resolved complex
dielectric tensor, εpxy. Diamonds denote Re(ε

p
xy), triangles Im(ε

p
xy). Bottom,

right: Layer-resolved magnetic moments. Full diamonds denote the spin-only,
full triangles the orbital-only magnetic moments, the sum of both is repre-
sented by open diamonds. In all figures the atomic layers are labeled beginning
with the last layer of the previous bilayer ( p = 8), vertical lines denote the
interfaces between Pt and Co. From Ref. [19].
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FIGURE 18.13: Kerr rotation (and ellipticity) angles for (Co2Pt6)n/Pt(111)
superstructures at an energy of ~ω = 3 eV. In the left part diamonds de-
note the Kerr rotation angle θK , triangles the Kerr ellipticity angle εK , and
the dashed line refers to an interpolation for θK . In the right part also the
extrapolation according to Eq. (18.53) to large n is shown. From Ref. [19].

rotating magnetic field in order to ensure a single domain behavior of ferro-
magnetic probes. Applying ROTMOKE to a thick "bcc" Ni film deposited on
GaAs(001) the claim was put forward [22] of having been able to determine
the magneto—crystalline anisotropy constant of bulk bcc Ni, surely a curiosity,
since — as is well known — the ground state of bulk Ni refers to an fcc struc-
ture. In what follows it will be shown this claim was inappropriate because
an intrinsic property of the Kerr effect, namely the surface sensitivity was
overlooked.
Of course the easiest way to approve or disapprove that claim is simply

to perform corresponding evaluations of the (in-plane) magnetic anisotropy
energy of bulk "bcc" Ni, bcc Ni(100)/NiN0/Ni(100), and of a corresponding
free surface bcc VacNvac/NiNlay

/Ni(100), see also Chapter 6,

∆E = E(110)−E(100) , (18.55)

shown in the right part of Fig. 18.15 together with the respective spin and
orbital moments. As easily can be seen, once again the moments in the surface
layer are much enhanced, falling off slowly towards the bulk values, i.e., to
those values at which the moments become intrinsic. Layer-resolving the
anisotropy energy yields the by now well-known pattern: the contribution
from the surface layer is much bigger than for all following layers. It needs
about 15 atomic layers to get into a regime of constant contributions. In
viewing the anisotropy energy per layer results in oscillations which eventually
settle down to the respective intrinsic values. Fig. 18.15 hints in the right
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FIGURE 18.14: Kerr rotation and ellipticity angles (left column), θK and
εK , and the magnitude of the complex Kerr angle (top right entry), |ΦK |, for
different photon energies. In all three entries diamonds, triangles, and circles
denote the calculated Kerr quantities of (Co2Pt6)n/Pt(111) superstructures
with repetition number n = 1, 3, and 6, respectively. Open circles and squares
refer to the calculated data for θK and εK of Ref. [20] in Co2Pt7 and Co3Pt6
as bulk superstructures. Dashed, dash-dotted, etc., lines refer to various ex-
perimental investigations. Bottom, right: Extrapolation to higher values of n.
Full symbols denote the ab-initio calculated θK for n =1 (diamonds), 3 (tri-
angles), and 6 (circles), respectively, open symbols denote data extrapolated
to n =10 (diamonds), 20 (triangles) and n→∞ (circles) respectively. From
Ref. [19].
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FIGURE 18.15: Left: Layer—resolved spin (circles) and orbital (squares) mag-
netic moments in bcc Vac3/Ni15/Ni(100). Dashed and dotted lines mark the
corresponding ab—initio average moments and the average experimental spin
moment, [22] respectively. Layer 15 corresponds to the surface Ni layer. Right:
Layer—resolved in—plane magnetic anisotropy constants (circles) and their av-
eraged value (squares) in bcc Vac3/Ni15/Ni(100). Dashed and dotted lines
refer to the ab—initio and experimental [22] cubic anisotropy constants, re-
spectively. Layer 15 corresponds to the surface Ni layer. From Ref. [23].

direction of a surface-driven effect seen experimentally but does not explain
the experiment itself. This can only be achieved using the concepts introduced
in this chapter.

Let ϕM be the polar angle between the (in-plane) x—axis and a uniform
in—plane magnetization M = Mp, ∀p = 0, 1, . . . , N , where N includes also
all vacuum layers. By using the following abbreviations

mx = cosϕM , my = sinϕM , (18.56)

for bcc VacNvac/NiNlay/Ni(100), Nvac ≥ 3, the layer-resolved permittivity ten-



© 2009 by Taylor & Francis Group, LLC

Magneto-optical properties of magnetic nanostructured matter 271

FIGURE 18.16: Difference in the diagonal elements of the layer—resolved
permittivities in bcc Vac3/Ni15/Ni(100) and bcc Ni(100)/Ni24/Ni(100) cor-
responding to a photon wave length λ ' 633 nm. Circles, squares, dia-
monds and triangles (up, left and down) refer to differences corresponding
to ϕ �M = 15◦, 30◦, 45◦, 60◦, 75◦, 90◦; see also Eq. (18.56). The layer num-
bering starts with the first layer on top of the semi—infinite bulk substrate.
From Ref. [23].

sors are of the form [23]:

�p =

⎛⎜⎜⎜⎜⎜⎜⎝
�pxx �pxy mxmy −�pxz my

�pxy mxmy �pxx �pxz mx

�pzx my −�pzx mx �pzz

⎞⎟⎟⎟⎟⎟⎟⎠ . (18.57)

For the substrate, however, described as bcc Ni(100)/NiN0/Ni(100), where
N0 is the number of Ni layers between the two semi-infinite bcc-Ni subsystems,
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FIGURE 18.17: Differences (ΘK − Θ[2]K ) and ( �K − �
[2]
K ) for bcc Ni/Ni(100)

corresponding to oblique incidence of p—polarized light in the yz plane (λ '
633 nm) as a function of the incidence angle θ (left) and the polar an-
gle ϕM (right). In the left panel circles, squares, diamonds and trian-
gles (up, left and down) refer to Kerr angles obtained for a polar angle of
ϕM = 15◦, 30◦, 45◦, 60◦, 75◦, 90◦ (open symbols); in the right panel circles,
squares, diamonds and triangles (up, left, down and right) represent Kerr an-
gles obtained for an angle of incidence θ = 0, 10, . . . , 60◦ (open symbols),
stars, pluses and crosses stand for θ = 70◦, 80◦, 90◦. From Ref. [23].
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see section 18.2, the permittivity tensor for all Ni planes is given by

ε0 =

⎛⎜⎜⎜⎜⎜⎜⎝
�0xx �0xy mxmy −�0xz my

�0xy mxmy �0xx �0xz mx

�0xz my −�0xz mx �0zz

⎞⎟⎟⎟⎟⎟⎟⎠ . (18.58)

Therefore, independent of the direction of M, the below difference in layer—
resolved permittivities,

∆εp = εp − ε0 , ∀p = 1, . . . , Nlay +Nvac , (18.59)

can be viewed as a measure of the surface sensitivity.
From Fig. 18.16 one immediately can see that these differences are quite

large and nearly independent of the in-plane orientation of the magnetization.
The difference between the Kerr angles obtained from a proper evaluation of
the surface reflectivity matrix and those resulting from the two—media ap-
proach, see section 18.1.5.3, unambiguously reveals the contribution of the
surface-near region to the Kerr data, since in the two-media approach all
Ni layers are treated as one (bulk-like) homogeneous medium [23]. Only for
normal incidence both approaches would yield identical results for the Kerr
angles.
As can be seen from Fig. 18.17 the contributions from surface-near layers

are not only extremely significant, but in fact are decisive for the actual mag-
nitude of the Kerr angles, which for moderately thick "bcc"-like Ni films grown
on a suitable substrate range between -0.015◦ and 0.015◦, depending on the
orientation of the magnetization. It seems therefore very unlikely that from
the experimental ROTMOKE measurements in [22] any conclusions about a
"bulk" magneto-crystalline anisotropy energy of "bcc-Ni" can be drawn.

18.7 Summary

The magneto-optical Kerr effect surely is one of the most used experimen-
tal tools in dealing with magnetic systems nanostructured in one dimension.
Since there are quite a few variations of this technique only very general con-
cluding remarks can be made:

• Any interpretation of experimental Kerr data has to take into account
finite penetration depths.
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• The magneto-optical Kerr effect is well suited to map out regimes of
(a) parallel or antiparallel coupling in multilayers systems or (b) of an
in-plane or perpendicular orientation of the magnetization.

• Besides these rather obvious and well-known aspects of Kerr spectroscopy,
there is one property that very easily is overlooked, but might turn out
to become very important in the future: since "classical optics" is in-
volved Kerr measurements can in principle be performed on a very short
time scale. The Kerr effect is ideally suited for pump-probe phenomena,
probing physical phenomena which usually last only a few femtoseconds.
See also the following chapter!
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19
Time dependence

In order to deal with pump-probe experiments, first the
Kubo-Luttinger approach is carried over to the femtosec-
ond scale. Ultimately, however, the time-dependent Dirac
equation in the presence of an external electro-magnetic
field, introduced here, has to identify properly, for exam-
ple, spin currents and spin torques. It is quite likely that
this equation is the entrance gate to new types of theo-
retical descriptions dealing with physical phenomena that
occur only on the time scale of femto- to nanoseconds.

19.1 Terra incognita

At least from a microscopic (quantum mechanical) standpoint the descrip-
tion of time-dependent physical phenomena in the realm of magnetic nanos-
tructures is still in its infancy, is mostly terra incognita, in particular when
physical properties have to be described that occur only on a pico- or fem-
tosecond scale. However, since quite a few of these properties, such as current-
induced switching (nano- to picosecond regime) or pump-probe experiments,
e.g., in connection with time-resolved Kerr measurements (pico- to femtosec-
ond scale), might change completely the direction of research in the field of
magnetic nanostructured matter, an attempt is made here (a) to extend the
Kubo formulation to the regime of femtosecond magneto-optics and (b) to
introduce the time-dependent Dirac equation in the presence of an external
electro-magnetic field in order to describe time-dependent "spin-polarized"
phenomena such as spin currents and spin torques.

277
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FIGURE 19.1: Left: A typical experimental set-up for performing pump-probe
experiments. The probe laser is usually delayed with respect to the pump
laser by (much) less than 100 fs. Right (from Ref. [1]): Time—dependent
normalized intensity resulting from two time-delayed ( τ = 20 fs) identical,
linearly polarized Gaussian femtosecond ( tFWHM = 60 fs) laser pulses (parallel
configuration) neglecting the time overlap of the pulses.

19.2 Pump-probe experiments
In the left part of Fig. 19.1 a typical set-up for pump-probe experiments is
shown. The right part corresponds to a simulation [1] of this situation in terms
of a superposition of two laser pulses assumed for matters of computational
simplicity to be independent from each other.
According to this assumption, in principle two time-dependent processes

have to be considered, namely first the one corresponding to the pump pulse,
abbreviated in the following by "pu" and thereafter that for the probe pulse
("pr"). Linearizing for near-equilibrium states the probability density for the
pump—excited state ρpu

ρpu ' ρ0 −
i

~

Z τ

−∞
dt [Hpu(t), ρ0] ≡ ρ(0)pu + ρ(1)pu , (19.1)

the leading term ρ
(0)
pu has to fulfill the following condition for t0 → −∞,

t0 → −∞ : ρ(0)pu = ρ0 , (19.2)

ρ0 =
exp (−βH0)

Tr [exp (−βH0)]
, (19.3)

where ρ0 is the equilibrium density, β = (kBT )
−1 the Boltzmann constant

and T the temperature. In a similar manner the probability density for the
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probe pulse can be written as

ρpr(t) ' ρpu −
i

~

Z t

τ

dt0 [Hpr(t
0), ρpu] . (19.4)

In Eqs. (19.1) and (19.4) Hpu(t) and Hpr(t) are of the form

Hx(t) = H0 +Hx(t) , x = pr, pu ,

where by making use of the (electric) dipole approximation Hx(t) is given by

Hx(t) = −
X
μ

Aμ (t)Xμ(t) , μ = x, y, z , (19.5)

with A(t) being the displacement and X(t) the conjugated external force. In
terms of A(t) the components of the current density J(t) are then given by

Jμ =
dAμ(t)

dt
=

i

~
[H0, Aμ(t)] . (19.6)

Within the so-called slowly varying envelope approximation a femtosecond
pulse can be viewed as an amplitude modulated, quasimonochromatic plane
wave propagating, e.g., along the z axis

E(z, t) = eẼ(t) exp [i (q z)] = E0E(t) exp [i (q z − ωpt)] , (19.7)

where e is the polarization unit vector, E0 a real amplitude, ωp the carrier
frequency, and q refers to the corresponding (complex) wave vector.
Considering now that the total external electric field, E(r, t) is simply given

by the superposition of the pump and the probe pulses, see also the right part
of Fig. (19.1),

E(r, t) = epuEpu,0Epu(t) exp [i ((qpu · r)− ωput)]

+ eprEpr,0Epr(t− τ) exp [i ((qpr · r)− ωprt)] , (19.8)

where
epu, epr polarization unit vectors
Epu,0, Epr,0 (real) amplitudes
Epu(t), Epr(t) time-dependent envelopes
qpu,qpr propagation wave vectors
ωpu, ωpr carrier frequencies
τ delay time

such that a total (formally linear) dynamic conductivity can be formulated
[1]

σμν(ωpr, ωpu, ω; τ) = σ(0)μν (ωpr, ω; τ) + σ(1)μν (ωpr, ωpu, ω; τ) , (19.9)

ω ∈ [ω̄pr −∆ω, ω̄pr +∆ω] , (19.10)
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with ω̄pr being the mean frequency of the probe pulse. In Eq. (19.9) the
first term on the rhs, σ(0)μν (ωpr, ω; τ), is the zero-th order and the second one,
σ
(1)
μν (ωpr, ωpu, ω; τ), the first order contribution.
In using only the zero-th order contribution Fig. 19.2 shows that of course

the linear response of the layered system Ni/Ni12/Ni(100) to a (single) fem-
tosecond laser pulse strongly depends on the pulse characteristics. In Fig. 19.3
the diagonal and off-diagonal elements of σ(0)μν (ωpr, ω; τ), see Eq. (19.9), are
displayed for two different delay times, namely 50 and 100 fs.
Usually, instead of a frequency-frequency representation of the dynamical

optical conductivity tensor rather a frequency-time representation is used

σ̃(0)μν (ωpr, t; τ) =

Z ωmax

ωmin

n
w (ω − ωpr;ωc) σ̃(0)μν (ωpr, ω; τ)

× exp [−i (ω − ωpr) t] dω} , (19.11)

t ≥ τ > 0 ,

which can be obtained via a Fourier transformation in a symmetric interval
[ωpr − ωc, ωpr + ωc] around ωpr, where ωc = min (ωpr − ωmin, ωmax − ωpr) > 0.
In Eq. (19.11) a "window function" such as for example a "Gauss—window"
is applied

w (ω − ωpr;ωc) = exp

"
−α

µ
π
ω − ωpr

ωc

¶2#
, (19.12)

if |ω − ωpr| < ωc , α ∈ R .

This kind of representation is shown in Fig. 19.4 for Ni(100) considered as
a layered system. As can be seen from this figure for a double exponential
envelope function, the peak in the diagonal and off-diagonal elements of the
conductivity tensor has a half-width of about 100 fs. Experimentally the width
of this peak was found [2] to be about 80 fs, which proves that at least in this
particular case the zero-th order term in Eq. (19.9) already gave a sufficiently
accurate description of the occurring time-dependent processes. Whether or
not the expression for this peak width used in the literature, namely demag-
netization time, is really justified is questionable, since up-to-now no realistic
calculations of the corresponding time-dependent magnetization density are
available.
Augmented with an optical procedure similar to the one discussed in the

previous chapter for the Kerr effect the example of Ni(100) shows that quite
obviously not only a new type of Kerr spectroscopy with peaks lasting only
a few femtoseconds is possible, but also that these short living peaks will
have to be regarded as one of the main scientific and technological targets in
magneto-optics.
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FIGURE 19.2: Linear response to a femtosecond laser probe pulse shown as
the dimensionless dynamic conductivity σ̃μν(ωp, ω) for μ , ν = x , y in the case
of fcc Ni(100), when the pulse has a carrier frequency ωp = 2 eV (marked by
a thin vertical line), a duration time 60 fs (full width at half maximum, i.e.
FWHM) and an envelope corresponding to a double exponential (full line),
a Gaussian (dotted line), a hyperbolic secant (dashed line) and a Lorentzian
shape (dot—dashed line), respectively. From Ref. [1].
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FIGURE 19.3: Strictly linear, frequency— and delay time—dependent (grey:
τ = 50 fs, black: τ = 100 fs) dimensionless zero-th order dynamic conductivity
σ̃
(0)
μν (ωpr, ω; τ) in the case of fcc Ni(100), when the probe pulse has a carrier
frequency ωpr = 2 eV (marked by a thin vertical line), a duration time 60 fs
(FWHM) and of an envelope corresponding to a double exponential (full line),
a Gaussian (dotted line), a hyperbolic secant (dashed line) and a Lorentzian
shape (dot—dashed line), respectively. From Ref. [1].
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FIGURE 19.4: Gauss—windowed (damping factor α = 3), see Eq.
(19.12), strictly linear, time— and delay time—dependent optical conductiv-
ity σ̃

(0)
μν (ωpr, t; τ) as compared with Ẽpr(t − τ)σ̃μν(ωpr) shown in grey, where

Ẽpr(t − τ) is the envelope of the probe pulse (double exponential: full line,
Gaussian: dotted line, hyperbolic secant: dashed line and Lorentzian: dot—
dashed line) with a duration time of ∆tFWHM = 60 fs (thin vertical lines
marks t− τ = ∆tFWHM/2) and a carrier frequency of ωpr = 2 eV. From [1].

19.3 Pulsed electric fields

Another of these new time-resolved physical phenomena is switching of the ori-
entation of the magnetization induced by short electric field pulses. Although
a bit slower than most processes recorded in pump-probe experiments, namely
occurring "only" on a time scale of nano- to picoseconds, so-called current-
induced switching of spin valves and in particular current-driven domain wall
motions [3, 4], seem to point in the direction of a completely new generation
of technological devices. In Fig. 19.5 the experimental set-up (top) and result
(bottom) of a domain wall motion in a permalloy nanowire induced by an elec-
tric field pulse are displayed. The middle row of this figure shows images of
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the processes taking place in terms of Magnetic Force Microscopy (MFM). In
Fig. 19.6 the corresponding time-resolved resistance measurements are shown.
As can be seen the changes in resistance caused by driving a domain wall with
electric field pulses through a section of the nanowire bordered by the contacts
happen in time steps of about 20 - 50 ns.

19.4 Spin currents and torques
The theoretical requirements to describe the experimental evidence shown in
Figs. (19.7) - (19.6) are two-fold: (1) the description has to be relativistic, oth-
erwise resistances in magnetic alloys such as permalloy can not be evaluated,
and (2) it has to be time-dependent. Since the 4× 4 spin operator,

Σ =

µ
σ 0
0 σ

¶
, (19.13)

does not even commute with the field-free Dirac Hamiltonian,

HD = cα · p+ βmec
2 , (19.14)

it was suggested by Bargmann andWigner [6] to describe the spin-polarization
of (moving) electrons in the presence of an electromagnetic field by means of
the so-called four-component polarization operator,

Tμ ≡ (T, T4) , (19.15)⎧⎪⎪⎨⎪⎪⎩
T = βΣ− iΣ4

π

mec

T4 = iΣ · π

mec

, (19.16)

where
π = (p− eA)I4 , (19.17)

and A = A(r, t) is the vector potential. It should be noted that both, Σμ

Σμ ≡ (Σ, Σ4) , Σ4 = −i γ5 (19.18)

and Tμ are covariant axial four-vectors.
The time evolution of the polarization density Tμ,

Tμ ≡ Tμ(r, t) = (T , T4) (19.19)

T ≡ T (r, t) = ψ+Tψ , T4 ≡ T4(r, t) = ψ+T4ψ ,
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FIGURE 19.5: Top (a) Experimental set-up and structure of injected domain
walls at a notched pinning site, (b): Scanning electron microscopy image of
a permalloy nanowire (horizontal) and its electrical contacts (vertical lines).
Note that there is no notched pinning site in the nanowire shown in this image.
A schematic illustration of the quasi-static resistance measurement set-up is
overlaid on the image. Bottom: Histogram of R values measured in successive
repeated experiments in which a domain wall is injected into the nanowire
using a 2.5 V high, 10 ns long voltage pulse and is trapped at a notch located
about 3 μm away from line A (see top entry). The notch is triangular, as
shown in the MFM images above. R is the difference in the resistance of the
nanowire before and after the domain wall injection. The MFM images show
the magnetic configurations corresponding to each R peak. The white arrows
denote the magnetization directions. By courtesy of the authors of Ref. [5].
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FIGURE 19.6: Time-resolved resistance measurements of a propagating do-
main wall along a permalloy nanowire. Real-time measurements of the domain
wall propagation along a nanowire obtained by averaging the temporal evolu-
tion of the nanowire resistance 16 000 times. Shown are the signal traces
obtained by using (a) -2.8 V and (b) 2.6 V voltage pulses to inject a domain
wall. By courtesy of the authors of Ref. [5].

where ψ = ψ(r, t) is a solution of the time-dependent Dirac equation corre-
sponding to a given scalar potential V = V (r, t),

∂ψ

∂t
=
1

i~
HDψ ,

∂ψ+

∂t
= − 1

i~
ψ+H+

D , (19.20)

HD = HD(r, t) = cα · π + βmec
2 + eV I4 , (19.21)

is then given by

dTμ
dt

=
∂ψ+

∂t
Tμψ + ψ+

∂Tμ
∂t

ψ + ψ+μ Tμ
∂ψ

∂t
, (19.22)

or, by separating explicitly the vector and the scalar part, by

∂T

∂t
= γ5

e

mec

∂A

∂t
,

∂T4
∂t

= − ie

mec
Σ · ∂A

∂t
. (19.23)

This equation can now be reformulated [7] in the following manner,

dT

dt
+∇ · J = e

me
S ×B− ie

mec
ES4 , (19.24)

dT4
dt

+∇ · (J 0
4 − J 00

4 ) =
ie

mec
S ·E , (19.25)
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where B = B(r, t) is the magnetic induction vector and E = E(r, t) the
electric field intensity.
In Eqs. (19.24) and (19.25) the polarization-current density tensor elements

are defined as

Jij = c ψ+ (αjTi)ψ , (i, j = x , y , z) , (19.26)

J 0
4 = cψ+ (T4α)ψ , J 00

4 = ψ+
µ
2
π

me
×α

¶
ψ , (19.27)

such that
∇ · J |i =

X
j

∂jJij . (19.28)

The four-component density Sμ ≡ (S, S4) in Eqs. (19.24) and (19.25),

S = ψ+Σψ , S4 = ψ+Σ4ψ , (19.29)

S ≡ S (r, t) , S4 ≡ S4(r, t) ,

however, is also evolving in time. The corresponding equation of motion turns
out [7] to be of the following form

dS

dt
− ic∇S4 =

mec

~
J 00
4 + i∇× J , (19.30)

i
dS4
dt
− c∇ · S = i

mec

~
J 00 , (19.31)

where
J = cψ+αψ (19.32)

is the relativistic probability current density and

J 00 = ψ+ (2c βγ5)ψ . (19.33)

Very clearly the set of Eqs. (19.24), (19.25), (19.30) and (19.31) has to be
solved now simultaneously.
In the absence of an electromagnetic field the polarization-current density

J and the divergence in Eq. (19.28) have to be regarded as the relativistic
generalization of the conventional spin-current density and the so-called spin-
transfer torque, since then Eq. (19.24) reduces to a continuity equation for the
polarization density and Eq. (19.31) to that for the magnetization density.
Clearly, having calculated Jij , J 0

4 , see Eqs. (19.26) and (19.27), and J
and J 00 in Eqs. (19.32) - (19.33) for a given vector potential A(r, t), scalar
potential V (r, t), magnetic induction B(r, t) and electric field E(r, t) at a
particular time t, first the equation of motion for Sμ and subsequently that
for Tμ can be determined, see the following table, from which all occurring
time-dependencies can immediately be read.
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property quantity

tensor Jij(r, t) = ψ+(r, t) [cαjTi(r, t)]ψ(r, t)

vector J 0
4 (r, t) = ψ+(r, t) [cT4(r, t)α]ψ(r, t)

vector J 00
4 (r, t) = ψ+(r, t)

∙
2
π(r, t)

me
×α

¸
ψ(r, t)

scalar J 00(r, t) = ψ+(r, t) [2cβγ5]ψ(r, t)

vector J(r, t) = ψ+(r, t) [cα ]ψ(r, t)

vector π(r, t)) = (p− eA(r, t))

components i, j = x , y , z

Quite obviously in order to evaluate the various quantities in this table, the
solutions of the time-dependent Dirac equation in Eq. (19.21) or equivalently
the corresponding (time-dependent) Green’s function have to be available,
since all other "ingredients" are mostly given in terms of Dirac matrices or
given functions (procedures).

19.5 Instantaneous resolvents & Green’s functions
In principle the time-dependent Dirac equation ought to be solved in the
context of the Time-Dependent-Density-Functional-Theory (TDDFT) [8, 9],
which, however, applied to solid state systems still seems to be an unresolved
issue. Even making the simplest possible approximation, namely the so-called
Adiabatic Local Density Approximation (ALDA), for the exchange-correlation
potential Vxc(r, t; [n(r, t),m(r; t)]) and effective exchange field B(r, t; [n(r, t),
m(r; t)]),

Vxc(r, t; [n(r, t),m(r; t)]) =
δExc[n(r; t),m(r; t)]

δn(r; t)
, (19.34)

B(r, t; [n(r, t),m(r; t)]) =
e~
2mc

δExc[n(r; t),m(r; t)]

δm(r; t)
, (19.35)

which are local both in space and time [10], approximate methods of solving
the time-dependent Dirac equation have to be assumed, since it is virtually
impossible to follow for a solid state system, in particular for those with
a surface or interfaces, the time evolution of individual solutions ψ(r, t) of
Eq. (19.21).
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Assuming that the system returns to the ground state after a certain period
of time it was suggested [11] to use instantaneous time-dependent resolvents
in order to evaluate directly the particle density n(r, t) in Eq. (19.34) and
the magnetization density m(r; t) in Eq.(19.35) for a given time-dependent
process starting from a well-defined ground state.

19.5.1 Time-dependent resolvents

Suppose that the time-dependent Kohn-Sham-Dirac operator H(t) is defined
as

H(t) =

⎧⎨⎩H0 +W(t) , t ≥ t0

H0 , t < t0

, (19.36)

and that the following (time independent) initial eigenvalue equation applies

H(t0)ψ(t0) = H0ψ(t0) = E(t0)ψ(t0) . (19.37)

By introducing the resolvent of H(t) with t as a parameter,

G(z; t) = (z −H(t))−1 , (19.38)

into the expression for the evolution operator corresponding to infinitesimal
time steps,

U(t, t0) =
1

2πi
ª
Z

C−∪C+

dz exp

∙
− i

~
z (t− t0)

¸
G(z; t0) , (19.39)

from Cauchy’s residue theorem it immediately follows that

U(t, t0) = exp

∙
− i

~
H(t0) (t− t0)

¸
, (19.40)

which in turn is identical to

U(t, t0) = exp

⎡⎣− i

~

tZ
t0

dt0H(t0)

⎤⎦ , (19.41)

if and only if
tZ

t0

dt0W(t0) ' W(t0) (t− t0) . (19.42)

In Eq. (19.39) C+ (C−) is a contour immediately above (below) the real axis
followed from the right (left) to the left (right) such that for t − t0 > 0 the
contour C− and for t− t0 < 0 the contour C+ yields vanishing contributions.
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19.5.2 Time-evolution of densities

For the initial state, at t = t0, the valence band particle density of a solid
state system is given as usual by

n(r; t0) = −π−1 Im
EF (t0)Z
Eb

hr|G(z; t0) |ri dz , (19.43)

where Eb denotes the band bottom and EF (t0) is the Fermi energy of the equi-
librium system. Similarly, assuming that — as already said — the time evolution
of the system can be described by an instantaneous eigenvalue problem,

H(t)ψ(t) = E(t)ψ(t) , (19.44)

by using G(z; t), see Eq. (19.38), the density n(r; t) at a given time t can be
defined in terms of the following (contour) integration,

n(r; t) = −π−1 Im
EF (t)Z
Eb

hr|G(z; t) |ri dz , (19.45)

where EF (t) is now a "fictitious" Fermi energy at t, determined such that the
below condition for a constant number of particles applies.
Suppose that at t0 (well-defined initial state) the number of particles is N0.

The condition for a constant number of particles (one of the requirements of
Density Functional Theory) then implies that

N(t) = N0 , ∀t , (19.46)

with N(t) being defined in terms of n(r; t), see Eq. (19.45), as

N(t) =

Z
Ω

n(r; t)dr . (19.47)

Suppose further that at a particular t this condition was already fulfilled by
closing the contour at a properly adjusted upper integral boundary EF (t);
then correspondingly at t0 = t+∆t the contour has to be closed at EF (t

0),

N(t0) = −π−1
Z
Ω

⎧⎪⎨⎪⎩Im
EF (t

0)Z
Eb

hr|G(z; t0) |ri dz

⎫⎪⎬⎪⎭ dr , (19.48)

such that Eq. (19.46) is met, i.e., N(t0) − N(t) = 0. From fulfilling the
condition in Eq. (19.46) it follows immediately that the time evolution of the
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particle density maintaining a constant number of particles is given by

δn(r; t)

δt
' −π−1

⎧⎪⎨⎪⎩Im
EF (t)Z
Eb

hr| δG(z; t)
δt

|ri dz + Im hr|G (EF (t) ; t) |ri

⎫⎪⎬⎪⎭ .

(19.49)
Similarly, the time evolution of the magnetization density can easily be ob-
tained from the below definition,

m(r; t)= −π−1 ImTr

EF (t)Z
Eb

hr|βΣG(z; t) |ri dz , (19.50)

where Tr denotes the trace in spin space. Imposing again particle conserva-
tion, this implies

δm(r; t)

δt
' −π−1

⎧⎪⎨⎪⎩ImTr

EF (t)Z
Eb

hr|βΣδG(z; t)

δt
|ri dz

+ Im hr| βΣG (EF (t) ; t) |ri
¾

. (19.51)

From Eqs. (19.49) and (19.50) it is obvious that the time evolution of any
other density such as the previously introduced polarization density can be
evaluated in a similar manner.

19.6 Time-dependent multiple scattering
Since it can be shown that a time-dependent multiple scattering theory can
be formulated by making use of a time independent resolvent G(0)(z) that
corresponds to a given (time independent) reference Hamiltonian H0,

H(t) = H0 + V +W(t) , G0(z) = (z −H0)−1 , (19.52)

all the concepts introduced in Chapter 4 can be applied. In particular let a
time-dependent Kohn-Sham-Dirac operator be defined as

H(r; t) = H(0)(r) +W(r; t) , (19.53)

H(0)(r) = cα · p + βmc2 + V (r)I4 + βΣ ·B(r) , (19.54)

where W(r; t) is of the form

W(r; t) =
X
Λ>0

WΛ(r; t)YΛ(r̂) , Λ = (l,m) , (19.55)
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such as, e.g., for an interaction with a laser pulse in the dipole approximation,

W(r; t) = eE0E(t) cos(ω0t) (r · e) (19.56)

= eE(t) |r| [Y11(r̂)ex + Y1−1(r̂)ey + Y10(r̂)ez] ,

with e being the elementary charge, E0 a real amplitude, E(t) a real enve-
lope function, ω0 the carrier frequency and e the polarization unit vector.
In viewing the last equation it is obvious that at a given time t the term
E0E(t) cos(ωt) is a real scalar quantity that multiplies (r · e). Assuming now
that in accordance with the requirements for multiple scattering integrations
in configurational space can be split up into integrations over non-overlapping
cells Ωn

Ω =
X
n

Ωn ,

Z
Ω

dr =
X
n

Z
Ωn

drn , (19.57)

then the previously introduced concept of multiple scattering can be applied
straightforwardly.

19.6.1 Single-site scattering

For example, the Kohn-Sham-Dirac Hamiltonian corresponding to a particular
cell (site) of an ensemble of atoms can be rewritten [12] as

H (r; t) = cα · p+ βmc2 + U (r; t) , (19.58)

with

U (r; t) =

⎛⎝U+ (r; t) 0

0 U− (r; t)

⎞⎠ , (19.59)

U+ (r; t) = V (r; t) + σz B (r; t) , (19.60)

U− (r; t) = V (r; t)− σz B (r; t) , (19.61)

since initially — because of the properties of the local spin-density functional
— only the z component of the spin operator Σ appears. The potential V (r; t)
can now be expanded as follows

V (r; t) = V (r; t)ξ(r)

=
X

ΛΛ0Λ00,c0≤1
CΛΛ0Λ00VΛ0(r; t)ξΛ00(r)YΛ(r̂) , (19.62)

with
V (r; t) = V (r) +W(r; t) =

X
Λ

VΛ(r; t)YΛ(r̂) , (19.63)

where

VΛ(r; t) =

½√
4πV (r) , Λ = (0, 0)

WΛ(r; t) , Λ 6= (0, 0) . (19.64)
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The functions ξ(r) in Eq. (19.62) are so-called shape functions [12] that
ensure that according to the conditions of multiple scattering the individual
potentials V (r; t) do not overlap.
In using the form given in Eq. (19.56) and assuming the polarization e

in Eq. (19.56) to point along the z axis, there are only two coefficients in
Eq. (19.63), namely

V00(r; t) =
√
4πV (r) , (19.65)

V10(r; t) = E0E(t) cos(ωt) |r|Y10(r̂) .

Making the below ansatz for the wave functions

ψQ(r; t) =
X
Q0

µ
gQ0Q(r; t)χQ0 (r̂)
ifQ0Q(r; t)χQ̄0 (r̂)

¶
, (19.66)

where Q = (κ, μ) and Q̄ = (−κ, μ), κ and μ being the relativistic angu-
lar momentum quantum numbers, one arrives at a system of coupled radial
equations which can be solved directly and which in turn can be used to obtain
the instantaneous single-site t-matrices t(z; t) and the regular and irregular
scattering solutions ZQ (r, z; t) , JQ(r, z; t), z = �+ iδ.

19.6.2 Multiple scattering

At a particular time t the instantaneous single-particle Green’s function
G(r, r0, z; t),

G(r, r0, z; t) = G(rn +Rn, r
0
m +Rm, z; t) =

Zn(rn, z; t)τnm(z; t)Z
m(; r0m, z; t)

×

− δnm
©
Jn(rn, z; t)Z

n(r0n, z; t)
×Θ((rn − r0n)

+Zn(rn, z; t)J
n(r0n, z; t)

×Θ((r0n − rn)
ª

, (19.67)

where the Rn denote sites, is then defined in terms of an instantaneous scat-
tering path operator,

τ(z; t) = {τnm(z; t)} (19.68)

τ(z; t) =
£
t−1(z; t)−G0(z)

¤−1
. (19.69)

Note that the structure constants G0(z) refer to the Green’s function for a
constant (zero) reference potential, i.e., remain constant in time and that
Zn(rn, z; t) and Jn(rn, z; t) refer to site Rn.

19.6.3 Particle and magnetization densities

In using Eq. (19.67) the time-dependent particle and magnetization densities
can now easily be evaluated,



© 2009 by Taylor & Francis Group, LLC

294 Magnetic Anisotropies in Nanostructured Matter

n(r; t) =
X
n

n(rn; t) , m(r; t) =
X
n

m(rn; t) , (19.70)

n(rn; t)= −π−1 Im
EF (t)Z
Eb

{Zn(rn, z; t)τnn(z; t)

× Z(; rn, z; t)× − Jn(rn, z; t)Zn(rn, z; t)×
ª
dz , (19.71)

m(r; t)=−π−1 ImTr

EF (t)Z
Eb

βΣ {Zn(rn, z; t)τnn(z; t)

× Z(; rn, z; t)× − Jn(rn, z; t)Zn(rn, z; t)×
ª
dz , (19.72)

where EF (t) refers to that energy on the real axis at which the contour must
be closed such that the number of particles remains constant and n is the
number of sites, whose volumes summed up define the characteristic volume,
see also Eq. (19.57).

19.7 Physical effects to be encountered

Since up to now no calculations are available that make use of Eqs. (19.24) -
(19.25) and (19.30) - (19.31), only effects to be encountered can be sketched
by taking the example of an atom, for which for matters of comparison also
the more traditional time-dependent perturbation theory can be employed.
In describing for illustrative purposes for example an Fe atom corresponding

to a spherically symmetric effective potential and an effective exchange field
pointing along the z axis in terms of a time-dependent Kohn-Sham-Dirac
Hamiltonian, see Eq. (19.53), when the polarization of the laser pulse e is
parallel to the z axis, see Eq. (19.55), first of all a second-order Stark effect
is encountered. This easily can be shown by considering in Eq. (19.55) only
the amplitude of the electric field, i.e., W(r; t) = W0 = ea0E0, where a0 is
the Bohr radius. Fig. 19.7 clearly shows that the difference in (instantaneous)
orbital energies, ∆EB = E(W0)−E(W0 = 0), in a magnetic Fe atom (a) varies
— as to be expected — quadratically with the magnitude of the electric field
W0, and (b) that apparently the 4p states of an Fe atom are more strongly
affected by the external electric field than the more localized 3d states.
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FIGURE 19.7: Variation of ∆EB with respect to W0 for selected 3d and 4p
states of an Fe atom. The labelling is according to the angular momentum
component of the given state that contributes the most. From Ref. [11].

As is well known from time-dependent perturbation theory, first order tran-
sition probabilities are given by

Pif (t) =
1

~2

¯̄̄̄
¯̄

tZ
t0

dt0 hψ0i |W(t0)|ψ0f i exp (iωif t0)

¯̄̄̄
¯̄
2

, (19.73)

whereW(t) starts at t = t0, ψ0i and ψ
0
f are the initial and the final state wave

functions of the unperturbed system corresponding to the eigenvalues E0i and

E0
f , respectively, and ωif =

³
E0i −E0f

´
/~. On the other hand, the first order

transition probabilities can also be defined [11] as

Pif (t) =

¯̄̄̄
¯̄

tZ
t0

dt0 hψi(t0)|
d

dt0
ψf (t

0)i exp

⎡⎣i t0Z
t0

dt00 ωif (t
00)

⎤⎦¯̄̄̄¯̄
2

, (19.74)

where ψi(t) and ψf (t) are the solutions of the instantaneous equation,

H(t)ψj(t) = Ej(t)ψj(t) , (j = i, f) , (19.75)

and ωif (t) = (Ei(t)−Ef (t)) /~.
In Fig. 19.8 the transition probability according to Eq. (19.73) as well as to

Eq. (19.74) is displayed for an Fe atom caused by a double-exponential laser



© 2009 by Taylor & Francis Group, LLC

296 Magnetic Anisotropies in Nanostructured Matter

FIGURE 19.8: Left: Calculated first order transition probabilities (solid line:
Eq. (19.74), dotted line: Eq. (19.73)), for selected transitions in an Fe atom
due to a double-exponential laser pulse with I = 6 mJ/cm2, ω0 = 6.66 fs−1

and Te = 15 fs. Right: Variation of the calculated transition probabilities
with respect to the characteristics of a double exponential laser pulse, see
Eq. (19.76), for a transition 3d5/2—4p3/2 (μ = −1/2) in an Fe atom. The
upper panel refers to ω0=6.66 fs−1, the lower one to Te=15 fs. In all cases
the intensity of the laser pulse was fixed to I=6 mJ/cm2. From Ref. [11].
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pulse, see Eq. (19.56),

E (t) = exp

µ
− |t|
Te

¶
, I = �0cTeE

2
0 , (19.76)

with I = 6 mJ/cm2, Te = 15 fs and a carrier frequency ω0 = 6.66 fs−1,
that corresponds in energy to the transition 3d5/2— 4p3/2 (μ = −1/2). In
Eq. (19.76) Te is a constant time characterizing the decay of the laser pulse
and I the intensity (power density) with �0 being the vacuum permittivity
and c the light velocity. As initial time t0 = − 6Te is chosen, which is the
time at which the amplitude of the electric field is about 400 times smaller
than at the center of the laser pulse.
The right half of Fig. 19.8, in which the zero of the time scale refers to the

center of the laser pulse, shows the transition probabilities for three different
transitions. Keeping in mind the different scales on the ordinates, it is fairly
obvious that physically relevant processes occur only at or very close to the
resonance. In particular the resonant transition (middle panel) proves that
evaluating the instantaneous eigenstates of H(t) is a very useful numerical
procedure. In the left half of this figure only one transition is considered,
the 3d5/2—4p3/2 (μ = −1/2) transition. In keeping the intensity of the pulse
at I = 6 mJ/cm2, Te (top) and ω0 (bottom) is varied. As to be expected
the transition probabilities are extremely sensitive to the carrier frequency:
a relative change in ω0 of only about 0.1% can decrease their magnitudes by
about 20 - 40%.

19.8 Expectations
Clearly enough Figs. (19.7) - (19.8) served as illustrations only of possible ef-
fects to be encountered and as such have little in common with time-dependent
phenomena in magnetic nanostructured matter. However, at least in the case
of rather slow processes (nano- to picosecond scale) and almost square-like
electric field pulses as used, e.g., to drive domain walls through nanowires, see
Figs. (19.5) and (19.6), the use of instantaneous Green’s functions might turn
out to be of enormous help in evaluating the occurring spin currents and spin
torques according to their definitions in section 19.4.
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Afterword

It must be a bit disturbing to find out that a book that starts out to "dot
i’s and cross t’s" in the language colloquially used to describe parallel and
antiparallel magnetic configurations suddenly ends up in terra incognita. This,
however, is just the usual course in physics: whenever one manages to open
one door, there is yet another one to be opened. After all physics ought to
be "curiosity driven", driven by the desire to find out what is hidden behind
the next door. It surely does not hurt if by the end of the day this kind of
curiosity leads to technologically useful schemes.
Fortunately the topics sketched in the "terra incognita" chapter combine

both aspects almost on equal footing, since the foreseeable end to standard
device scaling requires radically different approaches in order to cope with
the ever increasing needs of information technology, with the implications of
Moore’s law. As is well known, for this kind of purpose it does not make
any sense to go below the nano-scale in length, below the "natural length
scale" in solid state systems. New effects, up to now unknown or not fully
appreciated phenomena and subsequently new types of devices can therefore
only be found by reducing time scales, by exploiting the subtleties of time-
dependent phenomena. Parts of the theoretical equipment to be taken along
on such a discovery trip were described in this book.
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