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a b s t r a c t

In the recent years, bio-based products have raised great interest since sustainable devel-
opment policies tend to expand with the decreasing reserve of fossil fuel and the growing
concern for the environment. Consequently, biopolymers, i.e., biodegradable polymers, have
been the topic of many researches. They can be mainly classified as agro-polymers (starch,
protein, etc.) and biodegradable polyesters (polyhydroxyalkanoates, poly(lactic acid), etc.).
These latter, also called biopolyesters, can be synthesized from fossil resources but main
productions are obtained from renewable resources. Unfortunately for certain applications,
biopolyesters cannot be fully competitive with conventional thermoplastics since some
of their properties are too weak. Therefore, to extend their applications, these biopolymers
have been formulated and associated with nano-sized fillers, which could bring a large range
of improved properties (stiffness, permeability, crystallinity, thermal stability). The result-
ing ‘nano-biocomposites’ have been the subject of many recent publications. This review

is dedicated to this novel class of materials based on clays, which are nowadays the main
nanofillers used in nanocomposites systems. This review highlights the main researches

and developments in biopolyester/nanoclay systems during the last decade.

© 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

In recent years biopolymers, i.e., biodegradable poly-
mers, have attracted more and more interest due to
increasing environmental concern and decreasing fossil
resources. This evolution motivates academic and indus-
trial research to develop novel materials labelled as
“environmentally-friendly”, i.e., materials produced from
alternative resources, with lower energy consumption,
biodegradable and non-toxic to the environment. Since
biopolymers are biodegradable and the main productions
are obtained from renewable resources such as agro-
resources, they represent an interesting alternative route
to common non-degradable polymers for short-life range
applications (packaging, agriculture, etc.). Nevertheless,
until now, most biopolymers are costly compared to con-
ventional thermoplastic and they are sometimes too weak
for practical use. Therefore, it appears necessary to improve
these biopolymers to make them fully competitive with
common thermoplastics.

Nanocomposites are novel materials with drastically
improved properties due to the incorporation of small
amounts (less than 10 wt%) of nano-sized fillers into a
polymer matrix. Nanofillers can be classified according to
their morphology, such as particles that are (i) layered
(e.g., clays), (ii) spherical (e.g., silica) or (iii) acicular (e.g.,
whiskers, carbon nanotubes). Their specific geometrical
dimensions, and thus aspect ratios, partly affect the final
materials properties. Layered silicate clays offer high sur-
face area, more than 700 m2/g, i.e., a huge interface with
the polymer (matrix), which governs the material proper-
ties. The final behavior can be considerably improved by
the strong and extensive polymer–nanofiller interactions,
as well as, good particle dispersion.

Nano-biocomposites are obtained by adding nanofillers
to biopolymers, resulting in very promising materials since
they show improved properties with preservation of the
material biodegradability, without eco-toxicity. Such mate-
rials are mainly destined to biomedical applications and
different short-term applications, e.g., packaging, agricul-
ture or hygiene devices. They thus represent a strong and
emerging answer for improved and eco-friendly materials.
Although few articles were published on this topic during
the last century, but numerous publications have already

appeared since that time.

This review reports on an aspect of the state of the art
in wide field of nano-biocomposites materials, namely to
nano-biocomposites based on biopolyester/clay systems.
Layered silicates are widely used in nanocomposites sys-
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

tems and biopolyesters are currently the most promising
biopolymers for wide range of important applications. The
first part describes several biopolymers, focusing on the
origins and characteristics of the principal biopolyesters.
In the second part, the structure and properties of nano-
biocomposites based on biopolyester/clays systems are
reported in detail.

2. Biodegradable polymers classification

A vast number of biodegradable polymers (biopoly-
mers) are chemically synthesized or biosynthesized during
the growth cycles of all organisms. Some micro-organisms
and enzymes capable of degrading them have been identi-
fied [1–4]. Fig. 1 proposes a classification with four different
categories, depending on the synthesis [5]:

(a) polymers from biomass such as the agro-polymers from
agro-resources, e.g., starch, cellulose,

(b) polymers obtained by microbial production, e.g., the
polyhydroxyalkanoates,

(c) polymers chemically synthesized using monomers
obtained from agro-resources, e.g., poly(lactic acid),

(d) polymers whose monomers and polymers are both
obtained by chemical synthesis from fossil resources.

Of these, only categories (a)–(c) are obtained from
renewable resources. We can sort these different
biodegradable polymers into two main families, the agro-
polymers (category a) and the biodegradable polyesters
(categories b–d), also called biopolyesters.

3. Biodegradable polyesters

Table 1 and Fig. 2 show the chemical structures, trade
names and main properties of commercially available
biopolyesters.

3.1. Polyesters based on agro-resources

3.1.1. Poly(lactic acid)
Lactic acid is a chiral molecule existing as two stereoiso-

mers, l- and d-lactic acid which can be produced in

different ways, i.e., biologically or chemically synthesized
[6].

In the first case, lactic acid is obtained by fermentation of
carbohydrates from lactic bacteria, belonging mainly to the
genus Lactobacillus, or fungi [7,8]. This fermentative pro-
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Fig. 1. Classification of the biodegradable polymers. Reproduced w

ess requires a bacterial strain but also sources of carbon
carbohydrates), nitrogen (yeast extract, peptides, etc.) and

ineral elements to allow the growth of bacteria and the
roduction of lactic acid. The lactic acid as-formed exists
lmost exclusively as l-lactic acid and leads to poly(l-lactic
cid) PLLA with low molecular weight by polycondensa-
ion reaction. However, Moon et al. [9,10] have proposed
n alternative solution to obtain higher molecular weight
LLA by the polycondensation route.

In contrast, the chemical process could lead to various
atio of l- and d-lactic acid. Indeed, the chemical reac-
ions leading to the formation of the cyclic dimer, the
actide, as an intermediate step to the production of PLA,
ould lead to macromolecular chains with l- and d-lactic
cid monomers. This mechanism of ring-opening poly-
erization ROP from the lactide explains the formation
f two enantiomers. This ROP route has the advantage of
eaching high molecular weight polymers [1,7,11,12] and
llows control of the PLA final properties by adjusting the
roportions and the sequencing of l- and d-lactic acid
nits.

able 1
hysical data of some commercial biopolyesters. Reproduced with permission fro

PLA PHBV
Dow–Cargill
(NatureWorks)

Monsanto
(Biopol D400G
– HV = 7 mol%)

ensity 1.25 1.25
elting point (◦C)a 152 153
lass transition (◦C)a 58 5
rystallinityb (in %) 0–1 51
odulus (MPa) (NFT 51-035) 2050 900

longation at break (%) (NFT 51-035) 9 15
ensile stress at break or max. (MPa)
(NFT 51-035)

– –

iodegradationc (mineralization in %) 100 100
ater permeability WVTR at 25 ◦C
(g/m2/day)

172 21

urface tension (�) (mN/m) 50 –
d (dispersive component) 37 –
p (polar component) 13 –

a Measured by DSC.
b Determined on granules, before processing.
c After 60 days in controlled composting according to ASTM 5336.
ission from Averous [190] copyright (2004) of Marcel Dekker, Inc.

At present, due to its availability on the market and its
low price [13–16], PLA has one of the highest potentials
among biopolyesters, particularly for packaging [14,16] and
medical applications. For instance, Cargill has developed
processes that use corn and other feedstock to produce
different PLA grades (NatureWorks®) [15,17]. For this com-
pany, the actual production is estimated to 50–60 ktons per
year although the production capacity is given at 140 ktons
(http://www.natureworksllc.com). However, presently, it is
the highest and worldwide production of biodegradable
polyester. Its price was around 2D /kg in 2006, but nowadays
the cost has slightly increased. Different companies such
as Mitsui Chemicals (Japan), Mitsubishi (Japan), Biomer
(Germany), Shimadzu (Japan), Galactic-Total (Belgium),
Toyota (Japan), Purac (Netherlands), Treofan (Netherlands)
or Dainippon Ink Chemicals (Japan) produce smaller PLAs

outputs with different d/l ratios. Commercially available,
we can find 100% PLLA which present a high crystallinity
C-PLA and copolymers of PLLA and poly(d,l-lactic acid)
PDLLA which are rather amorphous A-PLA [17–19]. PLA
can show crystalline polymorphism [20] which can lead

m Averous [190] copyright (2004) of Marcel Dekker, Inc.

PCL PEA PBSA PBAT
Solvay (CAPA
680)

Bayer (BAK
1095)

Showa
(Bionolle 3000)

Eastman
(Eastar bio
14766)

1.11 1.07 1.23 1.21
65 112 114 110–115

−61 −29 −45 −30
67 33 41 20–35

190 262 249 52
>500 420 >500 >500

14 17 19 9

100 100 90 100
177 680 330 550

51 59 56 53
41 37 43 43
11 22 14 11

http://www.natureworksllc.com/
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esters c
Fig. 2. Structure, trade names and suppliers of main biodegradable poly
copyright (2004) of Marcel Dekker, Inc.

to different melting peaks [21] with a main endotherm
at 152 ◦C for the PDLLA (see Table 1). Furthermore, PLA
can be plasticized using oligomeric lactic acid o-LA [21],
citrate ester [22] or low molecular weight polyethy-
lene glycol PEG [21,23–25]. The effect of plasticization
increases the chain mobility and then favors PLA organi-

zation and crystallization. After plasticization, we obtain a
crystallinity ranging between 20% and 30%. PLA presents
a medium water and oxygen permeability level [16,26]
comparable to polystyrene [27]. These different properties
associated with its tunability and its availability favor its
ommercially available. Reproduced with permission from Averous [190]

actual developments in different packaging applications
(trays, cups, bottles, films, etc.) [14,16,17]. McCarthy et al.
[28] showed that A-PLA presents a soil degradation rate
much slower compared to polybutylene succinate/adipate
PBSA. PLA is presumed to be biodegradable although
the role of hydrolysis vs. enzymatic depolymerization

in this process remains open to debate [29]. Regard-
ing biodegradation in compost, adequate conditions are
only found in industrial units with a high temperature
(above 50 ◦C) and a high relative humidity RH% to pro-
mote chain hydrolysis. According to Tuominen et al. [30],
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the hydrolysis of PCL and biodegradation by fungi. They
have shown that PCL can be easily enzymatically degraded.
P. Bordes et al. / Progress in

LA biodegradation does not exhibit any eco-toxicological
ffect.

.1.2. Polyhydroxyalkanoates
Polyhydroxyalkanoates PHAs are naturally produced by

icro-organisms from various carbon substrates as a car-
on or energy reserve. A wide variety of prokaryotic
rganisms [31,32] accumulate PHA from 30% to 80% of their
ellular dry weight. Biotechnological studies revealed that
olyhydroxybutyrate homopolymer PHB is produced under
alanced growth conditions when the cells become limited
or an essential nutrient but are exposed to an excess of
arbon [33]. Depending on the carbon substrates and the
etabolism of the micro-organism, different monomers,

nd thus (co)polymers, could be obtained [34]. Although
HB is the main polymer of the polyhydroxyalkanoates
amily, different poly(hydroxybutyrate-co-hydroxyalkano-
tes) copolyesters exist such as poly(hydroxybutyrate-co-
ydroxyvalerate) PHBV (see Fig. 2), or poly(hydroxybuty-
ate-co-hydroxyhexanoate) PHBHx, poly(hydroxybutyrate-
o-hydroxyoctanoate) PHBO and poly(hydroxybutyrate-co-
ydroxyoctadecanoate) PHBOd. With progress in biotech-
ologies, it is possible for recombinant bacteria [32], but
lso plants [32,35,36] to produce such polymers. However,
he recovery process, i.e., the extraction and purification
teps, is decisive to obtain a highly pure PHA and often
xplains why such polymers are still expensive. Pure syn-
hetic PHA can be produced by the ROP from butyrolactone
nd other lactones [37–42]. Thus, according to the synthesis
oute, we obtain different structures, isotactic with random
tereosequences for the bacterial copolyesters and with
artially stereoregular block for the synthetic copolyesters.
ecently, Monsanto has developed genetic modification
f plants to make them produce small quantities of PHB
35,43,44].

PHB is a highly crystalline polyester (above 50%) with a
igh melting point, Tm = 173–180 ◦C, compared to the other
iodegradable polyesters. Glass transition temperature Tg

s around 5 ◦C. The homopolymer shows a narrow window
or the processing conditions. To ease the transformation,
HB can be plasticized with citrate ester, but the PHBV
opolymer is more adapted for the process. A large range
f bacterial copolymer grades had been industrially pro-
uced by Monsanto under the Biopol® trade mark, with
V contents reaching 20%. The production was stopped at

he end of 1999. Metabolix bought Biopol® assets in 2001.
resently, TellesTM, a joint venture between Metabolix and
rcher Daniels Midlands Company (ADM), has marketed

he MirelTM product as a new bio-based biodegradable
lastic from corn sugar. ADM has begun to build the first
lant in Clinton, Iowa (US) which will be able to produce
0,000 tons of resin per year. The startup is scheduled for

ate 2008 (http://www.metabolix.com).
Different small companies currently produce bacterial

HA, e.g., PHB Industrial (Brazil) produces PHB and PHBV
HV = 12%) 45% crystalline, from sugar cane molasses [45].

he Biocycle® production is planned to be 4000 tons/year
n 2008 and then, to be extended to 14,000 tons/year [46].
n 2004, Procter & Gamble (US) and Kaneka Corporation
Japan) announced a joint development agreement for the
ompletion of R&D leading to the commercialization of
Science 34 (2009) 125–155 129

Nodax, a large range of polyhydroxybutyrate-co-hydroxy-
alkanoates (PHBHx, PHBO, PHBOd) [47]. Although the
industrial production was planned for 2006 with a target
price around 2D /kg, the production was stopped [48].

The production of PHAs is intended to replace synthetic
non-degradable polymers for a wide range of applications
[48]: packaging, agriculture but also medicine [34,49] since
PHAs are biocompatible. Fig. 2 and Table 1 give the chemi-
cal structure and the properties of some PHBV, respectively.
Material properties can be tailored by varying the HV con-
tent. An increase of the HV content induces an increase of
the impact strength and a decrease of the melting temper-
ature and glass transition [50], the crystallinity [51], the
water permeability [51] and the tensile strength [52].

Besides, PHBV properties can evolve when plasticiza-
tion occurs, e.g., with citrate ester (triacetin) [52,53]. The
polyhydroxyalkanoates, like the PLAs, are sensitive to the
processing conditions. Under extrusion, we obtain a rapid
diminution of the viscosity and the molecular weight
due to macromolecular chain cleavage by increasing the
shear level, the temperature and/or the residential time
[54]. Regarding the biodegradable behavior, the kinetic of
enzymatic degradation is variable according to the crys-
tallinity, the structure [45,55] and then, to the processing
history [56]. Bacterial copolyesters biodegrade faster than
homopolymers [57] and synthetic copolyesters [58].

3.2. Petroleum-based polyesters

A large number of biodegradable polyesters are based
on petroleum resources, obtained chemically from syn-
thetic monomers [11–15,17,18]. According to the chemical
structures (see Fig. 2), we can distinguish (see Table 1)
polycaprolactones, polyesteramides, aliphatic or aromatic
copolyesters. All these polyesters are soft at room temper-
ature.

3.2.1. Polycaprolactone
Poly(�-caprolactone) PCL is usually obtained by ROP of

�-caprolactone in the presence of metal alkoxides (alu-
minium isopropoxide, tin octoate, etc.) [11,12,58]. PCL is
widely used as a PVC solid plasticizer or for polyurethane
applications, as polyols, but it finds also some applica-
tions based on its biodegradable character in domains
such as biomedicine (e.g., drugs controlled release) and
environment (e.g., soft compostable packaging). Different
commercial grades are produced by Solvay (CAPA®),1 by
Union Carbide (Tone®) and by Daicel (Celgreen®). Fig. 2
and Table 1 give, respectively, the chemical structure and
the properties of this polyester. PCL shows a very low Tg

(−61 ◦C) and a low melting point (65 ◦C), which could be a
handicap in some applications. Therefore, PCL is generally
blended [29,59–61] or modified (e.g., copolymerization,
crosslinking [62]). Tokiwa and Suzuki [63] have discussed
According to Bastioli [29], the biodegradability can be
clearly claimed but the homopolymer hydrolysis rate is

1 Solvay has recently sold this activity to Perstorp (Sweden).

http://www.metabolix.com/
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very low. The presence of starch can significantly increase
the biodegradation rate of PCL [59].

3.2.2. Biodegradable aliphatic polyesters
A large number of aliphatic copolyesters are biodegrad-

able copolymers based on petroleum resources. They
are obtained by the combination of diols such as 1,2-
ethanediol, 1,3-propanediol or 1,4-butadenediol, and
dicarboxylic acids like adipic, sebacic or succinic acid.
Showa Highpolymer (Japan) has developed a large range
of polybutylene succinate PBS obtained by polyconden-
sation of 1,4-butanediol and succinic acid. Polybutylene
succinate/adipate PBSA, presented in Fig. 2, is obtained by
addition of adipic acid. These copolymers are commercial-
ized under the Bionolle® trademark [17]. Table 1 shows
the properties of such biopolyester. Ire Chemical (Korea)
commercializes exactly the same kind of copolyesters
under EnPol® trademark. Skygreen®, a product from SK
Chemicals (Korea) is obtained by polycondensation of
1,2-ethanediol, 1,4-butadenediol with succinic and adipic
acids [64]. Nippon Shokubai (Japan) also commercializes
an aliphatic copolyester under Lunare SE® trademark.
These copolyesters properties depend on the structure
[65], i.e., the combination of diols and diacids used.
These products biodegradability depends also on the
structure. The addition of adipic acid, which decreases
the crystallinity [66] tends to increase the compost
biodegradation rate [67]. According to Ratto et al. [68], the
biodegradation results demonstrate that although PBSA
is inherently biodegradable, the addition of starch filler
significantly improves the rate of degradation. Blending
PBSA with non-degradable polymers such as poly(vinyl
acetate) PVAc or linear low density poly(ethylene)
LLDPE leads to immiscible systems whereas PBSA
presents very good miscibility with poly(epichlorohydrin)
PECH [69–71].

3.2.3. Aromatic copolyesters
Compared to totally aliphatic copolyesters, aromatic

copolyesters are often based on terephthalic acid. Fig. 2
and Table 1 show, respectively, the chemical structure
and the properties of such products (e.g., Eastar Bio®

from Eastman). Besides, BASF and DuPont commercialize
aromatic copolyesters under Ecoflex® [17] and Biomax®

trademarks, respectively. Biomax® shows a high tereph-
thalic acid content which modifies some properties such
as the melting temperature (200 ◦C). But, according to
Muller et al. [65], an increase of terephthalic acid con-
tent tends to decrease the degradation rate. Ecoflex®

biodegradation has been analysed by Witt et al. [72]. They
concluded that there is no indication for an environmental
risk (eco-toxicity) when aliphatic–aromatic copolyesters
of the Ecoflex®-type are introduced into composting
processes.

3.2.4. Polyesteramide

Polyesteramide was industrially obtained from the sta-

tistical copolycondensation of polyamide (PA 6 or PA 6-6)
monomers and adipic acid [17,73]. Bayer had developed
different commercial grades under BAK® trademark but
their productions stopped in 2001. Fig. 2 and Table 1 show,
Science 34 (2009) 125–155

respectively, the chemical structure and the properties
of this poly(butylene adipate-co-amino caproate). Table 1
shows that this polyester presents the highest polar com-
ponent, and then presents good compatibility with other
polar products, e.g., starchy compounds. Besides, it has
the highest water permeability (see Table 1). Currently,
the environmental impact of this copolymer is open to
discussion. Fritz [74] had shown that, after composting,
this biodegradable polyester presented a negative eco-
toxicological impact but more recently, Bruns et al. [75]
have infirmed these results. These authors discussed Fritz’s
experiments and more precisely the composting methods
used.

4. Biopolyester/clay nano-biocomposites

Before discussing about the different nano-biocompo-
sites based on the polyesters described above, it is neces-
sary to consider some general information about the clays
specific properties, as well as the different and possible
elaboration routes of such materials.

4.1. Generalities

4.1.1. Clays
The clays most commonly used in the field of nanocom-

posites belong to the family of 2:1 layered silicates, also
called 2:1 phyllosilicates (montmorillonite, saponite). Their
structure consists of layers made up of two tetrahedrally
coordinated silicon atoms fused to an edge-shared octahe-
dral sheet of either aluminium or magnesium hydroxide
(see Fig. 3). Each layered sheet is about 1 nm thick and
its length varies from tens of nanometers to more than
one micron, depending on the layered silicate. Layer stack-
ing leads to a regular Van der Waals gap between the
platelets called the interlayer or the gallery. Isomorphic
substitution may occur inside the sheet since Al3+ can
be replaced by Mg2+ or Fe2+, and Mg2+ by Li+. Glob-
ally negatively charged platelets are counterbalanced by
alkali and alkali earth cations (Na+, Ca2+, etc.) located in
the galleries, which increases the clay hydrophilic char-
acter. Most polymers, and particularly the biopolyesters
are considered to be organophilic compounds. Thus, to
obtain better affinity between the filler and the matrix,
and eventually to improve final properties, the inor-
ganic cations located inside the galleries (Na+, Ca2+, etc.)
are generally exchanged by ammonium or phosphonium
cations bearing at least one long alkyl chain, and possi-
bly other substituted groups. The resulting clays are called
organomodified layered silicates OMLS and, in the case of
montmorillonite MMT, are abbreviated OMMT. By mod-
ifying the layered silicate, it is possible to compatibilize
the matrix and the filler, which will affect the mate-
rial nanostructure, and consequently the properties of the
nanocomposites. Tables 2 and 3 present the character-
istics of the main 2:1 layered silicates and commercial

clays.

4.1.2. Elaboration routes
An important key factor in the nanocomposites prepa-

ration is the elaboration protocol. Nowadays, three main
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Fig. 3. 2:1 layered silicate structure (T, tetrahedral sheet; O, octahedral sheet; C, intercalated cations; d, interlayer distance). Reproduced with permission
from Lagaly [191] copyright (1993) of Marcel Dekker.

Table 2
Structural characteristics of principal 2:1 layered silicates. Adapted and reproduced with permission from Sinha Ray et al. and Utracki et al. [192,193]
copyright (2003) of Elsevier Science Ltd. and copyright (2007) of John Wiley & Sons, Ltd.

Phyllosilicates Octahedra occupancy Interlayer cations CEC (meq/100 g) Aspect ratio

Smectites
Na+, Ca
Na+, Ca
Na+, Ca
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Hectorite Mg (3/3)
Montmorillonite Al (2/3)
Saponite Mg (3/3)

ethods are applied: (i) the solvent intercalation route
hich consists in swelling the layered silicates in a polymer

olvent to promote the macromolecules diffusion in the
lay interlayer spacing, (ii) the in-situ intercalation method
or which the layered silicates are swollen in the monomer
r monomer solution before polymerization, and (iii) the
elt intercalation process which is based on polymer pro-
essing in the molten state such as extrusion. Obviously, the
atter method is highly preferred in the context of sustain-
ble development since it avoids the use of organic solvents,
hich are not eco-friendly and then alter the life cycle anal-

sis LCA.

able 3
ommercial (O)MMT and their characteristics.

ommercial clays Clay type Organomodifier

upplier/trade name/designation

outhern Clay Products (USA)
Cloisite®Na CNa MMT –
Cloisite®15A C15A MMT N+(Me)2(tallow)
Cloisite®20A C20A MMT N+(Me)2(tallow)
Cloisite®25A C25A MMT N+(Me)2(C8)(tall
Cloisite®93A C93A MMT NH+(Me)(tallow
Cloisite®30B C30B MMT N+(Me)(EtOH)2(

üd-Chemie (Germany)
Nanofil®804 N804 MMT N+(Me)(EtOH)2(

aviosa Chimica Mineraria (Italy)
Dellite® LVF LVF MMT –
Dellite® 43B D43B MMT N+(Me)2(CH2-�)

BC Co. (Japan)
Somasif MEE SFM N+(Me)(EtOH)2(

MAE SFM N+(Me)2(tallow)

allow: ∼65% C18; ∼30% C16; ∼5% C14.
a %Weight loss on ignition.
2+, Mg2+ 120 200–300
2+, Mg2+ 110 100–150
2+, Mg2+ 86.6 50–60

4.1.3. Nanocomposites structures
Finally, different structures of nanocomposites could be

obtained:

(i) a microcomposite when the clay layers are still
stacked and the polymer is not intercalated within the
(O)MMT’s layers due to poor polymer-clay affinity, the

material thus presents phase separation;

(ii) an intercalated nanocomposite for which the polymer
is partially intercalated between the silicate layers;
these latter are still stacked but the interlayer spacing
has increased;

type Modifier concentration
(meq/100 g)

�wa (%) d-spacing (Å)

– 7 11.7
2 125 43 31.5
2 95 38 24.2
ow) 95 34 18.6
)2 90 37.5 23.6
tallow) 90 30 18.5

tallow) 21 18

105 4–6 9.8
(tallow) 95 32–35 18.6

coco alkyl) 120 28
2 120 41
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Fig. 4. FT-IR normalized peak intensities at (a) 920, (b) 1210, and (c)
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(iii) eventually, an exfoliated nanocomposite showing indi-
vidual and well-dispersed clay platelets into the
matrix; in this case, the layered structure does not exist
anymore.

4.2. Polyesters matrices based on agro-resources

4.2.1. Poly(lactic acid)-based nano-biocomposites
PLA is a very promising material since it has good

mechanical properties, thermal plasticity and biocom-
patibility. However, some of its properties, like flexural
properties, gas permeability and heat distortion tem-
perature, are too low for widespread applications.
Therefore, many attempts were carried out to reach
exfoliation state in corresponding nano-biocomposites.
Various organoclays with different organomodifiers were
selected and several elaboration routes were tested (see
Table 4).

Ogata et al. [76] first attempted to prepare PLA-
based nanocomposites by the solvent intercalation method.
Unfortunately, the layered silicates were not individually
well dispersed but rather formed tactoids consisting of sev-
eral stacked silicate monolayers. Consequently, although
the Young’s modulus increased with the clay content,
the increments were small compared to conventional
nanocomposites. Later, Chang et al. [77,78] examined the
influence of the layered silicates aspect ratio (montmoril-
lonite, fluorinated synthetic mica), of the organomodifier
(N+(Me)2(C8)(tallow)-C25A-, hexadecylamine-C16-, dode-
cyltrimethyl ammonium bromide-DTA) and of the clay
content on the nanofiller dispersion into a PLA matrix.
It was shown by X-ray diffraction XRD and transmission
electron microscopy TEM that intercalated structures were
obtained, leading to some improvements in mechanical and
barrier properties with only small amount of fillers. Com-
pared to neat PLA, the ultimate strength increased by about
65%, 47% and 131% in the case of PLA with 2 wt% of C25A,
4 wt% of C16-MMT and C16-mica, respectively. However, it
appeared that the mechanical enhancement was limited
to a small range of clay content (up to 4–6 wt% depending
on the organomodifier). Above these clay contents, prop-
erties decreased due to layered silicates agglomeration.
Considering O2 permeability, a decrease of more than a
half is observed at 10 wt% of OMMT. The initial degradation
temperatures decreased linearly with an increasing OMMT
amount reaching a maximum shift of 49 and 41 ◦C in the
case of 8 wt% of C16-MMT and C25A, respectively. In the
case of C16-mica at the same clay loading, the decrease was
only of 16 ◦C. It was also shown that DTA-MMT presents
a particular thermal behavior since the initial degradation
temperature was not affected by the clay content [78].

Finally, Krikorian and Pochan [79] successfully pre-
pared exfoliated materials with randomly distributed clay
platelets via solvent intercalation in the presence of C30B.
Since C30B bears a long alkyl chain and hydroxyl groups,
the interactions between OH functions from the clay

organomodifier and C O moieties of the PLA backbone
favored exfoliation. Therefore, the mechanical properties
were improved, e.g., the storage modulus increased by 61%
with 15 wt% of C30B. A complete study of the crystalliza-
tion behavior of such materials was also conducted [80,81],
1458 cm−1 as a function of crystallization time for neat PLLA, PLLA with
10% of C15A and PLLA with 10% of C30B. Reproduced with permission from
Krikorian and Pochan [81] copyright (2005) of the American Chemical
Society.

focusing on the role of intercalated or exfoliated layered
silicates on the nucleation, the growth, and thus, the over-
all crystallinity. They demonstrated that addition of highly
miscible clay leads to low spherulite nucleation, low bulk
crystallization, and as a result, much lower extent of crys-
tallinity compared to neat polymer. Moreover, from FTIR
analyses, they described the mechanisms of crystallization

and explained how the highly miscible clay hinders the
crystal nuclei formation (see Fig. 4) [81].

Exfoliated structure of PLA-based nanocomposites was
also obtained by Wu and Wu [82] using a solution mix-
ing process. They increased the interactions between the
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Table 4
Structure of the studied PLA/clay nano-biocomposites.

Process System Structure Reference

Solvent intercalation MMT-N+(Me)2(C18)2/chloroform Tactoids [76]

SFM-NH3
+(C16)/dimethylacetamide Intercalated [77,78]

MMT-NH3
+(C16)/dimethylacetamide

MMT-N+(Me)3(C12)/dimethylacetamide
MMT-N+(Me)2(C8)(tallow)/dimethylacetamide

MMT-N+(Me)(EtOH)2(tallow)/dichloromethane Exfoliated [79]
MMT-N+(Me)3(C16) + chitosan/methylene chloride Exfoliated [82]

In-situ intercalation MMT-N+(Me)2(C8)(tallow)/triethylaluminium Intercalated [108,113]
MMT-N+(Me)2(C8)(tallow)/tin octoate Intercalated [113]

MMT-N+(Me)(EtOH)2(tallow)/triethylaluminium Exfoliated [108,113]
MMT-N+(Me)(EtOH)2(tallow)/tin octoate Exfoliated [113]
MMT-N+(Me)(EtOH)2(tallow)/�-�-diOH o-PEG/tin octoate Exfoliated [108]

Melt intercalation MMT-NH3
+(C18) Intercalated-flocculated [88,92–94]

Intercalated [84,112]

MMT-NH3
+(C18)/o-PCL Intercalated-flocculated [88]

MMT-NH3
+(C18)/o-PEG Intercalated [112]

MMT-NH3
+(C18)/diglycerine tetraacetate Intercalated [112]

MMT-NH+(EtOH)2(C18) Intercalated [112]
MMT-NH+(EtOH)2(C18)/o-PEG
MMT-NH+(EtOH)2(C18)/diglycerine tetraacetate

MMT-N+(Me)3(C18) Intercalated [86,89,92,94,97]

MMT-N+(Me)2(C18)2 Intercalated-flocculated [94,95]
Intercalated (tactoids of 5–7 layers) [96,97]

MMT-N+(Me)2(C18)2/PCL Intercalated [105]
MMT-N+(Me)2(C18)2/o-PEG Intercalated [111]
MMT-N+(Me)2(C18)2/PEG Intercalated [111]

MMT-N+(Me)2(CH2-�)(C18)/o-PEG Intercalated [111]
MMT-N+(Me)2(CH2-�)(C18)/PEG Intercalated [111]

MMT-N+(Me)2(C8)(tallow) Intercalated [107]
MMT-N+(Me)2(C8)(tallow)/PBS Intercalated [102,103]
MMT-N+(Me)2(C8)(tallow)/o-PEG Intercalated [106,107,109,110]
GPS-g-MMT-N+(Me)2(C8)(tallow)/PBS Exfoliated or Intercalated/exfoliated [102,103]
MMT-N+(Me)2(tallow)2 Intercalated [98]
MMT-N+(Me)2(tallow)2/o-PEG Intercalated [106,109,110]

MMT-N+(Me)(ButOH)2(C18) Flocculated (tactoids of 1–3 layers) [96,97]

MMT-N+(Me)(EtOH)2(tallow) Intercalated [98]
MMT-N+(Me)(EtOH)2(tallow)/o-PEG Intercalated [106,109,110]

MMT-P+(But)3(C16) Intercalated [85]

Smectite-P+(But)3(C8) Not intercalated [85]
Smectite-P+(But)3(C12) Intercalated [85]
Smectite-P+(But)3(C16) Intercalated and low ordered [85]
Smectite-P+(Me)(�)3 Not intercalated [85]

Mica-P+(But)3(C16) Intercalated and well ordered [85]

SFM-N+(Me)(EtOH)2(coco alkyl) Intercalated/exfoliated [87]
Intercalated-flocculated [90,92,94]

SFM-N+(Me)2(tallow)2 Intercalated [84]

SAP-P+(But)3(C16) Exfoliated [92,94]

Masterbatch MMT-N+(Me)2(EtOH)2/PLLA/triethylaluminium + PDLLA Intercalated/exfoliated [108]
MMT-N+(Me)2(EtOH)2/PLLA/o-PEG/triethylaluminium + PDLLA

MMT-N+(Me)2(C8)(tallow)/PLLA + PDLLA N.D. [104]
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AB and
Fig. 5. Schematic drawing of montmorillonite organomodification by CT
(2006) of Elsevier Science Ltd.

filler and the matrix by treating the montmorillonite with
n-hexadecyl trimethylammonium bromide (CTAB) cations
and then modified it with chitosan, a biodegradable and
biocompatible polymer (see Fig. 5).

The elaboration of PLA/clay nano-biocomposites by melt
intercalation is also widely described in the literature
[83–98], leading to various materials structures. Okamoto
and his group at Toyota Technological Institute (Nagoya,
Japan) tested a lot of PLA-based systems differing from
the OMLS in the aspect ratio of the inorganic platelets, the

nature of the organomodifier, and the clay content [85–95].
Depending on these parameters, intercalated, intercalated-
and-flocculated, nearly exfoliated, or the coexistence of
intercalated and exfoliated states were obtained. They
even proposed an interpretation of the nanocomposites

Fig. 6. Structure of organoclays and the corresponding nanocomposites dependin
et al. [85] copyright (2002) of the American Chemical Society.
chitosan. Reproduced with permission from Wu and Wu [82] copyright

structure related to the aspect ratio and the organomod-
ifier chain lengths [85]. Regarding the aspect ratio, it was
demonstrated that the smaller the silicate layers size, the
lower the physical jamming, restricting the conformation
of organomodifier alkyl chains, and thus, the lower the
coherency of the organoclay (see Fig. 6). Due to a nicely
stacked structure of organomodified mica, the polymer
chains can hardly penetrate up to the core of the silicate
layers, contrary to smaller size of silicate layers such as
smectite and MMT (see Fig. 6). The effect of organomodi-

fiers organization in the interlayer space was also examined
considering an interdigitated layer structure of the surfac-
tants [99].

Flocculated structures were further studied by
Nam et al. [96,97] using bis(4-hydroxy butyl) methyl

g on the type of layered silicates. Reproduced with permission from Maiti
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ig. 7. Visual aspect of PLA matrix, microcomposite based on CNa and na
f hydrolysis (the white arrow points the curvature of the sample). Repro
td.

ctadecyl ammonium modified montmorillonite (MMT-
+(Me)(ButOH)2(C18)). From polarized optical microscopy
OM, TEM and particularly FT-IR, they showed that the
ormation of such nanocomposite structures could be due
o hydrogen bonding among the hydroxyl groups of the
urfactant, those of platelets edges and those of both ends
f the PLA chains.

As a consequence of the nanostructure, and despite
f the fact that incomplete exfoliation was obtained by
elt intercalation, all these nano-biocomposites exhibited

ramatic enhancements of various materials properties.
hese improvements included mechanical and flexural
roperties, heat distortion temperature, and O2 gas perme-
bility. However, it has to be noticed that the increments
trongly depend on the structure of the nanocomposites. A
articular study of the crystallization behavior of the well-
rdered intercalated PLA/octadecylammonium OMMT
MMT-NH3

+(C18)) nanocomposite revealed a spherulite
ize decrease and an overall crystallization rate enhance-
ent compared to neat PLA [100]. This was attributed to the

lay nucleating effect. Furthermore, since the compostabil-
ty is controlled by the crystallinity, the molecular weight
nd the (OM)LS dispersion, it was enhanced by the incor-

oration of layered silicates [92,101]. Paul et al. [98] studied
he hydrolytic degradation in such materials and concluded
hat the more hydrophilic the filler, the more pronounced
he degradation. This was expressed by increasing opacity
nd shape modification before fragmentation (see Fig. 7).

ig. 8. Schematic drawing of the twice-functionalized organoclay (TFC) prepara
2005) of the Society of Chemical Industry.
osites based on C25A and C30B, respectively, after five and a half months
ith permission from Paul et al. [98] copyright (2005) of Elsevier Science

Eventually, the addition of the most appropriate OMLS
could also enhance the properties of polymers blends as
described by Chen et al. [102,103] who used a specific
organoclay to compatibilize an immiscible PLLA/PBS blend.
They introduced epoxy groups to C25A by treating the clay
with (glycidoxypropyl)trimethoxy silane (GPS) to produce
a twice-functionalized organoclay TFC (see Fig. 8). React-
ing with epoxy groups located on the clay surface, the
biopolyesters tend to delaminate the platelets (see Fig. 9).
However, since TFC was highly compatible with PLLA rather
than PBS, at small TFC content, the clays are located almost
exclusively in the PLLA phase and are fully exfoliated. At
higher TFC content, the clay layers were dispersed in both
PBS and PLLA phases with intercalated/exfoliated coexist-
ing morphology. The domains size of the dispersed PBS
phase decreased sharply since the platelets hinders the PBS
domains coalescence. The addition of TFC to the PLLA/PBS
blend not only improved the tensile modulus but also the
elongation at break, while the incorporation of C25A to the
same polymer blend increased the tensile modulus but at
the cost of the elongation at break. The thermal stability of
these materials, in terms of onset temperature and activa-
tion energy of degradation was also enhanced [103].
Therefore, by a judicious choice of the OMLS, it is
possible to tune the material properties [92]. Further-
more, the process could also play a key role in the final
nano-biocomposites structure and properties. For exam-
ple, Lewitus et al. [104] prepared nano-biocomposites

tion. Reproduced with permission from Chen and Yoon [182] copyright
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groups
Fig. 9. Reaction between the epoxy groups in TFC and the functional end-
copyright (2005) of Elsevier Science Ltd.

from PLLA-based masterbatches which were dispersed
into different matrices (PLLA, PDLLA, PBAT). Compared to
neat PLLA, the corresponding nano-biocomposites demon-
strated enhanced film properties, showing a potential
extend to film applications as, e.g., compostable packaging.
The most significant improvements were obtained when
the PLLA-nanoclays masterbatches were dispersed into the
same PLLA matrix. In this case, the incorporation of 5 wt%
of clay increased the tensile modulus and the elongation at
break of PLLA by 36% and 48%, respectively, while the tensile
strength did not change significantly. Authors attributed
this toughening effect to molecular interactions between
nanoclays and PLA but also to a high degree of exfoliation.
Unfortunately, without complementary characterizations
of these systems, these results could not be confirmed.
Regarding the thermal properties, it was proved that clays
acted as nucleating agent since the cold crystallization tem-
perature was decreased by 15 ◦C.

The melt intercalation process allows incorporation of
additives such as compatibilizers and plasticizers. The addi-
tion of oligo-PCL [88] (o-PCL) or PCL [105] to PLA-clay
systems had not a beneficial effect on the interlayer spac-
ing. However, the o-PCL, used as compatibilizer, induced
a flocculated state due to hydroxylated edge–edge inter-
actions of layered silicates leading to great enhancement
of mechanical properties. Hasook et al. [105] also obtained
reinforced materials properties when adding 5 wt% of PCL
with short chain length (<40,000).

Some authors were also interested in developing plasti-
cized PLA-based nanocomposites to reduce the brittleness
and to improve the flowability during the process. Thus, PLA
plasticized with PEG [106–111] or diglycerine tetraacetate
[112] was melt compounded with different organoclays
leading to intercalated structures. Paul et al. [106] and
Pluta et al. [109] showed that there is a real competi-
tion between PEG and PLA for the intercalation into the
clay interlayer. Tanoue et al. [111] also studied the struc-
ture of such materials using PEG with different molecular
weight. With a certain type of organoclay, i.e., dimethyl dis-
tearyl ammonium modified MMT (MMT-N+(Me)2(C18)2),

these authors demonstrated that the interlayer distance
depends on the PEG chain length. Besides, they pointed
out that addition of PEG affects the dispersion of clay
in the PLA matrix resulting in more aggregated struc-
tures. Mechanical properties can be improved [111,112] and
of the polyesters Reproduced with permission from Chen and Yoon [103]

crystallization enhanced [107,112] by selecting the right
organoclay, plasticizer nature, content and chain length.
Nevertheless, Pluta et al. [110] demonstrated that although
the dispersed nanoclays can slow down the phase separa-
tion, particularly in the case of better PLA-clay affinity (i.e.,
C20A and C30B), PEG can diffuse toward the surface. There-
fore, Paul et al. [108] settled a protocol consisting in the
in-situ polymerization of lactide from end-hydroxylated
PEG in presence of C30B with tin octoate (Sn(Oct)2) as
an activator/initiator. This polymerization method, called
the “coordination-insertion” method, leads to PLA chains
grafted onto the clay surface via the hydroxylated ammo-
nium organomodifier and to PLA-b-PEG-b-PLA triblock
copolymer intercalated into the clay gallery. The plasticiz-
ing effect is ensured by the PEG sequence of the triblock
without phase separation. More generally, this mechanism
allows complete exfoliation by ROP of lactide after ade-
quate activation [113]. In the particular case of activation
reaction with triethylaluminium (AlEt3) [108], the poly-
merization is initiated by the hydroxyl groups of the OMMT
organomodifier (see Fig. 10). The as-obtained PLA/OMMT
nanocomposites presented enhanced thermal properties
since the temperature corresponding to 50% of weight loss
is shifted by ∼30 ◦C towards higher temperature. The crys-
tallinity was also affected since the mobility of the resulting
grafted chains was restricted while Tg and Tm were not
influenced by the clay [108].

Recent publications reported works on more applicative
researches since they deal with PLA-based nanocompos-
ites for preparation of porous ceramic materials [114] or
for scaffolds as supports for tissue regeneration [115,116].
Foams were also elaborated from PLA/OMMT nanocom-
posites with the aim of obtaining high cell density and
a controlled morphology varying from microcellular to
nanocellular structures [117].

To conclude, the literature shows many publica-
tions on PLA-based nano-biocomposites, wherein several
answers and strategies are proposed to improve the mate-
rial properties since PLA is commercially and largely
available.
4.2.2. Polyhydroxyalkanoates-based nano-biocomposites
Some drawbacks of PHAs, such as brittleness and

poor thermal stability restrict their developments and
uses. Therefore, nano-biocomposites appear as a possi-
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ig. 10. Schematic representation of the l,l-lactide polymerization perfo
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le answer to overcome these problems and to improve
ifferent properties as, e.g., permeability. The studied PHA-
ased nano-biocomposites are summarized in Table 5 and
escribed below.

First, Maiti et al. [118] prepared PHB-based nanocom-
osites by melt extrusion. PHB was then reinforced using
rganomodified fluoromicas or montmorillonite contain-
ng 2 wt% and up to 4 wt% of clay, respectively. MEE and

AE fluoromicas (see Table 3) as well as OMMT mod-
fied with octadecylammonium (MMT-NH3

+(C18)) were
elected. XRD and TEM revealed well-ordered intercalated

anocomposites with decreasing d-spacing with clay con-
ent increases. Dynamic mechanical analyses revealed a
etter reinforcing effect of fluoromica compared to mont-
orillonite. The storage modulus E′ increased with clay

able 5
tructure of the studied PHA/clay nano-biocomposites.

HA Process System

HB Solvent intercalation MMT-N+(Me)2(C8)(tallow)/chlor

Melt intercalation MMT-NH3
+(C18)

MMT-N+(Me)(EtOH)2(tallow)/M
SFM-N+(Me)(EtOH)2(coco alkyl)
SFM-N+(Me)2(tallow)2

HBV Solvent intercalation MMT-N+(Me)3(C16)/chloroform

Melt intercalation MMT-N+(Me)(EtOH)2(tallow)
-situ from C30B using triethylaluminium (AlEt3) as initiator precursor (R
ight (2005) of Wiley-VCH.

content reaching an increment of 35% with 3.6 wt% of
MMT-C18, +33% and +40% with 2 wt% of MAE and MEE,
respectively. These authors explained this behavior by an
enhanced degradation in presence of OMMT, due to the
presence of Al Lewis acid sites in the inorganic layers which
catalyze the ester linkages hydrolysis. This phenomenon
does not occur in the case of fluoromica since they are
based on magnesium. Nevertheless, recently, Hablot et al.
[119] reported that PHB enhanced degradation can also be
caused by decomposition products of clay organomodifiers
which have a catalyzing effect on the thermal or thermo-

mechanical degradation. Eventually, the biodegradation
studies also highlighted the difference between montmo-
rillonite and fluoromicas since the initial degradation rate
of PHB with MMT-NH3

+(C18) was higher than with fluo-

Structure Reference

oform Intercalated [120]

Intercalated [84,118]
A-g-PHB Intercalated, well delaminated [126]

Intercalated [84,118]
Intercalated [84,118]

Intercalated [122–124]

Intercalated, nanodispersion [121]
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romicas [118]. In this case, the degradation rates have been
considerably reduced and even suppressed with MEE.

A similar study on PHB-based nanocomposites was
carried out by Lim et al. [120]. Nevertheless, they used
solvent intercalation route to obtain PHB/C25A with 3, 6
and 9 wt% of clay content. XRD data led to the conclusion
of intercalated structures, the interlayer distance reaching
35 Å, but no dependence on clay content was observed.
These results were confirmed by FTIR analyses showing
that two distinct different phases coexisted. These struc-
tural observations were completed by the thermal stability
investigation. TGA results indicated an increase of the onset
temperature of weight loss and a decrease of the degra-
dation rate with 3 wt% of C25A. This was attributed to the
nanoscale OMMT layers dispersion decreasing the diffusion
of volatile decomposition products. At higher clay contents
(>6 wt%), although the onset of thermal degradation did not
increase because of the organomodifier’s thermal sensitiv-
ity, the nanocomposites degradation rates decreased due
to restricted thermal motion of the polymer chains in the
OMMT interlayer.

Scientists were also interested in the development
of PHBV-based nanocomposites since the PHBV presents
better properties than PHB and better processability.
In 2003, Choi et al. [121] described the microstructure
as well as the thermal and mechanical properties of
PHBV/C30B nanocomposites with low clay content. These
materials were prepared by melt intercalation using a
Brabender mixer. XRD and TEM clearly confirmed that
intercalated nanostructures were obtained. Such structures
were formed thanks to the strong hydrogen bond inter-
actions between PHBV and the hydroxyl groups of the
C30B organomodifier. They demonstrated that the nanodis-
persed organoclay acted as a nucleating agent, increasing
the temperature and rate of PHBV crystallization. More-
over, the DSC thermograms revealed that the crystallite
size was reduced in the presence of nanodispersed lay-
ers since the PHBV melting temperature are shifted to
lower temperatures. Nanocomposites thermal stabilities
were also studied. Thermogravimetric analyses revealed
that the temperature corresponding to 3% of weight loss
increased with C30B content (+10 ◦C with 3 wt% of filler).
They explained these trends by the nanodispersion of the
silicate layers into the matrix and thus concluded that
the well-dispersed and layered structure accounts for an
efficient barrier to the permeation of oxygen and combus-
tion gas. Eventually, the mechanical properties showed that
clays can also act as an effective reinforcing agent since the
Young’s modulus significantly increases from 480 to more
than 790 MPa due to strong hydrogen bonding between
PHBV and C30B.

Wang et al. [122] and Zhang and co-workers [123,124]
have investigated the structure and the properties of
PHBV/OMMT nanocomposites. They synthesized PHBV
with 3 and 6.6 mol% of HV units as well as organomod-
ified MMT via cationic exchange in an aqueous solu-

tion with hexadecyl-trimethylammonium bromide (MMT-
N+(Me)3(C16)). Nanocomposites were prepared by the
solution intercalation method, adding 1, 3, 5 or 10 wt%
OMMT to a chloroform solution of PHBV and then exposing
the resulting dispersions to an ultra-sonication treatment.
Science 34 (2009) 125–155

These conditions led to intercalated structures, as shown
by XRD, but clay aggregation occurred when increasing the
clay content to 10 wt%.

A detailed study of the PHBV/OMMT crystallization
behavior was achieved. It was shown that OMMT acted as
a nucleating agent in the PHBV matrix, which increased
the nucleation and the overall crystallization rate, lead-
ing to more perfect PHBV crystals [123]. With increasing
amount of OMMT, the predominant crystallization mech-
anism of PHBV was shifted from the growth of crystals to
the formation of crystalline nuclei. The nucleation effect
of the organophilic clay decreased with the clay content
increase. Wang et al. [122] postulated that the nanoscaled
OMMT layers affect the crystallization in two opposite
ways. On one hand, a small part of OMMT can increase
the crystalline nuclei thus causing a more rapid crystal-
lization rate. On the other hand, owing to the interaction
of OMMT layers with PHBV chains, most of the OMMT lay-
ers restrict the motion of the PHBV chains. Therefore, the
crystallization rate increased whereas the relative degree
of crystallinity decreased with increasing amount of clay
in the PHBV/OMMT nanocomposites. Furthermore, the
PHBV processing behavior could be improved with OMMT-
based nanocomposites since the processing temperature
range enlarged by lowering melting temperature with the
increasing clay content. The tensile properties of the cor-
responding materials were improved by incorporation of
3 wt% of clay [124]. Above this clay content, aggregation
of clay occurred and tensile strength and strain at break
decrease. Dynamic mechanical analysis, through the study
of the modulus and the T� relaxation temperature (see
Fig. 11), revealed that the interface was maximized because
of the nanometer size, which restricts segmental motion
near the organic-inorganic interface. Thus, it confirmed
that intercalated nanocomposites were formed. Eventually,
the biodegradability of these nanocomposites systems in
soil suspension decreased with increasing OMMT. This was
related to the interactions between PHBV and OMMT, but
also to water permeability, the degree of crystallinity, and
the anti-microbial property of OMMT.

Eventually, Misra et al. developed a novel solvent-free
method to prepare PHB functionalized by maleic anhydride
(MA-g-PHB) [125]. The functionalization was successfully
achieved by free radical grafting of maleic anhydride
using a peroxide initiator by reactive extrusion processing.
Then, they have mixed MA-g-PHB with C30B to make the
organomodifier hydroxyl functions react with the MA [126].
Although, the d-spacing was comparable to PHB/C30B pre-
pared by melt blending, the decrease in intensity of XRD
signals and TEM images showed that more delaminated
platelets were obtained.

To conclude, most of the articles reported the prepara-
tion of PHA-based nanocomposite by solvent intercalation,
and whatever the elaboration route, full exfoliation state
was neither obtained nor clearly demonstrated.
4.3. Petroleum-based polyesters

4.3.1. Polycaprolactone-based nano-biocomposites
PCL-based nanocomposite was the first studied nano-

biocomposite. In the early 1990s, Giannelis’ group from
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Table 6
Structure of the studied PCL/clay nano-biocomposites.

Process System Structure Reference

Solvent intercalation MMT-N+(Me)2(C18)2/chloroform Slightly intercalated [164]

Melt intercalation MMT-N+(Me)2(C18)2 Intercalated [140]
MMT-N+(Me)2(C8)(tallow) Intercalated [135,145,159]
MMT-NH3

+(C11COOH) Microcomposite [135]
MMT-N+(Me)(EtOH)2(tallow) Intercalated/exfoliated [135,145,159]

Exfoliated [148,149]

Smectite-P+(But)3(C8)/o-PCL Intercalated [158]
Smectite-P+(But)3(C12)-/o-PCL Intercalated [158]
Smectite-P+(But)3(C16)/o-PCL Intercalated [158]
Smectite-P+(Me)(�)3/o-PCL Intercalated [158]
SFM-P+(But)3(C16)/o-PCL Intercalated [158]
Hectorite-P+(But)3(C16)/o-PCL Intercalated, almost

exfoliated
[158]

Masterbatch MMT-Na-g-PCL + PCL Intercalated [150]
MMT-N+(Me)2(C8)(tallow)-g-PCL + PCL Intercalated [150]
MMT-N+(Me)(EtOH)2(tallow)-g-PCL + PCL Intercalated [150]

MMT/dibutylamine terminated o-CL + PCL Intercalated (low o-CL
chain length)

[151]

Intercalated/exfoliated
(high o-CL chain length)

In-situ intercalation Fluorohectorite-Cr3+ Intercalated [128]
MMT-NH3

+(C18) Intercalated [140]
MMT-NH3

+(C11COOH) Exfoliated [127,129,132–134]
Intercalated [127,129,132–135,140]

MMT-N+(Me)2(C18)2 Microcomposite [127,140]
MMT-N+(Me)3(C16) Intercalated [131]
MMT-N+(Me)2(C8)(tallow) Microcomposite [140]
MMT-N+(Me)(EtOH)2(tallow) Exfoliated [140]

MMT/water Slightly intercalated [130]
MMT-Na/tin octoate Intercalated [135,140]
MMT-Na/dibutyltin dimethoxide Intercalated [140]

MMT-NH3
+(C18)/tin octoate or dibutyltin dimethoxide Intercalated [135,140]

MMT-NH3
+(C11COOH)/tin octoate or dibutyltin dimethoxide Intercalated [135,140]

MMT-N+(Me)2(C18)2/tin octoate or dibutyltin dimethoxide Intercalated [135,140]
MMT-N+(Et)2(CH2CHOHCH3)(C18)/tin octoate Exfoliated or

Intercalated/exfoliated
[136]

MMT-N+(Me)2(C8)(tallow)/tin octoate Intercalated [135,140,141]
MMT-N+(Me)2(C8)(tallow)/dibutyltin dimethoxide Intercalated [135–137,140,159]

MMT-N+(Me)(EtOH)2(tallow)/tin octoate Exfoliated [135,137,140,142,159]
MMT-N+(Me)(EtOH)2(tallow)/dibutyltin dimethoxide Exfoliated [135,140,141]

MMT-[N+(Me)2(EtOH)(C16)]x[N+(Me)3(C16)]y/Tin (II) or Tin (IV) or
Al(III) alkoxide

Exfoliated or
Intercalated/exfoliated

[138,139]

MMT-
[N+(Me)2(EtOH)(C16)]x[N+(Me)3(C16)]y/triethylaluminium/toluene

Exfoliated [143]

SAP-N+(Me)3(C16)/dibutyltin dimethoxide Intercalated [162,163]
SAP-N+(Me)2(EtOH)(C16)/dibutyltin dimethoxide
SAP-N+(Me)(EtOH)2(C16)/dibutyltin dimethoxide
SAP-P+(Me)3(C16)/dibutyltin dimethoxide
LAP-N+(Me)3(C16)/dibutyltin dimethoxide
LAP-N+(Me)2(EtOH)(C16)/dibutyltin dimethoxide
LAP-N+(Me)(EtOH)2(C16)/dibutyltin dimethoxide
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LAP-P+(Me)3(C16)/dibutyltin dimethoxide

SAP-P+(Me)3(C14)/dibutyltin dimethoxyde
SAP-P+(Me)3(C12)/dibutyltin dimethoxyde

ornell University (Ithaca, New York, USA) started to
ork on the elaboration of PCL-based nanocomposite by
ntercalative polymerization [127–129]. Their work was
otivated by previous studies involving polymerization

f �-caprolactam in the presence of layered silicates,
hich suggested that lactone ROP can be catalyzed by

ayered silicates. Then, they decided to investigate the
Intercalated [163]

intercalation and polymerization of �-caprolactone within
the gallery of layered silicates. The very first PCL-based

nanocomposite prepared was based on fluorohectorite, a
mica-type layered silicate [128] (see Table 6). The ROP
of �-caprolactone (�-CL) was activated by the surface of
the Cr3+-exchanged fluorohectorite. Indeed, the type of
interlayer cations (e.g., Cr3+, Cu2+, Co2+, Na+) is impor-
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trary to Messersmith and Giannelis [127,128], PCL-based
Fig. 11. Tan ı of neat PHBV and PHBV/clay nanocomposites with respec-
tively 1 and 3 wt% of MMT-N+(Me)3(C16). Reproduced with permission
from Chen et al. [124] copyright (2002) of Kluwer Academic Publishers.

tant in achieving polymerization since it proceeds through
cleavage of the acyl-oxygen bond catalyzed by the inter-
layer Cr3+ ions which present a more acidic character
than mono- and divalent cations. The polymer–clay chem-
ical interactions at the interface was proved to be strong
and the intercalation of the polymer irreversible. How-
ever, authors could also observe the decrease of d-spacing
after polymerization. They attributed this phenomenon
to a change in the intercalated molecules organization
from the monomer to the polymer (see Fig. 12). Simi-
lar results were also obtained later by Kiersnowski et al.
[130] who prepared the PCL-based composites by in-situ
polymerization catalyzed by water. Afterwards, Messer-
smith and Giannelis [127] attempted to prepare PCL-based
nanocomposites by in-situ polymerization thermally acti-
vated and initiated by organic acid. This one constituted
the OMMT organomodifier, namely the protonated form
of 12-aminododecanoic acid (NH3

+(C11COOH)), which was
thus present on the clay surface and initiated the ROP
by a nucleophilic attack on the �-caprolactone carbonyl.
The resulting PCL was therefore ionically bound to the
silicate layers through the protonated amine chain end.
XRD results suggested that individual silicate layers were
dispersed in the matrix. On the contrary, OMMT layers
organomodified with a less polar ammonium (dimethyl

dioctadecyl-N+(Me)2(C18)2- [127] or hexadecyltrimethyl-
N+(Me)3(C16)- [131] ammonium) showed no dispersion
in CL or PCL. Subsequently, the interactions occurring at
the interface of a PCL/OMMT exfoliated nanocomposite
Fig. 12. XRD patterns of PCL nanocomposite before (solid lines) and after
(dashed lines) polymerization. Reproduced with permission from Messer-
smith and Giannelis [128] copyright (1993) of the American Chemical
Society.

were investigated [132,133] and the crystallinity, the per-
meability and the rheological behavior were examined
[127,129,132,134]. Both, the crystallinity and the crystal-
lite size decreased because of the dispersed silicate layers
that represent physical barriers, and hinder PCL crystal
growth. The dispersion of high aspect ratio platelets also
reduced the water permeability, nearly by an order of
magnitude at 4.8 vol% silicate [127]. Tortora et al. [134]
who examined the water and dichloromethane permeabil-
ity, assumed that the diffusion path of the polar water
molecules is slowed down compared to dichloromethane
vapor, not only because of the physical barrier of the
clay layers, but also because of the hydrophilic character
of the platelets. Eventually, the linear viscoelastic behav-
ior of the nanocomposites with various OMMT contents
was examined. A “pseudo solid-like” behavior was clearly
seen at silicate loading greater than 3 wt% suggesting that
domains were formed wherein some long-range order was
preserved and the silicate layers were oriented in some
direction. Furthermore, the non-terminal effect was more
pronounced with increasing clay content. These long-range
order and domain structures were hence likely to become
better defined when the mean distance between the
layers becomes less than the lateral dimensions of the sil-
icate layers and thus forcing some preferential orientation
between the layers.

Dubois’ group (Mons, Belgium) has worked on PCL
nanocomposites. They were interested in the in-situ ROP
of �-CL and in the melt intercalation route. They demon-
strated that the formation of PCL-based nanocomposites
depends not only on the ammonium cation and related
functionality, but also on the elaboration route. Con-
nanocomposites were prepared by in-situ ROP accord-
ing to a “coordination-insertion” mechanism [135–141]
(see Fig. 13), as for PLA [108,113]. This reaction consists
in swelling the OMMT organomodified by alkylammo-
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Fig. 13. Scheme of the �-CL in-situ ring-opening polymerization from the C30B organoclay according to the “coordination-insertion” mechanism. Repro-
duced with permission from Lepoittevin et al. [137] copyright (2002) of the American Chemical Society.

Fig. 14. log D0 (D0 in cm2/s) to water vapor, as function of clay content for the PCL microcomposite (M), the exfoliated PCL nanocomposites (E) and the
3 wt% intercalated PCL nanocomposites (I). Reproduced with permission from Gorrasi et al. [142] copyright (2003) of Elsevier Science Ltd.
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nium bearing hydroxyl groups (MMT-N+(Me)2(EtOH)(C16)
or MMT-N+(Me)(EtOH)2(tallow)) and then adding an initia-
tor/activator such as tin(II) octoate (Sn(Oct)2), dibutyltin-
(IV) dimethoxide (Bu2Sn(OMe)2) or triethylaluminium
(AlEt3). The ammonium is thus activated and can yield
surface grafted PCL chains. Every hydroxyl function gen-
erates a PCL chain. Consequently, the higher the hydroxyl
groups content, the lower the PCL average molar masses.
It is worth noting that, in the presence of tin(IV) catalysts,
since they are more efficient towards �-CL ROP, the prepara-
tion took place in milder conditions compared to Sn(Oct)2
[135]. Moreover, in all cases, the nanocomposites exhibited
a continuous decrease of molar masses with clay con-
centration. This can be explained by OH functions, which
can act both as co-initiator and chain transfer agent. This
in-situ polymerization process led to well-exfoliated PCL-
based nanocomposites with 3 wt% of clay while with higher
content (10 wt%) partially exfoliated/partially intercalated
structures were observed. Further morphological obser-
vations were carried out by scanning probe microscopy
(SPM), while surface analysis was examined by X-ray
photoelectron spectroscopy (XPS) and Fourier transform
infrared spectroscopy in the reflection absorption mode

(FT-IRAS) [141]. Taking into account the structure, the
thermal stability increased and the water permeability
decreased (see Fig. 14) since the well-dispersed fillers with
high aspect ratio acted as barriers to oxygen and volatile
degradation products [135,142]. In contrast, nanocompos-

Fig. 15. Polymer surface grafting onto individual clay platelets and concomitant
copyright (2004) of the American Chemical Society.
Science 34 (2009) 125–155

ites filled with non-hydroxyl functional clays exhibited only
intercalated structures [136,137,140].

Since �-CL polymerization is initiated by OH groups,
polymer chains lengths can be predetermined and con-
trolled by the clay loading. Thus, the clay content is
limited to a certain range of concentrations to prevent
from obtaining too short PCL chain lengths. Neverthe-
less, this can be modulated by tuning the number of OH
groups, e.g., by modifying the clay surface by a mixture
of non-functional alkylammonium and monohydroxylated
ammonium cations [138,139,143]. Thus, using this inter-
esting in-situ intercalative process, the inorganic content,
the quantitative surface grafting, the number of polyester
chains per clay surface as well as the polymer chain
length and molecular weight distribution are well con-
trolled [139]. Viville et al. [143] also studied the morphology
of PCL grafted chains on the silicate layer surface depending
on the OH content. They showed that the grafting density
drastically increased as the proportion of OH-substituted
alkylammonium cations used to organomodify the clay
increased. Since separate polymer islands were formed in
the low OH systems (see Fig. 15), they assumed that a phase
separation process occurred between the ammonium ions

induced by the polymerization reaction. Homogeneous
coverage and subsequent thickening only take place from
50% OH content. When this situation was achieved, adja-
cent platelets become fully independent of each other,
which greatly favored exfoliation.

phase separation. Reproduced with permission from Viville et al. [143]
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organic modifier as well as the aspect ratio (see Table 6).
ig. 16. Dependence of Young’s modulus on the clay content for PCL modi-
ed by CNa, C25A and C30B. Reproduced with permission from Lepoittevin
t al. [145] copyright (2002) of Elsevier Science Ltd.

The “coordination-insertion” mechanism, i.e., in-situ
ntercalation catalyzed by initiators, was compared to
he thermally activated in-situ intercalation with various
MMT [140]. Messersmith and Giannelis’ results [127] stat-

ng that large catalytic surface of montmorillonite can
ontribute to polymerization of �-CL were confirmed.
xchanged cations bearing protic functions like NH3

+, OH,
OOH significantly favored the polymerization and lead to
imilar structures to those obtained by the “coordination-
nsertion” mechanism. Nevertheless, the PCL molecular

eights remained low and the polydispersity index at high
onversion reached values higher than 2, confirming that
he in-situ intercalation in presence of OH groups and ini-
iators provides better polymerization control.

Eventually, the melt intercalation route led to inter-
alated or intercalated/exfoliated structures when
CL was associated with OMMT bearing quaternized
ctadecylamine (MMT-NH3

+(C18)), di(hydrogenated tal-
ow) dimethyl ammonium (MMT-N+(Me)2(tallow)2),
imethyl 2-ethylhexyl(hydrogenated tallow) (C25A),
r methyl bis(2-hydroxyethyl) (hydrogenated tallow)
C30B) [135,144,145]. On the contrary, MMT-Na and

MT organomodified with ammonium bearing 12-
minododecanoic acid (MMT-NH3

+(C11COOH)) formed
icrocomposites since no change of interlayer gap was

bserved whereas the in-situ intercalation showed exfo-
iation in the case of MMT-NH3

+(C11COOH) [127,135,140].
herefore, contrary to the in-situ intercalative process,
omplete exfoliation was not reached by the melt inter-
alation route, whatever the OMMT considered (see
able 6). However, the tensile and thermal properties
ere improved. For instance, the modulus increased

rom 210 MPa for unfilled PCL to 280 MPa or 400 MPa

ith 3 wt% of MMT-NH3

+(C18), MMT-N+(Me)2(tallow)2
r C25A, and 10 wt% of C30B, respectively, attesting for
n almost two-fold increase of the PCL rigidity in the
atter case (see Fig. 16) [144,145]. Chen and Evans [146]
Science 34 (2009) 125–155 143

demonstrated on similar systems that the elastic modulus
trends with clay volume fraction may be interpreted using
well-established theory for conventional composites,
namely the Hashin–Shtrikman bounds. At OMMT content
higher than 5 wt%, the elongation at break dropped off due
to clay aggregation [144,145].

Dynamic mechanical measurements also revealed that
with 1 wt% clay, nanocomposites materials exhibited a
pseudo solid-like behavior [145]. However, Kwak and Oh
[147] demonstrated that PCL chains can diffuse further
into the silicate gallery due to additionally subjecting the
samples to heat during the analyses and finally, extended
exfoliation are achieved. The 50% weight loss temperature
is shifted by 60 ◦C towards higher temperature on the addi-
tion of 1 wt% of clay, whereas the temperature shift is only
30 ◦C at 10 wt%. Thus, PCL nanocomposites combine high
stiffness, good ductility and improved thermal stability at
low clay content (<5 wt%).

Only Di et al. [148] reached exfoliated state in the case
of PCL/C30B systems prepared by direct melt intercala-
tion with 2–5 wt% of clay. Obviously, they reported great
enhancements of mechanical and thermal properties as
well as a pseudo solid-like rheological behavior caused by
the strong interactions between the organoclay layers and
PCL, and by the good dispersion of exfoliated organoclay
platelets. Moreover, the isothermal crystallization behavior
[149] revealed that the well-dispersed organoclay platelets
act as nucleating agents, but also affected the crystals qual-
ity by the restricted chains mobility.

Since the direct melt intercalation suffers a lack
of efficiency towards clay dispersion, an elaboration
route combining in-situ �-CL polymerization and mate-
rial redispersion by melt intercalation was settled. This
masterbatch process [150], or equivalent [151], yielded
intercalated/exfoliated structures that are rather difficult
to reach by direct melt blending. This process also turned
out to be a good way to compatibilize and thus to rein-
force other thermoplastics like conventional polymers
(SAN [131,152], PVC [150], PC [153], PP, PE, PS and ABS
[154],) or biopolymers (PBS, PBAT [155]). Conversely, PCL
was blended by a reactive process with thermoplastic-clay
systems [156,157] to improve the properties of the final
material.

A remarkable study on the nanocomposite prepara-
tion of oligo-PCL/OMMT by simply mechanical mixing
was reported by Maiti [158]. Different types of clays
having different aspect ratios (hectorite, mica, smectite)
organomodified with various phosphonium cations were
selected to investigate their influence on miscibility
with oligo-PCL (o-PCL). The alkyl phosphonium cations
were n-octyltri-n-butylphosphonium (P+(But)3(C8)),
n-dodecyltri-n-butylphosphonium ((P+(But)3(C12)), n-
hexadecyltri-n-butylphosphonium (P+(But)3(C16)) and
methyltriphenylphosphonium (P+(Me)(�)3). Immiscible,
intercalated, and exfoliated nanostructures were observed
in o-PCL nanocomposites, depending on the nature of the
Fig. 17 sums up their interpretation according to experi-
mental results but also to thermodynamic considerations.
According to Maiti, when o-PCL is immiscible with a
certain organic modifier, it cannot intercalate into the
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ending
erican C
Fig. 17. Schematic representation of PCL oligomers nanocomposites dep
Reproduced with permission from Maiti [158] copyright (2003) of the Am

silicate gallery, while, for a short chain miscible modifier,
o-PCL intercalates and, in the case of a long chain modifier,
the modifier orients itself away from the silicate surface
and is solubilized into the o-PCL phase, resulting in the
collapse of the silicate gallery (see Fig. 17a).

Considering the effect of the aspect ratio with a given
organomodifier, when the aspect ratio is low, combined
with a high CEC, the organic modifier is favored to dif-
fuse out the gallery and to interact with o-PCL leading to
exfoliated structure. For higher aspect ratio, i.e., for larger
lateral dimensions of the silicate layers, the organic mod-
ifier hardly access outside the gallery, and thus, the o-PCL
must intercalate (see Fig. 17b).

Other works attempted to better understand the mech-
anism of intercalation/exfoliation process either by melt
intercalation or in-situ �-CL polymerization by molecular
dynamics simulations [159–161]. Very recently, solid-state
NMR has emerged as a tool to characterize clay/polymer
nanocomposites in complement to data from classical
methods (XRD, TEM) since it is a powerful technique
for probing the molecular structure, conformation, and
dynamics of species at interfaces. Therefore, solid-state
NMR was used in PCL-based nanocomposites to investi-
gate how the surfactant conformation and mobility are
changed by the polymer adsorption and how the polymer
motion is perturbed after intercalation in the nanocom-
posites [159,162,163]. Finally, Calberg et al. [159] validated
this characterization method to determine the structure
of PCL-based nanocomposites since they demonstrated
that there was a correlation between variations in the
proton relaxation times T1(H) and the quality of clay
dispersion.

To conclude, PCL-based nanocomposites have been
widely studied and several well-controlled routes have
been settled to reach exfoliated state. To be precise, the

solvent intercalation route is not one of those since no satis-
factory results were obtained regarding the structure [164]
(see Table 6). Excepting this, elaboration of such materi-
als turned out to be very useful not only for PCL properties
enhancement, but also for other thermoplastics ones.
(a) on the nature of the organomodifier and (b) on the clay aspect ratio.
hemical Society.

4.3.2. Biodegradable aliphatic copolyester-based
nano-biocomposites
4.3.2.1. Polybutylene succinate. PBS presents many inter-
esting properties, including biodegradability, melt process-
ability, and thermal and chemical resistance, but low gas
barrier properties and softness still limit its use. Therefore,
particular attention has been paid to the elaboration of PBS-
based nano-biocomposites (see Table 7) to overcome these
issues and to improve the material properties.

Sinha Ray et al. [165] first reported structure and
properties of PBS/clay nanocomposites (PBSCN) obtained
by melt intercalation. Other studies [166–168] investi-
gated the effect of the organoclay type on the composites
structures and properties. High molecular weight PBS
(HMWPBS) were synthesized by a coupling reaction
with a chain extender, namely the hexamethylene diiso-
cyanate (OCN-C6H12-NCO), resulting in urethane moities
(see Fig. 18) and terminal hydroxyl groups. Different
OMMT were tested such as octadecylammonium and
octadecyltrimethylammonium modified montmorillonite
(MMT-NH3

+(C18) and MMT-N+(Me)3(C18), respectively)
and hexadecyltributylphosphonium modified saponite
(SAP-P+(But)3(C16)). Intercalated and extended flocculated
nanocomposites were obtained with the PBS/MMT-
NH3

+(C18) systems. For MMT-N+(Me)3(C18)-based materi-
als, nanocomposites showed an intercalated and floccu-
lated structure, whereas the coexistence of the stacked
intercalated and delaminated structure was observed in
PBS/SAP-P+(But)3(C16) nanocomposite. According to the
authors, the flocculation occurred due to urethane moieties
of PBS that make hydrogen bonds with the silicate hydroxyl
edge groups leading to very strong interactions between
matrix and silicate layers [167,168] (see Fig. 19).

These structures were confirmed, by mechanical, rheo-
logical and barrier properties. For instance, G′ determined

by DMA presented significant enhancements with increas-
ing clay loading, particularly with MMT-NH3

+(C18) and
MMT-N+(Me)3(C18) since increments reached more than
200% [166]. Furthermore, since they noticed that prop-
erties of PBS/MMT-NH3

+(C18) and PBS/MMT-N+(Me)3(C18)
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Table 7
Structure of the studied PBS/clay nano-biocomposites.

Process System Structure Reference

Solvent intercalation MMT-(C5H5N+)(C16) Intercalated [172]
MMT-N+(Me)3(C16) Intercalated [172]

Melt intercalation MMT-NH3
+(C18) Intercalated and flocculated [165]

Highly intercalated and homogeneous dispersion [169]
MMT-NH3

+(C18)/HMWPBS Intercalated and flocculated [167]

MMT-NH3
+(C12) Highly intercalated and homogeneous dispersion [169]

MMT-NH3
+(C11COOH) Microcomposite [169]

MMT-NH+(EtOH)2(C12) Highly intercalated and homogeneous dispersion [169]
MMT-NH+(EtOH)2(CH2CHOHCH3) Microcomposite [169]

MMT-N+(Me)2(C8)(tallow) Intercalated [170,171]
GPS-g-MMT-N+(Me)2(C8)(tallow) Intercalated/exfoliated [170,171]
MMT-N+(Me)(EtOH)2(tallow) Intercalated and flocculated [155]

MMT-N+(Me)(EtOH)2(tallow)/dibutyltin dilaurate Intercalated/exfoliated
Or titanium butoxide Intercalated
Or antimony oxide Intercalated

SAP-P+(But)3(C16)/HMWPBS Stacked intercalated and delaminated [167]

Masterbatch MMT-NH3
+(C18)/HMWPBS + HMWPBS Intercalated and flocculated [166]

MMT-N+(Me)3(C18)/HMWPBS + HMWPBS Intercalated and flocculated [166,168]
MMT-N+(Me)(EtOH)2(tallow)-g-PCL/dibutyltin
dilaurate or titanium butoxide or antimony oxide + PBS

Intercalated [155]

SAP-P+(But)3(C16)/HMWPBS + HMWPBS Stacked intercalated and delaminated [166]

F ocyanat
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ig. 18. HMWPBS obtained by chain extension using hexamethylene diis
f the American Chemical Society.

uddenly increased beyond a certain clay content, they con-

luded to the existence of a percolation threshold value
3.3 wt% for MMT-NH3

+(C18)) [167], and less than 3.6 wt%
or MMT-N+(Me)3(C18) [168]). Above this clay content, dis-
ersed and flocculated silicate layers form a network and

ig. 19. Formation of hydrogen bonds between PBS and clay, leading to flocculatio
ay et al. [167] copyright (2003) of the American Chemical Society.
e. Redrawn with permission from Sinha Ray et al. [167] copyright (2003)

contribute to reinforce considerably the matrix. This struc-

ture affected the tensile properties and the rheological
behavior of the PBS. Indeed, with the increasing clay con-
tent, it was shown that the tensile modulus increased while
the tensile strength decreased [168]. Besides, rheologi-

n of the dispersed silicate layers. Reproduced with permission from Sinha
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cal measurements revealed pseudo solid-like behavior of
PBSCNs at high clay content, suggesting a prevented relax-
ation due to the high geometric constraints or physical
jamming of the stacked silicate layers. This PBSCN structure
was also confirmed by the lower slope values and the higher
absolute values of the dynamic moduli [167]. Barrier prop-
erties were also consistent with flocculated and percolated
structures since the O2 permeability decreased of 52% with
3.6 wt% of MMT-NH3

+(C18) [166], i.e., above the percolation
threshold. Eventually, on the basis of the biodegradation
tests realized in compost and SEC data, authors concluded
that the PBS fragmentation was significantly improved gen-
erating higher surface area for further micro-organisms
attack [167].

Someya et al. [169] tested different OMMT to determine
the effect of variations in hydrophobicity and polar/steric
interactions. Five OMMT organomodified with primary
amines (dodecylamine-MMT-NH3

+(C12)-, octadecylamine-
MMT-NH3

+(C18)-, 12-aminolauric acid-MMT-NH3
+(C11

COOH)) or tertiary amines (N-lauryldiethanolamine-MMT-
NH+(EtOH)2(C12)-, and 1-[N,N-bis(2-hydroxyethyl)amino]-
2-propanol-MMT-NH+(EtOH)2(CH2CHOHCH3)) were
prepared and added to PBS by melt intercalation at
contents from 1 to 10 wt%, and then the samples were
injection molded. Highly intercalated structures and
homogeneous clay dispersion were observed with MMT-
NH3

+(C12), MMT-NH3
+(C18), and MMT-NH+(EtOH)2(C12).

On the contrary, some clusters or agglomerated particles
were observed with MMT-NH3

+(C11COOH), MMT-
NH+(EtOH)2(CH2CHOHCH3), and unmodified MMT.
The authors showed that the d-spacing enlargement
determined by XRD was well correlated with the clay
dispersion improvement and with the increase of tensile
and flexural moduli and the decrease of tensile strength.
Dynamic viscoelastic measurements were also consistent
with structural results since PBS/MMT-NH+(EtOH)2(C12)
nanocomposite had higher storage modulus and glass-
transition temperature. This indicated that intercalation
of PBS within the OMMT layers affected the molecular
motion.

Another group achieved to improve PBS proper-
ties using compatibilization approach. Chen et al. [170]
proposed to graft epoxy groups onto C25A with (gly-
cidoxypropyl)trimethoxy silane (GPS) leading to twice-
functionalized organoclay (TFC, i.e., GPS-g-C25A), as
already done for PLA [102]. Tethering PBS molecules to the
epoxy groups on the surface of TFC was attempted through
melt compounding. Higher exfoliation degrees and better
properties were reached in PBS/TFC nanocomposites com-
pared to those of PBS/C25A due to the increased PBS–TFC
interfacial interactions. XRD results showed that d-spacing
values were comparable when 10 wt% of C25A or TFC were
added, but the difference of peak intensity attested that par-
tial disruption of parallel stacking of TFC had occurred. The
intercalation/exfoliation coexistence in the PBS/TFC sys-
tems has also been demonstrated by TEM images, whereas

intercalated clay tactoids have been observed with C25A.
The mechanical properties are increased up to 10 wt% of
filler. Dynamic mechanical analyses also showed that E′

was higher than that for neat PBS and increases with the
clay content. Furthermore, a weak shoulder appearing at
Science 34 (2009) 125–155

∼50 ◦C in the tan ı profile was attributed to the relaxation of
PBS segments confined within the clay layers, in agreement
with the structure deduced from morphological charac-
terizations. Eventually, the study of the non-isothermal
crystallization behavior showed out that well-dispersed
TFC layers enhanced the nucleation and crystallization rate
of the PBS matrix [171].

C30B was also used for the preparation of 3 wt%
filled PBS-based nanocomposites by melt intercalation
[155]. Since the d-spacing increased, intercalated struc-
ture was obtained resulting in PBS rigidity improvement
(+25% Young’s modulus). Furthermore, authors also tested
metal-based catalysts (dibutyltin dilaurate Sn(Bu)2(Lau)2,
titanium(IV) butoxide Ti(OBu)4 and antimony(III) oxide
Sb2O3) to promote transesterification between the ester
moiety of the PBS and the organomodifier OH groups to
graft PBS chains onto the organoclay surface. Sn(Bu)2(Lau)2
appeared to be the most appropriate catalyst since XRD and
TEM clearly showed higher levels of clay exfoliation. Extrac-
tion process followed by TGA showed that grafting reaction
had occurred. Consequently, material stiffness improved
considerably by a Young’s modulus increase of +60% com-
pared to neat PBS.

Shih et al. [172] investigated different organoclays func-
tionalized by ammonium salts such as cetylpyridinium
chloride ((C5H5N+)(C16)) and cetyltrimethylammonium
bromide (N+(Me)3(C16)), which were mixed with PBS by
solvent intercalation at 1, 3 and 5 wt%. The enhancement
of E′ and E′′ showed that the stiffness and toughness of
PBS were simultaneously improved (see Fig. 20). Weak
shoulders on tan ı peaks at 5 wt% of clay were observed
corresponding to the relaxation of PBS segments con-
fined within the clay platelets, suggesting an intercalated
structure and inhomogeneous dispersion due to clay aggre-
gation, as mentioned by Chen et al. [170]. However,
PBS/MMT-N+(Me)3(C16) nanocomposites exhibited higher
storage and loss moduli than PBS/MMT-(C5H5N+)(C16) sys-
tems. Thus, aliphatic chain in N+(Me)3(C16), compared
to the aromatic group in cetylpyridinium, may interact
more favorably with the aliphatic PBS because of their
similar structures. Morphological characterizations were
consistent with mechanical properties namely intercalated
structures were obtained and better extent of d-spacing
was observed with MMT-N+(Me)3(C16). Furthermore, TEM
confirmed the coexistence of intercalated and exfoliated
structures with 3 wt% of MMT-N+(Me)3(C16) nanocompos-
ite, whereas aggregation was obtained with 5 wt% OMMT.

4.3.2.2. Polybutylene succinate-co-adipate. Sinha Ray et
al. [173–176] also reported PBSA-based nanocomposites
studies. First, they have investigated various types of organ-
oclays from Southern Clay Products (C15A, C93A and C30B)
which present different polarity [174] (see Table 8). XRD
and TEM have shown that the polymer–clay compatibil-
ity plays a key role in attaining high d-spacing and high
quality of dispersion. Finally, C30B appeared the most suit-

able nanofiller for PBSA-based nanocomposites prepared
by melt intercalation. Highly disordered and exfoliated
platelets coexist with a few stacked intercalated layers due
to interactions between C O groups (PBSA backbone) and
OH functions (C30B). Nevertheless, the dispersion quality
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Fig. 20. Temperature dependence of the storage and loss moduli for neat PBS (a) and PBS composites (b–d) with respectively 1, 3 and 5 wt% of MMT-
(C5H5N+)(C16). Reproduced with permission from Shih et al. [172] copyright (2007) of Springer Science.

Table 8
Structure of the studied PBSA/clay nano-biocomposites.

Process System Structure Reference

Solvent intercalation MMT-N+(Me)2(C8)(tallow)/chloroform Intercalated [177,178]
MMT-N+(Me)2(C8)(tallow)/poly(epichlorohydrin)/methylene chloride Intercalated [180,181]

Melt intercalation MMT-N+(Me)(EtOH)2(tallow) Exfoliated (high clay content) [64]
Intercalated (low clay content) [173,174]
Intercalated/exfoliated

MMT-N+(Me)2(C8)(tallow) Intercalated [179]
MMT-NH+(Me)(tallow)2 Intercalated [174]
MMT-N+(Me)2(C8)(tallow) Intercalated [174]

GPS-g-MMT-N+(Me)2(C8)(tallow) Intercalated [182]
MPS-g-MMT-N+(Me)2(C8)(tallow)

SFM-N+(Me)(EtOH)2(coco alkyl) Intercalated/exfoliated [176,183]
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was lowered with increasing clay content [173]. Conse-
quently, thermal and mechanical properties were affected
by the clay induced structure according to the nature and
content of organoclay. First, although the PBSA crystal
structure was not altered by the incorporation of clay, the
crystallinity systematically decreased with the increasing
dispersion degree of silicate layers into PBSA matrix. In
the case of strong polymer–clay interactions, the mobility
and flexibility of the polymer chains are hindered, limiting
their ability to fold and participate to the crystallization
growth front. A significant increase in E′ was observed due
to the intercalation of chains within the silicate layers and
this increase was more important with higher C30B con-
tent [173]. Furthermore, it was also shown a substantial
increase for E′′ suggesting the presence of strong internal
friction between homogeneously dispersed intercalated
silicate particles. Tensile properties were also examined:
the tensile modulus and elongation at break increased in
presence of organoclay, but the improvement was strongly
dependent on the degree of dispersion and on the C30B
content. These improvements were only due to the struc-
ture formation since crystallinity decrease on addition of
clays. The rheological properties also pointed out a grad-
ual change of behavior from liquid-like to solid-like with
the increasing polymer-OMMT affinity. These results were
mainly attributed to the extent of dispersion and distri-
bution of the clay lamellae that form, beyond a threshold
concentration (3 wt% in the case of C30B), three dimen-
sional percolating networks rendering the system highly
elastic. Eventually, better thermal stability was obtained
for PBSA/C30B, but this enhancement was limited to low
clay content since a decrease was observed above 9 wt%,
probably due to the excess of organic modifier containing
OH groups on the clay surface, which undergoes Hofmann
degradation at around 200 ◦C.

Lee et al. [64] also tested C30B dispersion in Skygreen®

at various clay contents ranging from 1 to 30 wt% by
melt intercalation. The highest content values are unusual
for nanocomposites since high content promotes aggre-
gation. Nevertheless, in this case, exfoliated states were
achieved above 15 wt% whereas intercalation was obtained
with lower clay contents. The authors attributed this phe-
nomenon to the combination of high shear rate reached
during melt intercalation and the polymer-OMMT affinity.
As seen before [96,97,121], strong interactions or mis-
cibility exist between the polymer and the C30B, due
to strong hydrogen bonding between the carboxyl group
from the biodegradable polyester and the OH group from
C30B. These results were confirmed by TEM since the
nanocomposites showed ordered intercalated structures
with expanded layer gap and good dispersion at 10 wt%.
Tensile properties enhancements were consistent with
the structural results. The nanocomposite biodegradability
decreased with increasing organoclay amount. This behav-
ior was explained by the difficulty for micro-organisms to
reach the bulk matrix due to the presence of dispersed clay

layers with large aspect ratio that make the diffusion path
more tortuous.

C25A was also tested as a nanofiller to improve
Skygreen® properties [177–180]. Regardless of the elab-
oration route, solvent [177,178] or melt intercalation
Science 34 (2009) 125–155

[179], or the organoclay content studied (<15 wt%), inter-
calated structures were observed. Even for Skygreen®

blended with polyepichlorohydrin (PECH), no larger d-
spacing was obtained [180,181], although the interlayer
gap of PECH/OMMT nanocomposites can attain high values
(>55 Å). Moreover, TEM observations but also the decrease
and the broadening of d001 peak intensity with the decreas-
ing clay content supposed that structures were much more
inhomogeneous at low clay content showing exfoliated
platelets at 3 wt% of C25A [179]. Rheological measure-
ments showed that shear–thinning behavior and solid-like
properties at low frequency region were enhanced by
the addition of organoclay. These characterization tech-
niques also led to definition of a critical volume fraction.
Beyond that threshold, the tactoids and individual layers
are prevented from relaxing completely when subjected
to shear, due to physical jamming or percolation, leading
to the solid-like behavior observed in both intercalated
and exfoliated nanocomposites. Creep and recovery tests
were found consistent with these conclusions. Although
the tensile modulus dramatically increases with the clay
content, the elongation at break decreases and the onset
temperature of thermal decomposition drop beyond a cer-
tain clay loading [178]. The collapse of mechanical and
thermal properties is attributed to the OMMT aggregation.
However, regarding the thermal stability in the presence
of C25A, with or without PECH, the decomposition phe-
nomenon in terms of onset temperature and degradation
rate is not fully understood. In this case, the decomposi-
tion rate increased with the increasing clay content, while
the onset degradation temperature was improved [178].
Authors then supposed that, in a first step, the clay acts
as a heat barrier and leads to the char formation after ther-
mal decomposition. However, in a second step, the tactoids
domain could hold accumulated heat, which could be a
source, in conjunction with the heat flow supplied by the
external heat source, to accelerate the decomposition pro-
cess.

C25A was further modified by Chen and Yoon [182],
based on the protocol established for PLLA-based [102]
and PBS-based nanocomposites [170]. The C25A was func-
tionalized by grafting epoxy group at the surface using
silane coupling agent. In this case, they tested (gly-
cidyloxypropyl)trimethoxy silane (GPS) and (methacryloy-
loxypropyl)trimethoxy silane (MPS) as coupling agents.
According to the authors, the silane compounds are located
mainly on the edge of the silicate layers where the con-
centration of the silanol groups is higher than on the
plain surface. The preparation of the resulting twice-
functionalized clay (TFC, i.e., GPS-g-C25A or MPS-g-C25A)
is shown in Figs. 6 and 7. From XRD and TEM, it was
concluded that both the reaction between the PBSA end-
groups and the GPS-g-C25A epoxy groups, and the polar
interaction between the ester groups in MPS-g-C25A and
PBSA, should have enhanced the compatibility. A larger
increase of d-spacing and better clay layers dispersion were

observed with 2 wt% of GPS-g-C25A or MPS-g-C25A, com-
pared to same C25A loading. The macroscopic properties
were improved too. The storage modulus of PBSA/TFC was
much higher than that of PBSA/C25A, especially in the low-
frequency region, and non-terminal behavior was observed
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Fig. 21. Polarized optical microscopy images of PBSA and its nanocompos-
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te with 6 wt% of SFM-N+(Me)(EtOH)2(coco alkyl) recorded at 70 ◦C during
on-isothermal crystallization from their melts (150 ◦C) at a cooling rate of
0 ◦C min−1. Reproduced with permission from Sinha Ray and Bousmina
183] copyright (2006) of Wiley-VCH.

t the terminal zone as a result of the enhanced PBSA–TFC
nteractions. Tensile modulus and strength at break were
reatly improved with GPS-g-C25A and MPS-g-C25A due
o the increased interfacial interaction.

A study of PBSA/synthetic fluorinated mica nanocom-
osites was carried out by Sinha Ray et al. [176,183].
rganomodified SFM (OSFM, Somasif from CO-OP Chem-

cals Ltd.) was melt mixed with Bionolle®. The resulting
anocomposites showed that some intercalated stacked
nd disordered and/or exfoliated silicate layers coexist.
he thermo-mechanical properties were improved over the
emperature range investigated, and particularly above the
g since E′ increased by more than 100% compared to neat
BSA. Considering the crystallization behavior [183], the
on-isothermal crystallization kinetics of the nanocompos-

te and its higher activation energy calculated from model
ere in agreement with prior results [173]. Namely, the

ncorporation of OSFM slows the nucleation mechanism

nd PBSA crystal growth as a result of the full dispersion
f silicate layers into the matrix, which act as obstacles
see Fig. 21). The homogeneous dispersion was shown
o increase the cold crystallization temperature of the
anocomposite. Three prominent melting endotherms of
Science 34 (2009) 125–155 149

PBSA resulting from the melting–recrystallization process
were shifted towards lower temperature and decreased
in intensity due to the clay dispersion that restricted the
motions of polymer chains. Besides, the thermal stabil-
ity of PBSA was moderately increased in the presence of
OSFM under both nitrogen and air atmospheres overall
thermal degradation temperature range. In the early stage
of the decomposition, although the surfactant, and thus the
nanocomposite, seemed to be more prone to degrade in
thermo-oxidative conditions than pyrolytic conditions, the
main degradation temperature and char formation were
increased in air compared to nitrogen. According to authors,
the different types of char formation mechanisms under
oxidative environment actually slow the oxygen diffusion,
thus hindering the oxidation procedure under thermo-
oxidative conditions. Consequently, the flame retardance
property of the nanocomposite was improved. To conclude,
the activation energy of the nanocomposite thermal degra-
dation calculated from the Kissinger model was slightly
higher than that of neat PBSA, in agreement with previ-
ous results [174,178]. Classical and original processes were
investigated as means to reach an exfoliated state and
improved aliphatic copolyester-based nano-biocomposites
properties, with more-or-less success (see Table 8). Fur-
thermore, whatever the systems considered, the properties
were well correlated to the materials structures.

4.3.3. Aromatic copolyester-based nano-biocomposites
PBAT is flexible and has a higher elongation at break

than most biodegradable polyesters, such as PLA and PBS,
and therefore is more suitable for food packaging and agri-
cultural films. Only few articles report studies of PBAT/clay
nano-biocomposites (see Table 9).

Recently, Someya et al. [184] have prepared OMMT
which have been proved to be the more efficient with
PBS [169], i.e., MMT-NH3

+(C12), MMT-NH3
+(C18), MMT-

NH+(EtOH)2(C12). They investigated the morphology and
the properties of PBAT/clay nanocomposites prepared
by melt intercalation containing 3–10 wt% OMMT. Inter-
calation occurred in the case of MMT-NH3

+(C12) and
MMT-NH+(EtOH)2(C12) and exfoliation, in addition to
some intercalation, occurred with MMT-NH3

+(C18), which
was also more finely dispersed in the matrix. Authors
demonstrated that the mechanical properties were related
to the structure as well as the crystallinity of the
nanocomposites, leading globally to higher properties for
PBAT/MMT-NH3

+(C18). Furthermore, they showed that the
clay reinforcing effect is really effective above Tg, because
of restricted polymer chains motions. Biodegradability
was evaluated by the aerobic tests both in the soil and
the aqueous medium containing activated sludge [185].
Compared to neat PBAT, the microcomposite based on
unmodified montmorillonite exhibited a higher weight loss
than PBAT/MMT-NH3

+(C18) nanocomposites.
Chivrac et al. [186,187] have expanded this work, test-

ing various organoclays such as C20A, D43B and N804.

The results relating to the structure and properties were
compared to neat PBAT and the PBAT/MMT-Na, i.e., with
non-modified montmorillonite. They also compared elab-
oration processes, i.e., solvent or melt intercalation. This
study revealed that higher intercalation degrees were
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Table 9
Structure of the studied PBAT/clay nano-biocomposites.

Process System Structure Reference

Solvent intercalation MMT-N+(Me)2(tallow)2/chloroform Intercalated [186]
MMT-N+(Me)2(CH2-�)(tallow)/chloroform

Melt intercalation MMT-NH3
+(C12) Intercalated [184]

MMT-NH3
+(C18) Intercalated/exfoliated [184]

MMT-NH+(EtOH)2(C12) Intercalated [184]
MMT-N+(Me)2(tallow)2 Intercalated [186]
MMT-N+(Me)2(CH2-�)(tallow) Intercalated [186]

CL + PBA
MMT-N+(Me)(EtOH)2(tallow)

Masterbatch MMT-N+(Me)(EtOH)2(tallow)-g-P

obtained by solvent intercalation, C20A and D43B pre-
senting better affinity with PBAT. No impact of the clay
has been noticed on the Tg and Tm, whereas the crys-
tallinity was affected by increasing clay content. Thus,
they investigated the influence of the clay on the PBAT
crystallization [187]. Kinetics models were applied and it
was concluded that addition of a small amount of MMT
enhances the PBAT nucleation mechanism, but also hinders
crystallite growth. These two antagonist phenomena lead
to different crystallization behavior depending on the clay
dispersion. Furthermore, tensile tests have shown that the
stiffness increases continuously with clay content. This was
attributed to the existence of strong interactions between
PBAT and nanofillers, particularly with C20A, since the
crystallinity decreases with increasing clay content. Nev-
ertheless, decreases of the strain at yield and at break
have been observed due to more aggregated structures at
higher clay contents (see Fig. 22). The onset degradation
temperatures have been examined by TGA. The high-
est improvements were observed for nano-biocomposites
filled with 3 wt% of MMT-Na. However, a decrease of the
onset degradation temperatures is observed for higher clay
contents, both with melt and solvent intercalations. This
phenomenon is similar to the one described before by Lim

et al. [178], i.e., clays act as heat barrier and lead to char
formation after thermal decomposition, but unfortunately,
tactoids can accumulate heat which could be used to accel-
erate the decomposition reaction.

Fig. 22. Typical tensile curves obtained for neat PBAT and PBAT nanocom-
posites with 3, 6 and 9 wt% of C20A. Reproduced with permission from
Chivrac et al. [186] copyright (2006) of Springer Science.
Intercalated [155]

T Intercalated [155]

To conclude, a large range of OMMT has been tested,
leading to different PBAT-based nanocomposites struc-
tures. These studies thus highlighted the relationship
between the materials structures and their properties.

4.3.4. Polyesteramide-based nano-biocomposites
Because, the polyesteramide presents high water per-

meability (see Table 1), it appears necessary to improve
this property, particularly if such materials are aimed at
packaging applications.

Krook et al. [188,189] studied the barrier and
mechanical properties of biodegradable melt-mixed
polyesteramide/octadecylamine-treated montmorillonite
(MMT-NH3

+(C18)) containing 5 or 13 wt% of clay processed
in different conditions (temperature, extruder screw
speed). An increase of d-spacing was observed, suggesting
that intercalated structures were reached upon extrusion.
A decrease in XRD peak intensity with increasing screw
speed was observed, which implied that higher shear rates
promoted delamination. TEM observations indicated that
clay stacks were delaminated into smaller aggregates,
containing generally one to three clay sheets. They also
showed the presence of shear-induced voids almost
exclusively located between the clay layers, which was
confirmed by density measurements. These voids limited
the improvement in barrier properties. The oxygen and
water vapor transmission rates decreased with increasing
clay content. According to the authors, the presence of
voids prevents gas diffusion through the film. The low bar-
rier properties improvement was due to the non-uniformly
dispersed clay particles. However, the large improvement
in stiffness and strength with filler content indicated that
the mechanical properties were unaffected by the voids.

Authors have also highlighted that the void content
was reduced by compression molding after extrusion. This
treatment led to higher crystallinity. This behavior induces
lower gas transmission rates and higher mechanical prop-
erties (stiffness, yield point at higher stress levels).

These results were completed with a series of injection-
molded samples [189]. XRD and TEM showed that these
samples contained clay stacks. However, TEM also revealed

that clay layers were largely delaminated and oriented
“unidirectionally” over several microns. The transport and
mechanical properties were greatly improved. This was
attributed to a combined effect of a lower void content,
higher crystallinity and greater degree of orientation.
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To conclude, since packaging applications are consid-
red for these materials, characterizations were focused on
echanical and barrier properties. The elaboration process
as optimized to ensure good dispersion of clay and to

void defects. Further properties were tested like optical
ransparency, weld strength, hot tack and transport prop-
rties [188].

. Conclusion

This review presents the state of the art in biopolyester/
lay nano-biocomposites. It has been clearly demonstrated
hat different parameters such as elaboration route, poly-

er/clay affinity and clay content can affect the structure
nd the nano-biocomposites properties. These latter can
onsequently be tuned as desired by controlling the
arameters previously mentioned. It has to be noted
hat the higher reinforcing effect is generally limited to
mall clay amounts (<5 wt%) and is reached for exfoli-
ted states, which are not so trivial to obtain. Indeed,
lthough the more convenient clays to obtain delaminated
latelets into biopolyesters appear to be those matching
he matrix polarity, i.e., clay with organomodifier bear-
ng at least one hydroxyl group, structure also depends on
he elaboration process. Considering PLA and PCL matri-
es, nano-biocomposites with highly exfoliated clays can
e obtained thanks to a well controlled in-situ polymeriza-
ion process, whereas the melt and/or solvent intercalation

ethods lead to more aggregated structures. Thus, for
ome biopolyester matrices like PHA, aliphatic or aromatic
olyesters, exfoliated states were not reported or clearly
emonstrated. Eventually, temperature sensitivity of some
iopolyesters can also prevent good clay delamination and
roperties enhancement.

In the case of good delamination and dispersion of
lays, the mechanical reinforcement, thermal stability,
iodegradability and barrier properties were generally

mproved. Rheological measurements also revealed that
ano-biocomposites could present a more-or-less pro-
ounced pseudo solid-like behavior indicating restricted
otions of the biopolymer chains.
Finally, nano-biocomposites present concurrent

mprovement in various material properties at very low
ller content, using conventional plastic processing in the
laboration. Nano-biocomposites usefulness is no longer
n question, and more and more reports are focussed
n application aspects in the environment, packaging,
griculture devices, biomedical fields, etc. Moreover, since
ndustry is concerned with sustainable developments, the
roduction cost of biopolymers goes on decreasing, which
ill allow strong developments of biopolymers-based
aterials, such as the nano-biocomposites. Therefore,

hese materials will be technically and financially compet-
tive towards synthetic polymer-based nanocomposites,
pening a new dimension for the plastic industry.

Future research will address some actual issues such as

he difficulty to exfoliate the clay with some biopolyester

atrixes (e.g., PHA). Further work should furnish valu-
ble insight into new methods of nano-biocomposites
esigned to establish new approaches to tailor novel nano-
rchitectures.
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a b s t r a c t

As one of the major techniques developed to achieve surface modification of polymeric
materials, UV-induced surface graft polymerization has been widely applied as a simple,
useful and versatile approach to improve the surface properties of polymers. This review
surveys the recent advances in UV light induced surface graft polymerizations, predomi-
nantly focusing on: (1) various initiating methods, controlled/living grafting, self-initiated
grafting (grafting without the addition of photoinitiators), graft polymerizations with
monomer pairs able to form charge transfer (CT) complexes, grafting in liquid, vapor and
bulk phase, and the substrates used for grafting; (2) the topography of grafted surface
Graft polymerization layers, including granular structure, crosslinked structure, and well-defined structure; and

Modification
Functionalization

(3) the application of techniques to prepare functionalized polymer surfaces with designed
performances, e.g., to obtain polymer materials suitable for biomedical applications,
membranes or microfluidics.

© 2008 Elsevier Ltd. All rights reserved.
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. Introduction

The surface of a solid is important to the material perfor-
ance in at least two respects: first, the microstructure and

roperties of surfaces are usually different from those in the
ulk; second, among all parts of a material, the outmost
urface is most prone to both physical and chemical inter-
ctions with its environment. To achieve materials with
esired surface properties for specific applications, chem-

cally tailoring the surface of solids has many advantages,
ncluding (1) improvement of the surface properties of a

aterial without affecting its bulk properties; (2) elimina-
ion of the need to redesign the bulk material to achieve a
arget surface performance; and (3) reduction in cost since
ll necessary chemistry is confined to the surface.

Most polymeric materials have pristine surfaces with
ow surface energies, and are hydrophobic rather than
ydrophilic. This situation leads to two major problems:
he first is that the hydrophobic surfaces are difficult to
ond with polar surfaces, often necessary in fields requiring

igh adhesion, such as coatings, adhesives, paints, print-

ng inks, etc. [1,2]; the second involves some special uses
f polymers such as separation membranes, biosensors
nd microfluidics. When used as biomaterials, hydropho-
bic surfaces generally adsorb proteins, resulting in so-called
“bio-fouling” (deposition and growth of microorganisms
on surfaces) [3–5]. Thus, the control of chemistry at poly-
mer surfaces has become increasingly important for at
least the major number of applications. Among all possi-
ble methods, polymer surface modification has gathered
much attention, and has been used to introduce surface
functionalities onto substrates to enhance numerous prop-
erties such as adhesiveness, wettability, biocompatibility,
antifouling, etc. [6–10].

To date, a number of effective technologies have been
developed to improve the surface properties of polymers,
including either physical deposition of surface-active com-
pounds [11], covalent immobilization of polymer chains
onto a substrate surface by coupling reactions (“grafting-
to” techniques) [12], or planting graft polymer chains on
the substrate surface via plasma or glow discharge [13–16],
corona discharge [17–19], and grafting initiated by �-ray
[20–22] (“grafting-from” techniques). Physical deposition
of surface compounds on the substrates usually results

in noncovalently bound coatings, which are potentially
unstable and readily removed from the substrate. For the
grafting-to methods, limitations such as incomplete sur-
face coverage, difficulty in uniform diffusion of the polymer
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merizat
Scheme 1. Photografting poly

chains to the substrate, and irregular distribution of the tar-
get reactive sites are addressed by the steric repulsion of the
polymer chains [23]. Most of the grafting-from methods
mentioned above would substantially deteriorate the bulk
properties of the materials and/or the modification effects
would remain only for a short period. Compared with
other modification methods, surface graft polymerizations
induced by UV irradiation exhibit some advantages, e.g.,
fast reaction rate, low cost of processing, simple equipment,
easy industrialization, and maybe the most important,
the distribution of grafted chains is limited to a shallow
region near the surface. Surface photografting polymeriza-
tion thus offers the unique ability to tune and manipulate
surface properties without damaging the bulk material. The
pioneering work on photografting polymerization initiated
by UV light was published in the 1950s by Oster and Shibata
[24]. At that time, only a few scientists realized the impor-
tance of it. Until the 1980s, most investigations related
to surface graft polymerizations were focused on initia-
tion by high energy irradiation [25–31]. Investigations into
surface photografting have grown rapidly in the last sev-
eral decades and numerous papers have been published. In

the history of surface photografting, liquid phase systems
[32] and vapor phase systems [33,34] were predominantly
employed in the initial stage; continuous operation system
[35–37] and bulk surface photografting technology [38–40]
based on the earlier work were developed later. The real-

Scheme 2. Excitation of MAH through the energy-transfer proc
ion initiated by BP (Ref. [55]).

ization of control/living grafting was another significant
advance [41].

Despite the rapid progress in this promising research
field, only a few review papers have been published to
address the surface photografting polymerizations and the
related applications. Up to now, the review papers found
include the reviews written by Rånby around 1998 [42–44],
and several others containing only a section involving
photografting [45–48]. In view of the significance of the
technique and the rapidly extending applications, it is
therefore reasonable to summarize the latest advances
in this focal research area. This review is thus expected
to inspire the interests from both material scientists and
industrialists.

This article first reviews the various techniques to
perform surface photografting polymerization from the
perspectives of initiating method (different photoinitia-
tors), effective controlling on the grafting (controlled/living
grafting), self-initiated grafting (without the addition of
photoinitiator), grafting systems containing a charge trans-
fer (CT) complex, grafting in liquid, vapor and bulk,
and grafting on different substrates (Section 2); there-

after the typical topographies of the grafted surfaces
are discussed, including granular, crosslinked and well-
defined structures (Section 3); finally, the performances
and applications of the grafted surfaces are summa-
rized, therein the wettability, adhesivity/autoadhesivity,

ess and the initiation of the grafting process (Ref. [55]).
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bis(diethylamino)-benzophenone was used. When used
as co-photoinitiator with BP, ferric chloride (FeCl3) could
remarkably enhance the grafting due to the “synergistic
effect” between Fe3+ and BP [66]; in other words, the pres-
ence of Fe3+ enhanced the initiating effects of BP.
Scheme 3. Process of regenerating of BP from a ke

nd environment-responsiveness of the grafted surfaces
re primarily introduced, followed by the demonstration of
urface photografting for lamination, for chemical tailored
icrofluidic devices and functional membranes, even for

ome biomedical-related applications (Section 4).

. Surface photografting polymerization

.1. Techniques in initiation

UV light is extensively used to carry out surface graft
olymerization, often in the presence of a photoinitiator
r photosensitizer. Compared with Norrish type I pho-
oinitiators [49–51], Norrish type II photoinitiators were

ore frequently used, predominantly because the latter
esults in higher grafting efficiency, while the former leads
o higher polymerization yield and higher polymeriza-
ion rate, but lower grafting efficiency [52,53]. Among the
xisting Norrish type II photoinitiators, probably the most
idely selected have been benzophenone (BP) [54,55] and

ts derivatives [56–58], shown to effectively initiate or
o-initiate a number of radical-induced surface photograft-
ng polymerizations. In principle, when UV irradiated,
P or BP-based molecules are excited to a singlet state
nd then jump to a triplet state by intersystem cross-
ng (ISC; Scheme 1). Investigations have demonstrated
hat BP and its derivatives in a triplet state undergo
ydrogen-abstracting reactions from substrates, conse-
uently providing surface radicals (R•) capable of initiating
urface graft polymerization. The resulting benzopinacol
adicals (BP–OH•) are relatively less reactive and not prone
o free radical polymerization, but tend to participate in
ermination by coupling reaction.

Deng and Yang [58] compared the initiating efficiency
f BP and several other frequently used photoinitiators,
ncluding isopropylthioxanthone (ITX), xanthone (XAN),

nthraquinone (AQ), benzoyl peroxide (BPO), 2,2′-azo-bis-
sobutyronitrile (AIBN), etc. When vinyl acetate (VAC) was
sed as the monomer, the graft polymerization with BP
s photoinitiator showed the highest grafting efficiency,
hereas AQ, BPO and AIBN could not initiate the graft
al through electron and proton transfer (Ref. [55]).

polymerization of VAC. In addition to BP, Geuskens et al.
[59] used anthraquinone-2-sulfonate sodium (AQS) and
(4-benzoyl benzyl) trimethylammonium chloride (BTC) as
photoinitiator to accomplish surface graft polymerization
of acrylamide in aqueous solution. They first adsorbed the
photoinitiator on the surface of substrate, and then irra-
diated the substrate with UV light. With this method, the
homopolymer of acrylamide as a by-product could not be
avoided. In comparison, AQS was more suited because it
has a higher adsorption coefficient. Hong and coworkers
investigated the performance of a blend of photoinitia-
tors including BP and ITX [60] and found that the addition
of a small amount of ITX markedly enhanced both graft
yield and surface polarity of the substrate, which should
be ascribed to the so-called “photosensitization effect”
[61–64] in which a reactant, e.g., BP in this case, unable
to absorb UV light in appreciable quantities is activated by
a different substance. In this case, ITX acting as a photo-
sensitizer absorbs the light and then carries the resulting
energy to BP molecules. In more detail, ITX may also
act as a photosensitizer and transfer electrons or energy
to BP by forming the excited-state complex (exciplex),
thereby improving the efficiency of the photoinitiator to
produce more active species. In the work by Woo et al.
[65], a combination of two photoinitiators, BP and 4,4′-
Scheme 4. Photografting polymerization initiated by CdS (Ref. [69]).



160 J. Deng et al. / Progress in Polymer S

Scheme 5. Structure of cardo polyetherketone.

Scheme 6. Photografting polymerizati

Scheme 7. Schematic representation of the photochemical processes invo
cience 34 (2009) 156–193

The detailed initiating mechanism for a given photoini-
tiator may be, depend on factors such as the monomer type
or other conditions, an effect well exemplified by BP/maleic
anhydride (MAH) photografting system [55]. According to
the investigations by Moore and coworkers [55], efficient
photografting of MAH may be performed smoothly, even

though in many cases MAH could not readily undergo poly-
merization initiated by free radicals. The occurrence of
photografting polymerization of MAH could be ascribed
to the following two possible mechanisms, which may co-

on initiated by DMF (Ref. [80]).

lved in the surface modification of polymer substrate (Ref. [94]).
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xist (Schemes 2 and 3): (1) via the formation of excited
riplet state of MAH sensitized by BP; (2) via the electron
ransfer process, followed by the proton transfer between

AH and semibenzopinacol radicals. In the latter case, BP
oncentration is expected to decrease more slowly than
n the photolysis process that does not involve MAH, as
bserved in the experiment (Scheme 3).

Apart from the common photoinitiators, other new
ompounds are also utilized to initiate surface pho-
ografting polymerization. EI-Wakil reported a method for
hotografting where BPO was used to initiate the graft poly-
erization of N-(4-aminodiphenylmethane) acrylamide

ADPMA) onto natural rubber under UV irradiation [67]; in
he work of Zhou and Liu [68], BPO was used to carry out the
hotografting. Semiconductor-based photocatalysts, e.g.,
admium sulfide (CdS), worked well as an initiator to
nduce vinyl monomers’ grafting on substrate [69]. The pos-
ible initiation mechanism is proposed below (Scheme 4).

Upon UV irradiation, CdS generates an electron (e−) in
he conduction band and a positive hole (h+) in the valence
and (Eq. (1)); the positive hole transfers the charge to a
ubstrate molecule (R–H) producing a free radical (R•) and
proton (H+) (Eq. (2)); the free radicals can initiate both

he graft polymerization and homopolymerization of the
onomer (M) (Eqs. (3) and (4)); both grafted polymer and

omopolymer were formed through the coupling reactions
Eqs. 5–7).

Some ketones and aldehydes undergo hydrogen abstrac-
ion from the substrate material upon UV irradiation,
hich can be utilized to carry out surface photograft-

ng polymerization. The initiating efficiency of several
etones and aldehydes were compared experimentally by
ang and Rånby [70]. The unique characteristics of high
riplet state energy, strong UV absorption, stable molecu-
ar structure and low initiating reactivity of the ketyl free
adicals derived from ketones make them applicable to
urface photografting polymerization. When mixed with
ater or ethanol as the solvent mixture and irradiated
y UV light, aliphatic ketones (butanone, pentan-3-one,
entane-2-one, and heptane-3-one) could effectively initi-
te the graft polymerization of methacrylic acid onto HDPE
71,72]. Acetone is another ketone designedly used as pho-
oinitiator [73]. Additionally, when the substrate contains
hoto-sensitive ketone moieties [74], e.g., cardo polyether-
etone [75] (Scheme 5), in situ graft polymerization took
lace on the substrate upon UV irradiation in the absence
f additional photoinitiator (cardo, from the Latin loop, was
ntroduced to refer to side-chain cyclic aromatic groups that
ie perpendicular to a planar aromatic backbone).

Eosin moieties immobilized on the substrate surface
re capable of initiating photografting polymerization of
inyl monomers. When UV irradiated in the presence of
reducing agent and oxygen, the eosin moiety would

ndergo redox reaction and generate free radicals, which
nitiate polymerization [76]. The uses of titanium (III)-
otassium persulphaste (K2S2O8) redox initiator system

77] and ceric ammonium nitrate (CAN) [78] to initiate
hotografting were also reported. Cationic photoinitia-
ors can initiate graft polymerizations, as investigated
y Kumar and coworkers [79]. Even a common solvent,
,N-dimethylformamide (DMF) could initiate the surface
cience 34 (2009) 156–193 161

photografting polymerization of methyl methacrylate on
LDPE films [80]. The proposed mechanism is presented
below (Scheme 6).

Surface photografting polymerizations are generally
conducted with UV light in a full range of wavelength,
but it was demonstrated that UV light below 300 nm (the
far UV light) played a predominant role in initiating graft-
ing [81,82]. In some cases, UV light of certain wavelengths
was employed as the irradiation source. For example, when
poly(ether sulfone) ultrafiltration membrane was used as
the substrate, if photografting polymerization of N-vinyl-2-
pyrrolidinone was carried out under UV light but without
filtering out 254 nm wavelength light, the resulting grafted
membrane showed a severe loss of protein rejection [83].
Therefore, benzene or an aromatic polyester film should be
used as light filters. In addition, the efficiency of 172 nm
UV monochromatic light to initiate graft polymerization
was evaluated by Zhu and Kelley [84]. In the research of
Ziani-Cherif et al. [85], even visible-light was used to induce
surface grafting polymerization.

For some substrates containing carbonyl or ester groups,
photografting polymerization can proceed smoothly even
without any photoinitiator. For example, after UV irradiated
with a high pressure mercury lamp, PET films immersed
in a 10 wt.% aqueous solution of acrylamide containing an
appropriate quantity of periodate (NaIO4), gave a highly
hydrophilic surface [86]; the concentration of NaIO4 was an
important factor for the occurrence of graft polymerization
[86,87].

Azido photochemistry was frequently used to introduce
functional groups onto substrate surfaces. It is also one
of the so-called “grafting to” techniques through which
surface modification and/or functionalization can be effi-
ciently realized [88–91]. The basic idea is to introduce
organic functional groups onto the surface via highly reac-
tive intermediates (Scheme 7). The typical procedures were
demonstrated clearly by the groups of Roger and coworkers
[92], Knaus et al. [93], Matsuda and coworkers [94,95] and
Chen et al. [96].

2.2. Controlled/living grafting

The conventional photografting methods may not lead
to well-controlled graft polymerization. If no special
strategy is taken, the graft polymerizations are usually
accompanied by the homopolymerization of monomers,
branching and/or crosslinking of the grafted chains [58,97],
and even degradation of the substrate [98]. The high level
of formation of homopolymers and crosslinking of the sub-
strate is inconsistent with the intent of surface modification
through grafting polymerization. Still, the formation of
homopolymer or the over crosslinking of the substrate is
sometimes detrimental to subsequent applications. To cir-
cumvent these shortcomings, “living” or controlled grafting
polymerization concept was developed by Yang and Rånby
[41]. Living polymerization is one type of polymeriza-

tions in which chain transfer and chain termination are
absent. Nearly all living/controlled polymerization systems
have active and inactive (dormant) species, which are in
a dynamic equilibrium. Therefore, such polymerizations
are controllable [99]. Similarly, living grafting polymeriza-
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tions make it possible to effectively control the length,
composition, and the distribution of the grafted chains
on the surfaces of interest, which in turn enables to real-
ize precisely functionalized surfaces. Among the reported
“grafting from” methods to achieve controlled surface
grafting, atom-transfer radical polymerization (ATRP) may
be the most efficient and especially well-suited for surface
modification [100–102]. By this technique combined with
Langmuir–Blodgett, Ejaz et al. realized the precise control
of molecular weight, molecular weight distribution, and
surface density of graft chains [103]. Therefore, the real-
ization of living/controlled surface grafting polymerization
is of great significance for future practical applications.

In the work of Yang and Rånby [41], the strategy to
achieve living graft polymerization consists of two steps:
the first is to covalently attach dormant end groups on
the surface of the substrate by photografting monomer
solutions containing BP, which introduces graft chains end-
capped with semibenzopinacol groups onto LDPE; the
second step is to perform living radical graft polymeriza-
tion of monomers by re-activating the dormant end groups

by either heating or UV irradiation to form surface free rad-
icals. Of the two steps, the first is crucial, controlling the
nature and the efficiency of the subsequent graft polymer-
ization. The above procedures are presented in Scheme 8.

Scheme 8. The mechanism of living grafting polymeriz
cience 34 (2009) 156–193

The above practice on living radical graft polymer-
ization possesses unique advantages over solution and
bulk graft polymerizations. The growing radicals cova-
lently rooted on the substrate surface are not readily
terminated by bimolecular coupling due to the existence
of the substrate to which the chains are bonded, the
low concentration of living growing chains and the low
mobility of the active species. Thereby, the above grafting
polymerization features living characteristics, and the
surface photografting is “controllable”. Various experi-
ments have confirmed the feasibility of this idea [104]. It
was experimentally demonstrated that grafting density
and grafted polymer chain length can be controlled by
choosing the reaction conditions in the first step and in
the subsequent step independently. In the second step,
a linear relationship was observed between the graft
polymerization rate and the monomer concentration.
Bowman and coworkers [105] investigated the effects of
principal factors further, including monomer type, solvent,
etc. It was found that the graft polymerization rate of
acrylic acid increases linearly with increasing surface ini-

tiator concentration, and the formation rate of the surface
initiator follows a decreasing order dependant on solvent:
benzene > chloroform > hexane > methanol > cyclohexane >
dimethyl sulfoxide. The main reasons were attributed to

ation developed by Yang and Rånby (Ref. [41]).
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he relative ability to abstract hydrogen from the solvent
nd the wettability of the substrate by the solvent.

Another effective route to realize living/controlled
urface photografting was through the utilization of
photo-iniferters”, as reported by Matsuda et al. [106–108].
he first work about iniferter, an abbreviation of initiator,
ransfer agent, and terminator, was reported by Otsu and
oshida [109]. The relevant mechanism of living/controlled
urface photografting is illustrated in Scheme 9
106].

Photolysis of the iniferter by UV irradiation yields a
air of radicals: the reactive one can initiate monomers to
roduce a polymer end radical; the less reactive one can-
ot initiate the polymerization of monomers, but prefers
o terminate the growing polymer chains, forming dithio-
arbamyl end-capped chain which can be dissociated

gain to form a radical pair by UV radiation. In this way,
iving/controlled polymerization can be realized. When
he iniferter is chemically bonded to substrates, living
raft polymerization can be accomplished, as reported
106].

Scheme 9. Living grafting polymeriza
cience 34 (2009) 156–193 163

Since controlled/living graft polymerization proceeds
only with UV irradiation and on the UV irradiated
regions, controlled grafting can be realized and applied
to various fields, such as regionally precise modification,
photopatternable grafting [110–113], grafting with con-
trolled densities at spatial locations [114], and microfluidic
devices [115]. Moreover, for substrates containing “inifer-
ter” segments, controlled/living graft polymerization is also
feasible [116,117].

Although the detailed procedures varied with the two
different methods introduced above, the underlying con-
cept is the same as illustrated in Schemes 7 and 8. Both
methods consist of two steps: the first is to introduce a spe-
cific structure onto the substrate’s surface; the second is to
reactivate and dissociate the specific structure again under
heating or UV radiation, yielding two radicals. One is active

enough to initiate the polymerization, and the other one
is less reactive and only participates in the coupling reac-
tion. The two methods introduced above enable relatively
fine control over the graft polymerization, whereby a large
number of practical applications could be realized.

tion via iniferter (Ref. [106]).
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afting p
Scheme 10. Schematic representation of the self-initiated gr

2.3. Self-initiated grafting

Most photografting polymerizations require the addi-
tion of photoinitiators, just as discussed in Section 2.1.
However, some special monomers demonstrated unique
self-initiating abilities, i.e., undergoing photografting poly-
merization without any photoinitiator. Maleic anhydride
(MAH) is one of such monomers [118]. With LDPE as the
substrate and after UV irradiation, the conversion per-

centage (CP) and grafting efficiency (GE: defined as the
mass of the grafted polymer divided by the total weight
of the polymer produced) of MAH can reach nearly 80
and 70%, respectively, even though no photoinitiator was

Scheme 11. Excimer formed by MAH upon being irradiated by UV light.

Scheme 12. Self-initiated grafting polym
olymerization and crosslinking reaction of MAH (Ref. [118]).

presented. It was further found that the far UV light
(200–300 nm) played a decisive role in the photografting
polymerization of MAH. Moreover, crosslinking reaction
of the substrate LDPE was found to occur simultaneously
during the graft polymerization, and the gel content was
about 45%. The proposed mechanism is schematically rep-
resented in Scheme 10 [118].

When irradiated with UV light, MAH molecules produce
excimers first (compound 1, •MAH-MAH• in Scheme 11);
the excimers could abstract hydrogen from the back-
bones of LDPE and form surface free radicals which
could consequently initiate graft polymerization and
homopolymerization of MAH and crosslinking reaction of
the substrate. Due to this unique characteristic of self-
initiation, MAH could function as a photoinitiator for other
monomers. For example, it was capable of initiating the
graft polymerization of acrylic acid, as shown in [118]. The
grafting efficiency was as high as about 55%, despite that

it seemed to be lower compared with that using BP as the
photoinitiator.

In addition to MAH, other monomers such as styrene
[119,120] (the relevant mechanism is shown in Scheme 12),
and even acrylic acid, methacrylic acid, glycidyl acrylate,

erization of styrene (Ref. [119]).
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by first irradiation of the substrate with UV light to pro-
duce hydroperoxide groups on the substrate (preirradiation
step) and then grafting MAH by heating the peroxide groups
to produce radicals (grafting step). The detailed processes
are illustrated in Scheme 14.
J. Deng et al. / Progress in P

-hydroxyethyl acrylate, and 2-hydroxyethyl methacrylate
121] somewhat exhibited this feature. Some monomer
airs, especially those electron acceptor–donor monomer
airs also possessed this feature, which will be discussed
elow in more details. It should be pointed out that these
pecial monomers and monomer pairs are significant for
he development of initiator-free photografting and pho-
ocuring systems.

.4. Grafting of electron donor–acceptor monomer pairs

The finding that charge transfer (CT) complexes
ould photopolymerize in the absence of photoinitiator
122–124] stimulated the use of CT complexes as monomer
airs to perform surface photografting polymerizations.
he advantage of using CT complexes as monomer for
hotografting is twofold: (1) it is useful for developing
hotoinitiator-free photografting systems and (2) it con-
iderably widens the range of monomers.

When initiated by free radical, MAH generally poly-
erizes with much difficulty; however, it undergoes

hotografting polymerization more easily [55]. Further-
ore, UV-induced graft polymerizations became much

asier when MAH was used as a comonomer together with
AC, compared with the homopolymerizations of these

wo monomers alone [125–129]. For example, MAH and
AC binary monomers could be grafted onto substrates
ith two different methods: (1) MAH, VAC and the pho-

oinitiator were first dissolved in a solvent, and then the
olution was coated on the substrate and subjected to UV
rradiation and (2) BP was first coated to the substrate and
ubjected to UV irradiation and thereafter, the irradiated
etup was immersed in monomer solution to conduct a
hermally grafting polymerization. It was found that the
atio of two monomers and the total monomer concentra-
ion had large influence on the graft polymerization. The
raft copolymerization of the monomer pairs can be com-
leted at a much higher speed, in comparison with the
orresponding graft homopolymerization of the two indi-
idual monomers. CT complexes formed between MAH and
AC played crucial roles in the grafting copolymerization
nd the relevant kinetics were investigated systemically
128,129]. The results showed that the content of MAH in
he grafted chains increased with increasing concentration
f MAH in the monomer feed ratio; this phenomenon could
e amplified by either increasing the total monomer con-
entration of MAH and VAC or the reaction temperature.
n addition, the maximum graft copolymerization rate did
ot appear in the system with [VAC]/[MAH] = 1:1, but in
he system with a bit more VAC. These findings should be
ssigned to the unique self-initiating performance of MAH,
s discussed in Section 2.3. More importantly, both free
onomer molecules and the CT complexes formed by MAH

nd VAC took part in the graft polymerization. The mech-
nism of grafting copolymerization of MAH/VAC system is
resented in detail in Ref. [126].
Other CT complexes, MAH/n-butyl vinyl ether
130–132], MAH/styrene [133,134], and MAH/N-
inylpyrrolidone [135] were also examined for the surface
hotografting polymerization. Garnett et al. investigated
he photografting system containing MAH and triethylene
cience 34 (2009) 156–193 165

glycol divinyl ether (DVE-3), which can form CT complex
[136]. They found that the grafting degree in the absence
of solvent was very high; addition of solvent lowered the
grafting yield progressively; some solvents may have taken
part in grafting because they could form a CT complex with
MAH. The related mechanism is presented in Scheme 13.

Ng et al. [137] investigated the photografting poly-
merizations with styrene as an electron donor and vinyl
monomers as electron acceptor. Photografting polymer-
ization smoothly took place without photoinitiator, and
different vinyl monomers performed differently. The cru-
cial conclusion made in this research was that styrene is
able to form CT complex with certain monomers, which
can initiate grafting polymerization under UV irradia-
tion without any photoinitiator. These results may be
helpful for solving the problems existing in photograft-
ing and photocuring systems, that is, how to exclude the
residual photoinitiators in these systems after UV irradi-
ation. Undoubtedly, developing novel photografting and
photocuring systems free of photoinitiator offers great
potential for solving these problems. Furthermore, since
the combination of monomers with different properties
can be selected, grafting with CT complex systems seems
to be an emerging field for polymer surface design and
modification.

2.5. Combinatorial techniques in grafting

Most surface photografting polymerizations are car-
ried out through the “one-step” or simultaneous method,
i.e., grafting proceeds in the presence of monomer and
photoinitiator under UV irradiation [138,139], or by the
“two-step” method here designated as combinatorial tech-
niques, i.e., first introducing dormant groups on substrates
under UV light, and then grafting polymerization is ini-
tiated by heating or irradiation [41,104,105,139]. In fact,
pretreatment of the substrate with UV irradiation, O3,
or plasma can yield peroxide groups in substrate, which
are capable of initiating the subsequent surface graft-
ing/photografting polymerizations [140–143].

Martínez et al. [143] grafted MAH onto PE substrate
Scheme 13. Mechanism of CT grafting process proposed by JL Garnett et
al. (Ref. [136]). D, donor; A, acceptor; SH, substrate; PI, photoinitiator.
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Scheme 14. Peroxidation mechanism of polymers and the grafting reac-
tion (Ref. [143]).

Khan et al. achieved the graft polymerization of
methacrylic acid and acrylic acid onto jute fiber and
methyl methacrylate onto lignocellulose fiber [144] by
UV preirradiation method in the presence of photoini-
tiator 1-hydroxycyclohexyl-phenylketone [145]. Adopting
the same strategy, Khan et al. investigated the physical
and mechanical properties of jute yarn grafted with 1,6-
hexanediol diacrylate [146]. Lacoste and coworkers [147]
used anthracene as a sensitizer for the production of
singlet oxygen under 365 nm irradiation to functionalize
substrates (terpolymer ethylene/propylene/5-ethylidene-
2-norbornene: EPDM) with –OOH groups (EPDM–OOH).
Grafting on the prepared EPDM–OOH was performed by UV
irradiation in the presence of monomers in three different
ways. In the first case, the EPDM–OOH film was irradiated
in the vapor of monomer in the absence of O2; the second
one involved dipping the EPDM–OOH film in aqueous solu-
tion of monomer at 100 ◦C for different times; in the third
one, EPDM–OOH film was UV irradiated in methanol solu-
tion of monomer. With a similar strategy, Guan et al. [148]
functionalized the surface of polyurethane membrane by a
combination of photooxidation and UV irradiation grafting
method.

Pretreatment by plasma technology is also able to intro-
duce peroxide groups onto organic surfaces, which form
free radicals under subsequent UV irradiation. Initiated by
these radicals, surface graft polymerization can be accom-
plished successfully [149–158]. Although plasma can be
used as a precursor to other surface modification tech-
niques, plasma generation generally requires a vacuum to
empty the chamber of latent gases, and this will elicit
complications for continuous operation in a large scale
industrial situation.

2.6. Grafting in liquid, vapor, bulk and the derivative
methods

Surface photografting polymerization can be conducted
in liquid phase [159], and the used solvents could have large
influence on the grafting effects. Wang and Brown [160]

discovered that for (meth)acrylic acid, aliphatic solvents,
such as chloroform, cyclohexane are favorable for the graft
polymerization; polar solvents such as ethanol does not
benefit the graft polymerization; for aromatic solvent, such
as toluene, rather acts as a screening agent for UV light and
cience 34 (2009) 156–193

thus is not a useful solvent. Different solvents also result in
different surface topography of the grafted substrate [160].
It was also reported that solvents could directly affect the
wettability of the grafted substrates. For PE grafted with
poly(methacrylic acid), the wettability of the PE-g-PMAA
prepared in dichloromethane, petroleum ether, cyclohex-
ane, and chloroform, exhibited only a small decrease in
the contact angle of water. If 30% acetone/water is used as
the solvent, the water absorbance of the grafted PE film
was about twice as that of the PE film grafted in the other
solvents. It was assumed that for the solvents other than
acetone/water, the grafted layer was partially buried below
the surface layer due to the low affinity of the grafted chains
to the solvent [161].

Kubota and coworkers [162–166] investigated the
effects of mixed solvent consisting of water and organic
solvent by scanning electron microscopy (SEM) and atten-
uated total reflection infrared (ATR-IR) spectroscopy, and
found that the distribution of the grafted chains in the sub-
strate was largely influenced by the type of the organic
solvent chosen. The monomer solution could be introduced
to the substrate using either “dip” or “immersion” tech-
niques, and then the setup was UV irradiated. Both the
two methods were effective for realizing the graft polymer-
ization [167]. The continuous method was reported to be
conveniently put into practical applications [168].

Photografting in the vapor phase is another method
frequently used to conduct surface graft polymerization
[169,170]. It is solvent-free and highly efficient [171–173],
causing less homopolymerization and easy purification
of the grafted substrates [173]. Regarding grafting poly-
merization in vapor phase, Gleason and coworkers [174]
explored a new method, i.e., grafting chemical vapor
deposition (gCVD), to achieve solvent-free surface pho-
toinitiated polymerization. At low temperatures, gCVD was
successfully used to coat Nylon fabric and poly(methyl
methacrylate) (PMMA) thin films with antimicrobial poly-
mers of (dimethylamino)methyl styrene (DMAMS) and
(diethylamino)ethyl acrylate (DEAEA), respectively. This
novel process, as an all-dry technique, is applicable to
the grafting polymerization of monomers that lack sol-
ubility in desirable solvents. The low temperature merit
also makes it an ideal method for grafting on fragile poly-
meric substrates. Together with the other CVD techniques
such as hot-filament CVD [175] and initiated CVD [176],
gCVD is expected to find wide applications due to their
environment-friendliness.

Yang and Rånby [38,39] made extensive efforts to inves-
tigate the surface photografting polymerization with bulk
surface photografting process, which means the photoini-
tiators were dissolved in monomers without the assistant
of any solvent upon UV-induced grafting. In the extended
investigations, Deng et al. [177] found that the affinity of
the solvent with the substrate, the absorption of UV light
by the solvent, and the reactivity and initiating ability of
the solvent are the key factors affecting the grafting yield

and the distribution of the grafted chains in the substrate.
In this research [177], a sandwiched setup consisting of
two covering substrates and an inner reaction solution
was employed, as presented in Fig. 1. BP-containing PE
films were prepared in advance and the monomer VAC was



J. Deng et al. / Progress in Polymer S

p
g
F

v
B
fi
t
d
fi
a
c
i

F
i

Fig. 1. Cross section of grafting polymerization (Ref. [177]).

laced between the two films. The effects of solvent on
rafting polymerization of VAC are schematically shown in
ig. 2.

When n-hexane and chloroform is used as the sol-
ent of BP, they permeate into PE films rapidly carrying
P molecules. When VAC is added, it cannot penetrate PE
lms as deeply as BP, consequently leading to weak con-
act of VAC and BP (Fig. 2a). For acetone, methanol, THF,
ioxane, ethyl acetate and benzene, their affinity with PE

lm is nearly the same as that of VAC, so VAC molecules
re able to contact with BP molecules effectively and effi-
iently, resulting in smooth grafting polymerization of VAC
n the grafting step (Fig. 2b). For the third class of solvent

ig. 2. Effects of affinity of the solvents with PE films on grafting polymer-
zation (Ref. [177]).
cience 34 (2009) 156–193 167

including DMF, its affinity with PE film is the lowest. When
deposited between the two films, DMF remains principal on
the inner surfaces of the films (F1 and F2 in Fig. 1). When
VAC was deposited, VAC carries BP along to the deeper
layers of the film, improving contact (Fig. 2c). Thus graft
polymerization of VAC proceeds more smoothly than that
in the system using the first class solvents but less smoothly
than those using the second class of solvents introduced
above. These results are useful for selecting suitable sol-
vents for surface photografting polymerizations.

With a method derived from the sandwiched setup,
Deng et al. studied the graft polymerization of MAH onto
LDPE film in a melt phase [178]. In this research, MAH solu-
tion was coated onto the substrate LDPE film; thereafter the
solvent was evaporated and the PE film containing a layer
of dry MAH was subjected to UV irradiation at a temper-
ature above the melting point of MAH (52 ◦C). Using this
method, MAH was grafted on PE films readily, even though
MAH generally undergoes free radical polymerization with
much difficulty.

2.7. Substrates

Conventionally, surface photografting polymerizations
were achieved using polymeric materials as the substrate,
predominantly synthetic PP and PE films. However, it has
been evidently proved that surface modification is also
feasible for the substrates other than PP and PE films.
The substrates can be synthetic polymers like polypyr-
role [179], poly(3-hydroxybutyrate-co-3-hydroxyvalerate)
(PHBV) [180], substrates of rubber film or sheet [181–184],
PE [185] and PET fibers [186], or natural polymers includ-
ing jute yarn [187,188] and jute fiber [189], cellulose fiber
[190–193] and sisal fiber [194]. Inorganic substrates can
also be employed, such as silica [195] and gold elec-
trodes coated with an alkanethiol monolayer [196]. All
these investigations demonstrated that surface photograft-

ing polymerization is widely applicable and offers modified
surface matching the needs of the end uses.

Deng and Yang et al. [39,40,53] compared the graft-
ing performances of different polymeric substrates. These
substrates were reported to show different behaviors,

Fig. 3. The apparatus for photografting polymerization (Ref. [198]).
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Scheme 15. Mechanism of photografting reaction (Ref. [198]).

Fig. 4. AFM images of film surfaces grafted with different lengths of polyDMAEMA chains (5 nN load, 2 �m/s scanning speed, and 2 �m × 2 �m scan area
except for a and b (1 �m × 1 �m). Brighter areas indicate higher levels (Ref. [201]).
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ig. 5. Topographical models for short and long graft chains underwater
Ref. [201]).

hich were considered to result from the different affin-
ty between the monomer and the substrate, the different
eactivity of hydrogens in the substrate, and the UV trans-
arency of the films [53]. As far as the reactivity of
ydrogens is concerned, the influence from degree of
rystallinity and regularity should be mentioned. For a sub-
trate with high crystallinity, it is relatively difficult for the
ydrogens to be abstracted, which is not favorable for the
ubsequent graft polymerization. This is the reason why
ess monomer was grafted on HDPE than on LDPE film
nder the same conditions [53]. Even for the same sub-
trate, e.g., oriented PP prepared by drawing, the draw ratio
xerted large influence on the grafting [197] (oriented PP
as prepared by drawing; to determine the draw ratio, two

nk marks were made on the PP samples before drawing,
nd then measure the increase in the separation between
he two marks after drawing. For more details, see Ref.
197]).

Surface modification via photografting polymerization
as been demonstrated to be extensively effective; yet

or those substrates with complex structures or irregu-
ar forms, the commonly used UV irradiation method is
ot efficient enough because some parts of the substrate
ere blocked from UV light. Recently, Zhang et al. [198,199]
eported a method purposely designed for the surface mod-
fication of substrates with complex and irregular forms,
nd the relevant principle is as follows. The photochem-
cal reaction is separated into three events: absorbing UV
Fig. 6. SEM images of PET surfaces: (a) virgin, (b) oxidized by exposition
to Hg lamp and (c) grafted through method 1 (magnification: 1000×) (Ref.
[202]).

light in one place, then transporting light energy to another
place, and reacting there; namely, the conventional pho-
tochemical reaction is separated by space and time. The
above mechanism is schematically illustrated in Scheme 15,
and the experimental setup is shown in Fig. 3. In a typical
experiment (Scheme 13, Fig. 3), the vapor containing ini-
tiator BP and monomer AA was exposed to UV radiation in
a place where BP was excited, and then the excited BP dif-
fused to another place that could not be irradiated by UV

light directly, and induced grafting on the substrate there
(dark reaction in Scheme 13). This strategy opened a new
way to realize surface modification of those substrates and
devices with irregular forms or complex structures such as
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Fig. 7. SEM images of fractured PET films: (a) virgin and (b) grafted
through method 1 on previously oxidized films by exposition to Hg lamp
(magnification: 500×) (Ref. [202]).

the inner surfaces of polymeric containers and the porous
materials.

3. Topography of the grafted surface

3.1. Granular structures

The grafting polymerization can be characterized with
gravimetric analysis and ATR-IR [57,77,137] and X-ray pho-
toelectron spectroscopy [84,85,87]. Usually water contact
angle is measured to examine the surface hydrophilicity
of the grafted substrates [85,91,134,174]. Attenuated total
reflection infrared (ATR-IR) spectroscopy is used to explore
the depth and the distribution of the grafted polymer
chains in the substrate [54,56,73,165]. X-ray diffraction is
another effective characterization method [72]. To explore
the topography of the grafted substrates, the grafted
surfaces can be imaged with atomic force microscopy
(AFM) [84,92,161] and scanning electron microscopy (SEM)
[92,164,165]. In a study by Wang and Brown [200], glycidyl
methacrylate (GMA) was photografted onto HDPE film and
the microstructure of the grafted chains was investigated
using AFM. The surface of the grafted films exhibited gran-
ular structure, and the height of the granules increased

linearly with their diameters. Moreover, each granule was
assumed to be a single graft chain bearing a highly branched
microstructure. The solvents greatly affected the density
of the grafted chains and their degree of branching. Using
AFM, Uchida and Ikada [201] examined the topography
Fig. 8. SEM images of PS surfaces: (a) virgin, (b) oxidized by exposition
to aqueous sodium persulfate, at 70 ◦C, and (c) grafted through method 1
(magnification: 1000×) (Ref. [202]).

of water-soluble polymer chains photografted onto PET
film (Fig. 4). The graft polymer chains with a certain
length stretched out in water to form a brush-like struc-
ture and the authors [201] also presented models for it
(Fig. 5).

Muniz and coworkers [202] photografted poly(N-
isopropylacrylamide) (PNIPAAm) onto PET and PS surfaces.
According to their observations with SEM and AFM, a
rising of roughness was observed for the grafted sur-
faces, and the grafted surfaces showed a hydrophobic and

hydrophilic transformation while changing the tempera-
ture (Figs. 6–10). With AFM and optical microscopy (OM)
techniques, Strumia et al. [203] investigated the topography
of the modified films and found that the original featureless
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Fig. 10. AFM images of PS surfaces: (a) oxidized by exposition to aqueous
ig. 9. AFM images of PET surfaces: (a) oxidized by exposition to Hg lamp
nd (b) grafted through method 1 (Ref. [202]).

opography of the raw film was substituted with growing
ggregates after grafting. Moreover, the longer the treat-
ent was, the higher the surface roughness rose.
Moon and coworkers [204] investigated the morphol-

gy of the membranes photografted with poly(acrylic acid)
ith SEM. The modified membranes prepared with differ-

nt UV-irradiation times showed a denser structure and
he pores in the membrane were gradually filled with the
rafted chains of PAA. The pores could hardly be observed in
he dense structure of the grafted membrane for the sample
reated for 20 min. These phenomena can be clearly viewed
n Fig. 11.

Wang and Yang [205] opened up a new strat-
gy to achieve surface photografting polymerization
nd three-dimensional construction on the surface, i.e.,
rstly coated methyl methacrylate/1,2-divinylbenzene
MMA/DVB) microemulsion on casting polypropylene
CPP) films and then conducted photografting with BP as
hotoinitiator. AFM images demonstrated that the grafted
ayer was built up by nanoparticles ca. 30–50 nm in diam-
ter. These particles were linked together and further
ovalently tethered onto the CPP surface. The possible
echanism for the formation of the above topography was

chematically illustrated in Scheme 16.
sodium persulfate, at 70 ◦C and (b) grafted through method 1 (Ref. [202]).

With the same strategy introduced above, monolayer
of nanoparticles on a substrate was produced facilely
[206], as presented in Figs. 12 and 13. When N-vinyl
pyrrolidone/N,N′-methylene bisacrylamide (NVP/MBAA)
inverse microemulsion was used instead of the MMA/DVB
emulsion mentioned above, superhydrophilic surfaces
were attained [207]. Construction of discrete large spheri-
cal functional particles was achieved on biaxially oriented
polypropylene (BOPP) film surface [208] (Fig. 14) and the
assumed mechanism is shown in Scheme 17. Moreover,
supramolecular polymer particles can also be prepared in
a similar way but in the absence of the substrate [209].
These particles with or without substrates are expected
to find a number of potential applications in a wide range
of industries. Sui et al. [210] reported a surface-initiated
ring-opening polymerization of �-caprolactone from the
surface of PP film containing an initiator layer composed of
–OSn(Oct) groups, based on a technique developed by Yang
et al. [211,212]. SEM images revealed that the graft polymer
chains grew into regular spheroidal particles, which could
be changed into other different morphologies by treat-

ment with different solvents. Based on these findings, novel
functional materials, particularly environment-responsive
materials can be developed.
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nd the g
Scheme 16. Chemical formation of the graft chains a

3.2. Crosslinked structures

With multifunctional monomers, crosslinked graft
layer on polymer substrates can be realized. In the work of
Wang et al. [213], trimethylopropane triacrylate (TMPTA)
was used as the monomer, and its surface photografting
polymerization on LDPE film was conducted in THF/water
mixed solvent. Via SEM and AFM techniques, the grafted
surface was found to be planar when the photografting
was carried out in pure THF. When some water was added
in the solution, the formation of “craters” on the surface
was observed, which was explained in terms of the phase
separation process accompanying the graft polymerization
of the monomer TMPTA. The corresponding SEM images
are shown in Fig. 15 and the plausible mechanism is
presented in Scheme 18.

In the report of Kubota and Koyama [214], multifunc-
tional monomers were added in the graft polymerization of
methacrylic acid. These monomers facilitated the grafting,
with different magnitudes in the enhancement by different
multifunctional monomers. With a two-step method con-
sisting of photosensitizer and/or plasma pretreatment and
thereafter photopolymerization, an interpenetrating poly-
mer network coating was created on a PET substrate, as
reported by Healy and coworkers [215].

In the presence of BP and an alkyl thiol self-assembled-
monolayer (SAM) coated on the surface of gold, pho-
tografting polymerization of the monomer N,N-methylene
bisacrylamide (MBAA), simultaneous as a crosslinking
agent, resulted in a highly crosslinked polymer layer. The
topography of the grafted surface was investigated by
scanning force microscopy (SFM) [216]. The results [216]
suggested that this approach, i.e., the photoinitiated graft
copolymerization onto SAM-modified gold with adsorbed
BP, is very straightforward and promising for the synthe-
sis of tailored functional grafted polymer layers on sensors
and other surfaces.
3.3. Well-defined structures

Most of the branched, especially superbranched poly-
mers, exhibit unique properties such as low viscosity, good
rowing mechanism of the graft particles (Ref. [205]).

solubility, multi-functionality, etc. This type of polymers
has attracted much attention in the past decade [217,218].
Matsuda and coworkers [219,220] prepared branched graft
polymer chains using iniferter-based quasi-living radical
photografting polymerization; Fig. 16 shows the schematic
representation of the stem and branch designs. By the
same “iniferter” method [221], they prepared a surface
containing five different water-soluble polymer regions
with micron order precision, and also prepared three
different gradient surfaces with unidirectionally chang-
ing thicknesses of a water-soluble grafting polymer layer.
Vasilets et al. [222] pre-irradiated Teflon FEP film with
UV light to generate peroxide groups on the substrate
surface and then performed grafting polymerization of
4-(6-acryloyloxyhexyloxy)benzoic acid at 70–100 ◦C. The
thus prepared graft polymers could form a liquid crystal
polymer brush.

Zhong et al. [223] reported on a novel method for prepar-
ing electrically conductive polyprolylene-graft-polyacrylic
acid/polyaniline (PP-g-PAA/PANI) composite films. Firstly,
1,4-phenylenediamine (PDA) was introduced on the sur-
face of PP-g-PAA film, which was prepared beforehand
by surface photografting. Then, chemical oxidative poly-
merization of aniline was carried out on PP-g-PAA/PDA
film to prepare the electrically conductive composite films.
The process presenting the above strategy is shown in
Scheme 19.

Each step of the processes was monitored AFM, as
presented in Fig. 17. Compared with the relative smooth
surface of the pure PP film (Fig. 17a and b), spheres
with an average diameter of ca. 45 nm were observed on
the PP-g-PAA film surface (Fig. 17c and d). After grafting
polymerization of aniline, the film surface was obviously
covered with PANI particles with diameters of about
150 nm. Moreover, the roughness of the PP-g-PAA/PANI
film surface was relatively higher than that of the PP-g-
PAA film surface, probably resulting from the PANI chains

grown on the grafted PAA particles. The conductivity was
about 0.21 S/cm at room temperature for the composite film
with thickness about 0.4 �m and grafting percentage about
1.5 wt.%. This achievement provides a new way to prepare
conductive materials.
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ig. 11. Scanning electron micrographs of the surface of bacterial cellulose
nd AAc-modified BC membrane (a) bacterial cellulose, (b) AAc-modified
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UV 20 min) (Ref. [204]).
With the above strategy, Zhong et al. [224] pre-
ared highly hydrophilic polyaniline nanowires and
ub-micro/nanostructured dendrites on PP film surfaces.
ield-emission scanning electron microscopy (FE-SEM) was
mployed to observe the surface morphology of the grafted
cience 34 (2009) 156–193 173

films. The micrographs for PANI nanowires, PANI sub-
micro/nanostructured dendrites immobilized on PP film
surface are shown in Figs. 18 and 19. The grafting percent-
age of PAA has large influence on the morphology of the
prepared PANI, and the resulting PP films exhibited dif-
ferent water contact angles. Based on this work, the same
group also reported a novel method on synthesis of super-
hydrophilic polypyrrole nanowire in high yield [225]. These
results indicated that the approach developed in this work
is potentially important for preparing highly hydrophilic
PANI nanowires and sub-micro/nanostructured dendrites
chemically implemented on various substrates, which may
be useful for developing disposable chemical sensors or
all-polymer field-effect transistors.

4. Performances and applications of the grafted
surface

4.1. Wettability

For hydrophobic polymer substrates, one of the major
aims of surface photografting polymerization is to improve
the surface hydrophilicity of the substrate. For exam-
ple, Gao and coworkers [226] and Hirt and coworkers
[227] employed methacrylic acid and acrylic acid as the
monomer, respectively, to perform surface photografting
polymerization on poly(l-lactide) (PLA) substrate, target-
ing surface hydrophilicity modification. It should be noted
that, in most cases, it is certainly expected to improve the
surface hydrophilicity (e.g., by the introduction of hydroxyl
group, by which to suppress the static electricity of the
substrate [68]), but in some other special cases, surface
hydrophobic property should be increased or/and moisture
sorption should be reduced, as shown by the work of Kang
and coworkers [228]. This can be achieved by photografting
hydrophobic monomers rather than hydrophilic monomers
onto the substrates [229].

4.2. Adhesion

Modification of the surface by introducing polar groups
such as peroxide functionalities has been a main route to
improve adhesion of polyolefins [230,231], and the syn-
thesis of block copolymers consisting of a polyolefin-like
part and a polar part is another alternative approach to
improve the adhesion of polyolefins [232]. The idea of these
two methods is to utilize the interaction between the polar
groups and the target material to improve adhesion. Based
on the same idea the surface adhesion of substrates can
be improved effectively by surface photografting polymer-
ization since the surface graft chains could be designed
to have considerable polarity [233]. Kang et al. [234,235],
Lecamp and coworkers [236], Lei et al. [237], Zhang et al.
[238], and Castell et al. [239] made such attempts by pho-
tografting polymerization of acrylic acid and acrylates onto
energy of the substrate were significantly improved. GMA
[240] and acrylates [241] were also used as monomers to
conduct photografting polymerization onto polyolefins to
improve the autohesive properties of polyolefins.
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Fig. 12. AFM images of film topography after surface photografting microemulsion by the one-step method (MMA concentration 6 wt.% in a and b) and
: (a) heig
film aft
in UV ir
two-step method (MMA concentration 20 wt.% in c, d, and f; 30 wt.% in e)
dimensional (3D) effect of the height image in a; (c) height image of the
4 min UV irradiation; GY 0.095 wt.%; (e) height image of the film after 6 m
4.3. Environment-response

Temperature-sensitive surfaces could be obtained when
N-isopropylacrylamide (NIPAAm) was photografted onto
ht image of the film after 2 min UV irradiation; GY 0.679 wt.%; (b) three-
er 2 min UV irradiation; GY 0.070 wt.%; (d) height image of the film after
radiation; GY 0.188 wt.%; (f) 3D effect of the height image d (Ref. [206]).
a substrate. Li et al. [242] prepared temperature-sensitive
surfaces by photografting polymerization of NIPAAm on PP
films via two different methods: pre-dipping photograft-
ing (the PP films were first dipped into an acetone solution
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photografting technique, two layers of polymer chains can
urface photografting. MMA concentration 20 wt.%: (a) planform of the
lm corresponding to Fig. 2d and f; (b) side view of the film corresponding
o Fig. 2d and f (Ref [206]).

f BP for a period, dried, and then put into an aque-
us solution of NIPAAm and subjected to photoirradiation
242]) and dormant radical photografting (grafting poly-

erization of AA onto PP films was first performed and
hen the prepared PP films were subjected to grafting
IPAAm [242]). Nevertheless, the water absorbance of the
rafted PP films prepared by the two methods was simi-
ar, and both of the films exhibited considerable sensitivity
o temperature change. Using a silicone wafer as the sub-
trate, Liang et al. [243] prepared temperature-sensitive
urfaces by UV photografting reaction of NIPAAm in
he presence of (N,N′-diethylamino)dithiocarbamoylpropyl
trimethoxy)silane as photosensitizer. A thin graft layer
onsisting of a single terminal PNIPAAm chain on the
ilicone wafer surface was produced. The mobile single PNI-
AAm chains made the grafted surface possess a decreased
ower critical solution temperature (LCST) and a narrower
hange range of transition temperature, when compared
ith the substrate grafted by PNIPAAm gel. In other words,

he prepared grafted surface showed a faster response
o a change in environmental temperature. Kubota and
hiobara [244] grafted PNIPAAm chains on cellulose by
hotografting polymerization, and the resulting grafted
ellulose exhibited a remarkable temperature-responsive

haracteristic.

pH-responsive surfaces can be prepared through surface
hotografting polymerization with appropriate monomers.
or example, Sebra et al. [245] reported the construction of
cience 34 (2009) 156–193 175

pH-sensitive surface via the living photografting technique
with poly(ethylene glycol)acrylate succinyl fluorescein as
the macromonomer.

4.4. Lamination

Rånby and Yang developed an approach to achieve
lamination of polymer films with a bulk surface pho-
tografting process [38–40,44,246,247]. In this method, a
thin layer of acrylic monomer containing the photoini-
tiator (in most cases, BP) was sandwiched between two
films and the setup was subjected to UV irradiation. Pho-
tolamination took place simultaneously accompanying the
photografting polymerization of the monomer. Adhesion
between the two films is thus markedly improved. By
ozone-pretreatment of the substrate and then UV-induced
grafting polymerization of monomer, Kang and cowork-
ers [248] also realized photolamination. Yang and Rånby
further proposed that the photolamination involves the
formation of hyperbranched grafting chains and even a
crosslinked network formed through the addition of mul-
tifunctional monomers [40].

Wang and Brown [249] investigated the adhesion mech-
anism of photolamination by photografting polymerization
of acrylic acid between two HDPE films or sheets. They
found that if methacrylic acid or hydroxyethyl methacrylate
was used instead of acrylic acid, no adhesion was observed
in HDPE films; when GMA or hydroxyethyl methacrylate
was grafted together with acrylic acid, very good adhesion
between HDPE sheets was obtained. Based on these results,
the authors [249] assumed that a less branched graft chain
structure could lead to much more chain entanglement, by
which the adhesion between the two substrates could be
increased.

4.5. Monolith and microfluidic devices

Monoliths, a form of rigid macroporous materials pre-
pared by in situ polymerization within the confines of a
cavity, are now used in a broad range of applications, e.g.,
immobilized enzyme reactors and fast media for the sepa-
ration of synthetic or biopolymers, making uses of the large
pores which allow liquid flow at low pressure [250,251].
Nevertheless, monoliths with very large pores usually pos-
sess limited surface area and thus display a limited number
of functional groups on their surfaces. With some mono-
liths, applications are strictly limited because of the lack
of surface functional groups. Therefore, some endeavors
have been devoted to introducing functional groups onto
the monolith surfaces to improve their surface properties.
The research by Fréchet and coworkers [252,253] clearly
demonstrated that photografting is applicable for realiz-
ing fast, efficient, and versatile surface functionalization
of monoliths. The use of photomasks enables the precise
control of specific functionalization in selected and pre-
determined areas of a single monolith. In addition, via
be grafted onto the pore surface of a porous monolith: the
interior layer was grafted with ionizable polymer chains,
while the covering layer was composed of hydrophobic
polymer chains [254]. Even a monolithic column with a lon-
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Fig. 14. Micrographs displaying the topography of BOPP films grafted with PMMA/PVP particles. The MMA concentration was 20 wt.%, the BP concentration
in at roo
concent
.%; the in
5 × 10−2 wt.%, the UV intensity 7 K �W/cm2, and the irradiation time 10 m
5 wt.% and the particle diameter ∼550 nm. (c) SEM image where the NVP
a side view image. (d) AFM image where the NVP concentration was 5 wt
made up of nanoparticles (Ref. [208]).

gitudinal gradient of functionalities could be prepared via
photografting method, as reported by Pucci et al. [253]. The
same group also reported the fabrication of porous poly-
mer monoliths covalently bonded on the walls of channels
in plastic microdevices through photografting technique
[255].

Microfluidic devices possess various potential applica-
tions in chemical sensors and the analysis of biological
molecules in clinical diagnoses. Compared with the tradi-
tional sensing techniques, microfluidic devices have some
obvious advantages, such as more efficient and responsive,
partly due to the high surface-to-volume ratio of microflu-
idic geometries [256–260]. Introduction of surface-reactive
sensing species onto microfluidic devices has also attracted
large attention, and the commonly used method is sur-
face modification by grafting [261–263]. Although many
approaches for surface grafting have been developed, most
of them are not applicable to microfluidic devices, since

grafting should only be performed in some specified areas
of the devices. Accordingly, the grafting initiated by UV
light provides obvious advantages over the other graft-
ing methods. In addition, the wide range of substrates
and monomers suited to photografting polymerization also
m temperature. (a and b) SEM images where the NVP concentration was
ration was 20 wt.% and the particle diameter ∼1.3 �m; the inset displays
set displays the AFM phase image showing how the large particles were

makes this approach attractive for the modification of
microfluidic devices.

Allbritton and coworkers [264,265] reported the use of
a one-step procedure to covalently link polymers to the
surface of poly(dimethylsiloxane) (PDMS)-based microflu-
idic devices, in order to tailor the surface properties of the
devices of interest. In this work [264,265], acrylic acid, acry-
lamide, dimethylacrylamide, 2-hydroxylethyl acrylate and
poly(ethylene glycol)monomethoxyl acrylate were used as
monomers. By grafting the polymers derived from these
monomers, hydrophilic surfaces of PDMS were produced.
Microchannels constructed from the grafted PDMS could be
more easily filled with aqueous solutions, compared with
the devices based on pristine PDMS. Allbritton and cowork-
ers [266,267] developed a strategy for grafting mixed
monomers onto PDMS microdevice using UV irradiation.
The reason for using mixed monomers was to combine
different chemical properties together, intending to obtain

optimized electrophoretic separation of a set of analytes.
The results demonstrated that by carefully selecting a mix-
ture of monomers with appropriate properties, it is possible
to tailor the surface of PDMS for a large number of different
electrophoretic separations.
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cheme 17. (A) Illustration of three kinds of grafting topographies with
A-III) discrete spherical polymer particles; (B) chemical scheme for the
recursors, (B-II) the primary particles, and (B-III) the assembled solid/ho

Fréchet and coworkers [268] prepared microfluidic
evices with a dual function containing both a solid-phase
xtractor and an enzymatic microreactor via photografting.
hey also prepared protein-resistant surfaces for multi-
unctional microfluidic devices by surface photografting
echnique [269]. In another investigation, they achieved
urface functionalization of thermoplastic polymers for
he fabrication of microfluidic devices via photografting
270]. Ebara et al. [271] realized surface modification
f microfluidic channels by photografting non-fouling
smart” polymers. In other studies, cyclic olefin copolymers

COC) were selected to build microfluidic devices using
hotografting methods by Pu et al. [272], Stachowiak et al.
273], and Li et al. [274]. The success in selective patterning
f hydrophobic and hydrophilic areas inside microchannels
f microfluidic device was reported by Besson et al. [275].

ig. 15. 3D AFM images of the surfaces of the LDPE films prepared under diffe
rradiation time: 180 s, (a) blank LDPE film, (b) LDPE film grafted with TMPTA in T
f H2O in the mixed solvent was 10 wt.% (Ref. [213]).
lymer brushes, (A-II) a thick layer of crosslinking polymer brushes, and
ion of assembled microparticles by SPSA with the formation of (B-I) the
rticles (Ref. [208]).

Via a combination of photochemical and alkaline hydrolysis
etchings, Yang et al. [276] prepared micro/nanoscale wells
and channels on organic polymer substrates, which provide
platforms for microchips potentially useful for microar-
rays, heterogeneous immunoassays, biosensors, filtration,
and/or microanalysis.

4.6. Modification/functionalization of membranes

Compared with other unit operations in (bio)chemical
engineering, membrane technology possesses some advan-

tages which are closely related to its selective transport
principle. This principle allows the separations by mem-
brane to work without the other additives, at low
temperatures, and with low energy consumption [277]. The
applications of membrane technology have been developed

rent conditions. TMPTA: 10 wt.%, feed ratio of BP to TMPTA: 5 wt.%, UV
HF, (c) LDPE film grafted with TMPTA in THF and H2O, the mass percent
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Fig. 16. Schematic representation of the stem and branch designs (Ref.
[219]).

far beyond the range of simple separation. Membranes are
the crucial component in polymer electrolyte fuel cells
[278], separation devices based on affinity chromatography
[279], various chemical- and bio-sensors [280,281], drug
deliverable systems with controllable release [282,283],
etc. However, a major part of the commercially available
synthetic membranes are made of hydrophobic polymeric
materials. Like hydrophobic polymer films, hydrophobic

membranes are surface inert, thus resulting in high sus-
ceptibility to bio-fouling and decrease in flux. Surface
photografting polymerization technique is a viable solu-
tion to overcome these disadvantages of hydrophobic
membranes. Some specific uses of surface photograft-
cience 34 (2009) 156–193

ing in membrane are introduced below. It should be
pointed out that with regard to membranes, it is diffi-
cult to limit the graft polymerization only to the surface
layer; nevertheless, in most cases it is not necessary to
overcome such a difficulty, since the simultaneous modi-
fication of both the surface and the walls of the pores is
desirable.

4.6.1. Improving recognition and selective permeation
Yang et al. [284–286] developed a strategy to graft

glycopolymer on membrane surface via photografting poly-
merization. Surface grafting polymerization of a monomer,
e.g., 2-aminoethyl methacrylate hydrochloride (AEMA), 2-
hydroxyethyl methacrylate (HEMA), or allyl glucoside (AG)
onto the membrane was carried out under UV irradiation
first, and then functionalization of the membrane surface
with glycopolymers was performed to obtain membranes
with glycosylated surfaces. The resulting membranes
exhibited a considerably improved recognition of lectin
[284].

A variety of polymeric membranes had been selected
for CO2 separation [287,288]. However, in practical appli-
cations, the means to develop gas separation membranes
with not only high permeation rate and selectivity, but also
fine chemical and thermal stability still remains a big prob-
lem. Kim et al. [289] realized selective permeation of CO2
through pore-filled photografting process. The obtained
membrane consisted of two polymeric materials: a porous
substrate and filling polymers that filled the pores of the
substrate. Asymmetric polyacrylonitrile (PAN) membrane
was used as the substrate and methoxy poly(ethylene gly-
col) acrylate (MePEGA) as the filled grafting monomer.
The thus prepared membrane showed high permselectiv-
ity of CO2, which was attributed to the high solubility
selectivity resulting from the high affinity of CO2 to PEG
segment. Via photografting method, Yang et al. [290] pre-
pared styrene–butadiene–styrene triblock (SBS) copolymer
membrane with O2 permeability.

In the textile industry, membranes also have many
practical applications [291–294]. Akbari et al. [295]
used sodium p-styrene sulfonate and [2-(acryloyloxy)-
ethyl]trimethyl ammonium chloride as monomer for the
modification of a polysulfone ultrafiltration membrane.
The grafted membranes were evaluated for the removal
of six textile dyes and showed acceptable performances in
terms of both flux and dye retention. The same group also
reported the application of grafted membrane in treatment
of anionic dye solutions [296]. Asano et al. [297] and Chen
et al. [298] reported the preparation of proton-conducting
membranes and fuel cell membranes using photografting,
respectively.

4.6.2. Decreasing fouling
Membrane fouling during filtration is a big prob-

lem and results in significant loss of performance with
respect to selectivity and permeation flux. Some attempts

have been made to solve this problem [299–301]. The
hydrophilization of membranes seems to be a promis-
ing approach to realize low fouling membrane [302,303].
Among a variety of alternatives to perform surface mod-
ification of membranes, photografting modification has
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Scheme 18. Schematic representation of the p

athered much attention due to its distinct advantages.
elfort and coworkers [304–306] prepared low fouling
embranes, i.e., membranes with high rejection to pro-

ein and natural organic matters. Ulbricht and coworkers
307] prepared low fouling membranes by photograft-
ng polymerization of poly(ethylene glycol) methacrylate
PEGMA) on polyethersulfone (PES) membrane. The mod-
fied membranes showed increased resistance to fouling
nd rejection with respect to a pristine membrane. In the
ork of Kang et al. [308], Hilal et al. [309], and Yang et al.

310], low fouling membranes were also reported, all of
hich were prepared via photografting method, demon-

trating that the photografting method is applicable to this

eld.

.6.3. Molecular imprinting technique
Molecular imprinting techniques (MIT: a technique to

reate template-shaped cavities in matrices with memory

cheme 19. Schematic diagram illustrating the processes for grafting polymerizat
Ref. [223]).
echanism for “craters” formation (Ref. [213]).

of the template molecules after removing the template)
are effective for chiral separations, drug assays, and other
applications and, therefore, have received much atten-
tion over the last decade [311,312]. The preparation of
molecular imprinting polymers generally involves poly-
merizations in the presence of a crosslinking agent and a
template molecule [313,314]. The combination of molecu-
lar imprinting and membrane modification techniques has
allowed for the design of compact apparatuses which have
demonstrated the potential for saving enormous amounts
of energy in the processing and treating of great amounts
of solution [315,316].

Photografting methods have been widely applied in

molecular imprinted membranes. In the work of Wang et
al. [317], a surface layer containing molecular imprint sites
of theophylline (THO) was produced on a polyacrylonitrile
(PAN) membrane using acrylic acid (AA) as monomer and
N,N′-methylenebisacrylamide (MBAA) as crosslinker. After

ion of aniline on the surface of PP film. AA, acrylic acid; BP, benzophenone
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, GP1, 1
Fig. 17. AFM images for (a) and (b) PP film; (c) and (d) PP-g-PAA film
removal of the template molecules, the membrane showed
recognition of THO with high efficiency.

Ulbricht et al. [318] prepared molecular imprinted poly-
mer (MIP) membranes with desmetryn as the template. The
.10 wt.%; (e) and (f) PP-g-PAA/PANI film, GP4, 1.40 wt.% (Ref. [223]).
produced membranes could be used in a fast preconcentra-
tion step and solid-phase extraction [319]. The MIP synthe-
sis and the model for synthesis of a MIP desmetryn receptor
are schematically shown in Scheme 20 and Fig. 20 [318].
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Fig. 18. FESEM images of PANI immobilized on the PP films’ surfaces (the insets show the shapes of surface water droplets). The polymerization reaction
under stirring was kept at 0–5 ◦C for 24 h. The concentration of aniline, PAA, and SDS were 0.09, 0.025, and 0.017 M, respectively. (a) Low magnification image
and (b) high magnification image, PAAgrafting percentage, 0.8 wt.%; CA, 15◦ . (c) Low magnification image and (d) high magnification image, PAA grafting
percentage, 1.1 wt.%; CA, 12◦ . (e) Low magnification image and (f) high magnification image, PAA grafting percentage, 1.5 wt.%; CA, 7◦ . (g) The concentration
of aniline and PAA were 0.09 and 0.025 M, respectively, i.e., without SDS. (h) The concentration of aniline, PAA, and SDS were 0.09, 0.025, and 0.057 M,
respectively, PAA grafting percentage, 1.1 wt.% (Ref. [224]).
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Fig. 19. FESEM images of PANI sub-micro/nanostructured dendrites immobilized on PP films’ surfaces (the insets show the shape of water droplets). The
d was a
e and (b
percent
reaction was stirred for 20 min (after APS was added into the mixture) an
SDS are 0.09, 0.025, and 0.017 M, respectively. (a) Low magnification imag
Low magnification image and (d) high magnification image, PAA grafting

4.6.4. Stimuli-sensitive membrane
Stimuli-sensitive membranes, such as pH-sensitive
[320,321], temperature-sensitive [322,323], and light-
sensitive [324], have been produced through graft
polymerization using some special monomers. Yang and
Yang [325], Peng and Cheng [326], and Wu et al. [327],
respectively, grafted NIPAAm and N,N′-diethylacrylamide

Scheme 20. MIP synthesis via surface photografting o
llowed to stand for 24 h at 0–5 ◦C; the concentration of aniline, PAA, and
) high magnification image, PAA grafting percentage, 1.1 wt.%; CA, 3◦ . (c)

age, 1.5 wt.%; CA, 0◦ (Ref. [224]).

(DEAAm) to prepare thermo-sensitive membranes. Lequieu
et al. [328] also used photografting to prepare membranes

with thermo-adjustable porosity and separation properties
by surface immobilization of poly(N-vinylcaprolactam).
Geismann and Ulbricht [329] reported the preparation of
grafted membranes with “smart” polymer layers, i.e., pH-
responsive layers based on poly(acrylic acid). Shim et al.

nto porous polymer membranes (Ref. [318]).
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ig. 20. Model for synthesis of a MIP desmetryn receptor via surface pho-
ografting of an AMPS polymer: (a) solution complex of desmetryn and
MPS, (b) surface grafted AMPS complex after desmetryn removal (Ref.

318]).

330] reported membranes with pH-dependent permeabil-
ty produced by UV irradiation technique.

.6.5. Miscellaneous
There are a great number of other investigations regard-

ng UV-induced grafting of membranes. The structure of
he grafted chains played a significant role on the fil-
ration performance of UV-modified poly(ether sulfone)
PES) membranes [331]. The preparation of nanofiltra-
ion membranes [168,332], modification of poly(ethylene
erephthalate) (PET) nucleopore membranes [333] and
ore-covering membranes as a full open/close valve [334],
nd synthesis of pore-filling polymeric monolith in micro-
ltration membranes [335] have been reported. Hilal et al.
336] modified a membrane surface with cationic poly-
lectrolyte, and examined the modified membranes with
FM. The membranes grafted with particularly designed
olymer chains possessed the function of adsorption and
esorption of metal ions, as presented by Hirata and
oworkers [337,338]. When viologens (a family of 1,1′-
isubstituted-4,4′-bipyridinium dications) were grafted on
ubstrates, the redox properties of viologens provided an
pproach for the reduction of precious metal ions, as
ntroduced by Kang and coworkers [339]. Some grafted sub-
trates showed ion-conducting characteristics [340], and
lectrically conductive performance [341].

.7. Biomedical applications

.7.1. Anti-bacterial
Anti-bacterial materials have found a variety of applica-

ions ranging from biomedical products, packing materials,
o filters of air-conditioning systems. So far the predom-

nant approach to prepare anti-bacterial materials is to
ncorporate or adsorb bactericides into the existing matri-
es [342–346]. This widely used method usually requires
large amount of bactericide, which leads to high cost

nd possible damage of the bulk properties of the matrix
cience 34 (2009) 156–193 183

as well. In addition, the added bactericides may be grad-
ually released from the matrix and cause environment
pollution. Therefore, the strategy through which anti-
bacterial compounds are chemically bonded on the matrix
is more desirable and is receiving much attention recently.
Polymer-based bactericides have been created by grafting
or coating anti-bacterial groups, such as heavy metal-based
groups [347], quaternary ammonium salts [348,349], pyri-
dinium salts [350], quaternary phosphonium salts [351],
and so forth [352] on films or other forms.

Via surface photografting, Xing et al. [353] pre-
pared anti-bacterial PP film grafted with polyvinyl-
pyrrolidone–iodine complex, and the products showed
an obvious anti-bacterial property with broad spectrum
and high efficiency. Shi et al. [354] prepared PET film with
antibacterial activity by surface photografting an asymmet-
ric viologen, N-hexyl-N′-(4-vinylbenzyl)-4,4′-bipyridinium
bromide chloride (HVV). The obtained film exhibited
anti-bacterial activity, which was largely dependent on
the concentration of pyridinium groups tethered on the
film surface. Yang et al. [355] improved the hydrophilic-
ity of nonwoven PET by photografting polymerization
of water-soluble monomers. Thereafter, three biocides,
AgNO3 solution complexes, vinyl quarternary ammonium
salt (VQAS), and chitosan, were combined, respectively,
onto the grafted PET. The results proved that for biocidal
properties, the Ag+ ions provided the best effects.

4.7.2. Lubrication and anti-biofouling
Biomaterial surfaces require anti-biofouling proper-

ties, i.e., resisting protein adsorption and cell adhesion
[356,357]. Otherwise, biomedical devices with tightly
adsorbed proteins on them might lead to thrombus forma-
tion, inflammatory response, and bacterial adhesion when
they are used inside human bodies. Furthermore, these
responses could also raise crucial issues in the implantation
of biomedical devices [358,359]. To minimize the above
biological responses and tissue irritations, hydrophilic and
lubricating surfaces of implanted biomedical devices are
essential [360]. Most biological devices derived from poly-
mer materials are hydrophobic, which necessitates surface
modification to enhance surface biocompatibility [361].

Goda et al. [362] conducted photografting of poly(2-
methacryloyloxyethyl phosphorylcholine) (MPC) from the
poly(p-xyleylene) (parylene C) layer, and advanced lubri-
cation and anti-biofouling properties were observed in
the grafted surfaces. The as-obtained biocompatible films
may have potential applications as not only implantable
biomedical devices but also microfabricated devices used
under biological conditions. For drug delivery devices
[363], improving their surface biocompatibility by sur-
face photografting modification is also one of the effective
means to reduce their damage to vessel walls.

4.7.3. Biosensor
To prepare biosensors, surface-enlarging matrices, e.g.,
hydrogels are generally employed. These matrices should
combine the property of low nonspecific binding with
the ability to immobilize ligands. Therefore, matrices
should be carefully chosen for advanced biosensors. One
of the most widely used matrix is poly(ethylene glycol)
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(PEG), which has been proved to be a suited polymer
for protein-resistant matrix in biomaterial applications
[364]. Larsson et al. [365] reported the use of PEG
for biosensor applications. In their studies, PEG and its
comonomer, 2-hydroxyethyl methacrylate (HEMA) were
graft copolymerized onto cycloolefin polymer (COP)-
coated substrate, followed by the subsequent carboxy-
lation, activation/immobilization/deactivation treatment
and protein–surface interaction. The results suggested that
the treated PEG matrix was a good candidate for developing
biochips and biosensors.

Viologens have intrigued great interest due to their
significant reversibility and large change in the visible
extinction coefficient following reduction [366]. A number
of attempts using viologen family for practical purposes
have been carried out, where viologens were combined
with suitable polymers to create bioseparators and biosen-
sors [367,368]. Liu et al. [369] also reported the surface
functionalization of substrates via photografting viologens.
The grafted films could potentially serve as active tem-
plates in biosensors. Besides, chemosensors could also be
fabricated. In the report by Delaney et al. [370], ultrathin
chemosensors were prepared by photografting molecularly
imprinted polymer on the surface of alkanethiol-modified
gold electrodes.

4.7.4. Immobilizing enzyme
Enzymes are important in modern science and technol-

ogy. However, applications of not-immobilized enzymes
are often limited due to their instability and separation dif-
ficulty. To circumvent these disadvantages, many endeav-
ors have been made for enzyme immobilization [371,372].
Compared with physical immobilization routes, chemical
approaches are obviously more advantageous [373,374],
and therein UV-induced grafting serves as an effective way
to introduce the functionalities required for enzyme immo-
bilization. For instance, Yamada et al. [375] immobilized
urease on expanded poly(tetrafluoroethylene) (ePTFE)
films grafted with 2-hydroxyethyl methacrylate (HEMA)
and 2-hydroxyethyl acrylate (HEA). Under the examined
conditions, the results revealed that the immobilized
urease could be used repeatedly without considerable
decrease in reactivity. Cen et al. [376] immobilized glu-
cose oxidase (GOD) on the surface of functionalized PP
film using both physical and chemical methods, and the
investigation showed that the covalent immobilization
technique offered advantages over the physical entrapment
technique. Another enzyme, trypsin [377], was also immo-
bilized on polyaniline (PAN) and polypyrrole (PPY) film
surface functionalized with photografted polymer chains.
In general, immobilizing enzymes on substrates modified
via photografting technique are expected to become an
increasingly attractive field.

4.7.5. Cell attachment and culture
Bio-scaffolds play important roles in tissue engineering,
because they are widely used for blood-contacting applica-
tions [378,379]. The hemocompatibility of these scaffolds
is of significant importance. Nonetheless, most polymer
surfaces are inert, which is unfavorable for cell adhesion
and growth, and consequently require surface modifica-
cience 34 (2009) 156–193

tions [380–382]. Among the well-established methods for
surface modification, photoinduced surface grafting was
relatively more acceptable [383–388]. For example, Zhu
et al. [389] improved the endothelial cell compatibility of
porous polyurethane scaffolds using photografting; Ying et
al. [390] immobilized galactose ligands onto modified PET
films, which were used as substrates for hepatocyte culture.
Thom et al. [391] and Janorkar et al. [392], respectively,
investigated the cell–surface interactions and cell attach-
ment on substrates after the treatment of photografting
polymerization.

5. Further considerations

5.1. Direct characterization techniques

Some effective methods have been developed to char-
acterize the graft polymerizations and the grafted surfaces,
such as IR spectroscopy, UV–vis spectroscopy, AFM, SEM,
etc. However, with respect to the length of the grafted
chains and their distribution, the nature of the branched
or superbranched graft polymer chains, the crosslinking
structure and so forth mentioned in the above sections,
how to characterize these parameters directly and even
in-house and how to effectively control them to obtain
uniformly modified surfaces still remain a challenging
problem. This further poses another question in how to
ensure the reproducibility of the grafting, which is crucial
for the practical applications.

5.2. Degradation and rearrangement

Most polymer materials are somewhat sensitive to UV
irradiation, and some of them even undergo degradation
[393,394]. Surface photografting is undoubtedly a power-
ful technique for surface modification, but in some studies,
degradation has been observed. For example, the surface
water contact angle was reported to first decrease and then
increase again, which was assumed to be aroused by the
degradation of the substrate under UV irradiation [395].
In the work of Zhao et al. [149], a similar situation was
also observed. In deed, most of the articles focusing on
surface photografting paid little attention to this problem
and even did not mention such a situation. Another point
also deserves to be mentioned, i.e., the arrangement of
the grafted chains after photografting. Just as presented in
some articles concerning surface modification by plasma
techniques [396,397], the rearrangement of the grafted
functional groups led to the degraded properties of the sub-
strates. Both the degradation of the substrate caused by UV
light and the reduction of properties caused by the rear-
rangement of the grafted chains are not favorable from the
viewpoint of practical applications.

5.3. Microenvironment effects
Compared with the free polymer chains in solution or
bulk, the polymer chains covalently grafted on the sub-
strate should behave differently to a certain degree. For
example, the conformation of the graft chains should differ
from free chains and the reactivity of the functional groups
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hereon may change, possibly because of the existence of
he substrate, the steric repulsion, and/or the entangle-

ent of the grafted chains especially when the grafted
olymer chains have a high density. For this reason, the
erformances of the grafted layers should be experimen-
ally examined and compared with the corresponding free
olymer chains. Especially for the biomedical applications,
his must be taken into enough consideration. The inacti-
ation occurred to the immobilized enzymes is one of the
ood examples, as reported by Chen and Chiu [373].

. Conclusions

The discussion above demonstrates that polymer mate-
ials with expected surface properties can be obtained
hrough grafting appropriate polymer chains onto the sub-
trate. In this review, we have addressed the principal
actors affecting UV-induced surface graft polymerization,
specially the photoinitiators, the ways to realize con-
rolled/living grafting, the newly emerging self-initiated
rafting, as well as the grafting systems bearing CT com-
lexes. In addition, special emphasis has been put upon
he topography of the grafted surfaces. In addition, a num-
er of applications have been described. It is worthwhile
o point out that, the success in controlled/living grafting
llows us to precisely control the grafting and even enables
s to further put it into practical practices, such as the mod-

fication and preparation of microdevices. This frontier will
ather much interest from both scientists and engineers
ue to its potential applications. Another point deserv-

ng mention is the self-initiated grafting polymerization of
ome special monomer systems, which might help us to
esign and develop novel photocuring and photografting
ystems without the addition of any photoinitiators. These
wo directions seem to be more valuable and promising in
he future for both academic research and industrialization.
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Recent progress in photochemical generation of organic bases and its applications to poly-
mer science and technologies are reviewed. Although photobase generators (PBGs) have
been desired as a novel photolatent catalyst, fewer examples are known compared to
photoradical and photoacid generators. In this decade, several PBGs such as carbamates,
O-acyloximes, and ammonium salts have been improved in thermal stability, solubility,
multi-functionality, and photo-sensitivity. In addition, new molecular designs including
Photobase generator
Organic base
Precursor
Photoremovable protecting group
Photoinitiator
Photo-crosslinking

amineimides, �-aminoketones, some amidine precursors, and aromatic ureas have been
proposed as novel PBGs. New applications of these PBGs have been developed in photo-
induced polymerization, depolymerization, crosslinking, and de-crosslinking as well as
photo-imaging.

© 2008 Elsevier Ltd. All rights reserved.
Photolatent catalyst

1. Introduction

The photochemical generation of active species such as
free-radicals, acids, and bases is an attractive and important
process in relation to the development of technologies in
coating and imaging as well as polymer synthesis. Photo-
induced chemical reaction can be initiated by irradiation,
and generally thermal treatment is not required. Therefore,
photo-induced reaction is applied to a variety of industrial
fields. In the field of polymer chemistry, photochemically
generated active species can be used in polymer synthesis,
polymer degradation, and changes in physical properties
of polymers. These features are useful in industrial applica-

tions such as two- and three-dimensional imaging, coating,
and surface modification of polymers.

The systems of photochemical generation of free-
radicals and acids have been studied in detail and widely

∗ Corresponding author.
E-mail address: suyama@chem.osakafu-u.ac.jp (K. Suyama).

0079-6700/$ – see front matter © 2008 Elsevier Ltd. All rights reserved.
doi:10.1016/j.progpolymsci.2008.08.005
used in polymerization and polymer reactions. However,
the system using free-radicals includes the inactivation
process by oxygen in air. On the other hand, the use of
acids also causes some problems such as corrosion of metal
substrates. Bases are free from these disadvantages and ver-
satile catalysts for various reactions. Nevertheless, there are
fewer examples of photochemically base-generating sys-
tems compared to photo-radical and photoacid generators.

In this article, recent development in the preparation
and photochemistry of photobase generators (PBGs) and
their applications are reviewed. Since some reviews regard-
ing PBGs [1–3] have been published, the development in
this decade is mainly described.

2. Photobase generators
2.1. Recent development of photobase generators

2.1.1. Carbamates
Photolabile carbamates are one of the protected amines

and are widely used as photochemical precursors of

http://www.sciencedirect.com/science/journal/00796700
http://www.elsevier.com/locate/ppolysci
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Fig. 1. Photo-generatio

rimary and secondary amines. Many kinds of protecting
roups have been proposed, especially, for the liberation of
mino acids in biochemical applications. Photo-cleavable
oieties such as m-nitrophenyl, 3,5-dimethoxybenz-

l, 1-methyl-1-(3,5-dimethoxyphenyl)ethyl, �-methylnit-
opiperonyl, o-nitrobenzyl, 3,4-dimethoxy-6-nitrobenzyl,
henyl(o-nitrophenyl)methyl, 2-(2-nitrophenyl)ethyl, 6-
irtoveratryl, 4-methoxyphenacyl, and 3′,5′-dimetho-
ybenzoin carbamates are listed in a monograph [4].

New protecting groups for carbamates in Fig. 1
ere proposed recently. 1 was a carbamate protected

y 9-xanthenylmethyl group that was useful in pep-
ide synthesis because of its stability against trifluo-
oacetic acid-treatment and catalytic hydrogenolysis [5].
,5-Dimethylphenacyl group in 2 was photochemically
eprotected via E-isomer of photoenol [6]. After cyclized
limination of indanone 3, a carbamic acid was produced
hich finally turned into CO2 and an amine. Although the
uantum yield of photo-decomposition of 2 was relatively
ow (<0.1), chemical yield of corresponding amine was as
igh as 85%.

Fig. 2. Photochemical reactions of O-carbamoyloximes.
ines from carbamates.

O-Carbamoyloximes 4 in Fig. 2 are carbamates protected
by imino moiety and have also been proposed as novel PBGs
[7–24]. Flash photolysis studies revealed that iminyl radical
6 was confirmed as an intermediate. From product anal-
ysis, an amine and an azine 7 were detected as products
[7,11]. These results suggest that N–O bond cleavage in the
excited 4 and subsequent decarboxylation proceeded, and
resulting aminyl radical 5 abstracted hydrogen from sur-
roundings to generate an amine as shown in path (i) in Fig. 2.
7 can be obtained by dimerization of 6 via path (ii). How-
ever, there is a possibility of path (iii) as observed for the
formation of phenylhydrazine when R1 was phenyl [12].

The amines generated from O-carbamoyloximes were
applied to the photocrosslinking and imaging systems as
will be described in detail in Section 3.

O-Carbamoyloxime 8 having N–H bond is a thermally
less stable compared to N,N-dialkyl O-carbamoyloximes (9
and 10), because 8 tends to decompose into an isocyanate
and an oxime at relatively low temperature. For example,
the weight loss in thermogravimetric analysis (TGA) of 8
started around 120 ◦C as shown in Fig. 3 [23]. However,
by introducing an alkyl-substituent at N–H position, TGA
curves for 9 and 10 shifted to higher temperatures.

The introduction of rigid imide moieties such as phthal-
imide and naphthalimide was also effective for the increase
in thermal decomposition temperature (Td) as observed in
the shift of TGA curves for 12 and 13 compared to 9 and 10.
Photoreactivity of carbamates 11–13 having imide moieties
was lower than that of 8–10, respectively, showing trade-
off between photoreactivity and thermal stability. Product
analysis revealed that corresponding amine was not gen-
erated by the photolysis of 10, and the formation of other
basic molecule from the carbamates was suggested.

2.1.2. O-Acyloximes
O-Acyloximes 14 are known to generate primary amines
on irradiation as shown in Fig. 4. However, the influence
of the molecular structure and required conditions for
cleavages in excited states were still unclear. Thus, reac-
tion mechanism and structure/property relationship were
examined in detail. Laser spectroscopic studies revealed
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Fig. 3. TGA profiles of carbamate PBGs with
Fig. 4. Photochemical reactions of O-acyloximes.

that iminyl radials 16 were observed as long-lived transient
at 300 nm in sensitized cleavage in most of the investigated
O-acyloximes [25]. When R1 and R2 were phenyl and R3
was methyl, another transient due to benzyl radical 15 was
observed at 320 nm.

Multifunctional PBGs such as difunctional 18 [26] and
trifunctional O-acyloxime 19 [27] in Fig. 5 were prepared
in order to enhance the ability compared to monofunc-

tional 17 as a crosslinker of polymers bearing epoxy
groups. Furthermore, ABA type triblock copolymer 20 com-
posed of 2-acetonaphthone O-acryloyloxime (AANO) and
methyl acrylate (MA) was prepared by reversible addition-
fragmentation transfer (RAFT) polymerization technique

Fig. 5. Multifunctional
heating rate at 10 K/min under N2.

[28]. The rate of photolysis of O-acryloyloxime units in
17–20 were almost identical.

2.1.3. Ammonium salts
Some ammonium salts are known to release free amines

on irradiation. From quaternary ammonium salts (QASs),
tertiary amines can be obtained on irradiation. Neckers and
coworkers studied the generation of tertiary amines from
QASs with borate anions, whose chemical structures are
shown in Fig. 6 [29–34]. Fig. 7 shows the proposed photore-
action mechanism for 21, where single electron transfer
(SET) from borate anion to cation proceeds initially to gen-
erate an intermediate 22, then homolytic cleavage of C–N
bond of 22 occurs in the next step, and finally second SET
from 23 to 24 proceeds to produce a radical and an amine
[32]. Generally there were no side reactions, and the gen-
eration of amines was nearly quantitative as confirmed
by product analysis. The quantum efficiency of photoly-
sis of QASs depended on the electron donating capability
of anions and steric effects of cations [30]. For example,
the quantum efficiency for QAS with butyltriphenylborate
anion was higher than that with tetraphenylborate anion
because the former anion was more easily oxidized than

the latter, and the presence of bulky substituents on the
quaternary N atom raised the efficiency in photolysis due
to the release of strain energy.

QASs with anions other than borate anions have also
been investigated [35–42] (Fig. 8). Td of QASs with 1-

O-acyloximes.
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bility of 28 increased with electron withdrawing nature
Fig. 6. QASs with borate anions as PBGs.

henacyl-1-azania-4-azabicyclo[2.2.2]octane cation was in
he order 25a > 25c > 25b > 25d > 25e > 25f > 25g. Generally,
here is trade-off relation between photoreactivity and
hermal stability, and photoreactivity of QAS with dithio-
arbamate anion 25g was the highest, although 25g was

nstable in polymer matrix and organic solutions. Sol-
bility of QASs in Fig. 8 in organic solvents was good,
xcept 25a. tert-Butyl substituent improved the solubil-
ty of 25a as was observed for 25b. Stronger organic

Fig. 8. QASs prepared as ph
Fig. 7. Photochemical reactions of QASs with borate anions.

bases such 4-(N,N-dimethylamino)pyridine (DMAP) [40]
and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) [42] were
also generated from 25h and 25i, respectively, on irradi-
ation.

QASs with thiocyanate anion showed moderate thermal
stability and photoreactivity. However, as shown in Fig. 9,
photoproduct from 25c was still photochemically active,
and finally turned into 26 that formed a complex 27 with
generated amine [38–40].

2.2. New classes of PBGs

In the last decade, new classes of PBG have been
proposed. Amineimides are well known to decompose ther-
mally and generate tertiary amines. Recently, they were
found to be photochemically active and released basic
compounds as shown in Fig. 10 [43–46]. Thermal sta-
of the substituents on phenyl ring. Photoreactivity of
nitro-substituted amineimide was the highest among the
investigated amineimides, and the formation of 29 was
observed. Although corresponding amine 30 could not be

otobase generators.
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Fig. 11. Photochemical reaction of �-aminoketone.

and the conversion of 35 to aniline and 2-aminopyridine
Fig. 9. Photochemical formation of ammonium/thiolate complex from
25c.

detected, the formation of basic compound was confirmed
by pH change of the reactant. The photoreaction of the
amineimides could be sensitized with typical triplet sen-
sitizers whose triplet energy levels (ETs) were higher than
289 kJ/mol [46].

�-Aminoketones are known to undergo �-cleavage to
generate free-radicals on irradiation and have been used
as a photoradical initiator for the polymerization of acrylic
monomers. However, when the amino group is sterically
hindered and irradiation was carried out in the absence of
acrylic monomers, tertiary amines were released on irra-
diation via hydrogen abstraction or disproportionation as
shown in Fig. 11 [47]. The pKb values of aqueous organic
solutions of 31 and 32 were 5.5 and 4.9, respectively, show-
ing no significant changes during irradiation. However,
generated amine 32 had much higher activity and nucle-
ophilicity due to the removal of steric shielding of the amino
group by dimethyl groups in 31, showing a new category of
PBGs.

Dietliker and co-workers proposed reduced form of
amidines as a new PBG whose C N double bonds were
alkylated with allyl and benzyl groups [48,49]. Direct or
sensitized photoreaction proceeded as shown in Fig. 12,

where excited 33 decomposed to radicals, followed by
hydrogen abstraction of the resulting benzylic radical.
Although 33 is a tertiary amine and relatively strong base,
the basicity of the resulting amidine 34 is much higher

Fig. 10. Photochemical react
Fig. 12. Photochemical reaction of benzyl substituted amidine.

than that of 33. The pH jump (or �pKb jump) was esti-
mated to be 4.5 units, showing a significant difference in
the basicity. Resulting amidines can be used as a catalyst
for base-catalyzed Michael type addition of multifunctional
acrylates and acetoacetates.

Photocleavage of aromatic urea 35 has been reported as
shown in Fig. 13 [50]. In this reaction water was necessary,
depended on the concentration of water. This photochem-
ical reaction was found during the investigation of the
photo-degradation behavior of poly(1,4-phenylene-2,6-
pyridylurea) for the matrix of organic light-emitting diodes

ions of amineimides.
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OLEDs), where the formation of 2,6-diaminopyridine and
-phenylenediamine was confirmed in the product
ixture.
Because of the usefulness and importance in

rganic synthesis and biochemical applications, the
evelopment of photolabile protecting groups has
een continued [51,52]. Fig. 14 shows new protecting
roups of amino groups that have not appeared above.
-Aminocinnamamides 36 were proposed as a photo-
recursor of amines, especially in releasing of peptides
53]. N-(2-Acetoxyethyl) group 37 [54] and coumarine
erivatives 38 [55] provide secondary amines from tertiary
mines on irradiation. Although these protecting groups
enerate free amino groups, these are not attractive
BGs from the viewpoint of generation of more active
pecies, because they are in some degree basic even before
rradiation.

.3. Classification of PBGs by original structure

PBGs appeared above are classified from their original

tructure and summarized in Table 1.

Solubility of PBGs depends on its chemical struc-
ure. Generally, non-ionic PBGs such as carbamates,
-acyloximes, and nifedipines are soluble in organic sol-
ents and show good compatibility with polymer matrices,

Fig. 14. Photoremovable protecting groups for amines.
er Science 34 (2009) 194–209 199

while ionic ones such as ammonium salts, transition
metal complexes, and amineimides have poor solubility
in organic solvents. However, suitable substituents may
improve the solubility of the ionic PBGs.

Thermal stability is one of the important properties
in industrial applications. Sulfonamides are very stable,
although their photoreactivity are not high, and in most
cases, hydrogen donors are necessary in the system. Car-
bamates with N–H moiety and amineimides are relatively
thermally less stable. The thermal stability of ammonium
salts depends on its structure. Generally there is a trade-off
between photoreactivity and thermal stability.

Transition metal compounds such as cobalt complexes
and group 8 metallocenes have high potentiality as PBG.
Many compounds absorb longer wavelength of light and
thus have a wide process window. Instead, the use of metal
may be a problem in some applications that must avoid the
contamination of metals.

3. Application trends utilizing photo-induced
base-generation

3.1. Sensitization of PBGs to longer wavelength of light

The use of near-ultraviolet or visible light is one of the
recent trends in the fields of photo-curing, photopolymer-
ization, and photo-crosslinking. This region of light gives
little damages in biological systems, and the photoreactions
of photoinitiators may proceed easily even though the for-
mulation involves pigments or aromatic compounds that
absorb shorter wavelength of light. Furthermore, strong
emission from convenient light sources such as medium-
and high-pressure mercury lamps at 366 nm (i-line) and
435 nm (g-line) can be utilized effectively. Recently, light
emitting diodes and lasers of this region can be available
as light sources with high intensity, low-energy consump-
tion, and long life. Therefore, the sensitization system is still
important in addition to the extension of sensitive wave-
length region of the photosensitive groups.

Fouassier et al. studied the sensitization mecha-
nism of O-acyloximes and O-carbamoyloximes [25,56].
From quenching study and Agmon–Levine–Balzani model
[57,58], it was concluded that ETs of the oxime esters were
lower than those obtained from phosphorescence study
on acetophenone, benzophenone, and 2-acetonaphthone
oximes. Such lower ET was not observed for rigid oxime
esters composed of fluorenone oxime. These results were
explained by the flexibility of the molecules, where
relaxation of the triplet state afforded lower ET due to non-
vertical character.

Sensitizers for near UV and visible region of light were
explored, and ketobiscoumarins and thioxanthones were
examined as sensitizers for visible light sensitive systems
[59,60]. Fig. 15 shows UV–vis region of spectra of these sen-
sitizers. Quantum yields of photolysis of pendant oxime
ester moieties on irradiation at 405 nm (˚405) are summa-

rized in Table 2. For all copolymers, ˚405 values decreased
in the order 39 > 40 � 41. Solubility of these polymers in
methanol on irradiation changed in general in the same
order as that of ˚405. These results can be explained by
triplet energy transfer from sensitizers to PBGs. Fig. 16
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Table 1
Photobase generators classified by functional unit structure.

Class General structurea Generated base Property

Carbamates Primary and secondary amines Most versatile

O-Acyloximes Primary amines Water is required, thermally
stable

Ammonium salts Secondary and tertiary amines,
amidines

Lower solubility in organic
solvents

Sulfonamides Primary and secondary amines Thermally stable, reductant is
needed

Formamides Primary aryl amines Lower solubility in organic
solvents

Nifedipines Hydroxy anion (R1: CH3),
pyridine derivative (R1: H)

Sensitive to longer wavelength
of light

Transition metal complexesb NH3, thiocyanate anion
acetoacetate anion

Lower solubility in organic
solvents, metal contained,
sensitive to longer wavelength
of light

Metallocenesc Cyclopentadienyl anion Metal contained, sensitive to
longer wavelength of light

Amineimide Unidentified base Thermally unstable

�-Aminoketones Tertiary amine Release of steric shielding

Reduced form of amidinesd Amidines pKb jump

a R1–R4: H, alkyl, aryl, X: substituent, Y−: anion.
b M: Co, Cr, Pt. L1, L2: organic and inorganic ligand.
c M: Fe, Ru.
d n: 1, 3.
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Fig. 15. UV–vis absorption spectra of sensitizers in THF.

Table 2
Quantum yields of sensitized photolysis (˚405) of base-generating groups
in polymersa.

Copolymerb ˚405

39 40 41

42a 0.50 0.29 0.03
42b 0.90 0.50 0.18
43a 0.84 0.48 0.08
43b 0.94 0.60 0.14

a [Base-generating group]:[sensitizer] = 10:1 (mol/mol).
b Structure of polymers is shown as follows:

.

Fig. 16. ETs of sensitizers and PBGs.
er Science 34 (2009) 194–209 201

shows the ET values of the sensitizers and model PBGs
(44a, 44b, 45a, and 45b). ETs of effective sensitizers were
higher than those of the model PBGs, and the photoreactiv-
ity corresponded to the greater difference between ETs of
sensitizers and oxime esters, suggesting that triplet energy
transfer from the sensitizers to the PBGs proceeded. The
ET values of PBGs having naphthyl groups were lower than
those corresponding PBGs having phenyl groups.

In addition to ET values, optical properties of sensitiz-
ers should be taken into account in the selection of near
UV and visible light sensitive systems, because sensitizers
having both adequate ET value and an absorption band in
near UV or visible light are limited. For example, benzil and
phenothiazine that were not effective as a sensitizer of pho-
tolysis of oxime esters on irradiation at 405 nm. Although
benzil absorbs 405 nm light, its ET was as low as 223 kJ/mol.
Phenothiazine has no absorption at 405 nm in spite that its
ET was 253 kJ/mol.

The incorporation of sensitizing groups in the side-chain
of polymers is advantageous for effective sensitization due
to homogeneous distribution in polymeric systems. For
example, polymers bearing both sensitizing groups and
O-acyloximes or O-carbamoyloximes were highly photo-
sensitive [21,61,62].

3.2. Highly photo-sensitive base-generating systems

As has already been established for photoacid gener-
ating systems, highly sensitive photochemical generation
of bases is strongly desired. Ichimura and Arimitsu have
proposed a novel base-proliferation system as a highly pho-
tosensitive system [63–72]. 9-Fluorenylmethyl carbamate
46 in Fig. 17 underwent thermally base-catalyzed fragmen-
tation to generate an amine 47. The resulting amine could
act as a catalyst for the decomposition of parent molecule,
indicating an autocatalytic behavior. Therefore, only small
amounts of the photo-generated amine were needed to
attain a highly sensitive system.

Recently, another system for highly sensitive base-
generation was proposed [73]. As shown in Fig. 18,
protected compound 48 was deprotected by the photo-
induced acid catalysis at lower temperature to form an
intermediate 49 and 3,4-2H-dihydropyrane in the first step.
49 released an amine 47 and phthalide on heating in the
second step. Here a small amount of PAG was used as a
catalyst for the deprotection in chemically amplified man-
ner in the first step. The catalytic amounts of the acid were
finally neutralized by the amine generated.

3.3. Polymer synthesis and degradation by using PBGs

Only a few examples of PBG application are known
in the fields of photo-induced anionic polymerization.
Kutal and coworkers have been studying on the anionic
polymerization of alkyl 2-cyanoacrylates (CAs) initiated
by anionic species obtained on irradiation of group 8

metallocenes [74–81]. Non-substituted ferrocenes 50 and
ruthenocenes 51 were photo-excited to induce the electron
transfer from the metallocenes to the monomer CA. Result-
ing radical anion of CA initiated polymerization as shown
in Fig. 19. A similar system was devised using benzoy-
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Fig. 17. Base-prolifer
Fig. 18. Photo-triggered base-generation system using PAGs.

lated ferrocenes. Photo-induced intramolecular heterolytic
cleavage of metal-ring bond is believed to be a primary
process of the polymerization. Resulting cyclopentadienyl
anion seems to attack CA to initiate the polymerization.
Addition of benzoyl groups to one or both cyclopentadi-
enyl rings of ferrocenes causes the shift of the absorption
region at longer wavelength up to almost 500 nm.

QASs with borate anions generate tertiary amines as
described in Section 2.1.3. Because the photochemical reac-

tion proceeds via radical pathways, the QASs have been also
used as an initiator of photo-induced radical polymeriza-
tion [82–84]. The same compound was able to enhance the
rate of UV-curing of commercial epoxy resins and multi-
functional acrylates, respectively.

Fig. 19. Photo-induced anionic polymerization o
ation system.

Photo-generated amines were also used for the prepa-
ration of polyimides. Photosensitive polyimide (PSPI)
is attractive as thermally stable materials with short
patterning processes. A positive-type system using naph-
thoquinonediazides and a negative-type one based on
free-radical polymerization of acrylate units introduced
in side-chains have been proposed as PSPI [85]. Because
amine is a good catalyst for imidization of poly(amic acid)s
52, PBGs are expected as a photo-sensitive component of
novel type of PSPI as shown in Fig. 20a. In fact, 52 con-
taining a PBG showed a good contrast curve on irradiation
at 365 nm followed by post-exposure bake at 160 ◦C for
5 min. Fortunately, the imidization proceeded completely
as low as 200 ◦C due to the catalytic ability of the generated
amine [86]. This technology was applied to obtain poly-
imide patterns with low dielectric constant [87,88], optical
waveguides with lower loss [89], and semi-alicyclic poly-
imide [90]. In addition to o-nitrobenzyl-based carbamates,
O-carbamoyloxime was also used recently [24].

Poly(p-phenylenevinylene) (PPV) derivatives are one of
the promising materials as a matrix of organic light emit-
ting diodes (OLEDs). Because PPVs are insoluble in most
solvents, many attempts have been proposed for film for-
mation and patterning of the PPVs. One example is the
utilization of acids from PAGs as a catalyst of dehydrohalo-
genation of halo-precursor PPVs. Amines from PBGs are
also expected to induce the dehydrohalogenation. In this
regard, o-nitrobenzyl-type carbamate has been applied to
the dehydrohalogenation of 53 as shown in Fig. 20b [91].
On irradiation followed by soft bake at 100 ◦C for 1 min,
films of 53 containing PBG showed UV, fluorescence, and IR
spectra similar to that of fully conjugated PPV films which

◦
could be obtained on baking at 250 C for 6 h in vacuum.
These results show that photo-generated diphenylamine
caused the dehydrohalogenation successfully. Because the
irradiated area of 53 films containing PBG became insol-
uble in cyclohexanone, fine patterning could be achieved

f CA initiated by group 8 metallocenes.
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fter development. Photochemically converted PPV films
howed a lower turn-on voltage and a higher maximum
rightness value than thermally converted ones. The possi-
ility of the role of hole-transporting material of generated
iphenylamine was proposed to explain the excellent EL
haracteristics.

Photochemically generated amines can be used as a cat-
lyst for polymer degradation. Polyolefinsulfones contain
ulfonyl groups in main chain. Due to the electron with-
rawing character of the sulfonyl groups, the neighboring
ethylene hydrogen is acidic and abstractable even by
eak bases. An alternative copolymer 54 composed of sul-
one and vinyl monomers bearing O-acyloxime moiety can
e degraded as shown in Fig. 20c [92]. The number average
olecular weight of 54 decreased from 83,000 to 31,000

fter irradiation, and the polymer films became soluble in
.012N HCl solution.
ion by using PBGs.

Degradation of the polymer 55 composed of O-
carbamoyloxime moiety in the main chain has also been
proposed as shown in Fig. 20d [20]. On irradiation, the
main chain in 55 was cleaved, and the viscosity of the poly-
mer solutions decreased. Because resulting chain ends of
the polymers were amino groups, films of PGMA blended
with a small amount of 55 became insoluble on irradiation
followed by heating.

3.4. Solubility control of polymers by using PBGs

Generally, solubility of polymers bearing photobase-

generating groups in polar solvents increases on irradiation
due to the generation of polar basic groups. This character
has been applied to negative- and positive-tone imaging
systems as well as polymers bearing photoacid-generating
groups.
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A negative-type imaging using PBGs and a copolymer
of styrene and acrylic acid was reported [93,94]. In this
system, the photochemically generated amine worked as a
base catalyst for decarboxylation of the pendant carboxylic
acid groups in the copolymers on heating. The irradiated
area turned hydrophobic, giving a negative-tone image
after development with aqueous tetramethylammonium
hydroxide solution.

Negative-tone patterning can also be achieved by pho-
tocrosslinking with PBGs as crosslinkers. Recently, photo-
crosslinking of polycarbodiimide [95,96], and poly(vinyl
phenol) (PVP) in combination with epoxy compounds
[97,98] was reported. Silyl hydride groups in hydrogen
silsesquioxane can be transformed in Si–O–Si bonds in the
presence of base and water [99,100]. PBGs used here were
o-nitrobenzyloxycarbamate and N-methylnifedipine that
generate a secondary amine and hydroxy anion, respec-
tively. The photoreactivity of the latter was higher than
that of the former due to stronger light absorption around
250 nm in addition to the broad band at 300–400 nm. In
order to get a high sensitivity of the Si–O–Si linkage for-
mation, post-exposure bake treatment at 80–180 ◦C was
needed.

The crosslinking reactions of polymers bearing
photobase-generating groups were also proposed with
pendant epoxy groups [19].

Quinones have an absorbance band at longer wave-
length and have been used both as a sensitizer and
a crosslinker of a polymer bearing O-acyloxime moi-
ety [101,102]. For example, films of 43a containing
p-benzoquinone were crosslinked on irradiation at 405 nm
followed by heating due to the addition reaction of
conjugated double bond in p-benzoquinone with photo-
chemically generated amino groups [102].

O-Carbamoyloximes are easily decomposed into iso-
cyanates and oximes on heating as described in Section
2.1.1. Therefore, O-carbamoyloxime moiety introduced in
the side-chains of polymers can be transformed into amino
groups photochemically and into isocyanato groups ther-
mally. Since amino and isocyanato groups can react to form
stable urea linkages, polymers bearing O-carbamoyloxime
moiety work as a photo-thermal crosslinking systems
[9,13,16]. Enhanced crosslinking behavior for oligomers
bearing the O-carbamoyloxime moiety was observed on
heating after irradiation at 254 nm, even though only irra-
diation or heating did not induce the insolubilization [15].

A terpolymer 56 composed of acetophenone
O-methacryloyloxyethylcarbamoyloxime (AMCO), 2-
butanone O-methacryloyloxyethylcarbamoyloxime
(BMCO), and methyl methacrylate was prepared, and
the photo-thermal behavior was studied. Only O-
carbamoyloxime moiety in AMCO was photolyzed on
irradiation at 366 nm. In this system, the amino moieties
generated by the photolysis of AMCO form urea linkages
by the reaction with isocyanato groups generated by the
thermolysis as shown in Fig. 21 [21].
Multi-functional O-acyloximes were applied to the
photo-crosslinking of poly(glycidyl methacrylate) (PGMA).
When the molar ratio of O-acyloxime moieties to epoxy
groups was equal, PGMA films containing 18 required
lower irradiation energy, and final insoluble fraction was
er Science 34 (2009) 194–209

higher than those containing 17, indicating the advan-
tage of difunctional PBG than monofunctional one as a
crosslinker. Trifunctional O-acyloxime 19 also showed a
higher ability as a crosslinker of multi-functional epoxy
compounds. Blended films of PGMA with AANO-MA-AANO
triblock copolymer 20 showed a higher degree of insolubi-
lization on irradiation followed by heating than those with
corresponding random copolymers.

Although crosslinked polymers have excellent ther-
mal and mechanical properties, their recycling is difficult
because of insoluble and infusible characters. Recently, con-
trolled de-crosslinking of photo-crosslinked polymers has
been studied [103]. Fig. 22 shows photo-crosslinking with
the de-crosslinkable property by using a PBG. Films of an
oligomer bearing epoxy groups 57 containing a PBG became
insoluble in THF on irradiation and heating at 100–160 ◦C.
The insolubilization was due to the network formation by
the addition reaction of epoxy groups and photochemically
generated amine. The crosslinked films became soluble in
methanol on heating at 180–200 ◦C [104,105].

3.5. PBG containing polymers for patterning applications

Irradiation of a selected area of polymer films bear-
ing photobase-generating groups allows the patterning of
some functional materials including dyes, biomolecules,
and nanoparticles.

Dyes are often selected as a functional material.
Chae and coworkers demonstrated the diazotization of
pendant amino groups generated photochemically [17]. O-
Carbamoyloxime moiety in 58 in Fig. 23 was transformed
into amino group on irradiation and then diazonium salt
moiety. Coupling reaction of the diazonium salt moiety
with resorcinol and naphthol AS gave yellow and red col-
ored patterns, respectively.

Fluorescence dyes are also used as the other functional
material to give fluorescent images. Irradiated poly-
mer 59 bearing 3,4-dimethoxy-6-nitrobenzyloxycarbonyl
(NVOC)-protected amino groups was functionalized with
fluorescein isothiocyanate [106]. A similar fluorescent pat-
terning using fluorescamine was reported [22].

The patterning ability of polymers bearing photobase-
generating groups was applied to the selective immo-
bilization of antigens and antibodies using polyacry-
lamide gels bearing o-nitrobenzyl carbamate moieties 60
[107]. After irradiation, generated amino groups were
reacted with 2,4,6-trinitrobenzenesulfonic acid to produce
orange trinitrophenyl derivatives. Due to the affinity of
tetramethylrhodamine-labeled anti-dinitrophenyl rabbit
immunoglobulin (�-DNP-TRITC-IgG) to the trinitrophenyl
moiety, irradiated area showed fluorescent patterns.
Furthermore, 125I-labbeled �-DNP-TRITC-IgG was also pat-
terned successfully.

The patterning of proteins was accomplished by using
a copolymer 61 bearing photochemically base-generating
groups [108]. It was confirmed that a protein, AlexaFluor

546 labeled chicken immunoglobulin (IgG), was adsorbed
only on non-irradiated area of 61 films. This was due to
the nature of the protein which tends to be adsorbed on
hydrophobic surfaces. On the other hand, laser ablation by
pulsed N2 laser at 337 nm produced the scission of poly-
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Fig. 21. Highly sensitive crosslinking system utilizing photo- and thermal-reaction of O-carbamoyloxime moieties.

Fig. 22. Crosslinking and de-crosslinking system by using PBG and thermal decomposition units.

Fig. 23. Polymers bearing photobase-generating groups used for patterning.
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tochem
Fig. 24. Dyeing of polymers bearing pho

mer backbone and side-chains and finally rough surface
of the films. When the surface modified polymer films
were treated with bovine serum albumin (BSA) solution,
the BSA was adsorbed onto the ablated area, producing a
positive-tone protein feature. The patterned protein was
further utilized for selective recognition of anti-chicken IgG
by selective antibody–antigen recognition.

PBGs are also used in the formation of nanoparti-
cle assemble on substrates [109]. A glass slide treated
with 3-aminopropyldimethylethoxysilane was modified by
nitroveratryloxycarbonylglycine to give NVOC-terminated
sample surface. Patterned exposure of UV light afforded
the selective deprotection of the NVOC groups to gen-
erate amino groups. The glass slide was dipped in a
solution containing gold nanoparticles capped with 12-
aminododencane. The gold nanoparticles could be bound
to the irradiated area by ligand exchange reactions.

3.6. Combination with PAGs

Several examples of simultaneous use of PBGs and PAGs

have been reported. Polymers bearing both O-acyloxime
and iminosulfonate moieties in side-chains were used as
photoresists for a surface imaging [110,111]. Here, a flood
exposure at 254 nm generated sulfonic acid units at whole
surface of the sample film. Then, a patterned exposure at
ically acid- and base-generating groups.

146 or 193 nm was conducted to generate amino groups.
When the sample was exposed to alkoxysilane vapor,
polysiloxane was formed at the patterned exposure areas.
Resulting polysiloxane layer showed a good plasma etching
resistance, giving a negative-tone pattern.

The dissolution behavior of polymeric systems con-
taining both photoacid- and photobase-generating groups
was investigated [112]. The dissolution of the copolymer
of acetophenone O-acryloyloxime (AAPO) and MMA was
enhanced by the addition of low molecular weight PAGs on
irradiation. A similar enhancement behavior was observed
for the copolymer bearing o-nitrobenzyl-protected car-
boxyl groups in the presence of additive PBGs, probably due
to the formation of ionic pairs that improved the solubility
of the film matrix.

The dyeing of polymers 62 and 63 showed characteris-
tic dyeing behaviors as shown in Fig. 24 [113]. A polymer
bearing only photobase-generating groups was dyed with
an acid dye after irradiation even though the dye bath
contained both an acid and basic dyes. In the same condi-
tion, a polymer bearing only photoacid-generating groups

was dyed with a basic dye. However, 62 became dyeable
with the acid dye after a short period of irradiation and
with the basic dye after a longer irradiation time due to
the formation of amino groups prior to acid generation.
When 63 was irradiated, both sulfonic acid group and
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mino group were generated simultaneously. Due to the
ormation of strong acid groups, basic dye was adsorbed
referentially. Imaging of color patterns using these poly-
er films was successfully performed in a single staining

rocess.

. Conclusions and perspectives

Recent progress of PBGs and their new applications are
emonstrated. Some studies regarding PBGs are focused
n the improvement in thermal stability, solubility in
rganic solvents, multi-functionality, and photosensitivity.
hese improvements made the PBGs more stable and eas-
er to handle. In addition to the improvement in classical
BGs, new classes of PBGs have been reported such as
mineimides, �-aminoketones, aromatic ureas, and novel
midine precursors. These include new concepts of PBGs
hat are based on the control of steric shielding and photo-
riggered pKb jump. However, these advances are not
atisfactory as a catalyst in many applications, and further
evelopment in molecular design and new concept of base-
eneration is desired.

The application field of PBGs has been expanding in
his decade. The advances in photo-induced polymeriza-
ion, depolymerization, crosslinking and decrosslinking by
sing PBGs opened a window for new fields of polymer syn-
hesis and degradation. The application of PBGs to imaging
f proteins and other biologically important molecules has
een advanced and will be extended in the future because
f the importance of photo-induced generation of amino
nd analogous nitrogen-containing basic groups. Although
BGs have not been used in modern lithographic tech-
ologies, there may be a possibility as a photo-sensitive
omponent as used in electron beam lithography [114].

Considering the unique characteristics and potential-
ty in many applications, the development of PBG will be
ontinued. Recently, several reviews and books on photo-
ase generators and their applications have been published
115–122].
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