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Preface

The subject matter of this book describes the coming together of two fields
of science, with histories stretching back to the middle of the twentieth
century, that have only united in its closing years. Particle electrokinetics —
the manipulation of particles, particularly with nonuniform electric fields —
was first studied in significant depth by Herbert Pohl in the 1950s and
beyond. Since then, it has become a tool for manipulating, separating, and
studying all manner of objects on the scale of one micron or above, most
particularly in the study of biological cells by, among others, Nobel laureate
Albert Szent-Györgyi. Nanotechnology’s origins are difficult to trace, but
they can be attributed in concept to a talk by another Nobel laureate, Richard
Feynman, who described the concept of building machines capable of
manipulating objects on the nanometer scale. Over the last few years, the
field has grown into a multi-billion-dollar industry driven by the constant
scaling down of electronic devices and the promise of fantastic science-fiction
outcomes such as nanosized robots swimming around the bloodstream and
repairing cells from within. In the early 1990s, these two fields finally met
at a laboratory in Japan, with the manipulation of DNA and protein mole-
cules by Professor Masao Washizu and colleagues. The intervening period
has seen the development of the field into a mature technology where
researchers can trap single viruses, stretch DNA molecules, and build nano-
circuits using molecular components.

The aim of this book is to give a comprehensive description of how
electrokinetic techniques can be used to manipulate particles on the nano-
meter scale. The subject matter can truly be described as interdisciplinary; it
offers benefits to groups as diverse as colloid chemists, virologists, electronic
engineers, and biophysicists. A nanoparticle suspended in liquid behaves in
much the same way whether it is of interest to a biologist — as a fragment
of DNA would be, for example — or an engineer making devices with
nanotubes. That behavior is dictated by a mix of electronics, physics, and
chemistry. Since practitioners from any of these disciplines may find some-
thing here of use, I have tried to make this book’s scope as broad as possible;
it deals with everything from manipulating molecules to determining the
biophysical state of virus membranes and from separating particles to
examining hypothetical nanometer-scale motors that look at how electro-
mechanical forces might be applied in the future.
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The structure of this book is loosely divided into three sections. The first
three chapters deal with the background, including a historical review of the
subject, a review of electrokinetic theory, and a brief introduction into the
science of colloids and surfaces. The following four chapters deal directly
with the manipulation of nanoparticles; these increase in complexity from
simple solid spheres to hypothetical nanomachines, and the theories in the
first three chapters are developed and applied to these specific cases. Then,
in the final four chapters, the practicalities of the subject are discussed. Here
the reader can find how-to descriptions of building particle separators, elec-
trodes, and laboratories on a chip; simulating electric fields; and analyzing
data for mathematical methods.

The book is aimed at final-year undergraduates and graduate students,
as well as researchers and the curious; however, since the field (as is evident
from the title) is assumed to be quite interdisciplinary, I have attempted to
introduce concepts such as electric fields from the ground up, building to
derivation of the dielectrophoretic force equation and beyond. Similarly,
I have introduced viruses and proteins assuming no prior knowledge of their
structure. The mathematics involved is not too complex, rarely involving
anything more complicated than basic calculus or cross-products, although
complex numbers are used throughout. Those wishing to use this book to
teach a course should feel free to adapt it to fit the interests and background
of their target audience; for example, they may wish to make Chapter 11 a
practical session rather than a lecture. 
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chapter one

Movement from electricity

1.1 Introduction
It has been known since the discovery in antiquity that electrostatic inter-
actions between objects (such as a rubbed material picking up small items)
can induce a force, either attractive or repulsive. In the intervening millennia
(but mostly in the last few years) we have learned to use this force to actuate
printers and hence produce the written word, to separate and sequence
strands of DNA and hence diagnose diseases, to flip mirrors the size of blood
cells and hence make data projectors work. The list is endless. Furthermore,
as the size of the object being manipulated is decreased, so electrostatic
interactions become one of the dominant forces acting on the object. This is
important, since the manipulation of ever-smaller objects has increasingly
become the cornerstone of technological development. Technology has only
recently begun to allow mankind the ability to exert its will over particles so
small they may consist of a single molecule, thus allowing us the ability to
manipulate, structure, and construct, or to study, discriminate, and separate,
the fabric of materials on the level of the molecules from which those materials
are made, or the fundamental biological structures that make life work.

Nanoelectromechanics — from the Greek nanos (dwarf), electro (from the
goddess Electra, believed in ancient times to be the source of electric charge),
and mechanics (the study of forces and their effects on bodies) — is the study
of forces exerted on small objects, nanometer-scale particles such as viruses,
proteins, nanotubes, and DNA, by the application of electric fields. These
studies occupy the space between the quantum world of atoms and the
microscopic world of cells, the space that contains nanometer-scale particles,
which possess complex properties in both how they work and how they
interact with their environment. Moving particles with precision on such
scales requires new challenges to be overcome and new insights into the
physics of the interaction between electric fields, nanoparticles, and the
molecules that surround them. This book will examine, in language accessible
to engineers, physicists, and biologists, how these factors can be addressed
to use nanodynamics both as an investigative tool, for example in studying

© 2003 by CRC Press LLC



2 Nanoelectromechanics in Engineering and Biology

the interiors of single viruses without harming them, or as a manipulation
tool for nanoparticle separation or molecular manufacturing. This book is
concerned with the application of nanomanipulation to present and future
problems in nanoscale engineering, physics, chemistry, and biology. The
manipulation of particles on the nanometer scale is a key technique in the
exploitation of nanotechnology, and this book will study the nanodynamics
of nanotechnological devices such as molecular motors and computers.

These disparate fields all need to perform the same tasks — to selectively
identify, manipulate, and separate molecules and other nanoparticles from
solution. This book will review the current techniques available for this
purpose, presenting the range of techniques being developed but concentrat-
ing on electrostatic techniques, which dominate the field. This book describes
the first major application of what is commonly referred to as nanotechnology
(the precise manipulation of nanometer-scale structures) and its use in micro-
biology, biochemistry, and nanoelectronics. For example, many major tech-
nology companies have described the biochip market as the key technology
industry of the twenty-first century. Such a market will require miniaturized,
analytical methods of identifying and separating proteins, DNA, viruses, and
other nanomaterial. Similarly, drug companies and forensic scientists need
devices to provide rapid biochemical analysis of tiny samples. At the same
time, molecular technologists require methods to position components such
as nanowires and fullerenes to form molecular diodes and transistors.

A number of approaches have been taken to the study of the dynamic
interactions between moving objects on the molecular scale, which form the
basis of the science of molecular dynamics. The work presented in this book
concentrates firmly on the scale of the macromolecular and the supramolec-
ular — larger molecules, of the orders of nanometers across and larger —
and nanometer-scale objects consisting of many molecules, such as colloids,
viruses, and nanowires (as shown in Figure 1.1). Similarly, there are a number
of different approaches that may be taken to impart force to nanometer-scale
objects with high precision. These have included the manipulation of atoms
on a dry surface using atomic force microscope tips or the manipulation of
molecules in suspension using a focused laser. However, one method of
precision manipulation has demonstrated great potential for trapping, posi-
tioning, or studying nanometer-scale particles; this is the manipulation by
controlling the electrostatic interactions between an object and its environ-
ment — a science known variously as electrokinetics, electromechanics, and
the study of ponderomotive forces. From its origins in antiquity, the subject
was first explored mathematically in the eighteenth century and was later
described by luminaries such as James Clerk Maxwell but was the subject
of significant study only in the latter part of the twentieth century for the
study of micrometer particles such as biological cells — and subsequently
submicrometer particles such as those described here. In particular, this
book will focus on the manipulation of particles using magnitude-variant
or phase-variant electric fields, generally known (since the early 1990s) as
AC electrokinetics.
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Chapter one: Movement from electricity 3

1.2 The promise of nanotechnology
Taniguchi1 invented the term nanotechnology in 1974 to describe the preci-
sion machining of surfaces. Since then it has grown to encompass a vast
array of different technologies and sciences. Nanotechnology first caught the
attention of the general public in 1986, when K. Eric Drexler published the
popular-science book Engines of Creation,2 in which he described how
machines, micrometers across, operating with atomic precision might one
day revolutionize the world; these ideas were explored with considerable
rigor in Drexler’s second work on the subject, Nanosystems: Molecular Machinery,
Manufacturing and Computation.3 In fact, such ideas can be traced back to
Nobel laureate Richard Feynman, who first produced these ideas in his
lecture “There’s Plenty of Room at the Bottom” in 1960.4 In this, he consid-
ered the idea that by developing a scalable manufacturing system, a device

Figure 1.1 A diagram showing the relative sizes of a range of particles on a logarithmic
scale. Particles in the nanometer range, between 1 nm and 1,000 nm, demonstrate
particular properties separate from those of bulk matter (on the micrometer scale)
and individual small molecules (on the atomic scale). This book is concerned with
the manipulation of particles on this scale.
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4 Nanoelectromechanics in Engineering and Biology

could be made that could make a miniature replica of itself, which could in
turn replicate itself in miniature, and so on down to molecular scale. He later
revisited the subject in a subsequent lecture, “Infinitesimal Machinery” in
1983,5 in which he postulated the now-famous idea of swimming machines
in the human blood stream repairing damaged tissues, an idea he attributed
to Al Hibbs.

However, since these works came to prominence, the subjects encom-
passed by the term nanotechnology have grown immeasurably; this is
because, on many different levels, scientists have been manipulating objects
on a molecular level for many years. For example, at a fundamental level,
chemistry is the original nanotechnology, where custom molecules are deliv-
ered to order. Similarly, materials science often relies on molecular-scale
arrangements of different materials in order to control specific properties of
the ensemble. In recent years, microscopists have discovered that scan-
ning-probe microscopes such as the atomic force microscope (AFM) can be
used to push atoms around a surface.6 And beyond this, nature itself has
over billions of years provided us with examples of what can be achieved
by developing rotary motors (functionally the same as electric stepper motors)
nanometers in diameter to provide locomotion to swimming bacteria, linear
motors to provide the basis for our muscles, and a method of data storage
and retrieval powerful enough to describe a complete living entity, but
compact enough that a complete copy resides on a molecular punch tape
2-nm wide inside almost every cell in the body: DNA.

With so many applications for the term, a new definition for nanotech-
nology needs to be formed that encompasses them all without being so
general as to be meaningless; one current definition is the study of structures
with at least one dimension on the nanometer scale. Even the definition of nano-
meter scale (or nanoscale for short) is vague, with the threshold between
micrometer scale and nanometer scale falling either at 30 nm (the halfway
point between the two on a logarithmic scale) or 100 nm (where 0.1 µm is
considered sufficiently submicrometer to warrant the nanoscale label); often
objects with minimum dimensions of 2–300 nm are considered, especially
where they form part of a family of objects that extends downward in size;
for example, herpes simplex viruses are over 200 nm in diameter but are
still applicable here since they represent the largest of viruses, a class of
organism that extends downward in size to some examples that are only
5 nm in diameter.

Where, in a subject so broad as to contain a hundred volumes, does this
book fit in? As stated previously, it is concerned with the manipulation of
particles on the nanoscale using the force that is most dominant at this scale,
that of electrostatics. Drexler has divided the methods for the manipulation
of nanoscale particles (nanoparticles) into two categories: top down, where
larger devices are used to move smaller ones, and bottom up, where small
structures self-assemble into larger ones. Here we will examine the applica-
tion of electrostatic interactions with particles in solution, for the manipula-
tion and assembly (and in some cases, self-assembly) of nanoparticles. The
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Chapter one: Movement from electricity 5

techniques can be used either as tools for assembling particles (that is, for
engineering) or for the determination of the electrical properties of the parti-
cles being investigated. Since there are many biological objects on this scale
whose biophysical state cannot be determined by any other means, a section
of this work is devoted to the study of viruses and macromolecules, and
methods of devising integrated systems for detecting and separating them in
so-called laboratories on a chip. Hence, we have the study of nanodynamics
in engineering and biology.

1.3 Electrokinetics
As stated previously, electrostatic forces can manifest themselves in a large
number of forms and have a large number of applications. However, in this
book we will be dealing specifically with those forces experienced by sub-
micrometer-scale particles that we have the ability to control — these are
the forces that relate to the interaction between particles and an electric field
that we may choose to apply. The best known of these is electrophoresis, a
force imparted on a charged object due to the attraction between the elec-
trode and the charges on the particle, causing the particle to move toward
the electrode of opposite polarity. Electrophoresis was developed in the late
1930s by Arne Tiselius7 of Uppsala University in Sweden for the physical
separation of colloidal mixtures and later proteins; he was awarded the
Nobel Prize for chemistry for this in 1948. The principle of electrophoresis
is that charged particles move through a nonmoving liquid in an electric
field at a speed proportional to their size and electrical charge, although
typically one selects separation to be principally dictated by one or the other
by careful choice of experimental conditions (such as pH and medium vis-
cosity). Two-dimensional electrophoresis techniques actually allow for sepa-
ration according to both parameters (or indeed, combinations of other param-
eters) independently with, for example, electrical charge being first applied
as a classifier along one axis and then particle size being the classifier along
the other. Controlled electrophoresis experiments require the application of
an electric field that acts in one direction only. Furthermore, it should have
constant electric field magnitude, known as a direct-current (DC) electric
field, such that particles maintain a constant velocity independent of time
or position on the matrix. Since the magnitude and direction of the force are
proportional to the applied electric field, an alternating (AC) electric field
would cause the particle to wobble around an axis but not move from that
average point over time.

Although electrophoresis is an important force for the manipulation of
nanoscale particles such as proteins and DNA, it has somewhat less promise
for the precise manipulation of particles on this scale; it operates best on
larger scales such as the now-famous stripes of DNA electrophoresis gels
commonly used in medicine and forensic science for the determination of
identity. For our study here, we require forces that are capable of manipu-
lating submicrometer particles on at least a scale of the order of a few
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6 Nanoelectromechanics in Engineering and Biology

micrometers. In order to achieve this, another class of electrokinetic methods
can be introduced.

The second of these electrokinetic forces, known as dielectrophoresis, is
the translational motion of particles induced by polarization effects in non-
uniform electric fields, described in some detail in texts by Pohl,8 Jones,9 and
Zimmermann and Neil.10 Certain types of particle, when subjected to an
electric field, will polarize; the inherent charges separate and form a dipole
(and, as described in Chapter 2, higher orders such as quadrupoles and
octopoles, though they only contribute significantly under certain circum-
stances). The poles interact with the electric field and generate electrostatic
forces. If the field is nonuniform, the greater electric field strength across one
side of the particle means that the force generated on that side is greater
than the force induced on the opposing side of the particle and a net force
is exerted toward the region of highest electric field. Moreover, this force
will act toward the region of greatest electric field regardless of the orientation
of the electric field and will thus also be present when an AC electric field is
applied between the electrodes. This motion of the particle is termed positive
dielectrophoresis. However, if the particle is suspended in a medium more
polarizable than it, the electric field will be distorted around the particle, the
induced dipole will orient in the opposite direction, and the force on the
particle will be directed away from the high-field regions toward the
low-field regions. This motion is referred to as negative dielectrophoresis. The
polarizability of the particle and medium is dependent on the frequency of
the electric field, and it is possible for a particle to experience either positive
or negative dielectrophoresis according to the frequency of the applied elec-
tric field. This is because the orientation of the dipole depends largely on
the accumulation of charge on either side of the particle/medium interface
(called a Maxwell–Wagner interfacial polarization). The relative amount of
charge accumulated depends on the impedance of these materials and hence
the frequency of the applied field. As frequency changes, the relative dielectric
behavior of the particle and medium change; in a given frequency window
(called the dielectric dispersion), the net behavior of the system changes from
being dominated by the particle to being dominated by the medium, and
the particle goes from experiencing positive dielectrophoresis to experienc-
ing negative dielectrophoresis.

Dielectrophoresis is commonly referred to as a component of AC electro-
kinetics, but this title is misleading; it can be observed equally in AC and
DC fields. Strictly speaking, AC electrokinetics describes the interactions
between an electric field and an induced dipole in the particle rather than
its inherent charge, not necessarily implying use of AC fields. These inter-
actions are due to different principles than those governing electrophoresis,
and a particle may experience both DC electrokinetic (electrophoretic) and
dipolar forces simultaneously. However, since the use of AC fields causes
the electrophoretic force to average to zero, AC electrokinetics also describes
the only forces acting when AC electric fields are used.
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Chapter one: Movement from electricity 7

There are a number of early observations of the dielectrophoretic force;
among the first experimental observations of the motion of particles in non-
uniform electric fields were undertaken by Hatschek and Thorne11 in the study
of nickel suspended in toluene and benzene. The phenomenon was named
dielectrophoresis by Herbert Pohl in 1951,12 who later published an in-depth
treatise on the subject in his 1978 book Dielectrophoresis.8 Pohl’s work advanced
the use of dielectrophoresis for investigating the properties of suspensoids
and for providing a means of separating particles from suspension. Similar
investigations have been conducted using a frequency-based examination of
dielectrophoretic response of populations of cells (e.g., Gascoyne et al.13 and
Kaler and Jones14), yeast (e.g., Pohl and Hawk15 and Huang et al.16), and
bacteria (e.g., Hughes and Morgan17), including work by Nobel laureate Albert
Szent-Györgyi. Practical applications of dielectrophoresis have included the
collection of cells for cellular fusion in biological experiments.18–20

Positive and negative dielectrophoresis has been used to separate mix-
tures of viable and nonviable yeast cells15,21 and mixtures of healthy and
leukemic blood cells.22 Work by Rousselet et al.23 and others applied dielectro-
phoresis to the induction of continuous linear motion of particles, expanding
on the basic concept of dielectrophoresis as a means of trapping particles in
a specific region in space. An important class of electrokinetic particle manipu-
lator is the levitator — a device used to propel a particle against gravity,
resulting in it hovering in midsolution (or midair) at a height governed by
its dielectric properties, allowing those properties to be measured, and allow-
ing those particles to be selected and trapped.24,25 Early experiments used
electric fields generated by (relatively) large electrodes and high voltages to
trap particles (as described by Pohl8); more recently, electrode structures have
been fabricated using techniques borrowed from the computer industry (e.g.,
Huang et al.,16 Markx and Pethig,21 and Rousselet et al.23) to manipulate
much smaller particles at much lower voltages; we will look at the applica-
tions of this to nanoparticles in Section 1.4.

Another form of electrokinetics is that of electrorotation, the continuous
rotation of particles suspended within rotating electric fields; although this
phenomenon produces quite different particle behavior than dielectrophoresis,
the two are closely related in origin.26,27 Cell rotation was observed and
reported by experiments on AC dielectrophoresis (e.g., Teixeira-Pinto et al.28)
and was later suggested to be the result of the dipole–dipole interaction of
neighboring cells.29 This led Arnold and Zimmerman30 to the principle of
suspending single particles in a rotating field and thus to a more amenable
means of studying the phenomenon. Electrorotation occurs when a dipole
is induced by a rotating electric field. The dipole takes a finite time (the
relaxation time) to form, by which time the electric field has rotated slightly.
There is a lag between the orientation of the electric field and that of the
dipole moment, and thus a torque is induced as the dipole moves to
reorient itself with the electric field. Owing to the continuous rotation of
the electric field, the torque is induced continually and the cell rotates. The
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direction of rotation is determined by the angle between the dipole moment
and the electric field; if the phase lag is less than 180˚, the particle rotation
will follow that of the applied field, referred to as cofield rotation. If the
phase angle is greater than 180°, the shortest way in which the dipole can
align with the electric field is by rotating in a contrary direction to that of
the electric field, and hence particle rotation will act in this direction
(antifield rotation). As with dielectrophoresis, the rate and direction of cell
rotation is related to the dielectric properties of both the particle and the
suspending medium. The technique can thus be used as an investigative
technique for studying these properties. Electrorotation has been used to
study the dielectric properties of matter, such as the interior properties of
biological cells and biofilms (e.g., Arnold and Zimmermann31 and Zhou
et al.32). As with dielectrophoresis, electrorotation is commonly listed in
AC electrokinetics. A DC version (called Quinke rotation9) does exist;
however, this is far more likely to be observed as a result of other work
than specifically used for analysis.

The final example of electrokinetics discussed here is that of traveling-wave
dielectrophoresis. The phenomenon was first reported Batchelder33 and sub-
sequently by Masuda et al.,34,35 where the electric fields travel along a series
of bar-shaped electrodes where low frequency (0.1 Hz to 100 Hz) sinusoidal
potentials, advanced 120˚ for each successive electrode, were applied. This
was found to induce controlled translational motion in lycopodium
particles35 and red blood cells.27 At low frequencies, the translational force
was largely electrophoretic, and it was proposed that such traveling fields
could eventually find application in the separation of particles according to
their size or electrical charge. However, later work by Fuhr and co-workers,36

using applied traveling fields at much higher frequency ranges (10 kHz to
30 MHz), demonstrated the induction of linear motion in pollen and cellulose
particles and also demonstrated that the mechanism inducing traveling
motion at these higher frequencies is dielectrophoretic, rather than electro-
phoretic, in origin. Since then, Huang et al.37 and others have, for example,
used traveling fields to linearly move yeast cells and separate them from a
heterogeneous population of yeast and bacteria.

Traveling-wave dielectrophoresis is effectively an extension of the principle
of electrorotation to include a linear case. An AC electric field is generated
that travels linearly along a series of electrodes. Particles suspended within
the field establish dipoles that, due to the relaxation time, are displaced from
the regions of the high electric field. This induces a force in the particle as
the dipole moves to align with the field. If the dipole lags within half a cycle
of the applied field, net motion acts in the direction of the applied field, while
a lag greater than this results in motion counter to the applied field.

The means by which the nonuniform, time-variant electric fields
described in this book may be generated should be noted. The bulk of the
work described here employs microelectrode structures of one form or
another; however, the same effects are generated when a focused beam of
electromagnetic radiation is used on an object. For example, an object (on the
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micrometer scale or smaller) exposed to a laser beam will experience two
forces. The first is optical pressure, where light is diverted through a trans-
parent object (causing the particle to move toward the center of the beam)
or away from an opaque object (causing it to be deflected away from the
center of the beam). The second force is the gradient force, caused by inter-
actions with the gradient of light within the laser beam. This second effect
is not just an analog of dielectrophoresis, it is the same effect, actuated
through a different means of electric field delivery and using electric field
frequencies many orders of magnitude higher than those described for
dielectrophoretic forces. Furthermore, it has been shown that through the
use of rotating light modes within the laser, it is actually possible to spin
the particle, in a direct analogue of electrorotation. These phenomena are,
like dielectrophoresis, gaining acceptance for use both in nanomanipulation
and in biological investigation; the common terms for the optical equiva-
lents of dielectrophoresis and electrorotation are “laser tweezers” and “laser
spanners,” respectively.

Of the methods of inducing forces with electric fields described here —
electrophoresis, laser tweezers, and the forces coming under the umbrella
term of AC electrokinetics — the former two are already covered by existing
literature; in particular, electrophoresis is an extensively used tool through-
out modern biochemistry, and many volumes already exist to cover it and
its subsidiary techniques, such as capillary electrophoresis. Similarly, those
wishing to learn more about the applications of laser tweezers may read
books such as Sheetz’s.38 However, in this book we will still encounter both
these techniques where they impinge on the study of AC electrokinetic
techniques, since at the nanometer scale there is considerable overlap
between them.

1.4 Electrokinetics and nanoparticles
We have seen that AC electrokinetic techniques such as dielectrophoresis
and electrorotation4,5 have been used for many years for the manipulation,
separation, and analysis of objects with lengths of the order 1 µm–1 mm in
solution. Since the force experienced by a particle undergoing dielectro-
phoresis scales as a function of the particle volume, it was believed for many
years that a lower threshold of particle size existed, below which the dielectro-
phoretic force would be overcome by Brownian motion. It was held that to
increase the force would require electric fields of such magnitude that local
medium heating would increase local fluid flow, again acting to prevent
dielectrophoretic manipulation. Since electrode fabrication techniques were
relatively crude, generating electric fields of sufficient nonuniformity
required very large potentials to be applied across relatively large inter-
electrode volumes, and consequently particles with diameters less than
about 1 µm could not be trapped. Indeed, Pohl8 speculated that particles
smaller than 500 nm would require excessively large electric fields to trap
against the action of Brownian motion.
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However, with the use of very small electrodes (usually formed by
top-down methods), it is possible to generate electric fields with such complex
local geometry that the manipulation of single molecules in solution becomes
achievable — and these fields can be manipulated so that the particles can
be steered across the electrodes and used to assemble miniature electric cir-
cuits.39 Recent advances in semiconductor manufacturing technology have
enabled researchers to develop electrodes for manipulating proteins,40,41 to
concentrate 14-nm beads from solution,42 or to trap single viruses and
93-nm-diameter latex spheres in contactless potential energy cages.43

The first group to break this threshold was that of Washizu and co-workers,40

who used positive dielectrophoresis to precipitate DNA and proteins as
small as 25 kDa. This step downward in size was accelerated by improve-
ments in technologies for electrode fabrication, principally the use of electron
beam fabrication. This renewed interest in manipulation of submicron par-
ticles, and subsequent work by Schnelle et al.,44 Müller et al.,45 Morgan and
Green,46 and Green et al.,47 demonstrated that viruses of 100-nm diameter
could be manipulated using negative dielectrophoresis. It was also demon-
strated by Müller et al. that latex spheres of 14-nm diameter could be trapped
by either positive or negative dielectrophoresis.42 Subsequent work by
Hughes and co-workers demonstrated that by varying the frequency of the
applied electric field, herpes viruses can be trapped using either positive or
negative electric fields.43 Another study demonstrated that molecules of the
68 kDa-protein avidin can be concentrated from solution by both positive
and negative dielectrophoresis.49

The most obvious nanotechnological application of this technique is in
the concentrating of parts of molecular machinery to one site. This was
suggested by Hughes50 shortly before the first demonstration of the tech-
nique by Huang et al.51,53 and Cui and Lieber,52 who used dielectrophoretic
assembly to construct nanoscale circuits using semiconductor nanowires.
Similar techniques were used by Velev and Kaler54 to construct microscopic
biosensors from solution by stacking particles of different types and to
self-assemble nanowires from colloids.55 Self-assembling computers using
nanocomponents manipulated by electrokinetic forces is perhaps a long way
off, but its prospects appear good. Electrokinetic techniques are simple and
cheap and require no moving parts; they rely entirely on the electrostatic
interactions between the particle and dynamic electric field.

1.5 A note on terminology
The intention of this book is to draw together a series of effects caused by
the interactions of electric fields and the dipoles induced in particles exposed
to these fields, which result in the induced motion of those particles. The
phenomena described include dielectrophoresis (by far the best known of the
group), electrorotation, traveling-wave dielectrophoresis, electro-orientation,
and so on. These techniques are collectively referred to as AC (alternating
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current) electrokinetics, to distance them from other effects such as electro-
phoresis and electro-osmosis; these are summarized in Table 1.1. However,
AC electrokinetics is something of a misnomer, since although we generally
use alternating (oscillating, rotating, or traveling) electric fields to manipu-
late particles, it need not actually be so; dielectrophoresis can take place with
either an alternating or stable (DC) electric field. Some have attempted to
use other titles, such as electromechanics or electromanipulation, but these
are sufficiently broad to take in all the techniques described above, including
those dependent on the interaction of charges attracted to electrodes, such
as electrophoresis, which are beyond the scope of this text; we are specifically
concerned with the interaction of induced dipoles with an electric field. In
many ways, dielectrophoresis is perhaps the most fitting title for these
phenomena. Coined by Pohl in 1951, the term is derived from the Greek
word meaning to force, with the prefix dielectro- to remind us that the origin
of this force is dielectric and dipolar.

AC electrokinetic effects have been applied to the study of cells for some
considerable time; from the 1950s onward there has been a steady production
of scientific work where the techniques were employed in the investigation
of the dielectric — and by implication, biophysical — properties of cells and
other particles on the micrometer scale. However, it is only in more recent
times that the technology has been available to particles smaller than these
so-called “nanoparticles.” As with AC electrokinetics, there is some dispute
concerning the point at which particles can be said to be on the nanometer,
rather than micrometer, scale. For example, one might argue that the nano-
meter scale concerns measurements between 1 nm and 1 µm. Alternatively,
it could be argued that on a logarithmic scale, with 1 nm as its center,
nanometer scale might refer to particles smaller than 30 nm (the halfway
point between 1 nm and 1 µm). In order to circumvent this, we can define
our sphere of interest as particles that can be described as colloids — a term
originally used to describe particles for which Brownian motion is more
significant than sedimentation forces and that occupy a state between mole-
cules and bulk matter.

Table 1.1 A Summary of the Electrokinetic Forces That Can Be Exerted on Particles, 
Whether the Force Is Most Significant in AC or DC Fields, and the Origin of the Effect

Force AC or DC Origin

Electrophoresis DC Caused by charge in electric field
Dielectrophoresis AC/DC Caused by induced dipole in nonuniform field
Electro-osmosis AC/DC Caused by interaction between free charge in 

electrical double layer and tangential electric field
Electrorotation AC Caused by dipole lag in rotating electric fields
Traveling-wave

dielectrophoresis
AC Caused by dipole lag in traveling electric fields

Electro-orientation AC/DC Caused by interaction between dipole and
electric field
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Finally, a number of workers in these fields have adopted their own
abbreviation systems to refer to the techniques described here. For example,
some abbreviate the word dielectrophoresis to DEP, others to DP, some refer
to it as conventional dielectrophoresis and abbreviate it cDEP, while others
discriminate between the positive and negative forms by using pDEP or
+DEP, and nDEP or –DEP, respectively. In order to overcome confusion
arising from this, such terms have not been abbreviated in this book, except
where the abbreviation is so widely accepted as to be beyond confusion —
such as DNA, for example.
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chapter two

Electrokinetics

2.1 The laws of electrostatics
In order to understand the interactions between particles on the nanometer
scale, it is worthwhile to examine the underlying processes from which these
forces arise. The forces that we will later use for particle manipulation and
study form part of electromagnetics, that is, the study of the interaction
between electric charges; however, for charges of the size considered here,
we can disregard magnetic effect and concentrate on electric fields.

Electric charge is a fundamental quantity of subatomic particles, along
with mass and other forces that govern interactions between these particles.
Of most significance are the proton and the electron, which carry positive
and negative charges with values approximately 1.6 × 10–19 Coulombs (C).
Objects carrying equal numbers of protons and electrons are charge neutral;
those carrying an excess of one or other will be charged. Charged atoms and
molecules in a solution are called ions.

It is common knowledge that particles of opposite sign attract each other,
and opposite signs repel; electric charges can be either dipolar or monopolar
(or, indeed, have higher orders of poles), each pole can have either positive
or negative polarity. The way that the charges interact with each other can
influence this, even to the extent of inducing dipoles where none existed
previously. In order to examine this we must look at the fundamental aspects
governing electrostatics, beginning with Coulomb’s law.

2.2 Coulomb’s law, electric field, and electrostatic potential
As stated above, there is an attraction between opposing charge signs and
a repulsion between like charges. In 1785, the French scientist
Charles-Augustin de Coulomb (after whom the unit of charge is named)
determined that the magnitude and direction of this force was proportional
to the product of the magnitudes of the two charges multiplied together,
inversely proportional to the square of the distance between them, and acts
along the vector running through the centers of the charges. Subsequent
work has demonstrated that the force can be expressed mathematically as
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(2.1)

where Q1 and Q2 are the two charges, d the distance between them, r is the
unit vector directed from Q1 to Q2, (as illustrated in Figure 2.1), and ε is the
permittivity of the space between the charges; this is a quantity that describes
the way in which charges relate to one another through space. The permit-
tivity of free space, ε0, has the value 8.85 × 10–12 Farads per meter (F m–1). The
presence of matter between the charges increases the permittivity, as we will
see in the next section.

While Equation 2.1 is undoubtedly useful, it can only be applied success-
fully to combinations of two charges. In order to deal with large ensembles of
charges, we need to introduce another concept. Since each charge (let us say,
Q1) can be said to exert an influence on all other charges in proportion to
the magnitude of this charge and the other charge, we can split Equation 2.1
into the contribution of charge Q1 — which remains constant, regardless of
the other charges present — and the contribution of other charges, which
gives us the total value of force. Effectively, Q1 produces a force field that can
be plotted across space in the absence of any other charges, and it is the
interaction with that force field that produces the electrostatic force. This
force field is called the electric field, and can be defined such that Equation 2.1
can be rewritten thus:

(2.2)

The electric field is a vector quantity, having both magnitude and direction;
the magnitude decreases as the square of the distance from the charge, and
the direction of the field is either toward or away from the charge according
to whether the charge is positive or negative. Figure 2.2 shows the magnitude
and direction of the electric field due to a single positive point charge. Note
that we often represent electric fields with field lines indicating the direction
of the field (or rather, the lines along which another charge would move due

Figure 2.1 Two charges, a distance d apart along vector r, will experience a force in
accordance with Coulomb’s law. This force acts along vector r and is repulsive when
the charges are alike (as in the example here) or attractive when the charges are unalike.
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to the field); the proximity of the lines to each other gives an indication of
the magnitude of the field.

To consider the effect of many charges interacting, we can employ the
principle of superposition. This states that for a linear system, the total
response to a set of stimuli is equal to the combined sum of the responses
to each of the stimuli applied separately. In the context of our electric fields,
it means that the electric field at any point in a system of multiple charges
is equal to the vector addition of all the individual electric fields due to all
the charges; for example, Figure 2.3 shows the electric field patterns due to
two charges with like and unlike signs at close range.

Another important concept is that of electrostatic potential, defined as the
work done to move a unit charge between two points with different electric
field values. If we consider the force on a unit charge in electric field E, from
Equation 2.2 the force on the charge will be E, and the counterforce required
to maintain it in position is –E. The work done to move this a small distance
dl will be –Edl, and so the charge in electrostatic potential can be given by

(2.3)

If we integrate Equation 2.3 along the path between two points a and b, then
we obtain an expression for the electrostatic potential:

(2.4)

The electrostatic potential (units: volts) is a scalar quantity and is familiar to
those who have studied electronics. The relationship between the electric

Figure 2.2 A point charge will generate an electric field, such as the one shown above.
The electric fields lines travel from positive charges to negative charges (or to infinity
if no negative charges are present, as here). The magnitude on the electric field is
equivalent to the proximity of the field lines and is indicated here by the depth of
tone in the halo surrounding the charge.

dV dl= −E.

V V V dlb a= − − ∫ E.
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field and the electrostatic potential is perhaps best envisaged as the reverse
of Equation 2.4; that is, the electric field is the differential (i.e., the gradient)
of the potential. An analogy is that of a gravitational field; if one considers
the gravity field generated by the Earth, then the potential is equivalent to
the height above the center of the earth, and the electric field is equivalent
to the gradient of the surface. A particle (e.g., a ball) placed on the surface
of the earth (such as a hill) will roll down the hill in the same manner as a
charge being attracted toward a much larger charge in electrostatics, moving
between two potentials in the process. When illustrating the potential we
often use equipotential lines — these follow the contours of equal voltage
and always intersect the field lines due to the same charges at right angles.

Since the electrostatic potential varies in three dimensions, it is necessary
to determine the gradient in each direction in order to derive the appro-
priate vectors. If we consider the movement of a unit charge along a small
vector distance dl, then that distance dl can be expressed in terms of three
unit vectors:

(2.5)

Figure 2.3 Electric field lines are diverted by the presence of other charges; here we
see how the field lines are (a) bent toward one another when the charges have
opposite sign and (b) repelled when the charges have the same sign.

dl i k k= + +dx dy dz
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Similarly, we can express the electric field at that point in terms of its three
vector components:

(2.6)

Combining Equations 2.3, 2.5, and 2.6, the potential change along dl is

(2.7)

If we consider the x direction only and rearrange, we find

(2.8)

and similarly in the other two coordinate directions. Combining all three
coordinate components by superposition, we obtain

(2.9)

This can be written as

(2.10)

where ∇ is the gradient operator, given by the equation

(2.11)

The gradient operator (sometimes called the Del vector operator) is an
important concept that we will return to later.

2.3 Gauss’s, Laplace’s, and Poisson’s equations
We now introduce the concept of electric flux. This is a difficult concept to
visualize but is best explained by analogy; if the end of a pipe were immersed
in water, and more water pumped through the pipe, then the water emerging
from the end of the pipe would spread out in all directions; the rate of flow
through a defined surface at the end of the pipe is the electric flux through
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that surface. If we apply this analogy to electrostatics, the flux of an electric
field through an enclosing surface relates the electric field through the surface
to the total charge enclosed within the surface. Alternatively, we can describe
the flux as being related to the number of field lines through the surface,
such as those through the surface of sphere A due to an enclosed positive
charge in Figure 2.4. For the charge Q enclosed by a surface A, Gauss’s law
can be expressed as

(2.12)

where dA is a small element of the surface and ε0 is the permittivity of free
space. We can also express Gauss’s law in differential form:

(2.13)

where ρ is the total charge density (the number of charges per unit volume)
enclosed by the surface. If we substitute Equation 2.10 into the differential
form of Gauss’s law, then it follows that

(2.14)

This is known as Poisson’s equation for the potential. Where the total charge
density is zero, the expression reduces to Laplace’s equation,

(2.15)

indicating a constant electric field.

Figure 2.4 Gauss’s law determines the flux through a surface enclosing a charge; here
a sphere of surface area A encloses a positive charge, and the flux through the surface
is related to the field lines passing through that surface.
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2.4 Conductance and capacitance
2.4.1 Conductance and conductivity

We can now consider how the above principles apply to physical materials.
We are particularly interested in two factors in this instance, those being
conductance and capacitance. These are common terms for describing the elec-
trical properties of materials and will play an important role later on.

When an electrical potential is applied across a material, then free electrons
are in the material and these will move toward the positive potential. If the
material is also connected to a source of electrons, those will move to fill the
gaps left by the vacating electrons so that a continuous flow of electrons is
achieved. This process is called electrical conduction. The extent to which a
flow of electrons (an electrical current) can flow in an electrical field is
governed by the material property of conductivity, given the symbol σ and
the unit S m–1 (Seimens per meter). The lower the conductivity, the less able
the material is to conduct, owing to the inability of material to produce free
electrons (in a solid), the inability for free charges such as ions to move freely
through a liquid, or the lack of ions within a nonconducting liquid. The
inverse of conductivity is resistivity (units: Ω m, ohm meters). For m species
of free conducting particles of concentration n, with mobility µ and charge
q, the conductivity is given by the equation:

(2.16)

For a given potential, there will be a net drift of charged particles in the
electric field. We can define the current density, J, as the number of charges
passing through an area of 1 m2 per second. For an applied electric field E,
the current density is given by

(2.17)

While resistivity and conductivity are parameters that describe the way in
which a material interferes with an electrical current, they do not describe
the specific extent of the interference for a particular piece of that material.
In order to do this, we introduce terms to describe the way in which a piece
of material of specific size and shape will conduct electricity. These terms
are the commonly known parameters, resistance (symbol R), and its inverse,
conductance. At this point, we must address a discrepancy in convention
when discussing symbols. Electronic engineers use the symbol G to represent
conductance; chemists use the symbol K. Since the main use of conductance
in this book is in the study of surface conductance — a phenomenon studied
through the language of colloid chemists — I have elected to use K to
represent conductance, but other works do differ on this.
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Conductance relates the current to the applied potential through Ohm’s law:

(2.18)

where K is related to σ through the geometry of the conducting volume and
I corresponds to the charge per second moving through the material passing
through a cross-section of the material per second (the electric current). For
a cuboid containing a material of conductivity σ between two equipotential
planes, such as conducting plates, of area A and a distance d apart, such as
the one shown in Figure 2.5, the conductance is given by

(2.19)

If a cuboid of a second material with different conductance (e.g., K2) were
to be added after the cuboid (of conductance K1) — the term is in series —
then the resultant conductance can be derived from Equation 2.18. Since I
will be constant in both conductors (since the flow of charge from one
material will replenish charge in the other), we find that

(2.20)

Similarly, if the conductors are side by side, so that both have the same
potentials applied across them but can carry different currents, we find

(2.21)

Figure 2.5 A cuboid of material is placed between two conductive plates, which carry
voltages V+ and V– across their surfaces. The cross-sectional area of the plates is A;
they are a distance d apart.
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Materials that conduct well are referred to as conductors; those that do so
poorly are called insulators. However these terms are relative, and in this
book we are more likely to use these terms as adjectives, often compounded
(e.g., when describing a weakly conducting medium).

2.4.2 Capacitance
Having described materials that have a conductance, we now examine a
second parameter, that of capacitance (C, unit Farad). This term comes from
the electronic component known as a capacitor, so named because it has a
capacity to store charge. Ideally, capacitors have no conductance (or infinite
resistance). Instead, the potential across a capacitor is dependent on the ability
of the charge on one side of the capacitor to cause a countercharge to appear
on the opposing side. This occurs due to a mechanism known as polarization.

Polarization is the process of charge redistribution in an electric field,
such that positive and negative charges are centered in different places.
A capacitor at its simplest consists of two parallel plates similar to the ones
shown in Figure 2.5 (we will ignore the additional material between the
plates for the moment and will instead consider the gap to be filled with
vacuum). If we apply a potential across the plates (let us say +/–5 V), then
charge will accumulate on the plates due to the applied charge and associated
electric field. The –5 V plate will accumulate electrons across its surface, the
+5 V plate will lose them. Since between the plates there are now separate
accumulations of positive and negative charge, we have induced a dipole,
and the capacitor is polarized. The polarization process takes a finite time
to occur (and the charges take a finite time to accumulate), and, when the
potential is removed, it takes a finite time for the charges to return to their
equilibrium positions; this time is a characteristic of the system and is termed
the relaxation time.

The ability of a given capacitor to store charge in this manner is termed
its capacitance. The capacitance is related to the charge accumulated on a
capacitor’s outer faces, Q, and the applied potential, V, by the expression:

(2.22)

which we can consider as an analogy to Equation 2.18, but with resistance
replaced with capacitance, and static charge Q replacing moving charge I.
Indeed, we can carry the analogy further; using the same principles outlined
in Section 2.4.1, we can determine the value of series and parallel combina-
tions of capacitors, and indeed the results are similar; for example, capacitors
arranged in series will share a common charge along their joining faces, so
that from Equation 2.22 we can show that the total capacitance CT is given by

(2.23)
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We can determine the value of capacitance for two opposing faces at equi-
potentials, with a potential difference V, by considering the electric field
between the plates. Since there are induced charges on the faces at the
applied potential faces (let us say, Q+ and Q–, which are equal and opposite
and hence sum to zero), with those charges equally distributed across the
flat, parallel surfaces, we can assume that a uniform electric field will be
present between the plates. It can be shown from Gauss’s law (Equation 2.12)
that the electric field between two plates of cross-sectional area A containing
a material of permittivity ε 0 (and hence charge density Q/A) is

(2.24)

Let us say that, as in Figure 2.5, the cuboid has cross-sectional area A and
the distance between applied potentials is d. Since the applied voltage is V,
the applied electric field E is given by V/d. Combining this with Equations
2.24 and 2.22 and rearranging gives us

(2.25)

We can now consider the effect of putting an insulating material between
the plates. Since the material does not conduct charge, it will accumulate
countercharge along the faces adjacent to the capacitor places; the negative
charge accumulated along the one side of the capacitor will cause an accumu-
lation of positive charge in the adjacent face of the insulator, and the converse
will happen on the opposing side. This countercharge will have the effect of
altering the electric field between the plates by changing the net amount of
charge at either side of the capacitor. If the electric field in the absence of
the material is given by Equation 2.24, then with the material present the
electric field is reduced to

(2.26)

where Qm is the amount of countercharge accumulated at the surface of the
material. We can rewrite this as

(2.27)
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Rearranging, we can write

(2.28)

where εr is the relative permittivity of the material. Since Qm cannot exceed
Q, εr must be greater than or equal to 1. Relative permittivity is dimension-
less and carries no units; it effectively indicates the extent to which the
material has a greater permittivity than vacuum (which has a relative
permittivity of 1). Most dielectric materials (which may be solid, liquid, or
gas) have single figure relative permittivities (most gases have εr ~ 1); water
has an unusually high value of εr of 78–80 at room temperature. The
mechanism by which the above process occurs — that is, how the dielectric
material polarizes — is discussed in Section 2.5.

A note of caution about symbols is required here. Where a single ε
appears in this book with a subscript other than 0, it can be taken to mean
the total permittivity of the material to which the subscript refers, but when
comparing the values of permittivity it is more convenient to compare the
relative permittivity contribution to the total permittivity value.

The greater the relative permittivity of the material, the greater the effect
of charge redistribution and the longer the charges take to dissipate; thus, the
greater the effective “stored charge” and the greater the capacitance. For a
capacitor containing an insulating material (we refer to materials having the
ability to polarize as dielectric), the capacitance of the capacitor (previously
expressed in Equation 2.25) becomes

(2.29)

Note that in both Equations 2.19 and 2.29, the quantity (conductance,
capacitance) is related to an intrinsic property of the material (conductivity,
permittivity) multiplied by area and divided by distance. The closeness of
these two quantities will be important when we come to examine the reaction
of materials possessing both qualities later on; thus far we have considered
materials possessing only one or the other.

2.4.3 Impedance

One more, closely related, quantity to consider is that of impedance, Z.
Although a capacitor is in theory nonconducting, the accumulation of charge
on one plate and ensuing accumulation of charge on the other plate as a
function of the polarization of the material between them means that there
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is an effect on the flow of current beyond the capacitor. This is particularly
true where the applied potential is alternating; the charges accumulate in
alternating states of charge polarity, and the potential signal is passed
through. The relationship between the voltage and corresponding current
through a capacitor under these conditions is given by

(2.30)

When used in an AC circuit, the effect of the capacitor is similar to that of a
resistor in that it restricts the current flowing through the circuit for a given
value of applied voltage. However, the effect is more complex than resistance,
as can be seen from Equation 2.30; applying a sinusoidal input will produce
its differential, a cosinusoidal output. This change in phase compared to the
effect of a resistor of merely changing the value of the current leads us to the
idea that the resistive effect of the capacitor — called the reactance, X — is
the out-of-phase component of a more generic term, impedance, whereas
resistance (or conductance) represents the in-phase component. All have units
of Ω. The impedance of a capacitor with an AC signal of frequency f applied
is given by

(2.31)

where C is the capacitance. When combining resistance and reactance we
use the imaginary notation  to indicate the phase relationship
between reactance and resistance impedance

(2.32)

2.5 Polarization and dispersion
2.5.1 Dipoles and polarization

Polarization is the process of alignment of charge on a body such that the
positive and negative bound charges move in an electric field, resulting in
the centers of charge aligning along the field lines. One example of this is
the capacitor described above. Electrically neutral when no electric potential
is applied, the capacitor acquires opposing charges on opposite sides when
a potential is applied across it. This form of polarization — where materials
become polarized, with the formation of one region of positive charge and
another of negative (but without any net increase in charge) — is the form
most commonly dealt with here. This charge formation is referred to as an
induced dipole (“two pole”), although as we will discover later, higher order
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organizations of charge are possible. Figure 2.6 schematically illustrates the
key features of an example of a dipole — the magnitudes of the positive and
negative charges, and the distance between them.

Electric dipoles occur in many forms and at many levels, from the nano
to the macro. Many molecules possess permanent dipoles, where there are
fixed regions of positive and negative charge that are not entered at the
same point. One example of this is the water molecule that can be seen in
Figure 2.7. The water molecule is formed by a single oxygen atom joined to
two hydrogen atoms; the hydrogen atoms share their electrons with the
oxygen. This means that the oxygen atom gains electrons (negative charges)
over its neutral state and becomes negatively charged. The hydrogen atoms
lose their electrons and thus gain a net positive charge. Since the hydrogen
atoms are arranged on the same side of the oxygen atom, the center of the
positive charge is displaced from the negative charge; the positive pole is
moved apart from the negative pole and we have a dipole. This is what is
known as a permanent dipole; there is a permanent, fixed displacement
between the positive and negative charges. This is the reason for the high
value of relative permittivity for liquid water; since water is composed
entirely of dipoles that are free to rotate and align with an electric field, water
as a substance is highly polarizable.

Figure 2.6 An electrostatic dipole is formed by two physically connected (or otherwise
associated) charges, one positive, one negative, a distance d apart.

Figure 2.7 A water molecule contains a dipole due to the difference in the locations
of the average center of positive charge (between the hydrogen atoms) and the
average center of negative charge (on the oxygen atom). This gives water a fairly
high relative permittivity value of 78 (at room temperature).
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In other materials we do not find permanent dipoles, but molecules that
are electrically unpolarized (with positive and negative regions sharing a
common average position) when no electric field is applied. When an electric
field is applied, the positive and negative charges — the electron cloud
surrounding the positively charged nucleus (so-called bound charge, as
referred to in Section 2.3) — displace toward the appropriate potential by a
tiny amount, of the order of billionths of the diameter of the atom; this means
the molecule has become polarized. This is an induced, rather than perma-
nent, dipole; the amount of charge and location on the particle are not fixed
but are determined by the nature of the electric field causing the polarization
process. Although the magnitude of this dipole is small, when applied
throughout a medium, very many dipoles acting together produce a signifi-
cant enough effect to make a capacitor work. A similar form of induced
dipole can form where charges can move but are electrostatically attracted
to an object in solution, or are contained within an insulating shell but are
otherwise free to move; when an electric field is applied, the charges can
move across the object to the other side and thus form a dipole. This form
occurs in, for example, electrical double layers as described in Chapter 3.
The above processes describe dipoles and how they form, but there is another
process involved in polarization; the alignment of the dipole along the electric
field lines. In order for a permanent dipole to align the dipole with the field,
a torque is induced to reorient the dipole; this does not occur for induced
dipoles, since the dipole is induced along the lines of the electric field.

The extent to which a material will polarize for a given electric field is
quantified by two important variables: the polarization per unit volume P
and the dipole moment m; for a material containing, e.g., N dipoles per unit
volume, each of which consists of two charges with values Q and –Q a vector
distance d apart, the polarizability and dipole moment are given by the
expressions:

(2.33)

We can categorize the processes by which the aforementioned dipoles polar-
ize into three types. The most fundamental type of polarization is electronic
polarization, where the (positively charged) atomic nucleus and (negatively
charged) electron cloud surrounding it are attracted in opposite directions
by the applied electric field, causing polarization. On a slightly larger scale
is atomic polarization, where charges on molecules can be displaced in an
electric field and move to different parts of the molecule, causing it to become
polar. On the largest and slowest scale, the entire molecule can rotate so as
to align a permanent dipole along the electric field line; this is orientational
polarization. In addition, charges may be induced at the interface between
different materials; these can have polarizations of their own, known as
Maxwell–Wagner polarizations. The former two processes are so fast as to
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occur almost instantly; the latter two are sufficiently slow for us to observe
them change — or disperse — with frequency.

2.5.2 Complex permittivity

In Section 2.4, we examined ideal conductors and ideal capacitors. However,
most materials have elements of both — that is, they have both a capacitance
and a conductance. If we return to our cuboid of material between two
conducting plates described in Section 2.4 and shown in Figure 2.5, our object
had reactance given by

(2.34)

where ω is the angular frequency of the electric field and is equal to 2πf. Let
us consider that this cuboid of materials also has an inherent resistivity; that
is, it is a lossy dielectric (a dielectric that also has electric loss). This means
that there is an electrical resistance between the plates given by this expres-
sion, derived from Equation 2.24,

(2.35)

Since these are acting between the same plates and have the same potential
at either end, we can consider them as being two impedances in parallel; we
can then determine the total impedance of the circuit from Equation 2.25,
which is given by

(2.36)

We can actually use this to reexpress the impedance in terms similar to
Equation 2.34 by redefining the capacitance — and more specifically the
permittivity — to include components from both the conductivity and the
permittivity:

(2.37)

where the term ε* (the complex permittivity) replaces the permittivity ε = ε0εr

in Equation 2.30:

(2.38)
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The significant factor regarding complex permittivity is that it is frequency
dependent (i.e., it contains an ω term). If we consider the behavior of Equation
2.38 at very high frequencies (w → ∞), the imaginary term tends to zero and
ε* is dominated by the permittivity. At very low frequencies (ω → 0), the con-
ductivity term becomes very large and dominates over the permittivity. There-
fore, we have two types of behavior — permittivity dominated and conduc-
tivity dominated. Between them, there is a transition in the dielectric
behavior from one type to another. We call this process a dielectric dispersion.

2.5.3 Dispersion and relaxation processes

We now understand the concept of dipoles, and we understand that these
can undergo transitions that cause a change in emphasis between different
electrical behaviors at different frequencies. There are two prime sources of
dielectric dispersion that we need to consider: those that happen within
materials (Debye relaxations) and those that happen at the interface between
materials of two different types (Maxwell–Wagner relaxations). We will con-
sider these separately.

2.5.3.1 Debye relaxation
The first type of relaxation process, first described by Peter Debye, is asso-
ciated with the inability of a dipole to reorient in time with the applied field.
The reason for this is that induced dipoles (those that do not exist until an
electric field is applied) take a finite time to form; the movement of charges
from colocated to separate is not instantaneous. Similarly, as expressed in
Section 2.4, the dipoles that form in a capacitor take a finite time to return
to their nonpolarized state after the field is withdrawn. Because of this effect
of taking time to relax to a nonpolar state, the time for a dipole to form and
unform is known as the relaxation time, τ. When a low-frequency AC field
is applied, the dipole has plenty of time per cycle to form, collapse, and
reform in the opposite polarity as the applied electric field changes polarity.
At higher frequencies, however, the dipole does not have time to form every
cycle since the field alternates too quickly; the induced dipole does not form
in any significant manner, and the transfer of charge by capacitive coupling
does not occur. This effect can also occur in permanent (molecular) dipoles,
where the electric field is changing in shorter time periods than the dipole
can physically take to move; it cannot keep up with the field. This effect is
observed for the electrons around the nucleus of an atom, or can happen to
ions moving across the surface of an object in a liquid; however, it always
acts to reduce the total polarizability of the material.

Some materials will exhibit more than one dispersion because the net
polarizability of the particle is composed of more than one polarization
mechanism (of the three processes — orientational, atomic, and electronic
— described above). In the case of a material experiencing all three types of
dispersion, we might expect the dispersion having the lowest frequency to
be due to orientational effects (since the physical momentum of molecules
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is relatively large), followed by the atomic and electronic relaxations. At low
frequencies, the polarizability of the material is equal to the sum of the three
polarization types; as each polarization phenomenon disperses, the value of
the total polarization decrements by the value equivalent to the polarizability
of that particular polarization.

Expressing this analytically, we assign the terms χor, χel, and χa to describe
the polarizations due to orientational, electronic, and atomic processes,
respectively, where χ refers to the increment in polarization due to that
polarization process. This gives polarizabilities

(2.39)

The total polarizability at low frequencies is given by

(2.40)

while at higher frequencies (above the orientational dispersion), this reduces
to an effective value of

(2.41)

Since the dispersion frequencies of the atomic and electronic polarizations
are at least of the order of terahertz and upward, they are far beyond the
frequencies of the work presented here, allowing us to treat Peff as a con-
stant and concentrate on the orientation of dipoles instead. It can be shown
that the frequency-dependent change in polarization can be given by the
expression:

(2.42)

where τor is the relaxation time of the orientational dipole. The first term in
brackets corresponds to the Debye relaxation of the orientational dipole.

We can relate Equation 2.42 to the complex permittivity by replacing χeff

with ε∞, representing the permittivity of the material at very high (effectively
infinite with respect to orientational dispersion) frequencies. Since the value
of the polarizability χor is equal to the difference between Equations 2.40 and
2.41, we can define it as being equal to the difference of the permittivities
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corresponding to the low and high frequency limiting cases. From Equation 2.42
we can derive the complex permittivity by using the relationship

(2.43)

Multiplying this term by its complex conjugate allows us to determine its
real and imaginary parts, which can be attributed thus:

(2.44)

where

(2.45)

These terms are frequency dependent (as evidenced by the presence of an
ω term). A plot of ε ′ (permittivity) and ε ″ (dielectric loss) showing a typical
dispersion behavior is shown in Figure 2.8. Similarly, we can extend the
above analysis to the dispersions due to the other polarization mechanisms,
but they do not have relevance here.

Figure 2.8 The frequency response of a material exhibiting Debye dielectric dispersions
due to orientational, atomic, and electronic relaxation processes. The solid line shows
the permittivity; the dotted line shows the dielectric loss.
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Note in Figure 2.8 that the real part of the graph moves from a higher
to a lower value as frequency increases (that is, it is a monotonically decreasing
function of frequency), whereas the imaginary part is zero at low and high
frequencies and rises to a peak through the dispersion process, which occu-
pies a frequency range of over two decades. This is because the imaginary
part represents the dielectric loss, which is at its peak when the real part is
changing the most. We will observe this behavior again later when we
examine the Clausius–Mossotti factor.

2.5.3.2 The Maxwell–Wagner relaxation
While the Debye dispersion described above holds for the reorientation of
dipoles within a material, there is a second class of dielectric dispersion that
occurs at the interface between two unlike dielectric materials. This dielectric
dispersion exhibits a different dispersion from that shown by the materials
themselves and can be somewhat lower in frequency. The solution to this
type of behavior was developed by James Clerk Maxwell and published in
A Treatise on Electricity and Magnetism in 1873; the theory was later refined
by German scientist K.W. Wagner in 1914. Today the theory is named after
both — the Maxwell–Wagner interfacial polarization theory.

The system described by Maxwell considers two dielectric materials,
such as two cuboids of the type previously discussed. Both share the same
cross-sectional area A, but one has length d1 and the other d2 (with their sum
being d). Similarly, the two have conductivities σ1 , σ 2 and permittivities ε1,
ε2, respectively. This is shown schematically in Figure 2.9. We can regard the
system as two capacitors in series, for which the total capacitance can be
found by using Equation 2.28, except that this time we are assuming that
the capacitances possess a complex permittivity such as the one expressed
in Equation 2.38. Taking this result and rearranging, it can be shown that for
the low-frequency limit (ω → 0), the effective permittivity is given by

Figure 2.9 Two cuboids of material, each with their own conductivity and permittivity
values, are placed in series between two conducting plates; at the interface between
these materials, a Maxwell–Wagner polarization process occurs.
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(2.46)

while for the high frequency limit (ω→∞), the effective permittivity is given by

(2.47)

from which it can be seen that ε lf > ε∞, which indicates that the system exhibits
a dielectric dispersion.

By extending this analysis of the two layer system in the terms described
in the previous section, it can be shown that the dielectric dispersions of a
two layer system can be described in terms of Debye equations (Equation
2.45), but the high and low permittivity terms ε∞ and ε lf can now be described
in terms of the two materials sharing an interface:

(2.48)

Similarly, we can define the relaxation time for the interfacial polarization
thus:

(2.49)

Note that the relaxation time (and hence, dispersion frequency) is related to
the permittivity and conductivity values of both materials. The cause for the
effect can be explained as follows: the dielectric material between the two
plates has a net total effective impedance, and hence there must be a constant
current through the structure. Since the two materials transfer charge in
different ways (by conduction or polarization), there exists a discontinuity
at the interface between the materials where the mode of charge transfer
changes. Where one transfers charge principally by conduction and the other
by polarization, it causes an accumulation of charge at the interface (as we
would expect charge to accumulate on a capacitor), then there will be a
dipole created at the interface.

Since we can treat the interfacial polarization as a type of Debye polariza-
tion, it then stands that we can treat it (and the additional polarization it
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causes) as part of the overall polarizability of the particle as expressed in
Equation 2.40, such that the total polarizability is given by the expression

(2.50)

where PM-W is the polarization due to the Maxwell–Wagner interfacial
polarization.

2.6 Dielectric spheres in electric fields
Thus far, we have considered the effects of polarization and dispersion on
materials, and mixtures of materials, arranged as cuboids in electric fields;
the majority of this book contains studies of particles in suspension. How-
ever, our particle is a lossy dielectric material, as is the solution in which it
is dissolved, so we merely need to adapt the existing theory to fit this
particular structure.

When a polarizable particle is exposed to an electric field, charge builds
up at the interface between the surface of the particle and its surroundings;
differences in the numbers of positive and negative charges accumulating
on the surface mean that the particle is polarized. Since any electrostatic
interaction with the particle can be treated as if it were an interaction with
the dipole across the particle, by determining the dipole we can determine
the behavior of the particle.

If we apply an electric field to a polarizable particle, then charges accumu-
late at opposing surfaces of the particle along the field vector. However, if
the particle contains no excess charge (i.e., it is charge neutral), then, from
Laplace’s theorem (Equation 2.15) solved for a sphere, there is a uniform
electric field inside it. There is also a nonuniform electric field generated
external to the particle, which we will discuss shortly.

The electric field induced in an ellipsoid exposed to electric field vector
E applied along axis a is given by

(2.51)

where Aa is the depolarization factor along the a axis and the subscripts m
and p refer to the medium (outside the body) and particle (inside the body),
respectively. There are three depolarization factors, Aa, Ab, Ac, one for each
axis, which sum to 1; we will deal with these in more detail in Chapter 5.
However, since we are dealing with a sphere, the depolarization factors are
equal to one another, and thus have the value 1/3.

The induced polarization P per unit volume within the particle is given
by the expression

P P P P P= + + +−M W or el a

E
E
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m a p mA
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+ −( )
ε

ε ε ε
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(2.52)

from which we can determine the dipole moment by multiplying by particle
volume. For a sphere of radius r,

(2.53)

From this, we can define the polarizability, or dipole moment per unit electric
field, thus:

(2.54)

Combining Equations 2.51, 2.53, and 2.54, we obtain

(2.55)

where the bracketed term is the referred to as the Clausius–Mossotti factor,
K(ω)

(2.56)

which is dependent on applied frequency (due to the frequency dependence
of the complex permittivities), and which can take values between +1 and
–0.5. We will study the Clausius–Mossotti factor and the implications of its
behavior in more detail in Chapter 4.

We can recombine Equations 2.54 and 2.55 to find the magnitude of the
dipole moment of the particle:

(2.57)

This describes the dipole moment for a spherical dielectric particle sus-
pended in a dielectric medium; note that m is dependent on the dielectric
properties of both particle and medium and can change sign (and hence
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polarity) according to the complex permittivities of particle and medium. In
order to visualize the processes by which this dipole orientation occurs, let
us consider a single particle in an electric field. To demonstrate the physical
significance of Equation 2.57, consider three situations: those where the
particle is more polarizable than the medium, those where the particle is less
polarizable than the medium, and those where they are equal. These are
shown in Figure 2.10.

Where the impedance is dominated by conduction in the particle and
capacitance in the medium, at the interface between particle and medium
there will be a greater amount of charge accumulating on the medium side
of the interface (which is acting like a capacitor) than on the particle side
(which is acting like a conductor). This situation is shown in Figure 2.10a.
As can be seen in the figure, the imbalance between the charges means that
across the particle as a whole (including the charge on the interface) there
is a dipole oriented opposite the electric field. If the medium is more con-
ductive than the particle, then there will be more charge on the particle side
of the interface than on the medium side, and hence the net dipole is oriented
in the same direction as the field (Figure 2.10b). Where the complex permit-
tivities of the particle and medium are equal (Figure 2.10c), the net charge
is zero and no dipole is present.

This induced dipole will have a perturbatory effect on the electric field
in the surrounding medium; by the principle of superposition, the total
electric field will be equal to the superposition of the electric field due to a

Figure 2.10 A lossy dielectric sphere in a lossy dielectric medium, and exposed to
an electric field, will experience interfacial polarization. The amount of charge on
each side of the interface will depend on the relative capacitances and conductances
of the particle and medium, leading to a net dipole across the particle. (a) Particle
more polarizable than medium, (b) particle less polarizable than medium, (c) particle
and medium equally polarizable.

© 2003 by CRC Press LLC



38 Nanoelectromechanics in Engineering and Biology

dipole (shown in Figure 2.3a) with the lines of the applied electric field.
Taken together, the net effect is as shown in Figure 2.11. In the case of a
particle more polarizable than the medium, the effect is to distort the field
lines (previously parallel in this case) toward the surface of the particle, so
as to intersect at near right angles. Where the dipole is oriented in the
opposite direction, the superposition of field lines means that the electric
field passes around the particle. Inside the particle, the electric field is dif-
ferent in these two cases; in the first case (conducting particle) the electric
field is low, since the dipole (and its associated electric field) oppose that of
the externally applied field. In the capacitive case, the electric field is much
higher than the exterior field because the external and internal field are
oriented in the same direction.

Figure 2.11 Since dipoles consist of positive and negative charges a distance apart, they
generate their own electric field; this then warps the electric field that induced the dipole.
(a) If the polarized object is conducting, the induced electric field is aligned counter to
the external field, and the field is warped toward the object (and intersects the conduct-
ing surface at right angles). (b) If the particle is insulating, the dipole is oriented in the
same direction as the external field and the field lines warp around the particle.
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2.7 Forces in field gradients: dielectrophoresis
and electrorotation

We now come to examine the forces on particles in electric fields with
nonuniformities of either magnitude or phase. These primarily concern the
forces that form the fundamental core of this book, those being dielectro-
phoresis and (to a lesser degree) electrorotation, plus the effects of
inter-induced-dipole attraction and electro-orientation. The reader should
note that there are a number of different approaches to deriving the equations
for these forces; the one presented here is somewhat less elegant than, for
example, the derivation using phasor vector notation used by Jones (see
supplementary reading), but uses somewhat simpler mathematics. Those
readers who feel more comfortable with vector phasor mathematics are
urged to investigate both methods.

2.7.1 Dielectrophoresis

Consider a polarizable particle exposed to an electric field. The applied
electric field causes the formation of a dipole within the material and an
accumulation of charge at the surface. If the electric field is uniform, then
the Coulomb forces on the charges on both sides of the particle are equal
and opposite, as are the forces on both sides; therefore, they cancel out and
there is no net force on the particle. However, if the field is nonuniform (that
is, varying in magnitude across the region occupied by the particle), then
the Coulomb forces on either side will not be equal and there will be a net
force on the particle. This is called the dielectrophoretic force; the action of
movement by it is called dielectrophoresis.

Let us consider a spherical particle in a nonuniform field such as the
one shown in Figure 2.12. When this particle polarizes, it will have centers
of positive and negative charges that are equal in magnitude (though oppo-
site in sign) but separated by a distance d along vector r. Since the electric
is nonuniform, the positive and negative charges will experience different
electric field strengths, giving rise to a total force on the particle (from
Equation 2.2) of

(2.58)

Where d is small relative to the size of the electric field nonuniformity, we
can approximate this as

(2.59)

allowing us to rewrite the force thus:

(2.60)

F E r d E r= +( ) − ( )+ −Q Q

E r d E r d E r+( ) = ( ) + ⋅∇ ( )

F d E= ⋅∇Q
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Since Qd defines the dipole moment, the force can be written thus:

(2.61)

In order to proceed further, we need to consider the nature of the electric
field in a more realistic sense, considering, for example, the fact that it may
be changing either in space (having a magnitude gradient) or time (having
a phase gradient). For this examination, let us assume that we are examining
an AC electric field that varies in three dimensions. This variation can be in
the magnitude of the wave (the amplitude of the sine wave varies according
to position), phase (the sine wave reaches its maximum at different times
according to position), or both. An example of a sine wave changing spatially
in phase is a Mexican wave seen in football stadiums; all spectators exhibit
the same behavior, but slightly out of phase, resulting in a wave that moves
around the stadium even though the participants do not.

We can define an electric field of angular frequency ω according to its
position in Cartesian coordinates (at location x, y, z) in terms of its magnitude
Ea and phase shift φ:

(2.62)

Figure 2.12 Dielectrophoresis occurs when a polarizable particle is suspended in an
electric field of nonuniform magnitude, so that the Coulombic forces induced on the
charges on each half of the dipole are different.
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From Equation 2.57, we know that the induced dipole moment acting on a
spherical particle of radius r and relative permittivity εm in this electric field
can be given by the equation

(2.63)

From Equations 2.61–2.63, we can derive the force on this particle due to the
interaction between the electric field and the induced dipole (and taking the
x, y, z term as given for ease of reading):

(2.64)

Taking the first term, we can expand this using Equation 2.63 to

(2.65)

and so on for the remaining terms. Note that Re[ ] and Im[ ] refer to the real
and imaginary parts of K(ω), respectively. If we take the average of this term
over many cycles, it has the value

(2.66)
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and similarly for the remaining terms. Combining this with the expression
for the force gives a time-averaged force value

(2.67)

where E is the root mean square magnitude of the electric field, equal to the
peak electric field divided by the square root of 2. In conventional dielectro-
phoresis, we apply the electric field as a single sinusoid, or two sinusoids
180° out of phase, so there is no phase gradient and the second part of the
term goes to zero, leaving us with the expression

(2.68)

This is the general expression for dielectrophoretic force. There are cases
where there is a phase gradient through an electric field, and the second part
of the force equation (containing the imaginary part of the Clausius–Mossotti
factor) is responsible for the induction of traveling-wave dielectrophoresis,
which we will return to in Chapter 8. Similarly, we will examine the variations
of this equation for nonspherical and multishelled particles in Chapter 5.

One very important feature to note is the fact that the expression for
dielectrophoretic force contains the Clausius–Mossotti formula (Equation
2.57), which we know can take either positive or negative values. This has
implications for the direction of the force; since FDEP is a vector quantity (and
thus has a directional component), a change in sign will result in a change
in direction. If Re[K(ω)] is positive, then the force acts in the direction of the
increasing field gradient (since the attractive force on the side where the
electric field is strongest gains the greatest attractive force) and hence moves
toward the region of the highest electric field. This is called positive dielectro-
phoresis. However, if the value of Re[K(ω)] is negative, then the value of the
force is negative and the particle is repelled from regions of a high electric
field. Since the dipole orients such that like charge signs on electrode and
particle are facing, the force is repulsive but is most repulsive on the side where
the electric field is strongest and so the particle is pushed down the field
gradient. This is referred to as negative dielectrophoresis; particles experiencing
this force will often be observed to collect in local electric field minima, as
we will learn in Chapter 4.

2.7.2 Electrorotation

We now move on to consider the torque on particles in a rotating field. While
such fields can be described as varying spatially in phase (and thus having
a force component as described above), they can also induce a torque in
stationary particles. Consider the particle in a rotating electric field (generated
by four electrodes with phase differences between their applied sinusoids)

F E= ( )[ ]∇ + ( )[ ] ∇ + ∇ + ∇( )( )2 0
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shown in Figure 2.13. The electric field induces a dipole in the particle as
before. However, as the field rotates, the dipole must keep up with it; if the
dipole lags behind the electric field, then the interaction between charges and
field act to induce a torque (rotational force) on the particle. Since the electric
field is rotating continuously, the torque is constant and causes the particle
to rotate. The torque is at its minimum (zero) when the phase angle between
the dipole and the applied field is zero, and it reaches its maximum when
the phase angle is ±90°. If the induced dipole moment lags behind the field,
then the direction of rotation is with the field and vice versa for a moment
that leads the field.

The torque exerted by an applied electric field on a dipole can be found
by considering the net force acting about the center of a dipole, as before.
Considering the dipole in the previous example, the torque is given by

(2.69)

from which the torque  on a dipole due to an applied electric field can be
found

(2.70)

We may proceed as before, using the expressions for m (Equation 2.63) and E
(Equation 2.62). The cross product for two vectors of the form (axi + ayj + azk)
and (bxi + byj + bzk) is given by

Figure 2.13 Electrorotation occurs when there is a physical displacement between
the applied electric field and the induced dipole due to the dipole taking a finite and
significant time to respond to the electric field (due to the limit of the relaxation time
on dipole formation).
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(2.71)

Taking only the i term, then from Equations 2.62 and 2.63,

(2.72)

The terms containing the real part of the Clausius–Mossotti factor cancel,
leaving

(2.73)

We can use the trigonometric identity that sin a cos b – sin b cos a = sin (a –
b) to rewrite this expression as

(2.74)

Reassembling this into the original expression gives us

(2.75)

If we consider a field that is rotating only in the x-y plane, with constant
electric field (i.e., Ex0 = Ey0) then for a circularly rotating field φx – φy = 90°.
Substituting these factors into the above expression gives the equation
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(2.76)

for rotation about the k (vertical) axis. This is the general equation for
electrorotational torque on a spherical particle, which (unlike the expression
for dielectrophoresis) depends on the imaginary (rather than real) part of
the Clausius–Mossotti factor and the square of the field rather than its gra-
dient. Note that the idealized condition (equal magnitudes of Ex0 and Ey0,
and a 90° phase shift between them) occurs only under certain conditions
and is not generally found anywhere except at the center of electrodes used
for generating rotating electric fields (such as the quadrupole electrodes
described in Chapter 4). We will return to this issue when discussing elec-
trode design in Chapter 10.

As with dielectrophoresis, there is an important connection between the
direction of rotation and the value of Im[K(ω)]; the direction of rotation is
opposite to the direction of the rotating field when Im[K(ω)] is positive and
in the same direction as the field when Im[K(ω)] is negative. These forms of
rotation are referred to as cofield rotation and antifield rotation, respectively.
The fact that the direction is perhaps opposite to what one would expect is
due to the presence of the minus sign in Equation 2.76. The physical reason
for this effect relates to the fact that the displaced charges are repelled by
like charges on the electrodes. Note also that since the field can interact with
the charges to repel as well as rotate the particle, it can be moved by dielec-
trophoresis and electrorotation simultaneously, with the force and torque
having values proportional to the values of the real and imaginary parts of
the Clausius–Mossotti factor, respectively.

2.7.3 Electro-orientation

If we consider a nonspherical particle in an electric field, then the dipole
moment will be stable only when the particle is aligned with its longest axis
along the lines of electric field, as shown in Figure 2.14. When such a particle
polarizes, it does so along the longest nondispersed axis. Consider a prolate
(cigar shaped) ellipsoid; when this polarizes, the closest the charges can
accumulate to the sources of the electric field is along the longest axis of the
particle. Furthermore, with the charges at these positions, the particle will
experience a torque as the charge centers move to be as close to the high
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and low potentials as possible — that is, that the dipole will align along the
electric field. If the frequency of the field is high enough, the dipole along
this axis will disperse — due to the distance between the charge centers, the
dispersion along the longest axis occurs at the lowest frequency — and the
next longest nondispersed axis will align with the field instead. We will
examine the manipulation of ellipsoidal particles in more detail in Chapters 5
and 7.

2.7.4 Dipole–dipole interactions: pearl chaining

We have established in this section that polarizable particles are attracted to
the point of highest electric field. We have also learned in Section 2.6 that
such a particle, when in an electric field, will polarize, and this leads to an
induced electric field between the two displaced centers of charge. It then
follows that when a field is applied, the dipoles formed in particles through-
out a volume containing those particles will polarize, and because each then
deforms the electric field due to that polarization (in the manner illustrated
in Figure 2.11), particles within the region where the two dipole-induced
electric fields interact will react to each other (as shown in Figure 2.15). This
effect is called mutual dielectrophoresis or dipole–dipole interaction, though
it is more commonly referred to as pearl chaining, since its effect is to cause
long strings of particles.

The interaction force between two similar particles will be based on their
polarizability and the magnitude of the electric field inducing the dipole, but
not on whether the particles are experiencing positive or negative dielectro-
phoresis. This will change the orientation of the induced dipole, but since
like particles will have dipoles induced in similar directions (be they with

Figure 2.14 Just as dipoles orient with the applied electric field, so polarizable particles
experience electro-orientation. Since the dipole is induced, the object will align along
the field lines even in AC electric fields. Above the dielectric dispersion, charges
cannot move along the particle to form the dipole at the same rate as the field, and
the next longest axis will dominate. This is discussed further in Chapter 5.
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or against the electric field), they will always attract each other because the
dipoles will always arrange in the same direction so that opposing charges
will face one another as shown in Figure 2.16.

Since the particles must be aligned such that the dipoles (regardless of
direction) are pointed in the same direction and are end to end (since the
attraction will be to the point on the surface of each particle where the
greatest charge is located), collection by pearl chaining acts along the field
lines. Particles of similar type aligning at right angles to this, for example,
would repel since similar charge signs are on each side of the particle.
However, this position is generally unstable since one particle moving with
respect to the other toward or away from the source of the electric field
would bring the dipoles into a configuration where they would attract and
form chains along the field lines again.

Figure 2.15 When polarizable particles in electric fields come close enough for their
induced electric fields to interact, they will experience a dielectrophoretic force to
move toward each other. This is called mutual dielectrophoresis, though it is more
commonly referred to as pearl chaining because of the chains of particles formed by
this phenomenon.

Figure 2.16 The formation of particle chains occurs independently of whether the
particles are experiencing (a) positive or (b) negative dielectrophoresis; in both cases,
the dipoles align in the same direction to each other, causing Coulombic attraction
between charges of opposing signs along the chain.
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Pearl chaining is usually strongest where the electric field is greatest, that
is, at the electrode edge (in the case of an attractive dielectrophoretic force).
When a particle arrives at an electrode edge, the field distortion that occurs is
often of a sufficient magnitude that incoming particles are attracted to this
particle in preference to the electrode edge. This procedure is repeated for
subsequent particles, allowing long chains to be formed. In the past, the
measurement of chain length has been used as an indicator of the real value
of the Clausius–Mossotti factor and is still used in the formation of material
structures (Chapter 6) and the formation of conducting nanowires (Chapter 7).

2.7.5 Higher order multipoles

The models of behavior presented thus far are sufficiently accurate to model
most of the dielectrophoretic behavior discussed in this book. They are,
however, approximations since they consider the behavior of particles under-
going dielectrophoresis solely as dipoles. While this approximation holds in
the majority of cases and will be used widely in this text, it is important to
note that under certain circumstances — in particular, when particles are at
a field null, or when the magnitudes of the particle and the electrodes used
to generate the electric field are of similar size — higher order terms (called
multipoles) must be considered. These higher order terms contain many
charge centers displaced around the particle and change the way in which
the particles relate to the electric field gradient.

The simplest case, called the linear multipole, occurs when the dipole is
aligned along the axis of the field gradient, with the electric field being
symmetrical about that axis. These terms are straightforward to calculate
and provide an extension to the theory thus far presented. We can consider
linear multipoles as being the harmonics of the dipole, resulting in arrange-
ments of equally spaced positive and negative charge centers along the axis
of the dipole, such as are shown in Figure 2.17. Indeed, we can consider the
forces on both the monopole (a point charge, as described in Equation 2.2)
and the dipole (Equation 2.60) to be the zeroth and first orders of the linear
multipole. Working from the diagrams in Figure 2.17, it can be shown that

Figure 2.17 The organization of charge in the first four linear multipoles (after Jones).
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for the first four dipoles, the moments and forces are given by the expressions
in Table 2.1, with a generalized expression for an nth-order multipole.

Since these higher order components are of much smaller magnitude
than the dipole (so much that we can generally ignore them), the conditions
under which they become apparent are when the dipole does not interact
with the field — that is, it is at a field null. The local electric field gradient
can have isolated minima at points in space displaced from the electrodes,
and conditions can arise where, due to symmetry, the electric field has zero
magnitude along an axis. Particles in this situation (such as those in the
center of the quadrupolar electrode arrays described in Chapter 4) still inter-
act with the electric field, even though there is no field along their central
axis. This is because the higher order terms are displaced from that axis. The
first four multipolar terms are shown in Figure 2.18. Particles arranged such
that their central axis is aligned along a field null will therefore interact with
the quadrupolar, octopolar, and higher terms. Since a mathematical treat-
ment of general multipoles involves mathematical processes (such as stress
tensors) that are beyond the scope of this book, those wishing to pursue
them further are referred to the work of Jones (see supplementary reading).

Table 2.1 The Moments and Forces for the First Four Electric 
Multipoles (as shown in Figure 2.17) with the General Term
for an nth-Order Dipole

Multipole term Pole name Moment Force

0 Monopole Q QE
1 Dipole Qd1 Q(d1·∇)E
2 Quadrupole 2Qd2

2 Q(d2·∇)2E
3 Octopole 6Qd3

3 Q(d3·∇)3E
n nth-order multipole n!Qdn

n Q(dn·∇)nE

Source: After Jones (see recommended reading).

Figure 2.18 The organization of charge in the first four general multipoles (after Jones).
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chapter three

Colloids and surfaces

3.1 Colloids
This book is concerned with the manipulation of particles that can be
described as colloidal — that is, the particles can be described as colloids. The
term was first used by Thomas Graham in 1861 to describe solutions in which
the particles diffused slowly but would not sediment under gravity; the term
comes from the Greek for “glue.” Graham deduced that, when suspended
in solution, colloids are affected by Brownian motion to a much greater extent
than any other force — their position can vary by many particle diameters
in a second due to the effect of random movements of surrounding mole-
cules. This meant the particles must be significantly smaller than 1 µm.
However, the slow diffusion rates indicated objects larger than 1 nm.

In general, a loose definition of a colloidal particle is that it should have
a maximum size of between 1 nm and 1000 nm; larger particles are suffi-
ciently massive for sedimentation to overcome Brownian motion, whereas
smaller particles are governed far more by molecule–molecule interactions
and cannot be considered using only classical mechanics. Alternatively, a
colloid could be described as a particle that is small enough for electrostatic
effects at the surface — the electrical double layer — to dominate the way
in which the particle interacts with other particles around it. Particles in the
colloidal state can be considered to be too large to act like dissolved mole-
cules, but too small to be considered as bulk matter in solution.

3.2 The electrical double layer
Wherever a charged surface is placed in contact with a fluid, the free charges
in the solution will experience a Coulombic force due to the charges present;
dissolved ions bearing the same sign as the surface (coions) will be repelled
from the surface, while ions of opposite charge (counterions) will be attracted.
This force will act as a function of distance squared from the surface
(as described in Chapter 2), leading to an exponential decline in the effect
of the surface charge on the medium. At sufficient distance from the surface,
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the solution retains its equilibrium concentrations of counterions and coions;
we call this the bulk medium. Inside that limit, however, the properties of the
solution change as the proportion of ions changes. At the interface between
the surface and the solution, further structural changes occur where the
counterions are sufficiently strongly attracted to the surface to stick or adsorb
to the surface. These adsorbed charges form a layer within a layer across the
surface, with different electrical characteristics from either the bulk medium
or the volume where ionic proportions are different.

We call this interface between the surface and the bulk medium the
electrical double layer (or just the double layer), which is shown schematically
in Figure 3.1. Since the concentration of charge in the double layer (which
is still suspended in solution) varies from that in the bulk medium, we can
also expect the conductance of the medium to change near the interface;
similarly, since the charge is loosely bound to the surface, we may anticipate
a change in the capacitance around the surface. However, the mechanisms
of these changes are quite complex and differ for the different parts of the
double layer, and we will consider them separately here.

While an electrical double layer exists at any interface between charged
surface and electrolytic medium, it is of profound significance when consid-
ering colloidal particles; such particles are sufficiently small for the thickness
of the double layer to be significant compared to the size of the particle, and
may be such that the actual particle may be a relatively small part of the
total volume of the particle plus the double layer system.

3.3 The Gouy–Chapman model
First, we will consider the diffuse double layer — the ionic atmosphere that
surrounds the particle, first described in the early 20th century by Gouy and

Figure 3.1 A schematic of the electrical double layer surrounding a charged particle (1).
The double layer consists of two parties; a layer of charge adsorbed to the surface
and having defined thickness, called the Stern layer (2); and an ionic cloud in which
the variation in ionic concentration from bulk properties diminishes with distance,
known as the diffuse layer (3).
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Chapman, working independently. As we have seen in Chapter 2, the presence
of charge gives rise to an associated potential, and we can characterize the
electrical properties of the surface in terms of its surface charge density  u
(Coulombs per meter squared) and its electrical potential Φ0 (volts). It is
immersed in a solution containing electrolytes (ions) containing i ion species
with a concentration ci (in molecules per liter) and valency (number of charges
per molecule) zi, and with the medium having a relative permittivity εm.

In order to determine the distribution of ions, we use Poisson’s equation
(Equation 2.14):

(3.1)

where e is the charge on the electron (1.6 × 10–19C) and cilocal is the local ionic
concentration for ionic species i. However, while the above equation indicates
that the ions should form an ordered distribution governed by the potential
gradient, there is also an entropy force (driven by Brownian motion) that acts
to distribute the ions in a random, more-or-less homogeneous fashion. The
result of the interaction between the imposed order and the entropic forces
results in a local charge concentration related to the local electric potential Φ:

(3.2)

where k is Boltzmann’s constant and T is the temperature. Substituting this
into Equation 3.1 we find that

(3.3)

We can interpret this equation for a colloidal particle by approximating to
an infinite planar surface, such that variation in concentration only occurs
in the direction perpendicular to the surface (which we shall refer to as the
z direction). This allows us to reduce the del vector operator to a gradient
operator in only one direction, and Equation 3.3 to a differential equation:

(3.4)

In order to solve this, we must impose boundary conditions. Since in the
bulk solution there can be no net charge (the condition of electroneutrality),
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we can define it as having no potential gradient and can define the potential
as 0 V at large distances from the surface:

(3.5)

For our second boundary condition, we must consider the action of accumu-
lated charge within the diffuse layer. Since there is a defined charge
accumulation between two equipotential planes (the surface and the bulk),
we can consider it to be a capacitor; thus we can work out the potential
gradient at the surface with respect to the bulk by considering the stored
charge and the permittivity:

(3.6)

With the use of appropriate calculus identities, it can be shown that by
imposing these boundary conditions on Equation 3.4 and considering the
use of symmetrical electrolytes (those where the valences of the coions and
counterions are equal), we can integrate the equation and obtain the following
expression for the potential at any distance z from the surface

(3.7)

where the coefficient Γ is given by

(3.8)

and we obtain the very important value defining the approximate thickness
of the diffuse layer, or Debye screening length, given by the value 1/κ:

(3.9)

Furthermore, by writing the exponent in Equation 3.4 as a linear series and
eliminating terms due to electroneutrality, it can be shown that for particles
in weakly conducting media, the equation can be written as

(3.10)
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which can be integrated using the boundary conditions outlined above to
show that

(3.11)

From this we can infer that the surface charge density and surface potential
are related thus:

(3.12)

and the relationship between surface charge density and the surface and
bulk potentials leads to an expression for capacitance per unit area:

(3.13)

From these expressions we can derive a great deal of qualitative information
about the nature and behavior of the electrical double layer. Of primary
importance are the distribution of the ions in the double layer, the variation
in the electrical potential as a function of distance from the surface, and the
thickness of the double layer itself. These are indicated graphically in
Figure 3.1. Perhaps the most counterintuitive result is that the double layer
thickness, given by Equation 3.9, actually diminishes as the concentration of
ions in the bulk medium is increased. This is because the number of coions
and counterions in bulk solution is greater. The lack of coions in the double
layer, as well as the extra counterions, means the surface charge can be
countered in a much smaller volume. As distance from the surface is
increased, it can be seen from Equation 3.11 that the potential diminishes
exponentially across the diffuse layer, achieving electroneutrality on the
order of 1/κ. Similarly, we can combine Equations 3.11 and 3.2 to determine
the distribution of the coions and counterions as a function of distance from
the surface, which both demonstrate a similar exponential change; the coions
show an exponential decrease in concentration, the counterions a corre-
sponding increase.

One important aspect of this, arising from Equation 3.12, is that the
surface charge density and surface potential are not directly equivalent but
are related by the inverse of the Debye screening length, itself proportional
to the root of the bulk charge concentration. Therefore, the relationship
between these factors varies as a function of medium composition and, when
comparing the effects of changing the medium ionic strength, we need to
decide which factor should remain fixed (either charge density or potential).
Since the majority of the work presented in this book is concerned with
particles whose surface charge density is known, Figure 3.2 shows the varia-
tion in charge and potential for fixed surface charge density. As can be seen,
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the surface potential varies according to the medium concentration, as does
the Debye length (where the concentrations of coions and counterions
diverge); note that the area enclosed between the divergent ion concentra-
tions and the surface is the same in both cases.

3.4 The Stern layer
The second aspect of the electrical double layer we will examine is the Stern
layer. The diffuse model of countercharge described above assumes that the
counterions in the diffuse layer are free to move right up to the interface
itself. However, when the counterions come this close to the charged surface,
many of them become electrostatically attached or adsorbed to the surface.
Furthermore, any dipoles that form part of the suspending medium itself —
such as water molecules — may also be adsorbed, since the attractive force
on the dipole side carrying opposing charge will be greater than the repulsive

Figure 3.2 The electrical properties of the diffuse layer. The top picture illustrates the
variation in electrical potential through the diffuse layer for two cases, those of high
(broken line) and low (solid line) salt concentrations in the bulk medium, and for the
condition of constant surface charge. As can be seen, the concentration affects both
the thickness of the double layer and the value of the surface potential Φo. The bottom
picture indicates the ion concentration for positive (c+) and negative (c–) ions for the
same two cases. For both cases the area between the two divergent lines is equal.
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force on the side carrying like charge, because one side is nearer and thus
the Coulombic forces are greater. These molecules form a layer immediately
surrounding the surface, the locus of which is called the inner Helmholtz plane
(IHP). There is then a layer of solvated ions outside the IHP that are also
effectively bound to the surface, the locus of which is called the outer
Helmholtz plane (OHP). These are shown schematically in Figure 3.3. Taken
together, the charge structures inside the OHP are described as the Stern
layer. The theory was originally proposed in 1924 by Otto Stern (who later
won a Nobel prize for work on magnetic moments) as an extension to the
Gouy–Chapman theory. Stern’s theory considers the ions in solution as
objects of finite size rather than point charges, and thus there is a minimum
distance to which they can come to the surface, characterized by the IHP.

An important characteristic of the Helmholtz planes is that the charge
on the surface and the charge in the IHP form two parallel planes of opposing
charge, in the same manner as the capacitors discussed in the previous
chapter; we can therefore assume that the potential across the gap between
surface and IHP varies linearly, as happens in a capacitor. Similarly, there is
a linear variation in potential between the IHP and the OHP.

While it is theoretically possible for the countercharge accumulating
across the IHP to cancel out the charge on the surface, this is rarely the case;
particularly when one considers that the adsorbed water dipoles do not make
a contribution to the countercharge since they are electroneutral. Therefore
there is still a net change in the sign of the charge at the surface represented
at the OHP, and it is this that is “seen” by the ions in the diffuse layer.
Similarly, it is the electrical potential at the OHP that marks the equivalent

Figure 3.3 The location of the Helmholtz planes with respect to a negatively charged
surface. The inner Helmholtz plane (IHP) consists largely of adsorbed water molecules
(empty circles) with some unsolvated ions; the outer Helmholtz plane (OHP) consists
of solvated ions.
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surface potential in the calculations described in the previous section. This is
shown schematically in Figure 3.4; as can be seen, the potential is characterized
by two linear phases across the Stern layer and an exponential phase across
the diffuse layer. In general, we are unable to measure the effects of the IHP,
and it is more convenient to consider the effects of the Stern layer as the bound
charges of various forms that exist between the OHP and the surface.

It follows that if charge is to be maintained, then the total charge contained
in both the Stern (Qs) and diffuse (Qd) layers must be equal and opposite to
the charge at the surface of the particle Qp:

(3.14)

If we consider the effect of a small change in the surface potential Φp in terms
of the effect on the charge stored in the double layer, the OHP potential Φ0,
and the bulk potential, which we can use as our 0 V reference, then we need
to differentiate in terms of the total stored charge. From Equation 3.14 we
can obtain

(3.15)

Integrating these terms gives us a value for reciprocal capacitance:

(3.16)

Figure 3.4 The potential across the double layer varies linearly across the gap between
the surface and IHP, and again between IHP and OHP, before following an exponential
decay through the diffuse layer.
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which is the expression for the total capacitance for two capacitors in series.
This is logical when considering the structure of the interface; a series combi-
nation implies that there is only one path from one potential (the bulk) to
another (the surface), which requires passing first through one capacitor
(the diffuse layer) and then the other (the Stern layer). The total capacitance
of the double layer varies with the ion concentration in the bulk, since the
capacitance Cd calculated in Equation 3.13 is inversely proportional to the
Debye screening length, whereas the Stern layer capacitance is unaffected
by changes in the medium. Since the Debye screening length diminishes as
ion concentration is increased (Equation 3.9), the value of Cd increases with
increasing concentration and the corresponding reciprocal 1/Cd decreases,
such that at higher ionic concentrations, the total capacitance is dominated
by the capacitance of the Stern layer:

(3.17)

Similarly, in media of low concentration the value of Cd decreases, until
eventually its reciprocal is large enough to dominate over the effect of the
Stern layer capacitance, such that Ct ≈ Cd. If we consider the implications of
this in physical terms, then in higher concentrations the majority of stored
charge is squeezed into the Stern layer, while at lower concentrations the
majority of charge is spread across the much larger diffuse layer. This has a
number of implications for the movement of charge around suspended parti-
cles undergoing dielectrophoresis, as we will discover later.

3.5 Particles in moving fluids
Having described the arrangement of ions and solvent molecules surround-
ing a stationary colloidal particle, we now consider what happens when the
particle is induced to move relative to the medium.

Fluid moving across the surface of particles at this scale moves in a
laminar manner — that is, it is nonturbulent and moves tangentially across
the surface of the particle. However, because of electrostatic interactions
between medium and surface, and because of the action of viscous drag,
there is a layer of molecules immediately adjacent to the particle surface that
does not move but remains next to the surface. This is termed the stagnant
or boundary layer, and it is significant in terms of the electrodynamics of the
double layer because it contains a significant portion of the double layer
charge. This layer is largely independent of surface morphology and exists
for both rough and smooth surfaces. It is assigned a thickness dek.
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Since there is a layer beyond which there is no motion of liquid, we can
therefore infer that there is a limit that distinguishes the stagnant layer from
the free-moving liquid. This limit is known as the slip plane. Although it is
unlikely that the viscosity effectively undergoes a step change from infinity
to a finite value at a specific boundary, the change occupies a sufficiently
small thickness for us to consider the model as if that were the case. Since
the particle retains its stagnant layer at all times, it effectively acts as though
it has a total radius extending to the slip plane and has an electric potential
equivalent to the potential at the slip plane. We term this potential the
electrokinetic potential or ζ (zeta) potential.

We may ask whether the dynamic model of fluid flow — in which a
layer of molecules is immobilized on the surface of the particle due to the
action of hydrodynamic interactions resulting in effectively infinite viscosity
— corresponds to the similar model of Stern in which molecules are adsorbed
on the surface due to electrostatic interactions between dissolved ions, water
dipoles, and the charged surface. The answer to this is perhaps unsatisfying
but useful; although there does not need to be any direct correlation between
the locations of the OHP and the slip plane, it has been demonstrated exper-
imentally that they are approximately equal. Similarly, there is sufficient
similarity between the potential at the OHP, Φ0, and the potential at the slip
plane, ζ, for us to consider them approximately equal. Beyond the slip plane,
the ionic concentrations fall away as predicted by the Gouy–Chapman model
and our previous calculations still apply.

3.6 Colloids in electric fields
So far we have only considered the arrangement of molecules in proximity to
a colloid for particles in the absence of an externally applied electric field.
However, since this text is concerned with the manipulation of colloidal parti-
cles using applied electric fields, it is important for us to determine how the
charge accumulated in the double layer will affect the electrical properties of
the particle. In Chapter 2 we examined the way in which a particle interacts
with an electric field according to whether it is more or less polarizable than
the surrounding medium. However, now that we have considered how
countercharge accumulates in the atmosphere around the particle, we need to
consider how this charge alters the way in which particles polarize.

When an electric field is applied, the charges in the double layer respond
by moving toward the appropriate electrode by Coulombic interaction.
However, the same charges are also attracted by the particle surface, such
that there is a slight net displacement of charge toward the electrode. Since
the charged particle and countercharged double layer move in opposite
directions under the influence of the electric field, this has the effect of
displacing the centers of the charges from being collocated around the center
of the particle — that is, the double layer/particle combination becomes
polarized. This polarization process occurs in both the Stern and diffuse
layers, by slightly different processes; in the Stern layer, the charge is fixed
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within the radius defined by the OHP but can still move in a laminar form
along the surface. Because the Stern layer is so thin compared with the radius
of the particle, the conduction can be considered to occur in a flat plane
across the surface of the particle itself. The conduction process in the diffuse
layer is slightly more complex, since the conduction to a polarized state
involves the displacement of the ion cloud toward the electrode; the time
taken to arrive at this polarized state depends not only on the amount of
charge in the diffuse layer, but on how far that charge must move to become
polarized. As the medium conductivity is increased, so the diffuse layer
contracts and the effective conductivity of the layer increases; this will be
significant later. These two polarization processes are shown schematically
in Figure 3.5.

As a result of double layer polarization, the particle acquires a dipole
moment; this is free to interact with the imposed field and field gradient,
such that a particle may experience dielectrophoretic forces due solely to the
interaction between the induced dipole and the applied field. The way in
which the charge moves across the surface is very important. This is because
the process of movement of charge is the process of conduction, and we can
envisage the process of electrical conduction in colloids as taking place in
two ways: charge can either be transported through the particle (as described
in Chapter 2), or it may be transported around the particle via the double

Figure 3.5 When the double layer is at equilibrium, the charge in the Stern layer (a)
and diffuse layer (b) is equally distributed in all directions. However, when an electric
field is applied, charge is redistributed, with charge in the Stern layer preferentially
collecting on one side (c) and the diffuse layer becoming elongated in the direction
of the field (d).
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layer, giving the particle a surface conductance. Electrically, this makes no
difference; an insulating particle with a highly conductive double layer will
be electrically perceived as a conductive particle. This is shown schematically
in Figure 3.6.

Stansilav Dukhin introduced a dimensionless number that now bears
his name to describe the ratio of surface and bulk conduction. The Dukhin
number Du is calculated thus:

(3.18)

where Ks is the surface conductance (S), r is the radius of the particle (m),
and σm is the conductivity of the medium (S m–1). Where Du is much less
than one, the double layer is effectively insulating and the electric field lines
pass around it tangentially, as occurs for generally insulating particles and
shown in Figure 2.11b. Where Du is high, the field lines meet the double
layer at right angles and conduct through it. Even where there is no conduc-
tion through the particle itself, there is still effective particle conduction
across the surface. In fact, we can go one step further and derive Dukhin
numbers for both the Stern and diffuse layers; thus,

(3.19)

This relationship will be important for determining the contributions of
electrical conduction in the Stern and diffuse layers in the next chapter.

Figure 3.6 Double layer conduction. A particle in an electric field, with a Du number
greater than 1, will conduct through the double layer, deforming the electric field in
the manner shown above. Where Du is low, the double layer is insulating and the
field pattern is similar to that experienced by insulating particles in electric fields, as
shown in Chapter 2.
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3.7 Electrode polarization and fluid flow
So far we have only considered the effects of electrical double layers at the
interface between solution and colloidal surface. However, any charged
surface in contact with a liquid acquires an electrical double layer, and so
we must also consider these effects. While the influence of charges on the
glass surface of capillaries is important for particle manipulation using
capillary electrophoresis, the most important electrified interfaces after the
ones surrounding the particles are those formed across the electrodes that
generate the electric field.

Since the electrodes must supply charge to the surface in order to generate
the required electric potential, countercharge accumulates across the electrode
surface. However, unlike the fixed charge found on the surface of colloids,
the charge on the electrodes is supplied externally and will change according
to the magnitude and sign of the surface potential being applied. Further-
more, since the electrodes are also involved in the generation of extremely
high electric field strengths, these fields directly couple with the charges in
the electrical double layer and are consequently responsible for moving the
fluid across the surface. This creates a fluid pumping effect that is ultimately
responsible for moving (relatively) large quantities of fluid across the elec-
trode area and particularly across the interelectrode gaps where the electric
field is greatest. Unfortunately, this is also where the dielectrophoretic force
is greatest, and these forces can act in opposite directions to prevent dielectro-
phoretic accumulation at electrodes, particularly at lower frequencies.

There are a number of ways in which an electric field can influence the
motion of a fluid. At larger scales, the most significant is Joule heating. When
a current passes through a medium, the motion of electrons heats the
medium. The warmer liquid then rises, causing a displacement of cooler
liquid and causing the liquid to circulate. However, at the scales we are
concerned with here, the very large electric field strengths used to generate
dielectrophoretic forces are applied across very small volumes, so that in
low conductivity (and hence highly resistive) media, the actual amount of
power applied in the volume between the electrodes is sufficiently small for
Joule heating not to be a problem. For example, Ramos et al.1 determined
that the approximate value of the temperature rise ∆T due to an applied root
mean square (rms) potential V can be determined thus,

(3.20)

where σ is the electrical conductivity of the medium and k is the thermal
conductivity of the medium. Note that the temperature increase is dependent
on the applied voltage rather than the electric field; this is significant in terms
of electrode design, since we require that the electric field (and more impor-
tantly the electric field gradient) be as large as possible without requiring a

∆T
V
k

≈ σ 2
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large voltage, which can be achieved by using as small an interelectrode gap
as possible. This is particularly important for media of higher conductivity;
where a solution conductivity of 10 m S m–1 can result in a temperature
increase of 1°C in water when a 20 Vrms signal is used, a 1 S m–1 solution (the
conductivity of many physiological media such as blood) in the same elec-
trode array would result in a temperature rise of 100°C, with catastrophic
results for biological material within the array.

In addition to the rise in temperature in the solution, the fact that the
medium is heated locally gives rise to temperature gradients within the
medium (that is, the medium temperature is not uniform throughout). Both
the conductivity and the permittivity of the medium are proportional to
temperature, and the temperature gradient gives rise to conductivity and
permittivity gradients, which themselves give rise to forces. The forces due
to the two effects are frequency dependent and act counter to one another
such that, below a frequency fc , the force acts to push fluid down the inter-
electrode gaps and out across the electrode surfaces, while at frequencies
above fc , the fluid moves across the electrodes to the interelectrode gap and
then outward. At frequency fc there is no fluid motion due to this effect. The
direction of motion in parallel, planar microelectrodes is shown schemati-
cally in Figure 3.7. The value of fc is given by the expression

(3.21)

where δσ/δT and δε/δT correspond to the change in conductivity and permit-
tivity due to a change in temperature, respectively. For water, the value of the

Figure 3.7 Temperature gradients in the medium above the electrode edges (due to
electrode heating, particularly by illumination) cause conductivity and permittivity
gradients and result in electrothermal fluid flow. Below its frequency fc, this flow
follows a pattern similar to that over the two electrodes shown above (dark gray, in
cross-section); above fc the direction of motion is reversed.
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square root is about three, and for a medium conductivity of 10 m S m–1, we
find that the frequency where the force is zero is approximately 7 MHz and
scales proportionally to the conductivity. However, the magnitude of the
force is related to a number of factors, some surprising; further work by
Green and co-workers2 showed that the magnitude of the fluid flow, which
can attain velocities in excess of 100 µm s–1, bears a strong relationship to
the intensity of the light used to illuminate the electrode array for particle
observation; when the electric field or light intensity are diminished, so is
the velocity of the fluid flow. Furthermore, applying a light to only one of
an electrode pair causes fluid motion over only the illuminated electrode
surface. This has been attributed to the heating of the electrode surface by the
illumination source, which greatly exacerbates the temperature (and hence,
permittivity and conductivity) gradient across the electrode surface, which
combines with the electric field to produce fluid flow.

In addition to this source of fluid motion, there is another that only
manifests at low frequencies. This form of fluid flow has been observed for
many years and was initially believed to be a third form of dielectrophoresis,
adding to the existing forms of positive and negative dielectrophoresis. In
experiments using planar electrodes to trap cells, it was observed that at low
frequencies, particles that had collected at the electrode edges at higher
frequencies would move toward the center of the electrode and collect on
its surface. Dubbed an “anomalous dielectrophoretic effect,” it remained
unexplained until Green and Morgan3 demonstrated that it was actually due
to a combination of positive dielectrophoresis acting to move the particles
toward the electrode edges and a fluid flow acting to push them from those
edges and onto the electrode array. When this fluid flow is sufficiently strong,
the particles take up positions on top of the electrodes where the forces
balance, giving the impression of having collected there by dielectrophoretic
action alone.

This is dependent on another electrokinetic effect, one that is dependent
on the material covered previously in this chapter — that is, the electrical
double layer. When the electrode has a voltage applied to it, it acquires an
electrical charge of the sign relating to the applied voltage. This then causes
the ions within solution to form an electrical double layer across the electrode
surface. However, the electric field in electrode arrays designed specifically
for the generation of nonuniform electric fields (such as those described here)
is such that, although the field lines are perpendicular at the electrode
surface, they are tangential through the electrical double layer, so that the
vector described by the electric field can be divided into two components:
one pointing from the electrode surface and the other pointing along it. The
interaction between field line and charge therefore acts not only toward the
surface (moving the ions in solution to the surface), it also acts to move the
charge along the surface, which by viscous action causes the medium in the
vicinity to move along the surface as well. This effect is called electro-osmosis
and is often used in capillaries as a means of transporting (and sorting) nano-
scale particles by a process known as capillary electrophoresis.4 However,
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unlike capillary electrophoresis, which operates in DC electric fields, the
electro-osmotic fluid flow is, like dielectrophoresis, frequency dependent. It
is strong at low frequencies where the double layer has time to form, dimin-
ish, and reform with opposing polarity for every cycle of the electric field,
but becomes limited at high frequencies where the electrode polarity changes
too fast for the double layer to form. The action of the force is then to move
fluid along the electrode edges and onto the electrode surface, as shown
schematically in Figure 3.8.

Extensive work in the field by Green et al.,5 González et al.,6 and Ramos
et al.7 has demonstrated that this force is most particularly active over a
range of frequencies between approximately 100 Hz and 10,000 Hz, with
the actual frequency response being a complex combination of electric field,
electrode geometry, position, and medium conductivity. In fact, the frequency
of the peak fluid flow has been observed to change according to the position
on the electrode surface. The mathematical treatment of low-frequency
electro-osmotic fluid flow is complex and has not been reproduced here;
in the work described in much of the remainder of this book, we will
consider the manipulation of particles in electric fields of significantly
higher frequency. However, since this form of fluid flow can be highly
disruptive at frequencies often reaching into the low hundreds of kilohertz,
it is important to be aware of both the cause of such fluid flow and, more
importantly, its effects.

So far we have discussed the effects of fluid flow when using two parallel
electrodes to generate our electric field; however, this type of electrode array
is uncommon outside of fluid flow research. More common are electrode
arrays such as the quadrupolar and castellated electrodes, which we will
discuss in more detail in the next chapter, but which are worth mentioning
here in the context of fluid flow in these electrode arrays.

The interdigitated, castellated electrode array was the first planar, micro-
electrode array developed for dielectrophoresis applications8 and was

Figure 3.8 When an electric field E passes through an electrical double layer at an
angle other than 90°, we can consider it as comprising two orthogonal components;
one across the double layer and one along it. The one along the surface (Ex in the
figure) will induce a force on the charge in the double layer due to Coulombic
interaction. Across the electrode surface, this means the fluid will move away from
the interelectrode gap; this process is called electro-osmosis.

E

Ex Ex

EyEy
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developed to satisfy the need for electrode arrays with a largely inhomogene-
ous electric field with well-defined regions of high and low electric field
intensity. It was observed in 1988 by Price et al.8 that, at low frequencies,
particles trapped by positive dielectrophoresis moved to form diamond-
shaped aggregations on the upper surface of the electrode arrays. Investiga-
tions of the electric field across the electrode array surface determined that
these diamond-shaped areas corresponded both in location and shape to
regions of low electric field strength, and it was thus thought to be due to
an unexplained form of negative dielectrophoresis. It was not until the studies
by Green and Morgan3 that the motion was shown to be due in fact to fluid
flow. When particles collect in this type of electrode array, they do so at
the points of highest electric field strength, that is, at the corners and edges
of the electrodes nearest to the opposing electrode array, such as are shown
in Figure 3.9a. However, as frequency is decreased, fluid flow due to
electro-osmosis becomes increasingly prominent; as described above, the
location where this is strongest is where the electric field intercepts the

Figure 3.9 The balancing actions of dielectrophoretic force and electro-osmotic fluid
flow in a castellated electrode array. Electrodes consist of interdigitated (alternating,
interlinked) structures of opposing phases, which have castellated (“castle-like”)
structures along their sides. In the absence of fluid flow, particles collect along the
edges of the castellations nearest the opposing electrode array (a); however, the
presence of electro-osmotic fluid flow causes the particles to be pushed onto the
electrode surface. Flow from the opposite side of the electrode array means that the
forces are in equilibrium when the particles have been pushed into diamond-like
structures in the center of the electrode upper surfaces (b).
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double layer at the sharpest angle, which is also at the castellations of the
electrodes that are closest together. Therefore, those particles that have
collected by positive dielectrophoresis are those that experience the greatest
fluid motion, causing them to be swept back onto the electrode surface. As
they move further from the electrode edge, the angle of the electric field
becomes more orthogonal and the fluid flow diminishes; eventually a
neutral point is reached where the two processes are in equilibrium and
the particles remain at rest; this is at the center of the array and is respon-
sible for the diamond-shaped collections.

Similar effects are observed in the other common electrode array, the
quadrupolar array (Figure 3.10). These were developed by Huang and
Pethig10 for negative dielectrophoresis applications by devising an electrode
array that was “uniformly nonuniform.” The electric field across the center

Figure 3.10 The balancing actions of dielectrophoretic force and electro-osmotic fluid
flow in a quadrupolar electrode array. Four electrodes meet at a cross and are energized
with sinusoidal voltages such that adjacent electrodes have opposing phases and
opposing electrodes have like phases. In the absence of fluid flow, particles collect in
the gaps between adjacent electrodes by positive dielectrophoresis (a); however, the
presence of electro-osmotic fluid flow causes the particles to be pushed onto the elec-
trode surface until they form bow-like structures where the forces are in equilibrium.
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of the array varied in a mathematically predictable manner (at least in the
two dimensions of the electrode plane); the electric distribution follows a
polynomial equation, and in fact these electrodes are often referred to as
polynomial arrays. Arrays of this type were originally developed by Arnold
and Zimmermann for electrorotation studies,11 and simulations have verified
that they are near optimally suited for the purpose.12 For nanoparticle
studies, arrays of this type allow fabrication with very small feature size
(interelectrode gaps 500 nm wide have been reported13) and again provide
well-defined regions of high and low electric field. The fluid effects described
above for castellated electrodes are also visible for quadrupolar arrays, though
their origin is more clearly visible; particles collect by positive dielectro-
phoresis in the gaps between adjacent electrodes, as shown in Figure 4.11a.
When low-frequency fluid flow is present, the direction of the flow is ortho-
gonal to the electrode edges and pushes the particles on to the electrode
array, as before; these form a distinctive bow wave effect on the electrode
surface. If the fluid flow is strong enough, the dielectrophoretic force is not
strong enough to retain the particles and they are observed to form jets or
streams from the center of the electrode array, moving in straight lines along
the center of the electrode surfaces.14

3.8 Other forces affecting colloidal particles
Although the majority of work in this book describes the use of electric fields
to induce a force on particles, there are a number of other forces that also
act to move them to a greater or lesser degree. While some of these forces
are generally of sufficiently low magnitude to prevent them from causing
significant disruption to dielectrophoretic manipulation, others cause signifi-
cant, observable changes in motion, and, as such, an awareness of their effects
is useful.

3.8.1 Viscous drag

We have already described how viscous drag can cause electro-osmosis
across the surface of electrodes and particles under the influence of an electric
field, but it is also responsible for retarding the motion of any particle moving
through anything other than a vacuum. For example, objects moving through
air achieve a terminal velocity (maximum velocity for a given force input)
of about 150–200 km h–1 in most cases; in water the drag forces are much
more significant and, as the object reduces in size, the forces get (relatively)
even larger. For colloidal particles, the force is so significant that observing
them under a microscope and moving the solution with a pipette gives the
impression the particles are embedded in jelly, so little do they move.

Because the viscous drag force is so high, particles on this scale reach
terminal velocity in a few nanoseconds. Therefore, the velocity at which they
move is directly related to the magnitude of the force propelling them
through the medium (objects falling through air achieve constant velocity
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because the applied force — gravity — is approximately constant) and the
viscosity of the medium itself. For a spherical particle of radius r, these factors
are related by Stokes’s law, which describes the terminal velocity of a particle
through a medium with the following expression:

(3.22)

where η is the viscosity of the medium. This only holds for particles with
low Reynolds numbers (less than 0.3); however, the particles and media
considered here are such that for all the examples here, the above can be
considered correct.

3.8.2 Buoyancy

In the introduction to this chapter, we found that a colloid is defined as a
particle that does not precipitate, because Brownian motion overcomes the
buoyancy force that would otherwise make particles float or sink. This is a
generalization; larger particles such as 250-nm-diameter herpes viruses,
which are somewhat denser than water, can sink over time — a fact that
allows the measurement of the point at which the sedimentation force and
dielectrophoretic force are balanced. The magnitude of this force (dubbed
the sedimentation force) is given by

(3.23)

where ρp and ρm are the densities of the particle and medium, respectively,
v is the particle volume, and g is acceleration due to gravity. The force follows
a vector toward the direction of gravity, i.e., downward; if the force is nega-
tive the force acts upward and the particle will float (in which case, the force
may be referred to as the buoyancy force). Colloidal particles are of sufficiently
small volume that the sedimentation force is small compared with other
forces, but when averaged over time the sedimentation effect can be
observed, such as when it is used as a method of determining particle
properties (Chapter 5), or it can be used as a means of separating particles
in field-flow fractionation (Chapter 8).

3.8.3 Brownian motion and diffusion

Far more significant effects are observed due to the action of Brownian
motion and diffusion. These are effects that become increasingly significant
as the size of the particle is reduced, to the extent that it was suggested by
Pohl15 that such forces would be of sufficiently high magnitude to prevent
dielectrophoretic manipulation of colloidal particles from happening at all.
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Brownian motion is the result of particles suspended in a liquid being
bombarded across their surfaces by the molecules of which the liquid is
comprised. If the body is large enough, sufficient numbers of these impacts
will happen in almost all directions nearly simultaneously; for small bodies,
the net result of these molecular impacts is less likely to sum to zero and
there is a net movement induced in the particle.

Although the impacts of Brownian motion may occur with equal chance
across the surface of the particle and hence the time-averaged force will be
zero, the irregular nature of the particle over time means that there is a net
displacement. Studies by Einstein16 demonstrated that the magnitude of the
displacement of the particle from its initial position follows a Gaussian
statistical distribution with mean square displacement in one dimension
(direction) given by the equation

(3.24)

where t is the time and D is the diffusion coefficient. For spherical particles
in a liquid, this is given by

(3.25)

where η is the viscosity of the medium, r is the radius of the particle, T is
the temperature (in Kelvin), and kB is the Boltzmann constant. Combining
Equations 3.24 and 3.25, the mean displacement for spherical particles is
given by

(3.26)

This is a significant result because we need to overcome the action of Brownian
motion when applying dielectrophoresis, as discussed in the next chapter.
Note that unlike dielectrophoresis, Brownian motion is not a force; it arises
from a succession of force-imparting impacts. These result in an acceleration
to terminal velocity in a time period of the order of fractions of a picosecond
for particles of the size discussed here, and the time-averaged force is zero,
even though there is net displacement over time. In order to compare the
effects of different phenomena on particles, we must take different approaches,
which will be discussed in the next chapter.

Another force, diffusion, is used to describe the behavior of ensembles
of particles in solution; for example, when a drop of one liquid is added to
a flask of another liquid, the combined system is strongly inhomogeneous
with high concentrations of the additive surrounded by a volume with
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almost no concentration. After a period of time, this changes and there is
an approximately homogeneous distribution of the two liquids (assuming
they are soluble in one another). The movement of the ensemble is called
diffusion, and we can describe it by a diffusion force that moves the particles
toward an equilibrium state. However, in the work described here the
particles are sufficiently isolated for us to consider each as a specific body
independent of all others, and as such we may disregard the diffusion force
in our examinations.

3.8.4 Colloidal interaction forces

A significant class of forces that is important in the behavior of colloidal
solutions is those between the colloidal particles themselves. The simplest
of these to understand in the context of the work so far described is the
interaction of the particles and their double layers when they move in close
proximity. When two identical particles are close to one another, there is a
repulsive force generated due to the Coulombic interaction between the
particles and their corresponding Debye atmospheres when they approach
to within a distance equal to their combined Debye screening lengths.
Another effect, discussed in more detail in Chapter 2, is the induced
dipole–induced dipole force (referred to on the quantum level as the London
force). When two charged particles interact, any asymmetry in the electric
field generated by the locations of distributed charge can lead to the induc-
tion of a dipole in one of the particles, which can then induce a dipole in
the neighboring particle. Since the second induced dipole will be aligned in
the same direction as the first, this leads to an attractive force. Similar forces
occur where particles have permanent dipoles (in which case, the force is
known as the Keesom force).

The combination of electrostatic, induced dipole, and permanent dipole
interactions forms the basis of the van der Waals force, which describes the
interaction between colloidal particles on the nanometer scale. Under the
conditions of dielectrophoretic manipulation, the influence of van der Waals
interactions is sufficiently small for them to merely assist in the processes
that are being used; for example, in assisting in the trapping of small colloids
to a greater extent than may be possible without them. However, in the
presence of dielectrophoresis, electrophoresis, fluid flow, Brownian motion,
and so forth, it is virtually impossible to observe the contribution of van der
Waals forces at present.

Van der Waals forces play a significant role in the dielectrophoresis of
colloidal particles because they govern the extent to which, when two
colloidal particles come into contact, they remain separate, free-moving parti-
cles. If the electrostatic repulsion force between two particles is low, then
they may coagulate; if the forces are larger, then particles may move to very
short distances but will not stick. Essentially, van der Waals forces act to
counter the electrostatic interactions between particles; where the electro-
static forces between like particles are repulsive, the van der Waals force is
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attractive. It is this balance that governs the stability of dispersed colloidal
solutions; if the electrostatic interactions are greater than the van der Waals
force, then the particles will remain dispersed even when in close proximity.
However, if the van der Waals force is stronger, then the particles will stick
together — either flocculating (forming a loosely bound cluster that can be
broken apart with mechanical agitation) or coagulating (forming a permanent
structure with the colloids being irrevocably attached to one another). The
stability of a solution is therefore dependent on the strength or weakness of
the interparticle electrostatic repulsion forces, which can in turn depend on
a number of factors, such as medium pH. A well-known example of this is
the ability of milk to curdle when a drop of lemon juice is added — the lemon
juice lowers the pH of the milk, so that the colloidal fat droplets within
coagulate. The stability of a colloidal solution is governed by the DLVO theory
(named after its authors, Derjaguin, Landau, Verwey, and Overbeek), which
describes the way in which attractive long-range van der Waals forces and
repulsive electrostatic forces (generally between the double layers of the two
particles) balance. If the attractive forces sufficiently overcome the repulsive
forces at short range (for example if a pH change lowers the surface charge,
and hence the magnitude of the repulsive force), the particles will coagulate.

Under the vast majority of conditions described here, the force is suffi-
cient for particles not to coagulate, with the notable exception being in the
assembly of nanoscopic devices described in Chapter 7.
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chapter four

Analysis and manipulation 
of solid particles

4.1 Dielectrophoresis of homogeneous colloids
Dielectrophoretic forces can be induced in a wide range of submicrometer
particles from molecules to viruses. However, before we look at how dielectro-
phoresis might be applied to studying these complex particles, it is wise to
consider a simple case to see how the basic principles of dielectrophoresis
work at the submicrometer range. This is important since, when the diameter
of the particle being manipulated becomes significantly smaller than 1 µm,
a number of factors that have relatively little effect on the dielectrophoretic
response of larger particles such as cells increase in importance and begin
to dominate the response. In order to understand these effects fully, we shall
examine the case of a simple spherical particle, consisting of one material
only. By examining this, we can develop a model with which we will later
test the properties of viruses and proteins.

One of the key experimental tools to understanding the fundamental
mechanisms underlying the dielectrophoresis of particles on the nanometer
scale is the homogeneous sphere or bead, typically made from polymers such
as latex, or occasionally from metals such as palladium. Most common in
dielectrophoresis research are latex spheres. These are (as their name suggests)
spherical blobs of latex that have been impregnated with fluorescent mole-
cules, enabling the observation of very small particles (sizes as small as 14 nm
diameter are available) with a fluorescent microscope. The primary advantage
of using latex spheres is that they are very much a known quantity. They are
solid and homogeneous (that is, they consist of one material and are consistent
throughout). The internal conductivity and permittivity are known, as are
the surface properties. Furthermore, there are straightforward chemical
methods for changing those surface properties. Since they are spherical, they
conform to established models of dielectrophoretic behavior. Finally, they are
readily available in a wide variety of sizes and colors. For this reason, latex
beads have been used by a number of researchers for investigating funda-
mental electrokinetic effects in nanoparticle systems.
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4.2 Frequency-dependent behavior and
the crossover frequency

Now that we have examined our dielectric theory and understood the nature
of our colloidal test particles in Chapters 2 and 3, it is time to examine the
results of practical experiments and to understand how other factors result-
ing from the size of the particle and its nature as a colloid affect the way a
particle responds to an electric field. A typical experiment might involve
suspending a sample of latex beads in a solution of known conductivity
(such as ultrapure water with a measured quantity of potassium chloride,
KCl), applying the solution to an electrode array written onto a microscope
slide, and covering the assembly with a coverslip. The electrode slide is then
placed onto a fluorescence microscope (required in order to see particles this
small) and the electrodes are connected via attached wires, to a power source
(typically a benchtop signal generator, providing perhaps 5 Vpk-pk at a fre-
quency between 10 kHz and 10 MHz or more).

When the voltage is applied, the particles are observed to move quickly
to the electrodes. Within a few seconds, collections such as those shown in
Figure 4.1 are observed; whether the particles collect in the interelectrode
“arms” (Figure 4.1a) or in the center of the array (Figure 4.1b) depends on the

Figure 4.1 Fluorescence photograph of 216-nm-diameter latex beads collecting in an
electrode array, exposed to a 10 Vpk-pk signal in a dilute KCl solution. (a) Positive
dielectrophoresis experienced when the applied signal has frequency 1 MHz;
(b) negative dielectrophoresis when the frequency is increased to 10 MHz. The scale
bar is 20 µm long.
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frequency of the applied voltage; these behaviors occur at low and high
frequencies, respectively. At one specific frequency, the force appears to vanish
and the particles float freely. Varying the voltage also changes the force, making
the particles travel more quickly or slowly to the trap. If the particles are small
enough, then the magnitude of Brownian motion is sufficient to require a large
voltage be applied in order to ensure the particles remain trapped.

As we have seen, the dielectrophoretic force, FDEP, acting on a homogeneous,
isotropic dielectric sphere, is given by

(4.1)

where Re[K(ω)] is the real part of the Clausius–Mossotti factor, given by

(4.2)

where  and  are the complex permittivity of the medium and particle,
respectively, and ε* = ε – j(σ/ω) with σ the conductivity, ε the permittivity,
and ω the angular frequency. The frequency dependence of ε*, and hence
Re[K(ω)], implies that the force on the particle also varies with the frequency.
The magnitude of Re[K(ω)] depends on whether the particle is more or less
polarizable than the medium. If Re[K(ω)] is positive, then particles move to
regions of highest field strength (positive dielectrophoresis); the converse is
negative dielectrophoresis, where particles are repelled from these regions.

At frequencies where Re[K(ω)] = 0, a particle experiences no dielectro-
phoretic force; since the value of the force changes sign on either side of this
frequency, it is commonly referred to as the crossover frequency. Crossover
frequencies are a product of dielectric dispersions that cause the relative
polarizability of the particle to change sign. It is possible to monitor the
effects of changing the medium conductivity on the crossover frequency in
order to estimate the properties of the particle. In this chapter, where we are
only considering the case of homogeneous particles exhibiting a single
dielectric dispersion, this is somewhat simplified since there is only a single
dielectric dispersion for any given medium conductivity.

Consider the following example. The polarizability of a particular homo-
geneous sphere will exhibit a single dielectric dispersion such as the one shown
in Figure 4.2 when suspended in an aqueous medium of conductivity 1 mS m–1,
as calculated using the Clausius–Mossotti factor (Equation 4.2). If the medium
conductivity is increased, the polarizability of the particle compared with the
medium drops, resulting in the predispersion (positive) side of the curve having
a lower value. Eventually the low-frequency polarizability becomes so low that
it is below zero at all frequencies; that is, the particle always experiences nega-
tive dielectrophoresis. This can be seen in Figure 4.3, where the polarizability
is plotted for a range of suspending medium conductivities.

FDEP = ( )[ ]∇2 3 2π ε ωr K Em Re

K p m

p m

ω
ε ε
ε ε

( ) =
−
+

* *

* *2

εm
* εp

*

© 2003 by CRC Press LLC



78 Nanoelectromechanics in Engineering and Biology

If we plot the polarizability as a function of both frequency and conduc-
tivity of the suspending medium, we find a plot such as shown in Figure 4.4a.
Ideally, it would be convenient to directly measure the polarizability as a
mechanism for determining the dielectric properties of the particle, a method
often used for the measurements of cells by determining the rate at which
particles collect under positive dielectrophoresis for different frequencies.

Figure 4.2 The real part (solid line) and imaginary part (dotted line) of the Clausius–
Mossotti factor for a solid, homogeneous spherical particle.

Figure 4.3 The real part of the Clausius–Mossotti factor as a function of frequency for
a 216-nm-diameter latex bead, for different values of suspending medium conductivity.
The conductivity varies from 0.1 mS m–1 (top line) to 500 mS m–1 (bottom line). At
conductivities above 20 mS m–1, Re[K(ω)] is always negative, that is, the particles always
experience negative dielectrophoresis. At lower conductivity, particles cross from
positive to negative dielectrophoresis at about 3 MHz.
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However, this is not easy in the case of submicrometer particles where electro-
hydrodynamic and Brownian motions can easily disrupt the stable collection
of particles. While successful attempts have been made to use a modified
collection rate technique to study both latex beads and viruses (discussed in
Chapter 5), a far more convenient method of determining dielectric properties
is to examine the intercept on the X-Y plane in Figure 4.4a — the plot of
frequency against conductivity where the value of Re[K(ω)] is zero — and
infer the dielectric properties from that graph. This technique has been used

Figure 4.4 (a) The data presented in Figure 4.3 plotted with conductivity on a third
axis. The combinations of frequency and conductivity where Re[K(ω)] = 0 form a
distinct shape indicated by the black line. Plotting this as a function of conductivity
and frequency we obtain figure (b), showing the variation in crossover frequency
(where Re[K(ω)] is zero) for various medium conductivities.
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widely to study latex spheres,1–3 viruses,4–6 and proteins,7 as well as larger
particles such as cells.8–10 It is convenient for the measurement of colloids
because the zero force frequency can always be seen quite clearly, even in the
presence of disruptive fluid flow or Brownian motion. Such a graph — in
effect, Figure 4.4a viewed from overhead — is shown more clearly in
Figure 4.4b. In reality, data are collected at only a few conductivities and are
more likely to be represented as a series of points for different medium
conductivities, with a best-fit line being used to determine the most likely
data set for the experimental data.

Consider the predicted dielectrophoretic response of a homogeneous
latex sphere of diameter 200 nm. We can determine this by inserting values
for the conductivity and permittivity of the sphere (conductivity 10–6 S m–1,
relative permittivity 2.55) and the suspending medium (say, conductivity
10–3 S m–1, relative permittivity 78) into Equation 4.2 and calculating values
of Re[K(ω)] over a range of frequency. If we consider the mechanism
described earlier where the plot of polarizability is gradually reduced, we
would expect that the crossover would start at a given value and remain at
approximately that value as the conductivity increases, until a threshold is
reached where the crossover frequency drops. Above that threshold conduc-
tivity, the crossover frequency drops sharply, and above the threshold, the
particle exhibits only negative dielectrophoresis; this is the profile shown by
the black line in Figure 4.4b. For micrometer-scale homogeneous particles,
the observed dielectrophoretic response closely matches the crossover spec-
trum. However, as the diameter of the particle under study is reduced past
1 µm, this model becomes increasingly inaccurate. The crossover is found
to rise with increasing medium conductivity, and above the threshold where
the crossover drops rapidly and only negative dielectrophoresis should be
seen, the particle still exhibits a crossover but at a lower frequency. The
reason for this change in behavior is the increasing effect of the surface
charge, and more specifically the electrical double layer.

4.3 Double layer effects
Whereas the anticipated response of our 200 nm diameter latex beads might
be expected to have a crossover spectrum such as that shown in Figure 4.4b,
the actual experimental response looks like the one shown in Figure 4.5. As
can be seen, there are a number of significant differences. In our original
model, the response is constant over the lower range of conductivities and
always exhibits negative dielectrophoresis at higher conductivities; in reality
the crossover frequency exhibits a rise with increasing conductivity, and
when it reaches the threshold and the crossover frequency drops, it only does
so by about one order of magnitude. Furthermore, when we use the model
to determine the permittivity of a latex particle, we find the answers to be
quite different from the values we know to be true of bulk latex. For example,
in order to find a remotely reasonable fit such as the one shown in Figure 4.5,
the conductivity of the particle in the model must be much greater than that
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which we know latex to possess. Experiments with latex beads of different
sizes show that these effects become increasingly prominent as the size of the
particle is decreased. Although there are different causes for these effects, they
are all related to the movement of charges in the electrical double layer around
the bead; specifically, the movement of charge around the Stern and diffuse
layers separately, and the dielectric dispersion experienced by the charges in
the double layer (the alpha relaxation). We will examine these separately, to
examine how they each affect the dielectric response of the particle.

4.3.1 Charge movement in the double layer

It has been know for some years that the surface charge affects the dielectric
response of particles; early studies by Fricke and Curtis in 193611 and
Schwarz in 196212 showed that the net electrical properties of particles could
be significantly influenced by surface conduction. Subsequent studies by
Arnold et al.13 and Zimmermann14 demonstrated that the electrorotation of
latex spheres produced anomalously high values of internal conductivity —
which in latex spheres should be near zero — which was attributed to the
movement of charge around the particle. Solution charges are attracted to
the charges on the surface of the particle; when placed in an electric field
the charges appear to move in a laminar fashion around it. Arnold and

Figure 4.5 The predicted response for a homogeneous, 216-nm-diameter latex sphere
(line) and experimental data (dots).
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Zimmermann determined that the component of aggregate particle conducti-
vity σp attributed to surface charge movement could be determined using
the following equation:

(4.3)

where σpbulk is the conductivity of the particle interior, Ks is the surface
conductance of the particle, and r is the radius of the particle. This formula
was used, for example, in the determination of the surface charge of cells
infected by malarial parasites by Gascoyne et al.15 In our study of nano-
meter-scale particles, this is very useful since it explains why our models of
the behavior of our particles indicate a significantly higher conductivity than
we know latex to possess. This effect becomes increasingly significant as
particle radius is decreased, due to the inverse relationship between radius
and the additional conductivity term due to surface conductivity.

For latex spheres, the bulk conductivity is negligible, so the effective
conductivity of the particle is dominated by the surface conductance, Ks,
where typical values of Ks are of the order of 1 nS. We can extend this further;
according to Lyklema,16 the surface conductance can be calculated directly
from the surface charge density, provided the mobility of the ions in the
Stern layer are known, using the formula

(4.4)

where in this case σ i represents the charge density that exists on the surface
of the particle and µ i is the mobility of the counterion in the double layer
that is usually slightly lower than the value of mobility in the bulk solution.

4.3.2 Charge movement in the Stern and diffuse double layers

When we extend this model to nanoparticles, however, this approximation
is too simple. For a cell with a radius that is significantly (by several orders
of magnitude) larger than its Debye length, the thickness of the diffuse
double layer is so small that charge moving through both components of
the double layer can be treated as if occurring in an infinitesimally thin sheet
surrounding the particle surface. When the Debye length becomes a more
significant fraction of the particle radius — that is, when the particle is a
colloid — we can no longer ignore the double layer structure.

The movement of charge though the Stern layer occurs in a layer of finite
thickness a few molecules thick and is governed by the surface conductance.
There is also a second layer of charge movement in the diffuse double layer.
This is different and distinct from charge movement in the Stern layer; where
the Stern layer charge is bound to the surface of the particle and moves in
thin layer across the surface, charge distributed in the diffuse layer forms
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an amorphous ionic cloud around the particle as described in Chapter 3.
Significantly, the size of this cloud is inversely proportional to the conducti-
vity of the suspending medium — the greater the ionic strength of the
medium, the thinner the diffuse double layer is.

As before, we can model the surface conductance effects as contributing
to particle conductivity. We can expand this to contain terms due to both the
charge movement in the Stern layer and to charge movement in the diffuse
part of the double layer.13 The total surface conductance can then be written as

(4.5)

where  and  are the Stern layer and the diffuse layer conductances,
respectively; this then corresponds to a net particle conductivity given by
the expression

(4.6)

Unlike the processes within the Stern layer, charge movement in the diffuse
part of the double layer is related to electro-osmotic transport rather than
straightforward conduction. Electro-osmosis is a process of fluid movement
due to an applied potential across a nearby charged surface; the counter-
charge accumulates near the surface and then moves in the electric field due
to Coulombic attraction. The presence of the surface creates a viscous drag
that impedes the motion of the charges. Lyklema16 gives the following
expression for the effective conductance of the diffuse layer containing one
ionic species:

(4.7)

where Dd is the ion diffusion coefficient for the ionic species (counterion) in
the diffuse layer, z the valence of the counterion, F the Faraday constant, k
Boltzmann’s constant, R the gas constant, q the charge on the electron, T the
temperature, κ the inverse Debye length, c the electrolyte concentration
(mol m–3), and ζ the ζ potential. The dimensionless parameter m is given by

(4.8)

where η is the viscosity. A key factor in this expression is the relationship
between the surface conductance and the concentration of ions in the bulk
medium, which appears twice in this expression. There is a c in the expression
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itself, and a c1/2 in the expression for κ. This gives a net contribution of c1/2

to the total diffuse layer conductance. Since the concentration governs the
medium conductivity, this expression indicates that since the conductivity
of the medium is increased, so the conductivity of the particle will increase
but by a lesser degree. This is what we see when the crossover frequency of
the particle rises when the medium conductivity is increased; the effective
conductivity of the particle is also increased. The remaining values in the
equations are more or less constants; the principal unknown variable is the
ζ potential. This is known to vary slightly as a function of medium ionic
strength but the variation is small, and its mechanism is not fully understood.
However, since the concentration of ions is known, determining the diffuse
layer conductance allows the direct measurement of ζ potential.

4.3.3 Stern layer conduction and the effects of
bulk medium properties

In many circumstances, we can use Equation 4.4 as an approximation for
the conductance of the Stern layer. However, although the coionic species
does not comprise a significant part of the Stern layer, it was demonstrated
by Green and Morgan2 that latex beads exhibited different behavior in solu-
tions of KCl and KPO4, despite the fact that the counterion was K+ in both
cases. The conductance of the Stern layer is in fact dependent on the mobility
of the coions in bulk solution, as we can see by examining the factor that
relates the bulk and Stern layer conductivities, the Dukhin number. It has
been shown16 that the Dukhin number Du for conductivity in the Stern layer
containing one ion species i is given by the equation

(4.9)

where u is the surface charge density of the particle and  and  are the
mobilities of the ion species in the Stern layer and bulk medium, respec-
tively. Combining Equation 4.9 with the definition of the Dukhin number
in Equation 3.18 and rearranging for , we obtain the following expression:

(4.10)

If the electrolyte is symmetrical — that is, the molarity of the counterions is
the same as the molarity of the coions — it is possible to replace the con-
ductivity term and concentration ci with a molar conductivity Λ (expressed
in S m2 mol–1):

(4.11)
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Values of Λ are constant for solutions of given electrolytes. This is notable
since it only produces the same value as Equation 4.4 if the values of the
mobilities of the coion and counterion are equal, in which case the value of

 goes to 1.
For example, Figure 4.6 shows the crossover frequencies for latex beads

suspended in solutions of KCl and KPO4 (a 50:50 mixture of monobasic
and dibasic potassium phosphate, with a pH of 7.0) with conductivities
between 0.5 mS m–1 and 50 mS m–1. The best-fit lines were calculated using
values for the relative permittivities of the suspending medium and bead
interior of 78 and 2.55, respectively. The best fit to the data gives values of

 and ζ equal to 0.85 nS and 100 mV for the beads suspended in KCl,
and 1.25 nS and 120 mV in KPO4, respectively. We would expect the
dielectrophoretic response to remain the same since the ion species repre-
sented in the Stern layer remains the same (the K+ ion) for both the KCl
and KPO4 solutions. However, while the diffuse layer characteristic of an
increasing effective particle conductivity is similar in both cases, the low
medium conductivity response (which is dominated by Stern layer
conductance) is different. The molar conductivities of KPO4 and KCl are
21.2 mS m2 mol–1 and 14 mS m2 mol–1, respectively. We would anticipate
from Equation 4.11 that the Stern layer conductivity is approximately 51%
greater than that for KCl with all other values remaining the same. This is
borne out in the best-fit data, where Ks

i for the beads in KPO4 and KCl
solutions differs in the ratio 1.47.

Analysis of similar beads2 using a Coulter counter found that beads of
various sizes had surface charge densities ranging between 22 and 40 mC m–2,

Figure 4.6 A graph showing the crossover frequencies for 216-nm latex beads in KCl
solutions (open boxes) and KPO4 solutions (filled boxes) of similar conductivity.
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with 33 mC m–1 falling within the tolerance range of all bead sizes; KCl
has a molar conductivity Λ of 14 mS m2 mol–1. KCl is a symmetrical ion,
and the bulk mobility of K+ is 7.69 × 10–8 m2 V–1 s–1. Using these values,
together with the Stern layer conductance values derived earlier, we can
calculate from Equation 4.11 a value for ion mobility within the Stern layer
of 3.7 × 10–8 m2 V–1 s–1, or approximately half that of the ion mobility in the
bulk suspending medium. This is in keeping with Lyklema’s16 assertion
that the mobility of counterions in the Stern layer should be “close to, or
somewhat lower than, the corresponding bulk values.” If we calculate the
value of  using the above data, we find an estimated value of
3.33 × 10–8 m2 V–1 s–1, i.e., the value of  is approximately 0.96, and
the approximation holds.

This result is important in that there is an effect on the Stern layer
mobility, and hence the surface conductance, due to the coion in solution.
For homogeneous colloidal particles such as latex spheres, if the Stern layer
mobility is known, dielectrophoretic analysis offers a simple method of
determining the surface charge density, ξ potential, and internal permittivity,
providing the internal conductivity is known. This is because each quantity
affects the dielectrophoretic response in a different way. Three key features
are used in best-fit analysis; those being the value of the crossover frequency
in low conductivity media, the gradient of the rise in crossover as a function
of increasing medium conductivity, and the conductivity at which the cross-
over drops by a decade or more. Generally speaking, the internal permittivity
causes a scaling change in the frequency only, the surface charge density
causes a scaling change in both conductivity and frequency, and the ξ potential
affects the slope of the frequency increase with conductivity and the
conductivity at which the frequency drops. These unique features allow
best-fit techniques to find a unique solution to the fitting of data from
homogeneous particles.

4.3.4 Dispersion in the Stern Layer

The above formulae describe the way in which the electrical properties of
the particle, as represented in the Clausius–Mossotti equation, are aug-
mented by the movement of charge around the particle. However, in order
to describe the low-frequency dispersion visible in high-conductivity media
(where no positive dielectrophoresis is expected) it is necessary to add an
additional dispersion. Such additional polarizations follow the Debye model
of the form 1/(1 + jωτe), where τe is the relaxation frequency of the additional
dispersion.16 In this case the additional term derives from the dielectric
dispersion of the charge in the Stern layer. Unlike the diffuse layer, the Stern
layer is of fixed size and charge, these being dictated by the surface charge
density of the particle. Hence, the frequency of the dielectric dispersion
would be expected to be stable over a range of medium conductivities but
vary proportionally to the particle radius and the surface conductance.
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A good fit to observed data is given when the dispersion has a relaxation
time:

(4.12)

where εs is the relative permittivity of the Stern layer. This is the dispersion
frequency of a coupled resistor–capacitor network, where the resistor and
capacitor are the surface conductance and Stern layer capacitance. The best
fit is provided when εs is approximately 14ε0. Since the Stern layer consists
of bound ions and water molecules held in specific orientations by electro-
static interactions with the charged particle surface, this is reasonable; values
of between 7 and 40 have been suggested in the literature.16

If we consider all the above factors — the Clausius–Mossotti factor,
surface conduction in the double layer, and Stern layer relaxation, then we
can find best-fit lines that correspond well to our data. For example, we can
determine the net effects of all these factors on the 216-nm latex beads shown
in Figure 4.5. Superposed on the data is a best-fit line derived using the
above equations and values  = 0.85 nS, ζ = –100 mV, εS = 14ε0. The relative
permittivities of the particle and medium were 2.55 and 78; the internal
conductivity of the beads was considered to be negligible. As can be seen,
the model accurately predicts the behavior both below and above the decade
transition in crossover frequency at 40–50 mS m–1.

It is interesting to note that the dispersion due to capacitance in the
diffuse layer is not in evidence, possibly indicating that its effect is dominated
by the capacitance of the Stern layer due to the difference in magnitudes of
the permittivities, as discussed in Chapter 3. Diffuse layer dispersions may
yet be found at lower frequencies, but since the particles appear to undergo
positive dielectrophoresis up to the Stern layer dispersion frequency, this
has not yet been observed. That the dispersion is dominated by one double
layer component is to be expected, bearing in mind the effect we observed
in Chapter 3 where one capacitance is observed to dominate over the other.

4.4 Dielectrophoresis versus fluid flow
As described in Chapter 3, dielectrophoretic force generated by electrodes
producing highly nonuniform electric fields of great magnitude is often
countered by the force imparted on the medium itself due to electro-osmotic
fluid flow. There are two frequency regions where this effect is most notice-
able: in the range of frequencies below approximately 10–100 kHz (depending
on applied voltage), where the fluid flow is greatest, and at crossover, where
the dielectrophoretic force is relatively small due to the low values of
Re[K(ω)]. The effect can also be observed where the polarizability is low, and
in some cases — particularly where a large area electrode array is used to

τ
ε ε

e
S

s
i

a
K

= 0

Ks
i

© 2003 by CRC Press LLC



88 Nanoelectromechanics in Engineering and Biology

trap low-polarizability particles — the fluid flow can prevent particles
collecting by dielectrophoresis altogether. An example of this is the cover
photograph of this book, where plumes of red and green latex beads stream
from an electrode array.

In order to study this effect, it is possible to examine the patterns of
collection in the electrode plane and in the absence of any of the particles
moving above that plane or in the bulk solution. This is performed using
evanescent illumination to excite the fluorophores in the beads rather than
a normal fluorescence microscope. By illuminating the underside of the slide
containing the electrodes using a laser at the angle of total internal reflection,
an evanescent field of light is generated. This has wavelength equal to the
laser used, but the depth of illumination is only a few hundred nanometers.
Thus, only those beads immediately on the surface are illuminated and can
be seen along with the edges of the electrodes themselves; the remainder of
the beads in solution are invisible.

An example of this effect is shown in Figure 4.7. Latex beads of diameter
512 nm were collected in a quadrupole electrode array by positive dielectro-
phoresis at 1 MHz. The frequency was then raised in steps until the onset of
negative dielectrophoresis at 2 MHz. As the force diminishes, the balance
between dielectrophoresis and fluid flow changes. At these frequencies, the
dielectrophoretic force acts to attract the particles toward the array, but the
fluid flow acts to push them away. As the frequency is increased, the value
of Re[K(ω)] decreases, so that the particles are pushed farther from the trap;
the fluid flow occurs over a smaller range, and the dielectrophoretic collection
occurs in bands stretching across wider interelectrode gaps where pearl-chain-
ing effects can enhance the dielectrophoretic collection in regions where the
electric field strength is lower. At the crossover frequency itself, there is no
longer a force holding the particles together and they follow the contrails of
the small fluid flow at the electrode edges, which results in a swirling pattern.

As stated previously, the effect is at its most disruptive at low frequen-
cies, where the fluid flow is sufficiently vigorous to push particles collected
at electrode edges back onto the upper surfaces of the electrode arrays
themselves, which results in collection patterns on top of the electrodes.
Similarly, particles collecting under positive dielectrophoresis can be forced
away by fluid flow, which causes collection to occur above the points of
highest field strength where both force and flow are maximum, resulting in
levitated collections of particles above these high field points, where the
collected particles are suspended on jets of medium in the same manner as
a ball suspended on top of a fountain. Similar collection patterns have been
observed at the center of quadrupolar electrode arrays, where the flows
generated down the interelectrode gaps meet and form large “fountains” at
which large collections of particles have been observed.

While the movement of fluid due to electrohydrodynamic action is usually
the enemy of the dielectrophoretic engineer, it can be harnessed. For example,
Green and Morgan2 have used a combination of positive dielectrophoresis,
negative dielectrophoresis, and fluid flow to obtain a three-way particle
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separation; since the magnitude of the force experienced by a particle is
proportional to its volume, but the viscous drag experienced is proportional
only to its radius, particles of different size find equilibrium points at dif-
ferent distances from the point of highest field, forming discrete bands.

4.5 Separating spheres
As well as its usefulness in characterizing the dielectric properties of particles,
dielectrophoresis also has important applications as a tool for the separation
of heterogeneous mixtures of particles into homogeneous populations. The
method underlying the technique is simple: since polarizable particles dem-
onstrate a crossover frequency that is dependent on those particles’ dielectric
properties, particles with different properties may under specific conditions
exhibit different crossover frequencies. As those particles experience positive
dielectrophoresis below the crossover frequency and negative dielectrophore-
sis above, it follows that at a frequency between the two crossover frequencies
of the two particle types, one will experience positive dielectrophoresis while
the other experiences negative dielectrophoresis. This will result in one group
being attracted to regions of high field strength, with the other group being
repelled; hence, the two populations are separated. Such separations are typi-
cally carried out using electrode arrays with well-defined regions of high and
low electric field strength (see Figure 4.8), but this need not be the case.

Figure 4.7 The collection patterns of 512-nm-diameter latex beads near the crossover
frequency, observed using evanescent illumination. The particles experience positive
collection at 1.5 MHz, but fluid flow pushes them out from the array. Particles form
bands of pearl chains between the electrodes, which increases the attraction force. The
electrode array is similar in configuration and dimension to that seen in Figure 4.1.
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Dielectrophoretic separation was first demonstrated by Pohl and co-
workers in the late 1950s and early 1960s for a number of mineral and
polymer suspensiods using coaxial electrode arrangements such as those
described in Chapter 10. These particles were attracted from solution to the
central electrode and could thus be removed from solution; a review of this
early work is presented in Pohl’s classic text.17 Separations generally took
place in electrode chambers, perhaps tens of millimeters across, and particles
were dissolved in low-permittivity (and hence low-force) solvents, necessi-
tating the use of voltages in the range between hundreds of volts and tens
of thousands of volts between the electrodes in order to generate the requisite
value for ∇E2, with 10 kV required to trap particles of 100-µm diameter.
Subsequent work by Pohl and Hawk18 on the separation of yeast cells in
water used smaller electrodes (a point and plane arrangement, with 1-mm
interelectrode distance) to separate live and dead yeast cells suspended in
very low conductivity water solutions, using a 30 V, 2 MHz signal. Subse-
quent work has demonstrated the separation of blood cells and many other
cell types using machined electrode geometries (pin–pin, pin–plane, and
isomotive — see again Chapter 10). In the early 1990s, demonstration of
separation on microelectrodes was first performed by Gascoyne et al.19; the
use of microelectrode geometries allowed the use of low voltages, and more
inhomogeneous fields allowed separate collection of particles by positive
and negative dielectrophoresis. It is the use of microengineered electrodes

Figure 4.8 A schematic of typical electrodes used in dielectrophoresis work. (a) A
quadrupole electrode array. The gap between opposing electrodes in the center of
the array is typically of the order 10 µm for nanometer-scale work across, but arrays
as small as 500 nm have been used. To induce dielectrophoretic motion in particles
suspended near the electrode array, electrodes would be energized such that a and
c are of the same phase, and b and d are in antiphase to them. (b) A castellated
electrode array, where electrodes a and b are in antiphase. More electrodes can be
added above and below these two, providing phase alternates between them. Typical
dimensions are 5–10 µm along each electrode face.
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with sufficiently divergent electric fields (with correspondingly high values
of ∇E2 for relatively low applied voltages) that has allowed the separation
of particles to be extended to the nanometer scale.

As an example of the separation of homogeneous colloids by dielectro-
phoresis, let us consider the separation of a mixture of two populations of
latex beads, identical except for having different radii. Since the effective
conductivity (and hence the polarizability, as expressed in Equation 4.2) of
a latex sphere is dependent on double the surface conductances divided by
the particle radius (Equation 4.6), it follows that the value of Re[K(ω)] will
be strongly affected by particle radius. This is indeed the case, with larger
particles exhibiting lower crossover frequencies than smaller (but otherwise
identical) particles. For example, Figure 4.9 shows the dielectrophoretic
behaviors of two particles with a difference in radius of 20%, but with all
other characteristics the same. As can be seen, in the shaded frequency
window the particles exhibit different dielectrophoretic behavior — one
experiences positive dielectrophoresis, the other negative dielectrophoresis
— and can thus be separated.

Second, particles of identical size and internal composition can be sepa-
rated according to their surface properties. This was first demonstrated by
Green and Morgan in 1997,20 who reported the separation of 93-nm latex
spheres. By using a castellated electrode array with 4-µm feature sizes, the
researchers demonstrated that the particles exhibited a narrow range of
surface conductances rather than each having an identical value of surface
conductance. This caused the population of particles to have crossover fre-
quencies dispersed across a narrow frequency window, and, by applying a
frequency in the middle of that range, it was demonstrated that the particles
could in fact be separated.

Figure 4.9 The change in Re[K(ω)] as a function of frequency for latex beads with
diameters of 270 nm (leftmost curve) and 216 nm (rightmost curve). As can be seen
in the graph, the crossover frequencies (where Re[K(ω)] = 0) are slightly different;
between the crossover frequencies (shaded in gray), the particles have different
polarities of force and can be separated by dielectrophoresis.
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This effect was expanded upon3,20–23 by actively modifying the surfaces
of latex particles to improve the separation and to identify possible biotech-
nological applications of the technique. The surfaces of some of the beads
were chemically modified using EDAC (1-ethyl-3-(3-dimethylaminopropyl)
carbodiimide), a reagent used for the chemical coupling of protein to the
carboxyl surface of the beads. This caused a significant reduction in the
crossover frequency, which was found to equate to a similar reduction in
surface conductance from 1.1 nS to 0.55 nS, and ζ potential from –90 mV to
–85 mV. The EDAC-activated beads were then mixed with antibodies, and
the crossover behavior was measured again. Since the surface of the beads
was covered by the antibodies, the crossover spectrum exhibited a further
drop in frequency equating to a further drop in Ks

i (to 0.22 nS) and ζ potential
(to –80 mV). The crossover frequencies of the IgG-labeled beads were also
observed to vary by up to a factor of 2 between different beads as a result
of different amounts of antibody coupling between beads. However, the
average amount of coverage was determined to be in keeping with near-total
coverage when assessed using a protein assay and calculating the maximum
coverage for a given number of beads based on the size of a single IgG
molecule. These crossover spectra are shown in Figure 4.10. Subsequent work

Figure 4.10 Crossover spectra for 216-nm-diameter latex beads (squares), beads whose
surfaces have been modified by 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide
(EDAC) (circles), and beads that have been EDAC-treated and subsequently coated
with a layer of antibodies (triangles). As can be seen, altering the surface has a
significant effect on the dielectrophoretic response of the particles. Best fit lines are
also shown, and the corresponding values of the surface are described in the text.
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demonstrated that by coupling a secondary protein to the primary IgG
layer on the bead surface, a much broader range of crossover frequencies
was observed corresponding to a range from no secondary antibody attach-
ment to the formation of a complete secondary antibody layer. If one
examines the dielectrophoretic responses, it can be seen that for a given
medium conductivity, the three particle types exhibit different crossover
frequencies; applying a frequency between any two crossover frequencies
on the graph for a given conductivity will result in particle separation,
with the optimum separation occurring at a frequency roughly equidistant
from the two crossovers.

There are a number of potential applications of such a system. First,
since the crossover frequency is directly related to the amount of protein
attached to the bead surface, it allows the rapid assaying of the amount of
protein attached to a sphere, which in turn relates to the amount of protein
in the environment, which makes a single sphere a potential biosensor. If
the system is calibrated such that the crossover frequency in a particular
medium that corresponds to a specific protein coverage is known, then
observing the frequencies at which a single bead, or an ensemble, changes
dielectrophoretic behavior allows measurement of the protein content in the
medium. This could be used for a number of different proteins or other
compounds by mixing fluorescent beads of different colors, each with a
different surface functionality. By constructing electrodes over a suitable
photosensor, systems such as this may form the basis of “lab on a chip”
systems being developed as described in Chapter 9.

A second application concerns the fact that very small latex spheres have
a large surface area to volume ratio, so that a small volume of beads has a
potentially huge surface area. For example, a 1-ml sample containing 1% (by
volume) of 200-nm-diameter beads (as used by Hughes and Morgan23) has
a total surface area of 300 m2 — which in biosensor terms makes such a
sensor exceptionally sensitive. This can, for example, be used to detect very
low quantities of target molecules; if a large number of small, activated beads
is held near their crossover frequency, then a single molecule attaching to
the surface of one bead should change the surface charge of the bead enough
to cause that bead to pass the crossover frequency and be detected. A similar
system, on the micrometer scale, has been developed at the University of
Wales at Bangor as a means of detecting waterborne bacteria.24 Such sepa-
rators and detectors as these form the basis of “laboratory on a chip” systems,
which we will discuss in more detail later.

4.6 Trapping single particles
One of the many opportunities presented by the manipulation of particles on
the nanometer scale is that of manipulating single particles. Such a technology
could potentially open up new fields in the study of single-molecule chem-
istry and molecular biology, and is presently being pursued by a number of
workers (e.g., Hughes and Morgan,25 Watarai et al.,26 and Washizu et al.27,28).
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The majority of this research is performed using optical trapping, so-called
“laser tweezers,” discussed in Section 4.8.

The trapping of single particles is somewhat different and somewhat
more difficult to achieve than trapping a larger population of particles. In
the latter case, particles need only to tend to move toward the trapping
region; if some particles leave the trap, this is not considered a problem
provided greater numbers of particles are moving into the trap. Furthermore,
dielectrophoretic traps — even those constructed on the micron scale — tend
to collect large numbers of nanoparticles; a spherical trap with volume 1 µm
across could contain over 500 particles of diameter 100 nm.

There are two ways to increase the selectivity of the trapping mechanism.
One method is to reduce the size of the electrodes to the order of size of the
particle to be trapped. The other is to use a larger trap and follow a regime
whereby a single particle is attracted to the electrodes in one operation
followed by a second operation to prevent other particles from approaching
the trap. Owing to the difficulty of fabrication on the nanoscale, the latter is
the method of choice and can be implemented by both positive and negative
dielectrophoretic trapping.

Different electrode geometries are required for each trapping method.
The basis of electrode design for single particle applications is the dual need
to both attract a single particle and to repel all others. Unlike bulk nanoparticle
trapping where the aim is merely to attract particles to a region, it is necessary
to both attract a particle to a point and trap it while excluding all other
particles from that trap.

4.6.1 Theory of dielectrophoretic trapping

An electric field through a dielectric material containing no free charge (such
as those described in Chapter 2) must comply with specific vector rules. The
first of these is that the field has zero curl, that is, the direction of the field
acts outward from a point (as shown in Figure 2.2). A field having curl would
spiral out of the point charge; this is obviously not the case here. We can
express this mathematically

Second, if the electric field is applied externally to the dielectric, then in the
absence of contained charge the field is not divergent, it is constant every-
where (this expressed in Laplace’s law, discussed in Chapter 2). We can
mathematically express these statements thus:

Combining these, it was shown by Jones and Bliss30 that the electric field in
free space — that is, away from sources of imposed charge such as electrodes

∇ × =E 0

∇• =E 0
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— cannot contain isolated electric field maxima; the electric field strength is
always greatest at electrode surfaces (in our examples). However, the same
analysis does allow for any number of isolated field minima; these are regions
in space from which the magnitude of the electric field increases in all
directions. Since the electric field increases in all directions, then a positive
dielectrophoretic force would act away from the region in all directions,
though at the center of this minimum the electric field gradient (and corre-
sponding force) may be zero (a field null). Similarly, a particle experiencing
negative dielectrophoresis would experience a force moving it toward the
center of the minimum when moved in any direction from that center; it is
effectively trapped.

One use of this important principle of dielectrophoresis in electric field
geometries with maxima at electrodes and isolated minima is the development
of levitators.31 The heights to which particles are suspended in electric field
nulls by negative dielectrophoresis can be measured, the forces (balancing
dielectrophoretic repulsion with gravity) measured, and an estimate of the
value of Re[K(ω)] determined. Levitation is also possible by positive dielectro-
phoresis but is more complex as the applied force must be controlled so as to
ensure the particle does not rise up to the electrode. A review of dielectro-
phoretic levitators and their electrode geometries is presented by Jones;32 the
application of dielectrophoretic levitation to the measurement of virus proper-
ties is described in Chapter 5. Dielectrophoretic trapping is similar in principle
to dielectrophoretic levitation; however, its purpose is to retain (trap) particles
at a particular point in space, either by positive dielectrophoresis (attracting
the particle to a point in space from which it cannot escape) or negative
dielectrophoresis (enclosing the particle in a dielectrophoretic field minimum
from which it cannot escape), rather than levitating them.

4.6.2 Trapping using positive dielectrophoresis

This technique was first demonstrated for nanoscale particles by Alexey
Bezryadin and coworkers in 1997.33,34 Their electrode geometry consisted of
two needle-type platinum electrodes facing one another, suspended in free
space by etching the silicon substrate beneath the interelectrode gap. The
distance between opposing electrode tips was 4 nm. The potential was
applied through a high-value (100 MΩ) resistor; a 4.5 V, DC field was used.
As we have seen, AC fields are far more common for dielectrophoresis, but
this is not a prerequisite.

Colloidal palladium particles of 5-nm diameter were introduced in solu-
tion; the particles polarized and were attracted up the field gradient to the
electrode tips by positive dielectrophoresis. However, as soon as the first pal-
ladium sphere reached the center point between two opposing electrodes, a
circuit between the electrodes was made. This resulted in current flowing in
the circuit, in which the majority of the supply voltage was dropped across the
resistor. With virtually no voltage dropped across the electrodes, the magni-
tude of the electric field generated in the interelectrode gap was diminished,
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preventing other colloidal particles from reaching the electrode tips. Once in
place, the trapped particle was sufficiently attached to the electrodes for the
solution to be removed and the assembly to be observed using a scanning
electron microscope, as shown in Figure 4.11a with a slightly larger particle.
Similar principles could be applied to the trapping of single fullerene molecules
to form single-molecule transistors35 and have been applied to a range of
molecule-scale objects as discussed in Chapters 6 and 7.

4.6.3 Trapping using negative dielectrophoresis

An alternative method for trapping single particles using dielectrophoresis
is the use of negative dielectrophoretic trapping. This has advantages over
the positive trapping technique described above, where the trapping process
is stopped by a conducting particle contacting the electrode structures. For

Figure 4.11 Single particles trapped by dielectrophoresis. (a) An electron micrograph
of a single 17-nm palladium sphere trapped between two electrodes by positive
dielectrophoresis. (b) A fluorescence micrograph of a single 93-nm latex bead
suspended above a dielectrophoretic trap by negative dielectrophoresis. The bead
is at the tip of the white circle at the center of the array; scale bar, 5 µm.
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example, many particles that one might wish to trap are of biological origin
and therefore nonconducting, preventing the “completed circuit” method of
potential removal from being used. Furthermore, since the size of the trap-
ping volume at the center of the arrays is defined not by the electrodes but
the geometry of the generated field, the technology required to construct the
electrodes is far more readily available. Negative dielectrophoretic trapping
of single particles has been achieved by this method using viruses, latex
spheres, viral substructures, and macromolecules such as DNA as well as
larger structures such as cells.25,36,37 There are a number of drawbacks to this
form of trapping, one being the observation of the particle. Unlike positive
trapping where the particle may be detected electrically, particles trapped
by negative dielectrophoresis are suspended in the medium at an indetermi-
nate height above the electrode structure. Ultimately, the only means by
which such particles can be observed is by fluorescent staining. This is a
general problem in the field of single nanoparticle detection, and other
methods such as laser tweezers also require the use of fluorescent staining.
Another problem is that by the nature of negative dielectrophoresis field
cages, the force field extends the trapping volume some distance away from
the electrodes, and as such the force is smaller. This does limit the minimum
trapping size, and negative dielectrophoresis is less effective than positive
dielectrophoresis at trapping the smallest particles.

Electrodes used to trap particles are generally quadrupolar arrays such
as the polynomial design shown in Figure 4.8a. This array geometry has the
advantage of a well-defined, enclosed field minimum surrounded by regions
of high field strength. Ideally, the potential energy minimum would be small
enough to contain only one particle. Where this is not the case, particles may
first be attracted to the electrode tips by positive dielectrophoresis. When
the field frequency is switched to induce negative dielectrophoresis, only
those particles on the inward-facing tips of the electrodes will fall into the
trap; the others will be repelled into the bulk medium. It is possible to trap
single particles this way, though occasionally two or three particles may fall
into the potential energy minimum at the center of the trap. Figure 4.11b
shows a fluorescent photograph of a 93-nm diameter latex sphere trapped
in a polynomial electrode array (as shown in Figure 4.8a) under negative
dielectrophoretic forces.25 Particles have been held in traps such as these for
up to 30 minutes, where the limiting factor was the evaporation of the
suspending medium.

Single particles trapped by this method move within the confines of the
electric field cage under the influence of Brownian motion. During trapping
of an object with density greater than that of water, such as a single herpes
virus, the particle is levitated in a stable vertical position above the elec-
trodes; Brownian motion is balanced against the weight of the particle.
However, particles such as the latex spheres (which have a density approx-
imately equal to that of water) are not constrained in this way because
Brownian motion causes constant random movement in the z direction. Such
particles may eventually diffuse out of the top of a funnel-type or open trap,
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in which the field gradient is generated by one set of planar electrodes
beneath the trapped particle, though particles can be held for 30 minutes or
more. In order to ensure that a particle remains within the trap, a second
layer of electrodes must be introduced above the first so that a closed field
cage such as those employed by Schnelle and co-workers37 is created. These
have the additional advantage of allowing a degree of three-dimensional
positional control by varying the intensity of the field strength at the posi-
tional electrodes, as has been demonstrated using a 1-µm-diameter latex
bead.37 Alternatively, a planar (two-dimensional) electrode array can be suffi-
cient provided that any coverslip used to contain the solution above the
electrode is sufficiently close to the electrode plane and that any field trap
constraining the particle in the x-y plane extends the full height of the
solution, creating a force field of approximately cylindrical aspect.

4.7 Limitations on minimum particle trapping size
In order to stably trap submicron particles, the dielectrophoretic force acting to
move the particle into the center of the trap must exceed the action of Brownian
motion on the particle, which, if large enough, will cause a particle to escape.
In the case of positive dielectrophoresis, the applied force acts toward a single
point (that of greatest field strength), and the force attracting it to that point
must exceed the action of Brownian motion. For particles trapped in planar
electrode arrays by negative dielectrophoresis, the particle is surrounded by
a dielectrophoretic force field barrier through which it must not pass.

The trapping of particles using positive dielectrophoresis is the simplest
case to analyze; particles are attracted to the point of highest electric fields
strength, rising up the field gradient. Once at that point, the particle remains
unless Brownian motion displaces it a sufficient distance that the field is
unable to bring it back. The nature of positive dielectrophoresis is such that,
given a long enough period of time (be it seconds, or years), any particle
polarized such that it experiences positive dielectrophoresis will ultimately
fall into the trap;38 as the electric field gradient extends to infinity, there will
be an underlying average motion that will over time cause a displacement
toward the high field trap, though the time taken for such motion to occur
may be such a large magnitude as to be effectively unobservable.

The concentration of particles from solution by negative dielectrophore-
sis is slightly different in concept from the above case. Particles are trapped
in regions where the electric field strength is very low, and are prevented
from escaping by a surrounding force field wall that encloses the particles
(although it may be in the from of an open topped funnel). However, since
in both the above cases the particle must achieve the same effect — the
overcoming of a dielectrophoretic energy barrier that forces the particle into
the trap — the mathematical treatment of both cases is similar.

Given this approach to the trapping of particles by overcoming the action
of Brownian motion through the application of a quantifiable force, it is
possible to determine what the relationship is between the magnitude of the
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electric field applied by the electrodes and the smallest particle that may be
trapped by such electrodes. This approach was developed by Smith et al.39

for determining the smallest particle that may be trapped by laser tweezers,
a technique similar to positive dielectrophoresis. However, it is equally
applied to negative dielectrophoresis.

Consider the force on a particle of radius r suspended in a nonuniform
electric field, experiencing a trapping dielectrophoretic force FDEP . For times
longer than the order of 10–8 seconds, from Stokes’s law, the particle attains
a terminal velocity v according to the equation

(4.13)

where η is the viscosity of the medium. Considering a small region of
thickness ∆d over which the force (i.e., the field gradient) is constant, then
the time tDEP taken for the particle to traverse this region is given by

(4.14)

In addition to the dielectrophoretic force, there is the effect of Brownian motion
that acts to move the particle in random directions. From Einstein’s equation,40

the mean time  taken for a particle to move a distance ∆d in one dimension
can be derived and is given by

(4.15)

where k is Boltzmann’s constant and T is the temperature. For stable trapping
to occur, the time for the particle to fall into the trap (from the edge) should
be significantly less than the time taken for the particle to escape from it. If
we wish the trapped particle to never escape from the field trap, then the
dielectrophoretic force must be significantly greater than the Brownian, ther-
mal force (a factor of ×10 was suggested by Smith et al.,39 though this is
arbitrary) by which tDEP is smaller than , then from Equations 4.14 and
4.15, the conditions are

(4.16)

and

(4.17)
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We can therefore determine the approximate minimum particle radius for
successful trapping by substituting Equation 4.1 into 4.16, giving:

(4.18)

It is evident that the factors that contribute to the critical particle radius for
stable trapping are the electric field gradient and the distance across which
this gradient exists, i.e.,

(4.19)

The variation of the minimum particle radius for stable trapping can be
calculated from Equation 4.18 as a function of field gradient ∇E2 and trap
width ∆d. At a temperature of 300 K, and with εm = 78ε0 and Re[K(ω)] = 1,
this variation is shown in Figure 4.12. In cases where ∇E2 varies as a function
of distance, the trapping efficiency is given as the maximum value of the
function ∆d∇E2 for the particular trap. In order to determine what this might
mean in terms of a given electrode geometry, it is necessary to simulate the
electric field gradient around that geometry using one of the techniques
described in Chapter 10. The most accurate method of deriving the trapping
force is to then integrate the force across all possible escape paths, but an
alternative, rule of thumb method is to measure the shortest escape distance
across which the force field has a given value. For example, a numerical

Figure 4.12 A graph showing the variation in the minimum radius of particles that
can be trapped, according to Equation 4.19.
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model based on the Moments method41 was used to calculate ∇E2 around
the polynomial electrode array. Figure 4.13 shows a three-dimensional plot
of E and �∇E2� across the center of the electrode at a height of 7 µm above
the electrode array shown in Figure 4.13a, this being the approximate height
at which particles trapped in arrays of this geometry and size are observed
to be levitated by negative dielectrophoresis. The trap efficiency is governed
by the smallest distance that a trapped particle has to travel in order to
escape from the trap. In the case of a particle trapped by positive dielectro-
phoresis, it is principally governed by the magnitude of the electric field.
Since the field diminishes as an inverse square due to Coulomb’s law, the
field barrier is well established. For particles trapped by negative dielectro-
phoresis, ∆d is governed by the magnitude of the field barrier that encloses
the particle. As can be seen in Figure 4.13, while E is as one might expect
(with high field regions in the interelectrode gaps and a field null at the
center), the force pattern is more complex, with a force barrier surrounding
the field null. Repulsion by this barrier prevents particles trapped by nega-
tive dielectrophoresis from escaping. Analyzing these data for both force
magnitude and the thickness of the field barrier (i.e., ∆d) for an applied
voltage of 5 Vpk-pk, we find that ∆d∇E2 reaches a broad maximum when ∆d
is in the range 2 to 4 µm and the corresponding values of �∇E2� are in the
range 1 to 2 × 1017 V2 m–3. If we consider that this is the magnitude of the
force barrier that must be overcome in order for the particle to escape, we
can determine that the minimum radius of particle for stable trapping (i.e.,
without any particles escaping from the trap) is approximately 30 nm.

In order to trap large numbers of particles, the DEP force must overcome
diffusion, but not necessarily by a factor as great as 10. For example, this model
does not predict the stable trapping of proteins by negative dielectrophoresis,
or of 14-nm diameter beads in submicron electric field cages as reported by
Müller et al.42; the minimum particle diameter predicted under the condition
FDEP = 10FBROWNIAN would be approximately 66 nm for electrodes with a 500 nm

Figure 4.13 A simulation across the central area of the (a) electrode array, (b) electric
field, and (c) ∇E2 for an electrode array similar to that shown in Figure 4.7a. The
electrode array had gaps of 2 µm between adjacent electrodes and 5 µm across the
center of the array, and the simulation shows the field 3 µm above the electrodes. As
can be seen, the field strength is greatest above the interelectrode arms of the array;
there is a field null at the center of the array, enclosed on all sides by a region of high
electric field.
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interelectrode gap. However, if the condition is merely FDEP = FBROWNIAN, then
the DEP force on particles will be on average greater than Brownian motion. In
that case there will always be a net force on the particle mass toward the trap,
even if individual particles occasionally escape from the trap. If we consider
that trapping will be assisted by fluid flow and particle–particle interactions
creating van der Waals forces, then negative dielectrophoretic trapping of
populations of proteins or 14-nm diameter beads is entirely possible.

4.8 Dielectrophoresis and laser trapping
Dielectrophoresis is not the only method available for the manipulation of
nanometer-scale particles in solution. The principal alternative technique is
optical trapping by the use of so-called laser tweezers. Since we have now
amassed sufficient knowledge of how dielectrophoresis can be used for
trapping and separating particles, we are in a position to compare the two
methods and their relative merits and demerits.

Laser trapping makes use of so-called optical pressure to induce force
in an optical gradient, as reported by Arthur Ashkin of Bell Labs in 1986.43

If a transparent particle is exposed to a focused beam of light such that the
particle experiences a gradient in the intensity of light, then the particle
experiences a net force toward the direction of the increasing gradient. This
comprises two components, a scattering force and a gradient force. The magni-
tude of the gradient force on a spherical particle is given by the equation44

(4.20)

where np is the refractive index of the medium, nm is the refractive index
of the particle, and E represents the electric field generated within the laser
(light being another form of electromagnetic radiation). Comparisons can
be made between this expression and Equation 4.1, with the light beam
providing the appropriate electric field. Also note the presence of the r3

term in both expressions and the similarity of the bracketed term to the
Clausius–Mossotti factor. However, against this we must set the additional
radiation (or scatter) force terms, which do not have a significant dielectro-
phoretic analog.

In order to generate field gradients of sufficient magnitude, it is necessary
to use a focused laser beam, with the particles attracted to the focal point.
This technique has been used to manipulate a range of biological nano-
particles, from cells to proteins.45 There even exists an equivalent of electro-
rotation, wherein rotating modes in the laser are used to induce a rotational
torque in the particle. These “laser spanners”46 have been suggested as a
possible mechanism for driving nanoscopic cams and gears fabricated from
carbon nanotubes.47
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Given that these techniques exist and have gained a widespread repu-
tation, what place is there for dielectrophoresis? Its advantage over laser
tweezing lies in the simplicity of operation. Laser tweezers require the use
of one or more powerful and expensive laser and complex optics in order
to trap particles of the dimensions we refer to in this book. While it is
straightforward to trap particles in solution by either method, it is important
in optical trapping that there be a clear line of sight between the laser and
the particle, for obvious reasons. On the other hand, with dielectrophoresis,
the trapping is performed by small and relatively inexpensive electrode
structures, generating electric fields using equipment that can usually be
found in any radio repair shop. Provided the electrodes have power lines to
the outside world, there does not need to be a line of sight to the electrode
chamber, which means that fulfilling the aforementioned application of rotat-
ing nanoscale gears would be considerably easier by this method. Dielectro-
phoresis is much more efficient than laser trapping, since both the generation
of the laser beam and the dispersal of laser energy in the medium are wasteful
of energy. The separation of heterogeneous mixtures into two trapped popu-
lations is far more difficult to realize with laser trapping because of the
difficulties of creating a closed trap in which particles are repelled. The
two-dimensional nature of dielectrophoresis electrodes and the wide range
of geometries that can be fabricated according to the intended application
give the technique the edge. Finally, unlike tweezers, objects manipulated by
dielectrophoresis are not required to be optically transparent.

That said, it is important to consider that there are other advantages
intrinsic to laser trapping. Greatest of these is that since the particles are
attracted to the focal point of the beam, the location of which is dictated by
the geometry and position of the focusing objective lens, it is possible to
achieve full three-dimensional directed motion of a trapped particle by
moving the objective lens. In this respect, dielectrophoresis fares poorly
since it is only capable of providing limited control in the vertical plane
when particles are trapped by negative dielectrophoresis unless complex
three-dimensional electrode structures are used. Furthermore, laser tweezers
offer the ability to be switched to laser scissors, where a high-intensity
beam is used to burn the contents of the focal point, making a useful tool
for nanoconstruction.

Ultimately, both techniques have strengths and weaknesses and, as
such, are complementary; indeed, both techniques have been used simul-
taneously. For example, a laser tweezer system has been used to hold a
single bacterium in place, while negative dielectrophoresis was used to repel
other cells from the area48; another example is the use of laser tweezers to
isolate single sells from a trapped ensemble in a laboratory on a chip system
(described in more detail in Chapter 9).49 More commonly, laser tweezers
have been used to maintain a steady position of cells within a rotating
electric field during electrorotation experiments in order to ensure that the
cells do not move within the chamber (thereby experiencing different
electric field strengths and thus torques).50 Finally, the electric field of the
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laser can be used to generate a local electric field and hence induce dielectro-
phoresis; work by Mizuno et al.51 demonstrated that a laser, focused through
a slit across which an electric field was applied, could be used for the sorting
of yeast cells.
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chapter five

Dielectrophoresis of
complex bioparticles

5.1 Manipulating viruses
In the previous chapter, we established that dielectrophoresis can be used
to determine the dielectric properties of homogeneous particles with differ-
ent diameters and surface functionalities. We can extend the technique to
allow it to be used as an investigative tool for nanobiology; that is, it can be
used to probe into the heart of nanoscale bioparticles and reveal their inner
workings. Such applications have been demonstrated with cells for over
30 years,1 but it is only recently that, along with developments in nano-
manipulation by electrokinetic methods in general, the study of complex
nanoparticles has become possible.

Of all applications for nanometer-scale AC electrokinetics, the study of
viruses is perhaps the most similar to the studies of cellular properties that
form a significant part of dielectrophoretic research over the last 2 decades.
The physical structure of some virus particles resembles that of cells, with
DNA-containing cores surrounded by lipid membranes. However, while
electrorotation has become the de facto method of choice for cell analysis, it
is not possible to gain accurate measurements of such factors as rotation
rates of virus particles with conventional equipment, simply because viruses
are so small it is virtually impossible to observe rotational motion with
present-day optical equipment. Instead, we must rely on observation of
dielectrophoretic motion to determine the properties of the virus. By extend-
ing our simple model of dielectric response to cover particles made of many
concentric shells, we have a tool that will enable us to analyze the electrical
properties of viruses.

Furthermore, dielectrophoresis offers great potential for viral particle
detection. There is a need for portable equipment to be developed in order
to detect pathogenic bioparticles such as viruses or bacteria. Such a device
would offer great benefits for diagnostics at the point of care, for the diagno-
sis of veterinary diseases in the field, for the determination of water quality,
and for the detection of biological weapons.
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Many methods exist for the detection of bioparticles such as bacteria and
viruses using biochemical methods, but these generally require the use of
complex and expensive laboratory equipment. Furthermore, many methods
of particle detection require the particles to contact a surface where detector
biochemicals are used to identify them; however, since many biological
nanoparticles are neutrally buoyant (or are so small as to be affected by
Brownian motion far more than gravity), it is difficult to move particles to
such a surface. The ability to attract such particles indicates the advantages
of dielectrophoresis in this area, particularly in laboratory-on-a-chip systems
as described in later chapters.

In this chapter, we will concentrate on the dielectrophoretic detection of
virus particles; these are structurally the most complex particles on this scale,
on a size scale below cells (mostly between 5 and 10 µm across) and bacteria
(of the order of 1 µm across). We will use this as a basis for examining other
aspects of electrokinetic theory, in particular the behavior of ellipsoidal parti-
cles and of multishelled particles, and examine how we can use this as a
method for particle analysis.

5.2 Anatomy of viruses
The term virus comes from the Latin for “poison.” The original distinction
between bacteria and viruses as agents of disease in plants, animals, and
humans was made on the basis that light microscopy could be used to view
bacteria, and a fine filter could be used to remove them from a liquid sample,
but no such filter existed for viruses, and samples examined by microscope
appeared to show nothing. This is because viruses are fundamentally differ-
ent from the essentially cellular nature of bacteria, which are generally about
1 µm in diameter. Viruses are considerably smaller (between 5 nm and
250 nm in diameter) and in general too small to see with a light microscope,
requiring either fluorescent staining or a non–light based microscopic techni-
que such as electron microscopy or atomic force microscopy.

Viruses are unique in the world of living organisms, in that there is
debate over whether or not a virus actually is a living organism. Viruses do
not metabolize food, nor move; in many respects, they resemble inert protein
structures containing DNA. They are not even directly able to reproduce.
Viral reproduction occurs by a virus particle gaining entry to a cell, releasing
its DNA, and “reprogramming” the cellular processes so as to cause the cell
to start producing new virus particles. These are released from the cell either
one at a time or in a burst of thousands of viruses, an act that also destroys
the cell. The time from infection to destruction, with thousands of replicas
having been produced, is usually a matter of hours.

Viruses may be classified in a number of ways. One is according to the
target host, with three main types — animal, plant, and bacterial. Another
is according to whether the virus contains single-stranded DNA (e.g., parvo-
viruses), double-stranded DNA (e.g., herpesviruses), or single- or double-
stranded RNA (e.g., polioviruses and reoviruses).
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A third way of classifying viruses — and the most useful for our studies
— is by morphology. All virus particles (or virions) contain a DNA or RNA
payload encapsulated in a protein shell, called a capsid, which is assembled
from protein subunits called capsomeres. These capsids may be icosahedral
— that is, multifaceted but approximately spherical in structure — or helical,
where the capsomeres wrap around the DNA or RNA core to produce a long
thin cylinder. Species of helical viruses consisting of only RNA and protein
subunits almost exclusively infect plants. However, a number of plant and
animal viruses consist only of capsids and payload; many of the best-known
examples of these are the picornaviridae, whose family includes hepatitis A
and the common cold. The capsid may have protein spikes protruding from
it for cell attachment and entry.

In addition to the payload and the capsid, many viruses have an extra
lipid membrane (or envelope) similar to that which encloses cells. These are
referred to as enveloped viruses, whereas those without membranes have
naked capsids. In the vast majority of cases, there is also a layer of protein gel
between the capsid and envelope called the tegument. Most such viruses also
have glycoprotein molecules protruding from the envelope; these are mole-
cules that interact with the surface of the host cell and aid in the infection
process. Again, a number of common human viruses share this structure;
examples include various herpes viruses (including those responsible for
cold sores and chicken pox), and orthomyxovirus (which causes influenza).
The capsid structure in enveloped viruses may either be icosahedral or
helical; in the latter case the helix may be wrapped into a ball, such as in the
case of influenza.

There are exceptions to the above division of spherical and helical struc-
tures; for example, bacteriophage T-4 consists of a capsid plus additional
structures that can act like a hypodermic syringe so that when the base of
the virus comes into contact with the surface of an E. coli virus, the needle
penetrates the cell wall and propels the viral DNA into the cytoplasm.
Viruses with head-and-tail structures such as this exclusively infect bacteria.
Another unusual example of virus structure is the vaccina virus, which is
enveloped but contains no defined capsid structure. A schematic diagram
showing a range of virus structures and relative sizes is shown in Figure 5.1;
details are given in Table 5.1, where the shapes and sizes of a number of
different viruses are listed.

5.3 The multishell model
Thus far we have examined the application of the Clausius–Mossotti rela-
tionship as a means of determining the dielectrophoretic response of a solid,
homogeneous sphere. However, viruses are not solid, homogeneous spheres;
while virus shape is often approximately spherical (enough for the model
to give reasonable results), it is never homogeneous throughout, instead it
consists of a number of shells surrounding a central core. In the simplest
case, a virus might consist of a protein case enclosing a central space wherein
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the viral DNA lies; a more complex virus such as herpes simplex encloses
that protein shell in a thick protein gel, which is in turn surrounded by a
lipid membrane similar to that which encloses a cell. Viruses such as tobacco
mosaic virus are not at all spherical, but are long and cylindrical; we will
deal with them later in the chapter.

It is possible to adapt the existing model of interfacial dielectric behavior
developed in Chapter 2 to account for more complex particle structure.
Developed by Irimajiri et al.,2 it works by considering each layer as a
homogeneous particle suspended in a medium, where that medium is in
fact the layer surrounding it. So, starting from the core we can determine

Figure 5.1 A schematic diagram showing the shape and approximate relative sizes
of some viruses: (a) poliovirus; (b) polyoma virus; (c) influenza virus; (d) tobacco
mosaic virus; (e) herpes simplex capsid; (f) herpes simplex virion. Scale bar: 100 nm

Table 5.1 The Geometries and Sizes of Some Well-Known Viruses

Virus Family
Approx. Size

(nm) Geometry Enveloped?

Tobacco mosaic Tobamoviridae 270 × 18 Helical No
Rhinovirus

(common cold)
Picornaviridae 18–38 Icosahedral No

Papilloma
(warts)

Papovaviridae 40–57 Icosahedral No

Influenza Orthomyxoviridae 100 Helical, spherical Yes
Rabies Rhabdoviridae 180 × 70 Helical, 

bullet-shaped
Yes

Smallpox Poxviridae 200–300 Complex, 
brick-shaped

Yes

Herpes simplex
type 1

Herpesviridae 200–250 Icosohedral Yes

a

b

c

d

e

f
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the dispersion at the interface between the core and the layer surrounding
it, which we will call shell 1. This combined dielectric response is then treated
as a particle suspended in shell 2, and a second dispersion due to that
interface is determined. Then a third dispersion is determined due to the
interface between shells 2 and 3, and so on. In this way, the dielectric proper-
ties of all the shells combine to give the total dielectric response for the entire
particle. This is illustrated schematically in Figure 5.2.

In order to examine this mathematically, let us consider a spherical
particle with N shells surrounding a central core. To each layer we assign
an outer radius ri with r1 being the radius of the core and rN+1 being the
radius of the outer shell (and therefore the radius of the entire particle).
Similarly each layer has its own complex permittivity given by

(5.1)

where i has values from 1 to N + 1. In order to determine the effective
properties of the whole particle, we first replace the core and the first shell

Figure 5.2 (a) A sphere comprises a core and inner and outer shells, with radii r1,
r2, and r3, respectively. (b) These three layers have permittivity ε1
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surrounding it with a single, homogeneous core. This new core has a radius
a2 and an effective permittivity given by

(5.2)

We now have a core with N – 1 shells. We then proceed by repeating the
above calculation, but combining the new core with the second shell, thus,

(5.3)

If this procedure is repeated a further N – 2 times, then the final step will
replace the final shell and the particle will be replaced by a single homogeneous
particle with effective permittivity  given by

(5.4)

This value provides an expression for the combined effective permittivity of
the particle at any given frequency ω. It can also be combined with the
complex permittivity of the medium to calculate the Clausius–Mossotti
factor, as demonstrated by Huang et al.3 for yeast cells. This approach of
successively replacing shells has become the standard approach in deter-
mining the complex permittivities of many concentric shells; it is easily
implemented in software, as described in Chapter 11.

5.4 Methods of measuring dielectrophoretic response
5.4.1 Experimental considerations

In order to derive dielectric data that may help us to understand the physical
processes within a virus, we need to test the virus’s dielectrophoretic
response in some way. There are a number of methods that can be used,
which vary in degrees of complexity, and which provide varying amounts
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of information. In each case we use the force — either by measuring it or
determining which frequency causes it to cross over — as the basis for
deriving our information using the equations for the dielectrophoretic force
and the Clausius–Mossotti factor.

The most widely used method of studying virus particles is the same as
that used for latex beads; the crossover method, as discussed in the last
chapter. Other methods include collection rate measurement and levitation
analysis. These techniques are generally performed using fluorescence
microscopy to observe the virus particles, but recent developments by
Jan Gimsa4 have demonstrated that a light-scattering technique can be used
for direct virus observation without staining. In all of these methods, the
numerical result is obtained by finding the best-fit match between the data
and the variables of permittivity and conductivity of the membrane, viral
interior, and medium. However, with so many variables, there is rarely a
unique solution to a given data set, particularly for more complex viruses
and simpler data collection techniques.

Viruses are so small, we cannot observe them optically at all. In order
to observe them, we must employ fluorescence microscopy. Virus particles
are stained using fluorescent dyes, the manner of which will depend on the
morphology of the virus. If the virus is surrounded by a lipid membrane
(like a cell), then dyes can be purchased that penetrate between the mem-
brane leaflets (the inner and outer layer of the lipid bilayer), without entering
the interior of the virus itself. Dyes such as NBD-dihexadecylamine have
been used, which fluoresce at similar wavelengths to the common fluorescent
dye fluorescin. Studies of the infectivity of herpes simplex virus before and
after labeling demonstrated that labeling techniques such as this do not affect
the infectivity of the virus, although it is not known if it affects the dielectric
properties of the virus at all. Comparison of derived data for lipid envelopes
surrounding stained viruses and cells indicates the change, if any exists, is
minimal, though changes are more likely to occur in stained naked viruses,
where the dye attaches to charged sites on the viral surface, thereby changing
the surface density and hence surface conductance.

If the virus does not contain a lipid envelope as its outer layer, then the
structure consists of a bare protein outer shell and labeling is performed
directly onto this. It is possible to directly attach common fluoroprobe mole-
cules such as rhodamine to the amino acids of the protein shell, such as
lysine. Protocols such as this have been used for labeling herpes capsids and
tobacco mosaic viruses with a good deal of success.

Attempts have been made to examine the enveloped virus influenza
using light scattering techniques (described below). However, this approach
is unable to discriminate between individual (monodisperse) viruses and
those that are clumped; models derived from clumped viruses are far more
difficult to construct, since they must consider the radius of the clumps and
distribution of the virus matter within the clump. Since, as we have seen,
force is proportional to the volume of the particle, these measurements are
quite important to the model; furthermore, since the multishell model is based
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purely on the properties of concentric shells, only an approximate, ensemble
value for the clump as a homogeneous sphere can be obtained reliably.

Finally, it is worth mentioning that, despite the arguments that viruses
are not truly living organisms, they are nevertheless very fragile biological
entities and, as such, need to be treated with great respect when handled.
Aside from the important consideration that many viruses are harmful to
humans (and should be treated with the due respect warranted by their
potential for harm), it is also important to consider the effect of treatment
and handling on the viruses themselves. Viruses that have a membrane
envelope are most sensitive to environmental conditions, which must, for
example, be maintained in an iso-osmotic medium; both enveloped and
nonenveloped viruses are sensitive to pH. Since both of these factors are
affected by the concentration and type of ions in solution, careful selection
of solute is important. Generally, such experiments take place in sugar solu-
tions such as mannitol or sucrose, containing salts such as KCl or NaCl that
do not affect the medium pH. However, as described at the end of this
chapter, it is possible that changing the medium, even with chemicals that
one does not expect to have any effect on the dielectrophoretic response of
the virus, can in fact cause a significant change.

5.4.2 Crossover measurements

As with latex beads, crossover measurements provide a rapid, efficient, and
accurate means of determining dielectrophoretic response. It has been applied
to the observation and analysis of herpes simplex virus,6 tobacco mosaic
virus,7,8 Sendai virus and influenza virus,9,10 as well as Herpes capsids.11

In many respects viruses are easier to observe by this method than latex
beads, since they tend to be more dense than the suspending medium and
therefore are more slow moving, remaining near dielectrophoretic traps after
the field has been removed; they are also less susceptible to the effects of
electrohydrodynamic fluid flow and Brownian motion than beads for the
same reason. The principal drawback with viruses is that they tend to adhere
to electrodes, glass slides, and each other. Since determination of crossover
is most easily achieved by filling a trap by positive dielectrophoresis and
then finding the frequency where particles are repelled or released (due to
the crossover frequency being reached, so that the particles experience no
force), such measurements are made more complex when the particles being
observed remain on the electrode array due to adhesion with the surface.
The worst examples of this effect bind to the electrodes with such vigor that
only dissolving them in concentrated alkali (such as caustic soda) will work,
a process that can slow an experiment down when crossovers are required
to be taken at a number of different concentrations of medium salts as part
of a crossover spectrum. Similarly, viruses have a tendency to stick to one
another; such clusters must be excluded from experimental observations,
since they no longer conform to the model described earlier as consisting
solely of concentric shells.
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5.4.3 Collection rate measurements

Collection rate measurement has been used as a means of determining fre-
quency-dependent polarizability using dielectrophoresis since the 1960s.1 It
is based on the assumption that the rate at which particles collect at an
electrode is directly proportional to the magnitude of the force applied to
those particles. Consequently, by varying the force generated, we propor-
tionally affect the rate at which particles collect. Since the force on the
particles is related to the frequency of the field via the Clausius–Mossotti
factor, we can investigate the frequencies of dispersions other than the one
that causes the polarizability to change sign by measuring the change in the
rate at which particles accumulate at different frequencies. In fact, we can
also investigate particles that exhibit no crossover, only experiencing positive
dielectrophoresis over the range of frequencies the experimental equipment
is capable of generating. However, the collection rate is a relative indicator
of force, rather than providing a direct measurement of Re[K(ω)]; this is due
to the fact that ultimately the collection rate is dependent on other factors
such as original particle concentration.

An example of data provided by collection rate measurement is shown in
Figure 5.3. In this experiment, measurements were performed by video-
capturing images of the electrode array at five 30-second intervals after the
application of 5 Vpk-pk 500 kHz signal. The fluorescence excitation light was
blanked off between measurements to avoid photobleaching. The captured
images were converted into bitmaps and an analysis was performed on the

Figure 5.3 A sequence of three fluorescence photographs showing the collection of
herpes simplex virus, type 1 particles in the interelectrode gaps of an electrode under
positive dielectrophoresis. The photographs were taken (a) 30, (b) 60, (c) 90, and
(d) 120 seconds after application of a 500 kHz, 5 Vpk-pk sinusoidal signal. Images were
taken with an image-intensifying camera. A plot of the variation in rate of increase
of particles at the electrodes is shown in Figure 5.4.
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rate of particle collection, based on the light intensity and total frame area
illuminated (i.e., containing a fluorescing virus). The overall rate of particle
collection was determined y comparing the light intensity in successive
frames. The mean normalized particle collection rate in the range 100 kHz–10
MHz is shown in Figure 5.4; it was found that measurements at frequencies
below 100 kHz were disrupted due to interference by fluid convection effects,
which prevented the viruses from remaining stable within the trap.

Analysis of the collection rate of particles in the high field regions of
the electrodes indicates that the particles exhibit two dispersions — a
low-frequency dispersion at 200 kHz and a higher-frequency dispersion at
2 MHz leading to the DEP crossover at 4.5 MHz. For frequencies above
approximately 700 kHz, the rate measurement is in agreement with the
simple interfacial polarization model with the crossover frequency at
4–5 MHz. Below these frequencies it appears that the particle experiences
an increase in the collection rate, i.e., a positive DEP force that increases
with decreasing frequency. This lower frequency dispersion seen in the
collection rate (at 200 kHz) may be related to the dispersion of the Stern
layer, as it occurs at a frequency similar to the crossover frequency of
particles in high-conductivity media.

The principal drawback with the measurement of dielectrophoretic
collection rates for nanometer-scale particles is that planar electrode arrays
can only be used for determining the rate of positive dielectrophoretic
collection; negative dielectrophoresis tends to push the particles into the
suspending medium, out of the focal range of the observation equipment
used. This problem has been overcome for cells12 through the use of light
absorbance measurements. In such systems, the solution containing the
particles is sandwiched between two electrode arrays. A laser travels
through the center, and its intensity is diminished by the presence of particles

Figure 5.4 The variation in collection rate of viruses at an electrode array, as determined
using data such as that shown in Figure 5.3. The collection rate data demonstrate a
dielectric dispersion at approximately 4 MHz, as well as a significant rise in collection
at low frequencies (below 100 kHz) where collection is assisted by fluid flow as
described in Chapter 3.
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in its path. Positive dielectrophoresis pulls the particles from solution onto
the electrodes, causing the solution to become clearer; negative dielectro-
phoresis pushes particles into the path of the beam, decreasing the intensity
of the beam at the output. Measurement of the rate of increase or decrease
of the absorbance of the solution allows determination of collection rate for
both positive and negative dielectrophoresis. However, this technique has
not yet been demonstrated for submicrometer particles, where the particles
are sufficiently small not to interfere with the beam at optical wavelengths.

5.4.4 Phase analysis light scattering techniques

In order to redress the problem of light not detecting particles of such small
dimensions, a new approach developed by Jan Gimsa4 has overcome the
problems inherent in the enhancement of the light absorbance measurement
method of detecting Re[K(ω)]. Named phase analysis light scattering
(PALS), it is a development of a system originally devised by Kaler and
colleagues5 for observation of cell movement in isomotive electrode arrays
(as discussed in Chapter 10). The system employs a technique called Doppler
anemometry, wherein two laser beams intersect in a measurement volume,
creating a series of fringes. As particles move between fringes, the light
intensity varies and, by measuring the time taken for the particles to travel
between fringes a known distance apart, the velocity of the particle can be
measured directly.

This system can be enhanced by introducing a slight wavelength differ-
ence between the interfering laser beams, so that the interference pattern is
observed to move. By observing the phase-change of the scattered light with
respect to the velocity of the moving interference pattern using a photo-
multiplier, a direct measurement of velocity can be obtained. A schematic of
the setup for PALS analysis is shown in Figure 5.5a. As a technique it offers
many advantages, including the direct measurement of particle velocity
(rather than inferring it from collection rates) and thus Re[K(ω)]. It does not
require that the virus be stained, and it has been demonstrated to work for
particles as small as 100-nm-diameter influenza viruses, with unpublished
data indicating that the technique can operate with particles as small as
10 nm diameter.

Gimsa and co-workers have also developed an equivalent technique for
electrorotation, offering the only method of investigating the electrorotation
spectrum of nanometer-scale particles. Dubbed electrorotation light scatter-
ing (ELRS), the technique is similar to PALS but, rather than employing two
laser beams, a single beam passes through the solution contained within
electrorotation electrodes (as shown in Figure 5.5b). The change in phase
angle introduced by the beam passing through rotating particles is measured,
and the rotation velocity inferred from this, enabling the electrorotation
spectrum to be determined. Again, this has been demonstrated to be effective
in measuring influenza viruses, producing results that match well with the
dielectrophoretic results observed by PALS. These techniques have great
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potential and may become the standard method by which nanometer-scale
bioparticles are measured in the future.

5.4.5 Measurement of levitation height

This is a rapid method of analyzing the dielectric properties of single parti-
cles. It relies solely on negative dielectrophoresis, in a manner similar to the
connection between positive dielectrophoresis and collection rate observa-
tion. Demonstrated to be highly effective for cells and other particles on the
micrometer scale, the method is less effective for virus analysis because
Brownian motion acts to make the accurate determination of levitation
height difficult but still has applications where there is a requirement for the
determination of the properties of single particles (e.g., Jones and Bliss13 and
Kaler and Jones14).

Figure 5.5 (a) Phase analysis light scattering (PALS) allows experimental assess-
ment of particle velocity by examining the movement of particles through a moving
diffraction pattern. (b) A similar, though simpler, concept measures phase changes
in laser light (so-called electrorotation light scattering, ERLS) to determine rates of
electrorotation. Both have been shown to be effective for studying particles below
100 nm without the requirement for fluorescent staining.
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Consider a particle suspended in a negative dielectrophoretic field trap
such as that described in the previous chapter for the study of single beads.
As well as the negative dielectrophoretic force containing it at the center of
the trap, the particle also experiences some levitating force due to the action
of negative dielectrophoresis to push the particle above the array. This levita-
ting force is balanced against a known quantity: the negative buoyancy of
the particle as it sinks in the suspending medium. By determining the force
applied at that point, it is possible to calculate the properties of the particle.
Where the particle has a lower density than the suspending medium and
tends to float upward, measurements can still be taken by inverting the
electrode array, so that the electrodes are at the top of the chamber and
pushing particles downward.

When the forces are in equilibrium, the particle remains at a stable
position so that on average the total force in the z-direction is zero, i.e.,

(5.5)

i.e.,

(5.6)

or

(5.7)

where ρp and ρm are the densities of the particle and medium, respectively,
and g is acceleration under gravity. By simulating the electric field in order
to determine the value of ∇E 2, it is possible to use the other known values
to determine the value of Re[K(ω)] for that applied frequency. Measurement
of the particle height for a range of frequencies, or the range of voltage
required to ensure levitation at a constant height for different frequencies,
allows the determination of the spectrum of Re[K(ω)] and hence the dielec-
tric properties where the particle experiences negative dielectrophoresis.
The latter procedure, maintaining constant particle height and varying the
voltage in order to determine Re[K(ω)], has the advantage of allowing
electronic feedback to improve measurement accuracy and convenience.
Note also that the procedure can be reversed for determining the positive
part of the dielectrophoretic spectrum by reversing the procedure; using
positive dielectrophoresis to attract a sinking particle upward.

For example, a herpes simplex virus is levitated to a height of 7 µm when
a 5 V pk, 10 MHz signal is applied using the quadrupole electrode array
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described in the previous chapter. The simulation of the electric field around
the electrode array, shown in Figure 4.9, gives a value of field gradient ∇E2

of approximately 8 × 1013 V2 m–3 at this height. Although the electric field
gradient at the very center of the array has zero field gradient in the z
direction, the displacement of the virus across the enclosed trapping volume
means that the virus most probably experiences dipolar, rather than quad-
rupolar, force interactions. Using Equation 5.7 and the density of HSV-1,
ρp = 1.4 g cm–3, the model indicates that Re[K(ω)] = –0.04 at 10 MHz. This
experiment can then be repeated for other applied frequencies, allowing the
value of Re[K(ω)] to be determined for the negative part of the spectrum.

5.4.6 Particle velocity measurement

A final method of determining particle properties is the actual observation
of individual, fluorescently labeled particles over time. This form of analysis
has many drawbacks and is not widely used, but it has the advantage that
it allows the tracking of single particles in a population. By placing particles
in a larger array with well-defined electric field gradient — typically a larger
polynomial array with an interelectrode gap of 25–50 µm across the center
of the chamber — and applying an electric field, the motion of the particles
can be captured, for example by using a microscope, camera, and video tape
recorder. By analyzing the videotape frame by frame, individual particles
can be tracked across the interelectrode gap as they are attracted to, or
repelled from, the electrodes. Particles on this scale are subjected to a signifi-
cant amount of Brownian motion — which can cause displacements of
several diameters between one video frame and the next — by comparing
the measured data with plots of the local electric field gradient. An example
of this is shown in Figure 5.6, where the displacements of a large number
of 282-nm latex beads are shown together with the magnitude of the

Figure 5.6 The velocity of 282-nm colloidal particles in an electrode array, as a function
of the distance from the edge of the nearest electrode. Although the action of Brownian
motion causes the movement of particles to appear very noisy, it is possible to
statistically unravel the velocity from the applied force gradient (determined by
simulation and shown as a line).
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dielectrophoretic force predicted by simulation. If we analyze the motion of
particles on a frame-by-frame basis (as shown in Figure 5.7), we see that the
statistical variation of particle movement per camera frame (40 ms) is on
average zero; the direction vector indicates movement in the direction
toward or away from the electrode (and 90° to the electrode edge), with
direction toward the electrode indicating the positive direction. Note that
the data were taken at the frequency at which the thermally induced fluid
flow (as discussed in Chapter 3) is zero; if this is not the case, the additional
effects of fluid flow must be taken into account. At present, the majority of
study using this method is directed at understanding the nature of fluid flow
itself and the way in which it interacts with the dielectrophoretic force.

5.5 Examining virus structure by dielectrophoresis
While the multishell model is useful for the interpretation of experimental
data, it does have the drawback that there are too many parameters in the
model for there to be a single, unique solution for any given data set; there
are usually a number of possible combinations of values for permittivity and
conductivity that could produce the same net crossover spectrum. This prob-
lem is compounded as more layers are added to a model. In order to extract
some useful information about a particle, it is necessary to make some
assumptions about the properties of some parts of the particle as a basis for
further model refinement.

For naked virus particles consisting of naked capsids, the modeling of
the particle structure is straightforward; where holes exist between coat
proteins, it is possible for interior and exterior fluids to exchange, so that we
can model the particle as a protein shell surrounding an internal volume

Figure 5.7 The statistical analysis of particle movement in Figure 5.6, showing the
mean movement of a particle toward or away from an electrode edge, in the time
between camera frames (40 ms apart). Movement toward the electrode is given a
positive value, away from the electrode is negative.
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with properties similar to the suspending medium. An example of this is
described toward the end of this chapter.

If the particle is more complex than this, such as an enveloped layer
containing capsid, tegument, and envelope, we need to make more assump-
tions in order to satisfactorily reduce the number of possible parameter
combinations. The first layer about which such assumptions can be made is
the lipid envelope, if there is one. As in the case of latex beads, the response
of the particle is dominated by surface effects. For any outer layer, the net
conductivity is composed of two parts; the conductivity through the layer
(the transmembrane conductivity) and that around the layer (the surface con-
ductivity). These are related by the equation

(5.8)

where σb is the conductivity through the membrane, a is the particle radius,
and  and  are the surface conductances due to the Stern and diffuse
layers, respectively. Since lipid membranes are insulating, they usually have
a low value of σb, such that the conductivity of the outer layer is dominated
by the surface components. For particles on the scale of viruses, σb can be
treated as zero unless the membrane is damaged or has been treated with an
agent that raises the membrane conductivity (such as valinomycin — see
Section 5.6). Even though we now have two new variables to replace the one
we had previously, the effect of both of them is distinct; where the particle
exhibits a rise in crossover frequency as a function of medium conductivity,
it can only be attributed to the diffuse layer conductivity, as discussed in the
previous chapter. Similarly, the value of  is related directly to the Stern
layer dispersion in high-conductivity media, which allows us to double-check
our result. Finally, we are assisted in assigning values to the permittivity of
viral envelopes by the fact that they are made from the same material as the
cell membranes of the cells from which they came, and the dielectric prop-
erties of cells have been studied in some detail, with values in the range
between 8εo and 17εo being quoted.16 Note that the permittivity of the mem-
brane is often expressed as a capacitance per unit area for the area of the
surface, which is equivalent to the permittivity divided by the membrane
thickness (usually 7 nm). Moving within the envelope we may find a gel-like
tegument. Since this is enclosed by the envelope when the virus was con-
structed inside the cell, we might expect the internal conductivity to be of a
similar order to the values found in cell interiors. Cell values are typically
300–400 mS m–1,16 though this can be lower in the virus due to ion leakage
across the membrane after the virions are harvested. Typical values for cell
internal relative permittivity are of the order 50–70, though this is arguably
less relevant when comparing to internal viral structures. Where no tegument
is present, the viral interior contains a capsid structure.
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Within the tegument (if present), we find the capsid. If the capsid is
naked, then the structure may still play an important role in the dielectro-
phoretic response. Capsids such as that in herpes simplex are icosahedral
structures surrounding a core containing the viral DNA. The protein shell
is often porous, to allow access to the DNA when the capsid is constructed.
These pores then allow an exchange of materials between the interior and
exterior, so that the conductivity of the interior is closely related to the
suspending medium. The response of a naked capsid will be dominated by
surface effects, but capsids enclosed within a tegument may become
“invisible” because its internal and external properties are the same, and the
capsid (being made of protein, just as the tegument is) is not sufficiently
different from the material surrounding it to have a significant impact on
the properties of the tegument. Indeed, in many cases where the size of the
capsid is small in proportion to the size of the tegument, the properties of
the capsid may not affect the net response of the virus in any appreciable
way. In either case, the virus can be treated as having a core (tegument) and
membrane. This simplifies the problem to the extent that values can be
determined with some confidence.

Ultimately, such simplification may not be necessary if the viral structure
is sufficiently homogeneous that it can be treated as one single solid mass,
as with our particles in Chapter 4. One example of such a virus is tobacco
mosaic virus, which resembles a long, thin protein tube. However, this virus
presents other problems, namely, how to adapt our model for nonspherical
objects. We will deal with this problem later in the chapter.

5.6 The interpretation of crossover data
5.6.1 Clarifying assumptions

By way of example of the interpretation of the data collected by dielectro-
phoresis, we can examine the properties of herpes simplex virus type 1
(HSV-1), both in its native state and after having been subjected to various
modifying agents. The structure of HSV-1 is shown in Figure 5.8; as can be
seen, it consists of most of the components that have been discussed, includ-
ing a capsid, tegument, envelope, and glycoproteins.

In order to derive the dielectric properties of the virus from the data, a
crossover spectrum was generated based on a hypothetical Clausius–Mos-
sotti response; the best-fit match between observed and predicted response
was determined by generating a first estimate on assumed values, which
was then refined iteratively as the various spectra were examined. The model
was based on a simplified version of the virus as an insulating envelope
surrounding a conducting tegument; if we vary the parameters in a model
of the complete virus, it is evident that the properties of the capsid do not
affect the overall predicted dielectrophoretic response of the virion.

In order to obtain an understanding of how the various components of
the virus contribute to the overall dielectric response, it is possible to use
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chemical agents that only modify one aspect of the virus’ electrical makeup.
Three such agents are saponin (which causes small holes to open in the
membrane, allowing some of the interior to leak out); trypsin (which digests
the glycoproteins on the surface but leaves the rest of the virus intact); and
valinomycin (a potassium ionophore — a chemical that is incorporated into
the membrane and allows transport of potassium ions across the membrane,
between interior and exterior). The model was constructed using the follow-
ing premises: the dielectric properties of the trypsinized virions should differ
from untreated virions only in the surface properties, and that saponin would
make the virus “leaky,” affecting only the internal conductivity.

These assumptions allowed the results to be compared and a unique
solution that satisfied all the above conditions to be found. These solutions
are summarized in Table 5.2. Throughout this analysis, it was assumed
that the virus particle has a total radius 125 nm and the lipid envelope is
7 nm thick.

Figure 5.8 Schematic diagram of the HSV-1 virion showing the DNA, capsid, tegument,
and membrane.

Table 5.2 Dielectric Parameters for Viruses Estimated by Fitting the Data Shown in 
Figures 5.9 to 5.14 Using the Single Shell Model

Ks

(nS)
σint

(mS m–1) εint εmem

ζ
(mV)

Fresh 0.6 ± 0.1 100 ± 5 75 ± 25 7.5 ± 1.5 40 ± 5
+1 day 0.4 ± 0.02 85 ± 1 75 ± 15 7 ± 0.5 40 ± 2
+10 days 0.3 ± 0.1 24 ± 2 75 ± 3 35 ± 5 Less than 30 
Trypsin 0.3 ± 0.1 83 ± 3 75 ± 20 7.5 ± 0.5 40 ± 5
Saponin 0.55 ± 0.05 40–60 75 ± 10 10 ± 5 40 ± 20
Valinomycin 0.6 + σmem =

18 mS m–1
σmed + 40 78 ± 2 26 ± 2 40 ± 4
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5.6.2 Interpretation of results

Figure 5.9 shows the response of fresh, untreated virus. The crossover spec-
trum exhibits a gentle rise as the medium conductivity is increased, from
12 MHz at low conductivities to a peak of 18 MHz at 50 mS m–1 medium
conductivity. Thereafter the response falls sharply to below 1 MHz. The best
fit between predicted and recorded dielectrophoretic response indicates that
a fresh virion has internal conductivity 0.1 S m–1, internal permittivity 75εo,
membrane permittivity 7.5εo, surface conductance (Ks

i) 0.6 nS, and ξ 40 mV.
As described above, the magnitude of the surface conductance when dealing
with particles of this size effectively masks the value of membrane conduc-
tivity, which is typically less than 0.1 mS m–1 but may be larger in the event
of the membrane losing its integrity. The calculated parameters are consistent
with values previously presented for cells; the value of Ks

i is comparable
with a value of 0.54 nS determined for erythrocytes in the work of Gascoyne
et al.17 Similarly the membrane permittivity compares well with the value
6.8εo for erythrocytes determined by Gascoyne et al.17 These are reasonable
bearing in mind the cellular origin of the virus particles and the production
mechanisms within infected cells. Of interest is the internal conductivity,
which is somewhat lower than that for a typical cell. This may be due to ion
loss across the membrane during the harvesting process, or due to the exclu-
sion of ions from the forming virion during maturation within the host cell.

Trypsin acts to remove the surface glycoproteins while leaving the
remainder of the virus intact. The response in Figure 5.10 shows that the
crossover frequency below 10 mS m–1 solution has dropped to a constant
7–8 MHz, rising through a small peak before falling to below 200 kHz. The

Figure 5.9 Dielectric crossover spectrum of HSV-1 taken 5 hours after virus preparation.
The circles denote the frequencies at which the majority of the particles were observed
to change from positive to negative dielectrophoresis. The solid line indicates the
best-fit result to the data using the model described in the text.
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absence of the rise in response is indicative of a small double-layer surface
conductance, and, indeed, the best-fit model indicates that Ks

i has fallen to
0.3 nS. This is in line with the predicted effect of trypsinization, which affects
the surface glycoproteins but not the viral membrane or interior.

The virions treated with saponin also show a fall in the DEP spectrum,
though the fall is less uniform. Furthermore, the particles exhibit a rise in
crossover frequency with medium conductivity that is significant and can be
ascribed to either an increase in surface charge or, more likely, to an increase
in internal conductivity as a function of suspending medium conductivity.
This can be seen in Figure 5.11. An explanation for this behavior can be
derived thus: saponin permeabilizes the membrane, causing the interior and
exterior ionic environments to mix. This has the consequence of causing the
internal conductivity to ultimately equilibrate to that of the suspending
medium. However, as these experiments were performed shortly after sapo-
ninization, it appears that the conductivity of the interiors of the virus par-
ticles had not achieved equilibrium, particularly at lower ionic concentra-
tions. In their work with mouse erythrocytes, Gascoyne et al.17 showed that
treatment with saponin causes cells to lose interior ions slowly, resulting in
a loss of internal conductivity. It is difficult to find a single best fit line for
these data; fitting the range of conductivities indicates that the internal
conductivity lies somewhere between 40 and 60 mS m–1, which define the
upper and lower limits of the scattered points at low frequency. Note that
at higher conductivity, the graph becomes much more regular and indicates
a value of Ks

i of approximately 0.55 nS, similar to that of fresh virus, with
all other parameters remaining equal. We would also anticipate an increase
in transmembrane conductivity, but in particles of this size, such an effect is
masked by the much larger contributions due to double layer conduction.

Figure 5.10 Dielectric crossover spectrum of HSV-1 taken after treating the virus with
trypsin. Trypsin removes the outer glycoproteins from the virus, leading to a reduction
in surface charge.
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As seen in Figure 5.12, the spectrum of particles treated with valinomycin
is different from the other results in that it exhibits a sharp rise in crossover
frequency from 8 MHz in low conductivity media to in excess of 20 MHz at
higher conductivities. Valinomycin is a K+ ionophore, that is, it acts to trans-
port potassium ions across the membrane. This leads to equilibrium of K+

Figure 5.11 Dielectric crossover spectrum of HSV-1 taken after treatment of fresh virus
with saponin. Saponin permeabilizes the viral membrane, causing a reduction in
internal conductivity. Since this occurs at different rates in each virus, the results are
more scattered than is seen in other spectra. The circles and line denote experimental
and simulated results, respectively.

Figure 5.12 Dielectric crossover spectrum of HSV-1 taken after treatment of the viruses
with valinomycin. Valinomycin is a K+ ionophore, which acts to equalize the internal
and external K+ concentrations, leading to a strong interdependence between internal
and external conductivities. The circles and line denote experimental and simulated
results, respectively.
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ions on either side of the membrane, with other ions contained within the
virion being retained. The gradient of the slope of the dielectrophoretic
spectrum is therefore due to the interior conductivity following the exterior
conductivity, with an extra component corresponding to the non-K+ ions.
The model indicates that if the internal baseline conductivity is 40 mS m–1,
then the best-fit model matches the response if the membrane relative
permittivity is increased to 26. This is a high value for a lipid membrane but
may reflect the action of the ionophores suspended within the membrane.
All other parameters are within the ranges indicated for fresh viruses.
Furthermore, there is a high transmembrane conductivity component σmem

of 18 mS m–1, indicative of the large effect of ion transport across the mem-
brane by the ionophore. Such an effect could be mistaken for an unusually
high value of  though the low data point at higher conductivity would
count against this theory.

5.6.3 The effects of storage

In order to investigate the ageing of virus particles, viruses were stored for
1 day at 4ºC, divided into 13 aliquots of experimental conductivity prior to
storage. The spectra of these samples are shown in Figure 5.13. As can be
seen, the overall crossover frequency has been reduced. The best-fit curve
indicates that all parameters except the internal conductivity are essentially
the same as for the fresh virus. However, the samples demonstrated a rise
in conductivity of 0.4× suspending medium conductivity in addition to a
basic conductivity of 50 mS m–1. This change in behavior can be explained
in terms of the work of Gascoyne et al.17 in which cells suspended in nonionic,
iso-osmotic media experienced a gradual exchange of internal ions with the
surrounding media over time. The rate of exchange will have been slowed
in these samples due to the low temperature of storage. Virus particles stored
in experimental, ionic solutions not only lose ions at the same rate, but also
gain ions from the suspending medium, resulting in an internal conductivity
with components relating to both internal and external conductivities.

After 10 days, the DEP spectrum has dropped further, with the cross-
overs in media of conductivity less than 10 mS m–1 being at a constant
8 MHz with no rise exhibited before the fall-off to below 200 kHz, as seen
in Figure 5.14. Modeling the results indicates that the internal conductivity
has reached a value of approximately 24 mS m–1 and the membrane permit-
tivity has risen to 42εo. The vale of Ks

i has dropped to 0.3 nS, indicating further
membrane damage and glycoprotein loss; ξ is no more than 30 mV but the
model is insensitive to values below this. The drop in internal conductivity
is again consistent with the explanation that internal ions have largely been
lost either through diffusion across the membrane or through the membrane
becoming ruptured. The internal permittivity remains unchanged, which
may be expected due to the robust nature of the tegument’s protein gel.
However the significant rise in the membrane permittivity is surprising; it
may be due to a number of factors including disintegration, invagination or

Ks
i
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thickening of the membrane, or the membrane proteins being more freely
able to move.

In order to assess the effects of the treatments of the virus by other means,
gel electrophoresis was used to examine the effect of the treatment of virus
particles described in Section 5.6.2. Infectivity tests (titrations) were used to
assess the infectivity of the control virus; samples of the control virus after
1 day at 4ºC and samples treated with saponin and valinomycin exhibited

Figure 5.13 Dielectric crossover spectra of HSV-1 taken 24 hours after virus preparation,
with the virus having been stored at +4°C. The circles and line denote experimental
and simulated results, respectively. Virus particles were stored in separate mannitol
solutions, each containing KCl of conductivity equal to that in which the experiments
were conducted.

Figure 5.14 Dielectric crossover spectrum of HSV-1 taken 10 days after virus preparation,
with the virus having been stored at +4°C for that duration. The circles and line
denote experimental and simulated results, respectively.
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equal titration results. This indicated that the treatments do not have any
significant effect on the infectivity of HSV-1, despite the demonstration that
the anticipated biophysical changes in the virus due to these agents have in
fact taken place. However, treatment with trypsin caused a reduction in
infectivity of five orders of magnitude.

This result is significant in that it demonstrates that chemical agents that
affect the membrane integrity and allow the internal viral ions to escape from
the tegument do not affect the particle infectivity. However, treatment with
trypsin, which was demonstrated by gel electrophoresis to have removed
only the surface glycoproteins, resulted in a significant drop in infectivity. By
comparing the electrical properties with the change in virus infectivity, we
can make assessments about the virus, its function, and the means by which
it might be treated; for example, the above study demonstrates that while
removing the glycoproteins has a significant effect on infectivity, treatment
of the membrane and reduction of the tegument conductivity do not have
any effect (unlike some other viruses). Such a result has significance in both
the understanding of the function of the virus components and in the basis
for any possible future development of a treatment.

5.7 Studying nonspherical particles
While many viruses are sufficiently spherical in shape to be approximated
to spheres using the smeared-out shell model presented earlier, many others
are elongated or flattened ellipsoids, or long cylinders. It is possible in these
cases to adapt our model in order to compensate for the change in shape by
deriving a general expression for the Clausius–Mossotti factor for elliptical
particles, of which the spherical model is a special case.

When an elliptical particle polarizes, the magnitude of the dipole
moment is different along each axis; for example, a prolate (football or rugby
ball shaped) ellipsoid will have a dispersion along its long axis of different
relaxation frequency to the dispersion across its short (but equal) axes. The
dispersion frequency of the dipole formed along the long axis will be of
lower frequency than that formed across the shorter axes, but the magnitude
of the dipole formed will be greater due to the greater separation between
the charges.

Consider an elliptical multishelled particle such as that shown in
Figure 5.15. It consists of two axes in projection, x and y, plus a third axis
projecting from the page, z. The dimensions of the object along these axes are
a, b, and c, respectively. As indicated in Chapter 2, the particle will undergo
three dispersions at different frequencies according to the thickness of the
ellipsoid along each axis.18,19 In addition to the dielectrophoretic force
experience by the particle, it will also experience a torque acting to align the
longest nondispersed axis with the field (electro-orientation).

When a nonspherical object is suspended in an electric field (for example,
but not solely, when experiencing dielectrophoresis) any induced dipole will
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have a different time constant according to its alignment to the field. Since
each axis has a different dispersion, the particle orientation will vary accord-
ing to the applied frequency. For example, at lower frequencies, a rod-shaped
particle experiencing positive dielectrophoresis will align with its longest
axis along the direction of electric field; the distribution of charges along this
axis has the greatest moment and therefore exerts the greatest torque on the
particle to force it into alignment with the applied field. As the frequency is
increased, the dipole along this axis reaches dispersion, but the dipole
formed across the rod does not and the particle will rotate 90º and align
perpendicularly to the field. However, the shorter distance means the dipole
moment is smaller. This will result in the force experienced by the particle
being smaller in this mode of behavior. Particles with three different axial
radii will experience three different dispersion frequencies and will thus
align along each axis as the frequency is raised, producing an “orientational
spectrum,” as described by Miller and Jones.19

This alignment force may also be observed in the electrorotation of
elliptical objects, for example latex beads, in circumstances where the field
strength is greater in one direction than in the others, which can lead to an
object exhibiting a wobble when rotating. The mathematical treatment of
electro-orientation is complex, and we do not need to explore it in detail
here; readers are referred to the work of Jones for a mathematical exploration
of the process.20

An important consideration is the calculation of the dielectrophoretic
force experienced by the particle, both in terms of the determination of
crossover frequencies for ellipsoids (and particles whose shape can be
approximated as such), and for use in analyses such as collection rate studies.
When aligned with the field, a prolate ellipsoid experiences a force given by
the equation:

(5.9)

Figure 5.15 A schematic diagram of an elliptical particle, showing axes x and y, along
which the particle extends by distances a and b. The particle extends along the z axis
(out of the page) by a length c. If c = b, the particle is prolate; if c = a, the particle is oblate.
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where

(5.10)

where α represents either the x, y, or z axis and A is the depolarization factor.
This factor represents the different degrees of polarization along each axis,
such that:

(5.11)

where s is the variable of integration. The polarization factors are interrelated
such that Ax + Ay + Az = 1. The most useful version of these expressions is
that simplified for the case of prolate ellipsoids (a > b, b = c). This expression
is useful because many viral particles can be approximated to a prolate
ellipsoid, including needle-shaped viruses such as tobacco mosaic viruses.7
In that case, Equation 5.9 may be rewritten as

(5.12)

where A is given by the expansion21

(5.13)

and where γ = a/b. For a spherical particle, γ = 1 and A = 1/3, and Equation 5.12
can be rearranged to the expression for the force on a sphere as derived in
Chapter 2.
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As with spherical particles, multishell prolate ellipsoids may also be
modeled provided their dimensions are known. The procedure is exactly
as demonstrated earlier for spheroids, but with the expression for the
Clausius–Mossotti factor being replaced by Equation 5.10, thus,

(5.14)

for i = 1 to N – 2 as before, and where

(5.15)

Multishell ellipsoid particles include viruses such as vaccina, or helical
enveloped viruses such as rhabdoviruses. For a more complete exploration
of the mathematics underlying the dielectrophoresis of elliptical particles,
readers are again pointed toward the excellent book by Jones.20

5.8 Separating viruses
Just as latex beads of different sizes, properties, or surface functionalities can be
separated into subpopulations on an electrode array, so we can separate virus
particles with different properties. An example of this is shown in Figure 5.16,
which illustrates the separation of herpes simplex virus particles, which have
collected in the arms of the electrodes and here appear pale, from herpes
simplex capsids that appear here as a bright ball at the center of the array.
Similar separations have been performed for herpes simplex virions and
tobacco mosaic virions.22 The procedure for such separations usually follows
a categorization of the dielectric response of the two particle species in order
to find the optimum frequency and suspending medium conductivity.

An awareness of the change in properties of the virus over time is
important. For example, the day after the photograph in Figure 5.13 was
taken, the crossover frequency of the virions had dropped (as described in
Section 5.6). Separation of particles could still be achieved, but the optimum
separation occurred at a lower frequency, and the (highly stable) capsids
were trapped by positive dielectrophoresis while the virions were repelled.

Virus separation and identification is perhaps the most important appli-
cation of dielectrophoresis to nanomedicine — allowing, for example, the
point-of-care analysis of blood samples to determine the cause of an infection
without the need for lengthy analyses at remote laboratories. We will examine
possible separation techniques for performing such analyses on larger samples
such as blood samples in Chapters 8 and 9.
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5.9 Unexpected charge effects
This last section of the chapter deals with the fact that, ultimately, virus parti-
cles are highly intricate particles whose interactions with the double layer,
applied electric field and suspending medium can produce unexpected
results. The capsids of herpes simplex virus can be harvested prior to the
addition of the tegument and envelope, enabling their properties to be
measured independently. Three forms of the capsid can be isolated and are
referred to as A (comprising only the capsid shell), B (in addition to the
capsid shell, it contains an internal protein core, the scaffold, which is needed
during capsid assembly), and C (containing the viral DNA in place of the
internal scaffold).

Capsid particles were examined both to study the contribution of capsids
to the dielectrophoretic response of the virion and to establish its own cross-
over spectrum for the separation between capsids and virions described in
Section 5.8. The virus was studied in two media: in ultrapure water to which
KCl was added to vary the conductivity and in solutions to which the sugar
mannitol was added in iso-osmotic quantities (in which the separation would
take place).

Figure 5.17 shows the dielectrophoretic response of capsids in KCl solu-
tions without (Figure 5.17a) and with (Figure 5.17b) mannitol present. In
both solutions, the low-conductivity (less than about 0.5 mS m–1) response
is similar, with crossover frequencies observed at approximately 3–4 MHz.
However, above this conductivity the graphs begin to diverge. The capsids
in the solution with added mannitol behave as most other particles do
(including viruses and beads, with and without mannitol present) in exhibit-
ing a rise in crossover frequency at a rate that can be described by our existing

Figure 5.16 A separation of herpes simplex virions (in the electrode arms) from
herpes simplex capsids (in the ball at the center of the array).
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model, before peaking at 13 MHz and declining to its Stern layer dispersion
at approximately 250 kHz for conductivities above 16 mS m–1. Modeling this,
we must consider the physical form of the capsid. An icosohedral protein
structure, the capsid is largely hollow save for a 30-nm-radius protein struc-
ture responsible for packing DNA into the capsid (the so-called scaffolding
proteins). The proteins themselves are designed with a large number of pores
connecting the inside and outside of the capsid, allowing the entry of the
DNA, which is produced separately during virus replication.23 We can there-
fore model the capsid as a shelled sphere, on average 62.5 nm in radius and
with a shell thickness of 15 nm. Since there is access between exterior and
interior, we can consider the volume between the scaffold and the shell as
having properties equal to the medium, thick (inner radius 47.5 nm), con-
taining channels that connect the interior and exterior of the capsid. This
would mean that the dielectric properties of the capsid interior are equivalent
to those of the suspending medium. Fitting data with the model described
previously gives the result that the scaffold has a relative permittivity 30,
conductivity 30 mS m–1, Ks

i = 0.082 nS, and ζ = 80 mV, and that the shell has
relative permittivity 60, Ks

i = 0.1 nS, and ζ = 65 mV.
For KCl without mannitol, however, the crossover behavior does not

obey that predicted by our model. From its low-conductivity value of 4 MHz,
the crossover frequency rapidly increases in excess of 20 MHz within a one
decade change in conductivity, at which point the crossover was greater than

Figure 5.17 The crossover frequency spectrum of herpes simplex capsids as a function
of medium conductivity. Capsids were suspended in solutions of KCl (a) or KCL and
mannitol (b). Points indicate experimental data; lines indicate best fits.
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the measuring equipment could determine; the capsids only demonstrated
positive dielectrophoresis for frequencies up to 20 MHz and continued to
do so for medium conductivities up to 160 mS m–1.

No reason has been found for this behavior. Modeling the response
empirically, there appears to be a relationship between the diffuse layer
conductance of either the shell or the core that has a relationship to the
medium conductivity of a higher power than the (σm)1/2 we might expect
from the expression for diffuse layer conductance determined in Chapters 3
and 4. If the diffuse layer conductance scales as a function of (σm)3/2, then
we can at least obtain a fit to the data; however, this is entirely empirical,
and not dimensionally sound.

These data raise two questions — why do the capsids in solutions with
mannitol behave so differently to capsids in solutions without mannitol,
and why do capsids in solutions without mannitol behave in this inexpli-
cable manner? Mannitol is a simple, noncharged, nonpolar sugar molecule,
whose presence has not made herpes viruses behave differently from latex
beads, which have been measured without mannitol. Although its presence
may cause the medium permittivity to change slightly,24 it is unlikely to
cause any change as significant as the one observed here. Furthermore, the
change observed in the absence of mannitol defies any attempt thus far to
explain it. As with many branches of science, the more we learn about the
dielectrophoretic behavior of nanoparticles, the more we find things we do
not understand.
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chapter six

Dielectrophoresis, 
molecules, and materials

6.1 Manipulation at the molecular scale
Nanotechnology is one of the technological buzzwords of our age. The idea
of being able to manipulate molecules in precise structures in order to define
new materials and construct elaborate devices has caught the public imagi-
nation. However, this is in many cases a rebranding of old ideas — the idea
of performing such operations has been around for centuries, but has gone
under different names such as chemistry or, later on, materials science. If we
consider the development of such devices without those defined by human
ingenuity, we find that the arrangement of molecules, each shaped specifi-
cally to perform an operation on the nanometer scale, has been continuing
for billions of years. Biological macromolecules have evolved over millennia
to perform a huge array of tasks with speed and precision still beyond us
today, from the tiny molecular rotary motors that power bacterial flagella to
the mighty DNA, which contains all the knowledge of how to build and run
a human being — with all our characteristics, right down to our instincts
and thought processes — in a space a few hundred nanometers across.

So far we have considered the applications of electrostatic fields for the
manipulation of nanometer-scale particles but on a fairly large nanometer
scale; latex beads 200 nm across, or complex virus particles. While these
studies are both important in themselves and necessary for understanding
how the processes of charge movement around and through complex colloidal
particles are realized, they do not define the limits of smallness where particle
manipulation is concerned. In this chapter we will examine the manipulation
of molecules themselves — in the form of macromolecules such as DNA,
proteins, and carbon nanotubes.

6.2 Manipulating proteins
Proteins are biological macromolecules that perform a bewildering array of
biological functions — from forming structures such as hair, to powering
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muscles, to providing the catalysts for the chemical reactions in cells. They
are formed from sequences of amino acids in long chains, which, under the
correct conditions, fold into complex three-dimensional shapes; the shape of
the protein defines its function.

There are a number of reasons why we may wish to manipulate proteins
by dielectrophoresis. Proteins have very precisely defined (and often relatively
large, on a molecular scale) structures, dimensions, and masses, and the charge
on the molecule can be determined accurately, enabling predictions of electri-
cal properties; this makes them useful models for more general forms of
molecular manipulation. Second, many proteins are known to interact in a
specific way, such as the way in which two complementary antibodies will
bind, which has potential use in the assembly of complex nanostructures.
Third, specific proteins are often markers for disease, and the ability to trap
and analyze them from a sample would be a useful tool in diagnostic medicine.
Finally, the detection and separation of proteins is of great benefit to the science
of proteomics, the detection of proteins with potential use in drug discovery.

The manipulation of proteins was first demonstrated by Washizu and
co-workers in 1994,1 in their paper “Molecular dielectrophoresis of biopoly-
mers.” In this paper, it was demonstrated for the first time that positive
dielectrophoretic force could be used to trap proteins and nanoscale DNA
fragments from solution, overcoming the action of Brownian motion that
had been previously believed to be sufficiently great as to overcome any
applied dielectrophoretic trapping force on particles of this scale. Further-
more, it was demonstrated that by taking account of the different magnitudes
of force imparted to molecules of different size (the smallest being a mere
25 kDa), it is possible to separate proteins using field-flow fractionation
methods, discussed in more detail in Chapter 8. Since then, other demon-
strations have been made of protein dielectrophoresis, with target molecules
including antibodies2 and the flagella from bacteria.3

Although Washizu et al. demonstrated the use of positive dielectro-
phoresis for macromolecules, negative dielectrophoresis of proteins was not
demonstrated until much later.4 As we have already found, where both
positive and negative dielectrophoresis are available, it is possible to perform
crossover analysis for particle investigation, to separate particles, and to
manipulate them singly — which in the case of single molecules has benefits
for the type of nanoconstruction described by Drexler5 and may give rise to
useful manipulation technologies for nanoassembly.

6.3 Dielectrophores for protein analysis
As an example of the dielectrophoretic manipulation of proteins in solution,
we shall consider here the analysis of avidin molecules in solution by
dielectrophoretic methods. We can augment the dielectrophoretic crossover
response by altering the suspending medium pH; since we are dealing with
single molecules we can take advantage of a more chemistry-oriented
approach in order to gain more information. Avidin is a protein molecule
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found in the whites of chicken eggs. It has a molecular weight of 64 kDa
and comprises four identical subunits that interlock into an approximately
cuboid shape 5 nm along each edge. It has an isoelectric point — the medium
pH at which it is electrically neutral — of 10. It is most notable for forming
one of the strongest molecular bonds in nature when attached to the molecule
biotin, or Vitamin H. This strong bonding potential has demonstrated great
advantages when both molecules are conjugated onto micrometer-scale
objects that can be brought together and assembled.

6.3.1 Qualitative description

Figure 6.1 shows the results of positive and negative dielectrophoretic collec-
tion of avidin molecules in a quadrupolar electrode array. Before the electric
field is applied, the avidin solution appears as a uniform glow emanating
from the solution, with the lack of visible clumping indicating that the mole-
cules were evenly dispersed through the solution. When a 20 Vpk-pk signal is
applied, avidin is observed to collect. As with other colloidal particles, there
is a single crossover frequency exhibited, with positive dielectrophoresis
exhibited below and negative dielectrophoresis exhibited above. Intriguingly,
the collection process for such small particles means that when collection
occurs, the protein appears as if from nowhere (since it is not visible in
solution) and “grows” from the point of first collection; below the crossover
frequency, avidin accumulates along the edges of the interelectrode gaps, with
the collection broadening and filling the gap after a period of about a minute
as molecular pearl-chains form along the interelectrode gap. Similarly, when
the applied field frequency was greater than the crossover frequency, an
approximately spherical aggregate formed and grew at the center of the
electrode array. When the field was removed, these aggregates remained
intact and drifted into solution. As described elsewhere in this book, fluid
flow can be found to be significant at lower frequencies, although it is only

Figure 6.1 Fluorescence photographs showing (a) positive and (b) negative dielectro-
phoresis of avidin molecules.
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a problem under certain conditions where the crossover frequency is within
the same frequency window where fluid flow is present, such as those of
high frequency and conductivity and medium pH (as described later).

6.3.2 Crossover as a function of conductivity

Figure 6.2 shows the crossover spectrum of fluorescently labeled avidin in
solutions of varying KCl concentration (with measured pH of approximately
6.3). As can be seen, the dielectrophoretic behavior follows similar trends to
those exhibited by both latex beads and virus particles, with a low-conduc-
tivity crossover of approximately 9 MHz, rising to 12 MHz in media of
conductivity 10–16 mS m–1 before dropping to a lower constant frequency
of 650 kHz.

In previous chapters, we have applied models based on Maxwell–Wagner
interfacial polarization theory for either homogeneous or heterogeneous
(concentric) spherical or ellipsoidal solids, modified in order to compensate
for additional charge movement and dispersion in the Stern and diffuse electri-
cal double layers. However, we may wish to question how appropriate it is
to apply these theories directly to the modeling of proteins such as avidin.

The first difference between our spherical model and the structure of
avidin is the fact that the molecule is not spherical, nor can it be easily
approximated to any other ellipsoid. Second, unlike previous particles that
are either electrically neutral or have charges free to move and take part in
the polarization process or are distributed equally across the particle when

Figure 6.2 Experimental crossover frequencies for avidin molecules in KCl solutions
(pH 6.3) with best-fit line according to the procedure outlined in Chapter 4, amended
as described in the text below.
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not exposed to an external electric field, protein molecules contain fixed areas
of positive and negative charge that contribute to the molecule possessing
and additional permanent dipole, as well as any field-induced dipole. For
further details of the electrical properties of biomolecules in solution, see
Reference 6.

However, since the model we have is the only one that can be used to
predict the dielectric response analytically, we must approximate the behavior
of avidin to that of a spheroidal particle and draw conclusions from any
deviations from that model required in order to make the predicted results
match the observed data. In this, we have an advantage as our data conform
to the pattern observed (and described previously) for spherical particles; the
flat region at lower conductivity and the steep drop in crossover frequency
are both characteristic of the Maxwell–Wagner model. However, the rise in
crossover frequency with medium conductivity is small, consisting of a sharp
rise very near to the conductivity where crossover frequency drops; similar
behavior can be seen in the crossover spectra presented in previous chapters.
Below this conductivity, the response is quite flat, indicating very little con-
ductivity dependence (and hence, diffuse layer conduction). If the brief rise
in crossover is disregarded, a good fit to the data can be obtained by treating
the particle as a homogeneous sphere with negligible internal conductivity,
relative permittivity of the molecule of 71, and a surface conductance of value
25 pS. The zeta potential was found to have negligible value. This best-fit
response is shown as the solid line on Figure 6.2.

A number of models have been suggested for protein polarization (see
Chapter 3 of Pethig6 for a review). However, those molecules do not exhibit
a conductivity dependence of the kind observed here. What may be occur-
ring is that, on the imposition of the electric field, the molecules are attracted
to one another by dipole–dipole interaction, forming clusters through which
the solution can permeate.

We can also provide approximate values for the surface properties of the
molecule. For example, it is possible to examine the effect of the charge on
the surface of the molecule that is free to take part in conduction. Using the
guide of approximately 1017 charges per square meter from Pethig6 and the
values derived for latex beads in KCl in Section 4.3.3, we find a value of ion
mobility of 2.5 × 10–9 m2 s2 V–1, approximately one order of magnitude lower
than that for latex beads. However, at particle dimensions such as these —
where the electrical double layer contains a handful of charges — the basic
model of Maxwell–Wagner polarization becomes stretched and will need to
be adapted. Further work will be needed in this area of dielectrophoretic
manipulation before it can be fully understood.

6.3.3 Crossover as a function of conductivity and pH

In order to further test the dielectrophoretic response of avidin, we can also
investigate the behavior of the molecule as a function not only of medium
conductivity, but also of medium pH. The charge on molecules in solution
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is dependent on the pH of the medium in which it is suspended, with the
net charge given by the Henderson–Hasselbalch equation:

(6.1)

where A and S are the molar concentrations of acid and base in the solution,
respectively, and pKa is an acidity constant that describes the pH where 50%
of the acid sites on the molecule are ionized, given by

(6.2)

where A+ is the molar concentration of proton donors on the molecule, B–

is the molar concentration of proton acceptors, and AB is the molar concen-
tration of the molecule. A similar equation describes the basicity constant
pKb; between these values exists the isoelectric point pI at which the molecule
is effectively charge neutral, with equal numbers of positive and negative
sites. As the pH of the solution changes, the number of ionized acid and
basic sites alter, leading to a change in the effective conductivity of the
molecule. This change is due to proton donors ceasing to ionize where the
pH is low (and therefore there is an excess of protons in the solution) and
proton acceptors remaining unionized due to a shortage of available protons
at high pH.

Since the molarity of the ions in a solution affects both the conductivity
and the pH, a limited number of pH/conductivity combinations can be
investigated; adding ionic species to raise or lower the pH from 7 (neutrality)
inevitably raises the conductivity. However, by examining the variation in
crossover with medium pH, we can infer the data from the surface generated
by combinations of pH and conductivity. Higher values of conductivity allow
a broader range of pH values to be investigated. For example, Figure 6.3
shows the variation in crossover frequency as a function of varying pH
but constant medium conductivity (10 mS m–1). The range of pH was
created by using a combination of monobasic (acidic), dibasic (alkaline),
and tribasic (highly alkaline) KPO4 and (pH neutral) KCl. In this case the
counterion is different between the chloride and phosphate molecules; how-
ever, the inclusion of the KCl data point allows us to examine the effect of
varying this parameter, if any.

The crossover frequency is approximately 10 MHz in media less than
pH 8, consistent with the constant-pH graph shown earlier. Above pH 8, the
crossover starts to decline until no behavior can be observed at pH 9.5. When
the medium pH is above 9.5, the crossover frequency is too low to see, being
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obscured by electric-field-induced fluid flow. This behavior is in line with
the change in the charge on the molecule as the pH moves toward the pI
(which in avidin is 10.0), as described by the Henderson–Hasselbalch rela-
tionship (where the numbers of acids and bases change as a function of the
change in pH). We can adapt the model used for the pH 6.3 case in order to
account for the change in surface conductance, which probably takes place
in the form of charges moving from site to site along the molecule. The values
of conductance required to model the reduction in charge are 22, 17, 13, and
10 pS for surface conductance in media with pH 7.5, 8, 8.5, and 9. This loosely
follows the trend predicted by the Henderson–Hasselbalch equation, though
not precisely since our approximation does not take into account the fact
that some of the charged sites are involved in molecular bonds that allow
avidin to retain its shape and that do not therefore participate in the accepting
and donating of protons from solution.

We can get a more accurate picture of the effect of pH and conductivity
variation of crossover frequency by plotting the data as a surface, such as
the one shown in Figure 6.4a. Using only the models described above, we
can form a predicted crossover map as shown in Figure 6.4b. As can be seen,
the model correlates very well with the observed results.

Although protein molecules such as avidin feature permanent dipoles
due to the localization of acid and base sites in different parts of the molecule,
the crossover spectrum is essentially the same as would be seen for latex
beads and spherical viruses. We would anticipate that avidin might exhibit
a dielectric dispersion with a frequency similar to those of other proteins with
similar dimensions and molecular weights. For example, hemoglobin has a
dispersion frequency of about 10 MHz,6 and we might expect to see only
positive dielectrophoresis below that frequency. There are two possible expla-
nations for this; either the dielectric dispersion frequency of the permanent
dipole is sufficiently low for it not to affect the dielectrophoretic behavior or
the contribution of the permanent dipole may be small compared to the

Figure 6.3 A graph showing the change in crossover frequency of avidin for a constant
medium conductivity of 10 mS m–1, but varying medium pH. The crossover declines
as the pH approaches the pI of avidin.
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magnitude of the induced dielectrophoretic force. Whichever is the case, the
permanent dipole does not appear to play any significant role in determining
the dielectrophoretic response of avidin molecules in solution.

6.4 DNA
Perhaps the most important molecule in biological science is deoxyribonucleic
acid — DNA — which controls the heredity of living organisms. As the
unique marker that identifies all organisms and as the basis of many human
diseases, the identification and study of DNA molecules is of paramount
importance for biotechnology.

Figure 6.4 Three-dimensional surfaces similar to those in Figure 4.5, showing how
the crossover frequency of avidin varies as a function of both medium conductivity
and pH. The figures show (a) the experimental response and (b) the theoretical
response according to the model described in the text.
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At present, identification and analysis of DNA is performed by biochem-
ical methods where corresponding DNA segments are attached to markers
such as magnetic beads or fluorescent molecules. However, the problem with
such methods is that they require the chance meeting of molecule and detec-
tor within the sample solution — which potentially requires a long time for
these to come into contact. The most common method to overcome this
problem is to increase the amount of DNA being analyzed, using so-called
amplification methods such as PCR (polymerase chain reaction) or FISH
(fluorescence in situ hybridization), but these methods are demanding both
in terms of the resources and time they require. There is therefore a require-
ment for enhancing the effectiveness of DNA sensing for identification
purposes. One possible method for overcoming this is the dielectrophoretic
concentration of DNA molecules at the sensor surface, effectively forcing the
meeting that would otherwise be left to chance.

Although a single molecule, DNA could be considered to be the largest
physical object this book will discuss. A single DNA molecule consists of
two interlocked phosphate chains (or backbones) to which are connected
molecular pairs that form millions of regular links between the backbones,
which appear as the rungs of a ladder. Each rung is formed from two
molecules that have specific affinity for binding to one another; these mole-
cules are adenosine, cytosine, guanine, and thymine (represented by A, C,
G, and T), but A will only form a connection with T, and C will only form
a connection with G. In this manner, with only one phosphate backbone
populated with a sequence of A, C, G and T along it, it is possible to
reconstruct the other half of the molecule, forming the basis of the means
by which genetic information can be passed from one generation to the next.

The DNA molecule is organized such that rather than the backbones
being straight and parallel, they are twisted into an interlocking spiral
pattern — the famous double helix. This helical pattern is then further
wrapped on itself, or supercoiled, under certain conditions to form a struc-
ture called a chromosome. This is shown schematically in Figure 6.5. The
molecule has a uniform width of 2 nm between the backbones and 0.34 nm
between each rung; the helix is such that each backbone completes a circuit
every 3.4 nm.

DNA can be found in a number of states. The most well known is in the
single supercoiled thread known as a chromosome; this only appears during
the process of cell division. A second state, in which DNA spends most of
its time in the cell, is in a loose thread referred to as chromatin. In some
species, particularly those with small amounts of DNA, the molecule can be
looped back on itself to form a continuous thread called a plasmid. Finally,
in biotechnology and in DNA identification it is common for the large DNA
molecule (which if completely uncoiled, would be over one meter long in
humans) to be cut into fragments. These fragments can then be analyzed,
cloned, or otherwise used more easily. The cutting process is usually per-
formed by so-called “restriction enzymes,” molecules that cleave DNA at
points where the base-pair sequence follows a specific pattern for perhaps
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4–6 base pairs. Many hundreds of restriction enzymes have been identified,
giving a high degree of control over the fragmentation process. These specific
fragments can be used to identify the organism of origin or inserted into
new genes in order to affect the molecular behavior of the target organism.

From an electrostatic perspective, perhaps the most important aspect to
DNA is that it carries a very large negative charge, resulting in large surface
conduction properties and a large degree of water adsorption. This contri-
butes to a high degree of effective particle conductivity, with DNA molecules
in electric fields polarizing readily, and the degree of polarization being
related to the length of the molecule.7 At sufficiently high field strengths this
effect saturates, such that the molecule appears to have a permanent dipole.

Large DNA fragments and plasmids can actually be observed with con-
ventional light microscopy when supercoiled, but when in less clustered
forms it is effectively invisible. To overcome this, as with most of the subjects
in this book, fluorescent staining of the molecule must be employed, the
most common of which is 4´,6´-diamidino-2-phenyl-indole (DAPI),7 which
specifically binds to DNA.

6.5 Dielectrophoretic manipulation of DNA
Since it is a large and heavily charged molecule, it is perhaps unsurprising
that single DNA molecules can be induced to move by dielectrophoretic forces.
Indeed, this was among the first molecules to be studied using dielectro-
phoretic methods. In 1990, Washizu and Kurosawa7 first described the
manipulation of DNA molecules using electrodes with interelectrode spacing
of 60 µm and applied peak voltage 60 V; the high voltage compensated for

Figure 6.5 A schematic of the structure of the DNA molecule. (a) The molecule
consists of two helical backbones (dark and medium gray) with joined base pairs
(light gray) between them. The molecule goes through one turn every 34 nm. The
structure is coiled on itself to produce a supercoil (b) which is further coiled into the
structure of a chromosome (c).
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the relatively coarse dimensions of the array and allowed an applied peak
field strength of 1 MV m–1.

When no electric field is applied, the natural condition for DNA mole-
cules is to be in a coiled state. However, when an electric field is applied,
DNA is observed to uncoil and align along the electric field lines in strands
of many molecules, attracted by mutual dielectrophoresis. These strands are
observed to coalesce until stripes are formed between electrodes. With suffi-
cient magnification available, it is possible to observe this process occurring
with single DNA molecules. The time taken to uncoil a 48,500 base-pair DNA
molecule, approximately 17 µm long, is about one third of one second in an
electric field of 106 V m–1.7

One consideration in the dielectrophoretic manipulation of DNA is that
since the molecule is so polarizable, it remains more polarizable than the
suspending medium under all conditions thus far employed, such that even
in high conductivity media and very high frequencies, only positive dielectro-
phoresis of loosely coiled DNA molecules has thus far been observed. How-
ever, while no dispersion that changes the observed behavior from positive
to negative dielectrophoresis has been observed, the change in the direction
of alignment of the molecules (from being aligned parallel to the field lines
to being aligned orthogonal to them) has been observed. Such alignment
changes are indicative of a dielectric dispersion of the dipole formed along
the molecule (for further information refer to the dielectrophoresis of ellip-
soids in Chapter 5). At these higher frequencies, the dipole forms across the
axis of the molecule and can realign as the charges move from one side of
the molecule to the other — and when one considers that the distance across
the molecule is a mere 2 nm, it is perhaps not surprising that frequencies
have not yet been found where repulsion of the molecule is achievable.
Where the alignment is along the field lines, the molecule is more-or-less
straight, but when alignment is perpendicular to the field lines, the molecule
does partially recoil in this plane. This is because while the action of parallel
alignment leaves the molecule only one direction to occupy, alignment
orthogonal to this line allows the molecule to occupy any position in a plane
to which the electric field is normal. At low frequencies, it has been observed
that the alignment of DNA strands is neither parallel nor perpendicular to
the electric field lines but acquires a mesh-like quality. Moving to this
frequency window from higher electric fields causes a change from parallel
to perpendicular alignment. For the molecules described above, parallel
alignment was observed between 100 kHz and 2 MHz, with perpendicular
alignment observed at other frequencies.

While negative dielectrophoresis of loosely coiled DNA has not been
reported, it has been demonstrated for supercoiled plasmid DNA. Bakewell
et al.8 demonstrated in 1998 that small supercoiled plasmids (which retained
their coiled shape and were thus unable to align with a 2-nm-long dipole, as
seen in loose DNA) could be trapped by negative dielectrophoresis in a typical
quadrupole electrode array. The plasmids, consisting of 12,000 base pairs
suspended in an 80 mS m–1 electrolyte and labeled with ethidium bromide,
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were observed to exhibit negative dielectrophoresis between 1 and 20 MHz
in electric field strengths similar to those used by Washizu and co-workers.

As stated previously, the ultimate limit of dielectrophoresis in the
nanometer scale is for the manipulation of single molecules. Thus far, the
only single molecule to have been successfully manipulated in this way is
DNA. Tsukahara and colleagues9 used an electrode geometry similar to that
developed by Gimsa (and described in Chapter 5) for the detection of electro-
rotation by light scattering — that of a cylindrical capillary drilled through
a solid block with four wire-shaped electrodes along the side of the capillary.
Tsukahara et al. used a capillary 82.5 µm and 2 cm long, and the solution
(of similar composition to those described above) had conductivity 4 mS m–1.
The DNA molecules could be observed as single approximate spheroids
about 0.8 µm across and were observed to undergo both positive and nega-
tive dielectrophoresis. The extracted data seem to imply a double dispersion
(as anticipated from work on latex beads), with the main (Maxwell–Wagner)
dispersion occurring at approximately 100 kHz.

6.6 Applications of DNA manipulation
6.6.1 Electrical measurement of single DNA molecules

Perhaps the simplest use of dielectrophoresis for the investigation of the
electrical properties of single molecules is to use it to trap a molecule onto
electrical contacts and measure the properties conventionally, as demon-
strated by Porath et al.10 in 2000. Porath, working with the same research
team that had trapped a single 3-nm-diameter palladium sphere in 1997
(described in Chapter 4), used suspended electrodes to attract and stretch a
single 10.4-nm-long DNA fragment into the interelectrode gap, removing
the electric fields as soon as a single molecule was detected to have bridged
that gap. The molecule thus held, it was possible to investigate its conductive
properties using conventional voltage and current measuring equipment.

As described in Chapter 4, the electrode configuration used was a pair
of point electrodes, in this case 8 nm apart, suspended over a gap etched
through the silicon dioxide substrate and fabricated using methods described
in Chapter 9. The DNA used was 30 base pairs (10.6 nm) long. To verify that
only single molecules were trapped, the experimenters also examined solutions
containing no DNA and solutions with the same DNA but using electrodes
with a gap of 12 nm between the opposing tips, and in both cases no trapping
was observed. Since DNA at this length is mechanically fairly rigid, it was
assumed that the molecule formed a straight line between the opposing tips.
The molecules were suspended in a solution containing 5 nM EDTA, 10 mM
sodium citrate, and 300 mM sodium chloride at a concentration of about 1021

per liter. A 1-µl droplet of the solution was applied to the electrodes, which
were energized with a 5 V DC potential. As before, when the single molecule
falls between the electrode tips, the resultant current flow through the molecule
cuts the electric potential, preventing any further collection of molecules.
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In order to study the molecule in the absence of charge carriers in the
electrical double layer, the solution surrounding the trapped molecule was
removed by drying in nitrogen, so that only the suspended molecule
remained. The measurements were taken in vacuum and at temperatures
below –20°C to ensure that measurements made were exclusively the effect
of conduction along the molecule itself. By doing this, the group demon-
strated that charge moves along the bare DNA molecule in the same manner
of charge moving along quantum dots (where each base pair corresponded
to one dot), with charges hopping between base pairs.

6.6.2 Stretch-and-positioning of DNA

As described above, Washizu and co-workers12 demonstrated that when held
in an electric field, DNA molecules unravel and stretch along the axis of the
largest nondispersed induced dipole. In subsequent work7,11–14 they explored
the concept further, demonstrating a number of applications for the tech-
nique. The most obvious application of stretching DNA molecules is to
measure their size. Where the molecules have been stained with a fluorescent
dye, the intensity of the fluorescence at any given distance from the edge of
the electrodes is directly proportional to the amount of DNA at that distance,
so by measuring the variation in fluorescence intensity it is possible to
determine how many molecules of a given length are in the sample.

Another application is in the immobilization of DNA molecules at an
electrode edge prior to enzymatic treatment. It has been observed12 that
where the electrodes are fabricated from vacuum-deposited aluminum, DNA
accumulating at the electrode edge by the stretch-and-position method
adhere to the electrode edge permanently. This overcomes a major problem
with the application of dielectrophoretic manipulation for biochemical
applications, vis., that biochemical agents such as enzymes require specific
conditions such as pH in order to function correctly, thereby requiring a high
medium conductivity that may not be amenable to the manipulation of
molecules. While the replacement of the medium would ordinarily release
the DNA molecule back into a coiled state, Washizu and co-workers12 showed
that the addition of divalent positive ions could overcome this; the surface
of the glass that covers the interelectrode space (across which the DNA is
stretched) is strongly negatively charged, but the divalent ions interact with
both the negatively charged DNA backbone and the glass surface, allowing
the DNA to be fixed onto the glass and thereby retain its stretched structure
after the electric field is removed. Alternatively, there are circumstances where
both ends of the DNA must be tethered (e.g., to an aluminum electrode), but
the remainder of the molecule must remain free. One such application is
where the DNA is used with enzymes such as RNA polymerase, the chemical
agent responsible for transcribing DNA information into RNA for transport
out of the cell nucleus. This transcription process requires that the enzyme
be free to rotate around the DNA helix, and fixing the molecule along its
length would inhibit this. In order to ensure the molecule remains secure,
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additional metal “islands” can be fabricated between the energizing electrodes
in order to fasten the molecule in position.

Another application demonstrated for the technique concerns the
identification of specific genes on a strand of DNA. By using a single-back-
boned fragment of DNA (where the two helices have been “unzipped”),
containing only the gene in question and conjugated to a fluorescent dye,
it is possible to detect the presence of that gene on a stretched strand of
DNA. The gene strand will bind only to the stretched molecule at the point
where all the base pairs are in the same sequence (that is, where the same
gene is expressed). The binding of the two molecules can be detected, and
its position determined, with application in the rapid detection of genes in
medicine — such as the detection of faulty genes prior to the use of gene
therapy or for the rapid diagnosis of genetic disease. Recent work has
demonstrated this13 using a specific enzyme (Eco) that bonds only to sections
of DNA with the base-pair sequence GAATTC. By introducing a flow of
fluorescently labeled enzymes across immobilized stretched DNA, the sec-
tions relating to that specific sequence can be identified.

6.6.3 Molecular laser surgery

In addition to the manipulation of DNA in the 1990 paper,7 Washizu and
Kurosawa also described how a focused spot of UV light could be used to
cut the DNA strands tethered to the electrode edge. By scanning the beam
along the space adjacent to the electrode edge, they were able to trim the
molecule to equal 9 µm lengths as shown in Figure 6.6. It was suggested
that laser surgery of DNA may have applications for DNA sequencing, the
name given to the determination of the genetic content of a DNA strand for
a number of common uses, including (most famously) genetic fingerprinting
for forensic science or for the determination of a genetic link between two
relatives. In order to achieve this, DNA fragments are separated by electro-
phoresis (i.e., according to their net charge, and hence size) to form the
distinct bands that are widely recognized in DNA fingerprinting. However,
the problem with electrophoresis is that it only works effectively for very
small fragments of DNA (a few hundred base pairs or less). When the DNA
is fragmented, the order of the fragments is lost and repetitions cannot be
detected, leading to possible errors in the sequence.

The significant problem with this method of “molecular surgery” is that
in molecular terms, it is quite imprecise — a 300-nm focused spot covers a
length of DNA equal to 1,000 base pairs, so precision to a single base pair
is not achievable. This is limited by the smallest spot that can be focused by
a laser, which in turn is dictated by the wavelength of the laser light used.
In order to overcome that limitation, Washizu and colleagues14 have recently
used laser tweezers to manipulate enzyme-coated latex beads onto the
stretched DNA molecule. Where the bead and molecule touch, the DNA is
broken, dramatically improving the precision of the cutting process.
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Another group15 in Japan have also developed this DNA-cutting method
to allow the isolation and cutting of single DNA molecules. The DNA mol-
ecules are immobilized on latex beads within an agarose gel. When a DC
field is applied, the molecules are attracted to the electrode edge, but since
they are attached to the bead surface, they are unable to move, as the viscosity
of the gel prevents the bead from moving. The molecules uncoil and can be
cut in position using a pulsed N2 laser. By using beads that are sufficiently
small (3 µm), it is possible to identify beads that are attached to only one
molecule, thereby allowing a degree of selectivity not available in the elec-
trode systems of Washizu’s group using DNA collection at continuous elec-
trode edges. Following the cutting procedure, the ends of the molecule not
bound to the bead could be collected by dielectrophoretic force.

6.7 Nanotubes, nanowires, and carbon-60
Another category of highly important molecular structures are those made
of carbon, which have recently become the subject of intense study due to
their remarkable physical properties, including great tensile strength,
lightness, resilience, heat transmission, and electrical conductivity. They have
been postulated to be the new standard for electronic materials, a way of
storing hydrogen for fuel cells, a source of superstrong materials, and more.

Key contenders for the crown of replacement technology in what is now
being referred to as the era of postsilicon electronics are carbon nanotubes,
carbon fullerenes, and nanowires. The last of these three differ from the first
two in that they are chemically formed fibers of material, often micrometers
long but only a few nanometers wide, and made of semiconducting material.
The other two — nanotubes and fullerenes — both belong to a class of
material first described by Kroto and co-workers.16 Fullerenes consist of

Figure 6.6 A schematic of the laser surgery technique pioneered by Washizu and
co-workers. DNA molecules are attracted to the electrode surface and stretched by
dielectrophoresis; a laser beam is scanned along the molecules allowing them to be
cut to size. The accuracy of the technique can be enhanced using enzyme-coated beads.
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carbon atoms arranged in regular forms not unlike soccer balls, consisting
of 60 atoms of carbon arranged in either hexagons or pentagons. This mole-
cule is often referred to as carbon-60, but has also been given the name
buckminsterfullerene after the architect Buckminster Fuller; this is often
abbreviated either to fullerene or Buckyball.

If this structure is then separated into two halves and a rolled-up sheet
of graphite carbon (with a flat structure consisting of carbon atoms in hexa-
gons, like chicken wire) is introduced in between the halves, we have a
nanotube17 — like nanowires, a structure that can be many micrometers long
but is only a few nanometers wide. Carbon nanotubes come in many forms,
which can be classified in different ways. One division is between those that
are structures as described above, with a single carbon tube capped with a
hemisphere at either end; this is called a single-walled nanotube (SWNT).18

Alternatively (and more commonly), several such structures can be formed,
one around another in the form of concentric shells, like a nanotube Russian
doll. These are called multiwalled nanotubes (MWNTs). Another means of
dividing populations of nanotubes is according to the structure of the hexa-
gons that form the main body of the nanotube. Where these hexagons are
symmetrical along the axis of the tube, the nanotube acts like an electrical
conductor. Where that arrangement is skewed slightly, the nanotube is elec-
trically semiconducting. Skewed further, the nanotube is an electrical insu-
lator. When nanotubes are fabricated, all forms are produced simultaneously
and, in the case of MWNTs, a nanotube can contain different types of elec-
trical species in each individual wall. At present there is no efficient way of
separating these into different populations.

However, the properties of these various electronic nanocomponents
have potentially huge benefits for the electronics industry. First, they over-
come the problem of ill-formed lines of conductors formed by chemical
doping in silicon chips, since they are already mechanically sound and
conduct along their length. Similarly, because their dimensions are excep-
tionally well defined, it should be possible to achieve a much higher packing
density with nanotubes than with silicon. Other advantages are related more
to the molecular structure, particularly for nanotubes, which can dissipate
heat far more effectively than other materials used in electronics. Finally, the
use of such thin wires for electronics applications means that electrons travel-
ing along them cannot deviate from a path from one end of the nanotube or
nanowires to the other — they are effectively “one-dimensional” conductors.
This means that current flows through them ballistically — that is, it travels
in only one direction without diversion (for a review, see McEuen19). Nano-
tubes also have excellent mechanical properties, being exceptionally rigid
and also having excellent properties as lubricants. An electron micrograph
of a carbon nanotube is shown in Figure 6.7.

The dielectrophoretic manipulation of such particles was first described
by Bezryadin et al.20,21 in 1997, in which the trapping of carbon-60 and nano-
tubes was reported, as well as the trapping of single palladium colloids already
covered in Chapter 4. In order to achieve this, electrodes with interelectrode
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gaps a few nanometers across were energized with a DC electric field to
attract particles from solution. By dissolving nanotube soot in cyclohexane
and dispersing it through the medium ultrasonically, nanotubes were
applied to the electrodes and a 4.5 V DC signal was applied across a 15-nm
gap. Following trapping, the cyclohexane was removed by drying, leaving
the nanotube held in place. Trapping was reported to take a few tens of
seconds, during which the current flowing across the nanotube was reported
to change greatly, with a few exceptions when the resistance between the
electrodes diminished by an order of magnitude.

The following year, Yamamoto and co-workers22 demonstrated that carbon
nanotubes could also be attracted by AC fields (which they referred to as AC
electrophoresis) and examined the frequency-dependent collection of MWNTs
of length 1–5 µm and diameter 5–20 nm. The planar, parallel aluminum
electrodes had an interelectrode gap of 400 µm, and the applied voltage was
approximately 88 Vrms. The frequency of the applied potential was varied
from 10 Hz to 10 MHz. The degree of orientation was found to correspond
to the frequency, with nanotubes becoming more aligned as frequency was
increased. Furthermore, it was demonstrated that as the frequency increased,
the number of nanotubes collecting at the electrode edge as a function of the
total amount of materials (nanotubes and contaminant particles) collecting
at the electrodes rose as a function of frequency, indicating that the collection

Figure 6.7 A scanning electron micrograph showing a single multiwalled carbon
nanotube. Scale bar: 20 nm. Courtesy Prof. S.R.P. Silva, University of Surrey, UK.
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of contaminant decreased. The contaminants remained in solution by nega-
tive dielectrophoresis. Similar work has been performed with nanowires,
both metallic and semiconducting in origin. For example, studies by Smith
et al.23 characterized gold nanowires of diameter 350 nm and 70 nm and
length 5 µm using dielectrophoresis on interdigitated electrodes 5 µm apart.
They found that nanowire alignment required voltages of at least 25 Vrms at
1 kHz; below that voltage, the induced dipole is of insufficient magnitude
to induce movement. Furthermore, investigations as a function of frequency
show that polarization time is reduced as a function of applied field frequency
from 20 Hz to 20 kHz. Work by van der Zande et al.24 examined the orien-
tation of gold nanowires with diameters of 15 nm and a range of lengths
(between 40 nm and 735 nm) in uniform electric fields and with frequencies
of 10 kHz. This work demonstrated the electro-orientation effect and its
contribution to the optical properties of the colloidal solution, with the
solution exhibiting different absorbance according to the alignment of the
nanotubes with respect to the applied field.

Although the study of the processes of polarization and the full under-
standing of the manipulation of these particles is still in its infancy, the
positioning and orientation of nanotubes and nanowires is presently under-
going a massive expansion for the directed self-assembly of nanoelectronic
devices. Applications such as the dielectrophoretic assembly of diodes,
transistors, and logic gates from nanotube and nanowires components are
of great significance, and for this reason they are discussed separately in
Chapter 7.
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chapter seven

Nanoengineering

7.1 Toward molecular nanotechnology
Thus far, we have considered the application of AC electrokinetic techniques
for the manipulation of individual particles and ensembles in order to assess
their electrical properties and thence make assessments about their physical
or biophysical state. We have considered how we can attract larger quantities
of particles from heterogeneous mixtures in order to allow particle separa-
tion. We have also considered how to trap single particles, such as DNA
molecules, in order to determine their electrical properties.

We may consider these applications to be of value to fields of micro-
biology and biochemistry, or chemistry and physics; however, the most
recent trend in the development of practical uses of forces such as dielectro-
phoresis is in its use as an engineering tool. As stated in Chapter 1, there
has in recent years been a tremendous expansion in research in the develop-
ment of “nanotechnology,” an expansion that spans the boundaries of
physics, chemistry, and biology and yet ultimately serves the applications
more closely related to engineering and computing science. Most usually,
the focus of this research is in the development of electronic devices for
near-single-electron computing on the nanometer scale (nanoelectronics),
or in the construction of nanometer-scale mechanical devices for mole-
cule-scale chemistry (nanomechanics) and the futuristic (and, many would
say, impossible) speculation of the development of independent micro-
meter robots for a vast range of applications, from swimming about the
blood stream and performing surgery from within to mass producing any
object from the molecules up. Whatever the ultimate application, there is
a degree of convergence between these two approaches that lends itself to
a single encompassing term — nanoelectromechanics. This can involve the
simple positioning of nanoparticles by electric fields for engineering appli-
cations, through to the study of nanoelectromechanical systems (NEMS).
Another term we can use to describe the engineering of materials on the
nanoscale is nanoengineering, the title of this chapter. In this chapter we
will consider how electromechanical interactions can be used to assemble
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electronic components, and organize materials to change their properties,
and we will glimpse ahead to possible applications for nanometer-scale
electric motors.

7.2 Directed self-assembly
The principal requirements in the development of new electronics tech-
nologies required for nanometer-scale engineering are the development of
the nanoscale components themselves and the need to be able to manipulate
them in such a way as to assemble functional devices that are also on the
nanometer scale. Current microelectronic fabrication relies on photolitho-
graphic techniques (discussed in detail in Chapter 9 for the construction of
microelectrode structures) to assemble devices from a silicon substrate. By
exposing holes etched through protective layers, shapes can be defined into
which impurities can be added (in order to make transistors), or layers of
conductors and insulators can be placed to connect microelectronic compo-
nents together.

However, there are limitations to this kind of technology. Photolitho-
graphy, as its name suggests (it originates from the Greek “to write on stone
with light”), uses light exposure (typically in the UV range) to define the
areas where a process is to take place; the minimum feature size that can be
defined is related to the wavelength of that light. Although strategies have
been developed to overcome this limitation to a certain degree, it is generally
assumed that in the longer term, electronic device manufacture requires
alternative methods of device assembly.

For some years,1 scientists have been examining the process of molecular
self-assembly, the phenomenon of molecules organizing themselves auto-
matically and forming complex structures; this is a common phenomenon
in biology, where effectively the whole process of cell maintenance and
reproduction can be described entirely in terms of complex molecules
self-assembling. Work in this field has led to the development of many such
structures, but usually the results are more remarkable for their uniformity
than their complexity.

What is required is a technology that allows not only self-assembly, but
self-assembly into hugely complex electronic devices such as microproces-
sors. It is logical to expect that such devices might be on the colloidal scale
themselves, in order to ensure the resultant device will also be on that scale.
As such, electrostatic manipulation can play an obvious role in the manipu-
lation of such particles.

The use of dielectrophoresis for device assembly can be approached in
a number of ways and used to perform a variety of functions. We will
examine three approaches to the construction of nanoscale devices using
electric fields; each demonstrates a different approach to nanoconstruction.
These are the assembly of devices from multiple components, electrostatic
self-assembly, and the development of nanoelectronics.
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7.3 Device assembly
A good example of the use of dielectrophoresis, not as a tool for direct
measurement of particles so much as a means of assembling a device, was
presented by Orlin Velev and Eric Kaler in 1999.2 Their device consisted of
two opposing, micropatterned wires with a 1-µm interelectrode gap, which
acted as conventional electrodes when powered; these were used to attract
antibody-labeled latex beads (such as those described in Chapter 4) to the
interelectrode space.

The innovative step that allowed dielectrophoresis to move from manipu-
lation tool to assembly tool is the addition of a surfactant to the solution
after the particles have been collected; this reduces the surface charge of the
spheres to the extent that the repulsive interparticle forces are insufficient to
prevent van der Waals and hydrophobic forces (as described in Chapter 3)
causing particle coagulation. This means that the interelectrode gap becomes
filled by a permanent structure consisting of antibody-labeled spheres. This
procedure is illustrated in Figure 7.1

The biosensor operates by introducing the test solution over the sensor
area. The target molecules attach to the antibodies (selected to attach to that
particular biomolecule), until the sensor is ready to be read. The testing

Figure 7.1 Dielectrophoretic assembly of a biosensor, as described by Velev and Kaler.2

(a) Functionalized latex beads are attracted into the interelectrode gap and are fixed
by adding surfactant to the solution. (b) The material to be sensed is introduced to
the array. When the target molecules contact the functionalized surface they adhere.
(c) After sensing is complete, functionalized colloids are added; these adhere to any
target molecules stuck to the beads. (d) A silver enhancer is added, which attaches
to the colloids; if sufficient target molecules are present, there will be enough colloids
to form a conducting path between the electrodes.
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process is performed by introducing gold colloids labeled with antitest mole-
cule antibodies; these attach to the upper surface of the sensor area, effec-
tively forming a sandwich with the target molecule as the filling. Addition
of a silver enhancer solution fuses the gold colloids together, creating a
conducting path between the two microelectrodes. If the biosensor has been
in the presence of sufficient quantities of the target molecule, there will be
a conducting path between the electrodes; otherwise there is not. Since the
area across which the conducting path must be formed is so small, a very
small quantity is required in order to successfully form a complete conduct-
ing bridge between the contact electrodes; experiments demonstrated the
device could detect quantities of human IgG antibody at concentrations as
low as 10–13 M.

7.4 Electrostatic self-assembly
One of the problems to be addressed by self-assembly is positioning; how
does one make some target particles assemble in one place and not another?
Some work has achieved successful results in micropatterning using
self-assembled monolayers of particles,1 particularly when molding pro-
cesses are used to shape the resultant film. However, if we wish to pattern
conductors into circuits, we must seek a different approach.

It is here that we can consider the applicability of electrostatic inter-
actions to the problem. We have, over the last several chapters, seen that
electrostatic forces can be used to position particles with great accuracy, but
these demonstrations often rely on electrodes that are significantly larger
than the particles being manipulated; ultimately, if we require complex
geometries on the nanometer scale, we also require the absence of large,
micrometer-scale objects between every assembled device!

An elegant solution to this problem is to avoid the use of electrodes
altogether, an approach first proposed by Fudouzi and colleagues3 in 2001.
The concept is as follows: if an insulating substrate is irradiated with an
electron beam, then the charge injected from the beam into the surface will
remain, creating an electrostatic potential in accordance with Coulomb’s law.
When this insulating substrate is then placed in a solution containing con-
ducting colloidal particles, the point potential (and its associated electric field)
acts to attract the colloidal particles to the point; when the solution is removed,
the conducting particles remain and form conducting tracks across the surface
of the substrate. This process is illustrated schematically in Figure 7.2.

Using a substrate of polycrystalline calcium titanate (CaTiO3), Fudouzi
and co-workers assembled tracks of particles using aluminum colloids as
small as 100 nm in diameter. Owing to particle concentration in solution,
conducting tracks were not established, but use of the technique with larger
(5 µm) particles indicates that conducting tracks are possible using this
technique. This is significant since the diameter of a focused electron beam
can be significantly smaller than the limits of photolithography; at present,
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many masks for photolithographic processes are written using an electron
beam (e-beam) machine, often with a resolution of 30 nm or less.

Results using similar ideas — the use of electrostatic forces for the
assembly of nanoscale wires — but different processes were reported in
Science4 in 2001. By applying a potential across a 5-mm interelectrode gap
containing a solution of gold colloids of 15–30 nm diameter, suspended in
an aqueous NaCl solution, it was found that colloidal “wires” would spon-
taneously form in solution. Notably, the colloid concentration is relatively
high (upward of 0.13% by volume). It was observed that, when a low-fre-
quency (between 10 Hz and 150 Hz) field of the order of 104 V m–1 was
applied to this solution, the colloids spontaneously formed wire shapes that
sprouted form the electrodes and crossed the chamber to the opposing elec-
trode. Where the voltage was lower, these nanowires would sprout branches
heading in different directions; higher fields produced straighter wires.
Speed of wire growth could be as fast as 0.5 mm sec–1, a considerable speed
when considering the distances over which the technique might wire up.
This is illustrated in Figure 7.3a. If latex colloids are added to the solution,
they also aggregate with the wire but do so in such a way as to form an outer
sheath surrounding the gold core. Furthermore, the wire (under certain con-
ditions) can spontaneously grow multiple offshoots to form fractal patterns;
since this is such a new field of research, no reasons for this behavior (or the
extent to which it might be harnessed) have yet been explored.

The effect occurs due to the high local field deformations caused by the
curvature of the wire — effectively one colloidal diameter thick at the tip —
distorting the electric field sufficiently to cause particles in the immediate
area to be attracted to the tip, thereby extending the wire and moving the
point of collection forward. The initial collection process begins by induced
dipole–induced dipole interactions, or pearl chaining — except that the pearl
chains form across relatively large distances. Furthermore, as long as the
particles remain in solution, the wire is self-healing; in the event of distur-
bances breaking the wire, regrowth to completion occurs almost immediately.

Figure 7.2 A schematic showing the electrodeless assembly method of Fudouzi et al.3

(a) An electron beam is used to inject charge into an insulating substrate. (b) When
conducting colloids in solution are placed over the pattern, the potential and
corresponding electric field due to the charge causes particles to be attracted from
solution onto the written pattern by dielectrophoresis.
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Significantly, nanowire growth is usually directed toward any fixed
bodies, such as conducting islands of material between the electrodes (but
not at any fixed potential) or larger colloidal particles within the electric field
volume, so that the nanowires automatically form connections between
structures placed within the electrode chamber (see Figure 7.3b). Where there
are many such features, complex shapes connecting them can be achieved.
This has significant implications for the formation of self-assembled nano-
devices; if the technology is to be harnessed for this purpose, then there is
a requirement that the process should be able to self-guide between appro-
priate points, as discussed later.

7.5 Electronics with nanotubes, nanowires, and carbon-60
As described in the previous chapter, there is a group of complex molecular,
or molecular-scale, objects receiving great attention as a potential foundation
for a new class of semiconductors. The most well known of these are the
forms of carbon known as fullerenes and nanotubes. Together, these have
been described as forming the basis of “carbon electronics,” seen by many
as the successor to silicon devices. However, it is important to also include
nanowires in this group; these are solid cylinders of material consisting of
many molecules but having similar proportions to nanotubes.

As with the materials described earlier in the chapter, the principal
consideration for turning them into viable electronic components is the
development of a means to position them within an electrode array such
that the devices form the appropriate contacts to other devices, in order to
make the multipart structures needed for viable electronic components.

In order to understand this, we should consider what structures we need
in order to construct viable electronic components. Chief among these is the
transistor, the cornerstone of the vast majority of electronic equipment, both
analog and digital. In its digital role, the transistor can be considered to be a
switching device; it allows current to flow between two terminals (the source
and the drain) provided that a sufficient potential is available at the controlling

Figure 7.3 Fabrication of colloidal nanowires, as demonstrated by Hermanson et al.4

(a) When conducting colloid solutions of fairly high concentration are placed between
electrodes, they spontaneously form single-thickness pearl chains across the inter-
electrode gap. (b) Where there is a conducting island within the interelectrode gap,
the wire forms connections to the island preferentially over cross-chamber wires.
This is also true for more complex structures involving multiple islands.
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input (the gate). By varying the gate voltage we can switch the transistor on
or off. A simpler, but similar, device is the diode, effectively an electronic
valve that only allows current to flow along it in one direction; a variant is
the light-emitting diode or LED, which glows when a voltage is applied.

By combining many transistors together, we can form combinational logic
circuits, which form the basis of computers. These are arrangements of
transistors whose output state is based on the state of the inputs; common
logic gates (the name given to circuits performing simple logic operations)
include AND (the output current flows if the voltage is high at inputs A AND B)
and OR (the output current flows if the voltage is high in either input A OR
input B). A third common logic gate, the NOT gate, produces no output when
the input is present and vice versa. Combinations of these produce logic gates
such as the NOR gate, active when neither A NOR B are active.

In order to fabricate devices with these materials, the most difficult
problem is the positioning of materials with respect to both the energizing
electrodes and to other materials. For many years, the principal method of
performing this operation was to make electrode connections retrospectively
— that is, to randomly scatter nanotubes (for example) across a substrate,
and then pattern electrodes over them. Obviously this method is of limited
use for component assembly, particularly since the combination of multiple
nanotubes would happen purely by chance. Methods such as dielectro-
phoresis had been suggested for dielectrophoretic manipulation of nano-
tubes in 1998,5 but it was not until 2000 that the first demonstration of
electrostatic manipulation for electronic component assembly was demon-
strated by Erdman et al.;6 by applying an electric field to two electrodes, a
20-µm-diameter LED was positioned from low-conductivity solution by
positive dielectrophoresis. The solution was then drained and flux applied
to render the connection between LED and electrodes permanent. The force
used in the manufacture process is described as electrophoretic but may in
fact be dielectrophoretic or, more likely, a combination of the two.

The field of electrostatic component assembly moved into the realm of
nanotechnology early in 2001, when Xiangfeng Duan and other workers in
the laboratory of Charles M. Leiber at Harvard University reported the
fabrication of an LED using electrostatically positioned nanowires in the
journal Nature.7 In this paper, an assembly method was described whereby
a crossed electrode array was covered with a solution containing only
p-doped indium phosphide nanowires. This was introduced over a quadru-
polar array containing thin, pointed electrodes with interelectrode gaps of
about 10 µm across the center of the chamber. An electric field was applied
to one opposing pair of electrodes, causing a single nanowire to be attracted
to the electrodes; after one was trapped, the solution was removed and a
second introduced, containing only n-doped nanowires. The second pair of
electrodes was energized, allowing a second nanowire to be trapped and
creating a p-n junction: a diode. This was subsequently found to have
light-emitting properties, demonstrating that the method was useful for
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construction of viable nanoscale components. The actual diode, formed on
the junction of the two wires, was a mere 26 nm across. Figure 7.4 shows a
schematic of this fabrication procedure.

This method was developed by the Harvard group in conjunction with
another method, that of fluidic assembly, which allows assembly of oriented
patterns of nanowires, but still requires electrodes to be deposited to order
after the nanowires are deposited. Using this method, the group performed
a second coup for nanoscale electronics by producing the first functional
logic gates with nanowires, this time in the journal Science.8 Once again these
consisted of crossed nanowires, with orthogonal patterns of p- and n-type
semiconductor nanowires running between electrode structures (shown in
Figure 7.5). These structures — OR, AND, and NOR gates — were combined
to produce a functional, more complex logic device called a half-adder,
demonstrating the feasibility of using nanowires as the basis for more complex
fabrication technology.

In the same issue of Science, another paper9 demonstrated the possibility
of constructing logic gates using carbon nanotubes instead of nanowires.
Carbon nanotubes, while possessing many features that make them an
obvious material for electronic assembly, are possessed of drawbacks not
present in nanowire research. First, their length is not controllable; they
must be fabricated in an ensemble of random lengths. Second, their electrical
properties depend on the arrangement of carbon atoms in the nanotube
wall, which again cannot be predetermined, and a mixture of electrical and
semiconducting nanotubes is obtained during preparation. Separation of
nanotubes according to electrical properties is a laborious task, requiring
individual sorting to take place. Finally, the majority of nanotubes are
MWNTs; these consist of many concentric nanotubes, each of which may
be either semiconducting or conducting; MWNTs with six or more walls

Figure 7.4 A schematic showing the assembly methods of Duan et al.7 (a) The
solution over needle-shaped quadrupolar electrodes contains p-doped nanowires.
One opposing pair of electrodes is energized with a DC potential, attracting a
nanowire across the interelectrode gap. (b) The solution is removed and replaced
with another containing only n-doped nanowires. The remaining electrodes are
energized, causing the trapping of a single nanowire. The solution is removed. The
remaining device has a p-n (diode) junction remaining, which is observed to be a
light-emitting diode.
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are almost certain to contain at least one conducting layer and hence be
considered to be effectively a conducting nanotube. Methods have been
suggested for overcoming this problem, such as the passing of a high current
through MWNTs: this causes the conducting walls to break up, leaving only
the semiconducting parts.10 However, no sorting procedure has been
developed yet. We may speculate that an appropriate method of sorting,
by either functionality or length, might be to develop dielectrophoretic
separation techniques such as those developed by Washizu et al. for DNA
studies, described in Chapter 6,11 or that such technology may be employed
to arrange nanotubes for electronic devices such as those described for
nanowires.8 The experimental results5 demonstrate that such a task would
be feasible, particularly in the light of successes by Duan,7 but as yet all
nanotube fabrication is performed by depositing electrodes to connect to
scattered nanotubes, where the electrode design is performed to order.

Another possibility for carbon electronics is the carbon-60 transistor; this
was reported in 2000 by Park and colleagues12 and consisted of two needle
electrodes approximately 1 nm apart into which a fullerene was deposited
by random scattering in a toluene solution. The fullerene, being slightly
smaller than the interelectrode gap (about 0.7 nm), is retained at one electrode
by van der Waals forces, but the addition of a single electron gives it sufficient
energy to transfer to the other electrode. When it arrives at the second elec-
trode, it receives enough energy to move back to the first, where the process
is repeated. This vibration essentially means that the device acts as a
single-electron transistor (the lowest power electronic device producible). The

Figure 7.5 A schematic illustrating the method of assembling logic gates from
nanowires.8 By organizing nanowires between electrodes (with p-type running
vertically and n type running horizontally), it is possible to fabricate AND, OR,
and NOR gates between the connecting electrodes. A and B indicate the input lines
of the devices, and O indicates the output electrode.
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rate at which this occurs is governed by the gate voltage. This device repre-
sents the near-limit of molecular electronics, where the size of the device is
of the order of a single nanometer. If this technology is to be adopted more
widely, then we may speculate that dielectrophoretic assembly of the devices
— in the manner used by Bezryadin et al.13 to trap colloids — would be the
most effective form of device manufacture.

7.6 Putting it all together: the potential for 
dielectrophoretic nanoassembly

If nanotube (or nanowire) technology is to become viable as a replacement
for silicon, then methods will be required for the semiautomation of the
fabrication process. The Intel® Pentium® III microprocessor required 37
separate lithography steps to produce transistors, so there is an extent to
which any replacement technology may also involve many steps without
being regarded as impractical. On the other hand, those 37 fabrication steps
produced up to 44 million transistors. Considering the fact that the advan-
tage of nanoscale components is that they offer the possibility of packing
many more components onto a single chip than silicon technology, we may
expect that by the time such devices come onto the market, the demands
may be for hundreds of millions of transistors on a chip. As such, in order
to fabricate useful devices, semiautonomous processes for the insertion of
millions of subcomponents at a time will need to be developed.

We may speculate, based on the research already performed and
described both in this chapter and in earlier ones, that electrokinetic assem-
bly may play a role in at least some of these steps. Consider that we have
already seen that particles in solution form chains between conducting
“islands” within an alternating electric field. If we were to place such islands
at the contact points where we wish our nanodevices to be positioned to
apply an electric field to them, it may be the case that the distortion in the
electric field may be sufficient to locate particles between those conducting
islands. Applying the field with a solution of only one component type —
a single fabrication step — would allow the positioning of many components
required to be in one orientation across the whole chip surface. We may then
remove the field and apply it in a different direction, or change the solution
to introduce a second type of component such as a different variety of
nanoparticle. Repeating this would allow a layer-by-layer assembly of the
device; at the end of fabrication, a fixative — perhaps a polymer of some
kind — could be introduced across the whole array to hold everything in
place. This would truly meet the conditions for Drexler ’s14 bottom-up
approach to fabrication. The devices would be self-assembled from nano-
meter-scale components without the use of large-scale equipment to control
them, with the exception of the introduction of the conducting points
between which the particles are connected. Even these might in fact be
deposited using the Fudouzi method of electron implantation.
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One of the most exciting possibilities with nanotube fabrication is that
fabrication does not need to be limited to a single dimension. We may envisage
a scenario where devices are assembled in three dimensions, crisscrossing each
other like the pipes that fill a ship’s engine room. At this point we really do
begin to enter the realm of science fiction, but such a move may ultimately be
the best way to move computing forward. If a technology is able to pack one
transistor into every square micrometer of chip real estate, then a 1 cm × 1 cm
array will hold one hundred million transistors. However, if the same device
could be constructed in three dimensions, then even a transistor that required
a cube of volume 10 µm along a side would produce a billion transistors in
a cube 1 cm down a side — and if the transistors could be packed into the
space of a cube 1 µm down a side, that value becomes one trillion.

7.7 Dielectrophoresis and materials science
The final aspect of the application of dielectrophoresis to molecular-scale
engineering is its role — demonstrated and potential — in materials science
and engineering. Materials science can in many ways lay claim to being the
original nanotechnology, being the study and design of new materials on
the molecular scale and upward. Such feats of engineering have typically
been brought about by means of chemistry, but electrokinetics has a role to
play in the deposition of materials in an ordered manner.

7.7.1 Deposition of coatings

The simplest application of dielectrophoresis to materials science is that of
forming coatings. The engineering of a material’s surface layer is of great
importance where that material is going to be immersed in hostile conditions,
such as corrosive liquids. Alternatively, in electronics applications such as the
development of low-power, high-resolution, flat-panel displays there exists a
need to increase the emission of electrons from the surface. In order to achieve
the latter aim, several groups15–18 have investigated the use of dielectrophoresis
to coat surfaces with so-called nanodiamond — essentially a diamond powder,
consisting of diamond fragments with diameters on the 10 nm scale. The
application is the enhancement of cold cathode emitters, which are arrays of
microengineered spikes protruding vertically from a surface to a height of
50 µm or more, typically spaced 10 µm apart in regular square formation. The
tips narrow to a sharp point (perhaps 30 nm across), and produce a stream of
electrons when a voltage is applied between the needle array and a plane set
above it in parallel. This charge can be focused to a display, in the same way
that three electron beams can be used to generate a television image; in this
instance, each pixel would use its own electron beam.

Such needle shapes, when exposed to an electric field, are sufficiently
nonuniform to distort the electric field, and this distortion is significant
enough for dielectrophoresis of nanodiamond powder to take place as shown
in Figure 7.6. This usually takes place in nonaqueous solvents (such as
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acetone or isopropanol), for ease of particle suspension and drying and
avoidance of hydrolysis effects in very high field strengths. The applied
potentials are usually of a DC rather than AC nature.

Work on dielectrophoretic deposition by Alimova et al.15 showed that
altering a number of factors gives a degree of control over both the thickness
and morphology of the deposited nanodiamond films. They considered dep-
osition in a number of different solvents, electric field polarity (since the
applied electric field is DC, there will be both dielectrophoretic and electro-
phoretic processes acting on the powder in solution), applied voltage mag-
nitude, deposition time, and type of powder used. It was found that the
maximum film size that could be attained was about 1 µm, though much
thinner films cold be formed. Interestingly, the morphology of the deposited
film was found to vary according to the properties of the type of nanodia-
mond powder used. When nanodiamond powder is suspended in aqueous
solutions, it alters the pH of the solution in different ways according to the
type of powder used; some types will decrease the pH, others increase it. It
was found15 that low-pH powders form films of uniform thickness across
the surface of the tip, whereas high-pH powders selectively collect at the
end of the needle tip. No explanation has been given for this, though it may
be due to the electrophoretic interaction between the low-pH forms of nan-
odiamond and any charge injection that may occur at the electrode tip during
the application of the DC potential.

7.7.2 Three-dimensional material structuring
Another advantage of dielectrophoretic force for materials science applica-
tions is its applicability of the ordering of polarizable particles within a

Figure 7.6 Coating of emitter tips with nanodiamond. Silicon emitter tips are immersed
in a solution containing nanodiamond (a). When an electric field is applied across the
tips, the field around the tips is sufficiently distorted for dielectrophoresis to take place,
and the nanodiamond is attracted to the tip surfaces (b). When the field is removed
and the solution is dried away, the coating remains on the tip surface (c)
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three-dimensional volume, particularly in combination with other, related
forces such as electro-orientation. An important aspect of materials science
is the control of the nanostructure of materials, which can have significant
impact on the mechanical and electrical properties of such materials.

For example, a number of workers (e.g., Randall et al.,18 Bowen et al.,19

Rao and Satyam,20 and Hase et al.21) have used dielectrophoretic forces to
align particle dispersions in fluid matter. Randall et al.18 used mutual
dielectrophoresis to cause pearl chaining of 100-nm-diameter BaTiO3 powder
dispersed through uncured silicone elastomer. These pearl chains formed
continuous lines through the material, which remained there while the
elastomer was cured, as shown in Figure 7.7.

Further work by the same group19 improved the technique, which they
referred to as “tunable electric field processing” of materials. Using a range
of elastomer and epoxy materials to form the matrix, a wide range of filler
particles was aligned including insulators (such as dioxides of zinc, titanium,
and silicon), semiconductors (including graphite and zinc oxide), and con-
ductors (aluminum and silver-coated resin). It was demonstrated that any
material whose dielectric constant is greater than that of the matrix material
may be used. While AC or DC fields may be used, AC fields suppress any
electrophoretic interaction between the field and the matrix polymers (which
are sill in a fluid state). However, low frequencies proved to have the strongest
interparticle binding force, with 10 Hz being an optimum in silicone but
650 Hz being the optimum in epoxy. This was determined by measuring the
shear stress of the still-fluid material while the electric field was applied.
Other materials may also be used. As described in Chapter 6, similar mate-
rials processing has been described for nanotubes, which aside from their
electrical properties have notable mechanical characteristics.

Figure 7.7 When fabricating composite materials, it advantageous to control the
arrangement of particles within a matrix. By placing a mixture of particles and
curable material within an electrode structure, it is possible to use pearl chaining
to align the particles along the field lines. The resultant material has different
electrical properties according to whether the material is aligned along or across
the field lines. Where rods or permanent chains (rather than induced-dipole chains)
are used, this orientation can be frequency controlled.
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More recently, an electrode array has been devised by a group in Japan
for optimizing the growth of particle columns.21 When a laser was used to
evaporate small areas of the surface of a 1-mm thick copper electrode, pro-
jections of melted copper formed around the holes as shown in Figure 7.8.
These conical formations, dubbed micropillars, were typically up to 40 µm
tall. By applying a second (untreated) copper electrode and applying a poten-
tial across a suspension containing latex beads, columns of particles could
be formed. Unlike the methods used by Randall’s group, however, these
formations were a single bead in width and formed on the surface of the
laser-treated electrode and extended in a straight line across the chamber, as
shown in Figure 7.9. Since the positions of the laser sites could be controlled
with high accuracy, so could the positions of the bead towers.

A number of applications for dielectrophoretically processed materials
have been suggested, which have advantages due to their electrical,
mechanical, and thermal properties. Devices include direction-sensitive

Figure 7.8 A method for constructing microstructures on a conducting surface.
A laser is used to drill or evaporate holes in the surface of the conductor. After the
drilling is complete, conical structures around the hole remain and can be used as
“primers” for controlled pearl chaining.

Figure 7.9 Arrangement of pearl-chained particles within a linear, organized matrix
using the field-deforming electrode structures illustrated in Figure 7.8.
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pressure sensors (where the sensitivity is limited to the direction in which
the lines of material have been dielectrophoretically assembled) for acoustic
detection in aqueous environments, such as underwater sensors and
implantable biosensors for blood flow measurement, and thermistors that
conduct electricity through the assembled powder lines at low tempera-
tures, but when the temperature is increased, the matrix expands, increasing
the gap between adjacent colloids and increasing the resistance. Material
applications include the engineering of composites with electrical and
thermal conduction capabilities and structural applications for nanoscale
composites with rods (such as nanotubes) forming the equivalent of nano-
meter-scale GRP (glass-reinforced plastic, or fiberglass). Most exciting is the
idea that materials could be tuned in real time, with the mechanical or
electrical properties of a material being altered by application of an electric
field to reorder colloids within a fluid-phase gel, allowing, for example, the
possibility of changing its mechanical resonance by the addition of stiffening
due to the presence of colloidal rods across the material. Where the structure
of the aligned chains can be controlled accurately — as in the example of
the laser-drilled microtowers, there are still broader possibilities. For exam-
ple, it was suggested that, along with applications for sensors such as those
described above, this technology could also be used for structuring devices
for photonics applications; by missing certain paths through the material
matrix, flexible waveguides could be produced.

It has even been suggested20 that dielectrophoretic force may be responsi-
ble for the reordering of conducting graphite particles in thick-film polymer
resistors. These resistors are trimmed to appropriate lengths by the applica-
tion of a high voltage (AC or DC) pulse during fabrication, but it has been
observed that after the application of such pulses, the electrical properties
of the material change. It was suggested by Rao and Satyam20 that this may
be due to the dielectric force acting on the conducting grains embedded in
the polymer during the application of the high-voltage pulses, causing them
to concentrate at the resistor edges and depleting them from the center.

7.7.3 Dewatering

Finally, we will consider an example of electrokinetic effects (including
dielectrophoresis, electrophoresis, and electro-osmosis) on a much larger
scale (that of meters) that still concerns the manipulation of molecules, in
this case water. Research has been ongoing for some decades on the use of
dielectrophoresis for the removal of water from clay. This work, pioneered
in the 1960s by the U.S. military, is concerned with the removal of water
from muddy areas to allow soldiers and equipment to pass and has also
been investigated for the mining industry. The process works by inserting
perforated steel pipes 5 cm in diameter at regular intervals across the area
being drained and an iron mesh laid across the top. A DC potential with
magnitude in the kV range is then applied between the rods and the grid.
The interaction of the field with the electrical double-layer surrounding the
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charged clay particles causes the movement, over a period of many days, of
the water in that double layer toward the region of high electric field
(the pipe), where it seeps through the perforations and is collected. Over a
period of 28 days, significant dewatering of the soil can be achieved. In order
to determine the contribution of dielectrophoresis to these effects, Lo et al.22

examined an AC case (where electrophoresis and electro-osmosis contribu-
tions are minimized) where two rod electrodes were placed approximately
30 cm apart and significant strengthening of clay was achieved.

While this application is significantly outside the scope of the rest of this
book, it is worthwhile to consider that although the effects we consider here
are important only on the nanometer scale, given a sufficiently high electric
field strength and a sufficiently long period of time, much larger effects can
be achieved!

7.8 Nanoelectromechanical systems
As a final thought, it is worthwhile considering that electromechanical forces
may have an important role to play in the development of actual mechanical
devices — machines — on the nanometer scale. For example, by using
electrostatic forces, it is possible to attract carbon nanotube contacts across
a gap to close a switch,23 forming a nanomechanical relay. Such devices might
have great potential for nanocircuitry, forming hybrid electromechanical
computing devices. Indeed, in his great thought experiment, Drexler14

considered an entirely mechanically based computing paradigm for avoid-
ing the issue of connecting electrical currents to nanodevices altogether;
however, such speculations are decades from realization, if they are ever
realized at all.

Beyond the field of computing, other ideas for nanoelectromechanical
devices (NEMS) are being considered, often using nature (which is excellent
at producing protein machines on the nanometer scale) as a guide. One such
development is the study of the potential for mechanical devices such as
electric motors on the nanoscale. Rotary and linear protein motors exist in
nature for processing of molecules, for transport around the cell interior, and
most importantly for motility. Muscle fibers use linear protein motors to
contract; bacterial flagella use rotary protein motors to turn corkscrew-like
flagella the way a ship’s engine uses a propeller. Many of these machines
use variations on the thermal ratchet process — described in the next chapter
— to effect transport, while others use mechanisms related to charge move-
ment or proteins changing conformation; this is a process we can replicate
using dielectrophoresis, opening up new avenues for the development of
artificial nanomotors. For example, in order to produce a rotary dielectric
motor, we can use dielectrophoresis and electrorotation to provide stabilizing
force and torque; this idea can even be mathematically modeled to determine
its effectiveness. Such a thought experiment is presented, along with sug-
gestions for possible applications, in Appendix A.
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chapter eight

Practical dielectrophoretic 
separation

8.1 Limitations on dielectrophoretic separation
As we have seen in the preceding chapters, dielectrophoresis can be used to
separate different particles from a mixture into homogeneous groups on an
electrode array. However, in the examples described, the number of particles
involved in the separation process is very small. A polynomial electrode
array such as the ones described in Chapters 4 and 5 will generate sufficient
force to trap particles within perhaps 100 µm of the electrodes (or more for
larger particles) but will be unable to trap particles beyond that limit because
the field gradient diminishes rapidly from the electrode edges. This means
that the array is only capable of separating particles within a volume of the
order of picoliters in size. This might be sufficient if we are using dielectro-
phoresis as an investigative tool, such as to study the effects of drugs on
virus particles. However, many applications exist where dielectrophoretic
selection could be used to isolate particles from much larger samples — for
example, the isolation of viruses from a groundwater or blood sample. In
such cases, samples of microliters or even milliliters need to be processed
for the device to be useful.

In order to meet this increase in sample volume, the electrode array must
be sufficiently large for the whole sample to be within reach of the dielectro-
phoretic field, and the sample must be passed across an electrode array to
an output either by an external force (such as a pump) or by the action of
the electrodes themselves. The principal methods for so-called bulk dielectro-
phoretic separation employ conventional dielectrophoresis to achieve these
goals; another uses a different electrokinetic phenomenon, called traveling-
wave dielectrophoresis. These methods either perform straightforward
binary separation — where a heterogeneous mixture is split into two subpopu-
lations that then appear in different outputs at different locations, or one
population is expelled while another is retained — or fractionation, whereby
many subpopulations are separated into groups or fractions that appear at
the output as homogeneous groups that are output in sequence, fastest first.
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8.2 Flow separation
The simplest method of separating large numbers of particles is to scale up
the principle used for separating latex beads, viruses, and DNA described
in previous chapters. An electrode array is energized, and particles are either
attracted to it or repelled into the bulk medium according to their dielectric
properties.1 Separation can be performed on the basis of different polarities
of force (one attracted, the other repelled) or different magnitudes of force
(one attracted strongly and held at the electrodes, the other attracted weakly
and carried away by an applied flow). This method has been used for some
decades and is described in Pohl’s book2 for the separation of larger particles
of polymers and minerals (of the order of hundreds of micrometers in
diameter), as well as biological samples such as cells. In order to overcome
the problem of the limited effective range of dielectrophoretic force from the
electrode and to provide a separation process that not only separates the
particles on an array, but also provides outlets that produce refined sources
of both particle types, the sample is pumped across the electrodes. Pumping
forces are usually provided by a device external to the electrode array, such
as a peristaltic pump that feeds an inlet, and excess fluid is removed via one
or more outlets. In order to maximize the dielectrophoretic trapping, the
electrode array covers as large a volume as possible. For microengineered
arrays, this means covering an area as large as possible with active electrode
sites, for example by using a geometry such as the castellated array described
in Chapter 4, which is in turn similar to that used by Benguigui and Lin.3

The simplest method of separation is to select a field frequency and
suspending medium such that one type of particle experiences positive
dielectrophoresis, and the other negative dielectrophoresis as with previous
examples involving latex beads, viruses, and so forth. The mixture is passed
over the array and is separated according to the polarity of the induced force.
Those experiencing positive dielectrophoresis are trapped on the electrode
array, while those experiencing negative dielectrophoresis continue to flow
across the array and are removed at the outlet as a homogeneous population.
When all the particles have been passed over the array and sorted, the
particles that have been held by positive dielectrophoresis can be released
and are collected separately, either at the same outlet (the previous particle
type having been removed) or at a different outlet, being pumped from
another source in a different direction (e.g., Becker et al.4 and Washizu et al.5).
This is shown schematically in Figure 8.1. If many types of particle must be
separated, then multiple stages of filtering can be used to remove unwanted
cells at different frequencies. Alternatively, repeated separation of a sample
will refine the filtration process where the dielectric properties of the particles
to be separated are similar.6

The electrodes employed in such systems are required to induce electric
fields over an area as large as possible, to maximize the chances of capturing
particles passing overhead. However, they are also required to allow parti-
cles experiencing either no or negative dielectrophoretic forces to pass over
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the array without becoming trapped in a field cage. Early systems of this
type used a planar electrode array with sufficient height of chamber that
repelled particles could move over the regions where force was high in order
to get to the other side of the chamber. Such a strategy has limited effective-
ness because particles flowing in the upper part of the chamber are too far
from the electrodes to experience either positive or negative dielectrophore-
sis and will therefore not be selected but will pass through to the output.
This is particularly important for nanometer-scale particles; since dielectro-
phoretic force is proportional to volume, small particles require large electric
field gradients that can only be sustained a small distance from the elec-
trodes. In order to overcome this problem, the height of the chamber is
limited by placing a lid a defined distance above the electrode array. In some
cases the lid can have an extra set of electrodes written onto it, allowing a
doubling of the effective range of the field. However, in this case it is funda-
mentally important that repelled particles have a route by which to travel
over the electrodes through the regions of high electric field strength if they
are to get to the outlet. Electrode arrays such as the castellated geometry can
be interdigitated — that is, large numbers of castellated electrodes can be
powered from two power rails running along the side of the array, with the
electrodes interlocked like fingers in two clasped hands. The direction of
flow is orthogonal to the main interdigitations, so that when particles flow
across the electrodes, some will be attracted by the high field and will be
immobilized at the points of closest interelectrode approach. Particles
experiencing negative dielectrophoresis pass along the bays, where the
dielectrophoretic force is too weak to resist the motion of the particle due to
the solution being pumped; repelled particles are herded into lines that pass

Figure 8.1 A dielectrophoretic flow separator. (a) A mixture of particles flows onto
an electrode array from left to right. The dark particles are trapped by positive
dielectrophoresis, while the light ones are not trapped and leave the array at the right
where they are collected. (b) When all light particles have been recovered, the electric
field is removed and a second flow pushes them to the bottom of the array where
they are collected separately.
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over the electrodes and are collected at the outlet (as shown in Figure 8.2).
Such an electrode array was successfully used by Washizu and colleagues
to perform dielectrophoretic chromatography on protein molecules in solu-
tion,5 as described in Chapter 6. By flowing protein solutions across inter-
digitated electrodes, the trapping force attracted larger protein molecules in
preference to small ones (due to the fact that dielectrophoretic force scales
by volume), enabling purification to take place.

A more advanced version of this design uses electrodes slanted in one
direction, so that the lines of particles experiencing negative dielectrophore-
sis are herded in one direction in preference to another. This is advantageous
because a single inflow source can provide the impetus for one population
(that trapped by positive dielectrophoresis and then released) to be collected
at an outflow directly across the electrodes from the inflow, while a second
outflow, offset from the inflow, can be used to collect the second population.7

A more complex method of separation using dielectrophoresis was intro-
duced by Markx and Pethig8 and illustrated in Figure 8.3. Demonstrated for
bacteria, yeast, and plant cells, the device uses two ports that may act either
as inlets or outlets, arranged at either end of an interdigitated array similar
to that shown in Figure 8.1. Particles are introduced into the center of the
array by flowing them from one of the ports (the other acting as outlet). A

Figure 8.2 In flow separation, it is important that particles flowing over electrodes
while being repelled by negative dielectrophoresis have a clear path through the device
(a), or pockets of local minima may cause particles to be trapped on the array (b).
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frequency is selected at which one population experiences positive dielectro-
phoresis while the other experiences negative dielectrophoresis, causing
separation. The pumps then push the weakly held repelled particles into the
next interdigitation. The particles are then released by switching off the field,
and the pumps operate in the reverse direction to move all the particles back
so that the population experiencing positive dielectrophoresis has net move-
ment in the opposite direction to those experiencing negative dielectrophore-
sis. By the careful use of two inlet/outlet pipes at each end of the array, it
is possible to “shuffle” the populations apart, with each population being
moved toward a different end of the array. While this method of separation
is inherently slow and complex, the repeated action of moving and trapping
particles increases the likelihood of achieving 100% separation efficiency (i.e.,
all particles are retrieved in the appropriate homogeneous group). Such a
method could in theory be used to separate many populations of particles,
provided appropriate frequencies can be found; particles can be separated
according to large differences in dielectric properties, and when these have
been separated into two populations, subpopulations can be identified by
finding appropriate frequencies to separate within the subpopulation.

Figure 8.3 A dielectrophoretic separator using castellated electrodes. (a) A sample of
two types of particle, experiencing positive (hatched) and negative (shaded) dielectro-
phoresis, respectively, are separated on the electrode array. (b) A flow is introduced
across the array; the loosely bound particles collected by negative dielectrophoresis
move to the next interelectrode gap. (c) All particles are released and a flow in the
opposite direction pushes them back up the chamber, after which steps (b) and (c)
are repeated to increase the separation distance. Eventually the two populations reach
opposite ends of the array.
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8.3 Field flow fractionation
A second method of fractionation employing dielectrophoresis is its use in
field-flow fractionation, FFF. This technique has been used since the 1960s
for separating macromolecules and colloids up to about the micrometer
scale. The operating principle is thus: when fluid travels along a tube or
channel, viscous forces cause the fluid traveling near the surface of the tube
to travel more slowly than the fluid flowing near the center of the tube (this
effect is visible in rivers, where the flow at the center is much faster than at
the banks). If particles are suspended within this fluid, then they will travel
at different speeds according to their distance from the surface. FFF exploits
this by adding an additional force field, which restricts different types of
particles to specific heights above the surface of a thin, flat channel according
to how the particle responds to the imposed field. Particles traveling at
different heights will travel at different velocities due to the different rates
of flow and, consequently, if those particles are presented at the inlet to the
chamber simultaneously, they will emerge at the output at different times
according to their responses to the field. The combination of the field and
the flow enables fractionation, hence field-flow fractionation. Typical fields
include gravity (sedimentation FFF), temperature gradient (thermal FFF),
and viscous properties of the particle in a crossflow (flow FFF).9

Dielectrophoresis is used in this technique to provide the force field — that
is, the means by which particles travel at specific heights above the electrodes.
While positive dielectrophoresis could be used to drag particles to the edge of
the tube, it might also cause particles to be trapped and become a flow separator
in line with the previous description. The use of negative dielectrophoresis
provides an ideal force field because it forces the particles away from the tube
sides and into the medium, and the distance to which the particles are repelled
is proportional to the magnitude of the force exerted on the particles.

A particle passing over an electrode array will experience forces due to
both buoyancy (related in turn to gravity) and dielectrophoresis. When the
forces are in equilibrium, the particle remains at a stable position so that on
average the total force in the z direction is zero (as shown in Figure 8.4), i.e.,

(8.1)

i.e.,

(8.2)

where ρ indicates density, g acceleration under gravity, and p and m refer to
particle and medium, respectively. Rearranging, we obtain
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Therefore, the particle will be levitated at a constant height according to its
density and the dielectrophoretic force it experiences. If a mixture of particles
flows along a tube and over such electrodes, the particles will fraction at
different heights according to their density and dielectrophoretic response
to the electrodes at the bottom of the chamber. When these particles reach
equilibrium at different heights, the effects of viscous drag between the sides
of the channel and the fluid cause them to be retarded at different rates,
since the flow at the center is much greater than the flow at the edges. A
typical velocity distribution in a channel is as shown in Figure 8.5. Since
particles are levitated to different heights, they consequently travel at dif-
ferent velocities down the separator. If all particles start at one end of the
separator at the same time, then by the time the particles have traveled to
the end of the separator, they will have fractioned into different bands
according to how fast they have traveled, and those bands will leave the
separator at different times, which allows them to be separated.

The application of dielectrophoresis as a means of providing a force
field was simultaneously developed by Markx et al.,10,11 Huang et al.,12,14

and Wang et al.13 This type of device has been demonstrated to be effective
for the fractionation of a number of bioparticles including latex beads,
bacteria, and cells. The electrode geometry used to impart the negative
dielectrophoretic force is essentially the same as the electrode array

Figure 8.4 A schematic illustrating the forces experienced by a particle in a field-flow
fractionation system.

Figure 8.5 A schematic of the variation in flow rate across an enclosed capillary. In
an FFF separation system described here, the electrodes are arrayed across the lower
surface of the capillary.
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described previously, being a planar electrode array (usually of an interdig-
itated type) fabricated onto a glass surface and sealed with a coverslip or
similar, at a fixed height above the array. Recent developments by Müller
et al.15 have described a novel approach wherein electrodes are used to
confine particles to one side of the channel by use of a negative dielectro-
phoretic funnel, then spacing the particles through the channel by use of a
bow electrode. A single inlet and outlet are required for the provision of
flow (provided by pumping external to the array) and to allow the entry
and egress of the particles.

8.4 Thermal ratchets
The next separation technique discussed here differs from the first two
presented in that it is only truly useable for nanometer-scale particles. It
exploits a key property in the definition of a colloid: that Brownian motion
plays a significant part in the position of the particle. The concept of thermal
ratchets (or Brownian ratchets, or forced thermal ratchets) was originally
voiced by Pierre Curie in the late 19th century,16 when he described motion
provided by ratchet mechanisms. The concept is as follows: if particles could
be trapped in an asymmetric force field such that they were more likely to
move in one direction than another, then a cycle of applying and then
removing the field would cause particles to move, then disperse, then move
again. Careful field design would allow the development of a ratchet mecha-
nism to allow particles to be moved along the field; furthermore, the system
could be used to separate particles either on the basis of their response to
the field or their rate of diffusion when the field is turned off. The idea was
revisited by Richard Feynman in his famous Lectures on Physics,17 in which
he described how two boxes — one containing a weather vane, another
containing a ratchet-and-pawl mechanism — could be used to generate move-
ment (such as lifting a very small object) by rectifying the random motions
of the gas against the vane by using the ratchet and pawl. Since then, the
field of using ratchet mechanisms has grown, and for a summary of the field
the reader is directed toward the comprehensive review on the subject by
Reimann.18 The underlying mechanism has been attributed to the manner in
which many biological functions occur on the molecular scale, including the
function of muscle,19 molecular motors,20 and molecular pumps.21

The concept of the dielectrophoretic thermal ratchet — using dielectro-
phoresis as a means of rectifying Brownian (also known as thermal) motion
to move particles around an electrode array — was first described by Ajdari
and Prost22 who considered the forces acting on a particle in suspension and
subject to Brownian motion. A particle exposed to a potential with sawtooth
variation in space, when repeatedly applied and removed for finite periods
of time, will theoretically show a biased overall motion along the direction
in which potential increases for the longest physical distance, leading
Chauwin et al. to the assertion that this principle provided mouvement sans
force.23 Analysis by Magnasco,24 and subsequently by Astumian and Bier,25
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illustrated that models of this nature could be devised to explain the motion
of proteins along biopolymer chains using thermal noise to advance the
smaller molecules through a series of potential “ratchets,” or the mechanism
by which molecular motors such as those found in flagellate bacteria might
work.26 The practical application of this principle, using dielectrophoresis to
provide the necessary potential gradient, was first proposed by Ajdari and
Prost22 and subsequently demonstrated experimentally by Rousselet et al.27

Rousselet and co-workers used latex spheres of varying diameters to attain
particle motion of 0.2 µm s–1, with diffusion rates of particles advancing from
one ratchet to the next at 40% per step for significant times of zero applied
field. Ajdari and Prost22 also proposed that this method has applications in
the separation of particles according to their relative sizes. The method has
since been enhanced so as to separate particles in a continuous manner
according to their relative dielectric properties.28 Furthermore, under the
correct conditions it is possible to drive particles of specific dielectric proper-
ties backward through the ratchet system while other particles are simulta-
neously being driven forward in the manner described previously, enhancing
spatial separation.

A dielectrophoretic ratchet system operates thus. Consider a quantity of
colloidal particles, of greater polarizability than the surrounding medium and
uniformly dispersed through the volume immediately over an appropriately
shaped electrode array. The volume under study is exposed to an imposed
potential energy profile — such as an electric field gradient imposing a
positive dielectrophoretic force — which has an asymmetric pattern of tips
arranged in a sawtooth pattern, with a distance d between successive tips.
When the field is activated, the particles will move to collect at the highest
points on that potential energy profile. They will do this by moving up the
field gradient, thereby also moving in space. As can be seen in Figure 8.6,
many more particles — those suspended in the volume of length d2 — will
move to the right of the picture than those in the volume of length d1, which
will move to the left. For spherical particles of radius r, the dielectrophoretic
force is calculated using the now well-established equation:

(8.4)

Owing to the ∇E2 term, dielectrophoretic motion will be directed along the
path of increasing the local electric field gradient. Owing to the asymmetric
design of the electrodes, the field gradient is biased such that a greater pro-
portion of the space between successive electrode tips generates dielectro-
phoretic motion to the right of the diagram than to the left. Hence, the majority
of particles will translate toward the right. After collection, the concentration
profile of the particles resembles that shown in Figure 8.6, concentration A.
Following the collection of particles over a period τON, the potential difference
across the electrodes is removed. Under Brownian motion, the particles will
then drift from the electrode tips over a period of time.

FDEP = ( )[ ]∇2 3 2π ε ωmr K ERe
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After sufficient time, some particles will drift a distance greater than d1,
which will place those translating to the right within the dielectrophoretic
capture zone of the next (right) electrode. After a period of time τOFF, the
electric field is reapplied. At that point, the distribution of particles will
resemble concentration B in Figure 8.6. Assuming particle dispersion has
taken place at an approximately equal rate, all particles except those that
have traveled a distance greater than d1 will be attracted to the same electrode
tip. However, those that have moved greater than d1 to the right will be
trapped by the next electrode to the right. Provided no particles have moved
a distance greater than d2 to the left, thereby entering the capture zone of
the previous electrode, there is a net motion of particles to the right.

Particle diffusion can be modeled using Fokker–Planck equations,29

which define the change in probability of a particle traveling a distance along
axis x as a function of time t

(8.5)

Figure 8.6 A demonstration of the function of thermal ratchets. (top) A nonsymmetrical
electric field is imposed, consisting of units of length d made from ascending regions
of potential energy of length d2 and descending regions of length d1, viewed left to
right. The value of the potential energy alternates between an on state and an off
state. When activated, particles move up the field gradient and accumulate at the
point of highest energy, resulting in a narrow concentration distribution (center).
When the field is released, the particles diffuse out in bell-shaped formations
(bottom). When the field is reapplied, particles that have diffused more than d1 to
the right will move forward to the next point of high field; the remaining particles
will return to the same collection point to which they were attracted. In this manner,
a net left-to-right motion occurs.

∂
∂

( ) = − ( )P
t

x t J x t, ,div
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where J represents the probability current, which can be expressed within
Equation 8.5, thus,

(8.6)

where P indicates the probability density function of the particle location,
D is the diffusion coefficient, k is Boltzmann’s constant, T the temperature,
and F is the force due to an imposed field. The first term of the equation in
the brackets corresponds to drift due to an externally applied force field; the
second part corresponds to particle diffusion. It has been shown22 that for
optimum transport this diffusion will be bounded by the lower diffusion
limiting case of the above expressions, where the diffusion rate is small
enough to prevent particles passing beyond a single repeating electrode unit
(that is, diffusing a distance greater than d2) in a single time interval τOFF.
This limiting case is given by the expression:

(8.7)

At this stage, we must consider the electrode geometry required in order to
generate our asymmetric field. The most common geometry in use is that of
the so-called Christmas tree electrodes such as those shown in Figure 8.7.
These generate a force in the right direction covering a larger area than those
forcing particles to the left, which is similar to the potential profile in Figure
8.6 along the center of the interelectrode gap; they are also easily fabricated
using conventional electrode manufacturing techniques. The divisions
between capture zones for each electrode are shown as a curved dotted line
between the corners of adjacent electrodes.

For an ideal case (where the condition in Equation 8.7 is met), a two-
dimensional isotropic diffusion (i.e., diffusion at equal rates in all directions
in a plane) of particles has a probability of crossing a semicircular boundary
of radius d1 in time τOFF, and thus the fraction of particles having crossed
that boundary at that time is given by the expression27

(8.8)

where the 1/2-factor indicates isotropic diffusion. However, Rousselet and
co-workers determined through experimentation that in practice the bound-
ary between capture zones is only approximately semicircular, but is not
exactly so (as can be seen in Figure 8.7) and proposed a more accurate
empirical model based on their experimental observations:
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(8.9)

where  is a radius variable chosen to fit the equation from experimental
data. The coefficient 0.9 indicates that the diffusion is nonisotropic, with
particles in experiments tending not to mount the electrode surfaces and
thus being more likely to diffuse forward from the collection point.

After the optimum time τOFF some particles, i.e., those that have traveled
a distance d2 – d1 forward (toward the right in Figure 8.7), will be captured
by the next electrode on reapplication of the electric field. If τOFF is greater
than this, some particles will be captured by the previous (left) electrode and
the efficiency of the ratchet will be reduced. Thus, maximum velocity has a
defined maximum period time (τOFF + τON) as shown in the studies of Prost
et al.30 However, the longer this time period lasts, the lower the net velocity
V will be. V cannot exceed a value given by

(8.10)

in the direction in which the ratchets point.

Figure 8.7 (a) Particles are collected at the point of closest approach between two
Christmas tree electrodes. The particles are attracted from within the region defined
by the two vertical, curved lines that define the capture zone for the electrode pair
between the lines. (b) The electric field is switched off and the particles diffuse in all
directions. Those diffusing over the boundary to the right (indicated by the horizontal
shading) enter the capture zone for the next set of electrode tips; if the field is
reapplied, they will move forward while the remaining particles will be reattracted
to the tips in the center of the picture. (c) If the diffusion process is left for too long,
some particles will enter the capture zone for the previous tips (to the left, with
vertical shading), reducing the efficiency of the device.
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Since the boundary between capture zones does not follow a semicircular
pattern, it is difficult to evaluate the efficiency of a geometry in terms of
proportion of particles migrating forward within the time τOFF. In order to
address this, Ajdari and Prost22 proposed a dimensionless factor x as a ratio
based on the distance d1 as a proportion of the total distance d. A similar
measure of this ratio, Λ, can be used for the comparison of different electrode
geometries. Λ is expressed as the ratio of the distance along the axis through
the center of the gaps between the electrodes along which particles are
attracted to the next electrode tip at time τOFF, as a proportion of the distance
along this axis where electrodes do not change electrode tip:

(8.11)

The value Λ may be interpreted as a measure of asymmetry and may take
values from 0 (a symmetrical electrode assembly) to 1 (complete asymmetry).
In practice Λ = 1 is unattainable, but by maximizing Λ ratchet performance
may be measured and improved.

8.5 Separation strategies using dielectrophoretic ratchets
The mechanism by which thermal ratchets operate, as described above, has
obvious applications in the moving of particles across an electrode array.
However, the concept is easily adapted for use in particle separation. There
are many ways in which this can be achieved, which are based on either the
physical or electrical properties of the particles, or both.31–33 This has potential
applications similar to methods of continuous dielectrophoretic flow sepa-
ration, but appropriate to situations where it is impractical to provide a fluid
flow through the particle chamber or where smaller numbers of particles
need to be separated.

The most widespread approach to particle separation by dielectro-
phoretic ratchets is for the fractionation of a mixture of colloidal particles
according to particle size (or another factor that affects the diffusion of
particles through the suspending medium). The principle of operation is as
follows. Particles trapped by dielectrophoretic ratchets, and subsequently
released, diffuse from the point of collection (as demonstrated in Figure 8.7)
until they fall into the capture zone of the next pair of electrode tips along
the ratchet. If the field is reapplied before particles have diffused that far,
then no net movement is achieved; the longer the diffusion period after that
initial barrier is overcome, the more particles will diffuse into the next
capture zone and the greater the likelihood of particles achieving movement
of one step forward along the ratchet becomes. Fractionation of particles
using dielectrophoretic ratchets by this method was first demonstrated by
Faucheux and Libchaber,32 who fractioned particles with radii 1.5 µm and
2.5 µm.
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+

d d
d d

2 1

2 1

_
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If a mixture of two particles having different values of diffusion constant
D (for example, particles having different radii but similar electrical proper-
ties) is placed in a dielectrophoretic ratchet system, then the aggregate net
forward movement of the particle populations along the array will be
different according to the time interval between the application of the field,
in accordance with Equation 8.9. So, if the mixture were placed at one end
of the array, then the populations would arrive at the other end of the array
at different times according to the factors chosen in Equation 8.9, with those
particles that diffuse fastest reaching the end of the array first, and those
diffusing less quickly taking longer to reach the end. This can be extended
to a mixture of many types of particles. Since the different populations
diffuse at different rates, then if they are all present at one end of the array
at the start of the procedure, they will have diffused into different bands or
homogeneous groups on the array after a number of on/off cycles, in a
similar manner to the fractionation of different color dye molecules on filter
paper dipped into a dye solution. The use of thermal ratchets for particle
fractionation was modeled by simulation by Schnelle and colleagues33 in
2000 by examining the fractionation of five different sizes of latex bead on
a ratchet array after a period of 5 h. Furthermore, the fractionation can be
combined with the variation in the dielectric properties of the particles, as
used for the basis of separation; for example, if particles experience forces
of different intensities, then they will require different lengths of time τON to
collect at electrode tips. Therefore, by removing the field after one population
has fully collected but before the other has reached this state, further puri-
fication can be achieved.

An alternative method makes use of the fact that since the dielectro-
phoretic force attracting the particles between electrode tips is related to the
AC dielectric properties of the particles, particles with differing dielectric
properties will respond differently when subjected to electric fields of a given
frequency. Nonpolar particles, or polarizable particles exposed to fields of
frequency equal to their crossover frequency, will not respond to dielectro-
phoretic forces and therefore a suspension of polarized and nonpolarized
particles will separate, the former being drawn out of the population while
the latter remains in place. This is, however, of limited efficiency since the
nonattracted component will exist in some quantity at the exit of the device,
without being repelled from it. This method can, however, be extended by
the application of negative dielectrophoresis to the second population
(the first experiencing positive dielectrophoretic collection). It has been
shown31 that if conditions are such that particles on a Christmas tree electrode
are repelled by negative dielectrophoresis, then they collect at the point on
the interelectrode space where the potential energy is at a minimum; that is,
they collect along the boundary between two adjacent capture zones (along
the dotted line in Figure 8.7). If they are then released and recaptured in the
same manner as described above, particles will move in exactly the same
manner as those propelled by positive dielectrophoretic ratcheting, but in
the opposite direction across the electrode array. So for the electrodes shown
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in Figure 8.7, all particles diffusing to the left of the electrode tips will, on
reapplication of the field, be pushed to the next intercapture zone boundary,
and so forth. Therefore, with judicious choice of operating conditions, mix-
tures of particles where two subpopulations have different crossover fre-
quencies can be simultaneously driven in opposite directions across the array
by applying an electric field of frequency in the window between the cross-
over frequencies of the two particle species.

8.6 Stacked ratcheting mechanisms
The primary drawback with using forced thermal ratchets as a practical
method of particle separation is the reliance on Brownian motion to provide
a means of driving particles from the collection points. This restriction limits
the use of such a separator to applications involving small particles with
correspondingly large diffusion constants. Practical diffusion rates for
micron-sized particles27 are approximately 120 sec for 40% of particles to
pass one unit forward on an array with 50 µm between pairs of electrode
tips. This may be improved by optimizing electrode design, but while the
fractionation of particles may be useful where physical removal of particles
is not necessary (and therefore the separation between the subpopulations
does not need to be large), the reliance on diffusion constrains the ability of
dielectrophoretic ratchets to attain particle velocities required for practical
continuous particle separation. However, there is a method of using
dielectrophoretic separation by ratchet mechanisms that eliminates the
dependence of the system on Brownian motion to provide the method of
particle dispersion.

Consider the electrode assembly shown in Figure 8.8. The assembly is
composed of two pairs of ratchet electrodes, with one pair suspended above

Figure 8.8 By stacking two pairs of dielectrophoretic ratchet electrodes, it is possible
to eliminate the need for Brownian motion to provide forward motion. If the tips of
the top and bottom pair are equally spaced as shown above, then for both positive
and negative dielectrophoretic collection, the particles collected on one pair are all
in the trapping zone of the next electrode pair on the other layer, and so by energizing
top and bottom electrodes alternately, motion is imparted.
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the other by a distance equal to the distance between capture zones (or
adjacent tip pairs) and displaced along the main axis by half of the same
distance. Potentials are applied to only one pair of electrodes at any given
time. If a mixture of particles is suspended between the electrode levels and
potentials are applied to the lower pair of electrodes, particles undergo
dielectrophoresis and are attracted to, or repelled from, the electrode tips
toward their respective collection points. After time τON collection has taken
place and the cells have aggregated. At this time, the potentials on the lower
pair of electrodes are removed and the top pair of electrodes is activated.
Those particles undergoing positive dielectrophoresis, located at the previous
collection point and therefore within the capture zone of the new collection
point, will be attracted forward to that point. Similarly, particles under-
going negative dielectrophoresis will be repelled to the collection point of
the previous capture zone. The repulsion of the two stacked electrodes in
this displaced form ensures that particles undergoing negative dielectro-
phoretic collection will not settle over the electrode surfaces. After a further
time τON the potential reverts to the lower set of electrodes and the cycle
is repeated.

This process offers many advantages over the single-ratchet mechanism.
The types of particles that may be used in this manner are limited according
to their dielectrophoretic response rather than their size, and thus much
larger particles may be used than is possible using a single pair of electrodes.
More significantly, the cycle has a duration of 2τON rather than τON  + τOFF in
the single-pair case. Experiments27 have shown that for particles of approxi-
mately 1 µm diameter, τON has value 30 sec or less, compared to τOFF of
approximately 120 sec for diffusion-based methods. Thus the stacked-ratchet
method offers approximately twice the efficiency of the first method, a value
that increases with increasing particle size. This is further enhanced by the
percentage of particles being drawn forward per cycle approaching 100%
due to the concentration of all particles beyond the crossover limit of the
electrodes at the switch between pairs. However, the limitation of the
stacked-ratchet device compared to the single ratchet version is that the only
criterion for particle separation is the difference in the dielectric properties
of the two particle types, rather than also allowing separation on the basis
of diffusion constant and hence size. However, since (as we discovered in
Chapter 4) the electrical properties are affected by the particle size (with all
other factors equal), this can be overcome relatively easily.

The stacking of two dielectrophoretic ratchets on top of one another
was first described theoretically by Chauwin et al. in 1994,34 and was sub-
sequently demonstrated by Gorre-Talini et al. in 1998,35 who demonstrated
the separation of latex beads using stacked ratchets. Stacked ratchet elec-
trode arrays have potential applications similar to methods of continuous
dielectrophoretic cell separation described earlier in this chapter, but are
particularly appropriate to situations where it is impractical to provide a
fluid flow through the particle chamber or where smaller numbers of parti-
cles need be separated.
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8.7 Traveling wave dielectrophoresis
Unlike the preceding separation methods, the final separation technique
discussed here does not rely on conventional dielectrophoresis to separate
particles. Instead, it relies on a fundamentally different method of inducing
translational forces, an effect known as traveling wave dielectrophoresis. This
shares with dielectrophoresis the phenomenon of translational induced
motion, but rather than acting toward a specific point (that of the highest
electric field strength), the force acts to move particles along an electrode
array in the manner of an electrostatic conveyor belt. The phenomenon was
first discovered by Batchelder36 in the early 1980s, but was not adopted by
the wider dielectrophoresis community until the work of Masuda et al.,37,38

Fuhr and coworkers,39, 41,42 and Hagedorn et al.40 essentially rediscovered the
phenomenon nearly a decade later.

Consider a particle in a sinusoidal electric field that travels — that is,
rather than merely changing magnitude, the field maxima and minima move
through space, like waves on the surface of water. These waves cross a
particle, and a dipole is induced by the field. If the speed at which the field
crosses the particle is great enough, then there will be a time lag between the
induced dipole and the electric field, in much the same way as there is an
angular lag in a rotating field that causes electrorotation. This physical lag
between dipole and field induces a force on the particle, resulting in induced
motion; the degree of lag, related to the velocity of the wave, will dictate the
speed and direction of any motion induced in the particle. The underlying
principle is closely related to electrorotation; it could be argued that the name
traveling wave dielectrophoresis is misleading because the origin of the effect is
not dielectrophoretic, that is, it does not involve the interaction of dipole and
field magnitude gradient. Instead, the technique is a linear analogue of elec-
trorotation, in a similar manner to the relationship between rotary electric
motors and the linear electric motors used to power magnetically levitated
trains. As with the rotation of particles, the movement is asynchronous with
the moving field, with rates of movement of 100 µm sec–1 being reported.

Since it is difficult to create and control a moving, perfectly sinusoidal,
electric field, we employ electrode structures that are energized with sinu-
soidal signals, each of which has the same frequency but a different phase
as its neighbors, with the difference in phase between phases being regular.
The net effect of the phase change along the electrodes is to provide a
sampled version of the sine wave, with the potentials describing a wave
with a wavelength equal to the distance between electrodes sharing the same
phase, assuming that the phase difference is an integer fraction of 360°.
Typically, electrodes are energized by either three or four phases, with the
same equipment being used to generate the electric fields. Electrodes are
typically 10-µm wide, with interelectrode gaps of about the same size. The
width of the electrodes creates distortions in the field that will be described
later, but at distances of 5–10 µm from the electrodes, a sufficiently sinusoidal
electric field is generated. In order to maintain a steady rate of transport, we
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require a field that is as uniform as possible. We therefore do not require
high field gradients and thus we do not require the use of ultrasmall elec-
trodes in order to manipulate ultrasmall particles. An example of electrodes
with 90° phase shifting is shown in Figure 8.9. Electrodes are typically
arranged as an array of parallel bars, forming tracks along which particles
travel in a perpendicular direction to the arrangement of the electrodes.

As we have learned in Chapter 2, we can express the full term of the
dielectrophoretic force thus:

(8.12)

In fact, we can split this into two separate expressions:

(8.13)

The first expression, for a force dependent on the electric field magnitude
gradient, is the conventional dielectrophoretic force equation. The second
part gives the force due to an electric field phase gradient; this gives us the
force in a traveling electric field, which can be described as a field with a
linearly varying phase relationship and therefore a phase gradient. We can
take the second expression and consider its value for a situation where the
phase gradient of the traveling electric field is incremental in only one
direction (the direction of travel). For example, let us examine an electric
field traveling in the x direction. First, this means that the y and z terms
disappear since there is no phase gradient in these directions. Furthermore,
let us postulate that the traveling field is ideal — that is, there is a constant,
linear phase gradient along the path the particle is traveling. If the wave has

Figure 8.9 A schematic of the action of traveling wave dielectrophoresis. A traveling
electric field is generated by applying phased AC signals. This induces a moving
dipole that, if the electric field is moving fast enough, is physically displaced from
the electric field peak. The interaction between field and induced dipole indicates a
force in the direction of the field travel. The electrodes are a sequence of parallel bars
on a substrate.
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wavelength (defined by the distance between electrodes carrying the same
phase) λ and corresponding phase gradient –λ/2π,

(8.17)

Compare this with the equation for electrorotational torque; the force is
equal to the expression for torque, multiplied by π divided by the wave-
length of the wave. Since the force is governed by the imaginary part of
the Clausius–Mossotti factor, any dielectrophoretic forces induced act inde-
pendently of, and in addition to, the traveling wave force, and can be attrac-
tive or repulsive according to the properties of the particles. The interactions
between conventional and traveling wave dielectrophoretic forces govern
the net motion of the particles.

This interaction is further complicated by the fact that the electric field
geometry around interdigitated electric fields is considerably more compli-
cated than might first appear from the simplicity of the electrodes them-
selves, and we have the additional factor that we are concerned not only
with local variations in magnitudes, but also with the phase of the local field
with respect to adjacent points. Traveling wave dielectrophoresis is depen-
dent on an electric field phase gradient to give it direction, in a similar
manner to the way in which dielectrophoresis is dependent on the gradient
of the magnitude of the electric field in order to give it direction. However,
the magnitude of the traveling wave dielectrophoretic force is also depen-
dent on the magnitude of the electric field.

In order to study the variation of these, we can use dynamic (time
variant) electric field simulation, as described in more detail in Chapter 10.
The simulations here are a variant of the standard traveling wave array, in
that they consist of a channel running orthogonal to the electrode array. The
potentials applied to the electrodes on opposing sides of the channel are in
antiphase. This array was developed by Huang et al.43 in order to provide
a region along which the traveling wave is near ideal; that is, with almost
constant magnitude and with a phase that varies linearly with distance
(providing a constant force in accordance with Equation 8.16), in a position
in which particles could be observed moving at a constant height — that is,
along the bottom of the electrode chamber. A schematic of the area of sim-
ulation and of the electrode configuration is shown in Figure 8.10.

The magnitudes and phases of the three coordinate components of the
electric field in a plane 3 µm above the plane containing the electrodes are
shown in Figure 8.11; the x and y planes describe the electrode plane, with
the field traveling in the x direction. If we examine the electric field magni-
tudes first, we find that they are as we might expect: the field is largest in
the x direction between adjacent electrodes (since the electrodes run in the
y direction, the interelectrode gaps are arrayed across the x direction); the
field is largest in the y direction across the channel; and, in the z direction,
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the maxima are found across the upper surface of the electrodes. This is
much as we would expect, since it indicates that the field gradient causes
dielectrophoresis to move particles toward the electrodes, and in particular
to the electrode edges.

If we then examine the phase distribution, we begin to observe features
that we would not have expected. We would anticipate that the phase distri-
bution would have a constant gradient, covering a full 360º sweep for every
four electrodes covered. This is in fact what we observe in the y-directional
phase. Across the electrodes there is a near-constant phase gradient, inter-
rupted only at the midpoint of the electrodes beyond which the field points
in the opposite direction, equivalent to a 180° phase change. Note that this
does not change the direction of the traveling wave force, since the direction
of the gradient does not change. Examining the phase changes in the x and
z directions shows two interesting effects. The first is that there is a phase
change at the midpoint of the channel (which is to be expected since there
are opposing phases on opposite sides of the channel), and the second is
that there is a stepped appearance to the phase distribution across the upper
surfaces of the electrodes. Closer study of these effects shows that, across
the electrode surfaces, the phase of the electric field does not just level out
(which is to say, the electric field changes simultaneously across the electrode
surface), but the phase gradient actually moves in the opposite direction to the
traveling field. This is actually due to the distorting effect of the flat elec-
trodes; the ideal array would feature a continuous sine wave, but we are
using four flat planes, each with constant potential across its surface, to

Figure 8.10 The electrode array simulated using methods described in Chapter 10,
together with the area shown by the simulations. The electrodes are 10-µm wide and
have 10-µm spacing between them. There is a 30-µm channel cutting across the
electrode array. The electrodes are energized by sinusoidal potentials with 90º phase
shift between each electrode, so that the simulation area represents one complete cycle
of the sinusoid. The horizontal simulation area is 3 µm above the electrode plane.
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mimic this. As a result, the sine wave is distorted with flat regions across
the electrode surface and much steeper regions in the interelectrode gaps;
at short distances above the electrode edges, the compressed, steeper sections
dominate over the flat regions and this results in a backward step in the
electric field. The electric field over the electrode surface is observed to travel
in the opposite direction to the electric field in the channel, and at greater
distances over the electrode edges.

If we view the effects of this distribution on the forces generated in the
vertical plane, then a clearer interpretation of the implications of this phase
change can be made. Figure 8.12 shows the magnitude and direction of

Figure 8.11 The variation in electric field peak magnitude (left column) and phase
shift (right column) for electric fields in the x, y, and z directions (top, middle, and
bottom rows, respectively), for the area of the electrode array indicated in Figure 8.10.

Figure 8.12 The traveling-wave forces generated by a sequence of electrodes with
90º phase shifts, two of which are shown. As can be seen, the direction of the forces
changes within about 5 µm of the electrodes.
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traveling wave force for a particle with arbitrary properties, as determined
using a simulation similar to that described above, but in a vertical plane
intersecting two electrodes. The force has been determined using Equations
8.13–8.15, and is in arbitrary units. As can be seen, above about 5 µm from the
electrode surface, the force acts uniformly in one direction. Nearer the elec-
trode than this, the force distribution is considerably more complex, and the
force does not become approximately constant along a path until the distance
about the electrodes reaches toward 8 µm. We can generalize this to say that
the force field is approximately uniform at heights equal to the electrode width,
and the reversal effect occurs at approximately half that distance.44,45

If we now consider that the force experienced by particles in the traveling
field is the combination of conventional and traveling wave dielectrophoretic
forces, in proportions dictated by the real and imaginary parts of the Clausius–
Mossotti factor, then the behavior of such particles becomes even more
complex. Workers in the field (e.g., Fuhr et al.,39 Huang et al.,43 Morgan et
al.,44 and Hughes et al.45) have identified a number of regimes according to
the proportions of the two forces experienced by a particle. The four notable
particle behaviors, three of which are illustrated in Figure 8.13, can be sum-
marized as follows:

(i) If the real part of the Clausius–Mossotti factor is both positive and
greater than or equal to the imaginary part, then the positive dielectro-
phoretic trapping force overcomes any induced motion due to the
traveling wave, and particles become trapped at the electrode edges.

(ii) If the particles experience a negative dielectrophoretic force but no
significant traveling field force, then they will be repelled from the
electrodes into the solution. Provided this force is sufficiently large
to propel the particles into the solution rather than trapping them
in clusters in between the electrodes, then particles will be prevent-
ed from entering the region directly above the electrodes. If there
is a channel in the center of the electrode array, the particles may
collect there.

(iii) If both the real and imaginary parts of the Clausius–Mossotti factor
are significant and Re[K(ω)] is negative, then the particles will be
levitated over the array to where the traveling force dominates and
particles will travel along the electrode structures. If the value of
Im[K(ω)] is positive, then the direction of travel will be in the opposite
direction to the traveling field; if negative, the direction will be with
the field. As described above, distortions in the phase of the wave
mean that the forces within close proximity of the electrodes direct the
particle to travel in the direction opposite to that described; however,
the dielectrophoretic force prevents the particles entering this region.

(iv) Finally, if the trapping and translational forces are of approximately
equal magnitude — that is, when Im[K(ω)] > 4Re[K(ω)] and
Re[K(ω)] > 0 — then the force exerted on the particles is dependent
on whichever force (and hence, local gradient, be it in field magnitude
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or phase) is dominant at any particular point in space. Since the travel-
ing wave force is highly dependent on spatial position near the
electrodes, this means the motion of particles in this regime can be
extremely chaotic and inherently unpredictable. Particles are observed
to move between electrodes, then remain at an electrode edge for a
few seconds, then return in the direction from which they came. Parti-
cles also exhibit a tumbling motion due to the localized phase changes
in electric field causing the induction of localized electrorotational
torque. This mode of behavior was termed the fundamentally unstable
(FUN) regime by Huang et al.43 who first reported the behavior.

Figure 8.13 A schematic indicating some of the different behaviors demonstrated
by particles in traveling electric field structures. (a) Where the real component of
the Clausius–Mossotti factor is large and positive, particles will experience positive
dielectrophoresis and be attracted to the electrode edges. (b) Where the real part
is negative and the imaginary part is large, particles are repelled from the electrode
array and travel along it. (c) When the real part is small and the imaginary part is
large, particles exhibit seemingly random behavior including erratic motion,
changing direction, and rotating at electrode edges.
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Since the first two regimes described above are effectively reproducing
the action of conventional dielectrophoresis electrodes, and the fourth is so
unstable as to have little practical value, the majority of traveling wave
dielectrophoresis manipulation is concerned with the third regime wherein
particles are repelled from the electrode and travel along the array. Regarding
this regime, an interesting proposition was made by Morgan and co-workers,44

who analyzed the distribution of forces generated in planar arrays using
analytical Fourier series methods. Their work indicates that, since both the
height of levitation above the array and the traveling wave–imparted velo-
city are related to the applied electric field, the velocity of particle travel is
actually independent of voltage. As the applied potential (and hence electric
field), the particle is levitated further from the electrode surface, to where
the electric field due to the electrodes is smaller, and hence the particle
motion remains the same. However, this only occurs under conditions where
the electric field, and Clausius–Mossotti factor, cause the particle to be
repelled to a height greater than 1.5 times the width of the electric-field
generating structures.

8.8. Applications of traveling wave dielectrophoresis
8.8.1 Manipulation

Masuda et al.37,38 were the first to demonstrate that traveling electric fields
could be used to induce controlled translational motion of bioparticles
including red blood cells and lycopodium particles. These traveling fields
were generated by applying three-phase voltages, of frequency ranging from
0.1 Hz to 100 Hz, to a series of bar-shaped electrodes. At these low frequen-
cies the dominant translational forces acting on the bioparticles were electro-
phoretic in origin, and Masuda et al.38 proposed that such traveling fields
could eventually find application in the separation of particles according to
their size or electrical charge. The first demonstrations of the application of
asynchronous traveling fields of frequency between 10 kHz and 30 MHz
were later shown by Fuhr and coworkers.39 These were used to impart linear
motion to pollen and cellulose particles, and Huang et al.43 later showed that
traveling fields of frequency between 1 kHz and 10 MHz can be used to
manipulate yeast cells and, by altering the frequency, could alternate
between dielectrophoretic and traveling-wave behaviors. As with ratchet
devices, traveling-wave dielectrophoresis offers a method of pumping parti-
cles through the suspending solution, without the need to actually move the
solution itself — particles move while the medium itself remains still. Pumping
of the fluid can be achieved, since water is a polar liquid, an effect described
by Fuhr et al.42 However, this requires a relatively high medium conductivity
and achieves fluid pumping phenomena similar to those described in
Chapter 3. Most traveling wave manipulation occurs in lower conductivity
media where fluid motion can be disregarded.
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8.8.2 Separation

Since traveling waves can be used to manipulate particles according to their
dielectric properties, it follows from work discussed previously that the force
exerted on different populations of particles with different dielectric charac-
teristics will have different magnitudes. Given the array of different behav-
iors described previously that can be generated by dielectrophoresis, it is
possible to separate two groups of particles with different characteristics and
transport them to different ends of a traveling wave electrode array, without
any requirement for external fluid pumping and with the only control
required being that of the applied electric field.

This was first demonstrated by Huang et al.43 who showed that yeast
cells could be propelled along an electrode array while bacteria in the same
sample were trapped at the electrodes by positive dielectrophoresis. This
method was considerably enhanced by Talary et al.46 using viable and non-
viable yeast cells. When a 35-kHz wave is applied, the nonviable cells are
attracted to the electrodes by positive dielectrophoresis, while viable cells
are both repelled by negative dielectrophoresis and transported along the
array by traveling wave dielectrophoresis. When those cells have all reached
the end of the array, the applied field frequency is changed to 4 MHz, at
which frequency the viable cells are trapped at the end of the array by
positive dielectrophoresis while the nonviable cells are repelled and travel
in the opposite direction along the array, as the value of Im[K(ω)] for nonviable
cells at that frequency has a sign opposite to that for viable cells at the lower
frequency. At the end of the procedure the viable cells are collected at one
end of the array, the nonviable cells collected at the other.

8.8.3 Fractionation

An alternative method of performing particle separation using traveling
wave dielectrophoresis is by using an electrode array to fractionate particles
in a method similar to that described previously for dielectrophoretic ratch-
ets. Particles belonging to different subpopulations are induced to move in
the same direction, but the speed at which they move across the array is
dictated by the properties of the particles. In the case of traveling wave
dielectrophoresis, the factor responsible for differentiating between the par-
ticles is the different induced force due to the different dielectric properties
of the particles. However, unlike the previous methods described in this
chapter, the discrimination between particles is based on the imaginary part
of the Clausius–Mossotti factor, which is responsible for dictating velocity
over a large distance, and as such is potentially much more sensitive.

A traveling wave fractionation array has been demonstrated by Morgan
and co-workers47 and Green et al.48 who used an array with 1000 electrodes
with total width and length 2 cm; the array was demonstrated by separating
different types of blood cells. By starting the cells at one end of the electrode
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array, the different populations of cells move across the array at slightly
different velocities, so that after 80 sec the two types of cells studied
(red blood cells and white blood cells) would be physically separated by
1 mm; studies have indicated that particles that differ in their dielectric
properties by 0.2% would be separated by 100 µm by the end of the 2 cm
array. Methods for ensuring both particle types start across the array at the
same time are discussed in the next chapter.

An alternative strategy for traveling-wave fractionation has been sug-
gested by Jan Gimsa,49 in which the traveling wave force is effectively applied
as a force field in the form of field-flow fractionation. The system operates
by providing a flow along a chamber in one direction (let us say the x-axis),
across a series of traveling-wave electrodes arranged parallel to the direction
of the flow. When energized, these impart a force field that makes the parti-
cles travel in the direction orthogonal to that of the imparted flow. When
the particles reach the opposing end of the electrode chamber, they will have
fractioned across the plane at the end of the chamber (the y-axis). If the
particles consisted of well defined and predictable mixtures of particles,
outlets could be provided at the appropriate points at the end of the chamber;
alternatively, the particles appearing across the entire end of the chamber
could be analyzed in the manner of the output from an electrophoresis gel.
Furthermore, by tuning the system appropriately, it is theoretically possible
to use this technique to perform conventional dielectrophoresis-based field
flow fractionation at the same time. Such a system would rely on fractionation
according to the distance and direction the particle had traveled up the y-axis
at time of exit from the chamber, and also the time taken to traverse the
distance from one end of the chamber to the other. A schematic of such a
separation device is shown in Figure 8.14.

8.8.4 Concentration

In the previous examples, traveling wave dielectrophoresis has been applied
in a linear fashion — that is, the particles are input to the array at one end
and proceed in a linear fashion to an output, or fraction along the array to
allow the total distance traveled to be measured and population content to
be determined. However, since the force can be applied in any direction
across a surface on which electrodes can be fabricated, it can also be used
to direct particles to travel in different directions, either to direct particles to
a single point on an array, or to manipulate them around a laboratory on a
chip as described in the next chapter.

Considering the first application, it is possible to fabricate so-called spiral
electrode arrays formed by looping the four electrodes carrying the phased
signals in an ever-decreasing spiral, such as those shown in Figure 8.15. After
each group of four electrodes the pattern is repeated, so that there is an
appearance of a sequence of electrodes with 90º shift along the direction
toward the center of the array, and therefore there is a traveling field imposed
that travels from the outside of the array to the center. Particles that experience
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traveling wave dielectrophoresis will either be conveyed into the center of
the array or will be propelled off the array. This type of array has a number
of advantages, principally in ease of fabrication. By allowing the four tracks
to form an interlocking spiral, a very large area can be covered using just

Figure 8.14 A schematic of the traveling-wave separator proposed by Jan Gimsa.
An imposed flow imparts movement of particles along the horizontal axis, while
traveling-wave electrode structures impart a motion at 90° to this. When arriving at
the opposing end of the chamber, a particle’s properties can be determined by its
position along the y-axis, or (as here) separate outlets could be used for fractionation.
Furthermore, the system could be combined with dielectrophoretic field-flow
separation (as shown in Figure 8.4) to provide two-dimensional separation.

Figure 8.15 A schematic showing the function of spiral electrode arrays. The four
electrodes are arranged in a spiral such that a continuing traveling wave is established
between the center of the array and the edge. Particles will move to the center of the
array or away from it according the their dielectric response.
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four electrodes on a single-layer electrode array. Normal traveling wave
electrode arrays are restricted in total size by the necessity to connect each
electrode to an off-chip power supply independently, or else use multi-
layered fabrication techniques, which adds considerably to the cost and
complexity of manufacture.

Another advantage of spiral electrode arrays is that they can easily be
adapted so as to be used in combination with electrorotation, since it was
demonstrated by Fuhr and co-workers50,51 that at the center of the array, the
four electrodes bearing the four phases can be terminated in electrodes
arranged in a square, creating an electrorotation chamber for particle assess-
ment. This can be directly applicable to the study of submicrometer particles
through the use of an optical detection and measurement system such as the
one described in Chapter 5, which could allow the measurement of rotation
rates of particles concentrated at the center of the array. A number of sub-
sequent studies have been made of spiral electrodes consisting of either
square-shaped spirals such as those seen in Figure 8.15 or circles with
ever-decreasing radius.52,53 Spiral electrode arrays can be used for another
application — that of manipulating or steering particles around laboratories
on a chip, which is described in more detail in Chapter 9.
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chapter nine

Electrode structures

9.1 Microengineering
As has been described in previous chapters, one of the great advantages of
dielectrophoretic manipulation of particles is that the size of particles
manipulated is not dependent on the size of electrodes used, but on the
inhomogeneity of the electric fields produced by those electrodes. This is
fortunate, as the minimum size of electrodes that can be easily manufactured
today is still significantly larger than the smallest particles that can be
manipulated by dielectrophoretic methods. In fact, most of the electrode
arrays used to describe much of the material in this book are somewhat
larger than the smallest devices possible, although electrodes with dimen-
sions at the limits of fabrication technology were described for the trapping
of single conducting colloids1 and DNA molecules.2

Microengineered electrodes for dielectrophoretic applications first
appeared in the late 1980s (e.g., Price et al.3) and have in the intervening
years almost completely superseded the previous methods of generating
nonuniform electric fields through the use of machined electrodes such as
needles, planes, and curves (some of which are described in the next chapter).
In particular, the development of microengineered electrode structures has
meant that the dielectrophoretic behavior of nanoparticles can be observed
in ways that would not be achievable by other methods.

One of the reasons that microengineered electrodes are so useful for
dielectrophoresis is actually a byproduct of their shape. While micro-
engineers will design suitable geometries for determining the electric field
(by controlling the distance between neighboring electrodes) and locating
electric field maxima and minima, the dielectrophoretic forces generated are
greatly enhanced by the planar nature of the electrode structures. Micro-
engineered electrodes are produced from thin metal film deposited across
flat surfaces, so that when these are patterned into electrode geometries such
as those seen in the preceding chapters, the electrode edges (viewed in cross
section) are like sharp needles or razor blades pointing toward one another.
Even a simple array, such as two straight and parallel electrodes (which, if
extended to three dimensions, would produce a uniform electric field)
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produces a highly inhomogeneous electric field; this type of array is com-
monly used in the study of electrohydrodynamic fluid motion as described
in Chapter 3.

Thus far, we have examined the use of microelectrode structures —
quadrupoles, castellated electrodes, interdigitated traveling wave arrays,
dielectrophoretic ratchets — and their applications for the manipulation of
nanoparticles. In this chapter we will examine the processes by which such
structures are made and consider how such electrodes can be used to perform
a range of tasks beyond what we have already seen. We will also examine
the concept of the laboratory on a chip, where all the processes we have
discussed so far (particle trapping, detection, analysis, and separation) are
combined into a single microfabricated device.

9.2 Electrode fabrication techniques
The development of dielectrophoresis was, for the first few decades, domi-
nated by the use of machined, three-dimensional shapes such as rods,
pins, and planes to generate nonuniform electric field shapes. While these
geometries were eminently suitable for dielectrophoresis of cell-sized parti-
cles, they did have disadvantages — principally that trapping particles on
the nanoscale required high voltages to generate sufficient nonuniformities
(with corresponding problems with fluid heating, as discussed in Chapter 3)
and shapes on this scale did not facilitate the building of enclosed field
minima for easy observation of negative dielectrophoresis. It was with the
adoption of techniques originated in the electronics industry for the con-
struction of semiconductor devices (silicon chips) that electrode construction
was revolutionized. Since the end of the 1980s, almost all the electrode
structures used for dielectrophoresis have been microfabricated. It is worth
noting that the term fabricated is used almost exclusively to describe electrode
construction, a term adopted from the microelectronics industry. It is occa-
sionally abbreviated to fab, hence the description of semiconductor fabrica-
tion facilities as fab labs. A range of microfabrication techniques exists for the
construction of electrode structures, but the principal method employed is
that of photolithography. Other methods exist for particularly fine electrode
structures, the principal method being direct-write methods outlined in
Section 9.2.5.

9.2.1 Photolithography

The term photolithography derives from Greek roots and means “to write on
stone with light,” an apt description when one considers that the process
was developed for optically patterning silicon, a common constituent of
minerals such as granite. The process has its origins in photography and
shares many of photography’s characteristics; fundamentally, the process
operates by using an equivalent to a photographic negative to expose a
light-sensitive surface to produce a required pattern.
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The equivalent to the photographic negative in microfabrication is the
photomask, also called a mask plate or mask. This can be constructed of any
clear material (capable of passing ultraviolet light), partially covered in an
opaque patterned layer (capable of blocking ultraviolet). Ordinary photo-
graphic masks have been used for the process, particularly for on–off
productions where resolution is limited to the grain size of the film; however,
more common is the use of the standard photomask of the electronic indus-
try, consisting of a quartz sheet with a thin film of chrome. This layer of
chrome is patterned with the design of the electrode, usually using a techni-
que called e-beam lithography (described in Section 9.2.5). The pattern can
be represented in two ways, which will again be familiar to those with
basic knowledge of photography; the pattern can be either a positive image
or a negative image of the required structures, as shown in Figure 9.1.
However, it is very important to note that the reference to positive and
negative can refer to the mask, the processes involved in fabrication, or
the output, quite independently.

Figure 9.1 A life-sized image of a photomask for two dielectrophoresis electrode
arrays. The photomask is a negative, with the dark region covered by chrome, and
the electrode patterns transparent. A positive photomask would reverse these, with
a chrome pattern in a largely transparent mask.
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When using a mask, we can either have a mostly clear mask with chrome
only present where we want electrode structures to be on our finished device
(again, the finished product, for example consisting of electrode structures
on a substrate of glass, is called a device from semiconductor terminology).
The process of producing this device is called a positive process since the
device resembles the mask. The converse is a negative process, where we
would use a mask that was mostly chrome, which is only transparent in
those areas we wish to have material (such as a conductor) present on our
final device. This can be compared to a photographic negative where white
and black on the negative correspond to the reverse on the final product.
Where things can become confusing is that mask production facilities refer
to the means by which masks are produced in order to describe them. Masks
are produced from quartz sheets (usually square with side dimensions mea-
sured in whole inches) completely covered in chrome. This chrome is then
removed to produce the mask using electron beams, allowing very high
definition (typically the smallest feature that can be written is a spot 30 nm
in diameter, though 3 nm is achievable). Where the mask is exposed to the
beam, the chrome can be removed. In order to produce a mask for a negative
photolithographic process, the mask is only written in the areas to be
exposed; that is, the areas that will be clear on the mask and filled in on the
final devices. Where a mask is required for positive photolithography, the
mask must be written in all the areas except those where the pattern is, so
that only the chrome electrode pattern remains. For this reason, masks
required to be a negative of the finished device (i.e., exposed where you want
material) are referred to as positive masks (since they are exposed where you
don’t want chrome). Similarly, masks for positive photolithography are
referred to as negative masks, at least by the people who make them. This
contradiction is rarely explicit and can lead to expensive mistakes (which
the author can report from bitter experience!); however, it is possible to make
so-called reverse polarity (a positive mask from a negative, or vice versa)
copies with reasonable accuracy (typically ±1 µm) for much less than the
cost of a new mask. At time of writing, a written 4-inch mask plate costs
about $1000, with a reverse polarity copy costing approximately one-third
of this.

9.2.2 Wet etching

The fabrication process can be described as the process of selectively adding
and removing material in specified ways until a final product is achieved.
The first of these processes is deposition, the adding of a thin layer of material
to the surface. The second process — and arguably the most important —
is etching; the selective removal of material from a surface. The means by
which the material is etched can vary, but the two most important are wet
etching and dry etching; the former involves the use of liquid solvents and
acids to remove material, whereas the latter process uses reactive ionized
gases. For the majority of cases where a single electrode layer is required,
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wet etching is the simplest and most effective procedure. The procedures
used for positive and negative photolithography by wet etching vary slightly,
but both are used equally and will be described here.

Most etching processes involve the use of a material called photoresist.
This is a polymer that can, under appropriate conditions, resist the action of
acids used to remove electrode material; those conditions vary according to
whether it is being used for positive photolithography (termed positive
photoresist) or negative photolithography (negative photoresist).

We can examine the use of photoresist by considering a positive photo-
lithography process as an example (shown schematically in Figure 9.2). In this
example we will consider the fabrication of a single-layer device consisting of
metal electrodes on a glass substrate (note that the substrate does not usually
count as a layer) such as a microscope slide, patterned into the electrode
shapes we have seen in previous chapters. In this procedure, we start with
a slide completely covered in metal. Typically this metal will be gold;
however, gold does not adhere to glass very well, and in order to secure it
another layer (an interlayer) of another metal (such as titanium) that does
adhere to glass is added first. Typically, the interlayer only needs to be thick
enough to attach gold to glass (a layer about 10-nm thick will suffice),
whereas the gold needs to be thick enough to carry a reasonable electrical
current, and is typically of the order of 100 nm thick. There are two ways of
depositing these gold films, called evaporation and sputtering. The former
method involves heating a piece of the material to be deposited in a vacuum,

Figure 9.2 A schematic showing the fabrication process for positive photolitho-
graphy. (a) The substrate, precoated in metal, is spin coated with photoresist. (b) The
photoresist is exposed to UV via a photomask. (c) The photoresist is developed.
(d) The excess metal is removed by acid treatment. (e) The remaining photoresist is
removed, leaving the finished device.
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so that when the material sublimates it literally evaporates, sending mole-
cules in straight lines from the source to the sample (devices are often called
samples during fabrication, and devices when complete) where they adhere.
Sputtering is similar, but involves heating a piece of material (referred to as
a target) with an electron beam until it produces an ionized gas; since the
ions move freely in all directions in the gas, they contact the sample from
all directions. This overcomes a problem with evaporation called shadowing,
which occurs when structures on the surface of the sample block the ions
and cast shadows on the surface of the material where no metal is deposited,
as seen in Figure 9.3. Where multiple layers of metal are to be deposited
(for example, when using a titanium interlayer), deposition should take place
without breaking the vacuum present during deposition by either method;
this prevents contaminants from interfering with the metal. For example,
titanium readily oxidizes in air to form a layer to which gold will not attach
so readily.

With our slide now covered in metal (the term is metallized, the process
metallization), we can begin to form our patterns. First, we coat the slide in
a layer of photoresist. This is done by spin coating or spinning. The slide is
placed on a spinner, which is a device consisting of an upturned motor with
a vacuum chuck at the center. The sample is held in place by the vacuum
and spun at a regulated speed. A drop of the photoresist is applied to the
sample prior to spinning, and when the sample is spun, most of the photo-
resist flies off the edge of the sample. However, a thin, uniform layer of
photoresist is left across the surface of the sample; the thickness of the layer
is determined by the viscosity of the photoresist and the speed and duration
of rotation. Spin speeds are typically between 1000 and 10,000 rpm to

Figure 9.3 Metal films can be deposited by evaporation (where metal is evaporated
in a vacuum, causing atoms to scatter linearly) or sputtering (where a heated cloud
of ion atoms is generated by heating). The latter method overcomes the problem of
shadowing, where regions not covered by photoresist may not be exposed because of
shadows cast by adjacent photoresist, because the atom cloud acts along the entire
exposed surface.
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produce resists of thickness 500–1000 nm. After the resist has been spun for
an appropriate length of time, it is baked until hard.

The sample is now ready for the key part of the photolithography process,
and the one that gives the process its name. In order to transfer the pattern
on the photomask to the photoresist, the photoresist must be exposed to
ultraviolet light. Many fab labs use devices called mask aligners; these large
and expensive pieces of equipment use a microscope to align the sample
with the mask. They are principally designed for use with complex, multi-
layer electrode structures and are not strictly speaking necessary for
single-layer devices where exposure could be performed by bringing mask
and sample into direct contact (called contact exposure). However, doing
this does reduce the lifetime of the mask, since any damage (such as
scratches) caused to the mask plate will appear on all future devices exposed
using that mask. When the mask and sample are brought together by which-
ever means, the sample is then exposed to UV light through the photomask.
Where the UV contacts the photoresist, it causes damage to the polymer;
where it is blocked by the chrome layer on the mask, no damage is caused.
The determination of exposure time and intensity is something of an art in
itself — there are standard guidelines, but experience is invaluable, particu-
larly where a design mixes areas with fine detail with other areas covering
large spaces. Both overexposure (causing the undercutting of the mask) and
underexposure (meaning the photoresist is not sufficiently damaged to be
removed at the next stage) are to be avoided.

When the sample has been exposed, it is developed; as with photography,
this is used to turn the image into something visible. In this case, the developer
removes the material that has been exposed to UV, leaving the metal below
it exposed; the remainder of the material is still covered by baked photoresist.
The exposed material is that which we wish to remove to obtain our pattern.
This is where we select wet etching; this basically means the removal of the
metal using acids. Combinations of acids are used to etch specific metals;
hydrofluoric acid (HF) is used for etching glass. Occasionally a two-step
etching process may be required where an acid will remove one layer
(e.g., gold) but not the interlayer below (e.g., titanium). Throughout the
process, the remaining resist protects the areas where we wish to have metal
in the final structure. Once the surplus metal has been etched away, the
remaining resist can be removed. This leaves the substrate with metal present
where the baked resist was, and the device can now be mounted for use.
Typically, this means connecting the device to a structure with simple con-
nections to external power supplies, such as a printed circuit board of some
kind; connections between circuit board and device can be made by soldering
directly to the device, but this is unreliable and can destroy a device. A more
gentle method is to connect between bonding pads and wire using conduct-
ing paint. This is most effective if the wire is fairly rigid (e.g., single core
cable), and the bonding pad on the device should be sufficiently large to
allow the user to apply the paint without spilling onto neighboring bonding
pads — a 2 mm distance between neighboring bonding pads is usually
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sufficient, although where pushed for space, smaller distances can be used
if application is performed while viewed through a microscope.

Taking this procedure as a starting point, we can examine the differences
involved in using other fabrication protocols. First of these is the use of a
negative rather than positive mask, or negative rather than positive resist.
A negative resist acts as the chemical reverse of positive resist; it hardens
when exposed to UV light. This means that baked negative photoresist will
be removed where it has not been exposed to UV. However, using a negative
photoresist with a negative photomask would allow the same procedure
outlined above to be repeated. Where a negative mask is used with positive
photoresist, or vice versa, another procedure, known as lift off, is used. This
procedure, summarized in Figure 9.4, begins with a bare substrate, to which
the photoresist is applied, baked, exposed, and developed, leaving gaps to
the bare substrate where the final design requires metal to be. The sample
is then inserted into an evaporator or sputter coater and completely covered
in metal. When the sample is immersed in solvent, the resist underneath the
metal is dissolved, causing the metal above it to lift off (which gives the
process its name). Lift off is in some ways a more complicated process than
conventional wet etching, since it requires metallization midfabrication; it is
possible to buy samples premetallized from a variety of sources, but sending
samples coated with photoresist is not standard practice, and makes the
process time consuming and expensive unless access to an evaporator or

Figure 9.4 The lift-off fabrication technique. (a) The bare substrate is spin coated with
photoresist. (b) The sample is exposed to UV via a photomask. (c) The photoresist is
developed, leaving exposed substrate in the shape of the required pattern. (d) The
sample is sputtered with the required metal. (e) The remaining resist is removed; as
it dissolves, the remaining metal lifts off the surface, leaving the required pattern.
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sputter coater is available. However, lift off does have the advantage of being
a more accurate process and is widely used in the semiconductor industry,
since it avoids the problem of undercutting as described below.

9.2.3 Dry etching

There are circumstances, particularly in the fabrication of multilayered
devices, where wet etching is not ideal for the formation of required struc-
tures. The main reason for this is that most wet etching processes are isotropic
— when material is etched, the etching occurs in all directions simulta-
neously and at the same rate. While this is not a problem where the material
to be etched is effectively two-dimensional (such as our thin films of metal),
where an insulator is used to form a channel or through hole between
different layers, it may be extremely important to etch the material with sides
as vertical as possible (the term is a high degree of verticality). The reason for
this is shown in Figure 9.5; if a thick layer of material is covered in resist
with a window through as shown, then an isotropic etch would act to
undercut the resist. This is not a problem with thin films. In order to
completely etch through a 100 nm film, a device may suffer an undercut of
100 nm at the edge, but this is unlikely to be noticed. However, a film 1 µm
thick or more may be significantly impaired if undercut by the same distance
in each direction.

Dry etching acts by bombarding the surface of the material with reactive
plasmas; inert gases such as O2 or more reactive species such as Cl2 are
ionized by glow discharge. These gases are then exposed to the surface at a
controlled pressure. These ions react with the exposed material that is
stripped off (plasma stripping) or burnt (plasma ashing). The significant
difference between wet and dry etching comes about because the ions are

Figure 9.5 Most wet chemical etching processes are isotropic; that is, material is
etched away at the same rate in all directions, such as example (a) above. This can
lead to undercutting of holes. Where more vertical sides are required, an anisotropic
etching process such as reactive ion etching (RIE) is required.
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charged, and hence respond to an applied electric field. When a radio-
frequency electric field is applied across the chamber in one direction (that
is, the direction in which etching is desired), the ions bombard the surface
preferentially in the direction of the field (along the field lines) while little
etching takes place at right angles to the field. Hence, the etching only takes
place in one direction — it is anisotropic. This form of dry etching, technically
known as reactive-ion etching (RIE), is widely used to achieve vertical struc-
tures several hundred micrometers in height, and as such is ideal for the
fabrication of channels for microfluidics applications (see Section 9.2.7) and
for via holes in multilayered systems (see Section 9.2.6). However, recent
developments in photoresist technology have meant that RIE may be
supplanted to a degree by wet-etch methods for producing such devices.

9.2.4 Laser ablation

Another anisotropic etching technique, which can be applied equally for
removal of metal for electrode fabrication, and to other materials for channel
or via hole formation, is laser ablation (also called excimer laser fabrication).
This uses a focused laser beam to vaporize (ablate) material, to a depth
controlled by the intensity and duration of the beam. The beam is focused
through the mask and onto the sample, allowing the removal of material
with high precision (although not as precise as photolithography). There are
other advantages to laser ablation, perhaps the most important being in its
usefulness in prototyping. The mask and sample are held within the ablation
system, and can be positioned with a quoted accuracy of 100 nm. Since the
mask can be repositioned during the fabrication procedure, the mask need
not represent the complete final design; it is possible for the mask to contain
modules representing unique patterns, which can then be copied and pasted
across the sample. Where two designs are to meet, the modules can be
stitched together. However, there are complications such as the ablated mate-
rial causing damage to nearby parts of the sample, requiring predeposition
of a layer of polyimide to protect the sample. The polyimide must be
removed after each layer is processed. The depth of the material removed
is determined by the energy delivered with each laser pulse, according to
the damage threshold of the material.

Since the material is removed along the path of the laser beam, excimer
techniques are capable of producing highly vertical structures. However,
there are circumstances where a nonvertical profile (as achieved by isotropic
etching) is required. In such circumstances, the same effect can be obtained
by etching shallow concentric troughs of decreasing area to produce a
stepped gradient. The applications of laser ablation techniques have been
discussed in detail by Pethig et al.4 with particular reference to laboratory
on a chip devices; however, other workers in the field have examined the
application of the technique both for forming electrode structures5 and for
modification of existing structures.6 Laser ablation devices have great poten-
tial for microengineering of devices, but their use has so far been restricted
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to a few workers due to the very high initial cost of purchasing the laser
ablation system.

9.2.5 Direct-write e-beam structures

The primary disadvantage with optical methods of photolithography — that
is, their use of light (in the ultraviolet waveband) to define the features of the
pattern — is that from the laws of physics, the smallest feature size that can
be defined is limited by the factor of the wavelength of light used with the
mask. In theory, features smaller than the wavelength of light used cannot
be reproduced, meaning that the limit of definition of conventional UV
systems is of the order of 300–400 nm; smaller features can be defined using
complex methods such as phase-shift exposure, capable of producing features
as small as about 100 nm. While conventional photolithography is generally
adequate for the task at hand, there are applications where a higher definition
is required. For these applications, the best alternative is e-beam lithography.

Electron beam lithography is similar in principle to photolithography
but uses a focused stream of electrons and specific photoresists (most
common of which is poly methyl methacrylate, or PMMA, also known by
the tradenames Perspex™ and Plexiglass™). Where the electron beam
impacts the surface, the PMMA is chemically damaged and can be removed.
The size of the beam depends on its energy, but it is commonly possible to
focus it to a spot 30 nm across, with spot sizes as small as 3 nm being
reported. The process of forming the shape of the intended device by elimi-
nating a series of spots is referred to as writing; patterns are written using
spots with a range of different sizes, with large spots used to fill in large,
open areas and small dots used to fill in detail such as edges. The electron
beam can only move within a limited range across the surface; defining
spot size (by focusing) and positioning (by beam deflection) are achieved
electromagnetically. In order to write across a greater area than the limited
deflection of the beam can allow, the stage holding the sample can move
between defined positions allowing the design to be written in chunks that
are stitched together at the edges.

E-beam lithography is the method of choice for the production of photo-
masks; the chrome layer is covered in PMMA and then written, and the
exposed areas removed by etching. As well as the production of masks,
e-beam lithography can be used for direct exposure of devices, bypassing
the mask stage altogether. By coating a substrate with PMMA and writing
a pattern on it with e-beam, it is possible to use lift-off processes outlined at
the beginning of this section to produce electrode shapes directly. This
process has allowed the fabrication of highly detailed electrode structures,
such as clearly defined castellated electrode shapes with dimensions of 1 µm
along each face, finishing in sharp corners7 or well-defined lines of inter-
digitated electrodes 250-nm wide.8 However, the down side to e-beam
direct-write structures is their cost in terms of time — each sample must be
loaded into the beamwriter and written separately, whereas conventional
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exposure allows many samples to be processed one after another — and
corresponding cost in terms of money. E-beam structures are expensive, but
they are the only way to make structures with nanometer-scale precision.

9.2.6 Multilayered planar construction

As indicated in previous sections, it is sometimes necessary to form complete
devices from more than one layer of material. There are two common reasons
for this practice; either a protective layer is placed across the entire device except
for an active area where the particles are to collect, electrically insulating the
medium from the electrodes; or the electrode array is sufficiently complex to
require a separate arrangement of electrodes and power rails instead of a
straightforward connection from electrode to bonding pad. In both cases, there
is a requirement for the addition of an insulating material, which is then etched.

Insulating material can be added in a number of ways. The simplest is
to spin material onto the surface, in the same way that photoresist is added.
This is mainly used for polymers such as polyamide and polyimide. How-
ever, where this is not possible, the principal alternative is the process of
chemical vapor deposition (CVD). In a CVD process, chemical vapors are
introduced over a heated sample; at the surface of the sample they react to
form a solid product. It is possible to use glow discharge (similar to that
used in RIE) to heat the gases instead, meaning that the sample does not
need to be heated; this is referred to as plasma-enhanced CVD or PECVD.
Common films deposited by this method include silicon oxide and silicon
nitride; these are referred to as passivation layers since they protect the reactive
surface in silicon manufacture. Once deposited, an insulating film can be
etched using the methods described previously.

Where there is to be a connection between two conducting layers — for
example, connecting an electrode array to a power rail — the means of
interconnection must be considered. In any interconnect, the two layers are
connected via a hole etched in the insulating layer. Where the gradient into
the hole is shallow and the thickness of the insulating layer is small (perhaps
a few hundred nanometers), it may be possible to simply deposit the top
layer directly over the hole;4,9 the top layer simply runs into the hole and
forms an electrical connection at the bottom. However, where the insulator
is thicker and the hole is anisotopically etched with a high degree of verti-
cality, it is not straightforward to deposit material up the vertical walls on
the side of the hole. In such circumstances, it is possible to use electroplating.
By immersing the sample in an electroplating solution with the electrodes
powered via the interconnects, gold (or some other suitable material) can be
grown into the holes, until the deposited metal forms studs that pass all the
way from the bottom layer to the top. The top layer of the conductor can
then be plated over the studs, making electrical contact. This method was
used with some success by Green et al.9 but problems were encountered
where the area of the electrodes, and number of holes to be plated, is large.
Figure 9.6 shows how these protocols differ.
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One important feature of mask design for multilayered electrodes is the
presence of registration marks. When exposing resist for the upper layers
while constructing the device, it is necessary to position the mask exactly
over the lower layers. Since the top layer needs to be positioned over the
bottom layer with micrometer-scale precision or smaller, potentially over a
very large area, it can be a difficult and time-consuming task to adjust the
mask (remember this can be adjusted for position and rotation). The task can
be made easier through the addition of marks on each layer, whose positions
directly correspond. If these are as far apart as possible on the mask, then
aligning them will mean that the whole mask should also be aligned. For
aligning masks, it is important to use a mask aligner; while this is not vital
for single-layer devices, for multiple layers it is essential for this reason.

9.2.7 Microfluidics

Thus far, we have considered only the processes whereby we can fabricate
planar electrode structures; even where supporting parts such as insulating
layers and multilayer conducting paths are used, the total thickness of the
device is rarely more than 1 µm. In many circumstances, planar devices will
suffice; once such devices are complete and bonded up, they can be wired
to a voltage supply, coated across the entire surface via a micropipette with
a solution containing particles, put under a microscope, and used. However,
while this is appropriate for simple laboratory experiments, more complex
devices such as separators requiring extraction of the separated particles
require closed paths for fluids to travel. Similarly, for some experiments
involving particle separation, distinct outlet flows are required. Where some
form of flow-through system is required, for example, where external pumping

Figure 9.6 Schematics of structures consisting of two conducting layers (an electrode
layer and a power-rail layer), separated by a layer of insulator. If the insulating layer
is thick (a), then electroplating can be used to add metal into the holes from the lower
layer, forming studs across which the top layer can be deposited. If the insulating
layer is thin (b), then metal can be deposited straight into the hole.
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must be used, some means of constraining the flow is required once onto
the device itself. This can be achieved by microfabricating channels across
the surface of the electrodes, effectively forming a network of pipes across
the electrode array. The term used to describe such microfabricated devices
for controlling the delivery of fluids is microfluidics; one can compare this
term to the word microelectronics (the controlled flow of electrons around
a device) to see its origins. Microfluidics, and in particular the study of the
flow of liquids around such miniscule capillaries, is a complex field that
could easily fill a book in its own right (see the supplementary reading list
at the end of the chapter for examples); however, we can examine the simple
use of channels for liquid management and how to fabricate them.

There are three main methods of fabricating channels that will be dis-
cussed here; depositing and etching channels onto the substrate, etching
them for some form of cover, and molding them. Considering these methods
in order, the simplest way to form channels in the light of the fabrication
methods so far discussed is to deposit a layer of material to the depth
required, then etch it anisotropically to form the channel. Until recently it
has been difficult to deposit stable layers of material more than a few
micrometers thick; the material usually becomes stressed and flakes off when
layers of more than about 10 µm are deposited. However, this limit has
recently been broken by the development of Epon SU-8™ photoresist (avail-
able from a number of suppliers); this material can be spin coated onto the
sample, then exposed as with any other material. Photolithography with
SU-8 can form structures with very high verticality, enabling the formation
of channels out of the resist itself; it has been shown to be very stable and
can be used as part of the final structure. For example, SU-8 has been used
in the manufacture of channels for traveling-wave dielectrophoresis,10 where
fluidic channels of depth 100 µm were fabricated and used to hold a solution
by having a lid placed across the whole assembly; no leakage was observed
after a liquid sample was stored in the device for several days.

The second method of constructing channels is to etch them into a lid
that is attached to the planar device. There are two ways of achieving this.
The first is to use a glass lid and etch the channels from the glass. This can
be achieved using wet-etch methods as described earlier; glass can be etched
isotropically using HF, producing a channel of semicircular cross section
from a narrow gap in photoresist. Etching of channels is achieved by expos-
ing those areas to be etched by HF through the photoresist. For isotropic
etching, there will be as much undercutting on all sides of the gap in the
photoresist as there is increasing of channel height. The advantage with
etching onto glass is that it is straightforward to bond glass structures
together, either by anodic bonding (passing a current through the structure
and heating it), or by direct bonding by baking the two glass components
at ~800ºC; the lid and substrate carrying the electrodes can thus be joined
for a permanent seal.

An alternative to glass is PMMA, which can be exposed and etched using
a process called LIGA. LIGA (in German, Lithographe, Galvanaformung,
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Abformung or lithography, electroplating, molding) is a process of using x-rays
to expose PMMA, which can then be etched with a high degree of verticality
(when defining shapes that are not vertical, the term used is high aspect ratio)
and electroplated with nickel or nickel-cobalt to produce a master. This can
then be used as a mold for other materials. One such material is poly-di-
methyl-siloxane (PDMS), a two-part curing silane elastomer. This can be
poured into the PMMA mold, acquire the required shape, and then be
removed and applied to the substrate (alternatively, an intermediate stage
using electroplating can be used to form a negative). PDMS has many advan-
tages; it can be used to mold three-dimensional shapes with micrometer-scale
resolution, it is optically transparent, flexible, and tough, and it is biocom-
patible. However, LIGA is an expensive process since it requires access to a
synchrotron in order to produce the x-rays. Studies are ongoing into the
possibility of using SU-8 as a molding material instead, with good success
rates reported so far.

In addition to these methods, there exist a wide number of methods for
pumping, separation, and the production of valves and so forth for micro-
fluidics, usually etched into silicon.

9.2.8 Other fabrication techniques

In addition to the methods outlined, there are many other techniques that
can be applied to the construction of electrodes; many are specialized, or are
still in development. One example of each of these are the processes for
constructing very small (nanometer-scale) interelectrode gaps, and emboss-
ing technology.

Thus far we have encountered two examples of nanoscale electrode gaps.
One was discussed in Chapters 4 and 6 for the trapping of conducting
colloids and DNA; the other was for trapping fullerene molecules for
molecular transistors in Chapter 7. The techniques for fabricating these struc-
tures is different, although the end result is similar. Taking the latter example
first,11 the simplest method of construction (shown in Figure 9.7) is to begin
with an e-beam-written structure consisting of two touching triangles. Pass-
ing an electrical current through the structure will cause heating at the
narrowest point (100 nm) in the structure, where the current density will be
highest; if the current is sufficiently high, the metal will burn out at that
point. At the moment that the material is burnt through, the electrical current
is open-circuited and no more damage is done. With this technique, inter-
electrode gaps as small as 1 nm have been reported.

The alternative method, developed by Bezryadin and Dekker,1,12 and
Porath et al.2 uses two electrodes suspended over a gap in silicon, etched
away isotropically to allow any material attracted to the electrodes to attach
directly to the electrodes without the substrate getting in the way. Two
methods are presented for this; in one, conventional e-beam lithography is
used to form two protrusions across the interelectrode channel, which when
sputtered accumulate thickness (and hence get closer), until the tips are
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20 nm apart. Even smaller gaps can be achieved using a technique called
contamination lithography. By focusing an electron beam onto organic material,
carbon rods can be grown in directions defined by the position of the beam.
By growing such rods from the electrode edges using a scanning electron
microscope and then sputter coating these rods, electrodes with sub-5-nm
gaps can be formed.

There are a number of other methods for device construction in develop-
ment — including dielectrophoresis itself, as outlined in Chapter 7. Other
techniques include embossing — using a molded pattern to stamp polymer/
plastic substrates, or stamping a shape into another material (one example
of this method is the production of compact disks), which has been demon-
strated to be effective for fabrication down to tens of nanometers,13 as well
as the use of scanning probes and optical tweezers to manipulate compo-
nents into place. A review of methods being explored is available,13 though
this field is highly dynamic (since it underlies the progress in the speed of
computer processors, itself a massive industry) and the reader is advised to
seek the most up-to-date material available on this rapidly changing field.

9.3 Laboratories on a chip
Throughout this book so far, we have been largely concerned with four basic
electrode geometries: quadrupolar arrays, castellated electrodes, thermal
ratchets, and interdigitated arrays for traveling-wave dielectrophoresis. While
these arrays are capable of trapping, analyzing, or separating particles on the
array itself, they are generally designed to perform one process. If a device
is to be useful beyond the laboratory, then it will be required to (a) interface
with other components within a system and (b) perform a number of opera-
tions in order to achieve a single function. In the 1990s14 a term was invented
to describe devices that do perform multiple operations on a sample in order
to perform a complete and useful function. This term represents the ethos of

(a) (b)

Figure 9.7 Very small interelectrode junctions can be fabricated by forming an
interlocking-triangle structure using e-beam lithography, such that the waist of the
device is of the order of 100 nm. (a) By passing a current through the device, the
current density at the waist of the device is sufficient to burn it out. (b) The resultant
interelectrode gap is about 1 nm across.
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using miniaturization to replicate the equipment one normally finds in the
laboratory — the devices were called laboratories on a chip.

Laboratories on a chip are devices wherein the components of a modern
laboratory — fluid handling, reactors, heaters, pumps, separators, and
sensors — are integrated in miniature onto a single device, typically of a
size between that of a postage stamp and a credit card. The original labs on
chips were miniaturized chemistry devices such as capillary electrophoresis
columns and liquid chromatographs, but since then the term has expanded
to include a wide range of devices from DNA microarrays to miniaturized
chemical assays to dielectrophoretic particle sorters. Implementations vary,
but a common presentation is to enclose the lab on a chip in a cartridge
format that is inserted into another unit containing the ancillary electronics
(power supplies, signal generation, optics for analysis, and so forth) and
liquid handling (reservoirs and pumps). The liquid sample to be analyzed
is inserted either into the control unit or into the cartridge itself, where it is
processed and analyzed. From a commercial perspective, the reduction in
size, with benefits for mass production, transportability, and ease of use,
means that such devices have great potential for point-of-care diagnostics,
portable water screening equipment, and rapid cell, protein, and DNA analy-
sis for rapid drug discovery. Such devices could, for example, potentially
allow the testing of blood samples at the patient’s bedside, or at least provide
the potential for cheap analysis of blood or urine samples on a hospital-
by-hospital basis. Another application is for the identification of pathogens
such as toxic viruses used for biological warfare. The integrated nature of these
devices, combining many analysis methods, lends itself to another general
term — Micro-total analytical systems, abbreviated MicroTAS or µTAS.

Since cells are easily manipulated using dielectrophoresis and we are able
to discriminate between cell types on the basis of both surface and interior
properties, much of the work on dielectrophoretic laboratory-on-a-chip
devices has been aimed at the development of particle detectors for medical
applications. However, most lab-on-a-chip devices have features in common,
the principal feature being that they are fabricated using semiconductor
methods and operate on small samples (of the order of microlitres) using
channels etched into glass, photoresist, or some other polymer, through
which material is pumped from an external source.

There have been a number of approaches to the application of dielectro-
phoretic techniques to the laboratory on a chip concept. Perhaps the first
example of the use of microengineering techniques to construct a dielectro-
phoretic laboratory on a chip is the “dielectrophoretic fluid integrated
circuit” described by Washizu, Nanba, and Masuda;15,16 this device was able
to move cells around microfabricated channels and sort them into different
outlets. Some researchers have described attempts to perform a range of
functions using dielectrophoresis, from separation to trapping and analysis
(e.g., Pethig et al.4); others have used dielectrophoresis as part of a broader
system including electroporation or biochemical methods for cell detection,
still others have used dielectrophoresis primarily as a method for isolating

© 2003 by CRC Press LLC



224 Nanoelectromechanics in Engineering and Biology

specific cells at a preliminary stage (e.g., Arai et al.17). In this section, we will
examine how dielectrophoresis can provide additional functionality for
lab-on-a-chip systems, how many activities can be combined into a single
analysis system, and how laboratories on a chip can be interfaced with the
outside world for analysis and control.

9.3.1 Steering particles around electrode structures
An advantage of miniaturizing laboratory components to the micrometer
scale is that it allows manipulation of small amounts of material — even
single particles. We examined in Chapter 4 the possibility of trapping single
particles, but once held these particles are static, held within small and
immobile field cages. We have also examined methods of dielectrophoretic
propulsion, such as by the use of dielectrophoretic ratchets or traveling-wave
dielectrophoresis, but these operate on bulk material containing large numbers
of particles. However, it is possible to selectively steer single particles around
an electrode array, provided some form of monitoring (usually video-based)
is available for tracking the particle’s position.

Three methods for single particle manipulation are presented here. The
first was presented in 1990 and represents an early formulation of the lab
on a chip in the fluid integrated circuit (FIC) of Washizu et al.16 By switching
between microelectrodes in sequence (as illustrated in Figure 9.8), particles
can be handed from one electrode to another. One of the innovations with
the device is that it is not merely the electrodes that are used to attract the
particles — the electrodes are largely flat and parallel, and do not cause
significant field inhomogeneity — but the inclusion of field-constructing
insulating protrusions between the electrodes that cause field distortion, with
the effect being that particles are attracted to the tip of the insulator by
positive dielectrophoresis. By switching between electrodes, particles are
propelled between protrusions and hence along the array. When the particle
reaches the end of the electrode array, it is possible to switch the particle
into one of two outputs by energizing electrodes next to the appropriate
output as shown in the figure.

A second method of particle manipulation, which shares some common
features with the Washizu system, was presented by Suehiro and Pethig in
1998.18 By employing two orthogonal sets of parallel electrodes across the
top and bottom of an electrode chamber and selectively activating individual
strips on the top and bottom of the chamber, a single particle can be trapped
by positive dielectrophoresis. By then energizing the adjacent line with a
potential at a frequency known to impart negative dielectrophoresis, the
particle could be induced to move from one electrode intersection to the
next. In order to observe the particle’s position on the grid, the electrodes
were constructed from indium tin oxide (ITO) rather than conventional gold.
ITO has a higher resistance than gold, but benefits from a higher resistance
to bioparticle adhesion,19 and, most importantly, it is highly optically trans-
parent. This enables direct observation of the particle even when suspended
within a three-dimensional cage. This is illustrated in Figure 9.9.
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The final method of individual particle handling presented here is the
only one of the three to employ traveling wave dielectrophoresis instead of
conventional dielectrophoresis to manipulate single particles. By using a pair
of spiral electrode arrays (similar to that shown in Chapter 8) next to one
another, across which channels were deposited to limit the paths which the
particle could take, Fuhr and co-workers20 devised a system whereby single
particles can be steered to a number of different outputs. The system, shown
schematically in Figure 9.10, uses variations in the voltages applied to the
traveling-wave structures to bias movement around the array. A particle
entering one of the channels is transported to the center of the array by
traveling wave dielectrophoresis. On reaching the center of the array, it falls
into the field null at the center, since in order to travel effectively, the particle
should experience both traveling wave dielectrophoresis and negative

Figure 9.8 The “fluidic integrated circuit” of Washizu and co-workers. (a) By energizing
adjacent electrodes e1 and e2 either side of an insulating protrusion (gray), particles
can be attracted to the end of that protrusion. By switching between potentials on
either side of the channel, the electrodes can pass the particle between protrusions.
(b) By activating the electrodes e6 and e7 on one side of the arrangement, the particle
can be guided into one of the two outputs.

Figure 9.9 The single-particle handling system of Suehiro and Pethig. By switching
applied potentials between adjacent electrodes on the top and bottom parallel electrode
arrays, it is possible to steer a particle around the grid formed by the electrodes.
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dielectrophoresis (see Chapter 8). The phasing of the field is reversed (this
can be achieved by reversing the phasing of two channels, as discussed in
Appendix A) to propel the particle out of the field minimum. This acts along
all directions leading from the center of the array, but the direction the
particle moves in can be selected by lowering the potential to the electrode
blocking the particle from moving in the desired direction. The negative
dielectrophoretic forces on the remaining electrodes act to move the particle
into the start of the channel, and from there, the traveling-wave dielectro-
phoretic motion acts as a conveyor to move the particle. The system as shown
was capable of steering a particle from any inlet to any outlet in the six-port
system illustrated. As before, human observation is required to determine
the timing of the changing of the field. However, there are other methods of
monitoring particles, as discussed below.

9.3.2 Particle detection

Ideally, any laboratory on a chip should be able to function without requiring
external human control. The operator wishes to input a sample and obtain

Figure 9.10 The orthogonal spiral electrode arrays used by Fuhr and co-workers. The
spiral electrode arrays use traveling waves to move them toward, or away from, the
center of the electrode arrays. Once at the center, the particle can rapidly be guided
toward one of the outlets by lowering the potential to the electrode terminating at
that outlet. This enables particles to be steered into and out of any of the channels.
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results without having to observe particle motion and determine the particle
collection rate, observe frequency-dependent dielectrophoretic behavior, or
instruct controlling electronics to move particles this way or that. If the device
is to be automated, methods are required for automatically interrogating the
sample to determine the position, behavior, and number of particles. Methods
have been developed for assaying rotation rates of particles in electrorotation
electrodes using image processing,21,22 and similar image processing tech-
niques have been used to detect particles undergoing positive and negative
dielectrophoresis.23 However, while these methods offer accurate detection
methods for determining particle behavior, they do not sit comfortably with
the idea of the simple, portable electronic devices.

A number of methods based on more simple means of observation have
been explored. An early method of determining particle collection rates was
devised by Price et al.; the particles are attracted to electrodes held within
a chamber consisting of two patterned microscope slides, and the concen-
tration of particles is determined by shining the laser through the slides and
measuring the turbidity of the solution. A later version by Talary et al.24

measured the particle density along the gap between the slides, thereby
measuring both positive and negative dielectrophoresis. Laser interrogation
can also be achieved on-chip. A recent development by Cui et al.25 uses an
optical fiber within the chip itself, with the fiber bisected by a microfabricated
channel along which particles are propelled by traveling-wave dielectro-
phoresis; the track electrodes are across the bottom of the channel. Particles
passing between the halves of the optical fiber are illuminated by the laser
from one side of the channel. They are detected either by measuring the change
in brightness at the opposing fiber or the fluorescence emission from labeled
particles back along the original fiber. By using more than one sensor along
the channel, the speed at which the particles are propelled by the traveling
waves (and hence the polarizability) can be determined.

Finally, as described in Chapter 5, it is possible to measure the light
intensity variations across an interference pattern with two crossed lasers of
slightly different frequency in order to measure the velocity of unlabeled
nanoparticles such as viruses.26 Lasers can also be used to determine the
rotation rate of particles. As described in Chapter 5, measuring the change
in phase of a laser shining through a chamber where particles are rotating
gives an indication of the rotation rate, a method effective even for nanoscale
particles.26 Another method has been used by Berry, where the changes in
light intensity of a beam of light projected across the particle and centered
on the middle of four light sensors are measured. As the particle (in this case
a bacterium) rotates, the intensity on the detectors varies sinusoidally, and
this variation can be used to determine the rate of rotation of the particle.

In addition to optical methods, electronic detectors have been developed.
These methods measure the change in electrical impedance between two
electrodes when particles are present compared to when they are absent.27,28

When a particle passes between the two measurement electrodes, the imped-
ance between the electrodes should change, particularly if the particle is
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markedly different in electrical characteristics from its surroundings and
occupies a large portion of the channel. While this method is principally of
use for larger particles such as cells, it can be used for nanoparticles after
they have been attracted to the electrode edges by positive dielectrophoresis;
particles can have a proportionally larger effect on the impedance at the
electrode than in the bulk, and this method28 has been shown to be effective
for nanoparticles.

9.3.3 Integrating electrokinetic subsystems

A complete laboratory-on-a-chip device requires the integration of many
subsystems in order to perform useful functions such as particle separation
and analysis. A number of workers in the field have constructed such systems,
either relying totally on dielectrophoretic methods of particle manipulation
or integrating other methods. Both approaches have advantages; using only
dielectrophoresis allows the entire device to be fabricated in a single operation,
and since dielectrophoresis requires no extra material beyond what is used
(except some ancillary devices for detection and fluid handling), operation of
the device is easier. However, by restricting the device to all-dielectrophoretic
methods, other possibilities of particle discrimination according to factors that
do not affect electrical properties — such as the presence of a certain gene —
cannot be used, whereas methods borrowed from molecular biology, such as
flow cytometry and PCR, are sensitive to these types of factors.

Where the system relies largely on dielectrophoresis to provide many
different functions, there are additional requirements that are placed on the
dielectrophoretic system. For example, particles entering a separator should
be guided so as to enter the device in an appropriate place (where differences
in field are greatest) or time. An example of this was presented by Cui et al.29

as part of a traveling wave dielectrophoresis-based particle separator. As
described in Chapter 8, traveling wave methods offer the possibility of highly
sensitive particle fractionation, but only if the particles start from one end
of the array at the same time; if they drift onto the array at different times,
fractionating different types of particles is impossible. In order to avoid this,
Cui et al. employed an extra pair of individually addressable electrodes at
the beginning of the array. By energizing these electrodes so as to attract all
particles to them by positive dielectrophoresis, particles can be positioned
in a “starting gate,” as shown in Figure 9.11. When the traveling field is
applied to the remainder of the electrodes, the phases applied to the trapping
electrodes can be changed so that they become part of the traveling array,
ensuring that all particles start at the same point. Once moving, particles
can be detected using the optical methods described above.

Another proposal for a traveling-wave-based lab on a chip was made
by Pethig et al. in 1998.4 However, unlike the Cui design, traveling wave
dielectrophoresis is employed principally as a means of transporting parti-
cles between inlets, analysis electrodes, and dielectrophoretic traps. However,
Pethig’s proposal contains a novel idea; by using a forked junction in the
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traveling wave conveyor belt, energized at two different frequencies, parti-
cles could be encouraged into one of the two forward paths according to
their dielectrophoretic properties, allowing separation. These junctions could
theoretically shift particles toward different dielectrophoretic traps, analysis
electrodes, or outlets.

Other workers have used conventional dielectrophoresis as a means of
sorting and analyzing particles as they are pumped around the microsystem
by using a conventional external pump. In order to organize particles into
a single-file sequence for analysis, devices such as dielectrophoretic funnels
and concentrators were used.30,31 Triangular electrode arrays placed across
the flow are shown schematically in Figure 9.12. Electrodes are placed at the
top and bottom of the array and energized so as to repel the oncoming
particles. This forces them toward the constriction at the end of the array,
where the gap between the electrodes is small enough to let only a single
particle pass. The device was shown to be effective for flow rates up to
3.5 mm sec–1 allowing high-speed processing of cells to be achieved. Subse-
quent arrays provide dielectrophoretic trapping, analysis, and switching, the
latter process operating by energizing one or two electrodes by negative
dielectrophoresis to selectively move the particles toward one of two outlets
(also shown in Figure 9.12).

Other workers in the field have sought to integrate dielectrophoretic
manipulation with other methods. For example, U.S. company Nanogen has
integrated dielectrophoretic trapping of cells with hybridization techniques
for bacterial analysis.32–34 Dielectrophoresis is used to provide initial cell
sorting to isolate the bacteria from blood cells, then trap them on electrodes
where a high voltage is used to break apart the bacteria. The DNA are then
allowed to drift free, and PCR is used to identify the type of bacterium in
order to identify it. Other workers have used dielectrophoresis with laser

Figure 9.11 A schematic of the starting gate device used by Cui et al. (a) By collecting
particles between the first two electrodes by dielectrophoresis (i.e., signals phased
180º apart), particles can start down the traveling wave array simultaneously, allowing
them to be fractionated (b).
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trapping to sort cells, with unwanted cells being trapped by positive dielec-
trophoresis and an automated tracking system being used to identify bacteria
and move them to an outlet port.17

9.3.4 Contact with the outside world
Since the laboratory on a chip is ultimately required to interface with a
control unit of some kind, consideration must be given to the way in which
the device interfaces with that control unit. For example, the choice of sub-
strate will depend on the way in which the device is connected to outboard
electronics and sensors. The most common substrate for construction of
microelectrodes for these applications is glass, since it is resistant to acids
and solvents during the etching process, and since it is transparent, and thus
it allows the use of various optical techniques as described above. Further-
more, precut glass of the appropriate size of such devices is readily available
in the form of microscope slides, which form the basis of the majority of
devices. On the other hand, silicon has been used in some systems (e.g.,
Docoslis et al.35) since it allows direct integration of electronics onto the
device, which minimizes the amount of outboard equipment required by
limiting the available sensing techniques. However, some sensors (imped-
ance sensors or photodiodes, for example) can be built directly onto the chip.
As ever, the choice must be dictated by the function of the device and the
requirements placed upon it.

In order to impose an external flow, or to introduce or remove particles,
it is necessary to interface the fluidic pathways through a lab on a chip with
external sources and drains. The best method by which this is achieved varies

Figure 9.12 Components of the lab-on-a-chip system devised by Fiedler and colleagues.
Particles are driven through these devices by an external pump at rates of up to
3.5 mm sec–1. The electrode patterns are written on glass on both the top and the
bottom of the chamber, separated by 25–40 µm; electrodes on the two planes have
opposite phase, creating a repulsive dielectrophoretic curtain. (a) A concentrator or
funnel, which guides incoming particles into single file. (b) A switch that allows the
output channel to be selected. The leftmost electrode is always energized, guiding
the particles to the bottom of the channel and hence out of the bottom channel; if
the rightmost electrode is activated, the stream is diverted into the top channel.
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according to the application. Interconnection between on-chip microfluidics
and external pumps is usually performed via holes in the device, with a
fan-out profile on the chip to ensure that input material is spread across the
array evenly and without the formation of stagnant areas (e.g., Huang et al.36

and Pethig37), as shown in Figure 9.13. Separation between top and bottom
cover should be sufficient to ensure that the sample volume does not exceed
the reach of the electrodes, or that where interaction between top and bottom
electrodes is required (for example, in the field funnel described above), the
electrodes are close enough for the force to be sufficient for particle manipula-
tion; typical heights range between 25 µm30 and 250 µm,38 according to
electrode geometries and applications.

In order to maintain a sealed fit to supply tubes, the tubes may either
be glued to the device for a permanent connection36,38 or through the attach-
ment of capillaries and other connectors glued to the inlet and outlet holes,
across which the joining tubes can be stretched.29–34 The ideal format for a
cartridge-based system, a press-fit separator device, has been demonstrated35

but has not been widely adopted. Fluids are introduced via tubing (typically
Teflon) driven from pumps capable of delivering suitable low flow rates (down
to a few µl sec–1); typically, peristaltic pumps and syringe pumps are used for
these applications. Under many circumstances, more than a single microfluidic
operation may be required. For example, one channel may be required to
introduce a flow at right angles to a traveling wave electrode array. Then,
after the particles have traveled along the array, a second outlet path is
required to remove the particles, as demonstrated in the design of Cui et al.29

9.4 A note about patents
As can be seen from the previous section, the development of laboratory-
on-a-chip systems represents a significant move toward the use of dielectro-
phoresis in commercial devices. However, as companies and researchers move

Figure 9.13 A fan-out profile inside a lab on a chip ensures an even flow across
the channel.
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into the commercial arena, there is an increased demand that investments of
time and money should be protected; this has resulted in a dramatic increase
in the patenting of dielectrophoretic devices and methods in recent years. Of
the many aspects of dielectrophoresis that are novel and useful, those that are
most amenable to patenting are the pieces of hardware, since they involve
designs that are easy to define and can be applied to a wide variety of different
particle types. The principles of dielectrophoresis were established in the
1950s, and any patents drawn up then have long since expired. However, the
development of microengineered electrodes, laboratories on a chip, and so
forth are all new developments, and as such the existing patent literature must
be considered when developing commercial devices. Inspection of patent lit-
erature is also useful in that some ideas are patented without being published
in the scientific literature.

Perhaps the earliest patent directly pertaining to the work considered
here39 was published by Batchelder, in which what amounts to a dielectro-
phoretic lab-on-a-chip system was described, using multiple electrodes on
different planes for manipulating particles around an array. As with his early
work with traveling-wave dielectrophoresis,40 Batchelder’s work was not
followed up for many years.

The next nanoscale dielectrophoresis patent concerned the basic actions of
particle trapping in planar microelectrodes, using both polynomial electrodes
(see Chapter 10) and castellated electrodes to trap and separate particles sus-
pended overhead.41 Similar electrodes were used by Betts and Hawkes,42 who
patented a device using a similar electrode array with optical detection equip-
ment to measure dielectrophoretic collection rate for particle characterization.

Many subsequent patents have been concerned with particle separation
methods. The stepped dielectrophoretic separation process described in
Section 8.2, where particles are stepped toward opposite ends of a castellated
array, was patented by Pethig and Markx in 1994.43 Betts and Hawkes44

patented flow-through separation using interdigitated electrodes in 1996.45

The use of field-flow fractionation and spiral electrodes, both described in
Chapter 8, were patented by Huang and co-workers in 1997 and 1999, respec-
tively.45,46 Other cell sorters have been suggested by Crane,47 using dielectro-
phoretic forces to array particles across the funnel, and Ager et al.,48 who
used traveling-wave dielectrophoresis to concentrate cells onto a spiral array.
Although traveling-wave dielectrophoresis was published before patenting,
other methods have been investigated, for example combining it with multi-
ple electrode frequencies to improve separation effects.50 Other methods seek
to separate particles on an electrode array for the purposes of characteriza-
tion; for example, Pethig and Markx patented a device wherein parallel
electrodes are connected to separate signal sources so that each electrode
along the array receives a frequency twice as high as its neighbor. Particles
will only collect between the electrodes whose frequencies correspond to
frequencies where the particles experience positive dielectrophoresis.51

More recently, components that form parts of labs on chips have been
patented. For example, a number of patents have been filed by Hagedorn

© 2003 by CRC Press LLC



Chapter nine: Electrode structures 233

and co-workers52 on such devices as funnels for focusing particles,53 while
Lock and Pethig have patented additional sensing electrodes in dielectro-
phoresis systems54 and using curved interdigitated electrodes to achieve
traffic control in traveling wave structures.55 Similarly, Cheng et al. have
patented a Y-shaped traveling wave device for cell separation56 similar to
the conveyor system described earlier in this chapter. A feature patented by
Arnold57 is the addition of heating to introduce thermal forces above the
electrode chamber. Another recent trend in patent literature is the presence
of companies who are primarily interested in the development of complete
lab-on-a-chip systems; patents include those for the Nanogen system
described previously58,59 and another from an Italian company, Silicon
Biosystems SRL, involving the use of microelectronics to specifically trap
single-cell-sized particles.60

Finally, as new techniques are developed in nanotechnology using
dielectrophoresis, they too are patented. Examples of these presented in this
book are the colloid-based immunosensor developed by Velev and Kaler and
presented in Chapter 7,61 the method of dielectrophoretic assembly of devices
also presented in Chapter 7,62 the manipulation of DNA and other molecules
in solution by dielectrophoresis as described in Chapter 6,63,64 and the tunable
construction of composite materials using dielectrophoresis also presented
in Chapter 6.65

An examination of the dates of the patents listed here gives an indication
of the pace at which dielectrophoresis is building commercial momentum;
for the presented list (which is not exhaustive, since I have omitted patents
where many similar applications are presented, identical versions of patents
from different geographic regions, and patents involving electrode structures
too large for the manipulation of nanoparticles, among others) eight patents
were issued for material described in this book in the year before publication
(2002), following a near-exponential trend. As the commercialization of
dielectrophoresis increases, so will the restrictions on what can and cannot
be used; however, as avenues become closed to commercial development,
others are opened as researchers are challenged to find entirely new
approaches to their work.
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chapter ten

Computer applications in 
electromechanics

10.1 The need for simulation
Throughout this book, we have considered the forces generated on particles
in nonuniform fields. We have established also that the magnitude of that
force is dependent on the gradient of the electric field squared and on the
gradient of the phase change where we are using traveling wave dielectro-
phoresis. However, if we are to understand the electric field for a specific
electrode geometry or to calculate the magnitude of forces applied to parti-
cles within a nonuniform field, then it is necessary to determine the actual
values of the electric field, in the volumes occupied by the particles, through-
out the time they occupy them.

This can be achieved in a number of ways. For the simplest geometries,
it is possible to use basic principles found in Chapter 2 to describe the electric
field at all points between the electrodes. However, this is not possible for
more complex shapes — in order to have any understanding of the field
geometry, simplifying approximations must be made. However, by using
those approximations we can predict the shape of the electric field (that is,
the electric field morphology) of almost any electrode configuration, and hence
calculate the dielectrophoretic force induced in particles around those elec-
trodes. Simple postprocessing of the electric field morphology allows us to
determine, for example, the electrode regions where we are most likely to
observe positive or negative dielectrophoresis.

10.2 Principles of electric field simulation
We can divide the approaches to the determination of the electric field in a
required volume (which we shall call the solution space) into two different
categories. The first category contains those methods that use a series of
equations to calculate the exact value of the electric field at all points within
the solution space; this category is known as analytical modeling. The second
category contains methods in which the solution space is not considered to
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be continuous but is divided either into a series of points or partitioned into
adjoining elements so that simplifying approximations can be used to deter-
mine the electric field at those points, or across those partitions. This
approach is known as numerical modeling.

Regardless of the approach used, the analysis of electric fields generally
begins with a defining rule, such as Poisson’s equation:

(10.1)

where ρ is the charge density, ε is the permittivity, E is the electric field, and
∇ is the del vector operator. There are a limited number of electrode geometries
where the potential distribution (and hence the electric field) may be deter-
mined directly from algebraic equations relating to Poisson’s equation (e.g.,
Pohl1 and Huang and Pethig2). However, there are many more configurations
that are not calculable directly from algebra to provide an exact form of the
electric field, and the solution set can only be determined by generating numer-
ical answers at specific points based on an approximate mathematical model.
These methods employ entirely different approaches to the analysis and
design, and we will now examine them separately.

10.3 Analytical methods
10.3.1 Electrode geometries with analytical solutions

to their electric fields

Some of the longest established electrode designs for dielectrophoretic appli-
cations are those whose electric field morphologies can be calculated easily
using analytical methods. Many of these take advantage of the principal
simplification we can make in analytical modeling, that of dimensionality. If
we have electrode structures that have a nonuniform cross section, but that
are infinitely long, then we can treat the problem as if it were two-dimensional
rather than three-dimensional, which greatly simplifies the problem at hand.
This still works if our electrode structures are not infinitely long, but consid-
erably longer than the dimensions of the features being simulated. However,
in that case, we must be aware of the fact that we are approximating an
answer, rather than determining the real thing.

Early electrodes used field geometries that could easily be derived from
Gauss’s law, such as the example shown in Figure 10.1. For the case of a
single conducting wire suspended coaxially along a conducting tube, the
electric field as a function of the distance rE from the common axis is given by

(10.2)
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where r represents the unit vector pointing toward the common axis, r1 and
r2 represent the radii of the inner and outer tubes surfaces, respectively, and
V denotes the potential difference between the inner and outer electrodes.
However, while such electrode geometries are useful when analyzing the
dielectrophoretic responses of cells, constructing such geometries on the
scales required for nanometer-scale particles is not feasible.

One problem with the coaxial geometry is that the electric field changes
at a rapid rate with respect to position. This means that the force at distances
away from the central electrode is so small that complete particle separations
cannot easily be achieved. In order to overcome this problem, a geometry
was devised1 in which the gradient of the electric field varied in a more
modest manner over a much greater cross-sectional area. This isomotive
geometry was devised to provide a force that was equal at all points within
the cross-sectional area along the main axis of the electrode system. The
isomotive electrode array is shown in Figure 10.2. Two curved electrodes
carry opposing potentials, while a third, triangular conductor is grounded.
By considering the dielectrophoretic force equation and Laplace’s equation,
Pohl showed1 that the dielectrophoretic force increases linearly along the
axis (shown by the arrow in the figure) where the electrodes are defined in
cylindrical coordinates with an origin at the tip of the triangular electrode.
The curved lines of the electrodes are defined by the equation for the equi-
potentials they define:

(10.3)

Figure 10.1 A schematic of the coaxial electrode geometry, for which there exists an
analytical expression for the field gradient squared.

V
F

v
r= 











2
3

2 3
2

1
2

3
2

α
θ

sin

© 2003 by CRC Press LLC



242 Nanoelectromechanics in Engineering and Biology

where V is the potential, F is the magnitude of the constant force, v is the
particle volume, α is the polarizability, and r and θ are the distance along
the axis and the angle from it, respectively.

This electrode geometry proved very effective for the manipulation of
particles by positive and negative dielectrophoresis, for example, for cell
separation.1 However, the repelled particles do not collect in well-defined
regions, so that separation of particles into two homogeneous groups is
difficult. One geometry that was designed to overcome this limitation is
known as the polynomial electrode geometry. This electrode design forms the
basis of the quadrupolar electrodes described in preceding chapters,
although the principle underlying the design can be adapted for numbers
of electrodes other than four. The design was originally developed by Huang
and Pethig2 and Wang et al.3 for negative dielectrophoresis applications and
was the first design presented to combine both analytical field distribution
with defined regions of negative dielectrophoresis, generating electrode
geometries that (like the isomotive geometry) can be described as uniformly
nonuniform; that is, the electric field is defined by a polynomial expression,
and that expression is used to define the electrode geometry. In that work,
it was found that such electrodes can be defined by lines of a form such that,
for 2N electrodes, the lines delineating the electrode edges in two dimensions
must meet a polynomial expression of order N:

(10.4)

where a and b are constants and fna and fnb are independent functions that
vary according to the order of the polynomial being used to construct the
electrode geometry.2 Taking the most common electrode geometry of N = 2
(four electrodes), the time-averaged force magnitude at a point x, y in the
interelectrode gap (indicated in Figure 10.3) is given by the expression:

Figure 10.2 The isomotive electrode geometry. When AC potentials are applied between
the two curved electrodes, the electric field gradient lies along the arrowed line. The
triangular electrode at left is grounded, since it occupies the area where the equation
defining the isomotive geometry does not apply.

f x y af bfN na nb,( ) = +
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(10.5)

where V is the root mean square (rms) value of the applied potential applied
to the electrodes and d is the distance from the center of the electrode array
to the electrode tips. As can be seen in Figure 10.3, which shows the variation
in �F � across the interelectrode gap in accordance with Equation 10.5, the
increments in force (indicated as the gradient from black to white) show a
steady rise from zero at the center of the electrode array to a much higher
value at the interelectrode gaps. Moreover, there are distinct regions of high
and low force, where particles can collect by positive and negative dielectro-
phoresis, respectively. This geometry has since been widely adopted — for
example, it forms the basis of the quadrupolar electrodes used in most of the
work in Chapters 4 and 5. Note however that those electrodes are approxima-
tions to the one described above, since they are planar in nature rather than
being cross sections of an elongated (approximately infinite) structure.

Electrode arrays with electrode geometries such than N ≠ 2 have not
been widely explored; the variation in ∇E2 across an array was found by
Huang and Pethig to vary as a function or distance from the center of the
array r such that

(10.6)

for cases where N > 1. The simplest case of N = 1 (two parallel electrodes)
would generate no dielectrophoretic force (though in planar form, it is used
for the field-flow work described in Chapter 3). Orders of N greater than 2
result in field gradients with much steeper sides, resulting in broad regions

Figure 10.3 The polynomial electrode geometry. The electrodes are indicated by the gray
area and extend away from the area illustrated with ever-decreasing interelectrode
gaps. The shaded region indicates the magnitude of the electric field gradient
squared, with a minimum value at the center of the array and an increasing value
in concentric circles emanating from that point.
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of low field and rapid increases in force very close to the electrode edges.
This is not preferable, and in many ways causes the problems associated with
coaxial wire electrodes that the isomotive geometry was developed to avoid.

10.3.2 Modeling time-dependent behavior using analytical methods

It was assumed, at the time of the original work on polynomial electrode
geometries, that the electric field rotated in the same manner at all points
across the interelectrode volume, which was determined not to be the case
by numerical modeling, (as described in Section 10.8). However, phase effects
in traveling-wave electrodes were known to have an effect on particles
suspended above them, and a number of researchers have attempted to
describe these effects analytically.

In order to simplify the problem of determining phase effects, approaches
to modeling traveling-wave electrodes have simplified the problem to two
dimensions; that is, they consider the traveling electric field to be generated
by infinitely long electrodes, across which an infinitesimally thin slice is
taken. However, this plane is usually in what we might consider the vertical
direction of the electrodes we are simulating, such as the vertical plane
intersecting the electrode array in Figure 10.4. Furthermore, since the
electrodes are deposited by thin-film methods and are rarely more than
200 nm, but the width of the electrodes is typically 10 µm, simulations often
consider the electrodes to be infinitely flat.

The first approach to analytical modeling of traveling-wave effects was
developed by Masuda et al.4 in 1987, and it has recently been reexamined
by Morgan et al.5 This approach is developed from the idea of Fourier series
— that is, the idea that any repeating wave form can be reconstructed from
the superimposition of an infinite number of sinusoids of different frequencies

Figure 10.4 A section of interdigitated traveling-wave electrodes. Since the electrodes
are parallel for a sufficient length for them to be treated (at a distance from the edges)
as infinitely long, then a vertical planar section through the electrodes and surrounding
area allows a two-dimensional model to be used and applied along the length of the
three-dimensional electrode array.
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and magnitudes. This series of sinusoids is known as a Fourier series. This
can be applied to the potential along the plane of the electrodes — which
appears as a line in the cross section of our two-dimensional simulation —
by considering the potential as being uniform across the electrodes them-
selves and linearly varying in between them. In their studies, Masuda et al.4
considered electrodes with three phases applied in sequence (0º, 120º, 240º),
whereas Morgan et al.5 considered a simple dielectrophoretic case (alterna-
ting phases of 0º and 180º) and four-phase traveling fields (0º, 90º, 180º, 270º).
Applying these different divisions of phase to the electrodes, we expect to
see potential profiles along the line through the electrodes similar to those
shown in Figure 10.5. These square-topped potentials V along the x-axis can
be produced from an infinite Fourier series of the form5

(10.7)

where i is the number of the harmonic of the Fourier series, Ai is the magnitude
of the ith harmonic, and λ is the wavelength of the potential wave along the
electrode array. By analyzing the problem numerically, Morgan and coworkers
derived expressions for the values of Ai, and hence the value of the electric
field, from which the electric field across the entire two-dimensional plane
could be derived.

Another approach was adopted by Wang and colleagues in Houston.6
This approach employed similar simplifying assumptions to the Fourier
model described above, but instead defined the problem according to
Green’s theorem, which states that within a volume v, two scalar functions
φ and ψ sharing a boundary surface A can be described by the expression

Figure 10.5 A two-dimensional model of interdigitated electrodes, showing the
potential along a line through the electrodes. (a) Two phase for dielectrophoresis,
(b) three-phase, and (c) four-phase traveling-wave dielectrophoresis. The model can
be further simplified by setting the electrode thickness to zero, such that the potential
is applied along the interface line between substrate and medium.
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(10.8)

where ∂/∂n indicates differentiation in a direction normal to the area A. In
order to perform this function, the variables φ and ψ were chosen to be the
potential due to Laplace’s equation and the potential due to a point charge
at r0; thus,

(10.9)

where  indicates the delta function in three-dimensional space. By
solving these equations via Equation 10.8, it is possible to derive expressions
for ∇E2 across the plane intersecting the electrodes. Again, in order to deter-
mine the potential due to the electrodes, an assumption must be made about
the potential distribution, which is again approximated to a series of sinu-
soids. However, in this case the potential is expanded into a Taylor series,
with approximations made for symmetry and only a few additional terms
being used.

10.4 Numerical methods
While analytical methods allow the exact calculation of the electric field
gradient at any point in space due to the electrodes used, it is only useful
when considering a limited number of simple electrode geometries, gen-
erally in two dimensions. However, the majority of electrode configurations
do not conform to these simplified models (with the principal exception
being the interdigitated arrays described in Section 10.3.2). Even where
the electrode structures resemble those derived by analytical means, such
as polynomial electrodes, they are usually constructed using thin-film
technology and are therefore far from being represented by infinitely long
(two-dimensional) models. In fact, the electric field morphology around
them is a complex function that varies in magnitude (and often phase) in all
three dimensions. These geometries are so complex that it is not feasible (and
in some cases, not possible) to derive analytical expressions for the field. In
such circumstances, it is necessary for us to employ approximation methods
that simplify the problem, allowing us to gain an approximately accurate
answer for an arbitrary arrangement of electrodes. We term this numerical
analysis because we are reducing the problem to a specific set of input
numbers at our boundary conditions and calculating the electric field accord-
ingly, whereas with analytical modeling, we use symbolic mathematical
representations that hold for any boundary conditions we wish to apply.
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The topic of numerical analysis covers a wide variety of mathematical
models, some of which are more appropriate to specific problems. In this
section we will examine a number of models that have been used for electric
field derivation. It is the nature of all numerical models that the solution
provided is an approximation to the actual field, rather than an exact solu-
tion. By introducing simplifying conditions, such as discretization of other-
wise continuous functions, errors are introduced into the solution. The nature
of these errors depends on the approximations made; for example, some
methods introduce errors near to the electrode surface but are accurate at
greater distances; other methods are accurate up to the electrodes but are
less accurate farther away. Furthermore, these methods differ widely in the
computer resources required to determine them and in the length of time
required to process a solution. An understanding is required of the approxi-
mations made in a model, the limitations placed on the construction of that
model, and the restrictions on determining whether the solution is useful in
deciding which method is appropriate for a given problem.

10.4.1 The finite difference method

Originally derived from the work of Gauss,7 finite difference models are
calculated using a regular mesh superimposed across the solution space. At
each intersection (node) of the mesh, Poisson’s equation is approximated to
a difference equation relating the potential at the node to the potentials at
all the immediately connected nodes, as shown for a two-dimensional exam-
ple in Figure 10.6. The boundary conditions of the model are the known
potentials of electrode surfaces, as indicated in our example for two castellated
electrodes. The potential at each node is affected by the estimated potential
on those nodes adjacent to it. The boundary conditions (the circumstances
imposed on the model that define our particular problem, such as the voltages
on the electrodes) are set by those nodes having known values — that is, those
nodes of known potential such as those lying on the electrode surface.

Originally, solutions were performed by hand using relaxation methods,
where the residual of the sum of potentials acting on a given node is mini-
mized from a series of estimated starting values. However, the advent of
high-speed computing has brought about the replacement of this method
by an iterative approach, where the solution is reached by repeatedly calcu-
lating the unknown potentials as a series of simultaneous equations until
the answers converge. Weightings may be introduced into the difference
equation to model the effects of permittivity.

The finite difference method was the primary means of numerical field
analysis from the 1930s to the 1960s, when it was largely superseded by
finite element analysis. However it is still used in contemporary studies. For
example, the recent AC resistor-network model of potential calculation pos-
tulated by Hölzel8 shares many of the principles of finite difference analysis;
another application was the calculation of potentials in ratchet electrodes by
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Rousselet et al.9 The advantage of finite difference models is that they are
simple to construct using programs or mathematical software packages,
and a number of books (e.g., Binns and Laurenson10) have been written on
the subject.

10.4.2 The finite element method

Finite difference models eventually became unfavorable because the models
required the application of rigid, regular meshes across the solution space.
An alternative method, known as the finite element method, was soon
adopted. This method was originally developed for solving mechanical
stresses in civil engineering (e.g., Nath11) but was later adopted for calculat-
ing electric fields (see Zienkiewicz and Taylor12). As in the finite difference
method, the solution space is divided up into a series of nodes that define
the corners of enclosed elements. However, unlike the finite difference
method, these elements need only loosely follow a general shape such as a
cuboid or tetrahedron. As long as the element has the appropriate number
of faces and corners, it does not need to be rigidly shaped. The element is
transformed locally onto a rigidly defined master element, and Poisson’s
equation is approximated linearly across that element. The results are

Figure 10.6 In finite-difference simulations, the solution space is divided up into a
regular mesh, and the value of the potential at each node is determined by taking the
difference between a first-estimate value and its neighbors. The values are determined
across the solution space including the boundary conditions (where potentials are
imposed, i.e., at electrode edges), and iteratively determined until a satisfactory answer
is reached.
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mapped onto a system matrix and solved as a series of simultaneous equa-
tions to determine the overall electric field. Boundary conditions are mapped
as defined potentials at the appropriate nodes. Since the electric field is
approximated to be linear across each element, most finite element models
use automated meshing techniques to ensure that the elements are small in
regions where the electric field is changing the most, such as at electrode
edges. However, this means solutions produced by this method have
pseudo-randomly distributed nodes, which can sometimes make direct com-
parisons of two field patterns for the same electrode array difficult.

This method is now widely used for electric field calculations,13

mechanical stress,11 and fluid flow,14 as well as for electrical, magnetic, and
optical problems. Many commercial software suites containing finite
element solvers, design packages for defining the system to be modeled,
and postprocessing programs for data analysis are available. Examples of
the use of finite element software for dielectrophoretic analysis include the
determination of ∇E2 for polynomial and sawtooth geometries,15,16 inter-
digitated castellated electrodes,17 electrodes for field-flow fractionation,18

and for electrodeless systems for dielectrophoretic attraction by charge
deposition19 as discussed in Chapter 7. It has also been used in the study
of electrohydrodynamic fluid flow, as described in Chapter 3.

10.4.3 Boundary element methods

The boundary element method13 is effectively an extension to the finite
element method. The surfaces of the electrodes are discretized into elements,
and the potentials at enclosing boundaries surrounding the electrodes are
coupled to these elements, where the potential is calculated. This method is
accurate but highly computationally intensive and is best applied to func-
tions where far-field considerations are important or where a core element
is surrounded by many layers of material with different dielectric proper-
ties.20 This method has also been combined with finite element modeling in
some commercial software (e.g., SI Eminence™, Ansoft™ Inc.) where a finite
element model is used to determine the solution space and a boundary
element model is then used, taking the previous model as its core element,
to determine far-field effects. It is also used in determining properties of an
enclosed volume from data taken at the outer boundary, such as determining
the properties of the human body by examining the electric signals trans-
mitted to electrodes on one part of the skin due to an input potential applied
at another part.21

10.4.4 The Monte Carlo method

As with the finite difference model, the Monte Carlo method10,22,23 involves
the superimposition of a mesh across the solution space, with a series of
difference equations relating to the potential at the nodes. However, unlike
the finite difference model, coefficients relating to the difference equations
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are interpreted as probabilities of a fictitious particle moving from one node
to its neighbor. By evaluating the random walk of the particle from a given
node to a known boundary, it is possible to determine the most probable
value of the potential at the original node. Permittivity, charge density, and
other factors may be included in the probability equations.

The method produces a slowly converging result, as the random nature
of testing requires extensive recursion in order to “settle” with any degree
of confidence. It is common for calculation times to be greater than those for
methods such as finite difference by factors of 20,10 and, as such, it is generally
not the method of choice for the majority of field calculations. However,
there are applications for which the Monte Carlo method is well suited, those
applications being related to the random nature of the analysis. There are
many examples in this book that must consider the random motion of parti-
cles in electric fields, particularly due to the action of Brownian motion that
itself introduces a random walk factor to the collection of particles. For
example, the Monte Carlo method has been employed in studies of particle
motion in ratchet electrodes,24 or the diffusion of particles held within dielectro-
phoretic traps.25,26 Note however, that the calculation of the electric field may
be calculated by some other method and then applied as a boundary condition
to the analysis of the motion of the particle.

10.4.5 The method of moments

This method differs from the others presented here in that while it imposes
a mesh across the charge-bearing electrodes, it does not impose a grid across
the sample space. Referred to as the charge density or moment method, it
differs from the other methods represented here in that the electric field is
calculated based on Coulomb’s law:

(10.10)

where E is the electric field at a point due to i charges of magnitude Qi a
distance ri away along unit vector ri. This principle was used by Maxwell to
calculate the charge across a square area by dividing it into smaller regions
across which the charge was approximately uniform.27 If the surfaces of the
electrodes are divided into sufficiently small subareas, the charge across
these subareas can be assumed to be uniformly distributed. The charge on
each subarea can be calculated by determining the contribution a unit charge
on a given subarea makes to the potential at all other subareas. By solving
against the known potentials on the electrodes, the charge distribution may
be derived. A similar process is subsequently used to calculate the contribu-
tions of the charges on the electrodes to the potential at any arbitrary point.

The method of moments is generally applied to electric field problems
where charge distribution is required, such as capacitance calculations,28

E
Q

r
i

ii

=∑ 4 2πε
ri
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since the process is used to calculate the distribution of charge accumulated
on an arbitrary shape. The method also has been widely used in dielectro-
phoresis research, including studies of dielectrophoretic forces on castellated
electrodes,29,30 quadrupole electrodes,31–34 octopole electrode field cages,35,36 and
traveling wave dielectrophoresis in both interdigitated6,37–39 and polynomial40

electrode geometries. It is simpler to implement than most other methods
described here but is very computationally intensive.

10.5 Finite element analysis
As described in the previous section, most models introduced a numerical
approximation by discretizing the solution space into a series of evaluated
nodes. The finite element method is similar, but it divides the solution space
between the nodes into elements across which Poisson’s equation is approxi-
mated. The element approach has many advantages over the imposition of
meshes, as described in the previous section. Here, the procedures that
underlie construction of a finite element model are described.

10.5.1 Local elements and the shape function

Consider the electrode geometry shown in Figure 10.7. We may partition it
into a number of elements, such as the rectangular elements shown in
Figure 10.7; the nodes of the elements are the points where we wish to

Figure 10.7 In finite-element simulations, a mesh (which may or may not be regular)
divides the solution space into elements; the potential across each element is
determined, and all the elements are then recombined to determine the potential
across the whole array.
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evaluate the potential. The elements may follow any mathematically defin-
able shape, and here we will consider both triangular and square elements.
Taking triangular elements first and examining a single element (the local
element, such as the shaded area in Figure 10.7b), it is possible to approxi-
mate Poisson’s equation (Equation 10.1) linearly across it using an equation
in potential variable u:

(10.11)

As we would wish to examine the potential at all three nodes, we may apply
this equation to all three nodes (locally numbered 1 to 3);

(10.12)

This may be written in matrix form, i.e.,

(10.13)

Solving Equation 10.13 for α we find

(10.14)

where A is the area of the triangle, and

(10.15)
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If we define variables a, b, c such that for node 1

(10.16)

and similarly for nodes 2 and 3, then Equations 10.13 and 10.15 may be
expressed as

(10.17)

This may be generalized for node i using Equation 10.11,

(10.18)

where Ui is the potential at node i. Ni is the shape function, and, for triangular
elements, it is written as

(10.19)

which is a transformation into a coordinate system known as area coordi-
nates,13 effectively normalizing the dimensions of the element. This coordinate
transformation is an important concept and forms the basis for the examina-
tion of square elements, as discussed later.

10.5.2 The Galerkin method

Let us suppose that across all the elements i, the potential u is such that

(10.20)

where ai is a set of parameters that will need to be determined. It is possible
to insert this into Equation 10.1, which may be expressed in the form,
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(10.21)

Substituting Equation 10.20 into Equation 10.21, we obtain the expression

(10.22)

where R = 0 for an exact solution of Equation 10.20 and is otherwise an
indication of the error introduced due to the linear approximation used in
Section 10.5.1. It is possible to force R to equal zero over the solution space
Ω by satisfying the equation

(10.23)

where w is a set of weighting functions. In order to determine Poisson’s
equation over the solution space, we substitute Equation 10.21 (Poisson’s
equation across a single element) into Equation 10.23. Considering the effect
of the potential function across a single element U on a single node j, this
result is given by

(10.24)

If we expand this to consider the effect for all nodes, we find

(10.25)

Effectively, the integral across the solution space Ω has been replaced by the
sum of the integrals across the elements Ω i . If we integrate Equation 10.25
by parts, we obtain the following expression:

(10.26)

where Γ is the surface surrounding the solution space Ω. The weighting
functions w may take a wide range of values. In the Galerkin approach, we
define the weighting functions as being the shape functions of the elements
over which the integration is taking place; hence
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(10.27)

where  is the residue at node i due to element e. This can be expressed
in the form

(10.28)

where

(10.29)

These integrals are easily performed over the triangular shape functions
described earlier:

(10.30)

where

(10.31)

These results may be organized into the matrix form of Equation 10.28; the
local system matrices for a single element are

(10.32)
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10.5.3 Quadrilateral elements

The principles described above may be applied to elements of other shapes.
If we consider quadrilateral elements rather than triangular elements, the
linear approximation across the element is now an equation in four, rather
than three, unknowns;

(10.33)

This transforms to a shape function Ni where

(10.34)

where ξ0 and η0 may take the values ±1 according to how the shape function
has been mapped onto the local element. By considering ξ and η as axes,
this mapping process can be seen as a transformation of the element onto a
master element, as shown in Figure 10.8. The conformal mapping of one
shape to another varies the lengths of the edges by a factor defined by the
Jacobian of the transformation;41

(10.35)

Figure 10.8 A quadrilateral element e is mapped onto a square master element Ωe.
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from which we obtain the following relationships:

(10.36)

Here we define the master element, to which the element is transformed,
as follows:

(10.37)

We require these expressions to map out the potential U across the master
element. This is expressed in terms of the potential function across the master
element

(10.38)

from which we find, using the chain rule,

(10.39)

Substituting Equation 10.37 into Equation 10.39, we obtain the following
result:

(10.40)

We now have an expression for the potential U across the original element
expressed entirely in terms of the master element dimensions. We wish to
determine the potential across the element according to Poisson’s equation, so
from Equation 10.28 we need to solve for k and f. Since this is a highly complex
integral, it is appropriate to approximate a solution using the Gaussian quad-
rature principle, where the integral of a function g across a square area may
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be determined by summing the value of the function at four specific points.
Across the master element, this is described by Equation 10.41

(10.41)

where l is the set of coordinates shown in Figure 10.9, E is the quadrature
error (which equals zero if sufficient quadrature points are taken, as is the
case here), n is the number of Gaussian quadrature points taken across the
element, and w is the set of weighting functions (equal to the shape function
of the element, as expressed in Equation 10.34). The values of kij and f i are
determined using this approximation on the integrals described in Equations
10.29 and are assembled into a local matrix as described in Equation 10.32.
This principle may be extended to general element shapes, such as cuboids
or other three-dimensional elements, with little difficulty.

10.5.4 Assembling the elements

We have formulated a means of approximating the potential across an
element by mapping it to a master element. We now examine the method
of assembling the elements in such a way as to determine the overall
potential distribution across the whole solution space. This is performed
by assembling the local matrices, of the form expressed in Equation 10.32,
into system-wide equivalent matrices. For example, consider the two-
element solution space (that is, the entire solution space is composed of
two triangular elements) shown in Figure 10.10. From Equation 10.32, the
local system matrices are defined in terms of the nodes of the element. For
element 1, the system is represented as follows:

Figure 10.9 The location of the Gaussian quadrature points (at the center of the large
dots) within a quadrilateral master element.
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(10.42)

Similarly, we can construct the system matrices for element 2:

(10.43)

The system matrices for the whole solution space are the result of merging
both of the above according to nodal positions. The R term may be set to zero,
as is the condition defined by the Galerkin method in Equation 10.22. Hence:

(10.44)

Note that k23 = k32 = 0. This is due to the arrangement of nodes such that no
element contains both node 2 and node 3, and hence there is no interaction
between these two nodes. Large numbers of nodes thus lead to potentially
very sparse matrices, which may be exploited during the solution phase, as
is described later.

10.5.5 Applying boundary conditions

Boundary conditions upon the system may take one of two forms: the
Dirichlet boundary condition where a potential at a given boundary (such
as an electrode surface) and hence the potential at those nodes located on
that surface is defined, and the Neumann boundary condition that states

Figure 10.10 A complete solution space (points 1, 2, 3, 4) can be divided into two
triangular elements, 1 (corners 1, 2, 4) and 2 (corners 1, 3, 4).
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that across the surface Γ that encloses solution space Ω, the following condi-
tion must apply:

(10.45)

where g is an axis normal to the surface at the given point. This condition
exists across the whole surface and need not be integrated into the procedure.
Indeed, consideration of this condition is important, and such an imposition
of symmetry of potential at the outer boundary may be exploited in simulat-
ing symmetrical systems. Consideration must also be taken when simulating
systems that involve changing phase relationships, since this symmetrical
boundary will negate any phase relationships at the boundary.

However, it is necessary to define the known system potentials that
comprise the Dirichlet boundaries. Having determined the system matrices,
we now apply the initial conditions to the system. In the case of the solution
of Equation 10.1, these take the form of known node potentials. Consider
the case of a three-node system, as shown in Equation 10.46.

(10.46)

If it is known that potential u3 = U3, then Equation 10.46 may be rewritten as

(10.47)

In general, for the boundary condition of potential ui = Ui where Ui is known,
the following procedure is followed:

1. Subtract kijUi from kij Ui, where j is the list of all nodes, excluding i.
2. Assign kii = 1.
3. Set all other values in row and column i to 0.
4. Set fi = Ui .

Note that for a large number of boundary conditions, matrix k becomes
increasingly sparse due to procedure number 3. As mentioned previously,
sparsity may be exploited during the solution phase in minimizing the quan-
tity of memory required for storing the matrix during the solving process.
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10.5.6 The solution process

The solution of the potentials is thus performed by solving Equation 10.28
across solution space Ω, with the residue set to zero,

(10.48)

This calculation produces a vector u containing the values of the potential
at all nodes. There is a wide variety of well-documented methods for imple-
mentation of this function, such as Gaussian elimination41 or incomplete
Choleski-conjugate gradients.13 A number of commercial software tools are
available for performing this equation, including the NAG™ libraries for use
within FORTRAN, or the software suites described in the next chapter. The
advantages of these methods are discussed elsewhere.13 A consideration
when performing such an implementation is that matrix k is largely sparse
(i.e., contains a large quantity of zero-value elements) and is also symmetri-
cal. It may be expedient to use a solution method such as ICCG, which takes
these features into account if computer storage space is at a premium. Having
determined the potentials across Ω, it is a relatively straightforward proce-
dure to determine the electric field by calculating ∇u across the nodes. This
may be performed as a postprocessing function, using mathematical tools
such as MATLAB™ (The Math Works, Inc.) or Mathematica™ (Wolfram
Research), which are commercially available.

At this stage, it is worth noting a possible source of error when designing
with finite element models. The Neumann boundary condition, in which the
gradient of the field across the boundary of the solution space is zero,
effectively creates “ghost” electrodes in mirror image of the electrodes being
simulated. These are reflected at the outer boundary of the solution space
in all directions. This has the effect of raising the magnitude of the potential
at the boundary and setting the electric field across it to zero, both of which
create errors in the final solution. Further care must be taken where a phase
direction is studied (such as the traveling-wave simulations of Chapter 8),
since the reflected electrodes at either end of the electrode array will have
ghost traveling waves running counter to those on the actual electrode
simulated. To avoid this, the electrodes and region of study should be iso-
lated from the boundary by large, empty elements. These introduce a large
distance between the real and ghost electrodes but increase simulation time.
Alternatively, it is sometimes possible to make use of symmetry in the
electrode geometries by placing the Neumann boundary at the time of sym-
metry and only simulating half of the problem space.

10.6 The method of moments
In contrast to the method described above, the method of moments (or
charge density method) does not discretize a finite solution space to derive

u k f= −1
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the electric field across it. Instead, the surfaces of the electrodes generating
the electric fields are divided into a series of charges whose contributions
to the electric field according to the principles of Coulomb are described
in Equation 10.10 (see also Chapter 2).27–40,43–46 The model derives its solution
by the examination of unrelated points at which the potential is determined,
rather than adopting the more abstract concept of a finite solution space,
and is consequently simpler to define.

10.6.1 Calculating charge density

Consider the system electrodes, which have been divided into n conducting
electrode subareas as shown in Figure 10.11; we can consider each subarea
to be an independent electrode to which potentials Vn are applied, relative
to 0 V at infinity. Each carries a surface charge qn. Owing to the superposition
principle, the potential on any subarea is related to the charge on itself and
all other subareas by a parameter dependent on the distance between the
subareas, material properties, and so forth:

(10.49)

where pij is a parameter that couples the potential on subarea i due to charge j.
These expressions may be written in the form,

(10.50)

Figure 10.11 In simulations using the method of moments, the electrode surfaces (but
not the intervening space) are discretized into subareas, each having an associated
potential V and charge q, with the potential taken relative to 0 V at infinity.
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and hence:

(10.51)

It is possible to simulate electrode systems by representing each electrode
as a single point charge.44 However, the more complex and detailed simula-
tions presented here require that the physical dimensions of the electrodes
be represented in the model and that the charge density vary across the
surface of the electrodes. In order to account for this charge distribution, an
approximation is made here. By dividing the surfaces of the electrodes into
subelectrode areas, the charge distribution across the subarea is considered
uniform. This approximation becomes more accurate as the number of sub-
areas is increased.44

Element pij of matrix P is the potential on subarea i resulting from a unit
charge on subarea j in the absence of any other charges. If subarea j is
sufficiently small, then the potential at a point (chosen as the midpoint of
subarea i) is determined by integrating over subarea dAj a distance rij from
such a unit charge, thus,

(10.52)

where εm is the relative permittivity of the medium surrounding the electrodes,
which is assumed to be homogeneous. Since subarea j holds unit charge,

(10.53)

From Equations 10.52 and 10.53 we obtain an integration over subarea j:

(10.54)

If we assume that subarea j is rectangular and is in relation to the midpoint
of subarea i in the axes imposed as shown in Figure 10.12 then, provided
the rectangle j does not cross the x or y axes, the result of the above integration
is given by44

(10.55)
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where

(10.56)

This can be coded in this manner, or through the use of logarithmic identities47,48

(10.57)

If the rectangle j lies across either the x or y axes, it must be divided into two
(or four) separate subareas partitioned by the axes and calculated as before.

Having determined the values of matrix P, it is possible to calculate the
charges on each subarea by reorganizing Equation 10.51 and solving for
charge Q:

(10.58)

where V is the potential applied to the subareas. Alternatively, by consider-
ing the relationship described by Equation 10.53, we may express Equation
10.58 in terms of charge density, rather than charge:

(10.59)

Figure 10.12 A coordinate system is imposed in order to determine the effect on
electrode subarea i of the charge on electrode subarea j.

I x
y

x z
y

x

y z
z

z
xy

x y z=
+( )












+

+( )











+ + +( )








− − −.sinh .sinh . tan1

2 2

1

2 2

1 2 2 2

I x
y

x z

y

x z
y

x

y z

x

y z

z
z

xy
x y z

=
+( )

+
+( )

+
+( )

+
+( )

+ + +( )







−

ln ln

. tan

2 2

2

2 2 2 2

2

2 2

1 2 2 2

1 1

Q P V= −1

σ = ′−P V1

© 2003 by CRC Press LLC



Chapter ten: Computer applications in electromechanics 265

where σ is the charge density vector and , as calculated using
Equations 10.55–10.57. The solution of Equation 10.59 may be performed
using one of the methods described in Section 10.5.5. Having derived the
charge-density distribution across the electrode surfaces, it may be saved for
future use. Any subsequent calculations involving a previously simulated
electrode array may reuse an existing charge matrix for calculating the poten-
tial and electric field.

10.6.2 Calculating the potential

If we consider an electrode array that has been subdivided into a system of
charges across the electrode surfaces, there are a number of methods that
may be employed for determining the potential due to these charges. One
possible method is to apply Coulomb’s law (Equation 10.10) and derive the
electric field directly by calculation of the contributions of each charge to the
electric field. However, this method may be inefficient to implement directly
due to the requirement to consider vector computations.

An alternative approach is to consider the expression given in Equation
10.59, which states that for a given set of points in space, the potential ψ is
dependent on the charge density across the subareas of the electrodes, and
on a charge-potential relationship matrix

(10.60)

If this is expressed in the form of Equation 10.52, we can express the relation-
ship of the potential at a point charge n a distance s away at its center in the
following form:

(10.61)

Substituting Equation 10.61 into Equation 10.60, we can derive an expression
for the potential at a general point k:

(10.62)

where N is the total number of subareas and sn is the distance from the center
of subarea n to the point k. The advantage of this implementation is that the
code required to perform Equation 10.59 is the same as that required for
Equation 10.54, allowing both to be performed by the same subroutine. This
program is implemented in such a way as to provide the results in the form
of two-dimensional matrices at locations K, which may then be loaded into
a mathematical postprocessing system such as MATLAB. Furthermore, it is a
straightforward task to adapt the calculation of the potential so as to calculate
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potentials at points displaced a small, regular distance from the points of
study along the axes centered on the sample point. This allows calculation
of the electric field at the series of points, by calculating field gradients based
on differences between potentials at these extra points. Such a method
increases computation time but gives high levels of accuracy by minimizing
the distance from sample point to extra nodes. Having calculated the electric
field in vector form in this manner, the data may be saved in the form of
matrices ExK , EyK, and EzK . Since the electrode model in the method of
moments requires a fixed charge density, it is unable to perform true AC
analysis. However, by discretizing the AC cycle into a number of static
frames, it is possible to analyze phase effects across a cycle in great depth.

The method of moments does not employ the concept of a defined
solution space and thus does not restrict the choice of sample points to be
examined, or create ghost electrodes. However, the system of discretization
of the electrodes creates approximation errors of a different nature. The
approximation of expressing the charge across a subarea as if it were a single
point creates errors in close proximity to the electrode surfaces, where the
difference between charge focused at set points, rather than distributed
equally across the subarea surfaces, becomes more apparent. Within a dis-
tance from the electrodes approximately equal to the width of adjacent
subareas, the potential will vary according to whether it is facing a point
charge or a subarea boundary.

Another limitation to the moments method is that due to the nature of
the model considering a direct-line relationship between the sample point
and the point charges, the introduction of heterogeneous dielectric media
between these points (or into the model generally) is a complex problem
that potentially increases computation time to make the method unsuitable
for any problems of this nature. Thus this method is most appropriate to the
simulation of electrodes suspended in a medium such as the aqueous solu-
tion of basic electrokinetic experiments.

10.7 Commercial versus custom software
The steady but rapid increase in computer power has meant that, in the last
few years, a number of powerful PC-based electric field solvers have become
available. Many of these will be directly applicable to the analysis of electric
field for dielectrophoresis. However, some will not, and for more unconven-
tional analyses such as the determination of phase-based effects, it is likely
that a few packages will have the features necessary to even allow other
packages such as MATLAB (described in the next chapter) to perform the
appropriate analyses.

For simple analysis of dielectrophoretic force, it is important that the
electric field solver not only be able to determine the electric field, but also
the electric field gradient. The majority of commercially available field solvers
use finite element analysis (FEA) to determine the electric field across a
three-dimensional volume, and so they should be able to determine the
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gradient in three dimensions. However, the facility to calculate this might
not be available. Similarly, there may not be a function to multiply the electric
field by itself — a prerequisite for determination of dielectrophoretic force.

If these facilities are not available, a second option is to export the electric
field data and perform these calculations in another, mathematics-based
software package. In order to do this, the data must be exported in a format
that can be easily understood by the receiving package. For example, it is
relatively straightforward to analyze data exported in the form of a regularly
ordered matrix of two-dimensional or three-dimensional points at which the
electric field vectors are measured. However, most finite element solvers use
a technique called adaptive meshing to ensure the greatest density of elements
is in those areas where the electric field is changing most rapidly. Therefore,
the representation of the field in the software is as a series of seemingly random
nodes. In order to overcome this, some software packages allow the super-
position of a regularly ordered mesh across which the field can be calculated,
even if the points on that mesh do not correspond to calculated nodes.

This feature is of particular importance where the solver is required to
determine the time-dependent electric field for analysis of electrorotation
and traveling-wave dielectrophoresis (as described in the next section). Since
these are complex functions that exist outside of the mainstream applications
of most FEA electric field solvers, it falls upon the user to perform the analysis
in another software package such as MATLAB. In order to do this, the ability
to export data in a regular mesh is vital; the analysis described below is
based on the assumption that the magnitude of the electric field can be
determined at exactly the same place in a number of different simulations.

With these constraints in mind, it may be preferable to write one’s own
code for the performance of electric field modeling; the procedures outlined
in the previous sections for construction of moments and finite element
solvers is straightforward, both resulting in programs of about 6 kilobytes
in length when coded in FORTRAN. These solvers lack the bells and whistles
of commercial programs, such as a computer-aided design package for the
definition of the problem, but have the advantage of exporting the data in
a form tailored exactly to the needs of the user, such as formatting prior to
postprocessing (literally after processing, this refers to calculations per-
formed on the electric field calculations after the field has been determined).

10.8 Determination of dynamic field effects
10.8.1 The nature of the dynamic field

The above descriptions of processes by which the electric field can be deter-
mined provide us with a useful basis for calculating the electric field. However,
we may on many occasions need to determine the time-dependent nature of the
dynamic electric field. If we wish to determine the traveling-wave dielectro-
phoretic force or electrorotation torque in a given electrode geometry, then we
need to model the manner in which the electric field changes over time.
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Since the phase relationships are consistent from one cycle of the electric
field to the next (assuming that a single frequency electric field is applied), we
principally need to observe the variations in electric field across the solution
space for a period of one cycle. We can do this by discretizing the electric field
into a series of steps and using those steps to calculate the variation in magni-
tude and phase across the whole cycle. By modeling discrete time intervals,
we are effectively sampling the signal; when we have all the samples, we can
analyze them to determine the complete effect of the time-variance of the field.

For example, we might wish to consider the electric field varying around
a traveling-wave electrode array, such as the one described in Chapter 8 or
the nanomotor in Appendix A. In sampling the electric field, we need to
ensure the electric field can be modeled with sufficient accuracy to be able to
determine the precise form of the electric field. From the sampling theorem,48

we need to make at least two samples per cycle, although that would give
very little of the information of the magnitude and phase that we require.
A greater number of samples leads to more accuracy but a greater number
of simulations being required. We can take advantage of the fact that the
magnitudes of the electric field in the second half of the cycle are equal but
opposite to those of the first half of the cycle (assuming all potentials vary
sinusoidally) to simulate only the first half of the signal and invert this to
generate the data for the second. We can then use postprocessing methods
to determine the exact magnitude and phase of the applied field, using
methods described in detail in the next chapter.

From our work in Chapter 2, we have established that a time- and
phase-variant electric field can be written in the form:

(10.63)

Similarly, the dipole moment takes the form

(10.64)
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and these can be combined to determine the time-dependent force:

(10.65)

Averaging across a number of samples, we can determine the time-averaged
force value: for example, for samples taken every 10º of phase of the applied
signal,

(10.66)

where i corresponds to each of the 36 instants in time.

10.9 Example: simulation of polynomial electrodes
In order to examine both the process, and indeed the requirement, for simula-
tion, we will examine the electric field around a planar electrode array with
electrodes shaped according to the principles of the polynomial electrode
geometry described earlier in this chapter.

The principal use of electrorotation electrode arrays is to allow the rate
of rotation to be measured for individual objects, which allows the determi-
nation of the imaginary part of the Clausius–Mossotti factor, and hence the
dielectric properties of each particle. However, it was established early in the
development of the technique that the rate at which particles rotate within
the electrode area is not consistent, preventing the direct comparison of cells
spread across the entire electrode chamber. In order to address this, a number
of attempts were made at modeling the electric field and its variation,2,8,31,32,50

including the use of analytical, moments, and finite-difference methods.
In order to examine the method of analysis, we will consider here a

time-dependent simulation of the electric fields due to a four-electrode poly-
nomial geometry addressed by four sinusoidal voltages, of equal magnitude,
phased 90º apart.

10.9.1 Simulations

The results presented here were obtained using a simulation model based
on the method of moments; the electrode structures were each represented
by 150 subareas of equal size, making 600 subareas across the whole simu-
lation. The simulation was used to determine the potential (scalar) and
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electric field (vector) in a regular mesh of 40 × 40 points arranged in a square,
defined by the area in the center of the electrode array and with the inner
tips of the electrodes touching the midpoints of the square sides, as shown
in Figure 10.13.

The geometry of the polynomial electrodes in the x-y plane was defined
by a simplified version of Equation 10.5, such that

(10.67)

where 2k defines the distance between opposing electrode tips. Since the
simulation is of electrodes fabricated using standard photolithography, they
were defined as being 0.2 µm thick with the spacing between electrode tips
chosen to be 400 µm. The subareas were chosen to be square with sides
20 µm and were uniformly distributed over the electrode surface to a dis-
tance of 200 µm back from the electrode tips. Four sinusoidal voltages of
peak potential Vo = 10 V were assigned to the electrodes, with 90º phase
difference between adjacent electrodes. To simulate the sinusoidal voltages,
the electrodes were assigned phase advance values φ of 0º, 90º, 180º, and
270º, with the potentials described by the equation

(10.68)

so that the potentials of the electrodes for the first simulation were 10 V, 0 V,
–10 V, and 0 V; at the second simulation (10º advanced from the first) they
were 9.8 V, –1.7 V, –9.8 V, and 1.7 V, and so on. Calculations were performed
for the first 18 steps and reversed to determine the next 18. When all
36 results had been determined, the three electric field vectors were stored
in three-dimensional matrices representing two dimensions of space (the plane
in which the results are obtained) and one of time. A MATLAB function was
then used to fit a sine wave to the data points, allowing the amplitude to be
matched at each point to a sine wave with its own amplitude and phase

Figure 10.13 The polynomial electrode geometry simulated; the dotted square
indicates the area across which the solution was determined.
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relationship to ωt. These were then compared to determine the magnitude
and phase distribution across the simulation plane. The 18 calculations were
performed using FORTRAN 77, and the results were then processed using
MATLAB to produce plots of the electrical potential in the plane of the
electrodes as well as of the magnitude (Ex, Ey, Ez) and phase (φx, φy, φz) of the
rotating field.

10.9.2 Simulation results

We have established in previous chapters that the electrorotational torque
acting on a sphere of radius r is given by

(10.69)

However, we know from Chapter 2 that this is only true for the case where
the electric field rotates in a circular pattern — that is, the phase difference
between the x and y vectors is 90º. To explain this, consider viewing a rotating
disk with a nail inserted at one point on its circumference. If viewed from
the side, the nail would appear to move up and down as the disk rotates; if
viewed from overhead, it would appear to move side to side. However, when
it appears to be at one end of its travel in one view, it appears to be at the
center of its travel in the other view. Hence, the position of the nail in the
two views (and the phase of the motion in the two axes) is 90º out of phase.
If the nail appeared to be at the end of its travel in both directions simulta-
neously, this would indicate that it was not moving in a circle, but back and
forth along a diagonal line; the phase difference is not 90º, but is either 0º
or 180º. Hence the motion is not circular. Transposing this to our electric
field, if the phase difference is not 90º, the electrorotation torque is dimin-
ished, and if it equals 0º or 180º, it disappears, leaving only dielectrophoresis.

In practice, the electrorotation torque is given by the general equation

(10.70)

where Ex and Ey are the magnitudes in the x and y (orthogonal) directions,
and φx and φy are the phase relationships between those two vectors and
some reference phase. However, it is only when φx – φy = 90º and Ex = Ey that
Equations 10.69 and 10.70 are synonymous. We can define an effective value
of electric field to allow this to be the case, where

(10.71)

This indicates the reason why the previous models had not correctly pre-
dicted the distribution of torque across the interelectrode plane; it had been
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assumed that the conditions of φx – φy = 90º and Ex = Ey had existed at all
points across the plane, but simulation indicated that this was not the case.

In order to correctly determine the torque distribution, it is necessary to
calculate the magnitudes and phases of the three electric field vectors inde-
pendently. These are shown in Figure 10.14 for the electric fields in the x and
y directions. Analysis of the figure shows the extent to which the electric
field varies from its ideal case. For example, the x component of the field
has its largest values near the (x-axis) electrode edges and minima at the y-axis
electrode edges. As is expected from the symmetry shown in Figure 10.13, a
corresponding behavior exists for the y component of the field. Also, φx

deviates from its ideal value of zero (and correspondingly φy deviates from 90º)
increasingly with distance from the central region between the electrodes. It
is clear that the ideal situation of two equal Ex and Ey field components of
phase 90º apart holds only in a circular region approximately one quarter of
the size of the square defined by the electrode tips. The phase difference
between Ex and Ey approaches 0º and 180º alternatively between adjacent
electrodes, where the resultant field vectors in these regions have vibrational
rather than rotational characteristics as described above.

All other factors in Equation 10.70 being constants, we can determine
the spatial dependence of the electrorotational torque by determining the
field factor E 2

eff . Indeed, we can compare the variation in E 2
eff with the

variation in torque predicted by models considering only the magnitude of
the electric field, and with the original predictions of the analytical model
for polynomial electrodes, as well as for results of the rotational torque
obtained by experiment. These are shown in Figures 10.15 to 10.18.

Figure 10.14 The magnitude (left column) and phase (right column) of the electric
field in the x and y directions (top and bottom rows, respectively) across the area
shown in Figure 10.13. The magnitude is greatest (white regions) at the tips of the
electrodes arranged along the axis in question, but the phase relationship changes
quite markedly near the other electrodes (with white and black indicating 90º phase
advance and retardation, respectively, and medium gray representing 0º).
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As can be seen, the increase in the complexity of the model increases the
complexity of the predicted output. For example, the simple analytical model
(Figure 10.15) indicates that the force increases almost linearly from the
center of the array toward the edges and is not influenced by factors such
as the position of the electrodes. In Figure 10.16, the result of the numerical
model where only the magnitude of the electric field is considered, we see
that there is significantly higher electric field strength near the electrode edges.
This is because this model considers the electrodes not as two-dimensional
structures, but as thin three-dimensional structures. If we then consider the
full model including the effects of phase variation, the magnitude of torque
appears as shown in Figure 10.17. This shows not only that the magnitude

Figure 10.15 The magnitude of the torque predicted across the square in Figure 10.13,
determined using the analytical solution in Section 10.3, with lowest torque indicated
by the black regions (at the center of the array) and white indicating the highest
values (at the interelectrode gaps).

Figure 10.16 The torque in the area at the center of the electrode array in Figure 10.13
determined by finding the square of the electric field, as simulated using the method
of moments. The minimum value is still at the center of the array, but the maximum
rotation is now predicted to be at the electrode edges.
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increases at a much higher rate near the electrode tips, but also that it then
diminishes toward the corner of the plot, indicating the interelectrode gaps.
This is because in these areas, the influence of the other electrode is reduced
and the electric field moves monotonically backward and forward between
the electrodes.

In order to determine which of these simulations is correct, we can
compare the results to a surface generated from the distribution of actual
rotation rates in polynomial electrodes, obtained experimentally51 and

Figure 10.17 The result shown in Figure 10.1 is adapted to compensate for the fact
that the torque distribution is not uniform across the interelectrode area, and the
torque distribution is again slightly different. The maximum value of torque is still
at the electrode edges, but there is a saddle effect where the torque along the line
from center to corner rises, reaches a peak, and then diminishes toward the corner.
This is due to the phase relationship near the interelectrode gaps causing the electric
field to oscillate back and forth rather than rotate.

Figure 10.18 A pattern representing the actual rotation rates in the interelectrode
gaps for an array of similar geometry, made using over 200 latex beads. As can be
seen, the form is similar to that shown in Figure 10.17 with the same saddle effect,
peak rate at the electrode tips, and minimum at the interelectrode gaps.
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shown in Figure 10.18. We see that the pattern closely matches that of the
simulation including phase effects, as shown in Figure 10.17; key features to
note are the peak rotation at the electrode edges and the drop in rotation
toward the corner of the graph. The variation in torque at the center of both
graphs is similar, though it appears to be smaller in Figure 10.18 because the
magnitude of the torque at the corners is so low as to distort the scale. The
reason for the difference in magnitudes between predicted and observed
rotation rates in these corners may be due to experimental artifacts. The
measurements were taken using ellipsoidal beads, which increased the ease
of measurement of the rotation rate but also increased the effects of other
factors such as electro-orientation where the magnitudes of Ex and Ey are
significantly different (such as in the interelectrode gaps).

As can be seen from this example, the variation in electric field — both
magnitude and phase — can have significant implications for determining
the behavior of particles in the electrode array. Choosing the appropriate
model to suit the application is important, as is consideration of the geometry
and the task required of it. This is particularly true where numerical values,
such as the determination of force or torque, are important. In these cases,
electric field simulation is the only method of determining spatial variations
in force and torque in all but the simplest electrode geometries.
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chapter eleven

Dielectrophoretic response 
modeling and MATLAB

11.1 Modeling the dielectrophoretic response
In this book, we have examined the dielectrophoretic responses of colloids,
viruses, and proteins. We have seen how we can compare predicted and
observed dielectrophoretic responses across the frequency range, and we
have used this to determine the dielectric properties of the particles. By
modeling the response of more than one type of particle, we have been able
to determine the optimum conditions for separating those particles into
homogeneous groups in separation devices. In order to achieve these, we
have used models of the frequency-dependent Clausius–Mossotti factor to
predict the relative polarizability of the particles across the frequency spec-
trum; we have then expanded that into three dimensions, considering how
variations in the conductivity of the suspending medium affect the dielectro-
phoretic response — and, in particular, the crossover frequency — of the
particles. In this chapter, we will examine how this is achieved and examine
software-based models for determining these properties.

Since the modeling process requires a not-insignificant amount of calcu-
lations to accurately represent the Clausius–Mossotti factor across a range of
frequencies and conductivities, it makes sense to automate the process using
software. It is possible to write programs directly into code (such as C or
FORTRAN) that will perform these calculations, though the user will then
still require a method of displaying this information. Since the problem is
fairly straightforward, there are a number of computer-based mathematical
packages that can be used to both calculate and display the polarizability;
these include widely known titles such as Mathematica™, Maple™, and
MATLAB™. In order to examine the procedures used in modeling these para-
meters, this chapter will cite examples using the MATLAB programming
language, but the procedures are all fairly commonplace and can easily be
adapted to other mathematical languages.
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11.2 Programming in MATLAB
MATLAB is a combined programming language and data analysis/pre-
sentation computing suite. It is The Mathworks™ Inc.’s software suite for
analyzing, manipulating, and displaying matrices (hence its name, derived
from Matrix Laboratory). It operates principally from a command line
system where commands are typed into a window and executed; it is
possible to create programs using lists of these commands, so that they
execute as if they had been typed in sequence, by simply typing in the
name of the program. An extensive array of operations for data analysis
already exists with MATLAB; this includes a large number of functions
dedicated to data display.

The MATLAB language is similar to many older computer languages
such as BASIC and FORTRAN. It allows the user to write programs for
performing a number of operations, including data analysis, which we will
be examining in this chapter. In order to distinguish MATLAB programs
from conventional text, all material from MATLAB has been written in
courier typeface. This has also been used within the text when referring
to variables used within the programs.

The interface and programming language of MATLAB is fairly intuitive,
and it is not difficult to go from mathematical operations to programs easily.
One feature of MATLAB worth mentioning before the start of our investi-
gations is that the program uses a colon (:) for the wildcard operation, which
stands for all of the numbers in a given range or all of the numbers within
certain limits. For example, “i = 1:3” means “i equals one to three,”
while “i = j(3,:)” means “i equals the numbers in the third row of all
columns in matrix j.”

11.3 Modeling the Clausius–Mossotti factor
As we have learned in previous chapters, the dielectrophoretic force, FDEP,
acting on a dielectric sphere of radius r in medium of permittivity εm is given by

(11.1)

where Re[K(ω)] is the real part of the Clausius–Mossotti factor, given by

(11.2)

where p and m are subscripts indicating particle and medium, and complex
permittivity is given by
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(11.3)

Furthermore, we also know that due to viscous drag (Stokes’s force), the
particle reaches a terminal velocity given by the equation

(11.4)

where η is the viscosity of the medium. Combining these, we obtain

(11.5)

where β is constant for a given particle and medium. In the previous chapter,
we explored methods by which we can determine the local value of ∇E 2.
By inserting this in Equation 11.5 we can determine the value of the
Clausius–Mossotti factor of a particle merely by determining its velocity at
a given point within the electrode array. However, while this approach can
be used (as described in Chapter 5) to determine particle properties, only by
examining this as a function of frequency can we be more confident in our
predictions by enabling us to determine the behavior of the particle as it
undergoes dielectric dispersion (as described in Chapters 2 and 4). If we
examine the velocity of particles through a particular volume as a function
of frequency, then we can treat that local value of ∇E2 as constant, such that

(11.6)

Therefore, the velocity of particles passing through a volume is directly
proportional to the value of the real part of the Clausius–Mossotti factor,
and by studying the changes in the behavior we can match the model of the
dielectric response to fit.

If we are simply trying to determine the properties of homogeneous
particles in the absence of surface conduction effects, we need only calculate
the Clausius–Mossotti factor for our frequencies of interest. A simple pro-
gram to achieve this in MATLAB is
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e0 = 8.85e-12;

sm = 0.001;

em = 78*e0;

sp = .01;

ep = 2.55*e0;

f = logspace(4,7,1000);

w = 2*pi*f;

j = sqrt(-1);

epc = (ep-j*sp./w);

emc = (em-j*sm./w);

cm = (epc-emc)./(epc+2*emc);

output = real(cm);

semilogx(f,output);

xlabel('frequency (Hz)');

ylabel('Re[k(w)]');

This 14-line program produces an output such as that shown in Figure 11.1.
The function of the program is fairly straightforward. The first five lines set
the parameters we need to use; since we cannot use Greek characters, we
must use e for epsilon (ε) and s for sigma (σ). Similarly, we cannot use an
asterisk to denote a complex number, since the asterisk is used to indicate a
multiplication, so we must use another method to indicate it; here I have used
epc to represent “ep (complex).” The conductivities are expressed in S m–1.

Figure 11.1 The dielectric dispersion of a 100-nm radius colloidal particle, as described
in the text.
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The sixth and seventh lines generate a range of frequencies (f) and
corresponding angular frequencies (w, instead of ω). The logspace
command simply generates a string of numbers on a logarithmic scale. The
three numbers in brackets indicate the order of ten at which the list starts,
the order of ten at which it stops, and the number of points in the list — so
that here, we are generating a list of 1000 points between 10 kHz and 10 MHz.
Line eight defines j as the square root of minus one, using the built-in
sqrt command. The ninth and tenth lines calculate the complex permit-
tivities of particle and medium by directly expressing Equation 11.3. The
presence of a period (.) before the slash (indicating division) shows that
the operation is to take place on a list of numbers, or vector — in this case,
the list of different frequencies we are examining. Line 11 is the calculation
of the Clausius–Mossotti factor cm — compare it with Equation 11.2. Line 12
uses the real command to calculate the real part of the Clausius–Mossotti
factor, and line 13 produces the graph in Figure 11.1 by using the semilogx
command; this produces a plot that is logarithmic in only one direction
(hence a semilog plot), that direction being the x direction, where the values
in the brackets indicate the values on the x – (frequency) and y – (Re[K(ω)]),
respectively. Finally, the last lines label the two axes. If this program is saved
in a file with a name ending in .m (such as cmfactor.m), then it can be run
from within MATLAB simply by typing the name of the file, provided the
file is in a location of which MATLAB is aware (consult the manual about
setting path names for more information about this).

11.4 Determining the crossover spectrum
We now have a program that can plot the Clausius–Mossotti factor as a function
of frequency. However, while this measurement can have direct applications to
modeling experimental data, such as that collected by collection-rate measure-
ments as described in Chapters 4 and 5, it is not widely used because colloidal
particles are also influenced by Brownian motion. A far more common method
of particle analysis is to use crossover measurements (as seen in Chapters 4
to 6), where the frequency at which the dielectrophoretic force is zero, is
determined for a range of medium conductivities. We can use our existing
program for this, but must add to it, and also nest it within another program.

In order to operate the program, we need to use two fundamental software
operations, the FOR LOOP and the IF operator. The former executes a piece
of code a certain number of times, with a variable being used to count the
number of the times the code has been executed. For example, a MATLAB
loop such as

for i = 1:10

...

end
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will execute the code between the start and end lines ten times; every time
the computer passes around the loop, the value of i is incremented. At the
last pass, the value of i is 10; at the end of that time around the loop, the
program moved onward from the loop. The second operator is IF, which tests
whether a statement is true. If it is, then a piece of code is executed. If not,
then another piece of code is carried out. This is expressed in MATLAB thus:

if x>1

...

else

...

end

which will execute one set of instructions if x is greater than one, and another
set of instructions if x is less than one.

We can combine these with our first program in order to calculate the
conductivity-dependent crossover spectrum. A third useful programming
tool we have is that we can treat programs as commands or instructions, so
long as its name is not the same as an existing MATLAB command and it is
in a path (part of the computer) that is recognized by MATLAB. We can
therefore use this to construct a program structure of the kind shown in
Figure 11.2; a first program runs through a list of conductivities and for each,

Figure 11.2 A flow diagram indicating the method by which the crossover spectrum
can be calculated. The first program established a parameter set, and then uses a
FOR loop to examine all parameters within that set, one at a time, via a second
program. This enables the determination of the crossover frequencies of all the
conductivities examined. The first program compiles each of these results as the
second program completes them, and when the whole list is completed, the first
program compiles them and displays them.
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it calls a second program, not unlike our program described in Section 11.3,
which determines the Clausius–Mossotti factor for that particular conduc-
tivity and determines the frequency at which the crossover takes place. This
is then stored when control returns to the first program, giving a list of
crossover frequencies corresponding to the starting list of conductivities;
plotting one against the other gives the crossover spectrum.

The first program — we will call this crosslist.m — generates a list
of 40 medium conductivities (using logspace, as before) called smlist,
and then loops through the list of 40 using a for j = 1:40 command.
This executes a second program — called fullmodel.m — which deter-
mines the crossover frequency and stores it in a variable called crossover.
When fullmodel has been executed, the value in crossover is saved as
a number in a list of crossover frequencies called crossoverlist. When
all 40 conductivities have been determined, loglog produces a log–log plot
(logarithmic on both axes) of the crossover frequencies versus medium con-
ductivity. Labels are added; note the use of the ^ symbol, which turns the
following character into a superscript such that Sm^-^1 appears as Sm–1;
however, in the context of a mathematical operation, ^ means to the power
of. The final line uses the axis command to define the maximum and
minimum values shown along the x and y axes of the displayed graph.

smlist = logspace(-3,-1,40);

for i = 1:40;

sm = smlist(i);

fullmodel;

crossoverlist(i) = crossover;

end;

loglog(smlist,crossoverlist);

xlabel('Conductivity (Sm^-^1)');

ylabel('Crossover frequency (Hz)');

axis([1e-3 1e-1 1e5 1e7]);

The second program, called fullmodel.m, is presented below and has been
divided into a number of parts for ease of description. Note that the parts are
separated by comments, indicated by a percentage mark %; MATLAB ignores
anything after these until it sees a semicolon or end of line. The first part of
our program looks similar to the program in Section 11.3, since it calculates the
frequency-dependent crossover spectrum, as before. Note however that there
is no longer a statement of the value of sm (medium conductivity), since that
was established within crosslist.m just before fullmodel was called; this
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means that the same version of fullmodel can be used for all values of medium
conductivity. Note also that the lines from the end of the program, displaying
the Clausius–Mossotti factor, have been removed because we do not want the
program to display each Clausius–Mossotti factor for all 40 conductivities.

Part two of the program is used to examine the real part of the Clausius–
Mossotti factor to detect the crossover frequency. It uses a variable called
marker, which is originally set to zero. The program then uses a for loop
to examine all 1000 numbers in the Clausius–Mossotti factor. It also uses an
if statement to test if the value of Re[k(ω)] is greater than 0; if it is, then it
makes marker equal to the number of the value in the list. When Re[k(ω)]
drops below 0, the condition is not met and marker is no longer updated;
therefore, when all values have been tested, it contains the number in the list
of the highest sample where Re[k(ω)] is greater than 0, indicating that the
following value is negative and that between them is the crossover frequency.

Part three of the program determines the crossover frequency more
accurately within the frequency band between the two values either side of
the crossover frequency — those being the values in the markerth value in
the list (the positive value) and the one after it (the negative value). By
approximating the change in Re[k(ω)] to a straight line between these values,
the program calculates the exact value at which Re[k(ω)] = 0 and records it
in crossover. If no value of crossover frequency exists (because Re[k(ω)] is
only positive or negative through the entire sweep of frequencies being
investigated), the program returns a value 0.01, indicating a very low cross-
over frequency. Since we are using logarithmic scales, we cannot display
zero or negative numbers. Similarly, if the crossover is greater than the
maximum frequency examined, the program returns NaN; this stands for
“not a number,” and will be ignored by subsequent processing.

% part one

e0 = 8.85e-12;

em = 78*e0;

sp = .01;

ep = 2.55*e0;

f = logspace(4,9,1000);

w = 2*pi*f;

j = sqrt(-1);

epc = (ep-j*sp./w);

emc = (em-j*sm./w);

cm = (epc-emc)./(epc+2*emc);
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output = real(cm);

% part two

marker = 0;

for k = 1:1000

if output(k)>0

marker = k;

end

end

%part three

if marker<1000

if marker>0

xlower = f(marker);

vlower = output(marker);

xupper = f(marker+1);

vupper = output(marker+1);

ratio = vupper/(vlower-vupper);

crossover = xlower+ratio*(xupper-xlower);

else crossover = 0.01;

end

else crossover = NaN;

end

The output of these programs for the set of electrical characteristics from
our first example is shown in Figure 11.3. As can be seen, the crossover
frequency is mapped as a function of conductivity, exhibiting a relatively
stable value at lower conductivities but dropping sharply at higher conduc-
tivities. This actually drops to 0.01Hz in our model, due to the restriction
on not being able to display negative numbers. Since the lower threshold
on our graph is 1 MHz, it appears to go to zero. Using NaN where there is
no crossover means that the line effectively disappears in midgraph, which,
while perhaps more correct, is less effective in displaying the dielectro-
phoretic response.
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11.5 Modeling surface conductance effects
The model has now been developed to determine the dielectric response
according to basic Maxwell–Wagner relaxation, but we know from the analy-
sis in Chapter 4 that for particles of the size described here, surface charge
effects dominate dielectrophoretic behavior. In order to account for these
effects, it is necessary to adapt our fullmodel.m program to calculate them.

We learned in Chapter 4 that the effective particle conductivity is given
by the expression

(11.7)

where σpbulk is the conductivity of the particle interior, r the radius, and 
and  the conductance through the Stern and diffuse double layers, respec-
tively. We can elaborate further;  is given by the expression

(11.8)

where

(11.9)

and where Dd is the ion diffusion coefficient for the ionic species (counterion)
in the diffuse layer, z the valence of the counterion, F the Faraday constant,
k Boltzmann’s constant, R the gas constant, q the charge on the electron,
T the temperature, κ the inverse Debye length, c the electrolyte concentration

Figure 11.3 A dielectrophoretic crossover spectrum for the programs in the text, using
the method shown in Figure 11.2.
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(mol m–3), ζ the ζ potential, and η the viscosity. Similarly, conductance in the
Stern layer can be expressed thus:

(11.10)

where Λ is the molar conductivity of the bulk suspending medium, u is the
surface charge density of the particle,  and  are the mobilities of the ion
species in the Stern layer and bulk medium, respectively, and zi is the valency
of that ionic species. However, since  is unknown, we need to use the
model to estimate a value of  and determine  from that value.

Both of these affect the effective conductivity of the particle and therefore
must be inserted into part one of fullmodel.m where the definitions of
particle properties are made. For the sake of simplicity, we will call this part
1a, shown below. Notice that in addition to the numerical constants, we now
need to introduce the particle radius for the first time (as the variable r). As
before, we cannot write Greek letters, so the ζ potential and the viscosity
appear as zeta and neta, respectively. In the example, the radius of the
particle is 100 nm and the temperature is assumed to be 300°K (about 26°C,
or approximately room temperature).

% Part 1a

e0 = 8.854e-12;

ep = 2.55*E0;

em = 78*E0;

Ks = 0.8e-9;

zeta = -0.098;

r = 100e-9;

j = sqrt(-1);

k = 1.38e-23;

T = 300;

e = 1.6e-19;

NA = 6e23;

R = 8.3144;

F = 9.648e4;

z = 1;
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spbulk = 0;

T = 300;

D = 1.94e-9;

NA = 6e23;

neta = 8e-4;

q = 1.6e-19;

lambda = 14e-3;

c = sm/lambda;

N = (c*z*z*NA);

m = ((R*T/F)^2)*(2*Er*E0/(3*neeta*D));

Kapa = 1./(sqrt((E0*Er*k*T)./(2*N*q*q*z*z)));

KDiff1 = (c*4*F*F*z*z*D./(R*T*Kapa)).*(1+(3*m/(z*z)));

KDiff2 = cosh((z*q*zeeta)./(2*k*T))-1;

KDiff = KDiff1*KDiff2;

KStern = Ks;

sp = spbulk+(2*KDiff/rad)+(2*KStern/rad);

11.6 Multishell objects
In Chapter 5, we examined how objects consisting of a number of concentric
shells could be modeled using an extension of the Clausius–Mossotti equation
to describe the interfacial polarizations between each layer. We can model
this simply by including each iteration of Equation 5.4. Let us, for example,
consider a simple model (discounting surface effects) of an object consisting
of a single insulating shell 10-nm thick surrounding a conducting core of
radius 100 nm. For a single shelled object, the effective complex permittivity
is given by the expression

(11.11)

where ε1
* and ε2

* refer to the complex permittivities of the particle and
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outer boundaries of the interior and the shell. Coding this in MATLAB, we
obtain the following:

e0 = 8.85e-12;

s1 = .1;

e1 = 50*e0;

s2 = 10e-6;

e2 = 7*e0;

em = 78*e0;

r1 = 100e-9;

r2 = 110e-9;

f = logspace(3,9,1000);

w = 2*pi*f;

ce1 = e1-j*s1./w;

ce2 = e2-j*s2./w;

cem = e5-j*sm./w;

cm12 = (ce1-ec2)./(ce1+2*ce2);

ef1 = ce2.*((r2/r1)^3+2*cm12)./((r2/r1)^3-cm12);

cm = (ef2-cem)./(ef1+2*cem);

output = real(cm);

Note that there are now complex conductivities corresponding to both inte-
rior materials, represented by ce1 and ce2. The program determines the
response by determining the Clausius–Mossotti factor of the interior inter-
face, then substitutes this into Equation 11.11 to determine the effective
complex permittivity of the particle before using this with the complex
permittivity of the medium to determine the net dielectric response.

In order to determine the best fit to dielectric properties of many-shelled
objects, care must be taken since there are often many combinations of
parameters of different values that might fit a particular set of experimental
data. However, as described in Chapter 5, there is an extensive body of
literature describing the biophysical parameters of biological materials,
allowing the user to make appropriate decisions regarding the appropriate
approximate starting values for estimating the properties of the particle. This
can be further augmented, again as described in Chapter 5, by altering the
particles using some agent that will only significantly affect one known
aspect of the particle structure.
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This is further complicated when additional factors such as surface
conductance effects are added; all the programs presented here can be
combined and altered as appropriate, and the reader is encouraged to
experiment. For example, where (as with capsids and certain viruses in
Chapter 5, or proteins in Chapter 6) the conductivity of the interior of the
particle is proportional to the conductivity of the medium, a line such as
sp = sm/4 might be introduced.

11.7 Finding the best fit
When using MATLAB to determine electrical parameters, two approaches
may be taken; either the user may manually alter the electrical parameters
in a set until a satisfactory match is found, or the computer can be used to
find a best fit to the data. In many circumstances, particularly where the
approximate parameters are known and need to be refined or where there
is a great deal of scatter, best-fit methods may be preferred; alternatively, in
circumstances where the processes of charge movement may not be fully
understood, a manual method allows far more ability to modify the model
itself (rather than just the values within the model).

MATLAB contains functions allowing the determination of the mini-
mum set of parameters (up to five) for a known expression. This is based
on the Nelder–Mead simplex method, wherein a solution for the expression
for an initial set of parameters is determined. The parameters are then varied
slightly and the expression is reevaluated; if the expression reduces the value
of the expression, then they are adopted. By repeating this procedure, the
values of the parameters are gradually moved as the program iteratively
searches for the best match, until an answer within the appropriate tolerance
is found.

Where the aim is to determine the best fit to a set of experimental data
rexpt, then the function to be minimized is the error between the experimental
and model data rmodel, such that the best fit in the following expression is met:

(11.12)

This finds the lowest error value from the initial starting point, and hence
the ideal solution. However, care must be taken where values may exist that
are local minima; parameter sets that produce a value that has low error but
not the lowest that can be found. This is shown in Figure 11.4; as the para-
meters are swept along the x-axis, the error reduces to a local minimum but
then rises before descending to the true minimum value. Note also that the
errors between experimental and simulation data may be such that the error
might be impossible to minimize to the required tolerance. Where this is the
case, it is important to set a maximum number of iterations that the minimi-
zation routine will execute before returning an answer.

r rt i model i
i

exp ω ω( ) − ( )( ) =∑ 2
0
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In most early versions of MATLAB, the fmins function was used to
determine the set of parameters in a given expression by the Nelder–Mead
method; an example of this is shown in the following section. However, more
recent versions have also included a newer version, called fminsearch,
which the readers may wish to investigate if creating their own programs
to perform best-fit analysis.

11.8 MATLAB in time-variant field analysis
As seen in the previous chapter, in order to determine the dielectrophoretic
force, traveling wave dielectrophoretic force, and electrorotational torque in
circumstances where there are more complex phase relationships present, it
is necessary to determine the exact magnitude and phase of the electric field
across the solution space. The simplest and most accurate method of doing
this in circumstances where numerical (rather than analytical) modeling
methods are used is to perform simulations at a number of snapshots, each
with the phased potentials advanced by a different amount, and then these
data are analyzed to determine the exact value at each point.

This can be achieved by using a series of simulations whose phase
relationships are equal. When placed into a three-dimensional matrix (with
two dimensions representing the plane in which the simulation result is
obtained, and the third indicating time), analyzing a single line along the
time axis gives an indication of the variation in potential at a single point.
The nature of the electric field is such that although the magnitude and phase
relationship in the electric field in all three cardinal directions may vary
considerably, the form of the electric field in each direction is sinusoidal.
Thus, by organizing the data in this way it is possible to use a minimization
routine of the type just described to find the magnitude and phase of each
of these sinusoids. In order to do this, we need to use a function that
determines the error between a sine wave of arbitrary magnitude and phase,

Figure 11.4 When using best-fit algorithms, care must be taken to avoid local minima.
These are solution sets where any small variation causes an increase in error, and which
therefore appear to be the lowest error solution. However, changing the parameter set
more extensively may give a more accurate solution (with an even lower error) if
the local hump can be overcome.
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and the data generated by the simulation. This can be done using a function;
similar to the m-files described previously, a function can be treated as if it
were a MATLAB command, complete with variable passing (that is, a number
within brackets that the function uses). A function to find this phase would
look like this:

function y = phasefind(ing)

global dummy

mag = abs(ing(1));

phase = ing(2);

errorterm = 0;

for i = 1:36

errorterm = errorterm +
(dummy(i)- mag*cos((((i-1)*10)-phase)/57.3))^2;

end

y = errorterm;

This passes a two-value matrix called ing to the function, the first being the
magnitude of the arbitrary sine wave and the second being the phase
advance. For those given values, a sine wave is generated, and the values
for the 36 phased simulations are subtracted from that sine wave. The total
difference between the arbitrary sine wave and the simulation data at that
point is calculated, and that value is returned when the function is used.
The command global indicates that the value dummy is the one used in the
previous part of the program. The function would then be called from within
another routine that would assemble the matrices from the data sets. This
program would contain parts looking somewhat like this:

x = matrixsize(1);

y = matrixsize(2);

for jx = 1:y

for ix = 1:x

a = ix

b = jx

dummy = rex;

m = .01;
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p = 180;

ing = [m; p];

result = fmins('phasefind',ing,options)

magx(ix,jx) = abs(result(1));

px(ix,jx) = result(2);

dummy = rey;

m = .01;

p = 180;

ing = [m; p];

result = fmins('phasefind',ing,options)

magy(ix,jx) = abs(result(1));

py(ix,jx) = result(2);

dummy = rez;

m = .01;

p = 180;

ing = [m; p];

result = fmins('phasefind',ing,options)

magz(ix,jx) = abs(result(1));

pz(ix,jx) = result(2);

end

end

The first part of this program determines the size of the matrix of data points,
such as the 40 × 40 matrix of data points used to describe the area simulated
in the electrorotation example in Chapter 10. The program then loops around
two nested loops, with one moving the point of examination from row to
row, the other from column to column. For each point in that matrix, starter
values of magnitude (m) and phase (p) are combined into a two-element
matrix ing. This then uses the fmins command to find the minimum value
of error in the routine phasefind described above. This returns another
two-element matrix containing the magnitude and phase of the sine wave
that best fits the simulation data, which are stored in matrices corresponding
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to the position in the original simulation array. This returns six matrices, one
each for the magnitudes and phases in the x, y, and z directions. Note the
use of the term dummy; before the determination of the magnitude and phase
for any given electric field data set, the variable dummy is set equal to that
data set. By doing this and changing the value contained within the dummy
variable, it is possible to use the same function for a number of different
data sets. Note also the use of the abs command; this finds the absolute
value (i.e., no sign information) of the following variable. The term options
contains variables that are important for the minimization routine, specifying
the tolerances to which the minimization routine must determine the magni-
tude and phase before returning the resultant parameters.

11.9 Other MATLAB functions
This chapter has shown how to use some of the functions in MATLAB for data
analysis and modeling parameters such as the Clausius–Mossotti factor, as well
as some dynamic analysis. However, there is an extensive number of other
functions that are of direct benefit to the electromechanic seeking new ways
of analyzing data. Of particular use are the functions for two-dimensional data
display (e.g., the plots of electric field in Chapter 4, or rotational torque in
Chapter 10), three-dimensional data display (see the magnitude and phase
plots of the electric field over traveling wave electrodes in Chapter 8, or the
protein crossover responses in Chapter 6), and vectors (such as the plot of
traveling wave forces in Chapter 8); these were performed by importing the
data from experiments or simulation programs and converting them into
data matrices for analysis. Similarly, there are a number of tools for data
analysis, such as filters and methods for producing planes of data from
scattered points. Again, the surface of experimentally acquired protein cross-
over data in Chapter 6 gives an example of this. Finally, there are functions
for animating data output, which can be of tremendous benefit when analy-
zing dynamic electric fields, though obviously examples of this cannot be
included in this book.

Note also that the MATLAB language is not the only tool for performing
analyses such as these; there are a number of commercially available alterna-
tives, or the programs can be coded directly into a programming language.
This is left to the user’s discretion (and wallet) to decide.
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appendix A

A dielectrophoretic rotary 
nanomotor: a proposal

A.1 Electrokinetic nanoelectromechanical systems
As has been stated throughout this book, electrokinetic forces have a wide
range of applications on the nanometer scale. However, they may also have
potential as a method of actuation in nanometer-scale motor systems. There
is a great deal of interest in the production of nanomechanical systems
(NEMS), electromechanical equivalents of larger moving devices, but repli-
cated on the nanometer scale. At present, most NEMS research is hypothetical
(e.g., Drexler1), since electromechanical fabrication technology is only now
beginning to be capable of constructing on the micrometer scale. However,
we have the theory available to at least model how such devices might behave
and how they might be actuated. In this appendix, we will examine the
possibilities of developing a dielectric motor2 using dielectrophoresis as a
means of motor actuation and stabilization.

The rotary motor is perhaps one of the simplest NEMS devices. Rotary
motor devices were among the first powered machines, and one of the first
challenges to microengineers laid down by Richard Feynman in his talk
“There’s Plenty of Room at the Bottom”3 was the construction of an electric
motor with a maximum length of no more than 400 µm, for which a $1000
prize was offered. There even exists a biological nanomotor in nature; flagellate
bacteria move by rotating their corkscrew-like tails (flagella), powered by a
protein-based rotary motor.

In order to examine how AC electrokinetics might contribute to this field,
we shall examine the construction and performance of a hypothetical AC
dielectric nanomotor. The idea of electrokinetically actuated motors is not
new; in his follow-up talk, “Infinitesimal Machinery,”4 Feynman described an
idea for an electrostatically actuated, synchronous motor whose operation is
similar in principle to the stacked ratchet particle separator described in
Chapter 8. The motor described was eventually built, tested, and compared
to an electrokinetic version using electrorotation to drive the rotor and
dielectrophoresis to hold it in place, by Fuhr et al. in 19925 (see also Hagedorn

© 2003 by CRC Press LLC



298 Nanoelectromechanics in Engineering and Biology

et al.6 and Müller et al.7). The motors demonstrated used a variety of flat rotors
trapped within quadrupolar electrode arrays; both rotor disks and stator
electrodes were built using conventional planar photolithographic techniques,
and the rotors were of the order of 100 µm across.

We can take this concept and shrink it down to the nanometer scale,
considering how such a device would perform if the rotor were replaced by a
nanofiber of some kind. The proposed nanomotor, in order to keep the dimen-
sions low, should ideally consist of more than just thin disks in an electric
field generated by thin electrodes. Since we are speaking of a hypothetical
device, we can examine the performance of a three-dimensional structure.

Such a device might be constructed as shown in Figure A.1. The rotor is
a nanofiber enclosed within four electrodes that together form a quadrupolar
electrode array. Since the rotor is to be held in place by negative dielectro-
phoresis, it will need to be constructed of an insulating material and sur-
rounded by a more polarizable material (such as water). The shape of the
electrodes is, to a degree, arbitrary, but simulation studies of planar electrodes8

have shown that electrodes of a truncated pyramid design generate a relatively
high torque per unit applied voltage, and a large field gradient near the elec-
trode edges (due to the presence of sharp corners between the electrode faces).

A.2 Calculation of motor performance
Unlike the ellipsoids we have examined so far, there is no analytical solution
to the induced dipole moment in a rod held perpendicular to an applied
electric field. In previous chapters we have seen that, where it is necessary
to determine the dielectrophoretic forces on rod-shaped particles such as
tobacco mosaic viruses,9 we can approximate the force by considering the
rod as being a prolate ellipsoid of similar dimensions. However, we can

Figure A.1 A schematic of the nanomotor described here. Four truncated-prism
electrodes (the stator) surround a central nanofiber (rotor). The electrodes are
energized by potentials in quadrature, such that the phase of the wave on each
electrode leads its clockwise neighbor by 90º.
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improve our approximation in the case considered here: when the rod is
suspended with its axis orthogonal to the plane of the rotating electric field,
the dipole moment is not concentrated at a point on the shortest circum-
ference of the ellipsoid, but would in fact consist of charge accumulated
along the length of the rod. We can take advantage of this by considering
the rod as consisting of a large number of very thin disks held within the
field and stacked one upon the other. We can then integrate along the rod
to determine the total dielectric response. The flat disk is the limit for zero
thickness of an oblate ellipsoid, for which an analytical solution does exist.
These possibilities are shown schematically in Figure A.2.

However, the approximation only holds if the axis of rotation of the disk
(and hence, the rod) is indeed at 90º to the plane of rotation of the electric
field; we can use the prolate ellipsoid model to confirm that the dielectric
dispersion along the length of the rod (above which the rod will align perpen-
dicular to the field) is approximately half the frequency of the dispersion along
the minor axis if the long axis is double the length of the short one. Since we
are principally concerned with the situation where even the short axis has
undergone dispersion and is being repelled, the approximation holds and we
may proceed. In order to ensure this is the case, the motor would need to be
much longer than its width, with axis-to-length ratios of 10:1 or more.

It is known from Chapter 2 that the electric field induced in an ellipsoid
exposed to electric field vector E applied along axis x is given by

(A.1)

Figure A.2 In order to assess the performance of the motor, we can use two approxi-
mations for the cylindrical motor, either a prolate ellipsoid (left) or a stacked series
of parallel flat disks (right).

E
E

x
m

m x p mA
=

+ ( )
ε

ε ε ε

*

* * *

© 2003 by CRC Press LLC



300 Nanoelectromechanics in Engineering and Biology

where Ax is the depolarization factor along axis a, and the subscripts m and
p refer to the medium and particle, respectively. As described in Chapter 5,
there are three depolarization factors Ax, Ay, Az, one for each axis.

If we consider the case of an electric field applied along the plane of an
infinitesimally thin disk (let this be along axis x), then the lengths across axes
a and b are equal, and along axis c tends to zero. We can assign these
dimensions values a, a, and δc, respectively. It can be shown10,11 that the
depolarization factors Ax, Ay, and Az will have values of 0.5, 0.5, and approxi-
mately zero.

The induced polarization P per unit volume is given by the expression:

(A.2)

where the induced dipole moment for our example is given by

(A.3)

From this, the polarizability can be determined thus,

(A.4)

Combining Equations A.1, A.3, and A.4, we obtain

(A.5)

(A.6)

We can integrate this along axis c to determine the net polarizability of a rod
composed of many such circular elements, giving a net polarizability:
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Thus the total induced dipole moment peff due to applied field E is given by

(A.9)

From Chapter 2, we know that electrorotational torque is given by the
expression:

(A.10)

Then the net rotational torque along the rod is given by the expression

(A.11)

The dielectrophoretic force is given by the expression

(A.12)

(A.13)

Note that for both dielectrophoresis and electrorotation, the frequency
response of the motor is governed by a relationship between the complex
permittivities of the particle and medium that is slightly different from the
Clausius–Mossotti factor:

(A.14)

In order for the rotor to remain suspended by dielectrophoretic force, it is
important that the rotor has a lower complex permittivity than the medium
at the frequency of operation. This means that it cannot be used in either a
vacuum or in an ordinary gas, as these have near-unity permittivities and
very low conductivities. This in turn means that the motor can only be
operated in a liquid, which potentially limits the applications to which the
motor can be put. Another possibility may be that the rotor could be sus-
pended within a low-pressure plasma (conducting gas), which may enable
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it to be repelled due to the conductivity of the gas increasing the polariz-
ability of the plasma by a sufficient amount to cause the rotor to be repelled.
If the motor were to be developed further, this is a possibility that might be
explored, since it would dramatically decrease the viscous drag (and hence
increase the maximum velocity of the rotor), allowing it to be used in non-
aqueous applications such as in space science.

A.3 Theoretical limits of motor performance
If we are to suspend our rotor in water, then its ultimate performance will
be limited by the fact that we cannot apply a larger electric field across the
chamber than the dielectric breakdown field of water (at which point current
will conduct across the chamber), of about 20 MV m–1 (rms). However, the
electric field is also closely related to the torque we can gain from the device.

We can explore the scaling factors involved in the performance of the
motor from Equation A.11. For a given frequency — that is, a constant value
of the factor expressed in Equation A.14 — the torque is proportional to the
following variables:

(A.15)

If we consider the rotation chamber as enclosing a central region across
which the electric field is approximately uniform and equal to the potential
on opposing electrodes divided by the distance between those electrodes,8
then we can replace the E term with:

(A.16)

where k is the ratio between the diameter of the rotor and the distance between
opposing electrodes. Substituting Equation A.16 into Equation A.15 produces

(A.17)

This indicates that the torque generated by the motor is not related to the
diameter of either the rotor or stator, only the length of the rotor and the
ratio of rotor and stator size. However, the maximum value of E is limited
by the dielectric breakdown condition. If this is applied, then for a fixed,
maximum threshold value of E dictated by Equation A.16 for defining maxi-
mum field for any given set of dimensions, we find the limits on motor
performance are

(A.18)
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indicating that the key factor in torque generation is the volume of the rotor,
and the value of the applied potential is proportional to the diameter of the
stator chamber.

However, in nanomotor design these are conflicting criteria — it is pref-
erable to have a large torque, small rotor, and low driving voltage. Perhaps
one strategy toward design is to define a supply voltage, which in turn
defines a value of a, and then use the variation in h to adjust maximum
motor torque. The value of k should be as near unity as possible — i.e., the
rotor should fill as much of the chamber as possible — but work by Hughes8

indicates that the maximum ratio is about 1.5:1.
An important consideration here is that we cannot exceed the dielectric

breakdown voltage of the medium — this is the electric field that, when
applied, causes the material (in this case, the suspending medium) to become
conductive. This places a constraint on the electric field that can be applied
across a given gap, and hence the maximum torque that can be generated
in accordance with Equation A.18. A graph of the maximum torque gener-
ated by a motor with 1-µm long rotor shaft is shown in Figure A.3, with the
values that break this rule removed from the graph.

In order to examine the frequency-dependent parameters of torque and
force generation, we can consider a numerical example. Consider then an
electrode chamber (stator) 150 nm in diameter driven by a 1 Vrms rotating
potential. The rotor at the center of the chamber is an insulating nanofiber
100-nm in diameter 1-µm long and has an internal relative permittivity of
2.55 and net effective conductivity (including both surface and internal

Figure A.3 A graph of the variation in torque developed by a nanomotor 1 µm long,
with rotor radius a and applied root mean square (rms) potential V, in a stator
chamber 1.5 times wider than the rotor. As can be seen, the torque generated increases
with applied potential and is independent of rotor radius; however, the limitation
that the electric field in the chamber cannot exceed the electrical breakdown condi-
tions of water restricts the maximum torque that can be developed by small rotors.
Combinations of values that break this condition are not illustrated.
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components, as discussed in Chapter 4) of 10 mS m–1. The rotor is suspended
in water (conductivity 1 mS m–1, relative permittivity 78). By analyzing this
motor using a finite element model, we find that the electric field strength
across the volume occupied by the rotor is approximately 1.5 × 107 V m–1

and that the electric field gradient between the rotor and the electrodes is
1.33 × 1021 V2 m–3.

If we substitute these figures into Equations A.11 and A.13, we can
determine the frequency spectrum for both the torque and stabilizing force
exerted on the motor. These are shown in Figures A.4 and A.5, respectively.
As can be seen, the peak torque generated by the motor is 1.3 × 10–15 Nm in

Figure A.4 The frequency-dependent electrorotational torque induced in a 100-nm
diameter, 1-µm long rotor under the conditions described in the text.

Figure A.5 The dielectrophoretic forces acting between a 100-nm diameter, 1-µm long
rotor and the stator electrodes under the conditions described in the text. At frequencies
above 6 MHz, the rotor experiences negative dielectrophoretic force and will be electro-
statically suspended in the center of the chamber, removing the need for bearings.
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a frequency window between 2 and 3 MHz. The peak force propelling the
rotor to the center of the motor is approximately 9 nN at frequencies above
approximately 6 MHz. Combining these, we can see that the optimum con-
dition for the motor is to generate torque between 0.01 and 1 × 10–15 Nm by
varying the applied frequency between 5 Mhz and 50 MHz. Control over
torque below 0.1 × 10–15 Nm can of course be achieved by the application of
higher frequencies. Under these operating conditions, the stabilizing dielec-
trophoretic force does not drop below 5 nN.

For any moving object in a liquid, there will be a maximum velocity at
which the particle can move (its terminal velocity). Unlike ellipsoids, it is
not possible to derive an analytical solution for the viscous drag on a rotating
cylinder, and we cannot use our flat-plane approximation since the effect of
drag occurs across the whole surface of the shape. However, we can still use
the approximation of a prolate ellipse to obtain an order-of-magnitude
assessment. The steady state rotation rate of the ellipse can be found by
calculating the viscous frictional torque of the particle. It depends on the
rotation rate of the ellipsoid, and steady state rotation rate is given by

(A.19)

where Df is the hydrodynamic resistance to rotation of the particle around
the z-axis, given by12

(A.20)

were η is the viscosity of the medium, vc is the volume of the object, a0 and
b0 are the x and y dimensions of the particle, respectively, and A0x and A0y

are the depolarization factors of the particle along the x- and y-axes. However,
this equation is dependent on the rotor being able to move freely without
viscous drag effects from close proximity to other objects, whereas the rotor
here is nanometers away from the electrodes that form the stator. Second,
the equations do not take into account any heating effects due to very high
rotation rates. If we use Equations A.19 and A.20 to determine the maximum
rotation rate of the rotor by approximating it to a 50-nm minor radius and
500-nm major radius, we arrive at a value of maximum rotation rate of
approximately 500 million revolutions per second, assuming that the flow
around the surface is laminar (i.e., not turbulent). This is a very high value
and completely unrealistic — rotation at this rate would almost certainly
cause the suspending medium to evaporate. However, this does indicate that
terminal velocity due to friction would not impair the use of the motor. This
would not be a major problem for fluid applications, which would comprise
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the majority of applications to which such a motor might be put. In such
cases, the ability to generate more torque (and hence to move larger masses
at slower speeds) will be more important than motor rotation rate.

As can be seen from Figure A.4, at low frequencies the rotor experi-
ences dielectrophoretic attraction to the rotor. Although this does not play
a role in torque generation, it may be useful in parking the rotor so that,
when the motor is not is use, neither the rotor, or the device to which it
is attached is displaced by, for example, the action of Brownian motion.
In this manner it could be seen as some form of brake, though conventional
braking is not necessary, since the action of viscous drag will mean that
following the removal of the applied field, the rotor will come to a halt in
fractions of a second.

A second application of positive dielectrophoresis in the motor is in its
construction. As we have seen in Chapter 4, the application of first positive
dielectrophoresis then negative dielectrophoresis can be used to trap single
93 nm particles in field nulls, and a similar regime could be used here in
order to attract a rotor, constructed separately to the stator, into the center
of the stator. This is important since the rotor cannot be constructed from
the same material as the stator; the former needs to be insulating (in order
to ensure that conditions exist to allow negative dielectrophoresis), whereas
the stator electrode must be conducting. Therefore, both must be constructed
of different materials, separately, and brought together during assembly.

A.4 Digital electronic control of torque generation
In conventional electrorotation applications, electrodes are usually arranged
such that three or more electrodes are used to generate a rotating electric
field by phasing a 360º sinusoid spatially around the electrode array; for
example, a chamber with three electrodes would require a generator that
provided 0º, 120º, and 240º phase shifts to the electrodes. A four-electrode
array would require 0º, 90º, 180º, and 270º phase shifts to successive elec-
trodes. This sequence of phase shifts creates the effect of a continuously
rotating sinusoidal electric field. The greater the number of electrodes, the
more complicated the generation system required, but the less distortion
observed in the rotating sinusoid. In the literature, the most common number
of electrodes used is four, due to the relative ease of phase shifting 90º using
devices such as all-pass filters.13

It has been demonstrated by Gimsa et al.14 that square-wave, rather than
sinusoidal, signals can be used effectively in the activation of electrodes for
electrorotation; the effect is equivalent to the summation of torques induced
by the fundamental and higher frequency partials. This scheme is not widely
used since the majority of electrorotation work is concerned with the
determination of the frequency-dependent properties of complex particles
such as cells. However, where the purpose is the manipulation of particles
in a controlled way, square wave excitation has been shown to be highly
effective. In the case of the motor described here, the higher frequency
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components assist by slightly increasing the net dielectrophoretic force hold-
ing the rotor in place. The torque is largely unaffected since only the lowest
components above the fundamental are responsible for generating torque
(as the torque generated diminishes rapidly at applied field frequencies a
decade above the resonant peak), and any variation from the torque-frequency
characteristic shown in Figure A.4 can be accounted for via a frequency-torque
lookup table.

The principal advantage of the application of square wave signals over
sinusoids is that it allows direct control of the generation of electric signals
by a computer. The motor presented here further aids this integration, since
the voltages required for motor activation are sufficiently small to be gener-
ated directly by computer devices integrated around the motor itself. In a
complete electronic system including both the motor and control circuitry,
a controlled sequence of pulses, with duration controlled by a system clock,
could be used to achieve effective control over the motor. Variation in fre-
quency can be achieved by altering the number of system clock pulses in
the electrode on and electrode off states, that is, by varying the length of a
series of 1s followed by an equal number of 0s. As shown in Figure A.6,
where there are four phase-shifted square wave signals, A and B are the
reverse of C and D, with one having a high signal when the other is low.
Therefore, we can produce this circuit using only the A and B signals that
are cycled through in the order shown in the table, with C and D constructed
by inverting A and B.

We can construct such a device using the circuit shown in Figure A.7.
Opposing phases (0º/180º and 90º/270º) can be achieved with NOT gates. If
a further NOT gate is applied to the signals powering opposing electrodes,
then the direction of rotation is reversed; a switch to connect the additional
inverter into the circuit (the circle containing an arrow) allows for changing
direction. The torque developed by the motor is well defined by Equation A.11
and shown in Figure A.4, from near zero to near peak, allowing straightforward
control of frequency via a lookup table. A further advantage is that since there

Figure A.6 The proposed motor could be driven using four square wave signals, 90º
phase shifted. These are equivalent to the output from two binary counters sequenced
as shown in the table, with C and D being the inverse of A and B (or in logic terms,
A and B).
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is no requirement for the generation of multiple phase-locked analogue sinu-
soidal signals, any number of field-generating electrodes may be used. Four
have been considered here, but this is arbitrary; the larger the number of
electrodes used, the less distortion occurs in the rotation sinusoid and the lower
the potential between adjacent electrodes. The example of torque generation
in Section A.3 uses voltages equivalent to a controlling signal with VOFF = 0 V
and VON = 2.8 V, similar to the core voltages of modern microprocessors.

A.5 Nanomotor applications
As stated previously, one of the original feats of microengineering set by
Feynman was the construction of a micrometer-scale electric motor, work
that we can trace down a hypothetical lineage to the motor presented here.
But we could ask — what use is such a device? When seeking applications,
we are immediately restricted by the requirement that the rotor be sub-
merged in water in order for dielectrophoresis to overcome the need for
bearings. While this appears limiting, consider that the majority of cases
where a motor may be needed on this scale may well be in aqueous solutions.
In gas or vacuum environments, conventional electrostatic interactions (such
as Coulombic attraction/repulsion) can be used to move objects, so that
motors of this kind are not required.

In seeking ways of using our device, we can look for parallels in nature.
Although most locomotion in nature is performed by the contraction of
muscles and such, there does actually exist a form of naturally occurring
rotary motor of the kind described here. These motors — consisting of
nanoscale rotors and stators — are the method by which bacteria such as
Escherichia coli move around. The bacteria have long, corkscrew tails extend-
ing from their bodies, and these are rotated by means of a bacterial rotary
motor in a manner similar to a boat’s propeller.

The E. coli motor is a complex arrangement of proteins surrounding a
protein rotor.15 The whole arrangement (excluding the propeller) is about
100 nm long and 50 nm in diameter. The motor is driven by the movement
of protons from the outside of the cell to the inside, attracted by a 100 mV

Figure A.7 The circuit by which the motor control could be implemented. The outputs
of A and B are inverted to produce C and D, and an additional inverter can be
switched on one line to reverse the direction of the motor.
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potential difference. However, the process by which this works is not under-
stood. Theories exist regarding the interaction between the protons and
charges on the rotor; one theory suggests that the movement of protons
across the membrane and through the protein stator attracts stripes of charge
on the rotor causing a torque to be induced by Coulombic attraction; this is
shown schematically in Figure A.8. Other theories exist where the
torque-generating proteins change shape in the presence of the proton, with
these conformational changes in stator proteins causing the movement of
the rotor from one unit to the next. It has even been suggested that the motor
may operate using the principles of thermal ratchets, which are described
in more detail in Chapter 8. However, it is known that, whatever mechanism
exists for imparting torque, there are approximately 2000 of them on a single
motor. This means that the motor works like an electric stepper motor; rather
than imparting continuous rotational motion, each torque generator is only
responsible for turning the rotor through a fraction of a degree per step.

Although we do not know how the bacterial motor operates, we are
able to measure its mechanical performance. There are a number of ways
in which this can be done, including the tethering of the rotor to a surface
and measuring the rotation rate of the cell body16 and by using dielectro-
phoresis to form a balance force to measure the output of the motor.17 The
total torque produced by a bacterial motor is approximately 1.5 × 10–15 Nm,
comparable with our motor described above.

It has been speculated that bacterial motors could be harnessed in order
to meet nanotechnological needs, with researchers attaching microengineered

Figure A.8 A schematic of one suggestion of the function of a molecular motor. A
proton is propelled along the stator, moving along a diagonal stripe of negative
charge. As the charge moves forward, Coulombic interactions between the proton
and negative charge induces a torque in the rotor, causing it to rotate. It is known
that there are approximately 2000 torque-generating units, corresponding to approxi-
mately 2000 charge stripes and corresponding proton pathways.
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rotors to swimming bacteria.18 As such, it is worthwhile to compare the
applicability of the dielectric motor to the same purpose. The biological
nanomotor is somewhat (though not vastly) smaller than the dielectro-
phoretic motor, and is very efficient; the torque generated per unit charge
(in this case, the protons) is very high. However, the dielectrophoretic motor
also has advantages; as we have seen, the device is easy to integrate into
computer control, whereas the bacterial motor is far more complex and offers
only a small number of constant rotation rates. Similarly, the bacterial motor
is designed to fit in the bacterial membrane and is therefore difficult to
position and function within a machine or other device, whereas the dielectro-
phoretic motor can be fabricated by conventional semiconductor methods.

Since such motors exist in nature, perhaps one application might be the
propulsion of independent devices within, for example, the blood stream
or a water supply. Perhaps the most commonly described ideal of nano-
technology is that of ultrasmall robots traveling the blood stream and per-
forming clinical functions from within the body. The locomotion of
micrometer-scale devices around the body for clinical applications was
described by Feynman.3,4 Although the idea has formed the basis of many
flights of fancy — particularly in the description of such robots performing
delicate surgery on DNA within cells, or eliminating cancer cells
one-by-one, there may be more realistic applications to which swimming
robots could be put. For example, localized drug delivery or arterial plaque
removal could be achieved by relatively simple swimming machines, with-
out a requirement for onboard computing. The machines would simply
move when exposed to an external radio field used to power the devices,
which could be modulated to switch simple tasks (such as releasing the
drug or activating the plaque removal device, probably also actuated using
the same kind of motor). Positional and directional control could be applied
merely by moving and changing the orientation of the control coil, in the
way that a magnet can be made to move across a sheet of paper by moving
another magnet on the other side of the sheet.

A.6 The way forward?
In this book we have journeyed from the plains of theories a hundred years
old, climbed the mountain of nanomechanics, traveled through the analysis
of simple particles and through the manipulation of viruses and molecules
and construction on the nanoscale and particle separation, and we have
reached the pinnacle of the mountain of what can be achieved today. In this
Appendix, we have followed an ancient proverb: “when you reach the top
of the mountain, keep climbing.” We do not know where we go to from here,
but the climb goes on.

In this book, we have examined how the manipulation of particles might
revolutionize everything from electronics to medicine — and demonstrated
that such advances are perhaps not as disparate as they appear. This field is
expanding so rapidly that the direction of research cannot be predicted. Some
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applications, such as those in medicine and biotechnology, are taking place
within a well-established field; others, such as nanotechnology and nanoengi-
neering, are, at best, in their infancy. As such, when some future author comes
to write on the impact of electrostatics in nanotechnology, we can barely
imagine what might be written, whereas the study of colloids, viruses, and
proteins builds on decades of electric methods of biological and chemical
analysis of cells and other biological materials. However, we can be sure that,
whatever the applications are, the future looks exciting.
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