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�Compatibility� most broadly refers to the suitability of two distinct systems or classes of things to be
mixed or taken together without unfavorable results. More specifically, the safety, effectiveness, and
utility of medical nanorobotic devices will critically depend upon their biocompatibility with human
organs, tissues, cells, and biochemical systems. Classical biocompatibility has often focused on the
immunological and thrombogenic reactions of the body to foreign substances placed within it. In this
Volume, we broaden the definition of nanomedical biocompatibility to include all of the mechanical,
physiological, immunological, cytological, and biochemical responses of the human body to the intro-
duction of medical nanodevices, whether �particulate� or �bulk� in form. That is, medical nanodevices
may include large doses of independent micron-sized individual nanorobots, or alternatively may
include macroscale nanoorgans (nanorobotic organs) assembled either as solid objects or built up
from trillions of smaller artificial cells or docked nanorobots inside the body. We also discuss the
effects on the nanorobot of being placed inside the human body.

�This Volume will be a seminal contribution not only to the nanotechnology literature, but to medicine
in general.� 
� Lawrence Rosenberg, M.D., Ph.D., Professor of Surgery and Medicine, Director of the Division 
of Surgical Research, McGill University

�I believe this book will serve as an excellent reference for investigators with specific problems as
well as a good overview of specific subject areas. I tend to focus on those sections dealing with
investigating and demonstrating the safety of nanorobots, and to the development of a new drug
delivery system or nanorobots used to monitor or repair biological systems. There are many issues to
be concerned about in developing such devices and this book has touched on nearly every one of
them. As with Volume I, this book is filled with useful references and raises many important issues to
be considered in moving forward with the design and creation of nanorobots for medical purposes. 
I enjoyed reading it.� 
� Cecilia A. Haberzettl, Ph.D.; President, TechnoMed Strategic Partners, Inc.

�The chapters reflect an excellent level of scholarship, with an impressive breadth of survey for the
literature.�
� Stephen S. Flitman, M.D., Barrow Neurological Institute

�This new Volume is an erudite, scholarly follow-up to Volume I that covers the gamut from biophysics
and chemistry to immunology, microbiology, and engineering in one book. It�s scope and originality
are extraordinary, addressing questions that nobody ever had to think about before. A lot of the
questions raised can only be answered empirically by actually building devices and testing them in
animals for toxicity and then human clinical trials.� 
� L. Stephen Coles, M.D., Ph.D., Co-Founder, Los Angeles Gerontology Research Group

�Impressive body of work. The scope is amazing.� 
� Owen P. Hamill, Ph.D., University of Texas Medical Branch

�Freitas demonstrates his ability to temper the fantastic potential of nanorobotics with legitimate 
concerns about their safety. I concur with his conclusions with regards to the need for stringent
investigation into the safety of diamondoid substances for use in nanomedicine.�
� Michael Prater, M.D.

�...well written and thoroughly researched discussion of nanomaterials that can be potentially applied
in nanorobot fabrication. The discussion of thermocompatibility is one of the very important parts 
of biocompatibility that very few people have studied.� 
� Bai Xu, Ph.D., Senior Research Scientist, NYS Center for Advanced Thin Film Technology
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PREFACE & ACKNOWLEDGMENTS

“Compatibility” most broadly refers to the suitability of two
distinct systems or classes of things to be mixed or taken to-
gether without unfavorable results.2004 More specifically, the
safety, effectiveness, and utility of medical nanorobotic devices
will critically depend upon their biocompatibility with human
organs, tissues, cells, and biochemical systems. Classical
biocompatibility234-243,260,6030-6048 has often focused on the immu-
nological and thrombogenic reactions of the body to foreign sub-
stances placed within it. In this Volume, we broaden the definition
of nanomedical biocompatibility to include all of the mechanical,
physiological, immunological, cytological, and biochemical responses
of the human body to the introduction of medical nanodevices,
whether “particulate” or “bulk” in form. That is, medical nanodevices
may include large doses of independent micron-sized individual
nanorobots, or alternatively may include macroscale nanoorgans
(nanorobotic organs) assembled either as solid objects or built up
from trillions of smaller artificial cells or docked nanorobots inside
the body. We also discuss the effects on the nanorobot of being
placed inside the human body.

In most cases, the biocompatibility of nanomedical devices may
be regarded as a problem of equivalent difficulty to finding
biocompatible surfaces for implants and prostheses that will only
be present in vivo for a relatively short time. That’s because fast-acting
medical nanorobots will usually be removed from the body after
their diagnostic or therapeutic purpose is complete. In these in-
stances, special surface coatings along with arrays of active presen-
tation semaphores may suffice. At the other extreme, very long-lived
prostheses are already feasible with macroscale implants such as ar-
tificial knee joints, pins, and metal plates that are embedded in bone.
As our control of material properties extends more completely into
the molecular realm, surface characteristics can be modulated and
reprogrammed, hopefully permitting long-term biocompatibility to
be achieved. In some cases, nanoorgans may be coated with an ad-
herent layer of immune-compatible natural or engineered cells in
order to blend in and integrate thoroughly with their surroundings.
Today (in 2002), the broad outlines of the general solutions to
nanodevice biocompatibility are already apparent. However, data
on the long-term effects of implants is at best incomplete and many
important aspects of nanomedical biocompatibility are still unre-
solved — and will remain unresolved until an active experimental
program is undertaken to systematically investigate them.

Since a common building material for medical nanorobots is
likely to be diamond or diamondoid substances, the first and most
obvious question is whether diamondoid devices or their compo-
nents are likely to be hazardous to the human body. Chapter 15.1
briefly explores the potential for crude mechanical damage to hu-
man tissues caused by the ingestion or inhalation of diamond or
related particles. There are varying degrees of potential mechanical

injury and these are probably dose-dependent. It will be part of any
medical nanorobot research project to determine the actual amount
of diamondoid particulate matter necessary to cause clinically sig-
nificant injury.

Classical biocompatibility refers to the assessment of the totality
of nanorobot surface material-tissue/fluid interactions, both local
and systemic. These interactions may include cellular adhesion, lo-
cal biological effects, systemic and remote effects, and the effects of
the host on the implant. Chapter 15.2 summarizes the current sta-
tus of medical implant biocompatibility and then discusses the im-
portant future nanomedical issues of protein interactions with
nanorobot surfaces, immunoreactivity, inflammation, coagulation
and thrombosis, allergic reactions and shock, fever, mutagenicity
and carcinogenicity.

A great deal of preliminary information is already available on
the biocompatibility of various materials that are likely to find ex-
tensive use in medical nanorobots. Chapter 15.3 includes a review
of the experimental literature describing the known overall
biocompatibility of diamond, carbon fullerenes and nanotubes,
nondiamondoid carbon, fluorinated carbon (e.g., Teflon), sapphire
and alumina, and a few other possible nanomedical materials such
as DNA and dendrimers — in both bulk and particulate forms.

The purposeful movement of solid bodies and particulate mat-
ter through the various systems of the human body is also of par-
ticular interest in nanomedicine. Chapter 15.4 examines the re-
quirements for intact motile nanorobots that can locomote inside
the human body while avoiding geometrical trapping, phagocyto-
sis, and granulomatization, thus achieving controlled or indefinite
persistence without clearance by the natural immune system. The
analysis extends to the fate of free-floating nanorobots and their
material ejecta, or fragments, as well as the fate of motile nanorobots
that have malfunctioned and lost their mobility, or which are mov-
ing passively through the body, or are being driven by cell-mediated
processes.

Unlike pharmaceutical agents whose interactions with biology
are largely chemical in nature, medical nanorobots may interact both
chemically and mechanically with human tissues and cells. Simi-
larly, while traditional biomedical implants produce both chemical
and bulk mechanical effects, nanoorgans and nanoaggregates may
possess active nanoscale features and moving parts that can apply
spatially heterogeneous mechanical forces at the molecular and mi-
croscopic scale. Thus any study of nanomedical biocompatibility
must necessarily include an analysis of the mechanical
biocompatibility, or mechanocompatibility, of nanorobotic systems
as they interact with the tissues and cells of the human body. Ac-
cordingly, Chapter 15.5 describes the mechanical interactions of
nanorobotic systems with human skin and other epithelial tissues,
including mechanical tissue penetration and perforation leakage, as
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well as mechanical interactions with vascular systems, extracellular
matrix and tissue cells, and nontissue cells such as erythrocytes, plate-
lets, and leukocytes. The Chapter ends with a detailed review of
cytomembrane and intracellular mechanocompatibility, and a brief
consideration of electrocompatibility and nanorobot-nanorobot
mechanocompatibility.

Finally, otherwise biocompatible medical nanodevices might
provoke unwanted reactions by simple physical displacement of criti-
cal biological systems or fluids. Chapter 15.6 examines issues of
volumetric intrusiveness — the degree to which artificial systems
can safely displace natural systems volumetrically. The brief discus-
sion includes a look at the acceptable limits of volumetric intrusive-
ness of macroscopic objects placed inside the human body (or its
various organs), the bloodstream, and in individual human cells.

The discussion of nanorobot biocompatibility was originally in-
tended to include just a single chapter, Chapter 15, in the
Nanomedicine book series. However, during the course of this re-
search it became clear that biocompatibility is a central issue in de-
termining the feasibility, limitations, and technical requirements of
medical nanorobotics. This recognition demanded additional in-
vestigations that resulted in the present book-length “Chapter 15.”

The primary intended audience of this Volume is biomedical
engineers, biocompatibility engineers, medical systems engineers,
research physiologists, clinical laboratory analysts, and other tech-
nical and professional people who are seriously interested in the
future of medical technology. Readers wishing to keep abreast of
the latest developments can visit the author’s Nanomedicine Page
website (http://www.foresight.org/Nanomedicine), hosted by the
Foresight Institute; or may read the author’s most recent (2002)
popular23,28 and technical25,30-32 summaries of the emerging field
of nanomedicine; or may visit http://www.nanomedicine.com, the
first commercial Internet domain exclusively devoted to
nanomedicine and the online home of this document and related
materials. Since 1994, the author has expended on the Nanomedicine
project ~27,000 man-hours in total, including ~8000 man-hours
on the present Volume IIA, a total of ~13 man-years of effort to
date. Volume I1 has been favorably reviewed.2-5 The author’s
Nanomedicine Art Gallery (http://www.foresight.org/
Nanomedicine/Gallery/index.html), hosted by the Foresight Insti-
tute, also provides the largest online collection of original and
previously-published nanomedicine-related images, graphics, art-
work, animations, and relevant links.

References [####] are used in this book to denote the source of:
(1) a direct quotation (enclosed in quotes), (2) a paraphrased pas-
sage (footnoted but not enclosed in quotes), or (3) a specific da-
tum. Citations are also employed to indicate sources of additional
information on a given topic, especially collections of literature re-
view papers that would provide a suitable introduction to a given
field of study. The author apologizes in advance for any inadvertent
instances of unattributed usage of previously published material.
Such events should be few but should be brought to the author’s
immediate attention for correction in a future edition of this work.
An attempt was made to cite primary sources whenever possible,
but some references are made to secondary sources believed by the
author to be reliable. Unreferenced in-text attributions to specific
named people generally refer to comments made by a technical re-
viewer of the manuscript, usually as a personal communication.
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To understand the very large we must understand the very small.

– Democritus, 470-380 BC

The human understanding, when it has once adopted an opinion (either as being the received opinion or as being
agreeable to itself) draws all things else to support and agree with it. And though there be a greater number and
weight of instances to be found on the other side, yet these it either neglects and despises, or else by some distinction
sets aside and rejects, in order that by this great and pernicious predetermination the authority of its former
conclusions may remain inviolate.

– Francis Bacon, Novum Organum: Aphorisms on the Interpretation of Nature and the Empire of Man, 1620

The future belongs to those who prepare for it.

– Ralph Waldo Emerson (1803-1882)
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CHAPTER 15.1

Are Diamondoid Nanorobots Hazardous?

It is believed that one of the most common building materials
for medical nanorobots will ultimately be diamond or
diamondoid substances (Chapters 2 and 11). The first and most

obvious question regarding biocompatibility thus must be: What
health risks, if any, are associated with the in vivo use of diamondoid
devices or their detached parts, components, or detritus? There may
be billions or trillions of nanorobots employed during a nanomedical
procedure, and conservatively it must be presumed that some small
unavoidable amount of in vivo nanorobot detritus (e.g., detached
nanorobot manipulators, tool tips, or sensor elements, fragmented
devices, or even nonfunctional whole nanorobots) might be gener-
ated during this activity.

Leaving aside the question of the chemical inertness of nanorobot
components until later (e.g., Sections 15.3.1.5, 15.4.4, etc.), other
possible avenues for mischief are conceivable. Using information
ranging from historical anecdotes to modern clinical reports, Chapter
15.1 briefly explores two of these avenues: the potential for crude
mechanical damage to human tissues caused by the ingestion (Sec-
tion 15.1.1) or inhalation (Section 15.1.2) of diamond or related
particles. Similar mechanical damage to vascular, membrane, and
organ systems likewise cannot be ruled out (Chapter 15.5). A study
to rigorously assess the mechanical toxicity in human tissues of dia-
mond dust and fractured diamond particles, as crude proxies for
medical nanorobotic diamondoid detritus, appears warranted.

15.1.1 Mechanical Damage from Ingested Diamond
One informal anecdotal modern source100 has described dia-

mond dust as “perhaps the most terrible poison in existence. Every
other poison has a principle behind its action — cyanides attack,
alkaloids destroy, barbiturates deaden, glycosides deteriorate, ricin
and abrin phytotoxins agglutinate. Diamond dust abrades.”

Hutchkinson*100 continues: “If one ingests diamond dust, the
natural peristaltic motion of the digestive tract causes these tiny
splinters of the world’s hardest substance to imbed themselves along
the alimentary canal, the natural motions of the inner body causing
them to work deeper and deeper until your internal organs are
perforated and ripped apart. This goes on from anywhere between
2-6 months, until the victim is dead. The pain accompanying this
can only be imagined by the few. A large amount of diamond dust
would probably feel similar to having a Portuguese Man-O-War
living inside of you. Even in its earliest stages, the difficulties behind
diagnosis can well be imagined. The only way to extricate the tiny
diamond splinters is surgery, wherein each particle would have to
be located and removed individually, an impossible feat.”

In ancient times, diamonds were regarded as having magical
curative powers. According to Pliny the Elder (23-79 AD) in his
Natural History, diamond “prevails over all poisons and renders
them powerless, dispels attacks of wild distraction and drives
groundless fears from the mind.” It was once thought that diamond
powder, taken orally, possessed curative abilities.101 Physicians in
the Middle Ages debated this subject at great length and were of
divided opinion, though the proponents of such treatment met with
many notable failures. Apparently, wealthy people were still being
dosed with ground diamonds to cure them of stomach disorders
well into the 16th century.102 For example, Pope Clement VII (Giulio
de’ Medici) died on 25 September 1534 when his doctors failed to
cure his ailments — the bill for the fourteen spoonfuls of precious
stones he had been administered is said to have been 40,000
ducats.103 As late as the 19th century, some of the wealthy citizens
of India had diamond powder applied to their teeth in an attempt
to repair decay.104 (The powder supposedly also provided protection
from lightning.) Even today, diamonds are found in the “precious
pills” of traditional Tibetan medicine.99

More commonly, though, diamond was regarded as a potential
poison. Up until the 18th century, rumor had it that even uncrushed
diamonds were poisonous, a fantasy that those who owned or mined
the stones no doubt wished to promote.104 This is because a favor-
ite and effective means of stealing a diamond was to swallow it
whole and wait a few days for it to pass through the digestive sys-
tem. The myth that stones were poisonous presumably deterred many
would-be gem thieves from the attempt.102,104 We now know that
uncrushed diamond is a neutral contributor to the human diet,
doing neither good nor harm — a swallowed diamond gemstone
“re-emerges in due course”.102

Other stories suggested that fragmented diamonds were even
more hazardous. The splinters produced by shattering a diamond,
which Pliny knew could “make hollows in the hardest materials,”
are easily capable of cutting the stomach and intestines of anyone
who swallows them.102 One writer96 reports that Paracelsus was
poisoned by diamonds. Sultan Bejazet II, leader of the Ottoman
Empire (Turkey), was reportedly assassinated in 1512 by his son
Selim, who fed the Sultan a fatal dose of pulverized diamond mixed
in with his food.97,98 Some claim that Frederick II, emperor of the
Holy Roman Empire, also died after imbibing a fatal dose of dia-
mond powder,98 and that the Countess of Essex poisoned Sir Tho-
mas Overbury with mercury and diamond dust in 1613 while he
was imprisoned in the Tower of London.97 Diamond splinters have
been used as a murder weapon through the ages and in different

* It is important to note that Hutchkinson is writing informally and in a historical context. He is neither a surgeon nor a pathologist and evidently has no experience in the
diagnosis or characterization of the pathophysiology of diamond dust ingestion. M. Sprintz notes that diamond would be visible radiographically, and a modern pathologist
would definitely identify the particles after exploratory surgery was performed in a modern case of diamond poisoning. Death might also be caused by a peritoneal infection
with subsequent sepsis secondary to the bowel perforation.
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societies.102 For example, a member of the Bengal Civil Service,
William Crooke,105 writing at the beginning of the 20th century,
tells us that in India “as an irritant poison, pounded glass has been
often used. But diamond dust enjoyed a still higher reputation...it
is believed in South India to be at once the least painful, the most
active and infallible of all poisons. It was kept as a last resort in
times of danger.”

During the Renaissance, it was widely believed that diamond
powder had pernicious properties, for by then it was realized that
the powder rarely cured and apparently often killed.101 The poisoner
became an integral part of the political scene.106 Catherine de Medici
(1519-1589) reportedly used diamond powder to eliminate certain
people who were acting against her. Her enemies called the mixture
she prepared “the powder of succession,” though one observer averred
that the principal toxic component of the powder might have been
added arsenic.104 According to another account, the methods of
Catherine de Medici depended on developing direct evidence to
arrive at the most effective compounds for her purposes. Under guise
of delivering provender to the sick and the poor, Catherine reportedly
tested toxic concoctions, carefully noting the rapidity of the toxic
response (onset of action), the effectiveness of the compound (potency),
the degree of response of the parts of the body (specificity, site of action),
and the complaints of the victim (clinical signs and symptoms).106

Diamond dust became a rather popular means of assassination
during the Renaissance. One classical discussion of this technique
may be found in the autobiography of Benvenuto Cellini,107 the
famous Italian goldsmith and sculptor, who described a botched
attempt on his life by his enemy, the powerful Pierluigi Farnese, son
of Pope Paul II, which took place in 1539 while Cellini was impris-
oned in Rome by the Pope. Cellini writes:

“Messer Durante of Brescia engaged the soldier (formerly druggist of
Prato) to administer some deadly liquor in my food. The poison was to
work slowly, producing its effect at the end of four or five months. They
resolved on mixing pounded diamond with my victuals.”

“Now, the diamond is not a poison in any true sense of the word, but
its incomparable hardness enables it, unlike ordinary stones, to retain
very acute angles. When every other stone is pounded, that extreme
sharpness of edge is lost; their fragments become blunt and rounded.
The diamond alone preserves its trenchant qualities. Wherefore, if it
chances to enter the stomach together with food, the peristaltic motion
needful to digestion brings it into contact with the coats of the stomach
and the bowels, where it sticks, and by the action of fresh food forcing it
farther inwards, after some time perforates the organs. This eventually
causes death. Any other sort of stone or glass mingled with the food has
not the power to attach itself, but passes onward with the victuals.”

“Now Messer Durante entrusted a diamond to one of the guards, and
it is said that a certain Lione, a goldsmith of Arezzo, my great enemy,
was commissioned to pound it. The man happened to be very poor, and
the diamond was worth some scores of crowns. He told the guard that
the dust he gave him back was the diamond in question, properly ground
down. The morning when I took it, they mixed it with all I had to eat.
It was a Friday, and I had it in salad, sauce, and pottage. That morning

I ate heartily. It is true that I felt the victuals scrunch beneath my teeth,
but I was not thinking about knaveries of this sort. When I had finished,
some scraps of salad remained upon my plate, and certain very fine and
glittering splinters caught my eye among those remnants. I collected them,
and took them to the window, which let a flood of light into the room,
and while I was examining them, I remembered that the food I ate that
morning had scrunched more than usual. On applying my senses strictly
to the matter, the verdict of my eyesight was that they were certainly
fragments of pounded diamond. Upon this I gave myself up without
doubt as dead....”

“Now, hope is immortal in the human breast. Lured onward by a gleam
of idle expectation, I took up a little knife and a few of these particles,
and placed them on an iron bar of my prison. Then I brought the knife’s
point with a slow strong grinding pressure to bear upon the stone, and
felt it crumble. Examining the substance with my eyes, I saw that it was
so. In a moment new hope took possession of my soul. Messer Durante,
my enemy, or whoever it was, gave a diamond to Lione to pound for
me of the worth of more than a hundred crowns. Poverty induced him
to keep this for himself, and to pound for me a greenish beryl of the
value of two carlins, thinking perhaps, because it also a stone, that it
would work the same effect as the diamond....”

In 1995, the author undertook a modest informal experiment to
confirm the potentially dangerous shardlike quality of pounded
diamonds, as claimed by Cellini. Diamond grit was acquired and
pounded using a simple apparatus, then carefully cleaned and visually
examined using a scanning electron microscope (SEM).* Even a
single hammer blow produced numerous particles of a wide variety
of sizes (0.1-100 micron), many possessing sharp ragged “fishhook”
edges, deep angular concavities, serrations, irregular holes, and other
interesting features on the order of a few microns in size (Figures
15.1 and 15.2), which is in stark contrast with the relatively
smooth-looking (unpounded) diamond particle microphotographs
reproduced in McCrone’s Particle Atlas.109 Figure 15.3 shows a
pound-particle that is star-shaped with several jagged edges at a
magnification of 300X. At 8000X, the uppermost tip of the star
(Figure 15.4) reveals even smaller-scale serrations with several
concave “fishhook” features measuring ~250 nanometers in diameter
(a plausible size for a detached nanorobot manipulator arm). Some
grit particles appear to be aggregates of much smaller particles, so it
is possible that the pounding allows crystal fragments to dislodge
irregularly, leaving behind concave holes. However, there also appear
to be many concave fracture features present in each of the samples.
Under the microscope, unpounded grit particles generally appear
smoother and more rounded. The author also observed that the
pounded grit tended to cling to human skin, especially in the
narrowest creases of the fingers, producing a slight itching sensa-
tion, whereas unpounded grit generally does not.

The author is unaware of any direct study of the mobility of
fractured diamond shard in human tissues, that might confirm or
disprove the historical and anecdotal evidence reported above.
Crystalite Corp.108 confirms that there are no major health warn-
ings associated with the normal use of commercial diamond grit in
jewelry-related grinding operations.** Classic toxicology textbooks

* Diamond grit of 250-micron mesh size was obtained from Crystalite Corp.;108 the cost was $3-$4/carat, depending on mesh size which can range from 100 mesh (~250-micron
particles) down to 100,000 mesh (~250 nanometer particles). The grit was pounded between a steel anvil and a steel rod using a single blow from a 600-gm hammer dropped
through a ~3-inch vertical fall. The crush was washed with 31% HCl to dissolve any metal fragments, then rinsed in distilled water several times and finished with an acetone
drying rinse. Crushed samples were examined using a Zeiss Ultraphot II optical microscope at 125X and a JEOL JSM-35C SEM (kindly made available to the author by Dr. Elizabeth
Mathews at San Joaquin Delta College, California) at various magnifications from 180X up to 12,000X, and were subjectively compared to uncrushed powder.

** One Material Safety Data Sheet (MSDS) for diamond grit2392 describes the primary acute and chronic health hazard as “inhalation: pneumoconiosis and mucous membrane
irritation,” recommends that spills may be cleaned up the same way as “for handling unregulated dust and sand,” notes that there is no known carcinogenicity, but warns
that workers should “minimize inhalation and direct skin contact.” Another MSDS for pure diamond powder2393 warns that grinding may produce dust that is “potentially
hazardous when inhaled, swallowed, or comes into contact with eyes — may irritate eyes.” Yet another diamond powder MSDS2394 warns of acute/chronic tissue irritation
if the material is inhaled or ingested, or if it comes into contact with skin or eyes.
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then safely pulled back out through the mouth 3.5 hours later, is
sometimes used to test bile composition and bacterial content of
the gut, and is commonly known as the “string test”.117-119

Similarly, gastric and colon perforation with peritonitis has been
reported120-124 in cases of pica,125-133 with mixed pica (especially
involving ingested paper, plastic bags, cloth and string) more likely
to require surgery and to cause perforation.122 Abrasive household
cleaners largely composed of pumice or silica can cause gastrointes-
tinal irritation but have a low order of toxicity,174 as with
lithophagy,126 although massive ingestion of sand can cause intesti-
nal blockage,134 diarrhea,135 or tooth wear.136 Cases of foreign body
ingestion including broken glass,137,138 glass splinters,139-141 bent
hypodermic needles and pins,142-144 fishhooks,145 razor blades,146-149

wires,150 wire springs,147 coins,132,144,151-153 screwdrivers,154

dentures153 or knocked-out teeth155 have produced esophageal per-
foration but generally are not regarded as life-threatening except in
cases of complete obstruction of the intestine or colon148,156 or
concurrent metal poisoning.157,158 Most (80-90%)159-162 ingested

make no mention of diamond as a poison,174 and this author could
find no mention of powdered or pounded diamond in any of doz-
ens of well-known standard modern reference works on medical
toxicology, poisons, or forensic toxicology, or in the journal litera-
ture, although this would not be entirely unexpected given the likely
rare incidence of accidental diamond shard ingestion or attempted
homicide by diamond, especially in the 20th century. The diamond
content of waste particles abraded into the mouth from diamond
burs111-114 on dental drills during clinical use is apparently consid-
ered relatively nonhazardous in comparison with the accompany-
ing release of metallic ions such as Ni++ into the body fluids during
these procedures.115

Broadening the search only yields additional conflicting data.
For example, it is well known in veterinary medicine that ingested
string can loop around epithelial folds and cut through a dog’s di-
gestive tract,116 and similar cases have been reported in humans.122

On the other hand, a weighted gelatin capsule trailing a 140-cm
length of absorbent nylon line that is swallowed by a human patient,

Fig. 15.2. Fishhook-shaped particle of pounded diamond; SEM
500X. (©1995 Robert A. Freitas Jr.)

Fig. 15.4. Tip closeup of star-shaped jaffed particle of pounded dia-
mond showing ~250 nm fishhook features; SEM 8000X. (©1995
Robert A. Freitas Jr.)

Fig. 15.1. Arrowhead-shaped particle of pounded diamond; SEM
200X. (©1995 Robert A. Freitas Jr.)

Fig. 15.3. Star-shaped jagged particle of pounded diamond; SEM
300X. (©1995 Robert A. Freitas Jr.)
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foreign bodies that reach the stomach can be eliminated unevent-
fully through the gastrointestinal tract,163 but perforation may oc-
cur with ingestion of long, sharp pointed objects164 or animal
bones,148,153 and is more frequent among those who have had pre-
vious abdominal surgery or intestinal diseases.148 In one unusual
case,165 an ingested plastic bag clip was found by radiography to
have clipped itself to the small bowel mucosa.

The author concludes that there is sufficient uncertainty and
necessity to warrant a study to rigorously assess the mechanical toxic-
ity in human tissues of diamond dust and fractured diamond
particles, as crude proxies for medical nanorobotic diamondoid
detritus.

15.1.2 Mechanical Damage from Inhaled Diamond
As with ingested diamond dust, inhaled microscopic nanorobots

(Section 15.4.3.3.3) or other diamondoid particulates might do
serious mechanical damage to lung tissues. (MEMS researchers such
as Kaigham Gabriel at AT&T Bell Laboratories have already re-
ported the accidental inhalation — evidently harmless — of silicon
micromachines.110) It has long been known that abrasive dusts can
increase the incidence of upper respiratory tract diseases, and
fibrosis-inducing dusts can lead to chronic lung ailments.167 Fiber
health science commonly focuses on particle dose, dimension, and
durability.6061 World Health Organization (WHO) antipollution
guidelines specify a maximum allowable exposure of 0.23 mg/m3 of
total suspended particulate matter (SPM) for no more than 7 days
per year,168 consistent with human health. The Swiss national stan-
dard is an annual mean SPM of 0.07 mg/m3, though an increase in
respiratory symptoms and some decrease in lung function has been
observed770 for chronic exposures as low as 0.014-0.053 mg/m3. In
the 1990s, most Western cities were measured at ~0.05 mg/m3, while
most major third world cities were measured at ~0.20 mg/m3.169,515

In 1996, the U.S. EPA proposed new particulate matter standards
for <2.5-micron particles (PM2.5) of 0.015 mg/m3 for the annual
mean and 0.050 mg/m3 over a 24-hour period.170 (A Health Effects
Institute study in 2000 found 0.5% increase in death rates per 0.010
mg/m3 increase in PM2.5.2172)

An SPM of 0.10 mg/m3 consisting entirely of 1-micron3

diamondoid flying nanorobots (Section 9.5.3) of mass density
~1000 kg/m3 would represent a number density of ~10 million par-
ticles/m3. By comparison, quiet country air (absent any local min-
ing activities) has ~20 million particles/m,167 residential city air
perhaps 60 million/m3,167 the worst congested downtown city air
~150 million/m3,167 and a room with smokers present ~270 mil-
lion/m3896 or more. In 1999, laminar flow clean rooms in a Class
One semiconductor fab plant had air with only ~10 particles/m3 of
size 0.5 microns or larger.896 Experimental data suggests that a con-
dition of lung overload occurs when the retained lung particle bur-
den reaches a particle volume of ~109 micron3 per gram of lung
tissue (e.g., ~0.1% by volume).781

A resident of an industrialized Western country typically inhales
~30 billion particles per day.6061 A cubic meter of ordinary air likely

contains ~10,000 grains of pollen and fungal spores, as well as car-
bon monoxide, radon gas, scent molecules, spider legs, fragments
of soil, fur, a bit of carbon from a faraway fire, dust mites from the
carpet, flakes of skin, hair and lint particles, bacteria and viruses, up
to 1011/m3 nanometer-sized particles in urban air,6197 sea spray
wave-produced ultrafine salt particles near the coasts,6179 and even
wisps of 15-micron-wide droplets from when someone last
sneezed896 — often with a thin coating of hydrocarbon molecules
(esp. fossil fuel combustion products). It is universally recognized
that continued inhalation of certain dusts is detrimental to health
and may lead to reticulation of the lungs and eventually to fatal
diseases included under the general term pneumoconiosis.171,172 Coal
and silica dusts are particularly harmful. Chronic inhalation of crys-
talline silicon dioxide particles measuring 0.5-5 microns in size can
lead to silicosis,173,174 a chronic inflammatory lung disease that can
ultimately destroy the ability to breathe.

Fine particles in the micron size range, typical for dust inhala-
tion hazard, can bypass the mucociliary (e.g., cilia in the respiratory
epithelium; Sections 8.2.2 and 15.4.3.3.3) and cellular defense
mechanisms, invading the lung parenchyma and causing an inflam-
matory response. Nasal turbulence ensures that almost no particles
larger than 2-5 microns reach the lower airway2495 (Section 8.2.2);
these larger particles are deposited by inertial compaction at airway
bifurcations, hence are easily flushed out via bronchial mucus flow.
(The airstream turns abruptly, and particle inertia carries it straight
on against the airway wall.173) However, these large particles can be
inhaled orally, with experimentally-determined5023 retention rates
of 46-56% after 24 hours, and 25-31% after 21 days, for 6-micron
Teflon particles inhaled rapidly or very slowly, respectively.*

Particles smaller than 0.5 microns generally remain airborne and
are exhaled, though a few may be deposited in the alveoli.** 173

There also is much evidence that some particles which are non-
toxic in micron sizes may be toxic in the nanometer
range.761,769,929-933,4846,4858 For instance, the intensity of neutrophil
alveolitis is lowest for 260 nm carbon particles, higher for 50 nm
particles, and highest for 14 nm particles at low doses up to 0.5 mg/
kg where particle reaction is governed by surface area effects.769

However, at larger doses sufficient to induce lung overload, the larger
particles become more inflammogenic per unit mass or volume.769

In the mining, quarrying, ceramic and abrasive industries, the
acute danger limit (e.g., the minimum toxic dose) is reached when
~200 million particles/m3 of free silica are present in air, with sizes
below 5 microns. Of these, as many as 25% are retained in the
respiratory tract.167 Unfiltered 20th century airborne industrial dusts
typically would consist of ~20% of particles below 1 micron, ~70%
between 1-3 microns, and ~10% over 3 microns in diameter.167

Like diamond, pure silica has a tetrahedral crystalline lattice that
cleaves similarly, potentially making hard shards (Table 9.3) of
comparable sharpness, and thus possibly displaying similar
mechanical effects on human lung parenchyma. Particles 0.5-5 mi-
crons in size that reach the lower respiratory tract are deposited in
small airways and along the surfaces of alveoli deep inside the

* In hamster lungs, inhaled 5.5-micron Teflon microspheres show maximum retention after 21 minutes in alveoli (72.4%), less in intrapulmonary conducting airways (22.9%),
and the least in extrapulmonary mainstem bronchi (0.3%) and trachea (4.4%).5027 The Teflon particles were found submerged in the aqueous lining layer and in close vicinity
to epithelial cells. In intrapulmonary conducting airways, 21.5% of the microspheres had been phagocytized by macrophages, a fate made possible by the displacement of
particles into the aqueous phase by surfactant.5027

** Certain very small submicron particles may be trapped in the alveoli. For example, technegas661-668 is an argon gas-suspended Tc99m labeled 5-200 nanometer661 carbon-particle
radioaerosol developed for diagnostic lung imaging that is well tolerated by patients,662,663 with over 100,000 clinical studies by 1993.664 It was once suggested that technegas
particles might be C60 molecules each containing a single endohedrally-trapped technetium atom,665 but TEM, SEM, and AFM imaging found that this radiopharmaceutical
consisted of hexagonal mostly 30-60 nm platelets of metallic Tc99m encapsulated within a thin layer of graphitic carbon.666 Traditional dry insoluble technegas particles adhere
well to alveolar walls upon inhalation (after a single-breath diagnostic dose667), whereas pertechnegas particles, which have no carbon coating, rapidly disappear from the
lungs via exhalation.668
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lungs.173 Many silica crystals penetrate the respiratory epithelium,
lodging in the interstitium between cells (Figure 8.15), and eventu-
ally worm their way into the lymphatic channels and progress into
the lymph nodes.173 About 20% of these insoluble crystals are never
cleared from the body (Section 15.4.3.3.3). At the site of each
intrusion, a lesion develops, probably due in part to the chronic
mechanical irritation, leading to tissue inflammation, the forma-
tion of “silicotic nodules,” fibrosis and scarring.175 (Inhaled insoluble
tungsten particles have also been found in mediastinal lymph nodes
(Section 8.2.1.3) of workers with hard metal lung disease.176)

Alveolar macrophages engulf and ingest silica crystals that reach
the alveoli. Once inside the cell, the crystal sets in motion a se-
quence of biochemical reactions (especially involving reactive oxy-
gen molecular species) that ultimately destroys the cell, causing it
to rupture and release its intracellular enzymes and the silica crystal
back into the surrounding lung tissue. (See also footnote, Section
15.6.3.4.) The enzymes damage the lung tissue, which subsequently
heals by fibrosis. This silica particle is re-phagocytized by another
macrophage, and the cycle repeats; the end result of this process is
respiratory failure.177 (Neutrophils are also present, typically ~6 x
104 cells per gram of wet tissue in mammalian lungs.763) One study
suggested that as little as 1 milligram of 5-micron silica crystals in-
haled per 100 grams of body weight is enough to kill a rat by pro-
ducing a severe alveolitis and fatal pulmonary edema. Indeed, within
24 hours of the lethal exposure researchers observed “gasping, cy-
anosis, and discharge of a pinkish and frothy fluid from the mouth
and the nostrils” among the rodents prior to death.175 The equiva-
lent exposure at a 70-kg human body weight, all else equal, would
require the inhalation of ~0.7 gm of 5-micron silica dust — roughly
the same volume as ~3 billion inhaled 5-micron airborne silica crystals.

Pneumoconiosis from exposure to artificial graphite made from
coke has not been reported and probably occurs only rarely.670 A
survey of over 600 cases of graphite pneumoconiosis673 yielded just
one case in which nearly pure graphite might cause graphite pneu-
moconiosis. The majority of the evidence indicates that pneumoco-
niosis is a mixed-dust lung reaction, and that analytically pure graph-
ite probably does not cause pneumoconiosis.673,674,675

Silicographitosis has been documented following excessive expo-
sure to natural graphite (plumbago) in graphite mines,671 which is
a crystalline form of carbon containing free silica.174 Carborundum
fibers, a synthetic abrasive made by fusing silica and carbon, also
produce fibrosing alveolitis.672 The most common
carbonaceous-hazard diseases include anthracosis and emphysema
(coal),178 graphitosis (natural graphite), and smog lung (carbon plus
photochemicals). Federal regulatory limits on coal mine dust (pre-
dominantly elemental carbon with a maximum of 5% silica179) are
2 mg/m3. Subchronic inhalation of 1.1 mg/m3 of carbon black dust
is not mutagenic or genotoxic for rat alveolar epithelial cells and
elicits no detectable adverse lung effects.761* Subchronic inhalation
of carbon fibers at 20 mg/m3 also has no injurious effect on rats.765

Bronchiolar (large-particle) coal dust is quickly cleared via the
mucociliary escalator (Section 8.2.2). Smaller alveolar-resident par-
ticles are mostly taken up by macrophages, which migrate over the
airspace surface to the terminal bronchioles, then enter the
mucociliary stream.179 Within ~2 hours post-exposure, ~2% of these
particles penetrate the airway lining and enter the interstitium (Fig-
ure 8.15) and the phagocytic vacuoles of lymphatic endothelial cells;
at 24 hours, the particles are detected in the peribronchial lymphat-
ics and lymph nodes.180 Pure carbon particles can also insinuate
themselves permanently into the skin.181

More than 3000 naturally occurring minerals are known to
present a respiratory hazard,167 including aluminum,182,958 asbes-
tos,183 barium,184 beryllium,185,186 germanium,187 iron,188 molyb-
denum,189 talc,190-192 and tin.193 Even the aspiration of common
table pepper particles has proven fatal in children.194,195 Exposure
to 9- to 24-micron diameter glass fibers (e.g., synthetic vitreous
fibers or SVFs) such as are found in fiberglass insulation196 can pro-
duce a transient irritation of the mucous membranes of the eyes,
nose, and throat197 though no long-term adverse effects such as lung
fibrosis, lung cancer, or mesothelioma has been shown.198,199 How-
ever, very long758,759 and thin glass fibers (diameter < 1.5 micron)
are cytotoxic in vitro757 and highly carcinogenic after intrapleural
implantation200 inducing malignant mesothelioma and fibrosis in
rats.2493 Fiberglass dermatitis is well known.201 Adverse pulmonary
effects are a function of dose, dimensions, and durability of fibrous
particles.2494 Interestingly, even “healthy” human lungs are loaded
with inorganic microfibers — a lung tissue biopsy of 10 normal
subjects found 1.5 x 106 fibers/gm, as compared to 141.9 x 106

fibers/gm in the lungs of 11 asbestos-exposed individuals, with fi-
ber length most commonly 3-5 microns in both groups.202

But what about diamonds? A recent (2002) review of the modern
medical literature revealed no explicit reports of diamond dust in-
halation toxicity, nor was this possibility even mentioned in any of
the standard reference works. Potential risks from the airborne re-
lease of inhalable diamond dust into the oral cavity from dental
drills during common clinical use appears not to have been widely
investigated, despite data showing that particles can be thrown up
to 90 cm from the patient’s mouth and may remain suspended in
the air for hours.203 (Minor risks to dental personnel due to simul-
taneous metals exposure115 or silica204 have been considered.)

However, there is at least one suspicious case study205 involving
five Belgian diamond polishers that could possibly represent an
instance of undiagnosed respiratory diamond poisoning. In the
Belgian gem-finishing occupations, workers use high-speed
diamond-cobalt grinding tools to polish diamonds that have al-
ready been cut. The grinding surface is a spinning wheel consisting
of 20- to 40-micron diamonds cemented onto a layer of fine
400-mesh ~64-micron cobalt metal grit. During grinding and pol-
ishing, cobalt grit and microdiamonds are abraded from the wheel
and are thrown into the air, then inhaled by the workers.

In 1984, eight physicians at the Clinic of Medicine of the Catholic
University in Leuven, Belgium, treated five individuals
(non-smokers) for interstitial lung disease or fibrosing alveolitis. This
condition is normally reversible with proper treatment. Symptoms
included painful breathing, crackling noises coming from the lungs,
coughing and wheezing, chest tightness, runny nose, and weight
loss. But the condition was puzzling because no case of lung fibrosis
had ever been attributed to cobalt powder exposure alone.

Could the disease have been caused by respiration of airborne
abraded microdiamonds? The physicians did not investigate this
possibility and concentrated instead on the more familiar cobalt
culprit — “intoxications by cobalt alone [would] be enlisted as a
compensatable industrial lung disease.” Lung tissue biopsies showed
no “massive tissue necrosis,” and the journal report is silent as to
whether or not there was any search for evidence of microdiamonds
in lung tissue — despite the clue, perhaps more clear in retrospect,
that fume hoods over the work stations were reported to contain
large amounts of “amorphous carbon” besides the cobalt particles. The
physicians finally ascribed the disease to cobalt, even though, accord-
ing to the case histories, 3 of their 5 patients were clearly not healed,

* The American College of Governmental Industrial Hygienists has set a threshold limit value of 10 mg/m3 for nuisance dusts and 3.5 mg/m3 for pure carbon black dust, but
this is based on avoidance of excessive workplace dirtiness and not on the toxicity of carbon black per se.764
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years later, despite having received the correct treatment for cobalt
poisoning. Could this be a case of undiagnosed diamond dust injury?

First, over the last two decades numerous studies have conclu-
sively proven that pure cobalt is at worst a mild irritant and does
not appear to cause lung fibrosis by itself.175,206-209,212,213 Gennart
and Lauwerys210 question the role of cobalt alone in producing lung
fibrosis and note that “the possible interference of other compo-
nents of the dust inhaled by the workers who developed the disease
remains to be elucidated....There is suggestive evidence that other
components of the inhaled particles interfere with the biological
reactivity of cobalt on the lung.” Lauwerys and Lison211 note that
industrial exposures to cobalt commonly include “other substances
such as tungsten carbide, iron, and diamond, which may modulate
the biological reactivity of cobalt [emphasis added].” Others,212 in-
cluding the lead author of the Belgian study,213 now implicitly ac-
knowledge that microdiamonds could be medically relevant.

Second, other studies have suggested that the presence of carbides,
particularly tungsten carbide, can interact with cobalt to produce
the observed fibrosis,175,208,214,215 but in the case under discussion
the investigators specifically reported that “no measurable amounts
of carbides of tungsten or other metals were present....Cobalt was,
besides the microdiamonds, the almost exclusive component of
the grinding surface of the disks.”205 Limited studies in hamsters
show that intratracheally-instilled cobalt (5 mg/kg) and diamond
particles (50 mg/kg) caused more acute lung damage then when
these particles are administered alone.213 So the original conclusion
of the Belgian diamond-polishers alveolitis study — i.e., that co-
balt alone caused the problems — might well be invalid. The spe-
cific possibility that diamond dust could have been involved re-
mains unaddressed.

A related study of three additional diamond-polisher patients
(including two smokers) who presented with bronchial asthma
alone216 probably was correctly attributed to the cobalt,209 and there
are other similar cases.4739 But another case involving a single
diamond-polisher patient (a smoker) who presented with both bron-
chial asthma and alveolitis,217 also attributed to the cobalt, is of
uncertain validity — as yet, no studies have focused on diamond as

a possible contributory factor. An autopsy of lungs of hard-metal
grinders revealed the frequent presence of corundum but no spe-
cific search for diamond particles was reported.218 Vital capacity
was found to be significantly impaired among young workers who
were exposed to “carbon dust” during diamond cutting and polish-
ing in India,219 and in 2002 increased lipid peroxidation was re-
ported in miners working in the diamond extraction industry in
Yakutia, Russia.4737 A 62-year-old Japanese patient who had been a
diamond-grinder for 20 years showed numerous unusual
well-circumscribed tumors on the parietal pleura, diagnosed as pleu-
ral plaques,220 and 0.1- to 0.6-micron spherical carbon-black par-
ticles (in the virtual absence of quartz) are known to have caused
fatal carbon pneumoconiosis in at least one other case.181

On the positive side, Schmidt et al221 specifically assert that dia-
mond dust is nonfibrogenic in human monocyte-macrophages
(“dust cells”) found in the lungs. Hedenborg and Klockars222 used
diamond dust as an “inert control” in their experimental work, and
found that diamond dust did not stimulate the production of reac-
tive oxygen metabolites by polymorphonuclear leukocytes — a pro-
posed pathway for chronic inflammation and tissue injury of the
lung. Inhalation experiments with rats and guinea pigs indicate that
dust from carbon fibers produces no systemic toxicity or pathologi-
cal changes in the lungs,223,224,765 and medical examination of car-
bon fiber production workers has revealed no adverse effects on the
lungs,225 though one Russian animal study found slight pulmonary
fibrosis and respiratory tract irritation from carbon fiber dust226

and a Japanese study found morphological changes in rat lungs due
to some kinds of carbon fibers.762 But none of these results allow us
to rule out the possibility of mechanical damage to lung tissues by
ragged diamond shards (Section 15.1.1).

Although there is no direct evidence of any harm, a conservative
appraisal would appear to warrant a careful study of the lung toxic-
ity of fractured diamondoid detritus. Because of the likely impor-
tance of sapphire in nanodevice design, crystalline corundum and
emery227-229 (e.g., grinding grits) probably should also be investi-
gated for both ingestion and inhalation mechanical toxicity. (See
also Section 15.3.5.5.)
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CHAPTER 15.2

Classical Biocompatibility

The question of biocompatibility234-237 arises whenever any
foreign substance — be it natural materials,6054 therapeutic
cells, a transplanted organ, an artificial implant, or a medical

nanorobot — is placed inside the human body for medical pur-
poses. The most general definition of biocompatibility is: “the abil-
ity of a material to perform with an appropriate host response in a
specific application”,230 or, alternatively: “the exploitation by mate-
rials of the proteins and cells of the body to meet a specific perfor-
mance goal”,231 but neither of these really tells the whole story. The
term “biocompatibility,” as used in this book, will refer to an assess-
ment of the totality of nanorobot surface material-tissue interac-
tions, both local and systemic. These interactions classically may
include:231-234

1. Cellular Adhesion Effects — including (A) weak interactions with
a nonadhesive surface, (B) strong nonspecific interactions lead-
ing to attachment and de-differentiation* of highly specialized
cell types (e.g., leading to the attachment of monocytes, con-
version to macrophages, the formation of giant cells, the re-
cruitment of fibroblasts, and, at later stages, fibrosis), (C) strong
specific interactions with surfaces containing appropriate recep-
tor sites arrayed at the appropriate density (e.g., cells attach, do
not de-differentiate, and perform highly specific functions), and
(D) encasement in a gel or matrix either containing active re-
ceptor sites or a matrix that is noninteracting, wherein the 3D
cell-matrix contact permits the cell to function in a physiologi-
cally normal manner;

2. Local Biological Effects — such as cell viability and mitotic func-
tion (cell proliferation, cell cycle phases), cell metabolic activity
(cell protein content), and plasma membrane integrity;
blood-material interactions (e.g., blood platelet adhesion and
activation, leading to thrombogenesis, complement activation,
or hemolysis); toxicity (e.g., the leaching of cytoreactive sub-
stances from biomaterials), modification of normal healing (e.g.,
encapsulation, foreign body reaction and pannus overgrowth),
infection, and tumorigenesis;

3. Systemic and Remote Effects — such as embolization of clots or
biomaterial hypersensitivity, elevation of usual components in
blood, systemic toxicological response, lymphatic particle trans-
port, systemic distribution and excretion, effects of degrada-
tion products on remote organ functions (including interac-
tions of degradation products with therapeutic agents or de-
vices), and allergic, pyrogenic, carcinogenic, and teratogenic
responses; and

4. Effects of the Host on the Implant — such as physical or mechani-
cal effects, stability and biological degradation processes (e.g.,
absorption of substances from tissues, enzymatic damage, or
calcification), immune responses such as inflammation, fibrosis
or granuloma formation around the implant, or co-option of
implant structure or function.

Chapter 15.2 opens with a brief summary of the current (2002)
status of medical implant biocompatibility (Section 15.2.1), fol-
lowed by a general discussion of protein interactions with implant
surfaces (Section 15.2.2), immunoreactivity (Section 15.2.3), in-
flammation (Section 15.2.4), coagulation and thrombosis (Section
15.2.5), allergic reactions and shock (Section 15.2.6), fever (Sec-
tion 15.2.7), and finally mutagenicity and carcinogenicity (Section
15.2.8), especially as applied to medical nanorobots.

15.2.1 Biocompatibility of Traditional Medical Implants
During the 20th century, artificial materials and devices were

developed to the point at which they could be used successfully to
replace parts of living systems in the human body.238 These special
materials — able to function in intimate contact with biological
fluids or living tissue, with minimal adverse reaction or rejection by
the body — are called biomaterials.239-243 Devices engineered from
biomaterials and designed to perform specific functions in the body
are generally known as biomedical devices or implants. By the
mid-1990s, biomaterials were found in ~2700 different kinds of
medical devices, ~2500 separate diagnostic products, and ~39,000
different pharmaceutical preparations.233

The earliest successful medical implants were bone plates,244 first
introduced in the early 1900s to stabilize bone fractures and assist
in the healing of skeletal fractures. (The plate was often removed
once the bone had healed and the bone could support loads with-
out refracturing,245 or else the plate was designed to be
bioabsorbable.246-248) Advances in materials engineering and surgi-
cal techniques led to blood vessel replacement experiments in the
1950s. Artificial heart valves and hip joints were under develop-
ment in the 1960s.239 By the end of the 20th century, biomaterials
came to play a major role in replacing or improving the function of
every major human body system, and became important in extra-
corporeal systems such as oxygenators, dialyzers, and apheresis sys-
tems. Some common implants233,238 include: (1) orthopedic pros-
theses such as total knee and hip joint replacements, spinal implants,
bone fixators, and tendon and ligament prostheses;305 (2) cardio-
vascular implants241 such as artificial heart valves, vascular grafts
and stents, pacemakers, and implantable defibrillators; (3) neural

* De-differentiation is the loss by mature cells of some of their specialized properties and reversion to a less developed state.5484 De-differentiation is a normal part of healing
and regeneration,5485 can be induced mechanically,5486 and is often a part of early tumor development.5487



Nanomedicine • Volume IIA8

implants (e.g., cochlear implants) and cerebrospinal fluid drainage
systems (e.g., hydrocephalus shunts); (4) plastic and reconstructive
implants such as breast augmentation or reconstruction, maxillofa-
cial reconstruction, artificial larynx, penile implants, and injectable
collagen for soft tissue augmentation; (5) dental implants to replace
teeth/root systems and bony tissue in the oral cavity; (6) ophthalmic
systems including contact and intraocular lenses; (7) catheters and
bladder stimulators; (8) drug-dispensing implants such as insulin
pumps; and (9) general surgical systems such as sutures, staples,
adhesives, and blood substitutes. It has been estimated that 674,000
adults in the U.S. were using 811,000 artificial hips (Section
15.2.1.1) by 1988.249 About 170,000 people worldwide (60,000/
year in the U.S.) received artificial heart valves (Section 15.2.1.2) in
1994,238,1147 and ~1 million joint replacement prostheses were in-
stalled worldwide in 1996.594 About 100,000 external insulin pumps
(in U.S.) and ~1100 internal (implanted) insulin pumps (world-
wide) had been placed in patients by 2001.5925

15.2.1.1 Orthopedic Biomaterials
In cases of joint injury or degenerative arthritis, when improvement

cannot be gained through physical therapy, nonsurgical treatments, or
surgical repairs, orthopedic surgeons often advise joint replacement
surgery in which the deteriorated joint is removed and replaced with a
man-made device.250-252 Artificial joints consist of a plastic cup made
of ultrahigh molecular weight polyethylene, placed in the joint
socket, and a metal (titanium or cobalt chromium alloy) or ceramic
(aluminum oxide or zirconium oxide) ball affixed to a metal stem.
This type of artificial joint is used to replace hip, knee, shoulder,
wrist, finger, or toe joints. Joint replacement surgery is performed
on an estimated 300,000 patients per year in the U.S.238 In most
cases, it brings welcome relief and mobility after years of pain.

Artificial knee joints are used to alleviate pain and restore func-
tion in patients who have a diseased joint. Materials and design
engineers must consider the physiologic loads to be placed on the
implants and must design for sufficient structural integrity. Mate-
rial choices also must consider implant biocompatibility with sur-
rounding tissues, the environment and corrosion issues, friction and
wear of the articulating surfaces, and implant fixation either through
osseointegration (the degree to which bone will grow next to or
integrate into the implant) or bone cement.238

One of the major problems plaguing orthopedic implant de-
vices is purely materials-related: wear and fatigue-induced delami-
nation of the polymer cup in total joint replacements.253 Any use of
the joint, such as walking in the case of knees or hips, results in
cyclic articulation of the polymer cup against the metal or ceramic
ball. Due to significant localized contact stresses at the ball/socket
interface, small regions of polyethylene tend to adhere to the metal
or ceramic ball.238 During the reciprocating motion of normal joint
use, fibrils are drawn from the adherent regions on the polymer
surface and break off to form submicrometer-sized wear debris.6051

This adhesive wear mechanism, coupled with fatigue-related delami-
nation of the polyethylene (most prevalent in knee joints), results
in billions of tiny polymer particles being shed into the surround-
ing synovial fluid and tissues. The biological interaction with small
particles in the body then becomes critical. The body’s immune
system attempts, unsuccessfully, to digest the wear particles much
as it would a bacterium or virus.254 Enzymes are released that even-
tually result in osteolysis, the death of adjacent bone cells.255 Over

time, sufficient bone is resorbed around the implant to cause me-
chanical loosening, which necessitates a costly and painful implant
replacement, or “revision.” Since the loosening is not caused by an
associated infection, it is termed “aseptic loosening”.253 The aver-
age life of a total joint replacement is 8-12 years,256 or even less in
more active or younger patients. Because it is necessary to remove
some bone surrounding the implant, generally only one revision
surgery is possible, thus limiting current orthopedic implant tech-
nology to older, less active individuals.238

Studies of wear debris extracted from actual tissue samples of
patients whose implants failed as a result of aseptic loosening gener-
ated significant information regarding wear particles size, shape, and
surface morphology.257 Interestingly, investigators at the Southwest
Research Institute used the atomic force microscope (AFM; Section
2.3.3) to produce detailed, high resolution images of polyethylene
wear particles measuring a few hundred nanometers in size and some-
times exhibiting a cauliflower-like surface morphology.238 By com-
bining wear debris and cellular response studies, engineers and bi-
ologists are trying to better understand implant failure and to
re-engineer implants to avoid future problems.255,258 Experiments
with diamond-coated hip-replacement implants are in progress.609

G.M. Fahy notes that inflammatory cells lack receptors for
ultrahigh-density polyethylene or fragments thereof, yet are able to rec-
ognize these utterly foreign objects as such and attack them. This might,
in part, be accomplished by “recognition” not of specific topological
features or chemical groups but instead by “recognition” of a surface
with a higher surface energy than the surface energy of the immune
cell. The immune cell tries to reduce the free energy of the combined
cell-polymer interface by coating the high energy interface — i.e., by
adhering to, and if possible engulfing, the particle. This phenomenon
would then provide a general guideline as to how to reduce unwanted
adhesion: avoid high surface energy interfaces. Surface energy is briefly
mentioned elsewhere in connection with diamond (Sections 15.3.1.1
and 15.3.1.2), Teflon (Section 15.3.4.2), and sapphire (Section 15.3.5.4)
surfaces, and previously in Sections 9.2.1 and 9.2.3.

15.2.1.2 Heart Valve Biomaterials
An example of the successful development of a critical implant

technology is the artificial heart valve.260,6050 Although poor heart
valve designs resulted in clinical failures in the past, by 2002 the
limiting factor for long-term success had become the materials them-
selves. Two types of materials (hard man-made and soft bioprosthetic)
were commonly used for artificial heart valves,232,1147-1152 though a
third type — polymer valves1143 — were also being investigated.

First and most popular (~60% of implants) are the hard
man-made materials used in mechanical heart valves. The principal
problems with mechanical heart valves are thrombosis,238 which
may be revealed as a thromboembolism, with the formation of a
stationary (thrombus) or free (embolus) clot, or hemorrhaging as a
result of inappropriately elevated levels of anticoagulation. Graph-
ite coated with pyrolytic carbon (Section 15.3.3.2) has become the
material of choice for mechanical heart valves because of its excel-
lent resistance to thrombosis (thromboresistance).261,955,4839 Dur-
ing 1969-1994, an estimated 2 million components were success-
fully implanted, resulting in at least ~10 million patient-years of
additional life.262 It has been suggested that the service lives of py-
rolytic carbon heart valves may be limited both by cyclical fa-
tigue263,940 and by cavitation stress* due to turbulent flow,264

* Lin et al4838 used a high-speed video camera and an ultrasonic monitoring system to observe cavitation and gas bubble release on the inflow valve surfaces of a Medtronic-Hall
pyrolytic carbon disk valve in a mock circulatory loop. In the absence of cavitation, no stable gas bubbles were formed, but when gas bubbles were formed, they were first
seen a few milliseconds after and in the vicinity of a cavitation collapse. Bubble volume increased with both increased cavitation intensity and increased concentration of CO2

(the most soluble blood gas), which is believed to be the major component of stable gas bubbles because no correlation was observed between O2 concentration and bubble volume.
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because cyclic crack growth265 is possible in this material.238 How-
ever, double-leaflet pyrolytic carbon valves subjected to accelerated
ex vivo wear testing have demonstrated up to 2.1 billion cycles (~52.5
human years) without mechanical failure or loss of functionality,266

and recent experiments4837 suggest that isotropic pyrolytic carbons
may be fatigue-free in the physiologically relevant stress regimes
encountered in contemporary bi-leaflet artificial heart-valve designs,
for ~109 cycles.* Other drawbacks include excessive noise, cata-
strophic failure modes, and the need for lifelong anticoagulant
therapy to prevent incidence of embolism (stroke) due to clot for-
mation.267 A blood pump with diamond-like carbon on all
blood-contacting surfaces has been developed as an implantable left
ventricular assist system.612

The second most common heart valve materials are the soft
bioprosthetic materials (~40% of implants) or tissue valves,267,1147

such as denatured porcine aortic valves,268 bovine269 or autolo-
gous270,271 pericardium, human aortic valve homografts,272,273 or
tissue engineered biovalves.274 It is believed that autologous peri-
cardium, being still alive, should not degrade as fast as fixed porcine
valves. Bioprosthetic valves,268 the only option for children, often
fail due to calcification275,276 (bloodstream calcium forms deposits
on the implant), which can result in mechanical dysfunction, vas-
cular obstruction, or embolization of calcific deposits.277,278

Bioprosthetic valves may have low thrombogenicity and immunore-
activity but are also susceptible to mechanical fatigue — cyclical
valve loading can facilitate fatigue crack growth, often resulting in
catastrophic failure.279 The major unresolved problem with
tissue-based heart valves is their limited durability, generally 5-15
years.267

A review of several large comparative studies on clinical valve
performance finds that valve infection (prosthetic valve endocardi-
tis), nonstructural dysfunction, and overall results after 10 years
were about equal for tissue and mechanical valves.1147,1152

15.2.1.3 Bioactive Materials
When an artificial material is placed in the human body, tissue

reacts to the implant in a variety of ways depending on the material
type.241 The mechanism of tissue attachment (if any) depends on
the tissue response to the implant surface. Materials can generally
be placed into three classes representing the type of tissue response
they elicit: chemically inert, bioresorbable, or bioactive.238

Chemically inert materials such as titanium,280-282 tanta-
lum,282,283 polyethylene,280,284 and alumina (Al2O3)285-289 exhibit
minimal chemical interaction with adjacent tissue. However, even
these substances are not entirely physically inert, as a “defensive”
fibrous tissue capsule will normally form around chemically inert
implants238 in a reaction analogous to that of the body controlling
tuberculosis by encapsulating the invading microorganisms. Tissue
may also physically attach to these inert materials by tissue growth
into surface irregularities, by bone cement, or by press-fitting into a
defect. This morphological fixation is not ideal for the long-term
stability of permanent implants and often becomes a problem with
orthopedic and dental implant applications238 in part due to a lack
of strength. Nevertheless, many polymeric implant devices are gen-
erally regarded as safe and effective for periods of months to years.
Biological attack occurs, but is compensated for in the design speci-
fications.2538

Bioresorbable materials such as tricalcium phosphate,289-292

polylactic-polyglycolic acid copolymers,292-294 and even some met-
als,4886,4888 are designed to be slowly replaced by tissue (such as

bone or skin). They are used in drug-delivery applica-
tions246-248,295,296 or in biodegradable implantable structures such
as sutures,4876-4880 suture anchors,4881-4883 meniscus arrows,4884

stents4886-4891 and other devices.4885 STAR Inc., a startup founded
in the year 2000 by Benjamin Chu and others at the State Univer-
sity of New York, Stony Brook, manufactures an electrospun
nanofiber polymer-mesh membrane designed to prevent body tis-
sues from sticking together as they heal, and to break down in the
body over time like biodegradable sutures. Anti-adhesion materials
made of cellulose or hyaluronan are already available from Johnson
& Johnson and Genzyme Corp., but doctors are unsatisfied with
these materials because they tend to stick to a surgeon’s wet glove
and don’t always work well inside a patient. Chu claims that STAR’s
nanomesh, using ~150 nm-diameter nanofibers, is more flexible,
easier to hold, and may also be able to deliver antibiotics, painkill-
ers or other medicines directly, and in smaller quantities, to internal
tissues.4874 eSpin Technologies4875 is also commercializing nanofibers
made of organic and biological polymers.4874

Bioactive materials include certain glasses,297 ceramics,
glass-ceramics,297 and plasma-sprayed hydroxyapatites288 that con-
tain oxides of silicon, sodium, calcium, and phosphorus (SiO2,
Na2O, CaO, and P2O5) and that constitute the only materials known
to form a chemical bond with bone, resulting in a strong mechani-
cal implant-bone bond.298 These materials are referred to as
bioactive299-301 because they bond to bone (and in some cases to
soft tissue) through a time-dependent, kinetic modification of the
surface triggered by their implantation within living bone. In par-
ticular, an ion-exchange reaction takes place between the bioactive
implant and surrounding body fluids during which chemical spe-
cies from the ceramic diffuse into the fluid and vice versa, resulting,
over time, in the formation of chemically graded layers that become
a biologically active hydrocarbonate apatite (calcium phosphate) layer
on the implant that is chemically and crystallographically equiva-
lent to the mineral phase in bone, producing a relatively strong in-
terfacial bonding.238 Although bioactive materials would appear to
be the answer to biomedical implant fixation problems, available
bioactive glasses (i.e., Bioglass302-304) are not suitable for load-bearing
applications, and so are not used in orthopedic implants. In fact,
their use for other implants, even some dental applications, is lim-
ited because they have a low resistance to crack growth.

However, there are stronger ceramic materials, crystalline in struc-
ture, that are not as bioactive. Ion beam surface modification has
been used to alter the atomic structure and chemistry at the surface
of these crystalline ceramics to improve bioactivity, allowing
ion-exchange in the modified material upon implantation.238 For
example, Richard France at the University of Sheffield has studied
the effect of surface chemistry on the attachment of human skin
cells (keratinocytes) from the epidermis. He uses a technique known
as plasma polymerization to make surfaces containing specific con-
centrations of a particular functional group.897 France finds that
keratinocytes prefer a specific concentration (about 3%) of carboxylic
acid functional groups. Such a surface promotes cell attachment as
well as collagen deposition, and collagen is the keratinocytes’ natu-
ral substratum at the dermal-epidermal junction. The cells also pre-
fer high concentrations of amine or alcohol groups, although on
these surfaces the attachment rarely matches that obtained on col-
lagen. These plasma polymers support cell growth over a number of
days and in the year 2000 were being developed as a transfer dress-
ing to allow cells to be cultured and subsequently applied to wound
beds such as burns or ulcers, promoting healing.897

* Medtronics’ and CarboMedics’ pyrolytic carbon valves have a projected wear-related half-life of 570 years.752
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Adam Curtis and colleagues at the University of Edinburgh have
studied the effects of implant surface topography using various etched
substrata. Cells align themselves to micron-scale features on a tita-
nium surface, and the size and shape of features can control the
behavior of different cells (Section 15.2.2.3). For instance, fibro-
blasts (responsible for new collagen fiber deposition during wound
healing) migrate along the micron-sized grooves, while macroph-
ages (white blood cells responsible for digesting foreign matter) can
become trapped within these features.897 Biomaterial scientists can
exploit such topographical controls to provide new ways to guide
regeneration and healing.897

Note that in many nanomedical applications, tissue integration
with the implant is desirable (Section 15.2.2.2), and may involve
chemical interaction and host cell adhesion with a bioactive im-
plant surface. For other applications such as hemodynamic systems,
a nonadhesive inert nanodevice surface is desirable (Section 15.2.2.1)
to prevent thrombus formation or nidus of infection.306 In other
words, appropriate biocompatibility is very application-specific.

15.2.1.4 Implant Infection and Biofilms
In the late 20th century, millions of patients who received tissue

and organ replacement worldwide experienced biomaterial-associ-
ated infection as one of the most destructive complications. Infec-
tions occurred in <1% of total hip replacements but in 2-4% of
total knee replacements and in 7% of total elbow replacements,306

while Pseudomonas aeruginosa was the most frequent cause of bacte-
rial keratitis in extended-wear contact lenses.309 Vascular grafts be-
came infected in 6% of specific risk groups, and intravascular cath-
eters almost always became infected if not changed at regular inter-
vals.306 Ventricular assist devices developed infections 20% of the
time in use under 31 days,307 and the Total Artificial Heart (TAH)
of the late 1980s was at risk for infection 100% of the time if left in
place for more than 1 month.308 The formation of a
biomaterial-associated biofilm (durable infection) usually led to re-
moval or revision of the affected device or implant,238 with obvious
devastating results for the patient.

Biofilms consist of bacteria embedded in a film of adhesive poly-
mer, especially on implanted devices; bacteria within the film are
protected from the action of antibiotics. As is well known in the
industrial world, bacterial biofilms routinely foul many surfaces
including ship hulls, submerged oil platforms, and the interiors of
pipeworks and cooling towers, causing corrosion and metal compo-
nent failure. Biofilms may infest gas biofilters,323 plastic mineral
water bottles324 and food processing systems.325 But biofilm forma-
tion is also a serious medical problem that manifests itself as
biomaterial-associated infections of devices (e.g., endotracheal tubes,
sutures, intravenous catheters, urinary catheters, IUDs, and con-
tact lenses), and as infections of prosthetic implants (e.g., mechani-
cal heart valves, arteriovenous shunts and vascular grafts, joint re-
placements, biliary stents, dental implants, penile prostheses, and
spinal implants),313,326-328 with Staphylococcus epidermis as the most
common cause.310 Depending on the organism involved, these in-
fections can be either acute, with symptoms appearing relatively
soon after material insertion, or chronic, with symptoms taking up
to months to appear.238 Electron microscopy of the surfaces of in-
fected medical devices shows the presence of large numbers of
slime-encased bacteria.331 Biofilms may vary widely in thickness,
limited more by nutrient transport than by surface roughness. For
example, aerobic Pseudomonas aeruginosa biofilms can grow to 30-40
microns in depth as monocultures, but these biofilms can increase

in depth to 130 microns when the culture is amended with anaero-
bic bacteria.2523

Regular bacterial growth can sometimes be eradicated by clean-
ing implant surfaces with disinfectant or by systemic antibiotic ad-
ministration. But bacteria may irreversibly adhere to artificial or
natural surfaces that are surrounded by fluids. Unfortunately, ad-
herent bacterial cells form biofilms preferentially on chemically in-
ert surfaces,328 which possibly could include diamondoid materials
useful in nanorobotics. For example, fungal biofilms are known to
adhere to polystyrene plates.2553 Once adhered, the bacteria can
multiply, forming complex multilayered microcolonies and produc-
ing a slimy matrix material (usually a glycocalyx film) that encases
the bacterial cells. This bacterial biofilm has been described as “a
structured community of bacterial cells enclosed in a self-produced
polymeric matrix and adherent to an inert or living surface”.328 Sessile
biofilm communities are resistant to antibodies, phagocytes, and
antibiotics328 because the extracellular sulfated 20-kD acidic polysac-
charide332 slime matrix acts as a physical and chemical barrier to
protect the bacteria from attack. Confocal optical sectioning shows
that biofilms are highly hydrated open structures composed of
73-98% extracellular materials and void spaces.320 AFM images of
the surface structure of a hydrated biofilm238 reveal numerous
~0.25-micron pores and ~0.50-micron channels. These discontinu-
ous channels are believed to serve as nutrient-carrying passageways
to all layers of the biofilm,319-323 thereby maintaining bacterial vi-
ability and capacity to proliferate. Atomic force microscopy has also
been used to analyze the initial events in bacterial adhesion.333,334

Cells in different regions of a biofilm exhibit different patterns of
gene expression335 as well as functional heterogeneity.

All biomaterial surfaces, regardless of preparation, acquire pat-
terns of organic and ionic contaminants whose distribution is di-
rected by specificities of the outer atomic layers of the implant.306

Glycoproteinaceous conditioning films — derived from fluid or
matrix phases containing plasma protein such as fibrinogen,
fibronectin, collagen, and other proteins — immediately coat a bio-
material or tissue implant315 and act as receptor sites for bacterial or
tissue adhesion.* 310 The role of each constituent of this coating
differs for each bacteria or tissue cell type. For instance, Staphylococ-
cus aureus has discrete binding sites for collagen and
fibronectin.311,312 Predicts Gristina et al:306 “Modifications to bio-
material surfaces at an atomic level will allow the programming of
cell-to-substratum surface events.” (See Section 15.2.2.)

Nanorobotic material surface characteristics and properties in-
cluding roughness and surface area, fractal dimensionality, compact-
ness or porosity, hydrophobicity, and chemistry may play a signifi-
cant role in host cellular adhesion and in the ability of bacteria or
cells to colonize nanorobotic surfaces.238,316-318,2587,2588 When tis-
sue cells colonize a metal or polymer surface and integrate with the
implant surface — whether via direct chemical interaction or
host-derived macromolecules — then late-arriving bacterial cells are
confronted by a living integrated tissue surface which resists bacte-
rial colonization due to its viability, intact cell membranes,
exopolysaccharides and functioning host defense mechanisms, and
decreased availability of binding sites due to occupation of those
sites by tissue cells. However, if bacterial adhesion occurs first and a
stabilized microcolony has developed, late-arriving tissue cells can-
not easily displace the primary colonizers to occupy and integrate
the surface.306

Once established, biofilm infections are rarely resolved by host
defense mechanisms, even in strong hosts.331 Antibiotic therapy

* Proteins generally stick well to glass, less well to Teflon (Section 15.3.4.1), and least of all to mica.



Biocompatibility • Classical Biocompatibility 11

typically reverses the symptoms caused by planktonic (individual)
cells released from the biofilm, but fails to kill the biofilm it-
self.328-330,1115-1117 It is variously estimated that bacteria within
biofilms are effectively from 20-1000 times326 to 500-5000 times1115

less sensitive to antibiotics than planktonic microorganisms. This
reduced sensitivity appears to depend on physiological changes as-
sociated with slow growth in biofilm populations,1118-1120 possibly
including gene derepression5488 effects triggered by bacterial adhe-
sion.1121 Antibiotic-impregnated surfaces have enjoyed only lim-
ited success in resisting biofilm formation,2497-2512,5291 in part be-
cause the supply of impregnating agent is nonrenewable.
Nanorobotic devices capable of onboard resupply need not suffer
this limitation.

One very successful surface treatment to combat the biofilm prob-
lem is a thin (~1-micron) ion-beam assisted deposition silver coat-
ing on PVC or polyethylene.5792 Silver (Section 10.4.1.4(17)) and
its compounds336 have long been recognized as bactericidal.
Silver-coated samples of implant material, tested in a modified
Robbins device with Staphylococcus epidermidis, exhibited less pro-
lific biofilm formation than did uncoated materials.238 In 1997,
Spire Corp. in collaboration with St. Jude Medical developed an
ion-beam texturization process called “Silzone”337 (originally
“SPI-ARGENT”314) that allows the impregnation of heart valve
sewing cuffs with silver metal to help prevent bacterial growth on
the cuff. This reduces the incidence of postreplacement endocardi-
tis, a life-threatening inflammation of the heart’s inner lining. Spire
Corp. similarly treats central venous catheters and surgical guide
wires to reduce the likelihood of clot formation and to increase lu-
bricity, thus easing the insertion process.314 The Erlanger silver cath-
eter338 and other silver-impregnated catheters339-342 have demon-
strated greatly reduced bacterial adherence and biofilm formation.
In vitro tests of silver-coated polyurethane biliary stent material re-
duce adherent bacteria by 10- to 100-fold,343 and silver-coated
Gore-Tex helps inhibit biofilm growth.344

Permanently hydrophobized glass and ceramic surfaces have been
found to largely prevent biofilm formation in the oral cavity envi-
ronment.345 Diamond is also very hydrophobic, though tests of
biofilm formation on diamond have not yet been reported in the
literature. A coating of ciprofloxacin-containing liposomes seques-
tered in polyethylene glycol (PEG) hydrogel that completely inhib-
its bacterial adhesion on silicone catheters has been demonstrated.346

Alternatively, a correlation has been found between the enthalpy of
adhesion (Sections 9.2.1 and 9.2.3) of bacteria to material surfaces
and the strength of adherence of biofilm bacteria to those material
surfaces.347 In particular, there seems to exist a certain minimum
bacterial adhesive tendency that is independent of the nature of the
polymer surface; modified polymers with negative surface charge
give a bacterial adherence close to the adherence minimum.347

Another interesting approach from the nanomedical perspective
is the application of low-power ultrasound in concert with
aminoglycoside antibiotics (e.g., gentamicin) to enhance the effec-
tiveness of antibiotic treatments and reduce the viability of sessile
bacteria (e.g., Pseudomonas aeruginosa) by several orders of magni-
tude,1122-1131 a synergy known as the bioacoustic effect.1125,1130 In
one experiment using 12 µg/cm3 gentamicin on biofilms, a 2-hour
exposure to ultrasound at 70 KHz killed ~99% of P. aeruginosa
biofilm bacteria at 100 W/m2 peak intensity, and ~90% at 10 W/
m2 peak intensity, as compared to controls (e.g., without ultra-
sound).1130 These acoustic intensities are well below the <1000 W/
m2 limit deemed safe in typical in vivo nanomedical power-supply
(Section 6.4.1) and communications (Section 7.2.2.2) applications.
Anti-biofilm effectiveness declines log-linearly with increasing

frequency: ~0.1 MHz acoustic waves are ~10 times more microbi-
cidal than ~10 MHz waves, in combination with the gentamicin.1130

It is postulated that ultrasound increases gentamicin transport
through cell membranes (e.g., by high pressure, high shear stress, or
cavitation), the proposed rate-determining step in microbial killing
by the antibiotic.1130 Electrical1132-1139 and magnetic1140 enhance-
ment of antibiotic activity has been investigated. Pure sonication at
40 KHz also removes biofilms from food processing equipment.5625

15.2.1.5 Contemporary Biocompatibility Test Methods
As pointed out by Jonathan Black,234 biological performance of

an implant includes consideration of the host response and the
material response to implantation. The traditional ap-
proach237,241,6038 has been to define biological performance in terms
of host response — biocompatibility — and then to observe evi-
dence of material degradation that arises during in vitro and in vivo
testing. Black234 sets forth a 5-part strategy for materials qualifica-
tion studies:

1. select material based on engineering properties and previous host
response information;

2. determine experimentally if host response is acceptable for the
intended application;

3. acquire evidence of unacceptable material response during host
response studies;

4. verify satisfactory material response during long-term in vivo
implant studies; and

5. monitor clinical reports detailing changes in material response
during actual service.

There are two general classes of in vitro screening methods: tis-
sue culture tests and blood contact tests (in blood contact applica-
tions6052).

According to Black,234 tissue culture tests involve maintaining
portions of living tissue in a viable state in vitro by any of three
generic methods: (1) Cell culture — the growth of initially
matrix-free, dissociated cells, usually in monolayers; cells may be
grown in solution, on agar, or on other media substrates, and are
exposed to biomaterials by direct contact with bulk materials, by
diffusional contact through an intermediate layer, or by contact with
particles or eluants from biomaterials in the culture media. (2) Tis-
sue Culture — the growth of portions of intact tissue without prior
cellular dissociation, usually on a substrate rather than in free sus-
pension, with exposure to the biomaterial as in cell culture. (3) Or-
gan Culture — the growth of intact organs in vitro, varying from
fetal bone extracts that can survive without external support to whole
adult perfused organs such as kidney or heart. Tissue culture tests
are used to study various aspects of host responses including cell
survival (toxicity, organelle/membrane integrity), cell reproduction
(growth inhibition), metabolic activity (energetics, synthesis, catabo-
lism), cell activities (inhibition of chemotaxis, locomotion, or ph-
agocytosis, and alteration of cell size and shape), cell damage (chro-
mosomal aberration, carcinogenicity,5845 mutagenicity,5846), and
specific immune system response (delayed hypersensitivity).5847,5848

“Tissue culture techniques for screening materials may use one or
more normal mammalian cell lines such as murine macrophages,
abnormal cells such as HeLa or lymphoma cells, or bacterial cell
lines such as Staphylococcus aureus or Escherichia coli.” Each test that
has been developed uses selected cells suitable for the particular
questions posed, the utility of which depends on its correlation with
in vivo host response.5849-5851
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According to Black,234 blood contact tests involve examining
either coagulation times or hemolysis rates in either static or dy-
namic systems during or after contact with foreign materials. Be-
cause these responses are not only intrinsic to materials but are also
influence by implant device functioning, the presence of interfaces,
flow rates and turbulence conditions, etc., three sequential phases
of testing of a new biomaterial are often employed: (1) in vitro static
tests (e.g., clotting time relative to a reference surface5852,5853), (2)
ex vivo dynamic tests (platelet adherence under controlled flow con-
ditions,5854,5855 exposure to whole blood, erythrocyte damage rates,
etc.), and (3) in vivo dynamic tests. Despite their flaws, in vitro
tests are widely used for screening because they are relatively inex-
pensive and are not known to yield false negatives (e.g., a mate-
rial that tests poorly will not be a good implant in cardiovascular
applications).234

After showing satisfactory results during in vitro screening, a
new biomaterial is then tested using extended-time whole-animal
studies5856 that expose the biomaterial to systemic physiological
processes, prior to human clinical testing. Initial nonfunctional
testing is usually in soft tissue because cytotoxic effects “have a
generality of action and because soft tissue sites can be approached
in animals with relatively minor surgery.”234 The most popular
sites include subcutaneous, intramuscular, intraperitoneal,5857

transcortical (e.g., femur, cranium), and intramedullary (e.g., fe-
mur, tibia). Tests are of two types: nonfunctional and functional.
In nonfunctional tests, the implant has a carefully selected and
standardized shape and floats passively in the tissue site.5858 Non-
functional tests focus on the interaction between the implant
material and the biochemical implant environment, and are of
short to intermediate duration (e.g., 0.5-24 months).234 Adequate
experimental controls must be provided to include effects of rela-
tive tissue-implant motion and electrical charge density at the
implant-tissue interface which can influence the observed host
response. Functional tests require that the implanted material
be placed in the functional mode that it would experience in
actual service as a human implant.234 This allows the study of
tissue ingrowth into porous materials for fixation pur-
poses;5859,5860 the effects of mechanical forces during actual
use;5861 formation of neointima, degree of thrombosis and pa-
tency,5862,5863 and effects of mechanical loading5864 in vascular
processes; and production of wear particles in load-bearing de-
vices (and clinically relevant tissue responses to them). Func-
tional tests are more costly (>$1000/animal) and complex than
nonfunctional ones,234 and test animals have shorter life spans
and higher metabolic rates than humans,5865 introducing addi-
tional uncertainty into the results.

“In the final analysis,” notes Black,234 “clinical testing is the only
technique by which the true biological performance of any implant-
able biomaterials can be determined. [However,] any human clini-
cal experiment must provide a potential benefit to the patients in-
volved, [which] essentially prevents the use of humans as test sub-
jects for biomaterials.” Further discussion of clinical testing proce-
dures for medical nanodevices is deferred to Chapter 17.

15.2.2 Adhesive Interactions with Implant Surfaces
As the famous physiological chemist Leo Vroman once

hyperbolized:950 “Facing a hail of miscellaneous eggs, we cannot
expect to come away clean. Unless they are hard-boiled ones, we are
most likely to become coated rapidly with a relatively thin film of
matter from the most numerous and most fragile eggs. Similarly, no
interfaces may exist that, facing blood plasma, can escape being
coated with the most abundant and fragile plasma proteins.”

Following the implantation of a biomaterial into a host tissue,
the first event to occur at the tissue-material interface (which dic-
tates biocompatibility) is the noncovalent adsorption of plasma pro-
teins from blood onto the surface517-520,936,954 if the material comes
into direct contact with blood. (Osmotic minipumps delivering
drugs subcutaneously would escape from this process.) Protein ad-
sorption is much more rapid than the transport of host cells to for-
eign surfaces. Once proteins have adsorbed to the surface of the
foreign material, host cells no longer see this underlying material,
but only the protein-coated surface overlayer. This adsorbed pro-
tein overlayer — rather than the foreign material itself — then
mediates the types of cells that may adhere to the surface, which
ultimately can determine the type of tissue that forms in the vicin-
ity.517 Thus the type and state of adsorbed proteins, including their
conformational changes, are critical determinants of
biocompatibility,518-523 so pretreatment of surfaces can be a control
mechanism (Section 15.2.2.1). Even by the late 1960s, Vroman and
Adams950-952 and Baier and Dutton953 had found that within 10
seconds of exposure to blood or plasma, a uniform ~6 nm layer of
fibrinogen formed on surfaces of Ge, Pt, Si, and Ta; after 60 sec, the
layer was less uniform and averaged ~12.5 nm thick, but was still
dominated by fibrinogen. Rudee and Price793 determined that hu-
man serum albumin (HSA) (molecular dimensions 8 nm x 3.8
nm,1440 with a monomolecular radius of gyration in pH 5-7 solu-
tion of 3.2-3.4 nm1441) formed a continuous film on amorphous
carbon surface in only 1.3 sec of exposure. Fibrinogen required 2.5
sec to form films. Protein adsorption on a range of hydrophobic
and hydrophilic polymer surfaces is typically 0.3-12 mg/m2

(~500-20,000 molecules/micron2).1322

Black234 notes that many molecules synthesized naturally in the
cell have a “tail” portion that inactivates them. Later on, enzymatic
processes strip away this small segment, releasing the molecule into
an active extracellular substrate pool. Contact with foreign surfaces,
along with adhesive forces, may cause premature activation. Indeed,
some molecules are specifically designed to become activated in this
manner. One common example is fibrinogen, a molecule that is
reduced slightly in molecular weight and ultimately converted to
the active protein, fibrin, after foreign surface contact during blood
clotting (Section 15.2.5).

Three-dimensional images of adsorbed human fibrinogen mol-
ecules have been obtained by atomic force microscopy (AFM),562,563

scanning force microscopy,564 and electron microscopy.* 565 The
mechanical kinetics of adsorption have also been examined by test-
ing the adhesion strength of an individual fibrinogen molecule that
is affixed to an AFM tip and is briefly touched to a silica surface.** 566

* On hydrophobic mica, the adsorbed fibrinogen molecule has a bi- or trinodular slightly curved linear shape of mean length 65.9 nm and mean height 3.4 nm.563 On hydrophobic
silica, a trinodular 60-nm long form and a globular 40-nm diameter form are observed.564 On quartz at low solution concentrations, fibrinogen molecules appear to form a
46-nm long multinodular rod with 6-7 nodes each 4 nm in diameter on hydrophilic surfaces, and a 40-nm long binodular or trinodular rod with node diameter 5-9 nm on
hydrophobic surfaces. At high solution concentrations, the molecule forms end-to-end polymers on hydrophilic surfaces and spherical 18-24 nm diameter structures on
hydrophobic surfaces.565

** The minimum interaction time for strong binding was 50-200 millisec, producing mean adhesion strengths from 300 pN for a 5 millisec contact up to 1400 pN for a 2 sec
contact. Consecutive ruptures indicating the detachment of multiple adhesion sites occurred 20-25 nm apart along the length of the molecule. This is comparable to the
characteristic distance between D and E globules of a single fibrinogen molecule, suggesting that fibrinogen adsorbs mainly through its D and E globules.566
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A clearer molecular picture of the fibrinogen adsorption event on
implant surfaces (and subsequent inflammatory response) is slowly
emerging.* 567,568 Similar tests need to be performed on, for ex-
ample, diamond and sapphire surfaces.

Once the precise molecular mechanisms of protein adhesion are
fully understood, we may hypothesize that nanodevice surfaces could
be designed for maximum proteophobicity and that this might be
possible because numerous partially proteophobic molecular sur-
faces are already known, including:

1. polyethylene glycol (PEG)569 and other steric barrier coatings
(Section 15.2.2.1);

2. surface-immobilized fibrinolytic enzymes such as
lumbrokinase570-572 or, more generally, immobilized proteolytic
enzymes755 that can cleave and detach proteins that attach;

3. hydrophilic cuprophane,573-577 chemically-modified
cuprophane,578 polysulfone,576,577 and polyacrylonitrile579 he-
modialysis membranes;

4. albumin-passivated surfaces2536-2538 that reduce fibrinogen ad-
sorption,519 platelet adhesion and activation, and
thrombogenicity543,580,937 and accumulate very few adherent
neutrophils or macrophages;581

5. tetraethylene glycol dimethyl ether glow-discharge plasma
deposition surfaces, which can reduce fibrinogen adsorption
to ~0.2 mg/m2 (~350 molecules/micron2) on many different
substrates;582

6. surface-immobilized heparin,1888,2535 a natural anticoagulant
(Section 15.2.5); and

7. artificial glycocalyx-like engineered non-adhesive surfaces753

(Section 15.2.2.1), low protein adsorbing films,754 graft poly-
merized acrylamide,5257 and other examples of biological adhe-
sive surface engineering.2356,2589

More generally, nanomedical implants and instrumentalities may
require surfaces of engineered bioadhesivity — for instance,
diamond-like carbon coated surfaces with an additional overcoat of
biological materials, perhaps including extracellular matrix proteins,
laminin, fibronectin, albumin, and collagen IV, to either promote
or inhibit cell growth and spreading.629 Ratner5293-5295 gives ex-
amples of biomaterials that inhibit nonspecific protein adsorption
while simultaneously controlling the interactions of matricellular
proteins at implant surfaces, thus reducing foreign body response
while promoting healing. More systematic study is clearly needed.
For instance, the Adhesion Dynamics model of Chang et al2554 de-
fines molecular characteristics of firm adhesion, rolling adhesion
and non-adhesion, but only in the limited domain of
leukocyte-vascular rolling interactions. In other studies, computer
simulations suggest that organic molecules may be readily bonded
to diamond or other nanorobotic surfaces to impart desired
biocompatibility characteristics. Examples include a recent density

functional theory (DFT) study of cycloadditions of dipolar mol-
ecules to the C(100)-(2x1) diamond surface4738 and related experi-
mental investigations4748), and the covalent immobilization of en-
zymes onto gamma-alumina surfaces.4772 Conventional means can
be employed to orient rod-shaped molecules on DLC surfaces (as
in liquid crystal arrays4742) or to orient nanowires4785 or carbon
nanotubes4793 on sapphire/alumina surfaces.

As of 2002, numerous companies2281 including Advanced Sur-
face Technologies (Billerica, MA), MetroLine Industries, Inc. (Co-
rona, CA), Spire Corp. (Bedford, MA), SurModics Inc. (Eden Prai-
rie, MN), Ultramet (Pacoima, CA), and Vitek Research Corp.
(Derby, CT) were providing commercial design services to create
customized biocompatible surfaces on implantable medical devices
and medical materials.

15.2.2.1 Nonadhesive Nanorobot Surfaces
The non-specific adsorption of blood proteins on nanorobot

surfaces could lead to clinical difficulties such as thrombosis and
unwanted protein-mediated recognition interactions such as
cell-nanorobot and nanorobot-nanorobot adhesion (aggregation).
Such interactions could not only result in injury to the patient but
also inactivation of the nanorobots with a subsequent failure of the
nanomedical mission. With many hundreds of plasma proteins (the
predominant plasma protein is albumin) to choose from, unmodi-
fied implanted devices may quickly adsorb a monolayer containing
many proteins in a distribution of conformational and orientational
states. Early-arriving proteins may be partially or wholly displaced
by later-arriving proteins that have a greater affinity for the particu-
lar surface, a phenomenon widely known as the Vroman ef-
fect.950,1442 A variety of local and systemic cellular processes may be
triggered depending upon which proteins are adsorbed to the sur-
face (e.g., as opsonins) and their biological activity. This depends,
in turn, upon whether specific active peptide sequences in specific
proteins are accessible to arriving cells such as neutrophils and mac-
rophages. The ultimate reaction to the implant would be dictated
by the complex competition among simultaneous parallel reactions,
producing a relatively stochastic or chaotic outcome — the very
opposite of an engineered process.** 342

Fewster et al474 point out that in some situations it is vital for an
implant to resist cell attachment, as for instance within the cardio-
vascular system if an artificial blood vessel is to resist thrombosis. In
the case of large implants, Fewster writes, “there may be a ‘race for
the surface’, with the body’s own tissues moving to wall off an im-
plant before bacteria and other microorganisms can become adher-
ent and secrete a glycocalyx of slime in which they may flourish and
resist all attempts of the body’s immune defenses to ingest or de-
stroy them.”474

Note also that the amount of serum protein adsorbed on a
nanorobot surface24 varies inversely with nanorobot size for a con-
stant mass, volume, or dosage of implanted medical nanomachinery.
Cell adhesion, thrombogenicity, foreign body response and other
reactions to implanted materials are related to the amount of

* Plasmin degradation of purified fibrinogen into defined domains reveals that the proinflammatory activity resides within the D fragment of the fibrinogen molecule, which
contains neither the fibrin cross-linking sites nor RGD sequences.567 After contact with blood or tissue fluid, the D domain tends to interact with biomaterial surfaces and is
important in the tight binding of fibrinogen to implant surfaces.568 The biomaterial surface then promotes conformational changes within the D domain, exposing P1 epitope
(fibrinogen gamma 190-202, which interacts with phagocyte CD11b/CD18 (Mac-1) integrin).568 The engagement of Mac-1 integrin with P1 epitope then triggers subsequent
phagocyte adherence and reactions,568 as demonstrated by experiments which show that phagocyte accumulation on experimental implants is almost completely abrogated
by administration of recombinant neutrophil inhibitory factor (which blocks CD11b-fibrin(ogen) interaction).567

** M. Sprintz notes that the binding of plasma proteins has relevance to the displacement of other highly protein-bound drugs, such as phenytoin (Dilantin), barbiturates,
propranolol, and benzodiazepines. If nanorobots have a higher affinity for protein binding sites than certain drugs used in concert with the nanorobots during a nanomedical
treatment, then those drugs could be displaced, consequently increasing the number of biologically active drug molecules and increasing the risk of toxic drug levels.5489 S.
Flitman points out that newer anticonvulsants are less protein-bound, for this reason.
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adsorbed proteins, hence as an implanted object shrinks to smaller
sizes (i.e., to micron-scale) the biological signal to local cell popula-
tions can increase enormously because the total amount of protein
adsorbed on the implant mass is much greater.

Consequently, it will usually be desirable to suppress non-specific
adhesive interactions involving individual physically-unlinked
nanorobots, in order to permit unfettered nanorobot mobility and
freedom of action within the human body and avoid particle aggre-
gation. One early strategy to try to accomplish this in implants was
to coat the artificial surface with an adsorbed protein, usually bo-
vine serum albumin (BSA) or high-density lipoproteins, to serve as
cell adhesion inhibiting proteins that would resist the adsorption of
other proteins. This method was simple and inexpensive, but suf-
fered from limited stability of the protein layer owing to exchange
with other proteins in solution via the Vroman effect, and also from
presentation of biologically active peptide sequences.1443 The
Vroman effect could be avoided by chemically bonding albumin
itself, or a surface constructed to mimic an albumin coating, to the
nanodevice exterior, such that no replacement of this camouflage
layer would be possible.

Bacteria with very hydrophilic surfaces can avoid being destroyed
by macrophages or neutrophils, and can remain circulating in the
body for extended periods of time.1444-1448 Various hydrophilic
adsorbed coatings have been attached to artificial surfaces to make
them more protein-resistant, in effect “passivating” them against
protein adsorption and greatly reducing or preventing cell adhesion
to biomedical implants.754 Such coatings typically may include
self-assembled monolayers containing surface-immobilized ethyl-
ene glycol groups, commonly known as poly(ethylene glycol) (PEG).
“Pegylated” surfaces exhibit a brushlike arrangement of PEG mol-
ecules at the surface.* 569,1453-1459,5658

Alkanethiol monolayers (on gold) terminated in short oligomers
of the ethylene glycol group — e.g., HS(CH2)11(OCH2CH2)n,
n = 2-7 — resist entirely the adsorption of several pro-
teins.1462,1468,5259 Even monolayers containing as much as 50% hy-
drophobic methyl-terminated alkanethiolates, if mixed with
oligo(ethylene glycol)-terminated alkanethiolates, remain hydro-
philic enough to resist the in situ adsorption of protein.1443

DeGennes and Andrade1469 believe that surfaces modified with long
PEG chains resist protein adsorption via “steric stabilization” —
adsorption of protein to the surfaces would cause the solvated and
disordered glycol chains to compress, so adsorption is resisted by
the energetic penalty of desolvating the glycol chains and restrict-
ing the conformational freedom of the chains.1443 (G.M. Fahy notes
an analogy to Timasheff ’s observations5871 that cryoprotectants like
glycerol are preferentially excluded from the protein surface because
the protein prefers to associate with water — if a nanorobot surface
resembled close-packed glycerol, it might be easier for the nanodevice
to evade interactions with both hydrophilic and hydrophobic pro-
teins.) Polymer substrates composed of PEG in highly cross-linked

matrices of acrylic acid and trimethyloylpropane triacrylate com-
pletely resist protein adsorption and cell adhesion, though they can
readily support adhesion after derivatization with cell-binding pep-
tides.1470 Whitesides’ group2534 has used a gold-tethered polyamine
monolayer to create a surface that reduces the number of adherent
bacteria (Staphylococcus epidermis and Staphylococcus aureus) by a
factor of 100 compared to bare gold and by a factor of 10 compared
to traditional bacterial-resistant polyurethane.

A PEG coating on a ~200-nm poly(lactic acid) (PLA) nanosphere
surface creates a brushlike steric barrier, hindering its opsonization
and uptake by the mononuclear phagocyte system,3325,3326 thus in-
creasing its blood half-life.1471 (G.M. Fahy likens the
brush-barrier-coated particle to a “sea urchin” with the tips of the
spines constituting a vary small surface area of inert material, thus
limiting the possible interaction with the environment.) Pegylated
nanospheres have been investigated as an injectable blood-persistent
system for controlled drug release, for site-specific drug delivery
(e.g., to spleen, liver, and bone marrow), and for medical imag-
ing.1449-1453 Adsorption of human serum albumin (MW = 66,000
daltons) on pegylated nanosphere surfaces at pH 7.4 at equilibrium
(i.e., after 5 days) is 0.15 mg/m2 (~1400 molecules/micron2) com-
pared to 2.2 mg/m2 (~20,000 molecules/micron2) for unpegylated
polymer.1453 These differences are of the same orders of magnitude
as that observed for other hydrophobic surfaces.1472,1473,2591 (Maxi-
mal HSA adsorption on hydrophobic surfaces is usually observed
close to the isoelectric point, a pH of 4.8-5.0.1453) However, under
in vitro conditions at 37˚C and pH 7.4, about one-third of the
adsorbed PEG detaches from the PLA nanospheres after 2 weeks at
a near-linear detachment rate.1474 Also, Langmuir film studies show
that forming PEG “brush” requires close packing of extended hy-
drated random coil chains, but that such close-packed hydrated
chains “dehydrate” and aggregate out of solution, which “explains
why one is limited to less than 10 mol% when using PEG chains to
stabilize nanoparticles such as liposomes for drug delivery” [Roger
E. Marchant, personal communication, 2002]. So adsorbed-
pegylated surfaces would not be a complete or perfect solution for
nanorobots resident in vivo for long-duration missions, or for per-
manent implants or augmentations, though PEG-derived
adhesioregulatory surfaces (Section 15.2.2.4) using periodically re-
freshed presentation semaphores might prove useful.

A more effective way to create nonadhesive nanorobot surfaces
may be the biomimetic approach753,2525 For example, the external
region of a cell membrane, known as the glycocalyx,** is dominated
by glycosylated molecules. These molecules direct specific interac-
tions such as cell-cell recognition and contribute to the steric repul-
sion that prevents undesirable non-specific adhesion of other mol-
ecules and cells. Marchant and colleagues753 have modified a pyro-
lytic graphite (Section 15.3.3.2) surface by attaching oligosaccha-
ride surfactant polymers which, like the glycocalyx, provide a dense
and confluent layer of oligosaccharides that mimics the non-adhesive

* Pluronic surfactants such as block copolymers have a central poly(propylene oxide) (PPO) chain with a poly(ethylene oxide) (PEO) chain attached at each end,1460-1464,2542

and are not readily desorbed when they come in contact with high-affinity proteins or cells in blood.1464 Other copolymers with PEO side chains5258 or PEO-deposited surfaces5260

largely prevent protein adsorption and platelet adhesion. HEMA (hydroxyethylmethacrylate)-based polymers1465-1467 are nonadhesive for mammalian cells.1466 In one experiment,
the mechanical desorption force of adsorbed fibronectin was reduced from 100 pN/molecule on a 0% HEMA polymer to 27 pN/molecule on an 85% HEMA polymer.1467 A coating
of ultra-high molecular weight polyethylene also inhibits cell adhesion.474 Similarly, injection of ~100-nm PEO-PEE polymersomes5720 into the circulation of rats gives a
bloodstream clearance half-life of ~20 hours,5721 similar to the 15-20 hour clearance for stealth liposomes which are engulfed by phagocytic cells of the liver and spleen.4372

The PEO brush delays the accumulation of plasma protein on the polymersome membrane5722 and acts somewhat like a biomembrane glycocalyx.5723 Knowledge of surfactant
molecular structures is expanding via computational chemistry.6017,6077

** The glycocalyx (sugar cell coat) is a layer of carbohydrate on the surface of the cell membrane of most eukaryotic cells. It is made up of the oligosaccharide side-chains
of the glycolipid and glycoprotein components of the membrane and may include oligosaccharides secreted by the cell. In bacteria, the glycocalyx is the outermost layer typically
consisting of numerous polysaccharides plus various glycoproteins. The bacterial glycocalyx varies in thickness and consistency, forming in some species a flexible slime layer
while in others a rigid and relatively impermeable barrier.5490 See also Section 8.5.3.2.
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properties of the glycocalyx (Figure 15.5). The surfactant polymers
consist of a flexible poly(vinyl amine) backbone (MW ~ 6000
daltons, diameter 0.25 nm) with multiple randomly-spaced dext-
ran (MW ~ 1600 daltons, diameter ~0.9 nm) and alkanoyl (hexanoyl
or lauroyl) side chains which constrain the polymer backbone to lie
parallel to the substrate. Solvated dextran side chains having a stable
helical structure protrude into the aqueous phase with steric repul-
sion between adjacent dextrans.* This creates a glycocalyx-like mono-
layer coating approximately 0.7-1.2 nm thick as measured by
tapping-mode AFM.753 In vitro experiments show that the result-
ing biomimetic surface, which the authors have reported undergoes
spontaneous adsorption on diverse hydrophobic biomaterials sur-
faces such as polyethylene,5255 effectively eliminates at least ~90%
of all plasma protein adsorption from human plasma protein solu-
tion.753 According to the authors: “The steric barrier provided by
the highly hydrated dextrans is designed to suppress non-specific
adsorption of plasma proteins,1475 whereas the high energy of des-
orption and low water solubility of the adsorbed surfactant poly-
mer is designed to minimize possible displacement or exchange re-
actions with highly surface-active plasma proteins.”

Similarly, Ruegsegger and Marchant5255 added a series of
oligomaltose surfactant polymers at full monolayer coverage to a
surface of highly oriented pyrolytic graphite, using two (M2), seven
(M7), or fifteen (M15) glucose units. Protein resistance increased
with increasing coating thickness, to 81.4% (M2), 85.8% (M7),
and 95.8% (M15), respectively. Static platelet adhesion decreased
substantially to 15-17% for all coating thicknesses, compared to
adhesion to glass normalized to 100%. Other researchers have at-
tempted to engineer the chemical reactivity of cell surfaces us-
ing surface-bound oligosaccharides,2549 or to reduce protein adsorp-
tion using polysaccharide surfactants5256 or grafted polymers;5274-5278

the possible immunogenicity5626 of these substances must always
be considered.

Another molecule that displays low protein and platelet adhe-
sion is phosphatidylcholine (PC)2526-2530 or phosphorylcholine.
4732-4736,4749,4750,5015,5717 PC is a major plasma membrane lipid com-
ponent of eukaryotic cells (Table 8.18) and especially platelets. In
one experiment,2527 PC-coated silica did not support platelet adhe-
sion, and platelet adhesion to PC-grafted polypropylene and PTFE
was inhibited 80% and 90%, respectively. In another experiment,5010

PC-coated guide wires used in coronary angioplasty showed no
thrombus formation, unlike silicone-, hydrophilic polymer-, and

Teflon-coated wires. Phospholipid-bound polyurethanes,2531 phos-
phatidylcholine analogs2532 and related polymers2533 have also shown
greatly reduced platelet adhesion. Phosphatidylcholine (17-19% of
human erythrocyte membrane) and sphingomyelin (18%) are not
found in E. coli membranes, unlike phosphatidylethanolamine (E.
coli 65-70%, human 18%) or cardiolipin (E. coli 12%, human mi-
tochondrion 21-23%) which are found in bacteria (Table 8.18 or
refs. 4694-4696) and thus might more easily provoke an unwanted
immune response.

Other methods that use covalent immobilization to confine cam-
ouflaging proteins at implant-biological interfaces may have many
advantages over those that rely on physical adsorption of protein
layers.1443 Covalently attached layers of protein cannot easily disso-
ciate from the implant surface, nor can they exchange with other
proteins in solution. A variety of selective chemistries offer high
levels of control over the adsorption process. For instance, a cyto-
chrome c mutant protein molecule having only a single cysteine
group gives a uniformly oriented layer of protein when immobi-
lized to a self-assembled monolayer terminating in thiol groups.1476

(Unfortunately, intracellular release of cytochrome c triggers cell
apoptosis (Section 15.5.7.2.4), so this particular example might be
a poor choice for a nanorobot camouflage protein.) Nanorobot sur-
faces could be covalently bound with masking groups such as plasma
membrane components of young erythrocytes, which are invisible
to the reticuloendothelial system.1477 Similarly designed
“long-circulating” nanoparticles and microparticulate drug carriers
(typically 10-48 hours in the bloodstream2489-2491) and
“long-circulating” bacteriophages2492 have been studied, including
ghost-red-cell-based “nanoerythrosomes”.5049 Detachment of
adsorbed PEG might be prevented by better bonding chemistries,
e.g., with PEG derivatized at one end to merge with the nanodevice
surface.

Relatively nonadhesive polyhydroxylated species, called stealth
liposomes,1478-1481,5280-5282 exhibit reduced recognition and uptake
by the body’s reticuloendothelial system along with longer circula-
tion half-life (~1 day)1482,1483 and are in clinical trials.5283-5290 In-
terestingly, diamond particles have already been encapsulated in-
side stealth liposomes. In one such experiment,1484 hemoglobin
molecules were irreversibly adsorbed onto carbohydrate-coated dia-
mond particles measuring ~75 nm in diameter, then the complexes
were encapsulated in a standard mixture of phospholipids. This pro-
duced endotoxin-free preparations of spherical liposomes which were

* Roger Marchant [personal communication, 2002] notes that dextrans, like most carbohydrates, have very little conformational freedom, so their 3D structure is largely dictated
by the bonding configurations (e.g., alpha 1-6 glycoside linkage in dextran). If a structure (such as the dextran) has formed a helix, it cannot also form a “brush” (which
requires a random polymer structure as with pendant surface-attached PEG chains) — the two structures are essentially mutually exclusive.

Fig. 15.5. Molecular models of engineered biomimetic non-adhesive glycocalyx-like surface using oligosaccharide surfactant polymers
(courtesy of Holland, Qui, Ruegsegger and Marchant753 and Case Western Reserve University).
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stable for >48 hours with bound-Hb concentrations near 100 gm/
liter with as little as 1% free Hb. Evaluation of oxygen lability showed
normal sigmoidal O2 binding behavior with p50 from 12 mmHg
up to 37 mmHg under control of an allosteric effector.1484

The University of Washington Engineered Biomaterials group
has an ambitious program to develop molecularly engineered stealth
surfaces.5292 These surfaces can then be decorated with
surface-anchored peptides or proteins to allow specific signaling, as
well as with trigger molecules or clusters of recognition sites that
can remain accessible to cell receptors.1485 The objective is to create
a hierarchically structured modular system where individual build-
ing blocks can easily be exchanged, for example, to vary chemical
functionality, and that can later be universally applied to coat a large
number of different materials including polymers, metals and ce-
ramics.1485 Similarly, J. Genzer2515 at North Carolina State Univer-
sity has produced mechanically-assembled monolayers using
semifluorinated molecules anchored to prestretched substrate sur-
faces that are then released, compacting the monolayer to make a
tightly-packed nonpermeable superhydrophobic surface that report-
edly does not deteriorate even after prolonged exposure to water,
and other superhydrophobic surfaces are known.6176 Fluorous pro-
teins have been suggested for antiadhesive surfaces;5028 unnatural
fluorous amino acids5905-5907 have been used to synthesize artificial
alpha-helical coiled fluoropeptides5906 and to synthesize melittin
analogs that have enhanced affinity for lipid bilayer membranes
compared to the wild-type peptide.5908

Of course, by analogy to enveloped viruses and virosomes,5355

the ultimate in stealth is cytocarriage (Section 9.4.7), wherein the
nanorobot hides inside an otherwise innocuous native motile body
cell such as a fibroblast or macrophage. External cell adhesion to
the nanorobot is precluded, and only intracellular protein adsorp-
tion need be actively managed until the nanorobot is released.

Whether pure atomically-smooth diamondoid materials (Sec-
tion 15.3.1.1) will give us sufficiently nonadhesive surfaces, or if
instead thin engineered coatings or active semaphoric surfaces (Sec-
tion 5.3.6) will be necessary to ensure adequate biocompatibility of
medical nanorobots, is an outstanding research issue that can best
be resolved by future experiments. This is a very critical topic be-
cause, unlike the materials used in a joint prosthesis, nanorobots
may be present throughout the microvasculature of critical organs.
The adhesiveness of many hundreds of serum proteins to the artifi-
cial nanorobot exterior must be evaluated, and the relative serum
concentration of these proteins may change according to the time
of day or the physiological state of the individual (e.g., TNF, IL-1,
IL-2, and transferrin rise dramatically in the acute phase response
to a pathogen). Relevant investigations are to be encouraged at the
earliest possible opportunity.

15.2.2.2 Adhesive Nanorobot Surfaces
In many nanomedical applications, it will be important that the

nanorobot exhibit a strong affinity for the specific biological tissue
with which it is designed to interact. For example, diamondoid bone
implant should show good osseointegration, preferably with bone
tissue infiltrating some portion of the foreign diamondoid struc-
ture and with cells tightly adherent to the implant, locking it firmly
in place in the manner of bioactive materials previously discussed
(Section 15.2.1.3). Entry into the body by free nanorobots travers-
ing the gut might be assisted using mucosal-binding attachments.2592

It may be desirable for the surfaces of artificial nanorobotic organs

to encourage attachment, migration and coating by certain types of
cells. This could facilitate biochemical transfers between blood or
tissues and the mechanisms within, help avoid immune system re-
jection, or establish good mechanical stability within the peri-implant
space. In general, cells attach to synthetic surfaces via adsorbed ad-
hesive proteins such as fibronectin. By controlling the chemistry of
the surface, it is possible to modulate the adsorption of the pro-
teins, which then govern cell attachment and spreading. Cell spread-
ing has been correlated with fibronectin adsorption to a variety of
surfaces.1486-1488 Rates of cell migration have been shown to de-
pend on the concentration of adhesive proteins preadsorbed on
polymer surface.1488-1490 These rates of migration are optimal at
intermediate substrate adhesiveness,1491 as expected from mathemati-
cal models of cell migration.1492

So far, no general principles have been identified that allow pre-
cise prediction of the extent of attachment,1493,1494 spreading, or
growth of cultured cells on various artificial surfaces such as poly-
mers.1491,5729,5730 Certain chemical groups present on a material
surface can alter cell response.1495 Interesting correlations have been
found in vitro for specific cell types with parameters such as the
density of surface hydroxyl1496,1497 or sulfonic1498 groups, surface
C-O functionalities,1499 surface free energy1500-1502 or surface
wettability,756,1503,1504 hydrogenated amorphous “unsaturated” car-
bon phases,1507 fibronectin adsorption,1499 and equilibrium water
content,1497 but there are exceptions in all cases.1491 The ability of
macrophages to form multinucleated giant cells at a hydrogel sur-
face has been correlated with the presence of certain chemical groups
at the interface: macrophage fusion decreases in the order (CH3)2N- >
-OH = -CO-NH- > -SO3H > -COOH(-COONa).1509,1510 Cell at-
tachment and growth on surfaces with grafted functional groups de-
creases in the order -CH2NH2 > -CH2OH > -CONH2 > -COOH.1511

In vivo, cell attachment to the surrounding environment may
be mediated by various small, biologically active functional groups
such as oligopeptides,1543 saccharides,1512-1514 or glycolipids (pat-
terns of glucose residues attached to membrane lipids)1517-1519 via
specific peptide sequences within proteins.897 Peptides or peptide
sequences may act as signaling molecules, attachment sites, or growth
factors that mediate the conversation between cells and the sur-
rounding extracellular matrix in an information-rich dynamic struc-
ture. The dynamics of these processes can be seen both in develop-
ment and in wound healing, where fibroblasts lay down a matrix
that guides regeneration or development in a specific controlled man-
ner. Appropriately functionalized nanorobot surfaces may be able
to strongly influence such processes.

Perhaps the best-known example is the peptide sequence
arginine-glycine-aspartic acid (RGD)* 1520-1522 which was first iden-
tified in the cell-binding domain of fibronectin,1521 an
adhesion-related glycoprotein that provides attachment sites for
many cells through cell surface receptors called integrins (Section
8.5.2.2). RGD is also present in many other proteins such as col-
lagen, entactin, laminin, tenascin, thrombospondin, and vitronectin
without losing receptor specificity, so its interactions are probably
conformation dependent.1520 The YIGSR and IKVAV sequences in
laminin1491,1528 and the FHRRIKA sequence1531 also show cell bind-
ing activity and mediate adhesion in certain cells.

In theory, a nanorobot surface functionalized with RGD should
exhibit greatly enhanced adhesion to cells, because to the cells, the
surface may appear much like ECM (extracellular matrix). As sum-
marized by Saltzman,1491 RGD has been experimentally attached

* Amino acids are customarily identified by one-letter abbreviations: A = alanine, B = asparagine (N) or aspartic acid (D), C = cysteine, D = aspartic acid, E = glutamic acid,
F = phenylalanine, G = glycine, H = histidine, I = isoleucine, K = lysine, L = leucine, M = methionine, N = asparagine, P = proline, Q = glutamine, R = arginine, S = serine,
T = threonine, V = valine, W = tryptophan, Y = tyrosine, and Z = glutamine (Q) or glutamic acid (E).
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to amine-functionalized quartz,1530,1531 glass,1528 and synthetic poly-
mer surfaces including PEG,1532 PET,1533,1534 PEU,1535,1546 PLA,1536

polyacrylamide,1537 poly(carbonate urethane),1538

poly(N-isopropylacrylamide-co-N-n-butyl-acrylamide),1539 PLGM
films,1540 PMMA/PEG latex,1541 PTFE,1533,1534 and PVA.1542 Ad-
dition of RGD or RGDS2540 to these surfaces induced cell adhe-
sion, cell spreading, and focal contact formation on otherwise non-
adhesive or weakly-adhesive polymers in vitro.1543-1546 In one ex-
periment,1528 glass surfaces functionalized with spatially-precise
patterns of cell-adhesive regions and cell-repulsive regions were able
to control the direction of neuron cell adhesion and neurite out-
growth across the surface. Another experiment1529 used a combina-
tion of adhesive (RGD) and nonadhesive (PEG) moieties to modu-
late cell spreading.

Since cells contain cell adhesion receptors that recognize only
certain ECM molecules, surface functionalization with an appro-
priate cell-binding sequence can produce cell-selective surfaces1547

in which the population of cells adhering to the artificial surface is
determined by the peptide structure.1545 In vivo, the presence of
serum proteins can attenuate the adhesion activity of peptide-grafted
surfaces,1546 but this problem can be overcome by attaching the
peptide to a base surface that is itself biocompatible yet resistant to
protein adsorption, such as PEG-rich foundations.1548-1551

Besides cell-binding peptides, other biologically active molecules
have been used to enhance cell adhesion to artificial surfaces. For
certain cell types, adhesion can be improved by adsorption of ho-
mopolymers of basic amino acids such as polyornithine and polyl-
ysine. As an example, poly-L-lysine (MW ~ 21,400)1552 is a
water-soluble polycation that can bind to anionic (negative) sites
on glycoproteins and proteoglycans in the extracellular matrix, and
on cell surfaces.1553-1555 Covalently bound amine groups have in-
fluenced cell attachment and growth.1556,1557 Polymer-immobilized
saccharides can also influence cell attachment and function. For
instance, in vitro rat hepatocytes adhered (via asialoglycoprotein
receptors) to surfaces derivatized with lactose1514-1516 or N-acetyl
glucosamine,1558 and remained in a rounded morphology consis-
tent with enhanced function. Finally, whole proteins such as col-
lagen can be immobilized to artificial surfaces, providing adherent
cells with a substrate that most closely resembles the natural ECM
found in tissues.1559

Various other simple surface modifications can improve cell ad-
hesion.1505-1508 For example, negative silver ions implanted in hy-
drophobic polystyrene at doses from 1-600 x 1018 ions/m2

hydrophilize the surface and lead to enhanced growth of human
vascular endothelial cells.1508 Adhesion and proliferation of endo-
thelial cells is likewise drastically improved when the cells are culti-
vated on an Ne+ or Na+ ion-implanted polyurethane surface with a
~1019 ions/m2 fluence, though cells did not proliferate on such sur-
faces exposed to 1018 ions/m2 or less.1505 Endothelial cells are not
capable of proliferating on polyurethane surfaces except in regions
of carbon deposition; promotion of cell proliferation on a
carbon-deposited surface is probably due to selective adhesion of
adhesive proteins to the surface.1506 Plasma ion-implantation is now
routinely used to alter the top few atomic layers of medical poly-
mers.2280 This controls their wettability to allow adhesive bonding
(1) for preparation of angioplasty balloons and catheters, (2) for
treating blood filtration membranes, and (3) to manipulate surface
conditions of in vitro structures to enhance or prohibit culture cell
growth.2280 “Smart” polymers with switchable hydrophobic/hydrophilic
properties also are known,2289 and various parameters of urinary blad-
der mucoadhesivity for microspheres have been investigated.5454

In their study of the systematic control of nonspecific protein
adsorption on biocompatible materials, Satulovsky et al5274 suggest

that in systems where it is necessary to control protein adsorption
during in vivo missions of modest duration (i.e., hours to days), it is
probably best to use relatively dense polymer layers with long poly-
mers that are not attracted to the underlying surface, a strategy that
should provide the best kinetic control. For materials that must re-
main in contact with the bloodstream for years, the ideal type of
polymer may be one that is attracted to the underlying surface, which
should provide the best thermodynamic control. Because very high
surface coverage of grafted polymers is hard to obtain using con-
ventional experimental techniques,5279 alternative approaches prior
to the development of machine-phase nanotechnology might in-
clude mixtures of polymers (perhaps designed using Satulovsky’s
quantitative guidelines5274) that allow optimal kinetic and thermo-
dynamic control under conditions that are experimentally realiz-
able as of 2002. Molecular manufacturing will allow the fabrication
and bonding to nanorobot surfaces of grafted polymer coatings hav-
ing far greater variety, maximum packing densities, and more pre-
cise positioning than is possible today.

15.2.2.3 Cell Response to Patterned Surfaces
The microscale surface texture of an implanted nanoorgan may

have a significant effect on the behavior of cells in the region of the
implant.1491,6246 Compared with smooth surfaces, roughened sur-
faces show improved osseointegration,1560-1562 improved percuta-
neous implant integration,1563 and reduced fibrous encapsulation
with enhanced integration of breast implant materials.1564 These
improvements are due to increased adhesion of connective tissue
cells onto roughened surfaces, resulting in closer apposition of tis-
sue to the implant.1565 Different cells types respond differently to
texture. For instance, macrophages, unlike fibroblasts, accumulate
preferentially on roughened and hydrophobic surfaces.1566 Simple
surface roughness (e.g., ~0.2 microns vs. 3-4 microns) appears to be
one of the most important variables in determining the prolifera-
tion, differentiation, protein synthesis, and local factor Production
in costochondral chondrocytes1835 and in MG63 osteoblast-like
cells.1836

One important class of surface features is pores, tunnels, and
pegs. In one study,1567 porous polymer membranes with pores >0.6
micron and <5-micron fibers or strands were associated with en-
hanced new vessel growth. Another study found that fibrosarcomas
developed with high frequency (up to 50%) around implanted
Millipore filters, with tumor incidence increasing with decreasing
pore size in the 50- to 450-micron range.1568 In general, fibrotic
and vascular tissue invades pores larger than ~10 microns and the
rate of invasion increases with pore size and with the total porosity
of a device.1569-1571 This invasion results in the formation of a cap-
illary network in the developing tissue.1572 Vascularization of the
new adherent tissue may be required to meet its metabolic require-
ments and to integrate it with the surrounding tissue,1573 although
in urologic applications it is useful to have a nonporous luminal
implant surface to prevent leakage of urine through the tissue.1572

In another experiment1565 involving 0.1- to 3.0-micron diameter
pores >~100 nm deep, 0.9-micron and larger pores completely in-
hibited bovine corneal epithelial tissue outgrowth even when the
surface had a chemistry that was adhesive to cells. Pore size rather
than pore number density appeared to be the controlling factor.1565

Migration of cell monolayers and dissociated cells was reduced but
was not completely inhibited even on membranes with 3-micron
pores, and individual cells could migrate through these largest holes.1565

As for pegs and pillars, osteoblasts and amniotic cells cultured
on polyethylene terephthalate (Dacron) micropatterned with a square
array of 15-micron pegs spaced 45 microns apart extruded bridging
processes between the pegs.474 Picha and Drake1574 used silicone
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implants with micropillars ~100 microns in diameter and 500 mi-
crons in height, and found that this surface texture reduced fibrosis
and improved blood vessel proximity around the implants.

The study of the response of cells to steps and grooves began in
1911 when Harrison1575 described the reactions of cells grown on
spider web fibers. In the 1960s, Curtis and Varde1576 found that
cells grown on cylindrical glass fibers would align on the fibers and
were very sensitive to curvature. In many cases, cells orient and
migrate along fibers or ridges in the surface, a phenomenon that
has been called “contact guidance”1581 (or “topographic reaction”5726)
originating from the earliest studies on neuronal cell cultures.1577 It
is now known that the behavior of cultured cells on surfaces with
edges, grooves, or other features is significantly different from cell
behavior on smooth surfaces.1491,1581,5725 Typically a step inhibits
the movement of a cell across it.1578,1583 Cells possess an internal
cytoskeleton (Section 8.5.3.11) and their normal behavior is to avoid
movements that bend this cytoskeleton unduly.1580-1583 One theory
holds that contact guidance is caused by mechanical forces on the
cells’ filopodia, which induce the cells to reshape their actin fila-
ments to adjust to the substrate topography.1584 Cells approaching
a step tend to withdraw or to proceed along its edge, only rarely
crossing the angular surface. For example, fewer than 10% of baby
hamster kidney cells will cross a 10-micron-high step.1583 Different
cells react differently to steps, depending on their biological role:
white blood cells tend to cross steps more readily, whereas epithelial
cells show a marked aversion to sharp angles.1583 Some cells types
(e.g., endothelial cells,5732 fibroblasts,5733 macrophages,5734 and oth-
ers5736) can react to nanoscale roughness and nanotopographies such
as steps as shallow as 11-13 nm,5726 and synthetic nanostructured
textured surfaces5738 have been shown to affect cell behavior.5727,5731

According to Curtis and Wilkinson,5726 cell reactions to topogra-
phy are probably due to stretch reactions to the substratum, not to
substratum chemistry: “A given cell type reacts in much the same
way to the same topography made with different materials; when
both chemical patterns and topographic ones are offered to cells,
topography tends to have a greater effect than chemical patterns.”

Cells react to grooves in several ways.5725 They tend to align to
the direction of the grooves, they tend to migrate along the grooves,
and they tend to elongate more than they would on a flat sub-
strate.1579,1583 The degree of alignment and the rate of orientation
depend most on the groove depth600,1583,1585 and pitch,1586 and to
some extent on the width,1583 with both motile cells and their pro-
cesses aligning with the grooves.1583 Human fibroblasts adherent
on surfaces with V-shaped grooves exhibit higher levels of fibronectin
synthesis and secretion, relative to similar cells grown on smooth
surfaces.1587 Fibroblasts have been observed to orient on grooved
surfaces,1588 particularly for texture dimensions of 1-8 microns.1589

In one series of experiments,1563,1588 fibroblasts oriented themselves
along 3- and 10-micron deep grooves but inserted obliquely into
22-micron deep grooves. Cells cultured on otherwise identical sur-
faces may vary in their response to grooves much narrower than one
cell diameter. BHK (baby hamster kidney) and MDCK
(Madin-Darby canine kidney) cells oriented on 100 nm and 300
nm scale grooves in fused quartz, while cerebral neurons did not.600

Fibroblasts, monocytes and macrophages spread when cultured on
silicon oxide with grooves with a 1.2-micron depth and a 0.9-mi-
cron pitch, but keratinocytes and neutrophils did not.1586 Inflam-
matory cells show little contact guidance compared to fibroblasts.1586

A primary failure mode of certain implants is “marsupialization”
(Section 15.4.3.5) or “expulsion”,1565 due to downgrowth of epi-
thelial tissue along the edge of an implant in the region where the
device penetrates an epithelial layer.1590 Modification of the
microtopography of titanium implants can inhibit this downgrowth

of skin epithelial tissue. For instance, grooves measuring 10 mi-
crons or 19-30 microns1563 were sufficient to limit epithelial
downgrowth and to promote connective tissue integration at the
implant surface.

Patterned surfaces with well-defined peaks, valleys, and islands
also influence the function of attached cells. For example, PDMS
surfaces with 2- to 5-micron topography maximize macrophage
spreading.1591 Similar surfaces with uniformly distributed 4- to
25-micron2 peaks encourage better fibroblast growth than 100-mi-
cron2 peaks or 4-, 25-, or 100-micron2 valleys.1591 In another ex-
periment, micron-scale adhesive islands of self-assembled
alkanethiols stamped on gold surfaces confined cell spreading to
those islands.1592 Larger islands (~10,000 micron2) promoted growth
of hepatocytes, while smaller islands (~1600 micron2) promoted
albumin secretion. Fibroblast cells attach but do not spread on
microlithographically-produced ~500-micron2 palladium islands on
pHEMA substrate, but attach and spread to the same extent as an
unconfined monolayer culture on ~4000-micron2 islands.1593

Donald Ingber’s group3965,6239-6245 has created surfaces with circu-
lar and square islands similar in size to a single cell. When the is-
lands are coated with ECM proteins, cells spread out to assume the
shape of the island, regardless of whether the island is a circle or a
square.4942,4943 Round cells extend lamellipodia (variable extensions
of the cell membrane, literally “layered feet”) in random directions,
but square cells send out extensions primarily from their corners.4942

Computer simulations of related processes have been attempted.4941

Surfaces impressed with biological activity gradients have been
found useful in cell biology for examining haptotaxis, the directed
migration of cells along surfaces with gradients of immobilized
factors.1594,1595

15.2.2.4 Sorboregulatory and Adhesioregulatory Surfaces
In more complex applications where specific or nonspecific ad-

hesive interactions are needed during only one portion of the
nanomedical mission, or where alternative specific adhesivities are
desired during different mission segments or at different times or
physical locations during the mission, it may be necessary to ac-
tively regulate the adhesive characteristics of the nanorobot surface.
A sorboregulatory surface may be an active metamorphic surface
(Section 5.3) that allows the nanorobot to alter the character, num-
ber density,5737 or spatial pattern of its display ligands or surface
receptors in real time, to encourage or discourage the adhesion of
specific biomolecular species. In sum, a sorboregulatory surface en-
ables in situ regulation of the selective binding characteristics of
surfaces, in response either to commands by medical personnel or
to programmed procedures executed by an onboard nanocomputer
that is making choices driven by sensor data, predetermined condi-
tions, or timing schedules.

One simple model of a sorboregulatory surface is the presenta-
tion semaphore design described in Section 5.3.6. In this model,
piston-bonded ligands of various types are alternatively exposed or
retracted at the nanorobot surface, producing, for example, a sur-
face that may be switched from hydrophobic to hydrophilic in ~1
µsec, assuming a ~10 nm piston throw at ~1 cm/sec. Somewhat
longer times may be required if semaphore molecules must be re-
conditioned prior to reuse, perhaps because of the unwanted at-
tachment of an exogenous biomolecule to the display ligand during
exposure (which biomolecule is then dragged back into the
nanodevice along with the display ligand during the retraction cycle).
Alternatively, the employment of sacrificial display ligands which
are jettisoned after use avoids the need for reconditioning (Chapter
19), but requires the storage or synthesis of new display ligands
which must then be regarded as consumables.
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Display ligand-based sorboregulatory surfaces can manifest spe-
cific sorption patterns on the nanorobot surface, such as a hydro-
phobic head and a hydrophilic tail (Section 9.4.5.3). Such surfaces
could also deploy a steric barrier during part of the nanomedical
mission, then retract or eject it during other parts of the mission,
thus enabling nonspecific adhesive interactions to occur only at that
time. Or such surfaces could deploy sacrificial fusion protein coat-
ings to facilitate cytopenetration (Section 9.4.5.4). Nanorobotic
organs coated with a sorboregulatory surface could periodically
slough off biofilm attachments by initiating end-to-end traveling
waves of adhesion to the polysaccharide interstitial matrix, or could
encourage cell attachment and migration in specific patterns across
the surface.1523-1528

By 2002, experimental research on ligand presentation surfaces
had just begun.6247 In one study,1596 5-300 nm diamond
nanoparticles that were surface-modified to serve as adjuvants to
enhance immunity to antigens (e.g., as antigen delivery vehicles)
provided conformational (e.g., vertical) ligand stabilization, as well
as a high degree of surface exposure and coating efficiency, for pro-
tein antigens.

Another approach to building a sorboregulatory surface is to use
surfaces coated with artificial receptors* rather than ligand display
mechanisms. For instance, a surface of receptors having maximum
specificity for albumin would preferentially attract a predominantly
albumin coating when exposed to serum, thus immediately provid-
ing a steric barrier to most other adhesive interactions. Periodically,
ejection rods could be thrust into the receptors from below (Sec-
tions 3.4.2 and 4.2), jettisoning bound species (also scraping off
any species adhering to the rods; see Figure 3.7) and allowing regu-
lar and rapid refreshment of the barrier coating. Note that a com-
plete monolayer coverage by fibrinogen molecules amounts to ~104

molecules/micron2,542 or ~100 nm2/molecule which is very roughly
the same surface area as a single molecular sorting rotor (Section
3.4.2). In even more advanced systems, reconfigurable binding sites
(Section 3.5.7.4) might be programmed to adopt different receptor
specificities as the nanomedical mission progresses. A brachiating
nanorobot is yet another example of a device with modulated
adhesivity — the arms successively attach and detach from extracel-
lular matrix (Section 9.4.4.2) or intracellular cytoskeleton compo-
nents (Section 9.4.6). Although the experimental research discipline
of artificial receptors is now well established,5296-5302 a more sys-
tematic approach to artificial binding site design5303-5309 and fur-
ther experiments involving single molecules in nanocavities5310 are
needed. Potential differences in protein conformations in the rich
in vivo environment (compared to the more controlled in vitro en-
vironment) must also be taken into account.

Adhesioregulatory surfaces are metamorphic surfaces (Section
5.3) that can modify adhesive characteristics by, for example, alter-
ing surface geometries — either in addition to, or in place of, the
surface chemistry changes already described above. For instance, an
adhesioregulatory mechanism could erect, move, or retract steps,
grooves, or pillars across nanoorgan surfaces to influence cell mo-
bility (Section 15.2.2.3). Alternatively, noncovalently adhered

proteins (including complement or antibodies) or other biomolecules
might be physically desorbed by cleaving them using close-fitting
sliding plates in an appropriate metamorphic surface design (Sec-
tion 5.3.2.2), or by using surface-embedded dynamically sized and
shaped nanopores (Section 3.3.2), or by using various
externally-mounted self-cleaning wiper-blade or scraper mechanisms.
Surfaces containing embedded vents or reversible sorting rotors could
blow off many cells that were trying to become attached, or could
secrete internally stored or in situ manufactured detergent molecules
with similar effect. All such adhesioregulatory mechanisms can
equally well be employed to encourage or discourage bioadhesion
at the nanorobot or nanoorgan surface. Significant research will be
required to ensure adequate competitive binding specificity of engi-
neered nanorobot surfaces and receptors (Section 3.5.3), and to
ensure that nanorobot ligands will not trigger unintended signaling
pathways via cellular receptors not located near the nanoorgan. Subtle
entropic effects such as the spontaneous formation of surface
undulations known as capillary waves5724 must also be taken into
account.

The control of wettability has already been demonstrated by
light-induced6069,6070 and electrochemical6071-6074 surface modifi-
cations involving chemical reactions, but Lahann et al6075 have dem-
onstrated an alternative approach for dynamically controlling in-
terfacial properties that uses a change in electrical potential on gold
surface to achieve fully reversible conformational transitions (switch-
ing) of surface-confined molecules between a hydrophilic and a
moderately hydrophobic state without altering the chemical iden-
tity of the surface. According to one report:6076 “The new switch-
able surface essentially consists of a forest of molecules only a bil-
lionth of a meter tall, engineered to stand at a precise distance from
each other. In this particular case, the team makes the top of each
molecule negatively charged and hydrophilic (water-loving), and
the trunk positively charged and hydrophobic (water-repelling).
When a positive electrical potential is applied, the induced attrac-
tive force causes the top to bend down. The resulting loop that is
now exposed is hydrophobic. Reverse the electrical potential and
the molecules will straighten to their full height, the hydrophilic
tops once more attracting water.” Note the researchers:6075 “This
study demonstrates reversible control of surface switching for a
low-density monolayer. The fact that controlled conformational
reorientations of single-layered molecules induced observable
changes in wettability suggest that these findings may, with further
study, have implications in dynamic regulation of macroscopic prop-
erties, such as wettability, adhesion, friction, or biocompatibility.”

An interesting example of adhesioregulation in nature is found
in the bacterium E. coli. Researchers at the University of Washing-
ton have recently discovered5446 a mechanism by which the bacte-
rial adhesion protein FimH can detect the presence of urinary tract
shear flow and “lock down” the bacterium on the surface being in-
vaded, binding tighter as shear forces rise. The protein acts as a
nanometer-scale mechanical switch that senses when the force is
reduced, enabling bacterial motility only during periods of low flow
when the risk of dislodgment is minimized.

* Ratner and colleagues at the University of Washington Center for Bioengineering have researched the engineering of polymer surfaces containing arrays of artificial receptors.
In one series of experiments, Ratner et al1597,1598 used a radiofrequency-plasma glow-discharge process to imprint a polysaccharide-like film with nanometer-sized pits in the
shape of such biologically useful protein molecules as albumin, fibrinogen, lactalbumin, glutamine synthetase, lysozyme, ribonuclease, immunoglobulin, and streptavidin.
Each protein type sticks only to a pit with the shape of that protein. Ratner’s engineered surfaces may be used for quick biochemical separations and assays, and in biosensors1599

and chemosensors,1602 because such surfaces will selectively adsorb from solution only the specific protein whose complementary shape has been imprinted, and only at the
specific place on the surface where the shape is imprinted. Novel molecular imprinting techniques continue to emerge.5311 The RESIST Group at the Welsh School of Pharmacy
at Cardiff University1600 and others1601,1602,5312-5330 have looked at how molecularly imprinted polymers could be medically useful in near-term applications such as analysis,5317-5319

separations,5320 sensors,5320-5325 binding assays,5326 screening for drug discovery,5327 controlled drug release,1600 drug monitoring devices,1600 catalysis5328-5330 including
“plastizymes”,5329 and biological and antibody receptor mimics.1601 Ratner believes that on implants designed to attract a specific class of proteins — for example, osteopontin,
a protein found in healing wounds — the macrophages might respond differently and the implant coating might stimulate healing rather than scarring or inflammation.1603



Nanomedicine • Volume IIA20

15.2.3 Nanorobot Immunoreactivity
The human immune system is designed to recognize and react

to foreign material that enters the body. Hence the immunoreactiv-
ity of a foreign substance is a key measure of the biocompatibility of
that substance. Before we consider how such reactivities might be
purposely engineered, it is useful to briefly review the broad out-
lines of the human immune system (Section 15.2.3.1). This is fol-
lowed by a discussion of the complement (Section 15.2.3.2) and
antibody (Section 15.2.3.3) systems, including an evaluation of their
potential interactions with medical nanorobots. We conclude with
a brief description of purposeful immunosuppression and tolerization
(Section 15.2.3.4), immune privilege (Section 15.2.3.5), and im-
mune evasion (Section 15.2.3.6), all of which are relevant in
nanomedicine. An analysis of the phagocyte system and its interac-
tions with nanorobots is deferred to Section 15.4.3.

15.2.3.1 Overview of the Human Immune System
The human immune system348-351 consists of two main branches:

1. the natural, inherited, or innate system that is relatively
fast-acting (e.g., responding to challenges in a few minutes),
constituting the nonspecific immune response (Section
15.2.3.1.1); and

2. the acquired, learned, or adaptive system that is relatively
slow-acting (e.g., requiring at least 5-7 days to respond in a pri-
mary infection scenario and 1-3 days for a secondary infection),
constituting the specific immune response (Section 15.2.3.1.2).

15.2.3.1.1 Nonspecific (Innate) Immune Response
The nonspecific-response branch of the immune system is “in-

nate” in the sense that the human body is born with the inherent
ability to recognize certain foreign materials automatically. The in-
nate response occurs to the same extent however many times an
infectious agent is encountered. Besides purely mechanical mecha-
nisms or barriers such as skin and mucous membranes, the
nonspecific-response branch of the immune system has three major
components — complement, phagocytes, and NK (natural killer) cells.

The first component of the nonspecific immune response is
complement (Section 15.2.3.2), a set of ~20 bloodstream proteins
that operate in a functional cascade (with one protein activating the
next protein) to directly identify and destroy microbial invaders.*
These proteins influence the inflammatory process and serve as the
primary mediator in the antigen-antibody reactions of the B-cell
mediated immune response (see below). With just a few exceptions,
proteins of the complement system are designated with the letter
“C” — e.g., C2, C3, C4a, C5, and so forth. Once activated, one of
the main functions of the complement cascade is to assemble a
multi-component biomolecular product called the membrane at-
tack complex (MAC) that renders bacterial cell walls porous, lead-
ing to cell death — the MAC is directly bactericidal.234 The system
is highly regulated and there are counter-regulatory proteins to en-
sure it is not indiscriminately activated.

The second component of the nonspecific immune response is
the phagocytic cells, comprised of monocytes, macrophages (acti-
vated monocytes), and neutrophils (Section 15.4.3.1). For example,
macrophages are tissue-resident large phagocytic white cells equipped
with chemical receptors sensitive to the polysaccharides found in
bacterial cell walls. The receptors enable macrophages to recognize,
then engulf and destroy, these bacteria. Upon encountering an in-
vading microbe that is otherwise invisible to the complement

system, macrophages can also secrete cytokines (Section 7.4.5.1),
soluble mediators such as interleukin-6 (IL-6), α- and β-interferon,
and tumor necrosis factor (TNF) that activate other immune cells.
One of the functions of IL-6 is as a signaling protein that instructs
the liver to secrete a second signaling protein that in turn binds to
mannose residues present on bacterial surfaces. This renders the
microbe visible to the complement system and triggers the comple-
ment cascade. Macrophages also act as antigen-presenting cells
(MHC class II; Section 8.5.2.1). Bloodstream-resident phagocytic
cells such as neutrophils (the predominant leukocyte found in pus)
have receptors for complement and immunoglobulin. Neutrophils
are recruited to the scene of inflammation and assist the macroph-
ages in the digestion of microbial invaders. Basophils, another granu-
locytic white cell, have an important role in nonspecific inflamma-
tion — particularly the release of histamine5926 and other
biochemicals such as IL-4 and IL-135927 that act on blood vessels.
Eosinophils moderate the immune response and are closely associ-
ated with IgE antibodies, parasitic infections (specifically helmin-
thic), antibody-dependent cell-mediated cytotoxicity (ADCC), and
immediate-type hypersensitivity (allergic) reactions.5491 Macroph-
ages also recognize and ingest “self ” cells undergoing apoptosis (Sec-
tion 10.4.1.1) in vivo, protecting tissues from the toxic contents of
dying cells and modulating macrophage regulation of inflamma-
tory and immune responses.5506,5765-5767

The third component of the nonspecific immune response is
the specialized white blood cells called large granular lymphocytes
(LGL) or natural killer (NK) cells.2167-2169 NK cells are granular
lymphocytes slightly larger than B or T cells (Section 15.2.3.1.2)
that can kill some microbes and virus-infected cells, and some types
of tumor cells. The “natural” part of their name indicates that they
are ready to kill their target cells as soon as they are formed361 rather
than requiring the maturation and education process needed by B
cells and T cells (Section 15.2.3.1.2). NK cells kill by inducing
nuclear fragmentation resulting in cell death (apoptosis; Section
10.4.1.1) or by releasing perforin protein which creates holes in the
target cell membrane. NK cells do not directly threaten
diamondoid-based medical nanorobots except possibly during
cytocarriage (Section 9.4.2). In this situation, the apoptotic activity
of NK cells can be prevented by expression of a signal or leader
peptide (derived from the polymorphic classical major histocom-
patibility molecules HLA-A, HLA-B and HLA-C) bound to an
HLA-E class I MHC molecule at the (cytocarriage vehicle) cell sur-
face. This HLA-E molecule interacts with an NK cell-surface lectin
receptor (CD94/NKG2A/B/C) and delivers an inhibitory signal to
the NK cell.2357-2359 The HLA-E molecule is released from
nanorobot stores or manufactured (Chapter 19) onboard.

15.2.3.1.2 Specific (Acquired) Immune Response
The specific-response branch of the immune system is “adap-

tive” in the sense that the human body has the ability to learn to
recognize novel foreign materials that it has never encountered be-
fore. The adaptive response increases in speed, in magnitude, and
in defensive capabilities, after repeated exposure to a particular
macromolecule. The specific-response branch of the immune sys-
tem has two major components — the “humoral” and the
“cell-mediated” responses.

The first component of the specific-response branch, also known
as the humoral response, is the specialized white blood cells called
bone marrow-derived cells, B lymphocytes, or B cells. Each of the
~0.1-1 trillion B cells usually present in the human body352,1756

* Other innate-system antimicrobial peptides are commonly employed by different animal and plant species.2551
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displays on its surface just one type of the ~108-109 possible anti-
gen receptor types.353,354,1764,1765 (~107 different specificities are
thought to exist in a single individual,1756 but combinatorial hu-
man antibody libraries approaching ~1011 in diversity have been
created.1766) Each B cell makes a different receptor protein, so each
B cell recognizes a different foreign molecule. Each B cell has ~105

membrane-bound antibody molecules which correspond to the one
specific antibody that this cell is programmed to produce.1436 If a B
cell detects an intruder via a binding event to its particular receptor
type, then that B cell divides rapidly, making a large number of
clone cells bearing the same one unique receptor type. These cloned
B cells then differentiate into plasma cells (cell lifetime ~1 week1436)
that secrete free versions of the detected receptor type, also known
as immunoglobulins (denoted “Ig”; Section 15.2.3.3) or, more com-
monly, antibodies,* into the bloodstream. These free antibodies bind
to the surface of intruder cells. This makes the intruders visible to
the innate system and allows them to be destroyed by the nonspe-
cific complement/phagocyte system. There are five distinct classes
of immunoglobulins — IgG, IgA, IgM, IgD, and IgE — represent-
ing ~25% of all human plasma proteins (Appendix B). Clones of
the activated B cell line differentiate into memory B cells,356-359

giving rise to germinal centers (specialized structures within lym-
phoid organs) which allow a more rapid response if the same anti-
gen is ever encountered again.

The second component of the specific-response branch, also known
as the cell-mediated response, is the specialized white blood cells called
thymus-derived cells, T lymphocytes, or T cells. T cells serve a variety
of purposes, such as recognizing and killing cells bearing nonself
molecules on their surface, or helping B cells produce antibodies.
Both B and T lymphocytes range from 6-12 microns in diam-
eter.5334-5339 There can be as many as ~1 trillion T cells in the
body.353,360 To maximize the chances of encountering antigen, lym-
phocytes recirculate from blood to lymphoid tissues (Section 8.2.1.3)
and back dozens of times per day — the ~1010 lymphocytes in hu-
man blood have a mean residence time of ~30 minutes in the blood.1763

Each T cell has ~105 molecules of a specific antigen-binding T cell
receptor exposed on its surface.1436 The term CD or “cluster of differ-
entiation” is used to designate surface marker proteins that distin-
guish various T cell subpopulations — including most importantly
the CD4 lymphocytes (mature helper-inducer T cells) and the CD8
lymphocytes (cytotoxic/killer and suppressor T cells). The CD3
polypeptide complex is expressed on the surface of T cells and thy-
mocytes. About 75% of all peripheral blood lymphocytes of normal
individuals are T cells (i.e., ~25% are B cells), of which ~50% are
helper-inducer CD4 T cells and ~25% are suppressor or cytotoxic
CD8 T cells.1756 Many T cell functions are mediated by cytokines
(Table 7.2), most notably the interleukins (IL), interferons (IFN),
tumor necrosis factor (TNF), and granulocyte-macrophage colony
stimulating factor (GM-CSF). Surface markers and life span of a popu-
lation of human T cells equivalent to murine memory T cells have
been demonstrated,362,363 thus the existence of memory T cells in
humans, though once controversial,364 is now well established.365-370

The immune system employs two systems of recognition ele-
ments — soluble antibodies and cell-attached T-cell receptors. Both
are produced by similar types of genetic elements (the immunoglo-
bulin gene superfamily). Opsonization is the process by which soluble

antibodies bind to and coat antigenic particles to mediate destruc-
tion by phagocytosis (Figure 15.8) or complement activation,5491

and can also block the action of proteins required for pathogen in-
vasiveness. Cell-bound T-cell receptors (having binding sites bio-
chemically similar to antibodies) provide protection against intra-
cellular microbes such as viruses and mycobacteria. Such microbes
are shielded from antibodies by the host cell membrane. But nearly
all vertebrate cell types exhibit a sample of peptides on their surface,
derived from the digestion of proteins in their cytosol, which in-
cludes fragments of microbe or virus proteins, if any are present. T
cells use their T-cell receptors to continually scan the surfaces of
cells in order to detect, and then kill, any cells displaying recog-
nized foreign markings.

Both humoral and cell-mediated immune responses require a
signaling step that announces the presence of non-self protein. In
most cases this signaling step is the end result of a sequence of intra-
cellular processes during which a foreign protein is broken down
and processed into short oligopeptides, typically 8-10 amino acids
long. Inside the cell, these antigenic fragments then become associ-
ated with a set of glycoproteins called the major histocompatibility
complex (MHC) molecules (Section 8.5.2.1). The function of the
MHC molecules is to pick up the peptide fragments and convey
them to the cell membrane for the purpose of T-cell recognition
and proliferation, a process called antigen presentation. (Autoim-
mune disease results when self-proteins presented on the MHC are
misrecognized as non-self.)

Peptide fragments derived from endogenous intracellular mi-
crobes are transported to the outside of the cell complexed with
MHC class I molecules (Figure 8.33) where they can then present
antigen to CD8 lymphocytes. Most cells have MHC-I molecules
and the constant sampling of the cytosolic protein population pro-
vides a powerful surveillance mechanism geared to detecting viral
infection or intracellular bacteria. Protection against intracellular
microbes is largely the domain of cell-mediated immunity, although
for several pathogens antibody responses also contribute to host
defense.1760 It would seem that, from the point of view of avoiding
immune attacks on cells in which intracellular cell repair machines
are present, it will generally be important to avoid allowing these
machines to be swept along on the MHC antigen presentation ma-
chinery and presented on the surface of cells.

Peptide fragments derived from exogenous antigens (either free
or complexed with antibody) that have been endocytosed into the
cell are transported to the cell surface and presented to CD4 cells
by MHC class II molecules (Figure 8.34). Class II molecules occur
only in specialized cell types called antigen presenting cells (APCs)
such as B cells, macrophages, and dendritic cells. Peptides presented
by MHC II molecules can activate the appropriate cascade of chemi-
cal processes that lead to antibody formation.** Of course, intracel-
lular nanorobots could load the local MHC population with arti-
factual or manufactured antigens to manipulate the immune sys-
tem response.

Dendritic cells (DCs) are antigen presenting cells scattered
throughout the body, including the various portals of microbial entry,
where they reside in immature form as immunological sensors.2555

They are leukocytes of bone marrow origin.5342 Like lymphocytes,
DCs form subsets differing in phenotype, function, and locale. In

* “Natural” antibodies, produced spontaneously even in organisms raised in sterile environments, are often considered as part of the innate immune system785,786 and may
serve a pathogen-herding function.787 They usually have lower affinity and functional activity than antibodies developed as part of a specific immune response.

** Superantigens are polypeptide toxins secreted by bacteria2243 or produced by viruses2244 that interfere with normal immune function by directly activating T cells in a nonspecific
manner. Superantigens are thought to induce aberrant cell-cell interactions by binding simultaneously to T cell antigen receptors and to MHC class II molecules containing
certain relatively rare peptide fragments.2238-2241 They are believed to be associated with toxic shock,2241,2242 food poisoning,2245 and various autoimmune disorders.2246
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human skin, DCs called Langerhans cells5340-5342 are found in the
epidermis. Interstitial DCs are found in the dermis. In human blood,
one type of immature DC differentiates into mature DCs in re-
sponse to inflammatory stimuli, and another precursor DC responds
to viruses, tumors, and other stimuli by differentiating into mature
plasmacytoid DCs.2556-2559 In mice, other DCs have also been found
in the thymic cortex and T cell areas of secondary lymphoid organs,
in the marginal zones of the spleen, in the subcapsular sinuses of
the lymph nodes, and in the subepithelial dome of Peyer’s patches
(oval masses of lymphoid tissue on the mucous membrane lining
the small intestine).2557-2559

When a microbe invades a tissue, resident immature DCs em-
ploy pattern recognition receptors2560-2565 embedded in their plasma
membrane surface to sense the microbe by recognizing evolution-
arily conserved molecular patterns that are integral to microbial car-
bohydrates, lipids, and nucleic acids.2555 For example, lipopolysac-
charide (LPS) from E. coli is recognized by Toll-like receptor TLR4;
peptidoglycans from Staphylococcus aureus and LPS from
Porphyromonas gingivalis are recognized by TLR2; bacterial flagellin
is recognized by TLR5; and so forth.2561-2564 Once a specific mi-
crobe is detected, physical information about the pathogen is cap-
tured via phagocytosis, endocytosis, or micropinocytosis for soluble
antigens2557 and is relayed to naive T lymphocytes in the draining
lymph nodes. Immature DCs exit the site of infection and migrate
toward the T cell areas of the proximal lymph nodes via the afferent

lymphatics, following rising gradients of 6Ckine and MIP-3β
cytokines expressed in lymphoid organs.2557 During this journey
the DCs mature, losing their antigen-capturing capacities but ac-
quiring the ability to process and display peptide antigens on their
surface via MHC class II molecules for antigen presentation to
T-lymphocytes, as previously described.

15.2.3.2 Complement Activation
The complement system1613,1616-1624,2331,2539 consists of a series

of ~20 plasma and cell membrane proteins (e.g., named C1-C9,
etc.) synthesized mainly by the liver and certain cells of the im-
mune system (e.g., macrophages). These proteins interact in a se-
quential or regulatory manner, leading (1) to the general promo-
tion of inflammatory reaction, including mediating vascular re-
sponses such as histamine release and recruiting phagocytic leuko-
cytes via chemotaxis, and (2) to the lysis of certain kinds of cells and
susceptible microorganisms following attachment of the membrane
attack complex (MAC) to their plasma membranes (Figure 15.6).
The targets of this process may be bacteria, virus-infected human
cells, mycoplasmas, spirochetes, protozoa, or tumor cells.1620 The
complement system may follow two different activation pathways*
— the classical pathway or the alternative pathway — either of which
can initiate the terminal sequence of complement activation which
involves assembly of the MAC.

* A third “lectin pathway” for complement activation via foreign carbohydrates on microbial surfaces, leading to cell lysis, has recently been discovered,1608-1613,5343 with activity
similar to that of the classical pathway1606 but apparently predating it evolutionarily.1607 As with other pathways, the lectin pathway can be inhibited.5344-5347

Fig. 15.6. The complement system (modified from Spira1620 and from Trowbridge and Emiling2331)
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The classical pathway of the complement system is activated by
antigen-antibody complexes that have formed on the surface of a
target cell. Complement factor C1 (900 kD) binds to the Fc (Sec-
tion 15.2.3.3) portion of either a single antibody molecule of IgM
or to a pair of antibody molecules IgG1, IgG2, or IgG3, in apposi-
tion on the surface of the antigen. C1 is a macromolecule com-
posed of C1q (410 kD) and doublets of C1r (85 kD) and C1s (85
kD) linked by Ca++ ions. The C1q component binds to the anti-
body,* activating C1r and C1s to form  which itself has enzy-
matic activity to cleave C4 (210 kD). The cleavage of C4 releases
the C4a (6 kD) fragment into solution and attaches the larger C4b
fragment at the site, making the  complex, which can now
bind C2 (110 kD). Once bound (the process is complete in 5-10
min1617), C2 can be cleaved by the  complex (or other proteolytic
enzymes like trypsin or chymotrypsin). This releases the smaller
C2b (35 kD) fragment into solution and leaves the larger C2a (75
kD) fragment attached at the site, making the  complex.

The  complex is the first of the two forms of C3 convertase.
The alternative pathway of the complement system is of greater

importance in the initial defense against infection, because it does
not depend solely upon the time-consuming production of specific
antibody.2331 It may be activated by contact with the Fab (Section
15.2.3.3) portions of aggregated IgA or IgE, or in some cases the
F(ab’)2 portion of IgG antibodies complexed with antigen on the
surface of a target cell. More importantly, the alternative pathway
may be activated in the absence of antibody complexes by certain
foreign molecules such as repeating sugars or proteins, as, for ex-
ample, plasmin (see Figure 15.10), bacterial lipopolysaccharide
(LPS), yeast zymogen, trypanosomes, plant (inulin) polysaccharides,
polyanionic substrates (e.g., dextran sulfate), cobra venom factor,
heterologous erythrocytes, carbohydrates (e.g., agarose), and many
other materials. These substances activate factor P (properdin, 220
kD), activating in turn a C3-convertase amplification loop. In this
amplification loop, pre-existing C3b (180 kD) fragments opsonize**
(attach to) the target cell. Factor B (93 kD) reversibly binds to a
receptor on the surface-bound C3b fragment. Factor D (an enzyme
circulating at low concentration in active form, 22 kD1618,1675-1677)
cleaves the bound factor B, releasing Ba (30 kD) into solution and
leaving attached the larger Bb (63 kD) segment. This makes the

 complex which can cleave many more C3 (195 kD) mol-
ecules, some of which bind covalently to the activating surface.
However, the  enzyme dissociates fairly rapidly unless it is

stabilized by the binding of activated factor P, creating the 

complex.*** The  complex is the second of the two forms
of C3 convertase, and completes the amplification loop, resulting
in the binding of many more molecules of C3b to the same surface.

The terminal sequence of the complement system actually builds
the MAC. This process is triggered when either form of C3
convertase accumulates on the target surface. C3 convertase has
specific enzymatic activity to cleave C3, releasing C3a (9 kD) into

solution and attaching the larger C3b fragment to the C3 convertase
molecule at the site, making C5 convertase. C5 convertase has spe-
cific enzymatic activity to cleave C5 (190 kD), releasing both the
smaller C5a (11 kD) fragment (a 74 amino acid glycopolypeptide)
and the C5b (180 kD) fragment into solution.**** The subsequent
assembly of the MAC is nonenzymatic. Fluid-phase C5b binds first
C6 (120 kD) and then C7 (110 kD), forming a stable C5b67 com-
plex. The binding of C7 converts the complex from a hydrophilic
to a hydrophobic state, which then preferentially inserts the com-
plex into lipid bilayer — including other cell membranes in the
immediate vicinity of the primary surface on which complement
activation is focused. C8 (152 kD) then binds to the C5b67 com-
plex at a site on C5b, forming C5b678 as it inserts itself into the
lipid bilayer membrane. Finally, the C5b678 complex induces C9
polymerization1627 into the form of a hollow tubular structure, with
12-18 C9 monomers (69 kD) attached to each C5b678 com-
plex,1613,1629 completing the MAC. Poly(C9) is a cylinder with in-
ner and outer diameters of 9 nm and 15 nm respectively, tube length
15 nm, rimmed by a 4.6 nm thick torus with inner and outer diam-
eters of 11 nm and 22 nm on one end.1628,1629

The MAC,1613-1616 a dimer of the ~1650 kD1630 C5b6789 com-
plex, makes a single transmembrane channel through which water
and electrolytes may pass,1631 resulting in an impairment of osmotic
regulation and subsequent cytolysis.1632 This is similar to the action
of mammalian cytolytic T lymphocytes that can kill targeted cells
by inserting into their membranes a 67-kD pore-forming molecule
called perforin1633-1635 which has structural homology to C9.1634,1638

Similar molecules are found in the granules of eosinophils,1639 vari-
ous bacterial pathogens,1635-1637 and in the protozoan parasite Try-
panosoma cruzi.1640 Complement-mediated lysis has been shown
for many kinds of cells including erythrocytes, platelets, lympho-
cytes, bacteria, and viruses possessing a lipoprotein envelope.1617 S.
Flitman notes that flares of autoimmune diseases like lupus pro-
duce clinically detectable drops in C3 and C4 levels.

Despite being targeted principally against microbial intruders,
complement is relevant to nanorobotic nanomedicine because sev-
eral possible nanorobot building materials are already known to in-
teract with components of the complement system. For example,
graphite adsorbs C1q and C3 (Section 15.3.3.3) and Teflon acti-
vates C5a (Section 15.3.4.3). Alumina ceramic (sapphire) has not
yet been found to activate complement613 or complement recep-
tors,1641 but some fullerenes can induce the production of specific
IgG antibodies724,725 which could enable complement activation
along either pathway. Diamond may adsorb some C3 like many
other hydrophobic surfaces (Section 15.3.1.1), though diamond is
generally considered noninflammatory relative to the complement
system. In one experiment,1642 diamond particles caused insignifi-
cant complement activation, unlike crystals of monosodium urate
monohydrate, hydroxyapatite, brushite, and calcium pyrophosphate
dihydrate, and particles of blackthorn, all of which demonstrated
activation of C3 via the alternative pathway as determined by
immunofixation following electrophoretic separation of C3 and its

* A variety of other substances interact directly with C1 and C1q,1626 including negatively-charged polyanionic substances which form a complex with cationic C1q, the most
basic serum protein with an isoelectric point of ~pH 9.2. Direct binding of C1q has been shown for polynucleotides, heparin, dextran sulfate, condroitin sulfate, cardiolipin,
LPS, the envelopes of some RNA viruses,1617 certain microorganisms and some retroviruses and mycoplasmas;1618 C1q can be involved in viral lysis initiation.1620

** Opsonins are substances that coat foreign antigens, making those antigens more susceptible to recognition by macrophages and other leukocytes and thus increasing
phagocytosis of the organism or object displaying those foreign antigens. In effect, opsonins promote cytocarriage (Section 9.4.7) by macrophages. The two main opsonins
in human blood are complement and antibodies.

*** The  enzyme can also be stabilized by C3 nephritic factor, an IgG autoantibody directed against an antigen of  .1620

**** C5b also appears to enhance the phagocytosis of yeast.1620



Nanomedicine • Volume IIA24

activation products.* Complement activation at the site of surgical
trauma has also been reported during cardiac surgery.4953-4960

There are three principal physiological consequences of comple-
ment activation,1613 all of which are directly relevant to
nanomedicine. Nanorobots could potentially activate complement
causing (1) inappropriate cell death, (2) release of vasoactive sub-
stances and shock, or (3) stimulation of an autoimmune-type re-
sponse, as follows:

First, the cytolytic MAC is assembled on the target surface. This
may not be a direct threat to hard nanorobot targets, whose exteri-
ors typically will be dissimilar to those of foreign cells or viruses and
may be made of tough materials impossible for the MAC to breach.
However, the MAC can attack nearby native cells as well as foreign
cells (e.g., in cell transplants), causing undesirable cellular necro-
sis.234 Native blood cells have some protection against such attack.
For instance, an average of 25,000 MACs can be assembled on a
neutrophil surface without lysis because MACs are rapidly shed with
a clearance half-life of ~2 minutes at 37˚C1692 — about two-thirds
of the MACs are ejected from the cell in plasma membrane vesicles
via an exocytic process, and one-third are removed via endocytic
internalization and proteolysis. Similar processes are observed on
platelets1693 and other native cell types.1694,1695

Second, the many short peptide cleavage fragments resulting from
the sequential complement activation chain may induce potentially
harmful side effects. These effects may include: (1) local inflamma-
tion (Section 15.2.4) (e.g., via C2b, or C2 kinin after plasmin modi-
fication), (2) inhibition of the growth of antigen-antibody complexes
(e.g., via C3a),234,5928 and (3) anaphylactic reaction (Section
15.2.6.1) to C3a and C5a (and to a lesser extent C4a) which are
themselves potent anaphylatoxins that bind to mast cells, degranulate
mast cells and basophils, and induce release of vasoactive substances
like histamine that mediate vasodilation, increased vascular perme-
ability, and contraction of bronchial smooth muscle.

Third, complement cleavage fragments also include chemotac-
tic factors such as C3a, C5a, and soluble C5b67 complex. These
factors attract neutrophils, macrophages, and other phagocytic cells
to the vicinity, thus increasing the opportunity for phagocytic up-
take of nanorobots by these protective native cells. Macrophages
display receptors** for C3b on their surfaces, enhancing uptake of
non-self particles bound to C3b. Soluble C5b67 released into solu-
tion phase as a result of either the presence or the activities of medi-
cal nanorobots could enter the membranes of nearby uninvolved
cells, possibly leading, eventually, to cytolysis of those nearby cells.

The ideal medical nanorobot design would include an exterior
surface that does not activate complement.5825 It is possible that a
pure diamond or sapphire surface will not activate complement.
However, nanorobot exteriors may need to display sorboregulatory
or adhesioregulatory (Section 15.2.2.4), anti-inflammatory (Section
15.2.4), or antithrombotic (Section 15.2.5) ligands whose comple-
ment activation potentials have not yet been widely studied. One
approach might be for nanorobots to mimic autologous human
self-surfaces,1613,1625 that contain molecules of CR1 (a natural C3b
receptor) and/or membrane cofactor protein (MCP)1685 that bind
to C3b and also promote the preferential binding of factor H (see
below) rather than factor B to C3b.1618 This would effectively limit
C3 deposition and prevent the formation of stable C3 convertase

enzymes. By comparison, non-self-surfaces allow the rapid deposi-
tion of many molecules of C3.1618 The additional presence of decay
accelerating factor (DAF)1643,1684 on self-surfaces, along with CR1,
is known to inhibit the association between C3b and B, and to
promote dissociation of the  complex.1618 Membrane sialic
acid also appears to be one of the carbohydrate components pro-
tecting autologous cell membranes from amplified C3b deposi-
tion.1618 Malignant tumor cells are observed to use membrane-bound
complement regulatory proteins to evade complement-mediated in-
jury.1644

Other complement-resistant surfaces have been investigated. For
instance, polymers containing phosphorylcholine polar groups can
achieve a marked reduction in complement activation as measured
using radioimmunoassay for C3a.578 Another investigation1645 of
biomaterial-mediated complement activation used an animal im-
plantation model and gold surfaces bearing various thiol-linked
functionalities. This study found that mercaptoglycerol- and
mercaptoethanol-bearing surfaces engendered the strongest inflam-
matory responses (as reflected by the accumulation of large num-
bers of adherent neutrophils and monocytes/macrophages) whereas
L-cysteine-coated surfaces caused only minor inflammatory re-
sponses. Both glutathione-modified and untreated gold implants
attracted minimal numbers of inflammatory cells.1645 The
mercaptoglycerol surface — which has hydroxyl groups (alternative
pathway) and high IgG affinity (classical pathway) — caused pro-
nounced production of C3b and C5b6789 in serum and increased
C3 deposition on the surface. By comparison, bare gold surface and
mercaptopropionic acid surface caused very little complement acti-
vation.1646 Particle surface coatings of PLA-PEO diblock copoly-
mer exceeding ~0.20 molecules/nm2 significantly reduce comple-
ment opsonization of PLA-PEO nanoparticles.2487 Acceptable lev-
els of complement activity reduction may be determined experi-
mentally. Generally, surfaces with negative or neutral charge do not
activate complement, as compared to positively charged surfaces.

If complement-active surfaces cannot be avoided, active
nanorobots may interrupt the complement activation process in their
vicinity via controlled emissions of one or more of the >11 activa-
tion control proteins,1613,1622,1647 by depleting essential factors, or
by other means, as may be appropriate for the particular mission
and nanorobot design. Complement is continuously activated in
the body, both in health and in disease — endothelia, circulating
cells, and other plasma-exposed tissues are under constant attack.1613

To prevent significant damage to self-cells, the complement system
must be tightly regulated.

On the classical pathway, human C1 esterase inhibitor (C1
INH)1620 or C1 inactivator (C1 INA)1648 is a naturally-occurring
heat- and acid-labile serum α2-neuraminoglycoprotein (MW =
109,000 daltons) that stoichiometrically binds  and inhibits not
only C1r and C1s, but also plasma kallikrein, plasmin, trypsin, chy-
motrypsin, activated Hageman factor (clotting factor XIIa), and ac-
tivated thromboplastin antecedent (factor XIa).1617 Normal plasma
concentrations of C1 are ~6 x 10-5 gm/cm3 (~360 molecules/mi-
cron3) in human blood (Appendix B). A release rate of ~103 mol-
ecules/sec (~0.0002 micron3/sec) would maintain an equal con-
centration of C1 INH in a 1-nm skin layer around a 1-micron
spherical nanorobot washed by a 1 mm/sec capillary blood flow.

* Urate crystals directly activate2327,2328 and amplify2322 the classical complement pathway, induce alternate pathway activation when the classical pathway is inhibited,1648

and promote C5a production via assembly of a stable C5a convertase on the crystal surface.2522

** Four commonly known receptors for C3b and C4b are CR1, CR2, CR3, and CR4, some or all of which are found on B lymphocytes, epithelial cells of cervix and nasopharynx,
erythrocytes, follicular dendritic cells, glomerular epithelial cells, macrophages, monocytes, neutrophils, and NK cells.1618 Bacteria opsonized with antibody and complement
are often observed adhering to human red cells.1618
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Natural serum also contains a glycoprotein called C4bp or C4b-bp
(540 kD)1649 that has a specific binding affinity for C4b (e.g., it
competes with C2a for binding to C4b) and is the control protein
for the classical C3 convertase.

On the alternative pathway, factor H (β1H or C3b INA ac-
celerator, 150 kD)1650 can stabilize C3b and prevent its interac-
tion with factor B. The C3b-factor H complex is then cleaved
by factor I (C3b/C4b inactivator or C3 INA, 93 kD), for which
MCP (membrane cofactor protein) is a necessary cofactor.1620,1685

DAF (see above) is a surface-bound glycoprotein that accelerates
the decay of both classical and alternative pathway C3
convertases.1620,1643,1684 Nanorobots could also employ molecu-
lar sorting rotors (Section 3.4.2) to deplete1677-1679 local sup-
plies of activated factor D (MW = 22,000 daltons, serum conc.
~ 1.5 x 10-6 gm/cm3 or ~40 molecules/micron3),1617,1677 or to
deactivate local factor D molecules using a catch-and-release
process. (While it might appear harmful to inactivate comple-
ment in a septic patient, this inactivation is temporary and would
occur only as a part of a comprehensive nanorobotic-based
anti-infective treatment.) A similar process is employed by neu-
trophils to deactivate anaphylatoxins. For instance, neutrophil
surfaces include 50,000-113,000 receptors (C5aR, MW ~ 40-60
kD) for C5a.1618 Following receptor binding, the C5a is inter-
nalized and degraded to inactive peptide fragments.1618 A re-
lated strategy is to release solubilized complement receptors to
deplete complement components.1655

Farther downstream, plasma enzyme carboxypeptidase N (CPN)
or anaphylatoxin inactivator (AI) (280 kD) abolishes the activities
of C3a and C5a by removing the C-terminal arginine from both
molecules.1617 The 56-kD serratial protease eliminates C5a chemo-
tactic activity at a dose of 1 µg/cm3 (~10 molecules/micron3).1651

Still farther downstream, S-protein (vitronectin, 83 kD) binds to
fluid-phase C5b67, preventing its insertion into lipid bilayers.1618

The regulatory glycoprotein clusterin (~80 kD) serves a similar func-
tion1686-1689 and is a more active inhibitor on a molar basis, but the
effects of the two inhibitors are additive.1686 Autologous cells also
have two MAC-inhibiting proteins, called homologous restriction
factor (HRF C8-binding protein, 65 kD)1652 and 20-kD glycopro-
tein CD59,1653 which protect them against lysis by the MAC.1618

CD59 is present on all circulating cells, endothelia, epithelia, and
in most organs1613 — erythrocytes display ~25,000 copies/cell1690

and many nucleated cell types express much more. But interrupting
the cascade this far downstream cannot prevent the adverse inflamma-
tory and chemotactic effects of the upstream peptide cleavage fragments.

Control protein-oriented strategies have already been pursued
experimentally. In one study,1654 the modification of reactive sur-
face hydroxyl groups on regenerated cellulose with various
dicarboxylic-acid anhydrides was found to significantly limit the
complement-activating potential of these materials. Maleic anhy-
dride displayed the most dramatic and consistent diminution of
complement activation compared to unmodified cellulose (i.e.,
0-10% of control values for C3b deposition and C3a/C5a produc-
tion1654). This maleated derivative was found to facilitate the factor
H control of C3 convertase and C5 convertase activity, thus limit-
ing complement activation and the production of other inflamma-
tory mediators via the normal regulatory mechanisms. A chimeric
molecule combining DAF and CD59 retained the inhibitory ac-
tivities of both component molecules.1709

Monoclonal antibodies have been raised against C4,1710

C5,1711,1712 C5a1713,1714 and C5a receptor,1715 C6,1716 and C8,1711

and peptide antagonists to C5a receptor have been tested in
vitro.1717-1721 A variety of therapeutic complement inhibitors are

under active investigation,1655-1657,5348 including an RNA
aptamer5492 inhibitor of C5.1722 Heparin also inhibits complement
activation2485 but would not be a particularly viable option here
due to its principal activity as a potent anticoagulant.

As might be expected, bacteria have evolved many techniques of
evading complement activation. Some of these, in principle, could
be mimicked by medical nanorobots. (Bacteria that are not killed
and lysed in serum by the complement MAC are said to be serum
resistant. Many of the Gram-negative bacteria that cause systemic
infections (e.g., septicemia) are serum resistant.) For example:

1. Brucella abortus bacteria may use O-antigen to shield outer
membrane proteins from C1q binding;1671

2. the bacterial capsule of Neisseria meningitidis contains sialic acid
(a common component of host cell glycoproteins) which inhib-
its C3b opsonization and inhibits activation of the alternative
pathway;1658-1661

3. Helicobacter pylori urease is believed to degrade bound C3b, re-
ducing opsonization;1672

4. YadA protein produced by Yersinia enterocolitica binds factor
H, reducing C3b deposition on the bacterial surface probably
by rapid inactivation of C3b;1668

5. Neisseria meningitidis and Haemophilus influenzae (which cause
bacterial meningitis) can covalently attach sialic acid residues to
the O-specific sugar portion of LPS, preventing the formation
of C3 convertase and thus imparting resistance to MAC;1437

6. lipooligosaccharide sialylation of serum-sensitive N. gonococci
in vivo converts them to serum-resistant;1659,1662

7. Pseudomonas aeruginosa produces extracellular elastase and
alkaline protease enzymes that inactivate components of
complement;1663-1666

8. a protease produced by Bacteroides gingivalis inactivates C3;1667

9. streptococcal M protein binds factor H, inhibiting complement
activation;1669,2517

10. group A and B streptococci express on their membranes an en-
zyme that cleaves 6 amino acids from C5a, rendering this agent
inactive;1691

11. 17-kD outer-membrane protein Rck promotes resistance to
complement killing of Salmonella typhimurium by interfering
with C9 polymerization;1670

12. some bacteria with LPS molecules having long intact O-antigen
side-chains can prevent effective complement killing by hold-
ing the MAC complex too far from the vulnerable outer mem-
brane to be effective.1673,1674

Numerous viruses have acquired host complement regulators,
especially CD59,1696-1702 glycoprotein C (gC)2344 which is found
in the envelopes of herpesviruses HSV-1 and HSV-2 that binds to
C3b, and glycoprotein III (gIII)2345 which is found on pseudora-
bies virus and serves a similar function. Several parasites have been
reported which express surface molecules that inhibit MAC forma-
tion, particularly Schistosoma mansoni,1703-1705 Trypanosoma cruzi,1706

and Entamoeba histolytica.1707,1708

15.2.3.3 Immunoglobulins (Antibodies)
The “humoral” (B-lymphocyte) branch of the specific immune

system (Section 15.2.3.1.2) responds to the presence of different



Nanomedicine • Volume IIA26

antigens (such as foreign molecules) in the body by manufacturing
large numbers of complementary antibodies capable of binding to
those antigens, then releasing these antibodies into the bloodstream
after a delay of up to 4-10 days. An antibody molecule has two*
principal functions: (1) to recognize and bind to an antigen, and
(2) to assist in the destruction and elimination of that antigen.353

This dichotomy of function is reflected in structure because every
antibody molecule has discrete domains that participate in one of
these two functions — a variable region to enable recognition, and
an effector (“common”) region to enable elimination. Specific anti-
bodies can be made against virtually any foreign chemical group
(but see discussion of immunogens in Section 15.3.7).

Antibodies are a class of glycoproteins called immunoglobulins,
abbreviated Ig, which collectively comprise ~25% of total noncel-
lular blood plasma protein. Each monomeric antibody molecule
has an approximate molecular weight of 150-190 kD,1753 and there
are ~1020 antibody molecules in every adult human body.1767 In
general, antibodies can be found: (1) inside cytoplasmic
membrane-bound compartments such as ER (endoplasmic reticu-
lum) and Golgi, (2) on the surface of B-cells, (3) in blood plasma,
(4) in the interstitial fluid of tissues where secreted antibodies from
B-cells accumulate, (5) in secretory fluids such as mucus and breast
milk into which certain types of antibody molecules are specifically
transported, and (6) on the surface of certain immune effector cells
such as mononuclear phagocytes, NK cells, and mast cells, which
do not synthesize antibody but have specific receptors for binding
antibody molecules.5491

The most common human antibody molecules consist of two
identical ~50-70 kD “heavy (H) chains” that are noncovalently
joined in the lower half (the “constant,” “effector” or “Fc” region)
and separated in the upper half (the “antigen-binding” or “Fab”
region), forming a “Y” shape (Figure 15.7). Each heavy chain is
~446 amino acids long,1765 and has a hinge region of 10-60 amino
acids near the middle, allowing the two upper arms of the Y to
swing and rotate relatively freely. Two identical ~23 kD “light (L)
chains” are attached to the two heavy chain upper arms, one per
arm, with each L chain ~214 amino acids long (Figure 15.7). The L
chains and H chains are synthesized as separate molecules, then
assembled into mature Ig molecules inside the B cell or plasma cell,
at production rates up to 1000-3000 Ig molecules/sec-cell.1754,1755

The top halves of each upper arm on each chain are designated
as the variable (VL and VH) domains. These domains are ~117 amino
acids in length and have sequences that differ from other antibody
molecules, enabling the binding of a specific antigen and allowing
molecular recognition to occur. Antibody specificity for antigen
varies for different epitopes (active binding regions on antigens)
and is somewhat degenerate — that is, a given antibody can react
with more than one epitope, provided these epitopes are closely
related structurally. A given antigen may contain several unrelated
epitopes; however, an antibody cannot have two different antigenic
binding sites.

Each clone of antibody-producing cells makes a unique anti-
body. The variable domains from different humans also contain
unique allotypic amino acid sequences. But each variable domain
also includes 3 light-chain “hypervariable” regions and 3 heavy-chain
“hypervariable” regions5491 where most of the epitope-specific se-
quence variation occurs. Each of these widely separated hypervariable
regions consists of only 5-10 (or in one case 15) contiguous amino
acids, so most of the variability in both L and H chains is restricted
to about 15-30 amino acids per chain. Note that the variable

domains are not simple linear sequences of amino acids, but rather
form globular regions with secondary and tertiary structure in or-
der to effect binding of specific antigens.1753 The antigen binding
sites are pockets formed when the hypervariable regions fold into
close proximity, producing a 3D structure with a surface
complementary to the 3D surface of the bound antigen.5491 Anti-
body configurations are produced by somatic recombination of ~78
light-chain and ~84 heavy-chain gene segments,1758 which, along
with other sources of variability, allow for up to ~109 chemically

* In late 2002, a possible third function was reported: evidence that antibodies can directly catalyze the production of highly active forms of oxygen (likely including ozone)
that may not only kill bacterial pathogens directly but might also promote inflammatory and other immune responses.6018

Fig. 15.7. Simplified model of a human IgG antibody molecule,
showing the basic 4-chain structure (modified and redrawn from
Harfenist and Murray1753 and from Stryer1765).
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distinct antibody receptor specificities,353,354 although only ~107

specificities are found in a single individual.1756

The remainder of each chain is designated as constant (CL and
CH) domain of several types, which varies relatively little among
immunoglobulin molecules of similar class (isotype) and thus de-
termines the class of antibody. The Fc or effector region of each
molecule can be recognized by complementary antibody receptors
present on the outer surface of monocytes, neutrophils, eosinophils,
NK cells and macrophages (IgG1 and IgG3 only). This permits
phagocytic elimination of the antibody-bound antigen on, say, a
bacterial outer membrane (Figure 15.8). Because each antibody
molecule has two or more antigen binding sites (Figure 15.9), anti-
gens can be crosslinked by antibodies into chains, lattices, and net-
works, forming immune complexes that facilitate phagocytosis and
complement activation.* The formation of immune complexes on
the surface of a biochemically active antigen can block its binding
site, thus inhibiting its biological activity.

There are 5 classes of immunoglobulin molecules:353,1753,1756-1760

Immunoglobulin G (IgG) is the most abundant antibody in the
blood, as well as the most common antibody produced in late pri-
mary and in secondary immune responses. IgG is a 150 kD mono-
mer (~76% of total serum Ig, or ~13.5 mg/ml) with a half-life of ~3
weeks. It is also distributed in extracellular fluid and is present in
milk, and maternal IgG is the only Ig that normally crosses the
placenta. IgG binds to the surface of somatic and microbial cells,
which allows those cells to be phagocytosed or killed by cytotoxic
cells (Figure 15.8) — along with IgM, IgG is the primary activator

of the complement system. IgG also binds complement via an Fc
receptor present in the constant region of the heavy chain. S. Flitman
notes that only IgG crosses the blood-brain barrier (0.1% of all IgG
is in the CNS compartment at all times.) There are four subtypes
with differing activities and concentrations: IgG1 (~9 mg/ml), IgG2
(~3 mg/ml), IgG3 (~1 mg/ml), and IgG4 (~0.5 mg/ml).

Immunoglobulin A (IgA) is the most important class of anti-
body found in secretions such as tears, sweat, saliva, colostrum and
breast milk, and in mucus secretions of the bronchial, gastrointesti-
nal and urogenital tracts, where it is present as “secretory IgA”, a
335 kD dimer consisting of two Y-shaped units linked together at
the foot of each Y by a transverse 15-kD “J chain”. A 70-kD polypep-
tide called secretory component is attached to the Fc portion after
the dimer has been endocytosed into the lumen of secretory tissue,
so a ~400 kD complex is normally found in secretions with a half-life
of ~6 days. Secretory IgA plays an important role in host defense
against viral and bacterial infections by binding to microbes and
thus blocking their attachment and transport across mucosa, and

* The reactions of antibody with multivalent insoluble particulate antigens results in the crosslinking of the various antigen particles by the antibodies, eventually producing
clumping or agglutination of the antigen particles by the antibodies1760 — the basis for the standard agglutination test.

Fig. 15.8. Phagocytosis of a bacterium coated with immunoglobulin
IgG molecules (modified and redrawn from Becker and Deamer353).

Fig. 15.9. Schematic illustration of human immunoglobulin mol-
ecules (modified and redrawn from Harfenist and Murray1753).
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provides passive immunity to breast-fed babies. “Serum IgA”, a
simple 160 kD Ig monomer, is the second most common Ig in the
blood, constituting ~15% of serum Ig (~2.7 mg/ml). There are two
subtypes: IgA1 and IgA2.

Immunoglobulin M (IgM) is the first class of antibody to be
produced during B cell development. IgM is also the major class of
antibody secreted first into the bloodstream during a primary im-
mune response. IgM is found mainly in the intravascular compart-
ment and on B-cell surfaces. It is normally absent from organs and
tissues, and usually doesn’t cross the placenta. Carbohydrate anti-
gens such as blood group substances stimulate IgM, and IgM effi-
ciently activates the complement system, facilitating the death of
invading microbes. (IgM, IgG1, IgG2, and IgG3 are
complement-fixing antibodies; the rest of the Ig’s are
non-complement-fixing antibodies.) Membrane-bound IgM is the
usual ~175 kD Y-shaped monomer, hydrophobic at one end to re-
main anchored in cell membrane where it serves as a surface recep-
tor. Serum IgM molecules are soluble (hydrophilic) pentamers bound
together by disulfide bridges plus a 15-kD J chain, with total mo-
lecular weight of ~900 kD, constituting ~8% of all serum Ig (~1.5
mg/ml) with a half-life of ~5 days.

Immunoglobulin D (IgD) is a monomeric 180 kD antibody very
prominent on mature B-cell surfaces where it is co-expressed with
IgM. But IgD is secreted by very few B cells, hence constitutes only
~0.2% of all serum Ig (~0.03 mg/ml) with a half-life of ~3 days.
IgD functions as an antigen receptor optimized to efficiently re-
cruit B cells into antigen-driven responses,1761 and can substitute
for IgM functions.1762 Expression of membrane IgD appears to cor-
relate with the elimination of B cells having the capacity to generate
self-reactive antibodies, so the major biologic significance of IgD
may be the silencing of autoreactive B cells during development.1760

Immunoglobulin E (IgE) is a monomeric 190 kD antibody that
constitutes only ~0.003% of all serum Ig (~0.0005 mg/ml) with a
half-life of ~2 days. IgE is important in allergic disease because it
binds to the surface of mast cells and basophils. The capacity of IgE
to trigger inflammatory reactions, specifically with eosinophils, is
also beneficial in the clearance of extracellular parasitic infections.
In the presence of specific antigen which ligates (cross-links) two
adjacent surface-bound IgE molecules, IgE induces the cell to re-
lease granules containing vasoactive amines (e.g., histamine and sero-
tonin) and various allergic-response molecules including leukotrienes,
prostaglandins, platelet activating factor, proteases and cytokines, re-
sulting in bronchospasm, vasodilation, smooth muscle contraction,
and chemoattraction of other inflammatory and immune cells.

No covalent bonds are formed during the interaction between
antibody and epitope (the specific antibody binding portion of an
antigen or immunogenic macromolecule).1760 Binding forces are
relatively weak, consisting mainly of van der Waals, electrostatic,
and hydrophobic forces (Section 3.5.1), all of which require a very
close proximity between the interacting moieties that is often com-
pared to a lock and key. The low binding energies allow
antigen-antibody complexes to be readily dissociated by low or high
pH, by high salt concentration, or by chaotropic ions such as cya-
nides that interfere with the hydrogen bonding of water molecules.1760

Can the human immune system recognize medical nanorobots?
The answer may depend largely upon the composition of the
nanorobot exterior surfaces. Pure diamond is generally considered
nonimmunogenic — e.g., chemical vapor deposition (CVD) dia-
mond coatings for artificial joints are said to have “low immunore-
activity”,535 and as of 2002 there were no reports in the literature of
antibodies having been raised to diamond. Even low molecular
weight adamantane-based derivatives yield inherently non-antigenic

antiviral drugs, though when incorporated into dipeptide gels these
drugs can induce the production of high-titer specific antibodies in
rabbits.5561 Other adamantane derivatives such as rimantadine
interfere with and suppress the generation of cellular immune
responses.5562

As for nondiamond carbon materials, graphite-based
endoprostheses elicit no immunological reactions.820 Carbon par-
ticles in India ink induce a reaction to human serum IgG only if the
particles are pretreated with staphylococcal protein A.863 On the
other hand, carbon black can have a significant adjuvant effect on
the systemic specific IgE response to allergen (ovalbumin) in mice.867

Solubilized (derivatized) C60 and C70 fullerenes can induce the pro-
duction of specific antibodies,724,725,2387-2389 usually by interaction
with the combining sites of IgG.725 It is speculated that highly hy-
drophobic pure fullerenes would be recognized by antibodies with
hydrophobic amino acids in their binding sites725,2164 or would in-
teract with donor -NH2

914 and -SH915 groups. There are several
reports of antibodies being raised to single-walled carbon
nanotubes.2164,2385-2387,4630 For example, antibodies raised to C60
in mice strongly bind to single-walled nanotubes.2386 Computer
simulations suggest that it may be possible to build antibodies that
selectively bind to nanotubes of a specific diameter or chirality.2164

As for noncarbon materials, pure sapphire appears reasonably
nonimmunogenic, although similar hydrophilic surfaces do adsorb
immunoglobulin IgG.543 Adsorption-induced denaturation of im-
munoglobulin G (IgG) on Teflon doesn’t lead to complete unfold-
ing into an extended polypeptide chain, but leaves a significant part
of the IgG molecule (the Fc fragment) in a globular form.1336 Crys-
talline silicon,1769 silica ceramic,1770 PTFE membrane1771 and
Teflon1772 immunoisolation microcapsules appear to be
nonimmunogenic during extended periods of implantation. Vari-
ous biological materials appear immunologically inert, such as hy-
droxyapatite.1834

However, concerted experimental searches for antibodies to
diamondoid materials have yet to be undertaken, and experimental
failures rarely find their way into the literature. Immunologists usu-
ally work on the assumption that the available antibody repertoire
is diverse enough to ensure the production of antibodies to virtually
any potentially antigenic molecule1768 (but see Section 15.3.6).
Izhaky and Pecht724 suggest that since fullerenes (and other
diamondoid materials) are highly ordered and symmetric molecules
for which scant experimental data exists, it might be useful to com-
pare the ability of vertebrate immune systems to respond to analo-
gous non-diamondoid water-insoluble highly-ordered antigens.

For example, water-insoluble crystals introduced into experimen-
tal animals are found to be treated as antigens,5035 inducing specific
antibodies. Kessler et al1774 raised monoclonal antibodies (MAbs)
specific for crystals of 1,4-dinitrobenzene having well-defined
molecular-level structures. These antibodies were so specific they
would not bind to the same molecule when it was conjugated to a
protein carrier. Antibody binding sites typically span a contact area
of 6-9 nm2,1775,1776 so an antibody can bind to arrays of 5-20 mol-
ecules exposed at the crystal surface724 like an artificial semaphore
presentation array (Section 5.3.6). IgG antibodies isolated from the
serum of rabbits injected with crystals of monosodium urate mono-
hydrate or magnesium urate octahydrate evidently bear in their bind-
ing sites an imprint of the crystal surface structure because they can
act as nucleating templates for crystal formation in vitro with ex-
tremely low cross-reactivity, despite the similar molecular and struc-
tural characteristics of the two crystals.1777 Antibody binding to
monosodium urate crystals has been known for decades5037-5039 and
viruses have been engineered with a specific recognition moiety for
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ZnS nanocrystals used as quantum dots.5040 Interestingly, antibod-
ies specific to in vivo water-ice crystals have even been reported.1773

Like antigens with ordered multiple epitopes, crystals expose
chemically and geometrically distinct surfaces. It is conceivable that
different antibodies may recognize distinct faces of a crystal (possi-
bly including diamond or sapphire crystal faces exposed at the sur-
faces of medical nanorobots) in an interaction similar to that of
antibodies for repetitive epitopes present on protein surfaces.724,5036

For instance, one MAb to 1,4-dinitrobenzene crystals was shown to
specifically interact with the molecularly flat, aromatic, and polar
(101) face of these crystals, but not with other faces of the same
crystal.1778 MAbs have also been elicited against cholesterol mono-
hydrate crystals,1779,5034 one of which1779 was shown to specifically
recognize the crystal’s stepped (301) face. Here, the hydrophobic
cholesterol hydrocarbon backbone is exposed on one side of the
molecular steps while hydroxyl residues and water molecules are
exclusively exposed on the other side. In both cases, crystal-specific
antibodies were of the IgM idiotype.724 This accords with the as-
sumption that (unlike most commonly used antigens) crystals can-
not be processed by the antigen presenting cells, hence antibodies
must be induced through a T cell-independent path.1780

Semiconductor-binding2170,5040 and calcite-binding5243 proteins are
known that can discriminate among the various crystal faces of the
given material and can in some cases alter the pattern of crystal
growth.5244 Sulfur-free gold-binding proteins (GBPs) recognize and
noncovalently bind preferentially to the Au (111) crystal surface —
GBPs use multiple repeats of 14-30 residue sequences to bind to
this surface.2391 Hyaluronan is believed to be a crystal-binding pro-
tein for calcium oxalate monohydrate crystals.5245

Diamondoid surfaces coated with non-self adsorbed protein
monolayers (Section 15.2.2) might prove antigenic, as might
protein-based presentation semaphores (Section 5.3.6) that become
detached via degradative intracellular chemical processes and whose
fragments are subsequently presented at the cell surface by MHC
molecules (Sections 8.5.2.1 and 15.2.3.1.2). Avoiding such detach-
ment will be an important design objective for many nanorobot
missions. Another concern is that antibodies may be raised against
binding sites that are positioned on the nanorobot exterior, e.g.,
sorting rotor pockets (Section 3.4.2), which are similar to tradi-
tional bioreceptors, or manipulator end-effectors (Section 9.3.2).
These antibodies could then act as agonists1783 or antagonists1781,1785

for such sites, since MAbs specific to biological binding sites are
well known.1781-1785 This risk may be increased if nanorobot bind-
ing sites employ non-self biomolecular components, or, conversely,
may be decreased if binding sites employ purely diamondoid rigid
structures or self-biomolecule receptors (e.g., whose natural anti-
bodies have likely been eliminated by clonal deletion). This is an
additional design constraint that must be addressed experimentally.

If antibodies to nanorobot exteriors can exist in the natural hu-
man antibody specificity repertoire, then to avoid immune recogni-
tion many techniques of immune evasion (Section 15.2.3.6) may
be borrowed from biology, possibly including:

1. Camouflage. Coat the nanorobot with a layer of “self ” proteins
and carbohydrate moieties resembling fibroblast, platelet, or even
RBC1788 plasma membrane. Normally, antibodies for these sur-
faces have already been deleted from the systemic repertoire to
avoid autoimmunity, so the coated nanorobot will be theoreti-
cally nonimmunogenic. Ideally, an artificial surface would be
designed that displays the minimum necessary ligand set to en-
sure nonimmunogenicity. Presentation semaphores (Section
5.3.6) may be used if the required surface ligand concentration

is significantly less than monolayer thickness. The existence of
nonimmunogenic autologous cells such as NK,2171 TH1, and
malignant cells (via HLA-G expression)2166 that escape
immunosurveillance, and bacteria capable of evading the anti-
body response,1786-1789 suggests that such nonimmunogenic
exteriors are possible. Extended rejection-free allograft survival
using a combination of T-cell costimulation inhibitor and
anti-CD40 MAb has been demonstrated experimentally in pri-
mates.2541 Personalized nanorobots exhibiting self-MHC recep-
tors (Section 8.5.2.1) on their surfaces would possess a very spe-
cific type of camouflage. Autoimmune risk due to unwanted
detachment of self moieties from the nanorobot surface, and
pathogen borrowing of such detached moieties for the purpose
of immune evasion, especially in the case of large localized popu-
lations of in vivo devices, should be studied further.

2. Chemical Inhibition. Nanorobots may slowly secrete chemical
substances into the perirobotic environment to make it diffi-
cult for Ig molecules to adhere to an otherwise immunogenic
nanorobot surface. For example, a >0.01% concentration of so-
dium dodecylsulfate surfactant destroys almost all
antigen-antibody binding,1790 but the emission would have to
be very localized to avoid lysing other cells in the vicinity prior
to denaturing an antibody. The low pH gastric environment
produces poor Ig deposition, allowing H. pylori bacteria to evade
humoral defenses.1791 Bacteria such as Pasteurella multocida,1792

Pseudomonas aeruginosa,1793 and Serratia marcescens1794 secrete
extracellular proteases that can cleave Ig molecules. Covalent
pegylation of otherwise antigenic proteins can induce specific
tolerance.1766,1833 There may be some risk of local inflamma-
tion with this approach.

3. Decoys. Release a cloud of soluble nanorobot-epitope antigens
in the vicinity of the nanorobot. This will not affect nanorobot
operations because the decoy molecules are noncomplementary
to nanorobot surfaces. But the decoys will bind any antibodies
specific to the nanorobot epitopes, preventing further antibody
activity against the nanorobot.1437 J.R. Baker notes that this
would have to be done cautiously to avoid triggering serum sick-
ness or complement activation. Alternatively, decoy fragments
may be loosely bound to the nanorobot surface and jettisoned
as soon as a binding event is detected (Sections 4.2.1, 4.2.2,
and 4.2.3). This could limit mission duration to the exhaustion
time of the onboard supply of decoy molecules. A. Kumar notes
that decoy releases would have to be controlled very accurately
for all the nanorobots in the body because there is a threshold
level of antigen that triggers the immune response.

4. Active Neutralization. Equip the nanorobot with molecular sort-
ing rotors designed with binding sites similar or identical to the
nanorobot epitopes that raised the target antibodies. The target
antibodies will bind to rotor pockets and be conveyed inside
the nanorobot, whereupon the antibody molecules can be chemi-
cally altered (a) to eliminate their troublesome paratopes (sites
of epitope attachment) or (b) to defunctionalize their effector
region. They would then be released back into the body in a
harmless neutralized state, care having been taken to avoid ran-
dom chemical alterations which might trigger autoimmune re-
sponses. Less efficiently (especially when the immune system is
fully activated), the ingested target antibody could be chemi-
cally degraded or cleaved1792-1797 into safe peptides suitable for
free release, or simply warehoused onboard until the end of the
mission. M. Sprintz notes that if the nanorobotic mission is
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short-term (a few days), then antibody production is not an
issue for the first exposure, though subsequent exposure could
produce a delayed-type hypersensitivity (DTH) response (Sec-
tion 15.2.6.1); he suggests also the possible active nanorobotic
prevention of memory cell formation.

5. Tolerization. Nanorobots introduced into a newborn may train
the neonatal immune system to regard these foreign materials
as “native,” thus eliminating nanorobot-active antibodies via
natural clonal deletion.1828-1830 This process is often called “tol-
erance induction” and in this example assumes a mature
nanomedical technology with well-defined nanorobot surface
signatures that will not change over time as the neonate ma-
tures into an adult. Pregnant women may develop specific im-
munological tolerance to fetal antigens and foreign transplant
tissue,1831 thus might also become tolerized to nanorobotic an-
tigens introduced during pregnancy. Nonpregnant patients could
have tolerance artificially induced via engineered antigen-specific
T-suppressor cells371,5349-5354 or by other means (Section
15.2.3.4). This approach seems feasible if nanorobots use only
a few key surface materials — deactivating immune responses
could have serious implications, e.g., failure to recognize a patho-
genic microbe due to cross-tolerance.

6. Clonal Deletion. Once the paratopes of antibodies that bind
nanorobots are known, immunotoxin molecules can be engineered
that display those paratopes.* Upon injection into the patient,
these targeted immunotoxins would bind to all T cell receptors
that display this paratope, killing the nanorobot-sensitive T
cells.1803-1810 Engineered immunotoxins may also eliminate all B
cells capable of manufacturing antibodies having the proscribed
nanorobot-binding paratope,1811-1816 at EC50 concentrations as
low as 2.5-70 ng/ml (~0.03-0.8 molecules/micron3).1814 Such in-
terventions could be made at the local, lymphatic, or systemic
levels.2543 The end result is that the ability of the immune system
to recognize nanorobot epitopes would be selectively eliminated,
in effect adding “nanorobot surfaces” to the definition of “self ”
by a process of artificial clonal deletion against T cells1817-1823

and B cells.1824-1827

15.2.3.4 Immunosuppression, Tolerization, and Camouflage
Transplantation is the transfer of living cells, tissues, or organs

from one person, the donor, to another, the recipient (e.g., a blood
transfusion), or from one part of the body to another (e.g., skin
grafts) with the goal of restoring a missing function.361 However,
even if the patient’s HLA types (histocompatibility locus antigens;
Section 8.5.2.1) are closely matched to those of the donor, trans-
planted organs are usually rejected (beginning within minutes or
hours of surgery1832) unless the recipient’s immune system is care-
fully controlled. Immediately after the graft has been implanted, it
is necessary to prevent sensitization of pre-existing mature T cells
capable of recognizing the graft. Once the graft has escaped the
initial acute phase rejection reactions, a cumulative unresponsive-
ness to the graft develops as the recipient is continually exposed to
donor MHC, a stable state that sometimes depends on the develop-
ment of antigen-specific T-suppressor cells.371,5349-5354

In an era of advanced nanomedicine, it should be possible to
restrain or reprogram the immune system directly using genetic

engineering (Chapters 19 and 23), or by using other means (e.g.,
temporary systemic white cell sequestration), to reduce or elimi-
nate immunoresponsiveness during the period of nanomedical treat-
ment. Traditional methods are much less desirable. The most gen-
eral pre-nanomedical method to suppress immune system acute re-
sponsiveness is called antigen nonspecific immunosuppression. An-
tigen nonspecific methods include the use of cytotoxic drugs that
interfere with all cell division in the body.383 Since the immune
response to antigen requires clonal proliferation, agents that block
mitosis are effective inhibitors of the immune response. But this
immunosuppression is general, not specific, thus the patient is more
susceptible to infection. If infection occurs, immunosuppression
must be suspended whereupon an implanted graft is usually lost
due to rejection.371 These agents also damage all tissues (e.g., gut
epithelium, bone marrow) where rapid cell division is occurring,
creating other undesirable side effects, thus often may not be suit-
able for use in medical nanorobotics.

The fungal metabolite cyclosporin A (cyclosporine)384,385 has a
greater specificity for lymphoid T cells than other cells. Used in
isolation, cyclosporine at 10 mg/kg-day effectively suppresses the
entire immune system indefinitely,382 though at great risk of neph-
rotoxicity. Other newer calcineurin blockers may have fewer side
effects.2349 Other pre-nanomedical nonspecific lymphocytotoxic
agents commonly include:

1. Corticosteroids, Purine Analogs, etc. Prednisone and predniso-
lone386 act powerfully to suppress the inflammation accompa-
nying a rejection crisis, and also appear to reduce the expression
of class II histocompatibility antigens, thus reducing the
immunogenicity of the transplant. First used as anticancer drugs,
purine analogs such as 6-mercaptopurine interfere with DNA
synthesis and thus are also powerful antimitotic (hence immu-
nosuppressive) agents. Other well-known agents include aza-
thioprine (Imuran),386 tacrolimus (FK506),387 sirolimus
(rapamycin),387 mycophenolic acid (mycophenolate mofetil;
CellCept),385,387 and leflunomide (and its malononitriloamide
analogs).387,388

2. Antilymphocyte Globulin (ALG). ALG is produced by immuniz-
ing a large animal such as a horse with human lymphocytes,
then purifying the gamma globulin fraction of the serum. In-
jections of ALG into a graft recipient have a powerful suppres-
sive effect on graft rejection.402

3. Total Lymphoid Irradiation (TLI). A series of sublethal doses of
radiation is directed at the patient’s lymphoid tissue (spleen,
thymus, and lymph nodes in the neck, chest, and abdomen),
with bone marrow and other vital organs shielded from the ex-
posure.387 In due course, the stem cells in the bone marrow
reconstitute the peripheral lymphoid system but the newly
formed T cells seem to accept the graft as self.403 TLI has en-
abled some transplant patients to quit using other immunosup-
pressive agents altogether. Photopheresis387 is also used for treat-
ment of recurrent rejection.

However, all of these approaches have severe complications and
side effects, so the risk benefits would need to be carefully evaluated
and almost certainly would be inappropriate in a mature
nanomedical technology environment.

* Raising artificial MAbs against natural antibodies that react to a nanorobot is another approach, though this is more risky because anti-antibodies1798 are found in several
immunopathological or autoimmune diseases. Antibodies specific for determinants within the variable region of an antibody molecule are known as anti-idiotypic
antibodies,1799-1801 but these function as surrogate antigens and might actually stimulate additional anti-nanorobot immune response. Anti-anti-idiotypic antibody responses
have also been elicited experimentally.1802
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4. Other. T cell activation could also be blocked by altered peptide
ligands389,390 or synthetic peptides;391 or by antibodies to MHC
class I392-395 or class II396,397 molecules, or to the T cell recep-
tor;398-401 or by the presence of solubilized forms of these mol-
ecules.371 Anti-CD3 monoclonal antibodies (acting against all
T lymphocytes)404,405 are available commercially, as are various
other agents. Other methods for terminating lymphocyte respon-
siveness have been discussed,2545,2550 and M. Sprintz suggests con-
sidering plasmapheresis to decrease levels of preformed antibody.

Interestingly, a few viruses and protozoa can also cause antigen
nonspecific immunosuppression, and suppressed immune responses
are observed rarely during chronic bacterial infections such as tu-
berculosis and leprosy.1437 In leprosy (caused by Mycobacterium
leprae), the response both to leprosy antigens and to unrelated anti-
gens is poor. Immunological reactivity reappears after successful treat-
ment, an observation that implicates the microbe as the likely cause
of the general immunosuppression. At present, little is known of
the mechanisms by which pathogens initiate generalized immuno-
suppression, though it is probably due to interference with the nor-
mal immune functions of B cells, T cells, or macrophages.1437 How-
ever, the strategy appears to be rare among bacteria because general
immunosuppression is not particularly useful for the invader if it
merely promotes infection by competing unrelated microorgan-
isms.1437 Many viruses also include genes that can modulate the
immune response — for instance, Epstein-Barr virus encodes a gene
which produces a protein that is a homolog of IL-10 that
downregulates the immune response — and the fungus Cryptococ-
cus neoformans sheds large amounts of capsular polysaccharide that
interfere with the formation of inflammatory responses in tissue.1760

Antigen-specific immunosuppressive agents disable specific tar-
gets within the immune system. For example, after specific antigen
activation, the responding T cells expand and express IL-2 recep-
tors on their surface. Lymphokine toxin coupled to IL-2 binds and
specifically removes this population. Monoclonal antibodies are also
available that are specific for the IL-2 receptor. Their presence pre-
vents T cells from proliferating in response to IL-2.403 Agents that
block CD28-mediated T-cell costimulatory signals inhibit T cell
activation and induce a state of antigen-specific unresponsiveness
in both in vitro and in vivo experiments.406,407 Dendritic cells (or-
dinarily highly potent activators of naive T cells) that are trans-
fected with CD95 ligand cDNA, called “killer DCs,” deliver death
signals, not activation signals, to T cells after antigen-specific inter-
action.408 Direct inhibition of complement-mediated responses us-
ing modified C3 has been reported.409 Additionally, in mild cases
of leprosy the bacterium can induce an antigen-specific immuno-
suppression against M. leprae antigens only. This is perhaps due to a
lack of costimulatory signals (interference with cytokine secretion),
activation of suppressor T cells, or disturbances in TH1/TH2 cell
activities.1437

In traditional organ transplantation work, immunological toler-
ance410 to the histocompatibility antigens on the transplant can be
induced by the use of tolerogenic antibodies411 or other agents, called
tolerogens412 or antigen-specific tolerization therapy.413,414 For ex-
ample, several small donor blood transfusions to the recipient prior
to transplantation are observed to improve graft retention,415-417

and pretransplant implantation of donor bone marrow has induced
donor-specific tolerance.1438 Mitomycin-C-treated spleen cells from
a donor rat, when injected preoperatively into a recipient rat, in-
duce immune unresponsiveness when the recipient subsequently
receives a cardiac allograft from the donor.418 Anergic antigen-specific

CD4 T cells can inhibit T cells restricted by a different MHC class
II molecule. The anergic T cells act as suppressor cells by compet-
ing for the membrane of the antigen-presenting cell and the
locally-produced IL-2. Induction of tolerance to a single alloanti-
gen could serve to regulate the immune response to an allograft
carrying several MHC (and minor antigen) differences.419 The body
can also learn to accept foreign material as “self ” by placing the
material to be tolerated into the thymus,5872 where cells that recog-
nize it will be inactivated or killed, or by using Starzl’s trick5873 of
transplanting the graft along with immune cells that have the speci-
ficity of the graft (in his case, bone marrow from the organ donor),
such that, again, cells attacking the graft are themselves attacked.
The liver is also known to have a certain degree of “intrinsic
tolerogenicity”.1438

By the late 1990s, strategies were being sought to induce specific
tolerance to allogeneic biological transplants without affecting other
immune functions. The “veto effect”372-378 permits one such tech-
nique,378 wherein, for example, CD8 T cells suppress responses of
MHC-restricted T-lymphocyte precursors to antigens expressed by
those CD8 veto cells. Veto inhibition normally cannot provide com-
plete tolerance to allogeneic grafts since it only operates on
CD8-expressing cell populations. But Staerz, Qi and colleagues379

have produced a hybrid antibody (Hab) combining a monoclonal
antibody for a class I MHC molecule with a soluble CD8 molecule,
which can specifically and effectively transfer veto inhibition to dif-
ferent stimulator cell populations, thus promising to selectively and
completely tolerize graft-specific cytotoxic T lymphocytes without
affecting normal immune responses. Another Hab combines CD4
and an anti-MHC class II antibody, which binds to class II mol-
ecules bringing CD4 accessory molecules to the surface of class
II-bearing stimulator cells. CD4 T cells with specificity to
Hab-coated stimulator cells cannot engage their CD4 molecules
and are no longer activated.380 There is also evidence that
retrovirus-infected cells possibly may employ a veto-like mechanism
to evade immune T-cell recognition.381

A more valuable approach from the standpoint of
nanomedicine is to reduce the immunogenicity of the implant
itself, before it is implanted. Traditionally, much of this work in-
volves the “camouflaging” of graft cells. For example, Scott and
Murad420 used coatings of nonimmunogenic long-chain polymers
such as methoxypoly(ethylene glycol) (mPEG) to globally camou-
flage the surface of foreign cells. This effectively attenuated anti-
body to surface epitopes and decreased the inherent immunogenic-
ity of foreign, even xenogeneic, cells. Pegylated red blood cells (RBCs)
lost ABO blood group reactivity, anti-blood group antibody bind-
ing was profoundly decreased, and pegylated sheep RBCs were in-
effectively phagocytosed by human monocytes, unlike untreated
sheep RBCs421 — with no significant detrimental effects on RBC
structure or function.422 Pegylation of antigen presenting cells and
T lymphocytes prevented recognition of foreign class II MHC mol-
ecules and prevented T cell proliferation in response to foreign MHC
molecules.420 Loss of peripheral blood mononuclear cell (PBMC)
proliferation was not due either to mPEG-induced cytotoxicity, since
viability was normal, or to cellular anergy, because phytohemagglu-
tinin (PHA)-stimulated mPEG-PBMC demonstrated normal pro-
liferative responses. Addition of exogenous interleukin (IL)-2 also
had no proliferative effect, which suggested that the mPEG-modified
T cells were not antigen primed.423 Similar experiments by
Stuhlmeier and Lin424 on pegylated endothelial cells showed that
mPEG inhibits binding of several antibodies, LPS, and the cytokine
TNF-α to the cells.
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Some natural human cell types stimulate a stronger immune re-
sponse than others if foreign members are put into the body. Strong
immune response comes from leukocytes and endothelial cells.514

A weak or no immune response comes from keratinocytes, smooth
muscle cells, and fibroblasts.514 Fetal cells may exhibit immune tol-
erance because of the expression of nonclassical HLA-G molecules
at their surface.2165

Nanorobot architects must take care to avoid designs that might
inadvertently trigger or facilitate an autoimmune response. Autoim-
mune disease (Chapter 23) is the consequence of an immune re-
sponse against self-antigens that results in the damage and eventual
dysfunction of organs that become targeted by the immune system.
In most cases the triggering event is unknown, although for decades
an infectious cause has been postulated to explain the development
of autoimmunity. According to the “molecular mimicry” hypoth-
esis,1153-1156 infectious agents (or other exogenous substances) may
trigger an immune response against autoantigens when a suscep-
tible host acquires an infection with a pathogen that has antigens
that are immunologically similar to certain host antigens but differ
sufficiently to induce an immune response when presented to T
cells. The tolerance to autoantigens breaks down, and the otherwise
pathogen-specific immune response that is generated cross-reacts
with host tissues to cause tissue damage and disease. If a medical
nanomachine is designed with organic components that are
epitopically similar to components of the natural human body, then
an autoimmune attack against those natural human components
could also be directed against the nanorobots. Other medical
nanorobots that present both human and viral2548 (or bacterial)
components on their exterior blood-contacting surfaces could fa-
cilitate autoimmune sensitization of a human patient by providing
a previously nonexistent immunological bridge between pathogenic
and human epitopes.

Alternatively, resemblance between bacterial antigens and host
(or even nanorobot-surface-displayed) epitopes, also called molecu-
lar mimicry, could weaken the immune response to that bacterium
by inducing a certain degree of immune system tolerance to the
pathogen. This is a potential negative “side effect” of nanorobotic
treatment that may be avoidable using good design.

Antigenic disguise is another simple camouflage tactic found in
nature.1437 Pathogens may hide their unique antigens from opsoniz-
ing antibodies or complement by coating themselves with host pro-
teins such as fibrin, fibronectin, or immunoglobulins. For example,
S. aureus produces cell-bound coagulase,1723 which binds to fibrino-
gen1724-1726 and prothrombin1725-1727 and activates it to form
staphylothrombin, causing fibrin to clot and to deposit on the cell
surface.1725 This may immunologically disguise the bacterium so
that its natural immunogenicity is not recognized as a target for an
immune response.1437 Protein A produced by S. aureus,1728 and the
analogous Protein G produced by Streptococcus pyogenes,1729,1730 bind
the Fc- or Fab-regions of immunoglobulins, thus coating the bacte-
rium with antibodies and canceling their opsonizing ability. As yet
another example, the fibronectin coat of Treponema pallidum1731

may provide an immunological disguise for these bacteria.1437 Mi-
crobes can also simulate mammalian complex carbohydrates at cell
surfaces to use as immune masks — for example, N-acetyl
heparosan,2333 colominic acid, and fructosyl chondroitin analog in
E. coli,2334 LeX in H. pylori,2334 and hyaluronic acid in some
bacteria.2335

15.2.3.5 Immune Privilege
Immune privilege,425-434 first described 130 years ago,435 pro-

tects tissue grafted to certain sites from rejection. Medawar’s original

explanation for this phenomenon436 — that immune privilege was
just immune ignorance, with privileged sites isolated behind
blood-tissue barriers lacking lymphatic drainage, and with antigenic
material (trapped within these isolated sites) remaining invisible to
the immune system — is now known to be incorrect. It has since
been found that foreign tissues in privileged sites could eventually
evoke antigen-specific systemic immunity437 and that certain privi-
leged sites (such as the testis) had extensive efferent lymphatic path-
ways.438 Rather than immune ignorance, the systemic immune ap-
paratus recognizes antigens in privileged sites and cooperates to cre-
ate and sustain a graft-friendly environment.439 Medical nanorobot
engineers may be able to borrow some of nature’s techniques and
convince the body’s immune system that resident nanorobots or
implanted nanorobotic organs possess immune privilege and thus
should not be attacked.

There are two distinct loci of immune privilege: (1) privileged
sites (the best example being the fetus) and (2) privileged tissues.
Immune-privileged sites and tissues include439 the eye (anterior
chamber, cornea, and retina),434 brain,428,789 hair follicles,790,791

cartilages, liver,426,429 adrenal cortex, uterus (pregnant) and pla-
centa,468 ovary and testis,425,427,456 prostate,438 and tumors.433,441

Immune privilege is biologically necessary for the success of preg-
nancy.489 Immune privilege in the anterior chamber of the eye is
critical to the avoidance of stromal keratitis, a blinding disease of
the cornea accompanying ocular infection with HSV-1. In mice,
the incidence and severity of HSV-1 keratitis rises dramatically in
eyes where privilege has been lost.490 Orthotopic corneal allografts
are the most successful of all solid-organ transplants in humans be-
cause the eye is a privileged site and the cornea is a privileged tis-
sue.446 Corneal grafts placed in eyes that have lost immune privi-
lege suffer acute rejection.491

Immune-privileged sites are regions of the body where alloge-
neic or xenogeneic grafts of foreign tissue enjoy prolonged, even
indefinite, survival relative to nonprivileged sites. These are regions
in the body where the immune system appears not to function.440

Infectious organisms or tumor cells inserted into immune-privileged
sites do not elicit destructive or protective immunity.441,442 The eye
is an example of a privileged site, where even minor episodes of
inflammation could result in impaired vision or even blindness if
the inflammation proceeds unchecked.440 HSV-1 virus injected di-
rectly into the anterior chamber of mouse eyes induced an immedi-
ate infiltration of neutrophils and lymphocytes, but extensive
apoptosis (Section 10.4.1.1) was observed in infiltrating immune
cells 24 hours after infection in animals having functional CD95
(aka. Fas or APO-1) receptors and CD95L (aka. FasL) ligand ex-
pression.440 By expressing CD95L, the eye directly kills activated
immune cells that might invade the globe and destroy vision.440

CD95L expression in the testis (another privileged site) may per-
form a similar function.443,444 As summarized by Streilein,439 privi-
leged sites incorporate multiple additional features allowing them
to accept foreign grafts. These features include: (1) blood-tissue
barriers (for eye, brain); (2) absence of efferent lymphatics (eye); (3)
direct tissue fluid drainage into the blood (eye, brain); (4) func-
tional integrity of the spleen (eye);445 (5) establishment of a potent
immunosuppressive microenvironment446 containing growth fac-
tors such as TGF-β (eye, brain, placenta, testis)447 and neuropep-
tides (eye);448,449 and (6) soluble and membrane-bound inhibitors
of complement activation and fixation (anterior chamber of
eye).450-451 Antigenic materials placed in privileged sites evoke a
state of deviant systemic immunity in which the usual mediators of
immunogenic inflammation (e.g., delayed hypersensitivity T cells,
complement-fixing antibodies) are curtailed, and other mediators
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(e.g., cytotoxic T cells, noncomplement-fixing IgG antibodies) are
enhanced.452-454 For example, antigen injected into the eye is picked
up locally by intraocular dendritic cells, which then migrate via the
blood to the splenic white pulp where antigen-specific regulatory
and effector T cells are activated.439 At least four pathways are known
by which immune privilege can lead to T-cell tolerance:455 clonal
deletion,470 clonal anergy, immune deviation,437,442,447,449 and T-cell
suppression.453

Immune-privileged tissues resist immune rejection when grafted
into conventional (nonprivileged) sites. For example, constitutive
expression of CD95L on the Sertoli cells of a testis graft triggers
apoptosis in the recipient’s CD95+ antigen-activated T cells that
are challenging the graft.456 Myoblasts (muscle cells) genetically
engineered to express FasL can protect neighboring transplanted
islet cells by inducing apoptosis in visiting T cells for more than 80
days in mice,2350 although the altered myoblasts evidently stimu-
late an inflammatory response that eventually destroys them.2351

CD95L-coated tissues (eye, testis, tumor cells) generally stay free of
patrolling immune cells. However, Chen et al457 have noted that
while surface-expressed CD95L triggers apoptosis in T lympho-
cytes,458-461 it also stimulates neutrophils and other polymorpho-
nuclear leukocytes. This stimulation may then be inhibited by the
local presence of TGF-β — together, CD95L and TGF-β promote
lymphocyte clonal deletion and suppress inflammation.457 Privi-
leged tissues also are often characterized439 by intratissue structural
barriers such as extensive tight junctions among parenchymal cells
(Sertoli cells, retinal pigment epithelium); elaborate surface expres-
sion of hyaluronic acid (placenta, trabecular meshwork of the eye);
reduced or absent expression of MHC class I and class II molecules
(brain, eye, placenta); expression of class Ib molecules (pla-
centa);433,462 release of class I molecules (liver);463 secretion of im-
munosuppressive cytokines (eye)464-466 and corticosteroids (gonads);
and fetal-like fibroblasts (gingival oral mucosa).467

Another instance of immune-privileged cells is the embryo, whose
developing cells in the placenta manufacture an enzyme known as
indoleamine 2,3-dioxygenase (IDO). IDO destroys tryptophan, an
amino acid needed by maternal T cells (human cells cannot make
their own tryptophan). This localized cell-induced nutrient deple-
tion is believed to suppress the activity of maternal T cells that would
otherwise make their way through the placenta and attack the fetal
blood supply.468 Other studies have shown that certain macroph-
ages, induced to express IDO in response to interferon-γ from acti-
vating T cells, inhibit T cell proliferation in vitro by rapidly con-
suming tryptophan.469-471 Amniotic membrane, a related privileged
tissue that is fetal in origin and multipotential, lies between mother
and baby and reacts with neither. It can be transplanted between
species and still survive without the need for immunosuppression.
In experimental studies, human amnion has been used to resurface
rabbit knee joints472-474 and can be useful in ocular475-481 and
other482-488 transplantation procedures. Fibroblasts, which do not
constitutively express HLA class II molecules, cannot induce the
formation of required helper T cells and thus stimulate no rejection
response when transplanted between hosts.514 Human stem cells
were originally believed to provoke no immunogenic reaction be-
cause they are not differentiated. However, recent results by Drukker
et al5718 found very low but consistent expression of MHC class I
molecules even on undifferentiated human embryonic stem cells.
As the cells differentiated, they produced higher levels of the pro-
teins — probably high enough to trigger an immune reaction5719

and to be rejected upon transplantation.5718 (Even though embryonic

stem cells aren’t invisible to the immune system, these cells could be
genetically engineered so as not to express MHC proteins, or nuclear
transfer techniques might be used to create genetically matched stem
cells for individual patients.5719)

15.2.3.6 Immune Evasion
Certain parasites also display a form of immune privilege that is

more properly termed “immune evasion”,492-497,2348 which might
also be borrowed for medical nanorobot design. For example, live
adult blood fluke (schistosomiasis) worms produce no lesions and
rarely cause symptoms498 or allergic reactions.495 Schistosome para-
sites, despite being multicellular organisms up to several millime-
ters in length, can survive in the bloodstream of mammalian hosts
for decades496 even in the face of an ongoing antiparasite immune
response by the infected host.492 The developmental and adult stages
of the parasite are mostly invisible to the immune system.496 In
vitro, bound complement is localized to infoldings of the parasite’s
tegument and not on its free surfaces.499 Adult worms possess sur-
face molecules bearing alternative pathway complement activation
sites (Section 15.2.3.2), but these sites are masked by adsorbed host
components in vivo.499 Adsorbed host serum components can also
inhibit specific antigen-antibody interactions at the parasite’s sur-
face, suggesting a degree of specificity in what the parasite adsorbs
from the host500 — adult worms can adsorb heterospecific501 and
homospecific502 antibody onto their tegumental surfaces. Antibody
bound to worm tegumental antigen causes shedding of the bound
complex in ~20 minutes at 37˚C.* 503 Soluble adult worm antigen
preparation (SWAP) triggers release of cytokine IL-10 from periph-
eral blood mononuclear cells from both healthy and infected indi-
viduals,505 and the IL-10 then suppresses lymphoproliferative re-
sponses to SWAP by 90-100%.504 T cell proliferative
hyporesponsiveness,505,506 nonspecific T-cell immunodepression507

and modulation of immune responses508 are well known in chronic
schistosomiasis.

The human body does not recognize the adult worms as foreign
material because, although purified schistosomal tegumental pro-
tein is potently immunogenic,509 the adult parasites can remake their
surfaces constantly and cover them with native molecules taken from
the human host.510 This covering may include material borrowed
from host red cells,511 neutrophils,512 LDLs,513 and other sources.503

Surface turnover is mostly slow. Immunoradiometric assays show
that host erythrocyte antigen is lost from adult worm tegument with
a half-life of up to 45 hours in vitro and ~5 days in vivo.493 The
component of adult surface cell lipid bilayer with the fastest turn-
over is phosphatidylcholine and is due to deacylation/reacylation,
not to the sloughing of membranes.497 Thus a relatively stable adult
schistosome surface membrane escapes immune recognition and
damage by employing active processes which result in reduced sur-
face antigenicity495 and the development of a tegument intrinsi-
cally resistant to immune damage492 — a potentially useful example
for medical nanorobotics. C. Haberzettl suggests that early simple
therapeutic nanorobots might incorporate an “onion-skin” design,
with separate concentric layers serving distinct purposes (e.g., or-
gan targeting, cytopenetration, intracellular transport, etc.) and being
sloughed off or absorbed in sequence, as their specific purpose is
completed.

With an appropriate design, nanorobots could alter their anti-
genic signature (Section 5.3.6) fast enough to avoid antibodies from
being raised at all. Some microbes already employ a related strategy.
K. Todar (from whose discussion1437 the next seven paragraphs draw

* Some bacteria also shed bound antigen-antibody immune complexes.1737
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heavily) points out that a similar example of immune evasion is
displayed by Borrelia recurrentis, a spirochete that causes the human
disease relapsing fever.1746,1747 Explains Todar:1437 “The disease is
characterized by episodes of fever which relapse (come and go) for a
period of weeks or months. After infection, the bacteria multiply in
tissues and cause a febrile illness until the onset of an immune re-
sponse a week or so later. Bacteria then disappear from the blood
because of antibody mediated phagocytosis, lysis, and agglutina-
tion, and then the fever falls. Then an antigenically distinct mutant
arises in the infected individual, multiplies, and in 4-10 days reap-
pears in the blood and there is another febrile attack. The immune
system is stimulated and responds by conquering the new antigenic
variant, but the cycle continues. There may be up to 10 febrile epi-
sodes before final recovery. With each attack, a new antigenic vari-
ant of the bacterium appears and a new set of antibodies is formed
in the host.” This bacterium can change its antigenic signature dur-
ing the course of an infection in a single host.1437,2544 Antigenic
variation1736 usually results from site-specific inversions or gene
conversions or gene rearrangements in the DNA of the microbes.
Antigenic variation is also found in Plasmodium,1740,1741 in trypa-
nosomes that can switch between the transcription of one of an
estimated 1000 variant surface glycoprotein genes,1750 and in other
parasites.1742

Many pathogenic bacteria exist in nature as multiple antigenic
types or serotypes, meaning that they are variant strains of the same
pathogenic species.1437 For example, there are over 1800 known
serotypes of Salmonella typhimurium based on differences in cell
wall (O) antigens or flagellar (H) antigens.1735 There are more than
80 different antigenic types of Streptococcus pyogenes based on
M-proteins on the cell surface,1734 and over 100 strains of Strepto-
coccus pneumoniae depending on their capsular polysaccharide anti-
gens. Based on minor differences in surface structure chemistry there
are multiple serotypes of Vibrio cholerae, Staphylococcus aureus, Es-
cherichia coli, Neisseria gonorrhoeae, and an assortment of other bac-
terial pathogens. Antigenic variation is prevalent among pathogenic
viruses as well.

Neisseria gonorrhoeae can change fimbral antigens during the
course of an infection.1437 During initial stages of an infection, ad-
herence to epithelial cells of the cervix or urethra is mediated by pili
(fibriae). Equally efficient attachment to phagocytes would be un-
desirable. Rapid switching on and off of the genes controlling pili is
therefore necessary at different stages of the infection, and N.
gonorrhoeae is capable of undergoing this type of “pili switching” or
phase variation.1732,1733 Genetically controlled changes in outer
membrane proteins also occur in the course of an infection. This
finely controlled expression of the genes for pili and surface pro-
teins changes the adherence pattern to different host cells, increases
resistance to cervical proteases, increases resistance to phagocytosis and
immune lysis, and is presumably necessary for successful infection.1437

Another mode of evasion is available to nanorobots resident in
locations where components of the immune system cannot easily
reach. Some pathogens persist on the luminal surfaces of the gas-
trointestinal tract, the urinary tract, the oral cavity, or in the lumen
of salivary gland, the mammary gland, or kidney tubule.1437 If there
is no host cell destruction, the pathogen may avoid inducing an
inflammatory response because sensitized lymphocytes or circulat-
ing antibodies cannot reach the site to eliminate the infection. Secre-
tory IgA could react with surface antigens on bacterial cells, but the
complement sequence would be unlikely to be activated and the
cells would not be destroyed.1437

There are at least two other immunological evasion strategies
employed by microbial pathogens or tumor cells. However, these

strategies may be inappropriate or inefficient for medical nanorobots,
as explained below:

1. Decoys. The first method is to release surface antigens in soluble
form into the surrounding tissue, which can “mop up” anti-
body before it reaches the bacterial surface. The use of soluble
receptors as decoys by the Shope virus2352 and by the
poxviruses2353-2355 is well known. As another example, soluble
bacterial cell wall components are powerful antigens and comple-
ment activators that contribute in a major way to the pathology
observed in meningitis and pneumonia.1437 Protein A is pro-
duced by S. aureus and is normally bound to the staphylococcal
cell surface, but may also be released in a soluble form which
can then bind to the Fc region of IgG, thus agglutinating and
partially inactivating the IgG.1437 Malignant tumor cells can
release large amounts of MIC, a major histocompatibility class
I homolog, which apparently downregulates the NKG2D re-
ceptor found on most natural killer cells (NKC) and impairs
the action of tumor-specific effector T cells.5684

2. Enzymes. The second method is to produce enzymes that de-
stroy antibodies. For instance, body surface-dwelling bacteria1738

such as Neisseria gonorrhoeae, N. meningitidis, Haemophilus
influenzae, Streptococcus pneumoniae, and S. mutans produce IgA
proteases that inactivate secretory IgA on mucosal surfaces by
cleaving the molecule at the hinge region, detaching the Fc re-
gion of the immunoglobulin.1437,1760 Candida yeasts display
similar activity.1739

If employed by medical nanorobots, both decoy and enzyme
methods would require either onboard storage or manufacturing of
protein molecules, thus adding to device complexity. These strate-
gies would also require emissions of active biomolecules into the
tissues, an inherently inferior and possibly more dangerous approach
compared to methods that involve only surface modifications of
the nanodevice.

Immune evasion is much simpler for medical nanorobots once
they are inside a cell, since activation of intracellular class II mol-
ecules by engineered surfaces is unlikely. A similar trick is already
used by many types of microorganisms. In the bacterial world,1605

macrophages infected with Brucella (a coccobacillus), Mycobacte-
rium leprae, or Listeria (a soil saprophyte) support bacterial growth
while offering protection from immune responses.1437 Other intra-
cellular pathogens such as Yersinia (etiologic agent of the plague of
the Middle Ages) and Shigella are residents of cells other than ph-
agocytes or other antigen-presenting cells, so their antigens are not
displayed on the surface of the infected cell.1437 Chlamydia
pneumoniae can be found inside monocytes1748 and white blood
cells.1749 Benjamini et al1760 point out that microbes capable of in-
tracellular survival use several strategies to avoid being killed after
phagocytosis: M. tuberculosis and Chlamydia block the fusion of ly-
sosomes with the phagocytic vacuole; H. capsulatum interferes with
acidification of the phagolysosomal vacuole; Listeria monocytogenes
produces bacterial products that allow it to escape from the
phagolysosomal vacuole to the cell cytoplasm (a more nutritionally
favorable niche); Shigella flexneri apparently triggers apoptotic death
of the phagocytic cell; and Toxoplasma gondii generates its own vacu-
ole to remain isolated from host lysosomes and thus avoids trigger-
ing recognition of infected cells by the immune system.

Among the viral pathogens, herpes simplex virus can interfere
with immune system recognition of infected cells through a mecha-
nism that inhibits MHC class I molecule presentation on the in-
fected cell and blocks its interaction with virally derived peptides.1760
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Other techniques of immune evasion2546 employed by viruses in-
clude: (1) interference with trafficking along the endocytic path-
way; (2) interference with class I MHC biosynthesis in the ER (en-
doplasmic reticulum); (3) interference with cytosolic proteolysis of
viral antigen; (4) diversion of the ER-targeted peptide transporter
system; (5) retention and destruction of class I MHC molecules;
(6) modification of MHC function after their delivery to the cell
surface; (7) blocking transcription of MHC class II proteins; (8)
distribution of inhibitory NK receptors at the surface to prevent
NK cells from destroying the virus-infected cell; (9) negative cytokine
regulation; and even (10) inhibition of apoptosis.

Among the protozoans, intracellular parasites are protected from
the immune response while their life cycle is completed inside a
cell, resulting in the release of more parasites into the host system
along with the death of the host cell. One example is Plasmodium, a
protozoan parasite that infects red blood cells and causes malaria.
This disease presents in a cyclical fashion,1743 coinciding with the
life cycle of millions of parasites that are all in the same life phase
simultaneously. Another example is Leishmania, a flagellate proto-
zoan parasite that hides inside macrophages — the macrophage is
unable to recognize the parasite within itself and is thus unable to
destroy it.1744,1745 Other intracellular protozoan parasites include
Toxoplasma, Cryptosporidium, and Pneumocystis, which can cause
transient or life-threatening illness, some treatable and some not.
These examples provide further biological analogs to the nanorobotic
cytocarriage (Section 9.4.7) approach.

It is worth noting that the potential ability of nanorobots to
hide from the immune system by using variants of the techniques
employed by pathogens for similar purpose does not imply that
pathogens will correspondingly be able to evade detection by medi-
cal nanorobots. It is certainly true that the surfaces of intracellular
pathogens that can infect motile phagocytic cells (e.g., the tubercu-
losis Mycobacterium or the bacterium Listeria, both of which can
reside inside macrophages4588) are not accessible for direct probing
by the antigen sensors of extracellular diagnostic or therapeutic
nanorobots. But cell surface markers will usually reveal such infec-
tion, so surveillance nanorobots can check for the presence of such
markers and thus deny intracellular pathogens a secure hiding place
inside human cells. For instance, the membrane surface of mac-
rophages infected by Mycobacterium microti is antigenically differ-
ent from that of uninfected macrophages.5263 Listeria-derived pep-
tides are found acting as integral membrane proteins in the plasma
membrane of infected macrophages,5264 and other Listeria-infected
antigen-presenting cells display hsp60 on their plasma membranes
only when infected.5265 As another example, conserved invariable
regions of the antigenic variation protein,5266-5268 of the outer sur-
face proteins,5269-5271 or of other surface-exposed proteins5272,5273

of Borrelia can be targeted for detection as reliable pathogenic sig-
natures, by medical nanorobots.

15.2.4 General and Nonspecific Inflammation
Inflammation1837 is a nonspecific physiological response to vari-

ous forms of tissue damage including trauma (Chapter 24), infec-
tion (Chapter 23), intrusion of foreign material (Section 15.4.3.5,
Chapter 24), local cell death (Section 10.4.1.1), or as an adjunct to
immune system (Section 15.2.3.3), tissue remodeling (Chapter 24),
or neoplastic responses.234 If vascular tissue has also been disrupted,
then the complex process of blood coagulation (Section 15.2.5) may
be superimposed on the inflammatory response, and if an infection

is involved, the complement system (Section 15.2.3.2) may be
activated.

The four classical clinical signs of inflammation, first reported
by the ancient Roman medical writer Cornelius Celsus (Section
1.2.3.1), are redness (rubor), swelling (tumor), pain (dolor), and
heat (calor). The magnitude of these initial events is related to the
intensity and extent of the inflammatory stimulus, with cells in-
volved in the inflammatory response (Section 15.4.3.1) producing
more than 100 chemical mediators.

Redness or erythema reflects a higher local concentration of red
blood cells in the vicinity of the inflammatory stimulus.234 This
occurs because the first responses to such stimuli are (1) a rapid
vasodilation of local capillaries (changing their local aspect ratio,
leading to an increase in blood entry into the capillary beds), (2) an
increase in the permeability of vascular endothelial cell linings (caus-
ing a loss of plasma through the capillary walls), and (3) a tendency
for platelets and erythrocytes to become “sticky” (leading to slower
flow and sludging). Vasodilation arises from the activation of
Hageman factor (coagulation factor XII; Section 15.2.5) through
contact with collagen or foreign proteins,234 biomedical poly-
mers,1838 or with glass,1839 kaolin particles,1857 or certain other in-
soluble negatively charged surfaces.1840-1845 The intermediate con-
tact activation of kallikrein, a polypeptide, leads to conversion of a
group of additional molecules to kinins.1846 Kinins are a group of
strong vasoactive mediators that can affect blood pressure (e.g., in-
duce hypotension), elevate blood flow throughout the body, increase
the permeability of small blood capillaries, and stimulate pain re-
ceptors (see below).

Swelling or edema (see also Section 15.5.2.2) occurs in the vi-
cinity of the inflammatory stimulus because the increased perme-
ability of the capillary endothelium allows fluid to move into the
surrounding tissue bed.234 Normally the endothelium is tight, per-
mitting only a slow flow of water and small molecules into the sur-
rounding tissues that is drained by local lymphatic vessels (Section
8.2.1.3). This slow flow maintains a constant tissue volume and a
10-15 mmHg pressure differential between the arteriole ends of
capillaries and the external tissue bed.234 With increased vascular
permeability, water and molecules such as plasma proteins and lo-
cally activated kinins enter tissues, causing them to distend or swell
unless promptly balanced by increased lymphatic drainage.* How-
ever, local lymphatics may be constricted or blocked by the original
trauma, or occluded by cell fragments or nanorobots (Section
15.5.2.2), or hydraulically compressed, and the elevated concentra-
tion of plasma proteins raises local osmotic pressure, tending to hold
the fluid in place. In extreme cases, a fluid movement is blocked
leading to the so-called “compartment syndrome”5493 (sometimes
related to anatomic barriers such as fascial planes5494) which, if not
promptly relieved, results in cell death and tissue necrosis.234

Pain occurs proximal to the inflammatory stimulus in part be-
cause the local edema may activate local deep pain receptors, or
nociceptors. Inflammatory pain, is experienced by patients as a throb-
bing sensation repetitively pulsed by the peaks in systolic pressure.234

Kinins also produce pain by acting directly on nerve endings to
induce both acute and persistent pain — the kinin B2 receptor pre-
dominates in acute inflammatory pain, the B1 receptor in persistent
inflammation.1846 Kinins may also be involved in the hyperalgesia
associated with peripheral and central inflammatory insults to the
CNS, and there are many interactions between kinins and other
inflammatory mediators known to be involved in the genesis or
maintenance of the accompanying hyperalgesia.1847 Prostaglandins,

* Bradykinin, an end product of contact system activation (Section 15.2.5), is a tenfold more potent vasodilator than histamine.
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cytokines, neuropeptides, and 5-HT have been implicated in the
process of activation or sensitization of nociceptors. There is evi-
dence that some of these mediators have powerful and complex in-
teractions with kinins in the inflammatory pain process.1847 As a
possible analog with hard-material nanorobots, there is at least one
report2086 of pain possibly caused by numerous small insoluble crys-
tals in the renal tubules. Accordingly, care must be taken in
nanorobot mission design to forestall nanorobot crystallization —
crystal-like aggregates5627 or van der Waals solids5628 comprised of
multiple individual nanorobots — which might form under cer-
tain conditions of dehydration or pH, especially among
nanorobots purposely created to form space-filling aggregates
(Section 5.2.5).

Heat in tissues near the site of inflammation is usually attrib-
uted to increased blood flows and to local disturbances of fluid flow
in the presence of increased cellular metabolic activity by increasing
numbers of cells. Pyrogens known to cause systemic fever (Section
15.2.7) might also be generated locally either by tissue necrosis or
as a result of activation by bacterial or viral toxins (e.g., endotoxin)
in the presence of infection.234

These early events in the general inflammatory response are
largely chemical in origin.234 Shortly afterwards, the affected tissue
is invaded by a series of cells such as neutrophils, macrophages and
fibroblasts. These cells are responsible for the removal of dead tis-
sue, phagocytosis of foreign matter, damage repair (though some-
times creating additional damage), and tissue remodeling. The in-
flammatory cell response to foreign particles, and possibly to medi-
cal nanorobots, is described in Section 15.4.3.5.

Could medical nanorobots or nanoorgan surfaces trigger gen-
eral inflammation in the human body? One early experiment1848 to
determine the inflammatory effects of various implant substances
placed subdermally into rat paws found that an injection of 2-10
mg/cm3 (10- to 20-micron particles at 105-106 particles/cm3) of
natural diamond powder suspension caused a slight increase in vol-
ume of the treated paw relative to the control paw. However, the
edematous effect subsided after 30-60 minutes at both concentra-
tions of injected diamond powder that were tried. This swelling
could have been wholly caused by mechanical trauma of the injec-
tion, not the diamond powder. Another experiment1849 at the same
laboratory found that intraarticulate injection of diamond powder
was not phlogistic (i.e., no erythematous or edematous changes) in
rabbit bone joints and produced no inflammation. Diamond par-
ticles are traditionally regarded as biologically inert and noninflam-
matory for neutrophils222,605,633,639 and are typically used as experi-
mental null controls.1849 CVD (chemical vapor deposition) dia-
mond521 and DLC (diamond-like carbon) diamond587 surfaces elicit
minimal or no inflammatory response, and atomically smooth dia-
mond may perform even better. Diamond particles are said to have
little or no surface charge633,640 but unmodified graphene (Section
2.3.2) surfaces readily acquire negative charges in aqueous suspen-
sion.689,690 Adamantane-based compounds exist which enhance or
inhibit the inflammatory response.5563 Experiments are therefore
needed to determine if negatively charged fullerenes or diamondoid
substances can contact-activate Hageman factor or kallikrein and
trigger an inflammation reaction. Carbon nanotubes and spherical
fullerenes generally appear to be noninflammatory.2599,5227

The inflammatory properties of other possible nanorobot mate-
rials appear positive. For instance, vitreous carbon is mildly inflam-
matory801 to inert.798 Pyrolytic carbon is mildly inflammatory801,902

to inert.802 Graphite is minimally inflammatory,820,822,823 though
1-micron particles apparently stimulate some nitric oxide produc-
tion in rat cells, a possible indicator of inflammatory response.5227

Carbon fiber elicits no significant tissue inflammation224,840 or for-
eign body reaction.848 Experiments with sapphire have generally
found no serious inflammation in dental soft tissues1006,1018,1021,1031

or bony tissues,974,1029,1046 or only mild reactions.1032 However, there
are a few exceptions1030,1068 including brief acute inflammatory re-
sponse in special cases1050,1055 so the noninflammatory character of
sapphire has not yet been definitively established.

On the more negative side, carbon black is sometimes found to
elicit moderate inflammatory responses in various soft tis-
sues852,856,887 and the lungs,769,889-891 though there are some con-
trary reports.857,893 The performance of Teflon is mixed,1343 depend-
ing on the form of the material used and the type of tissue in which
it is implanted (Section 15.3.4). Inflammatory tissue reactions range
from none,1168,1171,1173,1195,1344 to mild,1185,1189,1220,1376 moder-
ate,1191,1277,1350,1368,1391 or severe.900,901,1364,1366 Teflon activates
fourfold more kallikrein than Hageman factor.1850 Further details
on these materials are in Chapter 15.3. Various natural crystalline
substances can produce crystal-induced inflammation without any
requirement for particle-bound opsonins.2322 Examples include
monosodium urate crystals in gout,2322 silica crystals in pulmonary
tissue disease,2323 calcium oxalate2324 and calcium pyrophosphate
dihydrate2325 crystals in kidney disease and arthritis, and hydroxya-
patite and related basic calcium phosphates2326 in various crystal
deposition diseases.

Since the general inflammatory reaction is chemically mediated,
it may be possible to employ nanorobot surface-deployed molecu-
lar sorting rotors to selectively absorb kinins or other soluble activa-
tion factors such as HMGB1,5505 thus short-circuiting the inflam-
matory process. Active semaphores consisting of bound proteases
such as gelatinase A could be deployed at the nanorobot surface to
cleave and degrade monocyte chemoattractant molecules2173 or other
chemokines, suppressing the cellular inflammatory response. Con-
versely, key inflammatory inhibitors could be locally released by
nanorobots. For instance, Hageman factor contact activation in-
hibitors such as the 22.5-kD endothelial cell-secreted protein
HMG-I,1851 surface-immobilized unfractionated heparin,1852 and
C1 inhibitor1843 would probably require lower release dosages than
for aspirin or steroids, and therapeutic blockade of factor XII acti-
vation has been demonstrated.1853 Prekallikrein MAbs (antibodies)
have been raised that inhibit prekallikrein activation by Hageman
factor1854 and direct inhibitors of tissue kallikrein are known.1858

One plasma protease inhibitor strongly inhibits both Hageman fac-
tor and kallikrein activation.1855 Diclofenac sodium is a well-known
nonsteroidal anti-inflammatory agent (NSAID) that competes with
arachidonic acid for binding to cyclo-oxygenase, resulting in de-
creased formation of prostaglandins.5564 A variety of antinociceptive
agents have long been known.5814-5819 The multivalent
guanylhydrazone CNI-1493 inhibits macrophage activation, sup-
pressing the acute inflammation reaction.2593-2595 As yet another
example, platelet activating factor (PAF) is a cytokine mediator of
immediate hypersensitivity which produces inflammation. PAF is
produced by many different kinds of stimulated cells such as baso-
phils, endothelial cells, macrophages, monocytes, and neutrophils.
It is 100-10,000 times more vasoactive than histamine and aggre-
gates platelets at concentrations as low as 0.01 pmol/cm3.2003 Vari-
ous PAF antagonists2059-2062 and inhibitors2062-2065 are known. These
or related inhibitory molecules, if released or surface-displayed by
medical nanorobots, may be useful in circumventing a general in-
flammatory response.

There is also a well-known nonspecific inflammatory response5826

that often, though not always,5827 causes5828 or accompanies5829

mechanical injury or irritation. For example, angiogenesis may be
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induced by nonspecific inflammatory response to transmyocardial
mechanical revascularization5830 or needle puncture mechanical in-
jury;5831 nonspecific corneal inflammation has been reported in one
case following a laser keratomileusis procedure;5832 incision of the
skin during vascular surgery can induce local nonspecific cellular
inflammation;5833 and inhalation of respirable fractions of fibrous
glass particles by rats can produce a nonspecific inflammatory (mac-
rophage) response similar to the effects of inhaling inert dusts.5834

The possible induction of a nonspecific inflammatory response by
properly designed and operated active mechanical surface compo-
nents (e.g., sorting rotors, manipulatory appendages) of medical

nanorobots seems avoidable but is an interesting issue that should
be investigated further.

15.2.5 Coagulation and Thrombogenicity
Blood coagulation involves a complex series of reactions in which

various proteins are enzymatically activated in a sequential manner,
transforming liquid blood into a gel-like mass which is then stabi-
lized to form a thrombus (clot) consisting of platelets, fibrin, and
red cells. Mechanical blockage by fibrinogen clots helps prevent the
spread of microbial invaders. The series of reactions (Figure 15.10)
is classically divided into two pathways — extrinsic and intrinsic —

Fig. 15.10. The intrinsic and extrinsic coagulation pathways, with links to the kinin and complement systems (modified and redrawn from
Duncan1856, Schmaier2321, and Trowbridge and Emiling2331).
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involving more than a dozen factors, that converge on a single com-
mon final pathway resulting in clot formation.234,1753,1856,1859-1863

The extrinsic pathway is initiated at the site of tissue injury with
the release of tissue factor (factor III or tissue thromboplastin)1864

which is found on the surfaces of many extravascular cells. In the
presence of Ca++ ion, Factor III activates factor VII to VIIa which
then activates factor X1865-1867 to Xa, initiating the common final
pathway.

The intrinsic pathway is initiated by activation of the contact
factors by a negatively charged surface1840-1845 — e.g., tissue mate-
rial such as collagen on the exposed surface of a blood vessel, in
vivo,234 or glass1839 or particulate material such as kaolin1857 or urate
crystals,2327,2329 in vitro. The intrinsic pathway begins with human
factor XII (FXII or Hageman factor), a serine protease produced by
the liver that circulates in plasma as an 80-kD single-chain inactive
zymogen. The zymogen is activated via (1) interaction with nega-
tively charged surfaces, (2) bacterial LPS,2332 or (3) via proteolytic
cleavage by kallikrein (produced from prekallikrein by plasma kini-
nogen1860,2320,2321). After this activation, the zymogen is proteolyzed
by the kallikrein into a two-chain active protease, activated FXII
(FXIIa).1868 FXIIa can activate several plasma cascade systems1853

including the contact system,1843,1869-1871 fibrinolysis, and the
complement system (Section 15.2.3.2) as well as the intrinsic path-
way. FXIIa attacks prekallikrein to generate more kallikrein, setting
up a positive feedback (amplification) control loop. FXIIa also acti-
vates contact factor XI to XIa in the presence of Ca++, and the addi-
tional kallikrein releases bradykinin (a polypeptide with potent va-
sodilator and pain-producing action) from kininogen. Factor XIa,
again in the presence either of Ca++ or of factor VIIa from the ex-
trinsic system, activates factor IX to yield the serine protease factor
IXa. Factor IXa then cleaves a bond in factor X1865-1867 to produce
the 2-chain serine protease, factor Xa, in the tenase complex (VIIIa,
IXa, X and Ca++) on the surface of activated platelets, initiating the
common final pathway.

In the common final pathway, factor V1872-1874 is activated to
factor Va in the presence of Ca++ by trace amounts of throm-
bin.1875-1878 Factor Va then interacts with Xa and platelet anionic
phospholipids on the surface of activated platelets to convert pro-
thrombin to thrombin, a serine protease of the trypsin family. This
more abundant thrombin produces more Va from V and converts
VIII to VIIIa, XI to XIa, and XIII to XIIIa. The last step in the
sequence is the proteolytic cleavage of fibrinogen by thrombin (a
34 kD, ~4.6 nm diameter roughly spherical molecule1879), leading
to the release of two fibrinopeptides, A and B, and the production
of fibrin monomer. The fibrin monomers are polymerized and
crosslinked by activated factor XIIIa in the presence of Ca++, pro-
ducing a stable insoluble polymer and a clot. After the clot has
formed, it can later be dissolved during fibrinolysis: inactive plas-
minogen (90 kD) is cleavage-activated by tissue plasminogen acti-
vator (tPA) or urokinase to release a serine protease, plasmin, which
can cleave the fibrin polymer.

For coagulation to occur, platelets must undergo adhesion and
activation.6043 The adhesion of platelets to exposed collagen in in-
jured blood vessels is mediated by a bridging molecule called von
Willebrand’s factor1880 that is secreted by endothelial cells into
plasma. This prevents platelets from detaching under the high shear-
ing stresses developed near vessel walls. The activation of normally
quiescent platelets is a complex phenomenon that includes changes
in cell shape, increased movement, aggregation, and release of the
contents of their granules containing nucleotidyl phosphates, sero-
tonin,1881 various factors, enzymes and plasma proteins. The most
potent activator of platelets in vivo is thrombin.1882 Thrombin

interacts with a receptor on the platelet plasma membrane, followed
by transmembrane signaling and subsequent activation of the cell.
Collagen1883 is the other most important platelet activator. ADP
can stimulate aggregation but not granule release.

In principle, the blood-contacting surfaces of a nanoorgan, or of
nanorobots22 in sufficient bloodstream numbers and concentrations,
could activate platelets or either of the two coagulation pathways.
That is, a poorly-chosen nanodevice exterior exhibiting negatively
charged surfaces (Section 15.5.6.2) could contact-activate the in-
trinsic pathway, or careless mechanical actions by in vivo nanodevices
could cause tissue injury to extravascular cells sufficient to invoke
the extrinsic pathway. Careful choices of materials and of allowable
mechanical motions (Chapter 15.5) should reduce or eliminate in-
herent nanodevice thrombogenicity and red cell hemolysis (Section
15.5.5.1.1). The fact that natural endothelium is
nonthrombogenic5961 provides an existence proof that such surfaces
can exist, and strongly suggests that it should be possible to
bioengineer5962 or nanoengineer such surfaces from artificial mate-
rials, including active components providing metered emissions of
useful antithrombogenic mediators;5963 marrying natural endothe-
lium to artificial surfaces,5964 or “endothelialization,” is well-known
in vascular grafting.5965-5971

For example, DLC diamond-coated stents,626,628,4723 heart
valves612 and other blood-contacting LVAD (left ventricular assist
device) surfaces596,613,1680 and substrates597,660,4726,4730 generally
show reduced thrombogenicity and weak or no platelet activa-
tion.660,4726 Pyrolytic carbon (LTIC) may be somewhat thrombo-
genic during brief exposures to blood.814 But LTIC is considered a
fairly nonthrombogenic material (with relatively low platelet ad-
herence1680) for long-term exposures to blood808 such as in heart
valves,813 especially if very pure.908 Fullerene thrombogenicity is
unknown, though several forms of graphite are somewhat throm-
bogenic.819,822 Carbon composites show at least short-term
thromboresistance,829 though with some surface accumulation of
platelets.830 Carbon black particles can produce prompt thromb-
ocytopenia875,884 along with cerebral thromboemboli,884 possibly
due to uncontrolled surface chemisorption effects. Platelets adhere
less readily to Teflon after longer exposures1202,1326 but their reac-
tivity may be enhanced,1159 which suggests that bulk Teflon is throm-
bogenic.1192,1195,1317,1326 There is also contrary evidence,1192,1209

possibly due to the many different forms of the material in use.
Albumin-bound Teflon1328,1330 and low-roughness surfaces1315 may
be moderately thromboresistant, but Teflon prostheses,1370 cath-
eters,1375 and tubes1189 have produced significant thromboses. Sap-
phire (alumina ceramic) has low thrombogenicity1058-1060 and both
platelet adhesion977 and activation1060 are low. Hemolysis (Section
15.5.5.1.1) is near-zero for diamond,643,660,4726 graphite,643 and alu-
mina643 powders, though Teflon patches used to repair atrial septum
defects in the 1970s were sometimes mechanically hemolytic.1347,1348

Future experiments must determine if ordinary diamondoid sur-
faces will have to be supplemented with additional antithrombogenic
coatings in order to achieve medical nanorobot mission objectives.
If such coatings are required, one simple possibility is
surface-immobilized heparin, a ~15 kD straight-chain anionic
(acidic) mucopolysaccharide (glycosaminoglycan) that forms poly-
mers of various lengths. Heparin, first discovered in 1916,2364 is
produced naturally by human liver mast cells and basophil leuko-
cytes. It inhibits coagulation primarily by enhancing about ~1000
times the ability of antithrombin to inactivate a number of coagula-
tion enzymes, including thrombin and activated factors X, XII, XI,
and IX.5489 Nanorobot exteriors could be “heparinized”1884-1891]
and thereby rendered thromboresistant by immobilized heparin on
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all blood-contacting surfaces at ~monolayer surface concentrations
(e.g., 7-10 pmol/cm2).1891 Cellulose membranes coated with 3.6
pmol/cm2 of endothelial-cell-surface heparin sulfate show complete
inhibition of platelet adhesion.1892 Albumin-heparin conjugate
coated surfaces also display anticoagulant activity1893 — pre-adhered
endothelial cells proliferating on this coating significantly reduce
the number of platelets which subsequently adhere to the surface,
and other immobilized heparin conjugates have also given promis-
ing results.1894 Unfortunately, heparin can have undesirable side
effects such as binding with platelet factor 4, which then induces
associated antibody production leading to thrombocytope-
nia,2366,2367 so a synthetic heparin-like analog may need to be engi-
neered with properties similar to low molecular weight heparin (e.g.,
enoxiparin5495) which decreases risk5489 of HITT (heparin-induced
thrombosis) syndrome.5496 Coatings of hydrophilic acrylic copoly-
mers with salicylic acid residues have also given good
antithrombogenic behavior in animal studies,1895 and
hirudin-thrombin complex adsorbed on glass bead surface did not
stimulate fibrinogen activation.1896 Polyethylene electret film has
even been studied for its athrombogenic properties.1897

If satisfactory passive nonthrombogenic surfaces cannot be found,
nanorobots might employ any of at least four active strategies to
prevent iatrogenic coagulation:

1. Local Factor Depletion. Factor X (56 kD) and factor V (330 kD)
are the only two coagulation factors whose removal would in-
terrupt both intrinsic and extrinsic pathways prior to the depo-
sition of fibrin. Conveniently, these two factors have among the
lowest blood concentrations of any of the factors — 0.005 mg/
cm3 (~50 molecules/micron3) and 0.005-0.012 mg/cm3 (9-20
molecules/micron3), respectively (Appendix B), though factor
X is the preferred target because factor V is also present in plate-
lets. The diffusion limit of 56 kD molecules having diffusion
coefficient ~8 x 10-11 m2/sec (Table 3.3), if present at a concen-
tration of ~10 molecules/micron3, is ~104 molecules/sec deliv-
ered to the surface of a spherical nanorobot 1 micron in radius
(Section 3.2.2). Nanorobot surface-deployed sorting rotors (Sec-
tion 3.4.2) could selectively deplete factors X and V from se-
rum at the rate of ~10 molecules/sec-rotor (Section 4.2.3), elimi-
nating coagulability in a hematologically isolated local environ-
ment or greatly reducing coagulability if fresh blood is continu-
ously replenishing the factor supply. Interestingly, an experi-
ment using gold-coated polyurethane film chemisorbed with
any of three different peptides found that the film acted as a
thrombin scavenger, absorbing thrombin with high affinity and
selectively removing it from plasma,1898 a crude analog of the
more sophisticated procedure described above.

2. Global Factor Depletion. Comprehensive management of the
entire bloodstream inventory of coagulation factor molecules
with whole-body real-time control also appears feasible
nanorobotically, unlike contemporary heparin or warfarin
anti-coagulation agents. There are ~1017 molecules each of fac-
tor X and factor V present in free form in the whole blood vol-
ume.* A population of 1012 bloodstream-resident 10-micron3

nanorobots each having 104 sorting rotors on its exterior sur-

face would require ~10 sec to remove ~90% of the entire serum
inventory of either factor. (The removal rate is restricted by the
maximum diffusion limit.) Each molecule would receive some
minor chemical modification that inactivates it before it is re-
leased back into solution, to preclude the need for onboard stor-
age. Prothrombin (72 kD, ~800 molecules/micron3 in serum;
Appendix B) could also be selectively depleted from serum, ei-
ther locally or globally, before it can be cleaved to make acti-
vated thrombin. Even thrombin itself (34 kD, ~0.3 molecules/
micron3 basal1899 to ~700-900 molecules/micron3 throm-
botic1900) could be nanorobotically depleted, chemically modi-
fied, and then released. Note that this method is unsuitable if
the patient is bleeding and requires prompt hemostasis, except
possibly for therapeutic nanorobots deployed in conjunction
with clottocytes22 (Chapter 24). Factor depletion seems most
appropriate as a temporary measure to avoid nanorobot-induced
thrombogenesis in hematologically intact patients.

3. Inhibitor Release. Instead of depleting coagulation factors,
nanorobots could release coagulation inhibitors2318,2319 during
the nanomedical mission, either locally or globally, and then
retrieve these molecules before exiting the body. The simplest
approach is to inhibit thrombin, the cornerstone molecule of
the coagulation cascade. There are four naturally occurring
thrombin inhibitors found in normal plasma1753 — antithrom-
bin III (potentiated by acidic proteoglycans such as heparin),
α2-macroglobulin, heparin cofactor II, and α1-antitrypsin
(α1-antiproteinase). Various other thrombin inhibitors are also
known1907-1910,1914-1920 including most especially the hiru-
dins.1909-1913 There are a number of factor X inhibitors, includ-
ing the coumarin drugs (e.g., warfarin1935-1937),
low-molecular-weight (4-6.5 kD) heparins1901-1903 such as a he-
parin pentasaccharide with purely anti-factor Xa activity,1904,1905

and vast numbers of other alternatives1921-1935,2318,2319 includ-
ing heparin mimetics2365 that avoid heparin’s unwanted side
effects. For example, synthetic factor Xa inhibitor FX-2212 in-
hibits Xa activity by 50% at a serum concentration of 272 nM
(164 molecules/micron3) in vitro.1927 Both indirect1938,1939 and
direct1940-1949 inhibitors of factor V or Va have been reported,1950

and prothrombin activation inhibitors are known.1951-1957 In-
hibitory monoclonal antibodies3962 have also been raised against
several of the coagulation proteins.

Nanorobots could also release any of a number of platelet in-
hibitors to prevent coagulation. Platelet adhesion inhibitors are
well known.1958-1961,1968 Persantine,382 prostacyclin,1962

ibuprofen,1962 and even nitric oxide1963 have a demonstrable
effect on platelet deposition. Platelets can be prevented from
adhering using an RGD (Arg-Gly-Asp) tripeptide-containing
peptide that acts as an antagonist for the fibrinogen receptor on
platelet surfaces,1964,1965 e.g., when administered at ~0.6 ng/sec
per cm3 of blood in live dogs.1964 Platelet activation inhibitors
are also well known1966-1969 and include nitric oxide,1970

prostacyclin,1971 kininogens,2321 and artificial peptides.1972 Plate-
let degranulation inhibitors have been investigated.1973-1978 Plate-
let aggregation inhibitors include kininogens2321 and a wide

* The presence of Ca++ ion is a crucial ingredient in at least six enzymatic steps of the coagulation cascade. Reducing Ca++ to minimal levels near the nanorobot would effectively
prevent coagulation in the local vicinity, or greatly reduce it if there is exogenous replenishment. The normal concentration of serum or extracellular Ca++ is quite high compared
to coagulation factors, ~106 ions/micron3 (Section 10.4.2.1). Still, 104 surface-resident Ca++ sorting rotors per nanorobot could remove ~1010 ions/sec (Section 3.4.2) from the
local environment, thus depleting the nearest 10,000 micron3 of plasma of all Ca++ ions. Those 1010 ions could then be stored in ~5% of the internal volume of a 10-micron3 nanorobot.
A bloodstream population of ~0.5 trillion of such nanorobots could reduce serum Ca++ concentration to <1% of normal in ~1 sec. If chelated (e.g., citrated) and released, the Ca++

would be temporarily unavailable to the coagulation cascade because the ion is tightly bound, although citrate is rapidly metabolized by the body, freeing the Ca++. J. Rootenberg
cautions that mission design should include analysis of whether these local actions might induce trans-cellular stasis reactions. R. Bradbury notes that chelating serum Ca++ would
likely disrupt many biological processes, and might even induce release of mitochondrial Ca++ stores; use of EGTA might provide longer-term chemical sequestration of Ca++.
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range of anti-aggregating drugs1968,1979-1985 such as aspirin,1986

clopidogrel,1987 ticlopidine,1988,1989 crotalin (inhibitory dose
~10-6 gm/cm3 or ~100 molecules/micron3 in mouse serum1990),
adamantane derivatives,5572 and potent natural aggregation in-
hibitors such as prostacyclin.1991 One potential difficulty with
this approach is that most of the enzyme cascade reactions take
place in complexes on surfaces, and the spatial arrangement of
clotting factors1992 may prevent the inactivation of factors
by nanorobot-released inhibitors, proteolytic enzymes, or
specific antibodies unless those molecules are applied lo-
cally. (A. Kumar notes that global neutralization of clotting
factors could increase the risk of petechiae and microbleeds
for the duration of the nanorobotic mission, possibly pro-
ducing further complications for the patient such as loss of
blood volume or edema.)

4. Regulatory Control. The coagulation system is a complicated cas-
cade of enzymatic reactions. Feedback mechanisms provide a
delicate balance of activation and inhibition at each point in
the cascade. Fibrin clots are constantly being laid down and
dissolved in a state of dynamic equilibrium. Medical nanorobots
may cautiously intervene in, and possibly manipulate, this dy-
namic control process. For example, protein C and protein S
are two vitamin K-dependent coagulation proteins that provide
a vital control mechanism in the cascade. Protein C is activated
to Ca (activated protein C or APC) by thrombin (with
thrombomodulin). But then this activated protein Ca (with
cofactor protein S) inactivates the activated factors Va and VIIIa
by proteolytic degradation,1993,1994 which in turn inhibits the
formation of thrombin via factor Xa. Protein S is itself cleaved
and inactivated by factor Xa1995 and has Ca-independent anti-
coagulant activity,1999 and of course there is also a protein C
inhibitor.2000 A deficiency of either C or S is associated with
venous thromboembolism. It is possible that an artificial sur-
plus of protein Ca2001,2002 and protein S could significantly brake
the coagulation process. (Natural protein Ca circulates at 3-5
mg/liter1996 or ~30 molecules/micron3 in human blood with a
half-life of ~1000 sec.1997) Similarly, a factor XIIa inhibitor1998

might inhibit the intrinsic pathway from the top; tissue path-
way factor inhibitor (TPFI) might interrupt the extrinsic path-
way in some instances;1864,1922 and so forth. The medical
nanorobot designer should verify that no chemical substance
displayed or emitted by the nanorobot will mimic the struc-
ture or activity of natural thrombotic stimulators or key co-
agulation factors such as tissue thromboplastin, factor Xa,
or thrombin.

The possible risk of nanorobot-induced bleeding is discussed in
Section 15.6.2.

15.2.6 Allergic and Other Sensitivity Reactions
This Section briefly considers possible unwanted reactions

that might be triggered by the presence of medical nanorobots
or nanodevices inside the human body, including allergic hy-
persensitivity (Section 15.2.6.1), “sternutation” or sneezing
(Section 15.2.6.2), nausea and vomiting (Section 15.2.6.3), and
shock (Section 15.2.6.4).

15.2.6.1 Allergic Reactions (Hypersensitivity)
An allergic reaction or “hypersensitivity” is the most common

disorder of immunity, affecting ~20% of the U.S. population. This
reaction is an acquired and abnormal immune system response to a
substance, called an allergen, that normally does not cause a reac-
tion. An allergy requires an initial exposure to an allergen, which
produces sensitization to it. Subsequent contact with the allergen
then results in a broad range of inflammatory responses. Common
allergic conditions or symptoms include eczema or atopic* derma-
titis, allergic rhinitis, bronchial asthma, urticaria (hives) and food
allergy. Allergens may be introduced by skin contact (e.g., cosmet-
ics, jewelry), ingestion (e.g., food), inhalation (e.g., pollen), or in-
jection (e.g., drugs). Most allergic reactions are mediated by IgE
antibodies (Section 15.2.3.3). Hypersensitivity reactions may be
trivial, resulting in a rash, or serious, causing potentially lethal ana-
phylactic shock. Could nanorobots become allergens and provoke
an allergic reaction?

Allergic reactions are usually classified by the type of tissue dam-
age that they cause. Some allergic reactions produce more than one
type of tissue damage, and other reactions involve antigen-specific
lymphocytes rather than antibodies. The four recognized types of
allergic reaction are:

Type I: Anaphylaxis. Anaphylaxis is the most extreme systemic
form of immediate-type hypersensitivity in which the
antigen-antibody complex binds to mast cell and basophils, causing
their degranulation and release of histamine, leukotrienes and pros-
taglandins responsible for hypotension, bronchoconstriction and
edema.5489 Anaphylaxis occurs when a specific allergen combines
and cross-links IgE** affixed to basophils in the circulation and to
mast cells in the tissues to induce a major mast cell response,2052 as
for instance in the reaction to ragweed pollen, or in allergic bron-
chial asthma. The primary function of mast cells — which reside in
connective tissue just below epithelial surfaces, in serous cavities,
and around blood vessels — is to synthesize and store histamine (a
strong vasodilator and bronchoconstrictor), serotonin, bradykinin,
and other mediators of inflammation such as neutrophil and eosi-
nophil chemotactic factors, in intracellular granules. During the mast
cell response, the cells release these stored substances. This causes
flushing, urticaria, asthma, angioedema, change in smooth muscle
tone, increased secretion of thickened mucus, lower blood pressure,
changes in cardiac contractility, and local recruitment of leukocytes.
Major systemic reactions can be life-threatening and may involve
vomiting, severe bronchial obstruction and vasodilation, increased
venule permeability and diminished blood volume, laryngeal or
pulmonary edema, and cyanosis. Another major systemic reaction
is shock (i.e., circulatory collapse), a systemic response which is sec-
ondary to profound vasodilation and rapid decrease in systemic blood
pressure. Shock can also involve a limited, localized reaction. For
instance, complement-derived anaphylatoxins can stimulate intra-
vascular neutrophil aggregation and embolization to the pulmonary
microvasculature, where neutrophil products including elastase and
free radicals may cause the condition of shock lung.955 Symptoms
begin within 2 hours of exposure to allergen. Clinical examples of
IgE-mediated anaphylaxis include reactions to serum proteins, ven-
oms and insect stings, enzymes, vaccines, allergen extracts, hormones,
seminal plasma, foods, polysaccharides and drugs.2052

* An “atopic” allergy differs from normal hypersensitivity reaction in that there exists a genetic predisposition for the reaction in the patient’s histocompatibility genes. Atopic
diseases typically produce IgE antibodies to harmless inhalants such as pollens, molds, animal danders and dust mites. Hay fever and asthma (~20% of the population2005)
are two of the most common inherited allergies.

** Non-IgE-mediated anaphylaxis-like reactions, called anaphylactoid reactions, may occur (1) by activation of complement (e.g., during transfusions in IgA-deficient patients),
leading to generation of C3a and C5a anaphylatoxins (Section 15.2.3.2); (2) by arachidonate mediated pathways (e.g., aspirin or nonsteroidal anti-inflammatory agents); (3)
by direct mast cell-releasing agents (e.g., opiates); or (4) by physical stimuli or exercise.2052 Anaphylactoid reaction may occur at first exposure to an allergen, unlike anaphylaxis.
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Type II: Cytotoxic Reactions. These are antigen-antibody reactions
mediated by IgG and IgM at cell surfaces that result in the lysis of
blood cells (red cells, white cells, and platelets) due to the release of
complement. Clinical examples include the body’s reaction to trans-
fusion with incompatible blood cells (producing hemolytic transfu-
sion reaction with symptoms of fever, chills, headache, hypoten-
sion, and even vascular collapse in severe cases); erythroblastosis
fetalis; and Goodpasture’s syndrome.

Type III. Immune Complex Reactions. These are antigen-antibody
reactions mediated by IgG and IgM in fluid spaces. The reactions
produce toxic antigen-immunoglobulin complexes that circulate in
the blood. There, the complexes cause damage by adhering to blood
vessel walls and initiating an inflammatory response (vasculitis).
Serum sickness, characterized by fever, joint and muscle pain, lym-
phadenopathy and urticaria, can occur in sensitized patients who
are receiving penicillins, sulfonamides, or animal-derived antitox-
ins. Localized immune complex reactions (Arthus reactions) can
damage organs, joints, and other structures.

Type IV. Delayed-Type Hypersensitivity (DTH) or Cell-Mediated
Immunity (CMI) Reactions. These are reactions between antigens
and sensitized antigen-specific T lymphocytes, not antibodies. The
reaction subsequently releases inflammatory substances, toxic sub-
stances, and lymphokines that attract other white cells. Clinical ex-
amples include tuberculosis, transplant rejection, and contact der-
matitis in response to common allergens such as rubber in elastic
materials, chromium in leather, and nickel in costume jewelry (which
alter skin protein self-antigens to create new foreign antigens).

As of 2002, a comprehensive picture of the precise characteris-
tics of allergenic molecules2009,5042,5043 had not yet emerged in the
field of molecular “allergology”.5044 Most allergens are 15-40 kD
acidic proteins or glycoproteins,2006,2007 or other chemicals.2008

Many of the known food allergens are homologous to
pathogenesis-related (PR) proteins2009 — proteins induced by patho-
gens, wounding, or certain environmental stresses. Many non-PR
allergens2009 belong to other protein families such as α-amylase and
trypsin inhibitors from cereal seeds, profilins from fruits, vegetables
and pollen,2010 and proteases from fruits. Food allergens typically
have molecular weights from 10-70 kD.2011 These allergens induce
the production of antigen-specific IgE and are stable molecules re-
sistant to processing, cooking and digestion.2011 Non-food aller-
gens may cross react with food allergens.2012,2013 For example,
latex-allergic patients are also sensitive to a broad class of plant pro-
teins called patatins found in potatoes and bananas.2013

Nonprotein “allergens” (a term usually reserved for IgE reactions)
may include nickel,2014-2018,2021-2026 chromium,2022-2027 co-
balt,2022-2024,2033 gold,2024,2030-2032 palladium ions,2019-2021,2024 and
other metals and metal-containing substances;2015,2026-2029 acrylic
compounds,2034,2035 epoxies,2036 hydrocarbons824,2037 and Teflon
implants;1188 and a few mineral substances such as aluminum sili-
cate,2038 crystals of zirconium silicate and clay minerals,2039 at least
one tricalcium phosphate ceramic,1048 and possibly silica dust2040

(silica is a well-known antigenic adjuvant).* On the other hand,
synthetic porous ceramic (Triosite),2041,2042 at least one bioactive
glass-ceramic,2043 hydroxyapatite ceramic,1048 alumina ce-
ramic1048,2028,2044 and graphite824,2045 are considered nonallergenic.
Ceramic coatings are used to eliminate metal allergies on implant
surfaces,2046,2047 and hypersensitivity to oral ceramic is reported only
rarely.2048-2051 Particles of carbon black can have a significant adju-
vant effect on systemic specific IgE response to conventional pro-
tein allergens,867 and a few rare cases have been reported of allergic

reaction to India ink particles used in endoscopic colonic tattoo-
ing.855 There is one report5026 that intraperitoneal injection of Teflon
particles in mice can have an adjuvant effect, elevating serum levels
of allergen-specific antibodies IgE and IgG2a. There are no reports
in the literature of allergenicity for diamond (cf. possible contact
dermatitis by adamantane derivatives5569), sapphire, fullerenes, or
other probable diamondoid nanorobot exterior materials. Such
allergenicity appears unlikely, but experiments should be done to
positively confirm this expectation. Intriguingly, the possibility of a
purely crystallographic allergenic sensitivity is suggested by tests of
cellular allergic reactions to zircon crystals, as assessed by variation
in arachidonic acid metabolite production in mouse macrophages2044

— the tests were negative for crystals of quadratic zircon but posi-
tive for crystals of monoclinic zircon.

Medical nanorobot designers must first attempt to ensure that
no surface component (including any organic biocompatibility-re-
lated coatings) or chemical emission of a nanomedical device can
serve as a human allergen, or can elicit any of the above four allergic
reactions. If this cannot be reliably accomplished in all cases, other
approaches may be available to eliminate the unwanted allergic re-
sponse. For example, tryptases,2053 the predominant proteins of
human mast cells (~6-19 pg/cell2053), have been implicated as patho-
genic mediators of allergic and inflammatory conditions, most no-
tably asthma.2054 Although tryptases are distinguished from other
serine proteases in being resistant to most proteinaceous inhibi-
tors,2054 several classes of tryptase inhibitors have recently been
found2056-2058 which inhibit enzyme activity after enzyme release
from cells. However, since the amount of tryptase that could be
released from mast cells might overwhelm nanorobot-released
tryptase inhibitors (because any free enzyme can activate many
molecules of substrate), mast cell tryptase-release inhibi-
tors2055,5796-5800 that might reduce or even prevent enzyme release
from mast cells might be more useful in the present context. In
principle, these or similar inhibitors could be rapidly dispensed by
medical nanorobots or secreted by dedicated internal nanorobotic
organs, instantly quenching the allergic response.

The traditional treatment of choice for anaphylaxis is an injec-
tion of epinephrine (0.183 kD), a potent vasoconstrictor and sym-
pathomimetic, in a therapeutic dose of ~6 x 10-8 gm/cm3 or ~200
molecules/micron3 in whole blood.382,5497 One 0.3-mg whole-body
dose (~1018 molecules) could be delivered in ~1 second by 3 billion
10-micron3 bloodborne nanorobots each using only 1% of internal
volume for drug storage and ~300 sorting rotors on the nanorobot
exterior. Of course, epinephrine has severe systemic consequences
and can cause cardiac arrest or a stroke if not properly monitored.

To prevent common symptoms of allergic rhinitis, the usual ap-
proach is to target histamine directly, perhaps using cetirizine,2066 a
fast-acting histamine-blocker drug, or any of a large number of other
antihistamine H1 receptor antagonists that inhibit histamine re-
lease from mast cells and/or basophils, such as ambroxol,2067 CGP
41251,2068 chlorpheniramine maleate,382 epinastine,2069

loratadine,2070,2071 or oxatomide.2055 Of course, most antihistamine
drugs have widely varying undesired or adverse side effects. Hence a
superior approach may be to use nanorobotically-embedded mo-
lecular sorting rotors (Section 3.4.2) to rapidly absorb, chemically
neutralize, and then release the primary inflammatory mediator
molecules such as histamine, tryptase, serotonin, and so forth. For
maximum effectiveness, rotor binding sites should ideally be more
numerous and possess greater binding affinity than the natural me-
diator receptors, and the rotors should be positioned to intercept

* Most of these substances do not cause IgE reactions, most of the time. For instance, nickel allergy is usually contact dermatitis, a Type IV reaction that does
not involve IgE.
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the mediators as close as possible to the site of their release. Even
patients who are experiencing a strong allergic reaction have been
found to have serum levels2072 of only >1 ng/cm3 of plasma hista-
mine (0.111 kD, >5 molecules/micron3) and >15 ng/cm3 of total
tryptase (144 kD, >0.08 molecule/micron3), largely because of rapid
degradation by the body when not bound to the intended natural
receptors. Such small amounts may be handled relatively quickly by
a modest number of bloodstream-resident medical nanorobots. One
sorting rotor can transfer ~5 molecules/sec of histamine from a ~1
ng/cm3 serum concentration (Section 3.4.2), so a single nanorobot
with 10,000 surface rotors could clear ~1000 micron3/sec of serum
of ~99% of its histamine content. (Histamine is most plentiful in
nasal secretions, ~2000-7000 ng/cm3,2073 but the rate of extraction
from solution by sorting rotors can increase almost in direct pro-
portion to solute concentration.)

15.2.6.2 Sternutogenesis
Could the presence of inhaled or perambulating medical

nanorobots in the nasal passages induce sternutation (sneezing)? A
sneeze involves dozens of muscles in the face, chest and abdomen,
all operating in a correct sequence that has been hardwired in the
brain and spinal cord.2290,2291 The sequence is mediated by the
trigeminal nerve, particularly the anterior ethmoidal, posterior na-
sal, and infraorbital nerve branches.2292 Most of the branches of the
trigeminal nerve end in the facial skin where they carry messages
serving the sense of touch (including temperature and pain), but
some branches end in the nasal mucosa just below the surface.2290

The nasal mucosa is densely innervated by small-diameter myeli-
nated sensory nerve fibers2293 ending in receptors2294 located in and
under the epithelium.2295,2296 Some nerve endings are chemically
sensitive and respond to irritating odors to trigger a sneeze.2290,2295

Other types of nerve ending respond to touch or mechanical stimu-
lation. Irritation of the nasal passages excites nerve impulses that
travel through the trigeminal ganglion to a set of neurons collec-
tively known as the sneezing center in the lateral medulla,2297 lo-
cated in the lower brainstem (medulla oblongata). The sneeze reflex
in humans occurs in two phases.2298 During the nasal phase, the
sneezing center sends impulses along the facial nerve back to the
nasal passages and face, causing the nasal passages to secrete fluid
and become congested, and the eyes to water. During the subse-
quent respiratory phase, the sneezing center sends impulses to res-
piratory muscles via the spinal cord, causing the characteristic deep
inspiration and forceful expiration of air.2299

Many stimuli can trigger a sneeze,2299 including nasal infections,
allergies (e.g., pollens and molds), cold air and humidity, chemical
irritants2311 such as spices2300 (mean level 0.15 mg/m3)2301 or am-
monia,2290 newspaper dust,2302 2- to 10-micron oil mists at 0.1-0.3
mg/m3 (~106 particles/m3),2303 exposure to bright sunlight
(autosomal-dominant photic sneeze reflex2304 affecting 18-35% of
the population2305), overeating, sexual excitement, hair pulling or
eyebrow plucking, shivering, repetitive electrical stimulation,2306,2307

catheter-delivered air puffs to the superior nasal meatus,2308 or a
needle inserted into the orbital cavity.2309 Sneezing can be a purely
allergic reaction, accompanied by histamine and neuropeptide re-
lease2310-2312 that can be locally suppressed using drugs like NSAIDs
or Azelastine.2313 However, nanorobots should be designed to be
chemically and allergenically inert, so the most likely source of
nanorobot sternutatogenicity is mechanical stimulation (c.f., a ny-
lon fiber applied to the nasal mucosa2314). The most likely source of
such stimulation in a nanomedical context is the physical motions
of nanorobots moving across the surfaces of the nasal passages.

Precise measurements of the threshold stimulus needed to acti-
vate nasal mechanosensors have not yet been reported. However,
the minimum detectable skin pressure, which occurs on tongue and
fingertip, is ~2000 N/m2 (Section 9.5.2), and intranasal pressure
during sneezing is ~600 N/m2 in adults2315 and ~700 N/m2 in pre-
mature newborns.2316 Mechanical stimulation of cat nasal mem-
brane at 20 Hz with a peak-to-peak displacement of 500 microns
evoked the sneeze reflex.2317 Assuming the area compressibility
modulus for this membrane is ~1 N/m (Section 9.4.3.2.1), the re-
quired displacement pressure was ~2000 N/m2. Assuming ~1000
N/m2 as the activation threshold for mechanically-stimulated sneez-
ing (based on the aforementioned pressure values), and assuming
the minimum value for mucus viscosity (Table 9.4), Eqn. 9.73 sug-
gests that the viscous motive forces required to propel a spherical
1-micron diameter nanorobot through the mucus at a speed of ~1
cm/sec or slower (force <~1 nN, power <~10 pW power) should be
insufficient to trigger the sneeze reflex. Thicker nasal mucus would
demand slower locomotion to hold applied forces below the as-
sumed threshold limit for sneezing, especially since nasal inflam-
mation undoubtedly makes these reflexes more sensitive.5821 These
questions can be resolved by simple laboratory experiments.

15.2.6.3 Nauseogenesis and Emetogenesis
Can the mere presence of nanorobots in the human body pro-

voke nausea or vomiting (emesis)?2426-2433 Vomiting is one of the
most complex motor functions performed by humans. Emesis is a
sequential interaction between viscera, the central nervous system,
and somatic muscles that results in the expulsion of intraluminal
contents from the proximal small intestine and stomach.2422 Nau-
sea and the act of vomiting are controlled by a region in the me-
dulla that coordinates the respiratory and vasomotor centers and
the vagus nervous innervation of the gastrointestinal tract.2421 This
“vomiting center”2424,2427 may be stimulated by four different sources
of afferent input from:

1. afferent vagal nerve fibers, rich in serotonin 5-hydroxytryptamine
(5HT3) receptors, and splanchnic nerve fibers in the gastrointes-
tinal viscera that may be stimulated by biliary distention, gas-
trointestinal distention, mucosal or peritoneal irritation, or in-
fections.2421 Noxious enteric contents initiate the emetic reflex
through the activity of vagal and sympathetic afferent nerve fi-
bers that reach to the brainstem.2422 More specifically, vomit-
ing can be induced (a) via irritation of the gastric mucosa by the
alkaloid emetine in ipecac syrup,2434 copper sulfate,2435 mer-
cury,2436 lye,2437 or bile reflux;2438 (b) via gastrointestinal mu-
cosal irritation by iron salts,2439 various laxatives2440 and pesti-
cides,2441 mechanical irritation2442 or duodenal2443 or uri-
nary2444,2445 obstruction, and by bile duct perforation;2446 (c)
via peritoneal irritation associated with post-anesthetic residual
tissue stretching2447 or colonic perforation,2448 acute pancreati-
tis,2449,2450 or various drugs and other chemicals;2451-2453 or even
(d) via coronary artery occlusion.2433 Emetogenic mechanore-
ceptors and chemoreceptors have been found in the stomach,
jejunum and ileum.2433

Properly designed medical nanorobots should not externally dis-
play or emit nauseogenic or emetogenic molecules. Massive num-
bers of medical nanorobots simultaneously physically travers-
ing or cooperatively manipulating the intestinal walls (Sections
8.2.3 and 15.5.1.4, Chapter 26) could in principle produce suf-
ficient mechanical irritation or tissue stretching to elicit
emetogenesis. However, esophageal and intestinal shear forces
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of >~1 N/m2 due to the normal passage of chyme or feces (Sec-
tion 9.4.3.3) are not commonly nauseogenic. A cubic (~300
micron)3 intestinal nanorobot applying ~100 nN of lateral tow-
ing force (similar in size and strength to an amoeba; Section
9.4.3.7) also applies ~1 N/m2 shear force, which likewise should
not induce emesis. Amebiasis involving 12- to 50-micron mo-
tile trophozoites in the large bowel produces vomiting only in
cases of severe dysenteric colitis,498 and it is not clear whether
the cause of the vomiting is the number and movement of amoe-
bae or some other factor. The presence and movements of tens
of trillions (Section 8.5.1) of motile micron-sized commensal
bacteria in the human colon is not normally nauseogenic.

2. the vestibular system, having fibers with high concentrations of
histamine H1 and muscarinic cholinergic receptors, which may
be stimulated by motion,2454,2455 sensory conflict,2456 or infec-
tions.2421,2422 Purposeful mechanical manipulations of the hu-
man vestibular (Section 7.4.6.2) or auditory (Section 7.4.6.3)
sensory apparatuses by medical nanodevices could be
nauseogenic or induce vertigo.2464 These symptoms are unpleas-
ant but not life-threatening. Nevertheless, nanorobot missions
should be designed to avoid these outcomes or else the patient
may require administration of the belladonna alkaloid scopola-
mine (a traditional prophylactic treatment for motion sick-
ness5498) or other agents such as meclizine (an antihistamine
with anticholinergic properties).2422

3. higher central nervous system centers, including disorders of
the central nervous system (e.g., elevated intracranial pressure
caused by tumors,2457-2460 closed head injuries,2461 migraine and
epilepsy,2461 or even intracranial amoebic invasions2462) or cer-
tain sights, smells, taste aversions, or emotional experiences that
may induce vomiting.2421 For example, patients receiving che-
motherapy may develop vomiting in anticipation of chemo-
therapy; sedatives such as benzodiazepines are antiemetic for
patients with anticipatory or psychogenic vomiting.2421 Nor-
mally the presence of therapeutic nanorobots inside the human
body will not be directly detectable by the human senses, but
the in vivo administration of nanodevices might still elicit psy-
chogenic emesis in worried patients who are anticipating re-
ceiving nanorobots (Chapter 17).

4. the chemoreceptor trigger zone (CTZ),2423-2426 rich in recep-
tors for serotonin 5-HT3, dopamine D2, histamine and opio-
ids, and located outside the blood-brain barrier in the area
postrema of the medulla, whose chemoreceptors may be stimu-
lated2421,2422,2463 by drugs and chemotherapeutic agents,2464-2469

opioids and anesthetic agents,2472 circulating toxins or other
humoral agents, hepatic amoebic invasions,2473 hypoxia,2474 ure-
mia,2475 chlorine fumes,2476 acidosis, and radiation therapy.2425

Barring poorly planned releases of nauseogenic effluents, medi-
cal nanorobots should not activate the CTZ.

In the highly unlikely event that nanorobots and their mis-
sions cannot be designed to be completely non-nauseogenic,
many antiemetics are available.2469-2471 Antihistamines are weak-
ly antiemetic for “vomiting center”-mediated emesis.2421 Block-
ade by serotonin 5-HT3 receptor antagonists (e.g., ondansetron2477

and tropisetron2467), dopamine antagonists2478,2479 (e.g.,
metoclopramide2479), and NK12480 antagonists is well known. Phe-
nothiazines and related compounds specifically block CTZ-mediated
vomiting.2424

Nausea is the conscious recognition of excitation of an area in
the medulla associated with the vomiting center.5489 The sensation
of nausea apparently involves the cerebral cortex,2430 and the “vom-
iting center” is actually a distributed control system2428-2430 per-
haps including a central pattern generator2461,2481 comprised of sev-
eral distinct neural clusters or pathways. So most efficiently, a small
number of specialized nanorobots could be stationed within (1) the
vomiting center located in the nucleus tractus solitarius,2482 (2) the
brain stem between the obex and the retrofacial nucleus,2430 (3) the
medullary midline,2429 (4) the area postrema,2483 (5) the parabrachial
nucleus,5909 and (6) certain higher brain centers.2430 These precisely
positioned specialized nanorobots could then directly control or
completely extinguish all emesis-related neuron signal traffic by
means previously described (Sections 4.8.6, 7.4.2.6, and 7.4.5.4),
thus directly preventing nausea and vomiting.

15.2.6.4 Nanoid Shock
Could the presence of medical nanorobots inside the human

body produce shock? Shock is a life-threatening medical emergency
in which blood pressure is too low to sustain life, due to inadequate
pumping action of the heart or excessive vasodilation.361 Shock may
be caused by a wide variety of conditions including dehydration,
drug reaction, hemorrhage, infection, myocardial infarction, poi-
soning, or trauma. There appear to be only three general classes of
shock response that could be directly triggered by medical
nanorobots. These three responses may collectively be termed
“nanoid shock”:

1. Anaphylactic Shock. (See Section 15.2.6.1) Anaphylactic
shock from complement activation (Section 15.2.3.2) is
another possibility.

2. Septic Shock. Septic shock2074-2076 is usually (though not al-
ways2524) caused by Gram-negative bacterial endotoxin (e.g.,
lipopolysaccharide or LPS) components of the cell wall that are
released into the bloodstream when a microbe is destroyed or
lysed. Endotoxins can activate Hageman factor, which can in
turn activate the complement system, the bradykinin system
(bradykinin release produces vasodilation, increased vascular
permeability and blood volume depletion), the coagulation cas-
cade, and the fibrinolytic system.2077 Nanorobots with external
surface-bound moieties or which emit chemical substances that
have molecular homology with endotoxins (either of which can
probably be avoided in a good nanomedical design) might elicit
an analogous septic shock. The adverse effects of bacterial en-
dotoxin are mediated by various active substances such as tu-
mor necrosis factor (TNF) or cachectin, a cytokine produced
by macrophages and other mononuclear cells (Section 15.2.7).
If necessary, the nanorobot fleet could selectively absorb2078 and
neutralize those mediating substances, or release, say,
TNF-specific antibodies,2079 antagonists,2080 inhibitors,2081 de-
coys,2084 or synthesis inhibitors2082 to eliminate the risk of
septic shock.

For example, with minor additions, phagocytic nanorobots called
microbivores2762 (Chapter 23) could be used to combat tox-
emia, the distribution throughout the body of poisonous prod-
ucts of bacteria growing in a focal or local site, and other bio-
chemical sequelae of sepsis. For instance, E. coli-induced septi-
cemic shock in vervet monkeys occurred at 425 x 106 CFU/ml
and LPS endotoxin rose from normal at 0.076 ng/ml to a maxi-
mum of 1.130 ng/ml blood concentration.5499 In another study,
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endotoxin levels during a Gram-negative bacterial infection rose
from 0.2 to 2 ng/ml in pig blood.5500 Eliminating a bloodstream
concentration of ~2 ng/ml of ~8 kD LPS endotoxin5501 would
require the extraction and enzymatic digestion of ~8 x 1014 LPS
molecules from the ~5400 cm3 human blood compartment, a
mere ~800 LPS molecules per nanorobot assuming a single
terabot dose (1012 devices) of modified microbivores.

The high mortality associated with Gram-negative sepsis is due
in large measure to the patient’s reaction to LPS, which induces
the production of cytokines such as IL-1β and IL-6 which leads
to an uncontrolled inflammatory reaction resulting in tissue
damage and organ failure.5502 Small quantities (~ng/ml) of LPS
are released by living and growing bacteria (see previous para-
graph), but the killing of bacteria using traditional antibiotic
regimens often liberates large quantities of additional LPS, po-
tentially up to ~105 ng/ml.5502 Such massive releases as occur
with the use of antibiotics will not accompany the use of
microbivores,2762 because all bacterial components (including
all cell-wall LPS) are internalized and fully digested into harm-
less nonantigenic molecules prior to discharge from the device.
And of course nanorobots will themselves contain no LPS.
Microbivores thus represent a complete antimicrobial therapy
without increasing the risk of sepsis or septic shock. (Note that
while Gram-positive organisms can also induce cytokine pro-
duction, 100- to 1000-fold more Gram-positive bacteria are
needed to induce the same concentration of cytokines as are
induced by Gram-negative bacteria.5502)

If the patient presents with a septic condition before the
microbivores are introduced, a substantial preexisting concen-
tration of inflammatory cytokines will likely be present and must
be extracted from the blood in concert with the principal anti-
bacterial microbivore treatment. Unwanted cytokine molecules
may be rapidly and systemically extracted from the blood using
a modest dose of respirocyte-class nanodevices,3573 a
combination-treatment approach previously suggested else-
where.2762,5503 Specifically, a 1-terabot intravenous dose of
micron-size pharmacytes (Section 10.4.1.4, Chapter 19) each
having ~105 cytokine-specific molecular sorting rotors and ~0.5
micron3 of onboard storage capacity could reduce the blood
concentration of ~20 kD IL-1β and IL-6 cytokines from
LPS-elevated levels of ~100 ng/ml5502 (~3 x 10-9 molecules/nm3)
down to normal serum levels of ~10 pg/ml2163 (~3 x 10-13 mol-
ecules/nm3) after only ~200 sec of diffusion-limited pumping,
using just ~0.1% of the available onboard storage volume. (Ex-
tracting an additional ~105 ng/ml of LPS from the bloodstream
would take a similar amount of time and would use ~100% of
the available onboard storage volume.) Cytokines that have ex-
ited the circulation must be removed by other means.

3. Mechanical Shock. Traumatic shock may occur in cases of acute
intestinal obstruction, crush injuries, perforation or rupture of
viscera or blood vessels, pneumothorax, nerve injury due to con-
tusion of highly sensitive parts (e.g., testicle, solar plexus, eye,
urethra), gastrointestinal strangulation (e.g., hernias, intestinal
intussusception or volvulus), or visceral torsion (e.g., of ovary,
testicle).2004 Traumatic shock toxin (a thrombogenic
aminophospholipid) occurs only on the cytosolic layer of cell
membranes and is liberated by cell destruction, causing dissemi-
nated intravascular coagulation.2083 Such mechanical traumas
should be rare in the context of individual nanorobot locomo-
tion and manipulation activities in vivo, but mechanical shock

could result from poorly-planned large-scale coordinated
transtissue nanorobot fleet movements (Chapter 14), from vas-
cular blockage due to nanorobotic-induced emboli caused by
“traffic-jam” control-failure effects (Chapter 12), or from in-
cautious nanosurgical techniques (Chapter 12). These causes
should be avoided in medical nanorobot mission design.

15.2.7 Nanopyrexia
Human core temperature (Section 8.4.1.1) is tightly regulated

through the preoptic nucleus of the anterior hypothalamus2090 to a
mean “set point” of 37˚C with circadian variations around this mean
rarely exceeding 0.6˚C,2091 although set point is lowered 0.5-1.0˚C
in mammals on calorie restriction diets.5930-5932 An array of ther-
moregulatory mechanisms2092 ensures that the hypothalamic ther-
mal set point temperature is maintained to within a natural “load
error” of 0.2-0.5˚C.2093 Thermal deviations exceeding the load er-
ror provoke a natural counteractive response to restore core tem-
perature back to the set point.

Abnormal elevation of systemic body temperature (pyrexia) can
occur in one of two ways: hyperthermia or fever.2094

In hyperthermia,2095 thermal control mechanisms are over-
whelmed, so that heat production exceeds heat dissipation. Hyper-
thermia may develop during periods of intense physical exertion
(Section 6.5.2), dehydration, immersion in hot fluids (Section
8.4.1.2), or from waste heat thrown off by energy-consuming
nanorobots in vivo (Sections 6.5.2-3). In each case the body’s
thermoregulatory mechanisms are fully engaged, attempting to cope
with the departure from homeostasis. In some situations, ther-
moregulatory disorders such as heatstroke, hot flashes,5357-5361 hy-
pothalamic insult (caused by drugs, infection or tumor), malignant
hyperthermia, or thyroid storm, can cause extreme pyrexia with tem-
perature rising to 41.1˚C or higher.2096 Protein denaturation be-
gins at ~42˚C, and heating blood above 47˚C rapidly produces vis-
ible damage to erythrocytes.2097 Heat-damaged cells show morpho-
logic changes, increases in osmotic and mechanical fragility, and are
removed rapidly after reinjection into the circulation.2098 Similarly,
an increase of ~6.5-10˚C in tooth pulp temperature for >30-45 sec-
onds can permanently damage the pulp.2099 If nanorobots are the
cause of hyperthermia, it is because local or systemic thermogenic
limits (Section 6.5.2) are being exceeded. Obeying these operational
limits avoids the problem.

In fever, the second cause of pyrexia, the hypothalamic thermal
set point is shifted higher by the action of circulating pyrogenic
cytokines, causing intact peripheral mechanisms to conserve and
generate heat until the body temperature increases to the elevated
set point.5489 Fever is a natural self-defense mechanism (produced
by substrate cycling in skeletal muscle) intended to make the host
less hospitable to microscopic invaders. The intact control mecha-
nisms of thermoregulation act to raise body temperature up to the
new set point, then maintain the elevated systemic temperature.
Thus fever is not equivalent to an elevated core temperature. Rather,
it represents an elevated set point.2084 Fever is triggered by the re-
lease of endogenous pyrogenic cytokines (fever-producing sub-
stances) from cells of the immune system into the bloodstream.
Mononuclear phagocytes are the main source of endogenous
pyrogens, and a variety of these substances,2096 categorized as
monokines and lymphokines, or collectively, as cytokines, also me-
diate the acute-phase response to infection and inflammation.
Pyrogenic cytokines act as hormones in that they are carried by the
circulation from the local inflammatory site of production to the
central nervous system. There they bind with high affinity to 80 kD
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receptors present on vascular endothelial cells within the hypothala-
mus. This elicits phospholipases, which in turn cause release of
arachidonic acids from membrane phospholipids. As a result, pros-
taglandin levels rise, resetting the hypothalamic regulatory center
to a new set point. The cytokines may also interact directly with
neural tissues.2084

The most important of the pyrogenic cytokines are interleukin-1
(IL-1), tumor necrosis factor (TNF), interleukin-6 (IL-6), inter-
feron alpha, beta and gamma, interleukin-8 (IL-8), macrophage
inflammatory protein (MIP-1α, MIP-1β), and possibly2100

platelet-derived growth factor (PDGF).
IL-1 (17.4 kD) comes mainly from monocytes and macroph-

ages, though it can also be produced by neutrophils, B and T cells,
endothelial cells, and virtually all other nucleated cells.2094 IL-1 pro-
duction may be stimulated by the presence of microorganisms, ex-
posure to endotoxin and other bacterial toxins or microbial prod-
ucts, phagocytosis, antigen-antibody immune complexes, and vari-
ous forms of tissue injury.2094 IL-1 induces additional IL-1 produc-
tion2101 and additional IL-1 receptor expression on certain target
cells.2102 IL-1 stimulates immune cells thus enhancing host defense
mechanisms. The cytokine stimulates lactoferrin release by neutro-
phils (e.g., neutrophils have ~1700 IL-1 receptors per cell2103), which
reduces serum iron levels during many bacterial infections, thus re-
tarding bacterial growth. (IL-1 also acts on the central nervous sys-
tem to induce sleep2104 and has numerous other helpful and delete-
rious biologic properties.)

TNF is another pyrogenic cytokine that acts directly on the hy-
pothalamus to elevate the thermal set point. It also causes fever by
inducing IL-1 production. LPS-activated macrophages are the main
source of TNF, along with monocytes and NK cells as well as
antigen-stimulated T-cells and activated mast cells. TNF produc-
tion is stimulated most potently by endotoxin, but also by certain
parasites, viruses, enterotoxins (including toxic-shock syndrome
toxin-1), and IL-1.2105 Peak serum levels occur in 90 minutes, but
TNF is cleared from the circulation in ~3 hours.2094 TNF binds to
different receptors than IL-1. These different receptors are found in
the CNS, on vascular endothelium, adipose tissue, and on liver,
kidney and lung tissues.2094 TNF has other biological properties
besides pyrogenicity, including increasing resistance to infection,2106

inhibition of ACTH release,2107 induction of sleep,2104 and media-
tion of septic shock2108 (Section 15.2.6.4). TNF is a mediator of
both natural and acquired immunity as well as specific responses
and acute inflammation.5491

Can nanorobots act as pyrogens, inducing systemic fever
(nanopyrexia5503)? Any external nanorobot organic coatings (Sec-
tion 15.2.2) should be verified as nonpyrogenic. For example, ph-
agocytosed latex particles do not stimulate pyrogen production in
macrophages.2129 But fever occurs in about one-third of all hospital
patients, 67% of these due to infection2109 but 12-18% due to “fe-
ver of unknown origin” or FUO2110 that is nonetheless almost cer-
tainly biochemically mediated. FUO is usually ascribed to infec-
tions, neoplasms, collagen vascular disease, granulomatous diseases
(including starch peritonitis,2404 a febrile granulomatous response
to starch introduced on surgical gloves), chronic liver disease and
IBD (irritable bowel disease), pulmonary emboli2111 and atelecta-
sis2406,2407 (but compare Engoren2405), and sometimes certain
drugs2112,2113,2409-2411 such as Dilantin.2411 Fever can also be pro-
duced by mechanical tissue disturbance such as a thoracic esoph-
ageal perforation,2085 knee and hip arthroplasty,2401-2403 excision of
Teflon particulate masses,1282 or shock wave lithotripsy,2087-2089 con-
firming the need for cautious nanosurgery (Chapter 12).

S. Flitman also notes the significance of Shapiro Syndrome, a
spontaneous recurrent hypothermia and hyperhidrosis usually as-
sociated with agenesis of the corpus callosum5910-5912 but also with
hypothalamic lesions5913 and lipomas.5914 Dopaminergic denerva-
tion of the hypothalamic thermoregulatory center has also produced
hyperthermia or “reverse Shapiro Syndrome”,5915 and Flitman has
observed this effect in a patient with hypothalamic damage due to
encephalitis, producing a fever long after the normalization of CSF
pleocytosis (and hence the eradication of acute infection). The rel-
evance to nanomedicine is that nanorobots passing through, or tak-
ing up residence in, the corpus callosum or hypothalamus must
tread lightly to avoid inducing hypo- or hyperthermia, as this seems
to occur with even a mild infiltration of the preoptic nucleus, ac-
cording to Flitman.

As of 2002, there were no reports of pyrogenicity for anticipated
nanorobot simple building materials such as diamond, fullerenes,
or graphite. Carbon powder has been used in nasal provocation tests
without eliciting fever,2114 though there are rare cases of fever from
amorphous carbon particles in India ink856 and from inhaled or
ingested hydrocarbons.2408 With rare exception,2115 bulk Teflon
appears nonpyrogenic in vivo2116-2118 — although perfluorocarbon
emulsion can cause cutaneous flushing and fever at low doses2119

(see also Section 7.2.1.1 and Chapter 22), and “polymer fume fe-
ver”1683,2120,2121 or “Teflon fever”1388 is the result when Teflon com-
bustion products are inhaled. No pyrogenicity of monocrystal sap-
phire has been reported. However, there is one case of fever possibly
caused by alumina powder inhalation.2122 And while ceramics ap-
pear generally to be nonpyrogenic,2123 macrophages exposed to par-
ticulate alumina ceramic release TNF, increasingly with size and
concentration of particles.1074

Other particulates are less inert. Metal fume fever (due to zinc
oxide inhalation) is well known2124-2126 and excess trace elements
such as copper and zinc can induce fever.2127 Phagocytosed silica
crystals elicit pyrogen production2128,2129 and silicotic materials can
produce fever.2131-2133 Various low-solubility substances that crys-
tallize in the human body can trigger fever once the crystals have
formed. For example, monosodium urate monohydrate crys-
tals,2128-2130 which are deposited in synovial fluid during gout, cause
fever2134,2135 and stimulate IL-1,2128 TNFalpha,2136 and IL-62130

production in monocytes or synoviocytes. The smaller 10- to 40-mi-
cron crystals are less pyrogenic than the larger aggregates.2128 Cal-
cium pyrophosphate dihydrate (CPPD) deposited in the fibro-
cartilage during chondrocalcinosis (aka. CPPD crystal deposition
disease) is pyrogenic,2137-2143 and CPPD crystals increase IL-6 pro-
duction by monocytes and synoviocytes in vitro.2130 Fever has been
reported from nephrolithiasis (kidney stones),2144 from crystal-
luria2145 with calcium oxalate or phosphate in urolithiasis (bladder
stones),2146,2147 from calcified lymph-node stones in
broncholithiasis,2148 from calcified salivary gland stones in sialolithi-
asis,2149 and from precipitated crystals in the pulmonary microvas-
culature in a patient receiving total parenteral nutrition.2150 Cho-
lesterol crystals deposited as gallstones during cholelithiasis may be
pyrogenic,2151-2153 as are cholesterol crystal emboli in the blood.2154

A systematic assessment of pyrogenicity should be undertaken for
all crystalline and ceramic materials likely to be employed (whether
singly or in combination) in the construction of medical nanorobots.

If inherent nanodevice surface pyrogenicity cannot be avoided,
the pyrogenic pathway is readily controlled by in vivo medical
nanorobots because only a small number of critical mediators are
involved. For instance, the cytokine IL-4 suppresses production
of the endogenous pyrogens IL-1, TNF and IL-6.2155 NSAID
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prostaglandin inhibitors like aspirin or ibuprofen are also effective
antipyretic agents that block prostaglandin synthase (cyclooxygenase)
enzyme activity and thus block the production of prostaglandins.
Antagonists of the IL-1 receptor have been identified.2156-2160 Glu-
cocorticoids inhibit the production of IL-1, TNF and IL-6.2161 Other
inhibitors of TNF are known (Section 15.2.7) such as the anti-TNF
monoclonal antibody Etanercept,2412,2413 currently used in rheu-
matoid arthritis patients with excellent results. Nonsteroidal
anti-inflammatory antipyretic drugs are employed for treatment of
gout and other crystal-induced arthropathies.2162 Additionally, many
endogenous antipyretics that limit the rise in body temperature have
been identified,5045 including arginine vasopressin, glucocorticoids,
melanocortins (e.g., alpha-MSH), TNF (under certain circum-
stances), IL-10, and most recently, cytochrome P-450.5045,5046

Nanorobots may release these or similar inhibitors, antagonists, or
down-regulators in a targeted fashion to interrupt the pyrogenic
pathway. Alternatively, they may use molecular sorting rotors to
selectively absorb the endogenous pyrogens, chemically modify
them, and then release them back into the body in a harmless
inactivated form.

For example, typical bloodstream concentrations are ~10 pg/cm3

for IL-1β2163 and ~100 pg/cm3 for TNF,1074 or ~0.0003-0.003
molecules/micron3 assuming a molecular weight of ~17.4 kD for
either molecule.2084 If there are 2-20 x 1012 molecules of these
cytokines in the entire circulation, then a fleet of 0.1-1 trillion
nanorobots each with 10,000 sorting rotors on its surface (extract-
ing ~0.001 molecules/rotor-sec) can reduce bloodstream IL-1 or
TNF concentrations by ~90-99% in ~2-20 seconds. Selective ab-
sorption of prostaglandins, present in blood plasma at ~400 pg/cm3

(Appendix B), might also serve to “manually” reduce the hypotha-
lamic thermal set point. One other possible approach, adopted by
certain Vaccinia virus strains,2347 is to suppress the fever response by
releasing soluble IL-1 receptors that bind to IL-1, thus inhibiting
this normal pathway.

It is possible that perfectly biocompatible-surfaced nanorobots
cannot be designed, or that necessary additional anti-pyrogenic func-
tions cannot be added to nanorobotic devices already hard-pressed
for onboard space. Although not ideal, in such cases a collection of
different nanodevices could be deployed to implement a given treat-
ment. Some devices would attend to the primary therapeutic goal
while others would attend to the management of the unwanted bio-
logical responses, crudely analogous to drug combinations in cur-
rent medical practice such as demerol plus vistaril2414-2416 or com-
binations of chemotherapeutics and anti-emetics.2417-2420 Mecha-
nisms of tachyphylaxis5891 could also be investigated for possible
relevance.

The impact of nanorobots and nanorobotic organs on the
thermophysical properties and thermoregulatory mechanisms of the
human body is briefly discussed in Section 15.3.8.

15.2.8 Nanorobot Mutagenicity and Carcinogenicity
Another key aspect of biocompatibility is whether implanted

nanorobotic organs, or in vivo medical nanorobots,33 can induce
undesirable genetic changes as a side effect of their presence or ac-
tivities inside the human body. Such undesirable changes might take
many forms. For instance, mutagenicity2176,2178 is the production
of inheritable coding flaws in chromosomes that otherwise may re-
tain much genetic functionality. (All carcinogens are mutagens but
not vice versa — a mutation may be lethal to a cell, may prevent
cellular replication, or may not affect metabolic or growth processes
sufficiently to produce malignant behavior.234) Genotoxicity2179,2180

is a more serious injury to the chromosomes of the cell, such that
when the cell divides, fragments of chromosomes and micronuclei
remain in the cytoplasm. Teratogenicity2181-2183 is the ability of a
foreign material (or a fetotoxic agent) to induce or increase the risk
of developing abnormal structures in an embryo, or birth defects.
Carcinogenicity is the ability to produce or increase the risk of de-
veloping cancer — materials may be directly carcinogenic or may
potentiate other agents.234 Tumorigenic materials tend to induce
neoplastic transformations, especially malignant tumors.

Direct experimental exploration of the carcinogenicity of likely
nanorobot building materials has barely begun, but information
available to date appears guardedly optimistic. For example, dia-
mond (DLC) coatings exhibit low mutagenicity toward human fi-
broblasts in vitro.659 There are no reports of diamond carcinogenic-
ity or tumorigenesis. Alumina (sapphire) produces no mutagenic or
carcinogenic effects on cultured human osteoblasts1104 or when used
as a blood-contacting material in a centrifugal blood pump.1058-1060

While aluminum ion that leaches from sapphire at the highest plau-
sible concentrations (~10-5 M; Section 15.3.5.6) might inhibit eu-
karyotic transcription,2235 experiments suggest that the mutagenic-
ity, carcinogenicity, and teratogenicity of aluminum is low2236 and
the association between aluminum and Alzheimer’s has become
doubtful.5504 (S. Flitman notes that the original basis for the asso-
ciation is now believed to be laboratory error (e.g., “brains in buck-
ets absorbed high concentrations prior to analysis”), and that
Alzheimer’s is not a disease induced by mutagenicity but rather is a
protein-accumulation disorder with an inheritable predilection
(ApoE, APP, PS1, PS2).) Teflon particles appear to be non-
carcinogenic,1237,1249,1311,1385 even though tetrafluoroethylene (a
monomer used in Teflon manufacture) is hepatocarcinogenic after
long-term inhalation by mice.1385 There are no reports of carcino-
genicity from pyrolytic carbon, graphite, or India ink in humans.
In rodents, the inhalation of carbon black particles can produce
pulmonary neoplasms888 and lung carcinoma,760,761 and
particle-elicited macrophages and neutrophils can exert a mutagenic
effect in vitro, on rat epithelial cells.889

The possible carcinogenicity of fullerenes was suggested more
than a decade ago698,917 but even by 1998 the risk was no longer
considered serious.669 Pure C60 and C70 molecules do not interca-
late into DNA (which might promote cancer) when mouse skin is
exposed to them,698 though water-miscible fullerene carboxylic acid
can cleave G-selective DNA chains.922 No mutagenicity or
genotoxicity of C60 as fullerol is observed in prokaryotic cells and
only slight genotoxicity is seen in eukaryotic cells at the highest
concentrations.696,697 C60 dissolved in polyvinylpyrrolidone is mu-
tagenic for several Salmonella strains due to singlet oxygen forma-
tion681 — pure C60 is a known singlet oxygen generating agent,919

and singlet oxygen is known to be genotoxic.2237 Repeated epider-
mal administration of fullerenes for up to 24 weeks resulted in nei-
ther benign nor malignant tumor formation in mice, although pro-
motion with a phorbol ester produced benign skin tumors.698 Some
C60 derivatives have actually shown promise as anti-cancer1090-1092

or anti-tumor684,922 agents. Carcinogenicity studies of rolled
graphene sheets such as carbon nanotubes remain to be done (Sec-
tion 15.3.2.1).

There are four types of carcinogenesis234 which may be relevant
in medical nanorobotics:

1. Chemical Carcinogenesis. Chemical carcinogenicity is actually a
somewhat uncommon property of materials. An exhaustive lit-
erature search on 6000 of the most likely chemical candidates
found only 1000 (17%) identified as possible carcinogens.234
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The classic study by Innes et al2184 found that fewer than 10%
of 120 pesticides and toxic industrial chemicals tested were car-
cinogenic. Even this study was criticized as being too pessimis-
tic because testing toxic potential carcinogens at high dosages
may artificially accentuate their activity by inducing increased
rates of cell division.2185 Medical nanorobots normally will have
chemically-inert nonleachable surfaces, but designers should
ensure that all possible nanorobot effluents are noncarcinogenic.
Potential nanorobot effluents may be prescreened during de-
sign using existing computational toxicology techniques.2174-2177

2. Nonspecific Carcinogenesis. Neoplasms can arise in response to
chronic irritation, leading to chronic inflammation and
granulomatous reaction to implants (Section 15.4.3.5). Chemi-
cals,2186 foreign bodies,2187 infection and mechanical trauma2188

can produce this type of neoplastic transformation which is char-
acterized by replication infidelity — i.e., a cell that produces a
daughter cell not identical to its parent, as in, for example, the
formation of hyperplastic expansive scars known as nonmalig-
nant keloids.234 These benign lesions can occasionally, and ap-
parently spontaneously, transform into malignant neoplasms
such as fibrous histiocytomas.2189-2192

3. Ex Cyto Foreign Body Carcinogenesis. In the 1950s it was discov-
ered that many agents not previously thought to be carcino-
genic produced dramatic neoplasm incidence rates in rodents
when implanted in solid form rather than injected or fed in
soluble or dispersed form. This effect is called foreign body (FB)
carcinogenesis,2193-2202 solid-state carcinogenesis,2203,2204 or the
Oppenheimer effect.2205,2206 The induction of neoplasms in-
creases with the size of the implant and with decreasing inflam-
matory response (i.e., well-tolerated materials are, in the long
run, better FB carcinogens). The risk of transformation is influ-
enced by the micron-scale surface morphology of the im-
plant.5822 Risk is reduced on surfaces with porosity of average
diameter above 220 nm; materials with distributed porosity of
cellular dimensions are less carcinogenic in rodents than smooth
nonporous material.234,2197 Nonperforated polymer films in-
duce subcutaneous sarcomas in mice and rats, but implanted
foreign bodies with other shapes (e.g., perforated or minced
films, or filters with 450-nm pores2197) or with roughened sur-
faces2194 are weakly or non-carcinogenic except when total
foreign-body surface area exceeds ~1 mm2.2202 In vitro experi-
ments by Boone et al2196 and in vivo experiments by Brand2193

studied the effects of attachment of mouse fibroblasts to poly-
carbonate plates. Cells implanted after an in vitro exposure pro-
duced transplantable, undifferentiated sarcomas, leading these
authors to conclude that the smooth surface of the plates acted
as an FB carcinogen for at least initiation of tumorigenesis, in-
dependent of chemical composition. Brand2193 cited six pos-
sible mechanistic origins of FB carcinogenesis, then concluded
that: (a) disturbance of cellular growth regulation was most likely,
based on the heritability of neoplastic behavior in the growing
cell population, and (b) interruption of cellular contact or com-
munication might also play a role in neoplasm expression and
maturation (rather than neoplasm induction). It is now well
established that smooth-surfaced foreign bodies, regardless of
their chemical composition, will produce sarcomas when trans-
planted subcutaneously into rodents,2196 and foreign-body
sarcomatous growth in mice appears resistant to substances that
normally inhibit neoplastic growth.2199

Is there any information that humans are also susceptible to ex
cyto FB carcinogenesis? There is no evidence that a single inci-
dent of mechanical trauma can cause cancer.2207 However, there
are 28 known cases of tumors in humans associated with partial
or total joint replacements, which occurred either fairly soon
after implantation or a very long time (10-15 years) after im-
plantation, the latter primarily as malignant fibrous histiocyto-
mas.234,2208 But all of these tumors were associated with stain-
less steel or cobalt-based alloy devices, perhaps due to elevated
tissue concentrations of metals near the implant234 —
metal-on-metal devices can produce a 10- to 15-fold rise in cir-
culating serum chromium.2209 There are a few additional re-
ports of possible remote-site tumors,234,2210-2212 but other stud-
ies find such implant-related tumorigenicity to be very weak or
nonexistent.2213-2216 Some investigators2217-2219 have therefore
concluded that there is little clinical evidence for ex cyto FB
carcinogenesis in humans, and that the Oppenheimer effect may
be a consequence of the relatively primitive immune system of
rodents in comparison to that of humans,234 and of the lack of
a telomere shortening inhibition pathway in mice that humans
possess. But Black234 urges caution because, in rare cases, sarco-
mas appear to have arisen on unabsorbable foreign bodies in
man2200-2202 — a category of foreign bodies that would defi-
nitely include diamondoid medical nanorobots and nanoorgans.
Polarizable foreign particles have also been associated with cu-
taneous granulomas in three cases of systemic sarcoidosis.2597

Nevertheless, A. Rao remains skeptical that, at least in the case
of individual mobile nanorobots, “the brief time that nanorobots
would reside within tissues would be enough to induce FBC.”

4. In Cyto Foreign Body Carcinogenesis. Although FB carcinogen-
esis produced by materials external to cells appears to be rare in
humans, solid materials in a form that can penetrate cells can be
carcinogenic, a phenomenon originally known as the Stanton
hypothesis.2220 The best-known example is chrysotile asbes-
tos,2221-2223 first recognized as a human carcinogen only because
it produced a relatively rare lung tumor.2224 Subsequent studies
of asbestos and related fibers in animal models revealed that
mesothelioma could be induced by fibers <~0.25-1.5 microns
in diameter and >~4-8 microns in length regardless of fiber com-
position.2220,2227 Quantitatively, Stanton2220 found that ~105

fibers of carcinogenic dimensions, embedded in the human body,
yielded a ~10% probability of developing a tumor within 1 year;
~2 x 107 fibers raised the probability to 50%; and 109 fibers
raised it to 90%. In vitro fiber cytotoxicity correlates well with
fiber dimensions,2225-2228 particularly the aspect ratio;2228-2230

with fiber durability;2225 and not with fiber bulk composition,
but rather with the molecular nature of active surface properties
which can also play a role in carcinogenic potency.2225,2229 Stiff
slender fibers such as mineral whiskers can penetrate cells and
may produce mechanical2231 or chemical2232 damage to the
nucleus and to chromosomes2233 regardless of the material of
which they are comprised. The likely mechanism is oxygen radi-
cal activity because antioxidant enzymes appear to protect cells
against genotoxic damage induced by chrysotile fibers.2234 This
risk factor must be borne in mind when designing medical
nanorobots (including all of their possible operational and
failure-mode physical configurations) and any potentially de-
tachable subsystems that may be of similar stiffness and size as
the cytotoxic fibers.
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CHAPTER 15.3

Biocompatibility of Nanomedical Materials

A great deal is already known about the biocompatibility of
various materials that are likely to find extensive use in
medical nanorobots. Chapter 15.3 includes a review of the

experimentally-determined overall biocompatibility of diamond
(Section 15.3.1), carbon fullerenes (Section 15.3.2), nondiamondoid
carbon (Section 15.3.3), Teflon (Section 15.3.4), sapphire and alu-
mina (Section 15.3.5), and other possible nanomedical materials
including DNA and dendrimers (Section 15.3.6) and effluents
(Section 15.3.7), and concluding with a discussion of nanorobotic
thermocompatibility (Section 15.3.8).

15.3.1 Biocompatibility of Diamond
The exteriors of many individual medical nanorobots or

nanorobot aggregates comprising nanoorgans (Chapter 14) may be
made of diamond, so the biocompatibility of diamond surfaces36

and particles is of considerable interest in nanomedicine.20 Our
analysis of the biocompatibility of diamond starts with a review of
protein adsorption (Section 15.3.1.1) and cellular responses (Sec-
tion 15.3.1.2) to diamond surfaces, followed by a survey of
diamond-coated prostheses already proposed, developed, or in clini-
cal use (Section 15.3.1.3) and experimental data on the
biocompatibility of diamond particles (Section 15.3.1.4), and fi-
nally concludes with a brief summary of the chemical inertness of
diamond (Section 15.3.1.5). The overall conclusion is that diamond
appears to be extremely — indeed outstandingly — biocompatible
with living cells. The hypothesis that atomically-precise diamond
surfaces might possibly be engineered to be highly resistant to pro-
tein adsorption (though even the comparatively rough diamond
surfaces and particles available today are already very biocompatible
and chemically inert) is suggested by the data but is not yet thor-
oughly substantiated — it could be validated by studies showing,
for example, a clear trend of lower protein adsorption with lower
diamond rugosity.

15.3.1.1 Protein Adsorption on Diamond Surfaces
The first direct study of protein adsorption on diamond, done

by Tang et al521 in 1995, focused on fibrinogen (Section 15.2.2).
Fibrinogen, a 340-kilodalton soluble plasma glycoprotein ~47.5 nm
in length,526 is the major surface protein to initiate coagula-
tion518,527-529 via platelet adhesion to fibrinogen, and inflamma-
tion including fibrosis523-525 around implanted biomaterials. The
adsorption and conformational state (“denaturation”) of fibrinogen
is commonly used as a biocompatibility indicator.530 The amounts
of “denatured” fibrinogen accumulated on surfaces correlates closely
with the extent of biomaterial-mediated inflammation.531

Tang and colleagues521 measured ~3.7 mg/m2 (~6600 molecules/
micron2, or ~50% surface coverage) gross surface adsorption of
human fibrinogen on chemical-vapor-deposited (CVD) diamond

surfaces, after incubation of the plasma-coated diamond surface in
a 20 µg/cm3 fibrinogen solution (~0.1% of blood concentration;
Appendix B) for 8 hours at room temperature. Much of this adsorbed
fibrinogen was only loosely bound, however. A solution of sodium
dodecyl sulfate was rinsed over the incubated CVD surface to re-
move the loosely-bound or elutable (non-denatured) fibrinogen. (So-
dium dodecyl sulfate is an anionic detergent commonly used to
solubilize proteins, e.g., a surfactant creating negative surface adhe-
sion energy; Section 9.2.3. Although SDS is of course unavailable
to wash biomaterials once implanted, the wash results nevertheless
indicate the extent to which loosely bound proteins will eventually
detach.) After the rinse, ~44% of the bound fibrinogen molecules
detached, leaving ~2.1 mg/m2 (~3700 molecules/micron2) of spon-
taneously denatured fibrinogen still present on the CVD diamond
surface.

CVD diamond532-535 might not accurately represent the
atomically-smooth flawless diamond surfaces which may character-
ize the typical MNT-manufactured medical nanorobot exterior. Far
from being atomically smooth, CVD diamond films are amorphous
and polycrystalline,537 often with grain sizes up to 1-10 mi-
crons.535,536 In Tang’s experiment,521 diamond wafers with two dis-
tinct sides were tested, as follows.

The nucleation side of the diamond wafers was grown in con-
tact with a flat silicon substrate, which was then dissolved away by
acid. The formation of SiC on such a substrate allows silicon to
bond well with carbon during the growth process.537 However, the
presence of small amounts of surviving carbide in the nucleation
diamond surface, or of concave nanoscale surface features recording
the removal of SiC by etchant, could markedly alter the protein
adsorbent characteristics of the diamond surface at the molecular
level. Also, SiC is tolerated by cells up to 0.1 mg/cm3 concentration
but is cytotoxic at 1 mg/cm3.538 Furthermore, a contact profilometer
measured the nucleation surface as having a rugosity of up to 250
nm, a roughness 100-1000 times greater than that which may be
expected at the surfaces of the typical diamondoid medical
nanodevice.

The growth side of the diamond wafers used in Tang’s experi-
ment was even rougher than the nucleation surfaces, so this surface
was ground and polished but only to a rugosity of ~1 micron
peak-to-valley. This is approximately the diameter of an entire
bloodborne medical nanorobot and clearly not representative of an
atomically-precise engineered medical nanodevice surface. There is
no indication whether the grinding and polishing of the growth
surface was done under oil (thus preserving a predominantly
hydrogen-terminated, hence strongly hydrophobic, surface539), nor
was there any evaluation of whether subsequent etching with H2SO4

and H2O2 might have produced carbonyl and hydroxyl conversions
at the surface (thus possibly creating regions of hydrophilicity).
Furthermore, diamond crystals are believed to polish by successive
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repeated microcleavage along (111) cystallographic planes, which is
why polishing is much easier in some directions than others.539

Non-(111) surfaces, when mechanically polished, will always be
rough and will consist of small domains of (111) surface canted at
appropriate angles to the macroscopic orientation.539 Residual as-
perities of ~5 nm have been reported even for exceptionally care-
fully polished surfaces.540 The general conclusion is that the chemi-
cal and mechanical processes used in Tang’s experiment seem un-
likely to have produced a surface that is well characterized at the
molecular level. Protein adhesion to near-atomically smooth dia-
mond surfaces remains to be investigated experimentally.

Still, we can hypothesize that completely fibrinogenophobic sur-
faces might be engineered using atomically-smooth diamondoid
materials, keeping in mind the important role of hydrophobic forces
in surface denaturation (e.g., see Section 15.3.4.1). To do this will
require a thorough molecular-level understanding (by 2002, not
yet complete) of the adhesion and conformational properties of fi-
brinogen, as summarized below and in Section 15.2.2.

It has long been known that fibrinogen preferentially adsorbs on
a hydrophobic surface, and albumin on a hydrophilic surface, dur-
ing competitive binding.541 One experiment542 found 10,800 mol-
ecules/micron2 of fibrinogen (~complete monolayer coverage)
adsorbed on a hydrophobicized quartz surface (contact angle ~70o)
after 30 seconds incubation with a 2.9-µM fibrinogen solution
(~30% of physiological in human serum; Appendix B), but only
8400 molecules/micron2 after a 60-second exposure of a
hydrophilicized silicon surface (contact angle ~28o) to the same so-
lution. Hydrophobic surfaces generally have higher adsorbence of
adhesion proteins such as complement C3, fibronectin, and
vitronectin, while hydrophilic surfaces have higher adsorption of
albumin and immunoglobulin IgG.543 (The fibrinogen molecule’s
own surface properties are very hydrophilic, changing to moder-
ately hydrophobic as it converts to fibrin during coagulation.544)
Fluorocarbon films (very hydrophobic) generally show high pro-
tein retention1113-1114 (Section 15.3.4.1).

Surface functionality has been shown to influence protein-surface
interactions.1111-1113 Tang et al531 found that surfaces having high
concentrations of specific surface functionalities including -OH (hy-
drophilic), -NH2 (hydrophilic), -CF3 (hydrophobic), and siloxyl
groups (hydrophobic) exhibited significant differences in both the
adsorption and “denaturation” of adsorbed fibrinogen. But
hydrophobicity alone did not dictate fibrinogen-surface interactions
on these surfaces. Soaking in saline solution for 15 days increased
oxygen incorporation in the -NH2, siloxyl, and CF3 rich films, and
slightly decreased the oxygen content in the -OH rich films. After
this soaking, the two hydrophilic films became somewhat less hy-
drophilic whereas the two hydrophobic films became somewhat more
wettable.531 These kinds of changes may be important for medical
nanorobots expecting to remain in vivo for extended times. Rapoza
and Horbett545 observed rapid denaturation transitions, requiring
<2 hours after adsorption on hydrophobic polymers containing no
oxygen. More gradual conformation changes, occurring only after a
time lag of 1-4 hours, were seen on hydrophobic polymers contain-
ing oxygen. Note that the existing literature discusses surface changes
in response to short-term exposures. Little is known of the effects of
long-term exposures lasting months or even years. Such expo-
sures and their consequences should also be investigated because

permanently implanted nanorobotic organs and nanorobots used
for surveillance or early detection of disease could have very long
mission durations.

Hydrophobicity and surface functionalities are accessible param-
eters well within the reach of diamondoid medical nanorobotic de-
sign. In general, the high surface energy of natural diamond makes
it extremely hydrophobic.547-549,658 Yoder550 reports that ocean bar-
nacles do not attach to diamond. However, a diamond surface may
have any of several different crystal planes exposed. These planes
may be passivated with any of a number of passivating atoms or
molecules, all of which may affect the hydrophobicity of the sur-
face. For example, a hydrogen-terminated (111) crystallographic
surface with each H bonded to a single C looks like a hydrocarbon
(e.g., like oil) and is not wetted.539 On the other hand, oxygenation
of a diamond surface (e.g., by heating to >250 ˚C in an O2 atmo-
sphere, or by ion bombardment) promotes formation of hydrophilic
surface groups552 with a complicated surface chemistry,553,554 in-
cluding a significant proportion of carbonyl (C=O) groups.554 The
outer faces of natural hydrophobic diamond may be terminated
partly by hydrogen and partly by bridging oxygen (C-O-C).539 Ag-
ing such surfaces in water for several weeks can change them to
hydrophilic behavior,554 possibly indicating conversion to hydroxyl
(-OH) groups. Hansen551,552 suggests that the small amount of oxy-
gen on the atmospherically equilibrated polished surface is present
largely as -OH groups because surface wettability appears insensi-
tive to pH values below pH 11. Fe+++ (and Al+++ to a much lesser
extent) can form surface complexes with these hydroxyl groups,
whereas Na+, Ca++, and Cr+++ cannot. Complete atomic-scale posi-
tional and compositional control of the diamond-passivation layer
on the exteriors of medical nanorobots should permit the engineer-
ing of adhesion-protein-selective surfaces of appropriate
hydrophobicity, hydrophilicity, or adsorptivity (Section 15.2.2). For
instance, it is well known that hydrophobic surfaces can be progres-
sively hydrophilized via selective ion implantation939 or RF plasma
treatment.1111-1113 Hosotani555 has created an intraocular lens coated
with diamond-like carbon film that is more hydrophobic and
oleophilic than an uncoated lens.

Under aqueous conditions, surface-dependent structural defor-
mation or spreading of the adsorbed fibrinogen molecule is larger
on positively-charged surfaces than on negatively-charged implant
surfaces — specifically, the molecular length and the D and E do-
main widths of fibrinogen are increased, while the corresponding
molecular heights are decreased.556 As an insulator, diamond in water
generally does not present a highly charged surface.633,639,640 But
surface charge also lies within the purview of diamondoid nanorobot
design (Section 15.5.6). For example, a hydrogen-terminated dia-
mond surface has negative electron affinity.557,558 Since hydrogen is
less electronegative559 than carbon, the surface externally appears to
be a weak array of positive point charges* at molecular contact dis-
tances, arising from surface dipoles as polarized covalent bonds would
be expected to produce.558 On the other hand, the oxygenated dia-
mond (100) surface has a positive electron affinity560 as does the
fluorinated (111) surface. (Methods for selectively fluorinating dia-
mond surfaces have also been investigated.561) Both oxygen and
fluorine are more electronegative559 than carbon, so either surface
would externally appear to be an array of negative point charges at
molecular contact distances. The controlled coating of a diamond

* E. Pinkhassik points out that the difference in electronegativity between carbon and hydrogen is very small (2.5 and 2.1, respectively, on the Pauling scale, or 2.746 and
2.592, respectively, on the more modern Sanderson scale5843), while the difference between carbon and oxygen, or between carbon and fluorine, is much larger — e.g., 2.5/
2.746 for C, 3.5/3.654 for O, and 4/4.0 for F. The C-H dipole is very weak, so a surface coated with C-H groups with carbon being in sp3 hybridization can hardly be considered
an array of positive point charges. In fact, the polarizability of the C-H bond may be more significant than the partial point charge. On the other hand, C-O and C-F dipoles
are strong, and the partial point negative charges are likely to be larger.
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surface with atoms with different electronegativity might provide
fine control of the electron affinity while maintaining chemical in-
ertness of the diamond surface. Diamond glucose sensors employed
in diabetic blood analysis use heavily boron-doped diamond as one
electrode. On the other electrode, glucose oxidase enzyme (a pro-
tein) is immobilized on the diamond surface by electrochemical
deposition, or is “wired” directly to the diamond electrode by cova-
lent bonding to the electrode surface.655

Other blood proteins also must be tested for their adsorptivity
to diamond. For example, one study583,4723 of protein adsorption
on diamond-like carbon (DLC) coatings (Section 15.3.1.2) found
that DLC exposed to bovine serum albumin (BSA) at a concentra-
tion of 5 mg/cm3 (~10% of physiological for human serum albu-
min) adsorbs 20 times less BSA than SiO2 or TiO2 control surfaces.
Phytis L.D.A., the sponsor of this study583,4723 and the only manu-
facturer of a DLC-coated stent, claims that “diamond-like coated
surfaces showed only minimal adhesion of proteins at the surface;
those adhesions are reversible and do not result in denaturations of
protein.”

15.3.1.2 Cell Response to Diamond Surfaces
Cellular interactions that occur at the tissue-implant interface

are another important determinant of biocompatibility.521,584-586

For example, neutrophils, the most abundant white cells in human
blood, will directly adhere to protein-coated implant surfaces, lead-
ing to inflammatory responses.

The first pioneering study of cellular response to diamond sur-
faces was completed by Thomson and colleagues587 in 1991, using
tissue culture plates with diamond-like carbon (DLC) coatings 0.4
microns thick. DLC is an amorphous hydrocarbon polymer with
carbon bonding largely of the diamond type instead of the usual
graphitic bonding,588 thus has many of the useful properties of dia-
mond.589 (The varying ratio of diamond type (sp3) carbons to graph-
ite type (sp2) carbons in DLC may account for some differences in
behavior exhibited by different DLCs.) DLC can be deposited near
room temperature.590 Mouse fibroblasts grown on the DLC coat-
ings for 7 days showed no significant release of lactate dehydroge-
nase (an enzyme that catalyzes lactate oxidation, often released into
the blood when tissue is damaged) compared to control cells. This
demonstrated that there was no loss of cell integrity due to the DLC
coatings. Mouse peritoneal macrophages similarly cultured on DLC
also showed no significant excess release of lactate dehydrogenase or
of the lysosomal enzyme β-N-acetyl-D-glucosaminidase (an enzyme
known to be released from macrophages during inflammation).
Morphological examination revealed no physical damage to either
fibroblasts or macrophages. This confirmed the biochemical indi-
cation that there was no toxicity and that no inflammatory reaction
was elicited in vitro. Follow-up studies in 1994-95 found that mu-
rine macrophages, human fibroblasts, and human osteoblast-like
cells grown on DLC coatings on a variety of substrates exhibited
normal cellular growth and morphology with no in vitro cytotoxic-
ity.591,650 In 2001, the same research group4722 cultured two
osteoblast-like cell lines on DLC-coated plates for 72 hours and
found no adverse effects on these cells, as measured by the produc-
tion of three osteoblast-specific marker proteins (alkaline phos-
phatase, osteocalcin, and type I collagen).

Other experiments have largely confirmed these results. For in-
stance, human hematopoietic myeloblastic ML-1 cells and human
embryo kidney cells proliferated continuously on DLC film with
very high viability and no toxicity.592 Scanning electron micros-
copy used to investigate the morphological behavior of osteoblasts
found that these cells attached, spread and proliferated normally

without apparent impairment of cell physiology when placed on
DLC or amorphous carbon nitride films, whereas cells placed on
silicon were able to attach but not to spread.593 Human osteogenic
sarcoma T385 cells and 1BR3 fibroblasts cultured on DLC-coated
wells also showed DLC to be biocompatible.594 The cytotoxicity
study of DLC coatings by Parker and colleagues,595 employing the
Kenacid Blue cytotoxicity test in vitro with 3T3-L1 mouse fibro-
blasts, found normal cell growth on diamond surfaces. Other tests
by this team of the biocompatibility of “amorphous carbon hydro-
gen” using a standard cell line showed that such films are nontoxic
to cells, appear to increase cell attachment, and afford normal cell
growth rates.649 Dion et al596-598 looked at general cytotoxicity and
hemocompatibility of DLC surface with 3T3 Balb/c cloned cells.
Human endothelial cells isolated from placenta were also investi-
gated as a model for differentiating cells. No negative effects due to
DLC coatings were observed on the viability of cells, all of which
showed normal metabolic activities. O’Leary and colleagues654 evalu-
ated cytotoxicity and cell adhesion of murine fibroblasts on saddle
field source deposited DLC (containing less than 1% hydrogen)
coating a titanium alloy surface, and found normal cell adhesion,
density, and spreading on DLC. Other studies of DLC
biocompatibility656-659,1680,5689,5690 have shown equally promising
results.

In a study previously described (Section 15.3.1.1), Tang et al521

examined the attachment of neutrophils to plasma-preincubated ~1
cm2 350-micron-thick CVD diamond wafers. Incubation for 1 hour
with purified human neutrophils at 2 x 106 cm-3 produced an at-
tachment rate of ~4 x 109 cells/m2 (~0.004 cells/micron2), about
the same as for 316 stainless steel and 40% lower than for titanium,
two common and well-tolerated implant materials. SEM photo-
graphs of CVD diamond wafers implanted intraperitoneally in live
mice for 1 week revealed minimal inflammatory response. Interest-
ingly, on the rougher “polished” (~1-micron features) surface, a small
number of spread and fused macrophages 10-13 microns in diam-
eter were present, indicating that some activation had occurred.
However, on the smoother “unpolished” (<0.25-micron features)
surface, samples were partially covered by round, non-spread
(non-activated) cells, 4-7 microns in diameter, which had formed
no obvious pseudopodia or cell bridges. Tang noted that “the mor-
phology of unpolished surfaces of CVD diamond could be respon-
sible for preventing the activation of surface-adherent cells [but]
the mechanism for this differential response of phagocytic cells...is
not yet understood.” If surface rugosity,599,676,677,776 topogra-
phy,600-602 or crystalline structure603 can account for the differen-
tial response, then it is perhaps possible that atomically-precise
diamondoid surfaces with <1 nm features — constituting much of
the external surfaces of medical nanorobots and nanoorgans — could
be rendered adequately macrophage-resistant (Section 15.4.3.6).

In 2002, Linder et al4721 found that: (1) the adhesion of primary
human monocytes to DLC-coated glass coverslips is not significantly
enhanced in comparison to uncoated coverslips, (2) the actin and
microtubule cytoskeletons of mature human macrophages show
normal development on DLC, and (3) growth on DLC does not
affect the activation status of human macrophages, as judged by
polarization of the cell body. The researchers concluded that “it is
unlikely that contact with a diamond-like carbon coated surface in
the human body will elicit inflammatory signals by these cells.”

Finally, Jones et al660,4726 deposited DLC coatings (by
plasma-assisted CVD) and other coatings on titanium substrate and
tested their hemocompatibility, thrombogenicity, and interactions
with rabbit blood platelets. The DLC coatings produced no
hemolytic effect, platelet activation, or tendency towards thrombus
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formation. Platelet spreading correlated with the surface energy of
the coatings (typically ~40 mJ/m2 for DLC4730) with the lowest
spreading for DLC.4726 In general, platelet adhesion is reduced both
by increased surface wettability and by the presence of platelet ad-
hesion inhibiting proteins such as kininogen756 which could be made
available at nanorobot surfaces if required. Platelet adhesion to DLC
or polycrystalline diamond surfaces has been measured experimen-
tally as ~0.007 platelets/micron2 after a 5-minute exposure to fresh
human blood flowing at a wall shear rate (Section 9.4.1.1) of 50 sec-1.1680

Any small object made of hydrophobic material may insert into
bilayer lipid membranes. Experimental data have not been reported
for diamond due to the unavailability of appropriate-size particles,
but once these particles are obtained the interactions of, say, dia-
mond nanorods with membranes can be studied and will likely show
the insertion. E. Pinkhassik notes that an inadequately-controlled
individual diamondoid nanorobotic arm or its protrusions might
spontaneously enter the membrane of some cells, analogous to the
solvation wave drive for cytopenetration proposed in Section 9.4.5.3.

15.3.1.3 Biocompatibility of Diamond-Coated Prostheses
Diamond has been touted as “the biomaterial of the 21st cen-

tury”,596 and many uses for diamond surfaces in biomedical appli-
cations604,4724 have been proposed including coatings for artificial
heart valves,548,550,594 prosthetic devices,549,550,657,659 joint replace-
ments,593,605,606,4729,5688 catheters and stents,594 orthopedic pins,547

the roots of false teeth,547 dental instrument tips,594 surgical scal-
pels and microtome blades,548,549 and even the complete fabrica-
tion of artificial heart valves.548 Diamond electrodes also are widely
employed in biosensors.4831-4836

So far, the largest anticipated use of biomedical diamond is in
orthopedics and articulated prostheses. Early in vivo experiments
involving diamond-like carbon (DLC) coated orthopedic pins im-
planted in sheep demonstrated low diamond bioactivity,546,547 and
implants of DLC-coated zirconium placed in the tibiae of Wistar
rats for 30 days showed good osseointegration at the tissue-implant
interface.607 Chemical vapor deposition (CVD) diamond coatings
for artificial joints are said to have “low immunoreactivity”,535 and
in vitro testing of possible intra-articular diamond wear particles
finds these particles “comparatively harmless”.605,608 DLC coatings
deposited onto austenitic stainless steel hip implants and tested for
cytotoxicity, cell adhesion (human fibroblasts) and mutagenicity in
vitro showed good biocompatibility, as did in vivo tests of
DLC-coated stainless steel cylinders 4 mm wide inserted into corti-
cal bone and muscular tissue of sheep.659 Allen et al4722 implanted
DLC-coated cobalt-chromium cylinders in intramuscular locations
in rats and transcortical sites in sheep, and all implants were well
tolerated as determined upon specimen retrieval 90 days after sur-
gery. This indicates that DLC coatings are biocompatible both in
vitro and in vivo, in musculoskeletal systems. Other DLC-type coat-
ings for bone implants have also shown good biocompatibility4727

and toughness — abrasive wear on amorphous diamond “is negli-
gible compared with conventional hip joint materials”.4728

Amorphous diamond coatings (80% sp3 bonding fraction, 0.2-10
microns thick; sp2/sp3 film structure experimentally adjustable4743)
deposited on stainless steel alloys via filtered pulsed-plasma arc dis-
charge were found to be biocompatible causing no local tissue reac-
tions. These coatings have been studied with the objective of at-
tempting a total hip replacement.609 Some DLC-coated metal pros-
theses have been implanted in humans594 and the results appear
promising.608,657 For massive prostheses which are used to replace

large segments of bone which are resected for bone tumors or for
revision after failed standard prostheses, DLC coatings were tested
and found to be the best of all surface finishes investigated.610 Con-
formal coatings of DLC for geometrically complex mechanical struc-
tures to uniform thickness and quality538 is challenging with cur-
rent technology5712-5714 but will become easy to do using the future
techniques of positionally-controlled molecular manufacturing
(Chapter 2).

Cardiac applications are another major area of active investiga-
tion of biomedical diamond coatings.4731 In the late 1990s, all me-
chanical heart valves were still very thrombogenic, requiring man-
datory high-dose warfarin treatment. But it was believed that DLC
coatings597 and plasma or glow discharge treatment (GDT) of me-
chanical valves611 could reduce the extent of valve-related
thrombogenesis by surface modification including (1) cleaning of
organic and inorganic debris, (2) generating reactive and functional
groups on the surface layers without affecting their bulk properties,
and (3) making the surfaces more adherent to endothelial cells and
albumin and less adherent to platelets, thus improving
thromboresistivity.611 A compact (~6 x 6 cm, 280 gm) centrifugal
blood pump that was developed as an implantable left ventricular
assist system (Chapter 22) has the entire blood-contacting surface
coated with diamond-like carbon (DLC) to improve blood
biocompatibility.612 DLC or crystalline diamond coatings have of-
ten been recommended as the best possible coating material for
blood-contacting LVAD surfaces.596,613,1680

Diamond-coated catheters have been proposed,594 and their ad-
vantages would include lubricity, biocompatibility, low adhesion
surface, impermeability and flexibility. DLC coatings generally ad-
here well to other catheter materials.594 However, far more progress
has been made in applying diamond coatings to stents (Section
15.5.3.2). Stents are used to prevent narrowing or closure of lumi-
nal systems and to ensure adequate flow through them.614 They
have been implanted in the coronary and peripheral arteries, in cen-
tral veins, in the bronchi and the esophagus, and in the urethra and
biliary duct.594 Stents have traditionally been metallic because of
the necessary mechanical requirements such as high expansibility
with thin walls and high circumferential strength, but metal sur-
faces are thrombogenic.620-623. Corrosion resistance is dependent
upon formation of a passive oxide film. If breached, metal ions are
released, causing a foreign body inflammatory reaction615-620 with
a risk of tumor development.624 The ideal stent should meet strin-
gent requirements regarding thrombogenicity, biocompatibility and
structure.625

Phytis L.D.A., a German stent-making company,* has developed
a stainless-steel stent 60-80 microns thick that is entirely coated
with a diamond-like layer which the company claims greatly re-
duces thrombogenicity and enhances biocompatibility.626 The Phytis
stent (Figure 15.11) is pressed into the intima of the blood vessel at
high pressure (15-16 atm) during implantation, but is designed to
reduce the cutting trauma627 that normally takes place. Tests spon-
sored by the company showed that albumin adsorption was 20-fold
less on the DLC coated stents than on SiO2 and TiO2 controls.583

There was also a significant reduction of thrombogenic potential by
the DLC stents compared to uncoated stents, which is further re-
duced for heparin-coated DLC stents.628,4723 Other diamondlike stent
coatings are also biocompatible.4725,5711 DLC exhibits high flexibility
compared with diamond as manifested in application in stent coatings
where the cylindrical wired material expands to twice its diameter.
This mechanical flexibility may be useful in the design of nanorobots.

* In December 2002, Phytis Corp.5839 reported the “closing of our company branch” and characterized their business “as temporarily terminated.”
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Finally, an intraocular lens coated with a diamond-like carbon
(DLC) film has been developed and its physical properties prelimi-
narily investigated.555

It is important to reiterate that some nanomedical applications
will demand a nonadhesive interface, while other applications will
require complete tissue integration with the implant using
biocompatible surfaces of engineered bioactivity, probably includ-
ing atomically-precise nanostructured material surfaces that can
promote and stabilize cell attachment.629 Biocompatibility is highly
application-specific — both adhesive and nonadhesive interfaces
can be “biocompatible.”

15.3.1.4 Biocompatibility of Diamond Particles
In biomaterials research, it has been found630,631 that even though

a bulk material may be well tolerated by the body, finely divided
particles of the same material can often lead to severe and even car-
cinogenic complications in test animals. Differences in particle size
influence histological reactions644 and cytokine production.645 Many
nanomedical applications will involve “particle” sized diamondoid
objects (e.g., micron-scale individual medical nanorobots) so it is of
great interest to review the experimental data relating to the reac-
tions of specific cells to the presence of diamond particles. We al-
ready know that finely divided carbon particles are well tolerated by
the body632 — the passive nature of carbon in tissue has been known
since ancient times, and both charcoal and lampblack (roughly
spherical 10-20 nm particles) have been used for ornamental and
official tattoos516 (Section 15.3.3.5). Diamond particles are also well
tolerated by cells:

1. Neutrophils. A 1982 report of possible crystal-induced neu-
trophil activation635-638 by 2- to 8-micron amorphous dia-
mond crystals634 was never confirmed. Indeed, to the con-
trary, diamond particles are traditionally regarded as bio-
logically inert and noninflammatory.633 For example,

Hedenborg and Klockars222 used 4- to 8-micron diamond
dust as an inert control in their experimental work, and
found that diamond dust did not stimulate the production
of reactive oxygen metabolite by polymorphonuclear (PMN)
leukocytes — a proposed pathway for chronic inflamma-
tion and tissue injury of the lung (Section 15.1.2). Tse and
Phelps633 found that 3-micron diamond dust crystals in a 2
mg/cm3 concentration (~0.06% Nct; i.e., nanocrit, concen-
tration in fluid, by volume, Section 9.4.1.4) were phagocy-
tized by 21% of PMN cells (present at 7250 cells/mm3 con-
centration) after 45 minutes, but no chemotactic activity
was generated. Higson and Jones639 exposed horse and pig
neutrophils to urate, hydroxyapatite, pyrophosphate and
brushite crystals (all implicated in joint inflammation) —
which induced superoxide and peroxide generation in a con-
centration- and temperature-dependent fashion — but ex-
posing the neutrophils to diamond crystals at 37 ˚C pro-
duced no effect. Yet another experiment640 tested the abil-
ity of various crystals to stimulate phagocytosis, degranula-
tion, and secretion of cell movement (motility) factors
(CMFs) from polymorphonuclear leukocytes. The experi-
ment found that hydroxyapatite (HA) crystals stimulated
some enzyme release and CMF generation, and monoso-
dium urate monohydrate (MSUM) crystals much more so.
But 4- to 8-micron diamond crystal fragments in suspen-
sion up to ~0.2% Nct in culture, while clearly interacting
with PMN leukocytes, did not stimulate degranulation,
CMF production, or cell death even at high crystal concen-
trations. MSUM and HA particles are generally regarded as
having atomically “rough” surfaces with a negative surface
charge or Zeta potential, whereas diamond particles are con-
sidered relatively “smooth” with little or no surface
charge.633,640

2. Monocytes and Macrophages. It has long been known that free
carbon and diamond particles are ingested by cultured mac-
rophages without harmful effects. For example, cells that have
taken up large amounts of 2- to 4-micron diamond dust remain
healthy for at least 30 hours, whereas cells succumb rapidly af-
ter ingesting silica.652 Phosphatase enzyme discharged into
diamond-containing phagosomes by adherent lysosomes did not
escape into the cytoplasm or nucleus,652 indicating that dia-
mond does not damage these organelles (Section 15.5.7.2.4).
In a more recent study,641 2- to 15-micron particles of diamond,
silicon carbide (SiC), hydroxyapatite (HA) and
polymethylmethacrylate (PMMA) were suspended in serum-free
cultures of human monocytes at a concentration of 0.5 mg/cm3

(~0.01% Nct in culture). All particles were phagocytosed, but
while monocyte morphology changed after the ingestion of SiC
and HA, there was no change after the ingestion of diamond,
indicating no activation of the monocytes by the diamond.
Interleukin-1β production was indistinguishable for control and
diamond cultures, but increased 30-fold in the HA cultures,
38-fold in the cultures exposed to SiC, and in a similar range to
HA and SiC for the PMMA. The authors641 concluded that
diamond particles in serum-free monocyte culture are inert,
despite being phagocytosed, unlike most other particles. They
offered several possible explanations for this: differences in
opsonization, surface charge, or intracellular ion release.646 Al-
ternatively, different particles may be phagocytosed through
different receptors on the monocyte surface. Macrophage re-
sponsiveness to diamond particles pre-exposed to protein-rich
serum has not been extensively investigated, however.

Fig. 15.11. The Phytis diamond stent, embedded in vascular in-
tima.4720
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3. Fibroblasts. Early studies in the 1950s651 and 1960s652 found
that micron-size diamond dust particles did not induce
fibrogenic activity. Schmidt et al221 note that diamond dust is
nonfibrogenic in human monocyte-macrophages found in the
lungs. In other words, fibroblasts are not recruited by macroph-
ages in response to the presence of diamond dust. Diamond
dust of sizes <0.5 micron and 1-2 microns did not induce the
release of thymocyte proliferation factor or fibroblast prolifera-
tion factor at diamond particle concentrations up to ~0.1 mg/
cm3 (~0.003% Nct in culture).221 In another experiment,642

synthetic hydroxyapatite crystals at a concentration of 50 µg/
cm3 in 1% and 10% serum stimulated 3H-thymidine uptake
into quiescent canine synovial fibroblasts and human foreskin
fibroblast cultures. Calcium pyrophosphate dihydrate crystals
also stimulated uptake, as did calcium urate crystals markedly
and sodium urate crystals more modestly. But 1- to 5-micron dia-
mond crystals had no mitogenic effect on the fibroblasts at par-
ticle concentrations up to 0.4 mg/cm3 (~0.01% Nct in culture).

4. Other Cells. The reactions of regenerating rabbit bone tissue to
phagocytosable particles were studied605 by dispersing various
particles in hyaluronan and then introducing them into an
implant-traversing canal, forming a bone harvest chamber. Tis-
sue that entered the canal during the following 3 weeks was
harvested. Particles of high density polyethylene, bone cement
and chromium-cobalt injected in this fashion all provoked an
inflammatory reaction in tissue entering the canal and caused a
marked decrease in the amount of ingrown bone. But the
phagocytosable 2- to 15-micron round-shaped diamond par-
ticles — introduced at a number density of ~60 million/cm3

(~0.7% Nct in culture) — produced no decrease in bone for-
mation and appeared “comparatively harmless...there was no
obvious cellular reaction to these particles.” Histologically, the
diamond particles aggregated into clumps. Occasionally mac-
rophages were seen nearby, but phagocytic cells remained few
and dispersed, despite containing large amounts of ingested
particulate diamond. There was no concentration of macroph-
ages and giant cells such as is usually seen when PMMA or
high-density polyethylene particles are implanted. Interestingly,
8- to 15-micron SiC particles also produced no inflammation
or decrease in bone formation, even though the particles were
“elongated splinters with sharp edges.” Finally, neurologist
Stephen S. Flitman [personal communication, 1999] notes that
diamond has never been shown to be neurotoxic.

5. Inflammation. Tse and Phelps633 found that 3-micron diamond
crystals in a 10 mg/cm3 concentration (~0.3% Nct injection
fluid) injected into canine knee joints produced little evidence
of inflammation — intra-articular pressure remained low, along
with the local cell count. Diamond particles are generally con-
sidered noninflammatory relative to the complement system1642

(Section 15.2.3.2), and produce no inflammation or edema in
animal models.1848,1849

6. Hemolysis. Dion et al643 observed no detectable hemolysis in
vitro by various ceramic powders tested, including diamond,
graphite and alumina, after 60 minutes of exposure to a powder
concentration of ~0.5 gm per cm3 of diluted blood (~14% Nct
in vitro). The diamond powder in this experiment assayed
~1.25% impurities, mostly Zr.

7. Other Biological Systems. Diamond particles have been found
to have an “adjuvant” effect on one fungus-based insecticide

against beetles,5228 probably due to the abrasive properties of
these particles.

8. Adamantanes. Single-molecule units of diamond called
adamantane (C10H16), when properly functionalized, possess
useful pharmacological properties5575 including antiviral5513-5521

(including anti-HIV5522-5524) activity, antiparkinsonian and
antidementia activity,5525-5528 some anti-tumor activ-
ity5529,5530,5565 though with toxicity problems at high dose,5529

analgesic effects,5568 and enhancement of immunotoxin activ-
ity.5531 Interactions have been investigated between adamantanes
and plasma proteins,5532 cell adhesion proteins,5533 en-
zymes,5534-5543,5574 and receptors or channels;5558-5560 with bac-
terial metabolism5544,5565,5567 and viral assembly;5571 and with
polynuclear,5545-5547 mononuclear,5548-5552 and peripheral
blood5553 leukocytes. Lipid bilayer effects5573 and cellular up-
take5566 of adamantane conjugates has been studied.
Adamantane-based drugs such as amantadine5554-5556 and
tromantadine5557 are nearly completely excreted unchanged in
the urine, and typically no metabolites having a hydroxylated
adamantane ring system can be detected.5556 Of course, the prop-
erties of crystalline diamond are due to its molecular structure
in which each carbon is in sp3 hybridization and is bound to
four other carbon atoms, and in n=1 adamantane, there is no
single carbon that is bound to four other carbons.
Polyadamantanes up to n=4 units have been chemically synthe-
sized5840 and polyadamantanes up to n=11 units have been iden-
tified, extracted, purified and crystallized from natural petro-
leum,5841,5842 although the biomedical properties of these
nanometer-sized diamond molecules have yet to be investigated.

15.3.1.5 Chemical Inertness of Diamond
A major benefit of diamondoid surfaces on medical nanorobots

is that such surfaces should be extremely inert against attack by
chemical substances at concentrations likely to be found inside the
human body (Section 9.3.5.3.6). For example, in one study of a
possible diamond-coated total hip replacement material,609 0.2- to
10-micron thick amorphous diamond (DLC) deposited on stain-
less steel alloys was found, after lengthy exposure to 10% HCl, to
have corrosion rates reduced by a factor of ~15,000 compared to
uncoated surfaces (see Section 15.3.3.6). No significant damage to
the coatings was observed after 6 months. The Phytis diamond-like
coated stainless steel stents showed almost zero release of chromium
and nickel ions after 44-hour immersion in 1N HCl.626

Diamondized stents incubated over 96 hours at 37 ˚C in human
plasma released no detectable metal ions (e.g., nickel, chromium,
molybdenum and manganese), as determined by Atomic Adsorp-
tion Spectroscopy (AAS) or by Inductively Coupled Plasma Mass
Spectroscopy (ICP-MS).626 Diamond-like carbon and diamond are
both insoluble in reagents that dissolve graphite and other poly-
meric carbon structures.599

While diamond is believed to be very inert in tissues, further
studies of bulk and particulate diamond biocompatibility with vari-
ous tissues and organs are probably warranted, to supplement the
traditional ADME and toxicology studies that the pharmaceutical
industry might ordinarily consider in designing a clinical study for
a new nanorobot.

Of course, medical nanorobot exteriors, while consisting mostly
of diamondoid surfaces, may include various other materials (Sec-
tion 15.3.6). The biocompatibility of internal nanorobot compo-
nents and crush fragments of destroyed medical nanorobots is briefly
addressed in Section 15.4.4.
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15.3.2 Biocompatibility of Carbon Fullerenes
and Nanotubes

Another potential building material for medical nanodevices is
the graphene sheet comprising “buckyballs” (e.g., C60) and
“buckytubes” (e.g., carbon nanotubes), collectively known as the
carbon fullerenes (Section 2.3.2). In principle, very large all-carbon
cages could serve as containers for active nanomachinery, or graphene
sheets could be worn as outer skins by atomically-diverse nanorobots
or could compose the outer surfaces of nanorobot protuberances
such as sensors or manipulators. In 1990, it was first announced
that carbon-based fullerenes could be manufactured in macroscopic
amounts.916 Widespread experimentation began. By 1997, over
10,000 papers had appeared in the scientific literature describing
the fullerene;678 by late 2002, fullerene and nanotube
biocompatibility had blossomed into a very active field of investiga-
tion — the interested researcher is urged to consult the most cur-
rent literature for the latest results.

More than a decade after their initial discovery, the carbon
fullerenes are being investigated for their bio-compatibil-
ity681-751,4630-4636,5656,5657,6257 and biological applica-
tions.679,2390,5230,5231 In general, the fullerenes have low cytotoxicity
both in vitro683,700,726,729,745,1095,5227 and in vivo.719,720,745,1093,2599,5655

Few experiments on the biocompatibility of pure carbon nanotubes
had been attempted by 2002,2599 but there were a number of stud-
ies on the biocompatibility of pure C60 and related spheroidal
fullerenes, as reviewed in Section 15.3.2.1. Of far greater immedi-
ate relevance to current medical applications of fullerene molecules
are the many other fullerene biocompatibility studies that have ex-
amined C60 derivatives (Section 15.3.2.2). Derivatized fullerenes
have much more importance in the near term especially given their
possible many uses as pharmaceutical agents (Section 15.3.2.3).

15.3.2.1 Pure Carbon Fullerenes and Nanotubes
Because the fullerenes are condensed ring aromatic compounds

with extended pi systems, concerns about their possible carcino-
genic properties have been raised from time to time.698,917 In regard
to carbon nanotubes, inhalation toxicity has been the initial con-
cern.669,6060,6061 That’s because carbon nanotubes are rigid cylin-
ders >1 nm wide and up to 100 microns long that crudely resemble
the shape of asbestos fibers that have been linked to cancer. The
dangers of asbestos first emerged in the early 1960s, when studies
linked exposure to these silicate fibers with mesothelioma — a rare
cancer of the lining of the chest or abdomen (pleura, pericardium,
or peritoneum) that’s commonly fatal.669 Asbestos fibers are small
enough to be inhaled into the deep lung. Once embedded there,
metals in the silicate fibers act as catalysts to create reactive oxygen
compounds that go on to damage DNA and other vital cellular
components. Asbestos expert Art Langer at the City University of
New York’s Brooklyn College has worried that carbon nanotubes
may “reproduce properties [in asbestos] that we consider to be bio-
logically relevant.” Most notably, nanotubes are the right size to be
inhaled. Their chemical stability means they are unlikely to be bro-
ken down very quickly by cells (hence could persist in the body),
and their needlelike shape could damage tissue.669 Morgan6060 adds:
“...the presence of long, extremely durable fibers in the lungs is
worrisome. Nanotube ropes may indeed act like asbestos, and cer-
tainly if the nanotubes are wrapped up in something like PMMA
they have a reasonably good chance of being damaging to the lung
in moderate doses. But even if nanotubes are not damaging to the
lung, we can’t presently exclude a transport mechanism to a more
sensitive organ elsewhere in the body. It makes sense to start the

study of fullerene toxicology through inhalation studies. Concur-
rently, to get a better understanding of the mechanism of injury, we
could study things like fiber durability in the lung, and lung cell
protein production and macrophage sensitivity.” In August 2002,
Morgan6060 announced that “we’ve recently come to an agreement
with Dr. Joseph Brain, Harvard Department of Environmental
Health, director of the Physiology program. He has agreed to study
macrophage sensitivity and lung cell protein production in a mouse
model, and will use nanotube material supplied by Dr. Edwards.”

Chunming Niu, a chemist with Hyperion Catalysis International
(Cambridge MA) that produces 300 kg/day of multiwalled carbon
nanotubes (MWNTs), admits that this “certainly is a concern. We
treat our nanotubes as highly toxic material.” Rather than shipping
nanotubes in powder form, Hyperion first incorporates the
nanotubes into a plastic composite so that they cannot be inhaled.669

As a precaution, many researchers who use carbon nanotubes in
their work wear masks during procedures that could generate air-
borne plumes of the material.5227

Brooke Mossman, a pathologist at the University of Vermont
College of Medicine, is reported as arguing that it is asbestos’ ability
to generate reactive oxygen compounds that makes it carcinogenic.
Mossman says that the graphitic carbon structure of nanotubes is
unlikely to react with cellular components to produce damaging
byproducts: “We’ve worked with a lot of carbon-based fibers and
powders and not seen any problems”.669 In 2001, Huczko et al2599

at the Medical University of Warsaw conducted preliminary experi-
ments to explore whether carbon nanotubes act in lung tissue the
way asbestos does. Four weeks after subjecting guinea pigs to soot
that did or didn’t contain carbon nanotubes, pulmonary-function
tests and inflammatory reactions (upon autopsy) were substantially
identical between the groups. This led the researchers to conclude
that “working with soot containing carbon nanotubes is unlikely to
be associated with any health risk.” Huczko5655 also provides evi-
dence that fullerenes have minimal risk of allergic reaction or skin
irritation. However, Huczko’s study2599 evidently was performed
without adequate controls and used techniques that have been aban-
doned by the EPA as not effectively evaluating the relevant criteria.
Silvana Fiorito at the University of Montpellier in France found
that 1-micron graphite particles stimulated rat cells to produce NO
(nitric oxide, an indicator of immune response), but that neither
carbon nanotubes nor fullerene cage molecules elicited NO pro-
duction from these cells.5227 Richard Smalley, the Rice University
Nobelist and founder of Carbon Nanotechnologies Inc., was quoted
in September 2002 as saying that an as-yet unreleased NASA study
showed little cause for alarm over the biological safety of carbon
nanotubes, though evidently one mouse tested died after receiving
“vast amounts” of nanotubes in its lungs.5716

K.D. Ausman [personal communication, November 2002], Ex-
ecutive Director of Rice University’s Center for Biological and
Environmental Nanotechnology (CBEN), notes that in late 2002
the nanotube/asbestos comparison was still very much an open ques-
tion, but that at least partial answers might be coming soon. Ausman
notes that there appear to be two primary asbestos toxicity mechanisms.

The first toxicity mechanism involves the size and shape of the
fibers, which prevents macrophages from engulfing the fibers and
elicits a biochemical cascade that triggers the formation of scar tis-
sue in the lungs. Given the current definitions of exposure limits
(which include clearance rate in the denominator), no “safe” expo-
sure limit can be set because these fibers are never cleared from the
body. Says Ausman: “While nanotubes are much more rigid than
asbestos fibers when normalized to aspect ratio, in practice they are
not at all rigid individually because their aspect ratio is huge —



Nanomedicine • Volume IIA56

witness the remarkable curvature present in typical buckypapers.
However, the tubes are frequently present as bundles or, depending
on the sample, as multiwalled tubes. In those cases, the rigidity may
be sufficient to see similar problems as seen with asbestos. The jury
is still out, although there is a paper currently in peer review that
sheds some light on this question.”

The second toxicity mechanism of asbestos is due to very small
amounts of bioavailable iron in the fibers which induces a type of
cancer.5793,5794 The most carcinogenic forms of asbestos, crocidol-
ite and amosite, contain up to 27% iron by weight as part of their
crystal structure, and these minerals can acquire more iron after
being inhaled, forming asbestos bodies.5794 Ausman notes that while
nanotubes themselves are unlikely to produce a similar effect,
nanotubes are traditionally made from metal catalysts, in many cases
iron. “In typical samples, the metal content is huge compared to
that of asbestos,” he notes. “It is unknown how bioavailable it is,
but again a paper that is in peer review should shed some light on
this question.”

The results of two studies — the NASA study and the DuPont
study — focused on single-walled carbon nanotubes (SWNTs) were
announced at an American Chemical Society meeting6212,6213 in
March 2003 as this book was going to press. According to one ac-
count,6212 the NASA team6214 exposed groups of mice to one of
four substances: (1) newly made SWNTs mixed with tiny grains of
the metal catalyst used in making the nanotubes, (2) SWNTs treated
to remove the metals, (3) carbon black, or (4) quartz nanoparticles
having well-characterized toxicity. The mouse lungs were instilled
with a solution containing either 0.1 or 0.5 micrograms of material
suspended in inactivated mouse serum. After 90 days, standard his-
tological tests showed that all the particles made their way into the
alveoli and most remained there intact. Even at the lower dose, the
nanotubes (with or without metal particles) triggered granuloma
formation surrounding the material, “a significant sign of toxicity.”
By comparison, the carbon black particles triggered little inflam-
mation. In the second study at DuPont,6215 SWNT-induced granu-
loma formation was similarly observed but the inflammation ap-
peared to tail off after 90 days, and the group concluded that
nanotubes were less toxic than the quartz dust. Both groups cau-
tioned that conclusions about nanotube toxicity must wait until
researchers learn more about how the animals’ lung tissue reacts to
airborne SWNT particles.6248

Almost all of the experimental studies to date have focused on
the biocompatibility of C60 and related spheroidal fullerenes, rather
than nanotubes. C60 (though easily destroyed by O3 in the air even
when shielded from UV and visible light5508) is present naturally in
the environment,5508-5512,6055-6058 being generated in trace amounts
in virtually any sooty smoky flame, such as in forest fires, campfires
and candle flames, and C60 has been discovered in meteorites,5509

in space,6056 and in carbon-rich shungite (a metamorphic Precam-
brian rock),5510,6058 in more ancient formations dated back 1.85
billion years,5511 and in rocks at the Cretaceous-Tertiary bound-
ary.5512,6057 (Carbon nanotubes might yet be found in nature.6059)
Natural fullerene “concentrations have been exceedingly low and
dose to humans, if any, have probably been trivial”.6060 Industrial
toxicology reports show that pure C60 has virtually no inflamma-
tory effect in mice and rats and does not elicit an immune re-
sponse.698 However, fullerenes readily adsorb molecular oxygen from

air.1604 Soon after bulk quantities of fullerenes became available for
laboratory experimentation in the early 1990s, it was found that in
the presence of light and oxygen, the C60 molecule could pass its
superfluous excitation energy onto nearby oxygen molecules, creat-
ing a long-lived but very reactive form of oxygen called singlet oxy-
gen.680,681,918,919 It was quickly suggested that this could present
potential health risks.1099 Pure C60 is a singlet oxygen-generating
agent. It yields singlet oxygen in very high amounts and is com-
pletely inert to photo-oxidative destruction.682 One early experi-
ment with macrophages observed little influence on the formation
of reactive oxygen species by C60 but found that raw soot from
fullerene production was oxidatively active with cells under the in-
fluence of light, though not cytotoxic.683 (It also appears that C60
traps the chemical contaminant naphthalene much differently than
soil,6255 and Tomson et al6256 are studying the impact and transport
of carbon nanomaterials in the environment.)

Other experiments have since shown that C60 efficiently gener-
ates singlet oxygen when irradiated with light.684 For example, when
C60 was incorporated into rat liver microsomes in the form of its
cyclodextrin complex and exposed to UV or visible light, it induced
significant oxidative damage to lipids (e.g., lipid peroxidation as
assayed by thiobarbituric acid reactive substances, lipid hydroper-
oxides, and conjugated dienes) and to proteins (e.g., assayed by pro-
tein carbonyls and loss of membrane-bound enzymes), predomi-
nantly due to the production of singlet oxygen.685 Exposing C60 to
laser pulses at 355 nm or 532 nm in the presence of O2 produces
large quantities of singlet oxygen. This occurs not by chemical reac-
tion but by an energy transfer from the highly populated C60 triplet
state to molecular oxygen.919 K.D. Ausman notes that as the degree
of derivitization increases for functionalized C60, the efficiency of
singlet oxygen sensitization goes down because the 1O2 sensitiza-
tion goes through the C60 triplet state, and both the absorption
cross-section at relevant wavelengths and the quantum yield of con-
version to T1 drops. Light emission from carbon nanotubes was
claimed to be observed in aromatic amine solvents,4635 and Weisman
and Smalley et al5795 have found near-infrared emission from
SWNTs. Photoinduced biochemical activity* has also been reported
in fullerene carboxylic acid;922 a “teflon ponytail” fullerene is an
efficient sensitizer for (increasing) singlet oxygen formation in
fluorous solvents;4633 and porphyrin-fullerene hybrids have been
synthesized.4634

On the other hand, when not in an excited state, C60 does not
react with singlet molecular oxygen but quenches it slowly with a
rate constant of kq ~ 5 x 105 / M-sec.919 It is claimed that a single
C60 molecule can absorb dozens of these reactive chemical species.680

Water-soluble peptide (DL-alanine) and dipeptide
(DL-alanyl-DL-alanine) derivatives of C60 are also known to quench
pyrene fluorescence and erythrosine phosphorescence, both in wa-
ter solution and in liposomes.686 Charge transfer across C60-doped
bilayer lipid membranes has also been investigated by cyclic
voltammetry to evaluate membrane suitability in practical
biosensors,687 and C70 can act both as a photosensitizer for electron
transfer from a donor molecule and a mediator from electron trans-
port across a lipid bilayer membrane.688 Indeed, it was found that
the steady-state photocurrent density obtained from the C70-bilayer
system was about 40 times higher, at comparable light intensities,
than that of the carotene-porphyrinquinone system, previously the

* Some specific samples of single-walled carbon nanotubes (SWNTs) in air have emitted a loud pop and suddenly burst into flames when exposed to the light from an ordinary
camera flash.4697 According to Pulickel Ajayan of Rensselaer Polytechnic Institute, the initial popping noise is generated by the heating of the oxygen inside and between the
nanotubes, which produces a shock wave that causes the carbon to oxidize, sparking combustion, when the temperature reaches 600-700°C. The explosion occurs because
the black carbon nanotubes absorb light so efficiently that, when it is converted into heat, the heat cannot dissipate quickly enough across bunched-up tubes. MWNTs, unlike
SWNTs, do not explode, and other nanotube researchers have taken flash photographs of SWNTs without triggering combustion.
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most efficient artificial system known in the early 1990s. The
C70-bilayer system has a quantum yield of about 0.04, while the
stability (tens of minutes) and turnover number (103 electrons trans-
ported per C70 before decay) are 1-3 orders of magnitude greater
than in other systems.688

Can fullerenes spontaneously traverse lipid bilayers? A simple
C60 cage easily accepts electrons, acquiring a negative charge,680 and
nanotubes readily pick up negative charges in aqueous suspen-
sion.689,690 The large electron affinity of fullerenes like C60 or C70 is
well known.691 Fullerenes exhibit enhanced electron-withdrawing
character upon increase of their molecular size.691 The negative
charge of lipid bilayers (and most in vivo biological surfaces) might
argue for fullerene objects to be slightly repelled from cell mem-
branes. However, E. Pinkhassik notes that the negative charge of
fullerenes is delocalized over a very wide surface and therefore should
not be the decisive factor.

In general, hydrophobic molecules readily insert into the inte-
rior of the bilayer membrane, so we should expect fullerenes to in-
sert into bilayers as well. Indeed, organic nanotubes with hydro-
phobic groups on their exterior surface are observed to spontane-
ously insert into lipid bilayers,692 and C60 is highly hydropho-
bic.693,725 Carboxylic acid C60 derivatives having polar character
can readily enter lipid membranes,745 and water-solubilized pep-
tide (DL-alanine) and dipeptide (DL-alanyl-DL-alanine) derivatives
of C60 can localize inside an artificial membrane, penetrate through
the lipid bilayer of phosphatidylcholine liposomes, and perform
activated transmembrane transport of bivalent metal ions.686 The
rapid uptake of radiolabeled C60 into human cells (~50% of C60

present in serum, within 6 hours695) does not result in acute toxic-
ity and does not affect the proliferation rate of human keratinocytes
or fibroblasts.694,695 Open-ended carbon nanotubes that spontane-
ously inserted into cell membranes could promote cell lysis much
like porins (Section 10.4.1.4), transmembrane siphons (Section
10.4.2.1), or the membrane attack complex (Section 15.2.3.2).
Additional research will be required to identify all the parameters
which may govern the spontaneous insertion of fullerenes into cell
membranes.

E. Pinkhassik notes that the insertion of fullerenes into mem-
branes can be directly relevant to nanorobot construction if one
considers the danger of fullerene-based nanorobot appendages pok-
ing into cells. Accidental whole-nanorobot diffusion through bilay-
ers is unlikely due to the large size of such a device, but an indi-
vidual nanorobotic arm or its protrusions might potentially sponta-
neously enter the membrane of some cells. This issue could arise for
graphene-based appendages or for any other hydrophobic material
used in the construction of a small-diameter nanorobotic arm whose
feature lengths exceed a half-membrane thickness, or about 3-5 nm
(Section 8.5.3.2).

Another potential nanomedical concern is carcinogenicity.698,917

Many organic substances that have aromatic ring systems, such as
benzene, are carcinogens because a conjugated carbon ring has the
appropriate size and shape to be intercalated into DNA, thus pro-
moting cancer. But buckyballs appear to be too big and round to be
incorporated into DNA,680 as are buckytubes (essentially a curved
array of such rings). So these should not present a problem as long
as they remain intact. Preliminary experiments with mouse skin
exposed to pure C60 and C70 confirm this expectation,698 though
more data is needed to increase confidence in the lack of carcinogenic-
ity. The possible carcinogenic risks of nanotubes was discussed above.

Genotoxicity is defined as a serious injury to the chromosomes
of the cell, such that when the cell divides, fragments of chromo-
somes and micronuclei remain in the cytoplasm. Experiments by
Zakharenko and colleagues in 1994696 and in 1997697 examined

the genotoxicity of C60 in prokaryotic cells (E. coli) and in eukary-
otic cells (Drosophila somatic wing cells). No genotoxicity was ob-
served at a C60 concentration of 0.45 µg/cm3 in any of the cells, but
at the highest fullerene concentration of 2.24 µg/cm3 a slight
genotoxic effect was observed in the eukaryotic cells.

A related concern is mutagenicity — the production of coding
flaws in chromosomes that otherwise may retain much genetic func-
tionality. Miyata et al681,1092 found that C60 dissolved in polyvi-
nylpyrrolidone was mutagenic for several Salmonella strains in the
presence of rat liver microsomes when irradiated by visible light.
Their results suggested that singlet oxygen was generated and that
the mutagenicity was caused by the indirect action of singlet oxy-
gen producing phospholipid peroxidation (principally of the linoleate
fraction) in rat liver microsomes, leading to oxidative DNA damage
(probably with the generation of radicals at the guanine bases only).
However, a confusing factor in this study was their use of polyvi-
nylpyrrolidone, a solvent known to cause liver cancer. Indeed, many
studies of the biocompatibility of pure fullerenes have had to em-
ploy biologically harmful solvents, since naked fullerenes are not
soluble in physiological saline. Teratogenicity (e.g., fetotoxicity; Sec-
tion 15.2.8) of pure fullerenes has yet to be seriously investigated.

Cell and tissue biocompatibility experiments on pure fullerenes
— principally C60 — have begun. In many situations, pure fullerenes
are almost completely bioinactive.5230 For example, the dermal tox-
icity of pure C60 was studied by applying a solution of C60 in ben-
zene to mouse skin epidermis. A 200 mg topical dose produced no
acute toxic effect on either DNA synthesis or ornithine decarboxy-
lase activity over a 72-hour time course after treatment.698 Repeated
epidermal administration of fullerenes for up to 24 weeks (after
initiation with a polycyclic aromatic hydrocarbon or PAH) resulted
in neither benign nor malignant tumor formation. Promotion with
a phorbol ester used as a positive control resulted in the formation
of benign skin tumors.698 In another study of the pharmacological
effects of fullerenes on various tissues, pure C60 was applied to guinea
pig trachea, right atria, ileum, and stomach (fundus) tissues, and to
rat vas deferens and uterus.699 A 4 µM (~3 µg/cm3) dose had no
direct effect in any tissue. A short-term repeated application of a 30
mg/kg dose of C60 for 4 weeks significantly reduced the potencies
of acetylcholine in guinea pig ileum and its longitudinal muscle.
C60 was found to have no direct or antagonistic properties toward
drug receptors, though sub-chronic exposure decreased responsive-
ness. No effect on bacterial growth rates was found in 22 microbial
strains exposed to C60 at doses of 43.2 µg/cm3, and there was no
cytotoxicity to human macrophage, leukocyte, or monocyte.2383

(Therapeutic doses in rodent models are typically measured in µg.)
Besides the aforementioned work of Fiorito,5227 by early 2002

the only direct study on carbon nanotube cytocompatibility was by
Mattson et al4820 who grew embryonic rat-brain neurons on
multiwalled carbon nanotubes. They reported that on unmodified
nanotubes, neurons extend only one or two neurites, which exhibit
very few branches. In contrast, neurons grown on nanotubes coated
with 4-hydroxynonenal (a bioactive molecule) elaborate multiple
neurites which exhibit extensive branching.4820 This result was said
to “establish the feasibility of using nanotubes as substrates for nerve
cell growth and as probes of neuronal function at the nanometer
scale.”

Other experiments have found some bioactivity,5233 though usu-
ally only in functionalized fullerenes (Section 15.3.2.2). For instance,
C60 solubilized with polyvinylpyrrolidone (PVP) in water was ap-
plied to the rat limb bud cell differentiation system and very strongly
promoted cell differentiation (up to a 3.2-fold increase).700 PVP
alone inhibited the cell differentiation in proportion to its concentra-
tion, suggesting that a specific promoting action on chondrogenesis
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may exist for C60. In a test of the immune reactions of macroph-
ages, raw soot from fullerene production and purified C60 were in-
cubated with alveolar macrophages and macrophage-like cells. The
effects of this treatment were compared to DQ12 quartz which is
known to damage BAM and HL60M macrophages. Neither soot
nor C60 were cytotoxic compared to quartz, but C60 did induce
some chemotactic activity, although less than the soot or the
quartz.683 Nobuhisa Iwata et al701 investigated the effects of C60 on
the activities of glutathione S-transferase (GST), glutathione per-
oxidase (GSH-Px), and glutathione reductase (GR) enzymes in ro-
dent and human liver. C60 inhibited GST activity toward
trans-4-phenyl-3-buten-2-one in rat liver and toward ethacrynic acid
in mouse liver, while activity toward other substrates was not af-
fected. In human liver, C60 again inhibited GST activity toward
ethacrynic acid and moderately inhibited GSH-Px and GR activi-
ties as well. Lin and Wu702 conducted a study of platelet activation,
using amine-terminated silane coupling agents to graft C60 mol-
ecules onto a polyurethane (PU) surface pretreated with oxygen
plasma activation. Electron spectroscopy for chemical analysis
(ESCA) analysis showed that the C60 molecules spontaneously at-
tached via nucleophilic additions to the fullerene double bonds which
fuse two six-membered rings. In vitro platelet adhesion assay subse-
quently demonstrated that the C60-graft-PU activated more plate-
lets than the nontreated PU control, though the researchers702 ad-
mitted this might be due to “the few residual amine functional groups
which are left over after the C60 grafting reaction.”

Pure fullerenes are fairly chemically inert. They are stable sub-
stances in air or in solution and can be purified by sublimation
without decomposition.678 Unmodified fullerenes are virtually in-
soluble in water,2566 suggesting a low reactivity with biological tis-
sue.680 They are only slightly soluble in ethanol but are much more
soluble in aromatic solvents and in carbon disulfide,695,910,920,921

with highest solubility in 1,2-dichlorobenzene.2552,2566

Mustard-yellow aqueous suspensions of C60 have been prepared that
do not settle out upon standing for more than 3 months. SEM
examination of these suspensions shows the suspended particles are
spherical clumps of C60 between 250-350 nm in diameter. There is
some evidence for suspended-particle oxidation, to C60O, after pro-
longed storage in air.695 Pure C60 and C70 have also been solubilized
by encapsulation inside hollow aggregates of block copolymers.2547

Intact pure fullerene surfaces are unlikely to be attacked by chemi-
cals naturally present in the human body, although the possibility
of a graphene surface being chemically attacked by short-lived reac-
tive intermediates that form during metabolic processes cannot be
entirely ruled out. There is just one unconfirmed (but somewhat
dubious) report2384 of the metabolization of C60 by a microbe — it
is claimed that several species of fungi can grow in fullerenes as
their sole source of carbon. Fullerenes can have numerous chemical
groups attached to their surfaces via processes known variously as
solubilization, conjugation, complexing, derivatization, or
functionalization, typically using intermediary reactive chemical
species not normally found inside the human body. Examples of
chemical groups that have been added to C60 include hydroxyls
(making water-soluble fullerols or fullerenols),703-705 carboxylic
acid,922 proline,706 polyamines,707, amine-terminated silane,702 al-
dehydes,708 pyrrolidines709,710 and poly(vinylpyrrolidone),921 poly-
ethylene glycol,684 cyclodextrin,909 cyclopropane,711 lipid micelles
and vesicles,910 methanofullerenes711 and lipidized
methanofullerenes,712 and even proteins725,911 making water-soluble
“fullereyl protein”.724,911 The C60 cage can reversibly accept up to 6
electrons under suitable conditions.1100 Carbon nanotubes have been
derivatized with, among other chemical groups, benzyne,713,714

thionychloride and octadecylamine.715 The variety of chemical

modifications of fullerenes may warrant the study of interactions
between the fullerene surface and the reactive species found in the
human body.

With proper chemical treatment, C60 can have a stable orifice of
fixed diameter opened up in its side, only allowing atoms smaller
than a certain size to enter.716,717 The open ends of ruptured carbon
nanotubes, cut fullerene pipes, or ruptured fullerene surfaces would
most likely be terminated with carboxylic acid groups if the cutting
occurred in an acidic environment.718 In non-acidic environments,
hydroxyls, amines (basic), hydrocarbons (hydrophobic), or other
terminating moieties could be present instead, producing alterna-
tive chemical reactivities near the break site.

C60 remains structurally intact (~99%) when exposed to a neu-
tron flux of up to 1.5 x 1016 neutrons/m2-sec.1089

15.3.2.2 Derivatized Carbon Fullerenes and Nanotubes
Most biocompatibility studies focus not on pure (insoluble)

fullerenes but rather on solubilized C60 derivatives which may have
potential utility as pharmaceutical agents. Tests have been devised
to simplify fullerene biocompatibility testing, as for example meth-
ods of quantitative analysis of C60 in blood and tissues using
high-performance liquid chromatographic assay.719

In general, water-soluble fullerene derivatives5234 (and possibly
their simple metabolites) are not acutely toxic even at 200-500 mg/
kg doses in mice.720 For instance, LD50 acute toxicity of fullerenol-1
for intraperitoneally-treated mice is ~1200 mg/kg.721 In one study,722

highly water-soluble polyalkylsulfonated C60 (FC4S) in 50 mg/cm3

concentration was administered to rats. FC4S was completely non-
toxic if given orally, but rats died within 30 hours after intraperito-
neal injection with an enormous LD50 dose of 600 mg/kg of body
weight — i.e., the drug is highly nontoxic at therapeutic concentra-
tions. Intravenous or intraperitoneal injections in rats prompted
immediate elimination through the kidney (the primary target or-
gan in this study722), and induced phagolysosomal nephropathy in
acute exposure rats and in surviving rats receiving 500 mg/kg intra-
peritoneally or 100 mg/kg intravenously (~0.1% Nct) — again,
highly nontoxic. Toxicity of MSAD-C60 in rats is somewhat higher:
25 mg/kg administered by bolus intravenous injection in rats caused
shortness of breath and violent movement, followed by death in 5
minutes,734 though no toxicity was reported after intraperitoneal
administration of 50 mg/kg-day for 6 days to mice.1096 These com-
pounds are believed not to be hemolytic.734,921

C60- and C70-derived fullerene carboxylic acids showed no
photocytotoxicity toward Raji cells (B lymphocytes),723 and
intranigral infusion of carboxyfullerene appears to be nontoxic to
the nigrostriatal dopaminergic system.747 Nor are the derivatized
fullerenes particularly mutagenic. One experiment697 found no mu-
tagenic effect in fullerol concentrations up to 2.46 mg/cm3.

Small-molecule fullerenes are not normally recognized by the
immune system and do not trigger the natural production of anti-
bodies by themselves,719,2516,4630 solubilized fullerenes can induce
the production of specific antibodies,724,725,2164,2387-2390 usually by
interaction with the combining sites of IgG,725 or can enhance IgG
production as adjuvants.5657 Immunization of mice with a
water-soluble C60 derivative conjugated to bovine thyroglobulin
yielded a population of fullerene-specific antibodies of the IgG
isotype. This showed that the immune repertoire was diverse enough
to recognize and process fullerenes as protein conjugates.725 The
antibody population also included a subpopulation that crossreacted
with a C70 fullerene as determined by immune precipitation and
ELISA (enzyme-linked immunoabsorbent assay) procedures. C60

conjugated with BSA produces polyclonal response in rabbits and
monoclonal response in rats.4630 It is speculated725 that highly
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hydrophobic fullerenes would be recognized by antibodies with hy-
drophobic amino acids in their binding sites, as has been reported
for the combining site of an Fab’ fragment of a monoclonal anti-
body specific for progesterone,912,913 which is a highly apolar mol-
ecule of similar size to C60. C60 and other fullerenes can also inter-
act with donor -NH2

914 and -SH915 groups.
Antibodies raised to C60 in mice strongly bind to single-walled

carbon nanotubes.2386 There are several reports of antibodies being
raised to single-walled carbon nanotubes,2164,2385-2387 as for example
a mutant of 1-10F-8A that targets single-walled carbon
nanotubes.4630 Computer simulations suggest that it may be pos-
sible to build antibodies which selectively bind to nanotubes of a
specific diameter or chirality.2164

There are reports of fullerene compound interaction directly with
biological receptors.2390 For example, the Wilson group2567 has pre-
pared a fullerene-estrone hybrid compound that has estrogenic ac-
tivity, binding to cytosolic estradiol receptor with Kd ~ 40 µM.
Toniolo et al693 has prepared a hydrophilic fullerene-based analog
of peptide T which exhibits potent activity in a CD4
receptor-mediated human monocyte chemotaxis assay. Computer
models have been used to assess the interaction of fullerenes with
HIV protease,735,2568 glutathione-S-transferase,1092 DNA,2569 and
a peptide helix.2570

Solubilized fullerenes are bioactive726 in tests with many differ-
ent types of living cells. For instance, C60 fullerenol-1 inhibits the
proliferative responses (transduction signals) of a number of cells,
including rat aortic smooth muscle cells (at 10-6 - 10-2 M concen-
tration), human coronary artery smooth muscle cells, and human
CEM lymphocytes — possibly mediated through the inhibition of
protein tyrosine kinase.744 In another experiment, fullerenol-1 ap-
plied to rodent liver microsomes reduced monooxygenase activity
and decreased cytochrome P450 and b5 contents at 500-1000 mg/
kg doses, but had no effect at 10-100 mg/kg doses.721 Added to rat
liver mitochondria, fullerenol-1 decreases mitochondrial oxidative
phosphorylation in vitro, producing a dose-dependent inhibition
of ADP-induced uncoupling and significantly inhibiting mitochon-
drial Mg++-ATPase activity with an IC50 level at 7.1 µM.721 Highly
water-soluble polyalkylsulfonated C60 (FC4S) in 50 mg/cm3 con-
centration administered to rats suppresses liver cytochrome
P-450-dependent monooxygenase activities but increases kidney cy-
tochrome P-450-dependent monooxygenase activities.722 C60 solu-
bilized with polyvinylpyrrolidone (PVP) in water and incubated with
mouse embryos in vitro potently inhibits cell differentiation and
proliferation.727

Pharmacological effects of fullerenes on various tissues have been
noted. For example, monomalonic acid C60 (MMA-C60) was ap-
plied to endothelium-containing or denuded aorta of rabbit, tra-
chea and ileum of guinea pig, and stomach (fundus), vas deferens
and uterus of rat. At 10-5 M concentration, MMA-C60 was found
to significantly reduce the endothelium-dependent relaxation in-
duced by acetylcholine, but not to affect the agonist-induced con-
tractile response of smooth muscle.728 Dimalonic acid C60 at 10-5

M concentration inhibited endothelium (nitric oxide)-dependent
agonist-induced relaxation through the production of superoxide.729

The biodistribution of fullerenes throughout body tissues, after
they are introduced in vivo, has been studied. In one experiment,720

a 14C-labeled trimethylenemethane-based water-solubilized C60
fullerene was administered orally to rats. The compound was not
efficiently absorbed and was excreted primarily in the feces. When
injected intravenously, however, the compound distributed rapidly
to various tissues with most of the material still retained in the body

after one week, and with retention mostly in the liver (90%).720

The substance also penetrated the blood-brain barrier. When ad-
ministered intraperitoneally to pregnant mice at 50 mg/kg,
PVP-solubilized C60 was clearly distributed into the yolk sac and
embryos.727 Microscopic evaluation revealed a harmful effect on
conceptuses,727 although the effects of underivatized C60 on em-
bryogenesis were not reported. A biodistribution study of
underivatized C60 in Swiss mice (4-5 mg/kg doses) found that >95%
of the fullerene material was retained, mostly in the liver, probably
unmetabolized.705

In 1999, Gonzalez and Wilson731 tested a C60 fullerol (contain-
ing 16 hydroxyls) functionalized with an amide bis-phosphonate
chemical group. This compound showed selective binding to the
hydroxyapatite of bone (thus altering the mineral’s usual crystal
growth) which suggests that a rationally-designed molecule could
be used to target bone tissue, possibly as an agent to address os-
teoporosis. Another study found that C60-PEG conjugate injected
intravenously into mice carrying a tumor mass in the back subcutis
exhibited higher accumulation and more prolonged retention in
the tumor tissue than in normal tissue.684 However, the conjugate
was excreted without being accumulated in any specific organ.684

In vivo fullerene biodistribution studies of insoluble C60 and La@C60

suspensions* 719,1093 and water-soluble C60 derivatives720,734,751 in-
dicate a short residency in the blood pool with rapid localization
and long-term residency in the liver (<1% clearance). One of these
studies751 demonstrated that fullerenes are not metabolized rapidly
in vivo, although fullerene oxidation of C60 derivatives has been
observed in vivo,751 followed by selective absorption by liver
cells.732,1097 Although their acute toxicity is low at the ~mg/kg dose
level,705 water-soluble fullerenes are retained in the body for long
periods which raises concerns about chronic toxic effects.

However, another biodistribution experiment by Wilson et
al705,730,1094 at Rice University found that solubilized C82 endohedral
metallofullerenes — each containing a trapped radioactive holmium
atom (Hox@C82(OH)y) — when introduced intravenously remain
in the blood for about an hour with nearly total clearance from the
blood shortly thereafter. These endohedral metallofullerenes local-
ize in bone, spleen, kidneys, and liver, but with slow and steady
clearance from all tissue (~20% after 5 days in rats) except bone,
where fullerene concentration steadily increases with time. After 48
hours, metallofullerene concentration falls to 15% of injected dose
(ID) in the liver, only slightly lower than the maximum of 24% ID
for liver. Concentrations are only 3.6% ID (down from 7.6% ID
max) in the kidney and 0.36% ID (down from 5.1% ID max) in
the blood pool.705 Accumulation in the brain is negligible.705 After
the first day, when 88.4% ID remains in rats, clearance is ~1.5%
ID per day, with nearly equal amounts eliminated in the feces and
urine.705 Another biodistribution experiment1093 involved a suspen-
sion of insoluble metallofullerene (La@C82) injected directly into
the heart of anesthetized rats. After 24 hours, >80% of the material
still present in the body was located in the liver and blood pool,
with some retention also in the brain.1093

Most recently, B.F. Erlanger’s group5880 injected carboxyfullerene
and fluorescent-labeled antibodies targeted to naked fullerene to
observe possible targeting to specific intracellular compartments of
the fullerene-based agent in an animal model. They directly ob-
served via fluorescence that the fullerene derivative had crossed the
external cellular membrane and localized preferentially to the intra-
cellular mitochondria. This seems to support “the potential use of
fullerenes as drug delivery agents as their structure mimics that of
clathrin known to mediate endocytosis.”

* The nomenclature “X@C60” is commonly used in fullerene chemistry to indicate that atom X is endohedrally trapped inside the closed C60 molecular cage.
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While fullerene molecules can exhibit a wide range of interac-
tions, many of these interactions will not take place at the surfaces
of medical nanorobots with graphene exteriors. E. Pinkhassik notes
that “high mobility of relatively small buckyballs is responsible for
many physiological actions observed by different researchers, and
since the larger nanodevices will not be able to cross the membranes
or easily get to active sites of proteins, they should be even more
inert than their smaller counterparts.”

15.3.2.3 Fullerene-Based Pharmaceuticals
By 2002, several major classes of fullerene-based pharmaceutical

applications were under active investigation, most notably by the
biotech company C Sixty,5362 including:

1. Antivirals. Fullerenes have shown activity against
HIV.693,732-735,1096-1098 In 1993, MSAD-C60 was found effec-
tive against HIV-1 and HIV-2 with 50% effective concentra-
tion (EC50) averaging 6 x 10-6 M in acutely or chronically in-
fected human lymphocytes, and with selective activity against
HIV-1 protease.732 MSAD-C60 was noncytotoxic up to 10-4 M
in peripheral blood mononuclear cells and in H9, Vero, and
CEM cells.732 Following intravenous administration at 15 mg/kg
of body weight, pharmacokinetic studies showed a half-life of
6.8 hours in the blood with distribution into the tissues. Bind-
ing studies showed the compound was >99% bound to plasma
proteins.734 MSAD-C60 is well tolerated in mice after IV ad-
ministration up to 15 mg/kg, but a higher dose of 25 mg/kg
produces shortness of breath and violent movement of rats, fol-
lowed by death with 5 minutes of dosing.734 By 1998, compu-
tational models for optimizing the binding of fullerene inhibi-
tors of the HIV-1 protease led to the synthesis and testing of
two C60-derived ligands for the HIV protease active site that
displayed ~50-fold increase in affinity compared to previously
tested fullerene compounds.735

By the late 1990s,736 photodynamic reactions induced by sin-
glet oxygen-generating agents were known to inactivate envel-
oped viruses.682 Pure water-insoluble photosensitizer C60 could
be used to mediate the inactivation of enveloped viruses. Buff-
ered solutions containing C60 and Semliki Forest virus (SFV,
Togaviridae) or vesicular stomatitis virus (VSV, Rhabdoviridae),
when illuminated with visible light for up to 5 hours, resulted
in a significant loss of infectivity. Viral inactivation was
oxygen-dependent and equally efficient in solutions containing
protein. C60 fulleropyrrolidone was also known to have antivi-
ral activity.737 A C60 molecule covalently linked to peptide T,
like peptide T, displays potent human monocyte chemotaxis
while weakly inhibiting HIV-1 protease.693 C Sixty’s anti-HIV
fullerene compound CSDF1 exhibits high water solubility (200
gm/liter), complete renal excretion, and a highly nontoxic LD50
of 800 mg/kg in rodents.4630,5235 The drug appears effective
even against highly resistant strains of the virus. The binding
constant is ~nM for C Sixty’s anti-HIV protease inhibitor;4630

the company’s anti-HIV drugs apparently have about
one-tenth the toxicity of current HIV cocktails, and human
trials start in 2003.259

2. Antibacterials. A water-soluble malonic acid derivative of C60
(carboxyfullerene) was protective in mice against E. coli-induced
meningitis death in a dose-dependent manner, even when ad-
ministered intraperitoneally as late as 9 hours after E. coli injec-
tion.738 Fullerene-treated mice had less tumor necrosis factor
alpha and less interleukin-1b production compared to the pro-
duction levels for nontreated mice. E. coli-induced increases in

blood-brain barrier permeability and inflammatory neutrophilic
infiltration were also inhibited,5876 suggesting that the C60 com-
pound could be a useful therapeutic agent in some cases of bac-
terial meningitis.738 Other fullerene-based inhibitors of E. coli
growth have been investigated.5236 Positively-charged
water-soluble fullerene derivatives inhibit growth of Mycobacte-
rium tuberculosis at ~0.005 mg/cm3 concentrations.2382

Carboxyfullerene directly inhibits in vitro growth of Streptococ-
cus pyogenes and enhances bactericidal activity of neutrophils in
mice in vivo,5874 suggesting that the fullerene derivative “can be
considered an antimicrobial agent for group A streptococcus
infection.” Subsequent work5875 by this research group found
that the antibacterial action of carboxyfullerene on Gram-positive
bacteria is achieved by insertion into the cell wall and destruction
of membrane integrity. Other studies5877 have also found antibac-
terial activity of fullerene derivatives, and even of carbon nanotubes
[U. Sagman, personal communication, December 2002].

3. Tumor/Anti-Cancer Therapy. A C60-PEG conjugate irradiated by
light strongly induced tumor necrosis without any damage to
the overlying normal tissue,684,2576 with complete cure achieved
by a C60-PEG dose of 0.424 mg/kg and irradiation power of
1011 J/m2, making this and similar materials5237 excellent can-
didates for photodynamic tumor therapy. In vitro cytotoxicity
against the HeLa S3 cell line has been evaluated by studying the
inhibited growth rate,922 and some C60 derivatives have shown
promise as anti-cancer agents.1090-1092 Photodynamic activity
of PEG-modified fullerene is reported against fibrosarcoma tu-
mors in mice and on erythrocyte membrane.2577,2578

Water-soluble C60(OH)24 has been shown (1) to strongly block
microtubule assembly, (2) to inhibit cell growth via inhibition
of mitotic spindle formation much like taxol, and (3) to affect
the growth kinetics of human lymphocyte cultures and HEP-2
epidermal carcinoma cell cultures.2571 Liposomes containing
~0.1 mM of solubilized C60 are reported to have anticancer ef-
fects on human cervical cancer cells.2572 Other fullerene-based
inhibitors of cancer cell5236 and tumor5237 growth have been
investigated, and the first fullerene-based clinical treatment of a
human patient with rectal adenocarcinoma was attempted by
Andrievsky et al.5238 Chemotherapeutic agents are also being
attached to larger fullerene structures to be carried inside lipo-
somes, that C Sixty calls “buckysomes.”

4. Anti-Apoptosis Agents. C60 is a free-radical scavenger and can act
as antagonist for ceramide-triggered (but not Fas-triggered)
apoptosis.739 Transforming growth factor-beta (TGF-β) induces
apoptosis in normal hepatocytes and hepatoma cells, but
carboxyfullerene blocks the apoptotic signaling of TGF-β in hu-
man hepatoma cells.746 The antiapoptotic activity of C60

carboxyfullerene is correlated with its ability to eliminate
TGF-β-generated reactive oxygen species,746 and
carboxyfullerene protects human keratinocytes from ultraviolet
(UVB) damage5878 “possibly via a mechanism interfering with
the generation of reactive oxygen species from depolarized mi-
tochondria.” Carboxyfullerene also exerts some protection
against oxidative stress-induced apoptosis in human peripheral
blood mononuclear cells (PBMCs).5879 Another water-soluble
C60 derivative protects epithelial cells from substrate-restriction
apoptosis by exerting a trophic effect on actin microfilaments,
thus influencing cell adhesion ability.740

More interesting are the neuron anti-apoptotic effects. In one
experiment,741 water-soluble C60 fullerenols decreased
excitotoxic neuronal death following brief exposure to
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N-methyl-D-aspartate (NMDA) (by 80%), α-amino-
3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) (by
65%), or kainate (by 50%). The fullerenols also reduced neu-
ronal apoptosis induced by serum deprivation.741 (The
fullerenols were not NMDA or AMPA/kainate receptor antago-
nists.) In a related experiment,745 carboxylic acid C60 deriva-
tives inhibited the excitotoxic death of cultured cortical neu-
rons induced by exposure to NMDA, AMPA, or oxygen-glucose
deprivation. One C60 derivative fully blocked even rapidly trig-
gered NMDA receptor-mediated toxicity and reduced apoptotic
neuronal death induced by either serum deprivation or expo-
sure to amyloid beta peptide (Aβ1-42), the established cause of
Alzheimer’s disease.5917 This suggested that polar carboxylic acid
C60 derivatives might have attractive therapeutic properties in
several acute or chronic degenerative diseases such as amyo-
trophic lateral sclerosis (ALS, or Lou Gehrig’s disease).745 In
2002, C Sixty had fullerene-based drugs to combat ALS and
Parkinson’s disease under development,4630 with human trials
expected to begin in 2003.259

5. Antioxidants. C60 derivatives683,726,739,748,2583 including
fullerenols,741-744,2581 carboxyfullerene,745-747,5875,5879

polyalkylsulfonated C60,722 hexa(sulphobutyl)fullerene,749

C60-dimalonic acid2582 and C62 bis(malonate)1091 are known
or suspected free-radical (oxygen-radical) scavengers. These de-
rivatives often provide potent antioxidative action (e.g., prevent-
ing hydrogen peroxide- and cumene hydroperoxide-elicited cel-
lular damage742) without increasing lipid peroxidation.747 In
experiments with mice, Dugan et al741,745 found potent anti-
oxidant properties in buckyballs (hundreds of times more pow-
erful than Vitamin E) that could shield nerve cells from free
radicals. C60 monomalonate selectively inhibited activity of the
neuronal nitric oxide synthase (nNOS) isoform.4631 C60
trisamine adducts also inhibited nNOS, but this was completely
reversible by calmodulin, which suggests that these fullerene
adducts are potent calmodulin antagonists at ~50 nM.4632 Other
fullerene-derived NOS inhibitors are known.4636,5239 C60 mol-
ecules immobilized at a silicon surface also display anti-oxidant
activity.5240 The trimalonic acid derivative of fullerene
(carboxyfullerene) is a water-soluble compound that has been
found to be an effective antioxidant both in vivo and in vitro.5875

6. DNA Cleavage. Water-soluble fullerene carboxylic acid cleaves
DNA fragments at guanine residues upon exposure to
light.922,2569,2574 Boutorine et al2573 describe a
fullerene-oligonucleotide that can bind single- or
double-stranded DNA, and which also cleaves the strand(s)
proximal to the fullerene moiety upon exposure to light. A C60

derivative linked to a gold surface and DNA was shown to bind
and be cleaved with the gold-linked fullerene.2575 Nakanishi et
al5232 also observed DNA cleavage by functionalized C60.

7. Other Applications. Fullerenol-1 significantly attenuates
noncholinergic (e.g., exsanguination-induced) airway constric-
tion in guinea pigs.743 It also produces a slight bronchial con-
stricting action at high doses (2 mg/kg) when applied via in-
tratracheal instillation.743 Fullerene compounds have effects on
nitric oxide728 and acetylcholine729 signaling pathways. Fullerene
redox chemistry may be applicable to biosensor technolo-
gies.2579,2580 In one experiment, a C60-containing bilayer lipid
membrane was shown to be a light-sensitive diode potentially
useful in electrochemical biosensor devices.2579 Favorable blood
contact properties of surface-immobilized C60 have been re-
ported.2586 Paramagnetic malonodiamide C60 derivatives may

be useful in making MRI contrast agents.5241 C Sixty is also
investigating possible drug-delivery “nanopills” consisting of two
closed-end single-walled carbon nanotubes nested
mouth-to-mouth, forming a capsule-like container.4630,5242

More generally, the company5362 is investigating the targeted
therapeutic delivery of drugs or radioactive atoms enclosed in
surface-functionalized fullerenes to specific tissues or diseased
cells. In 2002 this research area was quite active and the inter-
ested reader should consult the literature for the most current
results.

15.3.3 Biocompatibility of Nondiamondoid Carbon
Other nondiamondoid forms of carbon have been widely used

as implant materials with some success, though none is expected to
serve as well as diamond because their molecular surfaces are inher-
ently more poorly defined. Prosthetic carbon materials have an ex-
tensive biocompatibility literature904,955 whose summation is be-
yond the scope of this text, aside from the brief survey presented
below. The most common classes of nanomedically-relevant bio-
medical carbons are glassy or vitreous carbon (Section 15.3.3.1),
pyrolytic or low-temperature isotropic carbon (Section 15.3.3.2),
graphite (Section 15.3.3.3), and carbon fiber composites (Section
15.3.3.4). Carbon black and India ink (Section 15.3.3.5) are com-
monly used as inert particulate diagnostic and cell-labeling agents.
These surfaces are relevant both in their own right and also as im-
perfect analogs of sections of diamondoid nanorobot surfaces hav-
ing aperiodic structures or high rugosity, or which may have par-
tially graphitized. Interestingly, carbon substances can accelerate gal-
vanic corrosion (Section 15.3.3.6) much like metals.

15.3.3.1 Vitreous or Glassy Carbon
Vitreous, polymeric or glassy carbon is a type of graphite formed

by the decomposition of hydrocarbon gases on smooth surfaces (such
as glazed porcelain) at temperatures above 650 ̊ C. When examined
by STM, this material shows atomic lattices with many relatively
ordered defects and patchlike carbon crystallites with sizes of 3-15
nm.792 The crystallites form surface domains that may differ in sur-
face properties due to different orientations of the crystallites.792

Adsorption of serum proteins onto glassy carbon has been lightly
studied. Amorphous carbon exposed to solutions of fibrinogen, to
modified fibrinogen lacking the alpha chain protuberance, or to
serum albumin, flowing at a shear rate of 135 sec-1, adsorbed all 3
proteins to form a film.793 During the adsorption process, indi-
vidual fibrinogen molecules retained their trinodular structure and
adsorbed randomly until a monolayer formed.793 Adsorption of bo-
vine serum albumin onto glassy carbon takes place in several steps.
The structure of the adsorbed layers is different for various serum
shear rates at the surface.794 Kinetics of adsorption of serum albu-
min onto the surface of glassy carbon electrodes is highly acceler-
ated by application of positive potential, suggesting an electrostatic
interaction between the negatively charged albumin molecules and
the positively polarized electrode.795 In this study, adsorption of
albumin was irreversible if the albumin solution was simply diluted;
albumin formed a monomolecular layer on the electrode surface.795

Glassy carbon electrodes are widely employed in biosensors.4822-4830

Microporous glassy carbon has good biocompatibility in rats.796

Minimal tissue response is seen to the presence of glassy carbon,
and glassy carbon bars aged in vivo for 5 months undergo no weak-
ening.797 Tissue reactivity to vitreous carbon was studied in dogs
and the material was found to be quite inert. There were no inflam-
matory reactions or sensitivity changes in dog tissues and no un-
usual changes in the hemopoietic or enzyme systems.798 Glassy
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carbon implants placed intraorbitally in rabbits for up to 150 days
produced no intolerance reaction or deviation of blood parameters,
showing only a typical “foreign body” (Section 15.4.3.5) reaction.4821

Most studies have found good biocompatibility of glassy carbon
implants in bone. For example, vitreous carbon inserted into the
mandible and iliac crest of the rabbit pelvic bone for up to 1 year
excited very little tissue reaction and did not appear to be de-
graded.799 The material was well tolerated and showed no move-
ment of known contaminants from the implants into the surround-
ing tissue.782 In another experiment,800 porous vitreous carbon cyl-
inders were implanted intra-articularly into rabbits in the metaphy-
sis of the femur opposite from the patella. There was new bone
growth into the implants from the surrounding bone, with new
bone in the pores reaching a maximum of 45% of pore volume after
12 weeks and no adverse tissue responses.800 Only in one study did
vitreous carbon implanted in rabbit mandibular tissues for 0.5-3
months elicit fibrous connective tissue capsule formation, multi-
nucleated phagocytic cells, a mild inflammatory infiltrate, and re-
active bone.801

Glassy carbon also appears biocompatible with teeth. In one
experiment,802conical vitreous carbon endosteal implants were
placed in premolar extraction sites in dogs and then allowed to heal
for 2-8 weeks prior to restoration with a gold crown. Gingival tis-
sues healed routinely and showed mild irritation similar to tissues
adjacent to teeth, with normal sulcular depths. Bone formation was
observed within grooves in the implant surface, providing retention
and stabilization. Normal bone remodeling occurred adjacent to
the implant sites. The resulting interlocking between tissues and
implant appeared to function effectively as a bacterial seal. No in-
flammatory responses, foreign body reactions, or infections were
observed. Glassy carbon is generally considered to have good
biocompatibility,904 despite the relatively high failure rate of vitre-
ous carbon dental implants in humans905 which seems largely due
to mechanical factors such as brittleness.903

Glassy carbon materials placed in the middle ear have been less
successful. Vitreous carbon implants in the mastoid bulla (middle
ear) of gerbils for 1-13 months were well tolerated.803 But 9 months
after vitreous carbon and glazed carbon fiber reinforced carbon were
placed in the middle ears of rats and guinea pigs, 40% of the im-
plants had been extruded and 8% had elicited inflammatory re-
sponses which would undoubtedly result in extrusion, with only
52% of the implants remaining in situ.804 Vitreous carbon ossicular
chain prostheses implanted in the middle ear of rabbits during
tympanoplastic procedures often produced extensive inflammation
of the middle ear mucosa along with formation of an increasing
fibrous capsule.805 There was also a permanent foreign body reac-
tion at the implant surface and missing formation of new bone or
contact with bone.805

Vitreous carbon particles 11 microns in size implanted into the
triceps surae muscle of Wistar rats produced no muscle tissue ne-
crosis or exudative reaction during the acute phase (up to 1 week).
During the chronic phase, the particles induced only a modest in-
flammatory infiltration of fibroblasts and phagocytes.826

15.3.3.2 Pyrolytic or Low Temperature Isotropic Carbon
Originally developed in the early 1960s by Gulf General Atomic

as a coating for nuclear fuel rods,938,1038-1040 pyrolytic carbon is
formed in a fluidized bed by the pyrolysis of a gaseous hydrocarbon
such as methane depositing carbon onto a preformed substrate such
as polycrystalline graphite at 1000-1500 K.903,955 Its strength and
ability to absorb impact energy is ~4 times greater than that of glassy
carbon.903 Pyrolytic or low temperature isotropic carbon (LTIC) is

characterized by a microporous, oxidized, high-energy hydropho-
bic and domain-mosaic structure.806,906 LTIC examined by STM
shows atomic lattices with many disordered defects, and patchlike
carbon crystallites with sizes of 2-8 nm.792 As with glassy carbon,
the different orientations of the crystallites create surface domains
that may differ in surface properties,792 producing a poorly charac-
terized molecular surface.

The pyrolytic carbon surface has strong interactions with
adsorbed proteins806 and even with DNA.807 LTIC adsorbs and
denatures all proteins without preference,806 including albumin, fi-
brinogen, and some other small proteins. This is probably due to
hydrophobic interactions, although the presence of air at the
carbon-water interface can prevent surface denaturation of fibrino-
gen.808 Protein adsorption has been directly visualized on LTIC,809

and the steady state and time varying kinetics of fibrinogen and
albumin protein adsorption onto ULTI810 (see below) and
LTIC811-813 surfaces have been studied. For instance, the adsorp-
tion of human fibrinogen onto LTIC at pH 7.2 and 25 ˚C was 5.2
mg/m2 (~9100 molecules/micron2) and the net heat of protein sorp-
tion was measured as 3-4 x 106 Kcal/mole of adsorbed fibrinogen.811

Tests for adsorption of bovine fibrinogen and human serum albu-
min (HSA) from buffered HSA solution found that both proteins
are tenaciously bound to Pyrolite (an LTI pyrolytic carbon).812 Note
the authors: “The [high] thromboresistance of Pyrolite may be partly
due to the lowered reactivity of the platelet binding domain, as well
as a lessened ability of tightly bound fibrinogen to interact with
platelets”.812 In general, the rate of protein adsorption is high, the
surface concentration is large, and the surface strongly retains pro-
teins such that they cannot be displaced by buffer or exchanged by
proteins in solution.806 Thus LTIC accomplishes its blood compat-
ibility by establishing a passivating film of strongly adsorbed bland
proteins which do not interact with platelets nor participate in blood
coagulation.806 The adsorption of albumin onto a pyrolytic carbon
surface has been computationally simulated using molecular me-
chanics techniques.4840

For long-term exposures to blood, pyrolytic carbon is generally
considered to be a relatively nonthrombogenic material.808 This is
one reason for its extensive use in artificial heart valves (Section
15.2.1.2). For example, in one experiment813 mechanical heart valves
with pyrolytic carbon surface were implanted in the mitral position
of sheep without the administration of post-operative anticoagu-
lants or antiplatelet agents for 2, 4, and 6 weeks, then were removed
and examined by scanning electron microscopy. Surfaces appeared
clean to the naked eye, but when observed by electron microscopy
the surfaces were mottled, mainly by solitary platelets and aggrega-
tions, though only a few leukocytes or red blood cells were observed
and there were no fibrin clots on the leaflets. The density of platelet
deposition was higher in the vicinity of the pivots and near the edges
of the leaflets, with the sizes of the platelet aggregations decreasing
with longer duration. The outer surfaces of the pivot guards were
covered by varying amounts of deposition composed of platelet ag-
gregations and thrombi. There is some evidence that LTIC surfaces
may be conditioned (e.g., reducing platelet retention) by adsorp-
tion of a passivating protein such as albumin.810,926 Platelet adher-
ence on LTIC is remarkably low compared to other implant materi-
als, typically ~0.0043 platelets/micron2 after a 5-minute exposure
to fresh human blood flowing at a wall shear rate (Section 9.4.1.1)
of 50 sec-1.1680

For brief exposures to blood, however, this material is far from
ideal. A comparison of the thrombogenicity of heart valve mate-
rials found that pyrolytic carbon disks implanted in the intratho-
racic venae cavae of anesthetized sheep for only 2 hours elicited
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significantly more thrombus formation than did titanium or
cobalt-chromium disks, and more leukocyte adhesion than on pure
titanium disks.814 Recent investigations908 of very pure heart-valve
pyrolytic carbon suggests this material may have improved proper-
ties relative to traditional LTIC, which usually contains substantial
amounts of silicon additive (up to 15% Si by weight) that was be-
lieved necessary to consistently achieve the hardness required for
adequate wear resistance. (The silicon is present in the microstruc-
ture as discrete, lacey networks of silicon carbide particles.955)

LTIC is generally biocompatible with cells. For example, por-
cine aortic endothelial cells were cultured on pure Dacron and on
vapor-deposited pyrolytic carbon-coated Dacron vascular prosthe-
ses.815 Cell adherence was unaffected, but cellular growth occurred
only on carbon-coated Dacron. SEM images showed rounded ad-
herent cells on Dacron but extensively spread cells on carbon-coated
prostheses.815 Similarly, an isotropic carbon coating on dental rep-
licas implanted in dog mandibular arches showed good permucous
acceptability (hard to obtain in other materials) and good anchor-
age to the surrounding bone.816 LTIC dental implants in baboons
found a good clinical response.907 Most specimens showed a com-
plete absence of bone resorption of the alveolar crest and an absence
of epithelial cell migration or fibrous tissue formation at the
implant-tissue interface. Pyrolytic carbon is also a biologically com-
patible material for arthroplasty of diseased finger joints.817 In this
study,817 no adverse remodeling or resorption of bone was seen.
94% of the implants had evidence of osseointegration with sclerosis
around the end and shaft of the prosthetic stems. A few instances of
chronic inflammatory tissue were seen, but there was no evidence
of intracellular particles or particulate synovitis.

Once again, however, the material is far from ideal. When LTI
pyrolytic carbon transcortical (bone) implants were placed in the
femora of mongrel dogs for 6 months, the bone formed a direct
appositional interface with the LTI carbon. But the strength of ap-
positional attachment was at least one order of magnitude weaker
than bone growth attachment to porous titanium and carbon-coated
porous titanium systems which were also tested.818 (The presence
of carbon coating enhanced bone ingrowth.818) As with glassy car-
bon, in at least one experiment801 pyrolytic carbon or Pyrolite im-
planted in rabbit mandibular tissues for 0.5-3 months elicited fi-
brous connective tissue capsule formation, multinucleated phago-
cytic cells, a mild inflammatory infiltrate, and reactive bone. Thin
capsules were also observed surrounding the ends of pyrolytic car-
bon catheters implanted intraperitoneally in dogs for 12 weeks.895

What about pyrolytic carbon particles? Helbing et al902 tested
97.3% pure LTIC dust (2.7% graphite) of particle size <~ 1 micron
by injecting the particles intravenously, intraperitoneally, and intra-
and peri-articularly into 60-day-old Chbb-strain rats. There was a
slight inflammatory reaction with an increase in neutrophils in the
peritoneal fluid after 24 hours. Some carbon particles were phago-
cytosed by macrophages. After 12-24 weeks, some foreign body
granulomas had formed around large aggregates of carbon particles,
but the peritoneal surface was macroscopically shiny and smooth.
No foreign-body giant cells were found in the knee joints and there
was no evidence of acute inflammatory change. Joint cartilage re-
mained completely unaltered after 6, 12, and 24 weeks. There was
no evidence of foreign-body reaction in any of the parenchymal
organs. The general conclusion was that tissue tolerance of LTI dust
is excellent.902

Ultra-low-temperature isotropic (ULTI) carbon is a closely re-
lated material.923 By the late 1970s, it became possible to deposit
isotropic carbon coatings at nearly room temperature using a hy-
brid low-pressure vacuum process that does not require the object

to be coated to be suspended in a fluidized bed. The steady state
and time varying kinetics of protein adsorption of ULTI have been
investigated. Flow exposures over ULTI-coated microporous mem-
brane produced a uniform protein coating averaging 1.3 microns in
thickness. Adsorption of human fibrinogen onto the ULTI was 53.5
mg/m2 (~94,900 molecules/micron2) and 14.4 mg/m2 (~127,000
molecules/micron2) of albumin, after a 1-hour exposure.810 Albu-
min adsorption reaches equilibrium within 15 minutes, while fi-
brinogen levels are still increasing after 60 minutes, at which time
the noncompetitive albumin/fibrinogen adsorption ratio reaches
0.27,810 comparable to the 0.24 ratio achieved for LTIC.925 In re-
lated experiments,924 the response of ULTI carbon surfaced materi-
als to ex vivo blood flow were evaluated over perfusion periods of
0.5-8 hours. At flow rates with low Reynolds numbers (Section
9.4.2.1), the carbon attracted fewer and less distorted cellular ele-
ments than uncoated microporous membranes and
microchannels.924

Failure strength of ULTI carbon is ~7.5 x 107 N/m2 (impact
fracture energy 1.1 x 107 J/m3), compared to 5.5 x 107 N/m2 (6.6 x
106 J/m3) for LTI carbon with Si, 4.5 x 107 N/m2 (3.4 x 106 J/m3)
for pure LTIC, and 1.4 x 107 N/m2 (7 x 105 J/m3) for glassy car-
bon.955 All these carbons have similar stiffness, with modulus of
elasticity of 2.1-2.6 x 1010 N/m2,955 in a range comparable to bone.

15.3.3.3 Graphite
Thrombosis on blood-exposed graphite-coated prostheses was

first studied in the 1960s,819 and in the 1970s it was found that
graphite-based endoprostheses were generally nontoxic and produced
no immunological reactions.820 Glow discharge treatment to a graph-
ite surface increases hydrophilicity, producing stronger adsorption
of hydrophilic protein molecules and a more homogeneous distri-
bution.821 (See also Section 15.3.5.1.) Graphite began to be stud-
ied as an implant surface material in the 1990s, owing to its use in
joints,941 bone,942,943 heart valves,944 and as an electrode in
biosensors.945-949,4841-4845

In the best study of bulk graphite biocompatibility to date,
Eriksson and Nygren822 investigated the initial reactions of graph-
ite and gold with blood by short-time exposure to capillary blood
and detection of surface-adsorbed plasma proteins and cells with an
immunofluorescence technique. Antibodies specific to fibrinogen,
complement factors C1q and C3c, prothrombin/thrombin, von
Willebrand factor, and platelet- and leukocyte-membrane antigens
were used. Fibrinogen was the most abundant plasma protein im-
mobilized on either surface, and dense populations of platelets ad-
hered to the protein layer. Complement factors and prothrombin/
thrombin were found on the graphite surface, localized in fibrin
clots or related to platelets. Platelets were activated (e.g., expression
of selectin CD62) on both surfaces but more extensively on the
gold surface. Activation of polymorphonuclear granulocytes
(PMNGs), measured as the expression of integrin CD11b, was seen
on both surfaces but with different kinetics. On the graphite sur-
face the CD11b expression was only transient, whereas on gold it
increased with time. The data suggest that graphite is more throm-
bogenic than gold, but is also less inflammatory.822

What about graphitic particles? Graphitosis from inhaled natu-
ral (impure) graphite dusts was mentioned in Section 15.1.2. But
when rats were exposed to a single dose of synthetic (pure) graphite
dust, particles were steadily cleared from the lungs.823 Alveolar mac-
rophages contained ingested particles throughout the entire 3-month
experimental period.823 At 100 mg/m3 exposure, no pulmonary in-
flammation or macrophage activation was seen. A 500 mg/m3 ex-
posure produced transient inflammation and macrophage activation
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for only about 24-48 hours.823 Graphite is generally regarded as
biologically inert. In one study,824 for example, human airway epi-
thelial cells cultured with charcoal and graphite particles did not
stimulate production of IL-8 or GM-CSF (granulocyte-macrophage
colony-stimulating factor).

Graphite particles have persistence in the dermis and as a result
are often used as a pigment in tattoos.825 In grade school this au-
thor accidentally stabbed his palm with a sharp pencil. Four de-
cades later the resulting embedded graphite spot is still visible
subepidermally with no evidence of inflammation or heavy fibrous
encapsulation, though granulomas from this source are not un-
known.2513 Wear particles from graphite-based endoprostheses gen-
erally do not produce any severe inflammatory reactions.820 In one
experiment,643 the hemolysis eventually initiated in vitro by vari-
ous ceramic powders tested, including diamond, graphite and alu-
mina, was almost zero.

Engineers contemplating the design of nanorobotic structures
with graphitic exteriors should be aware that the growth of bacteria
is often enhanced by the addition of carbon materials such as graphite
or activated charcoal to the growth medium. Matsuhashi et al827

have isolated bacterial strains that strictly require such carbon ma-
terials under the ordinarily lethal stress caused by high concentra-
tions of salt. The organisms are Gram-positive, spore-forming,
sugar-nonfermenting aerobic bacilli provisionally designated Bacil-
lus carbophilus Kasumi. The growth- and germination-promoting
effects of graphite and activated charcoal were demonstrated either
quantitatively on agar plates containing fine crystals of the carbon
materials mixed with a nonpermissive growth medium or qualita-
tively on agar plates on nonpermissive growth media half-covered
with fine carbon particles. Further experiments827 demonstrated a
novel feature of the phenomenon: the ability to induce colony for-
mation on the nonpermissive plate was transmissible through the
air, as well as through plastic or glass barriers, via a mechanism which
the researchers believe may involve transmission of physical signals
regulating cell growth.

Chemically, graphite is insoluble in common solvents but is at-
tacked by strong oxidizing agents such as mixtures of sulfuric acid
with nitric acid, chromic acid, or chlorates, giving graphitic acids
and finally mellitic acid, C6(COOH)6, whereas diamond is unaf-
fected by such treatment.783 Thin carbon films, when used as coat-
ings on prosthetic devices, often serve as a barrier to gases and physi-
ological fluids. The average gas permeability constant of 20-50 nm
thick carbon films to room-temperature CO2 was measured as 1.91
x 10-12 cm3-cm/cm2-sec-mmHg, a value comparable to or smaller
than that of nuclear graphites which are considered to be imperme-
able to gases.828 The heat of immersion evolved when graphite is
brought into contact with solvent water has been measured for
Graphon surface as 32.4 erg/cm2,927 vs. 66.7 erg/cm2 for LTI carbon,811

203 erg/cm2 for glass,811 and 210 erg/cm2 for amorphous silica.928

15.3.3.4 Carbon Fiber Composites
Although carbon fiber electrodes are in common use as

biosensors4847-4851 and related applications,4852-4854 carbon fiber
composites such as carbon fiber-reinforced carbon (CFRC) materi-
als have a mixed record where biocompatibility is concerned.4855

For example, in one experiment829 a vascular prosthesis made of
pyrolytic carbon fibers was implanted on the infrarenal aorta of grow-
ing pigs, then was removed up to 120 days after surgery. The car-
bon grafts showed thromboresistance of the inner surface at the
time of implantation, development of a thin neointima with good
viability, rapid and complete endothelialization of the flow surface,
and solid anchorage to perigraft tissues. But another in vivo study830

of carbon-carbon composites in contact with blood showed the ac-
cumulation of platelets on exposed surface material having any sur-
face morphology, although platelet concentration in blood remained
constant. Bulk structure of composites influences the adhesion
mechanism of entrapped platelets (e.g., active adhesion vs. mechani-
cal adhesion).

Carbon fiber patches inserted as prostheses into the dorsal lum-
bar fascia of rabbits initially had poor mechanical properties but
developed good connective tissue response after several weeks.831 In
another study,832 carbon fabric with 35- to 50-micron diameter fi-
bers infiltrated with low temperature pyrolytic carbon produced a
tightly woven porous structure with maximal pore size >200 mi-
crons; 30 days after percutaneous implantation in a calf, epidermal
downgrowth was minimal. Later, a thin fibrous capsule surrounded
the implant and mature connective tissue with accompanying blood
vessels filled the pores of the fine trabecularized carbon layer, allow-
ing a biocompatible connection between an artificial internal organ
system and the external environment.832

Carbon fiber has often been tested as a prosthesis for ligaments
because filamentous carbon is a known fibrogenic material, induc-
ing the formation of replacement collagen.833,934,935 In one early
experiment that gave good results,834 the biological reaction of tis-
sues to carbon fiber ligament prostheses was examined in sheep knees.
Connective tissue and bone grew into the prosthesis under physi-
ological conditions at the insertion points in cancellous bone, and
there was tissue ingrowth around the carbon fiber ligaments intra-
and extra-articularly. Carbon fibers were reported to be a very good
scaffolding and a permanent prosthesis for ligament replacement.

But other experiments gave poorer results. One study835 found
that carbon fiber used to reconstruct anterior cruciate ligament in
the knee did not bond to bone nor did it induce the formation of
new ligament. There was only a very minor fibroblastic response
despite the presence of numerous particles of carbon fiber scattered
throughout the knees.835 In yet another study,837 part of the patella
ligament in rabbits was resected and replaced by carbon fiber im-
plants. After residence times ranging from 1 week to 1 year, the
carbon implants along with surrounding tissues and iliac lymph
nodes were removed and examined by light- and transmission elec-
tron microscopy to determine whether the carbon fiber implant
would be removed by phagocytosis and substituted by new liga-
ment or some other adequate repair tissue. In this study, there was
no indication of successful removal of carbon fibers by phagocyto-
sis and the implant was surrounded by dense connective tissue like
a scar. No vital dense or regular connective tissue was found in deep
layers of the implant, even after 3 and 12 months, and no replace-
ment of the carbon fiber implant by new ligament or tendon. A
persistent foreign body reaction was observed, leading the authors
to conclude that “it is very doubtful [that] good results with liga-
ment and tendon replacement by carbon fiber implants can be ex-
pected in patients.”

Similar results were obtained in humans. For example, carbon
fiber ligaments implanted in human patients has evidenced a con-
siderable foreign-body reaction to the carbon fibers and insufficient
metaplasia of the allogenic material to connective tissue.836 In an-
other study,838 more than a year after carbon fiber was used to re-
construct the lateral collateral ligament of a human knee, histologi-
cal study suggested that the implant was unlikely ever to acquire the
structure of a natural ligament. This was true even though the im-
plant was biologically compatible and was deemed biomechanically
sufficient as long as the entire tow of carbon fibers was preserved.838

Carbon fiber has been tested as a bone prosthesis with better
outcomes, failing only rarely.839 For instance, long-term middle-ear
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implantation of carbon-carbon prostheses in guinea pigs produced
no significant tissue destruction or inflammation, no digestion or
erosion of the implants, and no passage of carbon particles into the
reticuloendothelial system.840 Carbon fiber-reinforced carbon im-
planted in holes drilled in rat femurs developed a thin layer of fi-
brous tissue bridging the gap between bone and implant for a pe-
riod up to 8 weeks, but by 10 weeks bone was observed adjacent to
the implant, giving firm fixation.841 Another study842 found that
carbon-carbon cloth sandwich provided good osseocompatibility.
The fiber-like surface texture gave a degree of bony attachment of
greater strength than for titanium during 4-40 weeks post implan-
tation.842 In yet another experiment,843 CFRC material with 30-mi-
cron pores was implanted as femoral transverse diaphyseal pins in
rats. By 45 weeks, most specimens showed direct implant-bone con-
tact over most of the interface although the interface was chemi-
cally abrupt with no cross-diffusion of ionic species. Implant pores
were partially filled with tissue including fresh bone organized de
novo deep within.

What about carbon fiber and carbon composite particulates? In
inhalation experiments, no fibrosis, local reactive pulmonary in-
flammation, or other significant effects were observed in rats ex-
posed to 7-micron thick, 20- to 60-micron long carbon fibers for
30 hours per week during a 16-week experiment at an average cham-
ber concentration of 20 mg/m3, although the inhaled particles were
phagocytosed by alveolar macrophages.224 Rats showed no fibrosis
or other ill effects from inhaling 20 mg/m3 (25 million fibers/m3)
of carbon fibers measuring 3.5 microns in diameter and 10-60 mi-
crons in length for 30 hours per week during a 16-week experi-
ment.765 Nonfibrous dust particles from pounded carbon fiber, in-
haled by guinea pigs, were phagocytosed. Carbon fibers longer than
5 microns were still extracellular after 27 weeks and were uncoated;
no pathological effects were observed.223,844 In another experi-
ment,2584 a 5-day exposure to respirable carbon fibers at 50-120
gm/m3 produced dose-dependent transient inflammatory responses
in rat lungs, but no significant difference in the morphology or in
vitro phagocytic capacities of macrophages were observed. Medical
examination of carbon fiber production workers has revealed no
adverse effects on the lungs.225 However, one Russian animal study
found slight pulmonary fibrosis and respiratory tract irritation from
carbon fiber dust226 and a Japanese study found morphological
changes in rat lungs due to some kinds of carbon fibers.762 One
other study of several aerosolized carbon composites found some
that showed little toxicity, but found others that were consistently
toxic for alveolar macrophages and caused significant accumulations
of airway cells and neutrophils in rat lungs.845

Carbon fiber particles can elicit a cellular response. In one ex-
periment,846 wear particles produced from Versigraft carbon when
added to rabbit synovial cell culture induced significantly elevated
collagenase and gelatinase enzyme production. 1 mg/kg particles
injected into rabbit knees accumulated in the periarticular synovial
folds and induced strong macrophage infiltration in the synovium.846

In another study,784 carbon fiber-reinforced carbon particles of up
to 20 microns in diameter were phagocytosed when presented to in
vitro cultures of murine macrophages. Larger particles were not
phagocytosed but became surrounded by aggregations of macroph-
ages, some of which migrated onto the particle surfaces.784 Cells
presented with a large excess of particles became rounded and de-
tached from the substrate, and some underwent lysis.784 In yet an-
other experiment,847 wear particles from carbon prosthetic materi-
als were cultured with rabbit synovial fibroblasts. Internalized par-
ticles induced collagenase, but even carbon particles that remained
extracellular provoked considerable collagenase synthesis. Synovicytes

that contained no particles nevertheless produced collagenase when
co-cultured with cells that did contain particles. This indicates that
carbon fiber particle phagocytosis, besides inducing collagenase, also
provokes the release of cell-activating factors which then activate
other cells in the culture.847

The soft tissue response to long carbon fibers and carbon fiber
microparticles is said to be excellent.848,902 In general, carbon fibers
are integrated by the organism without causing significant foreign
body reaction (inflammation), with normal tissue growth around
(and encasement of ) the individual fibers.848 There is, however, pro-
gressive rupturing of pure carbon fiber implants. The resulting car-
bon fiber microparticles are absorbed either by macrophages or by
foreign body giant cells and are distributed throughout the body
via the lymphatic system.848 In one animal study,826 particles from
carbon fiber reinforced carbon of sizes 11 microns and 30 microns
implanted into the triceps surae muscle of Wistar rats produced no
muscle tissue necrosis or exudative reaction during the acute phase
(~1 week). During the chronic phase (up to 52 weeks), the 11-mi-
cron particles induced only a modest inflammatory infiltration of
fibroblasts and phagocytes while the 30-micron particles induced a
much larger infiltration of fibroblasts, macrophages, and giant cells.
The study by Helbing et al902 found excellent tissue tolerance of
<~8-micron particles of carbon-fiber reinforced carbon, in rats. In
humans, the soft tissue response to carbon fiber was studied histo-
logically one and a half years after being used to reconstruct the
lateral collateral ligament of the human knee.838 A remarkably con-
sistent pattern was seen in the induced ligament. The basic pattern
was a composite unit, consisting of a core of carbon fiber envel-
oped in a concentric manner by coherent layers of fibroblasts
and collagen fibers. The new structure seemed to have been in-
duced by continuous irritation caused by the physical structure
of the carbon fibers.

Bones and joints seem to tolerate carbon fiber particles rather
well. In one experiment,849 carbon fiber fragments with a diameter
of 7 microns and a length between 20-100 microns were injected in
the medullary canal (in long bones) of 16 rabbits, and evaluated
after periods of 2 and 12 weeks. There was phagocytosis of small
carbon fiber fragments by macrophages, but only a minimal foreign
body reaction to the intramedullary carbon fiber fragments. A small
amount of fibrosis was observed around some carbon fibers along
with a small amount of new bone formation with inclusion of car-
bon. Only a few carbon fragments were transported to the paren-
chymal organs, with no foreign body reaction.849 In a similar study
in humans,835 carbon fiber wear particles scattered throughout the
knees stimulated only a very minor fibroblastic response.

15.3.3.5 Amorphous Carbon Particles
It has already been noted that finely divided amorphous carbon

particles generally are well tolerated by the body.181,632,850 The es-
sentially passive nature of carbon in human flesh has been known
since ancient times, and India ink,778 charcoal and lampblack
(roughly spherical 10-20 nm particles) have been used for orna-
mental and official tattoos.516 Colloidal carbon is usually assumed
to be nontoxic.773,4873 Large amounts of carbon particulate debris
loose in the body, even around the spinal dura and nerves,839 evi-
dently are tolerable. Carbon black (CB), the most common amor-
phous carbon particles that have been subjected to extensive bio-
logical experimentation, are regarded as largely inert.851 Carbon black
is distinctly different from, and more benign than, carbon soot.4867

Ultrafine carbon black particles are typically ~14 nm in diameter,
while ordinary “fine” carbon black particles are typically ~260 nm
in diameter.769 Commercial carbon blacks may contain 88-99.5%
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carbon, 0.3-11% oxygen, 0.1-1% hydrogen, up to 1% inorganic
material, small amounts of other organics, and traces of sulfur, de-
pending upon the method of manufacture. Both CB and ultrafine
CB may contain numerous biologically relevant metals. One as-
say769 of ultrafine CB found 19 ppm Fe, 11 ppm Zn, 3.5 ppm Cr,
1.9 ppm Pb, 0.8 ppm Cu, 0.02 ppm Be, and even 0.0039 ppm Tl,
all of which may enhance the biological activity of these particles.

India ink, traditionally used for drawing, is a dispersion of car-
bon black in water. (One MSDS for India ink6081 lists its only health
hazard as irritant with TLV TWA of 2 mg/mm3.) The suspension is
often stabilized by various alkaline solutions, shellac dissolved in
borax solution, soap, gelatin, glue, gum arabic, or dextrin. India ink
is often used as a phagocytosis labeling agent or a cell differentia-
tion tracer because CB is easily administered, is relatively nontoxic,
and is easily observed in cells that have taken it up. India ink is
useful diagnostically for detecting cryptococcal meningitis,5918 eas-
ily demonstrating individual cryptococcus organisms by phase con-
trast microscopy. CB is also employed in tattoos, both cosmetic and
medical. For example, India ink is used for endoscopic colonic tattoo-
ing852-856,4861 and lymphatic mapping.4862 It produces a long-lasting
stain “with relatively low risk of adverse reaction and toxicity”.856

There are just a few rare cases reported of allergic reaction855 to
India ink, fever and abdominal pain,856 colonic abscess and focal
peritonitis,853 abscess-like pseudotumor with chronic granuloma-
tous inflammation,856 inflammatory infiltrate with
microhemorrhage and thrombosis,852 inflamed vessels but without
fibrinoid necrosis,854 and early reactions including necrosis, edema,
and neutrophilic infiltration in the submucosa and muscularis pro-
pria.854 M. Sprintz notes it is possible that these adverse reactions
were caused by something other than India ink, such as
microperforations in the bowel during the procedures.

The chemical character of the CB particle surface mediates its
biological reactivity.857 The often partially-saturated attractive forces
can allow these surfaces to readily adsorb large amounts of gases
and solutes from solution.858 Active surface groups on carbon blacks
have been shown to adsorb and retain gaseous adsorbate molecules
selectively.859,860 Histone adsorption on the surface of carbon par-
ticles significantly stimulates their ingestion by rat peritoneal mac-
rophages, hamster kidney fibroblasts, and mouse L-cells,861 and the
adsorption of polycyclic aromatic hydrocarbons (PAHs) and their
nonpolar metabolites on the surface of carbon particles ingested by
rat alveolar macrophages has been studied.862

The carbon immunoassay (CIA)863 is a direct serological test
relying on a specific reaction between the carbon particles of India
ink and rabbit immunoglobulin G. (This assay is also known as the
India-ink immuno-reaction (IIR) test.864-866) The carbon particles
must be pretreated with staphylococcal protein A to induce a reac-
tion to IgG antibodies in human serum in tests for toxoplasmosis.
Carbon black can also have a significant adjuvant effect on the local
immune-mediated inflammatory response and on the systemic spe-
cific IgE response to allergen (ovalbumin).867 When CB is adminis-
tered along with the allergen to mice, there is a significantly aug-
mented response in the draining popliteal lymph node including
increases in weight, cell numbers, cell proliferation, and local lymph
node response duration.867 Carbon black immunochromatographic
testing is well known.5882

Immune and other cells clearly respond to the presence of car-
bon particles placed in the body. In one in vivo study,868 chicken
basophils, neutrophils, monocytes and platelets showed phagocyto-
sis of dermally-implanted carbon particles although eosinophils in-
gested these particles only occasionally. In another chicken study,883

platelets and monocytes took up carbon particles but neutrophils
did not. In a human study,869 scattered wear particles from

carbon-coated subperiostal implants were surrounded by lympho-
cytes, macrophages, plasma cells, and tissue eosinophils. Active ph-
agocytosis and Russell bodies were seen, with large masses of car-
bon surrounded by connective tissue.869 In another study using
cultured human monocytic cells,4857 carbon black particles or die-
sel exhaust particles, by themselves, were unable to induce HLA-DR
when applied to the surface of THP-1 antigen-presenting cells at
concentrations of 0.1-1000 ng/cm2 after 48 hours of incubation.
However, carbon black (>1 ng/cm2) plus diesel exhaust particles
(>0.1 ng/cm2) interacted with IFN-gamma (a known HLA-DR
enhancer) to increase HLA-DR expression up to 2.5-fold, indicat-
ing a surface-chemistry-related “adjuvant” effect. The possibility that
nanorobots could accidentally serve as adjuvants to induce cell dam-
age4857 or immune system activity4860,4871 by other particles already
present in the environment should be investigated further.

The uptake and long-term storage of carbon ink particles by the
dermal and subcutaneous fibroblasts778 is believed to represent a
specific non-inflammatory defense mechanism that protects the liv-
ing body, without immune reactions, against injuries and invasions
by non-toxic foreign agencies. In young rats, subcutaneous injec-
tion of 0.02 ml of India ink almost completely eliminated small
recirculating lymphocytes from the affected nodal structures, ex-
cept in the center of the deep cortex units, similar to the effects of a
whole-body 500 rad irradiation870 (Section 6.3.7.1). Colloidal car-
bon particles injected into the cerebral cortex of the neonatal rat
were readily ingested by young astrocytes.773 Colloidal carbon ad-
ministered intravenously in rats can retard chemotactic migration
and phagocytic activity871 or even produce complete blockade of
the RES.872 Macrophage blockade has been induced in mice by in-
travenous injection of ~1000 mg/kg of carbon particles.873 Exami-
nation of the endothelial linings of capillaries, postcapillary venules
and terminal arterioles also reveals a pronounced uptake of carbon
particles by endothelial cells, different degrees of endothelial cell
swelling, and often bulging into the microvessel lumens, possibly
altering microvascular tone and arteriolar reactivity.872

Circulating monocytes ingest intravenously-injected colloidal car-
bon particles.874,883 And uptake of intravenous India ink particles
may transform monocytes into Kupffer cells.779 In one experi-
ment,777 Kupffer cells as well as hepatic sinusoidal endothelial cells
took up Indian ink particles by pinocytosis, and a few Ito cells and
hepatocytes ingested a small number of particles. One month after
the injection, large clumps of aggregated Kupffer cells containing
numerous carbon-filled vacuoles were distributed in the Disse space
(Figure 8.27) and other connective tissue spaces. The Kupffer cells
in these clumps were in close contact and were partly fused with
one another. After 3-6 months, large multinucleate foreign body
giant cells with numerous large vacuoles containing densely-packed
ink particles were seen throughout the liver tissue, probably formed
by the fusion of Kupffer cells.777 Kupffer cells in aging mice show
reduced phagocytosis of colloidal carbon.4863

Macrophages are known to clear carbon particles from the
blood.775 Mouse omental macrophages phagocytize intraperitoneally
injected carbon particles,876 and colloidal carbon particles injected
intravitreously into chicken eyes are actively ingested by hyalocytes
(the resident macrophages) by the second day, without significant
leukocyte recruitment.771 After 30 days the carbon-laden macroph-
ages disappeared from the vitreous body but accumulated on the
pecten oculi and retina,771 probably producing some small diminu-
tion of visual sensation. The number of free macrophages in mouse
lungs increases in response to the intratracheal instillation of car-
bon particles.766 There is early mononuclear phagocyte cell migra-
tion into alveoli and bronchioles from the blood compartment (e.g.,
from small pulmonary vessels772) and later migrations due to
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egression of interstitial lung macrophages877 which exhibit increased
mitotic activity.772 This is observed for up to 6 months
post-instillation,766 with macrophage accumulation localized to the
areas of particulate deposition.767 Ingestion of large amounts of car-
bon particles by alveolar macrophages also decreases the release of
superoxide and hydrogen peroxide radicals879 and reduces acid phos-
phatase and lysozyme enzyme intracellular concentrations880 dur-
ing bacterial phagocytosis. Elsewhere in the body, ingested insoluble
carbon particles that accumulate in mouse intestinal Peyer’s patches
do not produce detectable alterations in macrophage morphology,780

though carbon particles have induced production of macrophage
colony-stimulating factor in mice.878

Platelets are also known to clear colloidal carbon particles from
the blood.775,881-883 For example, a single intravenous injection of
colloidal carbon particles in Lewis rats at a dose of 320 mg/kg pro-
duced a prompt thrombocytopenia (reduced platelet count), with
temporary sequestration of platelets in lung, liver and spleen.875

Rat platelets were found to be involved in the initial removal of
carbon from the blood.875 Localization to the mesangium (the sup-
port structure of the renal glomerulus) is dose-dependent875 and
peaks at 32 hours post-injection.774 India ink injected intravenously
into mice also induces thrombocytopenia and markedly prolonged
bleeding times (and prolonged thromboplastin and prothrombin
times), reduces fibrinogen concentrations, and produces some cere-
bral thromboemboli, but does not cause substantial mast cell de-
granulation.884 Chicken platelets also showed marked phagocytosis
of carbon particles in both in vivo and in vitro systems.883 Initially
in both systems, platelets containing carbon particles tended to form
clumps, but in the later stages clumping was less obvious in the in
vivo system.883 Another experiment described a simple and repro-
ducible test for the phagocytic ability of human platelets.885 Plate-
lets obtained from heparinized venous blood were incubated with
0.11-micron colloidal carbon particles in autologous plasma at 37
˚C. The number of platelets with or without carbon particles on
smear preparations was determined at fixed intervals. Electron mi-
croscope observation confirmed that carbon particles were inter-
nalized in the vesicular or canalicular structures of about 67% of all
platelets.885

The responses of various organs to carbon particles have also
been investigated experimentally. The eye seems particularly sensi-
tive. In one experiment,886 20-nm carbon particles were injected
into the vitreous humor of rabbit eyes. Histological examination
8-10 weeks later showed partial posterior vitreous detachments,
epiretinal cellular proliferation, and membranes in all eyes and reti-
nal detachments in five eyes. Electron microscopy disclosed that
the epiretinal membranes (resembling idiopathic preretinal gliosis
or macular pucker) were formed mainly by Muller cell expansions,
astrocytes, and macrophages. Muller cells penetrated the internal
limiting membrane and removed carbon particles from the vitreous
by endocytosis.886 The experiments found that gaps are produced
in the internal limiting membrane by glial cells and by macroph-
ages that invade the vitreous in an attempt to remove foreign material.

In a subsequent experiment at the same laboratory,887 20-70 nm
carbon microparticles injected into the vitreous humor of cyno-
molgus monkeys induced intravitreal cellular proliferation. At 1
week, there was conspicuous cyclitis showing exudative separation
of the nonpigmented and pigmented ciliary epithelium, inflamma-
tory cells, mononuclear phagocytes, and premacular vitreous de-
tachment. Continued macrophagic response was accompanied by
fibrovascular proliferation with ingrowth of vessels from the ciliary
body into the vitreous at 3 weeks. By 4-5 weeks there was deposi-
tion of extracellular fibrous material and traction retinal detach-
ment. At 10 weeks, all eyes had extensive retinal detachment with

pre- and subretinal collagenous cellular membranes. Carbon-laden
macrophages were aggregated over the optic disc and fovea, and
prepapillary neovascularization and cystoid macular edema was seen.
The exposure of the interior of the eye to carbon particles thus pro-
duced an inflammatory and phagocytic response, which induced
intravitreal fibrovascular proliferation, vitreous contraction, and reti-
nal detachment887 — a possibly cautionary result for long-term
ocular-indwelling medical nanorobots of similar size.

The response of lung tissue to carbon particles has been exten-
sively studied. For example, chronic inhalation of carbon black par-
ticles in air can produce carcinoma in rat lungs. Chronic760,4865 and
subchronic761 exposures impaired lung clearance and significantly
increased mutation frequency in the hprt gene of rat alveolar epi-
thelial cells at 7.1 mg/m3 and above, but produced no detectable
adverse lung effects at a 1.1 mg/m3 level.760 The official industrial
threshold limit value for pure carbon black is 3.5 mg/m3.764 Inhala-
tion of carbon black can produce pulmonary neoplasms in chroni-
cally exposed rats.888 This is believed to be a result of a high lung
burden of carbonaceous particles rather than from the genotoxicity
of organic constituents.888 Macrophages and neutrophils elicited
by carbon black particles can exert a mutagenic effect on in vitro
epithelial cells.889 Carbon black has been linked to lung and blad-
der cancers at high occupational exposures4864 (though not con-
firmed4870) and possibly also to genotoxicity in human alveolar epi-
thelial cells4869 and in rat lung tumors.5881 Ultrafine carbon black
particles activate apoptosis-related pathways in alveolar epithelial
cells, whereas fine carbon black does not.4858 At least one study
claims that inhaling carbon black may transiently elevate the risk of
myocardial infarctions in humans within a few hours after exposure.4866

Inflammatory effects of carbon black particles on the lungs are
well studied.890 For instance, rats intratracheally instilled with sa-
line suspensions of 10 mg/kg or 100 mg/kg doses of carbon black
produced neutrophilic inflammation in all rats at both doses.889

Epithelial hyperplasia and elevated hprt gene mutation frequency
in alveolar Type II cells were observed only at the higher dose.889

Carbon particles instilled into the lungs of mice induced an inflam-
matory response with excess production of alveolar macrophages
for 2 weeks, after which the macrophage count returned to normal
with normal lung structure and no formation of multinucleated
giant cells, granulomas, or fibrosis.891 Deposition of carbon pow-
der into injured mouse lungs near the time of injury results in in-
creased translocation of the particles to the interstitium and elicits a
large increase in inflammatory cells, but does not further stimulate
an ongoing fibrotic process or induce additional fibroblast growth
or collagen production.851 In one study,772 particle overload in mouse
lungs produced by instilling 200 mg/kg of carbon particles caused
some free carbon to cross the type I cells to reach the interstitium.
These particles were later observed in peribronchial and perivascu-
lar interstitial cells.772 In the alveoli, free macrophages were loaded
with carbon but passage of these cells from airways to interstitium
was never observed.772 In another study,892 <10-micron colloidal
carbon particles instilled in the lungs of rabbits shortened the tran-
sit time of alveolar macrophage-recruited neutrophils through the
bone marrow from 86 hours to 71 hours. The authors concluded
that the phagocytosis of colloidal carbon by alveolar macrophages
releases cytokine mediators that stimulate the bone marrow to re-
lease polymorphonuclear leukocytes.

Inflammatory lung effects appear to increase when smaller par-
ticles are inhaled.4872 In one experiment,769 ultrafine CB particles
instilled intratracheally up to 0.5 mg/kg in 250-gm Wistar rats gen-
erated significant neutrophil alveolitis (alveolar inflammation) after
6 hours. The particles also produced a marked increase in lactate
dehydrogenase (LDH) levels in bronchoalveolar lavage fluid and
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caused the greatest decrease in glutathione (GSH) in lung tissue
compared to control.769 Much larger fine CB particles similarly in-
stilled generated no alveolitis and caused a much smaller increase in
LDH and a much smaller decrease in GSH. Ordinary carbon black
inhaled at 5 mg/m3 produces no significant physiological effects in
rats.4859 Fine CB shows a dose-related increasing inflammatory re-
sponse. In contrast, ultrafine CB at the highest dose induces less of
a neutrophil influx than at the lower dose, which the authors sur-
mise is because particle mass dominates the response rather than
surface area at higher doses. Ultrafine CB threshold dose for neu-
trophil influx 6 hours after instillation is 0.2 mg/kg.769 Renwick et
al4868 found that ultrafine particles impair alveolar macrophage ph-
agocytosis to a greater extent than fine particles compared on a mass
basis.

However, at another laboratory 5 mg/kg of ultrafine and fine
carbon particles were instilled intratracheally in rats and produced
“little if any effect on lung permeability, epithelial marker enzymes,
or inflammation, despite being given at a dose which readily trans-
located the epithelium and has been reported by others to cause
inflammation”.857 The authors concluded that particle surface chem-
istry may be more important than particle size per se, in explaining
the biological reactivity of the particle,857 though a later study5883

at this laboratory found that oxidative damage by inhaled CB par-
ticles was more strongly ameliorated by a surrogate epithelial lining
fluid for coarse particles than for fine particles. In the 1990s, the
relevant details of carbon surface chemistry were being investigated
largely in the context of air pollution. For example, in one study893

the inhalation of 10 mg/m3 of carbon black by mice induced no
inflammatory response and had no effect on alveolar macrophage
phagocytosis. But if combined with exposure to ozone at 1.5 ppm,
inflammatory response was greatly enhanced and macrophage ph-
agocytosis was significantly suppressed in comparison with expo-
sure to ozone alone. The authors hypothesized that the carbon acts
as a carrier mechanism via adsorption of ozone at the particle sur-
face, or that O3 alters the physicochemistry of the particulate from
a nontoxic to a toxic form.893 In another study,894 a 4-hour expo-
sure to 10 mg/m3 of carbon black aerosol at high or low humidity,
assessed 3 days later, had no effect on mouse alveolar macrophage
phagocytosis. But chemisorption of 10 ppm SO2 at high humidity
on the carbon particles catalyzed oxidation to SO4

--, a lung toxin
which significantly suppressed alveolar macrophage phagocytosis.894

There is preliminary evidence that inhaled carbon black (possibly
in combination with adsorbed sulfuric acid) might promote esoph-
ageal cancer in “a handful of occupational exposures”,4817 though a
competing study2598 found no change in cell viability in lympho-
cytes taken from guinea pig tracheobronchial lymph nodes of ani-
mals exposed to 1500 µg/m3 diesel exhaust (carbon) particles for
up to 8 weeks.

Finally, carbon-coated microbeads (Durasphere) have been tried
as injectable bulking agents for treatment of urinary inconti-
nence.4856 But as with similar Teflon treatments (Section
15.3.4.4(2)), the particles show significant migration into local and
distant lymph nodes as well as into the urethral mucosa.4856

15.3.3.6 Corrosion Degradation Effects
Haubold et al955 have pointed out that in the “practical” gal-

vanic series,234 carbon falls with the noble metals. The sequence
from least to most “noble” (cathodic) is silver, titanium, graphite,
gold, and platinum. When coupled in vivo with less noble or “base”
(anodic) metals, carbon can accelerate corrosion by galvanic action,
especially when the ratio of the surface area of carbon to that of the
metal is large. Mixed potential corrosion theory and potentiostatic

polarization data from Thompson et al1084 suggest that LTI carbon
in contact with stainless steel in isotonic saline can accelerate the in
vitro corrosion rate through the pitting mechanism, a conclusion
shared by Rostoker et al.1085 Stainless steel screws in contact with a
large LTI carbon percutaneous device in simulated body fluids in
vitro produced a small corrosion current (1.5 µamp at 120 milli-
volts) flowing from carbon to steel, although subsequent tests failed
to confirm any actual corrosion effects in vivo.1086 Graphite and
other carbon-containing composite materials are electrochemically
compatible with various titanium, Cr/Co, and nickel alloys in 3.5%
saline solution.1087

Even diamond may not be entirely immune from these effects,
though the results will seldom be clinically relevant. At high tem-
perature or pressure, carbon from diamond in direct contact with
carbide-forming metals such as W, Ta, Ti, and Zr can migrate and
form a metal carbide phase.1088 Metal oxides of Cu, Fe, Co, and Ni
in contact with diamond are reduced to the metal (a redox reac-
tion with the carbon escaping as oxide) upon heating in vacuo539

(Section 9.3.5.3.6).

15.3.4 Biocompatibility of Fluorocarbon Polymer
Fluoropassivated carbon polymers and coatings are among the

most hydrophobic surfaces known, and are widely employed in
“non-stick” applications. They are also extremely chemically inert.
In the nanomedical context, polymeric fluorocarbons have already
been suggested as in vivo message carriers (Section 7.2.1.1) and for
nanocomputer memory tape (Section 10.2.1). Fluoropassivated dia-
mond has been mentioned in the earlier discussions of in vivo
nano-morcellation tools (Section 9.3.5.1) and surface data storage
(Section 10.2.1), and could in theory be useful at the exterior sur-
faces of medical nanorobots or as a coating for internal nanofluidics
channels. The biocompatibility of low-n fluorocarbons was briefly
reviewed in Section 7.2.1.1 (e.g., some potential for liver damage6204

but generally low-toxicity;6217 clearance rates decrease as n in-
creases,6205 though triglyceride accumulation induced by
perfluorinated fatty acids appears concentration-dependent regard-
less of chain length6206). We now extend this analysis to longer-chain
fluorocarbons.

Polytetrafluoroethylene (PTFE), a form of Teflon,1310 is perhaps
the most common medical polymeric fluorocarbon.1311 Commer-
cial Teflon is a packed vinyl polymer, lacking a rigid 2D graphitic or
3D diamondoid crystalline structure. Many different kinds of Teflon
are or have been in widespread use, including particulate
pastes,1312,1313 surface films,1314,1315 wire coatings,1316,1317 fiber su-
tures,1157-1159 yarns,1169 microporous membranes1166-1172 (e.g.,
Biopore1193), high-porosity grafts,1318 multifilament mesh1194-1196

or textile Teflons,1319 felts,1157 sponges,1158 foils,1164,1165

sheets,1201-1206 expanded Teflon or e-PTFE (e.g., Gore-Tex1190-1194),
denucleated e-PTFE or dePTFE,1680 and dense masses, tablets, or
disks.1179-1190 Completely fluorinated surfaces exhibit very low in-
termolecular forces.858 The coefficient of friction of Teflon in air is
0.05-0.1, about the same as diamond.1320 Teflon bulk density is
~2130 kg/m3.1322

Teflon in bulk is relatively bioinert. In this Section we review
what is known about protein adsorption on Teflon surfaces (Sec-
tion 15.3.4.1), cell and tissue responses to bulk Teflon (Section
15.3.4.2), the biocompatibility of Teflon-coated prostheses (Sec-
tion 15.3.4.3), the biocompatibility of fluorocarbon and Teflon
particles (Section 15.3.4.4), and the chemical inertness of Teflon
(Section 15.3.4.5). But the biocompatibility of atomically smooth
fluorocarbon polymer or fluoropassivated diamond surfaces (possi-
bly of greatest relevance in nanomedical applications) has yet to be
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seriously investigated experimentally, so the results described here
can only be regarded as suggestive.

E. Pinkhassik notes that “one can imagine an interesting mate-
rial produced by the addition of fluorine to the double bonds of
fullerenes. The material will be quite different from Teflon and flu-
orinated diamond. This monomolecular 2-D material may be use-
ful in the construction of nanodevices. So far, the methods for the
complete fluorination of C60 have not been developed but [as of
late 2002] there are at least two groups working on it (Jamie L.
Adcock5866,5867 at University of Tennessee, Knoxville, and Benjamin
T. King5868 at University of Nevada, Reno).”

15.3.4.1 Protein Adsorption on Teflon Surfaces
Teflon is very hydrophobic1033 but has protein-binding capac-

ity.1193 Despite Teflon’s reputation as a non-stick material, serum
proteins bind almost instantly to its surface, principally via hydro-
phobic interactions.901 Hydrophobic fluorocarbon films also show
high protein retention.1113-1114 Higher protein deposition has been
observed on fluoroethylenpropylene than on tetrafluoroethylene
surfaces,1321 and on Teflon surfaces modified by exposure to nitro-
gen or oxygen plasmas than on unmodified Teflon.1224 Protein ad-
sorption is slightly higher to Teflon than to siliconized glass despite
its slightly lower surface tension.1322 Fungal hyphae can firmly at-
tach to Teflon surface, mediated by SC3p hydrophobin protein.1323

(Teflon surface hydrophobicity changes upon adsorption of fungal
protein, probably as a bilayer.1324) The human plasma proteins fi-
brinogen, albumin and fibronectin influence bacterial adherence to
Teflon.1325

Adsorption of cell adhesive proteins with known thrombogenic
activity such as fibrinogen, fibronectin, and vitronectin on Teflon
surface has been studied.1207-1209 Platelet adhesive proteins such as
von Willebrand factor are also adsorbed, with less than 1% of the
surface covered by fibrin.1209 Teflon exposed to human blood pref-
erentially adsorbs fibrinogen.1209 In one canine experiment, lumi-
nal fibrinogen adherence to Teflon vascular graft surface was 320
mg/m2 (570,000 molecules/micron2) after 4 weeks and 124 mg/m2

(220,000 molecules/micron2) after 12 weeks1326 in vivo. This im-
plies multiple layers of deposition. Glow-discharge-treated Teflon
surfaces have lower surface free energy and retain a larger fraction of
adsorbed fibrinogen (e.g., lower elutability) than ordinary untreated
Teflon surfaces.1327,1328

Glow-discharge-treated Teflon surfaces also exhibit tenacious
adsorption (e.g., tight binding, low elutability) of albumin.1328 This
is believed to contribute to the thromboresistant character of these
surfaces including resistance to thrombus deposition, embolization,
and thrombotic occlusion.1330 The strong binding of albumin to
such surfaces “may be exploited clinically to enhance the retention
of albumin preadsorbed to blood-contacting surfaces to render them
thromboresistant”.1328 However, nondenatured albumin adsorbed
on ordinary Teflon maintains weak protein-polymer and
protein-protein bonds, whereas fibrinogen adsorbates are fostered
by strong protein-protein interactions.1331

Protein deposits have been observed microscopically on Teflon
surfaces.1332 For instance, TEM images of protein adsorption on
Teflon1331 show albumin deposits that are irregular in shape, un-
connected and with low surface coverage, with deposits following
surface structural details to a scale of 400 nm. In contrast, fibrino-
gen deposits are reticulated, connected, and have high surface cov-
erage not reflecting the details of surface structure.

The three-dimensional structure of Teflon-bound proteins is sig-
nificantly perturbed by the adsorption interaction.901 For example,
fibrinogen undergoes biologically significant conformational changes

upon adsorption. This may contribute to the hemocompatibility of
the polymer following implantation in the body.1333 Fibrinogen
unfolds and spreads on Teflon to minimize interfacial free energy in
water and to maximize the protein-surface interaction.1327 Adsorbed
fibrinogen assumes a state which prevents its recognition and bind-
ing by platelet receptors. This improves thromboresistance because
fibrinogen must be loosely held by an artificial surface to facilitate
maximum interaction with platelet receptors.1327

Major structural changes have been observed in other
Teflon-adsorbed proteins. For instance, changes in the secondary
structure of β-casein upon adsorption at the Teflon-water interface
(as a function of pH) have been reported.1334 The proteolytic en-
zyme α-chymotrypsin, once adsorbed from aqueous solution onto
hydrophobic Teflon surface, assumes a remarkably stable helical
structure.1335 Conversely, adsorption of the lipolytic enzyme cutinase
reduces the protein’s helical structure.1335 Adsorption-induced de-
naturation of immunoglobulin G (IgG) doesn’t lead to complete
unfolding into an extended polypeptide chain, but leaves a signifi-
cant part of the IgG molecule in a globular or corpuscular form and
enhances the formation of alpha-helices and random coils while
reducing the beta-sheet content.1336

In many cases, adhesion of enzymes to hydrophobic surfaces re-
sults in large conformational changes with significant loss of enzy-
matic activity.1337 For example, adsorption of xanthine oxidase onto
Teflon distorts protein structure to the extent that all biologic activ-
ity is eliminated.901 As another example, the proteolytic enzyme
savinase (the inhibited form of subtilisin) alters its conformation
(e.g., increased alpha-helix content) when it adsorbs on Teflon at
low surface coverage, although at full monolayer coverage the pro-
tein retains its original structure.1338 Savinase adsorption on the
surface of hydrophobic Teflon particles deactivates the enzyme with
a half-life of 0.7 hours.1339 Interestingly, modification of enzymes
by adding a large number of fluorocarbon residues forms a hydro-
phobic envelope around the protein, which can help to prevent en-
zyme deactivation upon adsorption.1337

Lipids are rapidly adsorbed onto Teflon surfaces, influenced by
their strong affinity for the highly hydrophobic polymer.1340

15.3.4.2 Cell and Tissue Response to Bulk Teflon
In general, bulk Teflon has little adhesion to living cells1033 or

tissues,5031 and is not cytotoxic.1141,1190 Indeed, Teflon is often used
as an inert negative control1172-1178 in cytotoxicity studies. Many
different types of cells and tissues have been evaluated for their re-
sponse to bulk Teflon:

1. Monocytes and Macrophages. Human monocyte-derived mac-
rophages cultured on non-adherent Teflon liners in Petri
dishes,1210-1213 hydrophobic Teflon bags,1198-1200,5030 beakers1341

and membranes,1162 and other Teflon culture vessels1160-1163

retain their immunocompetence1213 and are not stimulated or
activated. Thus they can be sustained in long-term culture1212

for up to 200 days.1162 Maturing macrophages are readily de-
tached from the Teflon surfaces1164,1166 and show no obvious
structural or functional defects.1162-1166 Culturing in the pres-
ence of Teflon does not suppress succinic dehydrogenase activ-
ity of THP-1 human monocytes, nor does it elicit the expres-
sion of TNF-α or IL-1β.1178 In one study,1163 Teflon-cultured
monocytes demonstrated a significantly enhanced CSF (colony
stimulating factor) cytokine release over culturing on polysty-
rene plates. But nonadherent peripheral blood cells cultured in
Teflon chambers express relatively low levels of IL-8, a potent
neutrophil chemoattractant and activating cytokine.1342
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2. Leukocytes and Inflammation. Inflammatory tissue reactions to
Teflon have been observed in mice, rats, rabbits and other ani-
mal models since at least the 1970s.1343 Early studies found
that Teflon felts and fibers implanted in canine pleural cavities
elicited mild to moderate inflammatory reactions, but hemato-
cele (blood cyst) occurred only upon implantation in the aorta
with direct blood contact and exposure to arterial pressures.1157

Teflon tubes implanted percutaneously can cause an inflamma-
tory reaction.1191 But in another experiment, sterile Teflon tab-
lets implanted subcutaneously on the backs of rats elicited only
a few inflammatory (leukocyte) cells in the tissues bordering
the Teflon for up to 3 weeks post-implantation.1185 Teflon-coated
catheters have significantly reduced superoxide radical produc-
tion by human polymorphonuclear leukocytes, suggesting that
Teflon may inhibit the bactericidal function (respiratory burst)
of these leukocytes.1184 However, in the same experiment the
uptake of opsonized Staphylococcus aureus (e.g., phagocytic func-
tion) was unaffected by the Teflon.1184 Teflon implanted in the
quadriceps muscle of guinea pigs and assessed histologically af-
ter 2 days to 26 weeks showed no prominent tissue inflamma-
tion or foreign body giant cell response.1344 Leukocytes are gen-
erally not activated by Teflon in vitro. For example, human leu-
kocytes incubated with knitted Teflon or e-PTFE exhibited no
peak metabolic activity (implying the material is noninflamma-
tory).1195 In another experiment,1173 culturing neutrophils in
Teflon bags did not trigger cell activity, whereas cells incubated
in uncoated glass or plastic tubes adhered and released O2

-.
However, neutrophils incubated in the presence of lipopolysac-
charide (LPS) could adhere to Teflon and release O2

-,1173 and
Teflon surfaces elicited a transient increase of cellular calcium
levels, indicating a G protein-coupled activation of the granu-
locytes used as a biological test for inflammatory mediators.1189

3. Fibroblasts. Microporous e-PTFE Teflon implanted beneath the
transversalis fascia in the groins of rabbits was completely in-
vaded by fibroblasts at 8 weeks, with flat orientation of graft to
the fibrous tissue forming a neofascia with local or peritoneal
inflammatory reaction.1167 Teflon membranes incubated in col-
lagen promote attachment of fibroblasts.1172 Porous or knitted
Teflon material coated with collagen, fibronectin, gelatin or
laminin promotes human fibroblast migration over and adher-
ence to Teflon.1196 Granulomatous reaction and tissue forma-
tion has been observed around cannulated Teflon cylinders im-
planted subdermally in rats, producing exudation with cell in-
filtration, granuloma growth, and formation of prostaglan-
dins.1181 Sterile Teflon tablets implanted subcutaneously on the
backs of rats elicits a connective tissue capsula after 3
weeks.1185,1186 Fibrous tissue encapsulates subcutaneously im-
planted Teflon disks in rats.1187

4. Lymphocytes. Bovine lymphocytes exposed to bulk Teflon retain
their ability to activate, hence bulk Teflon appears to be
lymphocompatible.1345 Teflon implanted in temporal (skull)
bone elicits fibrous tissue formation and a few giant cells with
some lymphocyte infiltration.1346

5. Platelets and Thrombogenesis. Platelet deposition on Teflon sur-
faces placed in sanguo is greatest immediately post-implantation,
then declines over time.1202 In short-term exposures, platelet
adhesion was measured experimentally as 0.0037 platelets/mi-
cron2 on dePTFE, ~0.014/micron2 on e-PTFE, and 0.0168/
micron2 on woven Dacron, after a 5-minute exposure to fresh
human blood flowing at a wall shear rate (Section 9.4.1.1) of
50 sec-1.1680 Tested for longer exposures, luminal platelet

adherence to Teflon graft surface in a canine model was 0.564
platelets/micron2 at 4 weeks and 0.124 platelets/micron2 at 12
weeks.1326 Teflon vascular grafts incorporated into femoral
arterial-arterial shunts in baboons for 1 hour produced a plate-
let deposition of ~2 platelets/micron2.1204 Teflon may enhance
platelet reactivity,1159 though some data appear contradictory.
One experiment1195 found that human platelets exposed to
Teflon experience a rapid increase in metabolic activity, followed
by a steady state for more than 1 hour, which suggests that bulk
Teflon is thrombogenic. However, another experiment1209 de-
termined that platelet adhesion to Teflon is shear rate indepen-
dent, with the large percentage of platelets not spread out on
the surface, indicating that the material is a poor platelet activa-
tor. Studies of platelets on Teflon often employ anticoagulants1326

because some forms of Teflon are so thrombogenic, more so
than Dacron.1209 Rotating disks1180 and atrial septal defect
patches1347,1348,5020 made of Teflon are very mechanically
hemolytic. Intense thrombogenicity was observed with
Teflon-coated guidewires in both clinical5010 and in vitro set-
tings, with formed thrombi ranging from 50-100 microns in
size.1317 Gore-Tex used in vascular grafts is acutely thrombo-
genic, accumulating 8 platelets/micron2 in the first hour of ex-
posure to human blood.1192 The same study found that a series
of plasma-modified polymers based on tetrafluoroethylene,
hexafluoroethane and hexafluoroethane/H2, when deposited on
silicone rubber, consumed platelets at rates ranging from 1.1-5.6
platelets/micron2-day, which was considered relatively
nonthrombogenic.1192 And a second study1205 found that a graft
of stretchable Teflon implanted in pig iliac arteries produced a
68% thrombus-free surface, compared to only 37% for stan-
dard Teflon fabric grafts. Surface roughness may play an impor-
tant role. In one experiment1315 very thin fluorocarbon films
were plasma-deposited on rough but hemocompatible
poly(hydroxybutyrate), and on smoother but more thrombo-
genic polysulphone, to study the relative influence of surface
roughness and surface energy on polymer thrombogenicity. In
vitro protein adsorption and blood clotting tests proved that
surface roughness influences thrombogenicity more than other
surface properties.1315 Interestingly, centimeter-size nanoporous
Teflon chambers implanted intraperitoneally have been tested
in guinea pigs and rhesus monkeys as in vivo clotting factor
dispensers, as a potential treatment for hemophilia.1407

6. Bone Cells and Tissues. Osseous tissue cell reactions to Teflon
implants have been studied for decades.1214-1216 For example,
Teflon tubes implanted percutaneously in rats near demineral-
ized bone matrix produced chondrogenesis and osteogenesis in
the subcutaneous tissues.1191 Osteogenesis was inhibited near
the foreign material but there was good circumferential bone
formation.1191 Hollow Teflon capsules implanted in rat jaw bone
were infiltrated by new bone to 31% of the cross-sectional area
after 60 days and to 45% after 120 days.5012 So bone tissue
appears more sensitive to the presence of Teflon. One experi-
ment with Teflon tubes implanted in the mandible of guinea
pigs found that the Teflon elicited a soft tissue capsule which
separated regenerated bone from the implant.1349 An indepen-
dent study using the same animal model found a persistent
moderate inflammation reaction and a thick fibrous encapsula-
tion after 4-12 weeks, except in areas where poorly condensed
material was dispersed into the bony tissue where chronic in-
flammation and active phagocytosis was also observed along the
surface of the material.1350 Dental applications of Teflon have
been investigated sporadically.1217-1220 In one experiment,1220
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exposed pulps of Rhesus monkey teeth received Teflon caps for
3 days to 8 weeks. Resolution of the soft tissue inflammatory
response and healing were slow, with only 20% of teeth treated
for 5-8 weeks showing hard tissue formation at the exposure
site.1220

7. Endothelial Cells. Cultured human endothelial cells show poor
attachment to hydrophobic polymers such as Teflon.1224,1329 In
one experiment, human microvessel endothelial cell attachment
compared to control was 47% for albumin-coated Dacron but
only 3% for Teflon graft material.1351 Precoating Dacron or
Teflon with fibronectin allows endothelialization to occur, up
to 500 cells/mm2, compared to ~70 cells/mm2 for uncoated
surface, after culturing for 8 days.1329 Alternatively, when Teflon
is surface modified by exposure to nitrogen or oxygen plasmas,
creating a 1 nm thick modified layer, the surface can then sus-
tain a monolayer of cultured endothelial cells.1224 (But Teflon
precoated with albumin, high-density lipoprotein, or IgG in-
hibits endothelial adhesion.1329) Teflon felt and Teflon-coated
fibers tested in vitro with endothelial cells on cultured canine
saphenous vein explants have shown no signs of toxic reac-
tions.1157 Culturing in the presence of Teflon does not suppress
succinic dehydrogenase activity of human microvascular endot-
helial cells, nor does it elicit the expression of ICAM-1.1178

8. Epithelial Cells. Porous or knitted Teflon material coated with
collagen, fibronectin, gelatin or laminin promotes human con-
junctival epithelial cell migration over and adherence to
Teflon.1196 In vitro human junctional epithelial cells do not at-
tach to Teflon.1193 In this experiment,1193 cells adjacent to the
Teflon substrata were nonproliferative and did exhibit signs of
degeneration or cell differentiation. However, an earlier study
in mice had shown that subcutaneously implanted Teflon cyl-
inders with etched surfaces produced closed tissue contact, with
signs of toxic tissue reactions completely absent.1182 There is
one decades-old report1179 of subcutaneous fibrosarcomas in-
duced in 30-94% of BALB/c, C3Hf/Dp, and C57BL/He fe-
male mice by implantation of a Teflon disc, with mean latency
of 61-82 weeks, but the reliability of this study is unknown and
the results appear not to have been replicated.

9. Neural Cells. Dissociated mouse cerebellar cells containing both
glia and neurons in tissue culture were exposed to spongy and
fibrous Teflon, which had little or no effect on the growth of
these cells.1158 Some adhesion of both glia and neurons to the
Teflon surface was seen, but the attachment was not exten-
sive.1158 There is at least one case of aseptic meningitis that per-
sisted for 5 months and did not resolve until after surgical re-
moval of Teflon that had been used to pad the trigeminal nerve
to provide microvascular decompression to relieve trigeminal
neuralgia.1352 There is also one reported case of recurrent trigemi-
nal neuralgia caused by a Teflon prosthesis that had been in-
serted between the trigeminal nerve and the superior cerebellar
artery, and which then became hard and compressed the trigemi-
nal nerve 17 months after the initial surgery.1353 The ability of
amorphous Teflon copolymer to inhibit or bio-pattern cell ad-
hesion has also been tested with various neural cell lines.1354

10. Sperm and Embryo Cells. Teflon is relatively inert with respect to
its biocompatibility toward sperm motility and penetrability of
zona-free hamster eggs, and toward the ability of two-cell mouse
embryos to divide.1355 Teflon coated catheters appear
nonspermiotoxic to bull sperm, reducing sperm motility by only
~6% after 90 minutes exposure. Teflon embryonation capillar-
ies are well tolerated by embryos.1356

11. Hematopoietic Cells. Human hematopoietic cells proliferate
near-normally when cultured on Teflon perfluoroalkoxy or
Teflon fluorinated ethylene propylene.1357

12. Bacterial Cells. Microbial tooth plaque accumulation and adhe-
sion are reduced on Teflon-coated metal surfaces.1358 Some bac-
teria such as S. epidermidis attach readily to Teflon sur-
faces,1225-1227 forming biofilms.1226,1359 Here again there are con-
flicting claims in the literature, suggesting further research is
needed. For example, one study reported that adhesion of the
staphylococci to fluorinated polyethylene-propylene films was
not related to the relative surface charge or the hydrophobicity
of the bacteria,1360 while another study reported that adherence
to Teflon catheters was significantly influenced by the degree of
hydrophobicity of the microbial strains.1361 Preincubation in
serum reduces bacteria adhesion on Teflon, mainly due to the
inhibitory effects of adsorbed albumin.1360,1361

13. Other Cells. Hepatocytes grow normally on Teflon membrane
culture dishes.5025

15.3.4.3 Biocompatibility of Teflon-Coated Prostheses
The first implantation of bulk Teflon into the dog peritoneal

cavity was reported in 1949 by Leveen and Barbario.1681 Teflon has
been used as a solid implant in cardiovascular surgery (e.g., cardiac
valves, vascular patches and catheters), orthopedics (e.g., hip pros-
theses), facial surgery (e.g., maxillary and orbital implants), and
neurosurgery (e.g., dura mater implants, derivation valves).1311

While Teflon is non-antigenic,1196-1198 complement activation
has been demonstrated by Teflon tubes in contact with whole venous
blood for 10 minutes,1189 and Teflon suture and graft materials cause
significant activation of C5a complement.1159

Teflon coatings have often been applied to prostheses to achieve
anti-adhesive effects,1314 but with a mixed record of success. For
example, after a long period of widespread use,1362,1363

Proplast-Teflon temporomandibular joint (TMJ) interpositional
implants manufactured by Vitek had to be removed from the mar-
ket in 1995 by the FDA. This was due to complications including
severe bony destruction of both condyle and fossa as a result of
extensive granulomatous and exuberant foreign body giant cell re-
actions,1364 cerebrospinal fluid leak,1365 fibrosis, calcification, in-
flammation and pain,1366 soft tissue destruction1160 and the exacer-
bation of existing connective tissue or autoimmune disease prob-
lems.1362 Failed Proplast-Teflon TMJ implants1367 had to be replaced,
and removal led to increased rates of immune-mediated and
somatization-related conditions, allergies, or symptoms of environ-
mental sensitivity.1188

Other problems occur infrequently with mechanical Teflon pros-
theses. There is at least one case of an eroded prosthetic Teflon car-
diac disc valve in the tricuspid position that became embolic, pro-
ducing foreign material that was later found in the vessels, vessel
walls, and parenchyma of the lung, associated with a foreign body
type of inflammatory reaction.1277,1368 A case of Teflon emboliza-
tion to the lungs from Teflon pledgets deployed during cardiac sur-
gery, with pathological changes found in the pulmonary arteries,
has also been reported.1369

Teflon aortic grafts have been implanted in human patients un-
dergoing abdominal aortic aneurysmectomy.1203 Other Teflon arte-
rial prostheses have been studied in humans,1221-1225 and grafts in
other arteries have been studied in baboon1201,1204 and canine1318

models. In one study,1370 Teflon prostheses placed arterially in hu-
man patients for periods from 2 months to 18 years were initially
permeated by thrombus containing platelet antigens. This became
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organized and converted to granulation, and then to fibrous, tissue.
The newly formed tissue contained foreign body giant cells in con-
tact with the prosthesis and showed evidence of permeation by
plasma proteins. The oldest grafts also showed stenosis, calcifica-
tion, or aneurysm formation.1370 A Teflon coated aortic stent im-
planted in dogs for 1-4 weeks reacted only moderately with the
vessel wall, producing a neointimal layer 115 microns thick.1372 By
comparison, gold-coated stents produced the fewest macroscopic
and histopathologic changes in the aorta with an 83.9-micron-thick
neointima, while a copper-coated stent produced severe erosion of
the vessel wall, marked thrombus formation, and aortic rupture.1372

But while large-diameter (>5mm diameter) vascular grafts can re-
main excellent for >10 years after implantation, smaller-diameter
Teflon vascular grafts may occlude rapidly upon implantation.1371

Early Teflon catheters implanted to provide drainage in the bile
duct over periods from 1 week to 8 months were at best partially
effective. There was insufficient drainage and bile duct infection in
most patients, spontaneous dislocation of the endoprosthesis in many
patients, and death in one patient due to an intrahepatic aneurysm
adjacent to the puncture tract.1373 More recently, in vitro studies of
biliary stents have shown less clogging and sludge formation in Teflon
biliary stents, but clinical studies have given conflicting re-
sults.1228-1231,5018 Part of the continuing difficulty may be due to
the irregular surface which features multiple shallow pits and ridges
with multiple particles projecting into the lumen, which are visible
at the submicron scale under SEM examination.1374 Venous Teflon
catheters used for parenteral nutrition produced the most extensive
thromboses among the five major types of catheter materials
tested.1375 Intravenous Teflon catheters have a slightly increased
risk5024 of catheter-induced phlebitis compared to Vialon (PTFE)
catheters, even though both materials are fluorocarbons.

Teflon transplants following scleroplasty (plastic surgery of the
sclera of the eye) have shown good experimental biocompatibility.1170

In one early study, e-PTFE was episclerally implanted for evalua-
tion as an adjunctive material for retinal detachment surgery. The
implant demonstrated a minimal inflammatory response and in-
growth of connective tissue, creating a thick, fibrovascular intrascleral
implant.1376 A later study using sterilized thin Teflon sheets im-
planted in surgically prepared pockets in the sclera of rabbit eyes
demonstrated excellent compatibility. The implanted sheets elic-
ited histiocytes, fibroblasts, collagen and blood vessels infiltrating
the internodal spaces of the highly porous material after 14 days.
The number of cells and amount of extracellular matrix material
deposited in the implants increased with time.1206 In a 1999 experi-
ment,1377 oval-shaped e-PTFE episcleral implants focally placed in
rabbit eyes for 3-11 months elicited a newly formed capsule that
constantly encased the implants. The inner surface of the capsule
was often covered with numerous giant cells, attesting to a
foreign-body granuloma developed against the irregular outline and
the hydrophobic character of the implants.1377 No intrusion or ex-
trusion of episcleral implants (which were well tolerated experimen-
tally) was observed. Porosity and surface irregularity of the implant
allowed its colonization by a fibrovascular and inflammatory tissue
mainly in its peripheral layers. Sclera under the implant was thinned
and invaginated.1377 e-PTFE is well tolerated for scleral buckling
surgery of rhegmatogenous retinal detachment, with no complica-
tions such as migration, infection, erosion, extrusion, or intrusion,
and excellent tolerance and biocompatibility over a 14-26 month
follow-up period.5013

Teflon-coated intraocular lenses implanted in vivo in rabbit eyes
for 1-2 months showed significantly fewer cell deposits and no
iris-lens synechias compared to non-Teflon controls which showed
extensive synechias along with lens epithelium proliferation and

spindle-shaped cell deposits.1314 e-PTFE alloplasts have shown high
biocompatibility and can be ingrown by fibrovascular tissue in vas-
cular, abdominal, and reconstructive surgery. But corneal implants,
though well tolerated from a biocompatibility standpoint, show no
evidence of fibrovascular ingrowth.1378 An e-PTFE drainage im-
plant with 20- to 50-micron pores for glaucoma filtering surgery
was tested in rabbit eyes for 3 months. There was no postoperative
hypotony, migration, extrusion, intraocular inflammation, or in-
fection, and there was greatly extended filtering patency compared
with conventional trabeculectomy and laser sclerectomy.1171 A PTFE
patch graft implanted into anophthalmic patients for 6-13 months was
well tolerated without extrusion, granuloma formation, or irritation.1197

Proplast II is a porous alloplastic composite of Teflon polymer
and alumina alleged to have been used successfully as a subperi-
osteal implant to treat anophthalmic enophthalmos, giving good
correction of preoperative upper eyelid sulcus deformity while inte-
grating well with the surrounding tissues and minimizing the risk
of subsequent implant migration and extrusion.1379 A Teflon tube
has been successfully used as a lacrimal drainage stent in the lower
canaliculus, and as a bypass tube in connection with canaliculus
laceration repair.1380 For many years, good results in otosclerosis
surgery (for the purpose of closing eardrum perforations and re-
building the ossicular chain, thus rehabilitating conductive hearing
loss) have been achieved using a prosthesis made of Teflon-coated
platinum wire with gold pistons.1316

A microporous Teflon tracheal prosthesis1381 has been tested in
rabbits and was successfully incorporated (e.g., luminal side cov-
ered by connective tissue and epithelium) within 2-4 weeks with-
out inflammation or granulation tissue at the anastomoses.1168 Two
minor complications included infection of the prosthesis before in-
corporation was complete (which can be overcome by antibiotics)
and obstruction of the lumen at the center of the prosthesis by granu-
lation tissue or a deformed Teflon wall (which can be overcome by
using a stiffer prosthesis).1168

Fluoropolymer-coated polyester fibers have been tested as pros-
thetic grafts in the surgical management of abdominal her-
nias,1169,1194 in cases where the defect is too large or the surround-
ing tissue is not available for repair. Teflon netting has been em-
ployed as a replacement material for subcutaneous tissue and a sub-
stitute for superficial fascia destroyed by tumor infiltration involv-
ing neurofibroma of the face.5016 Teflon has been used as a nasal
septal splint1382 and as a penile graft implant as a treatment for
Peyronie’s disease and erectile dysfunction,5778-5781 and Teflon as
Gore-Tex has been used as periodontal material.1193

15.3.4.4 Biocompatibility of Teflon Particles
Small-chain fluorocarbon molecules are generally biocompatible

in low doses. However:

a. macrophages which have ingested perfluoro compounds may
show some loss of phagocytic function and possible release of
cytokines and other immune mediators;1383

b. oxypherol, a commercially available perfluorochemical used in
animal tests, is slightly adsorbed on the surface of red blood
cells, causing a decrease in erythrocyte deformability;1384

c. tetrafluoroethylene (a monomer used in Teflon manufacture) is
hepatocarcinogenic in inhalation studies in mice after 2-year
exposures at 312-1250 ppm concentrations;1385

d. Fluosol (an oxygenatible fluorochemical) elicits
anaphylactoid-type reactions in a small percentage of patients
at blood concentrations as low as ~0.1 gm/liter;1386 and
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e. biological enzymes modified by adding a large number of
fluorocarbon residues do not undergo large conformational
changes upon adsorption on a Teflon surface and thus are
not deactivated.1337

Pure fluorocarbons and fluorocarbon moieties have very strong
intramolecular bonds and very weak intermolecular interactions,1387

hence should display low particle aggregation.* The stability and
permeability of fluorinated liposomes has been widely stud-
ied.1306-1309 For example, aqueous-suspended 30-70 nm
fluorovesicles have a maximum tolerated IV dose up to 0.5 gm/kg
body weight in mice (~5 gm/liter blood volume).1308 Hemolytic
activity sharply decreases with increasing degree of fluorination.1308

There are no confirmed reports of Teflon particle inhalation tox-
icity. Polymer fume fever1683,2120,2121 due to inhalation of Teflon
pyrolysis products is well known, though pyrolysis products are very
different chemically from Teflon and are inevitably toxic due to their
high reactivity. (This is true for other polymers as well, and does
not directly relate to the biological performance of the polymer
material.) For example, in one case1388 two men were occupation-
ally exposed to Teflon powder and experienced episodes at work of
fever, leukocytosis and general malaise, all of short duration, which
ceased after there was no further exposure to Teflon. It was con-
cluded that the cause was inhalation of Teflon combustion prod-
ucts originating from Teflon-contaminated cigarettes. There are also
reports of bird toxicity from heated Teflon fumes.1683 Ultrafine (<100
nm) particle fumes produced by heating Teflon to 486 ˚C in air are
extremely toxic to rats in concentrations of ~50 µg/m3 when in-
haled for only 15 minutes,4846 possibly due to the presence of radi-
cals on the surface. Ultrafine Teflon particles rapidly translocate
across the epithelium after their deposition in the lungs.4846 But
when these particles are generated by heating in an argon atmo-
sphere they are no longer toxic, implicating possible radicals on the
particle surface for the toxicity. Interestingly, the researchers4846 noted
that “the pulmonary toxicity of the ultrafine Teflon fumes could be
prevented by adapting the animals with short 5-minute exposures
on 3 days prior to a 15-minute exposure.” Particles larger than 100
nm no longer caused toxicity in exposed animals.4846

Teflon particle injections have been used for decades to treat a
variety of human medical conditions, as summarized below. The
most common injectant is a commercial preparation known as
polytef paste. Polytef paste consists of pyrolyzed Teflon particles
measuring 4-100 microns in diameter and irregular in shape, sus-
pended in a glycerin carrier.1256,1389 The principal intended thera-
peutic effect of the implanted particles is to passively increase local
tissue volume. Experimental and clinical doses typically range from
0.1-1 cm3 of paste,1390 representing 0.1-10 billion Teflon particles
per dose.

But when injected in particulate form, Teflon can sometimes
provoke severe inflammatory reactions900,901 and can elevate serum
levels of allergen-specific IgE and IgG2a.5026 In one experiment with
Teflon particles,1389 mice received subcutaneous dorsal injections,
rabbits received subareolar injections, and dogs received subareolar
and periurethral injections. Subsequent histological examination of
the biopsy sites revealed a persistent chronic inflammatory reaction
with progressive growth of the involved tissue volume, evoking in-
flammatory pseudo-tumors.1389 In addition to giant cells and mac-
rophages, lymphocytes became apparent at 3 months and consti-
tuted up to 40% of the cellular infiltrate by 1 year. Plasma cells

were also noted in the rabbits after 1 year.1389 In another experi-
ment,1391 48 days after submucosal injections of Teflon paste into
the peritoneum of mice, many particles were found (1) in perito-
neal macrophages, (2) in microphages and macrophages of regional
lymph nodes and the spleen, and (3) in Kupffer cells of the liver.1391

Phagocytes containing Teflon particles can induce local inflamma-
tion and fibrosis.1391

Implanted Teflon particle migration from the site of injection to
lungs and brain has been reported in many animal studies.1392 For
example, small amounts of Teflon paste particles injected intravas-
cularly into peripheral veins and the right carotid artery of dogs
were found in cerebral vessels 6 months after arterial but not venous
injections.1392 Brain tissue sections showed particles in vessels with
focal foreign-body reaction but no infarction, no nerve fiber abnor-
mality, no astrocytosis, and no demyelination around vessels con-
taining the particles and the parenchyma — in summary, no brain
parenchymal tissue damage.1392 Nevertheless, concerns with par-
ticle migration1280 led the FDA in 1984 to prohibit the medical use
of Teflon particles in the U.S.1311

Medical conditions which have been treated (with varying de-
grees of success) by Teflon particle injections, or experimentally evalu-
ated in animal models for possible human treatment, include:

1. Vocal Cord Paralysis (first used, 1962). Since the 1920s, reinner-
vation attempts have been unsuccessful in restoring motion to
paralyzed vocal cords.1240 In 1962, Arnold1682 used injectable
Teflon particles to reintroduce Brunings’ technique for reha-
bilitating the paralyzed vocal cord.1237 Since then, transcutane-
ous Teflon injection of paralyzed and bowed vocal cords has
been used to treat unilateral paralytic dysphonia.900,1232-1251,1260

There are several good historical and literature reviews.1243-1246

The major defect of unilateral vocal cord paralysis, which mani-
fests as a soft and breathy voice, can be eliminated by moving
the edge of the paralyzed vocal cord to the midline via Teflon
injection.1240 This allows the mobile vocal cord to adduct and
vibrate firmly against the edge of the paralyzed vocal cord dur-
ing phonation, eliminating the air leak between the vocal cords.
The treatment is commonly performed by indirect laryngos-
copy under local anesthesia so that the effect on the voice can
be monitored during the injection. Teflon is easily removed from
the vocal cord via direct laryngoscopy.1240 Teflon particles ap-
pear to be noncarcinogenic.1237,1249 The foreign body reaction
to the laryngeal Teflon implant shows giant cells, few lympho-
cytes, and no polymorphonuclear leukocytes. This reaction may
be described as a bland, chronic type consistent with the age of
the implant, and lacking any areas of florid, acute reaction.1249

Partial extrusion of polytef through the cricothyroid space is
sometimes observed, but usually without signs of unfavorable
tissue reaction or intolerance.1249

Failure or complications in this procedure are sometimes re-
ported.1246-1248 These complications may include: acute or
chronic inflammatory reaction;900,1251,1262 cough or choking;1262

swallowing difficulties;1262 laryngeal stenosis900 or airway ob-
struction;1250,1260-1262 acute foreign-body giant cell reac-
tion;1252-1255 extravasation and infiltration into the soft tissues
of the neck;1260 particle migration into the lymphatics900,1390

or surrounding muscle tissues;1253 persistent hoarseness or voice
changes;1260 and even dysphonia.1252,1262 A rare complication

* Fluorocarbons have much weaker intermolecular interactions than hydrocarbons. Their intermolecular interactions are among the weakest known for organic molecules. This
is manifested most prominently in the low boiling points of fluorocarbons, since a comparison of boiling points for compounds of similar molecular weight gives a good idea
of the magnitude of intermolecular interactions. For example, the fluorocarbon perfluorocyclobutane (MW = 200) has a boiling point of -6 ˚C, whereas the hydrocarbon
tetradecane (MW = 198) has a boiling point of 253 ˚C; even the non-fluorinated hydrocarbon cyclobutane (MW = 56) has a boiling point of 13 ˚C.
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is “teflonoma”1255-1260,5021 or large granuloma formation.1248-1253

Teflonomas have been initially been mistaken for thyroid tu-
mors1249,1258-1260 or carotid body tumors.1256 Today, collagen
particles,1237 autologous lipids,5014 and other materials5032 show
more promise as possibly safer particle-implantation
tissue-bulking alternatives.

2. Urinary Incontinence (first used, 1973). Periurethral Teflon in-
jection is commonly used to control urinary inconti-
nence,1267-1280 stress incontinence,1283-1286 and
post-prostatectomy incontinence.1263-1265 Tissue reactions in
males are generally limited to modest infiltration of lympho-
cytes and monocytes, and a slight increase in collagen fibers.
Particles are generally well tolerated1393 with minimal migra-
tion to lungs or brain in pig and dog models.1394 Complica-
tions have included: clumping of paste;1393 pain;1263 fever and
malaise upon removal;1282 inflammatory reaction;1268 possible
infection or intolerance;1268 periurethral abscess and urethral
diverticulum;1265,1286 elevated erythrocyte sedimentation
rate;1282 fibrosis;1268 foreign-body giant cell granulomatous re-
action1266,1267,1280-1282 and polyps;1398 pulmonary granu-
loma1286-1288 with urethral wall prolapse;1286 teflonoma1264-1266

with urethral wall prolapse;1265 migration of particles1280,1397,1398

particularly into lymphatic,1280 perineal,1263 kidney,1280 spleen,1280

brain,1280 and pulmonary1277,1280 tissues, and to the skin;1282 and
even complete urinary obstruction.1266-1268 These potential com-
plications have led some to recommend that periurethral Teflon
injections should only be used in special cases,1284 although au-
tologous lipoinjection has an even poorer success rate.5022

3. Cosmetic Surgery (first used, 1976). Subcutaneous injection of
facial wrinkles with Teflon paste in the 1970s produced granu-
lomas.1395 In another case,1396 granular Teflon paste was injected
into the upper eyelid to remodel the upper palpebral furrow
which had been retracted by scars. Large foreign-body granulo-
mas developed a few weeks later, necessitating excision and lead-
ing the surgeons to advise against using Teflon injections in
well-vascularized loose tissue.1396

4. Vesicoureteric Reflux (first used, 1981). Vesicoureteric reflux or
VUR is the reflux of urine up the ureter during micturition.
Endoscopic submucosal Teflon injection (STING) to correct
VUR was performed for the first time by Matouschek1289 in
1981. The procedure has since been widely employed in clini-
cal practices by Puri and O’Donnell1399 and others1305,1312 for
treatment of ureteric, vesicorenal or vesicoureteral re-
flux.1289-1305,5011 The procedure is also used to correct VUR
prior to renal transplantation procedures1304 and to treat
ureteroceles.1291 STING gives a high cure rate in chil-
dren1297-1303,5029,5033 and adults1294,1303 with generally good
results,1292,1298 although a second injection is often re-
quired.1301-1305 There is no major morbidity or risk of
nephroureterectomy,1304 and there are no signs or symptoms of
embolization of the implant material.1296 Possible carcinogenic
risks have been noted1312 but no carcinogenic degeneration has
yet been observed1385 and Teflon powder is not considered to
be carcinogenic.1311

Complications may include: postoperative Teflon leakage from
the injection site;1296,1400 encapsulation of the implant by a thin
layer of fibrous tissue;1399 foreign body granulomatous reaction
locally involving histiocytes and giant cells within the im-
plant1399,1401 and also involving locoregional lymph nodes;1401

ureteral stenosis in 1% of cases;1312 and one possible case of

ischemic brain injury (stroke).1402 The risk of particle migra-
tion has been noted1304,1312 although most studies have detected
no migration1296,1399 to liver,1312 lungs,1312 or brain.1312 In one
animal study,1401 rare particles of Teflon were observed in the
lungs but not in the brains of rabbits that had received Teflon
injections in the bladder submucosa. In another animal study,1403

numerous particles were recovered from lungs and brain within
2 weeks of Teflon particle injection in the manner used to treat
VUR. Particles in the brain measured up to 15 microns, indi-
cating that the pulmonary bed is an inefficient filter of particles
gaining access to the venous circulation.1403 No adverse neuro-
logical effects have been reported clinically, but the authors
warned that some particles could lodge in the brain where they
could block the cerebral microcirculation.1403 In a human clinical
study, most of the Teflon particles injected for VUR in one child
of 83 treated were observed by CT scan to have disappeared
from the original site of injection. It was speculated that the
material had been extruded into the bladder.1400 A few practi-
tioners have now abandoned polytef injection for treating
VUR.1295 Collagen particles have given disappointing results,
but microparticulate silicone1312 and bioresorbable
microspheres5453 appear more promising.

5. Velopharyngeal Incompetence (first used, 1985). Teflon injection
into the submucosa of a child’s posterior pharyngeal wall was
used to treat severe open nasality due to velopharyngeal incom-
petence. A biopsy after 8 years revealed a marked foreign body
reaction with a persistent inflammation and fibrosis.1404

Lipoinjection may be a preferable alternative here.5019

6. Partial Fecal Incontinence (first used, 1993). Perianal injection
of polytef particle paste into the rectal neck submucosa in pa-
tients with partial fecal incontinence resulted in an increase in
rectal neck pressure produced by the cushion effect of the Teflon
particles. All patients showed at least partial improvement, and
two-thirds experienced long-term cure.1405

7. Low Esophageal Sphincter Pressure  (first used, 1996).
Intraabdominal injection of Teflon paste at the gastroesophageal
junction produced a well defined Teflon mass at the site of the
injection. The implant was encapsulated by a thin layer of fi-
brous tissue and a benign foreign body granulomatous reaction
with round cells surrounded the implant. The procedure in-
creased lower esophageal sphincter pressure from 29.7 mmHg
preoperative to 37.6 mmHg postoperative in rabbits.1313

15.3.4.5 Chemical Inertness of Teflon
Teflon is inert to chemical attack, being unaffected by ozone,

elemental fluorine, boiling nitric acid or aqua regia, concentrated
sulfuric acid, or strong oxidizing agents such as potassium perman-
ganate.1406 Reducing agents such as hydrogen or carbon do not af-
fect it even at temperatures as high as 1000 ˚C.1406 Fluorocarbons
are attacked only by hot metals such as molten sodium.858 Some of
the chemical stability of fluorine derivatives must be attributed to
the impossibility of expansion of the octet of fluorine and the in-
ability of water to coordinate to fluorine or carbon as the first step
in hydrolysis.858 Also, C-F bonds are among the strongest covalent
bonds known. Fluorine atoms are larger than hydrogen atoms, so
the F atoms effectively shield the carbon atoms from attack much
better than the H atoms in hydrocarbons. Since the C-F bond is
very polar, the carbon can be considered to be effectively oxidized
(whereas the C-H bond is only slightly polar, so the carbon is not
nearly as reduced), so there is no tendency for oxidation by oxy-
gen.858 Teflon can be heated in air without burning1406 up to
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450-500 ˚C.1310 When pyrolyzed, fluorocarbons tend to split at
C-C rather than C-F bonds.858 This is because carbon-carbon bonds
are much weaker than carbon-fluorine bonds. In fluorocarbons, C-C
bond energies are approximately 80 kcal/mole, while C-F bond
energies are 115 kcal/mole. Since it takes less energy to break C-C
bonds than C-F bonds, fluorocarbons will split at the C-C bonds.

Teflon is a chemically inert,1197,1310,1378 bioinactive,1183 nonab-
sorbable1196 implant material. It is relatively stable in the tissues
and is not readily dissolved or digested by the host.1033 Teflon par-
ticles are indigestible by macrophages and Kupffer cells,1391 and
bulk Teflon is not cytotoxic.1190 As noted elsewhere in this Section
there can be some biocompatibility problems with traditional medi-
cal fluorocarbon-based surfaces, but atomically smooth surfaces of
this type have yet to be rigorously investigated.

15.3.5 Biocompatibility of Sapphire, Ruby, and Alumina
Pure corundum (aluminum oxide or alumina) is colorless and

can have a strength and hardness (Table 9.3) and a chemical inert-
ness (Section 15.3.5.6) that is only slightly inferior to diamond.
Sapphire and ruby, the best-known crystalline forms, are primarily
single-crystal α-Al2O3. The crystal can be manufactured in a full
spectrum of colors (Section 5.3.7). The material characteristics of
sapphire are reviewed elsewhere (Section 5.3.7, Section 9.3.5.3.6,
Table 9.3, etc.). Scanning force microscopy has been used to image
the atomic structure of the (0001) surface of α-alumina crystal, and
to observe the formation of hydroxide clusters after exposure to
water.4796 The atomic structure of the hydrated α-alumina surface
has also been investigated by X-ray diffraction.1751 The high-density
single-crystal sapphire form of alumina may be produced when
Al2O3 is compressed under isostatic pressure and fired at 1500 ˚C
to 1700 ˚C.956 Alumina nanotubes have also been synthesized.4804

To summarize the utility of sapphire in medical nanorobotics:
First, sapphire is almost as strong and hard as diamond (Table 9.3),
and only slightly more dense. Second, sapphire is already fully oxi-
dized, so in particulate form (e.g., micron-size nanorobots) it can-
not burn in air like diamond, and its crystalline structure remains
stable to higher temperatures than diamond. Third, sapphire has
more favorable bulk thermophysical characteristics. The thermal
conductivity of sapphire is 100-1000 times less than for diamond,
reducing the increase in the thermal conductivity of tissues that are
loaded with sapphire nanostructures, as compared to tissues con-
taining pure-diamond nanostructures (Section 15.3.8). Sapphire also
has 60% greater heat capacity per unit volume than diamond.
Fourth, sapphire offers designers an alternative hydrophilic surface
chemistry as compared to hydrophobic diamond. Sapphire is am-
photeric, absorbing H+ ions in very acidic environments (acquiring
a positive charge) and absorbing OH- ions in alkaline environments
(acquiring a negative charge), while remaining isoelectric (electri-
cally neutral) at intermediate pH values near human physiologic at
~7.4 (Section 15.5.6.1). Fifth, sapphire can be manufactured in a
full spectrum of colors (Section 5.3.7) by replacing 0.01%-0.1% of
the aluminum atoms with atoms of iron, titanium, or chromium,
while producing only modest changes in the physical and chemical
properties of the material.

Apparently no studies have been done on the biocompatibility
of ruby, but high-density monocrystalline sapphire1034 and alumina
(e.g., either porous or polycrystalline970) materials have been widely
investigated and are already in extensive clinical use. (Amorphous
or γ-alumina959 and other transitional or “activated” forms958

are not discussed here.) For instance, sapphire is often used as a
dental implant (Section 15.3.5.2), though it is so hard that it
must be resected using a diamond bur.971 Alumina845,972-974 and

sapphire1031-1036,1050 are generally regarded as nontoxic bioinert ce-
ramic materials. While the biocompatibility of sapphire appears to
be in some ways slightly poorer than diamond, nevertheless in ap-
plications requiring hydrophilic, nonoxidizable, or colored surfaces,
sapphire may be the better choice of nanorobotic building mate-
rial.34 Sapphire is already being used in nanofluidics4786 and other
near-term nanomedical applications, and is being considered for
use in the manufacture of prosthetic heart valves.4788

This Section briefly reviews protein adsorption on alumina and
sapphire (Section 15.3.5.1), the tissue response to sapphire dental
implants (Section 15.3.5.2) and other alumina and sapphire im-
plant surfaces and prostheses (Section 15.3.5.3), the cellular response
to alumina and sapphire surfaces (Section 15.3.5.4), the
biocompatibility of alumina and sapphire particles (Section
15.3.5.5), and finally the chemical stability of alumina and sap-
phire in vivo (Section 15.3.5.6). The reader is cautioned that some
of the experimental and clinical results reported here for polycrys-
talline or other forms of alumina ceramic may differ from results to
be obtained for the atomically-precise monocrystalline sapphire likely
to be employed in medical nanorobots.

15.3.5.1 Protein Adsorption on Alumina and Sapphire
Alumina ceramic is a hydrophilic material with high

wettability.973 The rates of adsorption and desorption to the alu-
mina surface of proteins975,1059,4791,4798 including albumin, glyco-
protein, plasminogen, fibrinogen, fibronectin, IgA, IgG, and IgM,
and of other substances such as sulfapyridine976 (a sulfa drug com-
ponent), various pesticides4802 and surfactants,4807 and carbon mon-
oxide4808 have been investigated, though a comprehensive survey is
beyond the scope of this text. For example, in one experiment the
adsorption of blood proteins on α-alumina ceramic disks after 2
hours at 37 ̊ C and pH 7.35 after removal of eluate was measured as
0.0147 mg/m2 (130 molecules/micron2) for albumin but only
0.00198 mg/m2 (4 molecules/micron2) for fibrinogen.977 Another
experiment found that attachment and spreading of human
bone-derived cells cultured on Al2O3 ceramic surface during the
first 90 minutes was reduced by 73-83% in vitronectin-free serum,
with much less reduction in fibronectin-free serum, suggesting that
initial attachment and spreading of cells to an alumina surface is a
function of vitronectin adsorption.978

As with aqueous solubility,980 protein adsorption to alumina is
pH dependent. Thus at pH 7.6, for example, acetylated ovalbumin
does not show any affinity for alumina surface while unmodified
protein does.981 Electrostatic interactions, surface unfolding of pro-
teins, and surface hydrophobicity of protein also control the ad-
sorption of ovalbumin onto alumina.981 An extensive series of ex-
periments by Sarkar and Chattoraj982-987 have examined the com-
petitive adsorption and desorption, relative affinities, and the mo-
lecular size, shape, orientation and folding of proteins (esp. bovine
serum albumin, β-lactoglobulin, gelatin, hemoglobin, lysozyme and
myosin) at the alumina-water interface as a function of pH, ionic
strength of various salts, temperature, and protein concentration.
For example, at physiological human blood serum albumin con-
centrations (35-52 x 10-3 gm/cm3; Appendix B) and 27 ˚C, albu-
min (BSA) adsorption onto ~20-nm alumina powder surface is
36,400 molecules/micron2 at pH 6.4, 14,300 molecules/micron2

at pH 5.0, and zero at pH 3.6.985 At the two higher pH values,
adsorption reaches a plateau above an environmental albumin con-
centration of 0.6-1 x 10-3 gm/cm3. (For ~50-nm graphite particles
under similar conditions, albumin adsorption is 13,300 molecules/
micron2 at pH 6.4, 22,100 molecules/micron2 at pH 5.0, and 41,800
molecules/micron2 at pH 3.6, with adsorption plateaus at all pH
values, for albumin concentrations between 0.3-1.5 gm/cm3.985)
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Since anchorage and binding of protein to the alumina surface
are enthalpy-controlled processes, whereas surface denaturation (in-
cluding protein rearrangement and folding) is an entropy controlled
process,986 the initial adsorption processes can be characterized by
the standard free energy of transfer as measured at the state of mono-
layer saturation. For one mole of protein or protein mixture, under
various physiochemical conditions, the standard free energy of trans-
fer is observed to be ~38.5 KJ/mole985,987 or ~64 zJ/molecule. Let
us provisionally take this figure as representative of the molecular
binding energies required at a nanorobot sorboregulatory surface
(Section 15.2.2.4) capable of providing desired specific proteophobic
or proteophilic action upon exposure to physiological blood serum.
Assuming noncovalent (van der Waals) adsorption forces only, then
from Table 3.6 a sorboregulatory surface should incorporate physi-
cal binding features on the order of ~6 nm2 in area or ~1.5 nm3 in
volume. A number density of ~104-105 receptors/micron2 would
imply an areal surface coverage ranging from 6-60%. Sorboregulatory
surfaces must bind tightly enough to forestall desorption of the pre-
ferred protein as environmental conditions change. For instance, it
is known that when β-lactoglobulin is added to the environment,
previously adsorbed bovine serum albumin can be quantitatively
desorbed from alumina surface back into solution.983

Other useful simple surface modifications have been demon-
strated. For instance, Yoshida et al899 have fabricated an ultrasmooth
single-crystal α-Al2O3 sapphire plate which was shown via AFM
scanning to have terraces with atomic steps only 0.2 nm in height,
comparable to the exterior surface roughness anticipated in medical
nanorobotic devices. This material, as obtained by high-temperature
annealing, had relatively hydrophobic surfaces (e.g., water-drop
contact angle θ ~ 80o) and thus could not be used for the AFM
observation of plasmid DNA. When the material was treated with
alkaline Na3PO4 aqueous solution, the surface became uniformly
coated with a 0.3-nm-thick Na2HPO4 compound layer having a
more hydrophilic character (e.g., water-drop contact angle θ ~ 20o),
allowing DNA molecules to adhere and be scanned by AFM.899

Other polarized organic molecules such as the mucopolysaccha-
rides1037 may attach to the polarized alumina surface (in the wet
milieu)1023 by van der Waals forces. Specific enzymes have also been
covalently immobilized onto polyethyleneimine-impregnated
gamma-alumina surfaces.4772

Interestingly, single-crystal sapphire that is exposed to 30 kilogray
gamma-ray irradiation (as is common in gamma ray sterilization)
produces oxygen vacancies in the sapphire structure accompanied
by a deformation of the crystalline lattice resulting in a modifica-
tion of electrical properties.4773 At room temperature, irradiated
α-Al2O3, unlike non-irradiated α-Al2O3, can trap electrons, from
which it can be concluded that gamma-ray sterilization modifies
the cohesive energy of α-Al2O3. This could lead to mechanical changes
in surface charge, friction, wear, fracture strength, and the like.4773

15.3.5.2 Sapphire Dental Implants
Sapphire exhibits an elastic modulus 20 times greater than that

of cortical bone,956 though it is prone to fracture1021,1029 if suffi-
cient shear forces are imposed. Tooth implants are short, compact,
and require mainly compressive strength. This is why many thou-
sands of single-crystal alumina (sapphire) dental implants989-996 have
been performed over the last two decades in extensive animal997-1006

and human1010-1021 clinical trials. Commercially-produced alumina
dental implant materials such as Bioceram,990,995,1018,1019

BionitR1025 and Frialit1021,1050 are available for all tooth areas. Such
materials also may serve as in-bone anchors for bridges and den-
tures.956,4761 In modern dental practice, titanium bone anchors are

preferred because pure sapphire is too brittle in the masticatory en-
vironment and tends to fracture after ~6 months of normal use [Tho-
mas G. Wilson, personal communication, 2001], and because of
poorer long-term results4787 — most of these devices are made from
titanium5695,5696,5700,5705 and feature altered surface structures or
coatings. However, zirconia frameworks4758 or composites4784 pro-
vide twice the mechanical strength of Ceram alumina,4758 “allow-
ing the restorations to bear the high mastication forces in the molar
region.” Tinschert et al4813 suggest that current CAD-CAM dental
fabrication procedures may induce surface and subsurface flaws that
adversely affect the structural reliability of an otherwise more reli-
able4818 material. Interestingly, the growth rates of cracks in
single-crystal sapphire are significantly higher in C Ringer’s solu-
tion at 37 ˚C (a simulated physiological environment) than in hu-
mid air at 24 ˚C, although no true cyclic fatigue effect has yet
been found.4788

During the 1980s and 1990s it was found that sapphire exhibits
good hard-tissue and soft-tissue biocompatibility when used in the
mouth.998,1021,1024-1031,1033 Peri-implant mucosa are nearly free from
inflammatory cell infiltrations1006 and when successful are usually
free from connective tissue capsules between the implant and the
adjacent alveolar bone.1021 Generally there are no serious inflam-
matory reactions in the surrounding soft tissues — only a minimal
inflammatory infiltrate is seen when the implant/abutment inter-
face is located below the gum tissue.1018,1021 One investigation of
neutrophil number and activity around sapphire dental implants in
19 partially or completely edentulous patients found lower neutro-
phil activity around sapphire implants in completely toothless pa-
tients, but higher neutrophil activity on both teeth and implants in
patients with remaining teeth.1020

Ultrastructural evidence reveals that an attachment complex
forms between gingival epithelium and alumina that is analogous
to that seen around natural teeth,1003-1009 with a high rate of bone
contact on the sapphire surface,1003,1005 or osseointegration.1021 In
one case of an aluminum oxide ceramic implant removed because
of fracture of the abutment after a 30-month loading period, it was
observed microscopically that the implant was covered by highly
mineralized mature compact lamellar bone, with no connective tis-
sue or inflammatory cells present at the interface.1029 Osteocytes
were found very close to the bone-implant interface, indicating the
good biocompatibility of the implant.1029 In another study,1030 soft
tissues surrounding single crystal sapphire implants were studied by
conventional light- and transmission electron microscopy and by
immunohistochemical markers for cytokeratin, protein S-100, fac-
tor VIII and KP1. Histological sections of biopsies obtained from
clinically healthy peri-implant mucosa were separated into a kerati-
nized outer implant epithelium and an inner, non-keratinized epi-
thelium, both immunoreactive towards cytokeratin. The inner im-
plant epithelium terminated in a junctional epithelium, apically not
a few cell layers thick. The cells adjacent to the implant showed a
condensed cytoplasm that resembled hemidesmosomes1004,1007,1030

— i.e., good biocompatibility.
No significant difference in subgingival microflora is observed

between dental plaque that accumulates on natural teeth or on
single-crystal sapphire dental implants in the mandibular and max-
illary edentulous regions in monkeys1002 and humans.5691

Microbiota in healthy and diseased implant and natural tooth sites
are very similar.1027 Peri-implant tissues behave very similarly to
periodontal tissues.1027 Investigations of possible prophylactic treat-
ments of sapphire-coated dental implants have been undertaken by
SEM.1042 One minor difference that has been observed between
natural and implant dentition is that the tactile sensibility threshold



Biocompatibility • Biocompatibility of Nanomedical Materials 77

can be slightly higher for sapphire implants than for natural teeth,
among sensory receptors located in the connective tissues around
the implants.1028

15.3.5.3 Tissue Response to Bulk Alumina and Sapphire
Aside from dental implants, sapphire and alumina ceramics are

most commonly employed in a variety of bone implants.1050 Alu-
mina ceramic surface has shown excellent in vivo tissue compatibil-
ity when implanted in the crania of rabbits for 2 months.1043 In the
human jaw, a single-crystal sapphire bone screw was applied for
rigid internal fixation of sagittal split osteotomies in 86 cases from
1982-1986 and showed excellent biocompatibility.1035 There was
excellent bone adaptation to the threaded portion and no notice-
able bone loss around the screws, which could mechanically sup-
port the split mandibular rami until bone union occurred.1035 (Com-
plications due to the screw were not encountered in follow-up peri-
ods of 0.5-3.5 years.) Experiments with alumina ceramic implants
designed to reconstruct the bony bridge of the nose and the nasal
septum of rabbits found that nasal septum implants were covered
with connective tissue and coated with respiratory mucosa, and that
implants in bony areas always showed a layer of connective tissue
between the implant’s surface and the rebuilt bone.1046 All implants
healed without inflammatory reactions and were solidly fixed to the
surrounding tissue after 7.5 months.1046

Monocrystalline sapphire pins have been used in dozens of pa-
tients as an internal fixation device for hand and elbow problems.1034

In follow-up studies, good bone healing was observed in all cases
except for one delayed union in a fracture of the diaphysis of the
proximal phalanx. Radiographs showed no pin migration or os-
teolytic reaction around the pins.1034 There is some clinical experi-
ence using alumina ceramic pins for rib fractures.1047 Sintered alu-
mina implants inserted into the iliac crests (hip bones) and man-
dibles of rabbits were well tolerated, although the alumina excited a
slightly greater tissue response than did vitreous carbon.782

Modular total hip prostheses have been successfully employed
since the mid-1970s,4806 and often consist of an alumina femo-
ral head (ball) which articulates with an alumina acetabulum
(cup).956,1048,1049,4794 These show much improved wear charac-
teristics (e.g., wear rates reported from an anomalously-low ~25
nm/year1105 up to a more probable ~3 microns/year,4762 with up
to 38.8 microns/year for early systems implanted in the
1970s4809). Such systems produce lower frictional heating4805 and
fewer wear par ticles4799 than alternatives such as
metal-on-polyethylene1050,1051,4797,4803 (e.g., ~100 microns/year1105),
metal on alumina ceramic (e.g., 26.9 microns/year4809), or alumina
ceramic-on-polyethylene4803 (e.g., 34 microns/year4795 to 80-200
microns/year4810) systems. By the year 2000, some 2.5 million ce-
ramic femoral heads (mostly 28-mm-diameter BIOLOX heads with
a European taper1049) had been implanted, mainly in Europe but
also in North America and Japan.1049 Results are generally good,4790

although the orthopedic community has reported (1) a few in vivo
mechanical failures of monophase alumina ceramic,4756,4815 (2) a
few cases of moderate4775 or significant4771 wear, and (3) mechani-
cal pathological changes in the articular cartilage and menisci from
paired alumina knee-joint implants inserted into canine femoral
condyles.4760 Innovations are constantly arising.4776-4782 By 2002 a
new generation of alumina-zirconia nanocomposites were being
tested in total hip replacement applications because of their im-
proved crack-growth resistance4756,4783 and because zirconia ceram-
ics are known to be highly biocompatible.4757

As for leg bones, single-crystal sapphire and several other materi-
als implanted into the tibia of rats were subsequently encapsulated by

newly formed compact bone,1032 and bone tissue grew deeply into
alumina pores.4769 In another series of experiments,970 three alu-
mina implants — single-crystal alumina (SA), dense polycrystal alu-
mina (DPA), and porous polycrystal alumina (PPA) — were in-
serted transcortically, extending into the medullary canal of rat tibiae.
There was no difference in the degree of maturation of newly formed
bone around the three kinds of alumina. SA (sapphire) and DPA
were encapsulated with a continuous bone layer, but some bone
tissue was attached focally around PPA. Multinucleated giant cells
appeared on the surface of DPA and PPA, but not on SA. Quantita-
tive evaluation of bone contact rate, bone contact thickness, and
bone contact area ranked SA the highest and PPA the lowest, sug-
gesting that sapphire is superior to the other two as an implant
material.970 In a human clinical study,1052 the metatarsal (foot) bone
was elongated by intercalary implantation of a single-crystal alu-
mina ceramic in 7 patients with brachymetatarsy. The implants were
encased with new bone 24 months after surgery and resulted in 5.2
mm to 9.2 mm elongation of the metatarsal bone. There was no
resorption or pseudoarthrosis of the bones, and no loosening or
breakage of the implants. Sapphire bone screws and anchors have
been tested in animals and used clinically since at least the late
1970s.1036

Sapphire implants show good biocompatibility in soft tissues.4768

Such implants can elicit some foreign body reaction (Section
15.4.3.5), but there is often minimal fibrosis in response to bulk
alumina implants.973,1053 For example, Akagawa et al1032 implanted
single-crystal sapphire and other materials such as titanium and
Co-Cr-Mo alloy into the subcutaneous tissue of rats. The resulting
tissue reaction, from early necrotic change and acute inflammation
to final encapsulation by fibrous connective tissue, was least pro-
nounced around the sapphire implants. Arvidson et al1031 found
slight or no tissue reaction when sapphire rods were inserted subcu-
taneously into rats for 4, 8, and 12 weeks. Reuling et al1054 im-
planted dental alumina ceramics intramuscularly and subcutane-
ously in rabbits and guinea pigs. Cylindrical rough surfaces pro-
duced the strongest foreign body reactions. Spindle-shaped smooth
surfaces elicited bland tissue reactions, including a significant in-
crease in subcapsular adipose tissue and significantly less thickness
of the connective tissue capsule.1054 Small alumina chips (1.6 mm x
6.3 mm) implanted in rat paravertebral muscles produced a
77.5-micron-thick surrounding connective tissue membrane after
2 weeks, subsequently shrinking to 46 microns after 4 weeks, 36
microns after 8 weeks, and 24.4 microns after 26 weeks, with a
shifting cell population including a nearly closed layer of macroph-
ages towards the implant.1053 Up to 1 year, a shifting layer of fatty
tissue remained between membrane and muscle, functionally ex-
cluding the implant.1053

A recent series of experiments1055-1057 at the University of
Tokushima School of Medicine and University Hospital, in Japan,
investigated the time course of tissue reactions to crystalline alu-
mina implants in the form of Bioceram disks used for synthetic
auditory ossicle. In the first of these experiments,1055 the ceramic
was implanted subcutaneously in the interscapular region of rats,
then removed after 1, 3, 7 and 14 days. Decalcified 6-micron thick
sections were stained with hematoxylin and eosin, and cell types
around the implants were counted microscopically. An acute in-
flammatory reaction dominated by macrophages and neutrophils
occurred after 1 day, almost disappearing after about 7 days. Fibro-
sis began at 3 days but foreign body giant cells were seen in only
one specimen at 3 days. Chemical irritation to subcutaneous tissue
was slight. However, the physical irritation of Bioceram lasted con-
tinuously and induced fibrosis around the bioimplant. The second
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study,1056 which extended the implant durations to 300 days, found
that the inflammatory cell reaction decreased rapidly within 14 days,
similar to the reaction in control groups. From 30 days to 300 days
after implantation, there was continuous reduction of macrophages
and lymphocytes to very low levels while the fibrous connective
tissue capsule around the implants matured. The third study1057

extended implantation time to 6-20 months and confirmed that
small numbers of macrophages (~2.8% of max) and lymphocytes
(~2.7% of max) were observed at 6 months, gradually decreasing to
zero at 16, 18 and 20 months. Neither neutrophils nor foreign body
giant cells were seen in any specimens. The thickness of fibrous
capsules surrounding the implants was closely related to the shape
of the implant, but there was no significant change from 6-20 months
post-implantation and stereoscopic microscopy revealed no changes
in Bioceram surfaces during this period. These results indicate that
a sapphire-like ceramic is a satisfactory biocompatible material for
reconstructive surgery from the viewpoint of inflammatory cellular
and long-term tissue responses.

Alumina ceramic has also been used to provide short- and
mid-term biocompatibility in blood-contacting LVAD surfaces.613

For instance, high-purity alumina was used in the double pivot bear-
ings of the Gyro C1E3 centrifugal blood pump developed as a com-
pletely sealless pump for long-term usage.1058 The ceramic was de-
termined to be a good biocompatible blood-contacting material af-
ter a standard in vitro and in vivo analysis including systemic toxic-
ity, sensitization, cytotoxicity, mutagenicity, direct contact hemoly-
sis, and thrombogenicity.1058-1060 In another application, catheters
using alumina-coated Teflon or alumina-coated pyrolytic carbon
implanted intraperitoneally in dogs were retrieved after 12 weeks
and only thin capsules were observed, of varying thickness and blood
supply, surrounding the end of the catheters.895

15.3.5.4 Cell Response to Bulk Alumina and Sapphire
A number of experiments have been performed to determine

the response of fibroblasts to alumina and sapphire surfaces. For
example, alumina ceramic surface has shown excellent in vitro
biocompatibility in a tissue culture of rabbit fibroblasts1043 and cul-
tured embryonic mouse fibroblasts.1050 Colony-forming Chinese
hamster V79 fibroblast cells proliferated equally well on alumina
ceramic and control surfaces.1044 Fibroblast-like mesenchymal cell
populations cultured on solid alumina ceramic surfaces induced no
cytotoxic or antiproliferative effects on monolayer populations in
vitro, leading the researchers972 to conclude that “the aluminum
oxide ceramic presents itself as an absolutely bioinert material.” A
scanning electron microscopic study1045 was conducted on the ad-
hesion, spreading and formation of confluent cell monolayers from
fibroblasts and epithelioid cells on Al2O3 ceramics. The study found
that the cells adhered, spread, migrated and proliferated on the sur-
faces tested, leading to the conclusion that this implant material is
compatible with cells.1045 In general, such cells adhere well to
single-crystal or polycrystalline alumina.1023 Experiments by Mawn
et al4774 found that human orbital fibroblasts grown on alumina
bioceramic implant were free of debris and had the largest cell count,
whereas cells grown on hydroxyapatite or porous polyethylene im-
plants had cellular debris associated with them.

The response of bone cells to alumina ceramic has also been
examined. For instance, the nature of the contact sites (including
focal contact formation and cytoskeletal organization) formed dur-
ing the adhesion of neonatal rat calvarial (cranial) osteoblasts at-
taching to and spreading on alumina orthopedic implant materials
was investigated by fluorescence microscopy.1061 Focal contacts are
regions where the plasma membrane approaches the substrate to

within 10-15 nm and where bundles of cytoskeletal microfilaments
terminate. Fluorescent-labeling of F-actin-containing microfilaments
demonstrated a typical sequence of events as rounded, suspended
osteoblasts spread onto the alumina substrates, initially showing the
formation of streak-like vinculin-mediated focal patches.1061 In an-
other study, the morphological responses of individual osteoblasts
as they attached and spread on alumina surfaces in vitro were exam-
ined with scanning electron microscopy.1062 The cells were round
after 30 minutes, then spread radially during the next 1.5 hours
until they were almost flat with a nuclear bulge on both rough and
polished alumina.1062 More recently, Josset et al1104 confirmed that
normal biochemical and biological functions of cultured human
osteoblasts are preserved in the presence of 6-mm-diameter
1.2-mm-thick alumina disks. Their results also suggested the ab-
sence of a mutagenic or carcinogenic effect on cells during the 30-day
testing period, given that DNA image cytometry and interphase
silver-NOR quantification showed no changes in cell ploidy, growth
rates, or DNA replication compared to controls.1104 Another recent
experiment4759 found no differences in cell viability between hu-
man osteoblasts cultured on polished surfaces of alumina or hy-
droxyapatite after 48 hours. However, osteoblast adhesion4763 and
osteoclast-like cell function4764 are increased on nanophase alumina
(grain sizes <100 nm) compared to conventional alumina. The re-
sponses of human osteoblasts cultured on an alumina surface and
subjected to cyclic stretching has also been examined,4767 and in-
cluded unchanged alkaline phosphatase activity and increased syn-
thesis of collagen and total protein.

Others have investigated the response of various oral cells to sap-
phire dental implant surfaces. In one study,1031 the influence of
single-crystal sapphire on the behavior of human epithelial cells and
fibroblasts derived from biopsies of the oral mucosa was studied.
Compared to control cultures, no effects on cell morphology and
growth characteristics were observed. Another study1063 sought to
elucidate the ultrastructure of peri-implant junctional epithelium
(IJE) on single-crystal sapphire dental implants connected to adja-
cent teeth by a metal superstructure, by examining the peri-implant
gingivae of ten monkeys using a transmission electron microscope
at 3, 6 and 12 months after implant insertion. At the time of exami-
nation, the ultrastructural features of the IJE were almost identical
to those of the natural junctional epithelium attached to natural
teeth. These features included developed Golgi complexes,
rough-surfaced endoplasmic reticulum, numerous free ribosomes
and mitochondria. The innermost cells of IJE were attached to the
implant surface by means of 50-100-nm thick basal lamina-like struc-
tures and hemidesmosomes, but lacked a dental cuticle as seen on
teeth. This epithelial attachment of the IJE was often indistinct or
absent at the apical portion of the IJE which terminated at the level
of alveolar crest. In yet another study,1064 amorphous alumina was
found to be slightly bioactive but more cytocompatible than tita-
nium for human alveolar (tooth socket) bone osteoblasts and gingi-
val fibroblasts. Cytocompatibility was assessed at the level of both
the basic (attachment, proliferation, cell protein content) and the
specific features (intracellular alkaline phosphatase activity, cytosk-
eleton) of the cells that were in direct contact with the coating.1064

Surface chemistry modifies cell response. For instance, a com-
parison of the response of costochondral (rib cartilage) chondrocytes
at two stages of endochondral development demonstrated that the
effects of various materials were surface- and cell-maturation-
dependent. Cells cultured on titanium exhibited increased
alkaline-phosphatase-specific activity, whereas those cultured on
Al2O3 showed decreased enzyme activity.1065 Another in vitro
study1066 investigated the effect of surface chemistry modification
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of bioceramics on human bone-derived cells grown on biomaterial
surfaces for 2 weeks. Cells were cultured on either pure alumina
(Al2O3), alumina doped with magnesium ions ([Mg]-Al2O3), hy-
droxyapatite (HAP) or tissue culture polystyrene (TCPS). The re-
searchers measured expression of alkaline phosphatase (ALP),
thrombospondin (Tsp), osteopontin (OP), osteocalcin (OC),
osteonectin (ON/SPARC), type I collagen (Col I), and bone
sialoprotein (BSP). Protein levels for ALP, OP, OC, and BSP were
significantly greater at day 5 in cells cultured on [Mg]-Al2O3 than
in cells grown on pure Al2O3. By day 14, the levels of ALP, Tsp, Col
I, OP, ON/SPARC, and BSP rose significantly above those occur-
ring in cells grown on pure Al2O3, HAP, and TCPS. This suggests
both that cells from the same patient respond to differences in sur-
face chemical groups, and that substratum chemistry which facili-
tates cellular adhesion will enhance cellular differentiation1066 —
though there is evidence that Al2O3 cannot act as a co-carcinogenic
carrier for polycyclic aromatic hydrocarbons (PAHs).862

As with other materials, the interaction of cells with alumina
implant materials is usually protein-mediated. For example, the
adherence of Streptococcus mutans OMZ-176 bacteria was the low-
est on uncoated polycrystalline alumina and on single-crystal alu-
mina (sapphire) precoated with human serum or saliva, of six com-
mon implant materials tested.979 Surface free energy of uncoated
material was strongly (negatively) correlated with S. mutans bacte-
rial adherence.979 However, the correlation disappeared when coated
materials were tested.979 This suggests that other binding mecha-
nisms (e.g., protein-surface interactions) are commonly of greater
importance to microbial adhesion to implant surfaces in vivo, al-
though hydrophobic interactions may sometimes play an impor-
tant role.1108-1110 Another study1142 found that differences in sur-
face energy achieved by changing implant material composition of
a ternary mixture of Al2O3, SiO2, and TiO2 could not be correlated
to varying cell responses, although overall biocompatibility (in terms
of cell proliferation and metabolic activity) was good.

What about blood cells? Alumina ceramic male pivots used in a
totally implantable centrifugal artificial heart were evaluated for vitro
platelet adhesion and activation, events which may play key roles in
thrombogenesis on foreign surfaces.1060 Platelet adhesion on alu-
mina, assessed using monoclonal antibody (CD61) directed against
glycoprotein IIIa, was found to be about the same as for pure tita-
nium, silicon carbide, and ultrahigh molecular weight polyethyl-
ene, somewhat higher than for Ti-6A1-4V alloy, but much lower
than for polycarbonate. Platelet activation on alumina was evalu-
ated1060 by measuring P-selectin (GMP-140) released from irrevers-
ibly activated platelets. GMP-140 levels for all tested materials were
not significantly different from the control value of 45.9 nanogram/
cm3, and platelet activation by alumina was not observed under the
static conditions in this work.1060 Another study found only 0.5
platelets/mm2 adhered to alumina surfaces that had been exposed to
human whole blood, although significant fibrin was also adhered.977

Alumina-coated surfaces have also been found to significantly
reduce adhesion of Porphyromonas gingivalis ATCC33277,4814 an
oral anaerobic bacterium important in periodontal disease and oral
malodor.

15.3.5.5 Alumina and Sapphire Particles
The biocompatibility of alumina and sapphire particles has been

investigated because it is important to understand the biological
reaction to inhaled particles and to wear particles that might be
produced by frictional forces in long-term prosthetic implants. Such
studies generally involve micron-scale particles, roughly the size range
of future medical nanorobots.

First, is alumina powder lethal? Massive administration of sev-
eral bioactive <44-micron ceramic powders were lethal to Balb/c
mice in 5 gm/kg doses when injected intraperitoneally, producing a
swollen kidney having an ischemic color, with edema of interstitial
tissue in the kidney cortex, severe degenerative changes in the tubu-
lar epithelial cells, and hyaline deposits in the renal collecting tu-
bules, along with edema and inflammation in pulmonary tissues.1067

Nonbioactive alumina powder similarly injected as a control (equiva-
lent to 90 trillion 1-micron3 nanorobots injected into the perito-
neal cavity of a 70-kg human) was not lethal and elicited no signifi-
cant changes in blood chemistry, though there was some loss of
body weight.1067 All powders had almost no systemic effects when
injected intramuscularly or subcutaneously.1067 IP-injected particle
pathogenesis was believed to derive from phagocytosis by lympho-
cytes and macrophages, leading to release of lymphokines and free
radicals that could damage kidney, lungs, and liver, with small
amounts of bioactive ceramic powder being removed rapidly from
the peritoneal cavity. Ceramics in fine powder form are generally
believed to have higher bioactivity and to be associated with higher
mortality. In this experiment,1067 as ceramic particle size was in-
creased the fatal effects in mice decreased. Consistent with their
extremely low water solubility in the near-neutral pH range (Sec-
tion 15.3.5.6), aluminas are minimally absorbed from the essen-
tially aqueous intestinal contents, and for the same reason are blocked
from absorption through the skin.958

Early studies1050 of 0.5- to 5-micron alumina particles implanted
subcutaneously and intraarticularly (knee joint) for up to 5 months
in mice revealed no persistent inflammatory or progressive fibrotic
reactions around the powder deposits. After an initial acute (3-7
day) granulocytic inflammatory phase, the material was gradually
contained within macrophages and deposited locally without sig-
nificant fibrous tissue reaction. Some particles were transported via
lymphatic vessels into regional lymph nodes.1050 Particles were found
in the interstitium of the lung (Figure 8.15); in the reticuloendot-
helial cells of the liver, spleen, and bone marrow; and in one case in
the meshwork of a renal glomerulum; but rarely in the bloodstream.
Such crystal deposits caused no local cell necrosis, fibrosis, or
granulomatous reaction in any of these organs.1050

Rat tissue responses to alumina powder administered at low doses
were investigated by Di Silvestre et al,1068 who found that pow-
dered alumina implantation in the subcutis, the muscle and the
peritoneum of the rat produced the same intense acute inflamma-
tory reaction in all implantation sites after 2 weeks. However, after
8 weeks the inflammatory reaction had regressed and there was a
thin layer of connective tissue around the implanted material, com-
pletely isolating it from the surrounding tissues.1068 Examination
of human biopsies from well-fixed human total hip prostheses
showed that alumina particle deposits increase with time with only
a low-grade macrophagic reaction. An inflammatory reaction ap-
peared when joint loosening occurred, but this reaction was less
striking than with loose metal-polyethylene prostheses.1069 The
amount of necrosis and fibrosis was lower for alumina implant wear
debris than that associated with metal or polyethylene implants.973

Intraperitoneal and intramuscular implantation of powdered alu-
mina particles in rats showed an initial granulocytic reaction with
some uptake by the reticuloendothelial system.1053 Intra-articular
injection of alumina wear particles into rat knees revealed a correla-
tion between the numbers of particles and the macrophage response
in the tissues. At 1 week the macrophage response to Co-Cr par-
ticles similarly injected was significantly greater than for the Al2O3

particles, possibly due to the necrosis of macrophages induced by
Co-Cr particles.1070 No antigenicity of alumina ceramic was found
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in another study that attempted induction of footpad swelling in
ceramic-immunized mice.1048 Histopathological studies of alumina
powder applied to dog tooth wounds have been reported.1071

Most cytocompatibility studies of alumina particles have exam-
ined the foreign-body reactions of macrophages.1106 For example,
it is known that rat alveolar macrophages readily ingest aluminum
oxide particles.862,1053 Toxicity tests of alumina powder in vitro us-
ing rabbit alveolar macrophages and in vivo using direct intratra-
cheal injection into rat lungs found that the powder had low toxic-
ity for macrophages and minimal recruitment of airway cells and
neutrophils in the rat lungs,845 although soluble aluminum salts
employed as vaccine adjuvants may have been implicated in mac-
rophagic myofasciitis.1752

Sapphire is generally biocompatible with macrophages.
Pizzoferato et al1077 found that saline-suspended 1- to 12.5-micron
alumina particles were only slightly phagocytosed in vivo by mouse
peritoneal macrophage cells lavaged 1 week post-injection. Harms
and Mausle1053 tested the biocompatibility of alumina ceramic in
macrophage cultures and found no acute cytotoxicity. Christel973

noted that an examination of human biopsies from failed total hip
prostheses revealed a foreign-body reaction containing predomi-
nantly macrophages, loaded with alumina particles, that had no
morphologic alteration and had not lost their chemotactic ability973

— though one more recent study found that macrophages grown
from monocytes in the presence of alumina were somewhat nega-
tively affected.1072 In another study by Rader et al,1073 human mono-
cytic THP1 cells were differentiated over a period of five days in the
presence of vitamin D3 and GM-CSF in macrophage-like cells in
the presence of various particles and concentrations. The secretion
of tumor necrosis factor (TNF) — considered to be the initiator
protein of particle disease leading to aseptic loosening of
endoprostheses — was measured and was found to be elevated 4
times control for alumina ceramic particles, compared to 23 times
the control level for polyethylene particles and 25 times control for
cobalt particles. Nakashima et al1103 reported that 1-, 100-, and
1000-micron alumina particles could induce the release of bone
resorbing mediators (IL-6, TNF-α, IL1-α) by macrophages in a
dose-dependent manner, but hydroxyapatite particles of equal size
stimulated a greater release than the alumina. Nkamgueu et al2596

found that alumina microparticles ingested by human blood mono-
cytes that had been forced to differentiate into macrophages over a
7-day period decreased the macrophages’ intracellular K/Na ratio (a
measure of cell vitality), decreased their phagocytic ability by 27%,
and reduced their oxidative metabolism by a factor of 5.

Catelas et al1074 measured the effects of size (0.6- to 4.5-mi-
cron), concentration (5-1250 particles/macrophage), and composi-
tion (e.g., alumina) of ceramic particles on phagocytosis and cell
mortality in the J774 mouse macrophage cell line. Kinetic studies
(from 5 min to 24 hours) revealed that phagocytosis of the particles
begins very early after cell exposure, increasing with time and par-
ticle concentration and reaching a plateau after ~15 hours. Phago-
cytosis increases with concentration for particles up to 2 microns.
For larger particles up to 4.5 microns, phagocytosis reaches a pla-
teau independent of particle size and concentration, suggesting a
saturation effect most likely dependent on the total volume in-
gested.1074 There was no significant difference in phagocytosis be-
tween Al2O3 and ZrO2 at 0.6 microns, though alumina seemed to
be more easily phagocytosed than high density polyethylene (HDP)
at the same size (4.5 microns) and concentrations. Cytotoxicity stud-
ies revealed that macrophage mortality increases with particle size
and concentration for sizes greater than 2 microns (to >30% cell
mortality). Smaller particles (0.6 microns) cause cell mortality only

at higher concentrations, and the mortality is still very low
(~10%).1074 There is no significant difference in cell mortality and
inflammatory mediator TNF-α release between Al2O3 and ZrO2.
TNF-α release increases with particle concentrations and is signifi-
cantly higher with HDP than with alumina.1074 Related studies by
Catelas et al1075,4789 using the same cell model investigated the in-
duction of apoptotic cell death (Section 10.4.1.1) in macrophages
by alumina ceramic and other powders of different sizes and con-
centrations. Of some concern, Catelas found that the apoptotic ef-
fect of ceramic particles on nuclear morphology was size- and
concentration-dependent, but that alumina ceramic particles induce
apoptosis more effectively than polyethylene particles at concentra-
tions of 125-250 particles/macrophage for ~2 hours.4789 A more
recent study by Nkamgueu et al2400 found slightly decreased cell
vitality and a 27% decrease in phagocytic ability in human mac-
rophages that phagocytosed alumina particles.

The responses of a few other cell types to alumina ceramic pow-
ders have also been investigated. For example, cultured human fi-
broblasts exposed to 1-500 µg/cm3 alumina powder showed no cy-
totoxic effects with cell viability at different exposure times mea-
sured by colony formation efficiency, neutral red uptake and colori-
metric tetrazolium reduction.1076 No cytotoxic or antiproliferative
effects were induced in fibroblast-like mesenchymal cell monolayer
populations cultured in vitro on powdery alumina ceramic.972 Alu-
mina powders generally induce no cytotoxicity in cell cultures598 of
human gingival fibroblasts or osteoblastlike cells.1107 Nishio et al4765

found that the δ-crystal phase of alumina powder promoted greater
differentiation in osteoblasts than the α-crystal phase when present
in a complex composite ceramic. Rodrigo et al4766 found some
change in osteoblast function from 10-micron α-alumina particles
in human bone cell cultures, and that while both polyethylene and
α-alumina increase the expression and secretion of IL-6 in human
osteoblastic cells, the stimulation is weaker from α-alumina at the
same particle dose.4792 Oonishi et al974 observed no inflammation
or cell infiltration for 10- and 100-micron alumina particles im-
planted in holes drilled in the femoral condyles of rabbits. Dion et
al643 found that the hemolysis eventually initiated in vitro by alu-
mina powder is almost zero.

As for inhalation toxicity, human experience with alumina pow-
ders strongly suggests that they are not associated with major spe-
cific pulmonary hazards under typical 20th century conditions of
occupational inhalation exposure,958,4816,4817 though rodent experi-
ments suggest that clearance of alumina particles from the lung is
slow.4812 OSHA occupational exposure limits for alumina dust are
10 mg/m3 (total fraction) and 5 mg/m3 (respirable fraction), re-
spectively, according to the official Material Safety Data Sheets.958

(10 mg/m3 of sapphire particles equates to ~3 billion/m3 airborne
cubic nanorobots, each 1 micron in diameter.) Alumina refinery
workers exposed to >100 mg/m3-year of gamma aluminas for >20
years had a 3- to 4-fold excess of individuals with an abnormal forced
expiratory volume at 1 second, with abnormal being defined as <80%
of the predicted figure, though smoking had a far more deleterious
effect on ventilatory capacity.962 α-alumina 100-700 nm particles
have only minimal963 or no965 fibrogenic reactivity, and only at doses
instilled intratracheally that are massive compared to the amount
which could reasonably be inhaled in any one breath. Such massive
doses of γ-alumina in the 20-40 nm size range did produce a fatal
fibrosis of the lungs in rats.964 Corundum dust has no significant
effect on the in vitro enzyme activity of alveolar macrophages in the
rat.2496 Intratracheal instillation of 2 mg of alumina silicate refrac-
tory fiber in male Wistar rats produces no evidence of pulmonary
fibrosis, unlike other fiber materials.4800
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15.3.5.6 Chemical Stability of Alumina and Sapphire
It is generally accepted that alumina ceramics such as BionitR1025

and single-crystal sapphire1031,1035 have excellent biological inert-
ness and chemical stability. Atomically ultrasmooth sapphire sur-
faces are stable in air and water for months.899 Exposed to water,
the polished single-crystal α-alumina (0001) surface elicits a hydra-
tion reaction, with a water vapor pressure of ~1 torr sufficient to
fully hydroxylate the surface.1751 Alumina is corrosion-resistant be-
cause it exists in the highest oxidation state that aluminum metal
can possess. Thus this material has the potential for microstructural
control of the interface (with tissue) without formation of toxic
corrosion products.956

However, it is also known that α-alumina is very slightly soluble
in highly acidic or alkaline aqueous environments (Section 9.3.5.3.6).
This solubility has been measured experimentally using in vivo in-
tratracheal and biopersistence studies of high-alumina rock wool
fibers.4811 While inert particles such as carbon can reside unevent-
fully in phagolysosomes for long periods of time, sapphire particles
could release ions into the relatively acidic intra-organelle environ-
ment. Since aluminum ions are generally considered
toxic,1079-1083,5388 and since aluminum-containing bone cements
have on rare occasion caused death from neurotoxicity,4770 it is of
interest to determine whether or not these ions can leach into the
body from alumina implants or sapphire nanorobots. Early studies
in the 1970s found no movement of known contaminants into the
surrounding tissue from sintered alumina implants inserted into
the iliac crests (hip bones) and mandibles of rabbits.782 During the
1980s and 1990s, small increases in blood aluminum concentra-
tions were demonstrated in smelter workers.960 However, this po-
tential exposure level is several orders of magnitude less than for
bodily uptake of more soluble aluminum compounds used as food
additives,961 as antacid medication,960 or from food packaging ma-
terials and cooking utensils.966 In 1990, Lewandowska-Szumiel and
Komender988 investigated aluminum release from an alumina
bioceramic during standardized biocompatibility testing in an ani-
mal experiment. Alumina implants introduced into rat femurs and
guinea-pig mandibles and then removed 6-8 months later were found
to be well tolerated, and no changes in the surfaces of the removed
implants were observed under SEM examination. The researchers
decided to compare the aluminum content of the femurs of experi-
mental and control rats using atomic absorption spectroscopy, and
discovered that the level of aluminum was higher in the bones of
the experimental animals.

In 1991, Arvidson et al1031 investigated the corrosion resistance
of single-crystal sapphire implants with respect to the release of alu-
minum ions, and found no ions in the test solutions. The next year,
Christel973 reported that alumina exhibited greater bioinertness than
all other implant materials currently available for joint replacement,
and that no lymphocyte or plasma-cell infiltration into joint im-
plants is observed “because of the absence of soluble component
release.”

Then in 1992, Wang et al at the Shanghai Institute of Trauma-
tology and Orthopedics1041 bored a hole, 6 mm in diameter and 2
mm deep, on each iliac crest of 30 rabbits, then implanted 2 pieces
of alumina into the hole on one side, leaving the opposite side as a
control. Calcium, phosphorus and aluminum contents of iliac bone
on both sides were determined by Inductively Coupled
Plasma-Atomic Emission Spectrometry at 10, 20, 40, 60 and 90
days after operation. The aluminum content of the implanted side
was higher than that of the control and the difference was statisti-
cally significant in the 10-, 40- and 60-day groups, demonstrating

that the implant released aluminum into the bone. Calcium and
phosphorus also were significantly lower on the implanted side than
on the control side in the 10- and 20-day groups. Wang concluded
that aluminum released from the implant in the early stage might
be interfering with the local calcium and phosphorus metabolism
and delaying the mineralization of the bone.1041

Another study in 1994 by Toni et al at the Orthopaedic Clinic,
University of Bologna, Italy1022 examined the behavior of human
bone tissue adjacent to the alumina coating in eight cementless hip
prosthetic stems that appeared radiologically stable and were ex-
planted because of pain. Histologic evaluation demonstrated the
presence of a consistent layer of decalcified bone tissue in continu-
ity with and parallel to the prosthetic interface, a demineralization
phenomenon which the authors attributed to a high local concen-
tration of aluminum ions with metabolic bone disease.1022 This is
histologically comparable to the osteomalacic osteodystrophy de-
scribed in dialysis patients.5363-5366

Can medical nanorobots with primarily sapphire exteriors avoid
solvation in the aqueous biological environment? A therapeutic
population of 1012 nanorobots present in one human blood vol-
ume implies ~5400 micron3 per nanorobot (~0.1% nanocrit for
1.75-micron wide cubic devices). Taking equilibrium solubility of
alumina as 10-7 - 10-5 M at normal blood pH (Section 9.3.5.3.6),
we should expect an equilibrium aluminum ion concentration of
100-10,000 ions/micron3. However, the human bloodstream con-
centration of aluminum ranges from 1-88 x 10-8 gm/cm3 (Appen-
dix B), or roughly 200-20,000 ions/micron3, fairly close to the 0.1%
Nct equilibrium solvation concentration. There is also evidence that
atomically-precise ultrasmooth sapphire surfaces899 are somewhat
hydrophobic (Section 15.3.5.1), which might help to reduce the
solvation problem. A comprehensive investigation would inquire
first whether there is a clinically significant amount of sapphire leach-
ing, and if so, what are the precise limits of toxicity and the mini-
mum thresholds for biological effects? Further research is needed to
resolve these issues.

15.3.6 Biocompatibility of Other Nanomedical Materials
A great variety of additional materials and nanoparticulates6084

might be employed in the fabrication of medical nanodevices and
nanorobots for which biocompatibility must be assessed. Only a
few of these many possibilities can be mentioned here, including
DNA (Section 15.3.6.1), nitinol (Section 15.3.6.2), metals and semi-
conductors (Section 15.3.6.3), and dendrimers (Section 15.3.6.4).
Neural cell biocompatibility is briefly addressed in Section 15.3.6.5,
and Section 15.3.6.6 examines the possible biofouling of medical
nanorobots by natural biomaterials found in the human body. A
short discussion of the biocompatibility of free diamondoid
nanoparts from nanorobots, or free organic nanoparts set loose from
biorobots (e.g., cell parts such as free organelles, released into the
human bloodstream), may be found in Section 15.4.4. Interestingly,
in 2001 Rice University established a new Center for Biological
and Environmental Nanotechnology5229 to investigate the effects
of novel nanomaterials on the environment6258 and on biological
systems;5227 other efforts of this sort6259 are strongly encouraged.

15.3.6.1 Biocompatibility of DNA
Seeman2247,5666-5668 has pioneered the exploration of DNA as a

nanoscale construction material* (Section 2.3.1), and a few others
have employed DNA in related contexts,6180-6182 raising the ques-
tion of the biocompatibility of structural nucleotides that might be

* It has been proposed that the mechanical properties of DNA may have contributed to the ability of early cellular life (protocells) to withstand turgor pressure.5979
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used to build early-generation nanomedical devices. Other popular
variants on DNA such as peptide nucleic acid molecules5664 might
also find utility in nanomedicine and genetic therapies,5665 and
metal-containing DNA6019 or metallo-DNA could be used as
nanocomputer wiring and thus might be found inside the body
upon accidental fragmentation (Section 15.4.4, Chapter 17) of
nanorobots using this type of circuitry.

DNA in its natural helical state (dry bulk DNA density ~ 1.65
gm/cm3)6249 is usually nonimmunogenic in normal animals.1760 Or-
dinary DNA placed in human serum is degraded rapidly by natural
nuclease enzymes (plasma nucleases); post-apoptotic nuclear DNA
is depolymerized and opsonized by serum factors.2248 IgG in hu-
man blood serum2250 and in human milk2251 can hydrolyze both
DNA and RNA. Nucleases in human blood serum can degrade
double-stranded DNA, RNA and synthetic polyribonucleotides,2252

antisense oligonucleotides,2253 and various
oligodeoxynucleotides.2254 Single-stranded (ss) oligonucleotides are
more susceptible to hydrolysis than double-stranded (ds) oligonucle-
otides.2254 High molecular weight ssDNA is rapidly cleaved to 20-30
kD fragments by endonucleases, with mononucleotide breakdown
products appearing in circulation with no lag time.2368 The short
half-life of DNA can be exploited for use with certain therapeutics
that require moment-to-moment control, especially aptamers that
have been developed to alter blood coagulation5801-5807 or other bio-
logic processes.5808-5810 Chemical modifications2255-2257 can improve
the resistance of oligonucleotides — especially antisense oligonucle-
otides4698-4719 — to nuclease attack. These methods might prove
useful in serum-proofing early DNA-based medical nanodevices.5097

However, some of these changes cause the synthetic material to be-
come toxic in vivo, so every form of chemically modified nucleic
acid will have to be extensively evaluated in animal and human tox-
icity testing.

The physiological response to free DNA may be relevant to
bloodborne DNA-based nanodevices. The normal concentration of
free DNA in human serum is very low,2369 typically 5-40 ng/ml.2370

Free fetal DNA is found in maternal plasma2371 at 0.2 ng/ml (range
0.03-0.6 ng/ml) in early pregnancy, 0.6 ng/ml in midterm preg-
nant women, 2 ng/ml (range 0.6-6 ng/ml) in late pregnancy, 3 ng/
ml in preeclamptic women,2370,2372 and then falling to near unde-
tectable levels 2 hours postpartum.2373 Circulating DNA is found
in patients with (1) autoimmune thyroid disorders;2374 (2) pulmo-
nary embolism;2375 (3) systemic arterial inflammation or vasculitis
(20-50 ng/ml plasma dsDNA);2376 and (4) neoplasms of various
types such as benign gastrointestinal lesions (118 ng/ml)2377 or
malignant disease (412 ng/ml).2377 It is also found in patients dur-
ing hemodialysis (up to 5000 ng/ml plasma DNA),2378 presumably
due to release from leukocytes, and DNA plasma concentrations as
high as 16,000 ng/ml (~ 50 billion micron3, whole bloodstream)
have been recorded (Appendix B). The mean half-life for circulat-
ing fetal DNA in maternal plasma is 16 min (range 4-30 min).2373

Clearance of free dsDNA has a half-life of 18 min in nonhuman
primates, or 11 min for immune-complexed (IC) dsDNA.2379 Up
to 85% of IC-dsDNA (typically IgG2380) binds to erythrocyte sur-
faces within 2 min of injection.2379 The liver is the primary uptake
site.2369,2379 Organ uptake is more rapid for ssDNA than for
dsDNA.2368,2381 DNA larger than 15 bp does not measurably per-
sist in the mouse bloodstream longer than 20 min for ssDNA, or 40
min for dsDNA.2381 At high doses the clearance rate reaches a
maximum, allowing larger amounts of ssDNA to remain in
circulation.2368

Anti-DNA antibodies are found in normal human subjects2258

and in the sera of patients with some autoimmune diseases such as
systemic lupus erythematosis (SLE),2259 catastrophic or even asymp-
tomatic/remission antiphospholipid syndrome (APS),5392 or thy-
roid disorders.2374 SLE patients produce anti-DNA that targets con-
served sites on both ssDNA and dsDNA from essentially all spe-
cies,2260 with anti-dsDNA antibodies possibly recognizing unique
structures around the G+C regions or G+C clusters of DNA2261

and binding preferentially to poly(dA-dC) and poly(dG-dT).2267

In normal subjects without SLE, the serum only contains anti-DNA
antibodies that selectively bind to DNA from certain bacteria,2260

but native DNA mutated by UV light and hydrogen peroxide has
been rendered immunogenic in experimental animals.2262 Bacterial
DNA is a potent mitogen and immunogen. Immunization of nor-
mal animals with bacterial DNA elicits antibodies that bind mam-
malian as well as bacterial ssDNA, and also induces cytokine pro-
duction in the mouse2260 and can produce other immunostimulatory
effects depending on methylation.5811-5813

Solid-phase binding of DNA segments (as might occur in
DNA-based medical nanomachines) dramatically reduces DNA
antigenicity because constraints on topological and conformational
rearrangements of DNA in the solid phase hinder antibody2263 and
nuclease (a potentially confounding issue) interactions. The length
of these DNA segments appears unimportant, at least in undiseased
humans.2264 Antibodies can recognize B-DNA,2269 A-DNA/RNA
hybrids,2269 and even the left-handed Z-DNA2265-2269 found in some
of Seeman’s earlier experimental structures. (In 2002, the most prom-
ising structures appeared to be DNA-based PX-JX2 devices5666 that
used no Z-DNA [Nadrian C. Seeman, personal communication,
2002]; antibody recognition of these new structures had not yet
been reported.) The usual risk of insertional mutagenesis from
nucleic acid medicines2270 should be greatly reduced in DNA-based
nanodevices as long as these nanomachines remain intact. Biologi-
cal activity (translational, enzymatic, etc.) of artificial DNA se-
quences comprising DNA-based devices or their fragments cannot
be ruled out and should be investigated in every case; such activity
is most likely to occur in devices having components specifically
designed for biochemical interaction, or having sequences derived
from natural templates (e.g., viral, bacterial, mammalian). (Infec-
tive naked viral DNA should not be considered “biocompatible.”)
DNA-coated charcoal granules and carbon fibers have shown good
biocompatibility,2271 and some synthetic oligonucleotides actually
inhibit coagulation and reduced hemolytic complement activity in
vitro,2272,2273 an effect which appears to be nucleotide
sequence-independent2273 as mentioned above.

As with many cell types, keratinocytes5576 can take up
oligodeoxynucleotides and plasmid DNA, probably by
receptor-mediated endocytosis, inducing the production of
interleukin (IL)-1alpha, IL-1beta, integrin-beta(1), alpha-tubulin,
and follistatin. Free deoxynucleoside in concentrations of 2-5 mM
is well tolerated by living cells experimentally.5577 As for free DNA
released intracellularly, leukocytes contain nucleases that break down
ingested DNA,2249 and intracellular nucleic acids are starting to be
studied for their possible diagnostic value.5578 Intracellular nucleases
are known for DNA5579 and RNA5580-5583 degradation, and espe-
cially for mRNA5584-5589 degradation, wherein the degradation pro-
cess is initiated by deadenylation5601 and is tightly regulated.5589-5592

Both single- and double-stranded circular plasmid DNA is degraded
in ~1 hour by cytosolic nucleases.4295,4305,4306 It should also be noted
that apoptotic cells (Section 10.4.1.1) degrade their DNA before it
is released, preventing inflammatory responses.
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Double-stranded RNA (e.g., ~500 nucleotides in length5972) can
induce the degradation of homologous mRNAs in organisms as di-
verse as protozoa, animals, plants and fungi, and especially mam-
mals,5972 resulting in post-transcriptional gene silencing (termed
RNA interference or RNAi)5973,6016 that takes place only in the cy-
toplasm.5974 The dsRNAi is itself degraded in the cell.5975 Appar-
ently RNA interference reflects an elaborate cellular apparatus that
eliminates abundant but defective mRNAs and defends against
molecular parasites such as transposons and viruses.5976 The recently
discovered process of DNA-RNA interference5977 suggests that cells
are very sensitive to double-stranded DNA or RNA — which is
apparently misinterpreted as a viral infection, causing cells to enter
viral defense mode and/or turn off those genes that are producing
dsDNA/RNA. Even mRNA-cDNA hybrid constructs can produce
relatively long-term interference of specific gene expression.5978

Nanorobots using nonhomologous DNA/RNA sequences in the
cytosol-accessible portion of their structures should not elicit these
cellular responses.

15.3.6.2 Biocompatibility of Shape Memory Materials
Another interesting material of possible nanomedical relevance

is Nitinol (an equiatomic alloy of nickel and titanium) and other
shape memory effect (SME) alloys1408,1409 and polymers5671 that
are capable of temperature-driven reversible phase transformations.
Some may allow thermal cycling between 30-50 ˚C1419 at frequen-
cies up to ~100 Hz1419 and applied loads of ~3-6 x 108 N/m2.1408,1419

TiNi alloys can be deformed below a martensite finish temperature
but recover their initial shape when heated above a temperature
corresponding to the austenite temperature.1409 Grain phases are
often a few microns in size.1409 Grain sizes smaller than 100-200
nm inhibit SME in experiments on bulk materials,1410 and
bulk-deposited TiNi films thinner than 100 nm apparently cannot
readily transform to martensite.1411,1412 However, ~40 nm reaction
layers have been studied,1413,1414 and TiNi transitions are known to
occur between a cubic austenite phase with lattice size c = 0.3015
nm1415 and a monoclinic martensite phase with lattice sizes c =
0.4622 nm1415 or c = 0.4646 nm.1416 So it is not inconceivable that
nanomanufactured Nitinol crystal having molecular-size grain struc-
tures placed with atomic precision could demonstrate SME near
the nanometer scale. TiNi has already found uses in
microrobotics.1417-1419 Thin-film actuated TiNi microvalves have
been successfully operated for up to 2 million cycles1420 at 1%
strain1421 although long-term SME stability remains a concern.1408

Nitinol has good biocompatibility1422 and is as nontoxic as tita-
nium.1423 This good biocompatibility is believed to be due to the
tendency of TiNi to develop a compact thin film of titanium diox-
ide upon exposure to air,1422,1424 which largely1425,1426,6165 prevents
the cytotoxic Ni component from leaching out. One in vitro ex-
periment1424 tested TiNi particles < 5 microns in diameter on
BHK-21 cells cultured in 10% infant calf serum. Naked metal par-
ticles induced obvious morphological transformation clones whereas
TiO2-coated particles produced results not significantly different
from negative controls. (Less than 1% internal oxygen impurity
poisons the SME, however.1427) TiNi is found in many medical
applications including orthodontic tasks,1428 bone clamps,1429 bron-
chial prostheses,1430 and even eyeglass frames.1431 The material has
been investigated for intravascular therapy as a microgripper1419 and
as a means for controlled snakelike motion of small active cath-
eters1432 with expandable TiNi components that can be fed through
the catheters to break up blood clots and prevent embolisms.1431

Interestingly, one recently-discovered polymorph of titanium dioxide

is the hardest known oxide,4744 and the biocompatibility of TiO2
particles has been investigated.4745-4747

Porous Nitinol shows no adverse effects and shows good bone
attachment and tissue ingrowth when implanted in rabbit tibias
and back muscle for 3-12 weeks. TiNi demonstrates good healing
of bone tissue and bone remodeling with osteoclastic and osteo-
blastic activity in the bone cortex.1433 Porous TiNi implanted in
rabbit cranial bone made bone contact with cranial hard tissue. This
contacted bone has the same properties as surrounding cranial bone,
suggesting that Nitinol is suitable for craniofacial applications.1434

TiNi has good in vitro biocompatibility with human osteoblasts
and fibroblasts.1426 The material induces no toxic effects, no de-
crease in cell proliferation, and no inhibition of growth of cells in
contact with the metal surface. Nitinol does not induce inhibition
of mitosis in cultured human fibroblasts.1423 Fibroblasts seeded on
porous TiNi sheets grow into the holes, showing good
cytocompatible behavior.1433 TiNi implanted perineurally or in
muscle is nontoxic and nonirritating in rat soft tissues over 2-26
weeks,1435 with low immune cell response and a modest inflamma-
tory response similar to stainless steel and Ti-6Al-4V alloy.1435 No
necroses, granulomas, or signs of dystrophic soft tissue calcification
were found. Only a few foreign-body giant cells were present with
an encapsulating membrane about the same thickness as for stain-
less steel after 26 weeks.1435 In vivo studies of Nitinol implanted for
3-17 months in beagles also showed no adverse tissue reactions from
the implants.1425

15.3.6.3 Biocompatibility of Metals, Semiconductors,
and Quantum Dots

Noble metals2282-2286 such as gold, platinum,5685-5687 and palla-
dium are very biocompatible, silver2360-2363 (including
nanocrystalline silver6207-6210) is moderately biocompatible, and ti-
tanium is widely used in implants and surgical staples (Section
15.2.1.3). The biocompatibility of metals and metal leachates is
particularly well-studied.2022,6030-6033 Titanium shows excellent
biocompatibility280-282,1423,5695-5710,6053 and is apparently well tol-
erated after implantation for at least up to 13 years,5823 as is, more
specifically, titanium dioxide or titania5700,6153-6164 — although a
U.S. Army study found slightly higher toxicity with TiO2 ultrafine
smoke particles than with larger particles,6183 and TiO2 nanoparticles
used in sunscreens apparently catalyze the photooxidation of or-
ganics with hydroxyl radical formation6184-6186 with at least one
group6184 reporting (and still a matter of ongoing dispute6186,6187)
sunlight-illuminated titania nanopowder catalyzing DNA damage
both in vitro and in some human cells. Single-crystal silicon is not
as biocompatible569 (the body will grow a protein sheath around it
to isolate it2287,2288), and phagocytosable hydrophilic silica crystal
particles are highly membranolytic,2330 cytotoxic,652 and produce
crystal-induced inflammation.2323 But porous single-crystal silicon
provides better mechanical anchorage for cells and thus is more
biocompatible than nonporous silicon.1769 Porous silicon can sup-
port the ingrowth of the natural mineral hydroxyapatite, the chief
structural component of human bone, without producing an isola-
tion sheath.2288 Silicon nitride also appears to have good
biocompatibility.2518 Fluoride-ion surface-implanted titanium has
antibacterial properties but does not inhibit the proliferation of fi-
broblast L929 cells.4801

Luminescent semiconductor quantum dots5740 and other
nanoparticles have been covalently coupled to biorecognition mol-
ecules and used in ultrasensitive biological detec-
tion5246-5253,5639,5741-5745 or drug delivery.5746 These nanometer-sized
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conjugates are said to be water-soluble and biocompatible,5253 and
it is true that a few micron3/cell of engineered nanoparticles are
tolerated by living cells when employed as intracellular fluorescent
reporters.4238 However, these nanoparticles often contain arsenic-
or cadmium-based compounds.5248-5250 These are potentially highly
toxic metals5254 if solubilized or eluted from the nanoparticles into
the cytosol or extracellular fluids. Other approaches, such as PEBBLE
(Probes Encapsulated By Biologically Localized Embedding) sen-
sors,4258 are nanoscale spherical devices consisting of sensor mol-
ecules trapped in a chemically inert protective matrix which allows
dyes to be used for intracellular sensing that would normally be
cytotoxic; Halas group’s “nanoshells” are also being investigated as
sensors and for drug delivery.5746,6066-6068 Thorough toxicologi-
cal,5747 environmental,5748,5749 and biocompatibility5638,5742,5750

studies of these materials have not yet been undertaken but would
be well advised.

Ruoslahti and coworkers5739 have developed hybrid organic/in-
organic molecules consisting of nanocrystalline semiconductor par-
ticles (<10 nm ZnS-capped CdSe quantum dots) coated with pep-
tide segments (“homing peptides” much smaller than antibodies)
that target specific vascular addresses5751-5756 inside the bloodstream
and living tissues, for example, lymphatic vessels in tumors.5739 The
nanoparticles reportedly produce no blood clotting,5757 and the
addition of polyethylene glycol to the coating prevents nonselective
accumulation in reticuloendothelial tissues.5739 Notes Ruoslahti:
“These results encourage the construction of more complex
nanostructures with capabilities such as disease sensing and drug
delivery.” And fluorescent semiconductor nanocrystals individually
encapsulated in phospholipid block-copolymer micelles were non-
toxic (at <5 x109 nanocrystals per cell) when injected into Xenopus
embryos by Dubertret et al.6027

Timp’s group at the University of Illinois6235 is experimenting
with 7-micron silicon-based microchips inserted into living cells to
verify cell viability, as a precursor to testing GHz-frequency rf
microtransponders using nanotube antennas inside cells.

15.3.6.4 Biocompatibility of Dendrimers
Dendrimers5098-5105,6015 are tree-shaped synthetic macromol-

ecules with a regular highly-branched structure emanating outward
from a core. Dendrimers are formed almost nanometer by nanom-
eter, with the number of synthetic layers or “generations” dictating
the exact size of the particles. Each molecule is typically a few na-
nometers wide but some have been constructed up to 30 nanom-
eters wide, incorporating more than 100,000 atoms. The periph-
eral layer of the dendrimer molecule can be made to form a dense
layer of molecular groups that serve as hooks for attaching other
useful molecules, such as DNA, in the outermost branches.5106

Dendrimers offer many exciting near-term opportunities in
nanomedicine for the design of novel drug-carriers,5107,5108 gene
delivery systems,5109-5127 imaging or contrast agents,5128-5138 cell
labeling agents,5139 biosensors,5140-5145 artificial catalytic
sites,5146-5149 catalytic antibodies,5150 and DNA/protein
microarrays.5151-5154 Dendrimers also hold great promise in tissue
targeting applications and controlled drug release,5155 affording rela-
tively easy passage across biological barriers by transcytosis5156-5159

due to their controllable nanoscopic architecture and flexibility for
tailored functionalization.2397,5160-5162

In 1998, James R. Baker Jr. co-founded the Center for Biologic
Nanotechnology at the University of Michigan to bring together
doctors, medical researchers, chemists and engineers to pursue the
use of dendrimers as a safer and more effective medical therapy
agent.5163 For Baker, these nanostructures are attractive because they

can sneak DNA and other materials into cells while avoiding trig-
gering an immune response, unlike the viral vectors commonly
employed today for transfection. The dendrimer molecule is deco-
rated with specific snippets of DNA, then injected into biological
tissue. Upon encountering a living cell, dendrimers of a certain size
trigger endocytosis, in which a vesicle encloses the dendrimer and
admits the particle into the cell’s interior. Once inside, the DNA is
released and migrates to the nucleus where it becomes part of the
cell’s genome. The technique was first tested on a variety of mam-
malian cell types,5164 and in 2001 Baker began animal trials of
dendrimer gene therapy. Baker and Donald Tomalia, another
co-founder of the Center for Biologic Nanotechnology, report us-
ing glycodendrimer “nanodecoys” to trap and deactivate some in-
fluenza virus subtype strains.5165 Here the glycodendrimers present
a surface that mimics the sialic acid groups normally found in the
mammalian cell membrane. This causes virus particles to adhere to
the outer branches of the decoys instead of the natural cells.

The biocompatibility of dendrimers is determined by the nature
and conformational mobility of their exterior. One of the earliest
studies2395 of dendrimer biocompatibility looked at Starburst
dendrimers. These are spherical macromolecules composed of re-
peating polyamidoamino (PAMAM5166) units that can be produced
in successive generations, each with a defined size, molecular weight,
and number of terminal amino groups. Roberts et al2395 investi-
gated Generation 3 (G3; MW = 5,147; 24 terminal amines), Gen-
eration 5 (G5; MW = 21,563; 96 amines), and Generation 7 (G7;
MW = 87,227; 384 amines) PAMAMs in V79 cells or in
Swiss-Webster mice for a number of biological properties, includ-
ing in-vitro toxicity, in-vivo toxicity, immunogenicity, and
biodistribution. Potential biological complications were observed
only with G7, and there was no evidence of immunogenicity.
Dendrimer G3 showed the highest accumulation in kidney tissue,
whereas G5 and G7 preferentially localized in the pancreas. G7
showed extremely high urinary excretion.

A more comprehensive study of dendrimer biocompatibility by
Malik et al2397 looked at polyamidoamine (PAMAM, Starburst),
poly(propyleneimine) with either diaminobutane or diaminoethane
as core, and poly(ethylene oxide) (PEO) grafted carbosilane
(CSi-PEO) dendrimers to study systematically the effect of
dendrimer generation and surface functionality on biological prop-
erties in vitro. Dendrimers with -NH2 termini displayed concen-
tration- and (in PAMAM) generation-dependent hemolysis. Changes
in red cell morphology were observed after 1 hour even at low con-
centrations (10 µg/ml). At concentrations below 1 mg/ml CSi-PEO
dendrimers and dendrimers with carboxylate (COONa) terminal
groups were neither hemolytic nor cytotoxic towards a panel of cell
lines in vitro, but cationic dendrimers were cytotoxic with IC50
values of 50-300 µg/ml depending on dendrimer type, cell type,
and generation.2397 Polyether dendrimers with carboxylate and
malonate surfaces were not hemolytic at 1 hour, but were lytic after
24 h, unlike anionic PAMAM dendrimers.2397 Cationic 125I-labelled
PAMAM G3 and G4 dendrimers administered intravenously to
Wistar rats at ~10 µg/ml were cleared rapidly from the circulation,
with <2% recovered dose in blood at 1 hour. Anionic PAMAM
dendrimers (G2.5, G3.5 and G5.5) showed longer circulation times,
with 20-40% recovered dose in blood at 1 hour and
generation-dependent clearance rates (lower generations circulated
longer).2397 PAMAM dendrimers injected intraperitoneally appeared
in the bloodstream within 1 hour and their subsequent
biodistribution mirrored that seen following intravenous injec-
tion.2397 Malik et al2397 concluded that inherent toxicity probably
ruled out using higher generation cationic dendrimers for parenteral
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administration, especially if they needed to be used at a high dose,
and that dendrimer structure would have to be carefully tailored to
avoid rapid hepatic uptake if targeting elsewhere (e.g., tumor tar-
geting) was a primary objective.2397 Other related studies have ex-
amined dendrimer interactions with human arterial endothelial
cells,5167 muscle cells,5168 proteins,5169 and nuclear pores;5170

complement activation by DNA-dendrimer complexes;5171 mi-
crovascular extravasation profiles of dendrimers;5172 whole-body
biodistribution of dendrimer-based agents;5173 modification of cell
adhesion to surfaces;5174 the synthesis of dendrimer-fullerene
films;5175 and the morphology of DNA-dendrimer complexes as a
function of ionic strength.5176 Thus, toxicity relates mostly to charge
and surface functionality.

In applications, dendrimeric macromolecules have been investi-
gated as delivery vehicles for antisense2396,5177-5180 or therapeu-
tic5181-5184 oligonucleotides, antiangiogenic agents,5185 antiapoptosis
agents,5186 selectin antagonists,5187 plasmid-based gene delivery vec-
tors,5188 photodynamic therapy5189 and
radioimmunotherapy5190-5193 agents, adjuvants,5194 vaccines,5195

bacterial toxin inhibitors,5196 various anti-cancer
drugs2398,5107,5160,5197-5202 including 5-fluorouracil,5203 and even as
potentially useful objects for DNA-based bottom-up
nanoassembly.5097 Dendrimeric peptides selective for microbial sur-
faces have been developed which have broad antimicrobial activity
while achieving low hemolytic activity to human erythrocytes,5204

and other antimicrobial,2399,5205 antiviral,5206-5210 and antiprion5211

dendrimeric agents have been investigated. E. Pinkhassik suggests
that solid particles coated with the same residues as the dendrimers
might exhibit identical solubility and biocompatibility.

15.3.6.5 Biocompatibility with Neural Cells
Central nervous system (CNS) neurons, unlike those of the pe-

ripheral nervous system, do not spontaneously regenerate following
injury, and it has been shown that in the developing CNS a combi-
nation of cell-adhesive and cell-repulsive cues guide growing axons
to their targets.1528,4961 Neural cells respond to patterned sur-
faces4962,4963 (Section 15.2.2.3). For example, glass surfaces
functionalized with spatially-precise patterns of cell-adhesive (pep-
tide) regions and cell-repulsive (PEG) regions can control the direc-
tion of neuron cell adhesion and neurite outgrowth across the sur-
face.1528 Schwann cells have been cultured on and preferentially
attach to micropatterned laminin-coated stripes separated by BSA,
with cell orientation driven by the laminin-BSA interface.4964 Lines
of polylysine-conjugated laminin as narrow as 2.6 microns induce
linear axonal guidance outgrowth and adherence of hippocampal
neurons.4965 Polyphosphoester polymers have high biocompatibility
as nerve guide conduits.4966 Self-assembling peptide scaffolds can
serve as biologically compatible substrates for neurite outgrowth
and synapse formation.4967 Varying the mechanical,4968 electri-
cal4969,4970 and chemical4971 characteristics of the contact surface
also influences the neurite outgrowth rate in neuronal contact guid-
ance, and can even allow control of neuron shape.5735

Adhesion and patterning of cortical neurons has been investi-
gated4972 on isolated islands of neuron-adhesive polyethylenimine
(PEI) surrounded by a neuron-repellent fluorocarbon layer. The
patterns consisted of PEI-coated wells (diameter 150 microns, depth
0.5 micron) etched in a fluorocarbon coating atop polyimide-coated
glass. The separation distance between the PEI-coated wells was
varied between 10-90 microns, resulting in highly compliant pat-
terns of adhering cortical neurons after one day in vitro and inter-
connecting neurite fascicles between PEI-coated wells present on
patterns with a separation distance of 10 microns after 8 days in vitro.4972

Immunoisolation of dopamine-secreting PC12 cells by mi-
croencapsulation in semi-permeable 75:25 2-hydroxyethyl meth-
acrylate/methyl methacrylate (HEMA/MMA) copolymer mem-
branes has been evaluated as a promising strategy for dopamine re-
placement for Parkinson’s disease.4973 There was good
biocompatibility between the HEMA/MMA copolymer and the host
brain, as evidenced by the absence of gross tissue damage at the
neuronal tissue/capsule interface and only a moderate inflamma-
tory response by reactive astrocytes confined to the immediate vi-
cinity of the injection tract,4973 despite other work suggesting that
pure MMA can be neurotoxic to human cortical neurons.4974 In
another experiment,4975 neuronal and glial cells (Schwann cells and
astrocytes) were immobilized within N-(2-hydroxypropyl)
methacrylamide (HPMA) polymer hydrogels to produce cell-based
polymer hybrid devices, with some cells exhibiting spreading or
process outgrowth and secretion of laminin which offers a possible
model for tissue replacement in the central nervous system using
these cell-based polymer constructs. Similar constructs involving
polycarbonate tubes filled with lens capsule-derived extracellular
matrix coated with cultured neonatal Schwann cells are being stud-
ied for their ability to promote the regrowth of retinal ganglion cell
(RGC) and other axons across surgically induced tissue defects in
the CNS.4976 Genetically engineered cells have been combined with
biocompatible polymers to elicit axon regrowth across tissue defects
in injured rat CNS,4977 and the direct transplantation of neural tis-
sue into the mammalian brain has been studied for a century.4978

Although early electrodes implanted in brain or peripheral nerve
often left corrosion- or abrasion-related deposits,4979 good long-term
biocompatibility of various electrode materials has been demon-
strated (1) at nerves;4980,4981 (2) in cochlear implants at scala tympani
electrode arrays4982,4983 and potential CNS auditory prostheses;4989

(3) in retinal chip implants,4984 semiconductor-based
microphotodiode arrays designed to be placed under the neural retina
in the subretinal space,4985-4987 and visual cortex microelectrode
arrays;4991 (4) in other neural implants intended for mobilization
of paraplegics, phrenic pacing, or cardiac assist;4970 and (5) for a
variety of microwires4988 and electrode materials including sili-
con,4989-4991 platinum,4989,4992 iridium,4989,4993

polyesterimide-insulated gold wires,4994 peptide-coated glassy car-
bon pins,4995 carbon nanotubes,4820 and polymer-based elec-
trodes.4996 Silicon nitride4992,5041 and silicon dioxide5041 are dielec-
trics used as an electrode passivation layer. Certain metals cannot
be used in the brain without provoking necrosis and phagocytosis.
For instance, copper induces active phagocytosis and silver yields
inactive phagocytes after implantation for 37 days in rat brain.4997

On the other hand, stainless steel and Nichrome (with varnish in-
sulators such as Epoxylite or polyimide) can be implanted without
producing any detectable damage beyond that of the initial trauma
and brief phagocytosis limited to the edge of the electrode track.4997

Larger electrodes create more tissue reaction at least up to 37 days.4997

Other aspects of electrocompatibility are discussed in Section
15.5.6.1.

Many materials show good biocompatibility when implanted in
the brain or CNS, including various gels,4998,4999 biopoly-
mers5000-5003 and polymer capsules,5004 hollow dialysis fibers,5005

and other biomaterials.5006,5007 The overall neurobiocompatibility
of diamond (Section 15.3.1.4) and diamond-like carbon,629 carbon
nanotubes (Section 15.3.2.1) and functionalized fullerenes (e.g.,
Section 15.3.2.3(4)), carbon fiber,4962 Nitinol (Section 15.3.6.2),
and metal coatings such as tantalum, tungsten, platinum, gold, iri-
dium, palladium, and brass (further altered to promote or inhibit
cell growth and spreading by an additional overcoat of biological
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materials including ECM proteins, laminin, fibronectin, and col-
lagen IV)629 have also been examined. In one experiment,5008 tita-
nium microscrews and monofilament stainless steel wire were im-
planted into the parietal region of rabbits and produced no behav-
ioral changes or neurological deficits suggestive of either systemic
or localized toxicity from the implant materials. However, at 2 weeks
the titanium had caused the largest inflammatory response in sur-
rounding brain parenchyma based on analysis of markers for mi-
croglial proliferation, gliosis, and leukocyte infiltration. After 26
weeks the greatest leukocyte response was found with stainless steel
implants, as compared to silicone elastomer which produced the
least inflammation. Silicone elastomer has well-established brain
biocompatibility and is commonly used as a neurosurgical implant
material.5008

The neurobiocompatibility of bulk Teflon (Section 15.3.4.2(9)),
Teflon implants (Section 15.3.4.3) and Teflon particles (Section
15.3.4.4) has already been briefly discussed. In general, Teflon is
relatively inert with poor cell attachment when used as an implant
in the central nervous system.1158 For example, Proplast (a fluoro-
carbon polymer) shows no reaction with dura and brain,5009 although
this material was withdrawn from the market for other reasons (Sec-
tion 15.3.4.3). As another example, a 12-micron thick Teflon film
prevents adhesions between an implanted electrode array and the
dura, in cat brains.5031

Special risks of particles in the brain should also be investigated
further. For example, diffuse iron particles were found in the cortex
of a patient who showed increasing frequency of seizures 12 years
after a blunt head injury, which the researchers believed might have
contributed to progressing traumatic epilepsy;5922 though strictly
neurochemical alterations might be responsible for epileptogenesis
or seizures.5923 If seizures can be induced by particles of certain
types in the cortex, this could have relevance for medical nanorobots
navigating or residing in these spaces.

Motile nanorobots performing missions in brain tissue can be
injected directly into nonvascular regions of brain tissue, thus en-
tirely avoiding the blood-brain barrier (BBB) which serves as a for-
midable obstacle for traditional drug molecules, particularly pep-
tides. According to one excellent brief summary,6085 the BBB is found
in all vertebrate brains and is formed around the endothelial cells of
the brain capillaries (~640 km of vessels of total surface area ~9.3
m2). The endothelial cells comprising the tubular capillaries in brain
are cemented together by intercellular tight junctions which elimi-
nate a paracellular pathway of solute movement through the BBB,
and the virtual absence of pinocytosis across brain capillary endot-
helium6086 eliminates transcellular bulk flow of circulating solute
through the BBB. “Under these conditions, solute may gain access
to brain interstitium via only one of two pathways: lipid mediation
or catalyzed transport. Lipid-mediated transport is restricted to small
molecules (with a molecular weight less than a threshold of approxi-
mately 700 Da) and is generally, but not always, proportional to
the lipid solubility of the molecule. Catalyzed transport includes
carrier-mediated or receptor-mediated processes. The BBB is actu-
ally composed of two membranes in series: the lumenal and the
ablumenal membranes of the brain capillary endothelial cell, which
are separated by approximately 300 nm of endothelial cytoplasm.”6085

While there are direct routes for nanorobots into brain tissue
that avoid the BBB (e.g., injection into the neuropil,6089,6090 injec-
tion into cerebrospinal fluid,6091 histonatation (Section 9.4.4), etc.),
some mission scenarios might require bloodborne medical
nanorobots to cross the blood-brain barrier. It has long been known
that passive particles of colloidal size can receive special coatings
that engage various naturally occurring endocytic and transcytic

transport mechanisms6092 while causing no large-scale openings in
the tight junctions of the brain endothelium.6093 For example,
polysorbate 80- or 85-coated biodegradable polybutylcyanoacrylate
(PBCA) nanoparticles trigger phagocytic uptake by brain blood vessel
endothelial cells6094 which allows particle-bound small molecules
that normally do not cross the BBB to be transported across it.
Overcoating with polysorbates apparently leads to the adsorption
of apolipoproteins from blood plasma onto the nanoparticle sur-
face,6095,6096 whereupon the coated particles mimic low density li-
poprotein (LDL) particles and can interact with the LDL receptor,
leading to their uptake by the endothelial cells.6097 Small cargo
molecules that have been transported in this manner experimen-
tally through the endothelium and thence into the neuropil include
the Leu-enkephalin (analgesic) hexapeptide dalargin,6098-6100 the
Met-enkephalin kyotorphin,6101 the antitumor antibiotic doxoru-
bicin,6102 the NMDA receptor antagonist MRZ 2/576,6103

loperamide6104 and tubocurarine.6105 The lipophilic antitumor drug
camptothecin,6106 the drug 3',5'-dioctanoyl-5-fluoro-2'-
deoxyuridine (DO-FUdR),6107 tobramycin6108 and idarubicin6109

have been transported into the brain using ~200-nm solid lipid
nanoparticles, and similarly the antitrypanosomal drug
diminazenediaceturate has crossed the BBB using 364-442 nm
lipid-drug conjugates.6110 Some BBB penetration has even been
shown by long-circulating pegylated nanoparticles.6111

However, nanorobots will most likely need to enter the neuropil
themselves — not merely broadcast small-molecule effluents into it
through the BBB from an extraendothelial location, or release cargo
molecules from an intraendothelial waystation. In a cell culture
model of the BBB using a co-culture of bovine brain capillary en-
dothelial cells and rat astrocytes, lipid-coated ionically-charged
nanoparticles 60-nm in diameter have been induced to cross the
BBB by transcytosis without any degradation.6112 More significantly,
the BBB can be temporarily and reversibly opened to allow
small-particle passage by osmotic disruption6087-6089 via intracarotid
infusion of hypertonic saccharide solution,6113 e.g., mannitol or ara-
binose, which results in transient shrinkage of cerebrovascular en-
dothelial cells with subsequent increased permeability of the tight
junctions.6114,6115 This allows the passage of magnetite-dextran
nanoparticles6116-6118 (e.g., MION nanoparticle unimodal hydro-
dynamic diameter ~40 nm6122), replication-defective adenovi-
rus6118-6120 (70-90 nm diameter6123) particles, and herpes simplex
virus (HSV)6118,6120,6121 (150-200 nm diameter6123) particles
through the BBB endothelium and into the neuropil. The BBB can
also be reversibly opened for some small molecules using the vaso-
active peptide bradykinin analog Cereport (RMP-7, receptor medi-
ated permeabilizer-7),6124 though apparently bradykinin itself is not
as effective.6125

The BBB is also disrupted during diseases such as experimental
allergic encephalomyelitis,6126,6127 HIV encephalitis,6128 and mul-
tiple sclerosis in which >1000-nm-size T cells and macrophages in-
vade neural tissue through BBB tight junctions, and during experi-
mental bacterial meningitis which produces focal pial venular leaks
of in situ perfused 0.01% colloidal carbon black.6129 Nanorobots
could similarly locally manipulate the signaling pathways involved
in BBB tight junction regulation,6130 possibly commanding junc-
tional gaps to open or close at need — e.g., ICAM-1-mediated sig-
naling in brain endothelial cells is known to be a crucial regulatory
step in the process of lymphocyte recruitment and migration through
the BBB.6131

Fenart et al6112 notes that the customary drawback to methods
that involve an increase in BBB permeability is that there is poor
specificity, with circulating blood compounds such as albumin
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gaining indiscriminant and pathological access to the brain. How-
ever, in the case of medical nanorobots these methods could be ap-
plied on a highly localized basis, followed by rapid convoy forma-
tion entry (Section 15.5.2.3). A similar solution involves the pro-
tein transduction domains (PTDs) — naturally-occurring protein
sequences that allow rapid crossing of cell membranes of all mam-
malian cell types without compromising membrane structure or
function.6132 PTDs have been demonstrated as suitable for in vivo
delivery of “peptides, small proteins, full-length enzymes, DNA oli-
gomers, peptide-nucleic acid oligomers, liposomes, and magnetic
nanoparticles” across the blood brain barrier,6132 and these “keys to
the city” could in principle also be applied locally.

Additionally, the BBB is not a structurally perfect barrier. Gaps
and imperfections of various sizes are naturally present. Nanorobots
seeking entry to the neuropil from the bloodstream can search out
and exploit these randomly-placed natural junctional gaps. BBB
ultrastructure has been lightly studied6133 and 0.5-micron
perijunctional gaps have been observed,6134 but the author can find
in the literature no precise estimate of the number density or distri-
bution of micron-size gaps throughout the entire BBB network of
the human brain. In one rat experiment6135 it was found that in
control animals 0.4%-0.6% of circulating albumin appeared in the
subendothelial space and in the basement membrane of control
animals prior to osmotic disruption (rising to 56% 30 minutes af-
ter osmotic disruption), so many gaps of some size clearly exist;
another study6136 reports 0.5%-2.4% BBB penetration by various
peptide molecules prior to BBB disruption. Certain brain regions
(e.g., selected circumventricular organs including the pineal gland,
neurohypophysis, and choroid plexus) are known to have particu-
larly leaky BBB capillaries.6136 The area postrema deserves mention
as another possible site of circumventricular entry, as it is also the
chemoreceptor trigger zone and is often the site that triggers nausea
and vomiting in response to detection of toxic substances in the
bloodstream. Hypertension can produce measurably leaky
venules6137 and other leaks in the BBB.6138 And while glycated
albumin-gold colloid complexes injected into the common carotid
artery do not significantly permeate the BBB, nevertheless “a few”
gold particles are observed in the perivascular neuropil after 15
minutes.6139

If a population of Nbot nanorobots of (assumed cubical) volume
Vbot transit in convoy (Section 15.5.2.3) at velocity vbot through
randomly-placed >Vbot

2/3-area holes in the BBB (i.e., large enough
to admit one nanorobot at a time) of collective hole area Atotal with
the objective of infusing the entire nanorobot population into the
neuropil in tinfusion seconds, then vbot = Nbot Vbot / Atotal tinfusion.
Taking Nbot = 109 nanorobots, Vbot = 1 µm3, and tinfusion = 100 sec,
then even assuming a very conservative transit speed of vbot = 100
µm/sec, the total area of all ~micron-size holes need only be Atotal =
10-7 m2 or just ~0.000001% of the total BBB surface area. If the
actual total area of micron-size holes Atotal is less than 105 µm2, the
transit velocity vbot or the infusion time tinfusion may be increased as
required.

Even in the complete absence of large BBB junctional gaps as
posited above, properly mission-designed active motile nanorobots
could employ a combination of cytopenetration (Section 9.4.5), in
cyto locomotion (Section 9.4.6) and histonatation (Section 9.4.4)
through the BBB to achieve ready access to the neuropil.

Other aspects of nanorobotic neurobiocompatibility discussed
elsewhere in this Volume include the hypothalamic induction of
hypo- or hyperthermia analogously to Shapiro Syndrome (Sec-
tion 15.2.7), the fate of microparticles placed in the brain (Sec-
tion 15.4.3.3.1), neuronal chemorepellents (Section 15.4.3.6.1),

neuronal exocytosis (Section 15.4.3.6.6), mechanical strain (Sec-
tion 15.5.4.1) and membrane wounding (Sections 15.5.7.2.1 and
15.5.7.2.2) in neural cells, nanorobot-induced neural cytoskeleton
disorganization (Section 15.5.7.3.1), motor neuron diseases (Sec-
tion 15.5.7.3.2), intracellular shock wave damage to neurons (Sec-
tion 15.5.7.4), the possibility of mechanically-induced neuron
apoptosis (Section 15.5.7.6), and storage diseases in neurons (Sec-
tion 15.6.3.2).

15.3.6.6 Biofouling of Medical Nanorobots
Another biocompatibility issue in nanorobotic medicine is

biofouling4749-4755 — the possible incapacitation of nanorobotic
systems which may become jammed with biological macromolecules,
structures, microorganisms, or debris. The biocompatibility of medi-
cal nanorobots made of diamond has already been reviewed (Sec-
tion 15.3.1), but such nanorobots likely will not present smooth
unbroken surfaces to the in vivo environment. Rather, nanorobot
surfaces will frequently be interrupted by various transtegumental
structures such as sorting rotor binding sites (Section 3.4.2), chemical
sensors (Section 4.2), pressure sensors (Section 4.5), energy trans-
ducers (Section 6.3), communications transducers (Section 7.2),
manipulatory appendages (Section 9.3), and so forth. The
biocompatibility of each of these structures (or their fragments; Sec-
tion 15.4.4) must be separately assessed, and assessed in various
plausible combinations. A comprehensive evaluation is beyond the
scope of this introductory text.

The biocompatibility of exposed chemical binding sites found
on binding pads, sensors, or sorting rotors used for molecular trans-
port, and ligand presentation surface moieties (Section 15.2.2.4)
may be the easiest to analyze. Small-molecule receptors probably
will avoid antibody recognition due to steric constraints. Macroph-
ages and other phagocytic cells should not be able to recognize rap-
idly spinning synthetic sorting rotor binding sites, which are deeply
embedded in an otherwise passive diamondoid structure. Nor should
these cells be able to recognize display ligands (Section 5.3.6), which
are presented and then retracted a short time later. Artificial mono-
clonal antibodies are easily raised against natural biological receptor
sites,1715 but natural antibodies to such receptors normally have been
removed by clonal deletion and thus should not be available to par-
ticipate in an interaction with medical nanorobot receptors whose
structure is homologous to the natural receptors. Natural antago-
nists to receptors for highly regulated cytokines2156-2160 and similar
biomolecules may exist in the body, and might therefore also be
available to interact with artificial nanorobot binding sites. How-
ever, such interactions may be minimized (1) by careful design of
sorting rotor competitive binding site specificities, (2) by employ-
ing recessed active structures and self-cleaning grilles, and (3) by
executing preprogrammed prophylactic nanorobot behaviors such
as periodic counterrotational backflushing of all binding sites. De-
signers also must avoid creating binding sites which might inad-
vertently trigger cytotoxic reactions. For instance, silicic acid and
silica particles are hemolytic, inducing permeability changes in bio-
logical membrane systems.652 The biocompatibility of enzymes
immobilized on surfaces in experimental therapies has also been
studied.6030

Possible biofouling or clogging of nanosieve pores (Section 3.3.1),
nanoscale pipes (Section 9.2.5), spinning molecular sorting rotors
(Section 15.5.7.1), protruding telescoping manipulators (Section
15.5.7.7), nonadhesive (Section 15.2.2.1) and adhesioregulatory
(Section 15.2.2.4) nanorobot surfaces, and implant surfaces with
bacterial overgrowths or biofilms (Section 15.2.1.4) have already
been discussed, at least briefly, elsewhere in this book series.
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Biofouling by microorganisms is of particular interest because early
nanodevices may be involved in bulk production processes for phar-
maceutical agents such as antibiotics and drugs, for food products
such as cheese, and for many other industrial materials, long before
the introduction of suspensions of sophisticated nanorobots into
the human body is permitted. It has long been known5790 that bac-
teria adhere to Teflon in continuous culture of the sort commonly
employed in biotechnology production methods,5791 and may form
biofilms on Teflon1225-1227,1358-1361 (Section 15.3.4.2(12)). Bacte-
ria may also grow well on graphite surfaces (Section 15.3.3.3), though
rigorous studies of biofilms on diamond have not been published in
the literature.

Finally, nanoscale pores, pipes, rotors, manipulators, and active
surfaces are subject to possible damage by free radicals or other highly
reactive moieties that may be present in the natural biological envi-
ronment in which nanorobots must operate for extended periods of
time. While graphene sheets are largely impervious to carbon radi-
cals (Section 5.3.2.4), intact diamond surfaces are susceptible to
chemical attack by atomic oxygen (Section 9.3.5.3.6 (I)) and
non-intact diamond (Section 9.3.5.3.6 (I)) and sapphire (Section
9.3.5.3.6 (I)) surfaces are even more susceptible. J. Soreff (Section
9.3.5.3.6 (IV)) has suggested that microbes could be designed that
are capable of applying excited oxidants such as singlet oxygen to
breach a diamond surface. No in vivo studies have yet been reported,
though H-passivated diamond cannot resist free radical attack by
photodissociated products of fluoroalkyl iodides6236 and at least one
other instance of diamond/free-radical activity is known.6237 As a
useful benchmark, Drexler10 notes that “proteins in living systems
provide a model for molecular machines in a relatively complex,
chemically aggressive environment. Metabolic enzymes can have life-
times of several days,6238 despite the relative fragility of protein struc-
tures.” The lifetime of a single unprotected diamondoid sorting ro-
tor of greater chemical stability may be even longer, perhaps on the
order of ~106 sec.

Several methods may be used to extend this operational lifetime.
For example, medical nanorobot designs commonly include ten-
fold redundancy in sorting rotors,2762,3573 manipulator arms,2762

and other mechanisms4609 exposed to natural biological fluids. Since
rotors can be safely banked until needed, the simple expedient of
sequentially engaging spares when active units are damaged may
extend mission lifetime by up to a factor of ten, given tenfold re-
dundancy of the affected mechanisms; thousandfold or higher re-
dundancies may be practical for the most critical fluid-exposed
medical nanorobot components. Another alternative, suggested by
Drexler10 in a different context, involves the use of sacrificial getters
positioned anterior in the fluid flow to susceptible components:
“Damage resulting from trace quantities of highly reactive contami-
nants can be minimized by flowing feedstock solutions past sur-
faces bearing bound moieties resembling those used on critical ro-
tor surfaces, but selected for higher reactivity. Sacrificial moieties of
this sort can combine with and neutralize many reactive species,
including free radicals.” Such getters could be positioned along the
walls of access channels leading to enclosed sorting rotors, with get-
ter moieties mounted on detachable tool tips in the manner of pre-
sentation semaphores (Section 5.3.6) and either recycled, refurbished
or replaced from internal inventory as needed. A related
biocompatibility concern is whether diamondoid surfaces, once at-
tacked or covalently bonded by active moieties, become more vis-
ible to the immune, complement, inflammatory, or thrombogenic
systems of the human body. These subjects deserve further research.

15.3.7 Biocompatibility of Nanorobot Effluents
and Leachates

The biocompatibility of both purposeful and accidental efflu-
ents that might be released by medical nanorobots must also be
examined. By and large, such effluents should have relatively low
molecular weight (although chemical byproducts of energy genera-
tion or proteins broken down by nanomotors might be larger). For
example, glucose engine (Section 6.3.4.4) effluents such as CO2

and H2O present few problems, and most low-molecular-weight
chemicals (including many 20th century drugs and antibiotics) must
be coupled with other substances such as proteins or conjugates
before they can be recognized by the immune system.2274 Such
chemicals are called haptens.1760 (Of course, entirely aside from their
immunoreactivity, these low-molecular-weight chemicals could be
directly toxic, especially if not efficiently cleared by the liver, and it
has been proposed that small molecules originating from microbes
might underlie nonspecific pyoinflammatory diseases.5820)

There is a distinction often made between antigens and immu-
nogens that may be useful to emphasize here.1760 An antigen is an
agent that can bind specifically to components of the immune re-
sponse, whereas an immunogen is an agent that can induce an im-
mune response. Thus all immunogens are antigens, but not all anti-
gens are immunogens. In general, compounds with molecular weight
less than 1000-2000 daltons (e.g., penicillin, progesterone, aspirin,
carbon dioxide, or kerosene2275) are not immunogenic.1760,2332

Compounds with molecular weight between 2000-6000 daltons may
or may not be immunogenic, but compounds over 6000 daltons
generally are immunogenic.1760

A compound also needs a certain minimum chemical complex-
ity to be immunogenic. For instance, amino acid homopolymers
(e.g., a 30,000 dalton pure lysine polymer) are rarely good immu-
nogens, and a 50,000 dalton homopolymer of poly-γ-D-glutamic
acid (the capsular material of Bacillus anthracis2336) is not immuno-
genic at all. Large copolymers of several different amino acids tend
to be highly immunogenic,1760 albeit due to T cell processing and
not size per se (a substance cannot be an antigen if there is no T cell
epitope). Lipids and nucleic acids are poor immunogens1760,2332

(though antibodies have been raised to them), but become immu-
nogenic when conjugated to protein carriers.1760,2332 Many carbo-
hydrates and virtually all proteins are immunogenic.1760,2332 Most
polysaccharides, fibrilar proteins (e.g., silk fibroin), and
single-stranded nucleic acid polymers have sequence-specific anti-
genic determinants or “epitopes.” On the other hand, native
double-stranded nucleic acids and most globular proteins have
conformation-dependent epitopes2332 — antibodies can recognize
primary, secondary, tertiary or even quarternary protein struc-
tures.1760 A molecule that is “foreign” will also be immunogenic.
For example, the release into the bloodstream of animal-derived
synthetic proteins that have not been properly human-
ized2276-2278,5593 might induce a strong immune response. Most pro-
tein toxins are strongly immunogenic,1760 while small chemical tox-
ins are not.

Besides size and complexity, one final requirement for
immunogenicity of possible nanorobot effluent molecules is
degradability. In order for most antigens to stimulate T-cell-mediated
immune responses, interactions must occur between
antigen-presenting cells (APC) and helper T cells.1760 (Most effec-
tive B cell responses are dependent on T cell help, but B cells per se
do not need degradation to recognize and respond to antigens.)
APCs must enzymatically degrade a protein antigen into fragments
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that can be bound to MHC proteins and then be presented at the
APC surface to T cell receptors, activating the response. Thus pro-
teins composed entirely of D-amino acids, which are resistant to
enzymatic degradation, have low immunogenicity,2337,2338 whereas
peptides composed of L-isomers can be broken down and have nor-
mal immunogenicity — though counterexamples exist.2339 (Bacte-
ria employ D-isomer amino acids in their coats2340 for this very
reason.) Carbohydrates are not processed or presented and thus are
unable to activate T cells, although they can sometimes directly ac-
tivate B cells.1760 Biological sugars are typically monoisomeric, so
polysaccharide molecules comprised of isomerically unusual sugar
monomers that are unrecognizable to natural enzymatic degrada-
tion processes2341 (e.g., L-glucose or D-tagatose2342) might be rela-
tively nonimmunogenic and cytotolerant,2343 though as yet there
appear to be no experimental tests of this possibility. As noted ear-
lier, pure diamond is expected to be nonimmunogenic, but fullerene
and sapphire surfaces might be immunogenic in some circumstances
(Section 15.2.3.3) and other structures such as exposed sorting ro-
tor binding pockets or detached protein-based presentation sema-
phores might also be immunogenic — more research is needed to
reach definitive answers. (Even if nanoparticulate forms of these
substances are nonimmunogenic, there is a small possibility that
they could act as inert irritants capable of activating nonspecific
inflammatory responses (Section 15.2.4); the biocompatibility of
larger nanorobot fragments is briefly discussed in Section 15.4.4.)

Nanorobot effluents might also collect as gas bubbles or solute
crystals adhering to the nanodevice exterior, which material could
then be recognized by the immune or inflammatory systems. This
difficulty should largely be preventable by good design. In one ex-
periment by Ward et al,2590 eliminating trapped air microbubbles
from materials having low surface tension significantly reduced
complement activation by these materials, in rabbits. A related is-
sue is that most surfaces exposed to ambient air acquire an adsorbed
layer of hydrocarbons and other small molecules that is at least a
few angstroms thick, and larger particles may also be present in the
form of adherent dust or other debris.2279 The inflammatory po-
tential of these adherent materials should also be investigated.

In physiological environments, leaching of undesired moieties
from intact nanorobots or chemically pure nanorobotic materials is
unlikely with the possible exception of aluminum ions from sap-
phire (Section 15.3.5.6). There are no reports of such leaching even
from comparatively impure contemporary diamond-like carbon
(DLC) or CVD diamond surfaces (Section 15.3.1.3), although some
elution of biomolecules (e.g., heparin) from organic coatings on
diamond, graphene (e.g., fullerene), or fluorocarbon surfaces might
be expected in some circumstances.5782,5783 Antibody-targeted
chelated-radioisotope therapeutic agents can be chemically unstable
under physiological conditions and can allow some radioisotope
atoms to leach out into unintended tissues, but radioatoms trapped
endohedrally inside fullerenes such as C60 (Section 15.3.2.2) can-
not leach out and thus are inherently safer. No leaching has been
observed even from dye-impregnated ceramic coatings on
glassy-carbon electrodes,5784 though silicon additives often found
in pyrolytic carbon (Section 15.3.3.2) might possibly increase sus-
ceptibility to leaching of some components of those additives and
ion leaching from graphite has been reported in specialized indus-
trial applications.5785 Traditional fluorocarbon applications in medi-
cine often relate not to implantation but to inertness and purity —
e.g., Teflon tubing5786 delivers biosolutions without altering them
significantly by leaching organics or by chemically reacting with

the solutions, Teflon surfaces support cell cultures without emitting
toxic leachates,1190,1357,5782 Teflon coatings prevent toxic leaching
from underlying materials,5787 and Teflon is often used as a nega-
tive control in cytotoxicity studies of leachates.5788 Teflon compos-
ites containing non-fluorocarbon components can produce (often
nontoxic5789) leachates.

15.3.8 Nanorobotic Thermocompatibility
The issue of nanorobotic thermocompatibility arises in at least

two contexts: First, the active production of waste heat (or localized
cooling) by individual nanorobots, nanoorgans, or other nanorobotic
systems implanted within the human body; and, second, the physi-
ological effects of nanomedical implants that may result from the
passive thermophysical characteristics of those implants, or from
the materials with which they are constructed.

Previous discussions of thermally active systems include
nanorobot waste heat conduction (Section 4.6.6), the local and glo-
bal in vivo thermogenic limits of nanorobotic systems (Section 6.5.2),
thermographic navigation (Section 8.4.1), and the thermal safety
of in vivo electrical (Section 6.4.3.1) and mechanical (Section
6.4.3.4) systems. For instance, excessive nanorobotic waste heat
generation (e.g., creating localized temperatures >42 ̊ C) can stimu-
late thermosensitive channels in keratinocytes and in a specialized
group of heat-sensing sensory neurons terminating in the skin.5669

Previous discussions of passive conductivity include the
thermophysical characteristics (Table 8.12 and Appendix A) and
the thermal conductivity (Section 10.5.4) of biological and other
materials. Individual nanorobots also can alter the thermophysical
properties of biological tissues or fluids, although typical therapeu-
tic terabot doses2762,3573 should not produce clinically significant
effects. Maxwell’s theoretical model5629 predicts that the effective
thermal conductivity Keff of liquids containing suspended
micron-size (and larger) spherical particles increases with the vol-
ume fraction fnano of the suspended particles as: Keff/Kliq = 1 + {3
fnano / ([(Knano + 2Kliq)/( Knano - Kliq)] — fnano)}, where Kliq is the
thermal conductivity of the pure liquid, Knano is the thermal con-
ductivity of pure particles (e.g., nanorobots), assuming the particles
do not interact thermally (e.g., fnano << 1).5630 The interaction be-
tween spheres even at large volume fraction, as calculated by
Rayleigh, produces only a small correction, which is why Maxwell’s
simpler derivation is usually employed.5630 For “perfectly conduct-
ing” (i.e., infinite Knano) spherical particles, Maxwell’s model fur-
ther simplifies to Keff/Kliq = 1 + {3 fnano / (1 — fnano)}; Lu and Kim5631

found that perfectly conducting prolate spheroids with a/b = 10
(length/width) give theoretical and experimental values at least 10%
lower than the Keff/Kliq for spheres.

Thus for example, in the case of a ~1 cm3 dose of spherical dia-
mond nanorobots (~1012 devices at ~1 micron3 each) infused into
the 5400 cm3 adult human male blood volume (fnano = 1/5400),
taking Knano = 2000 W/m-K for diamond and Kliq = 0.549 W/m-K
(whole blood; Table 8.12), then Keff/Kliq = 1.00056, which is clini-
cally insignificant. Blood heat capacity similarly is virtually un-
changed. The conclusions are much the same for soft tissue em-
placements of similar nanorobot populations. In augmentation sce-
narios3573,4609 (Chapter 30) involving heavy loadings of the human
body with diamondoid particles, the results are not much different. At
37 ˚C and a maximum 10% nanocrit (Section 15.6.2), blood heat
capacity falls only 5%, from 3.82 MJ/m3-K to 3.62 MJ/m3-K for pure
diamond particles, while blood thermal conductivity rises only 33%,
from 0.549 W/m-K to 0.732 W/m-K for pure diamond particles —
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somewhat less than the conductivity of live brain tissue (Table 8.12),
hence is probably not clinically significant.* Similarly, thermal equili-
bration time is only modestly increased even in the case of ~1000-terabot
augmentation loads of free-floating in sanguo nanorobots.

Nevertheless, changes in whole-body thermal conductivity due
to massive implantation of continuous diamondoid materials can
impact natural thermoregulatory mechanisms. Aside from black-
body radiation, sweating, capillary sphincter control, and behav-
ioral thermoregulation (including respiratory cooling), the body
regulates its temperature and offloads excess heat principally via two
mechanisms, as follows.

First, there is passive conduction. Heat travels by pure conduc-
tion through fat and muscle from the body core out to the periph-
ery. The thermal conductivity of human tissue is Kt ~ 0.5 W/m-K,
so for a typical L = 10 cm path length (~half-torso thickness), heat
flow Hf ~ Kt / L = 5 W/m2-K, or ~10 W/K for a 2 m2 human body.
In a cold room, the mean temperature differential between core
and periphery ∆T ~ 11 K (Section 8.4.1.1), so Hf ~ 100 watts,
which is approximately the basal metabolic rate. Experiments con-
firm that 5-9 W/m2-K is the minimum heat flow in very cold con-
ditions (the actual value depending largely upon the thickness of
subcutaneous fat layers).2093 In this case, the peripheral capillary
blood flow has slowed to a trickle, producing the minimum ther-
mal conductivity of the human body in cold conditions. On the
other hand, in a warm room or during heavy exercise, ∆T ~ 1 K, so
Hf ~ 10 watts. Thus, paradoxically, at warmer temperatures when
the human body is generating considerable surplus heat, the body’s
passive heat flow is actually very low because of the smaller tem-
perature differential between core and periphery.

Second, heat is transported via the active blood flow. In warm
rooms, not only are the peripheral capillary sphincters fully dilated,
allowing more blood to flow through the peripheral capillaries rela-
tive to the core capillaries, but also the total volume of blood flow
may increase. (During heavy exercise, total blood flow volume may
rise by a factor of 4 or 5.) Diathermy experiments suggest that the
active blood flow mechanism alone may carry off 100-200 watts of
heat before core temperature starts to rise (Section 6.5.2). In cold
rooms and in the absence of heavy exercise, peripheral capillary
sphincters are maximally contracted, thus minimizing blood flow
(and hence heat transport) to the periphery.

To summarize: The passive conduction mechanism can throw
off ~100 watts of waste heat when the human body is in a cold
room but only ~10 watts when the body is in a warm room, while
the active conduction mechanism can throw off negligible heat in a
cold room but up to 100-200 watts in a warm room. Thus as the
external environment warms up, the human body shifts from pas-
sive conduction to active conduction via increased blood flow and
capillary sphincter widening.

The presence of even a maximum 10% Nct of diamondoid
nanorobots in the circulation will not significantly alter the heat
capacity of the blood, hence the active conduction mechanism in
human thermoregulation should be largely unaffected. However, in
augmentation situations where vascular fluid flow is completely re-
placed by nonfluidic transport systems (and including capillary
sphincter inhibition) as in the vasculoid4609 (a whole-body
diamond-plated artificial vasculature; Chapter 30), the active con-
duction mechanism in thermoregulation is essentially disabled.

This leaves the passive conduction system. Heat flow in a natu-
ral biological-tissue body is Hf,biol = Kt / L = 5 watts/m2-K. For a
human body shape composed entirely of pure diamond (Kt ~ 2000
watts/m-K at 310 K5632) and again taking L = 10 cm, then Hf,diam =
20,000 watts/m2-K. For a diamond-envasculoided human body,
taking a mass of ~1.7 kg of diamond thoroughly interwoven with
68.3 kg of mostly aqueous biological tissue mass (for a standard 70
kg male body), as a worst-case estimate** the effective heat flow
becomes Hf,vasc ~ (1.7 / 70) Hf,diam ~ 500 watts/m2-K, or (Hf,vasc /
Hf,biol) ~ 100 times more thermally conductive than before. For
comparison, a pure metal human form would have Hf,metal ~ 170
watts/m2-K for stainless steel, ~350 watts/m2-K for lead, ~780 watts/
m2-K for iron, or ~3800 watts/m2-K for copper. Hence a
diamond-envasculoided or augmentation-loaded human body, in
the worst case,** could have passive conduction properties similar
to those of solid metal.

This has implications for the maximum ∆T that can be main-
tained between core and periphery. Consider a human-shaped
tissue-mass with half-thickness L ~ 10 cm and surface area A ~ 2
m2, sufficiently heated from the inside to cause P ~ 100 watts (hu-
man basal rate) to flow via passive conduction from core to periph-
ery, establishing a temperature differential ∆T ~ P L / A Kt ~ 10 K
for natural human tissue with Kt = 0.5 watts/m-K. Upon switching
to diamondoid-envasculoided tissue, mean tissue thermal conduc-
tivity would rise to Kt ~ 50 watts/m-K and so ∆T would fall to ~0.1
K. In effect, the entire human body would become isothermal to
within 100 millikelvins; even at the peak power output of 1600
watts for the human body (Table 6.8), ∆T rises to just ~1.6 K. Thus
a diamond-envasculoided human body would tend to become iso-
thermal with its surroundings very quickly (although partially re-
sisted by intervening subcutaneous fat), a possible hazard to normal
human health especially in very hot or very cold environments. The
thermal equilibration time is approximately tEQ ~ L / vthermal ~ 0.1
millisec, where vthermal ~ Kt / hplate CV = 1000 m/sec for neighboring
vasculoid plates in good thermal contact with each other and hav-
ing thickness hplate ~ 1 micron, with Kt = 2000 watts/m-K and CV =
1.8 x 106 joules/m3-K for diamond at 310 K, and taking L = 10 cm
as before. This is far shorter than the typical 1-10 sec thermal re-
sponse time of the purely-biological human vasculature.

* Most studies of the thermal conductivity of suspensions have been confined to those containing millimeter- or micron-sized (i.e., nanorobot-sized) particles, but
nanometer-sized particles have a still larger surface area-to-volume ratio and thus might be expected to exhibit higher thermal conductivity because heat transfer takes place
at the surface of the particle.6003 Accordingly, experiments on “nanofluids” by Choi and Eastman6000-6004 revealed that even a small volume fraction fnano = 0.003 (0.3%) of 10-nm
metallic copper particles suspended in ethylene glycol produced a 40% increase in thermal conductivity of the composite fluid (i.e., Keff/Kliq = 1.4) — roughly an order of
magnitude larger increase in conductivity than the classical Maxwell theory predicts. Alumina-particle nanofluids have also been investigated experimentally.6005

** This calculation pessimistically assumes that the continuous diamond implant is proportionally represented in conductive channels oriented normal to the body surface.
B. Wowk notes that one can also consider the opposite extreme in which the diamond implant is wholly oriented as parallel rods running through tissue parallel to the body
surface. The thermal conductivity enhancement between body and external environment would then be much smaller, for the same reason that highly conductive particles
that occupy a small volume fraction in solids or liquids don’t significantly enhance conductivity (see above). The reality of an artificial diamondoid vasculature would lie
somewhere between these two extremes. A proper quantitative thermophysical assessment of the vasculoid4609 would require an analysis of the effect of fractal tortuosity on
thermal conductivity calculations. Wowk notes that evacuated aerogels demonstrate phenomenally low conductivities (0.005-0.01 W/m-K)6006 for their glass content and their
study might provide some rough quantitative guidance on the effect of fractal tortuosity on thermal conductivity, but a more accurate result will require thermal modeling
on numerically-generated random vascular trees. Mathematical models of thermal tortuosity have been explored in other contexts,6008,6009 and fractal tortuosity has found its
way into the reaction chemistry,6007 fluidized-bed engineering6008-6013 and hydrogeology6014 literatures, but fractal thermal tortuosity apparently has not yet been extensively studied.
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The substitution of sapphire for diamond in these augmenta-
tion applications should significantly improve thermal performance.
The thermal conductivity of synthetic sapphire may be as low as Kt

~ 2.3 watts/m-K for sapphire at 310 K,5633 roughly a thousandfold
lower than for diamond, when measured in the direction normal to
the symmetry or optic axis (c-axis); heat capacity (CV = 2.9 x 106 J/
m3-K) and density (3970 kg/m3) of sapphire are slightly higher than
for diamond. Thus for a sapphire-envasculoided human body, tak-
ing a mass of ~1.9 kg of sapphire (at 25 watts/m2-K for L = 10 cm)
thoroughly interwoven with 68.1 kg of mostly aqueous biological
tissue mass (at 5 watts/m2-K), the total heat flow is just Hf,sapph ~
5.5 watts/m2-K, which differs insignificantly from natural biologi-
cal tissue.5635 At P = 100 watts, ∆T falls to 2 K compared to 10 K
for natural tissue and 0.1 K for diamond-envasculoided tissue; tEQ
~ 1 sec for sapphire vs. 10-4 sec for diamond.

Two complications regarding sapphire require additional research.
First, the thermal conductivity of sapphire can vary significantly
with both composition and crystallographic orientation, a fact which
may impose additional and unknown constraints on the various

designs. For instance, one source reports heat flow values interpo-
lated to 310 K of 21 watts/m-K normal to the c-axis and 23 watts/
m-K parallel to the c-axis;5632 minor extrapolations of other sources
to 310 K (i.e. slightly outside the exact temperature ranges measured
experimentally) imply values of 2.05634 and 2.35633 watts/m-K for heat
flows normal to the c-axis. However, all reported values for sapphire are
at least two orders of magnitude more insulating than diamond.

Second, much like diamond, the thermal conductivity of sap-
phire varies with temperature. For example, at ~200 K (near dry ice
temperature) sapphire’s thermal conductivity rises to 5 watts/m-K.
At liquid nitrogen temperature (77 K), Kt soars to ~1000 watts/
m-K; the peak is ~6000 watts/m-K at 35 K.5632-5634 (Diamond’s
conductivity also rises as it cools.5632-5634) At the other temperature
extreme, sapphire’s thermal conductivity rises to 3.9 watts/m-K by
523 K. Diamond thermal conductivity also varies significantly with
isotopic composition (e.g., 12C vs. 13C);5636,5637 in 2002, it was un-
known whether similar opportunities might exist for the engineer-
ing of desired levels or patterns of thermal conductivity in
isotopically-controlled sapphire-based nanorobotic devices.
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CHAPTER 15.4

Systemic Nanorobot Distribution and Phagocytosis

Traditional biocompatibility focuses on the implant-host
interface. But a human patient is an interconnected structure
with various mechanisms permitting physical exchange

among all of its tissues and organs. Of particular interest in
nanomedicine is the movement of solid bodies and particulate mat-
ter through the various systems of the body. Intact motile nanorobots
that can travel purposively inside the human body (Chapter 8 and
9) and can avoid geometrical trapping, phagocytosis, and
granulomatization can achieve indefinite persistence without clear-
ance by the natural immune system. The analysis here primarily
concerns the fate of free-floating nanorobots (or their material ejecta
or fragments), stationkeeping nanorobots such as internal commu-
nication (Section 7.3.2) or navigation (Section 8.3.3) networks, or
motile nanorobots that have malfunctioned and lost their mobility,
and are moving passively through the body or are being driven by
cell-mediated processes.

Section 15.4.1 reviews the movement and fate of very large par-
ticles in human tissues. This is followed by a lengthy discussion of
the potential for geometrical trapping (Section 15.4.2) or phago-
cytic trapping (Section 15.4.3) of microscopic medical nanorobots
in the human body, and how nanorobots may actively avoid this
fate. The Chapter concludes with a brief discussion of the
biocompatibility of nanorobot fragments in vivo (Section 15.4.4).

15.4.1 Large Particle Movement
Large immotile macroscopic particles can migrate through soft

tissue on their own if they possess a certain degree of asymmetry.234

A sphere, such as a buckshot pellet, tends to stay in place for an
indefinite time. But an asymmetric object such as a sewing needle
or porcupine quill can move point first and may travel for long
distances due to the action of natural tissue movements and the
muscular forces acting upon it.234 Various implants used for inter-
nal fixation of fractures and for adjunctive tissue immobilization
during placement of permanent implants may also become dislodged
and migrate.234 Smooth pins and wires2600-2622 are more likely to be
reported as migrating than threaded objects such as screws2601 or
staples,2600,2601 although screws,2623-2625 threaded pins,2626 and
staples2627 are occasionally reported as having migrated. For instance,
of 47 occurrences reported in one survey,2601 eight patients died, six
suddenly, due to damage to the heart or to the blood vessels near
the heart by the migrating implants, with migration typically oc-
curring within 8 months of implantation. Migrating device or wire
fragments have entered the lungs,2602-2604 heart,2601,2625

aorta,2610-2613 pulmonary artery,2615-2618 small bowel,2628 abdomi-
nal wall,2629 spinal canal,2630 and knee joint.2608 Migrating frag-
ments have moved as far as from hand to elbow;2622 from pelvis to
heart;2620 from hip bone to ureter2631 or bladder;2632 from cervical
vertebra to lungs;2604 from right hip to left lung;2633 and from the

neck or shoulder down to the heart,2621 aorta,2610,2611 thorax,2606,2609

lung,2602 pulmonary artery,2615 diaphragm,2635 spleen2605,2607 (in
one case, reaching the spleen in only 12 hours2607), liver,2634 and
lower abdomen.2636 Incompletely absorbed dissolvable subdermal
sutures can work their way back to the surface of the skin2637 (Sec-
tion 7.3.3) – suture2638-2640 and ICD patch3936,6080 migration is
well known.

Large material particles can also become involved in blood cir-
culation, as illustrated by four occurrences of shell fragments trans-
ported into the cerebral circulation,2641 Kirschner wire migration
through the great vessels into the heart,2620 intrapelvic migration of
a Knowles pin through the external iliac vein,2642 and catheter frag-
ments removed from the central circulation in children.2643 Smaller
wear particles from vascular prostheses will move downstream until
trapped by reduced vessel diameters on the arterial side of capillary
beds, or in the lungs on the venous side of the circulation.234

Bloodborne cholesterol crystal emboli typically occlude 50- to
500-micron diameter arteries2644 when cholesterol crystals flake off
from the proximal arterial wall during medical procedures (e.g.,
angioplasty) or in the natural course. Such pathological cholesterol
crystals2647-2653 are usually found in the vasculature of kidney,2652-2658

gastrointestinal tract,2645-2647 muscle,2655,2663 skin,2654,2655 eye,2659

penis,2660,2661 brain,2662 or the extremities.2663-2665 More common
is the presence in animals2666,2667 and in human patients2670-2673 of
extracellular particles that are too large to be phagocytosed. These
particles include wear debris, precipitated corrosion products, min-
eral dusts, fibrillar fragments from tendon prostheses, or even 4- to
100-micron Teflon paste particles (Section 15.3.4.4). They ultimately
appear in the lymphatic drainage, in regional lymph nodes, or in
remote medullary locations or organs.

Relatively large nanorobots and nanoorgans lacking powered
locomotive capability (Chapter 9) but having a proper shape or
dynamic surface geometry (Chapter 5) could exploit the natural
propulsive forces in the tissues to achieve a slow, biologically-assisted
histomigration throughout the body. However, nanomedicine usu-
ally demands more rapid, precise, and controlled movement. Ap-
propriate tissue anchoring normally will be the paramount concern
for nanorobotic organs, as in the case of implanted macroscale com-
munication (Section 7.3.4), navigation (Section 8.3.6), or compu-
tational (Section 10.2.5) nodes.

15.4.2 Geometrical Trapping of Bloodborne Medical
Nanorobots

The fate or “clearance” of small immotile particles injected in-
travenously (IV) into the human bloodstream has been widely in-
vestigated. IV injection of, say, 15-micron radiolabeled microspheres
is a standard blood flow measurement technique in animal research.
The number of spheres that become trapped in a histological tissue
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slice is proportional to the blood flow through that tissue.2674-2676

However, particles larger than most capillaries (i.e., 10-, 15-, 25-
and 35-micron diameter microspheres) injected into pigs have re-
vealed that there are a considerable number of arteriovenous anas-
tomoses present in the ears and skin, large enough to allow
microspheres up to 25 microns to bypass the local capillary bed.2677

The IV injection of a small number (2-3 million) of 15- to 20-mi-
cron microspheres for purely diagnostic purposes in humans is also
considered a clinically safe procedure.2678 (The acute toxicity of 3-mi-
cron latex microspheres has been measured in rats;2679 Section 15.6.2.)

Human capillary vessels average 8 microns in diameter but may
be as large as 15-20 microns and as narrow as 4 microns in diameter
(Section 8.2.1.2). A rigid particle cannot easily traverse a vessel nar-
rower than the particle’s diameter. Experiments confirm that par-
ticles resembling inert nanorobots larger than ~7 microns in diam-
eter are trapped by purely geometrical filtration in the capillary
beds.2764 This trapping usually occurs the first time the microparticles
pass through any capillary bed in the body. For example, in one
study,2680 97% of all 15-micron radiolabeled microspheres reach-
ing the canine eye were trapped during the first pass. The trapping
of natural red blood cells in capillaries was discussed in Section
8.2.1.2, and the vascular trapping of natural white blood cells5415-5418

with the possibility of leukergy4142 or leukoembolization4143 has
also been described in the literature. (There are a few decades-old
reports5419-5421 of leukoembolization in the retina where capillaries
are the smallest, and a handful of other reports or suggestions of
possible leukoembolization,3890,5422-5424 but these appear to have
minimal clinical significance.4143) Of course, still-functioning
nanorobots can use active motility mechanisms (e.g.,
microbivores,2762 and see Section 9.4.3) to locomote through nar-
row vascular passages; localized emissions of vasodilator substances
such as NO (nitric oxide)5884,5885 could also facilitate such journeys
despite efficient scavenging,5886-5888 though NO5889 and related
substances5890 have many complicating effects which must be care-
fully considered before they are employed in these circumstances.

At the lower end of the size scale, particles less than 0.1 micron
in diameter have the possibility of slipping out of the systemic cir-
culation through fenestrations in the cells lining the blood ves-
sels.2764,2833 The fenestrations differ in size for the specific capillary
beds present in each organ. For example, the capillary endothelium
of pancreas, intestines, and kidney2681 has fenestrations of 50-70
nm. Exocrine glands also have endothelial walls with 60 nm fenes-
trations, though these are normally covered by a thin membrane
and the basement membrane still presents an intact barrier.2682 The
endothelium of the liver, spleen, and bone marrow has fenestra-
tions of ~100 nm, and the underlying basement membrane is not
intact, allowing particles of this size or smaller to escape the vessel
lumen. Capillaries in tumor regions may have abnormally high per-
meability due to tissue inflammation.2764

Our examination (below) of specific locations where circulating
nanodevices might possibly become geometrically trapped suggests
that medical nanorobots in the 0.2- to 2-micron size range should
have little problem remaining in circulation, if only geometric fac-
tors are considered.

15.4.2.1 Geometrical Trapping in Lung Vasculature
The opportunity for nanorobot trapping via simple geometrical

filtration is significant because the lung has the highest specific blood
perfusion rate of any organ, typically 90 mm3/sec-gm (~4500 cm3/
min) up to a maximum of 490 mm3/sec-gm (~24,000 cm3/min)
(Table 8.4). Following IV injection, venous blood flows directly to
the heart (Section 8.2.1.1), so the first capillary bed normally

encountered by bloodborne injecta is in the lungs. Certainly the
injection of large 77- to 125-micron2683 or 200-micron glass
beads2684 causes vascular embolization. But in general all IV
bloodborne particles >7-8 microns are preferentially trapped in the
pulmonary capillary bed2685,2764 (when this is the first capillary bed
through which the bloodborne particles must pass). For instance,
7.4-micron and 11.6-micron diameter polystyrene microspheres
administered IV are filtered out by the pulmonary capillary net-
work, mostly during the first pass, with no hemodynamic ef-
fect.2679,2686 Radiolabeled microspheres administered intravenously
to beagle dogs showed that 8- to 25-micron spheres stay in the lung
at least 1 month.4495 3-micron spheres are rapidly cleared from the
lung (most having left after 2 hours2679) and are found in liver and
spleen after 1 month.4495,4498 This effect has long been exploited in
radiodiagnostic imaging using albumin microspheres and in the
delivery of anticancer agents.2687 Some large particles, depending
on their reactivity, can cause pulmonary granulomas.2685

Inert particles smaller than 7 microns in diameter can pass
through the lung capillary bed without being trapped unless they
are aggregated or are very hydrophilic, in which case the pulmonary
bed deposition of somewhat smaller particles can be significant.2688

For example, some 1- to 2-micron diameter engineered liposomes
containing negatively charged amphiphiles have optimal deposition
in the lung;2689 accumulation at extrahepatic sites such as the lungs
is influenced by liposome size, charge, and composition.5692

15.4.2.2 Geometrical Trapping in Liver Vasculature
Among the major organs, the liver has the fourth-highest spe-

cific blood perfusion rate, typically 10-14 mm3/sec-gm (~1000-1400
cm3/min) up to a maximum of 55 mm3/sec-gm (~5400 cm3/min)
(Table 8.4). In the liver, the capillary beds have a high microvascu-
lature number density (Section 8.2.1.2) with the usual vessel diam-
eters. The injection of 15- and 80-micron microspheres directly into
the portal vein in rat liver induces embolic portal hypertension,
causing venous pressure to elevate 15 mmHg and 24 mmHg, re-
spectively.2690 One study2691 found portal vein- and hepatic
artery-injected 15-micron microspheres were all trapped in rat liver
in both normal and cirrhotic rats. It was claimed that this ruled out
intrahepatic shunts larger than 15 microns, but apparently a few
~20-micron intrahepatic shunts from portal vein to hepatic veins,
bypassing the sinusoids, are found in cirrhotic human patients.2692

Another study2693 found that microspheres at least 40 microns in
diameter are required for complete embolization of rat liver.

There are two interesting features of the blood filtration system
in the liver that are of potential relevance to medical nanorobot
geometrical trapping.

First, the portal venules that supply the liver with blood to be
filtered open onto venous sinusoids (Section 8.2.5) measuring 10-13
microns in mean diameter,2725 though varying somewhat with po-
sition in the organ.2694,2697 This sets a rather large upper limit for
clear passage by medical nanorobots. (Mean blood flow velocity
through rat sinusoids is 144 (range 54-245) microns/sec, or 197
microns/sec after acute ethanol ingestion,2695 and the varying pres-
sure profile along human liver sinusoids has been modeled.2696) If
sinusoids comprise ~10% of liver volume, then there are ~1000
sinusoids per lobule or ~109 sinusoids in the entire liver, of total
tubular length ~1500 km assuming a mean ~100-micron2

cross-section. Sinusoids in periportal areas are narrower, more tor-
tuous, and slightly less porous (5.96% hole area) than the wider,
straighter, and more porous (7.94% hole area) centrolobular ones.2697

Micron-size nanorobots should be able to navigate safely through
these passages.
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Second, the endothelial cells comprising the sinusoid walls are
fenestrated with numerous (5-20 per micron2) small (mean diam-
eter 0.175-micron, range 0.1- to 0.3-micron) openings and fairly
rare (<0.1 per micron2) large (0.3- to 1-micron diameter) open-
ings2697-2700 (Section 8.2.5). These fenestrae are not occluded by
diaphragms or basal lamina, hence act as sieve holes through which
small nanorobots could possibly be drawn into the 0.5-micron deep
Disse space2701 and thence into the lymphatic drainage. Alterna-
tively, nanorobots could be drawn into direct contact with the mi-
crovilli lining the hepatocyte plasma membrane (Section 8.2.5),
becoming trapped and possibly endocytosed. Of course, even simple
nanorobots equipped with gas concentration sensors (Section 4.2)
could probably detect an impending passage into the Disse space
because the sinusoid-to-hepatocyte oxygen gradient is 5 mmHg.2702

Such impending passage may be actively resisted using manipula-
tory appendages2762 or by other means (Section 9.4), if required by
mission design.

In the narrower periportal sinusoids, red blood cells in transit
are forced against the endothelial wall, helping to drive small par-
ticles through the holes via “forced sieving” and stirring the fluid in
the Disse space via “endothelial massage”.2703,2704 The main pur-
pose of the fenestrated endothelium appears to be that of a sieve.
The sieve allows the passage of particles <100 nm out of the blood
while preventing larger particles, such as ~7-micron-wide red cells
and nanorobot-sized ~1-micron chylomicrons, from contacting the
hepatocytes.2705-2707 Chylomicrons are protein-lipid aggregates pro-
duced by the intestine and carried by the lymph system into the
blood. Their lipids are gradually stripped off by enzymes and their
proteins are slowly removed or changed. This causes them to shrink
from ~0.5-1 micron in diameter to ~70-80 nm whereupon they can
finally pass out of the liver sinusoid through the fenestrae, thence to
be absorbed by hepatocytes. The half-life of chylomicrons in the
blood is 6-7 minutes,2519-2521 up to 9 minutes in smokers.2520 The
fenestrae thus act to keep the chylomicrons in circulation until they
have lost most of their lipid.2707 Plasma concentration of chylomi-
crons of various sizes are estimated to range from ~0.5 x 106/mm3

while fasting up to ~50 x 106/mm3 after a large meal, but typically
are ~5 x 106/mm3, about the same particle count as red cells. While
flowing through blood vessels, chylomicrons are marginated toward
the walls2522 along with the other smallest “flow units” in the blood
(Section 9.4.1.3), including nanorobots.

Medical nanorobots larger than 0.3 microns in at least two di-
mensions are extremely unlikely to be removed from circulation by
filtration through the hepatic sinusoidal fenestrae. For smaller
nanorobots, it must be noted that the endothelial fenestrae are dy-
namic cytoskeleton-rich structures2708 that respond to hormones,2709

viral infection2710 and cytoskeletal inhibitors,2711-2715 and can be
affected by various disease states and local inflammation. It is pos-
sible that the size and number of fenestrations2716-2722 and even the
width of sinusoids2723-2726 could be manipulated via purposeful lo-
cal biochemical secretions from neighboring medical nanorobots or
from other sources.

15.4.2.3 Geometrical Trapping in Spleen Vasculature
The spleen has the third-highest specific blood perfusion rate in

the human body, typically 48 mm3/sec-gm (~450 cm3/min) with a
wide range of 10-130 mm3/sec-gm (~100-1200 cm3/min).2727-2731

It is probably the most likely site in the blood circulation where
geometrical trapping of medical nanorobots may occur, because its
microcirculation is probably the most complex of any organ in the
body.5610 The spleen serves as a sieve or filtration bed which is espe-
cially important in the clearance of rigid or less-deformable particles

such as plasmodial-parasitized malarial erythrocytes,2732 red cells
containing Heinz bodies,2733 poorly opsonized encapsulated bacte-
ria2734 (which are typically 0.6-0.8 microns in size2735), “sickled”
cells found in sickle cell anemia patients, and colloidal particles.2736

The spleen is a soft, purplish organ about the size of a fist whose
primary role is to remove damaged, fragile or abnormal erythro-
cytes from the circulation. It consists of two histologically distinct
areas, the white pulp (5-20%) and the red pulp (~85%).2737-2741,5610

The white pulp collectively constitutes a large lymph node that per-
forms various immunological functions such as the production of
antibodies and the maturation of B- and T-lymphocytes and mac-
rophages. Indeed, the spleen is the largest single lymphoid organ in
the body – it is estimated that ~250 trillion lymphocytes/day may
recirculate through the spleen of a young adult male, ~8 times more
than through all lymph nodes.5616 The red pulp acts as a blood
filter to cull damaged, worn-out, or potentially dangerous cells from
the blood. Most importantly, the red pulp strains out fragments of
broken-up red blood cells (hemoconia or “blood dust,” probably
lipid material associated with fragmented RBC stroma) and removes
stiff or misshapen red cells, spherocytes (e.g., caused by IgG attach-
ment to red cells in autoimmune hemolytic anemia,2484), or
malaria-parasitized erythrocytes.2732 The spleen is a major site of
red cell destruction in the body. It is also one of the few “dispens-
able” organs because mammals can survive reasonably well without
one. (Because of the immune functions of the spleen, asplenic pa-
tients do have a higher risk of bacterial infections, especially from
encapsulated bacteria such as Streptococcus pneumoniae, Haemophilus
influenzae, and Neisseria meningitidis,5609 sometimes producing over-
whelming post-splenectomy infections (OPSI)5610 — life without a
spleen is not quite as benign as life without an appendix or gallbladder.)

Blood to be filtered by the spleen enters the organ via the splenic
artery. This artery ramifies into progressively smaller branches as it
passes through the splenic capsule (the outer wall of the organ, com-
prised of collagenous connective tissue interspersed with smooth
muscle).2739 As an arteriole enters the interior volume of the spleen,
it acquires a continuous coating of lymphocytes – a thick sleeve of
cells called the periarteriolar lymphocyte sheath or PALS.2742,2743

Arterioles continue to break into smaller and smaller vessels with
thinner PALS, finally dividing into a tuft of “penicillar” arteries
(so-called because of their resemblance to paintbrush bristles).2744

The PALS is almost wholly gone by this branching level. All of the
PALS, collectively, constitute the anatomical white pulp. Upon reach-
ing the red pulp (see below) and losing the last of the PALS, some
of the penicillar arteries become sheathed capillaries whose walls
are comprised of fusiform (spindle-shaped) cells. These cells are ori-
ented parallel to the vessel axis something like a cylindrical bird-
cage, and are surrounded by a sheath of reticulocytes and macroph-
ages bound together by reticular fibers.2739,2745 (Sheathed capillar-
ies can in very rare cases be embolized by natural fat globules;2746

similar embolization by a large enough population of indigestible
medical nanorobots might induce clinically significant loss of func-
tion or even necrosis.) Past the sheath, these capillaries return to the
normal tubular configuration and empty, along with the other cap-
illaries, into the red pulp.2739

The red pulp2737,2738 comprises most of the splenic volume and
consists of pulp cords (Billroth’s cords) and the venous sinuses (si-
nuses are ~30% of red pulp volume5610). The pulp cords make a
continuous sponge-like reticular tissue, which crisscrosses between
fenestrated walls of splenic venous sinuses. The cords contain eryth-
rocytes, lymphocytes, macrophages, granulocytes, and plasma cells.
The venous sinuses are 10-150 microns wide2747 and are lined by
elongated endothelial cells that resemble barrel staves ringed by hoops
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of reticular fibers, forming the hollow cylindrical shape of a sinus.
There are tiny slits (fenestrations in the sinus wall) between these
endothelial cells. (Figure 15.12). The basal membranes contain ac-
tin and myosin and can probably contract to vary endothelial cell
tension and thus the dimensions of the slits.5611

The spleen filters blood via two physical pathways – “closed”
and “open.” In the “closed” pathway, some capillaries terminate near
the outer surface of a sinus, forcing blood to pass directly into the
venous sinuses. (Arteriovenous shunts have been observed in the
human spleen that are as large as 7-10 microns.2748) In the “open”
pathway, some arterioles empty blood through one or two end-pores,
3-4 microns in diameter,2749 into the pulp cords and reticular cell
meshes, but not directly into the sinuses. Blood cells must then pass
by open circulation through the additional barrier of the network
of reticular fibers which make up the pulp cord before they can
attempt to squeeze through the endothelial slits and enter the venous
sinuses.2750 Blood cells that enter a venous sinus using either path-
way return to the general blood circulation, ultimately exiting the
organ via the splenic vein. In humans, 90% of the blood entering
the spleen takes the “closed” pathway (~2 minute transit time, di-
rectly from arteriole to venous sinuses) and only 10% goes via the
“open” circulation;2751 ~5-10% of resting cardiac output continu-
ously passes the spleen.5612 (The histology and microanatomy of
the human spleen differs from animal spleens.5613-5615) The slits
between endothelial cells are normally closed, but widen when cells
pass through them.

How large are the interendothelial slits (Figure 15.12) through
which cells must pass? Fujita2737 and Irino et al2749 observed

dumbbell-shaped erythrocytes passing through side-pores 1-2 mi-
crons in diameter, Linker2484 gives slit width as 2 microns, and
Cokelet2752 reports that the sinus wall slits are roughly 1 micron x 6
micron rectangular openings, and about 2 microns deep.* Although
red cells cannot pass through a long tube of diameter <~2.3 mi-
crons without plugging the tube (Section 8.2.1.2), careful experi-
ments have revealed that normal human erythrocytes can traverse a
rigid micropore with a diameter as small as 1 micron if the pore
depth is very shallow (e.g., 0.4 micron2753) with a driving pressure
of only ~1.5 mmHg differential,2754 or even as small as 0.5 micron
during erythrocyte diapedesis.2755 Transit through the slit is slow,
~10 sec or longer for healthy red cells,2752 somewhat slower in rat.2756

The mean residence time of a human erythrocyte in the red pulp is
~66 sec with an average velocity of ~0.25 micron/sec.2752 Because
the percolation of blood through the reticular meshwork between
capillary endings and venous sinuses is so slow, the red pulp con-
centrates blood to twice the normal arterial hematocrit, e.g., an
intrasplenic hematocrit of ~78%.2757

In the red pulp, deformed or injured red cells cannot navigate
the splenic sinusoids successfully, leading to sequestration and ph-
agocytosis (Section 15.4.3.2.4). For instance, red cells containing
Heinz bodies (granules due to hemoglobin damage) have difficulty
traversing even shallow pores ~3 microns in diameter,2733 and rela-
tively rigid spherical Staphylococcus aureus bacteria of diameter 2-3
microns have been found trapped in mouse spleen.2758 In this man-
ner, the spleen monitors for abnormal cells in blood by geometrical
sieving in venous sinuses and by surveillance of surface antigens by
mononuclear phagocytes. Experiments show that polystyrene
microspheres 5 microns in diameter injected into rat splenic artery
are trapped mainly in the red pulp.2759 One possible additional minor
complication is the observation that rat and mouse spleen capillar-
ies apparently can experience spontaneous cyclic contractions of
capillary walls to as narrow as 1 micron in diameter.2760 Cycles av-
erage 1 minute in length (range 12-180 sec), with closure occurring
in 2-12 sec during the cycle, lasting for <1-60 sec. However, the
author is unaware of any reports of such contractions in human
spleen.

Can medical nanorobots pass through the venous sinus slits?
These slits are optimally designed to trap rigid particles. For in-
stance, Heinz body fragmentation occurs when rigid particles of
oxidized hemoglobin are torn from affected red cells as they circu-
late through the spleen.2761 Thus the simplest device design rule
would be that non-organic nanorobots should possess at least one
physical dimension of ~1 micron or less, or should employ me-
chanical assistance2762 or a metamorphic surface (Section 5.3) ca-
pable of deforming the entire device to a width of ~1 micron or less
in at least one dimension during slit passage.

It may be useful for bloodborne nanorobots larger than ~1 mi-
cron in any dimension to incorporate explicit splenic passage pro-
tocols and splenofenestral motility mechanisms in their design.2762

The situation that such a nanorobot may face in traversing the spleen
might best be understood by analogy to the recorded journey of a
typical healthy erythrocyte through the red pulp. In one experi-
ment, an analysis of three 70-micron RBC paths through open red
pulp showed characteristic stop-and-go motion, with RBCs spend-
ing 0.015-9.71 sec in any 7-micron segment, despite steady perfu-
sate velocity.2757 At some locations RBCs adhered to reticular cells
or fibers by point attachment, and at others they became caught

Fig. 15.12. Unique arrangement of filamentous bands in sinus en-
dothelial cells of splenic red pulp (courtesy of Li-Tsun Chen and
Leon Weiss;4645 © 1973 Grune & Stratton, Inc.).

* An early oft-cited electron microscopy study by Chen and Weiss4645 reporting an interendothelial slit size of 0.2-0.5 micron in width, 2-3 microns in length, and 3-5 microns
in thickness was for phenylhydrazine-poisoned Sprague-Hawley albino rat spleen, not healthy unpoisoned human spleen. Human erythrocytes have a much larger mean cell
volume (MCV) of 94 micron3 (Section 8.2.1.2) than the reported MCV of 59.7 micron3 for rat erythrocytes,4646 and phenylhydrazine can dramatically affect cell volume4646 and
thus, quite likely, measured absolute slit width as well.
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over fibers. But in general RBCs were detained in the reticular mesh-
work more by surface interactions rather than by narrow channel
restrictions.2757 Appropriate splenofenestral passage techniques for
medical nanorobots might range from relatively simple motile
semaphoric surface arrays (Section 9.4.5.3) over individual step
lengths perhaps equivalent to the 8-nm kinesin motor molecule steps
(Figure 9.32), to more complex brachiation mechanisms2762 (Sec-
tion 9.4.4.2). Lymphatic-return pathways might also be feasible from
the spleen.2743 A more aggressive solution would be to deploy in
advance a small number of specialty nanorobots to selectively block
the entrance to the splenic artery during the nanomedical proce-
dure, physically denying entry to therapeutic nanorobots while si-
multaneously allowing other blood components to pass normally.
One such nanorobotic “vascular gate” (see Chapter 19 for details)
installed across a 6-mm diameter artery could be established using a
sheet of ~107 nanorobots each having a (~2 micron)2 patrol area.
The gate would allow non-nanorobotic particulate matter to pass,
selectively filtering out only nanorobots; if the vascular gate aggre-
gate consists of vasculomobile nanorobots, then at mission’s end
the aggregate can disassemble itself and “walk away” without creat-
ing a large nanorobotic embolus that could infarct the spleen. (Vas-
cular gates seem workable for nanorobots on short-term missions
but might not be appropriate for long-term missions where
nanorobots are performing surveillance functions such as early dis-
ease detection.) This avoids the even more radical (though surviv-
able) conventional options of splenic embolization2763 or splenec-
tomy followed by autologous splenic reimplantation.

Some blockage of the reticular meshwork by insoluble particles
is tolerable and presents only minor health risks. For example, ex-
periments with 3-micron latex spheres in rats found these particles
to be safe imaging agents or drug delivery systems for spleen or
liver,2679 even though 3.4-micron microspheres pass readily through
the lungs and are trapped in the spleen with bloodstream half-lives
of 1.62 minutes and 1.72 minutes in venous and arterial circula-
tion, respectively.2686 Acute hemodynamic toxicity as a result of
vascular occlusion is a function of total microsphere volume ad-
ministered, with an inverse relationship between sphere diameter
and hemodynamic toxicity.2679 Additionally, there is some evidence
that up to 90% of the blood flowing into the spleen may pass through
a region bordering the white pulp known as the perimarginal cav-
ernous sinus plexus (comprised of large flattened open spaces up to
300 microns x 1000 microns in area and 30-100 microns thick),
bypassing the narrow-gauge filtration beds of the red pulp.2745

15.4.2.4 Geometrical Trapping in Kidney Vasculature
The kidney has the second highest specific blood perfusion rate

of any organ, typically 70 mm3/sec-gm (~1300 cm3/min) up to a
maximum of 100 mm3/sec-gm (~1800 cm3/min) (Table 8.4). Nev-
ertheless, geometrical filtration of medical nanorobots from the re-
nal blood flow is unlikely because the capillaries of kidney (also
pancreas and intestine) have 50-70 nm fenestrations in the renal
endothelium covering the mesangium,774,2764-2766 far too small to
allow either the formed blood elements or micron-scale medical
nanorobots to pass through. The size, number, and density of these
fenestrae are not markedly changed in human patients with acute
renal failure2767 although the fenestrae are smaller in spontaneously
hypertensive rats,2768 and the diameter and number density of en-
dothelial fenestrae may be purposely reduced by administration of
aminoglycosides2769,2770 or certain perfusion chemicals.2771

Experiments with microspheres using various animal models have
investigated the largest sizes of inert spherical particles that can pass
the kidney capillary bed without being trapped. In cats, microspheres
0.3-, 1.8- and 3.5-microns in diameter readily passed through

feline kidney.2772 In dogs, one experiment found that 3-30% of
renally-injected microspheres <7 microns in diameter reached the
renal vein, whereas microspheres >10 microns in diameter were com-
pletely trapped within the preglomerular or glomerular circula-
tion.2773 Other studies found that 9-micron microspheres are not
entirely trapped in canine renal cortex,2774-2776 and that previously
trapped 9-micron microspheres can be released due to subsequent
vasodilation caused by the presence of the particles them-
selves.2774,2775 (Sepsis also results in renal vasodilation2777 which
could in theory allow slightly larger particles to pass — an impor-
tant point to note when performing a nanomedical procedure on a
patient with sepsis.) Progressively larger microspheres may pass dur-
ing hypotension due to vasodilation, but microspheres >~15 mi-
crons in diameter are trapped in canine2778 and rat2779 renal arteri-
oles. Canine renal vasa rectae vessels are typically 10-20 microns in
diameter2780 and the average kidney afferent arteriole diameter is
~16 microns.2781 In one study,2781 the mean diameter of spheres
trapped in the interlobular arteries was ~26 microns. Finally, injec-
tions of 40- to 150-micron and 100- to 300-micron dextran
microspheres caused canine renal embolism with dramatic occlu-
sion of blood vessels using even small quantities of particles.2782 In
rats, 8- to 12-micron microspheres were completely extracted from
the bloodstream by the kidney,2783-2785 though in one study not all
15-micron spheres were trapped in renal glomeruli2786 and in an-
other study 15-micron microspheres injected intracardially proved
capable of locally dilating preglomerular vessels and slowly migrat-
ing towards the glomeruli.2787 In rabbits, 15-micron microspheres
lodged in renal glomerular capillaries and 25-micron microspheres
blocked interlobular arteries causing intrarenal hemorrhage.2788

Renal clearance of creatinine was unaffected at a total injection dose
of 1 x 105 15-micron particles but was detectably decreased at 2 x
105 particles and markedly decreased at 5 x 105 particles.2788

Arteriovenous shunting around the renal filtration bed could in
principle allow the continuous circulation of somewhat larger
nanorobots, but such shunting is generally not available in the kid-
neys of healthy subjects. Some arteriovenous renal shunting,2789

marked by the passage of 10- to 30-micron microspheres, is seen in
rats2790 and humans2791-2796 but only in connection with renal trans-
plants,2790,2791 renal biopsies,2792,2793 and renal carcinomas,2794-2796

the latter producing volumetric shunt rates ranging from
15-57%.2795

15.4.2.5 Geometrical Trapping Elsewhere in the Circulation
Most capillary beds in body tissues will permit smooth-surface

~4-micron diameter nanorobots to pass easily. However, passively
circulating nanorobots might become trapped, at least temporarily,
at several other sites:

1. Heart. Early therapeutic drug-containing microspheres 75-150
microns in diameter implanted directly in the heart during open
heart surgery caused extensive myocardial necrosis.2797 A par-
ticle trapping experiment in cat and rabbit hearts using 7.9-,
8.6-, and 14.6-micron microspheres found that only the largest
spheres were completely trapped, whereas significant quantities
(7-8%) of the smaller spheres were found in perfusate leaving
the heart.2798 Complete trapping of 14.4-micron spheres proved
there were no leaks or arteriovenous shunts nearby.2798 A few
nanorobots also might become trapped in eddies immediately
downstream of the four heart valves — specifically, in the mural
cusps on the ventricular side of the tricuspid and mitral
valves,2799-2802 and in the sinuses of Valsalva2818,2821 on the ar-
terial side of the aortic and pulmonic valves,2803-2805 where flow
can temporarily stagnate in hydrodynamic vortices, or in cases
of cardiac regurgitation.2806-2809
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2. Vein Valves. Nanorobots might become caught in the sinuses
behind vein valves (Figure 8.3) where there may exist pressure
traps2810 or semi-stagnant pockets.2811

3. Hemodynamic Anomalies. Nanorobots could get caught in eddy
vortices immediately downstream from vessel constrictions (Fig-
ure 9.18A), as might be caused, for example, by atherosclerotic
partial occlusions, stenoses, or various vascular lesions. Other
unusual flow reversal conditions caused by partial occlusions in
particular locations may trap nanorobots in specific branches of
the circulation for extended periods of time, as in the “steal
syndrome” (tends to refer to subclavian steal syndrome and is
significant because of the neurological effects seen due to vascu-
lar insufficiency to the vertebral artery and all the branches it
supplies)2812-2816 where blood reverses its flow direction, in some
cases simultaneously in two anastomosed arteries (e.g., “double
steal” near the circle of Willis2815) or even in three arteries (e.g.,
“triple steal”2812). Steal syndrome can cause cerebral ischemia
and stroke.

4. Vascular Aneurysms and Fistulas. Passively circulating nanorobots,
like microbes,2817 could become trapped in concave vascular
caverns such as cardiac aneurysms,2818-2824 arterial aneu-
rysms,2821-2824,4603-4606 infectious aneurysms,2825-2827

drug-induced aneurysms,2828 venous aneurysms,2829,2830 and
giant vascular fistulas2831 The fate of particles trapped in this
manner could be phagocytosis (Sections 15.4.3.2 and 15.4.3.4)
or foreign body reaction (Section 15.4.3.5).

15.4.3 Phagocytosis of Medical Nanorobots
A phagocyte is a cell that has the ability to ingest and degrade

particulate substances such as bacteria, protozoa, cells and cell de-
bris, dust particles, colloids, and, in principle, medical nanorobots.
This process of ingestion and destruction is called phagocyto-
sis.2832,2867

This Section opens with a general description of phagocytes, ph-
agocytosis, and the reticuloendothelial system (Section 15.4.3.1),
and then describes the phagocytic clearance of microparticles from
the blood (Section 15.4.3.2), from the nonsanguinous spaces (Sec-
tion 15.4.3.3), the lymphatics (Section 15.4.3.4), and by foreign
body reaction (Section 15.4.3.5). We conclude with a discussion of
techniques for phagocyte avoidance and escape by medical
nanorobots (Section 15.4.3.6).

15.4.3.1 Phagocytes, Phagocytosis, and the RES
There are two broad classes of “professional” phagocytes. First,

there are the granulocytes or polymorphonuclear leukocytes
(“PMNs” or “polys”), having horseshoe-shaped multi-lobed nuclei,
that circulate in the blood. The PMNs include the neutrophils (the
most common granulocyte), basophils, and eosinophils. Second,
there are the agranulocytes or mononuclear phagocytes (“MNPs”),
which have only one nucleus. The mononuclear phagocytes include
the monocytes (in the bloodstream), lymphocytes (mostly resident
in lymphatic tissues5670), and macrophages (monocytes that have
left the bloodstream, transformed, and settled in the tissues). Many
other cells in the body, such as endothelial cells,2833-2836 fibroblasts,778

osteoclasts,2837 pericytes,2833,2834 and platelets775,868,875,881-883,885

have some phagocytic activity, and even thyroid and bladder epi-
thelial cells phagocytize erythrocytes in vivo.2867 But only the neu-
trophils and macrophages are good enough particle scavengers to
be considered professional phagocytes.2838

Phagocytic cells are normally inactive until an apoptotic (see refs.
5765-5767, 6065; Section 10.4.1.1) cell* or a foreign cell or par-
ticle is encountered, which activates them.234,647 Activation is char-
acterized by a change in metabolic activity (e.g., an increase in oxi-
dative metabolism or “respiratory burst”**) and in cell shape. When
contacting and recognizing a foreign particle through antigen
(opsonin)-membrane receptor binding, the phagocyte plasma mem-
brane develops a dimple (invagination). The particle is drawn in-
side and the dimple closes, often pinching off to form a small vacu-
ole or phagosome. This traps the particle inside the cell, surrounded
by everted cell wall membrane. The phagosome then forms a
phagolysosome by merging with a lysosome, whose contents (in-
cluding degradative lysozymes) are released into the smaller vacu-
ole, attacking the enclosed foreign or denatured proteins.234 There
are ~200 cytoplasmic lysozyme-containing granules per neutro-
phil.2839 The ensuing oxidative burst2875,2877 produces hydrogen per-
oxide and superoxide anions2840 which act nonspecifically to digest
nonproteinaceous foreign materials that cannot be digested by
lysozymes.*** Afterwards the phagolysosomal vacuole may be ab-
sorbed or released to the outside at the cell’s outer surface (exocyto-
sis; Section 8.5.3.7), producing a large membrane flow. For example,
in cultured macrophages an amount of membrane equal to the en-
tire surface area of the cell is replaced in ~1800 sec,2841 and mac-
rophages may ingest up to ~25% of their volume per hour.526 For
macrophages ranging from 25-30 microns in diameter,2844 these
numbers imply a maximum particle-wrapping phagosomal mem-
brane recycling rate of 1.1-4.4 micron2/sec and a maximum volu-
metric ingestion rate of 0.6-4.6 micron3/sec, which in turn suggests
a theoretical maximum particle phagocytosis rate of one ~1-micron3

particle per second, per macrophage.
Of course, the normal rate of phagocytosis is low in relation to

this theoretical maximum capacity.2845 If the chemical composition
of foreign particles allows their degradation, they are destroyed. But
if the particles are resistant to digestion, they are retained within
the phagocyte in isolated phagosomes2842 and thus are effectively
removed from further interaction with the host.2843 Typically:

1. internalized albumen is digested inside macrophages with a
half-life of 13-23 minutes;2846

2. rat macrophage digestion of opsonized red cells and ghost red
cells is complete in 24 hours and 3 hours, respectively;2847

3. Kupffer cells digest organelle membrane proteins with a half-life
of 1.5-2 hours and lipid components with a half-life of 2.0-3.5
hours;2848

4. surface-bound immune complexes are digested by macrophages
with a 15.5-hour half-life at 37 ˚C;2849

5. the digestive half-life for mitochondria by rat liver Kupffer cells
is 3-4 hours, and 8 hours for microsomes;3664

* Interestingly, phagocytes can also induce apoptosis (cell death) in seemingly healthy cells5262 (or at least in cells whose unhealthy state is too subtle for us to detect today).

** Respiratory burst refers to an increase in oxidative metabolism, including oxygen consumption, that occurs after the phagocyte ingests the opsonized particle. The major
products of respiratory burst in cells are superoxide anion, singlet oxygen, hydrogen peroxide, and hydroxyl free radical.5617

*** However, at least one recent study4629 suggests that activated proteases could be mainly responsible for bacterial destruction inside neutrophils, with toxic reactive oxygen
species and myeloperoxidase-catalyzed halogenation (iodination) playing lesser roles.
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6. tooth amoebas digest human erythrocytes with a 2-hour
half-life;2850 and

7. ribosomes require >24 hours to be fully digested inside rat
Kupffer cells.2851

Neutrophils, typically 8-10 microns in diameter, are specialized
to find and phagocytize bacteria. They can also detect and become
activated by foreign particles such as splinters and wear debris. The
process of inorganic particle detection and PMN activation remains
incompletely understood, but appears to be guided by several mecha-
nisms including particle chemical composition (chemotaxis); local
pH differences; electrochemical factors associated with the particle
and its surroundings; opsonization (e.g., by complement; Section
15.2.3.2) of the particle;234 and most importantly by the availabil-
ity of excess plasma membrane area.2852 However, medical
nanorobots can probably be engineered to avoid PMN activation.
This is because micron-size diamond particles do not activate
complement,1642 do not produce neutrophil chemotactic activ-
ity,222,633,639 and do not stimulate lysozyme degranulation in neu-
trophils.640 Diamond particles are ingested by PMN cells (Section
15.3.1.4) — admittedly, an event that could be significant enough
to prevent a diamondoid nanorobot from completing its mission
— but there is no significant further biological response after such
ingestion. In one experiment,640 4- to 8-micron diamond crystals
present at up to ~0.2% Nct (nanocrit, % by volume; Section 9.4.1.4)
in culture were ingested by PMNs without negative effect. In an-
other experiment,633 3-micron diamond crystals at 2 mg/cm3 (~0.06
% Nct in culture) were phagocytized by 21% of the neutrophils
present at 7250 cells/mm3 after 45 minutes, but again no chemot-
actic activity was generated. Eosinophils are similar in structure and
function to the neutrophils, and can also phagocytize
antigen-antibody complexes,234 but no antibodies have yet been
raised to diamond (Section 15.2.3.3). Neutrophils and eosinophils
are the first active line of defense against foreign material in tissue
— an “emergency squad” whose duties are later supplanted by mono-
cytes.234 Leukocytes are end-state cells that cannot replicate by di-
vision (mitosis). They have a lifespan of a few hours in blood or few
days in tissue, and the cells die rapidly after fulfilling their phago-
cytic function.234 Heat production rises from 9 pW/cell in
unstimulated human neutrophils up to 28 pW/cell during phagocy-
tosis, with the rise proportional to the number of particles ingested.2853

The monocyte is the largest freely-circulating leukocyte, up to
12-15 microns in diameter,2844 which transforms into a macroph-
age upon its permanent migration into tissue. There is also a pool
of transformable monocytes already present in the tissues.234 The
estimated basal whole-body monocyte production rate is ~11,000
cells/sec for the average adult human.2854 Monocytes circulate in
the bloodstream for 8-70 hours.2854 During this time they enlarge,
migrate into the tissues, and after 8-12 hours differentiate into spe-
cific tissue macrophages.2855 MNPs can actively phagocytize and
digest foreign materials,2856 and can also synthesize and release a
wide range of biochemical factors to mediate the local activities of
other cells such as lymphocytes and fibroblasts.234 Macrophages have
a maximum lifespan of several months,2004 replacing themselves at
the rate of ~1%/day.2855 They typically measure 25-50 microns in
diameter.2844 Some macrophages can multiply by mitosis, or can
fuse to create the multinuclear foreign body giant cell (FBGC) as a
direct response to larger foreign particles.2857,2858 FBGCs can reach
up to 80 microns in diameter and are found primarily in foreign
body (Section 15.4.3.5) or implant sites.234

The mononuclear phagocyte system (MPS)2859 — classically
known as the reticuloendothelial system (RES)2860 — is the primary

active system in the human body responsible for the removal of old
and damaged cells, cellular debris, pathogens and other foreign par-
ticles from the circulation.2861 The RES is composed mostly of fixed,
but some wandering, cells, derived from the original bone marrow
monocyte.2862 RES phagocytes are found in large quantities in the
spleen (sinusoidal cells), lymph nodes (lymphocytes), and lungs (dust
cells or alveolar macrophages). But the Kupffer cells in the liver
represent about 50% of all macrophages in the human body. Other
macrophages are present in smaller numbers in the blood (mono-
cytes), brain (microglia), kidney (mesangial cells), bone marrow,
adrenals, thymus, mucous membranes, serous cavities, breast, pla-
centa, and connective tissue (histiocytes). The human RES consists
of at least 200 x 109 phagocytic cells.2863

The presence and activity of phagocytes is particularly related to
the presence of small particles. For example, 0.325-micron PMMA
particles stimulate cytokine release in vitro by human macrophages
at concentrations exceeding 1010-1011 particles/cm3.2864 Maximum
stimulus occurs at average particle sizes in the 0.1-2.0 micron
range,234,2865-2868 though phagocytosis is often said primarily to
involve the uptake of particles >0.5 micron in size.2867

At the larger sizes, murine bone-marrow macrophages which are
13.8 microns in diameter can ingest IgG-opsonized beads >20 mi-
crons in diameter.2876 Ingestion of an opsonized 15-micron particle
requires 30 minutes to reach completion,2876 whereas ingestion of a
lymphocyte by a macrophage was observed to require only 3 min-
utes (with dramatic shape changes, including formation of a pseudo-
pod 155 microns in length).2869 Maximum neutrophil pseudopod
extension speed is ~50 microns/minute.2870 Another experiment784

with cultured murine macrophages found that inert carbon
fiber-reinforced carbon particles up to 20 microns in diameter are
phagocytosed. Larger particles are not phagocytosed but become
surrounded by aggregations of macrophages, some of which mi-
grate onto the particle surfaces.784 Presented with these larger par-
ticles, several macrophages can fuse to form a giant cell, which sub-
sequently may be cleared into the lungs via the lymphatics and ex-
pectorated or passed into the intestines for elimination.2871 Still larger
particles (>50 microns) generally don’t excite a reaction greater than
bulk materials234 unless they possess a dimension in the smaller size
range — e.g., long slender fibers.2878 The largest particles that neu-
trophils can ingest are somewhat smaller than those for macroph-
ages. For example, Table 15.1 shows that guinea pig PMNs cannot
absorb particles >~7 microns in diameter. Human blood monocytes
readily ingest inert 0.39-micron particles, rarely ingest 1.52-micron
particles, and never ingest 5.1-micron particles.2868 Individual
macrophages rarely ingest particles larger than ~5 mi-
crons:1074,2864 such particles are ingested by FBGCs (foreign body

Table 15.1 Effect of Particle Size on Phagocytosis by 1150
µm3 Guinea Pig Polymorphonuclear Leukocytes
(PMNs) (modified from Black234)

Number of Volume of Particle
Particle Particles Ingested Fraction of

Diameter per PMN Particles PMN Volume

0.088 µm 24,000 8.6 µm3 0.7 %
0.264 µm 3,600 34.7 µm3 3.0 %
0.557 µm 360 32.6 µm3 2.8 %
0.871 µm 102 35.3 µm3 3.1 %
1.305 µm 34 39.6 µm3 3.4 %
3.04 µm 3 44.1 µm3 3.8%
> 7.0 µm 0 0 µm3 0 %



Nanomedicine • Volume IIA100

giant cells). Ingestion may proceed differently in larger cells. For
instance, in amoebas, larger particles are taken up singly while smaller
particles are accumulated outside the cell. When a critical volume is
reached, the small-particle aggregate is absorbed all at
once.234,2872,2873

A phagocytic cell can become activated by a failure to digest
indigestible or toxic particles (e.g., silica crystals absorbed by alveo-
lar macrophages175). This results in the external release of lysozymes
and oxidative products, a process called frustrated phagocyto-
sis.2874-2879 When this occurs, the offending particle is often ex-
pelled unchanged from the dying macrophage, followed by inges-
tion by another macrophage which itself will be killed. This process
produces a continuous inflammation with masses of dying and dead
neutrophils or macrophages, as well as a cellular debris accumula-
tion (caseation) or “pus” resembling that which accompanies mas-
sive bacterial infection.234 Fortunately, as with neutrophils, 2- to
4-micron diamond particles can be ingested in large quantities by
macrophages without harmful effect on the cells.652 Phosphatase
enzyme discharged into diamond-containing phagosomes does not
escape into the macrophage cytoplasm or nucleus.652 In another
study, 2- to 15-micron diamond particles in serum-free suspension
at 0.5 mg/cm3 (~0.01% Nct in culture) induced no change in mono-
cyte morphology, indicating no phagocytic activation by the diamond.641

Mean rates of phagocytosis up to 2.5 particles per hour were
observed for cultured murine macrophages ingesting 8- to 20-mi-
cron inert carbon particles.784 A second experiment1074 found only
10% mortality among murine macrophages that had ingested up to
2500 0.6-micron alumina ceramic particles (~10% of cell volume),
but >30% mortality for particles >2 microns in diameter at high
concentrations.* Aggregated serum albumin is cleared at rates simi-
lar to rates for metal, dye, and other inert particles. The whole-body
maximum clearance rate of aggregated albumin by the human RES
has been determined to be ~1.07 mg/kg-min, or ~1.25 mg/sec for a
70-kg man.2863

In the natural course, inert particles, once ingested, are retained
in isolated phagosomes for the life of the phagocyte. Phagocytes
that have ingested too many inert particles lose their phagocytic
function, a process called blockade872,873,1391,3631-3634 (Section
15.4.3.6.10), and shorten their lifespan. Thus massive tissue over-
loads of chemically inert nanorobots might blockade or even kill
large numbers of phagocytic cells if the internal accumulation of
foreign matter volume becomes too great (perhaps ~10-20% of to-
tal phagocyte volume; Section 15.6.3). In the experiment using car-
bon particles,784 cells presented with a large excess of inert particles
became rounded and detached from the substrate, and some cells
underwent lysis. Inert particles released into the intracellular space
due to the lysis of a blockaded phagocyte will either be re-ingested
by another phagocyte, or will be swept into the lymphatic filtrate
and eventually sequestered in lymph nodes (Section 15.4.3.4) or
granulomatized (Section 15.4.3.5).

As a general rule, phagocytic response is decreased with increas-
ing particle size,2880 producing differences in histological reaction644

and cytokine production.645 For instance, particles of hydroxyapa-
tite larger than 15 microns are not taken up intracellularly by mono-
cytes641 and thus appear relatively inert.2881 But <15-micron par-
ticles of similar composition, when added to serum-supplemented
cultures, stimulate monocytes to produce bone resorptive
cytokines,2882,2883 which has been corroborated under serum-free
conditions.2884

The influence of surface charge on phagocytosis is less clear. One
study found no significant difference between anionic and cationic

surfaces.2865 Other experiments with polystyrene microspheres hav-
ing macromolecule-modified surfaces produced different clearance
and organ deposition patterns for negatively or positively charged
particles,2688 and suggested that positive charges increase phago-
cytic uptake while negative charges reduce uptake.2880

Positively-charged particles tend to accumulate in the lungs, whereas
negatively-charged particles tend to accumulate in the liver, with
very few found in the lungs or spleen.2688 But total RES distribu-
tion is not changed, relative to non-RES tissues, despite these dif-
ferences in organ distribution, so the end result of surface charge
alteration is mainly a redistribution within the RES.2885

Hydrophilic particles are phagocytosed less.2880 For instance,
microspheres with hydrophobic surfaces are more readily phagocy-
tosed than those with hydrophilic surface in murine peritoneal mac-
rophages.2865 Surface hydrophobicity appears to be a critical deter-
minant in the opsonization process and in the subsequent uptake of
particles by the RES.2886 Particles with hydrophilic surfaces are ren-
dered more hydrophobic by the adsorption of IgG and can then
become phagocytized by macrophages.2874 In contrast, hydropho-
bic particles are taken up by macrophages without the need for
opsonization.2764 In one experiment, the least phagocytosis was
observed for cellulose microspheres with non-ionic hydrophilic sur-
faces.2865 Since all these properties are readily controlled by design,
medical nanorobots probably can be given the ability to evade, or if
necessary, to escape from (Section 15.4.3.6), the RES.

Particles smaller than 0.5 microns in diameter that are hydro-
phobic — such as aggregated LDL, microcrystalline cholesterol,
polystyrene microspheres, or hydrophobic gold — may trigger
“patocytosis.” Patocytosis is a unique macrophage endocytosis path-
way in which external particles induce and enter a labyrinth of in-
ternal membrane-bound compartments that remain connected to
the phagocytic cell surface.2887 Hydrophobic polystyrene
microspheres larger than 0.5 microns enter macrophages in the usual
manner, via phagocytosis.2887

Interestingly, tissue cells contain endogenous adjuvants in their
cytoplasm that when released (e.g., due to cell injury or death by
apoptosis) markedly augment the generation of CD8 cytotoxic T
lymphocyte responses to particulate and cell-associated antigens but
not to the same antigens in soluble form.5047 This is a different
mode of action than a classical immunostimulant or bacterial adju-
vant such as Freund’s. Experimental co-injection of cytosol and fluo-
rescent particles increases the accumulation in the draining lymph
node of dendritic cells and macrophages that contain phagocytosed
particles and that express high levels of costimulatory molecules.5047

As a result, attempts by phagocytes to trap immune-visible medical
nanorobots may become more urgent in the immediate locale of
cell trauma or apoptosis, unless the endogenous adjuvant molecules
are extracted or metabolized by the nanorobots.

15.4.3.2 Phagocytosis of Bloodborne Microparticles
Measurement of the phagocytic capacity (ingestible particle vol-

ume) of an animal’s RES is traditionally accomplished by determin-
ing the rate of disappearance of stable, inert, uniform particles such
as gelatin-stabilized carbon particles. Upon intravenous injection
of such particles, about 90% are taken up by the liver, most of the
remainder by the spleen.2888 One-micron diameter fluorescent beads
administered IV to rats are preferentially cleared by the spleen, liver,
and lungs2889 through a complex interaction of geometric and ph-
agocytic influences. Another experiment with amino-modified 0.1-
to 1-micron polystyrene particles in mice found that blood elimi-
nation half-life ranged from 80-300 seconds.2890 Aside from purely

* Interestingly in macrophages, as in PMNs, maximum phagocytic capacity appears to be limited by the amount of available membrane rather than by the number
of surface receptors.2876
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geometric considerations (Section 15.4.2), once inert medical
nanorobots have been opsonized (Section 15.4.3.2.1) they may sub-
sequently be phagocytized by phagocytes resident most importantly
in the liver (Section 15.4.3.2.3) and spleen (Section 15.4.3.2.4),
and also in some cases in the lung (Section 15.4.3.2.2) and kidney
(Section 15.4.3.2.5).

The smallest particles <0.1 micron in diameter (e.g., 30-100 nm
technetium particles2891) that remain in circulation distribute pri-
marily to the bone marrow,* 2891,2892 where mononuclear phago-
cytes2893-2897 and phagocytic bone marrow fibroblasts2898 have been
shown to ingest various particles such as polystyrene microspheres2898

and polyacrylamide microparticles.2893 Microspheres and lipid
nanoparticles are also frequently employed to carry antitumor agents
into tumors.2491,2900,2901 For instance, cationic magnetic
aminodextran microspheres 1-2 microns in diameter preferentially
accumulate in brain tumors as compared to neutral magnetic dext-
ran microspheres.2902

The ultimate fate of inert microparticles phagocytized from the
blood varies but may involve transport into specific organs, the lym-
phatic flow (Section 15.4.3.3.4) or the cerebrospinal flow,2903 or
may involve granulomatogenesis in situ (Section 15.4.3.5).

15.4.3.2.1 Phagocytosis and Opsonization in Blood
The first critical event that occurs upon injection of a particle

into the bloodstream is the rapid and efficient process of condition-
ing through the interaction of plasma proteins with the particle sur-
face.2904 The rate and extent of particle uptake and the nature of
the conditioning material depend both on particle size and on the
nature of the particle itself.2905,2906 Hydrophobic particles such as
unmodified pure diamond may become coated with a variety of
blood components (Sections 15.2.2 and 15.3.1.1) in a process known
as “opsonization.” This renders the particles more recognizable by
phagocytes within the blood compartment, and particularly by the
macrophages in the liver (Kupffer cells; Section 15.4.3.2.3) and in
the spleen (Section 15.4.3.2.4). Opsonization also may promote
particle (e.g., nanorobot) aggregation.

Important opsonic materials can include complement2907 (Sec-
tion 15.2.3.2) and immunoglobulins (Section 15.2.3.3).
Organ-specific opsonins for liver and spleen macrophages have been
found.2908 However, if particles are hydrophilic and present a steric
stabilizing barrier to the external environment, the extent of par-
ticle conditioning can be minimized and altered (Section 15.2.2).
For example, it is well established that certain surfaces can encour-
age the uptake of dysopsonic factors that will render the particle
less recognizable by resident macrophages.2886,2909,2910 Opsonic and
dysopsonic processes are dynamic in nature with a competition for
the surface and continuous phases of uptake and displacement. Al-
bumin is often the first component to be adsorbed because it is the
most abundant blood protein. Other components are present at
lower concentrations but higher affinity for the surface, and com-
pete for adsorption subsequently (Section 15.2.2.1). Note however
that macrophages can bind and engulf some particles even in the
absence of specific opsonins.2911

Medical nanorobots should attempt to avoid being unintention-
ally phagocytosed by neutrophils and monocytes in the circulation,
prior to extravasation or transformation of these cells in response to
chemotactic signals from injured tissues. For example, one experi-
ment studied the phagocytosis of three types of 1.5-micron poly-
meric particles with different surface wettabilities that were incubated

with blood taken prior to a cardiopulmonary bypass procedure.2906

One of the three particle types, PMMA, adhered well to phagocytes
and was readily ingested (14 particles/monocyte and 11 particles
per neutrophil), whereas the other two particle types, MMA/HEMA
and PMMA/PVAL, showed almost no adhesion or phagocytosis —
although after the bypass procedure the leukocytes evidently be-
came activated and could then phagocytose all particle types.2906

Stealth liposomes (Section 15.2.2.1) also show a marked decrease
in phagocytosis by macrophages.5281

15.4.3.2.2 Phagocytosis in Lung Vasculature
Besides geometrical filtration in the lung vasculature (Section

15.4.2.1), in some mammals, such as (but not exclusively) rumi-
nants, particles may also be removed from blood passing through
the pulmonary vasculature by active pulmonary intravascular mono-
nuclear phagocytes (PIMPs) or macrophages (PIMs) residing in the
pulmonary capillaries.2912-2919 PIMs are large (20- to 80-micron
diameter) mature macrophages bound to the pulmonary capillary
endothelium. These cells have an irregular shape, an indented
nucleus, lysosomal granules, pseudopods, phagosomes and
phagolysosomes, tubular micropinocytosis vermiformis structures,
and a fuzzy glycocalyx.2913,2920 PIMs attach preferentially to the thick
portion of the air-blood barrier,2913,2921 thus minimizing potential
interference with gas exchange at the air-blood barrier.2919 Histo-
logic experiments on the rat found that the lung microvasculature
contained ~1 mononuclear phagocyte (half of them active) per al-
veolus and ~0.3 active neutrophils per alveolus.2922 About 15 m2 of
the sheep lung capillary endothelial surface is covered with PIMs.2920

In 13 nonhuman animal species, 20-nm gold particles clearance
half-lives ranged from 1-2 minutes, with 90% clearance after 10
minutes in all species.2919 0.5-micron iron oxide particles were
cleared during the first lung pass in sheep and calves.2919 In sheep
injected IV with 1-micron latex microbeads, 70% of the beads were
caught in the phagosomes of pulmonary intravascular macrophages
after 1 hour.3317 Warner et al2923 showed >90% uptake of IV in-
jected P. aeruginosa bacteria in sheep lungs.

Do humans have PIMs? Dehring and Wismar2924 reported large
mononuclear cells with phagocytic vacuoles in clinical human lung
biopsy specimens. But a morphometric study of human lung2925

showed no macrophages or macrophage-like cells in the pulmonary
capillaries and particle uptake studies suggest that humans do not
normally have resident PIMs.2919 (Humans do have pulmonary al-
veolar macrophages; Section 15.4.3.3.3.) In humans, IV-injected
radiolabeled colloid is usually taken up by hepatic (Section
15.4.3.2.3) and splenic (Section 15.4.3.2.4) macrophages — the
basis of liver-spleen scans used clinically2926 — and detectable lung
uptake has occasionally been seen, usually in cases of severe liver
damage.2926 It may be that pulmonary uptake in humans is en-
hanced when Kupffer cells are compromised,2927 or when organ
injury results in monocyte margination in lung capillaries and in
the subsequent differentiation of these monocytes into mature mac-
rophages.2928,2929

15.4.3.2.3 Phagocytosis in Liver Vasculature
It is well known that if particles consisting of carbon (India

ink777,2930) or vital dyes are injected into the blood, the macroph-
ages (Kupffer cells) of the liver (along with the phagocytic cells of
the spleen) ingest most of them.2888 Kupffer cells are ~15- to 20-mi-
cron stellate phagocytic cells with a 70 nm thick fuzzy coat including a

* Interestingly, in one experiment,2899 carbon-particle laden bone marrow macrophages in chickens migrated from the erythropoietic sinus through the sinus wall to the
extravascular area (the granulopoietic region) 1-3 days post-injection. After 7 days almost all the carbon-laden macrophages accumulated in macrophage islets mainly around
the lymphatic nodules in the extravascular area.2899
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15 nm thick glycocalyx,2931 mechanically attached to the sinusoid
(Section 15.4.2.2) endothelial cells of the liver. Kupffer cells par-
tially occlude the sinusoid lumen but have no functional attach-
ments to the endothelial cells or to the underlying hepatocytes, and
are partially motile.2932 Their customary positioning, predominantly
at the periportal end of the sinusoids, confirms that they monitor
arriving blood, looking for particles to remove from the flow.2845

Distribution in liver lobules (Figure 8.26A) is 43% periportal, 28%
midzonal (midacinic), and 29% in the central area (perivenous),
with periportal cells larger and more active than central cells.2704

Kupffer cells can phagocytize particles of dirt, worn-out blood cells
including red cells and platelets, and bacteria — and, presumably,
inert nanodevices. The cells possess internal inventories of rolled-up
spare membrane. This allows a more rapid ensnarement of particu-
late matter.2932 Kupffer cells can internalize 5-micron diameter
IgG-coated sheep erythrocytes (SRBCs) at a peak rate of 3-4 SRBCs/
minute, and C3b complement-coated SRBCs at a peak rate of 5-6
SRBCs/minute.2845

The Kupffer cell population constitutes ~31% of liver sinusoi-
dal cells,2704 with a mean of 14-20 x 106 cells/gm liver tissue2704 or
~25 billion Kupffer cells in the entire organ.2845,2933 Long-term
observations reveal that the mean number and distribution of cells
is unchanged over 3 months, indicating that these resident mac-
rophages represent a long-living (i.e., many months) and
self-renewing population. Population turnover is slow, with a
cell-cycle of ~52 hours including an S-phase of ~7 hours.2934 About
75% of Kupffer cell population growth comes from cell replication,
while the remaining 25% of population growth results from extra-
hepatic recruitment of macrophage precursors.779,2930,2934

A colloidal particle that undergoes opsonization is usually re-
moved rapidly and efficiently by liver macrophages.2904 The par-
ticles are trafficked to the lysosomal compartment of the cell where
a battery of enzymes can degrade labile structures.2904 The half-life
of the uptake process can be less than 1 minute for small (e.g., <100
nm) opsonized particles, with more than 90% of the administered
colloid being sequestered inside the cells.2682

The first nanorobotic line of defense against Kupffer cell phago-
cytosis is to reduce or to avoid opsonization by blood proteins that
would make nanorobots visible to the RES. It may be possible to
devise proteophobic coatings (Section 15.2.2.1) to accomplish this
objective. For example, particulate matter not coated with blood
proteins does not adhere to the 70-nm fuzzy coat lining the cells of
hepatic sinusoids.2935 Under normal conditions, formed elements
of the blood and lipid droplets like chylomicrons also do not adhere
to the wall of sinusoids.2935 If diamondoid surfaces can be rendered
unwetted or unwettable by fibrinogen and other blood proteins, or
can be appropriately masked or pegylated2904 (Section 15.2.2.1),
then physically intact nanorobots might not be efficiently recog-
nized and phagocytosed by the Kupffer cells or the other phago-
cytic cells of the liver (see below).

If nanorobots are recognized as foreign objects suitable for ph-
agocytosis, uptake and distribution of nanorobots will depend to
some degree upon their size. Studies of uptake and distribution as a
function of particle size have been done. In one experiment,2936

polystyrene microspheres 0.05 microns and 0.5 microns in diam-
eter were administered IV to rats. Both particle sizes were mostly
distributed to the liver, with small but significant amounts distrib-
uted to lung (in the case of the 0.05-micron particles) and spleen
(for the 0.5-micron particles). In the liver, uptake of the smaller
0.05-micron particles went 59% to Kupffer cells, 28% to paren-
chymal cells (e.g., hepatocytes), and 13% to endothelial cells; up-
take of the larger 0.5-micron particles went 71% to Kupffer cells,

24% to endothelial cells, and only 5% to parenchymal cells.2936

Passively circulating inert nanorobots would likely be similarly
distributed.

Another experiment2836 using chemically inert latex particles also
found that uptake by a particular phagocytic cell type was deter-
mined by particle size. Sinusoidal endothelial cells can internalize
particles up to 0.23 microns in size under physiological conditions
in vivo, while larger particles normally are taken up by Kupffer cells.
However, when Kupffer cell uptake is impaired (e.g., by alcohol),
endothelial cells can uptake particles up to 1 micron in diameter
after the injection of an excess amount of latex particles.2836 Splenic
macrophages (Section 15.4.3.2.4) can also do this.2937 Endothelial
cells thus constitute a second line of defense in the liver, removing
foreign materials from the blood when Kupffer cell phagocytic func-
tion is totally disturbed. The total cellular plasma membrane sur-
face area of each cell type, per cm3 of liver parenchyma, is 1160 cm2

for hepatic sinusoidal endothelial cells and 325 cm2 for Kupffer
cells.2938

A similar study2939 of the endocytosis of latex particles 0.33-,
0.46-, and 0.80-micron in diameter by sinusoidal endothelial and
Kupffer cells in rat liver found that after 10 minutes all three sizes
were incorporated by the luminal cell surface of the perikarya or
thick portion of the endothelial cells in vitro (bicarbonate-perfused
liver) but in numbers far less than in the Kupffer cells. However, in
vivo endocytosis of these particles was observed in Kupffer cells but
not in endothelial cells. A particle ingested by an endothelial cell
was surrounded by a large patch of bristle coat, whereas in Kupffer
cells the particle was engulfed by the ruffled membranes or sank
into the cytoplasm without a large patch of bristle coat, suggesting
different endocytotic mechanisms for the two cell types.2930,2939

If Kupffer cells cannot break down ingested particles — as would
most likely be the case for diamondoid medical nanorobots — what
is the ultimate fate of these cells? (For the fate of phagocytosed
nanorobots, see Section 15.4.3.6.) Fujita and colleagues777 studied
the long-term changes in Kupffer cells in mice that were given in-
travenous India ink. Aggregates of Kupffer cells containing many
vacuoles stuffed with 10-100 nm carbon particles appeared in the
sinusoidal lumen, Disse space and interlobular connective tissue
space 3-4 days after ink injection. After 1 month, large clumps of
aggregated Kupffer cells containing numerous carbon-filled vacu-
oles up to 9 microns in diameter were distributed in the Disse space
and other connective tissue, with cells in close contact and partly
fused with one another. After 3-6 months, large multinucleate for-
eign body giant cells (Section 15.4.3.5) with numerous large vacu-
oles containing densely-packed ink particles were visible through-
out the liver tissue, probably formed by fusion of particle-stuffed
Kupffer cells. Some endothelial cells also stored ink particles in cy-
toplasmic vacuoles for as long as 6 months after injection.777 Par-
ticle doses were evidently too low to produce clinically observable
pathological effects on mouse liver function.

In a subsequent experiment by the same group,2940 mouse Kupffer
cells in vivo took up 0.2- and 2.0-micron polystyrene latex particles
and most cells were stuffed with the particles after 2 days. After 1
month, large Kupffer cell clumps or aggregates (which the research-
ers called granulomas) 80-120 microns in diameter were observed
in the liver connective tissue spaces (i.e., Disse, interlobular and
subperitoneal) composed mostly of cells heavily laden with latex
particles. Hepatic sinusoidal endothelial cells, attenuated in shape,
also took up 0.2-micron particles (but only very rarely a 2-micron
particle) into their cytoplasm.2940 After 8 months, numerous large
granulomas were distributed throughout the liver in the interlobu-
lar or subperitoneal connective tissue spaces.2940
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These results suggest that medical nanorobots should be designed
first to avoid recognition and uptake by phagocytic cells, and sec-
ond to actively escape (Section 15.4.3.6) from such cells during or
after hepatic phagocytosis, in order to forestall significant foreign
body giant cell and granuloma formation (Section 15.4.3.5) in the
liver, or unintentional RES blockade (Section 15.4.3.6.10).

15.4.3.2.4 Phagocytosis in Spleen Vasculature
The spleen is an “immunological conference center”2941 that may

be thought of as two distinct organs361 — (1) an immune organ
(the white pulp2942) consisting of periarterial lymphatic sheaths and
germinal centers comprised mainly of 40- to 200-micron3 splenic
lymphocytes;2943,2944 and (2) a phagocytic organ (the red pulp)
consisting of granulocytes (e.g., neutrophils and eosinophils), NK
cells (~25% of splenic lymphocytes2945), and macrophages ei-
ther lining the vascular spaces (i.e., the splenic cords and sinuso-
ids; Section 15.4.2.3) or resident in the perifollicular and mar-
ginal zones.2946

Splenic macrophages resemble Kupffer cells (Section 15.4.3.2.3)
in morphology and functional properties.2947 These macrophages
remove from passing blood, via phagocytosis, certain parasites,2948

bacteria,2949 worn out blood cells (red cells,2950-2952 white cells,2950,
platelets2950,2953), and other particles.2950 Splenic macrophages also
break down red cell hemoglobin into the pigment bilirubin,2954,2955

which is released into the blood plasma and subsequently removed
by liver, marrow and kidneys. (The spleen clears mildly damaged
erythrocytes from the circulation, whereas more severely damaged
red cells are removed mainly by the liver.2863) Approximately 1011

erythrocytes/day are phagocytized by macrophages in the red pulp
cords2956 Mean turnover time for murine splenic macrophages is 6
days, with 55% of the macrophage population supplied by mono-
cyte influx and 45% by local production.2957

There have been relatively few direct investigations of the pro-
pensity of splenic macrophages to ingest inert particles that might
be analogous to medical nanorobots, though the results should be
similar to Kupffer cells. One line of experiments found that un-
coated 0.1-micron polystyrene microspheres experience only ~1%
uptake by rat spleen after 24 hours in circulation, whereas 0.22-mi-
cron particles have ~5% splenic uptake and 0.5-micron microspheres
experience ~30% uptake within 24 hours of IV administration.2904

If the same microspheres are coated with poloxamine-908 surfac-
tant, and if particle injection is preceded by 1-3 hours with a
predosing of free poloxamine-908, then splenic uptake of these larger
microspheres is dramatically reduced, but this is due to increased
accumulation in hepatic Kupffer cells2958,2959 and not to altered af-
finity of splenic macrophages for microspheres. Indeed, without the
predosing, splenic uptake is dramatically increased.2735

Another experiment found that challenging mouse RES with
colloidal carbon produced only an increase in the population of
splenic lymphocytes, although the thymus underwent acute corti-
cal atrophy followed by post-challenge cellular replenishment.2960

Phagocytosis of colloidal carbon by splenic macrophages takes place
within 20-30 seconds of IV injection, mostly by macrophages from
the Billroth’s cords and not by sinus-lining endothelial cells. After
24 hours, the particles are still mostly in the red pulp, with a small
number in the periphery of the white pulp but never diffusely
throughout this area.2961 Percoll microspheres 20-30 nm in diam-
eter can also reach the thymic cortex from the murine intestinal
lumen, there to be absorbed by perivascular thymic macrophages.2962

Hydrophilized nanospheres <0.1 microns in diameter show negli-
gible uptake by splenic or hepatic macrophages; increasing particle
size or hydrophobicity increases RES uptake.2963

Assuming that completely passive nanorobots are ingested by
splenic phagocytes, what might be the fate of these particles? Once
again, experimental studies are few. Macrophages heavily laden with
inert carbon particles, when injected into rat splenic artery, were
found to slowly migrate from the red pulp marginal zone to the
periphery of the white pulp, into the deeper white pulp, and finally
into the germinal centers.2964 Limited numbers of macrophages
made the journey in 12-24 hours, but most had completed their
journey into the lymphatic tissue after 10 days.2965 Latex
microspheres do not induce granuloma formation in murine spleen
cells in vitro, but dextran microparticles do.2966 Granulomatogenesis
apparently can be suppressed by the addition of dexamethasone,
PGE2, or certain T cell-derived lymphokines such as IL-4 and
IFN-γ.2967 Massive overdoses of 0.05-micron magnetite-dextran
nanoparticles have produced splenomegaly in mice,2968 and IV injec-
tions of metallic tin powder particles in rats have produced up to six-fold
splenomegaly and epithelioid granulomas.2969 Clearly an active ph-
agocyte escape protocol (Section 15.4.3.6) would provide a useful ca-
pability for medical nanorobots in transit through the spleen. Particle
clearance from the lymphatics is briefly discussed in Section 15.4.3.4.

15.4.3.2.5 Phagocytosis in Kidney Vasculature
The normal human kidney contains blood monocytes mostly in

the glomerular and intertubular capillaries, with wide variation in
the numbers present in different glomeruli but up to 14 monocytes
present in a single glomerulus.2970 Not more than 1% of mono-
cytes reside within the mesangium.2970 Macrophages normally are
not found in the tubules and are virtually never seen in the intersti-
tium, except in areas of scarring;2970 possibly in areas of oxalate
crystal deposition in nephrolithiasis;2971 in fetal kidneys;2972,2973 and
in diseased kidneys2974,2975 when macrophages can be found in the
Bowman’s space and the mesangial area of the glomeruli,2974 and
leukocyte infiltration is also seen.2976 Macrophages found in the
kidney generally behave much like macrophages elsewhere in the body.

The mesangium is the core of the renal glomerulus and the pre-
ferred destination of the induced migration of monocytes during
inflammation.2977 Mesangium consists of the matrix (mucopolysac-
charides and glycoproteins) and two cell types — at least 85% con-
tractile mesangial cells, which resemble smooth muscle cells, and
up to 15% resident mesangial phagocytes, derived from bone mar-
row2978 and belonging to the family of mononuclear leukocytes.2977

Mesangial phagocytes ingest proteins and particulate material2979,2980

including zymosan particles,2981 apoptotic cells,2982 and of course
the familiar colloidal carbon,2983-2989 internally releasing reactive
oxygen species like other phagocytes.2995 In one interesting experi-
ment, monocytes that had previously ingested inert latex
microspheres migrated into rat kidneys whose glomeruli had been
denuded of mesangial cells and occupied the vacant cell sites (after
24 hours), transforming first into macrophage-like cells (after 4-6
days) and later into cells indistinguishable from normal mesangial
cells (after 2-4 weeks).2996

However, there have been relatively few investigations of the
details of particle ingestion by kidney-resident or kidney-infiltrating
phagocytes.2989-2994 For example, BSA-coated colloidal gold par-
ticles injected IV into ducks were mostly trapped in the mesangial
channel system, phagocytized by mesangial cells, exocytosed back
into the mesangial channels, transported extracellularly towards the
vascular hilus, rephagocytized by macula densa cells, then expelled
into the tubular lumen.2992 Another study found that during glom-
erulonephritis, macrophages accumulate at sites of inflammation
and subsequently migrate to the draining kidney lymph nodes.2997

This suggests one possible fate of renal macrophage infiltrates after their
ingestion of large quantities of completely passive medical nanorobots.
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15.4.3.3 Particle Clearance from Nonsanguinous Spaces
This Section describes the phagocytic clearance of microparticles

such as nanorobots that are injected into the tissues (Section
15.4.3.3.1), or are ingested (Section 15.4.3.3.2) or inhaled (Sec-
tion 15.4.3.3.3).

Inert particles should normally be cleared from the bladder via
mechanical fluid movements. Some phagocytic presence in the urine
is normal,5455 but pyuria or leukocyturia (>10/mm3) is considered
a pathological condition often observed in diabetic patients,5456 the
elderly,5457 and other groups. Partial urinary tract blockage by
nanorobots could produce some symptoms in common with olig-
uria,5458 prostatic obstruction, experimentally-induced chronic par-
tial outlet obstruction,5459 or crystalluria2145 (treatable by increas-
ing urine flow, traditionally with diuretics5460).

Inert particles should also be cleared, though more slowly, from
vaginal cavities via mechanical fluid movements. Lymphocytes and
macrophages are present only infrequently in cervicovaginal secretions
of healthy women except during menses,5461 infections,5462 or histo-
logic chorioamnionitis,5463 though phagocytic Langerhans cells have
been observed in the epithelium of the murine vagina and cervix.5464

15.4.3.3.1 Clearance of Particles from Tissues
Immobile nanorobots found in extravascular tissues are suscep-

tible to being phagocytized either by resident tissue macrophages
and other phagocytic cells such as fibroblasts, or by newly arriving
phagocytes such as neutrophils and monocytes that have immigrated
from the blood by passing through blood vessel walls via diapedesis
(Section 9.4.4.1) into the adjoining tissue. Sell2888 notes that if par-
ticles are injected into connective tissue, the local phagocytes will
ingest them; if particles are injected into the brain, the microglia
will absorb them.

For example, macrophages patrol or readily enter the tissues of
the peritoneum2998 and thorax.2999 The capture of polystyrene par-
ticles 0.3-3 microns in diameter by rat peritoneal macrophages was
studied in vitro.3000 The most efficient accumulation by the mac-
rophages was of 0.6-micron particles, yielding an endocytic index
of 4.56 micron3/cell-sec. Hydrophilized (via hydroxymethylation)
3-micron particles had a tenfold higher rate of capture, an endocytic
index of 37.9 micron3/cell-sec.3000 Upon injection into rat perito-
neum, 3-micron particles showed selective accumulation in the
omentum whereas 0.8-micron particles were better able to leave the
peritoneal compartment.3000 After 5 hours, most particles (72-86%,
depending on particle type) still remaining in the peritoneum had
been endocytosed by cells.3000

Other similar experiments found that:

1. 1- to 5-micron microspheres were efficiently taken up by mac-
rophages both in culture and after intraperitoneal injection into
mice, with saturation of phagocytosis after 3 hours;3001

2. peritoneal phagocytes from striped bass ingested ~3-micron la-
tex beads during a 30-minute incubation time, giving a phago-
cytic capacity of ~4 beads/phagocyte;3002

3. sterically stabilized (coated) polystyrene microspheres with
thicker coatings are decreasingly phagocytosed by mouse peri-
toneal macrophages;3003

4. 30- to 120-micron microspheres injected intraperitoneally in
rats were large enough to be retained more or less permanently
in the peritoneal cavity, whereas microspheres with diameters
<24 microns were cleared from the peritoneal cavity through
fenestrations in the diaphragm, and eventually were observed
in the lymphatic system;3004

5. for peritoneally-injected microspheres in mice, 1.4- and 6.4-mi-
cron PMMA particles and 1.2- and 5.2-micron polystyrene par-
ticles were engulfed by macrophages, but 12.5-micron polysty-
rene particles were not;5050

6. fused aluminosilicate microparticles injected into beagle dog
peritoneal cavities were translocated to mesenteric, left sternal
and right sternal lymph nodes, with a small percentage also go-
ing to the left tracheobronchial lymph node;3005 and

7. inert tungsten particles instilled into the pleural space of dogs
were translocated to the thoracic lymph nodes in 1-7 days.3006

Colloidal carbon particles injected intravitreously into chicken
eyes were actively ingested by hyalocytes (the resident macroph-
ages) by the second day, without significant leukocyte recruitment.771

Noted the researchers: “In the second stage (at 7-14 days), a large
number of macrophages infiltrated the ciliary body and emigrated
into the vitreous chamber. In the third stage (at 30 days), the infil-
tration by macrophages into the ciliary body was complete. The
carbon-laden macrophages disappeared from the vitreous body but
accumulated on the pecten oculi and retina. They were exclusively
drained through the scleral venous sinus in the iridocorneal angle.”
Another experiment in which 0.02- to 0.07-micron carbon par-
ticles were injected into the vitreous humor of monkeys produced
cellular proliferation of mononuclear phagocytes and inflammatory
cells after 1 week, continued macrophagic response along with fi-
brovascular proliferation into the vitreous after 3 weeks, deposition
of extracellular fibrous material and traction retinal detachment af-
ter 4-5 weeks, and carbon-laden macrophages aggregated over the
optic disk and fovea, along with prepapillary neovascularization and
cystoid macular edema after 10 weeks.3007

But there are other phagocytic cells in the eye besides macroph-
ages. The trabecular meshwork is a specialized tissue in the anterior
chamber of the eye that regulates aqueous humor outflow and pres-
sure.3008 Meshwork cells are actively phagocytic and may operate to
keep the drainage pathways free of cellular debris, pigment, and
other particulate material.3009,3010 When meshwork cells are exposed
to latex microspheres, within 4 hours the cells exhibit a short-term
loss of cell-matrix adhesiveness and an increase in cellular migra-
tory activity, returning to normal after 24 hours.3008 Ingestion rates
are 3-4 beads per phagocytic cell.3009 However, Buller et al3011 re-
ported that the presence of a foreign particle does not always induce
a phagocytic response by human trabecular cells, because free par-
ticles were observed in the intertrabecular spaces and in Schlemm’s
canal. Latex microspheres injected into rabbit corneal stroma were
endocytosed by keratocytes (corneal fibroblasts) and stored for >800
days in the keratocyte cytoplasm.3012

As another example, consider the phagocytes in brain tissue. One
experiment3013 demonstrated the ability of rat astrocytes to ingest
0.05- to 0.2-micron fluorescent polystyrene microspheres. In an-
other experiment,773 colloidal carbon injected into the cerebral cor-
tex of neonatal rats was ingested in membrane-bound vacuoles and
sequestered in lysosomes of young astrocytes (phagocytic star-shaped
neuroglial cells with many branching processes). Carbon-laden as-
trocytes were seen in the immediate vicinity of the site of the injec-
tion after 4 days (and in abundance after 10-21 days), in the sur-
rounding (apparently normal) neuropil, and in the perivascular re-
gions. This showed that young astrocytes could engulf foreign par-
ticles injected into the developing brain.

In adult brains, however, it appears that astrocytes are involved
in phagocytosis3014 of cell debris and foreign particles only as a sec-
ond line of defense.3015 The microglia3016-3021 appear to be the first
line of defense, distributed, unlike astrocytes, throughout the brain
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in non-overlapping territories.3019 Microglia belong to the RES and
are the resident macrophages in brain tissue, in the spinal cord, and
in the retina.3019 In one experiment3022 involving implantation of
polystyrene microspheres in rat brain, both microglial cell and non-
specific astrocytic (proliferative) brain tissue reactions were seen in
the first few days, similar to that found after damage to the CNS.
Some foreign-body giant cells (Section 15.4.3.5) were also observed.
After 9 months, the microspheres appeared to be engulfed by his-
tiocytic cells, with microsphere clusters surrounded by a non-necrotic
sheath of collagen and astrocytic cells.3022 Additional phagocytic
cells found in the brain include macrophages3023,3024 such as
pericytes,3025 perivascular3026,3027 cells, and meningeal3027 cells.
Researchers also have studied: (1) the passive displacement of 6- to
10-micron microspheres throughout the brain parenchyma;3028 (2)
the drainage of particles in cerebrospinal fluid directly from the sub-
arachnoid space into the nasal lymphatics in the rat3029 and in
man3030-3032 (up to 20-30% of CSF may drain by this route3033);
and (3) the intracellular transport of latex microspheres inside pe-
ripheral nerve cells in both anterograde and retrograde directions.3034

Phagocytes which have ingested foreign particulate matter present
in tissues may persist at the site of ingestion if they are unable to
solubilize the material. Indeed, some cells have been shown to per-
sist for years at the site of particulate insoluble foreign bodies.1841

Tattoos3035 are an excellent example of this persistence. In one ex-
periment,778 the fate of India ink particles and of polystyrene latex
beads injected into the murine dermis and subcutis of the skin of
the auricle and back was observed with the naked eye and by light
microscopy and electron microscopy. Ink particles injected as tat-
too patterns remained essentially unchanged for life, to the naked
eye. Microscopic examination revealed that both India ink particles
and latex beads were endocytosed by fibroblasts and macrophages
in the dermis and subcutis. In fibroblasts, numerous ink particles or
small latex beads (0.22 micron in diameter) were packed into vacu-
oles 0.1-10.0 micron in diameter, occupying a large volume of the
cytoplasm of the cell body and pseudopods. In macrophages, nu-
merous particles and larger beads (both 0.22 micron and 2.0 mi-
crons) were taken up into the cell body. Dermal and subcutaneous
fibroblasts that take up and store ink particles and latex beads move
poorly after particle ingestion, and thus are almost fixed in the con-
nective tissue, lending persistence to tattoos. The researchers778 note
that this represents “a specific non-inflammatory defense mecha-
nism that protects the living body, without immune reactions, against
injuries and invasions by non-toxic foreign agencies.” This descrip-
tion would likely apply equally well to inert medical nanorobots.

15.4.3.3.2 Clearance of Ingested Particles
The possible mechanical toxicity of ingested diamond particles

and related objects has already been examined in Section 15.1.1.
The discussion here concerns the likely fate of immobile nanorobots
or other inert particles that have been ingested into the alimentary
canal (Section 8.2.3). Because of the tremendous commercial inter-
est in creating orally-administered microparticle-based and microen-
capsulated pharmaceutical agents, there is a vast literature on this
subject, the comprehensive review of which lies well beyond the
scope of this book. There is space here to discuss only a few of the
many relevant experiments and results. Most of these experiments
examined the types and sizes of particles that can traverse the gut
wall and the subsequent fate of the migrating particles. Our focus
here is on possible particulate analogs to medical nanorobots.

In 1980, LeFevre et al3047 administered 5.7-micron and 15.8-mi-
cron polystyrene microspheres orally to mice. They found that the
larger particles did not accumulate in intestinal Peyer’s patches, me-
senteric lymph nodes, or other organs of the reticuloendothelial

system or in the blood, even after the maximum dosage of 8 x 106

particles/day for 60 days. However, the smaller particles were found
in Peyer’s patches (Section 8.2.3), mesenteric lymph nodes, and lungs
after the maximum dosage of 4.5 x 108 particles/day for 60 days. 77
days after terminating ingestion, the 5.7-micron particles were still
present in these tissues but were not found in spleen or liver.3047

The site of uptake for the smaller particles, which were capable of
penetrating the intestinal mucosa, was the Peyer’s patches. Absorbed
particles were sequestered in Peyer’s patch macrophages. Particles
that escaped this sequestration were transported by lymph rather
than by portal blood.3047 Related experiments with carbon and iron
oxide particles suggested that surface properties (Section 15.2.2) as
well as particle size govern accumulation in Peyer’s patches.780

Subsequent work has largely confirmed and extended this pic-
ture. Particulate matter passing through the gut lumen is continu-
ously sampled in the gut-associated lymphoid tissues (e.g., Peyer’s
patches3036-3038) to immunologically survey the gut content and to
elicit appropriate immune reactions.3039,3040 In 1989, Eldridge et
al3041 found that orally administered biodegradable
poly(DL-lactide-co-glycolide) microspheres of diameter 10 microns
or larger were unabsorbed by the gut walls whereas microspheres
smaller than 10 microns were specifically taken up into the Peyer’s
patches of the gut-associated lymphoid tissue. Microspheres between
5-10 microns in diameter remained fixed in the patches for an ex-
tended period (up to 35 days) while microspheres smaller than 5
microns were disseminated within macrophages to the mesenteric
lymph nodes, the blood circulation, and the spleen.3041 Kofler et
al3042 later found that translocation of orally-administered PLG
microspheres into murine Peyer’s patches was much more efficient
for 0.8-micron microspheres than for 2-micron microspheres. Carr
et al3048 found that while more 2-micron particles are taken up (par-
ticularly by epithelial tissues), a greater total particle volume is trans-
located to lymph nodes via 6-micron particles.

In 1989-90, Jani et al3043 fed by gavage 0.05- to 3-micron poly-
styrene microspheres to rats for 10 days (1.25 mg/kg dose). They
confirmed the uptake of particles across the gastrointestinal tract at
the Peyer’s patches and their subsequent passage via the mesentery
lymph supply and lymph nodes to liver and spleen. Heart, kidney
and lung showed no uptake. The smallest 0.05-micron particles were
34% absorbed; 0.1-micron particles were 26% absorbed, of which
7% (at 0.05 micron) or 4% (at 0.1 micron) was in the liver, spleen,
blood and bone marrow; particles larger than 0.1 micron did not
reach the bone marrow; and microspheres larger than 0.3 micron
were absent from blood.3043

In 1996, Tabata et al3050 administered biodegradable poly
(D,L-lactic acid) microspheres from 0.6-26 microns orally to mice
and found that the amount of microspheres taken up into Peyer’s
patches increased with size up to 11 microns, then decreased at larger
sizes, falling to zero at 21 microns or larger (the next lowest size
tested being 15 microns). After being taken up into the Peyer’s
patches, particles larger than 5 microns remained trapped there
whereas particles 5 microns or smaller were transported to the spleen.
Also in 1996, Damge et al3044 injected microspheres of size 1-5
microns (1.44 x 109 particle dose) and 5-10 microns (0.183 x 109

particle dose) into the ileal lumen of adult rats. The number of
microspheres found in the mesenteric vein increased rapidly, reach-
ing a maximum after 4 hours for both sizes, then decreasing more
rapidly for larger particles. A total of 12.7% of small particles and
0.11% of large particles were ultimately absorbed, mainly after cross-
ing the intestinal mucosa at the site of the Peyer’s patches.3044 A few
small microspheres were occasionally found in the epithelial cells,
and only the smallest particles were recovered in the liver, lymph
nodes, spleen, and basement membranes.3044 In another 1996



Nanomedicine • Volume IIA106

study,3045 6-micron microcrystalline cellulose particles exhibited no
translocation through the intestinal wall at doses up to 5 gm/kg-day
(~1010 particles/kg-day) for 90 days.

In 1997, Porter et al3046 injected 0.2- to 20-micron microspheres
into chicken intestinal lumens. No uptake of 6-, 10- or 20-micron
microspheres was observed in any intestinal segment, into epithe-
lium and lamina propria, after 1 hour. Microspheres 2 microns or
smaller were taken up equally by most intestinal segments. After 1
hour, 0.2-, 0.5- and 2-micron microspheres were oriented along the
brush border of epithelial cells and microsphere uptake into the
epithelium and lamina propria was observed in the duodenum, il-
eum, cecum, cecal tonsil, and colon.3046 Peyer’s patch tissue had
2-200 times higher microparticle uptake than in adjacent non-patch
tissue, and the uptake efficiency for 0.1-micron particles was 15-250
times higher than for 1- to 10-micron particles.3049 Mathiowitz et
al2592 also found that 0.3- to 2-micron copolymer-coated
microspheres could slip between mucosal epithelial cells, entering
the lymphoid tissue of Peyer’s patches, the bloodstream, and even-
tually both spleen and liver.

In 1998, Beier and Gebert3039 injected 3.4-micron yeast par-
ticles into pig gut lumen at Peyer’s patches. They found that the
particles were transcytosed out of the lumen through the gut epi-
thelium via membranous (M) cells in a few hours, without signifi-
cant phagocytosis by intraepithelial macrophages. The particles then
migrated down to and across the basal lamina in 2.5-4 hours, where-
upon they were quickly phagocytosed and transported out of the
Peyer’s patch domes.3039

Aside from particle size3047-3050 and surface modifications,3043,3051

other important factors in the absorption of microspheres in the
gut include particle dosage,3052,3057 dosage duration,3053,3054 the age
of the animal,3055-3057 and diet.* 3058-3060 LeFevre et al3055 adminis-
tered 1.8-micron latex microspheres orally to young and old mice
for 25 days and found that old mice accumulated more particles in
Peyer’s patches, and fewer in lungs, than young mice, though all
mice contained measurable particles in mesenteric lymph nodes and
Peyer’s patch-free intestinal segments (cf. Simon et al3056). A similar
study by Seifert et al3057 using 1-micron polystyrene microspheres
counted the number of particles present in thoracic duct lymph
(since particles are preferentially transported in the lymph), and
found a larger particle uptake by older than younger animals. Up-
take was also dose-dependent in Seifert’s study: the thoracic lymph
contained 5 particles/cm3 of lymph after an intraduodenal admin-
istration of 3.7 x 105 particles, rising to 221 particles/cm3 for a total
duodenal dose of 3.7 x 109 particles.3057 Diet also matters. Simon
et al3060 found that the number of 2-micron polystyrene
microspheres retained in the gut lumen of rats fed a liquid diet was
greater than the number of particles retained when rats were fed a
solid diet. Larger volumes of water given with 0.87-micron par-
ticles increased the rapidity of appearance and number of particles
in the bloodstream.3058 A quantitative study of the translocation of
latex microparticles across the epithelium of the rat small intestine
and the microsphere uptake rate to internal organs, also by Simon’s
group,3053 found that particle number increased with time in spleen,
kidney, lung, liver, and brain, but decreased with time in mesen-
teric lymph node and heart tissues. Uptake and translocation of
1.82-micron latex particles may begin as early as 5-10 minutes after
administration in the gut.3054,3061 Micron-sized intestinal bacteria
are also readily translocated from the gut to mesenteric lymph nodes
by macrophages.3062

15.4.3.3.3 Clearance of Inhaled Particles
The possible mechanical toxicity of particle inhalation, normal

environmental dust levels, the clearance of particles from the lungs
via the mucociliary escalator (Section 8.2.2), and the role of alveo-
lar macrophages in respect to crystalline particles, especially dia-
mond, has been described in Section 15.1.2. To review, most
micron-size particles (similar in diameter to proposed medical
nanorobots) that reach the alveoli are quickly cleared by the
mucociliary escalator.3064-3070 This process of clearance is influenced
by particle surface chemistry3087 and by total particle surface area.3088

Pure mucociliary particle transport has a mean half-life of 2-3
hours,3089 which can be slightly accelerated by oral, or IV, adminis-
tration of aminophylline.3090 Particles cleared in this manner are
swallowed and exit the body through the alimentary canal unless
they are reabsorbed in the gut (Section 15.4.3.3.2) or stomach (which
in the case of coal dust particles can lead to an increased risk of
gastric cancer3091).

Those microparticles not immediately cleared by the escalator
are ingested by phagocytes, mostly the pulmonary alveolar mac-
rophages (PAMs)3092-3094 residing in the alveolar airspaces. (Lavages
typically reveal a total of ~109 macrophages present in the human
lungs3095 and a burden of resident particles 0.5-1.2 microns in
size;3096,3097 in the non-exposed lung, 1-2 macrophages reside in
each alveolus in a near-sterile environment.6061) This process is also,
in part, a function of both chemical and physical particle surface
properties,767,3098,3099 though no comprehensive analysis has yet been
done (which will be essential for serious nanorobot design).

Fibroblasts3103 and leukocytes766,3104,3105 can become involved
in clearance as well. In one experiment,3104 intratracheal instilla-
tion of rat lungs with 0.5 x 109 microspheres caused an influx of
PMN leukocytes from tissues into the pulmonary airspaces. Never-
theless, after 1 day, 77% of the microspheres recovered in
bronchoalveolar lavage fluid had been ingested by pulmonary al-
veolar macrophages and only 19% by PMNs, with 4% of the par-
ticles still free.3104 After 2 days, 95% of the microspheres were in-
side the macrophages, and ~100% were still present after 4-7
days.3104 After particle internalization, macrophages generally exit
the lungs either: (1) by migrating to the nearest bronchiole and
availing themselves of the mucociliary escalator,179,3099-3102 or (2)
by passing into the interstitium (or in the case of interstitial mac-
rophages, accumulating interstitial-resident particles3106) and exit-
ing via the blood vessels or lymphatics, often accumulating in re-
gional lymph nodes.3071-3076 Alveolar macrophages can ingest
1.5-micron diameter glass fibers that are up to 5 microns long, but
not fibers that are 60 microns in length.758,2493 Fiber inhalation can
affect the subsequent lung clearance of microspheres.3107

How fast are the lungs normally cleared of particles? In a series
of studies by Falk et al,3108,3109 6-micron monodisperse
chemically-inert Teflon particles were inhaled slowly (depositing in
small ciliated airways) or normally (depositing in large bronchi and
alveolar region) by healthy nonsmokers. About 60% of the particles
deposited in the conducting airways during the slow inhalation were
cleared after 24 hours. Of the remaining particles, 35% cleared with
a half-life of 3.6 days and 65% with a half-life of 170 days.3108 After
the normal inhalation, 14% of the particles retained after 24 hours
cleared with a half-life of 3.7 days and 86% cleared with a half-life
of 217 days.3108 A related study of Teflon and polystyrene 6.05-mi-
cron and 4.47-micron particles also found ~50% clearance in 24

* Interestingly, food-ingested foreign DNA is not completely degraded in mouse gut and segments up to 976 bp can reach peripheral blood leukocytes, liver cells, and cells
from spleen including B cells, T cells, and macrophages.3063
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hours.* 3110 Investigations by Langenback et al3064,3065 of 2.85-mi-
cron diameter carbonized insoluble polystyrene particles instilled
in sheep lungs found rapid clearance in 44 hours for tracheobron-
chial deposition via the mucociliary escalator. This included 2-4
hour clearance of particles deposited in bronchi down to 1 mm in
diameter, with slower mostly alveolar clearance over next 30 days.
Alveolar deposited particles were sequestered by macrophages and
there was no interstitial penetration by alveolar-deposited particles.
Macrophages engulfing these particles at low particle burden per
cell normally travel only in one direction, from interstitium to al-
veolus and then to the escalator.3065 Clearance efficiency generally
increases with increasing particle size.3112 Numerous mathematical
models of lung clearance as a function of particle size have been
devised.3078-3086 Clearance of carbon particles from the lung is briefly
described in Section 15.3.3.5.

Phagocytes may also transport particles from lungs to lymph
nodes for presentation to T lymphocytes.3070-3077 For example, fused
aluminosilicate microparticles injected into beagle dog lungs were
translocated by alveolar macrophages to left mediastinal, left and
right tracheobronchial (TBLN), and left middle and right middle
TBLN lymph nodes.3005 Microparticles of calcium tungstate sprayed
into dog lungs are carried by pulmonary macrophages to the re-
gional lymph nodes, with the first particles arriving after 24 hours
and peak arrivals at 7 days.3113 Neutrophils in dogs can make simi-
lar journeys.3114 Lymph nodes may become enlarged due to the
arrival of particle-laden alveolar macrophages and particles phago-
cytosed in resident hyperplastic histiocytic cells.3115

A small amount of particulate matter escapes primary phagocy-
tosis by the alveolar PAMs and PMNs and penetrates the respira-
tory epithelium, lodging in the interstitium (Figure 8.15) between
cells.3116 In one experiment, 12 hours after carbon particle over-
loading in mouse lungs some free carbon crossed the type I cells to
reach the interstitium and was later observed in peribronchial and
perivascular interstitial cells.772 This triggered a proliferative burst
among free interstitial macrophages,772 which can absorb these par-
ticles and transport them back across the epithelium and into the
alveolar spaces for removal in the usual manner. Particulate matter
that avoids this recovery process is later removed from the intersti-
tium along the lymphatic capillaries (initial lymphatics)180 to the
draining lymph node via the lymphatic circulation, particularly the
pleural, hilar, or more distant nodes.3117-3120 21-50 nm carbon par-
ticles instilled into the nasal mucosa generally cannot pass through
the epithelial basement membrane unless inflammatory cells (eosi-
nophils) have preceded them. Even then, inert particles might not
penetrate further since the interstitial fluid flows outwardly from
the mucosa during allergy.3121

As noted earlier (Section 15.1.2), 2 hours after exposure ~2% of
small alveolar-resident particles may penetrate the airway lining and
enter the pulmonary interstitium and the phagocytic vacuoles of
lymphatic endothelial cells. At 24 hours, these particles are detected
in the peribronchial lymphatics and lymph nodes,173,180,766 but over-
all lymphatic clearance is low.766 For example, in the study by Snipes

et al3111 cited earlier, 1.7% of 3-micron polystyrene microspheres
instilled in beagle dog lungs translocated to tracheobronchial lymph
nodes during the 128-day study, whereas only 0.2% of the 7-mi-
cron particles and none of the 13-micron particles accumulated in
tracheobronchial lymph nodes. A related study3122 found that 1%
of 3-micron latex microspheres inhaled by rats and guinea pigs were
translocated from lung to lung-associated lymph nodes, whereas
none of the similarly-inhaled 9-micron or 15-micron microspheres
were found in these lymph nodes. Up to 6% of very small particles,
such as are found in diesel exhaust (typically ~0.2 micron median
aerodynamic diameter5933), make their way to the mediastinal lymph
node in rats after 28 days.3123 4% of lung burden in dogs exposed
to 1.8-micron coal dust was translocated to the tracheobronchial
lymph nodes after ~1 year.3124 Rat-inhaled cristobalite (silica) aero-
sol particles accumulate in the mediastinal lymph nodes and thy-
mus,3125 and rat-inhaled coal fly ash particles <2.3 microns in di-
ameter are transported to the bronchopulmonary lymph nodes.3126

Conventional fiber biocompatibility analysis commonly focuses
on particle dose, dimension, and durability, with durability deter-
mined by inhalation biopersistence (e.g., fiber retention in lung and
clearance half life after 5-day animal exposure) and laboratory dis-
solution rate (e.g., fiber dissolution rate kdis measured in ng/
cm2-hr).6061

15.4.3.4 Particle Clearance from the Lymphatics
Aside from the mucociliary escalator (Section 15.4.3.3.3), hu-

man biology includes no systematic mechanism by which foreign
particles, once internalized in blood or tissues, can be physically
ejected from the body.** Rather, physiological systems circulate par-
ticles through various “clearance” systems until one of two things
happens: (1) the particles are chemically broken down, digested, or
dissolved, with the remains subsequently metabolized or excreted
(or for some fluorocarbons, exhaled as a vapor through the lungs3127),
or (2) the particles are trapped somewhere in the body, more or less
permanently. For insoluble, inert particles such as immobile
diamondoid medical nanorobots, the first option is not available.
Ultimately, these particles are either granulomatized in place or in
bone (Section 15.4.3.5), or are swept into the lymphatic circulation
and finally sequestered in the lymph nodes.

The lymphatic circulation collects foreign particles from all over
the body — including tissue spaces such as the peritoneum,2998

dermis,3128,3176 footpads,3129,3130 and organs such as the
liver,2670,3131,3132 spleen,2670 heart3133 and lung.3134 For example,
metallic and polyethylene wear particles, mostly <1 micron in size,
in patients with hip and knee replacement prostheses can migrate
to liver, spleen, and abdominal paraaortic lymph nodes.2670 Crys-
talline silica particles in a lipstick cream can enter the body through
a recurring angular cheilitis (lip sore) and migrate to the
submasseteric lymph node, forming a silica granuloma there.3176

Inhaled silica particles can translocate from lung to hilar lymph
nodes, enlarging the nodes with many granulomas containing silica
and macrophages.3134 Dodson et al3135 suggest that lymph nodes

* An older and apparently inconsistent study by Snipes et al3111 of 3-, 7-, and 13-micron polystyrene microspheres instilled in the lungs of beagle dogs reported that only 2-3%
of all particles cleared in a few days via the mucociliary escalator. Of the remaining particles, 3-micron microspheres cleared with a retention half-life of 820 days while the
7- and 13-micron microspheres cleared with a half-life in excess of several thousand days.3111

** Some phagocytic cells can transport small particles from elsewhere in the body to the lungs, from which it is then possible to extrude the particles through the lung wall
and exhale them through the airway.2871 There is at least one report of 0.5- to 5-micron alumina particles originally implanted subcutaneously and intraarticularly in mice that
were later observed in the interstitium of the lung,1050 and similar observations have been reported for ingested 5.7-micron polystyrene particles internalized through Peyer’s
patches3047 and for Teflon particles1392 injected into humans for the treatment of urinary incontinence1277,1280,1286-1288 and vesicoureteric reflux1312,1401,1403 that were subsequently
transported to the lungs. However, while it is well known that particles which have crossed from the alveolar spaces into the lung interstitium can be ingested and returned
to the alveolar spaces by arriving neutrophils or interstitial macrophages, the author has found no confirmation in the medical research literature that systematic long-range
particle scavenging by migrating phagocytes followed by discharge in the lungs has been directly observed.



Nanomedicine • Volume IIA108

“may be better indicators of lifetime exposure to dust than lung
tissue” because the nodes permanently sequester indigestible par-
ticles like asbestos and retain this particle burden for the lifetime of
the organism.

The lymphatic system (Section 8.2.1.3; Figure 8.8) is an auxil-
iary circulatory system in which interstitial fluid is drained off into
tiny open-ended vessels, the lymphatic capillaries, whose walls are
comprised of endothelial cells with a resting intercellular gap (Fig-
ure 8.5) normally ranging ~0.1 micron to several microns.4597 How-
ever, Allen4596 intraperitoneally injected particles up to 22.5 mi-
crons in diameter and all sizes later appeared in the diaphragmatic
lymph. This suggested that the peritoneal mesothelium and the lym-
phatic endothelium on either side of the fenestrations of the base-
ment membrane can open at least this wide to admit stray particles.
Median lymph flow rate as measured by 1-micron latex microspheres
in mouse tail skin lymphatic capillaries is 4.7 microns/sec, with
pulsations synchronized with the murine respiration rate of 2 Hz.3136

In supine humans,3137 the median resting flow velocity is 9.7 mi-
cron/sec in a 54.8-micron diameter lymphatic capillary, but this
varies greatly with many factors including body orientation and vessel
size (Table 8.5). The lymphatic capillaries gradually combine into
larger and larger tubes until the largest are the size of veins (Table
8.5). Most lymph collects into the largest lymphatic of all, the tho-
racic duct, which leads into the left subclavian vein in the upper
chest (Figure 8.6), thus returning the lymph to the blood circula-
tion. (The lymphatics on the right side of the head, neck, heart,
and thorax, and the right arm and lung, drain into the right lym-
phatic duct and thence to the right subclavian vein; see Figure 8.7.)

Interposed throughout the lymphatic tree are ~450 lymph nodes
(Figure 8.9), lymphatic organs that serve as bacterial and particu-
late filters and as a final resting place for indigestible particles. Each
lymph node has a blood supply representing ~0.01% of cardiac
output or ~24 ml/gm-hr of blood.3138 One in every four lympho-
cytes that enters a node in the blood supply exits the blood and
enters the efferent lymph, and every five days ~60% of the entire
blood pool of lymphocytes passes through each lymph node’s blood
vessels.3138 Despite the slow lymph velocity, filtration of lymph
through the nodes can take place fairly rapidly. For example, in one
experiment the subcutaneous injection of 0.15- to 0.167-micron
carbon particles into murine footpads blackened regional lymph
nodes in just 1-8 minutes.3129 The very smallest particles such as
~0.05-micron liposomes generally are not retained in nodes, but
larger particles such 0.5- to 0.7-micron liposomes3139 are retained
by lymph nodes.3139

Lymph node tissue is a loosely structured material consisting of
a spongelike stroma and free cells in the meshes of the stroma. There
are phagocytic fixed cells (lymph node histiocytes) in the sinuses
that serve as filters to scavenge from the lymph, and destroy, such
particles as red blood cells, bacteria, viruses, and larger dust par-
ticles imported by the respiratory tract and collected by macroph-
age cells of the bronchial nodes. A 5-mm lymph node probably
contains a population of ~108 cells,3140 including mostly lympho-
cytes and both fixed histiocytes and free phagocytes. Nucleated cells
in the prenodal lymph are typically 85% lymphocytes, 13% mono-
cytes and macrophages, and 2% neutrophils (Section 8.2.1.3).

Particles injected intravascularly (e.g., intravenously) distribute
rapidly to systemic lymph nodes.3141 In one experiment,2834 colloi-
dal carbon injected IV into mice was preferentially trapped imme-
diately by postcapillary venules (PCV) and migrated easily out of
the PCV either through the intercellular space of the PCV endot-
helium or by phagocytic processes as soon as 1 hour post-injection.
The colloid particles were taken up by pericytes and macrophages

around the PCV during the next 24 hours, conveyed to local nodes,
distributed throughout the node cortex and medulla, and finally
carried to the medullary lymphatic sinuses to be phagocytosed by
nodal endothelial cells.2834 Some redistribution of particles via the
lymphatic sinuses from the regional lymph was observed 10-14 days
after injection in different lymph nodes. In another experiment,3132

gelatinized carbon particles injected into the hepatic portal vein re-
vealed a new pathway of liver lymphatics. Heavily carbon-laden mac-
rophages migrated from the liver sinusoid into the interlobular con-
nective tissue within 6 hours of the IV injection, and then entered
the lymphatic vessels of the portal tract. By 9-12 hours, these mac-
rophages began migrating into the celiac nodes via the two lym-
phatic pathways. From the marginal sinus in the celiac nodes, they
moved into the interfollicular area of the superficial cortex, then
accumulated in the paracortex after 12-24 hrs, finally ending up in
the corticomedullary junction.3132 In yet another experiment,3131

lymph-borne particles of tantalum coming from rat liver lymph
entered hepatic hilar lymph nodes 7-8 hours after IV injection and
were subsequently redistributed from marginal, trabecular and med-
ullary sinuses to the paracortex (at 12-24 hours), and finally to
medullary cords.

Particles injected extravascularly are distributed primarily to the
lymphatic sinus, follicle and paracortex of regional lymph nodes
draining from the injected sites. There is a systemic distribution of
a smaller amount to distally located nodes and to liver, spleen, and
bone marrow.3141 In one study,3130 after injection of Pelikan ink
into mouse footpads the macrophages that took up carbon particles
in the peripheral tissue reached the regional lymph nodes via the
afferent lymphatics. The particles then entered the germinal cen-
ters, mainly through the medullary pole of the lymph follicles, after
migrating along their immediate exterior from their marginal sinus
to their medullary pole.3130 In another study,3142 ~0.25-micron In-
dia ink particles were subcutaneously injected into guinea pigs. A
small number of fixed macrophages that were scattered throughout
the germinal center (tingible body macrophages) of the popliteal
lymph nodes ingested a few particles within 15-20 minutes, and
there the particles remained. A larger number of itinerant ink-packed
macrophages migrated from the peripheral tissues and were found
preferentially in the medullary portion of the germinal center, to-
gether with many lymphoblastoid cells. The ink-packed phagocytes
all exited the node after a short stay, carrying the particles away
with them to another destination.3142

Lymph nodes that become heavily overburdened with particles
develop serious lesions. In one case study, a man was exposed to
<0.1 mg/m3 quartz dust over a period of 30 years, leading to hilar
lymph node fibrosis and calcification. Subsequently, he was exposed
to 2 mg/m3 quartz dust for 5 years, which proved fatal since all
alveolar-trapped dust was retained in his lungs in part because his
lymph nodes were saturated with particles.3143 A second man who
had been exposed to 1.5 mg/m3 of quartz dust for 6 years experi-
enced hilar node enlargement and subsequent calcification. When
lymph nodes get overloaded with dust imported from the lungs —
particularly silica, a potent lymphotrophic material — says Seal et
al:3144 “dust, accumulating in central lymph nodes, leads eventually
to spread throughout the capsule and rupture into bronchi or pul-
monary vessels, thereby sending dust laden activated cells back into
the lungs to produce progressive massive fibrosis.”

As of 2002 there had been no studies of the behavior of dia-
mond or sapphire particles instilled into lymph nodes, either for
short-term or long-term exposures, and there had been no good
studies of diamond dust inhalation risk (Section 15.1.2). Therefore
at this time the possibility cannot be ruled out that indigestible
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diamondoid particles, accumulating in lymph nodes, might act like
indigestible silica* in the same locale. However, a serious risk seems
unlikely because diamond dust652 and sapphire dust2496 provoke
no significant cytochemical reactions in macrophages, unlike quartz
dust which is generally highly cytotoxic.652,2496 Perhaps diamond
particles may act more like mica dust, which is also readily trans-
ported from lungs to lymph nodes, but once in the nodes, results
only in “swollen dust-laden macrophages that retained their normal
structure” for at least 1 year post-exposure,3145 with “fibrotic le-
sions limited to the formation of thick reticulin fibers.”

Retention of microbial or other foreign particles produces swol-
len lymph nodes, e.g., from a normal ~0.5 cm size up to a node
diameter of 0.7-1 cm in response to vaccination.3147 But inhaled
and translocated dust particles produce the most dramatic enlarge-
ments. For example, rat lungs instilled with volcanic ash produced
mediastinal lymph nodes 8-18 times larger than normal “due to
abundant cellular microgranuloma formation and early fibrosis”.3148

Following an eight-day inhalation exposure in rats, silica
particle-laden macrophages arrived at the posterior mediastinal
lymph nodes and accumulated in granuloma-like structures with-
out degeneration or apoptosis, increasing the weight of the lymph
nodes progressively from 3.5-fold up to 35-fold at 52 weeks
post-exposure.3149 Tin particles also cause swelling in the regional
draining lymph nodes,3150 and mercury produces threefold swell-
ing in rat lymph nodes.3151

In 2002, the maximum safe dust capacity of human lymph nodes
was still unknown. However, an examination of the dust content
and composition of fibrotic lung lesions and hilar lymph nodes from
the lungs of British coalworkers found that the highest mean dust
concentration in nodules and massive fibrosis was ~20%, mostly
coal dust mixed with some fly ash which is composed of quartz,
kaolin, and mica.3152 Quartz was preferentially transported to the
nodes. Dust taken from miners’ lymph nodes was 20.3% quartz
but only 6.1% quartz in dust taken from the lungs.3152 Nodes with
dust-related lesions were typically 1-9 mm in diameter; only the
most severe lesions were >10 mm in diameter.3153 In a more recent
study, diseased lungs from patients undergoing surgical lung resec-
tion were found to have pathological particle burdens in thoracic
lymph nodes of 1010-1011 particles per gram of dry node tissue,
with particles of mean diameter 0.5-0.9 microns.3096 This implies a
volumetric nodal particle burden ranging from 0.07-4%. Adopting
~1% particle burden as a reasonable maximum and assuming an
initially unswollen 0.5-cm diameter lymph node, each node could
safely retain ~109 particles of volume 1 micron3 per particle. Thus
the entire human body could tolerate at most ~1012 of these par-
ticles (~1 cm3) if evenly distributed (the ideal case) throughout all
the ~450 lymph nodes of the body. This estimate is crudely consis-
tent with particle retention models which predict mean lung and
lymph node particle burdens of 12 gm and 1.9 gm, respectively,
after exposure to respirable coal mine dust at 2 mg/m2 during a
45-year working lifetime, at age 75.5048 (Some alternative measures
of lung overload781 suggest more conservative maximum particle
burdens of only ~0.1%.781)

The spleen could also be used for particle storage, but may be
susceptible to granuloma and swelling (splenomegaly) when exposed
to the same materials as those that similarly affect lymph nodes,3154

e.g., talc dust or tin particles in spleen2969,3155 and nodes.3150,3156

For instance, up to sixfold volumetric swelling has been provoked
in rat spleens using IV inoculations of metallic tin particles.2969

Assuming a ~1% maximum safe volumetric particle burden in the
splenic white pulp to avoid granuloma and splenomegaly, the spleen
could safely store at most another ~1 cm3 (~1012 particles) of 1-mi-
cron3 particles, producing no swelling. Despite the likely inertness
of diamondoid materials, these maximum safe particle storage lim-
its seem surprisingly low compared to likely nanomedical diagnos-
tic and therapeutic doses. This points to the necessity for reliable
phagocytic avoidance and escape protocols for medical nanorobots
(Section 15.4.3.6).

15.4.3.5 Foreign Body Granulomatous Reaction
As a general principle,1841 the human body reacts to insoluble

foreign bodies placed within it either by extruding them (if they
can be moved and an external wall is close at hand) or by walling
them off by exactly the same process as wound granuloma forma-
tion** (Chapter 24). Willert3157 has pointed out that while small
amounts of indigestible particles can be stored locally or transported
away through the lymphatic drainage (Section 15.4.3.4), large quan-
tities of particles can overwhelm the normal process and produce
(1) a histiocytic granulation tissue with accompanying fibrosis, which
results from attempts to encapsulate and isolate the reaction, and
(2) progressive tissue loss through necrosis and attempts at remod-
eling,234 a phenomenon sometimes called “small particle dis-
ease”234,2669,3157 or “nano-pathology”.5638

As an example, in one experiment up to 7.5 mg/kg of glass fibers
(~0.2 cm3/70 kg) instilled peritoneally in rats were taken up by
peritoneal organs in 1-2 days. But at higher doses, the excess for-
eign material formed clumps of fibers (nodules) that were either
free in the peritoneal cavity or loosely bound to peritoneal organs.
The nodules displayed classic foreign body reactions with an associ-
ated granulomatous inflammatory response.3158 The granulomatous
reaction of the body to Teflon particles has been exploited thera-
peutically (Section 15.3.4.4), and granulomatous foreign body re-
action has been reported for a diverse range of materials including
colloidal carbon,3159 cholesterol,3160,3161 collagen,3162 cotton and
other surgical textiles,3163-3165 fish bone,3166 gallstone,3167 glass,3168

graphite,2513,2514  hair,6166-6169 mercury,3169 metal particles,3170,5824

plastics,3171-3173 silica,3174-3177 silver needle,3178 sutures,3179,3180

swabs,3181 talc,3182 thorns,3183-3185 and wood.3186-3188 The possibility
of nanorobotic foreign-body carcinoma is discussed in Section 15.2.8.

Studies of silica-induced fibrosis3134 suggest that activation of
macrophages by foreign materials3189,3190 is a prerequisite for re-
lease of chemotactic factors (which summon other phagocytes to
the site) and cytokines.3191 The chemical activity of phagocytosable
particles does not seem to be primarily responsible for their cellular
stimulatory effect.234 Activated macrophages that encounter foreign
particles larger than a few microns in size can multiply by mitosis or
be stimulated to merge with other macrophages2857,2858 to form a
relatively sessile multinuclear foreign body giant cell (FBGC).2668,3192

Reaching up to 80 microns in diameter, the FBGC cell can more
aggressively phagocytize larger particles than individual neutrophils,
eosinophils, or macrophages alone can attack. For example, inhaled
short inorganic fibers (<5 microns) are phagocytized by alveolar
macrophages, but long fibers (>10 microns) are phagocytized by
FBGCs in rats, hamsters and guinea pigs.3193 Also, a macroscopic

* There is some evidence that the body can slowly transport (in some as yet unknown manner) small amounts of silica, as evidenced by the occurrence of nondietary silica
in human urinary calculi.3146

** This process is relatively slow, with mostly neutrophils arriving during the first 6-24 hours, replaced by monocytes after 24-48 hours.1841



Nanomedicine • Volume IIA110

ocular lens implanted in mice produced multi-macrophage FBGC
aggregates.3194 Fibroblasts then surround the FBGC aggregate and
form a fibrous wall around the object. Encapsulation or marsupial-
ization (see below) could well be the fate of an immobilized medical
nanorobot that is unable to avoid triggering phagocyte activation
(Section 15.4.3.6).

As a general principle, granulomas are proximately mediated by
the local release of interleukins such as IL-1beta4650 and other
interleukins,4651,4652 and by proinflammatory C-C cytokines such
as monocyte chemotactic proteins MCP-1 and MCP-24650 and other
cytokines.4653-4656 These cytokines help to recruit new leukocytic
cells to the site. Granulomas display characteristic cytokine profiles
with coordinated expression that is under cytokine-mediated regu-
lation.4656 Medical nanorobots may be equipped with molecular
sorting rotors to absorb some or all of these recruitment or key
mediating cytokines,4657 thus reducing their local concentration to
near-background levels and effectively short-circuiting the
granuloma-formation process. The effects will be similar to the re-
sults in knockout mice lacking critical chemokine receptors whose
ability to form granulomas is thereby artificially impaired.4658-4660

A less elegant alternative would be to release anti-interleukin anti-
bodies which have been shown to partially abrogate pulmonary
granuloma formation and to inhibit leukocyte recruitment in mice
in vivo,4661 or to release a receptor antagonist for IL-1.2157 Other
granuloma inhibition strategies might also be pur-
sued.4662-4664,5367-5379 In the case of long-term nanorobot missions
or augmentations (Chapter 30), a key design issue will be whether
granuloma inhibition can be achieved locally without blocking the
function systemically, or alternatively, how to replace the lost func-
tion served by granuloma formation, using artificial means, once
the natural means have been permanently systemically suppressed.

As Peacock1841 pithily describes the process of granuloma for-
mation: “In granulomatous reactions, the macrophage is usually
found immediately adjacent to the inciting material or it may actu-
ally have phagocytosed it. Fibroblasts move into the area and sur-
round the cluster of macrophages. Collagen is laid down, eventu-
ally enclosing the lesion in a dense fibrous capsule. These hard spheres
of fibrous tissue constitute the granuloma.”

Granulomas can be comprised of macrophages (foreign body
reaction), epithelioid cells (immune granulomas of sarcoidosis, tu-
berculosis), or skin macrophages or Langerhans’ cells (histiocytosis
X)3195 that have ingested foreign material but cannot digest or
exocytose it. Activated macrophages and tissue monocytes release
cytokines such as angiogenic growth factors that induce the inva-
sion of capillaries into the granulation tissue.234 Large amounts of
mucopolysaccharides and collagen are synthesized and formed into
a scaffold for cellular reconstruction and remodeling in this tissue, a
process called fibroplasia.234,3196 Similar processes (granuloma for-
mation) in latex-bead- and ink-particle-stuffed fibroblasts that be-
come trapped in the connective tissue of the dermis are responsible
for the long-term persistence of tattoos.778 By one month after im-
plantation, the granuloma has become a relatively acellular3197 fi-
brous capsule that is maintained by the presence of the implant.234

If the foreign body is then removed, the capsule may collapse into a
residual scar or be completely remodeled.234 The potential for en-
capsulation may apply to isolated particles such as medical
nanorobots, aggregates of such particles such as communicyte (Sec-
tion 7.3.2) or navicyte (Section 8.3.3) arrays, or to the outer sur-
faces of macroscale implants such as artificial nanorobotic organs.
Trapped nanorobots can still communicate chemically with the ex-
ternal environment even in the absence of transgranulomatous me-
chanical penetration6140 by nanorobot appendages, e.g., via simple

chemical diffusion (Section 3.2) of small molecules through granu-
loma walls.6141-6144

Many factors can influence the thickness of the fibrous capsule.
Chemically active materials such as corrosible metals or leachable
polymers will mediate formation of a capsule whose thickness is
directly proportional to the rate of release of these constitu-
ents.234,3201 Besides concentration, the chemical nature of the re-
leased materials or surface composition may be cytotoxic, inhibi-
tory, or neutral.3199-3201 For example, pure titanium may elicit a
minimal fibrous encapsulation under some conditions, whereas stain-
less steel implants can induce a thick fibrous layer up to 2 mm
deep.3201 In experiments with rats,3200 polyethylene implants coated
with RGD (a tripeptide) or poly-L-lysine had thicker capsule for-
mation than RGE-coated implants. Active medical nanorobots
should be able to control these emissions and surface characteris-
tics. Even disabled devices, if constructed of diamondoid materials
and physically intact, should remain chemically inert and not cor-
rode (Section 15.3.3.6) or leach (Section 15.3.7).

Besides chemical inertness, mechanical factors are also impor-
tant in mediating capsule formation.234 For example, an absolutely
smooth surface discourages extensive fibrosis, although a slight
roughness of the surface (even microscopic irregularities), particu-
larly if the roughness is ordered as in linear scratches or in the weave
of a fabric, leads to increased fibrous reaction.1841 Formation of a
fibrous capsule around a nanorobotic organ implant will be mark-
edly aided if very fine lines are etched on the surface of the implant
because fibroblasts show directional movement on an oriented sub-
strate by a process called “contact guidance” (Section 15.2.2.3).

Capsules also become thicker with increased relative motion
between implant and tissue,234,3201-3207 sometimes1841 but not al-
ways3202 as a result of mild injury to adjacent tissue. Variation in
the distribution of strain between implant and tissues can alter the
spatial pattern of fibrous tissue thickness surrounding the im-
plant.3211 In extreme cases, a painful fluid-filled bursa mimicking a
synovial capsule may form around the implant.234 One study3207

found that cylindrical implants inserted into dog femur bone and
laterally oscillated in vivo for 8 hours per day produced stable bone
ingrowth up to 20 microns of oscillation, but not at 40-150 mi-
crons of oscillation, which produced excess fibrous ingrowth. When
implanting a material, caution should be taken that the implanted
material has roughly the same mechanical properties as the surround-
ing tissue.3207-3210 A significant mismatch (Section 15.5.3.4.1), such
as a difference in Young’s modulus between the implant and the
surrounding tissue, could induce the formation of a relatively thick
capsule. This factor may be most relevant to such nanomedical sys-
tems as in vivo tethers (Sections 6.4.3.6), fiber networks (Section
7.3.3), pressure ulcer resistant nanorobotic garments (Section
15.5.1.3), vasculomobile nanoaggregates (Section 15.5.3),
transdermal portals (Chapter 19), and nanoorgans (Chapter 14)
employing external mechanical effectors.

Implant shape5728 may also affect the thickness of the fibrous
capsule.234,3212-3215 Capsules will become thicker over edges and
sharp changes in surface features. For example, the capsule surround-
ing a rectangular slab of reactive material will be dogbone or
club-shaped, a phenomenon called “clubbing”.3212 All else equal,
cylindrical implants form stronger soft-tissue attachments than flat
rectangular implants.3214 Implants with features offering a reduced
solid angle to surrounding tissue reduces the accessibility of that
nearby tissue to microbe-killing neutrophils if it ever becomes in-
fected.234 Similarly, implants having corners with the most acute
angles produce higher inflammatory response in the absence of infec-
tion — in one study,3216 otherwise similar implants having a
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triangular shape showed the highest enzyme activity and cellular
response, pentagon shapes showed less, and circular rods showed
the least activity. The existence of “dead spaces” — volumes filled
with cell-free fluid rather than tissue — is a special geometric haz-
ard because this fluid can act as an in vivo culture medium for bac-
teria.234 Thus in nanorobotic organs, adherence of soft tissue to the
implant will usually be desirable in order to eliminate these
fluid-filled cavities, thus helping to decrease the risk of infections.
Other characteristics of implants that may lead to surface infection
and the spread of biofilms have already been reviewed in Section
15.2.1.4.

Electrical currents, such as those emanating from an implanted
stimulatory electrode, can also produce capsules3217-3219 whose thick-
ness is sometimes related to current density234 although sometimes
there is little or no fibrous reaction.3220 Electrodes can release cor-
rosion products while also mediating changes in local pH and pO2,
so effects due to direct electrical (faradic) and indirect electrochemical
(electrodic) stimulation can easily be confused.234

Fibrous tissue capsule thickness is also influenced by implanta-
tion location within the body. In one series of experiments with
rats,3198-3200 intraperitoneally-placed implants had a more exten-
sive fibrous and vascular tissue formation and more numerous asso-
ciated inflammatory cells than subcutaneously-placed implants. In
another experiment with dogs,3218 intramuscular-placed electrodes
produced thicker fibrous capsules than epimysial-placed electrodes.

Finally, thickness tends to increase with duration of the implant
in the body. For instance, the external fibrous capsule surrounding
one implant reached 4-5 mm in thickness, 19 years
post-implantation.3221

Black234 notes that implant “resolution” — a final state after
which no further progressive biological changes occur — can have
four possible outcomes:

1. Resorption. A resorbable implant3222 eventually resolves to a col-
lapsed scar, or in the case of bone, may entirely disappear. Most
medical nanorobots probably will not be resorbable. However,
if nanorobots retain mobility after encapsulation they could later
migrate away from the site, producing a similar outcome.

2. Extrusion. The local host response to an implant in contact with
epithelial tissue will be the formation of a pocket or pouch con-
tinuous with the adjacent epithelial membrane, a process called
“marsupialization”3223,3224 due to the structural similarity to a
kangaroo’s pouch. In the case of the external epithelium (skin),
marsupialization results in the extrusion of the implant from
the host unless the implant is anchored in the deep connective
tissue or other deep tissue.3223 Nanorobot control and mobility
systems should prevent this outcome, unless it is desired.

3. Integration. In a very few cases such as the implantation of pure
titanium in bone,3225 a close, possibly adhesive, approximation
of nearly normal host tissue to the implant is possible without
an intervening granulomatous capsule, although inflammatory
cells may persist in small numbers. With proper surface engi-
neering (Section 15.2.2), good tissue integration is a very real
possibility for medical nanorobots or nanoorgans.

4. Encapsulation. This is the most common response to, for ex-
ample, implant wear particles,2668-2670 carbon particles,902 or
cosmetic microimplant particles:3171-3173 formulation of granu-
lation tissue with a fibrotic capsule surrounding the foreign body.
If an implant is placed in a location where bone may form (e.g.,
within a medullary space) and does not achieve osseointegration,
then the fibrotic capsule may become mineralized in which case

the granuloma is called a “sequestrum.” Small particles also can
elicit the release of cytokines that stimulate large phagocytic
cells called osteoclasts to resorb bone.3226 Such particles may
even inhibit bone formation by osteoblasts,254 resulting in overall
bone loss and a loosening of the implant at the implant-bone
interface, possibly with some local tissue necrosis. Selective ab-
sorption or emission of appropriate factors (e.g., cytokines to
stimulate osteogenesis5618-5620 or revascularization via angiogen-
esis,5621-5623 or bone morphogenetic proteins5624) by
nanomedical implants could reduce or eliminate these negative
effects. If encapsulation is inevitable, nanorobots can be designed
to accommodate this natural reaction. For example, an encap-
sulated nanorobot could extend sensor-tipped telescoping stalks
through the capsule, enabling collection of sensor data outside
the capsule’s outer wall. Once sufficient readings have been taken,
the sensor stalks could be retracted back into the nanorobot
without further disturbing the capsule.

“Whether each of these resolution outcomes represents success
or failure of the implant depends on the circumstances [and] the
desired consequences of the insertion of the implant,” observes
Black.234 “This is the basic idea of biocompatibility: biological per-
formance in a specific application that is judged suitable to that
situation.”

15.4.3.6 Phagocyte Avoidance and Escape
Invading microbes that readily attract phagocytes and are easily

ingested and killed are generally unsuccessful as parasites. In con-
trast, most bacteria that are successful as parasites interfere to some
extent with the activities of phagocytes or find some way to avoid
their attention.3302 Bacterial pathogens have devised numerous di-
verse strategies to avoid phagocytic engulfment and killing. These
strategies are mostly aimed at blocking one or more of the steps in
phagocytosis, thereby halting the process.3302

Similarly, phagocytic cells presented with any significant con-
centration of medical nanorobots may attempt to internalize these
nanorobots. How often will such an opportunity arise? There are an
average of one ~730-micron3 granulocyte or PMN in every ~3 x
105 micron3 of human blood, one ~1525-micron3 monocyte in ev-
ery ~2 x 106 micron3 of blood, and one >1525-micron3 macroph-
age in every ~2 x 105 micron3 of human tissues. By random thermal
motions in a quiet fluid, a 2-micron nanorobot would trace out a
volume containing one PMN in ~70 sec at 37 ˚C (Eqn. 3.1), or
would diffuse the ~40-micron mean free distance (Eqn. 9.72) be-
tween nanorobot and the nearest macrophage in quiet watery tissue
in ~4000 sec (Eqn. 3.1). In a small (1 mm diameter) artery with
blood flowing at 100 mm/sec, each 2-micron nanorobot, in a total
bloodstream population of 1012 such nanorobots, would collide with
a PMN cell once every ~3 seconds near the periphery of the vessel
but only once every ~300 seconds near the center of the vessel (Sec-
tion 9.4.2.2). This rheological disparity will be amplified by phago-
cyte margination (Section 9.4.1.3) and nanorobotic vascular plas-
matic zone locomotion (Section 9.4.2.6). Studies of macrophage
particle-ingestion kinetics show that the number of particles ingested
by each phagocytic cell may rise tenfold as the local particle con-
centration rises from 5 particles per cell to 150 particles per cell.1074

From these crude estimates — which neglect the effects of vari-
able blood flow rates (Figure 8.30), large-vessel turbulence (Section
9.2.5), and other factors — it becomes apparent that virtually every
medical nanorobot placed inside the human body will physically
encounter phagocytic cells many times during its mission. Thus all
nanorobots that are of a size capable of ingestion by phagocytic cells
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must incorporate physical mechanisms and operational protocols
for avoiding and escaping from phagocytes.26,27 Engulfment may
require from many seconds to many minutes to go to completion
(Section 15.4.3.1), depending upon the size of the particle to be
internalized, so medical nanorobots should have plenty of time to
detect, and to actively prevent, this process.*

The basic strategy is first to avoid phagocytic contact (Section
15.4.3.6.1), recognition (Section 15.4.3.6.2), or binding and acti-
vation (Section 15.4.3.6.3), and secondly, if this fails, then to in-
hibit phagocytic engulfment (Section 15.4.3.6.4) or enclosure and
scission (Section 15.4.3.6.5) of the phagosome. If trapped, the medi-
cal nanorobot can induce exocytosis of the phagosomal vacuole in
which it is lodged (Section 15.4.3.6.6) or inhibit both
phagolysosomal fusion (Section 15.4.3.6.7) and phagosome metabo-
lism (Section 15.4.3.6.8). In rare circumstances, it may be neces-
sary to kill the phagocyte (Section 15.4.3.6.9) or to blockade the
entire phagocytic system (Section 15.4.3.6.10).

Of course, the most direct approach for a fully-functional medi-
cal nanorobot is to employ its motility mechanisms to locomote
out of, or away from, the phagocytic cell that is attempting to en-
gulf it. This may involve reverse cytopenetration (Section 9.4.5),
which must be done cautiously (e.g., the rapid exit of nonenveloped
viruses from cells can be cytotoxic5356).

It is possible that frustrated phagocytosis may induce a localized
compensatory granulomatous reaction. Medical nanorobots there-
fore may also need to employ simple but active defensive strategies
to forestall granuloma formation (Section 15.4.3.5).

15.4.3.6.1 Avoid Phagocytic Contact
One simple avoidance method employed by a few pathogens

that may occasionally be practical for medical nanorobots is to con-
fine all activities to regions of the human body that are inaccessible
to phagocytes. For example, certain internal tissues such as the lu-
mens of glands, the urinary bladder and kidney tubules, and vari-
ous surface tissues such as the skin are not regularly patrolled by
phagocytes.3302 The heart and muscle tissues also are relatively
macrophage-poor.2854

If reliable methods can be found for the remote (noncontact)
detection of nearby phagocytes, akin to the detectability of bacte-
rial metabolic chemical plumes (Section 8.4.3), then most motile
nanorobots should also be able to outrun any “pursuing” phago-
cytes. For example, activated phagocytes emit various telltale sub-
stances3227 such as cytokines,3228-3234 enzymes,3235-3237 hista-
mine,3238 taurine,3239 and so forth. Lipoxins3240 recruit healthy mac-
rophages to phagocytose apoptotic neutrophils, another cautionary
chemical plume to avoid. Of course, nanorobots must be able to
distinguish all these emissions locally from background concentra-
tions normally present.

If remote phagocyte detection methods** cannot be made reli-
able, then nonmotile nanorobots must employ contact avoidance
techniques. One potentially useful approach is to make use of the
natural mediators of cellular chemotaxis (movement along a spatial
gradient or directed cell locomotion) and chemokinesis (general
random movement or nondirected cell locomotion).3241,3242 Spe-
cific chemicals are known to be chemorepellents, chemotaxis an-
tagonists, chemotactic factor enzymes or antibodies, or negative

chemokinesis agents for various cell types. Alternatively, emission
of decoy chemoattractants followed by a quick course change by
nanorobots could also frustrate phagocytic pursuit.

Repelling pathogens from normal cells is of great medical inter-
est, so it is not surprising that a great deal of research has been done
on inducing negative chemotaxis in pathogenic microbes, which
we shall now briefly summarize. Among the bacteria, E. coli moves
away from chemorepellent molecules produced by stimulated ph-
agocytic leukocytes including peroxide, hypochlorite, and
N-chlorotaurine.3245 Chemorepellents indole and benzoate induce
motor-direction switching,3246 and lipophilic weak acids, decreases
in extracellular pH, and nigericin also induce chemorepellent re-
sponse.3275 Short-chain alcohols or DMSO are chemorepellents for
the Gram-negative bacterium Myxococcus xanthus,3247 and phenol
is a chemorepellent for the flagellate bacterium Vibrio
alginolyticus.3248 Known chemorepellents for the bacterium Bacil-
lus subtilis include chlorpromazine (a CNS depressant), local anes-
thetics, and tetraphenylboron (a lipophilic anion).3249 Of course,
some of these substances are toxic to human cells and thus would
not be appropriate chemorepellent molecules for medical
nanorobots.

Among the protozoans, Trichomonas vaginalis exhibits negative
chemotaxis to peroxide,3250 with significant chemorepulsion by the
spermicide Nonoxynol-9 and by nitroimidazoles such as metron-
idazole.3251 Some chemorepulsion has also been seen in response to
the antifungal imidazoles such as ketoconazole and miconazole.3251

Lysozyme is a chemorepellent for Paramecia at 0.5-1.0 µM3252,3253

and also for the unicellular eukaryotic ciliated protozoan Tetrahy-
mena thermophila.3254 Pituitary adenylate cyclase activating peptide
(PACAP-38) is a peptide hormone chemorepellent for Tetrahymena
with an EC50 at 10 nM concentration,3253,3255 and leukocyte
N-t-BOC-Norleucine-Leu-Phe (maximized at ~1 pM) is also
chemorepulsive to Tetrahymena.3256 Other nontoxic chemorepellents
to Paramecia, effective in nM to µM concentrations, include GTP,
the oxidants NBT and cytochrome c, the secretagogues alcian blue
and AED, and the dye cibacron blue;3253 all but AED and cyto-
chrome c are chemorepulsive to Tetrahymena.3253

Chemorepellents are known for neural cells and include
semaphorins,3257-3264 netrins,3263-3266 slit ligand,3267,3268 and other
neural factors.3269,3270 Chemotaxis of murine spleen cells was de-
creased in the presence of the lipoxygenase inhibitors azelastine and
ketotifen.3271 Interestingly, negative necrotaxis (movement away
from dead cells3272-3275) has been observed in the motile unicellular
green algae Euglena gracilis.3275 The colorless cryptomonad
Chilomonas paramecium and the ciliate Tetrahymena pyriformis ex-
hibit negative necrotaxis following lysis of same-species cells or of
Euglena cells, and the cellular content of Euglena lysed by laser irra-
diation heating or by mechanical means acts as a chemorepellent to
intact Euglena cells.3275

What about chemorepellents for phagocytes? Neutrophils can
respond to spatial concentration gradients as small as 1%,2870 and
some research has been done on inhibiting chemotaxis in phago-
cytic cells. For example, monocyte migratory inhibition factor
(MIF)3276 inhibits macrophage migration, with a maximum inhibi-
tory effect at 1 ng/ml for both unchallenged and particle-challenged
macrophages.3276,3277 Human alveolar macrophages can release a

* Detection by a medical nanorobot that it is being engulfed by a phagocyte may be accomplished using (1) hull-mounted chemotactic sensor pads equipped with artificial
binding sites that are specific to phagocyte coat molecules, (2) continuous monitoring of the flow rates of nanorobot nutrient ingestion or waste ejection mechanisms (e.g.,
blocked glucose or O2 import), (3) acoustic techniques (e.g., Section 4.8.2), (4) direct measurement of mechanical forces on the hull, or (5) various other means.

** Interestingly, it should be possible to detect from the outside of a phagocytic cell that the cell has already ingested even a chemically inert nanorobot. For example, the
decrease in capacitance of a cell that has ingested latex particles has been measured experimentally — a change of -250 fF/particle for 0.8-micron latex beads and -480 fF/
particle for 3.2-micron beads.3243 Monocytes that have ingested latex microspheres also display different surface markers.3244
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noncytotoxic factor that inhibits neutrophil chemotaxis and ran-
dom migration.3278 Excess zinc immobilizes macrophages,1841 and
mononuclear cells cultured from hyperimmunoglobulin-E (HIE)
patients produced a ~61 kD protein factor that nontoxically inhib-
ited normal neutrophil and monocyte chemotaxis3279 while serum
from those patients contained a 30-40 kD inhibitor of PMN and
monocyte chemotaxis.3280 A heat-stable inhibitor of neutrophil
chemotaxis was demonstrated but not chemically isolated in
1975,3281 and it is now known that phospholipase A2 inhibitors3282

and a ubiquitin-like peptide3283 inhibit PMN chemotaxis.
Lymphocyte-specific protein 1 (renamed leukocyte-specific protein
1 or LSP1) is a negative regulator of neutrophil chemotaxis.3284

Polyamines such as putrescine at 1 mM and spermidine at 0.1-0.5
mM inhibit chemotaxis (but not phagocytosis or engulfment) by
PMNs in vitro.3285 PMN locomotion is also inhibited by diclofenac
sodium, a nonsteroidal anti-inflammatory agent, at concentrations
below 10 µg/ml,3241 and eicosapentaenoic acid somewhat rigidifies
the plasma membrane of human neutrophils, leading to reduced
chemotaxis.3286 Chemotaxis of PMNs is suppressed with IV con-
centrations of gamma globulin >~3.0 mg/ml, although adhesive-
ness to microbes is simultaneously enhanced.3287

Much phagocyte chemorepellent research occurs in the context
of elucidating bacterial avoidance strategies (such as might be mim-
icked by medical nanorobots). Some bacteria or their products in-
hibit phagocyte chemotaxis. For example, Streptococcal streptol-
ysin O (which also kills phagocytes) is a true chemotactic repel-
lent,3302,3288 even in very low concentrations. Staphylococcus aureus
produces toxins that inhibit the movement of phagocytes;3289 granu-
locytes are almost immobilized when administered 12 µg/ml of
purified S. aureus lipase.3290 Pertussis toxin, produced by the bacte-
rium Bordetella pertussis, inhibits chemotaxis of neutrophils and other
phagocytes;3291 a PMN-inhibitory factor (PIF) extracted from B.
pertussis cells shows little cytotoxicity and inhibits chemotaxis of
PMNs.3291 Fractions of Mycobacterium tuberculosis inhibit leuko-
cyte migration.3302 The Clostridium perfringens phi toxin inhibits
neutrophil chemotaxis,3302 and other “specific antigen” can suppress
basophil chemotaxis.3292 Phagocyte chemotaxis is generally reduced
by antibiotics such as cefotaxime, rifampin, and teicoplanin.3293

Rifampin and tetracyclines inhibit granulocyte chemotactic activ-
ity.3294 Leukocyte, lymphocyte and monocyte chemotaxis is inhib-
ited by methylprednisolone and azathioprine, whereas only lym-
phocytes are chemotactically inhibited by cyclosporine.3295

Phagocyte chemoattractants that serve specific signaling purposes
can be counteracted by specific inhibitors. For example:

1. Formyl peptides such as fMLP (n-formyl Met-Leu-Phe) are com-
monly produced by bacteria and thus serve as neutrophil
chemoattractants. Numerous inhibitors of fMLP
chemoattraction are known: (a) recombinant human tumor
necrosis factor-alpha suppresses PMN chemotaxis toward fMLP
by 80%;3296 (b) uteroglobin (a steroid-dependent secretory pro-
tein) inhibits human phagocyte chemotaxis in response to formyl
peptide attractants with half-maximal inhibition at 1.2 µM;3297

(c) monoclonal antibody to the alpha chain of the CD11b/CD18
complex inhibits PMN chemotactic response to fMLP;3296 (d)
anti-integrin-associated protein antibodies inhibit phagocyte
chemotaxis in PMN and monocytes;3298 (e) synthetic cannab-
inoid CP55,940 induces significant inhibition of both chemoki-
nesis and fMLP-induced chemotaxis in rat peritoneal macroph-
ages (typical dose ~0.4 mg/kg);3299 and (f ) human recombi-
nant granulocyte-macrophage colony-stimulating factor inhib-
its human neutrophil chemotaxis towards both fMLP and the
complement split product C5a, without itself having any chemo-
tactic or chemokinetic activity.3300

2. Complement factor C5a (Section 15.2.3.2) enhances chemot-
axis, but inhibitors are known. For example, C5a-mediated
granulocyte migration towards Streptococcus pyogenes is inhib-
ited by solubilized fragments of C5a peptidase,3306 which is re-
leased by a cysteine proteinase produced by the bacte-
rium.3305-3307 Also, a new complement receptor antagonist (the
cyclic peptide Phe-[Orn-Pro-D-Cyclohexylalanine-Trp-Arg])3312

inhibits C5a-induced neutrophil chemotaxis.

3. Sense-antisense methodology has been used to design novel
complementary peptides as inhibitors of N-acetyl-PGP neutro-
phil chemoattractant.3313

4. Chemotaxis by human neutrophils toward several common
chemoattractants was inhibited by 80-95%, maximally at a con-
centration of ~50 µM of the protein kinase inhibitor
1-(5-isoquinolinesulfonyl) piperazine, without affecting the ran-
dom migration of the neutrophils.3314

5. Chemokine-induced chemotaxis was generally inhibited in
monkey leukocytes in the presence of mu-opioid receptor
agonists such as morphine, DAMGO, methadone, and
endomorphine.3315

6. Vasoactive intestinal polypeptide (VIP) inhibited alveolar mac-
rophage chemotaxis to endotoxin-activated rat serum, with maxi-
mum inhibition of 46% at 0.1 µM concentration.3316

7. Various bacterial endotoxins inhibited neutrophil chemotaxis
to chemokine IL-8 without themselves being chemotactic for
neutrophils,4607 and leukocyte migration was inhibited by a sta-
phylococcal aggressin.3587

8. A specific chemoattractant for neutrophils was completely
blocked in vitro, and 40% blocked in vivo, using an antagonist
to the chemoattractant receptor; the antagonist itself had no
chemotactic activity.3318

9. Gastrin-17 and gastrin-34, maximally at 0.1 nM, inhibit cell
mobility in human peripheral blood neutrophils.3319 The in-
hibitory effect of gastrin is similar to that obtained with EGTA,
a well-known calcium chelating compound.

General-purpose chemoattractant inhibitors also are known or
possible. For instance, α1-proteinase inhibitor induces chemotaxis
and chemokinesis at low concentrations of 0.02-2 mg/ml (normal
alveolar surface-fluid concentrations in the lung) but inhibits chemo-
taxis of PMNs to known chemoattractants, at higher concentra-
tions of 2-10 mg/ml (corresponding to inflammatory blood lev-
els).3242 And semaphorins, originally described as neuronal
chemorepellents, have now been identified in the immune sys-
tem.3320 (Human CD100 is a leukocyte semaphorin,3320,3321 al-
though as of this writing no chemorepulsive activity has been ex-
perimentally confirmed for CD100.) Semaphorins are also found
on the surfaces of murine lymphocytes,3322 and may be present on
human lymphocyte surfaces3323 and on human monocytes,3324

though again there is as yet no confirmed evidence of chemorepulsive
activity. It is important to note that these chemotactic inhibitors
may have significant effects on other cells and on cellular activity,
thus precluding their use with nanorobots.

More research is required to select, or more likely to design, an
ideal chemorepellent agent that might be secreted (perhaps at nM
concentrations, ~1 molecule/micron3 or less) by, or surface-tethered
to, medical nanorobots seeking to avoid contact with phagocytes.
Note that bioactive substances released locally by nanorobots can
later be retrieved by similar means, thus avoiding nonlocal accumu-
lations of these substances following nanomedical treatment.
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15.4.3.6.2 Avoid Phagocytic Recognition
Chemorepulsion is adequate for a few devices on simple mis-

sions of limited duration (Section 15.4.3.6.1), but large numbers
of medical nanorobots on longer or more complex missions will
inevitably come into physical contact with many phagocytes. The
least disruption to normal immune processes is achieved if the
nanorobot surface can deny recognition to the inquiring phagocyte
at the moment of physical contact. Surface-bound moieties are gen-
erally preferable to free-released molecules when large populations
of in vivo nanorobots are involved. For example, each nanorobotic
member of an internal communication network (Section 7.3.2),
stationed perhaps ~100 microns apart throughout the tissues, must
continuously avoid being ingested by passing phagocytes. Any ap-
proach that relies primarily on antiphagocytic chemical releases risks
extinguishing all phagocytic activity throughout the body, poten-
tially compromising the natural immune system.

In 2002, “long-circulating” phagocytosis-resistant par-
ticles,1450,2487,2488,2491,5051-5057 stealth drug carriers1480,1481,2682 and
stealth nanoparticles3325,3326,5058,5059 were the objects of active re-
search. It was well known that nanoparticle adsorption and inter-
nalization by phagocytes could be inhibited by the presence of a
coating of polysaccharide (e.g., heparin or dextran) chains in a
brush-like configuration,2490,3325 or by very hydrophilic coatings
(Section 15.2.2.1). Low phagocytic uptake can be achieved using a
surface concentration of 2-5% by weight of PEG. This gives effi-
cient steric stabilization (e.g., a distance of ~1.5 nm between two
adjacent terminally-attached PEG chains in the covering brush3326)
and avoids uptake by PMN cells.3326 Experiments by Illum, Davis,
et al2682,3003 suggest that polystyrene particles sterically stabilized
with adsorbed poloxamer polymer could achieve an extrapolated
zero phagocytic uptake using a ~10 nm thick coating on 60 nm
diameter particles or a ~23 nm thick coating for 5.25-micron diam-
eter particles, thus eliminating nonspecific phagocytosis. Another
study421 found that pegylated sheep RBCs were ineffectively ph-
agocytosed by human monocytes, unlike untreated sheep RBCs.
Phagocytosis of polystyrene beads (as measured by cellular oxygen
consumption) appears strongly dependent on surface potential and
thus upon fixed surface charge,3327 and surface charge heterogene-
ity across domains as small as 1-4 microns can greatly affect phago-
cytic ability.3328

Rather than coatings which phagocytes cannot recognize at all,
medical nanorobots alternatively could carry surfaces that phago-
cytes will recognize as “self.” For example, coatings that mimic natural
immune-privileged cells (Section 15.2.3.5) could be used. Nanorobot
exteriors could be covalently bound with essential erythrocyte coat
components — a simulated RBC surface could be useful in the
bloodstream, though it might provoke a response in the tissues. Simi-
larly, immune-blind fibroblast-like surface might be useful espe-
cially in the tissues, and even in blood — while bloodborne fibro-
blast lysate does elicit a response,6250 some fibroblasts may origi-
nate from peripheral blood cells6251 called fibrocytes6252 which have
been observed to differentiate into fibroblasts,6253 and bone mar-
row-derived fibroblast CFUs are also observed in blood.6254 A meta-
morphic surface that alternated between these two displays, depend-
ing upon location in the body, might be feasible (Section 5.3.6).
But a simulated neutrophil or monocyte surface would be better,
since these cells normally migrate from blood to tissues, hence the
immune system expects to see these surfaces virtually everywhere.
Lymphocytes are likewise normally present in both blood and tis-
sues, and are also adept at passing through the endothelial lining,
the lymphatic processes, and the lymph nodes without being de-
tained or trapped, eventually returning to the arterial circulation.234

The ideal solution may be for the medical nanorobot to display a
specific designed set of self-markers at its surface. These markers
might include moieties such as CD47, aka. integrin associated pro-
tein or IAP. CD47 is a surface protein present on almost every cell
type that provides an explicit phagocytic inhibitor signal to NK
cells and to macrophages.3329

Microbial pathogens have employed a similar strategy to create
antiphagocytic surfaces that avoid provoking an overwhelming in-
flammatory response, thus preventing the host from focusing the
phagocytic defenses.3302 Enveloped viruses and some bacterial patho-
gens can cover their external cell surface with components that are
seen as “self ” by the host’s phagocytes and immune system, a strat-
egy that hides the true antigenic surface (Section 15.2.3.6). Phago-
cytes then cannot recognize the bacterium upon contact and the
possibility of opsonization by antibodies to enhance phagocytosis is
minimized.3302

For example, Group A streptococci can synthesize a capsule com-
posed of hyaluronic acid, the “ground substance” (tissue cement)
found in human connective tissue.2335,3302,3307-3309 The streptococ-
cal hyaluronic acid capsule is nonantigenic and thus very effective
in preventing attachment of the organism to the macrophage.3330

Additionally, the cytoplasmic membrane of Streptococcus pyogenes
contains antigens similar to those found on human cardiac,3311 skel-
etal3311 and smooth muscle cells, on heart valve fibroblasts, and in
neuronal tissues, resulting in molecular mimicry and an immune
tolerance response by the host.3309-3311 Pathogenic Staphylococcus
aureus produces cell-bound coagulase which clots fibrin on the bac-
terial surface;1723-1727,3302 the syphilitic agent Treponema pallidum
binds human fibronectin to its surface;1731,3302 and a variety of bac-
teria cause meningitis while avoiding phagocytosis either (1) by pre-
venting deposition of complement by sialic acid on the surface, or
(2) by modification of lipopolysaccharide (LPS)3307 (to which the
immune system is unusually sensitive). Another example of
antiphagocytic surfaces is presented by Haemophilus influenza, which
expresses a mucoid polysaccharide capsule that prevents digestion
by host phagocytes.3304 A few strains resist opsonization and have
become serum resistant by modifying their LPS O-antigen side
chains, rendering them “invisible” to host immune defenses.3304

Bacteriophages, viruses first employed against bacteria by
d’Herelle in 1922,3331 are self-replicating pharmaceutical agents3344

that can grow inside of and destroy pathogenic bacteria when in-
jected into infected hosts during “phage
therapy”.3331-3344,5758-5763,6211 Phage biocompatibility is being in-
vestigated.5760 Even in the absence of an immune response, intrave-
nous therapeutic phage particles are rapidly eliminated from circu-
lation by the RES, largely by sequestration in the spleen.3333 But
Merril et al3338 found that splenic capture could be greatly elimi-
nated by the serial passage of phage through the circulations of mice
to isolate mutants that resist sequestration. This selection process
resulted in the modification of the nature of the phage surface pro-
teins, via a double-charge change from acidic to basic, which is
achieved by replacing glutamic acid (- charge) with lysine (+ charge)
at the solvent-exposed surface of the phage virion. The mutant viri-
ons display 13,000-fold to 16,000-fold greater capacity to evade
RES entrapment 24 hours post-injection as compared to the origi-
nal phage.3338 Similar surface modifications can be designed for use
on medical nanorobots.

15.4.3.6.3 Avoid Phagocytic Binding and Activation
Once physical contact with a phagocyte has occurred, particle

binding to specific cell surface receptors is the first step in the
phagocytosis of a medical nanorobot. Receptors able to mediate
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phagocytosis are expressed almost exclusively in neutrophils, mono-
cytes and macrophages, and receptor clustering is thought to occur
upon particle binding which in turn generates a phagocytic signal,
activating the phagocytic process.3345

Several pathways of phagocytic signal transduction have been
identified,3345 including the activation of tyrosine kinases or serine/
threonine kinase C, leading to phosphorylation of the receptors and
other proteins which are recruited at the sites of phagocytosis. Mono-
meric GTPases of the Rho and ARF families which are engaged
downstream of activated receptors, in cooperation with
phosphatidylinositol 4-phosphate 5-kinase and phosphatidylinositol
3-kinase lipid modifying enzymes, can modulate locally the assem-
bly of the submembranous actin filament system leading to particle
internalization.3345,5261 It may be possible for nanorobots to affir-
matively influence, modulate, or even extinguish the phagocytic
activation signal by physical, chemical, or other means, perhaps using
GTPase or kinase inhibitors3346-3353 such as genistein (50
µM),3346,3352 herbimycin (17 µM),3346 staurosporine and trifluop-
erazine.3349 In many cases there are two or more pathways that must
be simultaneously inhibited, although in a few cases these pathways
may share a common inhibitor.3348 For instance, CNI-1493 is a
potent macrophage deactivator or “pacifier”.2593-2595

Binding of particles to phagocytes may also be directly inhib-
ited. Phagocytosis requires the internalization of a significant frac-
tion of the plasma membrane, which results in the intracellular depo-
sition of large particles.3354 But this internalization does not dimin-
ish the number of receptors on the cell surface and has no effect on
receptor-mediated uptake.3354

In the case of receptor-mediated phagocytic binding,
dansylcadaverine, amantadine, and rimantadine induce inhibition
of endocytosis of complement-coated zymosan particles by human
peripheral PMN leukocytes. These drugs block receptor-mediated
endocytosis, possibly by their actions on phospholipid metabo-
lism3355 or by covalent coupling to cellular membranes.3356

Cell-bound or soluble protein A produced by Staphylococcus
aureus1728 attaches to the Fc region of IgG and blocks the cytophilic
(cell-binding) domain of the antibody. Thus the ability of IgG to
act as an opsonic factor is inhibited, and opsonin-mediated inges-
tion (“opsonophagocytosis”3303) of the bacterium is blocked.

In the case of nonreceptor phagocytic binding, medical
nanorobots could emit or expose on their surfaces chemical surfac-
tants which would repel the lipid bilayer wall, e.g., by reducing the
nanorobot’s coefficient of adhesion to very low or even to negative
values (Section 9.2.3).

Many other substances that inhibit phagocytosis (keeping in mind
the cross-talk between phagocytic receptors, the multiple signaling
domains within these receptors, and the many downstream effector
pathways leading to actin polymerization and particle internaliza-
tion3357) could be further investigated for their suitability in this
nanomedical context, including:

1. Opioids and Anesthetics. Chemokine-induced phagocytosis is in-
hibited in the presence of mu-opioid receptor agonists such as
morphine, DAMGO, methadone, and endomorphine3315 in
murine macrophages3358 and rat splenic macrophages.3359

Lidocaine at 30 mM significantly inhibits phagocytosis of latex
particles in bovine monocytes.3360 The membrane-active drug
procaine inhibits the phagocytosis of latex particles by normal
monocytes and the proliferation of lymphocytes in an alloge-
neic mixed leukocyte culture.3361 Finally, while the phagocyto-
sis of inert latex particles by human blood monocytes is not
affected by the presence of ethanol,3362 the phagocytosis of op-
sonized red cells by Kupffer cells is slightly impaired by ethanol.3363

2. Hormones. Vasoactive intestinal polypeptide (VIP) inhibits al-
veolar macrophage phagocytosis of polystyrene beads, with maxi-
mum inhibition of 46% at 0.1 µM concentration.3316 Dexam-
ethasone inhibits phagocytosis by human trabecular meshwork
(eye) cells in vitro, with polystyrene particle uptake reduced from
3.5 beads/cell to 1.5 beads/cell, a 57% reduction.3364 Two chole-
cystokinin octapeptides (CCK-8s and CCK-8) significantly in-
hibit neutrophil ingestion of latex beads. This inhibitory effect
is maximized at 0.1 nM concentration,3365 and inhibition of
neutrophil mobility and phagocytosis “could be carried out
through an increase of the intracellular cAMP levels”.3365,3319

Gastrin-17 and gastrin-34, maximally at 0.1 nM, inhibit the
ingestion of latex beads in human peripheral blood neutro-
phils.3319 Prostaglandins also inhibit particle ingestion.3366

3. Toxins. Pertussis toxin decreases the phagocytosis of
IgG-opsonized Staphylococcus aureus pathogens by human granu-
locytes.3367 Many bacterial exotoxins that are adenylate cyclases
such as anthrax toxin edema factor3368 and pertussis toxin3369

decrease phagocytic activity. The ability of rat alveolar macroph-
ages to phagocytose Saccharomyces cerevisiae and Staphylococcus
aureus microbes was significantly reduced in vitro in the pres-
ence of T-2 toxin exceeding ~0.1 µM concentration.3370 Myc-
otoxins such as aflatoxin B13371 significantly impair Kupffer cell
phagocytosis, although aflatoxin is a known genotoxin and thus
would not be ideal in this application.

4. Bacterial Factors and Enzymes. PMN-inhibitory factor (PIF) ex-
tracted from B. pertussis cells showed little cytotoxicity and in-
hibited phagocytosis to opsonized targets by PMNs.3291 Phago-
cytic activity of neutrophils was reduced by a staphylococcus
aggressin,3588 and extracellular slime produced by Staphylococ-
cus epidermidis interferes with human neutrophil functions in
vitro, including degranulation and phagocytosis.3373 In the pres-
ence of 12 µg/ml of S. aureus lipase, almost no killing of the
microbe by human granulocytes occurs, mostly due to a lack of
bacterial uptake.3290 YopH3374 and other Yersinia Yop pro-
teins3375 inhibit the phagocytosis of Yersinia enterocolitica by
human granulocytes3374 and macrophages.3375

5. Antibiotics. Phagocytosis is diminished or suppressed by eryth-
romycin, roxithromycin, cefotaxime, tetracyclines, ampicillin,
gentamicin, and bacitracin.3293,3294

6. Mechanical. Colchicine (at 150 mg/kg) and cytochalasin B (at
0.15 mg/kg) greatly depress pulmonary macrophage endocyto-
sis or “particle uptake” in hamsters,3376 e.g., by inhibiting
cytoskeletal actin microfilament polymerization. Cytochalasin
B inhibits phagocytosis;3366 Cytochalasin D, a drug that affects
actin polymerization and particle internalization, also inhibits
the binding stage of phagocytosis.3388,3389 Eicosapentaenoic acid
rigidifies the plasma membrane of human neutrophils, leading
to reduced phagocytosis.3286 Macroscale physical shock3377,3378

or surgical manipulation3379 can depress phagocytic function
in Kupffer cells. A 5% cyclical strain applied to cultured perito-
neal mouse macrophages at 1 Hz for 24-48 hours partially sup-
presses their phagocytosis of latex particles.5331

7. Other. Ammonium acetate reduces (in a concentration-depen-
dent manner) the phagocytic uptake of mannosylated latex
microspheres by human microglia and astroglioma cells3380 —
the threshold for action is >~2 mM for microglia.3381 A variety
of dissolved metal ions such as Ni++ and Cr+++ suppress phago-
cytic efficiency. For example, increasing Ni from 29 ppm to 58
ppm depresses phagocytic efficiency in cultured rabbit alveolar
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macrophages by 78%,234,3382 and GdCl3 can prevent surface
attachment of particles to Kupffer cells.3383 However, such metal
ions are probably genotoxic or cytotoxic at the concentrations
necessary to suppress phagocytic efficiency. A heat-stable in-
hibitor of neutrophil phagocytosis has been demonstrated in
sarcoma cells.3281 Liposome particle uptake by liver endothelial
and Kupffer cells is inhibited by poly(inosinic acid) and other
anionic macromolecules.3384 Kupffer cell phagocytic activity is
also reduced by methylpalmitate3385 and silica.3386 Short-chain
ceramides inhibit IgG-mediated phagocytosis by PMNs.3387 The
glycoprotein horseradish peroxidase (HRP) inhibits the bind-
ing stage of phagocytosis.3388 Monoclonal IgM cold aggluti-
nins (~1 mg/ml) impair various phagocytic functions of human
phagocytes including adhesiveness, phagocytosis, phagocytic
index and intracellular bactericidal activity of PMNs.3390 De-
creasing the pH of influent perfusate through liver RES (e.g.,
hepatic sinusoids) increases the uptake of carbon particles, so
pH gradient across the liver lobule may be involved in the regu-
lation of particle uptake at the sublobular level.3391 Amantidine,
an adamantane-based drug, weakly inhibits phagocytosis in
PMNs.5545 Phagocyte adhesion might also be reduced by using
hydrophilic or anionic surfaces.5507 Once again, it is important
to note that many of these substances may have effects on other
cells and cellular functions, suggesting caution when choosing
a particular antiphagocytic substance for use in medical
nanorobot designs.

Care must also be taken to avoid the use of nanorobot coatings
which possess, or may induce, fusogenic conformations,3392-3396 in
which case specific fusogen inhibitors3393-3398 might need to be si-
multaneously deployed.

15.4.3.6.4 Inhibit Phagocytic Engulfment
Even if a medical nanorobot has been recognized and has at-

tached to the phagocyte outer surface (typically across a ~20 nm
gap bridged by ~12 nm strands3399), the device can still prevent
complete engulfment from taking place. Macrophages challenged
with a particular type of target usually bind many more targets than
they ingest.3388 Fortunately, internalization is a relatively slow pro-
cess and most particles that become bound to the phagocyte surface
are not ingested.3388 On rare occasions, phagocytosed particles are
actually expelled.2870,3400 Indeed, a recent study5506 found that the
homophilic ligation of CD31 (also known as platelet-endothelial
cell adhesion molecule-1, or PECAM-1)5764 on viable leukocytes
promoted their detachment under low shear, leading to active re-
pulsion of viable cells from macrophages, whereas such
CD31-mediated detachment was disabled in apoptotic leukocytes,
promoting capture and tethering, tight binding, and macrophage
ingestion of dying cells. Hence CD31 is an example of a cell-surface
molecule that promotes tethering of dying cells to phagocytes dur-
ing apoptosis, but prevents phagocyte ingestion of closely apposed
viable cells by transmitting “detachment” signals.5506

Phagocytosis is an uptake of large particles governed by the
actin-based cytoskeleton. It is a dynamic process including actin
polymerization around the particle for internalization, with phago-
some maturation governed by a complex mix of proteins including
actin, the Arp2/3 complex, Rho-family GTPases, filament-capping
proteins, tropomyosin, Rho kinase and myosin II.6062-6064

Complement-opsonized (CO) and antibody-opsonized (AO) par-
ticles are phagocytosed differently by macrophages3401,3402 — CO
particles sink into the cell, whereas AO particles are engulfed by
lamellipodia that project from the cell surface. During the inges-
tion of CO particles, punctate structures rich in F-actin, vinculin,

α-actinin, paxillin, and phosphotyrosine-containing proteins are
distributed over the phagosome surface.3402 These foci can be de-
tected underneath bound CO particles within 30 seconds of cell
activation, and their formation requires active protein kinase C.
Complement receptor-mediated internalization requires intact mi-
crotubules and is accompanied by the accumulation of vesicles be-
neath the forming phagosome.3402 By contrast, during the inges-
tion of AO particles (Fcgamma receptor mediated phagocytosis),
all proteins are uniformly distributed on or near the phagosome
surface. Ingestion of AO beads is blocked by tyrosine kinase inhibi-
tors (e.g., which could be released from, or tethered to, medical
nanorobots), whereas the phagocytosis of CO particles is not.3402

Phagocytic particle ingestion can require actin assembly and
pseudopod extension, two cellular events that may coincide spa-
tially and temporally but may use distinct signal transduction events
or pathways.3403 Medical nanorobots that have become bound to
the extracellular phagocyte surface may attempt to inhibit either or
both of these signal transduction pathways.

For example, during actin assembly, engagement of
particle-bound immunoglobulin IgG ligands by receptors for the
Fc portion of IgG results in receptor aggregation and recruitment
of cytosolic tyrosine kinase, especially Syk.3404 The onset of uptake
is accompanied by tyrosine phosphorylation of several proteins,
which persists for up to 3 minutes, is concentrated at phagocytic
cups and nascent phagosomes, and is correlated with the accumula-
tion of actin filaments.3405 (Later, during phagosome maturation,
tyrosine phosphorylated proteins and microfilaments disappear from
the periphagosomal regions.3405) Phosphorylation of tyrosine resi-
dues occurs within immunoreceptor tyrosine activation motif
(ITAM) consensus sequences found in FcgammaR subunits, which
allows further recruitment and activation of Syk.3404 Syk tyrosine
kinase activity is required for FcgammaR-mediated actin assembly,
which is controlled by several GTPases, including Rac1 and
CDC42.3404 Rac1 and CDC42 (two Rho proteins involved in the
signal transduction through the FcRs) are required (1) to coordi-
nate actin filament organization and membrane extension to form
phagocytic cups, (2) to allow particle internalization during
FcR-mediated phagocytosis, and (3) to enable the phosphotyrosine
dephosphorylation required for particle internalization.3406

Actin assembly can be inhibited by Clostridium difficile toxin B,
which is a general inhibitor of Rho GTP-binding proteins.3406 In-
hibition of Rac1 or CDC42 severely inhibits particle internaliza-
tion but not F-actin accumulation.3406 In laboratory tests with cells,
inhibition (via knockout of gene expression in a mutant line) of
CDC42 function results in pedestal-like structures with foreign
particles at their tips on the phagocyte surface. Inhibition of Rac1
results in particles bound at the surface that are enclosed within
thin unfused membrane protrusions.3406 This demonstrates that
Rac1 and CDC42 have distinct functions and may act coopera-
tively in the assembly of the phagocytic cup.3406 Phagocytic cup
closure and particle internalization has also been blocked when
phosphotyrosine dephosphorylation is inhibited by treatment of the
phagocytic cells with phenylarsine oxide, an inhibitor of protein
phosphotyrosine phosphatases.3406 Ceramide also inhibits tyrosine
phosphorylation in human neutrophils.3407

During pseudopod extension, phosphatidylinositol 3-kinase
(PI3K) is recruited to the plasma membrane, triggering exocytosis
from an internal membrane source as is required for pseudopod
extension.3404 (Macrophage spreading on opsonized surface is ac-
companied by insertion into the plasma membrane of new mem-
brane from intracellular sources.3403) One or more isoforms of PI3K
are required for maximal pseudopod extension, though not for ph-
agocytosis per se. PI3K is required for coordinating exocytic mem-
brane insertion and pseudopod extension.3403
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Pseudopod extension may be partially inhibited using
wortmannin (WM) or LY294002, which are two inhibitors of
PI3K.3403 Both of these specifically inhibit phagocytosis without
inhibiting Fcgamma receptor-directed actin polymerization, by pre-
venting maximal pseudopod extension. Decreasing the size of test
beads, and hence the size of pseudopod extension required for par-
ticle engulfment, de-inhibited phagocytosis (in presence of these
inhibitors) by up to 80% at the very smallest submicron particle
sizes. For larger (nanorobot-sized) foreign particles, phagocytosis is
blocked before phagosomal closure. Both compounds also inhibit
macrophage spreading on opsonized surfaces (e.g., on
substrate-bound IgG).3403

Amphiphysin II associates with early phagosomes in macroph-
ages and participates in receptor-mediated endocytosis by recruit-
ing the GTPase dynamin to the nascent endosome. There is a sig-
naling cascade in which PI3K is required to recruit amphiphysin II
to the phagosome, after which the amphiphysin II in turn recruits
dynamin to the phagosome.3408 A modified amphiphysin II mol-
ecule with its dynamin-binding site ablated away inhibits phagocy-
tosis at the stage of membrane extension around the bound foreign
particles.3408 Both phenylbutazone and chloramphenicol also have
shown an inhibitory effect on the engulfment stage of phagocytosis
of yeast particles by cultured human monocytes.3409 Of course, it
will be important to identify substances that produce minimal ef-
fects on other cells or cellular functions.

As might be expected, bacteria already employ a wide variety of
strategies to avoid engulfment when physically contacted by host
phagocytes.3302 Some of these strategies could in principle be mim-
icked by medical nanorobots. Most commonly, many important
pathogenic bacteria bear substances on their surfaces that inhibit
phagocytic adsorption or engulfment. Resistance to phagocytic in-
gestion is usually due to an antiphagocytic component of the bacte-
rial cell surface, such as:

1. Cell Wall Substances — polysaccharide surface slime (alginate
slime3410 and biofilm polymers) produced by Pseudomonas
aeruginosa;3302,3411 O antigen associated with LPS of E. coli
(smooth strains);3302 and K antigen (acidic polysaccharides) of
E. coli or the analogous Vi (K) antigen (microcapsule) of Salmo-
nella typhi.3302

2. Fimbriae and M Protein — fimbriae in E. coli,3303 and M pro-
tein and fimbriae of Group A streptococci.3302,3303 For example,
Streptococcus pyogenes has M protein, a fibrillar surface protein
whose distal end bears a negative charge that interferes with
phagocytosis.3307 Enterococci also have antiphagocytic surface
proteins3301 such as M protein.

3. Capsules — polysaccharide capsules of S. pneumoniae (unless
antibody is present), Treponema pallidum, Klebsiella pneumoniae,
Bacteroides fragilis, and Clostridium perfringens, and the Entero-
cocci inhibit engulfment.3301-3303 Haemophilus influenzae ex-
presses a mucoid polysaccharide capsule of thickness ~1 micro-
bial diameter which prevents digestion by host phagocytes, al-
though many of these bacteria remain susceptible to
opsonization.3302-3304 The protein capsule on cell surface of
Yersinia pestis resists engulfment.3302

Macrophages can also bind and engulf a variety of particles in
the absence of specific opsonins, a process known as nonspecific
phagocytosis,3412 nonopsonic phagocytosis,3413 or opsonin-indepen-
dent phagocytosis.3414 Polystyrene microspheres are often used to
demonstrate this.3414 For instance, during patocytosis (Section
15.4.3.1) of hydrophobic >0.5-micron particles by phagocytes,

actin-independent capping of hydrophobic polystyrene microspheres
on the plasma membrane precedes actin-dependent uptake of the
microspheres into the surface-connected compartments.2887

Microsphere transport from plasma membrane invaginations into
spaces created by unfolding stacks of internal microvilli are inhib-
ited by administering primaquine.2887 Studies of non-specific en-
docytosis and binding of liposomes by mouse peritoneal macroph-
ages also found that particle internalization declined markedly after
anchorage of the cells to polystyrene substrate.3415 Inhibitors are
potentially available to medical nanorobots to halt these processes
too. For example, staurosporine selectively inhibits nonspecific ph-
agocytosis while having no effect on receptor-mediated phagocyto-
sis.3412

15.4.3.6.5 Inhibit Enclosure and Scission
Assuming that a medical nanorobot has become partially or

wholly engulfed by a phagocyte, it is likely that the vacuole can still
be prevented from pinching off and separating into a free intracel-
lular phagosome containing the nanorobot (i.e., enclosure and
scission).

Cells normally internalize soluble ligands or small particles via
endocytosis, and large particles via actin-based phagocytosis. The
dynamin family of GTPases3416,3417 mediates the membrane desta-
bilization, constriction, fission (scission) and trafficking of endocytic
vesicles from the plasma membrane, but dynamin-2 also has a role
in phagocytosis by macrophages.3418 Experiments reveal that early
phagosomes (vacuoles) are enriched in dynamin-2, and inactive
mutant versions of this molecule, if expressed, inhibit particle in-
ternalization at the stage of membrane extension around the par-
ticle.3418 This arrest of phagocytosis resembles that seen with PI3K
inhibitors, preventing the recruitment of dynamin to the site of
particle binding. Dynamin is a microtubule-binding enzyme with a
microtubule-activated GTPase activity; phosphorylation engages its
activity.3419 Dynamin can interact with the actin cytoskeleton to
regulate actin reorganization and subsequently cell shape.3420

Observations suggest that dynamin mediates scission from the
plasma membrane of both clathrin-coated pits and caveolae during
distinct endocytic processes.3421 For example, dynamin-1 is a 100
kD GTPase involved in scission of endocytic vesicles from the plasma
membrane. It is present in solution as tetramer. Following its re-
cruitment to coated pits, dynamin-1 undergoes self-assembly into
higher-order oligomers that resemble collars around the necks of
nascent coated buds. GTPase hydrolysis by dynamin in these col-
lars is thought to accompany the pinching off of endocytic
vesicles.3422 Dynamin may use GTPase hydrolysis physically to drive
vesiculation, or may act as a classical G protein switch, or both.3423

Laboratory work shows that purified dynamin readily self-assembles
into rings or spirals, suggesting that it probably wraps around the
necks of budding vesicles and squeezes, pinching them off3424-3427

— in other words, the large GTPase dynamin is a
mechanoenzyme.3428 Different dynamin isoforms may be localized
to distinct cellular compartments but may provide similar scission
functions during the biogenesis of nascent cytoplasmic vesicles.3421

Once again, inhibitory tools that might be employed by medical
nanorobots are potentially available. For example, anti-dynamin an-
tibodies have been used to specifically inhibit dynamin function in
cultured mammalian epithelial cells, inhibiting cellular uptake of
external particles in these cells.3421 These antibodies also have been
used to inhibit clathrin-mediated endocytosis in hepatocytes.3429

Ca++ inhibits both dynamin I GTPase3430 and dynamin II
GTPase3431 and may also serve as a vesiculation inhibitor for en-
gulfed medical nanorobots. Alternatively, butanedione monoxime,
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a class II myosin inhibitor, has been shown to prevent the
purse-string-like contraction that closes phagosomes without inhib-
iting the initial pseudopod extension.3432

Another approach for trapped but not yet enclosed medical
nanorobots relies upon the observation3433 that internalization of
encapsulated particles via endocytosis produces a net increase in the
total cell surface area of the ingesting leukocytes. This suggests that
exocytosis is occurring simultaneously.3433 If the phagocyte’s ability
to recycle plasma membrane to the cell surface is interrupted, en-
docytosis eventually halts. Accordingly, in one experiment,3433 se-
lective cleavage (disablement) of components of the secretory ma-
chinery using bacterial neurotoxins induced a pronounced inhibi-
tion of phagocytosis. Unlike many other cell types, macrophages
lack a morphologically distinct pericentriolar recycling compartment
but instead have an extensive network of transferrin receptor-positive
tubules and vesicles that participate in recycling.3434 Transferrin is
recycled rapidly: the GTPase Rab11 participates in the recruitment
of a rapidly mobilizable endocytic compartment to the macrophage
cell surface by mediating the transferrin efflux.3434 Chemical inhi-
bition of Rab113435 or of phospholipid synthesis3436 could there-
fore slow this efflux, ultimately restricting the turnover of phago-
cyte plasma membrane, which could greatly slow the rate of par-
ticle internalization and give the trapped nanorobot more time to
escape.

15.4.3.6.6 Induce Exocytosis of Phagosomal Vacuole
Consider a medical nanorobot that has become trapped inside

an intracellular vacuole or phagosome that has pinched off and now
resides entirely within the intracellular space of the phagocytic cell.
Without leaving the phagosome and prior to its merger with a lyso-
some, the nanorobot may escape by redirecting the phagosomal
transport destination back to the plasma membrane, where the
nanorobot can then be exocytosed, whole, from the cell.

To accomplish this, existing centripetal (endocytic) targeting
proteins first must be removed from the vacuolar wall, and then
new centrifugal (exocytic) targeting proteins must be embedded on
the external phagosomal surface to redirect the vacuole back to the
plasma membrane. One example of plasma membrane targeting (i.e.,
regulated exocytosis,3437-3440 reverse endocytosis,3441 or related pro-
cesses3442) is the synaptic vesicle targeting protein synaptobrevin
(VAMP-1 and -2). This protein binds only to the neuron-specific
plasma membrane proteins syntaxin 1A and 1B, thus ensuring proper
vesicle docking and fusion exclusively to the neuron plasma mem-
brane from intracellular origins.3443 (Fusion of two distinct lipid
bilayers is energetically unfavorable in the absence of such special-
ized targeting proteins.) Regulated exocytosis is well known in neu-
rons and in endocrine and exocrine cells,3438 and even in conven-
tional lysosomes in response to rises in the intracellular free Ca++

concentration.3444 Similar centrifugal transport pathways have been
identified in phagocytes,3372,3445 wherein intracellular vesicles are
targeted exclusively to plasma membrane surface receptors (e.g.,
CD11b, CD18).3372 Other possible mediators of secretory vesicle
regulated exocytosis3446-3448 are being investigated. Vacuolar retar-
geting strategies are employed by bacteria, as for example Legionella
pneumophila, which, once internalized into a vacuole, evidently re-
directs its transport to the endoplasmic reticulum.3389 The
recently-discovered actin-based motility of bead-containing mac-
rophage phagosomes6064 might also be purposefully manipulated.
More research is required to identify specific proteins and mecha-
nisms to aid nanorobots in escaping phagosomes.

Inert phagocytosed particles can be rapidly exocytosed by ph-
agocytes. In one experiment,3449 ~50% of an ingested load of inert

oil emulsion particles was released from rabbit neutrophils in 2400
seconds at 37 ˚C. Electron microscopy confirmed an exocytic re-
lease process. Particles were extruded through a network of pro-
cesses often accompanied by membranous vesicles. Neutrophils
undergoing particle exocytosis remained intact. By feeding the cells
differently labeled particles, the investigators showed that phagocy-
tosis and exocytosis of the same particles can occur concurrently,
and that particle ingestion can accelerate particle release.3449

One less-well-targeted approach is for medical nanorobots to
induce their own degranulation from the phagocyte by releasing
secretagogues for that cell. For example, IgA and
granulocyte-macrophage colony-stimulating factor (GM-CSF) are
the two most potent secretagogues for human eosinophils, and IL-5,
IL-3, TNFα and RANTES also induce eosinophil degranula-
tion.3450,3455 C3b, IL-1, IL-6, fMLP, the divalent calcium ionophore
A23187, and GM-CSF are secretagogues for human neutro-
phils.3451-3455 Elevated levels of intracellular free Ca++ can stimulate
exocytosis, and can also inhibit endocytosis that has been evoked by
dynamin I vesiculation, dynamin II GTPase activity, or receptor
mediation.3431

It is also possible that cell eversion and extrusion of contents
might be triggered chemically. For instance, the nucleus of an oo-
cyte can be ejected if the cell is treated with etoposide and cyclohex-
imide (chemical enucleation).3456-3458 Microtubule poisons such as
colchicine, colcemid and vinblastine cause extrusion of cellular nu-
clei,3459-3461 and EDDF is involved in erythroid cell
denucleation.3462 There are also a few older reports of nuclear ex-
trusion in lymphocytes,3463,3464 cell enucleation,3465 extreme nuclear
convolution3466 and nuclear blebbing,3467 though R. Bradbury notes
that normal failures of the cell division process can result in the
production of micro- or satellite- nuclei, which are not “normal”
processes that can be biochemically invoked but rather are patho-
logical situations that develop in pre-cancerous or cancerous cells.
It’s also important to note that the goal of nanorobot escape should
not come at the cost of the destruction of the phagocyte.

More selective induction of localized non-nuclear cytoplasmic
extrusions by medical nanorobots may be possible. Such controlled
extrusions might be functionally similar to the production of
lamellipodia or pseudopodia (Section 15.4.3.6.4) or a long list of
related structures including giant granules;3468 tubular
vermipodia;3469 cytoplasmic bulbous protrusions;3470 hairy cell leu-
kemic irregular cytoplasmic projections;3471-3474 cytoplasmic mem-
brane blebbing (zeiosis3475); and arborization during (1)
apoptosis3476 (whether chemically3477-3482 or biologically3483-3487

elicited), (2) cytotoxic T cell attack.,3488 (3) viral budding,3489-3491

(4) nonlethal bacterial challenge,3492 (5) chemical induction,3493-3497

(6) mechanical trauma,3498,3499 (7) locomotion,3500,3501 or (8) ve-
sicular release.3502,3503 Such extrusions would result in the ejection
of a bleb of cytoplasm containing the trapped nanorobot into the
extracellular space with relatively little loss of material, or diminu-
tion of viability, of the phagocytic cell. A similar process of extru-
sion is employed by the intracellular bacteria Shigella and Listeria
(see below).

In some circumstances, efficiency may be gained if the medical
nanorobot first escapes from the phagosome in which it is trapped
— possibly via reverse cytopenetration (Section 9.4.5) — before
pursuing its ultimate exit from the cell. Such escape is not difficult
and has been mastered by many species of intracellular pathogens.
For example, Listeria monocytogenes relies on several molecules for
quick lysis of the phagosome — listeriolysin O (a pore-forming
hemolysin toxin)3504,3505 and two forms of phospholipase C.3506,3507

Listeria ivanovii employs several phospholipases to similar effect.3508
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Once free in the cytoplasm, Listeria induces its own movement via
a remarkable process of host cell actin polymerization and forma-
tion of microfilaments within a comet-like tail3509-3512 (Section
9.4.6). Another intracellular bacterium, Shigella flexneri, also lyses
the phagosomal vacuole and escapes,3513 then induces cytoskeletal
actin polymerization for the purpose of intracellular movement3514

and, eventually, cell-to-cell spreading.3515 The bacterial factor used
by Shigella to breach the vacuolar membrane is IpaB,3513 one of the
secreted invasin proteins it uses to invade cells.3517-3519 Rickettsia
also enters host cells inside phagosomes but are detected free in the
cytoplasm a short time later,3520 starting in as little as 30 seconds.3302

In one experiment,3521 half of the phagocytosed bacteria were freed
from the phagosome after only 12 minutes. A bacterial enzyme,
phospholipase A2, and other hemolysins and toxins seem to be re-
sponsible for dissolution of the phagosome membrane by Rickett-
sia.3522,3523 The intracellular protozoan parasite Trypanosoma cruzi
also can escape from phagocytic vacuoles into the cytoplasm,3524,3525

assisted by a hemolysin3527 and a phospholipase C.3528 Experiments
show that ~70% of the parasites are free, just 2 hours after infection.3526

Once the medical nanorobot is free in the cytosol, it has several
options for final escape from the phagocyte. First, it can use presen-
tation semaphores (Section 5.3.6) to display on its surface all neces-
sary targeting proteins to allow it eventually to be naturally
exocytosed from the cell. Second, the nanorobot, if still motile, can
locomote (Section 9.4) to the cytosolic face of the plasma mem-
brane, then directly undertake cytopenetration (Section 9.4.5), per-
haps assisted by fusogens (Section 9.4.5.4) or membrane fluidizers
such as n-butanol.3296 Third, it can re-enter an intracellular vesicle
already targeted for exocytosis and “ride” the vesicle out of the cell.

Once again, the bacteria have a lesson to teach. Usually when
intracellular pathogens have actively replicated inside the host cell,
the cell dies, often by lysis, releasing the pathogens extracellularly.3389

However, a few intracellular bacteria that can quickly escape
phagosomal confinement and enter the host cytosol can achieve
cell-to-cell spreading without ever leaving the cytosolic compart-
ments of adjacent cells. Shigella and Listeria, upon reaching the
plasma membrane, induce the formation of plasma membrane pro-
trusions that invaginate into the neighboring cell, resulting in the
creation of a double-membraned vacuole containing the bacterium,
whose walls are subsequently lysed, releasing the bacterium into the
neighboring cell.3389 Shigella flexneri requires the cell adhesion mol-
ecule E-cadherin during this process3516 and other mediators are
being studied intensively.3515,3529 A medical nanorobot could use
similar means to extrude itself into adjacent cells, or into the extra-
cellular spaces, thus escaping the phagocyte.

15.4.3.6.7 Inhibit Phagolysosomal Fusion
Lysosomal fusion with phagosomes containing a trapped medical

nanorobot — that is, the fusion of phagocytic lysosomes (granules)
with the phagosome, forming a digestive phagolysosome — is not a
direct threat to diamondoid nanorobot core integrity. However, di-
gestive substances present in phagolysosomes could possibly alter the
surface characteristics of nanorobots such as their “biocompatibility
coatings,” or could partially dissolve or digest semaphore display
ligands, nanosensors, or exterior binding sites containing organic
constituents. Thus it may sometimes be useful for nanorobots to
directly modulate or control the phagolysosomal fusion process,
which can occur in just 30 minutes following receptor-mediated
uptake but may require hours (to complete phagolysosome forma-
tion) for other ingested particles such as latex beads.2867

Several bacteria survive while trapped in phagosomes by pre-
venting phagolysosome formation.3302 The simplest chemical that

inhibits phagolysomal fusion appears to be ammonia (e.g., ammo-
nium chloride).3537 Mycobacterium tuberculosis3530-3532 produces am-
monia at high levels, thus interfering with phagolysosomal fusion3533

and the saltatory movement of lysosomes.3534 More recently, it has
been found that the bacteria can recruit and retain TACO (tryp-
tophane aspartate-containing coat protein) in the mycobacterial pha-
gosome, preventing cargo delivery to lysosomes.3535 It has also been
proposed that the polyanionic nature of the cell wall of M. tubercu-
losis, containing sulfatides (anionic trehalose glycolipids3536) and
sulfalipids,3536,3541 could allow it to modify lysosomal membranes
to inhibit phagosome-lysosome fusion in macrophages,3536-3541 al-
though this mechanism has been disputed.3542 The microbe also
may have cytolytic pore-forming ability,3543 may inhibit
complement-receptor Ca++ signaling,3544 and may display selective
inhibition of fusion only with proton-ATPase-containing lysoso-
mal vesicles.3545 Salmonella exhibits phagolysosomal fusion inhibi-
tion while also acquiring lysosomal membrane glycoproteins (lgp)
to redirect fusion to lgp-rich compartments different from the clas-
sical mature lysosome.3546 Cord factor,3547 the adjuvant
dimethyldioctadecylammonium bromide,3548 the drug suramin,3549

and an unknown component of E. coli cytoplasmic membrane3550

are additional phagolysosomal fusion inhibiting substances.
Legionella pneumophila3551-3553 possesses a cytolytic activity that

may allow the insertion of pores into the phagocytic membrane
upon contact.3543 This apparently facilitates delivery of
bacterial-derived effector molecules to the host cell cytoplasm that
are capable of inhibiting phagolysosomal fusion.
Legionella-containing phagosomes may also intercept and fuse with
early secretory vesicles and recruit proteins that were originally des-
tined for the endoplasmic reticulum, setting up a privileged mem-
brane compartment resistant to fusion with lysosomes and permit-
ting the development of an organelle for bacterial multiplication.6029

Afipia,3554 Bordetella,3555 Brucella,3556-3559 Chlamydia,3560 Ehrlichia
(Cytoecetes),3561 Glugea spores,3562 influenza3563 and parainflu-
enza3564 viruses, Listeria,3565 Neisseria,3566 Nocardia,3567 Pseudomo-
nas,3568 and Toxoplasma3569 also display total or partial inhibition
of phagolysosomal fusion. Symbiont-derived lipopolysaccharides are
involved in the prevention of lysosome-symbiosome fusion in amoe-
bas harboring bacterial endosymbionts.3570 Further identification
and isolation of the mechanisms utilized by these organisms will be
necessary to assess their potential usefulness in nanorobot design.

15.4.3.6.8 Inhibit Phagocyte Metabolism
Medical nanorobots might find it useful to slow or temporarily

inhibit phagocyte metabolism to improve the likelihood of avoid-
ance or escape. The simplest method is to selectively absorb oxygen
or glucose intracellularly (ideally after avoiding or escaping the
phagolysosome), thus asphyxiating or starving the phagocyte. This
assumes these substances are not sequestered in an intracellular
microzone (Section 15.5.7.5) or membrane-enclosed compartment
close to the metabolic machinery that is consuming them, and that
these substances can be absorbed by the intracellular nanorobots
faster than the maximum transport rate into the cell (Section
10.4.2.1). Alternatively, a coordinated population of extracellular
nanorobots could temporarily and reversibly hypoxify or
hypoglucosify the local environment as a macrophage approaches.
Hypoxia inhibits macrophage migration,3571 probably due to meta-
bolic changes in the cell.

Another method is to deny energy to the cell by selectively ab-
sorbing intracellular ATP using molecular sorting rotors on the
nanorobot exterior (ideally after avoiding or escaping the
phagolysosome). Again, this assumes the ATP is not sequestered in
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an intracellular microzone (Section 15.5.7.5) or membrane-enclosed
compartment that is diffusion-inaccessible to the nanorobot, and
that the ATP can be absorbed by the intracellular nanorobots faster
than the maximum production rate of the intracellular mitochon-
drial population (Section 8.5.3.10). In nature, the adenylate cyclase
bacterial exotoxins such as anthrax toxin edema factor3368 and per-
tussis toxin3369 act to depress phagocytic activity in a similar man-
ner. For instance, Bordatella pertussis releases an extracellular adeny-
late cyclase which, when taken up by phagocytic cells, sabotages
intracellular metabolism by converting internal ATP to cAMP, ef-
fectively de-energizing the cells.3369 Yersinia similarly disarms mac-
rophages using a hybrid YopT-adenylate cyclase.3572 Depletion of
extramitochondrial intracellular ATP pools converts apoptosis to ne-
crosis in human T cells subjected to two classic apoptotic triggers.5934

Dansylcadaverine, amantadine, and rimantadine have actions on
phospholipid metabolism3355 and reduce the production of mem-
brane lipids such as phosphatidylcholine that are necessary for en-
gulfment. Numerous phagocyte phospholipid and cholesterol syn-
thesis inhibitors are known.3436 Intracellular free oxygen, such as
might be released by medical nanorobots from onboard tanks con-
taining pressurized gases,3573 regulates enzymatic activity via en-
zyme activation or deactivation by S-thiolation controlled by local
oxygen tension.3574 Intracellular oxygen also impairs arachidonic
acid metabolism3575 and phagocytic function3576-3579 in lung mac-
rophages, and can have intracellular toxicity.3581,3582 Inhibition of
natural antioxidants increases cellular susceptibility to oxygen tox-
icity;3580,3581 at the organismal level, O2 exposures exceeding 2.5
atm can cause seizures in animals.3581

15.4.3.6.9 Phagocytocide
If no other means are available, in rare circumstances it may be

necessary for a medical nanorobot to kill a phagocyte that is ingest-
ing it. This is not a desirable procedure unless the total systemic
nanorobot dose is extremely light, since it would be easy for even a
modest number of active nanorobots to quickly deplete a signifi-
cant fraction of the body’s professional phagocytes, substantially
impairing the reticuloendothelial system and possibly contributing
to inflammatory and autoimmune disease.5769 Furthermore, a
nanorobot that permanently poisons a phagocyte is a potentially
harmful device that may not pass governmental regulatory muster.
Many of the techniques of cytocide and virucide summarized in
Section 10.4 may be applicable to phagocytes. However, it is im-
portant to recall that an anergic or apoptotic outcome is cleaner
and thus is preferable to a necrotic outcome — if cell death has
become inevitable — for the reasons described in Section 10.4.1.

Before internalization, nanorobots may kill phagocytes mechani-
cally (Section 10.4.2) or chemically (e.g., GdCl3,3583 beryllium phos-
phate,3584 or dichloromethylene diphosphonate3585). Antigen
overstimulation of T cells, a phenomenon known as high-dose sup-
pression, can also induce T-cell death.2543 Various substances pro-
duced by pathogens that cause damage to phagocytes have been
called aggressins.3302,3586-3590 Most aggressins are extracellular en-
zymes or toxins that kill phagocytes, and include:

1. streptolysin O (an oxygen-labile thiol-activated cytolysin) from
Streptococcus pyogenes (ovoid cocci 0.6-1 micron in diameter3309)
that binds to cholesterol in the membranes of mammalian cells
and organelles3591 with various cytotoxic effects;3592,3593

2. leukocidal toxins including γ-hemolysins and leukocidin3594-3597

from Gram-positive pyogenic cocci such as Staphylococcus
aureus3594-3597 and Staphylococcus intermedius,3597 and cell-bound
leukocidin from Pseudomonas aeruginosa;3598

3. exotoxin A, a bacterial extracellular protein of Pseudomonas
aeruginosa that inhibits protein synthesis by ~50% and kills mac-
rophages in ~1 hour at ~10 ng/ml;3599-3601 and

4. various substances secreted by Enterococci with cytolytic toxic-
ity for phagocytic cells.3301,3602

After internalization, nanorobots may kill phagocytes chemically,
for example, by toxifying the cell via intracellular acidosis3603-3608

from CO2 gas release from onboard pressure tanks3573 with suffi-
cient speed and quantity to overcome the bicarbonate buffer sys-
tem. Like lymphocytes, erythrocytes, and platelets3609 (but unlike
brain3606-3608 and muscle3605 cells), alveolar macrophages are per-
meable3604 to H+/HCO3

-. Measured mean cytosolic pH is 7.1 in
rat renal epithelial cells,3610 7.09-7.19 in rat cardiac myocytes,3611

7.18-7.21 in rat fibroblasts,3611 7.21 in normal human platelets3612

7.33 in human erythrocytes,3613 and 7.39 in human lympho-
cytes.3614 Lethal intracellular CO2 acidosis in nonpermeable cells is
approximately 5.8-6.2,3606 so CO2-induced lethality requires a de-
crease in intracellular pH of at most 1.6, corresponding to the in-
jection of 5.2 million CO2 molecules (~0.1% of respirocyte3573 stor-
age capacity) into a (20 micron)3 cell comprised 70% of water. Of
course, artificial CO2 intracellular acidosis elicits a restorative alka-
linization response3603 including extracellular transport,3604 thus
likely necessitating a somewhat higher intracellular lethal dose to
be administered by nanorobots, in actual practice.

Nanorobots also may induce phagocyte death much like the in-
tracellular parasites of macrophages such as Mycobacterium, Bru-
cella, and Listeria — for instance, via lymphokine-activated
killer-mediated cytolysis of monocytes chronically infected with
mycobacteria.3615 A more direct example is offered by the malarial
(Plasmodium) sporozoites.3616-3618 These enter the fixed phagocytes
of the liver (Kupffer cells) enclosed in a vacuole that resists
phagolysosomal fusion (Section 15.4.3.6.7). But before forming a
parasitophorous vacuole, the sporozoites can travel completely
through the body of the fixed phagocyte and exit the Kupffer cell
on the other side.3618 Then they invade the hepatocytes (other liver
cells) that lie adjacent to the Kupffer cell. The sporozoites accom-
plish this by releasing into the phagocyte cytosol a considerable
amount of circumsporozoite (CS) protein, a ribotoxic agent that
inhibits phagocytic protein synthesis and selectively kills the Kupffer
cells through which the sporozoites pass.3618

It is believed that all eukaryotic cells, including phagocytes, in-
corporate an evolutionarily conserved self-destruct mechanism called
programmed cell death or apoptosis (Section 10.4.1.1). This is an
intracellular cascade of genetically predetermined biochemical steps
in which the cell disassembles itself in an orderly manner, in 30-60
minutes.3619 Phagocyte apoptosis may be triggered by various means.
For example, B lymphocytes and T lymphocytes undergo apoptosis
in response to anti-IgM antibodies and dexamethasone (a glucocor-
ticoid), respectively.3620 Exposure to 4.25% solution of
glucose-lactate-based peritoneal dialysates elicits accelerated
apoptosis in cultured phagocytes (monocytes and neutrophils).3621

Phorbol 12-myristate 13-acetate (PMA) induces morphological
degeneration and cell death in 3-6 hours in porcine PMNs in
vitro.3622 Apoptosis-inducing CD95L ligand expression has already
been mentioned in connection with immune privilege (Section
15.2.3.5). Shigella flexneri produces apoptosis in cultured macroph-
ages via IpaB protein secretion — IpaB binds to
interleukin-β-converting enzyme (ICE), a cysteine protease that can
initiate apoptosis when expressed in cells.3623 In vivo, Shigella flexneri
induces extensive apoptosis of macrophages, B cells, and T cells lo-
cated under M cells in the intestinal walls.3623 Yop proteins from
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Yersinia species signal macrophages to undergo rapid
apoptosis.3624-3627 Salmonella typhimurium also induces apoptosis
in macrophages,3389,3628 as does Listeria during listeriosis in in-
fected hepatocytes,3629 both in vivo and in vitro, mediated by
listeriolysin O.3630

It should be possible to design explicit biological-derived
autodestruct mechanisms into biorobots (Chapter 19) that are analo-
gous to apoptosis. However, disposability engineering for
diamondoid nanorobots which allows for biocompatible planned
biodegradability — nanorobot apoptosis — will be difficult to ac-
complish (Section 9.3.5.2) and would probably present higher risks
due to reduced process control during intermediate stages of
self-disassembly.

15.4.3.6.10 Systemic Phagocytic Blockade
Finally, there is the possibility of systemic phagocytic block-

ade.1391,3631-3645 It is well known that a large quantity of carbon
particles present inside an alveolar macrophage will decrease its ly-
sosomal enzyme concentrations and depress its phagocytic func-
tion.880 At large enough whole-body particle loads, all professional
phagocytic activity ceases. The phagocytic cells of the RES would
be “full” of ingested medical nanorobots (Sections 15.4.3.1 and
15.6.3.4) and the RES is said to be blockaded, with the result that
all subsequently arriving nanorobots will be ignored by a popula-
tion of phagocytes overwhelmed beyond their functional capaci-
tance. Acute blockade typically persists for 1-4 hours for metaboliz-
able particles,2863,3646 but may last 24-48 hours if nontoxic indi-
gestible particles such as carbon2863 or diamondoid nanorobots are
used. RES blockade is sometimes employed clinically to improve
graft survival in transplant recipients.3643,3645 Impaired particle clear-
ance due to RES blockade by parvovirus particles has been observed
in minks,3647 and the excessive use of hair spray has reportedly in-
duced partial RES blockade.3639 Blockade can also be chemically
induced, as for example using GdCl3 at ~0.005 gm/kg in rats,3383

or with cortisone.3648

What volume of medical nanorobots might be needed to induce
complete human RES blockade? There is some relevant experimen-
tal evidence from animal models:

1. A 0.0025 cm3/kg test dose of radioiodinated colloidal albumin
constituted an “appreciable phagocyte load” for human Kupffer
cells but did not produce blockade2845

2. 20 mg of colloidal carbon872,3644 produced complete RES block-
ade in rats (0.05 cm3/kg), though another similar experiment875

found no blockade at a dose of 320 mg/kg (~0.16 cm3/kg).
(Average rat weight is typically ~200 gm.)

3. Particle loads of 1 mg of dextran sulfate3649,3650 (~0.03 cm3/kg
body weight), or 5-10 mg of carbon3641,3645 or carrageenan3638

(0.10-0.20 cm3/kg), or 2 x 109 sheep erythrocyte cells3650 (~3
cm3/kg), have produced RES blockade in mice.

4. 1 gm/kg of carbon black injected IV in mice873 produced com-
plete macrophage blockade (0.5 cm3/kg).

Assuming 3.8 x 106/cm3 granulocytes (volume ~700 micron3)
and 0.4 x 106/cm3 monocytes (volume ~1500 micron3) in the blood,
and 200 x 109 RES phagocytes2863 (volume ~1500 micron33651) in
the tissues, then the total human phagocyte volume is ~300 cm3. If

the maximum particle storage capacity of each cell is ~10% (Sec-
tion 15.6.3.4), then the maximum phagocytic capacity of the sys-
tem — the maximum possible requirement for blockade — is ~30
cm3 of medical nanorobots, or ~0.4 cm3/kg, which is very roughly
consistent with the rodent data, above. Since only ~2 cm3 of
micron-sized particles may be harmlessly sequestered in lymph nodes
and spleen (Section 15.4.3.4), safe blockade of the human RES with
inert particles might not be feasible.* However, temporary block-
ade using biodegradable particles would enable a subsequent dose
of medical nanorobots to operate for a time within the human body
without risk of RES sequestration.

Continuous systemic blockade is also undesirable because it can
leave the body phagocytically defenseless against foreign particle
accumulations and pathogenic invasions, can increase the lethality
of certain infections,2863 and may contribute to the pathogenesis of
inflammatory and autoimmune diseases.5769 Normal adult human
blood contains ~4 million neutrophils/cm3 (Appendix B). If the
number of active neutrophils falls below ~0.5 million/cm3, the risk
of infections increases markedly.361 A sudden systemic cessation of
phagocytic activity may produce symptoms similar to acute neutro-
penia and lymphocytopenia, with impaired immune defenses and
susceptibility to a wide range of opportunistic infections such as
aspergillosis, cytomegalovirus, mucormycosis and nocardiosis.361

These symptoms should abate as the blockading particle mass is
gradually cleared from the RES by the death of blockaded phago-
cytes, whose inert trapped particles are rephagocytized or perma-
nently granulomatized, and the phagocytes are slowly replaced from
storage pools (over many hours) or by accelerated granulopoiesis3640

in bone marrow (over many days). However, the spleen’s ability to
recycle aging red cells and platelets, and to filter particulate debris,
may be compromised. There could be permanent lymph node swell-
ing, chronic hepatosplenomegaly,3638 or even significant organ ne-
crosis. Later, the widely dispersed sequestered particle load would
have to be retrieved by injecting additional scavenger nanorobots
(Chapter 19), compounding the problem. Experimentally-induced
blockade of rat RES using carbon colloid also produces (1) marked
reductions in terminal arteriolar lumen sizes, (2) curtailment of cap-
illary inflow and outflow, (3) hyperreactivity to the constrictor (no-
radrenaline) and hyporeactivity to the dilator (acetylcholine), (4)
arteriolar spasms, and (5) pronounced uptake of carbon particles in
the endothelial cells with different degrees of endothelial cell swell-
ing, often bulging into the microvessel lumens.872 Intentional non-
specific blockade using inert particles probably should be avoided
in most medical nanorobot mission designs.

15.4.3.6.11 Artificial Biological Phagocytes
If antibodies and related biological receptor molecules can rec-

ognize diamondoid materials (Section 15.2.3.3), then it should be
possible to bioengineer slightly altered genes for human phagocytes
so as to produce a new phagocytic phenotype that cannot recog-
nize, or is not activated by, or is actively repelled by, particles com-
prised of these diamondoid materials. Nanorobotic materials, if rec-
ognized by the modified phagocytes, could mechanically or chemi-
cally activate a chimeric or artificially designed cytosolic signal path-
way cascade previously installed as a transgene or genomic cas-
sette5602-5606 in the artificial phagocytic genotype.5607 (Installation
of >1000 bp cassettes has already been demonstrated in human fi-
broblasts.5608) This cascade would elicit chemorepellent-like behaviors

* Waste heat generated by blockade is not an issue. With <1012 white cells in the human body (Section 8.5.1) whose power consumption may increase by 20-100 pW/cell
when activated2853 (Table 6.8), the entire human phagocytic system would generate <100 watts of excess thermal power during the blockade process, thus by itself producing
no measurable increase in body temperature (Section 6.5.2).



Nanomedicine • Volume IIA122

by the phagocytic cell, or would actively inhibit actin-based
phagosome-formation or other crucial multi-pathway events in the
particle internalization process. For example, the ability of mouse
neutrophils to phagocytose bacteria falls by half when the natural
phagocytes are genetically engineered with a single-factor (CCAAT/
enhancer binding protein) deficiency.3652

In view of the relative abundance of techniques for phagocyte
avoidance and escape as outlined above, such genetic modifications
to human cells should prove to be unnecessary in most cases. How-
ever, R. Bradbury points out that the likelihood of robust gene
therapy and whole genome engineering techniques will make the
ability to tune the response of the human immune system a much
more common medical procedure long before robust engineering
of nanorobots is available. Total replacement of the immune system
is already a well practiced medical therapy (e.g., total body irradia-
tion5943 and myeloablative chemotherapy5944 for leukemia, total
lymphoid irradiation for lupus nephritis5945 or prevention of
graft-host disease5946). It seems likely that the next step of replace-
ment or augmentation of the immune system with enhanced bio-
logical components5947,5948 is a highly probable path for biotech-
nological (pre-nanorobotic) nanomedicine.

Note that artificial biological phagocytes are to be distinguished
from artificial mechanical phagocytes2762 (i.e., nonbiological
nanorobots such as microbivores2762).

15.4.4 Biocompatibility of Nanorobot Fragments in vivo
The partial or complete disintegration of diamondoid medical

nanorobots in vivo should be an exceedingly rare event (Chapter
17). Nevertheless, if and when this occurs, nanorobots that have
lost physical integrity should be recognized as foreign matter and
be engulfed by free macrophages or resident phagocytes such as
Kupffer cells. The uncoated, rough exposed surfaces of these
diamondoid devices should invite prompt opsonization (blood pro-
tein tagging) and removal from blood or tissue via geometrical (Sec-
tion 15.4.2) or phagocytic (Section 15.4.3) processes.

Large nanorobot fragments consisting of sharp indigestible shards
might destroy the phagocytosing cell, causing it to rupture and dis-
charge its cytoplasmic contents. This could lead in turn to acute
local inflammation (Section 15.2.4) and the probable release of
chemotactic agents attracting mesenchymal cells to the site, which
would then differentiate into fibroblasts, resulting in entombment
of the shards in the adjacent tissue by a permanent fibrous spherical
granulomatous capsule (Section 15.4.3.5). Studies show that jagged
mechanically-produced PMMA wear particles elicit increased in-
flammatory responses compared to smooth round latex particles.646

Attachment to phagocytic cells may be enhanced by the rough sur-
face of mechanically-produced particles,3653 the increased surface
area of rough particles,646 or by other factors.646 Less jagged
nanorobot fragments might ultimately be sequestered in the lymph
nodes or other lymphatic organs, or may also suffer granulomatous
entombment in place. Nanorobot fragments resulting from dental
grinding (Section 9.5.1, Chapter 28) may be swallowed and elimi-
nated from the body via the alimentary canal. Alternatively, these
fragments may become embedded in the oral mucosa, subsequently
either being encased in a permanent granuloma or being extruded
from the mucosal epithelium (e.g., marsupialization) back into the
oral fluids, then swallowed and excreted (unless reabsorbed in the
gut; Section 15.4.3.3.2).

A medical nanorobot, like any machine, is most likely to rup-
ture at its weakest links. Noncovalent (e.g., van der Waals) bonds

will break before covalent bonds, so nanorobots that are subjected
to catastrophic physical forces initially are most likely to fragment
into relatively less reactive nanoparts and nanoassemblies, rather
than into more highly reactive semirandom molecular fragments of
such components. A few representative diamondoid nanoparts have
already been designed (Section 2.4.1) by K.E. Drexler, R.C. Merkle,
and R.A. Freitas Jr. These nanoparts are essentially very large mol-
ecules incorporating multiatom structures held together by a com-
bination of internal covalent and noncovalent bonds (including steric
hindrance), having, for example, the following basic chemical
formulas:

C20 H24 Si2 and C20 H24 Ge2 for the dimer placement
mechanosynthesis tool tip;36,5683

C1433 N536 H403 O134 Si44 S34 F12 for the fine motion con-
troller;3654

C1826 H1806 Si1645 O367 N224 S220 P77 for the neon gas pump;3655

C2461 Si2792 H864 N628 P452 O367 S356 for the differential gear;3656

C1472 H1000 for the hydrocarbon bearing;3657 and

C4708 H2020 for the hydrocarbon universal joint.3658

Such nanocomponents clearly are not pure diamond structures
— the mean atomic weight per atom for the above designs is 7.0-18.8
daltons/atom of structure, with an average of ~12 daltons/atom.
Sapphire (aluminum oxide) based nanorobot components are also
likely. In 2002 few such nanocomponents had been precisely de-
fined at the molecular structural level, so their biochemical and bio-
logical reactivity is largely unknown. Will they be opsonizable and
phagocytosable? Large free nanoparts with irregular exterior con-
tours and surface charge distributions are probably immunogenic
(Sections 15.2.3.3 and 15.3.7) and thus will likely become visible
to the immune system and to the RES. It is already known that
nanometer-size pieces of amorphous carbon and pure diamond can
undergo photooxidation in the presence of light, oxygen (air) and
water,3659 and sapphire can suffer slow chemical dissolution under
certain conditions (Section 15.3.5.6). Designed to be built and op-
erated in vacuo10 and often containing relatively energetic
strained-shell structures (Section 2.4.1), individual nanoparts could
be chemically reactive in vivo with water, oxygen, ions and free radi-
cals, proteins, or other biological substances that are abundantly
available. Detached protein-based presentation semaphores might
also be immunogenic (Section 15.2.3.3). Stably functionalized
adamantanes, the smallest possible chunks of diamond that can ex-
ist, appear reasonably biocompatible and are generally excreted un-
changed in the urine (Section 15.3.1.4(8)).

Will free nanoparts be cytotoxic, pyrogenic, or systemically toxic?
A large solid pure hydrocarbon-like molecule with a lengthy stretch
of exposed hydrogens might be nontoxic, as is the case with large
chunks of long-chain linear hydrocarbons such as paraffin wax.3660

However, some short-chain linear paraffin hydrocarbons (CnH2n+2)
such as propane are considered “poisonous”3661 with an official NFPA
Health Hazard Rating of 1 or “slightly toxic” (scale 0-4).3662

Hydrogen-terminated diamond and diamond-like coatings appear
relatively nontoxic and inert (Section 15.3.1), as do sapphire-like
particles (Section 15.3.5.5). Nanoparts with exposed sulfur or ni-
trogen atoms could be more reactive in vivo. In vitro studies of
ultrafine particles with living cells show an increased ability to pro-
duce free radicals which then cause cellular damage,6199-6201 mani-
fested as genotoxicity6200 or altered rates of apoptosis.6200-6203 As
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noted by Howard,6188 the upper size limit for the lung toxicity of
ultrafine particles is not fully known but is believed to lie between
65-200 nm.6190 Endocytic vesicles in alveolar membranes may be
40-100 nm in size and are thought to be involved in protein macro-
molecule and occasionally virus transport into cells.6189 Medical
nanorobots or passive inert nanoparticles larger than 100-200 nm
should present relatively low endocytic transport risk, although
smaller particles, free nanoparts, or devices might pose some incre-
mental risk.

It is possible that stray nanoparts may prove relatively more in-
flammatory than whole nanorobots, all else equal. One experi-
ment769 found that 14-nm carbon black particles (about the size of
individual nanoparts; Section 2.4.1) produced a much greater al-
veolar neutrophil inflammation reaction than was elicited by larger
260-nm carbon black particles (closer to the size of whole medical
nanorobots). This is especially important at the very low doses of
free nanorobot parts anticipated in vivo where particle area domi-
nates the inflammation response, as distinct from the relatively un-
likely higher overload-inducing doses where total particle mass or
volume of the instilled particles dominates without any influence
of total surface area.769 Several in vivo studies have found elevated
inflammation in animal lungs exposed to ultrafine (<100 nm) par-
ticle aerosols.6190-6196 For example, Donaldson6194 notes that
“ultrafine particles made of low-solubility, low-toxicity materials are
more inflammogenic in the rat lung than fine respirable particles
made from the same material. The property that drives the greater
inflammogenicity of ultrafines is unknown but very likely relates to
particle surface area and involves oxidative stress. Ultrafine particles
can also impair the ability of macrophages to phagocytose and clear
other particles, and this may be pro-inflammogenic.” Seaton et al6197

have proposed that the chronic inhalation of nanoparticles can pro-
voke alveolar inflammation that can damage the lining of the blood
vessels, leading to arterial disease, though there is some evidence6198

that nanoparticle-induced lung inflammation and peripheral vas-
cular thrombogenesis can be partially decoupled. Oberdorster6216

reported that exposing rats to air containing 20-nanometer-diameter
PTFE (Teflon) nanoparticles for 15 minutes leads to death for most
of the animals within 4 hours, whereas animals exposed to air with
much larger 130-nm particles suffered no ill effects. Histology studies
showed that macrophage cells that normally clear out foreign mate-
rial had trouble ridding tissue of the smaller particles.

What about the biodistribution of stray nanoparts? Kreyling et
al6177 examined the distribution of nanopart-sized 15-nm and 80-nm
particles of chemically inert radiolabeled iridium particles in rats.
Inhaled particles (including particles deposited in the alveolar re-
gion) were cleared predominantly via airways into the gastrointesti-
nal tract and feces, with only <1% of nanoparticles translocated
into secondary organs such as liver, spleen, heart, and brain after
systemic uptake from the lungs and the translocated fraction of
15-nm particles about ten times larger than for the 80-nm particles.
Iridium nanoparticles injected intravenously were “rapidly and quan-
titatively accumulated in the liver and spleen and retained there,”
and nanoparticles inserted gastrointestinally by gavage were not
absorbed through gut walls. The study concluded that “only a rather
small fraction of [the inert nanoparticles] has access from periph-
eral lungs to systemic circulation and extrapulmonary organs.” A
similar study of 20-29 nm carbon particles by the same research-
ers6178 found significant translocation only from lung to liver after
1 day post-exposure, but it was unclear whether translocation had
occurred via the circulation or the GI tract. Oberdorster6216 report-
edly also found that rat-inhaled carbon-13 and manganese

nanoparticles reached the olfactory bulbs and then migrated through-
out the brain.6212

R. Bradbury notes that the three most common unguided active
chemical reactions that occur in biological tissues are oxidation/
free-radical damage, nitrosylation (e.g., NO attacks tyrosine and
perhaps other amino acids), and glycosylation. The potential for
stray nanorobot parts or their randomly-structured fragments to
catalyze or enhance the rates of these reactions should be studied,
and the resistance of undefended nanorobot surfaces to attacks by
these reaction molecules should also be investigated.

In the case of fragmented biorobots (Section 1.3.2.1, Chapter
19), the biocompatibility of cell parts could be of special inter-
est.3663-3666 For example, Glaumann and Trump3664 injected loose
mitochondria and microsome organelles intravenously into rats, and
found that half of the injected dose was recovered in the liver, with
smaller amounts found in the lungs, kidneys, spleen, and heart.
Serum clearance half-life was 5-15 minutes for microsomes and
30-60 minutes for mitochondria.3663,3664 Glaumann and others have
also examined the uptake of injected liver cell plasma membranes,5060

erythrocyte ghost cell membranes,2847 lysosomes,2848 mi-
crosomes,2851 mitochondria,3666,5062 ribosomes,2851 and other sub-
cellular organelles5061 by Kupffer cells; of mitochondria3665 by hu-
man glial cells; of sperm tails by oocytes;5066 of collagen,5078-5083

fibronectin5083 and melanosomes5084 by fibroblasts; and of amyloid
fibrils,5063 DNA/RNA (Section 15.3.6.1), ECM,5064 myelin de-
bris,5065 and red cell ghost membranes5049,5380-5384 by various ph-
agocytic cells. Actin (released from dying or lysed cells) can circu-
late at µM concentrations in peripheral blood and may modulate
plasmin-dependent biological responses.5067 Free α-actin is present
in the blood of patients with angina pectoris and acute myocardial
infarction or ischemia up to 0.112 mg/ml.5068 Bloodborne actin is
scavenged or sequestered by Vitamin D binding protein5069-5071 and
gelsolin,5071,5072 with a serum clearance half-life for free actin of 30
minutes at the liver.5071 Granulocytic fragments have been observed
in blood during sepsis.5387 Finally, an inhaled vaccine consisting
mostly of free bacterial ribosomes has been tested as a treatment for
respiratory infections,5073-5076 producing significantly increased se-
rum concentrations of immunoglobulins.5077

Nanosecretagoguery — e.g., triggered enzyme release by
nanorobots or free nanoparts — is another ever-present concern.
Under some circumstances phagocytes can release enzymes directly
into the extracellular fluid in response to particles with certain physi-
cochemical characteristics. For example, incubation of particulate
activators of the alternative complement pathway such as zymosan
or glucan (polyglucose) particles with monocyte monolayers in vitro
causes the monocytes to release 9-18% of their internal stores of
lysosomal enzyme, N-acetylglucosaminidase, directly into the cul-
ture medium.3667-3669 Similar releases are observed in human mono-
cytes exposed to latex beads at Nct ~ 5-10%3667,3668 and asbestos,3668

and occasionally in eosinophils and neutrophils.3670 Interestingly,
monocyte enzyme release due to inert latex beads (the closest ana-
log to medical nanorobots) is almost completely inhibited by ~8
µg/ml of the fungal metabolite cytochalasin B.3667 Nanorobot frag-
ments that inadvertently mimicked the relevant molecular struc-
tures of glucan or other stimulatory particles might trigger similar
unwelcome accidental releases in vivo — several adamantane de-
rivatives are secretagogues for insulin release by mouse islets in
vitro,5570 and proteins (analogous to secretagogic nanoparts) capable
of serving more than one function (e.g., both ion channel and en-
zyme3671) are known.
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CHAPTER 15.5

Nanorobot Mechanocompatibility
Unlike pharmaceutical agents whose interactions with biology

are largely chemical in nature, medical nanorobots will interact both
chemically and mechanically (Chapter 15.1) with human tissues
and cells. Similarly, traditional biomedical device implants (Section
15.2.1) produce both chemical and bulk mechanical6049 effects, but
nanoorgans and nanoaggregates include active nanoscale features
and moving parts that can apply spatially heterogeneous mechani-
cal forces at the microscopic and molecular scale. Thus any discus-
sion of biocompatibility in nanomedicine must necessarily include
an analysis of the mechanical biocompatibility,5728 or
mechanocompatibility, of nanorobotic systems as they interact with
the tissues and cells of the human body.

Section 15.5.1 describes the mechanical interactions of
nanorobotic systems with human skin and other epithelial tissues.
This is followed by a discussion of mechanical tissue penetration
and leakage as a result of perforation (Section 15.5.2), and mechani-
cal interactions with vascular systems (Section 15.5.3), with extra-
cellular matrix and tissue cells (Section 15.5.4), and with nontissue
cells such as erythrocytes, platelets, and leukocytes (Section 15.5.5).
Electrocompatibility is briefly mentioned (Section 15.5.6), followed
by a more detailed review of cytomembrane and intracellular
mechanocompatibility (Section 15.5.7). The discussion con-
cludes with a brief consideration of nanorobot-nanorobot
mechanocompatibility (Section 15.5.8).

15.5.1 Mechanical Interaction with Human Integument
Various potentially undesirable interactions between medical

nanorobots and the human integument have been discussed else-
where and will not be repeated in detail here. These interactions
include excessive nociceptor stimulation during outmessaging (Sec-
tion 7.4.6.1), excessive acoustic and optical energy densities at au-
ditory and ocular surfaces due to communications among airborne
nanorobots (Section 7.4.8); tickling sensations that might be at-
tributable to skin-traversing nanorobots (Section 9.5.2(F)); tracheal
damage from inhaled nanorobots (Section 9.5.3.6); physical dam-
age to mucous membranes, the auditory canal, and ocular surfaces
by the impact of aerial nanorobots (Section 9.5.3.6); and the pos-
sible triggering of sneezing (Section 15.2.6.2) or nausea and emesis
(Section 15.2.6.3) by nanorobots traversing the relevant epithelia.
In rare cases, excess heat generated by nanodevices located on or
near the skin might induce sensations of pain, as in erythromelal-
gia.5447 None of these risks appears particularly serious if proper
nanomedical designs and operational protocols are observed.

Additional related concerns to be addressed in this Section in-
clude pruritus (Section 15.5.1.1); epidermalgia and allodynia (Sec-
tion 15.5.1.2); epidermal pressure ulcers (Section 15.5.1.3); as well
as peristaltogenesis and mucosacompatibility of medical nanorobots
(Section 15.5.1.4).

15.5.1.1 Pruritus
Pruritus (itching) is an unpleasant cutaneous sensation3672-3675

that usually (but not always5596) evokes the urge to scratch. These
poorly-localized primary sensory impulses are carried on unmyeli-
nated C fibers through the spinothalamic tract to the thalamus and
on to the sensory cortex.3674,3676,5595 Scratching appears to inter-
rupt the rhythm of afferent impulses to the spinal column and re-
lieves the sensation of itching.3676 Chemical mediators such as his-
tamine and peptidases such as papain5594 (a plant enzyme) produce
itching when injected, known as alloknesis,3677 while several me-
diators (e.g., bradykinin, neurotensin, secretin, substance P) stimu-
late the release of histamine from histamine-containing cells.3674

Kinins may be pruritic, but prostaglandins are only weak
pruritogens.3672 Subdermal bile acids are found in cases of pruritus
associated with obstructive biliary disease.3676 Some cases of gener-
alized pruritus can be attributed to dry skin. But there are many
other causes including parasites (e.g., scabies, pediculosiss), physi-
cal obstruction of ducts (e.g., miliaria), and physical or chemical
irritation of the skin (e.g., fiberglass dermatitis, contact dermati-
tis).3674 Histamine release can be elicited by activation of comple-
ment (Section 15.2.3.2); by immunoglobulin IgE (Section 15.2.3.3)
which mediates some allergic responses (Section 15.2.6.1); or by
nauseogenic stimuli (Section 15.2.6.3). This in turn produces itch-
ing, probably mediated by subdermal “itch units” consisting of un-
myelinated nerve fibers.3678

Can the passage of nanorobots across the epidermis cause itch-
ing, either chemically or mechanically? Nanorobots should be de-
signed with chemically nonpruritic external surfaces, and the me-
chanical forces produced by individual 1- to 100-micron nanorobots
traversing human skin at <1 m/sec appear to be insensible (Section
9.5.2). However, >1000 large legged nanorobots simultaneously tra-
versing the receptive field of a single dermal tactile receptor (10-100
mm2; Table 7.3) at >45 cm/sec might just be detectable at some
highly sensitive locations such as tongue and fingertip (Section
9.5.2(F)). This implies a minimum threshold dermal-sensible num-
ber density of >103-104 nanorobots/cm2, which is ~10-100% cov-
erage of the skin. For comparison, the scabies mite Sarcoptes scabiei,
~100-300 microns in diameter, is perhaps the smallest legged mite
that causes itching.5385 But this itching is caused by a local Type IV
delayed hypersensitivity (allergic) reaction (Section 15.2.6.1) and
not by mechanical irritation.5386 Abundant dust mites of similar
size live uneventfully on human epidermis and hair follicles, pro-
ducing allergenic itching only rarely3679 and without producing
mechanical itch — though the superficial dust mites are not an
ideal comparison because they don’t burrow as deeply as scabies
mites (or as deeply as nanorobots might).

Pruritus from immotile medical nanorobots cannot be com-
pletely ruled out because nanorobot-size pruritic fiberglass strands
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measuring 7-24 microns in diameter are known to produce a me-
chanical abrasive dermatitis196,197,201,3680-3685 whose severity in-
creases with applied pressure.3686 However, the author’s informal
experiments with 0.25- to 250-micron diamond grit particles on
his own skin (Section 15.1.1) suggest that diamondoid nanorobots
with generally smooth surfaces should elicit few if any mechanical
itching sensations. Obviously, more formal studies with quantifi-
able results are needed for confirmation.

15.5.1.2 Epidermalgia and Allodynia
Will epidermal penetration by nanorobots produce a sensation

of pain (epidermalgia) in the human patient? Modern hypodermic
needles have outside diameters of >200 microns (33 gauge)3687 and
can barely be felt penetrating the skin. Most of the sensation gener-
ated by fine needle stick can probably be attributed to subdermal
needle cantilevering motions rather than skin penetration per se.
(The smallest solid acupuncture needles are ~120-180 microns in
diameter3688 and there is generally little or no sensation of pain
upon insertion of the needle* which sometimes produces analge-
sia.3689) Hypodermic injections can also produce a sensation of fluid
flowing into the veins, probably due to: (1) a thermal and viscosity
mismatch between injecta and venous blood, (2) a slight vein ex-
pansion from the local rise in fluid pressure, (3) fluid shear forces
(e.g., in dialysis needles3690), and (4) in some cases a direct chemi-
cal response.3691

Nanorobots which are 1-10 microns in diameter present far
smaller dermal penetration footprints than a hypodermic needle
and thus should produce a stimulus even farther below the thresh-
old of sensibility than a needle. They should induce no detectable
cantilevering motions because tissue-transiting nanorobot convoys
(Section 15.5.2.3) need not be flexurally rigid. As with tickle (Sec-
tion 9.5.2) and itch (Section 15.5.1.1) sensations, individual
nanorobots appear unlikely to exert sufficient forces to elicit sensa-
tions of stretch from Ruffini endings.3694 Equally unlikely are pres-
sure sensations from other mechanoreceptive afferents in the skin3695

even if the nerve is directly contacted, itself an improbable occur-
rence given the typical number density of <1 afferents/mm2 in the
skin (Table 7.3). Flow sensations also should be minimized because
nanorobots may be self-injecting without carrier fluid or without
motion of carrier fluid (Chapter 16) thus minimizing vein expan-
sion. Nanorobots can also self-heat to blood temperature during
injection, and should be chemically inert. Nanocatheters and
nanocannula (Chapter 19) larger than ~100 microns in diameter
and major nanosurgical interventions (Chapter 12) may require
analgesic auxiliaries to entirely suppress epidermalgia during the
procedure.

Allodynia — including nanorobot-induced cutaneous tactile
allodynia,3696,3697 mechanical allodynia,3698 mechanical hyperalge-
sia3699 or mechanical hyperesthesia3700 — might be possible in un-
usual circumstances when a normally painless stimulus such as hair
deflection is perceived as painful. (An extreme example is reflex sym-
pathetic dystrophy5597 or RSD.) In one experiment,3701 median
threshold of A fiber nociceptors to monofilament stimulation was
in the range 207-1639 kPa (mean 744 kPa) and 130-764 kPa (mean
411 kPa) for the C fibers, thus requiring allodyniagenic pressures
>1 atm. Hair follicle nerves have a receptive field of ~0.01 mm2

(Table 7.3), hence >1 mN nanorobotic forces may need to be ap-
plied near the base of the hair shaft to induce allodynia. Under nor-
mal circumstances not involving crinal aerobots (Chapter 28), this

seems unlikely. The threshold for first sensation during esophageal
wall distension is ~2900 N/m2, with chest pain ensuing at a thresh-
old distension pressure of ~6100 N/m2.3702 Colorectal mechanical
allodynia is induced in rats at 1300-5300 N/m2.3703

15.5.1.3 Epithelial Pressure Ulcers
Pressure ulcers (e.g., decubitus ulcers or bedsores) are normally

caused by a prolonged mechanical pressure against epidermal tis-
sues (e.g., in persons bedridden for prolonged time periods), typi-
cally at sites over bony or cartilaginous prominences including
sacrum, hips, elbows, heels and ankles. The combination of pres-
sure, shearing forces, friction and moisture3704,3705 leads to tissue
death due to a lack of adequate blood supply. If untreated, the ulcer
progresses from a simple erosion to complete involvement of the
dermal deep layers, eventually spreading to the underlying muscle
and bone tissue.2004 In at least one rare case,3706 mechanical fric-
tional stimulation of the skin apparently precipitated systemic cu-
taneous necrosis and calciphylaxis, a state of induced tissue sensitiv-
ity characterized by calcification of tissues.

Nanomedical applications which envision prolonged periods of
dermal contact with tight-fitting articles of nanorobotic apparel
(Chapter 28), haptic or VR controllers (Chapter 12), exoprostheses
(Chapter 30), or defensive armor (Chapter 31) must incorporate
active components on the skin-contacting interior surface that can
forestall the development of pressure ulcers. Molecular sorting ro-
tors can remove water,3707,3708 waste gases, secreted salts and other
organic materials from the skin-device interface volume. A
sensor-guided metamorphic interior surface can allow the garment
to dynamically mirror epidermal tissue micromovements and per-
haps actively undulate to mechanically encourage blood flow in the
underlying tissues.3709,3710 A thin layer of slightly pressurized dry
nitrogen gas could be maintained in the interface volume, greatly
reducing shearing forces and friction.3711 For example, fluid mat-
tresses can greatly reduce pressure ulcers in long-duration surger-
ies3712. Pressure-relieving surfaces have been investigated for surgi-
cal patients,3713,3714 wheelchair users,3715-3718 and for other circum-
stances.3719-3721 The interior surface should employ materials hav-
ing roughly the same mechanical properties as the enclosed tis-
sue,3207-3210 and the applied interfacial pressures should be reduced
to below 1 psi3716 or ~ 50 mmHg. Mechanical pinch-induced
pain5449 should also be avoided.

Stercoral ulcers3722-3724 are caused by the necrosis of intestinal
epithelium due to the pressure of impacted feces. Macroscale co-
lonic nanorobot aggregates (Chapter 26) must avoid applying such
harmful luminal pressures during lengthy missions.

15.5.1.4 Mechanical Peristaltogenesis
and Mucosacompatibility

Will colonic nanorobots trigger diarrhea? The mechanical move-
ments of medical nanorobots should not stimulate adverse biologi-
cal responses during the traversal of mucosal membranes. For ex-
ample, mucosal surfaces in the stomach and small intestine contain
emetogenic mechanoreceptors,2433 and the mechanical stimulation
of esophageal3725 or intestinal3726 mechanosensors can elicit peri-
stalsis. But shear forces generated during luminal wall locomotion
can be held low enough to avoid nausea and emesis (Section
15.2.6.3). Colonic peristalsis may be initiated by the passage of
roughage through the colon3727-3730 or by mechanical brush strokes
applied directly to the mucosal tissue,3731 but the shear forces

* Acupuncture needles have a doweled end, not a cutting end like most hypodermic needles, thus may be less likely to cause tissue damage, vascular puncture, or bruising
when inserted.3692 The needling sensation (de qi) is thought to be caused by muscle fibers being caught and twisted on the needle tip.3693
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generated by nanorobot mechanical activities may be held below
the threshold required to stimulate diarrhea. This threshold has not
yet been precisely measured in humans, but it is known that the
peristaltic threshold for marmoset ileum is <1000 N/m2,3733 about
2700 N/m2 for canine gut wall3734 and for feline small bowel,3735

and that the distension pressure threshold to induce peristalsis in
human esophagus is 1500-1900 N/m2.* 3702 (The mechanical stimu-
lation threshold to activate peristalsis in chicken ureters ranges from
770-9330 N/m2.3732) Interestingly, mechanical sensory impulses
(e.g., air or ~0.3 cm3 water injection) from the pharynx actually
inhibit esophageal peristalsis.3736

Although unlikely to trigger peristalsis, nanorobot mechanical
activities may slightly increase mucus secretions from mucosal sur-
faces. For example, mechanical stimulation of the feline gastric
mucosa doubles the rate of submucosal gland secretions.3742 In rat,
adherent mucus is 5-500 microns thick over the gastroduodenal
mucosa.3743 Particles instilled in the lungs, including inert dusts,3744

cause increased numbers and activity of alveolar macrophages and
an increased mucus flow rate.3745-3747 Rapidly adapting receptors
throughout the respiratory tract from the nose to the bronchi re-
spond to mechanical stimuli, producing additional airway mucus
secretion along with cough and bronchoconstriction.3748 Particles3749

or tubes3750 placed in the nose cause increase nasal mucus flow and
mechanical sinusitis. Mechanical stimulation of the nose, nasophar-
ynx and larynx increases tracheal mucus output in the cat.3751

Mucociliary cilia beat most strongly in the vicinity of a particle due
to direct tactile stimulation.3752

15.5.2 Histopenetration and Perforation
Some medical nanorobots must be able to cross the epithelial

barriers of skin and gut (Section 15.5.2.1), penetrate the vascular
endothelium (Section 15.5.2.2), and migrate through tissues (Sec-
tion 15.5.2.3) without introducing microbial flora and without caus-
ing edema, bruising, or other injury related to mechanical trauma.
Various bacteria, neutrophils, fibroblasts and macrophages often
make such journeys, usually without incident. It is also important
to avoid tissue injury that might result in the sensitization of
nociceptors, exposing the patient to the possible development of
hyperalgesia.5450

15.5.2.1 Transepithelial Penetration
Past studies6173 have shown that the percutaneous penetration

of passive microspheres is a function of particle diameter. In more
recent studies, Tinkle et al6174 studied the penetration of size-selected
fluorospheres (dextran beads) into postmortem human skin using
laser confocal microscopy. They found that beads as large as 0.5-1
micron in diameter can penetrate the stratum corneum and reach
the epidermis, and occasionally even the dermis (possibly deep
enough for lymphatic system uptake), if the skin is flexed, as at the
wrist; >50% of samples showed this activity after 1 hour of flexing.
Lademann et al6175 found that ~0.1 micron titanium dioxide par-
ticles used in sunscreen lotions penetrated into the hair follicles of
the skin, with <1% of the applied particle concentration found in
any given follicle. But in the interfollicular areas the deepest layers
of the stratum corneum (and the viable skin tissues below) were devoid
of penetrating particles even after repeated applications; microparticles
were found only in the areas of the pilosebaceous orifices.

The careless penetration of nanorobots through human skin (Sec-
tion 9.5.2) could potentially create microscopic perforations through
which microbes (e.g., as in cellulitis) and undesirable environmen-
tal substances could enter the body and cause disease. (T.G. Wilson
notes that with gingival inflammation, which almost everyone has,
the epithelium around the tooth becomes quite porous and bacte-
rial entry into the connective tissues and bloodstream is common.)
Other pathological conditions associated with numerous and fre-
quent epithelial penetrations include the development of deeply
pigmented or discolored skin associated with an excess of skin pen-
etrations by body lice (pediculosiss corporis, aka. vagabond’s dis-
ease or vagrant’s disease)3755 and the granulomatous “stylosome”
(stalk-mouth) that rises up from the skin in an attempt to wall off
burrowing chiggers.3755,3756 These results may be avoided by em-
ploying exterior lipophilic coatings on the nanorobot (Section
15.2.2.2) to encourage close nanorobot-tissue contact during tran-
sit, followed by active breach-sealing procedures (Section 9.4.5.6)
once histopenetration is complete.

However, it appears unlikely that lymphatic or other fluids could
exude from the body through unsealed epidermal transit holes cre-
ated by medical nanorobots. The time-averaged interstitial pressure
in subcutaneous tissue is 0.8-5 mmHg,3753,3754 with mean value
~1.4 mmHg (Section 8.2.1.3). Even taking the highest pressure and
assuming no tissue self-sealing, internal fluids can overcome surface
tension at the fluid-air interface and begin to ooze from pores only
if those pores are larger than ~60-600 microns in diameter (Section
9.2.4). Most medical nanorobots and their transit holes should be
much smaller than this, and any microholes in soft tissue should
rapidly plug or reseal. R. Smigrodzki agrees that “the size of the
nanorobots is so small that a channel produced by the robot ac-
tively traversing the skin should spontaneously seal within a very
short time, unless extreme stretch forces are applied.”

Similar considerations may apply to the transepithelial penetra-
tion of nanorobots through stomach, intestinal, or bladder walls
lined with cells having tight occluding junctions. Hemorrhage and
perforation are two common complications of gastric and duode-
nal ulcers. Underlying tissues may then suffer chemical irritation by
gastric acids and digestive enzymes. Gastric or duodenal perfora-
tions develop in 5% of ulcer patients. Such perforations result in
chemical peritonitis and could also lead to bacterial peritonitis that
causes sudden, severe generalized abdominal pain. Gas intrusion
causes the presence of free intraperitoneal air (usually not itself patho-
logical) in 75% of all cases.2421 However, in the resting stomach a
viscous protective layer of bicarbonate-rich mucus adheres closely
to the surface of the underlying gastric epithelium. Gastric contents
cannot pass into the tissues along unsealed nanorobot transit holes
through the gastric epithelium as long as the thick alkaline mucus
layer is maintained intact. It has already been noted that
nanorobot-sized particles up to ~10-15 microns in diameter nor-
mally pass out of the small intestine into lymphatic tissues (i.e.,
Peyer’s patches) without incident (Section 15.4.3.3.2). Nanorobotic
perforation of the wall of the bacteria-rich colon could potentially
introduce gut flora into the bloodstream or surrounding tissues —
although R. Smigrodzki notes that gut microbes commonly reach
the bloodstream even during straining at stool, so the very small
number that might be introduced during nanorobot transit should
not be problematic. Lipophilic coatings and breach-sealing proto-
cols could again be employed here, as in dermal histopenetration.

* Human esophageal peristaltic pressure is normally 8100-10,200 N/m2 depending upon position3737 with >4000 N/m2 needed to properly propel a swallowed bolus,3738 and
esophageal sphincter pressure is 1790 N/m2.3739 Spontaneous jejunal contractions have been measured as 4700 N/m2.3740 Colonic wall tension is typically ~5000 N/m2 but can
rise as high as 106 N/m2 in ileus patients, higher than the maximum contraction capacity of the large intestine’s muscle system (~5 x 105 N/m2).3741 Mechanical destructive
forces of the gastrointestinal tract are sufficient to crush test pills having crushing strength of 1.2-1.89 N when swallowed by humans, or 3.2 N in dogs.5017
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Bowel necrosis and intestinal infarction are unlikely if no blood
vessels are broken or occluded.

The risk of mechanical damage due to epithelial laceration by
aerial nanorobots has already been described in Section 9.5.3.6.
Vision loss from corneal abrasions is due to changes in many layers
of the cornea. According to Sano et al,3757 abrasions severe enough
to mechanically remove cells from the corneal epithelium would
also cause massive enlargement of mitochondria in the underlying
endothelium and intracellular migrations of fibrillogranular mate-
rial, thus potentially causing progressive vision loss.

15.5.2.2 Transendothelial Penetration, Bruising and Edema
Transendothelial penetration may involve either the injection of

medical nanorobots into the luminal space of a blood or lymphatic
vessel via an injection carrier, or alternatively the migration of
nanorobots under their own power out of a blood or lymphatic
vessel into the tissues or out of the tissues into a blood or lymphatic
vessel.

Injections of nanorobots directly into blood vessels (Chapter 16)
should produce minor localized disturbances to just a small num-
ber of vascular endothelial cells. The metamorphic hypodermic in-
jection carrier can maintain a tight seal throughout the injection
process. Rather than relying on natural endothelial lesion repair
mechanisms that may take many weeks to complete in the case of a
traditional large-gauge hypodermic needle,3758,3759 the vascular
breach due to a nanomedical hypodermic carrier is cellularly re-
sealed immediately post-injection. Fluid leakage, bruising and edema
should be negligible.

Incautious or reckless migration by medical nanorobots from a
blood vessel lumen through vascular walls into the tissues, called
transmigration, extravasation or diapedesis (Section 9.4.4.1), could
produce unwanted pathologies ranging from minor bruising or ec-
chymosis (usually not causing serious pain4740,4741), to localized he-
matomas, to (in the most extreme case imaginable) massive hemor-
rhages comparable in severity to the hemorrhagic fevers3760 caused
by filoviruses such as Ebola and Marburg3761 or (analogously) to
cases of full thickness dermal necrosis following extravasation of
chemotherapy5693 or other5694 agents. These outcomes should be
avoidable with good design, including membrane sealing protocols
during intercellular passage (Section 9.4.4.3) and attention to avoid-
ance of unintentional mechanical cytocide (Section 10.4.2).

Reverse diapedesis3762,3763 or intravasation,3764 from tissues to
vascular compartment, also may be undertaken by medical
nanorobots analogously to living cells.3762-3765 Under normal cir-
cumstances, nanorobot diapedesis including endothelial gap wid-
ening, nanorobot extravasation or intravasation, and gap resealing,
should be accomplished in some tens of seconds (Section 9.4.4.1).
If the gap between parted endothelial cell junctions and the exterior
surfaces of the transiting nanorobot is held to 1 micron or less, then
platelets, red cells,* and white cells cannot escape from the vascular
compartment during diapedesis. This virtually eliminates any pos-
sibility of bruising or hemorrhage and greatly limits the potential
for thrombogenesis, inflammation or pain at the site of
histopenetration. Transdermal injections of nanorobots (Chapter
16) channeled directly into tissue compartments using sensor-tipped
metamorphic needles can actively avoid all vascular penetrations,
again virtually eliminating any possibility of the local bruising that
was common with 20th century hypodermic rigid needles.

Typically more than 70% of the water of the blood is exchanged
with extravascular water every minute (~35 cm3/sec whole-body)
— the walls of smaller capillaries are veritable sieves with respect to
water (Section 8.2.1.2) — and about 20 liters/day (~0.2 cm3/sec
whole-body) of free water leave the circulation via ultrafiltration
through leaky capillaries. Of this amount, 18 liters/day are reab-
sorbed after passing through the lymphatic capillaries and back into
the venous loops, leaving ~2 liters/day to pass onward through the
lymphatic system (Section 8.2.1.3). If the mean
endothelial-nanorobot gap during the entire transit event is equiva-
lent to a pipe of radius 0.1 micron, length 10 microns, and assum-
ing a histoarterial pressure differential of ~0.1 atm (76 mmHg) for
plasma fluid of viscosity 0.001 kg/m-sec (Table 9.4), then from Eqn.
9.25 the Poiseuille plasma fluid flow through each diapedetic gap is
at most ~40 micron3/sec. In the worst-case scenario, the simulta-
neous parallel transit of 1012 nanorobots past the ~1012 endothelial
cells of the human vascular tree (Section 8.2.1.2) releases an addi-
tional ~40 cm3/sec — or roughly the normal extravascular water
exchange rate — during the nanorobot fleet transit which may last
only some tens of seconds. Total systemic fluid leakage volume dur-
ing this scenario is 0.5-1 liter (1-2% of total body water, 9-18%
blood volume or blood pressure reduction). This is far less than the
hourly lymphoplasmatic circulation, and blood hematocrit tempo-
rarily rises from 44% to 50-55% in human males, all of which seems
tolerable in healthy patients. (A packed cell volume >~55% is the
recommended clinical threshold requiring therapeutic bloodletting
during apparent polycythemia.3766) However, the tolerability will
depend largely on the fluid status of the patient (e.g., hypovolemic
or euvolemic) and on the patient’s cardiovascular status (e.g., how
well the heart can compensate for a decrease in blood pressure and
volume). In each case, it will be important to assess the patient’s
health status and evaluate the medical risks, however small, of a
nanorobotic procedure — as nothing is totally without risk.

Nanorobot-induced vascular leakage could be pathognomically
similar to: (1) fluid retention syndrome3767 or idiopathic edema,
which can produce symptoms of bloating, fatigue and generalized
weakness, headaches, blurring of vision, abdominal pains and diar-
rhea, and (possibly psychosomatic) signs of fibromyalgia;3767 (2)
contracted plasma volume syndromes (relative polycythemias);3768

(3) vascular leak syndrome3769 during immunotherapy, with more
serious effects; or (4) other systemic causes.5894 However, patients
with high-altitude sickness experience changes in total body wa-
ter** ranging from 4.7%3770 to 18%3771 with an elevated hemat-
ocrit >62%.3771 Edematous patients with chronic severe anemia have
body water 14% above normal.3772 Untreated patients with chronic
limb edema,3773 severe clinical edematous congestive heart fail-
ure,3774 or edematous obstructive pulmonary disease3775 may have
body water 13%, 16% or 21% above normal, respectively. By com-
parison, a worst-case nanorobot-induced 1-2% change in total body
water distribution that persists for perhaps some tens of minutes
seems unlikely to prove troublesome. Syncope due to the 9-18%
reduced blood pressure (hypotension) also appears unlikely. In one
hyperbaric experiment,3776 a transient ~50% circulatory depression
in which arterial pressure fell from 120/80 mmHg down to 60/53
mmHg in just 20 seconds did not cause the healthy young adult
subject to lose consciousness or significant mental capacity, and C.
Wiley notes that ER or OR patients with systolic pressures in
the 70s are often conscious. Another experiment3777 on children

* During erythrocyte diapedesis, red cells can sometimes pass through endothelial wall openings as narrow as 0.5 microns.2755

** These shifts, though compensatory for decreased atmospheric pressure and decreased oxygen availability and not due to vascular leakage, may suggest potentially useful
thresholds for leakage tolerance.
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exhibiting unexplained syncope found an average blood pressure
decline of -45/23 mmHg (-40%/30%) after moving from supine to
upright posture, with a 27.7 sec recovery time compared to 16.5 sec
for normal children. Yet another study3778 of postprandial hypoten-
sion in elderly subjects found a mean reduction of –30 mmHg
(-25%) following an oral glucose tolerance test, with only one of
the five subjects reporting a brief episode of light-headedness. Again,
it is worth noting that many of the patients receiving nanorobotic
procedures may not be healthy young adults, so extrapolation of
the data to other populations should be done with caution; it is
essential to identify the health status of the patient prior to per-
forming a nanorobotic procedure.

Fortunately, most therapeutic applications may allow local vas-
cular transit rates 1-2 orders of magnitude lower than the worst-case
scenario described above, or may involve significantly smaller
nanorobot populations in transit. The overall conclusion is that fluid
leakage through temporary vascular breaches induced by extrava-
sating or intravasating medical nanorobots can be made acceptable
and largely nonedematous, nonhemorrhagenic, and insensible to
the patient. It is important to note the risk of passage of some bac-
teria and viruses between blood and tissue compartments during
nanorobot histopenetration. Such risks, although realistically un-
avoidable whenever tissue barriers are breached, appear to be much
reduced when such methods are compared with conventional hy-
podermic needles.

Elevated interstitial colloid osmotic pressure — most severely,
due to blockage of the lymphatics which prevents the normal re-
turn of proteins to the circulation — can also cause high interstitial
fluid pressure and edema.5893 Proteins that would normally leak
through capillary walls gradually accumulate in the tissue spaces
until the interstitial colloid osmotic pressure approaches the plasma
colloid osmotic pressure, whereupon the capillaries lose their nor-
mal osmotic advantage of holding fluid in the circulation so that
fluid now accumulates abundantly in the tissues.5893 Guyton5893

notes: “Lymphatic blockage commonly occurs in the South Sea Is-
land disease called filariasis, in which filariae (a type of nematode
worm) become entrapped in the lymph nodes and cause so much
growth of fibrous tissue that lymph flow through the nodes be-
comes totally or almost totally blocked. As a result, certain areas of
the body, such as a leg or an arm, swell so greatly that the swelling is
called ‘elephantiasis.’ A single leg with this condition can weigh as
much as the entire remainder of the body, all because of the extra
fluid in the tissue spaces.” Care must be taken to avoid analogous
lymphatic blockages by large numbers of medical nanorobots pass-
ing through, temporarily parked in, or geometrically trapped in
prelymphatic pores (Figure 8.5, Section 8.2.1.3) in large tissue re-
gions, or in the lymph nodes — that is, nanorobot-induced lymphe-
dema.5895-5899 Inflammation (Section 15.2.4) or granulomas (Sec-
tion 15.4.3.5) of the lymphatic channels due to the presence or
passage of medical nanorobots, if not avoided by good device and
mission design, could also result in nanorobot-induced lymphangi-
tis with edema5900-5902 and fibrosis,5903 with exacerbation of certain
infections.5904

15.5.2.3 Nanorobot Convoy Formation
All else equal, mechanical damage during histopenetration by

medical nanorobots is proportional to the volume of disturbed tis-
sue. The tissue volume required to be displaced by a given popula-
tion of passing nanorobots is minimized if transit tunnel volumes
are reused by successive nanorobots — that is, if nanorobots
histopenetrate in linear convoys. More quantitatively, if a popula-
tion of Nbot cube-shaped nanorobots each of edge d moves at

velocity vbot through a cubic tissue block of volume L3 using ctunnel
separate histopenetration tunnels each of length L and cross-sectional
area d2, then the tissue holing fraction is fhole = ctunnel d2 / L2, the
length of each convoy is Lconvoy = d Nbot/ctunnel, and the transit time
for the fleet is ttransit = (L + (d Nbot / ctunnel)) / vbot.

For Nbot = 109 nanorobots, L = 1 cm, d = 1 micron, and vbot =
100 microns/sec (Section 9.4.4.2), then randomized
single-nanorobot histopenetration (ctunnel ~ Nbot) gives fhole = 1000%
and the block of tissue is entirely holed ten times by the passing
nanorobot fleet, a massively intrusive event. However, if fhole = 1%
is regarded as an acceptable and fully biocompatible maximum de-
gree of tissue intrusion (Section 15.6.3), then ctunnel = 106, giving
ttransit = 110 sec and Lconvoy = 1 mm. (See also Section 15.3.6.5.)

15.5.3 Vascular Mechanocompatibility
Medical nanorobots may be resident in the vascular compart-

ments of the human body for extended periods of time. Such de-
vices may take the form of individual nanorobots or nanorobotic
aggregates arranged in 1-, 2- or 3-dimensional arrays (Chapter 14),
and may be free-floating, vasculomobile (endothelial surface loco-
motion), or anchored. Nanorobots in all their forms must be as
mechanically biocompatible with the vascular walls (Section
15.5.3.1) as are stents (Section 15.5.3.2), must not produce me-
chanical vasculopathies whether obstructive (Section 15.5.3.3) or
destructive (Section 15.5.3.4), and must not provoke deleterious
changes in vascular permeability (Section 15.5.3.5).

15.5.3.1 Modulation of Endothelial Phenotype and Function
The luminal surfaces of all blood and lymph vessels consist of a

thin monolayer (the endothelium) comprised of flat, polygonal squa-
mous endothelial cells (EC) which is a part of the intima (endothe-
lium plus basement membrane and elastic lamina), covering a much
thicker layer (the media) which in turn is comprised of vascular
smooth muscle cells (SMC). Both layers are subject (and respond)
to tangential fluid shear stresses (Section 15.5.3.1.1) across the endot-
helial cell surface. These stresses are attributable to: (1) the bulk
flow of blood,3782-3785 (2) normal hydrostatic pressure stress acting
radially on the vessel wall due to the propagation of the pressure
wave, and (3) cyclic stretch or strain (Section 15.5.3.1.2) due to
blood vessel circumferential expansion in vivo.3785-3787 As a result,
these two vascular layers might also be sensitive to similar mechani-
cal stresses that may be applied by stationary or cytoambulatory
intravascular nanorobots. Increases in vessel wall rigidity could cause
diastolic and systolic pressures to progressively diverge, with subse-
quent increased risk for a vascular event, such as a stroke. M. Sprintz
notes that another risk of nanorobots penetrating and residing in
the vascular integument is a potential weakening of the vessel wall.
This weakening could increase the probability of aneurysm forma-
tion or direct rupture of the vascular endothelium, a possibility that
should be investigated further and minimized in mission design.

15.5.3.1.1 Fluid Shear Stress
Endothelial cells (EC) are randomly oriented in areas of low shear

stress but elongated and aligned in the direction of fluid flow in
regions of high shear stress. In vitro endothelial cells previously ac-
climatized to physiological fluid shear stresses respond to artifi-
cial changes in local fluid shear stress only very slowly, and in three
stages.3797 In the first stage, EC initially respond to the imposition
of stress within 3 hours by enhancing their attachments to the sub-
strate and to neighboring cells. The cells elongate and have more
stress fibers, thicker intercellular junctions, and more apical microfila-
ments. In the second stage, after 6 hours the EC show constrained
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motility as they realign, losing their dense peripheral bands and
relocating more of their microtubule organizing centers and nuclei
to the upstream region of the cell. In the third stage, after 12 hours
the EC become elongated cells oriented in the new apparent direc-
tion of fluid flow. Stress fibers are thicker and longer, the height and
thickness of intercellular junctions are higher, and the number and
height of apical microfilaments are increased. This produces a new
cytoskeletal organization that alters how the forces produced by fluid
flow act on the cell and how the forces are transmitted to the cell
interior and substrate.3797

Physiological fluid mechanical stimuli (e.g., fluid shear stresses*)
are important modulators of regional endothelial phenotype and
function.3798-3802 For example, endothelium exposed to fluid shear
stress undergoes cell shape change, alignment, and microfilament
network remodeling in the direction of flow (though nanorobots
could block this remodeling, as illustrated crudely via microtubule
disruption using nocodazole).3803 Interestingly, the application of a
steady laminar shear stress (a physiological stimulus) upregulates
the human prostaglandin transporter (hPGT) gene at the level of
transcriptional activation, whereas a comparable level of turbulent
shear stress (a nonphysiological stimulus) or low stress (such as a
vascular surface coated with sessile nanorobots) does not.3802 The
precise molecular mechanisms that mediate shear stress response
were unknown in 2002, although the cell-cell adhesion site is a likely
location of flow sensing and PECAM-1, a cell adhesion molecule
found at that site, has been suggested5768 as one possible
mechanoresponsive mechanism. Fourfold-elevated hemodynamic
wall shear stress also produces elevated neointimal SMC apoptosis
in baboon aortoiliac grafts,5949 and an increase in blood flow and
velocity in canine vein grafts produced elevated apoptosis within
the adventitia and media of the vein during the first week following
grafting.5952

Endothelial cells thus respond to sustained physiological fluid
shear stresses** from 0.02-100 N/m2, spanning the range of normal
arterial wall fluid shear stresses of 1.0-2.6 N/m2 from the aorta
through the capillaries3813,3814 and 0.14-0.63 N/m2 for the venous
circulation.3814,3815 By contrast, legged vasculomobile medical
nanorobots may apply shear stresses during luminal anchorage or
cytoambulation at velocities up to 1 cm/sec of at least 40-200 N/m2

or higher (Section 9.4.3.5). (Self-expanding aortic stents forcibly
pulled from the vessel require an extraction force of ~400 N/m2

assuming a 10-cm length, rising to ~1200-3600 N/m2 for stents
anchored with hooks and barbs.3816 Varying the radial force ap-
plied by stents against the vascular wall has little impact on the
required extraction force.) Such shear forces, if imposed
unidirectionally by large numbers of closely-packed co-ambulating
nanorobots for time periods of >103 sec, may induce significant
changes in shape, orientation, and physiological function in the
underlying endothelial cell population. If instead these forces are
applied in randomized directions by opportunistic individual
nanorobots cytoambulating across the local endothelium for very
short durations, then mechanically-induced modulation of endot-
helial phenotype and function would be greatly diminished or pos-
sibly eliminated.

A nanorobot aggregate that shields vascular cells from fluid shear
for an extended time may induce those cells to revert to their
flow-unstressed phenotype or to undergo apoptosis. Analogously,
endothelial cells cultured in the absence of shear stress rapidly lose
many of their differentiated features and become insufficiently ad-
herent to artificial surfaces to resist physiological shear stress.3817 In
one study,3818 after blood shear was artificially reduced near a wound
lesion for 24 hours the local endothelial cells became less elongated,
contained fewer central microfilament bundles, and exhibited a
slower repair process. Endothelial cell apoptosis was observed for a
week after a decrease in carotid arterial flow by closure of an arterio-
venous fistula in rabbits.5951 In another study with rabbits, vein
grafts removed from the higher-shear arterial circulation and reim-
planted in the lower-shear venous circulation of the same animal
showed regression of intimal hyperplasia and medial rethickening
in 14 days, apparently due to induction of smooth muscle cell
apoptosis by a reduction in pressure or flow forces.3819 Stent im-
plantation in the canine portal vein also has induced a prolonged
apoptotic response in intimal and medial smooth muscle cells.5950

15.5.3.1.2 Stretch Forces
Endothelial cells can respond to persistent static overstretching

in many ways, up to and including apoptosis. For instance, hyper-
tension caused by hydrostatic edema can induce apoptosis in capil-
lary EC.3820

Vascular wall cells also respond to lateral stretch forces due to
cyclical blood vessel expansion in vivo. For example, in one experi-
ment3854 bovine aortic endothelial cells were seeded to confluence

* For laminar fluid flow in cylindrical tubes of radius R and length L through a pressure differential of ∆P, the fluid shear stress3814 is R∆P/2L.

** A few of the many quantitative experimental observations include:
1. shear stresses from 0.02-1.70 N/m2 produce flow-induced membrane K+ currents;3798

2. cultured subconfluent bovine aortic endothelial cells subjected to uniform fluid shear stress of 0.1-0.5 N/m2 proliferate at the similar rates and achieve similar saturation
density as static cultures, but confluent monolayers exposed to 0.5-1.0 N/m2 laminar shear stress undergo a time-dependent change in cell shape from polygonal to
ellipsoidal, becoming uniformly oriented with flow;5960

3. physiological shear stresses of 0.35-11.7 N/m2 stimulate mitogen-activated protein kinase in a 5-min peak response time;3804

4. 0.04-6 N/m2 shear stresses increase inositol trisphosphate levels in human endothelial cells, with a 10-30 sec peak response time;3805,3806

5. shear stresses from 0.5-1.8 N/m2 regulate (in frequency and amplitude) oscillating K+ currents known as spontaneous transient outward currents or STOC which are observed
both in isolated bovine aortic endothelial cells and in intact endothelium; activation of STOC depends on the existence of a Ca++ influx and is blocked by 50 µM of Gd+++

or is significantly reduced by 20 µM of ryanodine;3807

6. shear stress of 1.2 N/m2 induces transcription factor activation over response times ranging from 0.3-2 hours;3779

7. shear stresses of 1.0-2.5 N/m2 induce increased ATP release from endothelial cells;5715

8. arterial shear stresses of 1.5-2.5 N/m2 induce endothelial fibrinolytic protein secretion3800 (though a venous shear stress of 0.4 N/m2 does not);
9. shear stress of 2 N/m2 induces TGF-β1 transcription and production in a ~60 sec initial response time, with a sustaining increase in expression after 2 hours;3808

10. a shear stress of 2 N/m2 suppresses ET-1 mRNA on confluent bovine aortic endothelial cell monolayers;3809 these effects of shear may be completely blocked (thus allowing
ET-1 to be expressed) using 875 nM of herbimycin to inhibit tyrosine kinases or 10 µM of quin 2-AM to chelate intracellular Ca++, partially inhibited using 3mM of
tetraethylammonium (TEA), or attenuated by elevated extracellular K+ at 70 mM or completely inhibited by K+ at 135 mM;3809

11. shear stress of 3 N/m2 induces Ca++ membrane currents in a 30 sec peak response time;3810

12. shear stress of 6 N/m2 applied for 12 hours causes endothelial cells to align with their longitudinal axes parallel to flow;3795

13. membrane hyperpolarization occurs as a function of local shear stress up to 12.0 N/m2, with an exponential approach to steady state in ~1 minute; the process is fully
reversed once the artificial fluid flow stress is removed;3799

14. critical shear stress of 42 N/m2 is the disruptive threshold for endothelial cells, inducing cell mobility;3811 and
15. shearing stresses of 5-100 N/m2 occur at the contact interface when a leukocyte is adhering to or rolling on the endothelium of a venule.3812
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on a flexible membrane to which cyclic strain was then applied at 1
Hz (0.5 sec strain, 0.5 sec relaxation) for 0-60 min. After 15 min-
utes of this cyclic stretching, there was an increase in adenylyl cy-
clase (AC), cAMP, and protein kinase A (PKA) activity of 1.5-2.2
times control levels at 10% average strain, as compared to unstretched
cells, but there was no activity increase at 6% strain. Evidently, cy-
clic strain activates the AC signal transduction pathway in endothe-
lial cells by exceeding a strain threshold, thus stimulating the ex-
pression of genes containing cAMP-responsive promoter elements.
Stretch-activated cation channels in bovine aortic EC are inhibited
by GdCl3 at 10 µM.3809 Human umbilical EC subjected to a 3-sec
stretch pulse show an intracellular rapid-increase Ca++ spike, fol-
lowed by a (ryanodine-inhibitable) slower prolonged influx, due to
biphasic Ca++ entry into the cell through stretch-activated chan-
nels. Mn++ also permeates mechanosensitive channels (but not Ca++

channels) and enters the intracellular space immediately after an
application of mechanical stretch.3787 Cyclic strains of 10% at 1 Hz
induce intracellular increases in Ca++,3823 diacylglycerol,3821,3822

inositol trisphosphate3821-3823 and protein kinase C (PKC)3821 in
peak response times of 10-35 sec, often sustained for up to ~500
sec. These strains also induce transcription factor activation over
response times ranging from 0.25-24 hours.3779-3782 Several endot-
helial cytokines are elicited by cyclic mechanical stretch,3824 and
cyclic mechanical strain modulates tissue factor activity differently
in endothelial cells originating from different tissues.3825 The physical
and mission designs of nanorobotic organs containing moving com-
ponents or of vasculomobile nanorobot aggregates must take these
differences properly into account.

Similarly, bovine aortic smooth muscle cells (SMC) seeded on a
silastic membrane and subjected to cyclic strains up to 24% en-
hanced SMC proliferation at any strain level,3826 although SMC
under high strain (7-24%) showed more proliferation than SMC at
low strain (0-7%) in this experiment. High-strained SMC aligned
themselves perpendicular to the strain gradient, whereas low-strained
SMC remained aligned randomly. PKA activity and CRE (cAMP
response element) binding protein levels increased for highly strained
cells, compared to low-strained cells.3826 Other experiments have
found that:

1. small mechanical strains of 1-4% at 1 Hz applied to human
vascular smooth muscle cells can inhibit intracellular PDGF-
or TNFα-induced synthesis of matrix metalloproteinase
(MMP)-1;3855

2. saphenous vein SMC distention by 0.5 atm pressure subse-
quently elevates cell apoptosis;3827

3. cyclic mechanical strain at normal physiological levels decreases
the DNA synthesis of vascular smooth muscle cells, holding
SMC proliferation to a low level;3828

4. 1 Hz, 10% cyclic strain on SMC activate tyrosine phosphoryla-
tion and PKC, PKA, and cAMP pathways over response times
from 10 sec to 30 min;3826,3829 and

5. vascular SMC exhibited stretch-induced apoptosis when sub-
jected to cyclic 20% elongation stretching at 0.5 Hz for 6
hours.3862

Hipper and Isenberg3828 suggest that abnormally low strains can
also induce vascular SMC proliferation. If true, then medical
nanorobot aggregates which shield the vasculature from normal cy-
clical strains might elicit excess growth of vascular smooth muscle

cells, which growth is normally held in check by the rhythmic stretch-
ing from the arterial pulse. On the other hand, intravascular
nanorobot aggregates that apply cyclic mechanical strains exceed-
ing a few percent might encourage increased SMC proliferation and
activate mechanosensitive and stretch-activated channels in EC,
along with cellular realignment and subsequent SMC apoptosis at
the highest strain levels. These factors must be taken into consider-
ation during nanorobot mission design so that mechanisms can be
incorporated to prevent or to attenuate such effects.

In 2002 it was unknown whether high frequency (>KHz) cyclic
mechanical strains likely to be employed by vasculomobile medical
nanorobots (Section 9.4.3.5) would have biological effects similar
to or different from those described above for low-frequency cyclic
strains — excepting certain specialized mechanoreceptor cells such
as the cochlear stereocilia,3830 other hair cells,3831-3833 and soma-
tosensory neurons3834-3836 — since most mechanical cell stimula-
tion experiments have been conducted at low frequencies.* Unrec-
ognized effects that might be triggered by high-frequency cyclic
strains cannot be ruled out. However, given the relative safety of
procedures involving intravascular ultrasound3837-3846 with its low
complication rate (e.g., only 1.1%, including spasms, vessel dissec-
tion and guidewire entrapment3840) using frequencies as high as
10-20 MHz,3837-3839 it seems improbable that KHz or MHz acous-
tic waves of the intensities that might be employed by medical
nanorobots for communication (Section 7.2.2) or power supply
(Section 6.4.1) will damage the endothelial vascular walls. Interest-
ingly, relatively high-intensity intravascular ultrasound has been used
to dissolve occlusive platelet-rich thrombi safely and effectively in
myocardial infarctions3842 and in restenosed stents.3845

In the case of intrusive vasculoid-class devices4609 (Chapter 30),
it is likely that the appliance will need to control smooth muscle
cell proliferation,4610-4617 in the simplest case releasing specific
cytokines into the vasculoid-endothelial space. Such factors may
include known SMC proliferation promoters4618,4619 such as throm-
bin (esp. alpha-thrombin), PDGF’s (esp. PDGF-AA), FGF (esp.
basic FGF), HBEGF (heparin binding epidermal growth factor),
TGFβ (transforming growth factor-beta) at low concentrations, an-
giotensin II, thrombospondin-1 (stretch/tension), and known SMC
proliferation inhibitors4620-4626 such as heparin sulfate, TGFβ (trans-
forming growth factor-beta) at high concentrations, nitric oxide,
prostaglandins, calcium antagonists, agonists that activate guanylate
and adenylate cyclases, inhibitors of angiotensin-converting enzyme,
interferon gamma, 18-beta-estradiol, sodium salicylate, and the
topoisomerase I inhibitor topotecan. (Note that these promoters
and inhibitors can have multiple effects on other cells, so these ef-
fects must be considered prior to use.) Adult arterial walls contain
both differentiated and immature SMCs.4627 Reviewer R. Bradbury
notes that further research may be needed regarding how SMCs
handle conflict resolution between simultaneous “divide” and “don’t
divide” signals they may be receiving. Given the large number of
signals that SMCs currently respond to, it seems highly likely that
the vasculoid can “manage” them.

15.5.3.2 Vascular Response to Stenting
Mechanical biocompatibility must also be demonstrated by in-

travascular nanorobots that are intended to remain in long-term
contact with blood vessel walls. A good medical analog is the vascu-
lar stent. A stent is a flexible metal coil or open-mesh tube that is
surgically inserted into a narrowed artery, then expanded and pressed
into the vascular wall at up to 10-20 atm pressure. The stent

* Specifically, between 0.05-5 Hz (Section 9.4.3.2.1) and more recently at: 0.01 Hz,3847 0.03 Hz,5085 0.05 Hz,3848,3864 0.1 Hz,3847,3852 0.15 Hz,5085 0.2 Hz,3849 0.3 Hz,3850-3853,5085,5086

0.4 Hz,3860 0.5 Hz,3828,3861-3864,4767,5087 1 Hz,3853-3859,5088-5094,5331 2 Hz,5095 3 Hz,3853 4 Hz,3865 5 Hz,3866,5094 6 Hz,3860 10/20/50 Hz,3865,5094 and DC-100 Hz.3867
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ensures long-term local vascular patency by providing a scaffold to
hold the artery open. Within 4 days, SMC begin to appear in the
intima.3868 After a few months the stent is completely encased in
new endothelium, forming a neointima, although the media is usu-
ally compressed with smooth muscle cell atrophy in all stented re-
gions. Stenosis is prevented in vessels 10 mm or greater in diameter
but is not precluded in vessels smaller than 6 mm.3869 Histologi-
cally, in-stent restenosis appears to derive almost exclusively from
neointimal hyperplasia.3870,3871 Hyperplasia appears more abundant
following stent implantation than balloon angioplasty, and more
abundant in stents of greater stent length and smaller vessel caliber,
or after inadequate stent expansion.3872 Restenosis occurs in 22-46%
of all stents emplaced within 6-12 months3873), in some cases re-
quiring the insertion of a second stent into the first.3874 Restenosis
varies according to the material used. In one experiment,1372 the
thickness of the neointimal layer formed over wire-mesh stents placed
in canine aortas was 83.9 microns thick for gold, 103.6 microns for
stainless steel, 115 microns for Teflon, 209.6 microns for silicone,
and 228.6 microns for silver. A copper stent produced severe
erosion of the vessel wall, marked thrombus formation, and aor-
tic rupture.1372

Improved prospects are reported for diamond-coated stents (Sec-
tion 15.3.1.3), and stent surface coatings and textures can affect
platelet-leukocyte aggregation and platelet activation.3875 But all
these devices are far from ideally mechanocompatible with blood
vessel walls. For example, stents placed endovascularly in dog aorta
for 4-45 weeks and then examined histologically show medial atro-
phy, intimal hyperplasia (tissue ingrowth), and proliferation of the
vasa vasorum (the microvasculature of the aorta) more prominently
for covered stents than for bare stents, probably due to hypoxia in
the aortic wall.3876 Cellular proliferation is highest when the artery
wall is most hypoxic.3877 Medical nanorobot aggregates that en-
tirely cover the vascular endothelium can precisely regulate wall
oxygenation by controlled oxygenation of the underlying tissue,
using oxygen sourced directly from the blood.

Nanorobotic stents also should be able to inhibit stenosis due to
vascular smooth muscle proliferation, migration, and neointima
formation, without inducing apoptosis — e.g., possibly by releas-
ing the topoisomerase I SMC-proliferation inhibitor topotecan in a
localized 20-min exposure,3878 or by using other similar drugs.4913

In 2002, a new generation of vascular stents employing a similar
strategy was introduced in the U.S. after previous testing in Eu-
rope. These new stents were impregnated with antibiotics such as
Rapamune (sirolimus or rapamycin)4892-4897 or other stent-eluting
agents such as paclitaxel (an antimitotic drug that inhibits vascular
smooth muscle proliferation in vitro),4897-4902 docetaxel (a micro-
tubule polymerizing agent with antiproliferative properties)4903 or
taxane4904 in some cases virtually eliminating restenosis. The pro-
tection against restenosis persists even after the stent eluate is ex-
hausted. Other impregnating agents such as human recombinant
hepatocyte growth factor (a potent endothelial cell mitogen)4906 can
attenuate neointimal proliferation via quick endothelialization, and
thus might also be useful in stents to prevent restenosis. Beta-particle
radiation-emitting stents4907-4911 can reduce luminal restenosis but
induce restenosis at the edges (the “candy wrapper” effect4897) and
have other undesirable long-term complications.4912

Arterial stents can also trigger thrombosis by inducing platelet
activation due to shear forces, contact to the biomaterial, and re-
lease of metal ions. These triggers are all significantly lessened in
diamond-coated (DLC) stents, reducing thrombogenicity and
neointimal hyperplasia.4723,4725 Drug-coated stents (e.g., dexametha-
sone4905,4913) can reduce or eliminate inflammation as well.

15.5.3.3 Nanorobotic Obstructive Mechanical Vasculopathy
Nanorobots, whether passive or active, may become trapped in

the microvasculature if any one of their physical dimensions nearly
equals or exceeds the diameter of the smallest capillaries, about 4-7
microns (Sections 8.2.1.2 and 15.4.2), thus producing a simple geo-
metric obstruction. Positionally stable nanodevice protrusions (Sec-
tion 15.5.3.6) into the bloodstream — such as dedicated energy
organs (Section 6.4.4) — must be carefully designed to avoid both
geometric and overgrowth-related vascular obstruction.

Motile medical nanorobots that are present intravascularly in
large concentrations must take care to avoid swimming into “traffic
jams” and the formation of a localized embolus (Chapter 12) that
could physically block free circulation through a particular vessel3879

For example, catheter emboli3880 are foreign bodies that must be
removed from the vasculature.3880 Similarly, nanocrit concentrations
of passive nanorobots higher than 10% may lead to increased vis-
cosity and plug flow of the blood (Sections 9.4.1.5 and 9.4.2.6)
and a significant impairment of the systemic circulation. In con-
trast, the deformability of normal red cells allows them to be packed
by centrifugation to nearly 100% cells (vs. only ~60% for hardened
red cells3881). Leukocytes are much less deformable than erythro-
cytes, and even more so when neutrophils are activated and are ag-
gregating during phagocytosis of locally dense concentrations of bac-
teria.3882 White cells present in large numbers can cause
leukostasis.3883-3887 Leukostasis is a plugging of the microcircula-
tion, especially after mechanical interventions producing surgical
trauma3888,3889 or unintentional chaotic activation of the comple-
ment system.3890

Vascular spaces may also become physically obstructed by new
endothelium that accumulates on almost any surface placed in the
circulation for a period of time. In 1963, Stump et al3891 first ob-
served that a 4.5 cm Dacron vascular implant was fully
endothelialized after 7 days of implantation in a pig, and subse-
quently that a small square Dacron hub suspended in the center of
a Dacron prosthesis and having no direct contact with the pros-
thetic wall became completely coated with endothelial cells after a
4-week canine implantation. Spontaneous endothelialization from
the circulating blood has since been confirmed by others.3892-3896

Unless specifically designed to avoid it, blood-contacting surfaces
of large positionally-stable nanorobotic protrusions or aggregates
may eventually become coated with endothelial cells. Such cells will
have migrated either from the endothelium of adjacent arteries or
from nearby capillaries, or will have arrived as bloodborne CD34+
endothelial precursor stem cells which can seed the nanorobotic
surface and then differentiate into EC.3896 Energy organs that emit
electrical fields or directly release glucose into the bloodstream may
attract both microbes and phagocytes to the site, as well as promot-
ing “benign” neoplastic growth and endothelialization, further in-
creasing the potential for vascular obstruction.

15.5.3.4 Nanorobotic Destructive Mechanical Vasculopathies
The physical configurations or activities of medical nanorobots

and their aggregates could in some circumstances be destructive to
vascular tissue.3897 Owens and Clowes3898 point out that the sever-
ity of arterial injury is important in determining the ultimate patho-
physiologic response. They describe a classification system3899 based
on the immediate histologic effect of the injury:

Type I injuries involve no significant loss of the vessel’s basic
cellular architecture, although there may be a slight change in en-
dothelial architecture and associated cellular adhesion. Examples
include the fatty streak (an early atherosclerotic lesion), hemodynamic
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factors and flow disturbances which produce, at most, only a modi-
fication of the established cellular architecture.

Type II injuries involve loss of the endothelial layer, perhaps in-
ducing platelets to adhere and begin forming a thrombus at the area
of loss, but the internal elastic lamina remains intact and there is
little or no damage to the media. Examples include injuries incurred
during simple arterial catheterization, endovascular procedures, vein
graft preparation, or gentle filament-induced endothelial denuda-
tion of the carotid artery in a rat model.3900

Type III injuries involve transmural damage in which the endot-
helium is removed, the internal elastic lamina is often disrupted,
and a significant portion of the medial cells are killed.3900,3901 In
these situations, platelets deposit and a thrombus forms at the site
of endothelial loss. An inflammatory response (vasculitis) including
intimal hyperplasia3898 is initiated within the vessel wall. Examples
include spontaneous vascular dissection and various forms of surgi-
cal repair or reconstruction such as balloon angioplasty, endarterec-
tomy, and atherectomy.

Nanorobot device and mission designs should always seek to
avoid causing Type II and Type III injuries, although in some spe-
cial circumstances the potential even for Type III injuries may be
inescapable. Destructive vasculopathies which might be caused by
medical nanorobots may be classified as ulcerative (15.5.3.4.1),
lacerative (15.5.3.4.2), or concussive (15.5.3.4.3).

15.5.3.4.1 Nanorobotic Ulcerative Vasculopathy
A macroscale nanorobot aggregate might cause luminal vascular

ulceration by prolonged mechanical pressure against intimal tissues,
similar to pressure necrosis or epithelial pressure ulcers (Section
15.5.1.3). The symptoms might appear similar to the inflamma-
tory condition of necrotizing vasculitis, whose cause is unknown
but is probably usually related to autoimmune factors.5598 Prolonged
pressure could induce apoptosis. For example, mechanical stretch
induces apoptosis in mammalian cardiomyocytes3902 and hyperten-
sion caused by hydrostatic edema can induce apoptosis in capillary
endothelial cells.3820 Another example of mechanical ulceration,
though not, strictly speaking, within a vascular lumen, is
IUD-induced metrorrhagia3903 (nonmenstrual uterine bleeding),
wherein the intrauterine device elicits a vascular reaction that is most
pronounced in the endometrium adjacent to the device. This reac-
tion includes increased vascularity and degeneration with defect
formation, which may lead to interstitial hemorrhage due to vascu-
lar damage from mechanical stress transmitted by the IUD through
the endometrium to its vascular network.3903

Except in unusual cases,3904 indwelling catheters can rest snugly
against the vascular walls without complication for long periods of
time — common recommendations that indwelling lines should be
changed every 2-7 days5599 are motivated by the ever-increasing risk
of bacterial infection over time, not by the risk of vascular ulcer-
ation. A biological-like interface would further reduce the chances
for nanorobotic-related ulceration in longer-term medical missions
involving permanent or semi-permanent implants. In one study, a
stented aortic graft was placed endovascularly inside the native aorta
of male sheep, and a histological examination 6 months later found
good incorporation of the graft with no pressure necrosis, although
there was a foreign body reaction around the graft and an organized
blood clot was noted between the graft and the aortic wall.3905 (C.
Wiley notes these are now in fairly common use in humans for
repairing abdominal aortic aneurysms.) A few possible cases of vas-
cular ulceration are also known — e.g., a chronic indwelling cath-
eter that led to erosion and rupture of the anterior wall of the right

ventricle, producing a near-exsanguinating hemorrhage3933 (far more
serious than traditional cardiac tamponade).

Ideally, long-duration nanorobotic organs or nanoaggregates that
must maintain close contact with endothelium should employ a
mechanically compliant coating having properties similar to extra-
cellular matrix. All such linkages should be not just
immunocompatible but also mechanocompatible, possessing an elas-
ticity or mechanical compliance3906 equivalent to the underlying
tissue to which attachment must be secured. Compliance design
may include assessments of: (1) circumferential compliance (mea-
surement of changes in vessel diameter over a complete cardiac cycle,
including pressure-radius curves,3907 dynamic compliance,3908 and
mechanical hysteresis effects);3906 (2) longitudinal compliance (elas-
ticity of selected lengths of the vascular system, including any local-
ized stiffening);3909 (3) tubular compliance (imparity of elasticity
between a prosthetic conduit and the native artery, elastic energy
reservoiring, and pulsatile energy losses due to interfacial imped-
ance mismatches);3910 and (4) anastomotic compliance (suture line
anastomotic compliance mismatch and the para-anastomotic
hypercompliance zone,3911,3912 localized regions of excessive me-
chanical stress,3913-3915 and cyclic stretch effects on replication of
vascular SMC and extracellular matrix3914,3917). A mismatch in
mechanical properties between relatively compliant arteries and
less-compliant metallic stents3918 and tissue grafts has been thought
to influence patency3913 and pseudointimal hyperplasia.3914-3916

Larger more central arteries are more compliant than the distal
small-caliber arteries.3919 Wall shear stress from blood flow differs
on either side of a curving vessel and the stress is out of phase with
the pulsing circumferential stretch strain.3920 Significant compli-
ance mismatch between host artery and prosthetic graft may pro-
mote subintimal hyperplasia.3911

15.5.3.4.2 Nanorobotic Lacerative Vasculopathy
Individual free-floating intravascular nanorobots or

vasculomobile individual devices or nanorobotic aggregates may
occasionally scratch, scrape, or gouge the vascular luminal surface,
causing partial or complete loss of local endothelium (Type II dam-
age), resulting in a form of mechanical vasculitis or capillaritis. Since
the typical dimensions of bloodborne nanorobots approximate the
endothelial thickness (~0.2-2.0 microns2752,5953-5955), transmural
Type III damage to the media is unlikely. Turnover studies of rat
endothelium show that: (1) injured endothelium can recover an
area one cell wide (~1000 micron2) in ~3 hours,4600 (2) the natural
loss rate is ~0.1% of endothelial cell area per day (~1 micron2/
day),4601 and (3) the steady-state vascular denudation area is ~0.125
micron2/cell.4602

Smooth nanorobot hulls lacking sharp edges or protrusions (dur-
ing travel), boundary layer effects, and low blood velocity through-
out the nonarterial vasculature should ensure that major “sandblast-
ing” type erosion3921,3922 is unlikely to occur inside human blood
vessels even at the highest nanocrits consistent with continuous flow.
Free-floating nanorobots that collide with blood vessel walls (given
the no-slip condition at the wall) produce minimal shear forces, on
the order of <~0.1 N/m2 (Section 9.4.2.2). This is less than the
1.0-2.6 N/m2 shear forces normally encountered in arteries and
capillaries due to normal blood flow and the 0.14-0.63 N/m2 shear
forces in veins, but may be sufficient to cause a small biological
response from the vascular endothelium (Section 15.5.3.1.1). Ap-
plying the maximum bloodstream velocity of ~1 m/sec (Table 8.2)
to the impact-scratch relation (Eqn. 9.96) given in Section 9.5.3.6,
it is clear that particle-wall collisions should produce only harmless
submicron nicks even in the most turbulent arteries.
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Nevertheless, some caution is warranted because natural endot-
helial cell wounding of 1-18% of all cells, possibly
erosionally-derived, has been observed in rat aorta.3923 Erosion of
cultured fibroblast monolayers (simulating the vascular endothe-
lium) using MHz ultrasound at acoustic pressures of ~106 N/m2 is
enhanced by the presence of a microbubble (particulate) contrast
agent.3924 Injection of crystalloid cardioplegic solutions into canine
hearts at pressures >110 mmHg and at peak flow rates >25 ml/sec
also causes a higher incidence of mechanical-physical trauma to the
vascular endothelium and the endocardium.3925 In another unusual
case, intravenous self-injection by a drug abuser of dissolved tablets
containing microcrystalline cellulose as filler material produced
numerous microcrystalline cellulose pulmonary emboli, intravas-
cular foreign body granulomas, focal necrosis and edema of the
pulmonary parenchyma, and fatal vascular destruction.3926

Endothelial abrasion alone may not stimulate neointimal thick-
ening4599 but inevitably must involve some endothelial cell loss3927

and other biological responses. For example, mechanically scraping
cultured endothelial cells causes growth factor to be released within
5 minutes, not abating for at least 24 hours thereafter, due to plasma
membrane disruption.3928 In cases of vascular dissection, a piece of
the endothelium peels up (with the break often extending deeper,
into the media), making an intimal flap that defines regions of true
and false lumina.3837 Sometimes this may induce an intramural he-
matoma in the aortic wall.3837 Endothelial cells mechanically dam-
aged with a razor blade activate extracellular-signal-regulated kinases
within ~300 sec, releasing fibroblast growth factor (FGF-2) which
in turn induces intimal hyperplasia.3929 Nanorobots which detect
FGF-2 are alerted that mechanical endothelial injury has taken place.
By absorbing the cytokine using molecular sorting rotors, the hy-
perplasia signal could be suppressed by a team of nanorobots, if
desired (Section 7.4.5.4). However, shear-induced endothelial denu-
dation of healthy canine arterial endothelium appears not to occur
at shear stresses up to at least 200 N/m2.3930 The role of erythrocyte
collisions with vascular walls on the detachment rate of endothelial
cells is just starting to be seriously investigated.3931

15.5.3.4.3 Nanorobotic Concussive Vasculopathy
If a patient experiences significant external crushing or concus-

sive forces, resident medical nanorobots that are present in small
numbers can simply slide out of the way, as described previously in
connection with the risks of dental grinding (Section 9.5.1). In the
case of macroscale intravascular nanoaggregates (as opposed to in-
dividual physically isolated nanorobots), however, there are several
additional risks.

First, sudden external tissue compressions can significantly alter
cellular function, especially in the brain.5956 For example, tests of
percussive energy transfer to cerebral endothelium found that en-
dothelial cells subjected to 200-500 Hz pressure waves at ∆P = 1.2-10
atm led human cerebral microvascular endothelium (HCME) cells
to immediately lose their normal capacity to suppress adherence of
activated platelets, with ∆P < 6.5 atm defined as the sublethal
range.5957 Sublethal percussion trauma also causes HCME to pro-
duce inflammatory cytokines (TNF-alpha and IL-1beta)5958 and
alters the response of HCME to cytokine-induced ICAM-1
upregulation, although the normal response is restored by oxygen
free radical scavengers.5959

Second, there is the possibility that a sudden mechanical exter-
nal tissue compression could push macroscale nanorobotic aggre-
gates through the soft tissues, causing deep tissue penetrations, perfo-
rations, or other serious mechanical trauma. Aggregates with a
density exceeding that of biological tissues could, under high

acceleration, produce effects on those tissues that would be not unlike
pushing gelatin through a metal wire strainer. Possibly relevant but
crude analogies in the medical literature include:

1. ulnar artery erosion, thromboemboli, digital ischemia and skin
necrosis from a glass foreign body in a patient’s hand;3932

2. tantalum coil stent damage that was induced or aggravated by
intravascular ultrasound inside a coronary artery;3841

3. cardiac perforation by a subclavian catheter;3934

4. pulmonary artery catheter-induced right ventricular perforation
during coronary artery bypass surgery;3935

5. an ICD patch that migrated and perforated the right ventricu-
lar cavity;3936

6. a stent that migrated to an oblique position across the aorta,
producing a 7-cm pseudoaneurysm after 3 years;3937

7. catheter-induced pulmonary artery rupture (a well-recognized
complication of invasive monitoring) that often leads to fatal
hemorrhage;3938-3940

8. femoral artery catheterization trauma producing hematoma,
pseudoaneurysms and arteriovenous fistulas of the femoral ves-
sels;3941

9. iatrogenic subclavian artery injury due to central venous catheter-
ization;3942

10. repeated and prolonged vein catheterization that led to subse-
quent stenosis (presumably due to luminal vascular mechanical
damage)3943

11. high-pressure injection injury that induced inflammation and
foreign body granulomatous reaction, progressing to necrosis;3944

12. mechanical tearing of arteries due to overstretching;3945 and

13. (possibly) spontaneous coronary artery dissection (mechanical
arterial wall failure).3946

Third, a sudden external tissue compression could force
nanorobotic aggregates into physical contact with neighboring
nanoaggregates, possibly causing major structural damage or frag-
mentation of the devices. This risk increases as the nanodevices be-
come more densely packed, especially along the crushing axis.
Nanoorgans (as well as looser nanorobotic aggregates) can be crushed
if sufficient force or mechanical shock is applied, particularly if these
aggregates are adjacent to bone or other relatively incompressible
materials. Again, a few possibly relevant analogies from the medical
literature include:

1. external compression of emplaced stents that produced prema-
ture stenosis;3947

2. a transabdominal Teflon stent that broke intraperitoneally dur-
ing tuboplasty procedure;3948

3. a strongly-beating heart that sheared off a pericardial drainage
catheter;3949

4. a Hickman catheter that ruptured and embolized during nor-
mal use;3950

5. an indwelling catheter that fractured and a distal remnant
embolized to the right ventricular outflow tract and main pul-
monary artery, nearly precipitating cardiopulmonary col-
lapse;3951
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6. a catheter embolism that was produced when a catheterized
patient engaged in power training exercises, externally crushing
the catheter, although no symptoms or complications accom-
panied this event;3952

7. spontaneous fracture of indwelling venous catheter, leading to
vascular leakage;3953 and

8. other instances of catheter fracture and embolism,3954-3957 in-
cluding one case that led to cardiac arrest.3958

15.5.3.5 Reduction of Vascular Permeability
by Nanoaggregates

A nanorobotic aggregate covering a macroscale area of the capil-
lary luminal surface4609 most importantly could reduce the normal
flow of plasma water3963 and other substances that leave the circula-
tion via ultrafiltration. The plasma water flow helps to remove waste
products from the extracellular spaces around tissue cells. This func-
tion could be compromised by the shielding presence of the
nanoaggregate unless the aggregate replaces this flow with water
transported through or around the device, by various means (Sec-
tion 4.2 in ref. 4609). Many vasoactive substances (Table 7.2) might
need similar remedial transport, whether by discharge from preex-
isting onboard storage, by absorption and banking from the blood-
stream (e.g., NO concentration typically ~3.4 ± 2.1 µM or ~10-7

gm/cm3 in the blood of healthy nonpregnant women, measured
indirectly as nitrite5600) with metered passthrough to the underly-
ing vascular surface, or by other means.

Nanorobotic aggregates may also be required to exhibit pulsatile
movements to replace the peristaltic movements which transport
lymph, if these mechanical movements have become attenuated due
to the presence of the nanoaggregate.

15.5.3.6 Non-Occluding Indwelling Vascular Obstructions
In some applications it may be deemed useful to extend foreign

objects into the vascular lumen, as for example power tethers (Sec-
tion 6.4.3.6) and energy teats from dedicated energy organs (Sec-
tion 6.4.4), communications fiber networks (Section 7.3.3), tem-
porary or permanent nanocannula (Chapter 19), stents (Section
15.5.3.2), and luminal surface coatings or nanoaggregates includ-
ing vasculoid-class systems (see ref. 4609; Chapter 30). Nanoscale
cables, wires, and other fiberlike protrusions into the bloodstream
could induce red cell hemolysis (Section 15.5.5.1.1). By analogy,
forcing living cells through a finely-holed rigid strainer destroys them,
and red cells can be torn in half by fibrin strands as the cells traverse
platelet-fibrin plugs in arterioles and capillaries.4023,4064 Hemolytic
anemia may result from mechanical shearing damage to erythro-
cytes by microangiopathic fibrin strands in peripheral
microvessels.4060-4064 Indwelling materials that detach or migrate
can occlude vital vascular structures, causing significant morbidity
and even death (Section 15.4.1).

It is possible that mechanical stress from improperly-engineered
vascular-indwelling foreign objects could produce a nucleation site
for inflammation, infection, or calcification, and could eventually
result in the rupture5212-5214 or growth5215-5220 of arteriosclerotic
plaque. However, vascular platelet/leukocyte adhesion and smooth
muscle proliferation is readily inhibited.5221 Also, the chronic pres-
ence of long strandlike Dirofilaria heartworms* lying lengthwise
along the luminal walls of canine pulmonary arteries without im-
mediate bloodflow-related pathological consequences (though there

is considerable vascular damage5222-5226) suggests that it should be
possible to design vascular indwelling nanosystems having
near-permanent biocompatibility and mechanical stability, possi-
bly involving actual5226 or biosimulated re-endothelialization. In-
terestingly, endovascular coil occlusion of vascular aneurysms (in
which a platinum wire coil is permanently emplaced inside an
aneurysm sac) seems well tolerated clinically.5685-5687

15.5.4 Mechanocompatibility with Extracellular Matrix
and Tissue Cells

Nanomedical systems interact with components of the extracel-
lular matrix or ECM (Section 9.4.4.2) primarily in two circum-
stances. First, during histonatation (Section 9.4.4) nanorobots tra-
versing the ECM will apply nondestructive forces to ECM fibers as
a consequence of locomotion. Second, traversing tightly-packed
cell-rich tissues or performing macroscale surgical procedures may
require the dissection, and later the reconnection, of ECM fibrous
components by nanomedical systems. This is important because
simple detachment of tissue cells from all contacts with the ECM3964

and the physical manipulation of cell shape3965 have been shown to
induce apoptosis (Section 10.4.1.1) experimentally, and
mechanosensitive channels may also modulate cell migration.3792

However, R. Smigrodzki notes that a rather extreme damage to the
ECM would be needed to induce apoptosis — e.g., “probably mere
traversing of tissue by nanorobots would not be sufficient to cause
it.” The mechanocompatibility of nanofibers and stationkeeping
nanorobots embedded in human tissue was briefly discussed in Sec-
tions 6.4.3.6 and 7.3.3.

Our brief discussion considers first the force threshold for bio-
logical response from cells whose physical connections to the ECM
are mechanically disrupted (Section 15.5.4.1), and the known dis-
eases involving mechanical damage to the ECM that such disrup-
tion might mimic (Section 15.5.4.2). Finally, we consider the size
and force threshold for perceptible sensation to the patient, during
nanorobot histonatation (Section 15.5.4.3). Many other fascinat-
ing but highly specialized mechanocompatibility issues are ignored
here, as for example the role of mechanical fluid flows (such as might
be generated by micromechanical or nanomechanical devices) in
the generation of left-right asymmetry during the development of
vertebrate embryos.6218

15.5.4.1 Force Threshold for Biological Response
Mechanical stresses modulate cell function by either activating

or tuning signal mechanotransduction pathways, via various con-
nections between the internal cytoskeleton, the ECM, and tradi-
tional signal transducing molecules.5332 Vibrations or tugging forces
applied to the ECM are transmitted to focal adhesions, attachment
points at the plasma membrane surfaces of nearby tissue cells.
ECM-cytoskeletal couplings occur through transmembrane integrins
having greater mechanical stiffness at high applied stress (>1 N/m2)
than similar couplings through transmembrane E-cadherins.3966 At
the tissue cell surface, gated transmembrane channels are activated
by simply stretching the plasma membrane, or by tension or stress
development in cytoskeletal elements associated with the cell mem-
brane.3967,3968 Mechanical strain deformation modulates the mor-
phology, metabolism and activation of: chondrocytes in articular
cartilage;3790,3969 airway3970 and vascular3794 smooth muscle cells;
primary astrocytes and glioma cells,3971 neurons,3789 and auditory
sensory cells;3972 endothelial cells;3809 and even prostate cancer

* In vivo canine microfilariae are typically ~300 microns long and ~6 microns wide,3959 but larvae have been grown to 100 microns x 25 microns in vitro3960 and in vivo sloth
Dirofilaria parasites have been reported as large as 214 mm in length and 360 microns in width.3961
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cells.3973 Simple fluid nozzling or mechanical prodding elicits
mechanosensitivity in rat myocytes3858 and neurons.3789,3974 Me-
chanical pulling force applied by micropipette to the
integrin-containing dot-like focal adhesion complexes, ~1 micron
in diameter, between cell and ECM leads to local assembly and elon-
gation of these structures into streak-like focal contacts (3-10 mi-
crons long). Focal complexes thus serve as cellular mechanosensors
exhibiting directional assembly in response to locally applied
force.3975 The response to mechanical strain can take place over a
period of years3976 or can occur as fast as minutes3788,3858 or even
seconds.3971,3977

Biochemical transduction of mechanical strain has been investi-
gated quantitatively in bone cells during normal loading. Linear
strains of <0.05% are nonstimulative; those between 0.05-0.15%
maintain normal bone mass; strains >0.15% stimulate osteoblasts
to increase bone mass;3978-3980 and linear strains >1% induce osteo-
blasts to alter morphology, becoming fibroblast-like.3981 For instance,
chick osteoblasts subjected to 1.3% applied strain as a 0.25 Hz dy-
namic spatially uniform biaxial strain for 2 hours experienced el-
evated osteopontin expression, rising to a maximum 4-fold increase
after 9 hours from the beginning of strain onset.3982 Differentiated
mechanosensitive mouse podocytes (glomerular cells) cultured on
silicone membrane and subjected to a 0.5 Hz biaxial cyclic stress for
up to 3 days at 5% linear strain experienced a reduction in cell body
size, a thinning and elongation of cellular processes, and a reversible
reorganization of the actin cytoskeleton, uniquely involving forma-
tion of radial stress fibers with the disappearance of transverse stress
fibers.3793 A 15% surface-to-surface strain imposed on articular car-
tilage ECM triggered a shrinkage of chondrocyte cell height (-14.7%)
and volume (-11.4%) and a shrinkage of chondrocytes nucleus height
(-8.8%) and volume (-9.8%) as well.3983

What is the force threshold for biological response by tissue cells
to the mechanical disruption of cell-ECM contact? There is a range
of forces* from 0.08-400 pN that produces a span of responses in
different cells, given that mechanosensitivity is a near-ubiquitous
property of cells.3858 Some biological response may occur near the
lower end of this range of forces. For instance, when laser tweezers
applied a force of 7 pN to individual bone- and cartilage-derived
cells in vitro, an immediate increase in intracellular Ca++ ions was
observed in human-derived osteoblasts, and force applied to differ-
ent regions of a cell produced a variable response.3993 (The response
is inhibited by the calcium channel blocker nifedipine.3993) In rat
femur-derived osteoblasts, the Ca++ elevation in response to a simi-
lar load was lower, and was entirely absent in primary chondrocytes
and the osteocytic cell line.3993 Osteoblasts also express certain
proteins when subjected to fluid shear stress of ~1.2 pN/micron2

(inhibited by intracellular calcium chelator or by the calcium
de-storage agent thapsigargin).3994 Mechanical shear stress sufficient
to generate acute release of prostaglandin E2 (PGE2) in isolated
chicken osteocytes (bone mechanosensory cells that translate me-
chanical signals into biochemical bone metabolism-regulating stimuli
necessary for the adaptive process) was induced by 10 minutes of 5
Hz pulsating fluid flow at 0.7 pN/micron2.3995 Again, several in-
hibitors are reported.3995 Optical tweezer manipulation of neutro-
phils with ~pN forces does not damage the plasma membrane but
instead stimulates a mechanically-inducible, membrane
channel-mediated influx of extracellular Ca++ into the cell.3791

Nevertheless, somewhat higher forces from nanorobotic
histonatation (Section 9.4.4) and cytopenetration (Section 9.4.5)
might be tolerated without reaction by the ECM because such higher
forces are frequently applied by individual motile cells traversing
human tissues. For example, the adhesion strength for the proto-
zoan Amoeba proteus has been measured as ~100-1000 nN,3996 giv-
ing a transient adhesion force of 100-1000 pN/micron2 over a focal
contact area of ~1000 micron2.3997 The tension force exerted by a
single fibroblast during locomotion has been measured as ~165
nN,3998 or ~1000 pN/micron2 (1000 N/m2). Cell-cell adhesion of
T cells and target cells is ~1500 pN/micron2,3999 and live cells may
apply ~5500 pN/micron2 constant stress at focal adhesions to
ECM.3977 The foregoing would suggest conservative thresholds for
biological response from human tissue cells subjected to nanorobotic
mechanical operations of perhaps ~10 pN absolute force, ~1-100
pN/micron2 shear stress, or ~0.1% linear strain on cellular mem-
brane. If these response thresholds unavoidably must be exceeded,
many inhibitors of cellular mechanosensitivity are known3787-3794

but these must be delivered at µM-mM concentrations to the im-
mediate vicinity of the cell in order to be effective.

Recent experiments with Lymnaea neurons4000 found both the
expected result that the probability of mechanosensitive channels
being open is proportional to membrane tension, and also the un-
expected result that many channels appear insensitive to mechani-
cal stimuli in situ. Failure to elicit mechanocurrents from in situ
cells having abundant channels suggests that channels may normally
be protected from mechanical stimuli in situ, and that only trauma-
tized cell membrane (i.e., traumatized cortical cytoskeleton) may
be unable to prevent transmission of mechanical stimuli to plasma
membrane channels, a theory the authors call “mechanoprotection”
or “capricious mechanosensitivity”. (It is already known that cul-
tured chondrocytes must be externally loaded at >0.5 MPa to pre-
vent disassembly of the vimentin components of their cytoskel-
eton.4001) If these results are confirmed for human tissue cells, then
in situ tissue cells would be suppressed from reacting to nanorobots

* We can get a sense of the magnitudes involved by reviewing some of the forces required to mechanically separate, or to extract, integral proteins or ECM-attachment molecules
from the cellular plasma membrane. For example:

1. 0.08-0.35 pN/bond to separate CD2 molecules (expressed on Jurkat cell surface) from two isoforms of transmembrane or glycophosphatidyl LFA-3 (lymphocyte
function-associated antigen 3) that are already incorporated into lipid bilayers;3984,4647

2. 2.1 pN to separate platelet cell surface-activated GpIIb-IIIa integrin from an attached fibrinogen molecule, compared to 0.57 pN for nonactivated integrin;3984

3. 4 pN/bond to separate a human T cell and its target cell doublet, with 400 bonds/micron2;3984,3990,3999

4. 2.8-11 pN/bond to separate murine fibroblast cells bearing ICAM-1 (intercellular adhesion molecule 1) and murine T cells expressing LFA-1 (lymphocyte function-associated
antigen 1);3984,4648

5. 6-10 pN to separate each connexin-32 hepatic cell gap junction unit;3985

6. 10-20 pN to extract glycophorin A from RBC membrane;3986

7. 25-45 pN for L-selectin (CD62L) extraction from neutrophil membrane in 1-2 sec;3987

8. 35-85 pN for CD45 extraction from neutrophil membrane in 1-11 sec;3987

9. ~60 pN to extract PSGL-1 selectin from platelet membrane;3988

10. 65 pN to rupture bond between lectin and RBC membrane-bound glycolipids;3989

11. 60-130 pN to extract β2-integrins (CD18) from neutrophil membrane in 1-4 sec;3987

12. ~100 pN to extract integral glycoprotein from cell lipid bilayer (RBC membrane);3990

13. 165 pN to rupture P-selectin bond with leukocyte-membrane-bound P-selectin glycoprotein ligand-1;3991 and
14. 40-400 pN to separate a pair of cell adhesion proteoglycan molecules on marine sponge cell surfaces.3992



Biocompatibility • Nanorobot Mechanocompatibility 137

whose passage produces only nondestructive mechanical strains at
their surfaces. Additional research is clearly required.

Similarly, Zhang and Hamill5662 found that mechanical stimu-
lation of Xenopus oocytes by inflation, aspiration, or local indenta-
tion (even to the point of membrane damage) fails to activate
mechanosensitive ion channels, which they attribute to changes in
membrane geometry (e.g., buffer membrane drawn from surface
microvilli ~1.4 µm in length, 0.12 µm in diameter, and numbering
6-7/µm2 on the surface5663). The discrepancy between patch and
whole cell mechanosensitivity (i.e., “mechanoprotection”) arises
because animal cells have an excess membrane area (compared to
the minimum necessary to cover their volume if enclosed as a sphere)
that tends to buffer changes in bilayer tension caused by mechani-
cal stimulation. Notes Owen Hamill [personal communication,
2002]: “For the specific case of a nanorobot, a problem could arise
if the robot applied a local increase in tension in the bilayer beyond
its elastic limit and thereby ruptured the patch. I would presume
that nanorobots would be less able to apply global changes in cell
tension. Local changes could occur, for example, if the robot legs in
sticking to exposed area of the bilayer (after the external matrix had
been removed) stretched a patch of bilayer similar to that what oc-
curs when suction is applied to a patch clamp pipette.”

15.5.4.2 Mechanical Damage to Extracellular Matrix Proteins
Uncorrected ECM damage caused by medical nanorobots might

resemble any of several human disease conditions that are associ-
ated with disruptions in the ECM. For example, muscular dystro-
phy may be caused by disorganization of links between the intracel-
lular cytoskeleton and the ECM through the plasmalemmal inter-
face.4002,4003 However, R. Smigrodzki notes that dystrophy usually
involves very widespread damage (some of it actually killing the
cells), so for this kind of damage to occur, “you would probably
need a very high, prolonged level of nanorobot activity.”
Nanorobot-induced ECM damage might symptomatically resemble
cystic fibrosis (which also involves ECM degradation4004), though
CF is a genetic disorder associated with defective chloride ion chan-
nel protein, not mechanical damage per se. Alternatively, nanorobots
could disrupt cell-cell connections, causing symptoms analogous to
certain desmosomal genetic disorders4005 or to tumor cell disrup-
tions of normal tissue architecture.4006 A wide range of connective
tissue disorders and mechanical tissue abnormalities are
known,4007,4008 including spontaneous arterial dissections,4009 per-
forating disorders of skin,4010 and genetic disorders of the ECM4011

(though these genetic coding errors are not due to mechanical dam-
age by an external agency). Hair follicle growth may be compro-
mised following the disruption of epithelial-mesenchymal interac-
tions.4012 Even a weakened ECM in atherosclerotic plaques can cause
fibrous cap rupture in the high stress (>105 N/m2) vascular shoul-
der regions.4013 All of these forms of mechanical damage to ECM
should be avoidable by good design — specific force and duration
thresholds for ECM damage should be investigated experimentally.

Fibrosis as a consequence of injury is characterized by accumu-
lation of excess collagen and other extracellular matrix components,
resulting in the disruption of normal tissue architecture and func-
tion.4608 Without careful design, the emplacement of artificial fiber
materials in the extracellular spaces by motile fiber-laying nanorobots
could induce analogous destruction of normal tissue architecture.

15.5.4.3 Size and Force Threshold for Perceptible
Histonatation

Individual nanorobots smaller than ~100 microns in largest di-
mension are unlikely to cause perceptible sensations during

histonatation if physical disturbance of neural cells is avoided and if
the passage through tissue does not produce an enlarged or dis-
placed peridermal tissue volume (e.g., via direct mechanical disten-
sion or indirectly from edema) sufficient to (1) activate dermal pres-
sure or vibration sensors, stretch receptors, or dermal nociceptors
each of which may lie 500-3000 microns from their nearest neigh-
bor (Table 7.3); or (2) to activate vascular stretch sensors or
barosensors. Pain has been reported2086 possibly caused by numer-
ous small insoluble crystals in the renal tubules, a crude nanorobot
analog. But motile biological cells such as neutrophils (random
motility coefficient 1.6-13.3 x 10-13 m2/sec),4014 T cells,4015 den-
dritic cells,4016 fibroblasts (tissue transits at 15-55 microns/hour),4017

hematopoietic progenitor cells,4018 human mast cells,4019 brain mac-
rophages,4020 and tissue macrophages4021 (up to 80 microns in di-
ameter) regularly ply human tissues completely imperceptibly and
without pain, though at modest speeds, typically 0.01-0.7 micron/
sec (Section 9.4.4.2).

Inertial and viscous shear forces generated by a single nanorobot
of size L ~ 100 µm moving at velocity v ~ 100 micron/sec through
a medium of density ρ ~ 1000 kg/m3 and viscosity η ~ 10-3 kg/
m-sec is Pinertial = Finertial / L2 ~ ρ v2 ~ 0.00001 N/m2 and Pviscous =
Fviscous / L2 ~ η v / L ~ 0.001 N/m2, respectively (Section 9.4.2.1).
Both figures are well below the ~2900 N/m2 threshold for first sen-
sation during esophageal wall distension,3702 or the
esthesiometer-measured4022 minimum epidermal stimulus thresh-
old of ~2000 N/m2, or even the shear stress activation thresholds
for living cells of ~1 N/m2 (Section 15.5.3.1.1 and 15.5.4.1). How-
ever, simultaneous passage of more than a thousand 100-micron
nanorobots through the receptive field of an individual skin sensor
(~1-1000 mm3, assuming 1 mm depth; Table 7.3) could elicit some
biological response, and the passage of >106 of these large nanorobots
through the same tissue volume could become perceptible to the
patient. Viscous pressure scales inversely with L, so for 1-micron
nanorobots the threshold perceptible number density may be as high
as 0.1-100 million nanorobots/mm3, but these figures are little bet-
ter than crude estimates. Direct experiments will be required to re-
solve the question.

15.5.5 Mechanocompatibility with Nontissue Cells
The mechanical compatibility of medical nanorobots with

nontissue cells, the most numerous cells in the human body, is also
of great importance. It has already been estimated (Section 9.4.2.6)
that the maximum nanorobotic-induced cell damage rate consis-
tent with human health is ~0.3 damaged cells/nanorobot-day for
RBCs, ~0.2 damaged cells/nanorobot-day for platelets, and
~0.03-0.2 damaged cells/nanorobot-day for WBCs — assuming a
1-terabot bloodstream dose of medical nanorobots each measuring
2 microns in diameter. This Section briefly describes several pos-
sible mechanical interactions between nanorobots and each of the
three largest classes of nontissue cells — red blood cells, RBCs, or
erythrocytes (Section 15.5.5.1), platelets (Section 15.5.5.2), and
white blood cells, WBCs, or leukocytes (Section 15.5.5.3). Our dis-
cussion of nanorobot mechanical interactions with glycocalyx and
intracellular components common to most or all human cells is
deferred to Section 15.5.7.

15.5.5.1 Mechanical Interactions with Erythrocytes
Possible pathological mechanical interactions uniquely between

medical nanorobots and erythrocytes may include nanorobotic-
induced hemolysis (Section 15.5.5.1.1), unintentional modulation
of red cell membrane fluctuations (Section 15.5.5.1.2), and the dis-
ruption of normal erythrocyte aggregation (Section 15.5.5.1.3).
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15.5.5.1.1 Nanorobotic Hemolysis
Intravascular hemolysis4023 occurs when red cells encounter ex-

cessive mechanical forces4024,4025 in the bloodstream, causing the
cells to become damaged or destroyed. The hallmark of this type of
hemolysis is the fragmented red cell, an irregularly contracted cell
called a schistocyte. Schistocytes are seen in all fragmentation syn-
dromes (except those in athletes) and can take the shape of helmets,
triangles, burrs, crescents, or microspherocytes. These objects are
formed after the shearing of red cells by mechanical trauma, where-
upon the torn membranes reseal around whatever hemoglobin re-
mains. Schistocytes are relatively rigid. They cannot tolerate the rigors
of the circulation and are soon destroyed. If the amount of hemo-
globin released from disintegrating red cells into the plasma exceeds
the ability of blood mucoprotein (e.g., haptoglobin) to combine
with it (thus allowing removal by the liver), then the excess hemo-
globin is lost through the kidneys and appears in the urine, a condi-
tion known as hemoglobinuria.

Red cell fragmentation disorders normally arise in three clinical
settings: (1) conditions of rapid, turbulent blood flow in the heart
or major arteries (e.g., artificial heart valves,4026,4027,5020 stenotic
vessels,4028,4029 aortic coarctation, arteriovenous fistula); (2) athletic
activities involving impact or long-lasting exertion (e.g., march he-
moglobinuria, swimmer’s hemolysis); and (3) many acquired small
blood vessel disorders (e.g., diverse microangiopathies such as
hemolytic-uremic syndrome, eclampsia, or vasculitis), which tend
to involve variable degrees of thrombosis or disseminated intravas-
cular coagulation,4023 or various erythropathies. The fragmentation
syndrome of thrombotic thrombocytopenic purpura apparently re-
sults from the shearing of red cells as they traverse platelet-fibrin
plugs in arterioles and capillaries, especially near renal glomeruli —
red cells can be torn in half by fibrin strands.4023,4064 Hemolysis can
also occur following the intravenous injection of hypotonic solu-
tions or distilled water. In this case, the red cells swell, become globu-
lar, and ultimately burst; all injected solutions must be isotonic with
the blood. Finally, at least one case of schistocytic hemolytic anemia
has been reported5393 in a fetus due to a varix (twist) in the
intra-abdominal umbilical vein.

Impact hemolysis or “march hemoglobinuria”4030-4055 is classi-
cally seen in marathon runners but has also been described in per-
sons involved in the martial arts,4051-4055 basketball,4049 aerobic danc-
ing,4023 or playing the drums.4048-4050 Mild intravascular hemolysis
also occurs during long swim races.4056,4057 Although nonmechanical
factors may contribute, it is generally believed that most of the dam-
age is caused by mechanical tearing. A human runner of weight
~103 N whose footfall force is spread over a ~100 cm2 area exerts a
momentary tissue overpressure of ~105 N/m2. This is well in excess
of the red cell fragmentation shear stress limit of 150-250 N/
m2.4058,4059 Shear forces from free-floating nanorobots are of order
<0.1 N/m2 (Section 9.4.2.2) and vasculomobile or stentlike
nanoaggregates could exert forces of order ~102-103 N/m2 (Section
9.4.3.5 and Chapter 14), presenting only a minor comparative risk
of direct mechanical hemolysis. Conventional stent
balloon-installation forces (Section 15.5.3.2) or episodic nanorobotic
concussive vasculopathies (Section 15.5.3.4.3) might momentarily
apply forces exceeding ~106 N/m2, presenting at least a brief poten-
tial risk of hemolysis in these rare circumstances. Exposure of hu-
man hands to 120 Hz 250-micron vibrations produces ischemic
“vibration white finger,” with increased plasma hemoglobin con-
centration and viscosity.5409

Nanoscale or submicroscale cables, wires, or other fiberlike pro-
trusions into the bloodstream (Section 6.4.3.6 and 7.3.3) could di-
rectly cause red cell hemolysis. Forcing living cells through a
finely-holed rigid strainer destroys them. Red cells can be torn in
half by fibrin strands as the cells traverse platelet-fibrin plugs in
arterioles and capillaries.4023,4064 Hemolytic anemia may be a con-
sequence of mechanical shearing damage to erythrocytes by
microangiopathic fibrin strands in peripheral microvessels.4060-4064

The number of schistocytes (re-formed red cell fragments) natu-
rally present in the blood appears to be correlated with the extent of
vascular fibrin deposition.4061 Moderate schistocytosis is common
after organ transplantation, with no clinical significance.4067 Quan-
tified as the number of fragmented red cells per 1000 red cells, ex-
pressed as a percentage, normal human blood may contain 0.1-1%
schistocytes in mild schistocytosis.4065-4067 A schistocyte count up
to 2% is considered moderate but abnormal;4065-4067 >2% is con-
sidered clinically serious;4067 up to 6% may be found within 2 hours
of a major surgical procedure;4065 and up to 10% may be seen after
intraoperative blood transfusion,4065 or up to 35% in patients un-
dergoing splenectomy.4065 Nanorobotic hemolysis of up to ~1%/
day of all red cells — the natural rate — or about 0.25 destroyed
red cells per nanorobot-day for a 1 terabot dosage (Section 9.4.2.6)
can probably be tolerated by the human body. Anemia due to me-
chanical hemolysis can be ameliorated in some cases by administer-
ing erythropoietin.* 5395 Materials-induced hemolysis is near-zero
for diamond,643,660,4726 graphite,643 and alumina643 powders, al-
though free aluminum ion may be hemolytic.1079 Bulk Teflon can
be very mechanically hemolytic1347,1348 and colloidal silica may also
be hemolytic.4068 Intravascular stents do not appear to cause
microangiopathic hemolysis or thrombotic microangiopathy,5389 and
replacement of heart valves with contemporary mechanical pros-
theses has been associated only with subclinical (mild) intravascular
hemolysis.5390,5391

Careless perforation of red cell plasma membrane by
cytopenetrating nanorobots (Section 9.4.5) could result in
nanomechanical hemolysis crudely analogous to the hemolysis ac-
companying certain membrane-perforating parasitic infections such
as babesiosis.4069 Utilization of proper cytopenetration techniques
(Section 9.4.5) and the avoidance of extremely rapid manipulator
movements (sufficient to rupture RBC plasma membrane) should
reduce or eliminate this risk. In some cases, applied forces as small
as 10-60 pN may be sufficient4070 (Section 9.4.3.2.1) to cause red
cell membrane fragmentation. The passage of red cells through cath-
eters at various clinically relevant flow rates can cause significant
hemolysis.4071,4072 Each trip through a 14-gauge blood dialysis needle
at 91 ml/min and a 2.2 m/sec peak velocity damages 0.001% (near
the center) to 0.1% (near the needle wall) of the red cells.3690 Eryth-
rocyte trauma is increased at elevated static pressures, especially in
high-shear conditions.5394 Larger red cells are more susceptible to
mechanical hemolysis than smaller red cells.5396 The additional
hemolytic effects of surface hardness and surface texture (e.g., colli-
sion against a sanded wall) are being investigated but may be rel-
evant only for flow velocities exceeding 3 m/sec and surface rugos-
ity exceeding ~1 micron.4073 Patients with spherocytic hereditary
elliptocytosis5398-5403 — a normally benign condition in which the
red cells are oval or elliptically shaped, occurring in 1 of 2000
births2004 — or pyropoikilocytosis may be at slightly higher risk of
mechanical red cell fragmentation because of the greater fragility of
these abnormal red cell membranes.4074,5403,5404

* In contemporary medical practice, such erythropoietin treatment would be too expensive unless the patient is on dialysis or has a bone marrow disorder. Instead, the treatments
of choice are transfusion in life-threatening situations, oral iron supplements otherwise. In an era of advanced molecular manufacturing, human hormones such as erythropoietin
should be easily synthesized at a cost of pennies per dose or less (Section 2.4.2, Chapter 19).
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Drugs can reduce the severity of intravascular hemolysis, e.g., by
increasing red cell membrane elasticity and compliance.5397

15.5.5.1.2 Erythrocyte Surface Fluctuations and Elasticity
Low frequency submicron fluctuations of the cell membrane,

known as cell membrane fluctuations or CMF,4075 have been shown
to be characteristic for different cell types4076-4082 and to occur in
the 0.3-30 Hz frequency range.4075 For erythrocytes,4085 these fluc-
tuations typically exhibit displacement amplitudes of 160 nm for
deoxygenated red cells and 290-400 nm for oxygenated red
cells4082-4084 (236 nm in diabetic patients4084) as observed over
0.25-micron2 membrane surface patches.4082,4086 These fluctuations
apparently provide a dynamic control of bending deformability of
the membrane-skeleton complex4086 and assist red cells in perform-
ing their function of oxygen delivery4087 by improving their effi-
ciency in passing through capillaries narrower than the cellular
diameter.4084

Nanorobots might incidentally alter red cell membrane mechani-
cal properties by their presence or activities at the cell surface, as in
cytocarriage (Section 9.4.7), or might purposely alter those proper-
ties by locally extracting, releasing or injecting specific chemical
species. For example, nanorobots could elevate the amplitude of
red cell bending fluctuations by the local release of human atrial
natriuretic peptide.4087 Adrenaline (epinephrine) and isoprena-
line4086 increase maximum fluctuation amplitude by +45%, although
adrenaline stimulates only the low-frequency component at 0.3-3
Hz, reaching maximum effect after 20-30 minutes and fully dissi-
pating after 60 minutes.4086 Increasing extracellular solvent
macroviscosity by adding macromolecules such as dextrans, poly-
ethylene glycol, or carboxymethylcellulose diminishes cell membrane
fluctuations.4075 Wheat germ agglutinin diminishes fluctuations
tenfold, and fluctuations are totally suppressed by a 0.01% solution
of glutaraldehyde, which also decreases RBC adhesivity to glass by
twofold.4088 Increasing the cholesterol content of the RBC phos-
pholipid bilayer causes large reductions in internal fluidity of mem-
brane and a change in its preferred direction of bending without
changing the gross mechanical rigidity. On the other hand, an in-
crease in intracellular (cytosolic) concentration of polyamines (es-
pecially spermine) adds to the cohesion of the membrane cytoskel-
eton and increases the mechanical rigidity of the membrane.4089

Amphipathic drugs also modify the mechanical properties of the
cell plasma membrane.4090 The tension required to smooth out the
thermal undulations or Brownian motions of the outer membrane
of artificial phospholipid vesicles 10-20 microns in diameter
(~typical cell size) has been determined experimentally as
0.01-0.1 x 10-3 N/m4091 (Section 9.4.3.2.1).

15.5.5.1.3 Disruption of Erythrocyte Aggregation
At low shear rates, red cells aggregate into rouleaux (i.e., the

stack-of-coins configuration) and migrate inward, forming a net-
work of linear and branched chain aggregates in the core of the
vascular tube (Section 9.4.1.3). Individual rouleaux may incorpo-
rate 10-20 red cells, or more, creating by far the largest cellular
elements normally present in the blood. At the highest shear rates,
the rouleaux break up entirely into single red cells, and the red cells
then distribute themselves more uniformly in the radial direction
(Section 9.4.1.3). Red cell disaggregation is essentially complete when
the shear stress of the cell suspension is raised above 0.2 N/m2.4092

Could medical nanorobots similarly disaggregate erythrocyte rou-
leaux? Collisions between free-floating nanorobots and rouleaux
should produce shear stresses <0.1 N/m2 (Section 9.4.2.2). The
energy required to disaggregate individual red cells has been estimated

as ~104 ergs/cm2 (~10 pJ/micron2)4093 or a force of ~70 pN (Sec-
tion 15.5.6.1). A specialized nanomanipulator driven by a ~10 pW
power source plausibly could purposely pry apart two aggregated
red cells with a mutual contact area of ~10 micron2 in a time on the
order of ~10 sec. But random disaggregation is unlikely to occur
during simple elastic impacts between free-floating nanorobots and
red cell rouleaux because the kinetic energy of a ~1-micron3

diamondoid nanorobot even traveling at 1 m/sec is only ~0.001 pJ.
During tube flow, rouleaux migrate inward forming a network

of aggregates in the core of the tube surrounded by a peripheral
cell-depleted layer consisting of single cells, occasional small rou-
leaux, white cells, platelets, and, potentially, nanorobots. This re-
sults in a two-phase flow of a relatively higher shear rate peripheral
zone surrounding a lower shear rate, high cell concentration, cen-
tral zone.4094 Even at a maximum 10% Nct blood concentration,
nanorobots represent at most 20% of total red cell mass, so collisional
dispersion of the high-shear peripheral zone should be modest and
effective diffusion rates should remain high. Moreover, free-floating
medical nanorobots should exhibit no axial preference4094 and should
be maximally marginated towards the vessel walls even under
high-shear conditions (Section 9.4.1.3). This, along with their bio-
chemically inactive diamondoid surfaces, suggests that the mere
presence of medical nanorobots in the blood should not interfere
with adhesive processes involved in axial rouleaux formation far from
vessel walls, where shear rates are lower.

15.5.5.2 Mechanical Interactions with Platelets
Platelets (aka. thrombocytes) are more fragile than red cells and

can break more easily in a wound, physically bursting open and
spilling out their contents into the local tissue (i.e., degranulation).
The material within triggers a complex chain of biochemical events
involving numerous proteins that results in soluble fibrinogen be-
ing converted into insoluble fibrin, which condenses out in the form
of a fibrous scaffolding upon which a clot can be built (Section
15.2.5). The primary danger of unintended thrombocytolysis nor-
mally lies at the arterial wall, which may be layered with
rough-textured cholesterol and lipid plaques, and where shear forces
are highest. Fortunately, hundreds of platelets may break nearby
without triggering a local thrombogenic event (Section 15.2.5). The
human body normally has ~2.1 trillion platelets in circulation or
pooled (Section 8.5.1), each with a ~10 day lifespan,4095 so the natu-
ral platelet destruction (and production) rate is ~2.4 x 106 sec-1,
almost as many as for red blood cells.

Possible pathological mechanical interactions uniquely between
medical nanorobots and platelets may include nanorobotic mechani-
cal thrombocytolysis (Section 15.5.5.2.1) and the disruption of plate-
let aggregation (Section 15.5.5.2.2). Nanorobots might also inter-
fere with phagocytosis by platelets,775,868,875,881-883,885 or with the
motility of platelets1969,4096-4099 (e.g., 0.1-0.5 micron/sec across
HEMA surfaces1969), two relatively minor functions of the platelet
which will not be discussed further here.

15.5.5.2.1 Nanorobotic Thrombocytolysis
Collisions between platelets and medical nanorobots in the blood-

stream will take place at similar velocities and frequencies as colli-
sions that normally take place between platelets and other natural
blood elements. Hence nanorobots should not significantly increase
the risk of mechanical thrombocytolysis and subsequent thrombo-
sis. For example, each ~2-micron diameter platelet4100 present in
human blood that contains a 10% Nct of 2-micron diameter
nanorobots may experience ~2 collisions/sec with neighboring
nanorobots at a mean collision velocity of ~2 mm/sec but may also
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experience ~0.5 collisions/sec at ~2 mm/sec with other platelets,
~110 collisions/sec at ~3 mm/sec with nearby red cells, and ~100
collisions/sec at 0.5-5 mm/sec with capillary walls (Section 9.4.2.2).
Such high nanorobot dosages induce the highest collision rates be-
cause red cells disproportionally occupy blood vessel axial regions4100

(forcing platelets and nanorobots together preferentially toward the
periphery; Section 9.4.1.3) and because erythrocyte flip-flop mo-
tions4094 impart additional radial energy to platelets and nanorobots.

Even with the extra collisional energy, the maximum shear stress
per collision is only <0.1 N/m2 (Section 9.4.2.2). This is far less
than: (1) the time-averaged shear stress of 1.5-2.0 N/m24101,4103

(range 0.5-5.6 N/m24094) for blood circulation in normal vessels,
(2) the threshold limit of 6-9 N/m2 for shear stress-induced platelet
aggregation,4102-4107 (3) the >14 N/m2 shear stress required for large
platelet aggregate (>10-micron diameter) formation,4109 and (4) up
to 10-40 N/m2 reached when small arteries and arterioles are par-
tially occluded as by atherosclerosis or vascular spasm.4105-4108 So
thrombocytolysis by free-floating nanorobots in the bloodstream
seems extremely unlikely.

15.5.5.2.2 Disruption of Platelet Aggregation
Platelet aggregation is necessary for clotting to occur. Detailed

studies of two-body collision hydrodynamics and platelet activa-
tion4110 suggest that platelet aggregation takes place at a rate of
~192.5 fibrinogen bonds/micron2-sec, with ~50,000 GPIIb/IIIa fi-
brinogen cross-bridging receptors per platelet plasma membrane4110

and ~46,000 plasminogen binding sites per platelet (the platelet
surface serves as a site of assembly for plasminogen and tissue plas-
minogen activator and facilitates plasminogen activation).4111

Could the presence of medical nanorobots in human blood in-
advertently — or purposely — interfere with this process? The force
required to separate two platelets that have adhered via platelet
membrane receptors cross-linked (i.e., covalent bonds) by fibrino-
gen was tested experimentally with receptor coated latex
microspheres.4112 Doublets were subjected to hydrodynamic shear
stress of 0.6-2.9 N/m2 and doublet breakup occurred as follows:
15.6-17.0% broke up within the force range (70-150 pN) to
(230-310 pN), and all of these breakups occurred within the first
10 rotations of the doublet. The rest (~83%) of the doublets did
not de-aggregate, up to ~310 pN. Another experiment3988 found
that the adhesion between a neutrophil and an activated platelet is
broken in 130-630 millisec as the shear rate is decreased to 100
sec-1 (Fbond = 86 pN) from 250 sec-1 (Fbond = 172 pN).

These results suggest that forces of many hundreds of pN must
be applied in order to mechanically separate a covalently attached
platelet-platelet pair. Such forces are within the abilities of an indi-
vidual nanorobot designed for the purpose but are unlikely to occur
casually during in sanguo operations of the typical
manipulator-equipped nanorobot. Of course, nanoaggregates should
have no difficulty applying the requisite forces if that is their in-
tended function: the elastic moduli of human platelets measured
with AFM range from 1-50 kPa in the frequency range of 1-50
Hz.4113

15.5.5.3 Mechanical Interactions with Leukocytes
Nanorobots must also be mechanically compatible with white

blood cells (WBCs) or leukocytes, a group of blood cells that in-
cludes both granulocytes (neutrophils, basophils and eosinophils)
and agranulocytes (monocytes and lymphocytes). Many interactions
between nanorobots and neutrophils or other phagocytes have al-
ready been described at length in Section 15.4.3. Possible mechani-
cally pathological interactions uniquely involving medical

nanorobots and leukocytes may include nanorobotic mechanical
leukocytolysis (Section 15.5.5.3.1), unintentional modulation of
white cell membrane fluctuations (Section 15.5.5.3.2), interference
with leukocyte margination and migration (Section 15.5.5.3.3)
and interference with leukocyte aggregation (Section 15.5.5.3.4).
The possibility that nanorobots or their errant parts could trig-
ger an unwanted enzyme release from human phagocytes
(nanosecretagoguery) is briefly discussed in Section 15.4.4.

15.5.5.3.1 Nanorobotic Leukocytolysis
Nanorobotic leukocytolysis — the mechanical fragmentation of

white cells by individual nanorobots or by nanoaggregates — is a
less serious concern than hemolysis and thrombocytolysis because
there is only 1 white cell in normal human blood for every 740 red
cells and 36 platelets. Nevertheless, mechanical white cell fragmenta-
tion has been seen in at least one patient who was using single-lumen
subclavian hemodialysis catheters.4071 A leukemic patient4114 who
underwent therapeutic mechanical leukapheresis suffered white cell
fragmentation with complications including renal failure and dis-
seminated intravascular coagulation (DIC) (Chapter 17). In another
case,4115 the blood of a patient with extreme leukocytosis was found
to have large numbers of platelet-sized particles, originally counted
as platelets, but which post-mortem immunological analysis revealed
to be leukocyte cell fragments at a particle concentration ~24 times
the normal white cell count. In yet another study,4063 blood smears
from half of all patients with septic shock or DIC showed leuko-
cytic fragments, always associated with fragmented erythrocytes, all
of which cases (of leukocytolysis) later proved fatal. The appearance
of leukocytic fragments in such cases is believed to be related to
mechanical shearing through microangiopathic fibrin strands which
may also cause erythrocyte fragmentation,4063 though in DIC death
is the result of the concomitant thrombus formation and hemor-
rhaging.

The responses of white cells to mechanical stress are well known.
For example, the sudden imposition of ~0.04 N/m2 fluid shear stress
induces adherent leukocytes to retract their pseudopods, a process
involving the breakdown of F-actin and which eventually causes
the cell to round and detach from a glass surface.4116 Raising the
peak fluid stress to 0.07 N/m2 does not increase the rate of pseudo-
pod retraction.4116 Pseudopod retraction serves a useful biological
purpose: to minimize leukocyte entrapment in capillaries. Interest-
ingly, these effects of shear stress may be overridden by
integrin-mediated membrane adhesion.4117 That is, the ability of
shear stress to inhibit pseudopod formation may be counteracted
by stimulatory agents.

A threshold shear stress above 0.04 N/m2 is required to support
rolling of leukocytes on selectin-coated surfaces4118 (Section 9.4.3.6).
In one experiment,4119 shear forces on leukocytes rolling on
adhesion-molecule-coated surfaces ranged from 0.2-1.5 N/m2 for
VCAM-1 and up to 3-4 N/m2 for selectins. In another experi-
ment4120 involving leukocytes rolling on endothelium, the equilib-
rium force that would balance fluid shear stresses on the leukocyte
and the attachment forces at its site of contact with the endothe-
lium spanned 0.11-7.61 nN for wall shear stresses ranging from
0.2-2.5 N/m2 in venules 23-49 microns in diameter in cat mesen-
tery. Another experiment4121 found that adherent human PMNs
(polymorphonuclear leukocytes such as neutrophils) are virtually
all detached from human umbilical vein endothelial monolayers at
a shear stress of ~1 N/m2. However, leukocytes remain rolling at up
to 65 microns/sec and attached to endothelium via ~200 selectin
binding sites/micron2 at shear stresses up to at least 3.2 N/m2 — a
neutrophil 8.5 microns in diameter has ~240 microvilli/cell with
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~260 L-selectin molecules per microvillus and crawls using up to 9
microvillus tether “feet” during rolling.4122 The nature of the at-
tachment surface is critical. For instance, half of all adhered human
fibroblasts will detach from an FEP-Teflon surface at a fluid shear
stress of 2 N/m2 but more than half of similar cells that are adhered
to a glass surface will require 35 N/m2 to detach, after “rounding”
(i.e., assuming a spheroidal shape).4123

As for cell lysis, critical shear stress levels have been defined4124

for the viability, morphology, size, and lysis of adherent mamma-
lian cells between 1-2.5 N/m2. For example, neutrophils adherent
to cardiovascular device material subjected to shear stress above 0.6
N/m2 for 1 hour undergo complete apoptosis, displaying irrevers-
ible cytoplasmic and nuclear condensation while maintaining in-
tact membranes.4125 Leukocyte suspensions exposed to higher shear
stress are subject to cell swelling as well as lysis4059 and, in T lym-
phocytes, a depression of the proliferative response.4126 In other
studies, neutrophils exposed in vitro to shear stress of 7.5-15 N/m2

for 10 minutes will release enzymes both from azurophilic and spe-
cific granules.4127 The number of ruptured leukocytes rises signifi-
cantly at these levels of mechanical trauma. At 15 N/m2, the re-
maining intact cells display morphological changes including clublike
cytoplasmic protrusions, spherical shape, and a circumferential dis-
tribution of cytoplasmic granules.4127 Degranulation of cytoplas-
mic alkaline phosphatase granules begins to appear.4059 The fre-
quency of disrupted leukocytes increases with shear stress above 15
N/m2.4059 Human neutrophils undergo homotypic aggregation in
the physiological range of fluid shear stress of 1.2-3 N/m2, along
with an increase in intracellular Ca++ concentration,4128 but aggre-
gates of disrupted cells disappear after exposure to 45 N/m2 for 10
minutes.4059 At still higher shear stresses of 60 N/m2, cell destruc-
tion is marked.4127 Intact PMNs contain fewer cytoplasmic gran-
ules, a large number of vacuoles, and condensed nuclear
chomatin.4127 A 10-minute shear stress of 60 N/m2 destroys 25%
of human leukocytes.4059 On the other hand, non-shear hydrostatic
pressures of 10-50 N/m2 have no measurable influence on the shear
stress response of leukocytes.4116 During micropipette aspiration
leukocytes neither retract nor project pseudopods in response to
purely hydrostatic pressures of 100 N/m2 or above.4116 Interest-
ingly, the bursting strength of whole mammalian hybridoma cells
has been measured4129 by squashing them between two parallel
plates. The required bursting force is ~2000 nN (~6400 N/m2) for
10-micron diameter cells and ~4500 nN (~3600 N/m2) for 20-mi-
cron cells. From this data, we conclude that mechanical interac-
tions between leukocytes and nanorobots or nanorobotic organs
imposing shear forces exceeding ~1 N/m2 for more than an hour
may induce white cell apoptosis, or rupture at 10-50 N/m2 — an
important limitation in medical nanorobot mission design.

Shear forces arising from collisions between bloodborne leuko-
cytes and individual free-floating nanorobots are at most <0.1 N/
m2 (Section 9.4.2.2), but may be far less for encounters involving
co-vasculomobility or histonatation where the speed of interaction
is substantially lower. While it is possible that individual medical
nanorobots may unintentionally induce pseudopod retraction or
other minor physiological changes in white cells, this possibility
may be greatly reduced, given an appropriate device configuration
and mission design.

15.5.5.3.2 Leukocyte Surface Fluctuations and Elasticity
As with erythrocytes (Section 15.5.5.1.2), low frequency sub-

micron cell membrane fluctuations (CMF) have also been observed
in lymphocytes, monocytes, and even nonleukocytes such as fibro-
blasts at frequencies between 0.2-30 Hz,4079-4082 although the

vertical amplitude of these fluctuations is typically only 20-30 nm
over 0.25-micron2 areas, far smaller than the RBC membrane fluc-
tuations of 160-400 nm. However, murine B lymphocytes showed
transverse displacements of 131 nm in 0.2-micron2 microdomains
at 0.3-15 Hz.4079 Colchicine at 1 µM concentration reduced these
membrane fluctuations down to 88 nm, whereas dihydrocytochalasin
B at 2 µM increased the membrane displacement amplitude up to
184 nm.4079 Medical nanorobots using leukocytes as cytovehicles
(Section 9.4.7) — whether by external attachment or from a cytosolic
residence — must take care to avoid impairing leukocytic plasma
membrane fluctuations, whose biological function appears to be, at
least in part, to assist the cell in achieving efficient diapedesis.

Leukocytes are also much less deformable than erythro-
cytes,5411-5414 especially when activated, hence WBCs may better
resist cell deformation by passing nanorobots (Section 15.5.5.3.1).
Venous blood from patients with ischemic “vibration white finger”
caused by occupational exposure to ~120 Hz mechanical vibrations
contains a subpopulation of hard and poorly deformable granulo-
cytes.5410 However, acute hand-transmitted vibration has no in vitro
effect on leukocyte rheology.5410

15.5.5.3.3 Leukocyte Margination and Migration
When aggregated in low shear conditions, red cells preferentially

take up axial flow which induces margination of platelets and leu-
kocytes (Section 9.4.1.3), increasing endothelial adhesion and other
cell-wall vascular interactions for these non-RBC elements.4130

Medical nanorobots seem unlikely to disturb this aggregation and
axial migration of red cells, or the resulting peripheral migration of
white cells, platelets, and smaller blood components including
bloodborne nanorobots (Section 15.5.5.1.3). This is important be-
cause without white cell margination, natural phagocytic defense
mechanisms could be greatly impaired.

Given that free-flowing nanorobots will likely be marginated
toward the vascular walls (Section 9.4.1.3) along with platelets and
white cells at low shear rates, could nanorobots interfere with the
wall-related functions of those cells? For example, nanorobots may
share the plasmatic layer or plasmatic zone (Sections 9.4.1.4 and
9.4.2.6; aka. Poiseuille’s space) closest to the vessel walls with leu-
kocytes and platelets. Collisions there will involve shear stresses of
at most <0.1 N/m2 (Section 9.4.2.2), hence should not significantly
affect leukocyte morphology or function. At the highest shear rates
in the vasculature, red cell aggregates break up and the erythrocytes
distribute more uniformly, with white cell concentration becoming
highest along the tube axis (Section 9.4.1.3). Nanorobots the size
of platelets or smaller remain marginated to the periphery. Under
these flow conditions the white cells and nanorobots should inter-
act only infrequently. There is some evidence for margination of
chylomicrons,4131-4133 the only major particle population in human
blood having smaller dimensions than medical nanorobots and hence
theoretically capable of at least partially displacing free-floating
nanorobots from the periphery.

Vasculomobile nanorobots also may collide with slow-moving
leukocytes that are rolling along the local endothelium. The mi-
crovillus “feet” upon which a leukocyte rolls across endothelium are
present on the white cell surface at a number density of ~1.1/mi-
cron2.4122 The equilibrium length of a microvillus ranges from 0.35
microns (untethered, at equilibrium) to 1.75 microns (tethered, at
full stretch), and the step sizes range from 1.25 microns (extrapo-
lated to zero rolling velocity) to 2-5 microns for continuous-contact
locomotion.4122 Thus it is likely that a rolling leukocyte could sim-
ply step over an isolated unmoving endothelium-anchored
low-aspect-ratio nanorobot of lateral diameter ~1-2 microns.
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More commonly, vasculomobile nanorobot ambulation veloci-
ties may be as high as 10,000 microns/sec (Section 9.4.3.5) com-
pared to a maximum of 10-80 microns/sec for a rolling leukocyte.4122

The locomotive force envisioned for vasculomobile nanorobots us-
ing legged ambulation is on the order of ~200 pN (Section 9.4.3.5).
Distributed over a 1-10 micron2 nanorobot-leukocyte contact area,
this force induces a shear stress of 20-200 N/m2, probably suffi-
cient to dislodge a rolling white cell. Vasculomobile nanorobot con-
trol systems thus must include specific leukocyte (and platelet) en-
counter protocols. These operational protocols would provide that
the forces or speeds generated by nanorobots are to be greatly re-
duced in the vicinity of a rolling white cell, or else the nanorobot is
detoured either around or over the larger but much slower-moving
motile blood cell. Crawling over the leukocytic obstacle may be a
good option for isolated nanorobots or narrow nanoaggregates that
can maintain low levels of applied shear stress during the transit,
thus avoiding any unwanted activation of leukocyte morphological
or functional changes. Achieving this objective when large numbers
of nanorobots are in transit for extended periods of time across the
same leukocyte may prove challenging. The mean number of mar-
ginated leukocytes in venous blood vessels in rat and mouse spleens
has been observed to range from 0.1-4.5 WBCs per 1000 micron2

of wall surface (a mean center-to-center separation of 15-100 mi-
crons), with rolling speeds from 11-20 microns/sec.2869 Adherence
times of leukocytes to vessel walls are log-normally distributed, with
median values 30 sec, 130 sec, and 560 sec for lymphocytes, PMNs,
and macrophages, respectively.2869

Nanorobot diapedesis should require only milliseconds for gap
passage, plus possibly several seconds for gap management (Section
9.4.4.1). Leukocytes have been observed to migrate through the
venous wall as fast as 1-2 minutes2869 or as slow as 3-10 min-
utes4134,4135 — roughly 100 times slower than medical nanorobots.
Even a major convoy (Section 15.5.2.3) involving ~109 medical
nanorobots can complete its extravasation in the shortest possible
time required for a single WBC transit. As long as such passages are
infrequent, they should not interfere with or impair normal leuko-
cytic activities.*

15.5.5.3.4 Disruption of Leukocyte Aggregation
Human leukocytes are known to aggregate: (1) during phagocy-

tosis of bacteria3882,4138 (though somewhat less so during viral in-
fections4139); (2) during passage through vascular stents of various
designs and surface textures;3875 (3) following surgery;3889 or (4) in
other situations such as cerebral ischemia and myocardial infarc-
tion.4140,4141 Leukocyte aggregation is also involved in the genera-
tion of vascular damage during various inflammatory conditions.4142

However, this aggregation is reversible in vitro and often presents
no clinical evidence for leukoembolization,4143 so any possible dis-
aggregative influences from medical nanorobots — whether inci-
dental or purposeful — are unlikely to prove pathological. The com-
parable aggregability of both white and red cells during acute myo-
cardial infarction4141 and the coaggregation of leukocytes and eryth-
rocytes during infection4144 and inflammation4145 suggests that these
two cell types may share common adhesive proteins. Since the mere
presence of medical nanorobots is unlikely to significantly interfere
with normal red cell aggregation (Section 15.5.5.1.3), this conclu-
sion might be extended to white cells as well.

15.5.5.4 Viability of Confined, Pressurized, or Desiccated Cells
The effects of prolonged mechanical pressure between

nanorobotic surfaces and biological tissues has already been addressed
(Section 15.5.3.4.1). But in some applications4609 it will be neces-
sary to tightly confine individual cells in partially or completely
enclosed containers for transport, storage, diagnosis or repair.

Cells confined on lithographically produced 2-dimensional is-
lands of similar surface area to the cell typically may attach and
generate normal secretion products, whereas larger islands will pro-
mote cell spreading instead and still larger islands may promote cell
growth or replication (Section 15.2.2.3). Cells placed on square
pedestals of roughly their own size will take up a square shape (Sec-
tion 15.2.2.3). Cells including platelets, fibroblasts, osteoblasts and
macrophages deposited or grown on diamond surfaces maintain their
integrity, showing normal cell adhesion and no evidence of cyto-
toxicity (Section 15.3.1.2). Endothelial cells cultured on pyrolytic
carbon or LTIC show no change in cell adherence with well-spread
(not rounded) cells on this surface (Section 15.3.3.2). As for Teflon:
monocytes and macrophage adhere weakly to Teflon surfaces, show-
ing no obvious structural or functional defects; leukocytes and lym-
phocytes are not activated by Teflon in vitro, though platelets may
be (Section 15.3.4.2); and endothelial, epithelial, neural and bacte-
rial cells attach poorly to Teflon (Section 15.3.4.2). Fibroblasts and
epithelioid cells adhere well to sapphire and experience no cyto-
toxic or antiproliferative effects, and osteoblasts show normal bio-
chemical and biological functions on sapphire (Section 15.3.5.4).

Will full 3D confinement — cell containerization — cause cells
to become apoptotic, or accelerate cell mitosis or proliferation? It is
well known that a loss of contact with ECM by tissue cells, medi-
ated by transmembrane proteins,4952 can induce apoptosis (Sections
10.4.1.1 and 15.5.4.2). Forcing cells to adopt an unnatural square
shape by culturing them on square-shaped planar adhesive islands
enhances the rate of apoptotic cell death, “as indicated by an accel-
erated permeabilization of the outer mitochondrial membrane, loss
of the mitochondrial inner transmembrane potential, and an in-
creased frequency of nuclear apoptosis”.4943 This outcome may be
avoided by inserting inhibitors of apoptosis4914 or IAPs (Section
10.4.1.1) into the containerized cell during the period of contain-
erization, then withdrawing the IAPs from the cytoplasm using mo-
lecular sorting rotors, after cell decontainerization but prior to final
release, or by other means (Section 15.5.7.6).

A wide range of evidence4944-4951 supports the conclusion that
mechanical stress can induce cellular hypertrophy, mitosis and pro-
liferation of cells. Thus it may also be advisable to introduce mi-
totic inhibitors into the cell (Section 10.4.1.3) to suppress mitosis
during containerization, if containerization is found to produce
unacceptable mechanical stress on the cell. These inhibitors can later
be withdrawn and the cell should then resume its normal function-
ing. During containerization the cellular mRNA translation ma-
chinery could be temporarily shut down almost completely (and
there are also selective inhibitors of transcription4919-4921). For in-
stance, a number of ribosomal inhibitors are known — e.g.,
aminoglycosides inhibit translation in bacteria by binding to the A
site in the ribosome,4915 and an anti-RNA antibody is an inhibitor
of ribosome-associated GTP hydrolysis4916 — and other fully re-
versible inhibitors of transcription are known, such as the eIF4E-binding
proteins (4E-BPs) which interdict translation initiation by preventing

* Extravasating leukocytes4136 preferentially migrate around endothelial tight junctions or zonula occludens by crossing at tricellular corners where the borders of three
endothelial cells meet, rather than by passing through the tight junctions that lie between two endothelial cells, thus preserving the barrier properties of the endothelium
and avoiding widespread disruption of endothelial tight junctions.4137
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recruitment of the translation machinery to mRNA.4917 It should
be possible to recognize and selectively extract (using molecular sort-
ing rotors or adhesion antennae; Sections 9.3.2 and 10.4.2.5.2) spe-
cific mRNA strands or various intracellular messenger molecules
that would otherwise transduce the mitotic signal. This should be
possible because anti-mRNA can be targeted to inhibit a single spe-
cies of mRNA molecule within cells4918 and because nanorobots
should be able to intercept and alter intracellular messages as de-
scribed in Section 7.4.5.4. However, R. Bradbury notes that mRNA
molecules may have very directed routes from the nucleus where
they are generated to the ribosome locations where they are utilized
and that it could take longer to “read” an mRNA molecule than to
sample the surface of a simple protein messenger molecule, looking
for a unique amino acid tag — and as a result, cell functioning
might be slightly altered by the delays the sampling process intro-
duces.

Although red cells in vivo are often confined to tightly-packed
rouleaux (Section 9.4.1.2), the biological effects of van der Waals
adhesion between cell plasma membranes and tightly confining
diamondoid walls are presently unknown and should be investi-
gated further. For example, the consequences of physically prevent-
ing surface fluctuations on the plasma membranes of red cells (Sec-
tion 15.5.5.1.2) or white cells (15.5.5.3.2) have not yet been stud-
ied. In this example, it should be possible to ameliorate some nega-
tive effects by interposing thin compliance-matching coatings at
the cell-nanorobotic wall interface, possibly combined with cyto-
plasmic biochemical amendments.

Cells can tolerate static pressures of 300-1000 atm without ex-
hibiting altered physiology (Section 10.3.3, Table 10.3), but com-
pression of cells to force them through holes or tubes, or from one
tight compartment to another, must not apply shear forces suffi-
cient to induce biological response (Section 15.5.4.1). For instance,
>0.04 N/m2 shear stress (16 pN over a (20 micron)2 cell membrane
area) can induce adherent leukocytes to retract their pseudopods,
eventually rounding and detaching from a glass surface.4116 The
minimum force required to initiate signal transduction may be as
low as ~10 pN (Section 9.4.3.2.1). If these values must be exceeded
during cell transport, then the cell’s responses must be actively dis-
abled as described above or as described in Sections 7.4.5.4, 9.4.7.4,
and 9.4.7.6, unless it is determined that the effects are reversible
after the stress is removed.

While the partial dehydration of cells to reduce their volume in
order to permit more convenient transport in vivo by specialized
carrier nanorobots4609 might possibly trigger a response from cellu-
lar stretch-activated channels (Section 15.5.3.1), Owen Hamill notes
that this is unlikely because cell inflation rather than cell shrinkage
is generally assumed to activate these channels. In the case of bone
cells, these responses are stimulated at linear strains of just >0.15%
(Section 9.4.3.2.1). For stretch-sensitive cell types, such responses
must be actively disabled as described above. But many mammalian
cells can provably survive the loss of 50% of their water.4922 Fibro-
blasts (e.g., mouse L-929 cells) have survived from 45%4923 to
65%4924 decrease in total cell volume (the latter representing 85%
water loss by volume4925) via dehydration, and erythrocytes have
survived 73% volume reduction by dehydration.4926 Other cells,
particularly bacteria,4927-4930 can tolerate significant shrinkages with-
out loss of viability.* However, even desiccation of microbes leads
to dramatic lipid phase changes wherein carbohydrates, proteins

and nucleic acids initially suffer spontaneous, reversible low activa-
tion energy Maillard reactions forming products that more slowly
re-arrange, cross-link, etc. to give non-native states.4931 So while
initial products may spontaneously reverse to native states when
water is restored, later products only do so through energy con-
sumption and enzymatic activity, e.g., repair.4931

According to G. Fahy,4933 in the 1980s LifeCell Corp. devised a
technique by which cells were “vitri-dried”: cells were cooled so rap-
idly that ice either doesn’t form or forms such small crystals that
they don’t damage the cells, after which space-quality vacuums were
used to distill off the water at very low temperatures.4934 After
vitri-dried cells were stored at room temperature for a short time,
they could be rehydrated and, allegedly, recovered life functions,
but were not able to divide.4934 Experiments by others in the 1990s
found that human mesenchymal stem cells that are air-dried and
stored under vacuum are still viable when rehydrated ~12 hours
later.4935 Vacuum greatly enhances the ability of cultured human
cells to withstand desiccation. Cells dried slowly in such a way that
cellular structures are maintained and stored under vacuum in dark-
ness can withstand desiccation even in the absence of added carbo-
hydrates or polyols.4936 Anhydrobiotic organisms such as the tardi-
grades4937 survive practically complete drying in the absence of freez-
ing, a feat made possible by the presence of a sugar, trehalose, whose
geometry can support membrane structure against collapse by sub-
stituting for water at the polar head groups of the lipids.4930,4938

One research group reports that “introduction of the genes for tre-
halose biosynthesis allowed human cells in culture to be reversibly
desiccated for up to 5 days”;4936 and that human primary fibro-
blasts expressing trehalose and containing no detectable water could
be maintained in the dry state for up to five days.4940 However,
another group4939 reports that trehalose does not improve desicca-
tion tolerance in mouse cells. More research is required to resolve
this issue.

15.5.6 Electrocompatibility
Medical nanorobots must be electrically biocompatible with liv-

ing cells and tissues.5844 Various issues in electrocompatibility have
already been raised and deserve further study, including electrical
field and neuroelectric sensing (Sections 4.7, 4.8.6, 4.8.7, 4.9.3.1,
4.9.3.3, and 4.9.5), biological effects of radiofrequency power (Sec-
tion 6.4.2), macrophage-stimulative electrical fields (Section
6.4.3.6), circumvascular current-carrying wire coils (Section 6.4.4),
stray-field bioelectric interactions (Section 6.5.5), environmental
electromagnetic and electrical biofeedback signals (Section 7.2.3),
electrical adhesive forces (Section 9.2.3), and various electrical-related
risks of in vivo nanorobots (Chapter 17). The discussion here is
necessarily brief and considers only a few of the many possible elec-
trical interactions with cells (Section 15.5.6.1), along with the im-
portant issue of surface electrical thrombogenicity (Section 15.5.6.2).
Tangential important issues such as possible changes in whole-body
electrical conductivity due to massive diamondoid materials implants
should be studied but are beyond the scope of this book.

15.5.6.1 Electrical Interactions with Cells
The gross effects of electrical interaction with cells are well known.

For example, a macroscopic intravascular electrode with constant
current intensity 1 mA induces thrombosis and injury of the vascu-
lar wall, ranging from minimal lesion of endothelium to almost

* The record-holder may be the El Tor microbial strain of Vibrio cholerae, which according to Rita R. Colwell of the University of Maryland Biotechnology Institute4932 can shrink
itself 150- to 300-fold when plunged suddenly into cold salt water (e.g., cold shock5425), becoming the size of a large virus without loss of viability.
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total necrosis of the vascular wall.4146 Schaldach4147 reports that
current densities in excess of 1-100 picoamp/micron2 alter the ther-
modynamic equilibrium and cause “changes in pH, PO2, irrevers-
ible reactions, and perhaps cell damage.” Obviously, nanorobots must
avoid unintentional electrocution, electrocautery, or cytotoxic
electroporation4148 of the patient’s healthy cells and tissues. But
electroporation may be used to temporarily permeabilize cell mem-
branes to permit the insertion of foreign genes,4149 and lipid bilayer
membrane demixing can be induced by applying tangential electric
fields on the order of 4000 V/m.4150 As noted in Section 9.4.7.4,
electric fields can be used to drive leukocyte motion (Section 4.9.3.1).
For example, a mild electric current induces lymphocytes to travel
in the same direction as the current (“electrotaxis”) at speeds up to
~0.3 microns/sec.6170 Small electric gradients have been shown ex-
perimentally6171 to stimulate leukocyte diapedesis (Section 4.9.3.1),
though multiple nanorobots would probably be required to gener-
ate the necessary currents.

Biological stimulation can alter the electrical characteristics of
cells. For instance, the stimulation of thymocytes and B lympho-
cytes with specific mitogens causes the cells to increase in diameter
from 5.6 to 8.8 microns, with membrane capacitance increasing
from 7.6 to 12.4-14.6 mF/m2 and from 9.3 to 16-17 mF/m2, re-
spectively.4151 T cell membrane conductivity also increases from 50
to 210 S/m2.4151 Various immune (and other) cell responses to
externally-imposed oscillating electric/magnetic fields have been
reported4152-4157 although there are negative results as well.4158-4160

In one experiment,4819 osteoblasts cultured on the surfaces of a
polylactic acid-carbon nanotube composite and exposed to electric
stimulation (10 µamps at 10 Hz) for 6 hours/day exhibited an
upregulation of mRNA expression for collagen type-I after 1 day, a
46% increase in cell proliferation after 2 days, and a 307% increase
in the concentration of extracellular calcium after 21 days. Electric
fields can be therapeutic in some cases.4161,4162 Cellular galvano-
taxis (electric field-induced cell migration) has been demonstrated
in algae,4163 bacteria,4164 chondrocytes,4165 endothelial cells,4166 epi-
dermal cells,4167 epithelial cells,4168,4170 fibroblasts,4169-4171 granu-
locytes,4169,4172 keratinocytes,4173 myoblasts,4174 neural crest
cells,4175 neurons,4176 osteoblasts and osteoclasts,4177 protozoa,4178

and spermatozoa,4179 and has been modeled mathematically.4180

Field-emitting nanorobotic systems might induce similar effects.
Finally, a major hurdle in developing electronic implants is the de-
sign of devices that can withstand long-term exposure to the body’s
warm, salty fluids without mechanical failure. The corrosion
electrochemistries of potential nanorobot building materials are
briefly discussed in Sections 15.3.1.5, 15.3.3.6, and 15.3.5.6.

Perhaps more subtle are the effects of cell-cell electrostatics which
have been under investigation since the 1920s.4181 As an example,
the negative surface charge of red cells provides an electrostatic re-
pulsive force tending to cause disaggregation.4092,4182 It has been
proposed that the ~15 nm gap frequently observed between the
surfaces of aggregated red cells in rouleaux4183 represents the posi-
tion of the potential energy minimum where the forces of electro-
static repulsion between negatively charged red cells and the van
der Waals attractive forces are equal.1554 Taking H = 30 zJ, rred = 3
microns and zsep = 15 nm in Eqn. 9.7, the net attractive force

between red cells aggregated in rouleaux is FvdW ~ 70 pN. (This lies
well within the range of mechanical forces potentially accessible to
medical nanorobots; Section 9.3.) Cationic particles strongly bind
to human erythrocytes.6146 The streptococcal bacterial coat has
negatively-charged termini, creating a mild electrostatic repulsion
of phagocytes4184,4185 (see below). The low Hamaker constants (Sec-
tion 9.2.1) of cell plasma membranes gives rise to an appreciable
mutual electrostatic repulsion between virtually all bloodborne
cells.4184 In general, at neutral pH there is a net negative charge for
prokaryotic and eukaryotic cells and for DNA, although proteins
may be either positive or negative.4187 In an oscillating nonuniform
electric field, Gram-positive bacteria experience positive
dielectrophoresis because they appear more conductive than
Gram-negative bacteria which experience negative dielectrophoresis,
hence the two cell types are readily separated.4186,4187 Red cell mem-
branes carry electric charge and are readily deformed in a
high-frequency oscillating electric field.4188 Similar fields can in-
duce cell vesicle budding or fission4189 or cell fusion.4190 These and
other useful electrical forces and influences — which may include
systemic mechanoelectric transduction (Section 4.9.3.3) and
mechanoelectric feedback throughout all human tissues4191 — may
be exploited by medical nanorobots or by macroscale nanoaggregates.

Bacterial cell surfaces possess net negative electrostatic charge by
virtue of ionized phosphoryl and carboxylate substituents on outer
cell envelope macromolecules which are exposed to the extracellu-
lar environment.4665 For example, Gram-negative bacteria have an
outer layer of lipopolysaccharide (LPS) and protein which forms a
highly charged surface that is stabilized by cation binding.4666 Varia-
tions in the structure and chemical composition of the LPS have
been shown to affect bacterial surface charge and the ability of bac-
teria to adhere to both glass and polystyrene surfaces.4669 LPS can
occur in two general forms, a hydrophobic (A form) and a charged
hydrophilic (B form).* 4667-4669 Most protozoan4670 and bacterial
cells4671-4674 are negatively charged to varying degrees, though there
are a few rare instances of positively-charged bacteria such as S.
maltophilia.4672 Bacterial negative charge can be reduced by antibi-
otics,4675,4676 and complete bacterial charge reversal, from negative
to positive, has been observed in the presence of certain metals and
high pH.4677,4678 Note that the internal bacterial proton gradient
does not affect the external charge.**

As mentioned earlier (Section 15.4.3.6.2), the phagocytosis of
polystyrene beads (as measured by cellular oxygen consumption)
appears strongly dependent on local surface potential and thus upon
fixed surface charge.3327 Surface charge heterogeneity across domains
as small as 1-4 microns can greatly affect phagocytic ability.3328 For
instance, bacteria and epithelial cells, both of which possess a nega-
tive surface charge, should repel one another, but do not. Investiga-
tions4674 by atomic force microscopy of the structures involved in
the attachment of Moraxella catarrhalis bacteria (which have a net
negative surface charge) and pharyngeal epithelial cells found that
the cell surface microplicae have a positive charge of +30.1 mV
whereas the depressions between the microplicae have a negative
surface charge of -43.5 mV. Thus there are both positively and nega-
tively charged domains on the surface of human pharyngeal epithe-
lial cells, and M. catarrhalis evidently attaches to the positively
charged domains.

* There is also a bacterial form which has no LPS coat — the “L form”5980 — in which the bacterium exists, in essence, as a liposome (i.e., no protein/polysaccharide
surrounding coat).

** A proton gradient builds up in the space between the outer face of the bacterial cell membrane and the innermost face of the bacterial cell wall outer coat, as a result
of NADH-mediated translocation of H+ from cytoplasm to the periplasmic space and the resulting accumulation of cytoplasmic OH-. Once the charge gradient is large enough,
the periplasmic protons enter back into the bacterial cytoplasm through channels in transmembrane ATP synthase enzyme complexes which drives the production of bacterial
ATP from ADP. These charges do not escape through the bacterial outer coat.
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Bacteria adhere more readily to positively charged surfaces,4679

and enzymes with a large global positive charge more easily pen-
etrate bacteria cell walls.4680 The effects of surface charge on adhe-
sion4681 and absorption4682,4691 by phagocytes has been studied with
variable results due to inconsistent experimental conditions. Some
studies4683-4686 indicate no effect of bacterial surface charge on ph-
agocytosis, e.g., no significant difference in phagocytosis between
cationic or anionic surfaces when compared at a zeta potential of
the same absolute value.2865 Other studies find increasing phagocy-
tosis with increasing negative charge4687,4688 or reduced phagocyto-
sis with reduced negative charge.4689 Still others4690 show increased
phagocytosis of microcapsules by a leukocyte only for targets of dif-
ferent charge from itself. The most recent results are that phagocy-
tosis appears somewhat inhibited for negatively charged par-
ticles,2336,2880,4691 and somewhat increased for less-negatively
charged4675 or for positively charged particles.2880,4691,4692 Brodbeck
et al5507 found that phagocyte adherence is minimized for hydro-
philic surfaces and for anionic surfaces containing negatively-charged
groups, such as polymers made from organic acids. In another ex-
periment,2865 the least phagocytosis was observed for cellulose
microspheres with non-ionic hydrophilic surfaces. But a reduction
of phagocyte membrane negative surface charge has also been shown
to decrease macrophage phagocytosis.4693 These studies should be
evaluated for quality and reliability, and further research may be
required before we can make a definitive statement regarding the
relationship between the surface charge of bacteria and phagocytosis.

The surface electrical characteristics of possible medical
nanorobot building materials are only beginning to be explored.
For instance, Donaldson898 notes that the alumina (sapphire) sur-
face is amphoteric. In a sufficiently acidic environment, the sap-
phire surface equilibrates with that environment by adsorbing hy-
drogen ions, acquiring a positive charge. In an alkaline environ-
ment, the sapphire surface acquires hydroxyls and a negative charge.
At some intermediate pH near human physiologic (i.e., ~7.4), the
sapphire surface is neither positively nor negatively charged — that
is, it is isoelectric. The isoelectric point for pure alumina has been
measured as a pH of 6.6 for anhydrous Al2O3,1101 9.2 for alumina
submerged in water for a week,1101 or 8.0 using an ISFET.1102 Simi-
larly, the electrical conductivity of DNA-based structures has been
investigated (and controversial) for many years,5770-5776 but until
very recently5777 could not readily be studied in a physiological en-
vironment.

The role of surface charge in the possible pathogenicity of
microparticles4192 and the influence of microparticle shape on
electrocompatibility has only been lightly studied. For example, sharp
edges and corners may produce higher local fields or create current
density hotspots4193 — the positively charged edges of kaolinite
particles contribute slightly to particle cytotoxicity.4194

15.5.6.2 Surface Electrical Thrombogenicity
An early hypothesis held that surface charge was the primary

physicochemical feature of blood-contact material surfaces in de-
termining thromboresistance. Cell coats with negatively charged
sialic acid termini on both the glycoproteins and gangliosides, and
macromolecules in all known flowing biological fluids, carry a slightly
negative charge, thus should be repelled by bloodborne nanodevice
surfaces bearing a net negative charge, or negative electrochemical
potential, reducing the risk of thrombosis.

However, it is now known that immersion of adherent particles
in liquid virtually eliminates electrostatic image forces (Section
9.2.2), greatly reduces electrostatic contact potential forces (Sec-
tion 9.2.2), and can reduce van der Waals forces (Sections 9.2.1 and

9.2.3) by at least a factor of six at organic-water interfaces.4195 The
early hypothesis is further weakened when the immersion fluid is
not neutral or insulating, but rather consists of the high ionic
strength, salty, highly conductive (“dead short”) biofluids actually
found in vivo. Careful experiments designed to measure surface
potential and surface charge find that the choice of surface electri-
cal properties of materials intended to be brought into contact with
blood or other salty aqueous fluids has little influence on biological
adhesion.4196 Indeed, there is growing evidence that any state of
surface electrification is associated with greater rather than lesser
accumulations of biological debris on such surfaces. While there is
an obvious accentuation of adhesive induction by net positive sur-
faces,4196 negatively-charged surfaces may activate contact factors
initiating the intrinsic coagulation pathway (Section 15.2.5). Hence
a net neutral nanorobot surface may be preferable in order to mini-
mize surface electrical thrombogenicity.

G.M. Fahy notes that an electric charge of oscillating polarity
might discourage biological accumulations on nanorobot surfaces.
A negative charge would repel most proteins; if this led to positive
items clustering on the surface, an oscillating surface charge might
get rid of those items before they become a problem.

Detailed calculations of nanorobot electrical characteristics5096

should be a part of every complete design analysis.

15.5.7 Cytomembrane and Intracellular
Mechanocompatibility

When penetrating and entering the living cell, nanorobot physi-
cal structures and activities must be mechanically compatible with
the cellular glycocalyx (Section 15.5.7.1), the plasma and organelle
membranes (Section 15.5.7.2), and all cytoskeletal systems (Sec-
tion 15.5.7.3). Nanorobots must avoid causing intracellular cavita-
tion, shock wave damage, or decompression nucleation (Section
15.5.7.4), disrupting intracellular microzones (Section 15.5.7.5),
mechanically inducing intracellular proteolysis or apoptosis (Sec-
tion 15.5.7.6), or mechanically disrupting chromosomes in the cell
nucleus (Section 8.5.4.7).

15.5.7.1 Mechanical Interactions with Glycocalyx
Many disease processes are known that involve damage to the

glycocalyx,4197-4208 including some bacteria that phagocytose4209 or
otherwise destroy4210-4213 the host cellular glycocalyx during an in-
fection. Damage to the glycocalyx creates conditions that favor the
binding of immune complexes, complement activation, and intra-
vascular coagulation, with loss of gradients between blood and paren-
chyma.4214 Desialylated glycocalyx of endothelium also allows an in-
creased rate of endothelial cell detachment from arterial walls.4215

Nanorobots that rely upon absorption of local oxygen and glu-
cose for their power supply (Section 6.3.4) or whose missions in-
clude extensive small-molecule exchanges with the environment
(Chapter 19) may have ~104-105 molecular sorting rotors (Section
3.4.2) embedded in their exterior surfaces.2762,3573 These spinning
sorting rotors are unlikely to cause direct physical damage to formed
blood elements for several reasons. First, rotors are atomically smooth
and recessed into the housing, reducing physical contact with col-
liding surfaces and eliminating potential nucleation sites that may
trigger blood clotting, gas embolus formation, or foaming. Second,
only a small fraction of all available sorting rotors may be actively
spinning at one time, further reducing the likelihood of physical
trauma. Third, such limited physical contact, when it occurs, should
be relatively benign. Maximum rotor rim velocity of 2.6 mm/sec is
less than 1% of mean aortic blood velocity and lies only slightly
above maximum capillary flow speed (Table 8.2).
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Could the glycocalyx strands that are present at all tissue and
nontissue cells surfaces get trimmed, even by a recessed sorting ro-
tor? Nanorobot sorting rotor binding sites for small molecules (<20
atoms) involve pockets measuring <2.7 nm in diameter (see ref. 10,
Section 13.2.1.a). These pockets are too small to physically accom-
modate the 10-20 nm thick plasma membrane or the main body of
the glycocalyx projections that typically measure 5-8 nm thick and
100-200 nm long,4216 and consist of glycoproteins comprised of
10,000 atoms or more. While an occasional sugar residue may get
clipped, binding sites can be designed for maximum steric incom-
patibility with glycocalyx glycoproteins and proteoglycans, further
minimizing the opportunities for trimming. Note that clipping a
covalent C-C, C-O, or C-N bond probably requires a clipping en-
ergy >500 zJ/molecule (see ref. 10, Table 3.8), but sorting rotors
designed to pump against pressures of ~30,000 atm can only apply
~100 zJ/molecule (i.e., per binding site). An accidentally-bound
glycocalyx moiety seems more likely to jam the rotor than to be
clipped off by the rotor. If this happens, the result may be a
glycocalyx-tethered nanorobot, in which case a rotor-dejamming
protocol* is needed to free the trapped nanorobot.

But what if glycoproteins can be clipped? Consider a population
of Nbot spherical nanorobots of radius Rbot, the surface of each is
covered with a fraction frotor of sorting rotors each of face area Arotor

with binding site aperture area Abind, which are resident at nanocrit
Nct in a blood compartment of volume Vblood in which each
nanorobot experiences cbot collisions/sec with glycocalytic biologi-
cal surfaces of total area Aglyx, where Nbot = 3 Nct Vblood / (4 π
Rbot

3) and the fraction of rotor surface that is binding site aperture
is krotor = nrotor Abind / Arotor, for rotors with nrotor binding sites al-
ways exposed. The rate at which biological glycocalyx is encoun-
tered by the collective binding site aperture area of the entire fleet is
Sbot ~ π Rbot

2 cbot Nbot krotor frotor (m2/sec), so each glycoprotein
strand is presented to a nanorobot binding site aperture once every
Aglyx/Sbot seconds. If we assume that:

a. one in Nenc such encounters positions a glycoprotein strand
moiety such that binding with it would be geometrically pos-
sible; and

b. εrotor is the relative affinity of the binding site for glycoprotein
moieties (e.g., glucosyl, sialyl) properly presented to it as com-
pared to desired targets such as O2 molecules — that is, the
rotor’s specificity for glycocalyx — and

c. treplace is the natural replacement time for damaged glycopro-
tein strands in the glycocalyx;

then εrotor <~ κx Aglyx Nenc / (treplace Sbot), where κx is the maximum
permissible fraction of damaged glycocalyx during the time treplace.
For this analysis, we take Vblood = 5400 cm3, Rbot = 1 micron, frotor

= 1, cbot ~ 100 collisions/sec (Section 15.5.5.2.1), Arotor = 98 nm2

(Section 3.4.2), Abind = 0.033 nm2 for an oxygen molecule (the
most common molecule likely to be sought by medical nanorobot
exterior rotors), Nenc ~ 10, and Aglyx ~ 4410 m2 (which is the sum of
~3850 m2 for 28.5 trillion RBCs (Section 8.5.1), ~310 m2 for the

vascular endothelium (Table 8.1), ~210 m2 for 0.7 trillion WBCs
(Section 8.5.1), and ~40 m2 for 2.1 trillion platelets (Section 8.5.1)).
Since red cells are the most commonly impacted and do not
self-repair, the worst-case replacement time is the mean RBC life-
time of ~120 days, or treplace ~ 107 sec. Natural rates of glycocalyx
damage are just starting to be precisely quantified,4217,4218 so for
the present analysis we assume that κx ~ 0.01 (1%) is an acceptable
glycocalyx damage rate.

At Nct ~ 0.10 (10%), the largest plausible nanocrit (Section
9.4.2.6), the required relative rotor affinity for glycoprotein moi-
eties vs. oxygen molecules is εrotor <~ 10-6. Drexler10 notes that “analo-
gies with antibodies suggest that an inward-transport rotor can de-
liver impurity fractions of 10-4 to 10-9, depending on affinities, speci-
ficities, and the concentrations of the effectively competing ligands.”
Hence, it appears likely that rotor systems can be designed to achieve
acceptable glycocalyx damage rates of κx <~ 1% — if clipping dam-
age is even possible at all. This conclusion is further reinforced when
we consider: (1) that a more typical diagnostic or therapeutic medi-
cal nanorobot dose will be ~1 terabot (Nct ~ 0.01%), not ~1000
terabots (Nct ~10%) as assumed above; (2) that a more typical mis-
sion time may be only hours in duration (~104 sec), rather than the
RBC lifetime (~107 sec) as assumed above, and may be comparable
to or less than the time in which many tissue cells replace their
glycocalyx or are retired, e.g., 103-106 sec**; and (3) that recessed
access ports or protective cowlings near the binding sites might in-
crease Nenc to 100 or better. All of these factors combine potentially
to reduce the aforementioned worst-case damage rate by up to 7
orders of magnitude.

The glycocalyx cell coat is a secretion product incorporated into
the plasma membrane that undergoes continuous renewal. Thus
any trimmed glycocalyx glycoproteins from tissue cells would be
rapidly replaced via biosynthesis in the ribosomes of the endoplas-
mic reticulum, followed by final assembly with the oligosaccharide
moiety in the Golgi complex and subsequent export to the plasma
membrane.4225 Glycoprotein strands or stray sugar residues released
into the extracellular medium as a consequence of such trimming
are nonimmunogenic and would be quickly metabolized. However,
it is possible that nearby parasites could absorb this released mate-
rial onto their surface, affording themselves some camouflage pro-
tection (Sections 15.2.3.4 and 15.2.3.6) against host immune de-
fenses.4226

15.5.7.2 Mechanical Cell Membrane Disruptions
Medical nanorobots that interact with living cells may cause me-

chanical damage to cellular lipid bilayer membranes — in particu-
lar the plasmalemmal, organelle and vesicular membranes. Mem-
brane mechanocompatibility issues include natural cell membrane
wounding (Section 15.5.7.2.1); cytopuncture and membrane re-
sealing (Section 15.5.7.2.2); resident transmembrane nanodevice
penetrators (Section 15.5.7.2.3); and organelle membrane breach
by nanorobots (Section 15.5.7.2.4). Molecular dynamics simulations
of lipid bilayer membranes have been underway for more than a
decade.4637-4644

* One obvious backflushing procedure would use follower rods to affirmatively push unwanted ligands out of the binding pocket. Additionally, some molecular sorting rotor
designs (see ref. 10, Section 13.2.1.d) assume a compliant mechanical coupling that permits the rotor to spin backward a short distance as if in free rotational diffusion,
thus allowing improperly bound ligands to be freed.

** Schistosome parasites can shed some tegument-bound complexes in only ~1200 sec503 to 3600 sec.4219 Plasma membrane turnover rate is ~1800 sec for macrophage2841

and ~5400 sec for fibroblast.526 Cholesterol turnover rate in RBC membrane is ~7200 sec.4220 Membrane phospholipid half-life averages ~10,000 sec.353 Neutrophil lifespan in
blood is ~11,000 sec.234 Enterocyte glycocalyx is renewed in 14,000-22,000 sec, as vesicles with adhered bacteria are expelled into the lumen of small and large intestine.4221

Some schistosome membrane antigen turnover may require from 68,0004222 to 160,000-430,000 sec.493 Typical protein turnover half-life is ~200,000 sec.353,4223 Cell turnover
time is ~86,000 sec in gastric body, ~200,000 sec for duodenal epithelium, ~240,000 sec for ileal epithelium, and ~400,000 sec for gastric fundus.1841 Neutrophil lifespan
in tissue is ~260,000 sec.234 Glycocalyx turnover in rat uterine epithelial cells is ~430,000 sec.4224 Platelet lifespan is ~860,000 sec.4095
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15.5.7.2.1 Natural Cell Membrane Wounding
Plasma membrane disruptions appear to be a common occur-

rence in cells residing in tissues such as gut and skin that are nor-
mally exposed to mechanical stress in vivo.4227 Experimentally, ani-
mal locomotion transiently wounds the plasma membranes of vari-
ous cells of skin, which allows otherwise impermeant tracer mol-
ecules to enter and be trapped in the cytoplasm. One study4227 pro-
duced an estimate that the epidermis of digits from actively
locomoting animals is composed of 10.5% wounded cells, vs. 3.7%
wounded cells for quiescent animals. Wounded fibroblasts, glandu-
lar cells, and endothelial cells were also seen in mechanically stressed
skin.4227 Scrape wounding of epithelial cells activates repair-related
gene expression inside the cell.4228

Exercise causes membrane damage in muscle cells (e.g., rat muscle
fiber cells or myocytes4229) and red blood cells (Section 15.5.5.1.1),
and dystrophic muscle cells are especially susceptible.4230 The plasma
membrane of cardiac myocytes can be wounded by vigorous cell
contraction or by vascular pressure overloading (e.g., via aortic band-
ing which produces abnormally high hemodynamic loads4231). The
percentage of rat aortic endothelial cells found to be naturally
wounded varies considerably between individual animals from
1.4-17.9% (mean 6.5%).3923 Wounded endothelial cells are het-
erogeneously distributed, being found in distinct clusters either in
the shape of streaks aligned with the long axis of the vessel or in the
shape of partial or complete rims surrounding bifurcation openings
such as the ostia of the intercostal arteries.3923 However, physical
exercise (running) and spontaneous hypertension may not produce an
increased frequency of aortic endothelial cell membrane wounding.3923

Cells can also be mechanically damaged simply by rough han-
dling. For example, passing cells back and forth through a standard
syringe needle or similar narrow orifice causes transient membrane
disruptions,4232 and each trip through a 14-gauge blood dialysis
needle at a 2.2 m/sec peak velocity damages 0.1% of red cells near
the needle wall.3690 Mechanical forces from tape stripping or needle
puncture also transiently wounds the plasma membranes of various
skin cells, though these cells can survive such wounding.4227

Nanorobots located on membrane surfaces could be manipulated
via external fields to flex3971 or even to perforate those surfaces. In
one proposal,4233 MAb-complexed ferrofluid particles selectively
bound to the surfaces of virus-infected cells would be rapidly vi-
brated using an external magnetic field, causing the bound particles
to perforate the cell membranes of the infected cells or to damage
their intracellular structures, leading to targeted cell lysis. However,
neurons can survive patch clamp experiments which may involve
suction and mechanical pinching of 30-100 micron2 cell membrane
areas for experiments lasting up to ~1 week in duration;4234 note
that cytoskeleton-free lipid bilayer tethers have been mechanically
drawn from the plasma membrane of erythrocytes (~40 nm wide
tethers),5659 neurons (~200 nm wide),5660 and neutrophils.5661

15.5.7.2.2 Cytopuncture and Membrane Resealing
The routine successful transplantation of cell nuclei by microbi-

ologists using micropipettes demonstrates that cells can naturally
recover from extreme membrane and cytoplasmic trauma. As noted
in Section 9.4.5.6, it is not uncommon to observe rapid natural
resealing of plasma membranes with little loss of intracellular con-
tents.4239,4240 In one experiment, tissue cell plasma membranes were
punctured using 2- to 3-micron diameter micropipettes and a
300-millisec transit (wounding) time, and the torn plasma mem-
brane spontaneously resealed in 10-30 sec with relatively little vis-
ible loss of injected dye.4239 We can estimate (Section 9.4.5.5) that
a cytopenetrating 1-micron nanorobot with a 10-millisec transit

time may allow cytosolic leakage of only 0.006-0.03 micron3, or
~0.0001-0.0004% of typical tissue cell volume, per nanorobot transit.

Interestingly, Maroto and Hamill5642 point out that most ani-
mal cell types5643 naturally release ATP (or UTP) into the extracel-
lular medium, whereupon these external molecules, at µM concen-
trations,5650 “act on ATP receptors that regulate diverse functions,
including pain and touch sensation, smooth muscle contractility,
synaptic transmission, platelet aggregation, epithelial fluid secre-
tion, and endothelial release of vasorelaxants;5649-5653 abnormalities
in ATP release may contribute to specific human diseases, most
notably cystic fibrosis.5647,5654” ATP release is often mechanosensitive
and appears to arise through mechanical stimulation of brefeldin A
sensitive membrane trafficking of ATP containing transport
vesicles:3973,5642-5649 a Xenopus oocyte releases ATP at a basal rate of
~1.3 ATP molecules/µm2-sec, but even gentle mechanical stimula-
tion can dramatically increase this to ~6700 ATP molecules/µm2-sec
(assuming 1.2-mm diameter oocytes).5642 Care must be taken in
medical nanorobot design and mission specification to avoid activi-
ties which may elicit elevated pathological ATP releases.

Microelectrodes traditionally used for intracellular injection had
0.5-micron diameter tips, beveled over a 1-2 micron length, and
used very high fluid injection pressures of 0.3-1.5 atm.4235 “Stab”
microinjection at high pressure (0.1-0.2 atm) can be problematic in
small cells (2-15 microns in diameter) because the
nucleus-to-cytoplasm ratio is higher for these cells, hence the nucleus
is more likely to be damaged during the stab. In one experiment,4236

less than 5% of neutrophils survived the high-pressure stab intact,
but a low-pressure (~0.01 atm) injection through a lipid bridge pro-
duced a ~100% survival rate. Optical fiber tips ~0.1 micron in di-
ameter or “optodes” have been poked through a cellular plasma
membrane to measure cytoplasmic pH and the concentrations of
other intracellular analytes, making a penetration volume of just a
few micron3 in single cells and in single rat embryos, without ill
effect on these cells.4237,4238 Membrane resealing after electroporation
has also been studied.5981

Exocytosis-based resealing4240-4242 of a microneedle puncture
through the fibroblast plasma membrane occurs in 5-10 sec,4242

but a second puncture at the same site heals faster than the initial
wound.4241 At first wounding, the cell uses existing endocytotic
compartment to add membrane necessary for resealing. But Ca++

entry at the first wound stimulates vesicle formation from the Golgi
apparatus, resulting in more rapid resealing of the second mem-
brane disruption.4241 Plasma membrane disruptions are resealed by
changes in the cellular cytoskeleton (partial disassembly)4243 and by
an active molecular mechanism thought to be composed of, in part,
kinesin, CaM kinase, snap-25, and synaptobrevin.4244 Transmission
electron microscopy4244 reveals that vesicles of a variety of sizes rap-
idly (in seconds) accumulate in large numbers within the cytoplasm
surrounding the disruption site, and that microvilli-like surface pro-
jections overlie this region. Tufts of microvilli rapidly appear on
wounded cells. A local exocytosis is induced, rather than global exo-
cytosis, in response to wounding. One or more internal membrane
compartments accumulate at the disruption site and fuse there with
the plasma membrane, resulting in the local addition of membrane
to the surface of the mechanically wounded cell.4244 As an existence
proof for membrane-patching medical nanorobots, specialized
membrane-patching organelles are known in some species. For ex-
ample, “reserve granule” or “yolk granule” fusion-competent cyto-
plasmic organelles in sea urchin eggs allow Ca++-regulated fusion
with a rapid (t1/2 < 1 sec) response capable of erecting large (>1000
micron2) continuous membrane boundaries.4242 The cells of many
species of fungi cells have a specialized peroxisomal plasma resealing



Nanomedicine • Volume IIA148

organelle called the Woronin body.4245 In some circumstances, cells
can re-seal themselves even after major dissections, and survive. For
example, a rapidly vibrating (100 Hz) micropipette with a <1-mi-
cron tip diameter has been used to completely sever individual den-
drites from single neurons without damaging cell viability.4246

15.5.7.2.3 Resident Transmembrane Penetrators
In some applications it will be desirable to establish a plasma

membrane penetration for the duration of the nanomedical mis-
sion. Such applications may involve rods, cables or tubing that must
pass from the extracellular to the cytoplasmic spaces through a fixed
sheath, or artificial diamondoid sensors, pumps, or other mecha-
nisms that must be installed in the plasma membrane wall and per-
form some useful function throughout the mission (e.g., external
chemical sensors during cytocarriage; Section 9.4.7.5) without elic-
iting unwanted mechanosensitive biological responses.

The existence of natural transmembrane integral proteins (Fig-
ure 8.37) and artificial transmembrane ion channels,5426-5436 syn-
thetic pores and porins,5437-5439 engineered antibiotic-based
channel-forming peptides,5440-5443 and artificial organic
nanotubes692,5444 implies that it should be possible to design, in-
stall and stabilize artificial transmembrane penetrator nanodevices.
Such devices may anchor themselves in the membrane using an
amphipathic coating similar to that employed by integral proteins
— e.g., a hydrophilic (polar) coating above and below the plasma
membrane, corresponding to the position of the polar lipid heads
in the membrane, and a lipophilic (nonpolar) coating for the
midmembrane region, corresponding to the position of the nonpo-
lar lipid tails in the membrane. This gives the surface of each
nanodevice the maximum membrane affinity when the device is
properly positioned, and anchors it in place. Deployment of these
anchoring coatings may be reversibly controlled by a nanorobot using
an array of presentation semaphores (Sections 5.3.6 and 9.4.5.3).
The hollow interior of a penetrating sheath should provide a
low-friction interface with a fluid-tight seal (Section 10.3.4; and
also Section 11.4.2 in Drexler10) so that forces from a cable, rod, or
other object sliding through the sheath are not efficiently transmit-
ted to the sheath and thence to the membrane and its attached
cytoskeletal components. Hamill [personal communication, 2002]
suggests that “nanorobots might be able to insert themselves into
selective areas of the plasma membrane (e.g., of polarized cells) by
hitchhiking in the trans-Golgi vesicles that are used to traffic/direct
newly synthesized membrane proteins to specific regions of the cell
surface.”

Hamill and Martinac5640,5641 have found that sub-nanometer
changes in bilayer thickness can switch gramicidin A from a
stretch-activated to stretch-inactivated channel. As they note, the
presence of “a bilayer-controlled switch in signaling by a
mechanotransducer channel emphasizes that the bilayer is much
more than a neutral solvent [and] may actively modulate the speci-
ficity and fidelity of signaling by membrane proteins. This feature,
in combination with protein-related factors (e.g., oligomerization
state and cytoskeleton association) that determine not only protein
recruitment into lipid microdomains but also the dynamic organi-
zation of the bilayer itself, indicates a dynamic reciprocity in
lipid-protein interactions that is presumably necessary for the
higher-order spatial and temporal control of signaling.” The pres-
ence or movements of, or the forces applied by, a resident trans-
membrane penetrator could alter the thickness of adjacent bilayer,
locally modifying the behavior of nearby mechanosensitive or
mechanotransducing integral proteins. These modifications could
significantly impact cell function — possibly including cell responses

accompanying membrane resealing5640 — if substantial numbers
of artificial penetrators are resident (especially if closely grouped)
on the plasma membrane of a single cell. Switch effects presumably
may be minimized by avoiding both static and dynamic hydropho-
bic mismatch5640,5641 between the hydrocarbon portion of the lipid
bilayer (which may vary for different cell types) and the hydropho-
bic exterior surface of the penetrator.

Other complicating factors include the constant turnover of the
plasma membrane (Section 8.5.3.2) and the likelihood that a
cytoskeletally-unanchored penetrator might be dragged along with
the usual lateral motions of membrane raft microdomains4247,4248

and untethered integral proteins4249 such as red cell aquaporins.4250

Nevertheless these motions should be confined to submicron do-
mains on the surfaces of many cells.4251-4255 Assuming the
nanodevice penetrators are not very numerous in the cell wall, they
should not substantially alter plasma membrane fluidity or viscos-
ity especially if differential shear forces are low, e.g., <1 N/m2.4256

15.5.7.2.4 Organelle Membrane Breach
Immotile submicron particles appear generally

mechanocompatible with the intracellular environment. For ex-
ample, the presence of artificial intracellular particles 20-200 nm in
diameter (used as intracellular fluorescent labels or sensors) is not
mechanically disruptive to the cell.4238,4258 Intracellular alumina
particles can elicit changes in intracellular elemental composition
and a reduction of phagocytic ability in human macrophages,2596

but there is no evidence that this is a mechanical effect. Silicon
microdisks introduced into rabbit white cells were subsequently
transported to a site of injury, with no evidence of functional cell
impairment during cytocarriage.4259

The plasma membrane (Section 8.5.3.2) represents only a tiny
fraction of the total membrane present in the cell. Indeed, 99.5%
of the cell’s lipid bilayer surface lies elsewhere (Table 8.17), mostly
in intracellular organelles. The membranes of each type of organelle
are structurally distinct (Section 8.5.3) and have different disease
susceptibilities.4260 But all should possess roughly comparable me-
chanical strength,4261-4263 so puncture forces should be similar as
for plasma membrane. Because the Golgi complex is constructed
via an ordered merger and coalescence of isolated intracellular
vesicles, and readily reconstitutes itself from a vesiculated state,4264

it is unlikely that the interposition of a small passive nanorobot into
these dynamic structures could mechanically influence their growth.
A motile nanorobot locomoting around and through these struc-
tures could prove temporarily disruptive, though the structures
would probably self-repair as suggested by the 10-minute recovery
time for Golgi membranes that have been mechanically disrupted
by the forcible interposition of artificial vesicles into the membranes
under high g-force centrifugation.4265 There is some evidence4266

that the endoplasmic reticulum (ER) may be more sensitive to me-
chanical membrane damage4266 or to the physical disruption of the
supporting microtubule lattice.4267 However, the integrity of the
ER appears to be maintained during mitosis, with little or no frag-
mentation and vesiculation.4304

The greatest threat to cell viability from organelle membrane
rupture and intraorganelle leakage probably comes from the mito-
chondrion. The careless (or even purposeful) nanorobotic breach-
ing of the integrity of this organelle5672 could result in the cytosolic
release of harmful mitochondrial proteins from the intermembrane
space including especially cytochrome c, a 12.3 kD protein that
forms part of a complex which directly activates caspase-9,4268 one
of the apical enzymes responsible for the apoptotic dismantling of
the cell.4269 A cytosolic concentration of ~0.1 µM (~0.01 pg/cell)
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of cytochrome c appears sufficient to trigger apoptosis,4270 but the
human body contains ~3 mg of iron as cytochrome c4271 distrib-
uted throughout the mitochondria of ~4 x 1012 tissue cells (Section
8.5.1), or ~0.20 pg/cell assuming ~20-micron cells. So at least ~5%
of all cellular mitochondria probably must be fully ruptured by the
mechanical activities of nanorobots, or an equivalent amount of
intraorganelle fluid leakage must occur, in order to induce apoptosis,
which seems an unlikely event. (Apoptosis may be intentionally
aborted by in cyto nanorobots; Section 15.5.7.6.) Proteins attempt-
ing to enter the organelle that become stuck across both mitochon-
drial membranes “jam” protein import sites but do not collapse the
potential across the mitochondrial inner membrane.4272

What about lysosomes? Although it is normally quite stable, the
lysosome membrane can become more fragile: (1) when the cell is
injured4273 or deprived of oxygen;4274 (2) when excessive amounts
of vitamin A (hypervitaminosis A4275) or iron4276 are present; (3)
during long-term exposure to gentamicin (though with no increase
in cell mortality4277); or even (4) in some cases of congenital vascu-
lar anomalies.4278 Lysosomes may undergo drastic shape changes
during microautophagocytosis, including invagination of their
boundary membrane with scission of vesicles into the lumen of the
organelle.5482 Tubular lysosomes 75 nm in diameter and 2-3 mi-
crons long extending outward from the nucleus are common in mac-
rophages, and are fragmented if the supporting microtubule lattice
is physically disrupted.4279 However, if left alone without further
disturbance, the fragmented microtubules reassemble and the tu-
bular lysosomes reappear within 10-20 minutes.4279

What about mechanical stress damage? One experiment4280

found possible lysosomal membrane damage in myocardial swine
cells from animals subjected to high +Gz accelerations. But another
experiment4281 found that mechanical traction strain applied to
cultured retinal pigment epithelium cells and fibroblasts sufficient
to break intercellular attachments does not disrupt lysosomal mem-
brane integrity during stretching. Post-phagocytosis Listeria
monocytogenes bacteria exit the lysosome in which they reside by
penetrating through the lysosomal wall, a mechanical disturbance
that does not immediately impair host cell function.4282

Lysosomes were once called “suicide sacs” because lysosomal rup-
ture can result in self-digestion of the cell, a process known as au-
tolysis. But it is now known that lysosomes are part of the normal
cellular digestion apparatus relating the process of endocytosis to
the processes of intracellular synthesis, storage, and transport,1767

even including intraorganelle vesicles.4283 Structural deterioration
of lysosomes does not occur rapidly in ischemic or postmortem
cells4284,4285 or even in cells subjected to microwave irradiation.4286

Direct damage from organelle fluid leakage, should such leakage
occur, may be minimal because most of the digestive enzymes in
lysosomes require the relatively low pH of the lysosomal vesicles for
activation — just as some proteases require the low pH of the stom-
ach. Peroxisomal membranes appear equally durable.4287 Lysoso-
mal membrane rupture could release limited amounts of lipofuscin
into the cytosol since these organelles are the primary site of
lipofuscinosis,4288 which would probably be reasonably harmless
(Section 15.6.3.2).

What about the nuclear membrane? Nuclear-cytoskeletal4289

manipulations that alter the cellular mechanical force balance can
cause the nucleus to change shape4290,5445 and nuclear envelope fra-
gility increases in the presence of high concentrations of salt.4291

But micropipette injection of DNA material into cell nuclei is a
common biotechnology procedure4292-4295 which is easily survived
by the cell. Normally, the nuclear envelope is reversibly disassembled
and reassembled during mitosis, a highly regulated process4296,4297

that includes the physical tearing apart of the nuclear envelope by
extranuclear microtubules that penetrate it.4304 Reassembly of a
nuclear envelope that has been mechanically disrupted, fragmented,
or completely disassembled by arbitrary artificial external forces (e.g.,
due to perinuclear nanorobotic activities) outside of the normal
mitotic cycle cannot rely upon the regulated sequential cell cycle
process4298-4304 to guide reassembly. Such disruptions possibly might
lead to apoptosis (Section 10.4.1.1), especially if the native chro-
mosomes or their intranuclear moorings are physically damaged in
any way,4421,5465-5467 or to chromatin digestion — e.g., both single-
and double-stranded circular plasmid DNA has a 50-90 minute
half-life in mammalian cytosol probably due to cytosolic nu-
cleases.4295,4305,4306 In some circumstances it may be possible for in
cyto medical nanorobots to induce reassembly of the disturbed
nuclear membranes.4307 Basic restrictions on the speed of mechani-
cal motions that may safely be applied to chromatin are briefly dis-
cussed in Section 8.5.4.7.

15.5.7.3 Mechanical Interactions with Cytoskeleton
Active nanorobots maneuvering inside living cells could disturb

or disrupt any of the many functions of the cytoskeleton, including
(1) mechanical support (e.g., cell movement, adhesive interaction
with ECM and neighboring cells, and stabilization of cell shape
including cellular “tensegrity”5333), (2) integration of various cellu-
lar activities (e.g., intracellular movement including transport and
positioning to the appropriate locations of organelles, intracellular
particles, RNA and proteins), and (3) intracellular signal transduc-
tion (including structural information regarding cellular origin and
differentiation state).4598 In diverse cell types, microtubule and ac-
tin filament networks cooperate functionally during many processes,
such as vesicle and organelle transport, cleavage furrow placement,
directed cell migration, spindle rotation, and nuclear migration.4308

Nanorobots could mechanically disrupt any or all of these func-
tions during intracellular locomotion and manipulation of cell struc-
tures, if cytoskeletal/membrane links are disturbed.4309

The two most significant risks appear to be direct mechanical
cytoskeletal reorganizations55 (Section 15.5.7.3.1) and the possible
disruption of vesicular transport and related molecular motor dis-
eases (Section 15.5.7.3.2). In both cases, it appears likely that po-
tential problems can be avoided by conservative design.

15.5.7.3.1 Mechanical Cytoskeleton Disorganization
Generalized disruption of the cytoskeleton can be very harmful

to living cells. Disorganization of the cytoskeletal architecture has
been associated with diseases as diverse as heart failure,4310,4311

rotavirus infection,4312 sickle cell anemia,5676-5678 lissencephaly,5673

and Alzheimer’s disease.4313-4315,5682 A “collapse transition” of
neurofilament sidearm domains may contribute to amyotrophic lat-
eral sclerosis (ALS) and Parkinson’s disease.5679-5681 Stress-related
cytoskeletal fracture can be caused by 1-Hz stresses imposed by a
mechanical probe on isolated rat ventricular myocytes.3858 Cancer
cells forced through 5- to 12-micron pores in polycarbonate mem-
brane suffer traumatic spatial dissociation between components of
the cell periphery, the cytoskeleton, and nucleus, inducing a ~1-week
dormant state in the cells due to the mechanical trauma.4316

Nanorobots could induce various cell pathologies by mechani-
cally disrupting specialized cytoskeletons consisting of cytoplasmic
networks of ~6-nm diameter actin microfilaments, ~10-nm inter-
mediate filaments, ~25-nm microtubules, or their many associated
proteins4317,4334 (Section 8.5.3.11), with effects similar to those of
chemical disruption.4318 Functions of these specialized cytoskeletons
that could be disturbed include mechanical integrity and
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wound-healing in epidermal cells, cell polarity in simple epithelia,
contraction in muscle cells, hearing and balance in the inner ear
cells, axonal transport in neurons, and neuromuscular junction for-
mation between muscle cells and motor neurons.4334

As a nanorobot enters the cell, the first risk is transmembrane
linkage disruptions. Muscular dystrophy may be caused by disorga-
nization of links between the intracellular cytoskeleton and the
ECM,4003 and the disruption of proper adhesive interactions with
neighboring cells can lead to fatal defects in extracellular tissue ar-
chitecture.4319 Epithelial cells subjected to mechanical strain may
release in vivo proteases to cut intercellular adhesions.4281 Looking
inward, cellular mechanoprotective adaptations involve a coordi-
nated remodeling of the cell membrane and the associated cytoskel-
eton.4320 For example, the breakage of major cytoskeletal attach-
ments between the plasma membrane and peripheral myofibers in
cardiac myocytes predisposes the cell to further mechanical damage
from cell swelling or from ischemic contracture.4321 As another ex-
ample, when infecting parsley cells, attacking fungus cells extend a
penetrating hypha through the cell membrane, eliciting a defensive
cytoskeletal reorganization.4322 A local mechanical stimulus pro-
duced by a needle of the same diameter as the fungal hypha inserted
through the host cell wall similarly induces the translocation of cy-
toplasm and nucleus to the site of stimulation, the generation of
intracellular reactive oxygen intermediaries, and the expression of
some elicitor-responsive genes. Without the mechanical stimula-
tion, the morphological changes are not detected.4322

Mechanical disruption of cytoskeleton associated proteins by
passing nanorobots could produce various cytopathologies. For in-
stance, plectin is a 580 kD intracellular protein that links interme-
diate filaments with actin microfilaments, microtubules, and plasma
membrane. Disruption of plectin function results in severe skin blis-
tering and muscular degeneration, consistent with plectin’s role in
stabilizing cells against external mechanical forces4323 and as a regu-
lator of intracellular actin dynamics.4324 Disturbance of cen-
trosomes4325,4326 or other in cyto fixed polarity markers4327 could
result in developmental or morphogenetic defects during subsequent
cell division. Mechanical disturbance of cytoskeleton associated pro-
teins could also alter the mechanical properties of cells, such as the
ability of the cytoskeleton to deform and flow. One research
group4649 believes cells exist close to a glass transition state, a state
regulated by cytoskeletal proteins which modulate the effective noise
temperature of the matrix; this state thus could also, in principle,
by manipulated by nanorobots.

Actin microfilaments might be disrupted by the mechanical ac-
tivities of medical nanorobots. In the simplest case, endothelium
exposed to shear stress undergoes cell shape change, alignment, and
microfilament network remodeling in the direction of flow, though
these changes can be blocked with nocodazole.3803 Glomerular dis-
tention is also associated with cellular mechanical strain. A contrac-
tile cytoskeleton in mesangial cells, formed by F-actin-containing
stress fibers, maintains structural integrity and modulates glomeru-
lar expansion. Mesangial cells have a cytoskeleton capable of con-
traction that is disorganized in long-term diabetes. Disorganization
of stress fibers may be a cause of hyperfiltration in diabetes.4328

Cutting the actin lattice may diminish both cell contractility4329

and mechanical signal transduction into the nucleus.4330 Care must
also be taken to ensure that the surfaces or activities of intracellular
nanorobots do not provide unplanned foci for actin polymeriza-
tion, given that the kinetics of actin polymerization is autocatalytic
and that the actin-based motility of functionalized microspheres
can be reconstituted in vitro from only five pure proteins.4331 Wide-
spread actin disruption might produce symptoms analogous to

elliptocytosis5398-5403 and other inherited hemolytic disorders5405-5408

that are caused by disorganization of the subsurface spectrin-actin
cell cortex in the erythrocyte.5404

Intermediate filaments might also be disrupted mechanically.
Perturbations in the architecture of the intermediate filament cy-
toskeleton in keratinocytes and in neurons can lead to degenerative
diseases of the skin, muscle cells, and nervous system.4332-4336 Knock-
out of the extensive keratin filament network jeopardizes the me-
chanical integrity of the epidermal cell, producing cell fragility and
cytolysis manifesting as blistering skin disorders.4332 Tissues lack-
ing intermediate filaments fall apart, are mechanically unstable, and
cannot resist physical stress, which leads to cell degeneration.4337

Perinuclear clumping of fragmented keratin intermediate filaments
accompanies many keratin disorders of skin, hair, and nails.4338 In
active muscle, intermediate filaments play an important role in the
organization and stabilization of myofibril-membrane attachment
sites. Their disruption can eliminate the deep membrane invagina-
tions that are normally present in the healthy sarcolemma.4333 Neu-
ronal intermediate filaments are normally anchored to actin cytosk-
eleton. If this anchoring fails, the cell displays short, disorganized
and unstable microtubules that are defective in axonal transport.
Neuronal survival requires viable interconnects among all three
cytoskeletal networks.4336 Impairment of normal axonal cytoskeletal
organization in Charcot-Marie-Tooth disease results in distal ax-
onal degeneration and fiber loss.4339

The microtubule cytoskeleton could become disorganized due
to careless or intentional intracellular operations by nanorobots,
possibly: (1) simulating congenital brain malformation;4340 (2) giv-
ing results similar to treatment with vincristine, a microtubule de-
polymerizing drug that produces peripheral neuropathy in humans
accompanied by painful paresthesias and dysesthesias;4341 or (3) giv-
ing results similar to treatment with ethanol, leading to oxidative
injury producing a loss of gastrointestinal barrier integrity.4342 Me-
chanical disturbance of the microtubule cytoskeleton induces elec-
trophysiological modification of cell-cycle-dependent EAG potas-
sium channels in mammalian tissue cells,4343 and mechanical strain
can induce a major decline in tubulin production in osteoblasts.4344

Nanorobot mechanical operations could also induce buckling and
loop formation of tubulin fibers, as has been observed5674 inside
shrinking vesicles when the surface tension of the shrinking bubble
overcomes the Euler buckling strength of the fibers; intracellular
tubulin twisted into 5-micron tennis-racquet shapes has also been
observed.5675

Microtubules allowed to form under microgravity conditions
show almost no self-organization and are locally disordered, unlike
microtubules formed in 1-g conditions.4345 Nanorobotic manipu-
lations of cytoskeletal elements that offset, reduce, or cancel the
stimulative effects of normal gravity could produce the same sort of
cellular architectural disorganization as observed under microgravity
conditions (Section 4.4.2 and Chapter 28) that alters the pattern of
microtubular orientation.4346

A nanorobot with sharp edges that cuts a microtubule probably
cleaves the hydrogen bonds between the alpha and beta monomers,
rather than the covalent bonds within the monomers. This creates a
new “plus” and “minus” end for the microtubule. In most cases this
would not be fatal for the cell and in fact normally would have little
impact because large-scale microtubule network patterns (e.g., as-
ters, whorls, and interconnected pole networks) are self-assembling
and are motor-molecule concentration-dependent.4347 Nevertheless,
in cyto nanorobots should avoid physically severing cytoskeletal el-
ements whenever possible. Simple estimates of mechanical strength
(Table 9.3) applied to typical fiber diameters suggest that the
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tensile failure strengths are ~170 pN for actin microfilaments,
~300-500 pN for microtubules and ~20,000 pN for intermediate
filaments. Nanorobots should avoid applying local forces of these
magnitudes or larger in the vicinity of such fibers.

Force thresholds for cellular activation (Section 15.5.4.1) may
be considerably less than the indicated tensile failure strengths. In
2002, the absolute force thresholds for failure, the range of me-
chanical frequency responses, and the threshold fraction of disturbed
cytoskeleton required to elicit cellular response all had yet to be
precisely determined. For example, during mitosis a force of 15-20
pN is required to detach microtubule-bound chromosomes4350 but
a tensile force of up to 210 pN is required to detach a microtubule
from a kinetochore.4348 Moreover, a nanorobot presenting a 1-mi-
cron2 forward surface during intracellular locomotion through a
(20 micron)3 tissue cell intercepts only ~0.25% of the entire cy-
toskeleton during each 20-micron of transcellular travel. In cyto
medical nanorobots may be restricted to speeds of ~10 microns/sec
while traversing intracellular clear paths (Section 8.5.3.12) and ~1
micron/sec during transfilamentary intracellular locomotion, with
progressive resealing of cytoskeletal elements that must be tempo-
rarily severed to allow the nanorobot to pass (Section 9.4.6). Intra-
nuclear locomotion conservatively should progress no faster than
natural chromosomal dragging rates during mitosis,4349,4350 or ~0.1
micron/sec, applying forces of at most ~50 pN (Section 9.4.6).

15.5.7.3.2 Disruption of Molecular Motors and Vesicular
Transport

There are a variety of human disorders associated with dysfunc-
tion of cytoskeleton-based molecular motors,4351 including, for ex-
ample, the motor-based diseases involving defective cellular myosin
motors4352-4354 (e.g., implicated in Griscelli syndrome,6219 hearing
loss,6220 hypertrophic cardiomyopathy,4352 and other myosin myo-
pathies6221), spindle assembly- and function-related diseases4355 or
kinesin- and dynein-related motor diseases (e.g., implicated6222 in
Charcot-Marie-Tooth disease type 2A,6223 Kartagener syndrome6224

or primary ciliary dyskinesia,6225 lissencephaly,6226 polycystic kid-
ney disease,6227 and retinitis pigmentosa6228,6229), and other avenues
for cellular malfunction.4356,4357,6222,6230 Cellular motors also par-
ticipate in the self-organization of microtubule network struc-
tures.4347 But perhaps the most important function of molecular
motors is intracellular vesicular transport, and most particularly ax-
onal transport in neurons.4358,4359,6231-6234 Typically, organelles,
vesicles and granules ~100 nm in diameter or larger are carried at a
peak speed of up to ~2 microns/sec on the back of a 60-nm kinesin
transport molecule (Figure 9.32) that takes 8-nm ATP-powered steps
along microtubule tracks running throughout the cell.4360-4364 (Mean
unloaded kinesin motor speed is usually only 0.5-0.8 microns/sec.)
Conventional kinesin is a dimer of identical ~120 kD protein
chains4371 with a diffusion coefficient D ~ 2 x 10-11 m2/sec.4347 The
vesicle-attached kinesin motor molecule steps toward the plus-end
of microtubules by converting the energy of ATP hydrolysis to me-
chanical work.

Could a vesicle be dislodged from its microtubule track after
being bumped by a passing intracellular nanorobot? A kinesin mo-
lecular mechanical detachment force of Fdetach ~ 13 pN4366 requires
that a 1-micron3 diamondoid nanorobot of mass mnano ~ 2 x 10-15

kg must impact and carry the cargo vesicle a distance Svesicle ~ 1 nm to
detach it at a constant velocity of vnano >~ (2 Svesicle Fdetach / mnano)1/2

~ 3500 micron/sec, well above the self-imposed 10 micron/sec in-
tracellular locomotion speed limit (Section 15.5.7.3.1) and even
slightly exceeding the nanorobot instantaneous thermal velocity of
~2500 microns/sec in water at 37 oC (Eqn. 3.3). The torsional stiff-
ness of kinesin is so low that the molecule readily twists through
more than 360o from its resting orientation,4368 thus allowing the
cargo to easily swivel out of the way of foreign impacting objects.
And kinesin motors normally detach from a microtubule after a
few seconds of travel anyway.4369-4371 Still, nanorobots should be
able to exert mechanical forces well in excess of 13 pN, so care should
be taken to minimize those motions and trajectories which are likely
to produce kinesin detachment. Analogously, it has been found ex-
perimentally that intracellular microspheres experience enhanced
diffusion over short time scales near the nucleus, possibly due to
interactions with microtubule-associated motor proteins.4373

Could a nanorobot that has clamped or securely bound itself to
one location on a microtubule prevent the passage of vesicular car-
goes, causing vesicles to bunch up behind or to detach? And could
kinesin motor molecules that encounter the obstruction be perma-
nently damaged? Most likely a detached vesicle will reattach to a
clear neighboring microtubule and continue its trek,4374,4375 or will
reattach to the original microtubule downstream of the nanorobotic
obstruction. In some cases organelles can attach to and move along
multiple filaments simultaneously4376 using multiple motor mol-
ecules,4377 potentially reducing the interference with forward mo-
tion from a single-filament blockage.

Coppin, Pierce, Hsu and Vale4366 have carefully studied the be-
havior of kinesin molecules whose forward progress is mechanically
constrained. Kinesin has a stall load of ~5 pN.4364-4367 There is an
increasing rate of dissociation with increasing load. Specifically, the
dissociation rate is ~0.2/sec at 1 pN load, 0.5/sec at 2 pN, 1/sec at
3 pN, and 2/sec at 5 pN load,4366 rates which can be altered by the
presence of microtubule-associated proteins.4378 However, super stall
loads of 5-13 pN do not cause kinesin to walk backwards, “prob-
ably because of an irreversible transition in the mechanical cycle.”
Rather, when super-stalled the kinesin motor most commonly takes
a single backward movement and then dissociates (detaches) from
the microtubule,* occasionally rebinding to the same microtubule
(always at/below the stall load) and resuming its normal movement.
This clearly demonstrates that the kinesin motor is still functional
after being subjected to a dissociative induced stall. That is, a
superload-induced detachment doesn’t “break” the motor. The con-
clusion is that similar mechanical interference by a nanorobot also
should not damage a processive protein motor. Interestingly, a mu-
tant form of kinesin with its ATP and microtubule binding sites
decoupled has been found that binds so tightly to the microtubule
that the motor cannot let go,4379 crudely analogous to the case of a
nanorobot that firmly grasps a microtubule for a period long in
comparison to the timescale of kinesin procession.

A nanorobot ambulating along microtubules should endeavor
to avoid applying lateral forces exceeding the kinesin detachment
load of ~13 pN4366 which could have the effect of detaching associ-
ated vesicles as the nanorobot progresses, like a tree limb being
stripped of its leaves as it is pulled through a tight-fitting metal

* Alternating back and forth movements also are observed at super-stall.4366 The dissociation rate increases with load as long as the motor is moving (up to 2 Hz at 5 pN),
but then becomes independent of load once the motor stalls — e.g., the stall time is 0.57 sec, representing a dissociation rate of ~1.8 Hz, for either spontaneous (~5 pN)
or induced (~12 pN) stalls. Interestingly, forward loads induce the kinesin motor molecule to step faster under a wide range of ATP concentrations.4366 Forward loads of 5 pN
increase velocity by +200% if ATP concentration is rate-limiting (5-40 µM) or by +50% if ATP is saturated (1 mM), but forward loads >5 pN cause forward velocity to drop
off sharply.4366 A small carboxyl domain acts as a switch that turns the motor off when the kinesin motor is not bound to cargo.4380
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ring. (Using a two-dimensional optical force clamp, researchers in
Block’s group6172 observed that ambulating kinesin molecules sub-
jected to sideways forces up to 8 pN only slowed by ~30%, and
similar forces applied from the rear have only a weak effect on for-
ward speed.) Typically, the processive kinesin molecule only takes a
few hundred steps before letting go,4369-4371 so an occasional early
detachment, by itself, should not induce cellular dysfunction. As
long as the processive motor protein is not physically damaged, most
of the detached vesicles should reattach and continue their journey
after the nanorobot has passed by. The minimum spacing (maxi-
mum density) of kinesin motors along a microtubule is an axial
repeat of 8 nm4381 and experiments with isolated microtubules glid-
ing on kinesin-coated glass find optimal motility at a 47 nm separa-
tion between kinesins.4382 But the vesicular transport of 100-2000
nm diameter organelles in cyto implies that propulsive kinesin con-
tacts are normally spaced at least 0.1-2 microns apart along the mi-
crotubule tracks. This leaves plenty of unoccupied foothold space
to allow nanorobots to avoid disrupting processive motor proteins
already in transit.

Coordinated groups of in cyto medical nanorobots should avoid
inadvertently corralling or bulldozing large numbers of vesicles or
motor molecules into relatively small volumes within the cell, as
such increases in motor molecule concentration could increase the
local microtubule polymerization rate.4347 Analogously, in motor
neuron diseases where vesicular transport is blocked by massive lo-
calized accumulations of kinesin molecules, the blockage can pro-
duce large axonal swellings in the motor neurons in human spinal
cords and can disturb the machinery for anterograde fast axonal
transport.4383 Intracellular traffic jams involving repositioned vesicles
and organelles4384 appear to be initiated by the accumulation of
stalled kinesin cargoes4385 and are most commonly reported in neu-
rons4386-4389 where their effects are most serious. For example, ax-
onal organelles transported by kinesin molecules that stall can cause
organelle jams that disrupt retrograde as well as anterograde fast
axonal transport, leading to defective action potentials, dystrophic
terminals, reduced transmitter secretion and progressive distal pa-
ralysis that parallels the pathologies of motor diseases such as amyo-
trophic lateral sclerosis.4388 Stretch injury to axonal cytoskeleton
resulting in major loss of microtubules disrupts fast axonal trans-
port resulting in focal accumulation of membranous organelles and
axonal swellings,4387 and a chemically-created microtubule-free re-
gion can serve as a trap that causes axonally transported particles to
accumulate into a swollen region.4386 Nanorobots should avoid cre-
ating such regions within the cell.

Similar considerations also apply during operations by intra-
nuclear nanorobots, given the presence of myosin-based motors,4390

RNA polymerase motors,4391 and other motor molecules inside the
cell nucleus.

15.5.7.4 Intracellular Cavitation, Shock Waves,
Decompression Nucleation, and Ballooning

Acoustic pistons operated in cyto for nanorobotic power trans-
mission (Section 6.4.1) or communication (Section 7.2.2), or rap-
idly moving mechanical elements enabling intracellular manipula-
tion (Section 9.3.1) or locomotion (Section 9.4.6), could induce
transient cavitation inside the cell. Cavitation bubbles may produce
temperature increases of ~1000 oC and pressure spikes of ~1000
atm localized in regions of a few microns in radius, and should be
avoided during normal operations because they may elicit cellular
apoptosis.4392 Normal or transient cavitation requires ~105 W/m2

(~5.4 atm or ~550 nN/micron2) at 30 KHz or ~106 W/m2 (~17
atm or ~1700 nN/micron2) at 1 MHz in order to form in water.4393

Intensities less than ~104 W/m2 will not produce transient cavita-
tion in any tissue.4394

Intracellular damage may also be caused by acoustic shock waves
that could be generated by nanorobots or nanoaggregates. Individual
cell components have different measured sensitivities to the energy
density of applied acoustic pulses. For example, observable defects
are produced in lipid membranes at acoustic energy densities as low
as 120 J/m2; in vimentin (an intermediate filament cytoskeleton
attachment protein) at 210 J/m2; in mitochondria at 330 J/m2; and
in nuclear membranes at 500 J/m2. A loss of cells growing on a
microcarrier was also observed after applying 200 pulses at 210 J/
m2 per pulse.4395 In another experiment,4396 pressure waves lasting
0.5-1.5 msec up to 250 KHz impacting on dorsal root ganglion
nerve cells of rats showed negative changes in neurite microtubules
within minutes. After 6 hours there was swelling of nerve cell cyto-
plasm and organelles, and some neurofilament tangles were observed.
Even loud noise can produce transitory mechanically induced
microlesions in the cell membranes of several types of nonauditory
cells, a mild membrane wounding from which the cells can survive
and functionally recover.4397

Can rapid cell decompression cause internal bubbles? Sudden
decompressions from up to 200 atm produce no intracellular bubble
formation, in the absence of intracellular particles, in red blood cells,
microbial cells, or pure water.4398,4399 Decompression bubbles form
in cells of the ciliate Tetrahymena pyriformis that have ingested graph-
ite particles from aqueous suspensions when tested with 10-50 atm
nitrogen supersaturations, though it is possible to alter the surface
of intracellular graphite particles to avoid intracellular gas bubble
formation during decompressions from external pressures as high
as 25 atm.4400 Gas tensions of a few atm can cause profuse bubble
nucleation if the most effective nucleation particles are used. But
ingested effective-bubble-promoter particles lose their ability to in-
duce bubble formation in cells, up to >~175 atm, when added to
suspensions of ciliate microbes (and ingested by the microbes).
Though we must be cautious extrapolating to human cells, if this
result is not merely a property of the cellular interior (e.g., cytoskeletal
structure) then it might imply that intracellular bubble formation
during decompression is rare because particle surfaces are somehow
chemically modified during the ingestion process, by the microbial
cell.4399 If nanorobot surfaces are designed to resist this sort of chemi-
cal modification, then the risk of bubble formation in these cir-
cumstances rises. When operating in pressurized living cells,
nanorobot structure and function should be designed to minimize
bubble nucleation during subsequent cellular decompression.

To what degree may an in cyto gas bubble or nanorobotic bal-
loon expand before the cell bursts or is severely damaged? Experi-
mental data are available for just a few unrelated cases. Skalak4401

found that a red blood cell placed in hypotonic solution swells from
its normal biconcave discoid shape into a sphere, reaching its os-
motic bursting pressure at ~3.1 x 106 N/m2 (~31 atm).
Internally-formed bubbles rupture Tetrahymena cells at 25-50
atm,4400 and mechanical cell homogenizers burst cell membranes
by compressing cells to ~1500 atm, then passing them through a
rapid decompression nozzle.4402 A force of 20-220 µN (14-130 atm)
was required to burst 0.7- to 7-micron dry microcapsules pressed
between two flat surfaces.4403 A similar experiment performed on
relatively fragile wet hybridoma cells produced bursting at only 0.06
atm for 10-micron cells.4129
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15.5.7.5 Mechanical Disruption of Intracellular Microzones
Intracellular compartmentation of metabolites without enclo-

sure by membranes (i.e., physiologically persistent, localized, and
essential intracellular chemical gradients) of low molecular weight
species such as O2,4405,5935,5936 sodium,5937,5938 potassium,5937,5938

calcium,5939 amino acids,5937,5940 sugars,5937,5940 carbohydrate
metabolism,4405 ATP,4404,4405,5936,5937 and pH4405,5941 have been
measured inside living cells,4404,4405,5937 although there appears to
be no gradient between bulk cytosolic and submembrane ATP in
Xenopus oocytes.5942 Even erythrocytes, known to be devoid of in-
tracellular organelles, can sequester ATP.4406 Intracellular biochemi-
cal gradients due to normal physiological processes and protein
crowding effects also were discussed in Section 8.5.3.3.

Sequential enzyme interaction complexity gives rise to substrate
or metabolite channeling4407 and compartmentation of macromol-
ecules within specific regions of the cytosol4408,4409 or in associa-
tion with specific components of the cytoskeleton.4410 Regulated
intracellular circulation systems may exist with cytoplasmic stream-
ing rates from 1-80 microns/sec.4411 Even water may be sequestered
in microzones.5937 Observations of transient intracellular hydrody-
namics in the microorganism Dictyostelium discoideum have revealed
the presence of a microscopic region near the cytosolic side of the
plasma membrane where the mobility of water molecules is severely
restricted.4412 “The creation of specialized microzones of metabo-
lism in accordance with their association with cellular organelles or
membranal structures may be integral to normal function and regu-
lation of adult mammalian cells.” 4405 These stable microzones could
be disrupted by the passage of intracellular motile nanorobots, pos-
sibly causing disorganization of local cell metabolism and tempo-
rarily disturbing normal cellular homeostasis. Cytosolic leakage fol-
lowing microinjection (a crude analog to nanorobotic
cytopenetration; Section 9.4.5) has also been observed to give rise
to artifactual intracellular diffusion gradients.4413

Once we fully understand how cells create and maintain
microzones or cellular microdomains, we will be able to design
nanorobots that can avoid disruption of these natural mechanisms,
or repair such disruptions after they have occurred.

15.5.7.6 Mechanically-Induced Proteolysis, Apoptosis,
or Prionosis

Might intracellular mechanical or electrical activities of medical
nanorobots damage cytosolic proteins leading to locally accelerated
proteolysis, or trigger other processes that might increase the pro-
tein turnover rate? One recent study4414 found that bovine pericar-
dium tissue subjected to dynamic stress (such as might be imposed
by nanorobot activities) experienced accelerated local proteolysis as
compared to the same tissue subjected to static mechanical loads of
equal magnitude. For example, the intracellular level of αB-crystallin,
a small heat shock protein produced by human trabecular network
cells, temporarily declines by 90% one hour after the cells are sub-
jected to a single 10% linear stretch, due to an increased degrada-
tion rate of the protein.4415 Cyclic tension force also induces ECM
degradation in cultured chondrocytes.4416

On the other hand, the protein turnover rate of myosin heavy
chains in cultured rat myocytes is unaffected by changes in the con-
tractile activity of the cell,4417 and continuous electrical stimulation
at 10 Hz does not alter the rabbit muscle protein turnover rate al-
though static stretch significantly increases protein synthesis.4418

Cells in rat hearts subjected to a doubling of aortic pressure experi-
enced a decrease in protein degradation — mechanical stretch

restrained proteolysis4419 — but another study4420 found that the
net rate of proteolysis in isolated rat hearts is not effected by me-
chanical workload. More research is required to resolve these issues.

Nanorobot mechanical activities that might lead to unintentional
apoptosis (Section 10.4.1.1) must be avoided. For example, detach-
ment of tissue cells from ECM contacts,3964 manipulation of cell
shape,3965 high intensity (~540,000 W/m2 at 750 KHz) ultrasound
irradiation of cells,4392 significant physical damage to DNA,4421 and
other mechanical cellular trauma4422 have been shown experimen-
tally to induce apoptosis. One study4423 found that mechanical
trauma to rat motor neurons increased the production of ubiquitin,
which targets many intracellular proteins for degradation, and de-
creased the production of hsp70, an inhibitor of apoptosis. Cell
containerization might trigger apoptosis (Section 15.5.5.4), as might
mitochondrial or nuclear rupture (Section 15.5.7.2.4) or intracel-
lular acoustic cavitation (Section 15.5.7.4). Related alternative modes
of programmed cell death such as autophagy5483 must also be avoided.

If apoptosis is triggered, it may be rapidly aborted by in cyto
nanorobots. Inhibitors of apoptosis (Section 10.4.1.1) are well
known4424-4430 that jam the caspases and other molecules involved
in the cascade, and the anti-apoptotic effects of certain
fullerene-based (Section 15.3.2.3) and dendrimeric5186 pharmaceu-
ticals has already been described. Similar substances could be re-
leased, as appropriate, by medical nanorobots. Surface presentation
of specific peptides can also prevent apoptotic activity, as in NK
cells (Section 15.2.3.1.1). Alternatively, in cyto nanorobots could
abort an unwanted incipient apoptotic cascade by using molecular
sorting rotors (Section 3.4.2) to quickly extract from the cytosol
key apoptotic regulatory, mediator, or trigger molecules (e.g., cyto-
chrome c), analogous to previous discussions of complement (Sec-
tion 15.2.3.2), inflammatory (Section 15.2.4), coagulation (Sec-
tion 15.2.5), and pyrogenic (Section 15.2.7) factor depletion by
medical nanorobots.

Finally, care must be taken that exterior nanorobot surfaces or
mechanical operations do not inadvertently induce pathological
protein folding conformations,5916 as in amyloidosis and
prionosis.4431-4434 It is not yet known whether this still-speculative
process is a significant risk in nanorobotic medical missions.

15.5.7.7 Macromolecular Cross-Interface Adhesion
Nanorobots may present to the cytoplasm a variety of working

surfaces that must remain free to slide with respect to each other.
Examples include telescoping manipulators with adjacent rotating
tube segments (Section 9.3.1.4), screw drives with a rotating inter-
face at a fixed housing (Section 9.4.2.5.2), or various metamorphic
surfaces with adjacent motile plate segments (Section 5.3.2.2) or
telescoping segments (Section 5.3.2.3). Noncovalent adhesion of a
large macromolecule (e.g., a free-floating kinesin motor4347) at two
or more points on either side of the interface would produce an
exogenous force that resists free rotation or translation of adjacent
segments, leading to immobilization of the mechanism and pos-
sible device failure. Similar problems may arise for nanorobots ne-
gotiating the extracellular spaces or the vascular system.

A comprehensive analysis is beyond the scope of this book, but a
simple example should suffice to illustrate how this situation may
be resolved. Consider the 7-interface telescoping manipulator de-
scribed in Section 9.3.1.4. With zero load at 1 cm/sec travel speed
the total of all frictional losses amounts to ~0.1 pW,10 giving a mini-
mum no-load power density of 109 W/m3 for the 100 nm long, 30
nm diameter tubular manipulator structure. The maximum power
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under heavy load was not estimated, but other nanomechanical sys-
tems such as the sliding diamondoid logic rods and registers of
Drexler’s nanomechanical computer10 assume power densities ap-
proximating 1012 W/m3. At this maximum power density, the tele-
scoping manipulator could apply a total of ~70 pW of mechanical
power, or ~10 pW per sliding interface or tube segment. A 1.5 nm
diameter drive shaft with a tangential velocity of ~1 m/sec turns
~700 times to drive a tube segment through one complete rotation,
hence the tube segment rotates at ~2.85 cm/sec and so each tube
segment can provide a shearing force of ~350 pN, relative to its
neighbor. This exceeds the noncovalent adhesion forces commonly
encountered in protein-protein single-molecule interactions (Sec-
tion 15.5.4.1) by roughly an order of magnitude, and exceeds
single-molecule kinesin motor microtubule-microtubule binding
forces4347 by almost two orders of magnitude. Additional protec-
tion may be afforded: (1) by constant fine motion (e.g., “jiggling”)
of all moving segments to reduce cross-interface adhesion, (2) by
providing self-scraping exterior housings, and (3) by using
anti-adhesive exterior coatings (Section 15.2.2.1).

15.5.8 Nanorobot-Nanorobot Mechanocompatibility
In clinical applications involving large populations of bloodborne

diamondoid nanorobots simultaneously present inside the human
body, nanorobots will regularly encounter one additional class of
objects in their environment towards which mechanocompatibility
must be proven: other nanorobots. For example, a maximum
nanocrit bloodstream infusion involving a ~1000 terabot dosage
(~1015 nanorobots) implies a mean collisional frequency for each
device with its nanorobotic neighbors of ~40-200 collisions/sec (Sec-
tion 9.4.2.2), mostly in regions close to vessel walls even at high
shear (Section 9.4.1.3). Will such nanorobots survive in sanguo col-
lisions with their neighboring devices?

Consider an elastic collision at relative velocity vcoll between
two identical spherical nanorobots of radius Rbot and density
ρbot, each comprised of a diamondoid structure with failure
strength σbot, producing at the site of interaction a collisional
dimple of radius rcoll and depth xcoll, and imposing a strain scoll.
The two nanorobots decelerate in a time tcoll = xcoll/vcoll with a
negative acceleration of acoll = vcoll

2 / (2 xcoll) = vcoll
2 / (2 scoll

Rbot). The collisional force of Fcoll = mbot acoll is distributed over
an interaction area of Acoll = π rcoll

2, producing a collisional pres-
sure Pcoll <~ σbot to avoid material failure, with mbot = (4/3) π
ρbot Rbot

3. Hence the stress produced during a nanorobot-
nanorobot collision is approximately scoll = (2 ρbot Rbot

2 vcoll
2) /

(3 σbot rcoll
2). For nanorobots of radius Rbot = 1 micron and den-

sity ρbot ~ 2000 kg/m3, thermal velocity in blood at 37 oC is ~1
mm/sec (Section 3.2.1) and the anticipated relative collision ve-
locity is 1-2 mm/sec (Section 9.4.2.2). Conservatively taking vcoll

= 1 cm/sec, σbot = 1000 atm (~108 N/m2) and rcoll = 10 nm, and
taking the maximum allowable strain for diamond smax ~ 5%,
then the collision time tcoll ~ 1 nanosec, deceleration acoll ~ 4 x
105 g’s, and strain scoll ~ 0.001% << smax ~ 5%, so such collisions
appear to be easily survivable. Similar considerations may apply
to interactions between individual nanorobots and macroscale
nanorobotic organs or nanoaggregates. Interactions between
nonspherical nanorobots having protruding surface features, ex-
tended manipulators, and the like should be examined in future
studies.

Nonspecific aggregation or inelastic “clumping” of nanorobots
in vivo should not be a major problem because nonbiological adhe-
sive forces are greatly reduced in fluid environments (Section 9.2.3),
and because nanorobot surface adhesive characteristics and biologi-
cal adhesive forces are subject to design control and therefore to
minimization (Section 15.2.2).
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CHAPTER 15.6

Nanorobot Volumetric Intrusiveness

Even assuming that nanorobots have biocompatible external
surfaces that do not activate any of the body’s natural defensive
systems, medical nanodevices might still provoke unwanted

reactions by physical displacement of critical biological systems or
fluids. In nanomedicine, volumetric intrusiveness is a measure of
the degree to which artificial nanosystems can safely and harmlessly
volumetrically displace natural biological systems. In this Chapter
we will briefly consider the acceptable volumetric intrusiveness of
nanorobot populations and nanostructured macroscopic objects
placed inside the human body (Section 15.6.1), in the human blood-
stream (Section 15.6.2), and inside human cells (Section 15.6.3).
Issues of functional intrusiveness (Chapter 17) and thermal intru-
siveness (Section 6.5.2) are discussed elsewhere, although techno-
logical intrusiveness is briefly mentioned in Section 15.6.4.

A more complete analysis would carefully distinguish acute and
chronic volumetric intrusions. Acute volumetric loading tests the
ability of the current structure (whether whole body, blood vessel,
or cellular compartment) to withstand the intrusion. Chronic (i.e.,
slow, gradual) volumetric loading tests the ability of the structure to
adapt to the intrusion. These two processes are quite different in
their nature and may result in significantly different tolerance ranges.
A. Meretei correctly notes that “nanomedicine should be designed
to suit the average organism — deducing ranges from sporadic ex-
tremes may make us too bold.” Unfortunately, a more comprehen-
sive analysis is beyond the scope of this book.

15.6.1 Somatic Intrusiveness
The issue of somatic intrusiveness arises whenever macroscopic

quantities of foreign materials or medical nanorobots must be im-
planted into the human body. What is the maximum volume of
foreign material that the body can safely accommodate?

The 70 kg reference human male has a body volume of 0.06 m3

(with ~90% of U.S. males between 0.05-0.10 m3)5924 but the most
rotund man of record, of otherwise normal stature, had a body vol-
ume of ~0.50 m3 (Section 8.2). Hence those portions of the body
not enclosed by bone in which skin distension readily permits in-
corporation of new materials may allow the reference male to add,
at most, up to ~0.44 m3 of foreign material, or up to ~633% volu-
metric expansion. It is not asserted here that such additions are nec-
essarily healthy or wise,* but merely that they appear possible within
the limits of natural human tissue elasticity. Genetic or other

permanent artificial modifications to tissue elasticity or body archi-
tecture could further increase the expansibility of the human der-
mal envelope. Additionally, the dermal expansion that accompanies
large weight gains occurs slowly over time, so an immediate expan-
sion of equal volume due to the presence of nanorobots or
nanoorgans would not be tolerated as well.

The principal natural limit for skin stretching may be estimated
from the elasticity of the thick collagenous connective tissue or der-
mis — a three-dimensional feltwork of continuous collagen fibers
embedded in a protein-polysaccharide matrix in which elastin fi-
bers also are present.4435 The elastin produces a material with
rubber-like elasticity at small extensions but is limited at longer ex-
tensions by the dimensions of the collagen framework.4436 Skin is
normally under tension even when not being deformed by motion
or other forces. For example, the resting strain in human skin varies
from 10-30%,4437 or λskin = 1.1-1.3 where λskin is the ratio of the
length of stressed to unstressed skin. Distension is dominated by
elastin up to λskin ~ 1.6, but as the tissue is extended further, col-
lagen fibers become aligned in the direction of extension and are
stretched by the applied load. By λskin ~ 1.9 at a tensile stress load of
~107 N/m2 (near the failure strength of abdominal skin, or ~0.4-1.4
x 107 N/m2; Table 9.3), the fiber lattice has a high degree of orien-
tation parallel to the direction of extension and the skin becomes
mechanically similar to tendon.4435,4436 A dermal envelope that
encloses a body volume of 0.06 m3 at λskin = 1.2 will enclose ~(1.9/
1.2)3 (0.06 m3) ~ 0.24 m3 at λskin = 1.9, an addition of ~0.18 m3 of
foreign material or ~300% volumetric expansion. Such extensive
and prolonged stretching of the skin (as is common abdominally
during pregnancy) can produce dermal itching sensations.4438

Nanorobots injected into open tissue volumes dominated by ex-
tracellular matrix (ECM) also are limited primarily by the elasticity
of collagen and elastin fibers that form the scaffolding of the ECM
(Section 9.4.4.2). If these matrix fibers can readily stretch by a lin-
ear factor of λECM = (λstretched / λrelaxed) ~1.3, where λstretched

~1.64435,4436 and λrelaxed ~ 1.1-1.3,4437 then the maximum volumet-
ric expandability of ECM-dominated tissue volumes is ~(λradial

3 —
1) = 1.2 (120%). These gross limits are not well explored experi-
mentally. One experiment1848 in which subdermal rat paw tissue
received a 0.3% volumetric implantation of 10- to 20-micron dia-
mond particles provoked only a slight increase in volume of the
treated paw relative to the control paw and the edematous effect
subsided after 30-60 minutes.

* Macroscopic biocompatible foreign bodies such as pacemakers and orthopedic pins and plates may reside inside the body indefinitely without ill effect, as long as they do
not migrate (Section 15.4.1). This is true even in the gut. One case presentation166 of foreign bodies in the alimentary tract proudly reported: “We present a case of a patient
who ingested 648 metallic objects that formed an intertwining mass within the stomach, requiring operative removal. Of interest was the absence of symptoms and complications
after 11 years of continual ingestion. To our knowledge, this is the second heaviest accumulation of metallic foreign objects removed from the stomach of a living patient.”
(The absence of symptoms might be explained by psychiatric causes.) Another study159 involving 8 observed cases found that swallowed foreign bodies could be left in the
intestine for years without any noticeable distension (e.g., splanchnomegaly) or pain (splanchnodynia).
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Several organs of the human body regularly expand and contract
in volume during their normal functioning. For instance, the two
lungs (including the integral tissues) normally cycle between 3.1-3.5
liters in total volume during resting respiration (~13% expansion),
but at maximum inspirational capacity the lungs may cycle from
3.1-6.8 liters, a maximum volumetric expansion of ~120%. Simi-
larly, the stomach varies between 0.5 liter when empty to 1.5 liters
when full (Section 8.2.3), an expansion of ~200%, and the urinary
bladder distends from ~0.15 liter when empty to ~0.65 liter when
full (Table 8.9), a ~333% volume expansion. The spleen may vary
in size between 80-300 cm3 largely due to its content of blood,
enlarging during digestion (largest in well-fed patients and smallest
in starving patients)5892 — a volume variation of 275%. The uterus
of the human female distends massively during pregnancy, enlarg-
ing from ~0.1 liter at preconception to >10 liters peripartum (in-
cluding ~1 liter of uterine wall, ~1 liter of amniotic fluid, and ~3
liters of fetus4438,4439), a ~10,000% expansion of the uterine vol-
ume itself though only a 14% addition to total body volume. Note
that visceral organs are innervated with spinal visceral afferent neu-
rons that respond to distension, contraction, or other mechanical
stimuli5451 — e.g., excessive bladder distension can induce visceral
nociception.5452) Analyses of nanorobot intrusiveness should add
total device volumes to the maximum body system volumes reached
in normal functioning if entry and exit take place over one normal
functional cycle or longer, with intrusive effect minimized during
low-volume phases of the cycle (e.g., during late phases of exhala-
tion and the early phase of inhalation in the lung). The patient’s
body volumes may also be actively controlled during nanosurgery
(Chapter 12).

Some disease conditions can cause dramatic expansions of organ
volumes. For example, in Gaucher’s disease, the liver can enlarge
(hepatomegaly) by up to 9 times its normal size (800% volume
expansion); liver function is altered, but the impact is usually mi-
nor.4440 The spleen can enlarge up to tenfold during mononucleo-
sis, and Gaucher’s disease also causes an increase in size of the spleen
(splenomegaly) up to 20 times its normal size (1900% volume ex-
pansion), causing the patient to appear overweight or pregnant.4440

This splenomegaly is often painless in itself. But the enlarged organ
can press on the diaphragm and, indirectly, the lungs, making breath-
ing difficult. It can also press on the stomach and intestines, caus-
ing loss of appetite and other digestive problems.4440 Alcoholic car-
diomegaly produces seriously pathological hearts that are enlarged
up to 3 times their normal weight (~200% volume expansion).4441

Of course, if nanorobot intrusiveness causes significant pathology
in a given nanomedical mission design, then that mission design is
not viable.

Some body compartments may be less tolerant of volumetric
expansion. For example, the typical human eyeball has a volume of
~5.4 cm3 4442 with an average axial length of 24 mm,4443 but in-
creasing axial length by just 8% to 26 mm may produce myopia,
while decreasing axial length by 17% to 20 mm can produce hy-
peropia.4443 (There is one extreme report4444 of an eyeball expanded
to a volume of ~31 cm3 due to chronic uveitis and secondary glau-
coma in an 18-year-old man.) The peritoneal cavity tolerates mod-
erate stretching. Peritoneal infusion of dialysis patients with 2 liters
(3% of body volume) or 3 liters (5% of body volume) of dialysate
fluid per washout cycle caused intraperitoneal pressure rises of 13.9
mmHg or 16.8 mmHg in males and 12.1 mmHg or 14.5 mmHg

in females, respectively. 64% of patients receiving 2.5 liters and 44%
of patients receiving 3 liters reported no physical discomfort, sug-
gesting that somewhat higher volumes could be safely employed.4445

The interior spaces of joints, bones and the cranial vault in which
the brain resides cannot tolerate major intrusions by macroscale
foreign objects without surgical assistance. For instance, in joints
such as the knee, synovial fluid volume averages 1.1 cm3 (range
0.13-3.5 cm3), so it would seem likely that a maximum ~10% vol-
ume displacement of synovial fluid, or ~0.11 cm3 of
mechanically-nonirritating foreign objects, would not be intoler-
ably intrusive. One experiment633 in which canine knee joints re-
ceived a 0.3% volumetric injection of 3-micron diamond crystals
found little evidence of inflammation, with intra-articular pressure
and local cell count remaining low. In another experiment,1849 the
synovial fluid of rabbit knee joints received an injection of 10- to
20-micron diamond particles in suspension at 5.7% by volume that
produced no inflammation. In yet another experiment,902 rats sur-
vived implantation of 1- to 8-micron carbon particles in knee even
at ~25% of synovial volume. Synovial fluid containing
mechanically-irritating needle-shaped monosodium urate (MSU)
crystals are diagnostic for gout4446-4448 at concentrations as low as
0.01-1% by volume.* However, most of the pain and physical dis-
ruption of gout arises from the long-term buildup of tophi (large
crystalline deposits4453) within the affected joint that may ultimately
displace 10% or more of the original synovial fluid volume. Knees
and other joints are well-supplied with nociceptors,5448 so
nanorobots maneuvering in these regions must take care to avoid
mechanically inducing sensations of pain.

In the brain, normal cerebrospinal fluid (CSF) and intracranial pres-
sure is ~10 mmHg (~0.013 atm), although experimentally-induced
excursions up to 100 mmHg (0.13 atm) in primates4454 or 152
mmHg (0.2 atm) in pigs4455 have produced neither ischemia nor
death. (Intracranial pressure is regulated by the rate of CSF produc-
tion and resistance to CSF resorption through the arachnoid villi as
determined by venous pressure.5489) The isothermal compressibil-
ity of water at 1 atm and 37 oC is κwater = 4.492 x 10-5 atm-1.63 If a
brain volume-equivalent of Vbrain = 1400 cm3 of water is placed in a
closed incompressible container and pressurized to a maximum safe
Pforeign = 0.2 atm by the insertion of an incompressible foreign body
of volume Vforeign, then Vforeign ~ κwater Pforeign Vbrain ~ 0.012 cm3.
Substantially larger foreign body volumes may be injected safely
into the brain if those injected volumes displace mobile fluids such
as cranial CSF. MRI studies4456 reveal that inhalation of 7% CO2
(producing hypercapnia) induces an average reduction of 9.4 cm3

(range 0.7-23.7 cm3) in human cranial CSF volume, whereas hy-
perventilation with 60% O2 (producing hypocapnia) induces an
average increase in cranial CSF volume of 12.7 cm3 (range 0.7-26.7
cm3). This implies that inert foreign bodies (especially if particu-
late) up to ~10-20 cm3 in volume (1-2% of brain volume) might
safely displace CSF in the brain without ill effect. (Maintenance
of blood-brain integrity — a functional intrusiveness issue — is
critical.)

Much larger losses of intracranial CSF volume (up to 158.6 cm3

in one patient,4457 or ~10% of brain volume) associated with in-
tracranial hypotension, such as may occur after lumbar puncture
procedures or dural tear, can often4457,4458 but not always4459

produce very painful orthostatic headaches (as sometimes oc-
curs in women receiving an epidural anesthetic for childbirth),

* This estimate assumes that (a) the crystals measure 0.3-1 micron wide and 15 microns long, (b) there are 10 crystals/leukocyte, and (c) there are 5000-50,000 leukocytes/
mm3 of gout-inflamed synovial fluid.4449 Peritonitis is induced in mice by intraperitoneal injection of ~0.2% by volume of MSU crystals (i.e., 3 mg MSU in a ~1 cm3 cavity4450);
gouty serum and synovial fluid concentrations of MSU are ~0.01%,4451 while the saturating concentration for phagocytic cells is ~0.03% crystals by volume.4452
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dural thickening,4460 and other symptoms.4461 It would be unwise
to crowd out the equivalent of the entire cranial CSF volume be-
cause the fluid serves an essential function in the brain (Section
8.2.4) — primarily, to cushion the brain in the cranial cavity. M.
Sprintz also notes that intracranial pressure is autoregulated within
the CNS, so fluctuations in systemic blood pressure will not alter
the intracranial pressure within certain blood pressure limits. The
prevention of increased intracranial pressure is dependent not only
on the autoregulatory system of the CNS but also on the anatomi-
cal functionality of the CNS to allow adequate resorption of CSF,
thus preventing hydrocephalus and subsequent increased intrac-
ranial pressure.

A whole-body tumor load of ~1000-2000 gm (up to ~3% by
weight) is generally required for lethality in patients with systemic
cancer, whereas in the central nervous system alone a ~100 gm tu-
mor mass (~6% by weight) is lethal.4462 Depending on their loca-
tion, solid brain tumors, cerebral mass lesions or intracranial he-
matomas may produce altered mental function at sizes from a few
millimeters4463 to a few centimeters in diameter,4464 or 0.001-1%
of brain volume. In cancer research laboratories, federal (U.S.) regu-
lations require a special permission from OSHA’s affectionately
dubbed “mouse police” before a researcher can grow tumors larger
than 10% of body weight4465,4466 or 1000-2000 mm3 (5-10% of
body volume),4466,4467 or ascites (serous fluid accumulations in the
peritoneal cavity) larger than 20% of body weight,4465 on labora-
tory test animals. However, tumor lethality is not strictly
mass-dependent but is more the result of a loss of organ function
and the toxicity of tumor degradation products — benign tumors
such as uterine fibroids or myomas can exhibit masses well in excess
of the above limits.

Various particle infusions have been tested experimentally. For
example, the LD50 for <44-micron alumina particles injected in-
traperitoneally in mice lies above >2 gm/kg or >0.1% by volume.1067

All rats survive intraperitoneal injection of 1- to 8-micron carbon
particles at 0.1% of body volume,902 and the oral LD50 (the lethal
dose needed to kill 50% of the subjects) in rats for PVC powder is
>0.7% of body weight4468 and is 0.8% of body weight for methyl
methacrylate powder.4469 Ceramic powders injected intramuscularly
or subcutaneously at >0.5% local tissue volume elicited almost no
systemic effects in mice.1067 A table of standard toxicity classes lists
as least toxic or “relatively harmless” to rats a dose of foreign sub-
stances having an LD50 of >1.5% of body weight for single oral
dose or >2.3% of body weight for skin exposures.4470 Pathological
particulate burdens in lymph nodes may range from 0.07-4% of
node volume (Section 15.4.3.4).

In sum, the conservative safe limit for somatic intrusiveness of
otherwise biocompatible foreign objects — such as medical
nanodevices — is probably in the range of 1-10% of local tissue,
organ, or body volume, though larger volumetric expansions may
be possible without harm.

From a purely aesthetic perspective, in psychology the limit of
human perceptual differential sensitivity for otherwise visually
equivalent areas is ∆Aperceptual ~ 0.06 (6%).4471,4472 Thus a human
body must change by 6% in visual cross-sectional area to be notice-
ably different, representing a volumetric change of ∆Vperceptual ~ (1
+ ∆Aperceptual )3/2 – 1) ~ 0.09 (9%). For example, the volume added
to the human male form by tight-fitting clothing should not create
a perceptible increase in body size — wrapping the entire ~2 m2

human skin area with tight-fitting clothing extending ~1.5 mm from
the skin surface gives a clothing volume of 0.003 m3 corresponding
to a 5% increase in the apparent body volume. Similarly, the vol-
ume of a reference male having maximum cyclic lung, stomach and

bladder volume exceeds the volume of a reference male having mini-
mum such volumes by ~0.0052 m3, an aesthetically acceptable ~9%
volumetric expansion. It is not unusual for body volume to change
by ~3%/day due to natural variations in fluid balance and fluid
retention. The maximum aesthetic intrusiveness limit thus may be
conservatively estimated as 5-10% of basal body volume.

15.6.2 Bloodstream Intrusiveness
The vascular system is designed to handle large variations in pres-

sure, with the predominant determinant being volume. The issue
of bloodstream intrusiveness arises whenever macroscopic quanti-
ties of foreign materials or medical nanorobots must be injected
into the vascular system, or must be permanently installed or an-
chored to the wall of a vessel (e.g., Section 15.5.3.6). What is the
maximum volume of foreign material that the vascular compart-
ment (e.g., blood, lymph, etc.) can safely accommodate?

The 70 kg reference human male has a red blood cell volume of
36 cm3/kg of lean body mass and ~3.6 cm3/kg of fat.4473 Assuming
the ideal 7% body fat (i.e., typically athletes and models) and a
44% hematocrit (Hct) gives the correct whole blood volume of
~5400 cm3. If the heaviest known human male (485 kg; Section
8.2) had 80% body fat and a 54% Hct, then his whole blood vol-
ume may have been ~9.0 liters, or a ~67% (~4 liter) blood volume
expansion. The natural limit for arterial wall distension over the
physiological blood pressure range from 0.1-0.2 atm is λradial ~ 1.2
radially4474 and perhaps only λlong ~ 1.1 longitudinally, and vein
walls are a bit more distensible than arterial walls.3967 Hence the
maximum volume expansion (~length distension x areal distension)
of the vascular system at maximum pressure would be at least ~(1 -
λlong λradial

2) = 0.6 (60%). This suggests that a ~4 liter addition to
the human blood compartment might be near the maximum limit
that natural vascular wall material can accommodate. Again, ge-
netic or other artificial modifications to tissue elasticity or body
architecture could further increase the volumetric expansibility of
the human vascular compartment.

It is important to note that only a small portion of total body
volume is intravascular. A. Meretei speculates that small-gauge in-
travascular systems can leak access volume to the much larger body
volume and thus might become overloaded only very late in the
process. Ascites, body-wide edemas and urinary system overload
might occur before the vascular systems is stretched to the limits, so
the above calculation would be clinically relevant only when we can
validly assume no leakage from the intravascular space.

Additionally, minor adjustments occur physiologically:

1.  to red cell volume by the splanchnic tissues4475 and the spleen
(~70 cm3 noncirculating RBC storage volume);

2. to whole blood volume via shifts between microcirculation and
macrocirculation as during hemorrhage compensation (~200
cm3 whole blood4476) or dialysis (15.2% whole blood or ~800
cm3 4477); and

3. to blood plasma volume (a) diurnally during sleep (~200 cm3

plasma decrease),4478-4480 (b) after drinking 1 liter of water (~200
cm3 plasma increase),4480 (c) during heavy exercise (up to –20%
plasma volume decrease or ~600 cm3),4481-4483 or (d) after en-
durance training or heavy exercise (up to +25% plasma volume
increase or ~760 cm3)4484 such as ultramarathons.4485,4486

Patients who lose up to ~2 liters of blood may recover if fluid
volume is restored by a transfusion of blood or plasma,4488 or by
intravenous infusions of 1.5-2 liters/day of plasma extenders such
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as 6% hydroxyethyl starch.382 Recovery is also possible after a loss
of up to ~3 liters during gradual exsanguination over a period of 24
hours.4487,4488 And plasma volume expansions up to 1.5-3.0 liters
are seen in certain pathological conditions such as Waldenstrom’s
macroglobulinemia.2484 However, 1 liter is approximately: (1) the
asymptomatic blood loss limit;4488 (2) the plasma volume change
in high-altitude-adapted Andean natives with Hct exceeding
60%;4489 (3) the hemodilution limit for freshwater aspiration in
the lungs;4490 and (4) the maximum blood collection equivalent
(on a relative volume basis) allowed from laboratory animals over a
2-week period (15 cm3/kg or 25% of blood volume4466). A volume
of 0.5-1.0 liter also is the limit for experimentally-induced4491 and
exercise-induced plasma expansions,4484 hence 10-20% of blood
volume appears to be a liberal upper range for nanorobotic volu-
metric intrusiveness into the bloodstream.

For a more conservative upper range, we note that the acute
toxicity of latex microspheres in various nonhuman animals has been
investigated experimentally.4492-4498 For example, all rabbits receiv-
ing an intravenous injection of colloidal carbon2961 or 0.5-micron
latex particles4492 at a blood volume fraction of ~0.1% survived the
treatment, and all rats receiving an I.V. injection of 1- to 8-micron
carbon particles at a ~0.2% blood volume fraction also survived.902

As expected, microsphere toxicity due to vascular occlusion is a func-
tion of the total volume of microspheres injected2679 and follows a
power law2679,4496 of the form NLD50 = Mbody K / Dsph

b, where NLD50
is the number of spheres intravenously injected to achieve LD50 in
the rat, Mbody is rat body weight in kg, Dsph = microsphere diameter
in microns, and the experimentally-determined constants are K =
8.6 x 1011 micron3.15/kg and b = 3.15. Simply extrapolating to a
human body weight of Mbody = 70 kg, the LD50 whole-body dose
of Dsph = 1 micron latex microspheres would be NLD50 ~ 60 trillion
spheres. Consequently taking fblood ~ 0.09 (9%) as the fraction of
human body weight represented by blood and ρbody = 1.17 x 10-15

kg/µm3 as the mean human body density, then the human-equivalent
LD50 nanocrit (Nct) would be NctLD50 = π ρbody K / (6 fblood

Dsph
0.15) ~ 1%.

However, the above formula for NLD50 is derived mainly from
studies of particles >10 microns in diameter (i.e., much larger than
medical nanorobots) with varying dimensions and atomically rough
surfaces (nanorobots can have identical radii and atomically smooth
surfaces), in animal models (rats and beagles) having smaller red
blood cell diameters and narrower capillaries than humans. This
suggests that humans might be able to tolerate a higher nanocrit of
micron-size particles. Additionally, at 0.3% loading with 3-micron
microspheres, beagle dogs experienced temporary dyspnea (labored
breathing), systemic hypotension and depression of myocardial per-
formance, with the main short-term cause said to be “the large bo-
lus of spheres in the lungs”2679 The authors speculated that because
smaller spheres are rapidly cleared from the lungs, “reduction of
toxicity might be obtained by slow infusion, rather than injection,
of these microspheres.” The use of medical nanorobots specifically
designed to avoid geometrical trapping in the lungs (Section
15.4.2.1) and the inclusion of respirocyte-class devices3573 in the
injected nanorobot population to forestall ischemic risk (assuming
the circulatory pathway is not permanently occluded) should fur-
ther reduce toxicity.

The human LD50 for microparticles of any kind has not been
reported in the literature. The maximum number of PVC contami-
nant particles allowed in parenteral IV injectable or infusible fluids,
according to the British and U.S. Pharmacopoeias, ranges from 1000/
cm3 for 2- to 5-micron particles to 5/cm3 for >25-micron particles,
or a mere 10-6 - 10-5 % blood volume fraction.4499 Air-filled bubbles

3-5 microns in diameter stabilized with 25 nm thick half-denatured
albumin shells4500 are diagnostically injected into human patients
in the form of a microbubble infusate called Albunex.4501 Albunex
is used as an ultrasound contrast agent4502 at a concentration of 3-5
x 108 bubbles/cm3 (infusate bubble volume fraction ~ 1%), and
infusate doses up to 0.12 cm3/kg of body weight (i.e., 2.5-4.2 x 109

microbubbles injected into the entire human blood volume, pro-
ducing a whole-body “bubblecrit” equivalent to Nct ~ 0.002%) are
said to be well tolerated in man.4503 Intraarterial administration of
very large (40-micron) degradable starch microspheres produces
slight early signs of toxicity (nausea/vomiting) in 50% of patients
receiving a ~108-particle dose,4504 yielding a blood volume loading
equivalent to Nct ~ 0.06%.4504 The highest reported bacteremic
LD50 is ~1010 CFU/ml of blood for an avirulent mutant of S. aureus
in mice,4505 an equivalent bacteriocrit to Nct ~ 1% in human blood.
Bulk blood viscosity should not be seriously affected by the pres-
ence of small microspheres up to Nct ~ 10% (Section 9.4.1.4). We
conclude that the safe upper limit of human tolerance for 1- to
3-micron medical nanorobots in the bloodstream probably lies in
the range of Nct ~ 0.1-10%. A more exact recommendation must
await future laboratory experimental and clinical results.

The intravenous infusion of a maximum 0.540 liter dose (i.e.,
producing Nct = 10%) of particulate foreign bodies — including
all necessary medical nanorobot species required for a particular
treatment — suspended in 0.540 liter of aqueous carrier fluid
promptly raises blood volume from 5.40 liters to 6.48 liters, el-
evates blood pressure by ~22 mmHg, and decreases Hct by ~7%
(e.g., from 44% to 37%), inducing a temporary mild anemic state
unless the foreign particles are oxygen-transporting
respirocyte-class3573 nanorobots (Chapter 22). The addition of >1.0
liter of water to the blood compartment would be required to re-
duce blood plasma sodium from normal levels at 135-145 mEq/L
(3.1-3.3 x 10-3 gm/cm3) to 110-120 mEq/L (2.5-2.8 x 10-3 gm/
cm3), sufficient to produce symptomatic hypervolemic hyponatre-
mia and hypokalemia.4506-4508 Adding just 0.54 liter of excess water
should produce only a temporary, nonsymptomatic electrolyte im-
balance whose minor effects may be partially offset with ionic amend-
ments to the aqueous carrier fluid. (Utilizing an isotonic aque-
ous carrier solution should help to avoid causing any electrolyte
imbalances.)

As in cases of mild water intoxication,4509,4510 following infu-
sion of the maximum 0.540 liter dose the osmoregulatory system
should respond by eliminating excess water and electrolytes from
the bloodstream via the kidneys and urination. This simultaneously
eliminates the modest increase in blood pressure and any electrolyte
imbalance while re-establishing normal hematocrit at the cost of
slightly elevated blood viscosity (Sections 9.4.1.4 and 9.4.1.5). For
non-respirocyte-class nanorobots, the post-infusion equilibrium
blood state should approach an Hct of 44%, a maximum nanocrit
of 10% (Section 9.4.2.6), a plasma volume reduced from 3.02 liters
to 2.48 liters, and a whole blood volume of 5.4 liters. The total
particle volume load is then 54%, about equal to the high-end range
of Hct for male adults and for newborns.2004 Nanorobot-infused
bulk blood viscosity at 37 oC body temperature rises from ~3.0 x
10-3 kg/m-sec to ~4.8 x 10-3 kg/m-sec in high-shear conditions (Table
9.4, Figure 9.13), which is insignificantly different from 54% Hct
whole blood. This increase is not expected to produce whole blood
hyperviscosity4511-4522 as is characteristic: (1) of some anemias,4516

inflammatory diseases,4517 infectious diseases,4511 cerebrovascular
diseases4514,4519 and certain other conditions;4515,4520 or (2) of poly-
cythemia patients who present with hematocrits of 75-85%4521-4523

which leads to disturbances in blood flow as blood viscosity increases
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with rising hematocrit. Nor is the viscosity increase likely to induce
“blood sludging”4524 as may occur during shock4525 or tissue in-
jury,4526,4527 in which plasma volume is reduced and blood cells
tend to agglutinate and form large clumps or masses that move slowly
through the vessels, sometimes clogging the smaller vessels.2004 Os-
motic consequences of nanorobot intrusion including ion balance,
fluid (and volume) movement, dislocation between body compart-
ments and intracellular, interstitial, and intravascular spaces, and
impacts on blood biophysics and chemistry should be systemati-
cally addressed, but such a complete analysis is beyond the scope of
this text.

Another bloodstream intrusiveness issue is the potential for
nanorobot-induced coagulopathy. It is possible that the presence of
a sufficiently large concentration of nonadhesive inert microparticles
might interfere with the coagulation process by intercalating into
the developing thrombus, physically preventing solid clot forma-
tion. However, inert polystyrene microspheres are frequently used
in coagulation studies4528 and degradable starch microspheres do
not influence platelet aggregation.4529 The proposed effect has not
yet been reported in the literature but could be investigated experi-
mentally.

15.6.3 Cellular Intrusiveness
The issue of cellular intrusiveness arises whenever microscopic

quantities of foreign materials or medical nanorobots29 must be in-
jected into the intracellular spaces, comprising cytosol and nucleus.
There are two aspects: First, how much new foreign material can be
added to a cell? Second, how much of a cell’s existing fluidic volume
can be replaced with foreign material with no change in total cell
volume, consistent with continuing cellular viability?

Of course, cell “viability” should be rigorously addressed from
the standpoint of structural integrity, metabolism, reproduction,
cytoskeletal activity, motility, secretory activity, and so forth — since
cells may survive intrusion while losing their secretory activity or
their ability to divide. Since direct experiments with nanorobots
and living cells cannot yet be undertaken, we can only crudely esti-
mate the maximum volume of foreign material that the intracellu-
lar compartment can safely accommodate by examining analogous
instances of cellular intrusion.

15.6.3.1 Membrane Elasticity and Cellular Expansion
The introduction of foreign material into a cell may cause intra-

cellular volume to expand. Assuming a spherical cell shape, the
change in cell volume ∆Vcell from the original cell volume Vcell is
related to the change in plasma membrane area ∆Acell of an
unstretched membrane of area Acell by the relations ∆Vcell /Vcell ~
((1 + ∆Acell/Acell)3/2 – 1) and ∆Acell/Acell = Tmemb / Kmemb, where
Tmemb is the isotropic tension due to membrane expansion, the area
compressibility modulus Kmemb = 0.378 N/m for erythrocyte plasma
membrane at 310 K, and Kmemb = 0.636 N/m for leukocyte plasma
membrane (Section 9.4.3.2.1). Taking a conservative lysis limit of
Tmemb ~ 4 x 10-3 N/m for erythrocytes, then ∆Vcell /Vcell ~ 1.6% for
red cells and ~0.9% for white cells. However, erythrocytes are not
spheres but biconcave disks3967 with a mean volume of 94 micron3

in isotonic solution (300 mosmol). They absorb water in hypotonic
solution, becoming spherical at 131 mosmol with a volume of 164
micron3, demonstrating a capacity for volumetric expansion of 74%
without losing membrane integrity (albeit with some loss of rheo-
logical functionality). Other cells may tolerate even greater expan-
sion. For example, taking Tmemb = 1.7 N/m and Kmemb = 1.3 N/m
for TB/C3 hybridoma cells and Tmemb = 1.8 N/m and Kmemb = 1.2

N/m for NS1 myeloma cells,4530 then ∆Vcell /Vcell ~ 250% for hy-
bridomas and ~300% for myelomas. These estimates are crude at
best because the lipid population of the plasma membrane is con-
stantly changing and may enlarge or contract over time.4641,4642

For more than four decades, microbiologists have routinely ex-
tracted or inserted an entire nucleus into a cell using micropipettes
without compromising cell viability.4531 Such nuclear transplanta-
tion represents a volumetric change of ∆Vcell /Vcell ~ 3.4% for the
typical 20-micron human tissue cell (Table 8.17) but in the case of
a human leukocyte would represent a volumetric change of ∆Vcell /
Vcell ~ 18% for an eosinophil, 22% for a neutrophil, 26% for a
monocyte, or 51% for a lymphocyte.4532 Decades of laboratory prac-
tice have confirmed that at least ~100 micron3/cell of foreign mate-
rial (representing perhaps 1-3% of cell volume) can be safely in-
jected into a somatic cell without any significant effect on cell
viability.4533

Neutrophils increase in volume by ~15% when stimulated in
suspension, and rabbit neutrophils that migrate into the abdominal
wall (150 micron3) are +50% larger than those in the abdominal
wall vasculature (100 micron3). Human neutrophils induced by
fMLP to migrate into collagen gels (290 micron3) are 42% larger
than those that did not migrate (204 micron3).4534

15.6.3.2 Intracellular Lipofuscin and Storage Diseases
Insoluble age-pigment lysosomal granules called “lipofuscin”

collect in many of our cells, the accumulation starting as early in
life as 11 years old and rising with age,5468 activity level4535,4536 and
caloric intake;4537 and varying with cell type.5469,5470 Clumps of
these yellow-brown autofluorescent granules — typically 1-3 mi-
crons in diameter4538-4540 — may occupy up to 10% of the volume
of heart muscle cells,4541 and from 20% of brainstem neuron vol-
ume at age 20 to as much as 50% of cell volume by age 90.4542

Lipofuscin concentrations as high as 75% have been reported in
Purkinje neurons of rats subjected to protein malnutrition.4543 El-
evated concentrations in heart cells appear not to increase the risk
of heart attack,4541,4544 nor to accelerate cellular aging processes in
heart muscle or liver tissues.5471 Brain cell lipofuscin is not associ-
ated with mental4542,4545 or motor4546 abnormalities or other detri-
mental cellular function.4547 Hereditary ceroid lipofuscinosis4548 or
neuronal ceroid-lipofuscinosis (NCL) diseases5472 can lead to pre-
mature death, though ceroid appears to be pathological only in neu-
rons5472 or when loaded into human fibroblasts.5473 There is also
considerable evidence that A2E, a hydrophobic fluorophore com-
ponent5474 of retinal pigment epithelial lipofuscin,5475 may con-
tribute to age-related macular degeneration.6020-6026 But the fact
that lipofuscin is an indigestible lipid peroxidation product that
cannot be excreted but whose presence appears commonly not di-
rectly injurious to the cell argues strongly that cells can tolerate sig-
nificant volumetric replacements of cytoplasmic fluid with artificial
foreign bodies such as medical nanorobots while continuing to func-
tion normally.

Other inert intracellular pigments are known,4549 along with a
number of pathological intracellular storage diseases4550-4554,5476-5478

including Fabrey’s, Gaucher’s, mannosidosis, Niemann-Pick,4257 and
Tay-Sachs, Lewy bodies in Hallervorden-Spatz disease,5919-5921 and
Hirano bodies.6145 Accumulation of lysosomal deposits of oxidized
low-density lipoproteins in macrophage foam cells may contribute
to atherosclerosis.5479 Intracellular crystalloid bodies have been ob-
served in the skeletal muscle cells of patients with hypothyroid
myopathy.5480 Noninert amyloid deposits average ~12% of pancre-
atic islet cell volume in patients with maturity onset diabetes.4555



Nanomedicine • Volume IIA160

15.6.3.3 Intracellular Microspheres and Crystals
Various particulate substances have been introduced intracellu-

larly to observe the effects on the cell. In one study,4556 up to 500
polystyrene 0.26-micron beads were injected into a tissue cell and
this 4.6-micron3 load did not affect the cell’s ability to transport the
particles around inside as if they were tiny organelles or vesicles. A
few micron3/cell of engineered nanoparticles are tolerated by living
cells when employed as intracellular fluorescent labels.4238 Choles-
terol crystals have been induced to grow inside living J774 mouse
peritoneal macrophages, reaching a concentration of ~120 µg cho-
lesterol/mg protein or ~2.4% intracellular crystals by volume4557

without lethality. However, excessive intracellular crystallization (e.g.,
of drug molecules) can lead to problems such as acute renal fail-
ure,4558 and intracellular crystals have been found inside
chondrocytes in certain crystal deposition diseases.4559 Cholesterol
crystals in macrophage foam cells may also contribute to athero-
sclerosis.5481 A useful and simple experiment that could be done
today would be to microinject cells with progressively larger loads
of chemically inert diamond particles or polystyrene spheres, not-
ing the effect on cell motility, behavior, and metabolic function.
Other intracellular crystal deposition diseases are known such as
mitochondrial crystalline inclusions6147-6149 and intermembrane
inclusion bodies,6150 polyglucosan bodies,6151 and Fardeau-Engel
bodies6152 involved in peripheral neuropathies.

Interestingly, Pseudomonas stutzeri AG259, a species of bacte-
rium isolated from silver mines, protects itself from the usual bacte-
ricidal effect of silver ions by sequestering triangular and hexagonal
insoluble nanocrystals of Ag0 and Ag2S (believed to be acanthite, a
stable crystalline form of silver sulfide) intracellularly in vacuole-like
granules in the periplasmic space.4560 In one photomicrograph, sev-
eral crystals ranging from 90-200 nm in diameter are visible inside
a living bacterial cell ~800 nm in diameter, suggesting a total inert
particulate ~13% volumetric intrusiveness.

15.6.3.4 Phagocyte Ingesta
Phagocytes are specialized cells optimized for ingestion of for-

eign particles (Section 15.4.3.1). The capacity of a phagocyte for
ingestion of chemically inert nanorobots (e.g., Section 15.1.2, Chap-
ter 15.3, Section 15.4.3) or their detritus (Section 15.4.4), without
causing its destruction and subsequent re-release of the particulate
matter, has already been addressed. Some particles are highly toxic
to phagocytes. For instance, just 0.05 µg of silica per 106 macroph-
ages,4561 or 0.002% of cell volume assuming 1166 micron3 per rat
alveolar macrophage,4562 was cytotoxic.* Asbestos particles are more
tolerable. An environment of 6.6-900 µg per 106 mouse peritoneal
macrophages are required to induce fibrosis,4561 a volume of
~2.1-280 micron3 per macrophage, though not all of this material
was ingested by the cells. Ultrafine carbon particles were safely ad-
ministered to rat alveolar macrophages in the amount of 1 µg per
106 macrophages or ~1 micron3/cell,768 or 0.1% of cell volume.

Latex or polystyrene beads are among the most popular particles
for ingestion burden experiments.778 Guinea pig neutrophils can

ingest up to 3.8% of cell volume in 3-micron polystyrene beads, but
only 3.0% of cell volume of 0.3-micron beads (Table 15.1). Perito-
neal phagocytes from striped bass each ingested an average of four
3.12-micron latex beads during a 30-minute incubation time,3002

giving a phagocytic capacity of ~64 micron3/phagocyte or ~4% of
cell volume. Rabbit alveolar macrophages cultured in suspensions
or on monolayers of latex particles internalized a maximum of 45
1-micron particles (45 micron3/cell or ~3% of cell volume) and 10
2-micron particles (~80 micron3/cell or ~5% of cell volume) at satu-
ration.4563 A study of rat alveolar macrophages confirmed particle
burdens exceeding 15 2-micron microspheres (~63 micron3 or ~4%
of cell volume).4564 Interestingly, murine bone-marrow macroph-
ages that are only 13.8 microns in diameter can ingest IgG-opsonized
beads up to 20 microns in diameter,2876 representing an amazing
~200% of cell volume. Of course, phagocytes that eat too many
latex microspheres develop an impaired mobility.778,4565,4566

What about inorganic particles? Rat alveolar macrophages can
ingest at least ~1 micron3/cell of iron oxide particles (~0.1% of cell
volume) without ill effect,4567 and another experiment4568 found
up to 72 spherical 2.6-micron iron oxide particles (~663 micron3)
had been nonfatally ingested by human alveolar macrophages each
of mean volume 4990 micron3,4562 a much larger cell burden of
~13% foreign particles by volume. Murine macrophages suffer only
~10% mortality after ingesting up to 2500 alumina ceramic 0.6-mi-
cron particles, or ~10% of cell volume, although mortality rises to
~30% after ingesting a similar volume concentration of 2-micron
particles.1074 Micrographs of live mouse peritoneal macrophages652

and human monocytes641 that have been induced to ingest diamond
dust particles up to 5 microns in diameter appear to have internal-
ized particles amounting to 10-20% of their cell volume. A particle
burden “overload criterion” (i.e., producing complete macrophage
immobilization) of ~600 micron3 per rat alveolar macrophage (a
~50% cellular volumetric burden for 1166-micron3 cells4562) has
been proposed by Oberdorster et al.4566

15.6.3.5 Intracellular Microbiota
Inside living cells dwell a number cell-like objects of variable

volumetric occupancy. Most notably, mitochondria (Section
8.5.3.10) are energy-producing organelles present in virtually all
eukaryotic cells that may vary in number throughout the life cycle
of the cell. The volume of mitochondria per cell (typically 5-20%)
increases in porcine pinealocytes for animals kept in continuous
darkness and decreases for animals kept in continuous light.4569

Mechanical cell injury can cause dramatic mitochondrial enlarge-
ment.3757 Adrenergic innervation of cultured cardiac myocytes over
a 96 hour period causes mitochondrial volume to rise +43% (from
521 micron3 to 744 micron3) although total cell volume also in-
creases +44% (from 3344 micron3 to 4816 micron3), holding vol-
ume fraction constant at ~15%.4570 Myocytes cultured on laminin
have a higher mitochondrion count than cells grown on plastic.4571

Resistance training increases total mitochondrial volume by up to +33%
per cell,4572 and muscle overuse also elicits changes in mitochondrial

* Extensive in vitro and in vivo research has been conducted to evaluate the effects of crystalline silica on mammalian cells, but the precise molecular mechanism responsible
for the cellular injury that precedes the lung disease is unknown.5982 Four basic mechanisms have been proposed5983 to explain the cause of the cellular damage:

1. direct cytotoxicity of crystalline silica, resulting in lung cell damage, release of lipases and proteases, and eventual lung scarring;
2. activation of oxidant production by pulmonary phagocytes, which overwhelms the antioxidant defenses and leads to lipid peroxidation, protein nitrosylation, cell injury,

and lung scarring;
3. stimulation of the alveolar macrophages and epithelial cells to release inflammatory mediators (e.g., interleukin-8, leukotriene B4, platelet-activating factor, tumor

necrosis factor, platelet-derived growth factor) that recruit polymorphonuclear leukocytes and macrophages, resulting in the production of proinflammatory cytokines
and reactive species and further lung injury and scarring; and

4. stimulation of the alveolar macrophages and epithelial cells to secrete growth factors (e.g., interleukin-1, tumor necrosis factor, platelet-derived growth factor,
fibronectin, and alveolar macrophage-derived growth factor) that initiate fibroblast proliferation and collagen synthesis, with eventual scarring.
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count.4573 The outer hair cells of the guinea pig cochlea have 1425
mitochondria/cell in the first row but 1963 mitochondria/cell in
the third row (which has 2-3 times more nerve endings nearby),4574

a +38% increase in the count.
Other biota that may live inside of cells include a variety of en-

dosymbionts* 4575-4577 (of which the mitochondrion4578 and cell
nucleus4579 are possible ancient examples). For instance, endosym-
biotic bacteria can infect Amoeba proteus, quickly reaching the maxi-
mum carrying number of 42,000 organisms.4580 Taking the vol-
ume of the bacterium and the amoeba as ~1 micron3 and ~108 mi-
cron3, respectively, the volume fraction occupied by the endosym-
bionts is only ~0.04%.

Individual lymphocytes (~200 micron34584) have been observed
circulating for hours inside larger living cells (~3-5% volume frac-
tion) with no evident ill effect, a phenomenon originally called
emperipolesis (Section 8.5.3.12). Emperipolesis today refers to the
temporary presence of one cell within another’s cytoplasm and has
been associated with tumor cells,5985-5987 muscle cells,5984 mega-
karyocytes,5987-5991 thymic epithelial cells5994 (nurse cells6078), hu-
man fetal liver Kupffer cells,5995 myeloproliferative disorders,5990-5993

and both cutaneous5996-5998 and noncutaneous5999 Rosai-Dorfman
disease — though R. Bradbury notes that emperipolesis may not be
a general property of mammalian cells. While neutrophils and mac-
rophages are both found in mammalian lungs and neither cell regu-
larly phagocytoses the other in significant quantities, alveolar mac-
rophages containing neutrophils have been reported.763 Neutrophils
that have undergone apoptosis are taken up by macrophages, with a
mean uptake of 3 neutrophils per macrophage.648 Taking
nonmigratory human neutrophils as 204 micron3,4534 and human
alveolar macrophages as 4990 micron3,4562 this uptake represents
~12% of macrophage cell volume. It is unknown whether 12% re-
mains a reasonable limit if the entire population of phagocytic cells
in a tissue is burdened by that much foreign material, or if such
burdens are tolerable only when a relatively few cells in the popula-
tion are affected. The first case, analogous to an aggressive bacterial
infection, has major implications for the entire multicellular orga-
nization, whereas the second case, analogous to emperipolesis, has
only a minor volumetric impact.

Cells may also harbor smaller pathogens which are usually volu-
metrically harmless to the host. Perhaps the best-known example is
the case of the bacteriophage T4. A single Escherichia coli bacterium
injected with a single T4 phage virion at 37 oC in rich media lyses
after 25-30 minutes, releasing 100-200 phage particles that have
replicated themselves inside.4585 (While lysing is clearly harmful to
the bacterium, prior to lysing there is no evidence of purely
volumetric-related harm to the microbe.) Taking E. coli volume as
0.6 micron3 (Section 10.4.2.5) and phage T4 volume4586 as
~200,000 nm3, then the bacteriophage particle load on E. coli at
lysis is 3-7% of bacterial cell volume.

In human cells, the tuberculosis bacterium enters the alveolar
macrophage which transports the intruder into the blood, the lym-
phatic system, and elsewhere. Each ~1-micron3 bacillus4587 that
hitches a ride in this manner represents an intrusion of 0.02% of
macrophage volume. Other intracellular microorganisms such as
Listeria (~0.25 micron3) and Shigella (~2 micron3), once free in the
cytoplasm, are propelled “harmlessly” through the cytosol via con-
tinuous cytoskeleton-linked actin polymerization (Section 9.4.6).
Macrophages infected with Listeria have been observed with ~2%

of their volume co-opted by the microbes (~100 organisms).4588

While some motile intracellular parasites such as Tyzzer4589 may
cause disarrangement and depopulation of host cell organelles by
the movement of their peritrichous flagella, other motile intracellu-
lar parasites such as the spotted fever-group Rickettsiae4590 spread
rapidly from cell to cell by actin-based movement but do not cause
lysis of the host cell. Typhus-group rickettsiae4590 multiply in host
cells to great numbers without profound damage (until cell lysis
finally occurs) — providing a more optimistic biological analog for
future medical nanorobots.

Harmful pathogens such as malarial schizonts of Plasmodium
falciparum may multiply to 50-70% of erythrocyte cytoplasmic vol-
ume before the red cell bursts.4591,4592 Other intracellular para-
sites have been observed at similar cytoplasmic volumetric
fractions.4593-4595

15.6.3.6 Intracellular Nanorobot Intrusiveness
How much new foreign material can be added to a cell, and how

much of a cell’s existing volume can be replaced with foreign mate-
rial (e.g., medical nanorobots)?

To summarize: Membrane elasticity can accommodate variations
in cell volume for various cells ranging from 1-300%, nuclear trans-
plantation between cells represents volumetric changes from 3-50%,
neutrophils normally vary 15-50% in volume during their adult
life cycle, and 1-3% by volume of foreign material can safely be
injected into somatic cells (Section 15.6.3.1). Inert lipofuscin de-
posits can harmlessly occupy 10-50% of cell volume (Section
15.6.3.2), and up to 0.1-2.4% of cell volume has been uneventfully
replaced by polystyrene microbeads, nanoparticles, or intracellular
crystals (Section 15.6.3.3). Phagocytes nonfatally ingest 0.1-20%
of cell volume and a normal maximum of 50% has been proposed,
although a 200% volumetric ingestion has been observed (Section
15.6.3.4). Changes in intracellular organelle volume amounting to
20-40% (for mitochondria), intracellular intrusions of leukocytes
of up to 3-12% of the volume of the ingesting cell, and intracellular
parasite loads of 3-7% (bacterial) and 50-70% (protozoa) of host
cell volume have been observed (Section 15.6.3.5).

We conclude that a safe conservative intrusiveness limit for
chemically-inert micron-scale medical nanorobots is 1-10% of cell
volume, but that in some circumstances nanorobot particle loads of
up to 50% of cell volume may be temporarily accommodated. How-
ever, tolerance to volumetric intrusiveness and to what degree is
ultimately dependent on the individual cell type.

15.6.4 Technological Intrusiveness
The intrusion of nanodevices into the human body can displace

both volume and function of our natural biological systems. The
consequences of such displacement remain incompletely defined.
For example, augmentative nanorobotic systems may establish new
equilibrium levels and possibly create new failure modes or insta-
bilities in natural homeostatic processes (Chapter 17). The micro-
bial ecology may react in a number of ways to omnipresent medical
nanorobots with whom it has not co-evolved, with the possible
emergence of novel pathogenic species displaying unexpected be-
haviors and abilities (Chapter 17). Specific control protocols are
needed to ensure appropriate responses (e.g., when a nanodevice
unexpectedly exits the body by being bled out) in various common
medical situations (Chapter 12).

* Interestingly, one rickettsial bacterial species called Wolbachia is thought to infect the reproductive tissues of as many as 20% of all insect species.4581,4582 This endosymbiont
enhances its own transmission by establishing an active cytoplasmic incompatibility4583 between egg and sperm cells of host strains or species, e.g., by inducing abortive
karyogamy when an uninfected female mates with an infected male.
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Because self-replicating devices35 might be the most technologi-
cally intrusive class of nanorobot, it cannot be emphasized too
strongly that mechanical medical nanodevices should not be allowed
to self-replicate inside the human body (Section 2.4.2), nor should
they have any need for self-replication themselves (Section 1.3.3).
Machines that perform medical tasks are fundamentally different
from machines that manufacture other machines. Self-replicating
systems35 may be the key to low cost manufacturing but there is no
need to allow such systems to function in the outside world. In an
artificial and controlled environment these factory systems will
manufacture simpler and more rugged applications products which
are then transferred to the end user. Medical devices designed to
operate in the human body should not self-replicate: such devices
can be manufactured in a controlled environment, then injected or
implanted into the patient as required. The resulting medical de-
vice will be simpler, smaller, more efficient and more precisely de-
signed for the task at hand than a device designed to perform the
same function and self-replicate.9 Given the potential for accident
and abuse,7,8,21 artificial replicators will almost certainly be very
tightly regulated by governments everywhere. It is unlikely that the
FDA (or its future or overseas equivalent) would ever approve for
general use a nonbiological medical nanodevice that was capable of

in vivo replication, evolution, or mutation. Guidelines to avoid ac-
cidents and foreseeable abuses have been promulgated for biotech-
nology replicators38 and have been proposed for nanotechnology
replicators.39

It is also unlikely, and unnecessary, for individual medical
nanorobots each to possess a human-level or even near-human arti-
ficial intelligence. Many medical nanorobots will have very simple
computers aboard each device. For artificial nanorobotic red cells
(respirocytes3573), a ~103 operations/sec computer may suffice 
far less computing power than an old Apple II machine — while
nanorobotic white cells (microbivores2762) may need only ~106 ops/
sec of onboard capacity. Still more sophisticated cellular repair
nanorobots should demand no more than 106-109 operations/sec
of onboard computing capacity to do their work. This is a full 4-9
orders of magnitude below even the potential for true
human-equivalent computing which is conservatively estimated as
10-1000 teraflops (~1013-1015 operations/sec).40-42 Faster comput-
ing capacity is simply not required for individual medical nanorobots.
The potential for unexpected emergent behaviors (as suggested in
both the scientific43-47 and science fiction48-50 literature) among large
in vivo populations of small-capacity fixed-program individual
nanodevices seems low but should be investigated further.
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GLOSSARY

Existing glossaries for the fields of biocompatibility and
biomaterials science include the works of Black234 and
especially Williams,230,5869,5870 the latter work containing

over 6000 entries; other entries here are from Taber’s Medical Dic-
tionary2004 and elsewhere.

Abscess — a circumscribed collection of pus appearing in acute or
chronic localized infection, and associated with tissue destruction
and frequently with swelling; a cavity formed by liquefaction ne-
crosis within solid tissue.

Acetylcholine — a chemical neurotransmitter.

Acidosis — excessive acidity of body fluids due to acid accumula-
tion or excessive bicarbonate loss.

ACTH — adrenocorticotropic hormone; stimulates adrenal gland
cortex to produce adrenal cortical hormones.

Actin — structural protein derived from actomyosin in muscle and
the most abundant protein in most cells, usually comprising more
than 5% of the total cellular protein.

Acute — duration of less than 30 days; durations associated with
clinical treatment are usually termed short-term or intraoperative.234

Compare chronic.

Adamantane — the smallest repeating cage unit of the diamond
lattice (C10H16).

Adhesion antenna — in medical nanorobotics, partially selective
binding tips that are swept through the environment, whereupon
desired moieties or particles adhere and can be removed from the
environment or drawn into the nanodevice (Section 10.4.2.5.2).

Adhesioregulatory — in medical nanorobotics, active regulation
of the adhesive characteristics of the nanorobot surface (Section
15.2.2.4). See also sorboregulatory.

Adipose — fatty; pertaining to fat.

Adjuvant — in pharmacology, a drug added to a prescription to
hasten or increase the action of a principal ingredient; in immunol-
ogy, a variety of substances (e.g., alum, aluminum hydroxide,
aluminum phosphate inorganic gels) that increase the antigenic
response.

ADME — Absorption, Distribution, Metabolism, and Excretion
screening tests for drug discovery.6079 See also pharmacokinetics.

ADP — adenosine diphosphate; has one energy-rich phosphate
bond.

Adrenergic — activated or energized by adrenalin (epinephrine).

Adsorption — adhesion of a substance to the surface of another
material.

Aerobot — flying robot.

AFM — atomic force microscope.

Afferent — in relation to nerves or blood vessels, conducting to-
ward structure or organ; carrying impulses toward a center, as when
sensory nerves carry sensory information toward the brain or spi-
nal cord.

Affinity — the strength of the binding of a ligand to a receptor, or
the reciprocal of the dissociation rate constant; a measure of the
binding energy of a ligand in a receptor; the greater the affinity, the
more securely the receptor binds the ligand.

Agenesis — failure of an organ (or part thereof ) to develop or grow.

Agglutination — one type of antigen-antibody reaction in which a
solid antigen clumps together with a soluble antibody; often in ref-
erence to red blood cell typing.

Agonist — in pharmacology, a drug which binds to a receptor and
thus stimulates the receptor’s function, possibly mimicking the body’s
own regulatory function. Compare antagonist.

Agranulocyte — a nongranular leukocyte; see monocyte, lymphocyte.

Albumin — the most abundant blood protein.

Alginate — any salt of alginic acid; derived from kelp; used in
pharmaceuticals, dentistry, and foods.

Alimentary — pertaining to the digestive tract.

Alkanethiol — a class of organic compounds which consist of a
carbon chain (alkane) attached to a sulfur-based chemical group
(thiol).

Allergen — any substance that causes manifestations of allergy.

Allergy — an acquired, abnormal immune response to a substance
(allergen) that does not normally cause a reaction.
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Alloantigen — a substance present in certain individuals that stimu-
lates antibody production in other members of the same species,
but not in the original donor.

Allodynia — a condition in which an ordinarily painless stimulus,
once perceived, is experienced as being painful (Section 15.5.1.2).

Allogeneic — having a different genetic constitution but belong-
ing to the same species.

Allograft — transplant tissue obtained from the same species as the
host.

Alloknesis — a state of spinal sensitization, similar to secondary
hyperalgesia/allodynia,3677,5837 wherein strong itching stimuli in-
duce a cutaneous halo and itchy skin in which innocuous light touch
can easily elicit itch.5835,5836 Alloknesis depends on the magnitude
of the inducing itch stimulus, is controlled by nociceptive input
from the peripheral itch focus, and is fully blocked by cooling the
itch focus.3677,5838)

Alloplast — inert implanted material, used in plastic surgery.

Allosteric control — the ability of an interaction at one site of a
protein to influence the activity of another site.

Allotype (allotypic) — genetic variants of protein that occur in a
single species; each variant can be antigenic to members of the same
species possessing different variants.

Alveolus (alveolar) — in anatomy, a small cell or cavity; a saclike
dilation. Most commonly, a small air sac found at the lowest levels
of the branching tube system comprising the lungs.

Alveolitis — inflammation of alveolus.

Alzheimer’s disease — a chronic, organic mental disorder; a form
of presenile dementia.

Amebiasis — infection with amebae.

Amniotic (amnion) — pertaining to the amnion (the innermost
of the fetal membranes).

Amphipathic — molecular structures which have two surfaces or
ends, one of which is hydrophilic and the other of which is hydro-
phobic. Lipids are amphipathic, and some protein regions may form
amphipathic helices with one charged face and one neutral face.

Amphiphile — a molecule having both hydrophobic and hydro-
philic components (e.g., soap).

Amphoteric — ability to react as both an acid and a base.

Amyloid(osis) — metabolic disorder marked by deposition of amy-
loid (a protein-polysaccharide complex) in tissues and organs.

Amyotrophic lateral sclerosis (ALS) — a syndrome marked by
muscular weakness and atrophy due to degeneration of motor neu-
rons of spinal cord, medulla, and cortex.

Analgesia — absence of normal sense of pain.

Analyte — sample substance whose chemical composition is being
analyzed.

Anaphylaxis — the immediate transient kind of immunologic (al-
lergic) reaction characterized by contraction of smooth muscle and
dilation of capillaries due to release of pharmacologically active sub-
stances (e.g. histamine, bradykinin, serotonin, etc.); a powerful al-
lergic response (Section 15.2.6.1). Anaphylaxis is classically initi-
ated by the combination of antigen (allergen) with mast cell-fixed,
cytophilic antibody (chiefly IgE immunoglobulin), but can also be
initiated by relatively large quantities of serum aggregates
(antibody-antigen complexes, and other) that seemingly activate
complement leading to production of anaphylatoxin.

Anaphylatoxin — a substance composed of the C3 and C5 com-
ponents of complement.

Anastomosis (anastomotic) — to open one structure into another
directly or by connecting channels, usually said of blood vessels,
lymphatics, and hollow viscera; to unite by means of an anastomo-
sis, or a connection between formerly separate structures.

Anemia (anemic) — reduction in the number density of circulat-
ing red blood cells.

Anergic — unresponsive; inactive; lacking energy.

Aneurysm — localized abnormal dilation of a blood vessel, usually
an artery, due to congenital defect or weakness in the vessel wall.

Angina pectoris — severe pain and sensation of constriction around
the heart, caused by cardiac ischemia.

Angioedema — a condition characterized by development of urti-
caria (hives) and edematous (swollen with excessive fluid) areas of
skin, mucous membranes, or viscera.

Angiogenesis — growth of new blood vessels, especially capillaries.

Angioplasty — altering blood vessel structure, either by a surgical
procedure or by dilating the vessel using a balloon inside the lumen.

Anhydrobiotic — ability of an organism to survive almost com-
plete desiccation.

Anion — a negatively charged ion; acidic. Compare cation.

Anophthalmic — congenital absence of one or both eyes.

Antagonist — in pharmacology, a drug that prevents receptor func-
tion. Compare agonist.

Anterior — the front of the human body, on or nearest the ab-
dominal surface; the front of something.

Anterograde — moving frontward.

Anthrax — acute infectious disease caused by Bacillus anthracis.

Antibody — a protein (immunoglobulin) produced by
B-lymphocyte cells that recognizes a particular foreign antigen, thus
triggering the immune response (Section 15.2.3.3).
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Anti-emetic — inhibiting vomiting.

Antigen — a foreign macromolecule capable of eliciting antibody
formation; any molecule or foreign substance that, when introduced
into the body, provokes synthesis of an antibody, thus stimulating
an immune response; an agent that can bind specifically to compo-
nents of the immune response; not all antigens are immunogens.

Antipyretic — reducing fever.

Antisense oligonucleotide — a nucleotide polymer having a se-
quence complementary to a target nucleotide sequence.

Aorta (aortic) — the largest artery in the human body, leading
away from the heart.

Apheresis — removal of blood from an individual patient, separat-
ing certain elements (e.g. red cells, platelets, white cells) for use
elsewhere, and reintroducing the remaining components into the
patients; also known as cytapheresis, hemapheresis, leukapheresis,
pheresis, and plasmapheresis, depending on the type of cells being
harvested.

Apical — pertaining to the apex (e.g. the point of a cone) of a
structure.

Apoptotic — undergoing apoptosis (programmed cell death).

Apoptosis — an orderly disintegration of eukaryotic cells into
membrane-bound particles that may then be phagocytosed by other
cells (Section 10.4.1.1).

Apposition — condition of being side by side or fitted together.

Aptamers — single-stranded nucleic acids that directly inhibit a
protein’s function by folding into a specific three-dimensional struc-
ture that dictates high-affinity binding to the targeted protein.5810

Area compressibility modulus — a mechanical property charac-
teristic of a membrane, defined as the isotropic tension per unit
fractional change in area.

Aromatic compounds — in chemistry, ring or cyclic compounds
related to benzene, many having a fragrant odor.

Arthropathy — any joint disease.

Arthroplasty — the operative procedure of reshaping or reconstruct-
ing a diseased joint.

Artificial organ — a medical device that replaces, in whole or in
part, the function of one of the natural organs of the human body.

Artificial organ, hybrid — an artificial organ that is a combina-
tion of viable cells and one or more biomaterials.230

Ascites — accumulation of serous fluid in the peritoneal cavity.

Aseptic — characterized by the absence of living pathogenic organ-
isms; a state of sterility.

Asialo- — a molecule lacking a sialyl group; see sialyl.

Aspiration — drawing in or out, as by suction.

Asperities — protruding elements of roughness on a surface, e.g.,
burrs or spurs.

Asplenic — without a spleen.

Asters — stellate rays forming around the dividing centrosome dur-
ing mitosis.

Asthma — disease caused by increased responsiveness of the tra-
cheobronchial tree to various stimuli, with paroxysmal constriction
of the bronchial airways.

Astrocyte — a star-shaped neuroglial cell with many branching
processes.

Astroglioma cells — neoplastic or tumor cells associated with as-
trocytes making up neuroglial tissue.

Atelectasis — condition in which fetal lungs remain unexpanded
at birth.

Atherectomy — a procedure to remove plaque from arteries; e.g.,
using a laser catheter or a rotating “burr” shaver.

Atherosclerosis (atherosclerotic) — the most common form of
arteriosclerosis (thickening, hardening, and loss of elasticity of arte-
rial walls).

ATP — adenosine triphosphate; has two energy-rich phosphate bonds.

Atrial natriuretic peptide — hormone secreted by atrial tissue of
the heart in response to an increase in blood pressure.

Atrium (atrial) — chamber or cavity communicating with another
structure.

Atrophy — decrease in size of organ or tissue; to waste away.

Auricle — portion of the external ear not contained within the
head; the pinna.

Austenitic — a higher-temperature body-centered cubic structure
with the characteristic stress-strain curve of most metals; compare
martensitic.

Autocatalysis (autocatalytic) — increase in the rate of chemical
reaction resulting from products that are produced in the reaction
acting as catalysts.

Autologous — having its origin within the host organism.

Autolysis — self-dissolution or self-digestion of tissues or cells, by
endogenous enzymes.

Autophagy — self-consumption by a cell.

Autosome (autosomal) — any of the chromosomes other than the
XY sex chromosomes.

Avirulent — without virulence.
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Azurophilic — staining readily with azure dye.

Babesiosis — a rare and often severe or fatal disease of man caused
by an intraerythrocytic protozoan, Babesia microti, transmitted by ticks.

Bacteremia (bacteremic) — bacteria in the blood.

Bacteriophages — viruses that infect selected bacteria; often ab-
breviated as phages.

Barosensor — pressure-detecting sensors in cells.

Basal lamina — basement lamina, e.g. basement membrane.

Basal rate — in metabolism, a measure of the metabolic rate taken
with the patient fasting and at rest. The oxygen consumed in breath-
ing under these conditions indicates the minimum rate of chemical
reactions in the body.

Basement membrane (basement lamina) — a thin layer of deli-
cate noncellular material of a fine filamentous texture underlying
the epithelium; its principal component is collagen.

Base pair (bp) — a complementary purine-pyrimidine
hydrogen-bonded residue pair, one from each strand of DNA double
helix, designating one unit (bp) of sequence. A partnership of ad-
enine (A) with thymine (T) or of cytosine (C) with guanine (G) in
a DNA double helix; other pairs can be formed in RNA under cer-
tain circumstances.

Basophil — a type of granulocytic white blood cell comprising less
than 1% of all leukocytes, that is essential to the nonspecific im-
mune response to inflammation because of its important role in
releasing histamine and other chemicals that act on blood vessels.

Biliary — pertaining to bile.

Billroth’s cords — splenic cords found in the red pulp between the
sinusoids, consisting of fibrils and connective tissue cells with a large
population of monocytes and macrophages.

Bioactive — the ability of a biomaterial surface or coating to ad-
here directly to soft or hard tissue without an intermediate layer of
modified tissue.234

Bioactive material — a biomaterial that is designed to elicit or
modulate biological activity;5870 Section 15.2.1.3.

Bioadhesion — the adhesion of cells or tissue to the surface of a
material.230

Bioattachment — the fastening of cells or tissue to the surface of a
material, including mechanical interlocking.230

Biocompatibility — biological performance in a specific applica-
tion that is judged suitable to that situation;234 the ability of a ma-
terial to perform with an appropriate host response in a specific
situation.230

Biocompatible material — one having acceptable host and mate-
rial response in a specific application.234

Biodegradation — the breakdown of a material mediated by a bio-
logical system;5870 the passive response of a material to the
physico-chemical conditions found in living systems, involving ac-
tual cellular effects on the pericellular environment.234

Biodistribution — distribution of a substance, after in vivo ad-
ministration, throughout the organs and tissues of the body.

Biofilm — bacteria embedded in a film of adhesive polymer (espe-
cially on implanted devices); bacteria within the film are protected
from the action of antibiotics (Section 15.2.1.4).

Biological performance — the interaction between materials and
living systems;234 preferred term is biocompatibility.

Biomaterial — a material intended to interface with biological sys-
tems to evaluate, treat, augment, or replace any tissue, organ, or
function of the body;5870 a nonviable material used in a medical
device, intended to interact with biological systems.230

Biomaterials, inert — implantable materials that elicit little or no
host response.234

Biomaterials, interactive — implantable materials designed to elicit
specific, beneficial responses, such as ingrowth, adhesion, etc.234

Biomaterials, replant — implantable materials consisting of na-
tive tissue, cultured in vitro from cells obtained previously from the
specific implant patient.234

Biomaterials, viable — implantable materials, incorporating or at-
tracting live cells at implantation, that are treated by the host as
normal tissue matrices and are actively resorbed or remodeled.234

Biomaterials engineering — the application of the principles of
biomaterials science and its foundation sciences to the solution of
practical problems of human health, disability, and disease.234

Biomaterials field — the organized study of the materials proper-
ties of the tissues and organs of living organisms; the development
and characterization of pharmacologically inert materials to mea-
sure, restore, and improve function in such organisms; and the in-
teraction between viable and nonviable materials.234 Biomaterials
is: (1) a materials science, the central issue being the dependence of
physical properties on composition and structure; (2) an interdisci-
plinary science, its unique feature being a consideration of the in-
teractions between living and nonliving materials; and (3) a medi-
cal science, whose ultimate goal is the improvement of human health
and quality of life.234

Biomaterials science — the study and knowledge of the interac-
tion between living and nonliving materials.234

Biomimetic — an approach to bioengineering in which artificial
materials are selected to mimic as closely as possible the desired
structure or function of natural biological components.

Bioresorbable — the ability of a biomaterial to be digested by or as
a consequence of cellular activity, and thus dissolve or disappear in
part or in whole after implantation; implies specific action of cells
or tissues.234 See also resorbable.
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Blockade — prevention of the action of something, such as the
effect of a drug or of a body function, e.g. halting immune system
blood cleansing by overloading the RES (Section 15.4.3.6.10).

B-lymphocytes (B-cells) — thymus-independent white blood cells
responsible for synthesizing antibodies.

Bolus — mass of masticated food ready to be swallowed; concen-
trated mass of a diagnostic substance given rapidly intravenously.

Bone bonding — the establishment, by physicochemical processes,
of continuity between implant and bone matrix.5870

Bowman’s capsule — a visceral layer closely applied to the glom-
erulus and an outer parietal layer that functions as a filter in the
formation of urine in the kidney.

bp — see base pair.

Brachiation — in medical nanorobotics, by alternately swinging
the arms (e.g. swinging hand-over-hand).

Brachymetatarsia — abnormal shortness of one of the metatarsals
(the five long bones of the foot), resulting in a short toe.

Bradykinin — an end product of contact system activation (Sec-
tion 15.2.5).

Bronchoconstriction — constriction of the bronchial tubes.

Broncholithiasis — bronchial inflammation or obstruction caused
by calculi in the bronchi.

Bronchopulmonary — pertaining to bronchi and lungs.

Bronchus (bronchi) — one of the two large branches of the tra-
chea.

Brownian motion — random motion of small particles in a fluid
owing to thermal agitation.

BSA — bovine serum albumin. See also albumin.

Buckyballs — ball-like molecules of fullerene carbon, C60 (Section
2.3.2).

Buckytubes — carbon nanotubes (Section 2.3.2).

Calciphylaxis — state of induced tissue sensitivity characterized by
calcification of tissue when challenged by an appropriate stimulus.

Calculus (calculi) — commonly called stone; any abnormal con-
cretion within the animal body, though usually composed of min-
eral salts.

Calmodulin — a 17,000-dalton protein that binds calcium ions in
eukaryotic cells, thereby becoming the agent for many or most of
the cellular effects ascribed to calcium ions.

Calor — local tissue temperature rise, one of the four classic signs
of inflammation (Section 15.2.4); see also dolor, rubor, tumor.

cAMP — cyclic AMP (adenosine monophosphate), an intracellu-
lar messenger molecule.

Canaliculus (canalicular) — small channel or canal.

Cancer — a disease of multicellular organisms characterized by un-
controlled multiplication and spread of abnormal forms of host cells.234

Canine — pertaining to dogs.

Cannula — tube or sheath enclosing a trocar (a transdermal punch),
the tube allowing escape of fluid after withdrawal of the trocar from
the body.

Capacitance, electrical — ability to store electric charge.

Capacitance, phagocytic — ability of phagocyte to ingest phago-
cytic targets.

Capillaritis — inflammation of the capillaries.

Capsule — tissue surrounding an implant produced by local host
response.234 See also granuloma, incapsulation.

Carbon black — finely divided amorphous carbon particles (Sec-
tion 15.3.3.5).

Carcinogen — an agent capable of causing cancer (Section 15.2.8).

Carcinoma — a new growth or malignant tumor that occurs in
epithelial tissue; can metastasize throughout the body.

Cardiac — pertaining to the heart.

Cardiomegaly — abnormal enlargement of the heart.

Cardiomyopathy — disease of the myocardium (heart muscle).

Cardioplegia — intentional arrest of the cardiac function using
cold, electrical stimuli, or medication to greatly reduce the need of the
myocardium for oxygen; often done during cardiopulmonary bypass.

Carotid — principal arteries supplying oxygenated blood to the
head and neck, originating in the aorta.

Cartilage — specialized type of dense connective tissue consisting
of cells embedded in a firm, compact fibrous collagenous matrix.

Catheter — a tube passed through the body for evacuating or in-
jecting fluids into body cavities.

Cation — a positively charged ion. Compare anion.

Caveolae — structural indentations (~50 nm) in plasma membrane
of the cell, serving to draw substances such as vitamins and signal
transduction molecules into the cell’s interior.

Cavitation — in physics, the formation of bubbles in a fluid dur-
ing high-power sonication of that fluid; in medicine, formation of a
cavity by either normal or pathological biological processes. See
Section 6.4.1.
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CB — see carbon black.

CD- — cluster of differentiation, designating surface marker pro-
teins that distinguish various T cell subpopulations (Section
15.2.3.1.2).

Cecum — a blind pouch that forms the first portion of the large
intestine, located below the entrance of the ileum at the ileocecal
valve (Figure 8.16).

Celiac — pertaining to the abdominal regions.

Cellulitis — inflammation of cellular or connective tissue, spread-
ing as in erysipelas.

Centrosomes — the regions from which microtubules are orga-
nized at the poles of a mitotic (dividing) cell.

Ceramide — a class of lipids, derived from a sphingosine (a
long-chain base present in sphingolipids), that do not contain cho-
lesterol.

Cervix — the neck, or part of an organ resembling the neck; usu-
ally refers to neck of the uterus.

CFRC — carbon fiber-reinforced carbon.

CFU — colony forming units (e.g., number of microbes).

Chaotropic agents — structure-breaking ions, salts, and other
agents that weaken hydrophobic associations, denature proteins,
increase membrane permeability to protons, and can promote
cell lysis.

Charcot-Marie-Tooth disease — a form of progressive neural mus-
cular atrophy.

Chelation — combining of metallic ions with certain heterocyclic
ring structures so that the ion is held by chemical bonds from each
of the participating rings; chelating agents are commonly used to
remove toxic metals from the body.

Chemisorption — adsorption with the formation of tight covalent
bonds.

Chemokines — compounds that draw cells and other factors to
sites of injury in the body.

Chemokinesis — general random movement or nondirected cell
locomotion.

Chemorepellents (chemorepulsion) — chemotaxis antagonists or
negative chemokinesis agents.

Chemotactic — pertaining to chemotaxis.

Chemotaxis — the movement of additional white blood cells to an
area of inflammation in response to the release of chemical media-
tors by neutrophils, monocytes, or injured tissue; orientation or
movement of cells toward a chemical source; movement along a
spatial gradient or directed cell locomotion.

Chiggers — six-legged larvae of mites of the family Trombiculidae;
redbugs.

Chimeric molecule — combining in one molecule dissimilar com-
ponents from two or more different molecules.

Cholesterol — a sterol (a group of substances related to fats) widely
distributed in animal tissues; a monohydric alcohol with a cyclic nucleus.

Cholinergic — activated or energized by acetylcholine.

Cholelithiasis — formation or presence of calculi or bilestones in
the gallbladder or common duct.

Chondrocyte — a cartilage cell.

Chondrogenesis — formation of cartilage.

Chorioamnionitis — inflammation of the membranes that cover
the fetus.

Chomatin — the complex of DNA and protein in the nucleus of
the interphase eukaryotic cell; individual chromosomes cannot be
distinguished in it.

Chronic — duration of 30 days or longer.234 Compare acute.

Chrysotile — a flexible, chemically-resistant, nonflammable fibrous
mineral with high tensile strength.

Chylomicron — submicron-sized protein-lipid aggregates produced
by the intestine and carried by the lymph system into the blood
(Section 15.4.2.2).

Chyme — a semifluid mixture of partly digested food and digestive
secretions found in the stomach and small intestine during diges-
tion of a meal.

Circadian — pertaining to physiological events that occur at ap-
proximately 24-hour intervals.

Circumvascular — surrounding or wrapping around the exterior
of a blood or lymph vessel.

Cirrhosis (cirrhotic) — a chronic liver disease involving loss of
functioning liver cells, increased resistance of blood flow through
the organ, and disturbance of normal tissue architecture; in serious
cases, leads to ammonia toxicity.

Clathrin — cell-type specific 180,000-dalton protein that coats
intracellular transport vesicles, forming a basket or cage around the
vesicle. See vesicles (endocytotic).

Clinical — founded on actual observation and treatment of pa-
tients, as distinguished from data or facts obtained by experimenta-
tion or pathology; or, pertaining to a clinic.

Clottocytes — in medical nanorobotics, artificial mechanical plate-
lets22 (Chapter 24).

CNS — central nervous system.
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Coagulation — sequential process in blood leading to thrombus
formation (Section 15.2.5).

Coagulopathy — defect in the blood clotting mechanisms.

Coarctation — compression of the walls of a vessel; a stricture.

Cochlea (cochlear) — the coiled, fluid-filled structure of the inner
ear that transduces sound, allowing hearing.

Colitis — inflammation of the colon.

Collagen — the major protein of the white fibers of connective
tissue, cartilage, and bone, rich in glycine, alanine, proline, and
hydroxyproline (amino acids), low in sulfur, and completely lack-
ing in tryptophan (another amino acid); the collagen family com-
prises ~25% of all mammalian protein.

Collagenase — an enzyme that catalyzes the hydrolysis of collagen.

Colon (colonic) — the large intestine (Figure 8.16).

Colostrum — breast fluid that may be secreted from the second
trimester of pregnancy onward, preceding true lactation.

Commissure — the coming together across the midline or divid-
ing space of two structures.

Communicyte — in medical nanorobotics, a theorized mobile,
mass-storage (nanorobotic) device that can be used for information
transport throughout the human body (Section 7.3.2).

Complement — a group of proteins in the blood that influences
the inflammatory process and serves as the primary mediator in the
antigen-antibody reactions of the B-cell mediated immune response.
Components of complement are labeled C1-C9; C3 and C5 are
most commonly involved in promoting vasodilation, chemotaxis,
opsonization of antigens, lysis of cells, and blood clotting (Section
15.2.3.2).

Compliance, mechanical — the reciprocal of stiffness; in a linear
elastic system, displacement equals force times compliance.

Concussion (concussive) — injury resulting from impact with an
object.

Condyle — a rounded protuberance at the end of a bone forming
an articulation.

Conformation — molecular folding; a molecular geometry that
differs from other geometries chiefly by rotation about single or
triple bonds; distinct conformations (termed conformers) are asso-
ciated with distinct potential wells. Typical biomolecules and prod-
ucts of organic synthesis can interconvert among many conforma-
tions. Typical diamondoid structures are locked into a single poten-
tial well, and thus lack conformational flexibility.

Congestive heart failure — weakness, breathlessness, abdominal
discomfort and lower-body edema resulting from venous stasis and
reduced outflow of blood from the left side of the heart.

Conjugated — in chemistry, a conjugated pi system is one in which
pi bonds alternate with single bonds; the resulting electron distri-
bution gives the intervening single bonds partial double-bond char-
acter, the pi electrons become delocalized (useful in molecular wires),
and the energy of the system is reduced. More generally, joined or
paired.

Control material — see reference material.

Contusion — injury in which skin is not broken; bruise.

Cornea — the clear, transparent anterior portion of the fibrous coat
of the eye comprising about one-sixth of its surface.

Coronary — refers to the heart and to coronary heart disease; en-
circling the heart.

Corpus callosum — the great commissure of the brain between
the cerebral hemispheres.

Cortex (cortical) — the outer layer; compare medulla.

Costimulatory — costimulatory molecules are required on a target
surface (e.g., of a cell to be phagocytosed) before T cells may be-
come activated.

Costochondral — pertaining to a rib and its cartilage.

Covalent bond — in chemistry, a bond formed by sharing a pair of
electrons between two atoms.

Cranium (cranial) — pertaining to the portion of the skull enclos-
ing the brain.

Creatinine — end product of creatine metabolism, found in urine;
increased quantities indicate advanced stages of renal disease.

Cricothyroid — pertaining to the thyroid and cricoid cartilages.

Crinal — pertaining to hair.

Crosslinks — in biochemistry, additional bonds formed between
normally separate parts of a polymer, typically increasing the tensile
strength and stiffness of the chain.

Cruciate — cross-shaped.

Crystallescence — in medical nanorobotics, the crystallization of
solid solute that is offloaded by nanorobot sorting rotors at a con-
centration that exceeds the solvation capacity of the surrounding
solvent (Section 9.2.6).

Crystalluria — appearance of crystals in the urine.

CSF — cerebrospinal fluid.

Cutaneous — pertaining to the skin.

CVD — chemical vapor deposition.
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Cyanosis — bluish or grayish skin discoloration due to abnormal
amounts of reduced hemoglobin in the blood.

Cycloaddition — a chemical synthesis reaction in which two unsat-
urated molecules (or moieties within a molecule) bond to form a ring.

Cystic fibrosis (CF) — inherited disease of exocrine glands charac-
terized by chronic respiratory infection, pancreatic insufficiency, and
increased electrolytes in sweat.

Cytoambulation (cytoambulatory) — in medical nanorobotics,
cell surface walking (Section 9.4.3).

Cytocarriage — in medical nanorobotics, the commandeering of a
natural motile cell, by a medical nanorobot, for the purposes of in
vivo transport (of the nanorobot), or to perform a herding function
(of the affected cell), or for other purposes (Section 9.4.7).

Cytochrome — a class of cellular respiration hemoprotein pigments.

Cytocide — the killing of living cells (Section 10.4).

Cytocompatibility — biocompatibility with cells.

Cytokines — a group of extracellular biochemical substances that
may be produced by a variety of cells, for the purposes of chemical
messaging, regulation, and control; proteins that exert changes in
the function or activity of a cell, such as differentiation, prolifera-
tion, secretion, or motility; chemical species used for intercellular
signaling.234

Cytopathology — pathology of the cell.

Cytopenetration — in medical nanorobotics, entry into cells by
penetrating the plasma membrane (Section 9.4.5).

Cytoplasmic — pertaining to, or residing in, the cell cytoplasm.

Cytoskeleton — the internal structural framework of a cell con-
sisting of at least three types of filaments (microfilaments, microtu-
bules, and intermediate filaments), forming a dynamic framework
for maintaining cell shape and motion and allowing rapid changes
in the three-dimensional structure of the cell (Section 8.5.3.11).

Cytosurgery — surgical procedures performed on individual cells.

Cytotoxic — having a deleterious or adverse effect on cells, up to
but not always implying cell death; tending to kill cells.

Dacron — polyethylene terephthalate.

Dalton — unit of molecular weight (1 dalton ~ 1 proton).

Decubitus — a bedsore.

De-differentiation — the loss by mature cells of some of their spe-
cialized properties and reversion to a less developed state.5484

De-differentiation is a normal part of healing and regeneration,5485 can
be induced mechanically,5486 and is often a part of early tumor devel-
opment.5487 Artificial de-differentiation, or cellular reprogramming,
aims at getting specialized body cells to revert to a primordial state, like
stem cells, so they can be turned into various types of tissues.6028

Degranulation — loss of granules, especially in a phagocytic cell.

Denaturation — conversion of a protein from the physiological
conformation to some other (possibly inactive) conformation.

Dendrimers — large, regularly-branching molecules (Section
15.3.6.4).

Dendrite — a branched protoplasmic process of a neuron that con-
ducts impulses toward the cell body. There are usually many to a
cell, forming synaptic connections with other neurons.

Dendritic cells (DCs) — leukocytes of bone marrow origin; anti-
gen presenting cells scattered throughout the body in immature form
as immunological sensors; subsets of DCs differ in phenotype, func-
tion, and locale.

Denudation — removal of a protecting layer or covering through
surgery, pathological condition, or trauma.

Deoxyribonucleic acid (DNA) — a complex molecule of very high
molecular weight encoding genetic information. DNA consists of
deoxyribose (a sugar), phosphoric acid, and four bases (purines or
pyrimidines), arranged as two long chains that twist around each
other to form a double helix joined by bonds between the comple-
mentary purine and pyrimidine components (analogous to rungs
on a twisted ladder). DNA is present in the chromosomes of all
cells and is the chemical basis of heredity and the carrier of genetic
information for almost all organisms (e.g. except the RNA virus,
etc.).

Dermatitis — inflammation of skin evidenced by itching, redness,
and various skin lesions.

Dermis — inner layer of the skin that lies below the epidermis.

Desialylated — molecules from which sialyl chemical groups have
been removed.

Desiccate — removal of water; dehydration.

Detritus — broken down or degenerative matter produced by dis-
integration.

Device, medical — an instrument, apparatus, implement, machine,
contrivance, in vitro reagent, or other similar or related article, in-
cluding any component, part, or accessory, intended for use in the
diagnosis of disease or other conditions, or in the cure, mitigation,
treatment, or prevention of disease in humans.230

Dialysate — a fluid that has been dialyzed.

Dialysis (dialyzer) — the passage of a solute through a membrane;
process of diffusing blood across a semipermeable membrane to re-
move toxic materials and to maintain fluid, electrolyte, and acid-base
balance in cases of impaired kidney function.

Diamondoid — structures that resemble diamond in a broad sense;
strong, stiff structures containing dense, three-dimensional networks
of covalent bonds, formed chiefly from first and second row atoms
with a valence of three or more. Many of the most useful diamondoid
structures will be rich in tetrahedrally coordinated carbon.
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Diapedesis — transendothelial migration (passing through blood
vessel endothelial coated walls) to exit the bloodstream and enter
the surrounding tissues (Section 9.4.4.1).

Diaphysis — the shaft or middle part of a long cylindrical bone.

Diastole (diastolic) — the normal period in the heart cycle during
which the muscle fibers loosen and lengthen, the heart dilates, and
the cavities fill with blood; roughly, the period of relaxation alter-
nating with systole or contraction.

Diathermy — local elevation of temperature within the tissues,
produced by high-frequency (~MHz) current, ultrasonic waves, or
microwave radiation.

DIC — see disseminated intravascular coagulation.

Dielectrophoresis — the lateral motion imparted on uncharged
particles as a result of polarization induced by non-uniform electric
fields.

Differentiation — acquisition of character or functions that are
different from those of the original type; specialization of cell type
within a cell line of increasingly specialized types, by a change in
physical form of a cell.

Diffusion — a process by which populations of molecules inter-
mingle and become mixed as a result of their incessant thermal
motions.

Disseminated intravascular coagulation (DIC) — a pathological
form of coagulation that is diffuse rather than localized (as in nor-
mal coagulation), with several clotting factors so heavily consumed
that generalized bleeding may occur.

Disse space — fluid-filled space outside hepatic endothelial cells
(Figure 8.27).

Distal — away from a source or a point of attachment or origin; in
the extremities, farthest from the trunk.

Diverticulum — a sac or pouch in the walls of a canal or organ.

DLC — diamond-like carbon.

DNA — see deoxyribonucleic acid.

Dolor — local pain, one of the four classic signs of inflammation
(Section 15.2.4); see also calor, rubor, tumor.

Dopaminergic — activated or energized by dopamine.

Dorsal — pertaining to the backside.

Duodenum — the first ~12 inches of the small intestine.

Dura mater — outer membrane covering the spinal cord and brain.

Dust cells — alveolar macrophages.

Dysentery — intestinal disorders, especially of the colon, charac-
terized by inflammation of the mucous membrane.

Dysesthesia — abnormal sensations on the skin, including feelings
of numbness, tingling, prickling, burning, or cutting pain.

Dysopsonic — tending to remove opsonization molecules that have
become adhered to an exposed in vivo surface.

Dysphonia — difficulty in speaking; hoarseness.

Dystrophia (dystrophic) — disorder caused by defective nutrition
or metabolism.

EAG — “ether a go-go,” a distinct type of voltage-activated potas-
sium (K+) channel.

EC — endothelial cells.

Ecchymosis — skin discoloration consisting of large, irregularly
formed hemorrhagic areas, caused by extravasation of blood into
skin or mucous membrane.

Eclampsia — Coma and compulsive seizures between the 20th week
of pregnancy and the end of the first week postpartum; usually fatal
if untreated.

ECM — see extracellular matrix.

Edema (edematous) — swollen with excessive fluid.

Edentulous — without teeth.

Efferent — in relation to nerves or blood vessels, conducting away
from a structure or organ; carrying impulses away from a center, as
when motor nerves carry impulses from the brain and spinal cord
to an effector (e.g., a muscle).

Effervescence — in medical nanorobotics, bubble formation by a
gaseous solute that is offloaded by nanorobot sorting rotors at a
concentration that exceeds the solvation capacity of the surround-
ing solvent (Section 9.2.6).

Effluent — discharged fluid material; a flowing out.

Elasticity — a property of an object or material, wherein the object
or material returns to its original shape after a force is applied and
then removed.

Elastin — extracellular connective tissue protein; principal compo-
nent of elastic fibers.

Electret — a material that retains a permanent charge.

Electrocautery — cauterization (destruction of tissue) by heated
wire.

Electrochemistry — science of chemical changes produced by elec-
tricity.

Electrocompatibility — the electrical biocompatibility of
nanodevices or nanorobotic systems as they interact with the or-
gans, tissues and cells of the human body (Chapter 15.3.8).
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Electrolyte — a substance that, in solution, conducts an electric
current and is decomposed by the passage of an electric current; a
solution that is a conductor of electricity.

Electron affinity — the energy liberated when an extra electron is
attached to an atom to form an anion.

Electronegativity — a measure of the tendency of an atom (or
moiety) to withdraw electrons from structures to which it is bonded.
In most circumstances, sodium (Na) tends to donate electron den-
sity (low electronegativity) whereas fluorine (F) tends to withdraw
electron density (high electronegativity); nitrogen (N) and oxygen
(O) are also electronegative atoms.

Electrophoresis — the movement of charged colloidal particles
through the medium in which they are dispersed as a result of changes
in electrical potential; used in the analysis of protein mixtures be-
cause protein particles move with different characteristic velocities
dependent principally on the number of charges carried by each
particle.

Electroporation — insertion of macromolecules (e.g. DNA) into
cells by employing a brief intense pulse of electricity to open cellu-
lar pores.

Electrostatic — pertaining to the static electric fields produced by
charged objects.

Elliptocytosis — increased number of elliptocytes (oval-shaped red
blood cells); occurs in some forms of anemia.

Elution — in chemistry, separation of one material from another
by washing.

Embolus — a mass of undissolved matter (solid, liquid, or gaseous)
present in a blood or lymphatic vessel, brought there by the blood
or lymph current.

Emesis — vomiting; may be chemically induced using an emetic.

Emetogenesis — eliciting vomiting (Section 15.2.6.3).

Emperipolesis — temporary presence of one cell within another’s
cytoplasm.

Encapsulation — formulation of granulation tissue with a fibrotic
capsule surrounding the foreign body.

Encephalitis — inflammation of the brain.

Endarterectomy — surgical removal of the lining of an artery.

Endocarditis — a life-threatening inflammation of the heart’s in-
ner lining.

Endocardium — serous lining membrane of the inner surface and
cavities of the heart.

Endocytosis (endocytotic) — a process by which proteins arriving
at the surface of a cell are internalized, being transported inside the
cell within membranous vesicles.

Endogenous — originating inside an organ, part, or system.

Endohedral — lying entirely within a (fullerene) cage molecule.

Endometrium (endometrial) — pertaining to the lining of the uterus.

Endoplasmic reticulum — in cell biology, a highly convoluted sheet
of membranes, extending from the outer layer of the nuclear enve-
lope into the cytoplasm (Section 8.5.3.5).

Endoprosthesis — an internally-worn permanently-attached de-
vice that replaces a limb, organ, or tissue of the body.234 See also
prosthesis.

Endoscopy — inspection of body organs or cavities using the en-
doscope (device consisting of a tube and optical system).

Endosome — the vacuole formed when material is absorbed into a
cell by the process of endocytosis; the vacuole fuses with lysosomes.

Endosteum (endosteal) — membrane lining the medullary cavity
of a bone.

Endosymbiont (endosymbiotic) — an organism or cell that lives
inside another organism or cell, in a state of symbiosis.

Endothelium — a form of squamous epithelium consisting of flat
cells (endothelial cells) that line the blood and lymphatic vessels,
the heart, and various other body cavities.

Endotoxin — bacterial toxin confined within the body of a bacte-
rium, freed only when the bacterial cell wall is lysed.

Endotracheal — within the trachea.

Enophthalmos — recession of eyeball into orbit.

Enteric — pertaining to the small intestine.

Enterocyte — intestinal (duodenum and jejunum) lining cells, im-
portant in the final phases of digestion and for absorption of pro-
tein, fat and carbohydrate.

Enterotoxin — toxin produced in or originating in the intestinal
contents, exotoxin specific for the cells of the mucosa, or exotoxin
produced by bacteria that cause food poisoning and toxic shock
syndrome.

Enthalpy — in thermodynamics, the internal energy of a system
plus the product of its volume and the external pressure.

Entropy — in the physical sciences, a measure of uncertainty re-
garding the state of a system; free energy can be extracted by con-
verting a low-entropy state to a high-entropy state. In other con-
texts, the term is often used by analogy to describe the extent of
randomness and disorder in a system and the consequent lack of
knowledge or information about it.

Enucleated cell — a cell from which the nucleus has been removed.

Envasculoided — permeated with a vasculoid4609 appliance implant.
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Enzyme — a protein molecule that often acts as a specific catalyst,
facilitating specific chemical or metabolic reactions necessary for
cell growth and reproduction; a biological chemosynthetic molecu-
lar machine.

Eosinophil — a type of granulocytic white blood cell comprising
1%-4% of all leukocytes, that is known to destroy parasitic organ-
isms and to play a major role in allergic reactions (some of the ma-
jor chemical mediators that cause bronchoconstriction in asthma
are released by eosinophils).

EPA — Environmental Protection Agency (U.S.).

Epidermis (epidermal) — the outer epithelial portion of the skin.

Epidermalgia — sensation of pain in the epidermis (Section
15.5.1.2).

Epidural — located over or upon the dura.

Epimysium (epimysial) — outermost sheath of connective tissue
that surrounds a skeletal muscle.

Episclera (episceral) — outermost superficial layer of the sclera of
the eye.

Epithelium (epithelial tissue) — the avascular layer of cells form-
ing the epidermis of the skin and the surface layer of mucous (se-
creting mucus) and serous (secreting serum or serumlike fluid) mem-
branes, including the glands. The cells rest on a basement mem-
brane and lie closely approximated to each other with little intercel-
lular material between them. Skin and the lining of natural internal
body cavities.234

Epitope — the particular site on the macromolecular surface of an
antigen which elicits specific affinity of an antibody; the antigenic
determinant; any component of an antigen molecule that functions
as an antigenic determinant by permitting the attachment of cer-
tain antibodies.

ER — emergency room.

Erysipelas — acute febrile disease with localized inflammation, with
redness of skin and subcutaneous tissue accompanied by systemic
signs and symptoms.

Erythema — redness; see rubor (inflammation).

Erythroblastosis fetalis — a hemolytic disease of the newborn char-
acterized by anemia, jaundice, enlargement of liver and spleen, and
generalized edema.

Erythrocyte — red blood cell.

Erythropathy — disease of the red blood cells.

Erythropoietic — producing erythrocytes.

Erythropoietin — a hormone that controls the production rate of
red blood cells in the human body.

Esophagus (esophageal) — muscular canal extending from phar-
ynx to stomach.

Esthesiometer — device for measuring tactile sensitivity.

Ethmoidal — pertaining to ethmoid bone (spongy bone forming
roof for the nasal fossae and part of floor for anterior fossa of the
skull) or sinuses.

Eukaryote (eukaryotic) — an organism or cell that contains its
genome within a nucleus.

Euler buckling — force required to cause a structure to buckle
under compression.

Euvolemic — normal blood volume.

Exocrine — external secretion of a gland; glands whose secretion
reaches an epithelial surface either directly or through a duct.

Exocytosis (exocytic) — the process of secreting proteins from a
cell into the surrounding medium, by transport in membranous
vesicles from the endoplasmic reticulum, through the Golgi, to stor-
age vesicles, and finally (upon a regulatory signal) through the plasma
membrane.

Exogenous — originating outside an organ, part, or system.

Exoprosthesis — an externally-worn device that replaces a limb,
organ, or tissue of the body. See also orthosis.

Exsanguinate — loss of blood to the point at which life can no
longer be sustained; expressing blood from a part.

Extracellular — outside of the cell.

Extracellular matrix (ECM) — an extracellular fibrous scaffold-
ing that helps organize cells into tissues (Section 9.4.4.2).

Extrahepatic — outside the liver.

Extranuclear — outside the cell nucleus.

Extravasation — exiting the bloodstream; see diapedesis.

Extravascular — outside a vessel.

Extrusion (implants) — resolution of inflammation, in which im-
plants in contact with epithelial tissue are surrounded by a
down-growing extension of such tissue, directed toward extruding
the implant from the body; also termed marsupialization, due to
the resemblance of the newly formed tissue to a kangaroo’s pouch.234

Exudate — accumulation of a fluid in a cavity; matter that pen-
etrates through vessel walls into adjoining tissue; the production of
pus or serum.

Ex vivo — outside of the living human body.

Fabrey’s disease — an inherited metabolic disease in which a gly-
colipid (ceramide trihexoside) accumulates in the organs and tis-
sues, impairing function of kidneys and other organs.
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Fascia — a fibrous membrane covering, supporting, and separating
muscles; also, unites the skin with underlying (e.g. muscular) tissue.

Fascicles — a small bundle, especially of nerve fibers.

FBGC — multinuclear foreign body giant cell.

FDA — Food and Drug Administration (U.S.).

Febrile — pertaining to fever (Section 15.2.7).

Feline — pertaining to cats.

Femur (femoral) — thigh bone; longest and strongest bone in hu-
man skeleton.

Fenestrated — having openings.

FEP — fluorinated ethylene propylene (a form of Teflon).

Ferrofluid — a stable colloidal liquid-carrier suspension of
sub-domain magnetic particles of average size ~10 nm that are coated
with a stabilizing dispersing agent (surfactant) to prevent particle ag-
glomeration even when a strong magnetic field gradient is applied.

Fetotoxic — toxic to the fetus.

Fibrinogen — a blood protein molecule that is ultimately con-
verted to the active protein, fibrin, after foreign surface contact
during blood clotting (Section 15.2.5).

Fibroblast — a stellate or spindle-shaped motile cell with cytoplas-
mic processes present in connective tissue, capable of forming col-
lagen fibers.

Fibroid — colloquial term for fibroma (a fibrous, encapsulated,
connective-tissue tumor), especially a fibroma of the uterus.

Fibromyalgia — chronic pain in muscles and soft tissues surround-
ing joints.

Fibronectin — any one of a group of fibrous linking proteins present
in blood plasma and extracellular matrix.

Fibrosis — abnormal formation of fibrous tissue.

Fimbria (fimbral) — any structure resembling fringe or border.

Fission, cell — in microbiology, a method of asexual reproduction
in bacteria, protozoa, and other lower forms of life; in cell biology,
the partition of one organelle into two, as for example the fission-
ing mitochondrion.

Fistula — in anatomy, an abnormal tubelike passage from a normal
cavity or tube to a free surface or to another cavity; may be due to
congenital incomplete closure of parts, or may result from abscesses,
injuries, or inflammatory processes.

Fluorophore — peptide sequence that mediates fluorescence; fluo-
rescent probes use a fluorophore are conjugated to antibodies or
other molecules designed to localize within a specific region of a
cell or to respond to a specific stimulus such as pH.

Flux (fluence) — generally, a rate of flow.

fMLP — N-formyl-methionyl-leucyl-phenylalanine, a known
chemoattractant for granulocytes and macrophages.

Foreign body reaction — a variation in normal tissue behavior
caused by the presence of a foreign material.234

Frustrated phagocytosis — see Phagocytosis, frustrated.

Fullerene — a closed-cage molecule consisting of linked pentagons,
hexagons, heptagons, or other polygonal elements; originally referred
to carbon-only structures but may also represent the entire class of
molecules having this geometry, regardless of atomic constituency
(Section 2.3.2).

Functionalized — in chemistry, an otherwise chemically inert struc-
ture is functionalized when a chemically active ligand or moiety is
covalently bonded to it.

Fundus, gastric — uppermost portion of the stomach, posterior
and lateral to the entrance of the esophagus.

Fusion, cell — in cell biology, fusion is the merging of vesicles
budded from the ER into the Golgi complex, or of endosomes with
lysosomes, or of the contents of two cells by artificial means with-
out the destruction of either, resulting in a heterokaryon that, for at
least a few generations, will reproduce its kind (this was once an
important method in assigning loci to chromosomes).

Fusogen (fusion protein) — specialized proteins that facilitate pen-
etration of plasma membrane.

g — unit of gravitational acceleration (9.81 m/sec2); describes the mean
gravitation force experienced by a mass at rest on Earth’s surface.

Galvanic — pertaining to electrical direct current, usually chemi-
cally generated.

Galvanotaxis, cellular — electric field-induced cell migration.

Ganglion — a mass of nervous tissue composed principally of
nerve-cell bodies and lying outside the brain or spinal cord (e.g. the
chains of ganglia that form the main sympathetic trunks, or the
dorsal root ganglion of a spinal nerve).

Ganglioside — a particular class of glycosphingolipid present in
nerve tissue and in the spleen.

Gastro- (gastric) — pertaining to the stomach.

Gastrointestinal — pertaining to the stomach and intestine.

Gaucher’s disease — a chronic congenital disease of lipid metabo-
lism caused by a deficiency of the enzyme beta-glucocerebrosidase,
wherein glycosphingolipids accumulate in the reticuloendothelial
cells.

Gavage — feeding with a stomach tube or with a tube passed
through the nares, pharynx, and esophagus into the stomach.

Genotoxicity — toxic to the genetic material in cells.
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Gentamicin — an antibiotic derived from the fungi of the genus
Micromonospora.

Giant cells (phagocytic) — a large cell with several nuclei, appear-
ing to be made up of many cells (Section 15.4.3.5).

Gingiva (gingival) — the gum; the tissue that surrounds the necks
of the teeth.

Glaucoma — a group of eye diseases characterized by increase in
intraocular pressure, resulting in atrophy of the optic nerve and may
produce blindness.

Glia cells — neuroglial cells including astrocytes, oligodendroglia
and microglia.

Gliosis — proliferation of neuroglial tissue in the central nervous
system.

Glomerulonephritis — a form of nephritis in which the lesions
involve primarily the glomeruli.

Glomerulus, renal — one of the small structures in the malpighian
body of the kidney made up of capillary blood vessels in a cluster
and enveloped in a thin wall.

Glucan — polyglucose particles.

Glucosyl — a glycoprotein moiety.

Glycocalyx — a thin layer of glycoprotein and polysaccharide that
covers the surface of some cells, such as muscle cells, fibroblasts,
pericytes, and epithelial cells, and contributes to the basal lamina
(Section 8.5.3.2).

Glycolipids — patterns of glucose residues attached to membrane
lipids.

Glycoprotein — a protein molecule with carbohydrate moieties
attached.

Glycosylation — the covalent bonding of carbohydrate moieties
to another molecule.

Golgi complex/apparatus — in cell biology, individual stacks of
membranes near the endoplasmic reticulum involved in glycosylating
proteins and sorting them for transport to different intracellular
locations (Section 8.5.3.6).

Goodpasture’s syndrome — progressive glomerulonephritis, he-
moptysis, and hemosiderosis.

Gout — hereditary metabolic disease that is a form of acute arthri-
tis and is marked by inflammation of the joints.

Graft — tissue that is transplanted or implanted in a part of the
body to repair a defect.

Gram-negative — losing the stain and taking the color of the red
counterstain in Gram’s method of staining.

Gram-positive — retaining the color of the gentian violet stain in
Gram’s method of staining.

Granule — a small, grainlike body. Small granules may be found in
cells, containing stores of nutrients; large granules may be formed
in tissues following a granulomatous reaction.

Granulocyte — a granular leukocyte; a polymorphonuclear (nucleus
composed of two or more lobes or parts) leukocyte, including baso-
phils, eosinophils, and neutrophils.

Granuloma — a nodular inflammatory lesion, usually small or
granular, that is firm, persistent, and contains compactly grouped
mononuclear phagocytes. Actively growing provisional soft tissue
that precedes remodeling phase of inflammatory response; may be-
come chronic in the absence of resolution.234

Granulomatous reaction — producing a granuloma, a granular
tumor or growth, usually of lymphoid and epithelioid cells; an en-
capsulation reaction to the presence of a foreign object in the body
that cannot be readily phagocytosed (Section 15.4.3.5).

Granulopoietic (granulomatogenesis) — producing granulocytes.

Graphene — monoatomic graphite sheet that forms the walls of
fullerenes and carbon nanotubes.

Growth factors — biochemicals that promote division and prolif-
eration of specific cell types.

GTP — guanosine triphosphate.

HA — see hydroxyapatite.

Hageman factor — clotting factor XII, a human plasma protein.

Hallervorden-Spatz disease — progressive, degenerative disease,
beginning in childhood, of the globus pallidus, red nucleus, and
reticular part of the substantia nigra of the brain.

Hamaker constant — in surface science, a physical constant that
describes the strength of van der Waals attractive forces between
different materials as a function of the radius of curvature and sepa-
ration distance between two surfaces (Section 9.2.1).

Haptic — operated by, or pertaining to, the sense of touch.

Haptotaxis — directed migration of cells along surfaces with gra-
dients of immobilized factors.

Hct — see hematocrit.

Heat capacity — the ratio of the heat input to the temperature
increase in a system.

Heat shock proteins (HSPs) — present in all normal living cells;
act as “chaperones” to assist new or distorted proteins to properly
fold, and help to shuttle proteins from one cellular compartment to
another and to transport old proteins to intracellular “garbage dis-
posal” sites; are also induced when a cell undergoes various types of
environmental stresses like heat, cold or oxygen deprivation.

Heinz bodies — granules in red blood cells due to damage of the
hemoglobin molecules.

HEMA — hydroxyethylmethacrylate (e.g., polymer).
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Hemato- — pertaining to blood.

Hematocrit (Hct) — volume-fraction or bloodstream concentra-
tion of erythrocytes (red blood cells), expressed as a percentage.

Hematoma — a swelling or mass of blood (usually clotted), con-
fined to an organ, tissue, or other space, caused by a break in a
blood vessel.

Hematopoietic — pertaining to the production and development
of blood cells.

Hemidesmosome — the half of a desmosome (structure binding
adjacent epithelial cells) produced by epithelial cells for attachment
of basal surface of the cell to the underlying basement membrane or
the enamel or cementum tooth surface in the case of junctional
epithelium.

Hemocompatibility — biocompatibility with the blood.

Hemodialysis — a method for providing the function of the kid-
neys by circulating blood through tubes made of semipermeable
membranes.

Hemoglobinuria — presence of hemoglobin in the urine, but free
from red blood cells.

Hemolysis (hemolytic) — fragmentation of red blood cells, liber-
ating hemoglobin.

Hemolytic-uremic syndrome — an acute condition consisting of
microangiopathic hemolytic anemia, thrombocytopenia, and acute
nephropathy.

Hemoptysis — expectoration of blood arising from the oral cavity,
larynx, trachea, bronchi, or lungs.

Hemorrhagic — pertaining to bleeding.

Hemosiderosis — condition characterized by deposition, especially
in liver and spleen, of hemosiderin (an iron-containing pigment).

Hemostasis — arrest of bleeding.

Heparin — a polysaccharide that inhibits coagulation by prevent-
ing conversion of prothrombin to thrombin by forming an anti-
thrombin.

Hepatic — pertaining to the liver.

Hepatocarcinogenic — tending to cause liver cancer.

Hepatocyte — the most common tissue cell found in the liver.

Hepatomegaly — abnormal enlargement of the liver.

Hernia — protrusion or projection of a part of an organ through
the wall of the cavity that normally contains it.

Hilus (hilar) — depression or recess at entrance or exit of a duct
into a gland, or of nerves and vessels into an organ.

Hippocampus (hippocampal) — the complex, internally convo-
luted structure that forms the medial margin of the cortical mantle
of the cerebral hemisphere.

Histamine — a chemical substance, produced from the amino acid
histidine, normally present in the body; exerts a pharmacological
action when released from injured cells.

Histiocyte — a macrophage present in all loose connective tissues;
part of the RES.

Histiocytosis — excessive multiplication of histiocytes, which ap-
pear in the blood in unusual numbers.

Histiocytoma — a tumor containing histiocytes.

Histology — the study of tissues.

Histonatation — in medical nanorobotics, locomotion (swimming)
through tissues by a nanorobot (Section 9.4.4)

Histopenetration — in medical nanorobotics, penetration through
dermis and internal tissue spaces by motile nanorobots.

HLA complex — Histocompatibility Locus Antigens, formerly
known as Human Leukocyte Antigen (or Associated) complex.

Homeostasis — in physiology, a state of equilibrium of the inter-
nal environment of the body that is maintained by dynamic pro-
cesses of feedback and regulation; homeostasis is a dynamic equilib-
rium (changing balance), keeping cells within the physical and
chemical limits that can support life.

Homologous — similar in form (e.g. fundamental structure and
origin), but not necessarily in function.

Homotypic — of the same form and type.

Hormone — a chemical substance that originates in an organ, gland,
or part and is conveyed through the blood to another part of the
body, stimulating that other part by chemical action to increase func-
tional activity or to increase secretion of another hormone.

Host response — the local and systemic response, other than the
intended therapeutic response, of living systems to the material;234

the reaction of a living system to the presence of a material.230

Host response, local — the response, other than the intended thera-
peutic response, of tissue and organs contacting a biomaterial.234

Host response, remote — the response, other than the intended
therapeutic response, of remote tissue and organs in an individual
with one or more implants.234

Host response, systemic — the distributed or disseminated re-
sponse, response, other than the intended therapeutic response, of
tissue and organs in an individual with one or more implants.234

HSA — human serum albumin. See also albumin.

Humoral — pertaining to body fluids or substances contained in
them.
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Hyaline — material deposited in the glomerulus in certain forms
of glomerulonephritis.

Hyaline bodies — homogeneous substance; the result of colloid
degeneration, found in degenerated cells.

Hyaluronic acid — tissue cement or “ground substance” found in
human connective tissue.

Hybrid artificial organ — see artificial organ, hybrid.

Hybridization — combination of different electron bonding orbit-
als to form four equivalent tetrahedral bond orbitals, esp. in carbon.

Hybridoma — the cell produced by the fusion of an
antibody-produced cell and a multiple myeloma cell, capable of
producing a continuous supply of identical antibodies.

Hydrocarbon — a molecule consisting only of H and C.

Hydrocephalus — the increased accumulation of cerebrospinal fluid
within the ventricles of the brain.

Hydrodynamics — in physics, the study of the action of and mo-
tion of (and in) water and other liquids.

Hydrogen bond — the weak bond between a positively charged
hydrogen atom that is covalently bound to one electronegative atom,
and another electronegative atom.

Hydrolysis — a (hydrolytic) reaction in which a covalent bond is
broken with the incorporation of a water molecule.

Hydrophilicity — tending to mix with water; wettable; nonpolar.
Hydrophilic groups interact with water, so that hydrophilic regions
of protein or the faces of a lipid bilayer reside in an aqueous envi-
ronment. Compare hydrophobicity.

Hydrophobic force — water molecules are linked by a network of
hydrogen bonds; a nonpolar nonwetting surface such as wax can-
not form hydrogen bonds, hence repels water.

Hydrophobicity — tending not to mix with water; nonwetting;
polar. Hydrophobic groups repel water, so that they interact with
one another to generate a nonaqueous environment. Compare hy-
drophilicity.

Hydrostatic — pertaining to the pressure of fluids or to fluid prop-
erties when in equilibrium.

Hydroxyapatite — the apatite form of calcium phosphate present
with calcium carbonate in the bones and skeleton.

Hydroxyl — an OH- group or ion.

Hyperalgesia — excessive sensitivity to pain.

Hyperbaric — exposure to, or having pressure greater than, nor-
mal atmospheric pressure.

Hypercapnia — increased amount of carbon dioxide in the blood.

Hyperhidrosis — abnormally excessive sweating.

Hyperopia — farsightedness.

Hyperplastic (hyperplasia) — excessive proliferation of normal
cells in the normal tissue arrangement of an organ.

Hypersensitivity reactions — the reaction of the body to antigens.

Hypertension — abnormally high blood pressure.

Hyperthermia — unusually high fever.

Hypertrophy — increase in size of an organ or structure that does
not involve tumor formation.

Hyperventilation — increased lung ventilation leading to abnor-
mally low carbon dioxide in blood.

Hypervolemic — abnormal increase in the volume of circulating
blood.

Hypha — a filament of mold, or part of a mold mycelium (mass of
filaments constituting the vegetative body of fungi).

Hypocapnia — decreased amount of carbon dioxide in the blood.

Hypokalemia — extreme potassium depletion in the circulating
blood.

Hyponatremia — extreme sodium depletion in the circulating
blood.

Hypotension — low blood pressure.

Hypothalamus — part of the brain lying below the thalamus.

Hypothermia — having a body temperature below normal.

Hypothyroid — marked by insufficiency of thyroid secretion.

Hypotonic — see isotonic.

Hypotonia — reduced tension; relaxation of arteries; loss of tonic-
ity of the muscles or intraocular pressure.

Hypovolemic — diminished blood volume.

Hypoxia — a condition in which the tissues are not receiving enough
oxygen to sustain their metabolic activity.

Hysteresis — failure of related phenomena to keep pace with each
other.

IAP — inhibitor of apoptosis.

Iatrogenic disorder — an adverse condition induced in a patient
by the actions of a physician.

ICD patch — implantable cardioverter defibrillator (e.g., with epi-
cardial patch electrodes).
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Idiopathic — pertaining to conditions without clear pathogenesis.

Idiotype — in immunology, the specific region of the
antibody-binding (Fab) region of the immunoglobulin molecule to
which the specific antigen binds.

Ig — immunoglobulin (IgG, IgA, IgM, IgD, IgE); see antibody.

IJE — peri-implant junctional epithelium.

Ileum (ileal) — lower three-fifths of the small intestines from the
jejunum to the ileocecal valve.

Immune response — host response involving either humoral or
cellular specific immune mechanisms.234

Immunofixation — a laboratory technique used to identify pro-
teins in which immunoglobulins (which appear as a “gamma” band
in protein electrophoresis) are separated, allowing the individual
immunoglobulins to be identified; immunofixation electrophoresis
consists of an electrophoretic phase followed by a fixation phase in
which antiserum is used to precipitate the protein, thus enhancing
the results of standard protein electrophoresis, giving more rapid
results and greater sensitivity.

Immunogen — an agent that can induce an immune response; all
immunogens are antigens.

Immunoglobulins — a class of glycoproteins; see antibody.

Immunoradiometric assay — an assay based on the reversible and
non-covalent binding of an antigen by a specific antibody labeled
with a radioactive nuclide as a tracer.

Immunosuppression — prevention of formation of an immune
response.

Immunotoxin — toxic agent attached to an antibody molecule,
used to specially target tumor cells.

Impedance — opposition to flow (e.g. fluid, electrical, etc.) when
flow is steady, or the driving pressure per unit flow when flow is
changing; the resistance of an acoustic system to being set in motion.

Impermeant — incapable of permeating.

Implant — a device placed within an animal or human body by the
act of implantation;234 a medical device made from one or more
biomaterials that is intentionally placed within the body, either to-
tally or partially buried beneath an epithelial surface.230

Implantation — placement of a device or material within the body
of an animal or human by a medical or surgical professional, in
such a way as to breach one or more epithelial layers, and to leave
materials or components in place after the initial procedure is
completed.234

Incapsulation — resolution of inflammation, in which the implant
is surrounded and walled off from normal tissue by a collagenous,
relatively acellular tissue called a capsule, which resembles scar tis-
sue; in a bony location, the capsule may be mineralized and is called
a sequestrum.234

Incontinence — inability to retain urine, semen, or feces, through
loss of sphincter control or because of cerebral or spinal lesions.

In cyto — within a biological cell.

India ink — a black ink consisting of an aqueous suspension of
natural black pigment usually made from bone black, lampblack,
or amorphous carbon from combustion (soot); aka. China ink.

Inert biomaterials — see biomaterials, inert

Infarct — an area of tissue in an organ or part that undergoes ne-
crosis following cessation of blood supply.

Inferior — beneath or lower; often refers to the undersurface of an
organ or indicates a structure below another structure.

Inflammatory response — the cell-mediated local and regional
response directed toward stabilizing injured tissue, restoring physi-
ological status quo ante, removing dead or damaged tissue elements
and foreign material, and correcting structural and functional loss
due to the initial insult (Section 15.2.4). The four classical signs of
inflammation are redness (rubor), swelling (tumor), pain (dolor),
and heat (calor).234

Infraorbital — beneath the orbit (the cavity in the skull contain-
ing the eyeball).

Infrarenal — below the kidney.

Ingrowth — formation of tissue within pores, etc. in the body of
an implant.234

In sanguo — within the bloodstream.

Insufflation — the act of blowing a gas, vapor, or powder into a
cavity, such as the lungs.

Integral membrane protein — in cell biology, an amphipathic pro-
tein embedded in the lipid bilayer of the cell which cannot be ex-
tracted from the membrane without disrupting the lipid bilayer;
most integral proteins are transmembrane proteins.

Integration — resolution of inflammation, in which the implant
becomes well-integrated with the adjacent biological tissues; occurs
for a very limited number of materials, such as bioactive glasses of
selected compositions and some metals such as pure titanium for
which direct bonding or apparent adhesion to normal tissue may
take place.234

Integrins — cell surface adhesion receptors (~200 kilodalton) that
mediate cellular connection to the extracellular matrix and are ex-
pressed on a wide variety of cells. Most cells express several integrins;
most integrins are involved in attachments to the cytoskeletal sub-
stratum.

Integument — the skin, consisting of the dermis and epidermis; a
covering.

Interactive biomaterials — see biomaterials, interactive.

Intercalated — inserted between two others, as something interposed.
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Intercostal — between the ribs.

Intermediate filament — the most stable of the cytoskeletal ele-
ments; high tensile strength and comparative positional stability;
serve as internal guy wires to resist mechanical stress on the cell,
providing a scaffold supporting the entire cytoskeletal framework
(Section 8.5.3.11(C)).

Interstitial (interstitium) — pertaining to extracellular interstices
or spaces within an organ or tissue.

Intima — innermost coat of a structure, e.g., a blood vessel.

Intraarterial — within the artery(ies).

Intraarticular(-ate) — within a joint.

Intracellular — inside the cell.

Intracranial — within the cranium or skull.

Intraepithelial — residing in the epithelium.

Intrahepatic — inside the liver.

Intraluminal — within any tubular structure.

Intramuscular — inside muscle tissue.

Intranigral — inside a specific region in the brain.

Intranuclear — inside the cell nucleus.

Intraocular — within the eyeball.

Intraoperative — occurring during surgery.

Intraperitoneal (IP) — within the peritoneal (abdominal) cavity.

Intrarenal — inside the kidney.

Intratracheal — introduced into, or inside, the trachea.

Intravasation — reverse diapedesis.

Intravascular — inside a blood vessel.

Intravenous — inserted into a vein.

Intravitreous (intravitreal) — inside the vitreous humor of the eye.

Intrusiveness, volumetric — in medical nanorobotics, a measure
of the degree to which artificial nanosystems can safely and harm-
lessly volumetrically displace natural biological systems.

Intussusception — the slipping of one part of an intestine into
another part just below it; invagination.

In vacuo — in a vacuum (viz. the ablative case of the 2nd-declension
Latin adjective “vacuus”).

Invaginate — to place or receive into a sheath; to receive within
itself or into another part.

In vitro — in glass, as in a test tube; performed in the laboratory,
usually involving isolate tissue, organ, or cell preparations.

In vivo — inside the living human body; performed on a living
organism.

Irido- — pertaining to the iris of the eye.

Ischemia — local and temporary deficiency of blood supply due to
obstruction of the circulation into a body part.

ISFET — Ion Sensitive Field Effect Transistor.

Isoelectric — having equal electric potentials; neither positively
nor negatively charged.

Isoforms — any one of multiple forms of a functional protein that
differ in amino acid sequence and electrophoretic mobility.

Isomer — one of two more chemical substances that have the same
molecular formula but different chemical and physical properties
due to a different arrangement of the atoms in the molecule; for
example, dextrose is an isomer of levulose. Isomers may be geomet-
ric, optical, or structural.

Isothermal — held, or existing, at a constant temperature.

Isotonic — animal cells containing a solution which exerts an os-
motic pressure approximately equal to that of the surrounding fluid
are isotonic or isoosmotic to that fluid. Stronger solutions that cause
cells to shrink are hypertonic; weaker solutions that cause cells to
swell are hypotonic.

Isotope — any of two or more forms of the same chemical element
that have nearly identical chemical properties but which differ in
the number of neutrons contained in each atomic nucleus; many
isotopes are radioactive.

Isotropic — the same in all directions.

Isotypes — in immunology, the determinants on the Ig molecule
that distinguish among the main classes of antibodies of a given
species (the same for all normal individuals of that species).

IP — see intraperitoneal.

IV — see intravenous.

Jejunum (jejunal) — the second portion of the small intestine ex-
tending from the duodenum to the ileum.

Kallikrein — an enzyme normally present in blood plasma, urine,
and body tissue; is one of the most potent vasodilators when acti-
vated (to form kinin).

Kaolin — a yellow-white or gray clay powder formed of hydrated
aluminum silicate.
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Karyogamy — union of nuclei in cell conjugation.

Keloids — scar formation in the skin following trauma or surgical
incision.

Keratin — a sulfur-rich scleroprotein or albuminoid present largely
in cuticular (pertaining to cuticles) structures.

Keratinocyte — a cell of the epidermis, and parts of the mouth,
that produces keratin.

Keratitis — inflammation of the cornea, with pain; usually associ-
ated with decreased visual acuity.

Keratocyte — corneal fibroblasts.

Keratomileusis — plastic surgery of the cornea in which a portion
is removed, its curvature reshaped, and then is reattached; can also
be done in situ with laser.

KHz — kilohertz; thousands of cycles per second.

Kinetochore — a large protein complex that forms at the surface
of the centromere of chromosomes and controls separation of the
chromosomes to daughter cells by mediating microtubule associa-
tion with chromosomes.

Kininogen — substance that produces a kinin when acted upon by
certain enzymes.

Kinins — a group of polypeptides with considerable biological ac-
tivity, e.g., influencing smooth muscle contraction, inducing hy-
potension, inciting pain, and increasing blood flow and permeabil-
ity of blood capillaries.

Kirschner wire — steel wire placed through a long bone, to apply
traction to the bone.

Knowles pin — a mechanical prosthesis for bone fracture fixation
used in place of plates or Kirschner wires, e.g., for acute adult
mid-clavicular fractures.

Kupffer cells — macrophages lining the sinusoids of the liver (Sec-
tion 8.2.5).

Labile — not fixed, unsteady, easily disarranged; easily altered or
decomposed by heat or chemicals.

Laceration (lacerative) — a wound or irregular tear of the flesh.

Lacrimal — pertaining to the tears (eye fluid).

Lactoferrin — an enzyme released in phagocytosis by neutrophils
and macrophages that combines with iron in the blood.

Lamellipodia — variable extensions of the cell membrane; a cyto-
plasmic veil produced on all sides of a migrating polymorphonuclear
leukocyte (granulocyte).

Lamina — a thin flat layer or membrane.

Lamina propria — thin layer of fibrous connective tissue lying
immediately beneath the surface epithelium of mucous membranes.

Laminar (Poiseuille) flow — fluid flow that moves exclusively along
separate and independent parallel flow planes (i.e. streamlines), gen-
erally with an axisymmetric parabolic profile if in a tube. Laminar
flow minimizes the impedance (resistance) and energy dissipation
of fluid flow.

Laminin — a large glycoprotein component of ECM that binds to
specific integrin molecules on tissue cell surface, with a primarily
adhesive function.

Langerhans cells — dendritic cells in human skin.

Langmuir (-Blodgett) film — thin film created by successive ad-
hesion of a series of molecular monolayers to a surface, allowing
both thickness and composition in the vertical axis to be adjusted
to 0.1-nm by controlling the structure of the molecules comprising
each individual monolayer during deposition.

Larynx (laryngeal) — the enlarged upper end of the trachea below
the root of the tongue; the organ of voice.

Lavage — washing out of a cavity.

LD50 — a dose of or exposure to a toxic influence that produces
death in 50% of organisms exposed to it.

Leachate — water that has passed through a material and in doing
so has accumulated dissolved substances (the leachates).

Leukapheresis — see apheresis.

Leukergy — anergy of leukocytes.

Leukocytes (white blood cells) — the primary effector cells that
respond to infection and tissue damage in the human body. There
are two types: granulocytes (including basophils, eosinophils, and
neutrophils) and agranulocytes (including monocytes and lympho-
cytes). Leukocytes are formed from two stem cell populations in
the bone marrow. The myeloid stem cell line produces granulocytes
and monocytes, while the lymphoid stem cell line produces lym-
phocytes. Lymphoid cells travel to the thymus, spleen and lymph
nodes, where they mature and differentiate into active,
antigen-specific lymphocytes.

Leukocytolysis — fragmentation of white blood cells.

Leukocytosis — abnormal increase in number of leukocytes in the
blood, usually transient, generally caused by presence of infection.

Leukocyturia — leukocytes in the urine.

Leukoembolization — vascular trapping of white cells, forming a
blocking embolus.

Level of host (or material) response — the nature of the host (or
material) response in a standard test with respect to the response
obtained with a reference material.234
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Lewy bodies — neuronal cells with pigmented inclusion bodies;
found in Parkinson’s disease.

Ligament — a band or sheet of strong fibrous connective tissue
connecting the articular ends of bones, binding them together and
facilitating or limiting motion.

Ligation, molecular — the formation of a phosphodiester bond to
link two adjacent bases separated by a nick in one strand of a double
helix of DNA; the term can also be applied to blunt-end ligation
and to the joining of RNA.

Lipase — a lipolytic or fat-splitting enzyme found in the blood,
pancreatic secretion, or tissues.

Lipid bilayer — in cell biology, the form taken by a concentration
of lipids in which the hydrophobic fatty acids occupy the interior
and the hydrophilic polar heads face the exterior; primary constitu-
ent of the plasma membranes of cells.

Lipids — molecules having hydrophilic polar heads, containing
phosphate (phospholipid), sterol (such as cholesterol), or saccharide
(glycolipid) connected to a hydrophobic tail consisting of fatty acid.

Lipofuscin — brown pigment granules representing
lipid-containing nondegradable residues of lysosomal digestion (Sec-
tion 15.6.3.2).

Lipofuscinosis — abnormal deposition of lipofuscin in tissues.

Lipoma — a fatty tumor.

Lipophilic — having an affinity for lipids (fats); nonpolar.

Lipophobic — repulsed by lipids (fats).

Lipoproteins — conjugated proteins consisting of simple proteins
combined with lipid components.

Liposomes — closed spherical bilayers formed by lipid molecules
with varying radii from 10 nm to micrometers. See also micelles.

Lissencephaly — condition in which the brain is smooth owing to
failure of development of cerebral gyri.

Listeriosis — disease affecting humans and many animals, caused
by Listeria monocytogenes (a soil saprophyte); most common mani-
festation is meningitis.

Lithophagy — swallowing stones, sand, or other mineral matter.

Lithotripsy — crushing of a stone in the bladder or urethra.

Load error — in control theory, minimum range of variation in a
control variable that is necessary to provoke a response from a con-
trol system.

LPS — lipopolysaccharide, the lipid used to construct the outer
leaflet of the outer bilayer membrane of Gram-negative bacteria.

LTIC — low temperature isotropic carbon (Section 15.3.3.2).

Lumbar — pertaining to the loins (the part of the back between
thorax and pelvis).

Lumen — the interior, especially of a compartment bounded by
membranes, as for instance the endoplasmic reticulum or the mito-
chondrion.

Luminal — pertaining to the interior of a cavity, tube, or vessel.

LVAD — left ventricular assist device.

Lymph — an alkaline fluid found in the lymphatic system (Section
8.2.1.3).

Lymphadenopathy — swelling and morbid change in lymph nodes.

Lymphangitis — inflammation of lymph vessels.

Lymphatic system — includes all structures involved in the con-
veyance of lymph from the tissues to the bloodstream, including
lymph capillaries, lacteals, lymph nodes, lymph vessels, main lymph
ducts, and cisterna chyli (Section 8.2.1.3).

Lymphedema — edema due to obstruction of lymph vessels.

Lymphocompatible — biocompatible with important components
of the lymphatic system, especially lymphocytes.

Lymphocyte — a morphologically distinct variety of leukocytes,
comprising 20-44% of all white blood cells. But only ~2% of all
lymphocytes present in the human body are in the bloodstream;
most reside elsewhere, particularly in the lymph and the lymph
nodes. B-lymphocytes differentiate into antibody-secreting plasma
cells, whereas T-lymphocytes play diverse regulatory roles in the
immune response.

Lymphocytopenia — less than normal number of lymphocytes in
the blood.

Lymphokines — a cytokine secreted by a lymphocyte.

Lymphotrophic — tending to accumulate in lymph nodes.

Lysis (lytic) — in microbiology, the death of a bacterium at the
end of a bacteriophage infective cycle when the bacterium bursts
open to release the progeny of an infecting phage; also applies to
eukaryotic cells, as for example infected cells that are attacked by
the immune system. More generally, dissolution or decomposition.

Lysosomes — small bodies inside cells, enclosed by membranes,
that contain hydrolytic enzymes that are part of the cell’s digestive
apparatus (Section 8.5.3.8).

Lysozyme (muramidase) — an enzyme that is destructive to cell
walls of certain bacteria, found in white blood cells of the granulo-
cytic and monocytic series.

MAb — see monoclonal antibody.

MAC — membrane attack complex (complement system; Section
15.2.3.2).
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Machine-phase nanotechnology — molecular nanotechnology-
based mechanical devices.

Macromolecule — a molecule of colloidal size, typically 1-100 nm
in diameter or length, consisting most notably of proteins, nucleic
acids, and polysaccharides.

Macrophage — a monocyte that has left the circulation and settled
and matured in a tissue; found in large numbers in the spleen, lymph
nodes, alveoli, and tonsils, with ~50% found in the liver as Kupffer
cells. Along with neutrophils, macrophages are the major phago-
cytic cells of the immune system, able to recognize (and then in-
gest) foreign antigens via chemical receptors on the surface of their
cell membranes. Macrophages also serve a vital role by processing
antigens and presenting them to T-cells, activating the specific im-
mune response.

Macroscopic — easily visible to the human naked eye; typically ~1
mm3 or larger.

Macula densa cells — closely packed cells in the distal tubular
epithelium of each nephron in kidney; may function as chemore-
ceptors.

Macule (macular) — discolored spot or patch on the skin, neither
elevated nor depressed, of various colors, sizes, and shapes.

Macular degeneration — degeneration of the macular area of the
retina of the eye.

Maillard reaction — in food science, the “browning” reaction that
occurs between proteins and reducing sugars as they are heated.

Major histocompatibility complex (MHC) — the complex of
HLA genes on the short arm of human chromosome 6 (Section
8.5.2.1).

Malignant — growing worse, resisting treatment, threatening to
produce death; said of cancerous growths.

Malpighian capsule — a spherical body found in cortex of kidney
consisting of a glomerulus and Bowman’s capsule.

Mandible (mandibular) — horseshoe-shaped bone forming the
lower jaw.

Mannose — a polysaccharide (an aldohexose) present in certain
plants.

March hemoglobinuria — impact hemolysis.

Margination — adhesion of leukocytes to endothelial cells lining
the walls of a blood vessel, during the relatively early stages of in-
flammation; more generally, the process of differential radial migra-
tion among suspended particles of different sizes during fluid flow
through a tube.

Marsupialization — see extrusion (implants).

Martensitic — a highly twinned lower temperature structure with
a stress-strain curve having a plateau phase more like that of an
elastomer than a metal; compare austenitic.

Mast cells — cells resident in connective tissue just below epithe-
lial surfaces, serous cavities, and around blood vessels, that synthe-
size, store, and release (upon stimulation) histamine and other local
chemical mediators of inflammation (e.g. leukotrienes).

Material response — the response of the material to living systems.234

Matricellular proteins — extracellular matrix proteins.

Maxillary — pertaining to the upper jaw.

Maxillofacial — pertaining to the maxilla and face.

Meatus — a passage or opening.

Mechanocompatibility — the mechanical biocompatibility of
nanodevices or nanorobotic systems as they interact with the or-
gans, tissues and cells of the human body (Chapter 15.5).

Mechanoenzyme — enzyme producing mechanical actuation when
activated.

Mechanoreceptor — a receptor that receives mechanical stimuli
such as pressure from sound or touch.

Mechanosensitivity — see mechanoreceptor.

Mechanosynthesis — chemical synthesis controlled by mechani-
cal systems operating with atomic-scale precision, enabling direct
positional selection of reaction sites; synthetic applications of mecha-
nochemistry.

Media — middle or muscular coat of an artery.

Mediastinum (mediastinal) — the mass of organs and tissues sepa-
rating the lungs; containing the heart and its large vessels, trachea,
esophagus, thymus, lymph nodes, and connective tissue.

Medical device — see device, medical.

Medulla (medullary) — the inner or central portion of an organ;
compare cortex.

Medulla oblongata — enlarged portion of the spinal cord in the
cranium, after the cord enters the foramen magnum of the occipital
bone; the lower portion of the brain stem.

Megakaryocytes — a large bone marrow cell with multiple nuclei.

Melanosome — the pigment granule produced by melanocytes.

Melittin — a small protein containing 26 amino acid residues that
is the principal toxic component of honeybee venom.

Membrane — in cell biology, an asymmetrical lipid bilayer that
has lateral fluidity and contains proteins; in anatomy, a thin, soft,
pliable layer of tissue that lines a tube or cavity, covers an organ or
structure, or separates one part from another (Section 8.5.3.2).

Membrane proteins — in cell biology, plasma membrane proteins
that have hydrophobic regions that allow part or all of the protein
structure to reside within the membrane; the bonds involved in this
association are usually noncovalent (Section 8.5.3.2).
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Membranolytic — causing the physical failure of a membrane.

Meningeal cells — cells of the meninges (the three membranes
investing the spinal cord and brain).

Mesangium (mesangial) — the suspensory structure of the renal
glomerulus.

Mesentery (mesenteric) — a peritoneal fold encircling the greater
part of the small intestines and connecting the intestine to the pos-
terior abdominal wall.

Mesothelioma — a rare malignant tumor of the mesothelium (the
epithelium covering the serous membranes) of the pleura, pericar-
dium, or peritoneum.

Messenger RNA (mRNA) — the RNA whose sequence corresponds
to that of exons in the transcribed gene, which embodies the codons
and is translated into the protein gene product.

Metabolite — any product of metabolism.

Metamorphic — in medical nanorobotics, capable of adopting
multiple physical configurations via smooth changes from one con-
figuration to another (Section 5.3).

Metastasize (metastasis) — usually refers to the manifestation of a
malignancy (e.g. of cancerous body cells) as a secondary growth
arising from the primary growth, but in a new location.

Metazoa — all multicellular life. Compare protozoa.

MHC — see major histocompatibility complex.

MHz — megahertz; millions of cycles per second.

Micelle — a self-assembling hollow spheroidal aggregate of
amphipathic lipids in a polar liquid (e.g. aqueous) medium. See
also liposomes.

Microangiopathy — pathology of small blood vessels.

Microautophagocytosis — digestion within a cell of portions of
individual cell organelles or mitochondria that have been injured or
have atrophied.

Microbivore — in medical nanorobotics, an artificial mechanical
phagocytes2762 (Chapter 23).

Microdomains, cellular — see microzones.

Microglia — resident macrophages in brain tissue, spinal cord, and
retina.

Microgravity — conditions of below-normal gravity, e.g. in Earth
orbit; hypogravity.

Micron — one-millionth of a meter; a micrometer.

Microplicae — microscopic folds.

Microsomes (liver) — membrane fractions derived from human
or animal tissues or cells grown in culture; most membrane-bound
enzymes are associated with microsomes.

Microtubules — filaments consisting of dimers of tubulin; inter-
phase microtubules are reorganized into spindle fibers during mi-
tosis (cell division), when they are responsible for chromosome
movement.

Microvilli — microscopic projections from the free surface of cell
membranes, greatly increasing the exposed surface area of the cell.

Microzones — physiologically persistent, localized, and essential
intracellular chemical gradients, establishing intracellular
compartmentation of metabolites without enclosure by membranes.

Micturition — urination.

Miliaria — vesicles caused by obstruction of sweat gland ducts.

Mimetic — imitative.

Miscible — capable of being mixed.

Mitochondrion — a self-reproducing organelle that provides en-
ergy for eukaryotic cells via oxidative phosphorylation (Section
8.5.3.10).

Mitogen — a protein substance derived from plants that is used in
the laboratory to stimulate cells to divide.

Mitosis (mitotic) — in cell biology, the division of a eukaryotic
somatic cell. The four (or five) sequential stages are prophase,
(prometaphase), metaphase, anaphase, and telophase; the absence
of mitosis is the interphase.

MNP — mononuclear phagocyte; see monocyte, macrophage, or
lymphocyte.

MNT — see molecular nanotechnology.

Moiety — a portion of a molecular structure having some property
of interest.

Molarity (M) — in chemistry, moles of solute per liter of solvent.

Mole — a number of instances of something (e.g. molecular ob-
jects) equal to ~6.023 x 1023 objects.

Molecular assembler — a general-purpose device for molecular
manufacturing, able to guide chemical reactions by positioning in-
dividual molecules to atomic accuracy (e.g. mechanosynthesis) and
to construct a wide range of useful and stable molecular structures
according to precise specifications;8-10,35 Section 2.4.2.

Molecular machine — a mechanical device that performs a useful
function using components of nanometer scale and a well-defined
molecular structure; may include both artificial nanomachines and
naturally occurring devices found in biological systems.

Molecular machine system — a system of molecular machines.
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Molecular manufacturing — manufacturing using molecular ma-
chinery, giving molecule-by-molecule control of products via posi-
tional chemical synthesis, to produce complex molecular structures
manufactured to precise specifications (Chapter 2; ref. 35).

Molecular nanotechnology — thorough, inexpensive control of
the structure of matter based on molecule-by-molecule control of
products and byproducts; the products and processes of molecular
manufacturing, including molecular machinery; a technology based
on the ability to build structures to complex, atomic specifications
by mechanosynthesis or other means; most broadly, the engineer-
ing of all complex mechanical systems constructed from the mo-
lecular level.

Molecular sorting rotor — a class of nanomechanical device ca-
pable of selectively binding (or releasing) molecules from (or to)
solution, and of transporting these bound molecules against signifi-
cant concentration gradients (Section 3.4.2).

Monoclinic (crystal) — pertaining to crystals in which the vertical
axis is inclined to one lateral axis but at right angles to the other.

Monoclonal antibody — antibodies derived from hybridoma cells;
antibodies of exceptional purity and specificity.

Monocyte — a mononuclear phagocytic white blood cell derived
from the myeloid stem cells, that is short-lived (~1 day half-life)
and circulates in the bloodstream from which it moves into tissues,
at which point it matures into a macrophage (which is long-lived).
Monocytes represent 3%-8% of all white blood cells.

Monokine — chemical mediator released by monocytes and mac-
rophages during the immune response; affects growth and activity
of other WBCs.

Monomer — any molecule that can be bound to similar molecules
to form a polymer.

Mononucleosis — presence of an abnormally high number of
mononuclear leukocytes in the blood.

Monosaccharide — a simple sugar that cannot be decomposed by
hydrolysis (e.g., fructose, galactose, glucose).

Morphogen — a (biochemical) factor that induces development of
particular cell types in a manner that depends on its concentration.

Motile — capable of voluntary movement. Opposite of sessile.

MPS — mononuclear phagocyte system; see reticuloendothelial
system (RES).

MRI — magnetic resonance imaging.

mRNA — see messenger RNA.

MSAD-C60 — chemical abbreviation for
p,p’-bis(2-aminoethyl)-diphenyl-bis(monosuccinimide)-C60.734

MSDS — Material Safety Data Sheet (OSHA).

MSU — monosodium urate.

MSUM — monosodium urate monohydrate.

Mucoadhesivity — ability to adhere to mucous membranes.

Mucociliary escalator — a cilia-driven mucus flow from alveoli to
trachea, carrying mucus-trapped micron-size particles toward the
esophagus where this mucus can be swallowed, thus eliminating the
trapped (inhaled) particles from the body.

Mucopolysaccharide — polysaccharides containing hexosamine
and sometimes proteins that form chemical bonds with water, mak-
ing a thick gelatinous substance found in many places in the body.

Mucosa — a mucous membrane; the moist tissue layer that lines a
hollow organ or body cavity.

Mucosacompatibility — biocompatibility with mucosal tissues.

Mural — pertaining to a wall of an organ or part.

Murine — related to or derived from mouse.

Muscarine(ic) — a toxin with neurologic effects, isolated from
mushrooms; an agent that stimulates the postganglionic parasym-
pathetic receptor.

Muscular dystrophy — wasting away and atrophy of muscles.

Mutagenesis — induction of a permanent (inheritable) genetic
change.234

Mycotoxins — substances (produced by mold growing in food)
causing illness or death when ingested by man or animals.

Myelin (myelinated) — a fatlike substance forming a sheath around
the axons of certain nerves; composed of lipids and protein.

Myeloblast — immature bone marrow cell that develops into my-
elocyte, later maturing to a promyelocyte and eventually the granu-
lar leukocyte.

Myeloproliferative — concerning proliferation of bone marrow ei-
ther in the bone marrow or extramedullary.

Myoblast — an embryonic cell that develops into muscle fiber cell.

Myocardial infarction — condition caused by partial or complete
occlusion of one or more of the coronary arteries.

Myocardium — heart muscle.

Myocyte — a muscular tissue cell.

Myoma — a tumor containing muscle tissue.

Myopia — nearsightedness.

Myosin — a protein consisting of long chains of polypeptides joined
to each other by side chains, present in muscle fibrils and constitut-
ing two-thirds of total muscle protein.

NADH — reduced form of NAD (nicotinamide adenine dinucleotide).
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Nanoaggregate — in medical nanorobotics, a cluster of mutually
attached nanodevices.

Nanocannula — in medical nanorobotics, a nanorobotic cannula-
tion device.

Nanocrit (Nct) — in medical nanorobotics, volume-fraction in body
fluid or bloodstream concentration of medical nanorobots, expressed
as a percentage.

Nanoid shock — in medical nanorobotics, nanorobot-induced
shock (Section 15.2.6.4); shock induced by nanorobots bearing
endotoxin-homologous chemical moieties on their exterior surfaces,
or releasing such moieties free into the serum.

Nanomachine — functional machine systems on the scale of na-
nometers; an artificial mechanical device constructed with precise
molecular order using nanometer-scale components; any molecular
structure large and complex enough to function as a machine.

Nanomanipulator — a nanorobotic manipulator device.

Nanomechanical — pertaining to the mechanical characteristics
of nanomachines.

Nanomedicine — (1) the comprehensive monitoring, control, con-
struction, repair, defense, and improvement of all human biological
systems, working from the molecular level, using engineered
nanodevices and nanostructures; (2) the science and technology of
diagnosing, treating, and preventing disease and traumatic injury,
of relieving pain, and of preserving and improving human health,
using molecular tools and molecular knowledge of the human body;
(3) the employment of molecular machine systems to address medi-
cal problems, using molecular knowledge to maintain and improve
human health at the molecular scale.

Nanometer — a billionth of a meter, roughly the diameter of 3-7
atoms.

Nanoorgans — organs comprised of nanocomponents; nanorobotic
organs.

Nanophase — having nanoscale features or components.

Nanopyrexia — in medical nanorobotics, condition of abnormally
high temperature induced by nanorobotic devices or activities (Sec-
tion 15.2.7).

Nanorobotics — the study of nanorobots, micron-scale robotic
devices constructed out of nanoscale components.

Nanosecretagoguery — triggered enzyme release by nanorobots or
free nanoparts.

Nanosystem — a set of nanoscale components, characterized by
precise molecular order, working together to serve a set of purposes;
complex nanosystems can be of macroscopic size.

Nanotechnology — engineering and manufacturing at nanometer
scales; any technology related to features of nanometer scale, in-
cluding thin films, fine particles, chemical synthesis, advanced
microlithography, and so forth, as well as complex mechanical sys-
tems constructed from the molecular level.

Nanotubes — hollow fullerene tubes, including but not limited to
single- and multi-walled carbon nanotubes, with submicroscopic,
often nanoscale, diameters and a wide range of continuous lengths.

Nasopharynx — in anatomy, the nasal passages, mouth, and upper
throat.

Nauseogenic — eliciting nausea (Section 15.2.6.3).

Navicyte — in medical nanorobotics, a mobile, mass-storage
(nanorobotic) device, similar to a communicyte, that may be used
to establish a navigational network inside the human body (Section
8.3.3).

Nct — see nanocrit.

Necrosis (necrotic) — the death of areas of tissue or bone, sur-
rounded by healthy parts.

Necrotaxis — cell movement toward necrotic cells or tissue.

Neointima — a new intimal layer.

Neoplastic — pertaining to, or of the nature of, new and abnormal
tissue (i.e. neoplasm) formation and growth.

Nephritis — inflammation of the kidney.

Nephro- — pertaining to the kidney.

Nephrolithiasis — presence of calculi in the kidney.

Nephropathy — disease of the kidney.

Neural crest cells — a band of cells extending longitudinally along
the neural tube of an embryo from which cells forming cranial,
spinal, and autonomic ganglia arise.

Neuralgia — severe sharp pain along the course of a nerve.

Neurite — the axial cylinder process of a neuron; both axons and
dendrites are neurites.

Neuroglial cells — the tissue that forms the interstitial or support-
ing elements (cells and fibers) of the nervous system.

Neuron — a nerve cell, the principal structural and functional unit
of the nervous system.

Neuronal ceroid-lipofuscinosis (NCL) diseases — recessively in-
herited neurodegenerative disease involving a lysosomal storage de-
fect of cerebral lipofuscins, caused by the selected death of cortical
neurons and retinal degeneration; aka. Batten disease.

Neuropeptide — any of a variety of neurotransmitter peptides found
in neural tissue (e.g. endorphins, enkephalins).

Neuropil — network of unmyelinated fibrils into which nerve pro-
cesses of CNS divide.

Neutropenia — abnormally small number of neutrophils in the
blood.
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Neutrophil — the most common type of granulocytic white blood
cell. Neutrophils are responsible for much of the body’s protection
against infection. Comprising ~60% of all white blood cells, neu-
trophils play the primary role in inflammation, easily recognizing
foreign antigens and destroying them through phagocytosis. Neu-
trophils also may overreact to stimuli and become involved in tissue
destruction, as in rheumatoid arthritis, myocardial reperfusion in-
jury, respiratory distress syndrome, and ulcerative colitis.

NFPA — National Fire Protection Association.

Nidus — a focus of infection; a cluster or nestlike structure.

Niemann-Pick disease — hereditary disease; disturbance of sphin-
golipid metabolism characterized by hepatosplenomegaly, anemia,
lymphadenopathy, and progressive mental and physical deteriora-
tion.

Nitrosylation –the covalent bonding of nitrogen-containing moi-
eties to another molecule.

NK cells — natural killer cells (Section 15.2.3.1.1).

NO — nitric oxide.

Nociceptor — pain receptor (Section 7.4.6.1).

Nonthrombogenic (thromboresistant) — the characteristic of a
material that leads to minimal thrombogenicity.234

Nuclease — any enzyme that facilitates hydrolysis of nuclein and
nucleic acids.

Nucleation — growth of droplets, films, or calculi due to the pres-
ence of a small seed particle which facilitates coalescence of these
materials.

Occlusion — the closure, or state of being closed, of a passage.

Oleophilic — in chemistry, having a strong affinity for oils rather
than water; lipotropic; see also lipophilic.

Oligosaccharide — a compound made up of a small number of
monosaccharide units.

Ongrowth — formation of tissue directly on the surface of an im-
plant; does not imply adhesion.234

Oocyte — the early or primitive ovum (the female reproductive
cell).

Oppenheimer effect — increased neoplasm incidence rates observed
in rodents that are implanted with agents (not previously thought
to be carcinogenic) in solid form rather than injected or fed in soluble
or dispersed form; aka. foreign body carcinogenesis or solid-state
carcinogenesis.

Opsonins — biochemical substances that coat foreign antigens,
making those antigens more susceptible to recognition by macroph-
ages and other leukocytes and thus increasing phagocytosis of the
organism or object displaying those foreign antigens. The two main
opsonins in human blood are complement and antibodies.

Opsonization — the coating action of opsonins, thus facilitating
phagocytosis. Coating of bacteria or biomaterial surfaces with na-
tive proteins, such as complement factors, rendering them detect-
able as “foreign” by phagocytic cells.234

OR — operating room.

Orbital cavity — bony pyramid-shaped cavity of the skull that con-
tains and protects the eyeball.

Organelle — most commonly described subcellular compartment,
located in the cytoplasm, that is surrounded by a membrane (e.g.
lysosome, mitochondrion).

Orthodontic — pertaining to the division of dentistry dealing with
prevention and correction of abnormally positioned or aligned teeth.

Orthopedic — pertaining to the branch of medicine dealing with
correction of disorders involving locomotor structures of the body
(skeleton, joints, muscles, ligaments, cartilage, etc.).

Orthosis — a device applied externally to the body to provide sta-
bility and to control motion; may or may not replace a portion of a
limb.234 See also exoprosthesis.

Orthostatic — pertaining to an erect position of the body.

Orthotopic — graft of an organ to a site where that organ would
normally be present; in the correct place.

OSHA — Occupational Safety and Health Administration (U.S.).

Osmotic pressure — the pressure that would develop if a solution
is enclosed in a solvent-permeable membrane that is impermeable
to all solutes present, and is then surrounded by pure solvent.

Osseocompatibility — biocompatibility with bone.

Osseointegration (osteointegration) — clinical stability of an im-
plant anchored in bone, often in reference to implants with bioactive
coatings; a description of the clinical performance of devices, not
the biomaterial-bone interaction.234

Osseous (also osteo-) — pertaining to bone.

Ossicle (ossicular) — any small bone, especially one of the three
bones of the ear.

Osteoblast — a bone-forming cell derived from mesenchyme to
form the osseous matrix in which it becomes enclosed as an osteo-
cyte.

Osteoclast — a giant multinuclear cell with abundant acidophilic
cytoplasm, formed in the bone marrow of growing bones, which
functions to absorb and remove unwanted osseous tissue.

Osteoconductive — property of a biomaterial that encourages bone,
already being formed, to lie closely to or adhere to its surface.234

Osteocyte — a mesodermal bone-forming cell that has become
entrapped within the bone matrix, helping to maintain bone as liv-
ing tissue.
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Osteodystrophy — defective bone development.

Osteogenic — property of a biomaterial that stimulates bone growth
in the implant site.234

Osteolysis (“small-particle disease”) — cellularly-mediated bone
loss secondary to debris production or release by implants in or
near to bone, previously incorrectly called “cement disease”.234

Osteomalacic — concerning or characterized by softening of the
bone.

Osteopontin — a calcium-binding phosphoprotein synthesized by
pre-osteoblasts, osteoblasts and osteocytes that is important in bone
remodeling and various immunological functions, and is believed
to play a role in several different cellular processes; a protein found
in healing wounds.

Osteoporosis — any disease process that results in the mass of bone
per unit of volume.

Osteotomy — the operation for cutting through a bone.

Ostium (ostia) — small opening(s), especially one into a tubular
organ.

Otosclerosis — chronic progressive deafness.

Outmessaging — in medical nanorobotics, conveyance of infor-
mation from a transmitter located inside the human body, espe-
cially from working nanodevices, to the patient or to a recipient
external to the human body (Section 7.4.6.1).

Pacemaker, artificial — an electrical device that can substitute for
a defective natural pacemaker and control the beating of the heart
by a series of rhythmic electrical discharges.

Palpebral — pertaining to an eyelid.

PAM — pulmonary alveolar macrophage.

Pancreatic islet cells — clusters of cells in the pancreas (islets of
Langerhans); destruction or impairment may result in diabetes or
hypoglycemia.

Pannus — newly formed superficial vascular tissue over the cornea.

Parasitophorous — containing a parasite.

Paratope — the site on an antibody to which an antigen attaches.

Parenchyma — the essential parts of an organ that are concerned
with its function as opposed to its framework; opposite of stroma.
The distinguishing or specific cells of a gland or organ, contained
within and supported by the connective tissue framework.

Parenteral — denoting any medication route other than the ali-
mentary canal, such as intravenous, subcutaneous, intramuscular,
or mucosal.

Paresthesia — sensation of numbness, prickling, or tingling.

Parietal — pertaining to, or forming, the walls of a cavity; often
specifically refers to the parietal bone, one of two bones that to-
gether form the roof and sides of the skull.

Parkinson’s disease — chronic nervous disease characterized by a
fine, slowly spreading tremor, muscular weakness and rigidity, and
a peculiar gait.

Passivation — the covalent bonding of a layer of atoms to a sur-
face, in order to neutralize (occupy) any dangling surface bonds,
thus chemically stabilizing the surface.

Patch clamp — method of measuring ion currents in individual
cells.

Patella — lens-shaped sesamoid bone situated in front of the knee
in the tendon of the quadriceps femoris muscle.

Patency — the state of being freely open.

Pathogen — a microorganism or agent capable of producing dis-
ease.

Pathogenic — productive of disease.

Pathognomonic — characteristic or indicative of a disease; relat-
ing to one or more of the typical symptoms of a disease.

Pathological — diseased or due to a disease; more informally, per-
taining to an adverse condition.

Pathophysiology(ic) — study of how normal physiological pro-
cesses are altered by disease.

Patocytosis — a unique macrophage endocytotic pathway in which
external particles induce and enter a labyrinth of internal
membrane-bound compartments that remain connected to the ph-
agocytic cell surface.

PCV — postcapillary venules.

PDMS — Polydimethylsiloxane elastomer.

PEG — polyethylene glycol.

Pegylated — containing a surface coating of PEG.

PEI — polyethylenimine.

PEO — polyethylene oxide.

Peptide — a short chain of amino acids joined by amide bonds, up
to 100 residues in length.

Percussion (percussive) — hitting or impact of one body against
another, and the resulting shock, vibration or sound.

Percutaneous device — a medical device that passes through the
skin, remaining in position for a significant length of time.234

Perianal — near the anus.
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Pericardium — the double membranous fibroserous sac enclosing
the heart and the origins of the great blood vessels.

Pericyte — a flat, undifferentiated, contractile connective tissue
cell around the capillary walls.

Peri-implant — near the implant.

Perinuclear — near the cell nucleus.

Perineurally — near a neuron.

Periodontal — located around a tooth.

Peripartum — near or around the time of birth.

Periportal — near the portal end.

Perirobotic — near or around a robot.

Peristalsis — a progressive wavelike movement that occurs invol-
untarily in hollow tubes of the body, especially the alimentary ca-
nal; it is characteristic of tubes possessing longitudinal and circular
layers of smooth muscle fibers.

Peristaltogenesis — eliciting peristalsis.

Peritoneum — in anatomy, the serous membrane reflected over
the viscera and lining the abdominal cavity.

Peritonitis — inflammation of the peritoneum, the membranous
coat lining the abdominal cavity and investing the viscera.

Peritrichous — indicating microorganisms that have cilia or fla-
gella covering the entire surface.

Periurethral — in anatomy, located near or around the urethra
(which discharges urine).

Permucosal device — a medical device that passes through a mu-
cosal layer, remaining in position for a significant length of time.234

Peroperative — during or through an operation.

Peroxisome (peroxisomal) — in cell biology, an organelle found
in vertebrate animal cells that contains a great number and variety
of enzymes important in cell metabolism (Section 8.5.3.9).

Pertussis — an acute, infectious disease characterized by a catarrhal
stage, followed by a peculiar paroxysmal cough, ending in a whoop-
ing inspiration.

Peyer’s patches — an aggregation of lymph nodules found chiefly
in the ileum near its junction with the colon.

pH — potential of hydrogen; measure of the degree of alkalinity or
acidity.

Phage — see bacteriophage.

Phagocyte — a cell with the ability to ingest and destroy particu-
late substances such as bacteria, protozoa, cells and cell debris, dust
particles, and colloids (Section 15.4.3.1).

Phagocytocide — killing phagocytes.

Phagocytosis — ingestion and digestion of bacteria and particles
by phagocytes. The process of internalizing small particles by mam-
malian cells.234

Phagocytosis, frustrated — the failure of mammalian cells to ph-
agocytose particles due primarily to their size, resulting in release of
cytokines.234

Phagolysosome — the body formed when the membrane-bound
phagosome inside a macrophage fuses with a lysosome.

Phagosome — a membrane-bound vacuole inside a phagocyte that
contains material waiting to be digested.

Phalanx — any one of the bones of the fingers or toes.

Pharmacokinetics — study of the metabolism of drugs with par-
ticular emphasis on the time required for absorption, duration of
action, distribution in the body, and method of excretion. See also
ADME.

Pharmacyte — in medical nanorobotics, a theorized (nanorobotic)
device capable of delivering precise doses of biologically active chemi-
cals to individually-addressed human body tissue cells (e.g.
cell-by-cell drug delivery) (Section 10.4.1.4, Chapter 19).

Pharynx (pharyngeal) — the passageway for air from the nasal
cavity to the larynx (also acting as a resonating cavity), and for food
from the mouth to the esophagus; more specifically, a musculom-
embranous tube extending from the base of the skull to the level of
the 6th cervical vertebra, where the tube becomes continuous with
the esophagus.

Phenotype — the appearance or other characteristics of an organ-
ism, resulting from the interaction of its genetic constitution with
the environment; any observable characteristic that expresses the
genotype of an individual.

Phlebitis — inflammation of a vein.

Phlogistic — pertaining to, or inducing, inflammation.

Phospholipid — a lipoid substance containing phosphorus and
fatty acids; major component of cell plasma membrane.

Phosphorylation — the combining of a phosphate with an or-
ganic compound.

Photic — pertaining to visible light.

Photopheresis — extracorporeal photochemotherapy (ECP),5929 a
novel immunomodulatory therapy based on pheresis of
light-sensitive cells.

Phytotoxic — pertaining to a poisonous plant.
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Pial — concerning the pia mater membrane investing the brain
and spinal cord.

Pica — an eating disorder manifested by a craving to ingest any
material not fit for food, including starch, clay, ashes, toy balloons,
crayons, cotton, grass, cigarette butts, soap, twigs, wood, paper,
metal, or plaster. This condition is seen in pregnancy, chlorosis,
hysteria, helminthiasis, certain psychoses, and may be associated
with iron deficiency anemia.

Pili (fibriae) — hairs or filamentous appendages.

Pinealocytes — the principal cell of the pineal body (a glandlike
structure in the brain).

Pinocytosis — the process by which cells absorb or ingest nutri-
ents and fluid, in which minute incuppings or invaginations are
first formed in the surface of the plasma membrane and then close
to form fluid-filled vesicles; resembles phagocytosis.

PLA — polylactic acid.

Planktonic cells — individual free-floating cells, especially micro-
organisms, released from a biofilm.

Plasma — in anatomy, the fluid (noncellular) part of the lymph
and of the blood, usually distinguished from the serum obtained
after coagulation; in cell biology, the part of the protoplasm (cell
substance) outside of the nucleus.

Plasma cell (plasmacyte) — cell found in connective tissue, hav-
ing an eccentrically placed round nucleus filled with a chromatin
mass.

Plasmalemmal — pertaining to the cell plasma membrane.

Plasma membrane — the outermost membrane of a cell, with cell
contents on one side and the extracellular environment on the other
side; the continuous membrane defining the boundary of every cell
(Section 8.5.3.2).

Plasmapheresis — see apheresis.

Plasmatic layer/zone — a cell-free zone near the vascular luminal
wall that forms a thin lubrication layer (Section 9.4.2.6).

Plasmid — an autonomous self-replicating extrachromosomal cir-
cular DNA molecule present intracellularly and symbiotically in
most bacteria, encoding a protein product that confers drug resis-
tance or some other advantageous phenotype. Plasmids reproduce
inside the bacterial cell but are not essential to its viability, and can
influence a great number of bacterial functions.

Plasmin — fibrinolytic enzyme derived from its precursor plasmi-
nogen.

Plasminogen — protein found in many tissues and body fluids,
important in preventing fibrin clot formation.

Plastizymes — plastic polymer enzyme mimics.

Platelet — a round or ovoid 2-4 micron disk found in the blood of
vertebrates; platelets play an important role in blood coagulation
and hemostasis.

Plectin — a cytoskeleton associated protein.

Pledgets — small, flat compress, usually of gauze or absorbent cot-
ton, used to absorb or apply fluid, to protect, or to exclude air.

Pleocytosis — increased number of lymphocytes in the cerebrospi-
nal fluid.

Pleura — serous membrane that enfolds both lungs and is reflected
upon the walls of the thorax and diaphragm; membrane is moist-
ened with a serous secretion that reduces friction during respiratory
movements.

PLG — poly lactide co-glycolide.

Ploidy — the number of chromosome sets in a cell.

PMMA — polymethylmethacrylate.

PMN — polymorphonuclear leukocyte; see granulocyte.

Pneumoconiosis — a pathological condition of the respiratory tract
due to inhalation of dust particles.

Pneumothorax — a collection of air or gas in the pleural cavity.

Poiseuille fluid flow — laminar flow in a pipe (Section 9.2.5).

Polarization — in biology and electrical physics, the development
of differences in electrical potential between two points on an ob-
ject, such as between the inside and outside of a cell wall or along
the length of a piezoelectric bone subjected to shear stress.

Polyanion — molecule containing multiple anions. See also anion.

Polycation — molecule containing multiple cations. See also cation.

Polycythemia — an excess of red blood cells.

Polymer — a long molecular chain of well-defined linked subunits.

Polymorphonuclear leukocyte — see granulocyte.

Polysaccharide — complex carbohydrates of high molecular weight;
one of a group of carbohydrates that upon hydrolysis yields more
than two molecules of simple sugars.

Polystyrene — a synthetic resin produced by the polymerization of
styrene from ethylene and benzene.

Porcine — related to or derived from pig.

Porins — channel proteins which establish a pore in a cell plasma
membrane, allowing cytosolic molecules to pass out of the cell.

Posterior — the backside of the human body; the backside of some-
thing.
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Postmortem — after death.

Postpartum — after childbirth.

Postprandial — after a meal.

Postrema, area — a circumventricular organ located in the me-
dulla of the brain.

Presentation semaphore — in medical nanorobotics, a mechani-
cal device used to display specific antigens, chemical ligands, or other
molecular objects to the external environment, with the purpose of
selectively modifying the chemical or other surface characteristics
of a nanorobot exterior (Section 5.3.6).

Prionosis — pathological protein folding conformations.

Prokaryote (prokaryotic) — in microbiology, an organism or cell
that lacks a nucleus.

Prolate spheroid — football-shaped.

Prostaglandins — large group of biologically active unsaturated
fatty acids that represent some of the metabolites of arachidonic
acid, and act as local intercellular or intracellular modulators of bio-
chemical activity.

Prosthesis — replacement of missing part with an artificial substi-
tute, such as an artificial extremity; an artificial organ or part; de-
vice to augment performance of a natural function. See also
endoprosthesis, exoprosthesis; compare orthosis.

Protease — a class of enzymes that break down, or hydrolyze, the
peptide bonds that join the amino acids in a protein.

Protein — a long chain of amino acids joined by amide bonds,
exceeding 100 residues in length; shorter chains are peptides. More
generally, living cells contain many molecules that consist of amino
acid polymers folded to form more-or-less definite three-dimensional
structures, termed proteins. Short polymers lacking definite
three-dimensional structures are termed peptides. Many proteins
incorporate structures other than amino acids, either as covalently
attached side chains or as bound ligands. Molecular objects made
of protein form much of the molecular machinery of living cells.

Proteoglycans — the predominant, non-collagenous component
of cartilage matrix; large molecules with a central protein core and
attached polysaccharide molecules extending from the core like bottle
brush bristles; aka. acid mucopolysaccharide.

Proteolysis (proteolytic) — hydrolysis (breakdown) of proteins,
usually by enzyme action, into simpler substances.

Proteophilic — tending to attract proteins.

Proteophobic — tending to repel proteins.

Protozoa — the simplest animals, mostly unicellular although some
are colonial. Compare metazoa.

Proximal — near the source or point of attachment or origin; in
the extremities, closer to the trunk.

Pruritus (pruritic) — itching.

Pseudointima — tissue consisting of a firm fibrin clot with occa-
sional islands of endothelial cells, formed by the resolution of in-
flammation on interior (blood-contacting) surfaces of cardiovascu-
lar implants.234

Pseudoneointima — pseudointima in which cells form a continu-
ous layer.234

Pseudopod — in microbiology, a temporary protruding protoplas-
mic process in protozoa for the purpose of taking up food and aid-
ing in locomotion.

Psychogenic — of mental origin.

Psychosomatic — pertaining to the influence of the mind or of
higher functions of the brain upon the functions of the body, espe-
cially in relation to bodily disorders or disease.

PTFE — polytetrafluoroethylene (a form of Teflon).

Pulmonary — pertaining to the lungs.

Purkinje neurons — large neurons that have dendrites extending
to the molecular layer of the cerebellar cortex and into the white
matter of the cerebellum.

PVC — polyvinyl chloride.

Pyoinflammatory disease — inflammation involving pus formation.

Pyrexia — fever.

Pyrogen — a substance producing fever in vivo.

Pyrolysis — decomposition of organic matter when there is a rise
in temperature.

Pyrolytic carbon — carbon formed in a fluidized bed by the py-
rolysis of a gaseous hydrocarbon such as methane, depositing car-
bon onto a preformed substrate such as polycrystalline graphite at
1000-1500 K (Section 15.3.3.2).

Pyropoikilocytosis — a severe form of congenital hemolytic ane-
mia clinically similar to, and now considered a subtype of, homozy-
gous hereditary elliptocytosis. The disorder produces a molecular
defect in spectrin and a partial spectrin deficiency, manifesting as a
severe hemolytic anemia with thermal instability of the red cells.

Pyuria — pus in the urine.

Quantum dots — nanocrystalline semiconductor particles used for
testing and diagnosis (Section 15.3.6.3); a zero-dimensional quan-
tum system.

Quantum yield — The number of defined events which occur per
photon absorbed by the system.

Radical — in chemistry, a group of atoms acting as a single unit,
passing without change from one compound to another, but un-
able to exist in a free state.
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Radioimmunoassay — a very sensitive method for determining
the concentration of substances, particularly the protein-bound hor-
mones, in blood plasma.

Ramus — a branch; one of the divisions of a forked structure.

RBC — red blood cell (erythrocyte).

Receptor — most generally, a structure that can capture a molecule
(often of a specific type in a specific orientation) owing to comple-
mentary surface shapes, charge distributions, and so forth, without
forming a covalent bond. In biology, a receptor is a transmembrane
protein, located in the plasma membrane, that binds a ligand in a
domain on the extracellular side, and as a result has a change in
activity of the cytoplasmic domain of the protein.

Red blood cell (RBC) — see erythrocyte.

Reference material — a material that, by standard test, has been
determined to elicit a reproducible, quantifiable host or material
response.234

Reflex sympathetic dystrophy (RSD) — a neurovascular compli-
cation of CVA (cerebrovascular accident) characterized by severe
shoulder pain and stiffness, swelling and pain in the hand.

Renal — pertaining to the kidney.

Replant biomaterials — see biomaterials, replant.

RES — see reticuloendothelial system.

Resection — the partial excision of a bone or other structure.

Resolution (of inflammation) — the stable end state of the in-
flammation or inflammatory response associated with an implant.234

Resorbable (resorption) — the ability of a biomaterial to be dis-
solved or digested, and thus disappear after implantation; does
not imply specific action of cells or tissues.234 See also
bioresorbable.

Respirocyte — in medical nanorobotics, a theorized bloodborne
spherical 1-micron (nanorobotic) device having a 1000-atm pres-
sure vessel with active pumping powered by endogenous serum
glucose, that serves as a mechanical artificial red blood cell1400

(Chapter 22).

Response, immune — see immune response.

Response, inflammatory — see inflammatory response.

Restenosis — the recurrence of a stenosis condition, e.g., in a heart
valve or blood vessel.

Reticulation — the formation of a network mass.

Reticulocyte — a red blood cell containing a network of granules
or filaments representing an immature stage in development.

Reticuloendothelial system (RES) — in anatomy, the network of
fixed and mobile phagocytes that engulf (and dispose of ) foreign
antigens and cell debris found inside the human body. The reticu-
loendothelium is the tissue of the reticuloendothelial system (RES);
the system of mononuclear phagocytes located in the reticular con-
nective tissue of the body that is responsible for the phagocytosis of
damaged or old cells, cellular debris, foreign substances, and patho-
gens, removing them from the circulation (Section 15.4.3.1).

Retrograde — moving backward.

Reynolds number — the ratio of inertial to viscous forces in fluid
flow. Macroscopic objects and flows typically experience Reynolds
numbers >> 1, where mass and inertia dominate object motions;
microscopic and especially nanoscale objects and flows typically
experience Reynolds numbers << 1, where the viscosity of the envi-
ronment dominates object motions (Section 9.4.2.1).

rf — radio frequency.

RGD — the peptide fragment arginine-glycine-aspartic acid.

Rhegmatogenous — originating or due to a rhegma (rupture, frac-
ture, or rent).

Rheology (rheological) — study of the deformation and flow prop-
erties of materials, especially fluids, such as blood.

Rheumatoid arthritis — form of arthritis with inflammation of
the joints, stiffness, swelling, cartilaginous hypertrophy, and pain.

Rhinitis — inflammation of the nasal mucosa.

Ribonucleic acid (RNA) — the ribonucleotide polymer into which
DNA is transcribed.

Ribosome — a naturally occurring molecular machine that manu-
factures proteins according to instructions derived from the cell’s
genes; a cytoplasmic ribonucleoprotein complex that serves as the
site of translation in the cell. Each ribosome has a large and a small
subunit, 60S and 40S in eukaryotes. These subunits dissociate and
reassociate in a cycle related to their functions, during translation.

Ribotoxic — toxic to ribosomes.

RNA — see ribonucleic acid.

RNA polymerase — an enzyme that synthesizes RNA under direc-
tion from a DNA template (formally described as DNA-dependent
RNA polymerase).

Robot — a programmable device usually consisting of mechanisms
for sensing and mechanical manipulation, often connected to (or
including) a computer that provides control.

Rosai-Dorfman disease — sinus histiocytosis with massive lym-
phadenopathy; commonly presents as massive, painless, bilateral
lymph node enlargement in the neck, with fevers.

Rouleaux — stack-of-coins configuration of a cluster of red blood
cells.
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Rubor — local tissue reddening, one of the four classic signs of
inflammation (Section 15.2.4); see also calor, dolor, tumor.

Ruffini endings — encapsulated sensory nerve endings found in
subcutaneous tissue.

Rugosity — condition of being folded or wrinkled; surface
roughness.

Ruminant — an animal that regurgitates food in order to chew it
again.

Russell bodies — small spherical hyaline bodies in cancerous and
simple inflammatory growths.

Sacrum — triangular bone made up of five fused vertebrae just
above the coccyx.

Sagittal — in anatomy, a vertical plane or section that divides the
body into right and left portions.

Saltatory — hopping or leaping.

Saphenous veins — two superficial veins passing up the leg (Fig-
ure 8.2).

Sarcoma — cancer arising from connective tissue such as muscle or
bone.

Sarcolemma — a delicate membrane surrounding each striated
muscle fiber.

Schistocyte (schistocytic) — an irregularly contracted fragmented
red cell (Section 15.5.5.1.1).

Schistosomiasis — a parasitic disease due to infestation with blood
flukes (schistosomes); endemic throughout Asia, Africa, and tropi-
cal America.

Schizont — stage in asexual phase of life cycle of Plasmodium or-
ganisms found in red blood cells.

Schlemm’s canal — irregular space or spaces in the scerocorneal
region of the eye, that receives the aqueous humor from the ante-
rior chamber of the eye.

Schwann’s cells — cells of ectodermal (outer cell layer of develop-
ing embryo) origin that comprise neurilemma (a thin membranous
sheath enveloping a nerve fiber).

Scission — dividing, cutting, splitting, or pinching off.

Sclera (eye) — tough white fibrous tissue covering the white of the
eye, extending from the optic nerve to the cornea.

Sclerosis (sclerotic) — hardening of a tissue or organ, especially
due to excessive growth of fibrous tissue; also, thickening and hard-
ening of the tissue layers comprising the walls of an artery.

SDS — sodium dodecyl sulfate, an anionic detergent commonly
used to solubilize proteins.

Secretagogue — agent that induces secretion.

Selectins — a family of ~50 kilodalton cell adhesion receptor gly-
coprotein molecules that can recognize diverse cell-surface antigen
carbohydrates and help localize leukocytes to regions of inflamma-
tion (leukocyte trafficking). Selectins are not attached to the cy-
toskeleton.

SEM — scanning electron microscope.

Semaphores — see presentation semaphores.

Sepsis — the presence of various pus-forming and other patho-
genic organisms, or their toxins, in the blood or tissues.

Septic — pertaining to or caused by sepsis.

Septic shock — signs of acute septicemia combined with hypoten-
sion and signs of inadequate organ perfusion (Section 15.2.6.4).

Septicemia — septic fever; systemic disease caused by the multipli-
cation of microorganisms in the circulating blood.

Septum, atrial — a wall between the atria of the heart.

Sequela — a condition following and resulting from a disease.

Sequestration — isolation and temporary storage in cells or tissues.

Sequestrum — a mineralized capsule; see incapsulation.

Serine — an amino acid present in many proteins.

Serotonin — a biochemical substance, 5-hydroxytryptamine
(5-HT), that is present in platelets, gastrointestinal mucosa, mast
cells, and in carcinoid tumors. Serotonin is a potent vasoconstrictor
involved in neural mechanisms important in sleep and sensory per-
ception.

Serotype — in microbiology, a microbe determined by the kinds
and combinations of constituent antigens present in the cells.

Serous membrane — a membrane lining a serous cavity, specifi-
cally the pleural (lung), peritoneal (abdominal), and pericardial
(heart) cavities.

Serum — the watery portion of the blood after coagulation; a fluid
found when clotted blood is left standing long enough for the clot
to shrink. More generally, any serous fluid, especially the fluid that
moistens the surfaces of serous membranes.

Sessile — incapable of voluntary movement. Opposite of motile.

Shear stress, fluid — lateral force per unit area imposed by
transversely-moving fluids that generate shear forces (Section
9.4.1.1).

Shock, anaphylactic — see anaphylaxis.

Shock, nanoid — see nanoid shock.
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Shock lung — aka. acute respiratory distress syndrome (ARDS), a
syndrome of severe respiratory failure associated with pulmonary
infiltrates similar to infant hyaline membrane disease.

Sialolithiasis — presence of salivary calculi.

Sialyl — a glycoprotein moiety. Compare asialo-.

Singlet oxygen — an electronically-excited chemically-reactive form
of oxygen.

Sinusoid — resembling a sinus (a cavity having a relatively narrow
opening); a minute blood vessel found in such organs as the liver,
spleen, adrenal glands, and bone marrow, that is slightly larger than
a capillary and has a lining of reticuloendothelium.

SMC — smooth muscle cell.

Small-particle disease — see osteolysis.

Somatic — in general, relating to the body, as opposed to the mind
or soul; corporeal.

Sonication — to bombard with high-energy acoustic waves, often
for the purpose of fragmenting or destroying the sonicated object.

Sorboregulatory — in medical nanorobotics, active regulation of
the adsorptive characteristics of the nanorobot surface, allowing in
situ regulation of the selective binding characteristics of surfaces
(Section 15.2.2.4). See also adhesioregulatory.

Sorting rotor — see molecular sorting rotor.

sp2/sp3 — in carbon solids, graphite-like (sp2) or diamondlike (sp3)
bonding, respectively.

Spectrin — an actin-binding peripheral protein found in the eryth-
rocyte membrane skeleton.

Spherocyte — an erythrocyte that assumes a spheroid shape.

Spindle — bundle of delicate fibrils that connect the two cen-
trosomes; seen during mitosis.

Spirochete — any member of the order Spirochaetales.

Splanchnic — pertaining to the viscera.

Splanchnodynia — abdominal pain.

Splanchnomegaly — abnormal distension of the viscera.

Splenectomy — surgical removal of the spleen.

Splenic — pertaining to the spleen.

Splenofenestral motility — in medical nanorobotics, the ability
to actively locomote through the fenestral slits in the spleen.

Splenomegaly — abnormal enlargement of the spleen.

SPM — scanning probe microscope (microscopy); suspended par-
ticulate matter (environmental health).

Spontaneous arterial dissection — a tear in the intima of the blood
vessel, allowing blood to dissect the wall of the artery; occurs in the
absence of external trauma.

Squamous cell — a flat, scaly epithelial cell.

Standard test — a well-defined, repeatable test (Section 15.2.1.5)
of host response or material response, generally involving the use of
one or more reference materials.234

Starch — noncrystalline carbohydrate of the polysaccharide group
found in plants.

Stasis — stagnation of normal flow of fluids or of the intestinal
mechanism; ceasing of activity.

Stellate — star-shaped.

Stem cells — a cell that gives rise to a specific type of cell as in
hematopoiesis.

Stenosis (stenotic) — constriction or narrowing of a passage or
orifice.

Stent — any material used to hold tissue in place or to provide a
support for a graft during healing; a flexible metal coil or open-mesh
tube surgically inserted into a narrowed artery.

Stercoral — pertaining to feces.

Stereocilia, cochlear — specialized mechanoreceptor cells of the
inner ear.

Steric — pertaining to the spatial relationships among atoms in a
molecular structure; in particular, pertaining to the space-filling
properties of a molecule.

Steric hindrance (barrier) — in chemistry, slowing of the rate of a
chemical reaction owing to the presence of molecular structures
possessed by the reagents that mechanically interfere with the mo-
tions associated with the reaction, typically by obstructing the reac-
tion site; in hematodynamics, the reduction in hematocrit near small
blood vessel bifurcations due to the elongation and orientation of
red cells along the direction of shear flow.

Sternum (sternal) — pertaining to the breastbone.

Sternutation — sneezing.

Sternutogenesis — producing sneezing (Section 15.2.6.2).

Steroids — a large family of chemical substances, comprising many
hormones, vitamins, body constituents, and drugs, each containing
the tetracyclic cyclopentophenanthrene skeleton.

STM — scanning tunneling microscope.

STOC — spontaneous transient outward currents.
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Stoichiometric — in chemistry, pertaining to the precise quanti-
ties of reagents required to complete a chemical reaction; in par-
ticular, to the exact amounts needed to balance the chemical reac-
tion equation.

Stroma — foundation-supporting tissues of an organ, defining the
framework of an organ; opposite of parenchyma.

Subarachnoid space — space between the pia proper and arach-
noid containing the CSF.

Subareolar — below the areola.

Subclavian — under the clavicle (collarbone).

Subcutaneous (subcutis) — beneath, or to be introduced beneath,
the skin.

Sublimation — in chemistry, passing directly from solid to vapor state.

Submasseteric — lying underneath the masseter (the muscle that
closes the mouth and the principal muscle in mastication).

Subperiosteal — beneath the periosteum (fibrous membrane cov-
ering bone).

Sulcus — furrow, groove, fissure, or slight depression.

Superior — upper or higher than; situated above something else

Supine — lying on the back, with the face up.

Surfactant — in physical chemistry, a chemical agent that lowers
surface tension.

Swine — pertaining to pigs.

Sympathomimetic — adrenergic.

Synapse (synaptic) — the point of junction between two neurons
in a neural pathway, where the termination of the axon of one neu-
ron comes into close proximity with the cell body or dendrites of
another neuron.

Syncope — transient loss of consciousness due to inadequate blood
flow to the brain.

Synechias — adhesions of parts, especially adhesion of iris to lens
and cornea.

Synovial — pertaining to the capsule of a skeletal joint.

Synoviocyte — cells comprising the intima of synovial membrane
(tissue lining the noncartilaginous surfaces of a synovial joint); cells
are of two types, macrophage-like and fibroblast-like.

Systole (systolic) — the normal period in the heart cycle during
which the muscle fibers tighten and shorten, the heart constricts,
and the cavities empty of blood; roughly, the period of contraction
alternating with diastole or relaxation. Occurs in the interval be-
tween the first and second heart sounds during which blood is surged
through the aorta and pulmonary artery.

Tachyphylaxis — the rapid desensitization to a toxic substance pro-
duced by inoculation with a series of small doses, or a rapidly de-
creasing response to a drug following administration of the initial
doses.

Tamponade, cardiac — pathological condition resulting from ac-
cumulation of excess fluid in the pericardium.

Tay-Sachs disease — inherited autosomal-recessive disease; neuro-
logical deterioration characterized by mental and physical retarda-
tion, blindness, spasticity, etc.

Teflon — a polymeric fluorocarbon (Section 15.3.4).

Teflonoma — large granuloma formed in reaction to Teflon.

Tegument — the skin or covering of a living body.

Telomere — the natural end of a chromosome; the telomeric DNA
sequence consists of a simple repeating unit (in humans, TTAGGG)
with a protruding single-stranded end that may fold into a hairpin.

TEM — transmission electron microscope.

Tendon — fibrous connective tissue serving for the attachment of
muscles to bones and other parts.

Tensegrity — cell shape maintenance by a tensional integrity ar-
chitecture that achieves mechanical stability because of the way com-
pressive and tensional forces are distributed and balanced within
the cell.

Terabot — a trillion (1012) medical nanorobots, usually in refer-
ence to dosage.

Teratogenicity — producing abnormal development in an embryo.

Tetramer — polymer comprised of 4 units.

Thermal conductivity — transport of thermal energy due to a tem-
perature gradient; the energy flux (W/m2) per unit of spatial tem-
perature gradient (K/m) equals the coefficient of thermal conduc-
tivity (W/m-K).

Thermocompatibility — the thermal biocompatibility of
nanodevices or nanorobotic systems as they interact with the or-
gans, tissues and cells of the human body (Chapter 15.3.8).

Thermogenic limit — in medical nanorobotics, the maximum
amount of waste heat that may safely be released by a population of
in vivo medical nanorobots that are operating within a given tissue
volume (Section 6.5.2).

Thiol group — in chemistry, an -SH group, or a molecule contain-
ing such a group; also known as a sulfhydryl or mercapto group.

Thorax (thoracic) — that part of the body between the base of the
neck superiorly and the diaphragm inferiorly.

Thrombocyte — platelet.

Thrombocytolysis — fragmentation of platelets.
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Thrombocytopenia — reduced platelet count.

Thromboembolus — blocking of a blood vessel by a thrombus
that has detached from its site of formation.

Thrombogenicity — the property of a material that induces or
promotes the formation of a thrombus.230

Thrombogenicity (inherent) — thrombus formation controlled
by the material surface;5870 reaction-controlled thrombogenicity at
the surface of a material.234

Thromboresistant — see nonthrombogenic.

Thrombosis — formation, development, or existence of a blood
clot or thrombus within the vascular system.

Thrombotic thrombocytopenic purpura (TTP) — a rare disease
characterized by embolism and thrombosis of small blood vessels.

Thrombus — a solid mass formed from the molecular and cellular
constituents of blood;234 a blood clot.

Thymocyte — a cell in the thymus that migrated there from the
bone marrow, ultimately to become various types of T lymphocytes.

Tibia — the inner and larger bone of the leg between the knee and
the ankle.

Tingible — capable of being stained by a dye.

Tissue engineering — elaboration of cells and tissues outside a
living organism, intended for use as components of a viable bioma-
terial or replant, by use of engineering methods and techniques.234

Tissue response — see host response, local.

TLV — threshold limit value6082 (OSHA).

T-lymphocytes (T-cells) — White blood cells that are produced
in the bone marrow but later mature in the thymus. T-cells are
important in the body’s defense against certain bacteria and fungi,
help B-cells make antibodies, and assist in the recognition and re-
jection of foreign tissues.

TNF — tumor necrosis factor.

Tolerogen — a material which can induce immunological toler-
ance or unresponsiveness.2332

Tophi — large crystalline deposits.

Toxic shock — a disease caused by the release of toxins produced
by certain strains of various bacteria.

Trabecula — fibrous cord of connective tissue, serving as support,
forming a septum extending into an organ from its wall or capsule.

Trachea(l) — a cylindrical cartilaginous tube extending from the
larynx to the bronchial tubes.

Tracheobronchial — concerning the trachea and bronchus.

Transcription — synthesis of RNA on a DNA template.

Transcutaneous (percutaneous) — effected through the skin.

Transcytosis — passage through cellular membrane or tissue wall
barriers.

Transendothelial — see diapedesis.

Transepithelial — crossing an epithelial layer.

Transferrin — a globulin in the blood that binds and transports
iron.

Translation — in biochemistry, the synthesis of protein on the
mRNA template; the process of reading the codon sequence in
mRNA to synthesize the corresponding polypeptide with the in-
volvement of ribosomes, tRNA, and many enzymes.

Translocation — movement across intestinal walls or into lung in-
terstitium.

Transmigration — see diapedesis.

Transposon — a genetic unit such as a DNA sequence that is trans-
ferred from one cell’s genetic material to another.

Trigeminal — pertaining to the trigeminus or fifth cranial nerve.

Trillion — this book follows the American convention in which a
trillion is 1012.

Trophozoite — a sporozoan nourished by its hosts during its growth
stage.

Trypanosomiasis — any disease caused by trypanosomes (asexual
protozoan flagellates parasitic in the blood plasma of many ver-
tebrates).

Tuboplasty — plastic repair of any tube.

Tubulin — a protein present in the microtubules of cells, which are
polymers of alpha tubulin (~53,000 dalton) and beta tubulin
(~55,000 dalton) dimers.

Tumor (cancer) — spontaneous new growth of tissue forming an
abnormal mass.

Tumor (inflammation) — local tissue swelling, one of the four
classic signs of inflammation (Section 15.2.4); see also calor, dolor,
rubor.

Tumorigenic — producing a tumor.

Turbulence — in hydrodynamics, fluid flow which does not follow
parallel streamlines, which has a blunt (nonparabolic) profile in tube
flow, and often involves eddies, vortices, and significant variations
in fluid velocities, accelerations and shear stress between adjacent
fluid elements. Turbulence dissipates more energy, and presents more
resistance to flow, than laminar flow.

Turgor — distension, swelling.
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TWA — time-weighted average6083 (OSHA).

Tympanoplasty — surgical procedure to cure inflammatory pro-
cess or restore function in the ear.

Ubiquitin — a small protein present in eukaryotic cells that com-
bines with other proteins and makes those other proteins suscep-
tible to destruction; this protein is also important in promoting the
functions of proteins that make up the ribosomes.

Ulcer — an open sore or lesion of the skin or mucous membrane
accompanied by sloughing of inflamed necrotic tissue.

Ulceration (ulcerative) — suppuration occurring on a free sur-
face, as on the skin or a mucous membrane, to form an ulcer.

ULTI carbon — ultra-low-temperature isotropic carbon (Section
15.3.3.2).

Undifferentiated — alteration in cell character to a more embry-
onic type or toward a malignant state.

Urate — a salt of uric acid.

Uremia — toxic condition associated with renal insufficiency pro-
duced by retention in the blood of nitrogenous substances normally
excreted by the kidney.

Urethra — a canal for the discharge of urine extending from the
bladder to the outside of the body.

Urticaria — vascular reaction of the skin characterized by the erup-
tion of pale evanescent wheals (round elevations of the skin, white
in the center with a pale red periphery), which are associated with
severe itching; hives.

UTP — uridine triphosphate; analog to ATP.

Uveitis — a nonspecific term for any intraocular inflammatory dis-
order, usually of the uveal tract structures (iris, ciliary body, and
choroid, forming the pigmented layer) although nonuveal parts such
as the retina and cornea may also be involved.

Vacuole — a clear space in cell protoplasm filled with fluid or air.

Vagus — the tenth cranial nerve.

Valsalva, sinuses of — three dilations in wall of the aorta behind
the flaps of the three aortic semilunar valves.

Van der Waals forces — weak electrostatic forces between atoms
and molecules; any of several intermolecular attractive forces not
resulting from ionic charges; also known as the London dispersion
force (Section 3.5.1).

Vasa vasorum — the microvasculature of the aorta.

Vascular — containing, or pertaining to, blood or lymph vessels.

Vascular gate — a vascular plug or selective gate spanning the lu-
men of a blood, lymph, or other fluid vessel, for the purpose of

allowing only specified particulate matter to pass, or selectively fil-
tering out other specified particular matter or fluids (Section
15.4.2.3; Chapter 19).

Vasculitis — inflammation of a blood or lymph vessel.

Vasculoid — in medical nanorobotics, an intimate personal appli-
ance that conforms to the shape of existing blood vessels and aug-
ments the human vascular system, replacing blood with a single,
complex robot that can duplicate all essential thermal and biochemi-
cal transport functions of the blood, including circulation of respi-
ratory gases, glucose, hormones, cytokines, waste products, and all
necessary cellular components; a member of a class of space- or
volume-filling nanomedical augmentation devices whose function
applies to the human vascular tree4609 (Chapter 30).

Vasculomobility — in medical nanorobotics, capable of locomo-
tion along, across, or through vascular walls.

Vasculopathy — any disease of blood vessels.

Vas deferens — the excretory duct of the testis.

Vasoconstriction — in physiology, a decrease in the diameter of
blood vessels.

Vasodilation — in physiology, an increase in the diameter of blood
vessels.

Vasorelaxation — lessening of vascular pressure.

Ventricle (ventricular) — either of two lower chambers of the heart.

Vermiformis — contoured like a worm.

Vermipodia — worm-like processes observed on cell surfaces in a
few cases of malignant histiocytosis and a case of leukemic
reticulum-cell sarcoma.3469

Vertigo — the sensation of moving around in space; sometimes
used as a synonym for dizziness, lightheadedness, or giddiness.

Vesicles — small bodies bounded by membrane, derived by budding
from one membrane and often able to fuse with another membrane.

Vesicles (endocytotic) — membranous particles that transport pro-
teins through endocytosis; also known as clathrin-coated vesicles,
having on their surfaces a layer of the protein clathrin.

Vesicles (exocytic) — membranous particles that transport and store
proteins during exocytosis.

Vesicoureteric reflux — condition in which damage to internal
kidney structures occurs from retrograde urine flow into the kid-
ney; aka. reflux nephropathy, chronic atrophic pyelonephritis, ure-
teral reflux.

Vesicular — pertaining to or resembling vesicles.

Vesiculation (vesiculated) — formation of vesicles or state of hav-
ing or forming them.
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Viable biomaterials — see biomaterials, viable.

Vimentin — an intermediate filament cytoskeleton attachment
protein.

Virion — a single physical virus particle.

Virucide — the destruction of active or dormant virus particles
(Section 10.4).

Virus — A parasite (consisting primarily of genetic material en-
closed in a protein capsid shell) that invades cells and takes over
their molecular machinery in order to copy itself.

Viscera (visceral) — internal organs enclosed within a cavity, espe-
cially the abdominal organs.

Viscosity — resistance of a fluid to shearing, when the fluid is in
motion (Section 9.4.1.1).

Vitreous carbon — a type of graphite formed by the decomposi-
tion of hydrocarbon gases on smooth surfaces (such as glazed por-
celain) at temperatures above 650 ˚C (Section 15.3.3.1); aka. poly-
meric carbon, glassy carbon.

Vitreous humor — in anatomy, a delicate network enclosing in its
meshes a clear watery fluid filling the interior of the eyeball behind
the lens.

Volumetric — pertaining to geometric volume of an object.

Volvulus — a twisting of the bowel upon itself, causing obstruction.

Vroman effect — the temporal succession of molecular species ad-
herent to surfaces of implants;234 named after its discoverer, Leo
Vroman.

Waldenstrom’s macroglobulinemia — excessive number of plasma
cells, which are responsible for IgM globulin synthesis.

Warfarin — an anticoagulant drug.

WBC — white blood cell; see leukocyte.

White blood cell (WBC) — see leukocyte.

Whorl — spiral arrangement of cardiac muscular fibers.

Xenogeneic — derived from nonhuman tissues or cells

Young’s modulus — in mechanical engineering, a modulus relat-
ing tensile (or compressive) stress to strain in a rod that is free to
contract or expand transversely. The relevant measure of strain is
the elongation divided by the initial length (see also strain and
stress).

Zeiosis — the violent plasma membrane blebbing of a dying cell.

Zeta potential — the overall charge a particle acquires in a specific
medium; the magnitude of the zeta potential gives an indication of
the potential stability of a colloidal system of these particles.

Zonula occludens — tight junction between columnar epithelial
cells.

Zymogenic — pertaining to a substance (a zymogen or proenzyme)
that develops into an enzyme capable of producing or causing fer-
mentation or digestion (e.g. pepsinogen, trypsinogen); a cell that
produces zymogens (proenzymes).

Zymosan — An insoluble carbohydrate derived from yeast cell walls,
used especially in the immunoassay of properdin (a serum protein
that helps destroy bacteria and viruses).
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120, 141, 144
Bone cell,  8, 70, 78, 80, 136, 143
Bone marrow,  14, 20, 21, 30, 31, 67, 79, 94, 99, 101, 103, 105, 108,

121, 138
Bone morphogenetic protein (BMP),  111
Bone sialoprotein (BSP),  79
Boone, C.W.,  47
Bordetella pertussis,  113, 115, 119
Borrelia recurrentis,  34, 35
Boutorine, A.S.,  61
Bovine serum albumin,  14, 51, 61, 75, 76; see also BSA
Bowman’s capsule,  103
Brachiation,  97
Brachymetatarsy,  77
Bradbury, Robert J.,  preface, 39, 118, 122, 123, 131, 143, 161
Bradykinin,  35, 38, 40, 43, 86, 125
Brain, 27, 32, 33, 42, 43, 57, 59, 60, 73, 74, 85-87, 90, 93, 99, 101,

104-106, 123, 134, 137, 150, 156, 157, 159
Brain, Joseph,  55
Brain macrophage,  137
Brand, K.G.,  47
Brass,  85
Breast milk,  26, 27
Brefeldin A,  147
Brodbeck, W.G.,  145
Bronchoconstriction,  40, 127
Broncholithiasis,  45
Brooklyn College,  55
Brownian motion,  139
Brucella abortus,  25, 34, 119, 120

Bruising,  126-129
Brushite,  23, 53
BSA,  14, 51, 58, 75, 85, 103; see also bovine serum albumin
Bubble formation,  152
Bubblecrit,  158
Buckyball,  55, 57, 60, 61
Buckypaper,  56
Buckysome,  60
Buckytube,  55, 57
Buller, C.,  104
Bursting strength,  141
Bushko, Renata G.,  preface
Butanedione monoxime,  117

C
C1,  22-24, 36
C1-C9,  22
C1 INA (C1 inactivator),  24
C1 INH (C1 esterase inhibitor),  24, 36
C1q,  23, 25, 63
C1r,  23, 24
C1s,  23, 24
C2,  20, 23, 24
C2a,  23, 25
C2b,  23, 24
C3,  20, 23-25, 31, 50, 159
C3a,  23-25, 40
C3b,  23-25, 102, 118
C3b INA accelerator,  25
C3bBb,  23, 24
C3bBbP,  23
C3 convertase,  23-25
C3 INA,  25
C3 nephritic factor,  23
C4,  23, 25
C4a,  20, 23, 24
C4b,  23-25
C4bp,  25
C5,  20, 23, 25
C5a,  23-25, 40, 71, 113
C5a peptidase,  113
C5b,  23
C5b67,  23-25
C5b678,  23
C5b6789,  23, 24
C6,  23, 25, 64
@C60,  59
C60,  4, 28, 46, 55-61, 69, 89
C

60
-dimalonic acid,  61

C
60

 fulleropyrrolidone,  60
C60 monomalonate,  61
C60-PEG,  59, 60
C

60
 (OH)

24
,  60

C
60

 trisamine,  61
C62 bis(malonate),  61
C7,  23
C

70
,  28, 46, 56-58

@C
82

,  59
C8,  23, 25
C9,  22, 23, 25
Cachectin,  43
Cadherin,  119, 135
Calcification,  7, 9, 71, 72, 83, 108, 126, 135
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Calcineurin,  30
Calciphylaxis,  126
Calcite,  29
Calcium,  9, 23, 29, 36, 38-40, 45, 50, 54, 70, 81, 107, 113, 117-

119, 130, 131, 136, 141, 144, 147, 153
Calcium oxalate,  29, 36, 45
Calcium phosphate,  9, 36, 41
Calcium pyrophosphate dihydrate (CPPD),  23, 36, 45, 54
Calculi,  109
Calmodulin,  61
Calor,  35
CaM kinase,  147
Camouflage,  14, 15, 29-32, 146; see also immune system
cAMP,  115, 120, 131
Camptothecin,  86
Cancer,  5, 46, 47, 55-57, 60, 68, 85, 135, 149, 157
Candida,  34
“Candy wrapper” effect,  132
Cannabinoid,  113
Capacitance,  112, 121, 144
Capillaritis,  133
Capillary waves,  19
Capsule(s),  3, 9, 25, 61-64, 70, 72, 76-78, 85, 95, 108, 110, 111,

114, 117, 122
Carasso, Barbara,  preface
Carbohydrate,  14, 15, 22-24, 28, 29, 32, 88, 89, 143, 153
CarboMedics,  9
Carbon dioxide (CO

2
),  8, 64, 88, 120, 156

Carbon disulfide,  58
Carbon fiber composite,  61, 64, 65
Carbon fullerenes and nanotubes,  55-60
Carbon monoxide,  4, 75
Carbon Nanotechnologies Inc.,  55
Carbon nanotube,  13, 28, 36, 46, 55-61, 85, 144
Carbon particle,  4, 5, 28, 45, 53, 62-68, 99-104, 107, 108, 111, 116,

121, 123, 156-158, 160
Carborundum,  5
Carboxyfullerene,  58-61
Carboxylic acid,  9, 46, 56-58, 61
Carboxymethylcellulose,  139
Carboxypeptidase N (CPN),  25
Carcinogen,  46, 47, 57
Carcinogenesis, 2, 5, 7, 11, 46, 47, 53, 55-57, 73, 74, 78, 79
Carcinoma,  46, 60, 67, 97, 109
Cardiac arrest,  41, 135
Cardiac regurgitation,  97
Cardiff University,  19
Cardiomegaly,  156
Cardiomyocyte,  133
Cardiomyopathy,  151
Cardioplegia,  134
Cardiopulmonary bypass,  101
Carlton, Celeste,  preface
Carotid,  73, 74, 87, 130, 133
Carr, K.E.,  105
Carrageenan,  121
Cartilage,  32, 45, 63, 77, 78, 135, 136
Case Western Reserve University,  15
Cat,  42, 86, 97, 127, 140
Catabolism,  11
Catelas, Isabelle,  80
Catheter,  8, 10, 11, 17, 38, 42, 52, 63, 70-72, 78, 83, 93, 126,

132-135, 138, 140
Catholic University in Leuven,  5
Cation,  131, 144

Cavalcanti, Adriano,  preface
Caveolae,  117
Cavitation,  8, 11, 145, 152, 153
CB,  65-68
CD2,  136
CD3,  21, 31
CD4,  21, 31, 59
CD8,  21, 31, 100
CD11b,  13, 63, 113, 118
CD18,  13, 113, 118, 136
CD28,  31
CD31,  116
CD40,  29
CD45,  136
CD47,  114
CD59,  25
CD61,  79
CD62,  63
CD62L,  136
CD94,  20
CD95,  31-33
CD95L,  32, 33, 120
CD100,  113
CDC42,  116
Cefotaxime,  113, 115
Cell,  4-41, 43-47, 49, 51-89, 93-96, 98-123, 125, 127-153, 155-162;

see also cyto-
cell adhesion,  7, 10, 13, 14, 16, 17, 51, 52, 54, 60, 63, 71, 79, 85,

116, 119, 130, 132, 136, 142
cell adhesion molecule,  116, 119, 130
cell apoptosis,  15, 130, 131, 141
cell attachment,  9, 13, 16, 17, 19, 51, 53, 71, 86
cell-binding,  14, 16, 17, 115
cell-cell electrostatics,  144
cell-cell recognition,  14
cell confinement,  142, 143
cell containerization,  142, 153
cell cortex,  150
cell culture,  11, 16, 18, 60, 65, 80, 86, 89
cell cycle,  7, 149
cell damage rate (by nanorobots),  137, 138
cell desiccation, 142, 143
cell division,  30, 47, 118, 150
cell enucleation,  118
cell(ular) galvanotaxis,  144
cell growth,  9, 13, 17, 51, 57, 60, 64, 85, 142
cell junction,  128
cell lysis,  22, 57, 141, 147, 161
cell membrane,  10, 11, 14, 18, 20-24, 28, 44, 57, 84, 87, 123,

135-141, 143, 144, 146, 147, 150, 152
cell membrane fluctuation,  137, 139-141
cell metabolic activity,  7
cell migration,  16, 63, 66, 71, 135, 144, 149
cell-nanorobot,  13, 143
cell nucleus, 43-45, 47, 53, 84, 98, 100, 101, 118, 136, 143, 145,

147, 149-152, 159, 161
cell-polymer interface,  8
cell pressurization, 142, 143
cell proliferation,  7, 17, 31, 33, 66, 79, 83, 131, 144
cell protein,  7, 55, 78
cell receptor,  16, 21, 30, 31, 89
cell reproduction,  11
cell-repulsive,  17, 85
cell spreading,  16-18, 119, 142
cell survival,  11
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cell vesicle budding,  144
resealing,  128, 146148, 151
wounded cell,  147

CellCept,  30
Cellini, Benvenuto,  2
Cell-mediated immunity (CMI),  21, 41
Cell response to patterned surfaces,  17, 18
Cellular defense,  4
Cellular dissociation,  11, 17
Cellulitis,  127
Celsus, Cornelius,  35
CEM (cell),  59, 60
Center for Biologic Nanotechnology,  84
Center for Biological and Environmental Nanotechnology (CBEN),

55, 81
Centrosome,  150
Ceram alumina,  76
Ceramide,  60, 116
Cerebrospinal fluid,  8, 71, 86, 105, 156; see also CSF
Cereport,  86
Cervix,  24, 34, 60, 93, 104
Cetirizine,  41
C fiber,  125, 126
CFRC,  64, 65
Chang, Kai-Chien,  13
Chaotropic ions,  28
Charcot-Marie-Tooth disease,  150, 151
Chattoraj, D.K.,  75
Cheilitis,  107
Chelation,  136
Chemical vapor deposition,  28, 36, 52
Chemisorption,  38, 68
Chemokine,  36, 110, 113, 115
Chemokinesis,  112, 113
Chemoreceptor trigger zone (CTZ),  43, 87
Chemorepellent,  87, 112-114, 121
Chemotaxis, 11, 22, 24, 25, 40, 53, 58-60, 66, 80, 99, 101, 109, 110,

112, 113, 122
Chen, Jian-Jun,  33
Chen, Li-Tsun,  96
Chicken,  66, 67, 101, 104, 106, 127, 136
Chigger,  127
Childbirth,  156
Chills,  41
Chilomonas paramecium,  112
Chimeric molecule,  25
Chlamydia pneumoniae,  34, 119
Chloramphenicol,  117
Chlorine,  43, 119, 137
Chlorpheniramine maleate,  41
Chlorpromazine,  112
Choi, Stephen U.S.,  90
Cholecystokinin,  115
Cholelithiasis,  45
Cholesterol,  29, 45, 93, 100, 109, 120, 139, 146, 160
Cholesterol crystal,  45, 160
Cholesterol monohydrate,  29
Cholinergic,  43, 61
Chomatin,  141
Chondrocalcinosis,  45
Chondrocyte,  17, 78, 135, 136, 144, 153, 160
Chondrogenesis,  57, 70
Chorioamnionitis,  104
Choroid plexus,  87
Christel, P.S.,  80, 81

Chromium (Cr),  8, 41, 47, 50, 52, 54, 63, 66, 68, 75, 77, 79, 115
Chrysotile,  47
Chu, Benjamin,  9
Chylomicron,  95, 102, 141
CIA,  66
Cibacron blue,  112
Circle of Willis,  98
Cirrhosis,  94
Ckine,  22
Clathrin,  59, 117
Clements, Ken,  preface
Clonal deletion,  29, 30, 33, 87
Clopidogrel,  40
Clostridium difficile,  116
Clostridium perfringens,  113, 117
Clottocyte,  39
Clowes, Alexander W.,  132
Clubbing,  110
Clusterin,  25
CMF,  53, 139, 141
CNI-1493,  36, 115
CNS,  27, 35, 45, 85, 105, 112, 157
Coagulase,  32, 114
Coagulation,  7, 12, 35, 37-40, 43, 44, 49, 50, 62, 82, 138, 140, 145,

153, 159
Coagulopathy,  159
Coal dust,  4, 5, 53, 64, 65, 82, 106, 107, 109
Coarctation,  138
Cobalt,  5, 6, 8, 41, 47, 52, 54, 63, 80
Cobra venom factor,  23
Cokelet, G.R.,  96
Colcemid,  118
Colchicine,  115, 118, 141
Cold shock,  143
Coles, L. Stephen,  preface
Colitis,  43
Collagen,  8, 9, 10, 13, 16, 17, 35, 38, 45, 51, 64, 65, 67, 70-72, 74,

78, 79, 86, 105, 109, 110, 123, 137, 144, 155, 159, 160
Collagenase,  65
Collision,  111, 133, 134, 138-141, 146, 154
Colloidal carbon,  65-67, 86, 103, 104, 108, 109, 121, 158
Colominic acid,  32
Colon(ic),  3, 41-43, 66, 106, 126, 127
Colostrum,  27
Colwell, Rita R.,  143
Communicyte,  110
Complement,  7, 19-29, 31-35, 37-41, 43, 50, 54, 63, 71, 82, 85, 88,

89, 99, 101, 102, 113-116, 119, 123, 125, 132, 145, 153
alternative pathway,  22-25, 33
classical pathway,  22-24
lectin pathway,  22

Compliance,  133, 139, 143
Conceptus,  59
Concussion,  133, 134, 138
Condroitin,  23
Congenital brain malformation,  150
Congestive heart failure,  128
Connexin,  136
Conomos, Cynthia,  preface
Contact dermatitis,  41, 125
Contact guidance,  18, 85, 110
Contusion,  44
Convoy,  87, 126, 129, 142
Copper,  42, 45, 72, 85, 90, 132
Coppin, Chris M.,  151
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Cornea,  17, 32, 37, 72, 104, 128
Corpus callosum,  45
Corrosion,  8, 10, 52, 54, 61, 68, 81, 85, 93, 111, 144
Corticosteroid,  30, 33
Cortisone,  121
Corundum,  6, 75, 80
Cosmetic surgery,  74
Costochondral,  17, 78
Cotton,  109
Coumarin,  39
Countess of Essex,  1
CR1,  24
CR2,  24
CR3,  24
CR4,  24
Cranium,  12, 43, 78, 83, 156, 157
CRE,  131
Creatinine,  97
Cretaceous-Tertiary boundary,  56
Cricothyroid,  73
Crinal,  126
Cristobalite,  107
Crooke, William,  2
Crosby, Carol Beck,  preface
Crotalin,  40
Crush test,  127
Cryptococcus neoformans,  31
Cryptosporidium,  35
Crystal deposition disease,  36, 45, 103, 160
Crystalite Corp.,  2
Crystalloid bodies,  159
Crystalluria,  45, 104
CSF,  21, 45, 64, 69, 80, 105, 118, 156, 157; see also cerebrospinal fluid
C Sixty,  60, 61
CTZ,  43
Curtis, Adam S.G.,  10, 18
CVD (chemical vapor deposition),  28, 36, 49, 51, 52, 89
Cyanide,  1, 28
Cyanosis,  5, 40
Cyclic mechanical strain,  131
Cyclic mechanical stretch,  131
Cycloaddition,  13
Cyclodextrin,  56, 58
Cycloheximide,  118
Cyclopropane,  58
Cyclosporine,  30, 113
Cystic fibrosis (CF),  137, 147
Cytoambulation,  129, 130
Cytocarriage,  16, 20, 23, 35, 139, 148
Cytochalasin B,  115, 123, 141
Cytochalasin D,  115
Cytochrome,  15, 46, 59, 112, 148, 149, 153
Cytocide,  120, 128
Cytocompatibility,  57, 78, 80
Cytokeratin,  76
Cytokine,  20-22, 28, 31, 33, 35, 36, 43-46, 53, 67, 69, 72, 82, 87,

99, 100, 109-112, 131, 134, 160
Cytolysin,  120
Cytolysis,  23, 24, 120, 139, 140, 150
Cytomegalovirus,  121
Cytopenetration,  19, 33, 52, 87, 112, 118, 119, 136, 138, 153
Cytoplasm,  26, 34, 46, 53, 57, 76, 83, 86, 98, 100, 102, 104, 105,

114, 117-119, 122, 141-144, 147-150, 152, 153, 159, 161
Cytopuncture,  146-148
Cytoskeleton,  18, 19, 51, 78, 87, 95, 116, 117, 135-137, 139,

147-153, 161

Cytoskeleton associated protein,  150
Cytosol,  21, 35, 44, 59, 82, 83, 84, 100, 116, 119, 120, 121, 139,

141, 147, 148, 149, 153, 159, 161
Cytosolic leakage,  147, 153
Cytosolic nuclease,  82, 149
Cytosolic protein,  21, 153
Cytotoxicity,  5, 12, 20, 21, 27, 30, 31, 33, 41, 47, 49, 51, 52, 55-58,

60, 69, 75, 78, 80, 83, 84, 87, 89, 100, 109, 110, 112, 113,
115, 116, 118, 120, 122, 142, 144, 145, 160

D
1,4-dinitrobenzene,  28, 29
Dacron,  17, 63, 70, 71, 132
DAF,  24, 25
Dalargin,  86
Damage rate (by nanorobots),  12, 137, 138, 146
Damge, C.,  105
DAMGO,  113, 115
Dansylcadaverine,  115, 120
Davis, S.S.,  114
de Medici, Catherine,  2
De qi,  126
De-differentiation,  7
Deamer, David W.,  27
Decompression nucleation,  145, 152
Decoys,  29, 34, 43, 84
Decubitus,  126
DeGennes P.G.,  14
Degranulation,  39, 40, 53, 67, 99, 115, 118, 139, 141
Dehring, D.J.,  101
Dehydration,  36, 43, 44, 143
Delayed-type hypersensitivity (DTH),  11, 30, 32, 41, 125
Democritus,  quotes
Denaturation,  28, 44, 49-51, 62, 69, 76
Dendrimer,  49, 81, 84, 85, 153
Dendrite,  148
Dendritic cells (DCs),  21, 22, 24, 31, 33, 100, 131, 137
Dental,  3, 5, 8-10, 36, 52, 62, 63, 70, 75-78, 122, 134
Denudation,  133, 134
Deoxynucleoside,  82
Deoxyribonucleic acid,  see DNA
Dephosphorylation,  116
DePTFE,  68, 70
Derivatized carbon fullerenes and nanotubes,  58-60
Dermatitis,  5, 40, 41, 125, 126
Dermis,  22, 64, 105, 107, 110, 127, 155
Desialylated glycocalyx,  145
Desiccation,  142, 143
Detachment,  12, 14, 15, 29, 67, 72, 104, 116, 134, 135, 145, 151-153
Dexamethasone,  103, 115, 120, 132
Dextran,  15, 23, 86, 97, 101, 103, 114, 121, 127, 139
d’Herelle,  114
Diabetes, 51, 104, 139, 150, 159
Diacylglycerol,  131
Dialysis,  7, 81, 85, 126, 138, 147, 156, 157
Diamond,  1-6, 8-11, 13, 15, 16, 19, 20, 23, 24, 28, 29, 36, 38, 41,

45-47, 49-54, 61, 64, 68, 69, 75, 81, 85, 87-91, 99-102,
105-110, 121, 122, 126, 132, 138, 139, 142, 143, 148, 151,
154-156, 160

biocompatibility of diamond-coated prostheses,  52, 53
biocompatibility of diamond particles,  49, 53, 54
cell response to diamond surface,  51, 52
chemical inertness of diamond,  49, 54
diamond-coated,  8, 38, 49, 52, 54, 132



Biocompatibility • Index 329

diamond crystal,  49, 53, 54, 99, 156
diamond dust,  1, 2, 4-6, 53, 54, 108, 109, 160
diamond grit,  2, 126
diamond particle,  1, 2, 4, 6, 15, 23, 36, 49, 53, 54, 89, 99, 100,

105, 109, 155, 156, 160
protein adsorption on diamond surface,  49-51

Diapedesis (transendothelial migration),  96, 104, 128, 141, 142, 144
Diarrhea,  3, 126-128
Diastole,  129
Diathermy,  90
DIC,  see disseminated intravascular coagulation
Dichlorobenzene,  58
Dichloromethylene diphosphonate,  120
Diclofenac sodium,  36, 113
Dictyostelium discoideum,  153
Differential gear,  122
Differentiation,  7, 17, 21, 22, 33, 47, 57, 59, 66, 71, 79, 80, 99, 101,

114, 122, 130-132, 136, 149
Dilantin,  13, 45
Dimalonic acid C

60
,  59

Dimer placement mechanosynthesis tool tip,  122
Dimethyldioctadecylammonium bromide,  119
Diminazenediaceturate,  86
Dion, I.,  51, 54, 80
Dirofilaria,  135
Disaggregation,  139, 142, 144
Dissociated cell,  11, 17
Di Silvestre, M.,  79
Disse space,  66, 95, 102
Disseminated intravascular coagulation (DIC),  44, 138, 140
Diverticulum,  74
DLC,  13, 36, 38, 46, 51, 52, 53, 54, 89, 132
DMSO,  112
DNA,  preface, 30, 34, 46, 49, 55, 57, 59, 61, 62, 76, 78, 81-85, 87,

106, 123, 131, 144, 145, 149, 153
B-DNA,  82
cDNA,  31, 83
ssDNA,  82
dsDNA,  82, 83
Z-DNA,  82

Dog,  3, 18, 39, 54, 61-63, 69-74, 77, 78, 80, 94, 97, 104, 107, 110,
111, 127, 130, 132, 134, 135, 156, 158

Dolor,  35
Donaldson, K.,  123
Donaldson, P.E.K.,  145
Dopamine,  43, 85
Dopaminergic,  45, 58
Doxorubicin,  86
DPA,  77
Drake, R.F.,  17
Drexler, K. Eric,  preface, 88, 122, 146, 148, 154
Drosophila,  57
Drukker, M.,  33
Dubertret, Benoit,  84
Dugan, L.L.,  61
Duncan, Alexander,  37
Duodenum,  42, 106, 127, 146
DuPont,  56
Dura mater,  71
Dural tear,  156
Durante of Brescia,  2
Durasphere,  68
Dust cell,  6, 99
Dust mite,  4, 40, 125
Dust particle,  54, 65, 98, 106, 108, 109, 160
Dutton, R.C.,  12

Dye, William L.,  preface
Dynamin,  117, 118
Dynein,  151
Dysenteric,  43
Dysesthesia,  150
Dysopsonic,  101
Dysphonia,  73
Dyspnea,  158
Dystrophia,  83, 147, 152
Dystrophic muscle cells,  147

E
EAG,  150
Eastman, J.A.,  90
Ebola,  128
EC,  129-132
Ecchymosis,  128
Eclampsia,  138
ECM,  16-18, 86, 123, 135-137, 142, 149, 150, 153, 155;

see also extracellular matrix
Eczema,  40
EDDF,  118
Edema,  5, 35, 36, 40, 54, 66, 67, 79, 104, 115, 120, 127-130, 133,

134, 137, 155, 157
Edentulous,  76
Effluents,  43, 47, 49, 86, 88, 89
EGTA,  39, 113
Ehrlichia (Cytoecetes),  119
Eicosapentaenoic acid,  113, 115
eIF4E-binding protein,  142
Elastase,  25, 40
Elasticity,  63, 133, 139, 141, 155, 157, 159, 161
Elastin,  155
Eldridge, J.H.,  105
Electret,  39
Electrocautery,  144
Electrochemical potential,  145
Electrocompatibility,  85, 125, 143-145

electrical interactions with cells,  143-145
electric field-induced cell migration,  144
mechanoelectric,  144
oscillating electric/magnetic field,  144
surface electrical thrombogenicity,  143, 145

Electrocution,  144
Electrolyte,  23, 158
Electronegativity,  50, 51
Electrophoresis,  144
Electroporation,  144, 147
Electrostatic contact potential force,  145
Electrostatic image force,  145
Electrotaxis,  144
Elephantiasis,  129
ELISA,  58
Elliptocytosis,  138, 150
El Tor strain,  143
Embolism,  9, 82, 83, 97, 135
Embolus,  8, 44, 45, 71, 93, 94, 97, 132, 134, 145
Embryo,  33, 46, 51, 57, 59, 71, 78, 84, 135, 147
Embryogenesis,  59
Emerson, Ralph Waldo,  quotes
Emesis,  42, 43, 125, 126
Emetogenesis,  42, 43, 126
Emiling, Robert C.,  22, 37
Emperipolesis,  161



Nanomedicine • Volume IIA330

Emphysema,  5
Encapsulation,  7, 17, 58, 64, 70, 74, 77, 85, 110, 111
Encephalitis,  45, 86
Encephalomyelitis,  86
Endarterectomy,  133
Endocarditis,  9, 11
Endocardium,  134
Endocytic,  24, 35, 86, 104, 117, 118, 123
Endocytic index,  104
Endocytosis,  22, 59, 67, 82, 84, 100, 102, 115, 117, 118, 147, 149
Endometrium,  133
Endomorphine,  113, 115
Endoplasmic reticulum (ER),  26, 35, 78, 118, 119, 128, 146, 148
Endoprosthesis,  28, 63, 64, 72, 80
Endoscopy,  41, 66, 74
Endoscopic colonic tattooing,  41, 66
Endosome,  117
Endosteal,  62
Endosymbiont,  161
Endothelial(-ium),  5, 17, 18, 31, 32, 35, 36, 38, 39, 45, 51, 52, 59,

63, 66, 71, 85, 86, 94-98, 101-103, 107, 108, 114, 116, 121,
127-135, 140-147, 150

Endothelial massage,  95
Endothelial phenotype and function, modulation of,  129, 130
Endothelial precursor stem cells,  132
Endothelial slit,  96
Endothelial tight junction,  142
Endothelialization,  38, 64, 71, 132, 135
Endotoxin,  15, 36, 43-45, 113
Engineered cell,  85
Engoren,  45
Enkephalin,  86
Enophthalmos,  72
Entactin,  16
Entamoeba histolytica,  25
Enterococci,  117, 120
Enterocyte,  146
Enterotoxin,  45
Enucleation,  118
Enveloped virus,  16, 60, 114
Enzyme,  5, 8, 13, 23-25, 33, 34, 38, 40, 41, 46, 47, 51, 53, 54, 56,

58, 61, 65, 67-69, 73, 76, 78, 80, 82, 87, 88, 95, 100, 102,
111, 112, 115, 117, 119-121, 123, 125, 127, 131, 140, 141,
144, 145, 148, 149, 153

Enzyme complexes,  144
Eosinophil,  20, 23, 27, 28, 40, 66, 98, 99, 103, 107, 109, 118, 123,

159
EPA (Environmental Protection Agency),  4, 55
Epidermalgia,  125, 126
Epidermal,  9, 10, 14, 22, 46, 57, 60, 64, 125-127, 131, 137, 144,

147, 150
Epidural,  156
Epilepsy,  43, 86
Epileptogenesis,  86
Epimysial,  111
Epinastine,  41
Epinephrine,  41, 139; see also adrenalin
Episclera,  72
Epithelial(-ium),  3-5, 17, 18, 22, 24, 30, 33, 34, 40, 42, 46, 60, 63,

64, 67, 68, 71-73, 76, 78, 79, 98, 104-107, 111, 117, 120,
122, 125-128, 133, 137, 142, 144, 146, 147, 149, 150,
159-161

Epithelial pressure ulcers,  126, 133
Epitope,  13, 26, 28-32, 88
Epoxylite,  85

e-PTFE,  68, 70, 72
Eriksson, C.,  63
Erlanger, B.F.,  11, 59
Erythema,  35, 36, 82
Erythroblastosis fetalis,  41
Erythrocyte,  12, 15, 23-25, 29, 31, 33, 35, 44, 60, 62, 72, 74, 82,

85, 94-99, 102, 103, 108, 114, 120, 121, 123, 125, 128,
132, 134-144, 146, 147, 150, 152, 153, 157-159, 161

Erythrocyte aggregation,  137, 139, 142
Erythrocyte surface fluctuations and elasticity,  139
Erythrocyte trauma,  138
Erythromelalgia,  125
Erythromycin,  115
Erythropathy,  138
Erythropoietic,  101
Erythropoietin,  138
ESCA,  58
Escherichia coli, 11, 15, 19, 22, 32, 34, 43, 57, 60, 112, 117, 119, 161
Esophagus, 3, 42, 45, 52, 68, 74, 126, 127, 137
eSpin Technologies,  9
Esthesiometer,  137
ET-1,  130
Etanercept,  46
Ethanol,  58, 94, 115, 150
Ethmoidal,  42
Etoposide,  118
Euglena gracilis,  112
Eukaryotic cell,  14, 15, 46, 57, 120, 144, 160
Euler buckling,  150
Euvolemic,  128
Excited state,  56
Exocrine,  94, 118
Exocytosis, 24, 87, 98, 112, 116, 118, 119, 147
Exoprostheses,  126
Exotoxin,  115, 120
Exsanguination,  61, 158
Extracellular matrix,  13, 16, 17, 19, 72, 85, 125, 133, 135, 137, 155;

see also ECM
Extravasation,  73, 85, 101, 128, 142
Extrinsic pathway,  38-40
Extropy Institute,  14
Extrusion,  62, 72, 73, 111, 118

of cell nucleus,  118
of implant,  72, 111

Eye,  2, 5, 32, 33, 42, 44, 62, 66, 67, 72, 93, 94, 104, 105, 115, 156

F
Fab,  23, 26, 32, 59
Fabrey’s disease,  159
Factor B,  23-25
Factor D,  23, 25
Factor H,  24, 25
Factor III,  38
Factor IX,  38
Factor IXa,  38
Factor P,  23
Factor V,  38, 39
Factor Va,  38
Factor VII,  38
Factor VIII,  76
Factor X,  38, 39
Factor Xa,  38-40
Factor Xa inhibitor FX-2212,  39
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Factor XI,  38
Factor XIa,  24, 38
Factor XII,  35, 36, 38
Factor XIIa,  24, 40
Factor XIIa inhibitor,  40
Factor XIIIa,  38
Fahy, Gregory M.,  preface, 8, 14, 143, 145
Failure strength,  63, 151, 154, 155
Falk, R.,  106
Fardeau-Engel bodies,  160
Farnese, Pierluigi,  2
Fas,  32, 60
FasL,  32, 33
FC4S,  58, 59
FDA (Food and Drug Administration),  71, 73, 162
Fecal incontinence,  74
Feces,  43, 59, 123, 126
Feline,  97, 127
Fenart, L.,  86
FEP,  141
Ferrofluid,  147
Fetotoxicity,  46, 57
Fetus,  32, 138, 156
Fever,  7, 34, 36, 40, 41, 44-46, 66, 73, 74, 128, 161
Fewster, Stephen,  13
FGF,  131, 134
Fiberglass,  5, 125
Fibrin,  12, 13, 32, 37-40, 50, 62, 63, 69, 79, 114, 135, 138-140
Fibrinogen,  10, 12, 13, 19, 32, 37-39, 49, 50, 61-63, 67, 69, 75,

102, 136, 139, 140
Fibrinolytic enzyme,  13
Fibroblast,  7, 10, 16-18, 29, 32, 33, 36, 46, 47, 51, 52, 54, 57, 62,

64-67, 70, 72, 78, 80, 83, 98, 99, 101, 104-106, 110, 114,
120-123, 127, 134, 136, 137, 141-144, 146, 147, 149, 159,
160

Fibroid,  157
Fibromyalgia,  128
Fibronectin,  10, 13, 14, 16, 18, 32, 50, 69-71, 75, 86, 114, 123, 160
Fibroplasia,  110
Fibrosarcoma,  17, 60, 71
Fibrosis,  4-7, 18, 49, 65, 67, 71, 73, 74, 77, 79, 80, 108-110, 129,

137, 147, 160
Fields, Lars Lawrence,  preface
Film Oasis,  14
Filovirus,  128
FimH,  19
Fine, Arthur,  preface
Fine motion controller,  122
Fiorito, Silvana,  55, 57
Fish bone,  109
Fistula,  98, 130, 134, 138
Flagella,  34, 35, 112, 161
Flitman, Steven S.,  preface, 13, 23, 27, 45, 46, 54
Fluid shear stress,  129, 130, 136, 140, 141
Fluorescence,  56, 59, 63, 78
Fluorinated ethylene propylene,  71
Fluorocarbon polymer, 45, 50, 68-75, 85, 86, 89, 107

biocompatibility of Teflon-coated prostheses,  68, 71, 72
biocompatibility of Teflon particles,  72-74
cell and tissue response to bulk Teflon,  69-71
chemical inertness of Teflon,  68, 74, 75
protein adsorption on Teflon surfaces,  68, 69

Fluoropassivated,  68
Fluoropeptide,  16
Fluorophore,  159

Fluoropolymer,  72
Fluorouracil,  85
Fluosol,  72
fMLP,  113, 118, 159
Foam cells,  159, 160
Follistatin,  82
Fonseca, Tim,  preface
Food allergy,  40
Food poisoning,  21
Force threshold for biological response,  135-137
Forced sieving,  95
Foreign-body carcinoma,  109
Foreign body giant cell (FBGC),  65, 66, 70-72, 77, 78, 99, 102, 103,

109, 110
Foreign body granulomatous reaction,  74, 109, 134
Foreign body reaction,  7, 36, 62, 64, 65, 73, 74, 77, 98, 109-111,

133
Foresight Institute,  preface
Formed blood elements,  97, 145
Forrest, David R.,  preface
Fragmentation syndrome,  138
France, Richard,  9
Frankfurter Allgemeine Zeitung,  preface
Frederick II,  1
Free radical,  40, 61, 79, 88, 98, 122, 134
Freitas, Barbara Lee,  preface
Freitas, Nancy Ann,  preface
Freitas, Robert A. Jr.,  preface, 3, 122
Freitas, Robert A. Sr.,  preface
Freund (bacterial adjuvant),  100
Frialit,  76
Friedman, David,  preface
Fructosyl chondroitin,  32
Frustrated phagocytosis,  100, 112
Fujita, H.,  102
Fujita, Tsuneo,  96
Fullerene,  23, 28, 36, 38, 41, 45, 46, 49, 55-61, 69, 85, 89, 153
Fullerene-based pharmaceuticals,  60, 61, 153
Fullerenol,  58-61
Fullereyl protein,  58
Fullerol,  46, 58, 59
Fungus,  31, 54, 58, 83, 147, 150
FUO,  45
Fusion protein,  19
Fusogen,  116, 119

G
Gabriel, Kaigham,  4
Gadolinium (Gd),  130
Gallbladder,  95
Gallstone,  45, 109
Galvanic,  61, 68
Galvanotaxis,  144
Gamma globulin,  30, 113
Ganglioside,  145
Gastric fundus,  146
Gastrin,  113, 115
Gastrointestinal,  3, 4, 27, 34, 42, 44, 82, 93, 105, 123, 127, 150
Gastrointestinal strangulation,  44
Gaucher’s disease,  156, 159
GdCl

3
,  116, 120, 121, 131

Gebert, Andreas,  106
Gelatin,  3, 66, 70, 71, 75, 100, 134
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Gelsolin,  123
Gene therapy,  84, 122
Genistein,  115
Gennart, J. Ph.,  6
Genomic cassette,  121
Genotoxicity,  5, 46, 47, 57, 67, 115, 116, 122
Gentamicin,  11, 115, 149
Genzer, J.,  16
Genzyme Corp.,  9
Geometrical filtration,  94, 97, 101
Geometrical trapping of bloodborne medical nanorobots,  93-98

geometrical trapping elsewhere in the circulation,  97, 98
geometrical trapping in kidney vasculature,  97
geometrical trapping in liver vasculature,  94, 95
geometrical trapping in lung vasculature,  94
geometrical trapping in spleen vasculature,  95-97

Germanium,  5
Ghost red cells,  15, 98
Giant cell,  7, 16, 54, 63, 65, 67, 70, 74, 77, 78, 83, 99, 100, 102,

103, 105, 109
Gingiva,  22, 25, 33, 62, 76, 78-80, 127
Glass,  2, 3, 5, 9-11, 15, 17, 18, 35, 37, 39, 41, 51, 64, 69, 70, 85,

90, 94, 106, 109, 134, 139-141, 143, 144, 150, 152
Glassy carbon,  61-63, 85
Glaucoma,  72, 156
Glaumann, H.,  123
Glial cell,  67, 85, 104, 105, 123
Gliosis,  67, 86
Glomerulonephritis,  103
Glomerulus,  67, 97, 103, 138
Glucan,  123
Glucocorticoid,  46, 120
Glucose,  15, 16, 51, 61, 88, 89, 112, 119, 120, 123, 129, 132, 145
Glucose tolerance test,  129
Glucosyl,  146
Glugea,  119
Glutaraldehyde,  139
Glutathione,  24, 58, 59, 68
Glycocalyx,  10, 13-15, 101, 102, 137, 145, 146

glycocalyx damage,  146
Glycolipid,  14, 16, 119, 136
Glycophorin,  136
Glycophosphatidyl LFA-3,  136
Glycoprotein,  10, 14, 16, 17, 21, 24-26, 34, 41, 49, 75, 79, 103,

116, 119, 136, 145, 146
Glycoprotein C (gC),  25
Glycoprotein III (gIII),  25
Glycosaminoglycan,  38
Glycoside,  1, 15
Glycosylation,  14, 123
GM-CSF,  21, 64, 80, 118; see also granulocyte-macrophage colony

stimulating factor
Gold,  14, 18, 19, 24, 29, 39, 41, 61-63, 68, 72, 83, 85, 87, 100, 101,

103, 132
Gold-binding protein (GBP),  29
Golgi,  26, 78, 146-148
Gonzalez, Kelly A.,  59
Goodpasture’s syndrome,  41
Gore-Tex,  11, 68, 70, 72
Gout,  36, 45, 46, 156
GpIIb-IIIa,  136
G protein,  70, 117
GR,  58
Graft,  7, 9, 10, 13, 15-17, 29-33, 38, 58, 64, 65, 68-72, 84, 121,

122, 130, 133

Gramicidin A,  148
Gram-negative,  25, 43, 44, 112, 144
Gram-positive,  44, 60, 64, 120, 144
Granule,  23, 28, 38, 40, 82, 96, 98, 101, 118, 119, 141, 147, 151,

159, 160
Granulocyte,  21, 63, 64, 70, 95, 98, 103, 111, 113, 115, 118, 121,

140, 141, 144
Granulocyte-macrophage colony stimulating factor,  21, 64, 113, 118;

see also GM-CSF
Granuloma,  7, 45, 47, 56, 63, 64, 66, 67, 70-72, 74, 79, 83, 93, 94,

100, 102, 103, 107, 109-112, 121, 122, 127, 129, 134
diffusion through granuloma,  110

Granulomatous (reaction),  45, 47, 66, 70, 71, 74, 79, 109-112, 122,
127, 134

Granulopoietic,  101, 103, 121
Graphene,  36, 46, 55, 57, 58, 60, 88, 89
Graphite,  5, 8, 14, 15, 23, 28, 36, 38, 41, 45, 46, 51, 54, 55, 61-64,

68, 75, 88, 89, 109, 138, 152
Graphitic acid,  64
Graphitosis,  5, 63
Graphon surface,  64
Green, Katharine,  preface
Griscelli syndrome,  151
Gristina, Anthony G.,  10
Grune & Stratton, Inc.,  96
GSH,  58, 68
GST,  58
GTP,  112, 116, 142
GTPase,  115-118
Guanine,  57, 61
Guanylhydrazone,  36
Guinea pig,  6, 55, 57, 59, 61, 62, 65, 68, 70, 77, 99, 107-109, 160,

161
Gulf General Atomic,  62
Guyton, Arthur C.,  129

H
5-HT,  36, 43
H9 (cell),  60
HA,  53
Hab,  31
Haberzettl, Cecilia,  preface, 33
Haemophilus influenzae,  25, 34, 95, 114, 117
Hageman factor,  24, 35, 36, 38, 43
Hair follicle,  32, 125-127, 137
Halas, Naomi J.,  84
Hall, J. Storrs,  preface
Hallervorden-Spatz disease,  159
Halperin, James L.,  preface
Hamaker constant,  144
Hamill, Owen P.,  preface, 137, 143, 147, 148
Hamster,  4, 6, 18, 66, 71, 78, 109, 115
Hansen, J.O.,  50
Haptic,  126
Haptoglobin,  138
Haptotaxis,  18
Hard metal lung disease,  5
Harfenist, Elizabeth J.,  26, 27
Harms, J.,  80
Harrison, R.G.,  18
Harvard Department of Environmental Health,  55
Haubold, A.D.,  68
Hay fever,  40
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HBEGF (heparin binding epidermal growth factor),  131
HCME,  134
Hct,  see hematocrit
HDP,  80
Headache,  41, 128, 156
Heart valve,  7, 8, 9, 10, 11, 38, 52, 62, 63, 75, 97, 114, 138
Heart valve biomaterials,  8, 9
Heartworm,  135
Heat capacity,  75, 89-91
Heat shock protein (HSP),  35, 153
Hedenborg, Mikael,  6, 53
Heinz bodies,  95, 96
HeLa,  11, 60
Helbing, G.,  63, 65
Helicobacter pylori,  25, 29, 32
HEMA,  14, 18, 85, 101, 139; see also hydroxyethylmethacrylate
Hematocele,  70
Hematocrit (Hct),  96, 128, 157-159
Hematoma,  128, 134, 157
Hematopoietic,  51, 71, 137
Hemidesmosome,  76, 78
Hemocompatibility,  51, 69
Hemoconia,  95
Hemodialysis,  13, 82, 140
Hemodilution limit,  158
Hemodynamic load,  147
Hemoglobin,  15, 75, 96, 103, 138
Hemoglobinuria,  138
Hemolysin,  118-120
Hemolysis,  7, 12, 38, 54, 64, 78, 80, 84, 135, 137-140

mechanical hemolysis,  138
nanorobotic hemolysis,  138, 139

Hemolytic-uremic syndrome,  138
Hemophilia,  70
Hemorrhage,  43, 66, 97, 127, 128, 133, 134, 157
Hemorrhagic fever,  128
Hemostasis,  39
HEP-2 (cell),  60
Heparin,  13, 23, 25, 36, 38, 39, 52, 89, 114, 131
Hepatocarcinogenic,  46, 72
Hepatocyte,  17, 18, 60, 66, 71, 95, 102, 117, 120, 121, 132
Hepatocyte growth factor,  132
Hepatoma cell,  60
Hepatomegaly,  156
Hepatosplenomegaly,  121
Herbimycin,  115, 130
Herelle,  see d’Herelle
Hernia,  44, 72
Hewitt, John,  preface
Hexa(sulphobutyl)fullerene,  61
Hexafluoroethane,  70
HIE (hyperimmunoglobulin-E),  113
Higson, F.K.,  53
Hipper, A.,  131
Hippocampal,  85
Hirano bodies,  159
Hirudin,  39
Histamine,  20, 22, 24, 28, 35, 36, 40-43, 112, 125
Histiocyte,  72, 74, 99, 108
Histiocytoma,  47
Histiocytosis,  110
Histonatation, threshold for perceptible, 86, 87, 135-137, 141
Histopenetration,  127-129
Histoplasma capsulatum,  34
HITT,  39

HIV,  54, 59, 60, 86
Hives,  40
Hixon, Hugh,  preface
HLA,  20, 29, 30, 32, 33, 66
HMG,  36
Hogg, Tad,  preface
Hoh, Jan H.,  preface
Holland, Nolan B.,  15
Holy Roman Empire,  1
Homologous restriction factor (HRF),  25
Hook, C. Christopher,  preface, 84
Hormone,  40, 44, 95, 112, 115, 138
Host response,  7, 11, 12, 111
Houghton, Sue,  preface
hPGT,  130
HPMA,  85
HRF (homologous restriction factor),  25
HRP (horseradish peroxidase),  116
HSA (human serum albumin),  12, 14, 51, 62
HSP (heat shock protein),  35, 153
Hsp60,  35
Hsp70,  153
Hsu, Long,  151
HSV (herpesvirus),  25, 32, 86
Huczko, Andrzej,  55
Hughes, Robert G.,  preface
Humanize,  88
Hutchkinson, Maxwell,  1
Hyaline,  79
Hyalocyte,  66, 104
Hyaluronan,  9, 29, 54
Hyaluronic acid,  32, 33, 114
Hybridoma,  141, 152, 159
Hydrocarbon,  9, 29, 41, 45, 50, 51, 57, 58, 61, 62, 66, 73, 74, 79,

89, 122, 148
Hydrocarbon bearing,  122
Hydrocarbon universal joint,  122
Hydrocephalus,  8, 157
Hydrogen peroxide,  61, 67, 82, 98
Hydrophilic,  12-15, 17-19, 23, 28, 39, 49, 50, 59, 63, 75, 76, 83,

94, 100, 101, 114, 116, 144, 145, 148
Hydrophobic,  10-12, 14-19, 23, 28, 29, 49, 50, 52, 57-59, 62, 68,

69, 71, 72, 75, 76, 79, 81, 100, 101, 103, 117, 144, 148, 159
Hydroxyapatite,  9, 23, 28, 36, 41, 53, 54, 59, 78-80, 83, 100
Hydroxyethyl starch,  158
Hydroxyethylmethacrylate,  14; see also HEMA
Hydroxymethylation,  104
Hyperalgesia,  35, 126, 127
Hyperbaric,  128
Hypercapnia,  156
Hyperesthesia,  126
Hyperhidrosis,  45
Hyperion Catalysis International,  55
Hyperopia,  156
Hyperplasia, 47, 67, 107, 130, 132-134
Hypersensitivity,  7, 11, 20, 30, 32, 36, 40-42, 125
Hypertension,  87, 94, 130, 133, 147
Hyperthermia,  44, 45, 87
Hypertrophy,  142
Hypervariable (regions),  26
Hyperventilation,  156
Hyperviscosity,  158
Hypervitaminosis A,  149
Hypha,  69, 150
Hypocapnia,  156
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Hypochlorite,  112
Hypoglucosify,  119
Hypokalemia,  158
Hyponatremia,  158
Hypotension,  35, 40, 41, 97, 128, 129, 156, 158
Hypothalamus,  44, 45
Hypothyroid,  159
Hypotony,  72
Hypovolemic,  128
Hypoxia,  43, 119, 132
Hysteresis,  133

I
1-(5-isoquinolinesulfonyl) piperazine,  113
IAP,  see inhibitor of apoptosis
IBD,  45
Ibuprofen,  39, 46
ICAM,  71, 86, 134, 136
ICD,  93, 134
Idarubicin,  86
Idiotype,  29
IFN,  21, 66, 103
IgA,  21, 23, 27, 28, 34, 40, 75, 118
IgD,  21, 28
IgE,  20, 21, 23, 28, 40, 41, 66, 73, 125
IgG,  21, 23, 24, 26-28, 33, 34, 41, 50, 58, 66, 69, 71, 73, 75, 82,

95, 99, 100, 102, 115-117, 160
IgM,  21, 23, 27-29, 41, 75, 116, 120
IIR,  66
IJE,  78
IL-,  16, 20, 31, 33, 44-46, 64, 69, 80, 82, 103, 110, 113, 118, 134;

see also interleukin
IL-1,  16, 44-46, 69, 82, 110, 118, 134
IL-2,  16, 31
IL-3,  118
IL-4,  20, 45, 103
IL-5,  118
IL-6,  20, 44-46, 80, 118
IL-8,  45, 64, 69, 113
IL-10,  31, 33, 46
IL-13,  20

Ileum,  42, 57, 59, 105, 106, 127, 146
Illum, L.,  114
Imidazole,  112
Immune system,  8, 11, 16, 20-22, 25, 28-35, 40, 44, 47, 58, 66, 88,

93, 113, 114, 122
camouflage,  14, 15, 29-32, 146
complement activation,  7, 21-25, 27, 29, 32, 33, 43, 71, 85, 89, 145
immune cell,  8, 20, 28, 31-33, 45, 83
immune evasion,  20, 29, 33-35
immune privilege,  20, 32, 33, 120
immunosuppression,  30-32
nonspecific (innate) immune response,  20
overview of the human immune system,  20
specific (acquired) immune response,  20-22
tolerization,  20, 30-32

Immunogen,  26, 82, 88
Immunogenic,  15, 28-33, 82, 84, 88, 89, 122
Immunoglobulin,  19-21, 25-30, 32, 34, 41, 50, 66, 69, 101, 113,

116, 123, 125; see also antibody
Immunoisolation,  28, 85
Immunoradiometric assay,  33
Immunoreactivity,  7, 9, 20-35, 52, 88
Immunosuppression, see immune system

Immunotoxin,  30, 54
Impact hemolysis,  138
Impedance mismatch,  133
Implant infection,  10, 11
Imuran,  30
Incontinence,  68, 74, 107
India ink,  28, 41, 45, 46, 61, 65-67, 101, 102, 105, 108
Indole,  112
Indoleamine 2,3-dioxygenase (IDO),  33
Inductively Coupled Plasma-Atomic Emission Spectrometry,  81
Inductively Coupled Plasma Mass Spectroscopy (ICP-MS),  54
Inert particle,  81, 94, 100, 103-105, 107, 121
Inflammation,  5-7, 11, 19, 20, 24, 29, 30, 32, 33, 35-37, 40, 42, 44,

45, 47, 49, 51, 53, 54, 56, 62-74, 77, 79, 80, 82, 83, 86, 94,
95, 100, 103, 122, 123, 127-129, 132, 134, 135, 142, 156

inflammatory cell,  8, 18, 24, 36, 67, 76, 78, 104, 107, 111
inflammatory disease,  88, 158
inflammatory lung disease,  4
nonspecific inflammation,  20, 35

Influenza,  25, 34, 84, 95, 114, 117, 119
Ingber, Donald,  18
Inhibitor of apoptosis, 114, 142, 153
Ink particle,  41, 66, 102, 105, 108
Inositol trisphosphate,  130, 131
Institute for Molecular Manufacturing (IMM),  preface
Integration,  10, 17, 18, 53, 111, 149
Integrin,  13, 16, 63, 82, 113, 114, 135, 136, 140
Integrin associated protein (IAP),  114, 142
Interferon,  20, 21, 33, 45, 131
Interleukin,  20, 21, 31, 45, 53, 60, 82, 110, 120, 160; see also IL-
Intermediate filament,  149-152
Intermembrane inclusion bodies,  160
Interstitium,  5, 67, 79, 86, 103, 106, 107
Intestine,  1, 3, 22, 42, 94, 95, 97, 99, 106, 126, 127, 146, 155, 156
Intracellular cavitation,  145, 152
Intracellular locomotion,  149, 151
Intracellular microzones,  145, 153
Intracellular nuclease,  82
Intrauterine,  133
Intravasation,  128
Intravascular electrode,  143
Intravascular hemolysis,  138, 139
Intravitreous,  66, 104
Intrinsic pathway,  38, 40
Intrusiveness,  155-161

bloodstream intrusiveness,  157-159
cellular intrusiveness,  159, 160
intracellular lipofuscin and storage diseases,  159, 160
intracellular microbiota,  160, 161
intracellular microspheres and crystals,  160
intracellular nanorobot intrusiveness,  161
membrane elasticity and cellular expansion,  159
phagocyte ingesta,  160
somatic intrusiveness,  155-157

Inulin,  23
Iodination,  98
Ionophore,  118
IpaB,  119, 120
Ipecac,  42
Iridium,  85, 123
Irino, S.,  96
Iron,  2, 5, 6, 42, 45, 56, 75, 86, 90, 101, 105, 138, 149, 160
Ischemia,  98, 123, 134, 142, 156
Isenberg, G.,  131
ISFET,  145
Islet cell,  33, 159
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Isoelectric,  14, 23, 75, 145
Isoprenaline,  139
Isotonic,  68, 138, 158, 159
Isotype,  27, 58
ITAM,  116
Itching,  2, 19, 34, 90, 112, 125, 126, 155; see also pruritis
IUD,  10, 133
Izhaky, David,  28

J
Jacobstein, Neil A.,  preface
Jani, P.,  105
Jejunum,  42, 127
Jiggling,  154
Johnson & Johnson,  9
Jones, M.I.,  51
Jones, O.T.,  53
Josset, Y.,  78
Jurkat cell,  136

K
K antigen,  117
Kainate,  61
Kallikrein,  24, 35, 36, 38
Kaolin,  35, 38, 109, 145
Kartagener syndrome,  151
Kekich, David A.,  preface
Keloid,  47
Kenacid Blue,  51
Keratin,  150
Keratinocytes,  9, 18, 32, 57, 60, 82, 89, 144, 150
Keratitis,  10, 32
Keratocyte,  104
Keratomileusis,  37
Kerosene,  88
Kessler, N.,  28
Ketoconazole,  112
Ketotifen,  112
Kidney,  11, 18, 34, 36, 45, 51, 58, 59, 66, 74, 79, 84, 93, 94, 97, 99,

101, 103, 105, 106, 112, 123, 138, 151, 158
Kidney vasculature,  97, 103
Kinase,  59, 113, 115, 116, 130, 131, 147
Kinase inhibitor,  113, 115, 116
Kinesin,  97, 147, 151-154
Kinetochore,  151
King, Benjamin T.,  69
Kinin,  24, 35-37
Kirschner wire,  93
Klebsiella pneumoniae,  117
Klockars, Matti,  6, 53
Knowles pin,  93
Kofler, N.,  105
Komender, J.,  81
KP1,  76
Kreyling, W.G.,  123
Krummenacker, Markus,  preface
Kumar, Aryavarta,  preface, 29, 40
Kupffer cell,  66, 73, 75, 98, 99, 101-103, 115, 116, 120-123, 161
KurzweilAI.net,  preface
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Leukapheresis,  140
Leukergy,  94
Leukocidin,  120
Leukocyte,  6, 10, 13, 18, 20-23, 32-34, 38, 40, 53, 54, 57, 62, 63,

66, 67, 70, 73, 82, 86, 94, 98, 99, 101, 103, 104, 106, 110,
112, 113, 115, 116, 118, 125, 130, 132, 135-137, 140-146,
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146-148, 152, 159, 160



Nanomedicine • Volume IIA336

Lipid bilayer,  16, 23, 25, 33, 54, 56, 57, 115, 118, 136, 139, 144,
146-148

Lipid bilayer membrane demixing,  144
Lipofuscin,  149, 159-161
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119, 144
Lipoprotein,  14, 23, 71, 86, 159
Liposome,  11, 14, 15, 56, 57, 60, 73, 87, 94, 101, 108, 116, 117, 144
Lipoxin,  112
Lison, D.,  6
Lissencephaly,  149, 151
Listeria ivanovii,  118
Listeria monocytogenes, 34, 35, 118-121, 149, 161
Listeriolysin O,  118, 121
Listeriosis,  121
Lithophagy,  3
Lithotripsy,  45
Liver,  14, 20, 22, 31-33, 38, 45, 56-59, 66-68, 73, 74, 79, 82, 88,

93-95, 97-103, 105-108, 116, 119, 120, 123, 138, 156, 159,
161

Liver vasculature,  94, 95, 101-103
Load error,  44
Logajan, James,  preface
Long-circulating,  15, 86, 114
Loperamide,  86
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Lumbrokinase,  13
Lung,  4-6, 40, 45-47, 53, 55, 56, 67, 68, 71, 79, 80, 93, 94, 101,
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Magnetite,  86, 103
Maillard reaction,  143
Major histocompatibility complex,  see MHC
Malaria,  35, 95, 120, 161
Malik, N.,  84
Maltose,  15
Manganese (Mn),  54, 123, 131
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MDCK (Madin-Darby canine kidney) cells,  18
Mechanical signal transduction,  150
Mechanocompatibility,  125-154

cytomembrane and intracellular mechanocompatibility,  125, 145-154
cytopuncture and membrane resealing,  146-148
disruption of molecular motors and vesicular transport,  151, 152
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mechanically-induced proteolysis, apoptosis, or prionosis,  153
mechanical shearing,  135, 138, 140
mechanical shock,  44, 134
mechanical strain,  87, 131, 135-137, 150
mechanical trauma,  36, 44, 47, 118, 127, 134, 138, 141, 149, 153
mechanocompatibility with nontissue cells,  137-143
mechanocurrent,  136
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Mitosis,  30, 83, 99, 109, 142, 148, 149, 151
Miyata, N.,  57
MMA-C60,  59
MNP,  98, 99
MNT,  49
Modulation of endothelial phenotype and function,  129-131
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Myocyte,  120, 136, 147, 149, 150, 153, 160
Myoma,  157
Myopia,  156
Myosin,  75, 96, 116, 118, 151-153
Myosin inhibitor,  118
Myxococcus xanthus,  112

N
N-(2-hydroxypropyl) methacrylamide (HPMA),  85
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nanorobot biofouling,  81, 87, 88
nanorobot convoy formation,  129
nanorobot distribution and phagocytosis,  93-123
nanorobot fragments,  89, 93, 122, 123
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Nanorobotic organ,  16, 19, 32, 41, 46, 50, 93, 110, 111, 131, 133,
141, 154
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Nanosensor,  119
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Neoplastic growth,  47, 132
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Nitroimidazole,  112
Nitrosylation,  123, 160
Niu, Chunming,  55
NK (NKC),  20, 24, 26, 27, 29, 34, 35, 45, 103, 114, 153
Nkamgueu, E.M.,  80
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Nuclease,  82, 149
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Oocyte,  118, 123, 137, 147, 153
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Opioid,  43, 113, 115
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Opsonin,  13, 23, 36, 98, 101, 115, 117
Opsonin-independent phagocytosis,  117
Opsonization,  14, 21, 24, 25, 53, 99, 100-102, 114, 117, 122
Opsonophagocytosis,  115
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Optode,  147
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Orthopedic,  7, 8, 9, 52, 71, 77, 78, 81, 155
Orthopedic biomaterials,  8
OSHA,  80, 157
Osmotic,  12, 23, 35, 44, 86, 87, 129, 152, 159
Osmotic disruption,  86, 87
Osmotic pressure,  35, 129
Osseocompatibility,  65
Osseointegration,  8, 16, 17, 52, 63, 76, 111
Osteoblast,  17, 46, 51, 78, 80, 83, 111, 136, 142, 144, 150
Osteoclast,  78, 83, 98, 111, 144
Osteocyte,  76, 136
Osteodystrophy,  81
Osteogenesis,  51, 70, 111
Osteolysis,  see small-particle disease
Osteonectin (ON),  79
Osteopontin (OP),  19, 79, 136
Osteoporosis,  59
Otosclerosis,  72
Ottoman Empire,  1
Outmessaging,  125
Ovalbumin,  28, 66, 75
Ovary,  32, 44
Overbury, Sir Thomas,  1
Owens, Erik L.,  132
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Oxygen (O2),  5, 6, 8, 16, 26, 46, 47, 50, 53, 55-58, 60, 61, 66,
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Ozone (O3),  26, 56, 68, 74
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PACAP-38 (pituitary adenylate cyclase activating peptide),  112
Pacemaker,  7, 155
Paclitaxel,  132
PAF,  36; see also platelet activating factor
PAH,  57, 66, 79
Pain,  1, 2, 5, 8, 9, 35, 36, 38, 41, 42, 66, 71, 74, 81, 110, 125-128,

137, 147, 150, 155, 156
Palladium,  18, 41, 83, 85
PALS,  95
PAM,  106, 107
PAMAM,  84
Pancreas,  84, 94, 97
Pancreatic islet cell,  159
Pancreatitis,  42
Pannus,  7
Papain,  125
Parabrachial nucleus,  43
Paracelsus,  1
Paraffin,  122
Parainfluenza,  119
Paramecia,  112
Paratope,  29, 30
Parenchyma,  4, 33, 63, 65, 71, 73, 86, 102, 105, 134, 145
Paresthesia,  150
Parkinson’s disease,  61, 85, 149
Parsley cell,  150
Particles,  1-8, 11, 12, 14, 15, 21, 23, 24, 27, 28, 35-38, 41, 42,

45-47, 49, 52-56, 58, 62-69, 72-75, 79-81, 83-87, 89, 90,
93-112, 114-119, 121-123, 126, 127, 132, 133, 140, 141,
144, 145, 147-149, 152, 155-158, 160, 161

alumina particle(s),  75, 79, 80, 107, 148, 157
antigenic particle,  21, 27
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bacteriophage,  15, 111, 114, 161
carbon particle,  4, 5, 28, 45, 53, 62-68, 99-104, 107, 108, 111,

116, 121, 123, 156-158, 160
carbon black,  5, 28, 36, 38, 41, 46, 56, 61, 65-68, 86, 121, 123
cellulose,  9, 25, 39, 100, 106, 134, 139, 145
charged particle,  100, 145
coal fly ash particle,  107
cobalt particle,  5, 80
copper particle,  90
diamond particle,  1, 2, 4, 6, 15, 23, 36, 49, 53, 54, 89, 99, 100,

105, 109, 126, 155, 156, 160
dust particle,  54, 65, 98, 106, 108, 109, 160
emulsion particle,  118
ferrofluid particle,  147
fibrous particle,  5
fluorescent particle,  100
foreign particle,  36, 47, 98, 99, 104, 107, 109, 116, 117, 121, 158,

160
glass particle,  37
gold particle,  87, 101, 103
india ink particle,  41, 66, 105, 108
india ink,  28, 41, 45, 46, 61, 65-67, 101, 102, 105, 108
indigestible particle,  108, 109, 121
ingested particle,  63, 102, 105, 119
inhaled particle,  6, 65, 79, 106, 123
intracellular crystal,  159-161
intracellular particle,  63, 148, 149, 152
iron oxide particle,  101, 105, 160

iron particle,  86
kaolin(ite) particle,  35, 145
large particle,  4, 93, 94, 105, 115-117
large particle movement,  93
latex bead,  104, 105, 112, 115, 119, 123, 160
latex particle,  45, 102, 106, 112, 115, 122, 158, 160
liposome particle,  116
metal particle,  56, 83, 109
microbead,  68, 101, 161
microparticle,  65, 67, 80, 87, 94, 98, 100, 101, 103-107, 127,

145, 158, 159
microsphere,  4, 17, 74, 93, 94, 96, 97, 100-108, 112, 115, 117,

127, 140, 145, 150, 151, 158-160
migration of particle,  74
particle migration,  73, 74
nanoparticle,  14, 15, 19, 24, 56, 83, 84, 86, 87, 101, 103, 114,

123, 160, 161
pepper particle,  5
PMMA particle,  99, 104
polystyrene particle,  100, 104, 107, 114, 115
salt particle,  4
sapphire particle,  75, 79, 80, 81, 108
semiconductor particle,  84
silica particle,  5, 87, 107, 109
small particle,  8, 95, 99, 105, 107, 109, 111, 117
Technegas particle,  4
Teflon particle,  4, 41, 46, 68, 69, 72, 73, 74, 75, 86, 106, 107,

109
tin particle,  109
TiNi particle,  83
tungsten particle,  5, 104
virus particle,  84, 121
wear particles,  8, 12, 52, 64, 65, 66, 77, 79, 93, 107, 111, 122
yeast particle,  106, 117
zymosan particle,  103, 115

Particle burden,  4, 67, 106-109, 157, 160, 161
cell burden,  160
cellular volumetric burden,  160
ingestion burden,  160
lung burden,  67, 107
tissue is burdened,  161

Particle clearance,  103, 104-109, 121
clearance of ingested particles,  105, 106
clearance of inhaled particles,  106, 107
clearance of particles from tissues,  104, 105
particle clearance from nonsanguinous spaces,  104-107
particle clearance from the lymphatics,  103, 107-109
particle trapping,  see geometrical trapping

Parvovirus,  121
Passaro, Peter,  preface
Pasteurella multocida,  29
Patch clamp,  137, 147
Patella,  62, 64
Patocytosis,  100, 117
Patterned surface,  17, 18, 85
Pauling scale,  50
Paxillin,  116
PBCA,  86
PBMC,  see peripheral blood mononuclear cell
PCV (postcapillary venules),  66, 108
PDGF,  45, 131;  see also platelet-derived growth factor
PDMS,  18
Peacock, Erle E., Jr.,  110
PEBBLE,  84
PECAM-1 (platelet-endothelial cell adhesion molecule-1),  116, 130
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Pecht, Israel,  28
Pediculosiss,  125, 127
PEG,  see poly(ethylene glycol)
Pegylate(-ion),  14, 29, 31, 86, 102, 114
PEI,  85
Pelikan ink,  108
Penicillin,  41, 88
PEO,  14, 24, 84
Peptidase,  113, 125
Peptide,  13, 14, 16, 17, 20-22, 24, 25, 29, 31, 34, 35, 39, 56, 57,

59-61, 82, 84-87, 89, 112, 113, 139, 148, 153
Peptide nucleic acid,  82
Percussive,  134
Perfluoroalkoxy,  71
Perforation,  1, 3, 4, 42, 44, 45, 72, 125, 127-129, 134, 138
Pericyte,  98, 105, 108
Peripheral blood mononuclear cell (PBMC),  31, 33, 60
Peristalsis,  126, 127
Peristaltogenesis,  125-127
Peritoneum,  55, 73, 79, 104, 107
Peritonitis,  3, 45, 66, 127, 156
Peroxidation,  6, 56, 57, 61, 159, 160
Peroxide,  53, 61, 67, 82, 98, 112
Peroxisome,  147, 149
Persantine,  39
Pertussis,  113, 115, 120
Pertussis toxin,  113, 115, 120
PET,  17
Peterson, Christine L.,  preface
PEU,  17
Peyer’s patches,  22, 67, 105-107, 127
Peyronie’s disease,  72
PGE2,  103, 136
PHA,  31
Phage therapy,  114
Phagocyte,  10, 13, 14, 20, 21, 26, 34, 44, 62, 65-67, 73, 85, 96,

98-101, 103-123, 132, 140, 144, 145, 160, 161
Phagocyte avoidance and escape,  98, 111-122

artificial biological phagocytes,  121, 122
avoid phagocytic binding and activation,  114-116
avoid phagocytic contact,  112, 113
avoid phagocytic recognition,  114
induce exocytosis of phagosomal vacuole,  118, 119
inhibit enclosure and scission,  117, 118
inhibit phagocyte metabolism,  119, 120
inhibit phagocytic engulfment,  112, 116, 117
inhibit phagolysosomal fusion,  119
phagocytocide,  120, 121
systemic phagocytic blockade,  121

Phagocytosis,  11, 21, 22, 23, 27, 34, 36, 45, 53, 64-68, 70, 79, 80,
85, 93, 96, 98-122, 132, 139, 142, 144, 145, 149

phagocytosis and opsonization in blood,  101
phagocytosis in kidney vasculature,  103
phagocytosis in liver vasculature,  101-103
phagocytosis in lung vasculature,  101
phagocytosis in spleen vasculature,  103
phagocytosis of bloodborne microparticles,  100-103
phagocytosis of medical nanorobots,  98-122
phagocytes, phagocytosis, and the RES,  98-100

Phagolysosome,  81, 98, 101, 119
Phagosome,  53, 98, 100, 101, 112, 116-119, 122
Pharmacokinetic,  60
Pharmacyte,  44
Phelps, P.,  53, 54
Phenol,  112

Phenothiazine,  43
Phenylarsine oxide,  116
Phenylbutazone,  117
Phenytoin,  13
Phi toxin,  113
Phlebitis,  72
Phlesch Bubble Productions,  preface
Phlogistic,  36
Phoenix, Christopher J.,  preface
Phosphatidylcholine (PC),  15, 33, 57, 85, 120
Phosphatidylethanolamine,  15
Phosphatidylinositol 3-kinase (PI3K),  115-117
Phosphatidylinositol 4-phosphate 5-kinase,  115
Phospholipase A2,  113, 119
Phospholipase A2 inhibitor,  113
Phospholipase C,  118, 119
Phospholipid,  15, 38, 45, 57, 84, 115, 118, 120, 139, 146
Phosphorylation,  59, 115-117, 131
Phosphorylcholine,  15, 24
Phosphotyrosine,  116
Photodynamic therapy,  85
Photopheresis,  30
Phytis diamond stent, 51-54
Phytohemagglutinin (PHA),  31
Phytotoxin,  1, 112
Pica,  3
Picha, G.J.,  17
Pierce, Daniel W.,  151
PIF,  113, 115
Pig,  6, 9, 44, 53, 55, 57, 59, 61-65, 68, 70, 74, 77, 81, 94, 99,

106-109, 120, 132, 149, 156, 160, 161
PIM,  101
PIMP,  101
Pineal gland,  87
Pinealocyte,  160
Pinkerton, Sandra,  preface
Pinkhassik, Eugene,  preface, 50, 52, 57, 60, 69, 85
Pinocytosis,  66, 86
Pizzoferato, A.,  80
PKA,  131
PKC,  131
PLA,  14, 17, 24
Placenta,  28, 32, 33, 51, 99
Plague,  34
Planktonic (cell),  11
Plasma cell (plasmacyte),  21, 26, 66, 73, 95
Plasmapheresis,  31
Plasmatic layer(/zone),  111, 141
Plasmid-based gene delivery vector,  85
Plasmin,  13, 23, 24, 38, 123
Plasminogen,  38, 75, 140
Plasmodium falciparum, 34, 35, 120, 161
Plastic,  3, 4, 8, 10, 55, 64, 70, 72, 109, 160
Plastizyme,  19
Platelet,  4, 7, 12-15, 23, 28, 29, 35-39, 41, 45, 49, 51, 52, 58, 62-64,

66, 67, 69-71, 79, 102, 116, 121, 125, 128, 131-142, 146,
147, 159, 160

Platelet activating factor,  28, 36; see also PAF
Platelet aggregation,  39, 62, 139, 140, 147, 159
Platelet-derived growth factor,  45, 160; see also PDGF
Platelet-endothelial cell adhesion molecule-1,  116; see also PECAM-1
Platinum,  68, 72, 83, 85, 135
Playing the drums,  138
Plectin,  150
Pledget,  71
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Pleocytosis,  45
PLG,  105
PLGM,  17
Pliny the Elder,  1
Plug flow,  132
Plumbago,  5
Pluronic surfactant,  14
PMA,  120
PMMA,  17, 53-55, 99, 101, 104, 122
PMN,  53, 98, 99, 100, 106, 107, 111, 113-116, 120, 140-142
Pneumoconiosis,  2, 4-6
Pneumocystis,  35
Pneumonia,  34, 95, 117
Pneumothorax,  44
Poiseuille,  128
Poiseuille’s space,  141
Pollen,  4, 40-42
Poloxamine,  103
Poly(N-isopropylacrylamide-co-N-n-butyl-acrylamide,  17
Poly(propylene oxide) (PPO),  14
Polyacrylamide,  17, 101
Polyacrylonitrile,  13
Polyadamantane,  54
Polyalkylsulfonated C

60
,  58, 59, 61

Polyamine,  14, 58, 113, 139
Poly(carbonate urethane),  17
Polycythemia,  128, 158
Polyethylene,  8, 9, 11, 13-15, 17, 39, 54, 58, 71, 76-80, 84, 107,

110, 139
Poly(ethylene glycol), 11, 13-15, 17, 58-60, 84, 85, 114, 139
Poly(ethylene oxide) (PEO),  14, 24, 84
Polyethylene terephthalate (Dacron), 17, 63, 70, 71, 132
Polyethylenimine (PEI),  85
Polyglucosan bodies,  160
Poly(hydroxybutyrate),  70
Polyimide,  85
Poly(inosinic acid),  116
Poly(lactic acid) (PLA), 14, 17, 24
Polylactic-polyglycolic acid copolymer,  9
Poly-L-lysine,  17, 110
Polymer fume fever,  45, 73
Polymersome,  14
Polymorphonuclear leukocyte,  6, 33, 53, 67, 70, 73, 98, 99, 140, 160
Polyols,  143
Polypropylene,  15
Polysaccharide,  10, 14, 15, 19, 20, 23, 31, 34, 40, 88, 89, 114, 117,

144, 155
Polysulfone,  13, 70
Polytef,  73, 74
Polytetrafluoroethylene (PTFE),  15, 17, 28, 68, 70, 72, 123
Polyurethane (PU),  11, 14, 15, 17, 39, 58
Polyvinylpyrrolidone (PVP),  46, 57, 59
Pope Clement VII,  1
Pope Paul II,  2
Porins,  57, 148
Porosity,  10, 17, 47, 68, 72
Porphyromonas gingivalis,  22, 79
Porter, R.E., Jr.,  106
Potassium,  74, 150, 153
Potassium permanganate,  74
Potato,  41
Poxvirus,  34
PPA,  77

Prater, Michael,  preface
Precambrian,  56
Prednisolone,  30
Prednisone,  30
Prekallikrein,  36, 38
Presentation semaphore,  see semaphore
Pressure ulcers,  125, 126, 133
Primaquine,  117
Primary ciliary dyskinesia,  151
Prionosis,  153
Progesterone,  59, 88
Prokaryotic cell,  46, 57
Proliferation inhibitor,  131, 132
Proliferation promoter,  131
Propane,  122
Properdin,  see factor P
Proplast,  71, 72, 86
Propranolol,  13
Prostacyclin,  39, 40
Prostaglandin,  28, 35, 36, 40, 45, 46, 70, 115, 125, 130, 131, 136
Prostate,  32, 135
Protease,  25, 28, 29, 34, 36, 38, 41, 59, 60, 98, 120, 149, 150, 160
Protein A,  28, 32, 34, 66, 115
Protein adsorption,  12-17, 49, 51, 62, 63, 68-70, 75
Protein C,  40
Protein C inhibitor,  40
Protein G,  32
Protein kinase A (PKA),  131
Protein kinase C (PKC),  116, 131
Protein S,  40, 76
Proteoglycan,  17, 39, 136, 146
Proteolysis,  13, 23, 24, 35, 38, 40, 69, 145, 153
Proteolytic enzyme,  13, 23, 40, 69
Proteophilic,  76
Proteophobic,  13, 76, 102
Prothrombin,  32, 38, 39, 63, 67
Protozoa,  22, 23, 31, 35, 83, 98, 112, 119, 136, 144, 161
Pruritogen,  125
Pruritus,  125, 126
Pseudomonas aeruginosa, 10, 11, 25, 29, 117, 119, 120, 160
Pseudomonas stutzeri,  160
Pseudorabies virus,  25
Psychogenic,  43
Psychosomatic,  128
PTD,  87
PTFE,  15, 17, 28, 68, 70, 72, 123
PU,  58
Puri, P.,  74
Purine,  30
Purkinje neurons,  159
Putrescine,  113
PVA,  17
PVC,  11, 157, 158
PVP,  57, 59
Pyoinflammatory disease,  88
Pyrexia,  44
Pyrogen,  7, 36, 44-46, 122, 153
Pyrolite,  62, 63
Pyrolytic carbon,  8, 9, 36, 38, 46, 62-64, 78, 89, 142
Pyrolytic graphite,  14, 15
Pyropoikilocytosis,  138
Pyrrolidine,  58
Pyuria,  104
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Q
Qi, Y.,  31
Quantum dots,  29, 83, 84
Quartz,  50, 56, 58, 108
Quin 2-AM,  130
Qui, Yongxing,  15

R
Rab11,  118
Rabbit,  28, 33, 36, 51, 54, 58, 59, 62-67, 70, 72-74, 77, 78, 80, 81,

83, 86, 89, 97, 104, 115, 118, 130, 148, 153, 156, 158-160
Rac1,  116
Rader, C.P.,  80
Radioimmunoassay,  24
Radioimmunotherapy,  85
Radiolabeled,  57, 93, 94, 101, 123
Radon,  4
Randall, John N.,  preface
RANTES,  118
Rao, Anil K.,  preface, 47
Rapamune,  132
Rapamycin,  30, 132
Rash,  40
Rat,  5, 6, 14, 17, 31, 36, 37, 46, 47, 52, 55-63, 65-68, 70, 73, 77-80,

81, 83-87, 94, 96-111, 113, 115, 120, 121, 123, 126, 127,
133, 134, 136, 142, 146, 147, 149, 152, 153, 155-160

Ratner, B.D.,  13, 19
Rawstern, Rocky,  preface
RBC (red blood cell),  see erythrocyte
Rck,  25
Red blood cell (RBC), see erythrocyte
Reference human male,  155, 157
Reflex sympathetic dystrophy (RSD),  126
Reifman, Edward M.,  preface
Rejection,  7, 16, 29, 30, 32, 33, 41
Relapsing fever,  34
Renal shunt,  97
Rensselaer Polytechnic Institute,  56
Renwick, L.C.,  68
Replicator,  162
RES,  see reticuloendothelial system
Resorption,  63, 77, 111, 156, 157
Respiratory burst,  70, 98
Respirocyte,  44, 120, 158, 162
Restenose,  131
Restenosis,  132
Reticulocyte,  95
Reticuloendothelial system (RES), 15, 65, 66, 79, 98, 99, 100, 102,

103, 105, 114, 116, 120-122
Retina,  32, 33, 66, 67, 72, 85, 94, 104, 105, 149, 159
Retinal ganglion cell (RGC),  85
Retinitis pigmentosa,  151
Retrofacial nucleus,  43
Retrovirus,  23, 31
Reuling, N.,  77
Reverse diapedesis,  128
Reynolds number,  63
RGD,  13, 16, 17, 39, 110
RGDS,  17
RGE,  110
Rhabdoviridae,  60

Rheumatoid arthritis,  46
Rhinitis,  40, 41
Rho,  115, 116
Rho kinase,  116
Ribonucleic acid,  see RNA
Ribosome,  78, 99, 123, 142, 143, 146
Ribotoxic,  120
Rice University,  55, 59
Ricin,  1
Rickettsia,  119, 161
Rifampin,  113
Rigidity,  56, 129, 139
Rimantadine,  28, 115, 120
RMP-7,  86
RNA,  23, 25, 82, 83, 123, 142, 149, 152

mRNA,  82, 83, 130, 142-144
RNAi,  83

RNA polymerase,  152
Roberts, J.C.,  84
Rodrigo, A.M.,  80
Rogers, Carolyn,  preface
Rootenberg, John D.,  preface, 39
Rosai-Dorfman disease,  161
Rose, Jillian,  preface
Rosenberg, Lawrence,  preface
Rostoker, W.,  68
Rotavirus,  149
Roughage,  126
Rouleaux,  139, 143, 144
Roxithromycin,  115
RSD (reflex sympathetic dystrophy),  126
Rubber,  41, 70, 155
Rubor,  35
Ruby,  75
Ruegsegger, M.A.,  15
Ruffini ending,  126
Rugosity,  49, 51, 61, 138
Ruoslahti, E.,  84
Russell bodies,  66
Ryanodine,  130, 131

S
SA,  77
Saccharide,  16, 17, 86
Saccharomyces cerevisiae,  115
Sagman, Uri,  60, preface
Saliva,  27, 34, 45, 79
Salmonella typhi,  117
Salmonella typhimurium,  25, 34, 46, 57, 119, 121
San Joaquin Delta College Electron Microscopy Center,  preface
Sandblasting,  133
Sanderson scale,  50
Sano, Y.,  128
Sapphire,  6, 8, 13, 23, 24, 28, 29, 36, 38, 41, 45, 46, 49, 75-81, 88,

89, 91, 108, 109, 122, 142, 145
alumina and sapphire particles,  75, 79, 80
cell response to bulk alumina and sapphire,  78, 79
chemical stability of alumina and sapphire,  75, 81
protein adsorption on alumina and sapphire,  75, 76
sapphire dental implant,  75-78
tissue response to bulk alumina and sapphire,  77, 78

Sapphire dust,  109



Nanomedicine • Volume IIA344

Sapphire particle,  75, 79-81, 108
Saprophyte,  34
Sarcolemma,  150
Sarcoma,  47, 51, 116
Sarcoptes scabiei,  125
Sarkar, D.,  75
Sarkar, Niladri Neil,  preface
Satulovsky, J.,  17
Savinase,  69
Scabies,  125
Scanning electron microscope,  2, 51, 62, 78; see also SEM
Scanning tunneling microscope, see STM
Scar,  5, 19, 47, 55, 64, 74, 103, 110, 111, 160
Schaldach, M.,  144
Schirrmacher, Frank,  preface
Schistocyte,  138
Schistocytosis,  138
Schistosoma mansoni,  25
Schistosomiasis,  33, 146
Schizont,  161
Schlemm’s canal,  104
Schleyer, Titus L.,  preface
Schmaier, Alvin H.,  37
Schmidt, J.A.,  6, 54
Schwann cell,  85
Scission,  112, 117, 149
Sclerosis,  61, 63, 86, 149, 152
Scopolamine,  43
Scott, M.D.,  31
SDS,  49
Sea urchin,  14, 147
Seal, R.M.,  108
Seaton, A.,  123
Secretagogue,  112, 118, 123
Secretin,  125
Seeman, Nadrian C.,  preface, 81, 82
Seifert, J.,  106
Selectin,  63, 79, 85, 136, 140, 141
Selectin antagonist,  85
SEM,  2-4, 51, 58, 63, 72, 76, 81; see also scanning electron microscope
Semaphore, 14, 18, 29, 88, 89, 119, 122, 148
Semaphorin,  112, 113
Semiconductors,  81, 83, 84
Seminal plasma,  40
Semliki Forest virus (SFV),  60
Sensitivity reaction,  40-44
Sepsis,  1, 25, 43-45, 97, 123, 140
Septic shock,  25, 43-45, 140
Serotonin,  28, 38, 40-43
Serratia marcescens,  29
Sertoli cell,  33
Set point,  44-46
Shanghai Institute of Traumatology and Orthopedics,  81
Shape memory material,  83
Shapiro Syndrome,  45, 87
Shear force,  19, 42, 43, 76, 126, 130, 132, 133, 137-141, 143, 148
Shear stress,  11, 129, 130, 133, 134, 136-143, 150
Sheep,  31, 52, 62, 64, 101, 102, 107, 114, 121, 133
Shigella flexneri, 34, 118-120, 161
Shivering,  42
Shock wave,  45, 56, 87, 145, 152
Shope virus,  34
Shungite,  56
Sialic acid,  24, 25, 84, 114, 145
Sialolithiasis,  45

Sialylation,  25
SiC,  49, 53, 54
Sickle cell,  95, 149
Silica,  3-5, 9, 12, 15, 28, 36, 41, 45, 51-53, 64, 79, 83, 85, 87, 100,

107-109, 116, 138, 160
Silicographitosis,  5
Silicon,  4, 9, 18, 28, 49-51, 53, 61, 63, 69, 79, 83-85, 89, 148
Silicone,  11, 15, 17, 70, 74, 86, 132, 136
Silicosis,  4
Silicotic nodule,  5
Silk fibroin,  88
Silver,  11, 17, 68, 78, 83, 85, 109, 132, 160
Silzone,  11
Simon, L.,  106
Single-walled carbon nanotubes (SWNT),  28, 56, 59, 61; see also

nanotube and fullerene
Singlet oxygen,  46, 56, 57, 60, 88, 98
Sinusoid,  66, 94-96, 99, 102, 103, 108, 116
Sirolimus,  30, 132
Skalak, R.,  152
Skin cells,  9, 147
Sleep,  45, 157
Slime,  10, 13, 14, 115, 117
Small particle disease,  8, 109
Smalley, Richard E.,  55, 56
SMC,  129-133
SME,  83
Smigrodzki, Rafal,  preface, 127, 135, 137
Smith, Steven S.,  preface
Smog lung,  5
Snap-25,  147
Sneezing,  40, 42, 125
Snipes, M.B.,  107
Sodium,  9, 29, 36, 49, 54, 74, 113, 131, 153, 158
Sodium dodecylsulfate (SDS),  29, 49
Sodium salicylate,  131
Sorboregulation,  18-20, 24, 76
Soreff, J.,  88
Sorting rotor,  see molecular sorting rotor
Southwest Research Institute,  8
Spallek, Heiko,  preface
Spectrin,  150
Spermatozoa, 71, 123, 144, 161
Spermicide,  112
Spermidine,  113
Spermine,  139
Spherocyte,  95
Spherocytic hereditary elliptocytosis,  138
Sphingomyelin,  15
Spider legs,  4
Spinal,  7, 10, 14, 42, 65, 93, 105, 125, 152, 156
Spinothalamic tract,  125
Spira, Thomas J.,  22
Spire Corp.,  11, 13
Spirochete,  22, 34
Splanchnodynia,  155
Splanchnomegaly,  155
Spleen,  14, 22, 30-32, 59, 67, 73, 74, 79, 93-97, 99-103, 105-109,

112, 114, 121, 123, 142, 156, 157
Spleen vasculature,  95-97, 103
Splenectomy,  95, 97, 138
Splenofenestral motility,  96
Splenomegaly,  103, 109, 121, 156
SPM (suspended particulate matter),  4
Sporozoite,  120
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Sprintz, Michael,  preface, 1, 13, 29, 31, 66, 129, 157
S-protein (vitronectin),  16, 25, 50, 69, 75
SRBC,  102
St. Jude Medical,  11
Staerz, U.D.,  31
Stainless steel,  47, 51, 52, 54, 68, 83, 85, 86, 90, 110, 132
Stall load,  151
Stanton, Mearl F.,  47
Stanton hypothesis,  47
Staphylococcus aureus,  10, 11, 14, 22, 32, 34, 70, 96, 113-115, 120,

158
Staphylococcus epidermidis,  10, 11, 14, 71, 115
Staphylococcus intermedius,  120
Staphylothrombin,  32
STAR Inc.,  9
Starburst,  84
Starch,  45, 158, 159
Starzl, T.E.,  31
State University of New York, Stony Brook,  9
Staurosporine,  115, 117
Steal syndrome,  98
Stealth drug carrier,  114
Stealth liposome,  14, 15, 101
Stealth nanoparticle,  114
Stem cell,  30, 33, 132, 143
Stenosis,  72-74, 132, 134, 138
Stenotrophomaonas maltophilia,  144
Stent,  7, 9, 10, 11, 38, 51-54, 72, 129-135, 138, 142
Steps and grooves,  18
Stercoral,  126
Stereocilia,  131
Steric hindrance,  122
Steric repulsion,  14, 15
Sternutogenesis,  40, 42
Stiffness,  47, 63, 135, 151
STING,  74
STM (scanning tunneling microscope),  61, 62
STOC,  130
Stomach,  1, 2, 4, 42, 57, 59, 106, 126, 127, 149, 155-157
Storage disease,  87, 159
Streilein, J. Wayne,  32
Stent,  7, 9-11, 38, 51-54, 72, 129-135, 138, 142
Streptococci,  25, 113, 114, 117, 144
Streptococcus mutans, 34, 79
Streptococcus pneumoniae,  34, 95, 117
Streptococcus pyogenes,  32, 34, 60, 113, 114, 117, 120
Streptolysin O,  113, 120
Stretch forces,  127, 130, 131
Stretch-activated channel,  131, 143
String test,  3
Stryer, Lubert,  26
Stuhlmeier, K.M.,  31
Stump, M.M.,  132
Stylosome,  127
Subcutis,  59, 79, 105
Substance P,  125
Subtilisin,  69
Sulfalipid,  119
Sulfapyridine,  75
Sulfatide,  119
Sulfonamide,  41
Sultan Bejazet II,  1
Superantigen,  21
Superoxide,  53, 59, 67, 70, 98
Suramin,  119

Surface free energy,  16, 69, 79
Surface wettability,  16, 50, 52
Surfactant,  4, 14, 15, 29, 49, 75, 103, 115
SurModics Inc.,  13
Suture,  8, 9, 10, 68, 71, 93, 109, 133
Swab,  109
SWAP,  33
Sweat,  27, 90
Swim races,  138
Swimmer’s hemolysis,  138
Switchable surface,  19
SWNT (single-walled carbon nanotubes),  28, 56, 59, 61
Syk,  116
Symbiont,  119
Symbiosome,  119
Sympathomimetic,  41
Synaptobrevin,  118, 147
Syncope,  128, 129
Synechia,  72
Synovial fluid,  8, 45, 156
Synoviocyte,  45
Syntaxin,  118
Systemic lupus erythematosis (SLE),  82
Systolic,  35, 128, 129

T
T-2 toxin,  115
T4 (bacteriophage),  15, 114, 161
Tabata, Y.,  105
Tachyphylaxis,  46
TACO,  119
Tacrolimus,  30
Tagatose,  89
Talc,  5, 109
Tamponade,  133
Tandy, Charles,  preface
Tang, L.,  49, 50, 51
Tantalum,  9, 85, 108, 134
Tardigrade,  143
Tattoo,  41, 53, 64-66, 105, 110
Taurine,  112
Taxane,  132
Taxol,  60
Tay-Sachs disease,  159
TBLN,  107
T cell,  20, 21, 22, 29-34, 45, 86, 88, 89, 103, 106, 118, 120, 136,

137, 144
TCPS,  79
Tears (fluid),  27
Technetium,  4, 101
Technological intrusiveness,  155, 161, 162
Teflon,  4, 8, 10, 15, 23, 28, 36, 38, 41, 45, 46, 49, 68-75, 78, 86, 88,

89, 93, 106, 107, 109, 123, 132, 134, 138, 141, 142; see also
fluorocarbon polymer

Teflon fever,  45
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�Compatibility� most broadly refers to the suitability of two distinct systems or classes of things to be
mixed or taken together without unfavorable results. More specifically, the safety, effectiveness, and
utility of medical nanorobotic devices will critically depend upon their biocompatibility with human
organs, tissues, cells, and biochemical systems. Classical biocompatibility has often focused on the
immunological and thrombogenic reactions of the body to foreign substances placed within it. In this
Volume, we broaden the definition of nanomedical biocompatibility to include all of the mechanical,
physiological, immunological, cytological, and biochemical responses of the human body to the intro-
duction of medical nanodevices, whether �particulate� or �bulk� in form. That is, medical nanodevices
may include large doses of independent micron-sized individual nanorobots, or alternatively may
include macroscale nanoorgans (nanorobotic organs) assembled either as solid objects or built up
from trillions of smaller artificial cells or docked nanorobots inside the body. We also discuss the
effects on the nanorobot of being placed inside the human body.

�This Volume will be a seminal contribution not only to the nanotechnology literature, but to medicine
in general.� 
� Lawrence Rosenberg, M.D., Ph.D., Professor of Surgery and Medicine, Director of the Division 
of Surgical Research, McGill University

�I believe this book will serve as an excellent reference for investigators with specific problems as
well as a good overview of specific subject areas. I tend to focus on those sections dealing with
investigating and demonstrating the safety of nanorobots, and to the development of a new drug
delivery system or nanorobots used to monitor or repair biological systems. There are many issues to
be concerned about in developing such devices and this book has touched on nearly every one of
them. As with Volume I, this book is filled with useful references and raises many important issues to
be considered in moving forward with the design and creation of nanorobots for medical purposes. 
I enjoyed reading it.� 
� Cecilia A. Haberzettl, Ph.D.; President, TechnoMed Strategic Partners, Inc.

�The chapters reflect an excellent level of scholarship, with an impressive breadth of survey for the
literature.�
� Stephen S. Flitman, M.D., Barrow Neurological Institute

�This new Volume is an erudite, scholarly follow-up to Volume I that covers the gamut from biophysics
and chemistry to immunology, microbiology, and engineering in one book. It�s scope and originality
are extraordinary, addressing questions that nobody ever had to think about before. A lot of the
questions raised can only be answered empirically by actually building devices and testing them in
animals for toxicity and then human clinical trials.� 
� L. Stephen Coles, M.D., Ph.D., Co-Founder, Los Angeles Gerontology Research Group

�Impressive body of work. The scope is amazing.� 
� Owen P. Hamill, Ph.D., University of Texas Medical Branch

�Freitas demonstrates his ability to temper the fantastic potential of nanorobotics with legitimate 
concerns about their safety. I concur with his conclusions with regards to the need for stringent
investigation into the safety of diamondoid substances for use in nanomedicine.�
� Michael Prater, M.D.

�...well written and thoroughly researched discussion of nanomaterials that can be potentially applied
in nanorobot fabrication. The discussion of thermocompatibility is one of the very important parts 
of biocompatibility that very few people have studied.� 
� Bai Xu, Ph.D., Senior Research Scientist, NYS Center for Advanced Thin Film Technology
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