
 

NANO- AND
MICROELECTROMECHANICAL
SYSTEMS

 

Fundamentals of
Nano- and Microengineering



 

A book in the

 

Nano- and Microscience, Engineering,
Technology and Medicine Series

 

NANO- AND
MICROELECTROMECHANICAL
SYSTEMS

 

Fundamentals of
Nano- and Microengineering

 

Sergey Edward Lyshevski

 

CRC Press
Boca Raton London New York Washington, D.C.



 

Library of Congress Cataloging-in-Publication Data

 

Lyshevski, Sergey Edward.
Nano- and microelectromechanical systems : fundamentals of nano- and

microengineering / Sergey Edward Lyshevski.
p. cm. -- (Nano- and microscience, engineering, technology, and medicine series)
Includes index.
Includes bibliographical references and index.
ISBN 0-8493-916-6 (alk. paper)
 1. Microelectromechanical systems. 1. Title. II. Series.

TK7875 .L96 2000
621.381—dc201 00-057953

CIP

 

This book contains information obtained from authentic and highly regarded sources. Reprinted material
is quoted with permission, and sources are indicated. A wide variety of references are listed. Reasonable
efforts have been made to publish reliable data and information, but the author and the publisher cannot
assume responsibility for the validity of all materials or for the consequences of their use.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, microfilming, and recording, or by any information storage or
retrieval system, without prior permission in writing from the publisher.

The consent of CRC Press LLC does not extend to copying for general distribution, for promotion, for cre-
ating new works, or for resale. Specific permission must be obtained in writing from CRC Press LLC for
such copying.

Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431.

 

Trademark Notice:

 

 Product or corporate names may be trademarks or registered trademarks, and are
used only for identification and explanation, without intent to infringe.

 

© 2001 by CRC Press LLC

 

No claim to original U.S. Government works
International Standard Book Number 0-8493-916-6

Library of Congress Card Number 00-057953
Printed in the United States of America 1 2 3 4 5 6 7 8 9 0

Printed on acid-free paper



To my family



 PREFACE

This book is designed for a one-semester course on Nano- and
Microelectromechanical Systems or Nano- and Microengineering. A typical
background needed includes calculus, electromagnetics, and physics. The
purpose of this book is to bring together in one place the various methods,
techniques, and technologies that students and engineers need in solving a
wide array of engineering problems in formulation, modeling, analysis,
design, and optimization of high-performance microelectromechanical and
nanoelectromechanical systems (MEMS and NEMS). This book is not
intended to cover fabrication aspects and technologies because a great number
of books are available. At the same time, extremely important issues in
analysis, design, modeling, optimization, and simulation of NEMS and
MEMS have not been comprehensively covered in the existing literature.

Twenty first century nano- and microtechnology revolution will lead to
fundamental breakthroughs in the way materials, devices, and systems are
understood, designed, function, manufactured, and used. Nanoengineering
and nanotechnology will change the nature of the majority of the human-
made structures, devices, and systems. Current technological needs and
trends include technology development and transfer, manufacturing and
deployment, implementation and testing, modeling and characterization,
design and optimization, simulation and analysis of complex nano- and
microscale devices (for example, molecular computers, logic gates and
switches, actuators and sensors, digital and analog integrated circuits, et
cetera). Current developments have been focused on analysis and synthesis of
molecular structures and devices which will lead to revolutionary
breakthroughs in the data processing and computing, data storage and
imaging, quantum computing and molecular intelligent automata, etc.
Micro- and nanoengineering and science lead to fundamental breakthroughs
in the way materials, devices and systems are understood, designed,
function, manufactured, and used. High-performance MEMS and NEMS,
micro- and nanoscale structures and devices will be widely used in
nanocomputers, medicine (nanosurgery and nanotherapy, nonrejectable
artificial organ design and implants, drug delivery and diagnosis),
biotechnology (genome synthesis), etc.

New phenomena in nano- and microelectromechanics, physics and
chemistry, benchmarking nanomanufacturing and control of complex
molecular structures, design of large-scale architectures and optimization,
among other problems must be addressed and studied. The major objective
of this book is the development of basic theory (through multidisciplinary
fundamental and applied research) to achieve full understanding, optimize,
and control properties and behavior of a wide range of NEMS and MEMS.
This will lead to new advances and will allow the designer to
comprehensively solve a number of long-standing problems in analysis and



control, modeling and simulation, structural optimization and virtual
prototyping, packaging and fabrication, as well as implementation and
deployment of novel NEMS and MEMS. In addition to technological
developments and manufacturing (fabrication), the ability to synthesize and
optimize NEMS and MEMS depends on the analytical and numerical
methods, and the current concepts and conventional technologies cannot be
straightforwardly applied due to the highest degree of complexity as well as
novel phenomena. Current activities have been centered in development and
application of a variety of experimental techniques trying to attain the
characterization of mechanical (structural and thermal), electromagnetic
(conductivity and susceptibility, permittivity and permeability, charge and
current densities, propagation and radiation), optical, and other properties of
NEMS and MEMS. It has been found that CMOS, surface micromachining
and photolithography, near-field optical microscopy and magneto-optics, as
well as other leading-edge technologies and processes to some extent can be
applied and adapted to manufacture nano- and microscale structures and
devices. However, advanced interdisciplinary research must be carried out to
design, develop, and implement high-performance NEMS and MEMS. Our
objectives are to expand the frontiers of the NEMS- and MEMS-based
research through pioneering fundamental and applied multidisciplinary
studies and developments. Rather than designing nano- and microscale
components (integrated circuits and antennas, electromechanical and opto-
electromechanical actuators and sensors), the emphasis will be given to the
synthesis of the integrated large-scale systems. It must be emphasized that
the author feels quite strongly that the individual nano- and microscale
structures must be synthesized, thoroughly analyzed, and studied. We will
consider NEMS and MEMS as the large-scale highly coupled systems, and
the synthesis of groups of cooperative multi-agent NEMS and MEMS can be
achieved using hierarchical structural and algorithmic optimization methods.
The optimality of NEMS and MEMS should be guaranteed with respect to a
certain performance objectives (manufacturing and packaging, cost and
maintenance, size and weight, efficiency and performance, affordability and
reliability, survivability and integrity, et cetera).

Nanoengineering is a very challenging field due to the complex
multidisciplinary nature (engineering and physics, biology and chemistry,
technology and material science, mathematics and medicine). This book
introduces the focused fundamentals of nanoelectromechanics to initiate and
stress, accelerate and perform the basic and applied research in NEMS and
MEMS. Many large-scale systems are too complex to be studied and
optimized analytically, and usually the available information is not sufficient
to derive and obtain performance functionals. Therefore, the stochastic
gradient descent and nonparametric methods can be applied using the
decision variables with conflicting specifications and requirements imposed.
In many applications there is a need to design high-performance intelligent
NEMS and MEMS to accomplish the following functions:



• programming and self-testing;
• collection, compiling, and processing information (sensing – data

accumulation (storage) – processing);
• multivariable embedded high-density array coordinated control;
• calculation and decision making with outcomes prediction;
• actuation and control.

The fundamental goal of this book is to develop the basic theoretical
foundations in order to design and develop, analyze and prototype high-
performance NEMS and MEMS. This book is focused on the development
of fundamental theory of NEMS and MEMS, as well as their components
and structures, using advanced multidisciplinary basic and applied
developments. In particular, it will be illustrated how to perform the
comprehensive studies with analysis of the processes, phenomena, and
relevant properties at nano- and micro-scales, development of NEMS and
MEMS architectures, physical representations, structural design and
optimization, etc. It is the author’s goal to substantially contribute to these
basic issues, and the integration of these problems in the context of specific
applications will be addressed. The primary emphasis will be on the
development of basic theory to attain fundamental understanding of NEMS
and MEMS, processes in nano- and micro-scale structures, as well as the
application of the developed theory. Using the molecular technology, one
can design and manufacture the atomic-scale devices with atomic precision
using the atomic building blocks, design nano-scale devices ranging from
electromechanical motion devices (translational and rotational actuators and
sensors, logic and switches, registers) to nano-scale integrated circuits
(diodes and transistors, logic gates and switches, resistors and inductors,
capacitors). These devices will be widely used in medicine and avionics,
transportation and power, and many other areas.

The leading-edge research in nanosystems is focused on different
technologies and processes. As an example, the discovery of carbon-based
nanoelectronics (carbon nanotubes are made from individual molecules) is
the revolutionary breakthrough in nanoelectronics and nanocomputers,
information technology and medicine, health and national security. In
particular, fibers made using carbon nanotubes (molecular wires) more than
100 times stronger than steel and weighing 5 times less, have conductivity 5
times greater than silver, and transmit heat better than diamond. Carbon
nanotubes are used as the molecular wires. Furthermore, using carbon
molecules, first single molecule transistors were built. It should be
emphasized that the current technology allows one to fill carbon nanotubes
with other media (metals, organic and inorganic materials, et cetera).

The research in nano- and microtechnologies will lead to breakthroughs
in information technology and manufacturing, medicine and health,
environment and energy, avionics and transportation, national security and
other areas of the greatest national importance. Through interdisciplinary
synergism, this book is focused on fundamental studies of phenomena and



processes in NEMS and MEMS, synthesis of nano- and micro-scale devices
and systems, design of building blocks and components (which will lead to
efficient and affordable manufacturing of high-performance NEMS and
MEMS), study of molecular structures and their control, NEMS and MEMS
architectures, etc. We will discuss the application and impact of nano- and
micro-scale structures, devices, and systems to information technology,
nanobiotechnology and medicine, nanomanufacturing and environment,
power and energy systems, health and national security, avionics and
transportation.
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CHAPTER  1

NANO- AND MICROENGINEERING,
AND NANO- AND MICROTECHNOLOGIES

1.1. INTRODUCTION

The development and deployment of NEMS and MEMS are critical to the
U.S. economy and society because nano- and microtechnologies will lead to
major breakthroughs in information technology and computers, medicine and
health, manufacturing and transportation, power and energy systems, and
avionics and national security. NEMS and MEMS have important impacts in
medicine and bioengineering (DNA and genetic code analysis and synthesis,
drug delivery, diagnostics, and imaging), bio and information technologies,
avionics, and aerospace (nano- and microscale actuators and sensors, smart
reconfigurable geometry wings and blades, space-based flexible structures, and
microgyroscopes), automotive systems and transportation (sensors and
actuators, accelerometers), manufacturing and fabrication, public safety, etc.
During the last years, the government and the high-technology industry have
heavily funded basic and applied research in NEMS and MEMS due to the
current and potential rapidly growing positive direct and indirect social and
economic impacts.

Nano- and microengineering are the fundamental theory, engineering
practice, and leading-edge technologies in analysis, design, optimization, and
fabrication of NEMS and MEMS, nano- and microscale structures, devices,
and subsystems. The studied nano- and microscale structures and devices
have dimensions of nano- and micrometers.

To support the nano- and microtechnologies, basic and applied research
and development must be performed. Nanoengineering studies nano- and
microscale-size materials and structures, as well as devices and systems, whose
structures and components exhibit novel physical (electromagnetic and
electromechanical), chemical, and biological properties, phenomena, and
processes. The dimensions of nanosystems and their components are 10-10 m
(molecule size) to 10-7 m; that is, 0.1 to 100 nanometers. Studying
nanostructures, one concentrates one’s attention on the atomic and molecular
levels, manufacturing and fabrication, control and dynamics, augmentation and
structural integration, application and large-scale system synthesis, et cetera.
Reducing the dimensions of systems leads to the application of novel materials
(carbon nanotubes, quantum wires and dots). The problems to be solved range
from mass-production and assembling (fabrication) of nanostructures at the
atomic/molecular scale (e.g., nanostructured electronics and actuators/sensors)
with the desired properties. It is essential to design novel nanodevices such as
nanotransistors and nanodiodes, nanoswitches and nanologic gates, in order
to design nanoscale computers with terascale capabilities. All living biological



systems function due to molecular interactions of different subsystems. The
molecular building blocks (proteins and nucleic acids, lipids and
carbohydrates, DNA and RNA) can be viewed as inspiring possible strategy
on how to design high-performance NEMS and MEMS that possess the
properties and characteristics needed. Analytical and numerical methods are
available to analyze the dynamics and three-dimensional geometry, bonding,
and other features of atoms and molecules. Thus, electromagnetic and
mechanical, as well as other physical and chemical properties can be studied.

Nanostructures and nanosystems will be widely used in medicine and
health. Among possible applications of nanotechnology are: drug synthesis
and drug delivery (the therapeutic potential will be enormously enhanced due
to direct effective delivery of new types of drugs to the specified body sites),
nanosurgery and nanotherapy, genome synthesis and diagnostics, nanoscale
actuators and sensors (disease diagnosis and prevention), nonrejectable nano-
artificial organs design and implant, and design of high-performance
nanomaterials.

It is obvious that nano- and microtechnologies drastically change the
fabrication and manufacturing of materials, devices, and systems through:
• predictable properties of nano composites and materials (e.g., light

weight and high strength, thermal stability, low volume and size,
extremely high power, torque, force, charge and current densities,
specified thermal conductivity and resistivity, et cetera),

• virtual prototyping (design cycle, cost, and maintenance reduction),
• improved accuracy and precision, reliability and durability,
• higher degree of efficiency and capability, flexibility and integrity,

supportability and affordability, survivability and redundancy,
• improved stability and robustness,
• higher degree of safety,

• environmental competitiveness.
Foreseen by Richard Feyman, the term “nanotechnology” was first used

by N. Taniguchi in his 1974 paper, "On the basic concept of
nanotechnology." In the last two decades, nanoengineering and
nanomanufacturing have been popularized by Eric Drexler through the
Foresight Institute.

Advancing miniaturization towards the molecular level with the ultimate
goal to design and manufacture nanocomputers and nanomanipulators
(nanoassemblers), large-scale intelligent NEMS and MEMS (which have
nanocomputers as the core components), the designer faces a great number of
unsolved problems.

Possible basic concepts in the development of nanocomputers are listed
below. Mechanical “computers” have the richest history traced thousand
years back. While the most creative theories and machines have been
developed and demonstrated, the feasibility of mechanical nanocomputers is
questioned by some researchers due to the number of mechanical
components (which are needed to be controlled), as well as due to unsolved



manufacturing (assembling) and technological difficulties. Chemical
nanocomputers can be designed based upon the processing information by
making or breaking chemical bonds, and storing the information in the
resulting chemical. In contrast, in quantum nanocomputers, the information
can be represented by a quantum state (e.g., the spin of the atom can be
controlled by the electromagnetic field).

Electronic nanocomputers can be designed using conventional concepts
tested and used for the last thirty years. In particular, molecular transistors or
quantum dots can be used as the basic elements. The nanoswitches
(memoryless processing elements), logic gates, and registers must be
manufactured on the scale of a single molecule. The so-called quantum dots
are metal boxes that hold the discrete number of electrons which is changed
applying the electromagnetic field. The quantum dots are arranged in the
quantum dot cells. Consider the quantum dot cells which have five dots and
two quantum dots with electrons. Two different states are illustrated in
Figure 1.1.1 (the dashed dots contain the electron, while the white dots do
not contain the electron). It is obvious that the quantum dots can be used to
synthesize the logic devices.

Figure 1.1.1. Quantum dots with states “0” and “1”, and “1 1” configuration

It was emphasized that as conventional electromechanical systems,
nanoelectromechanical systems (actuators and other molecular devices) are
controlled by changing the electromagnetic field. It becomes evident that
other nanoscale structures and devices (nanodiodes and nanotransistors) are
also controlled by applying the electromagnetic field (recall that the voltage
and current result due to the electromagnetic field).

1.2. BIOLOGICAL  ANALOGIES

Coordinated behavior and motion, visualization and sensing, motoring
and decision making, memory and learning of living organisms are the results
of the electrical (electromagnetic) transmission of information by neurons.
One cubic centimeter of the brain contains millions of nerve cells, and these
cells communicate with thousands of neurons creating data processing
(communication) networks. The information from the brain to the muscles is
transmitted within the milliseconds, and the baseball and football, basketball,

"1" "1"State "0" State "1"



and tennis players calculate the speed and velocity of the ball, analyze the
situation, make the decision, and respond (e.g., run or jump, throw or hit the
ball, et cetera). Human central nervous system, which includes brain and
spinal cord, serves as the link between the sensors (sensor receptors) and
motors peripheral nervous system (effector, muscle, and gland cells). It
should be emphasized that the nervous system has the following major
functions: sensing, integration and decision making (computing), and
motoring (actuation). Human brain consists of hindbrain (controls
homeostasis and coordinate movement), midbrain (receiving, integration, and
processing the sensory information), and forebrain  (neural processing and
integration of information, image processing, short- and long-term memories,
learning functions, decision making and motor command development). The
peripheral nervous system consists of the sensory system (sensory neurons
transmit information from internal and external environment to the central
nervous system, and motor neurons carry information from the brain or
spinal cord to effectors), which supplies information from sensory receptors
to the central nervous system, and the motor nervous system feeds signals
(commands) from  the central nervous system to muscles (effectors) and
glands. The spinal cord mediates reflexes that integrate sensor inputs and
motor outputs, and through the spinal cord the neurons carry information to
and from the brain. The transmission of electrical signals along neurons is a
very complex phenomenon. The membrane potential for a nontransmitting
neuron is due to the unequal distribution of ions (sodium and potassium)
across the membrane. The resting potential is maintained due to the
differential ion permeability and the so-called Na+ - K+ pump. The stimulus
changes the membrane permeability, and ion can depolarize or hyperpolarize
the membrane resting potential. This potential (voltage) change is
proportional to the strength of the stimulus. The stimulus is transmitted due
to the axon mechanism. The nervous system is illustrated in Figure 1.2.1.

Figure 1.2.1. Vertebrate nervous system: high-level functional diagram
There is a great diversity of the nervous system organizations. The

cnidarian (hydra) nerve net is an organized system of nerves with no central
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control, and a simple nerve net can perform elementary tasks (jellyfishes
swim). Echinoderms have a central nerve ring with radial nerves (for
example, sea stars have central and radial nerves with nerve net). Planarians
have small brains that send information through two or more nerve trunks, as
illustrated in Figure 1.2.2.

Figure 1.2.2. Overview of invertebrate nervous systems

1.3. NANO-  AND  MICROELECTROMECHANICAL SYSTEMS

Through biosystems analogy, a great variety of man-made
electromechanical systems have been designed and made. To analyze, design,
develop, and deploy novel NEMS and MEMS, the designer must synthesize
advanced architectures, integrate the latest advances in nano- and microscale
actuators/sensors (transducers) and smart structures, integrated circuits (ICs)
and multiprocessors, materials and fabrications, structural design and
optimization, modeling and simulation, et cetera. It is evident that novel
optimized NEMS and MEMS architectures (with processors or
multiprocessors, memory hierarchies and multiple parallelism to guarantee
high-performance computing and decision making), new smart structures and
actuators/sensors, ICs and antennas, as well as other subsystems play a critical
role in advancing the research, developments, and implementation. In this book
we discuss optimized architectures, and the research in architecture
optimization will provide deep insights into how intelligent large-scale
integrated NEMS and MEMS can be synthesized.

Electromechanical systems, as shown in Figure 1.3.1, can be classified as
• conventional electromechanical systems,
• microelectromechanical systems (MEMS),
• nanoelectromechanical systems (NEMS).
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Figure 1.3.1. Classification of electromechanical systems

The operational principles and basic foundations of conventional
electromechanical systems and MEMS are the same, while NEMS are
studied using different concepts and theories. In fact, the designer applies the
classical Lagrangian and Newtonian mechanics as well as electromagnetics
(Maxwell’s equations) to study conventional electromechanical systems and
MEMS. In contrast, NEMS are studied using quantum theory and
nanoelectromechanical concepts. Figure 1.3.2 documents the fundamental
theories to study the processes and phenomena in conventional, micro, and
nanoelectromechanical systems.

Figure 1.3.2. Fundamental theories in electromechanical systems
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NEMS and MEMS integrate different structures, devices, and subsystems.
The research in integration and optimization (optimized architectures and
structural optimization) of these subsystems has not been instituted and
performed, and end-to-end (processors – networks – input/output subsystems –
ICs/antennas – actuators/sensors) performance and behavior must be studied.
Through this book we will study different NEMS and MEMS architectures, and
fundamental and applied theoretical concepts will be developed and
documented in order to design next generation of superior high-performance
NEMS and MEMS.

The large-scale NEMS and MEMS, which can integrate processor
(multiprocessor) and memories, high-performance networks and input-output
(IO) subsystems, are of far greater complexity than MEMS commonly used
today. In particular, the large-scale NEMS and MEMS can integrate:
• thousands of nodes of high-performance actuators/sensors and smart

structures controlled by ICs and antennas;
• high-performance processors or superscalar multiprocessors;
• multi-level memory and storage hierarchies with different latencies

(thousands of secondary and tertiary storage devices supporting data
archives);

• interconnected, distributed, heterogeneous databases;
• high-performance communication networks (robust, adaptive intelligent

networks).
It must be emphasized that even the simplest nanosystems (for example,

pure actuator) usually cannot function alone. For example, at least the internal
or external source of energy is needed.

The complexity of large-scale NEMS and MEMS requires new
fundamental and applied research and developments, and there is a critical need
for coordination across a broad range of hardware and software. For example,
design of advanced nano- and microscale actuators/sensors and smart
structures, synthesis of optimized (balanced) architectures, development of new
programming languages and compilers, performance and debugging tools,
operating system and resource management, high-fidelity visualization and data
representation systems, design of high-performance networks, et cetera. New
algorithms and data structures, advanced system software and distributed access
to very large data archives, sophisticated data mining and visualization
techniques, as well as advanced data analysis are needed. In addition, advanced
processor and multiprocessors are needed to achieve sustained capability
required of functionally usable large-scale NEMS and MEMS.

The fundamental and applied research in NEMS and MEMS has been
dramatically affected by the emergence of high-performance computing.
Analysis and simulation of NEMS and MEMS have significant outcomes. The
problems in analysis, modeling, and simulation of large-scale NEMS and
MEMS that involves the complete molecular dynamics cannot be solved
because the classical quantum theory cannot be feasibly applied to complex
molecules or simplest nanostructures (1 nm cube of nanoactuator has thousands



of molecules). There are a number of very challenging research problems in
which advanced theory and high-end computing are required to advance the
theory and engineering practice. The multidisciplinary fundamentals of
nanoelectromechanics must be developed to guarantee the possibility to
synthesize, analyze, and fabricate high-performance NEMS and MEMS with
desired (specified) performance characteristics. This will dramatically shorten
the time and cost of developments of NEMS and MEMS for medical and
biomedical, aerospace and automotive, electronic and manufacturing systems.

The importance of mathematical model developments and numerical
analysis has been emphasized. Numerical simulation enhances, but does not
substitute for fundamental research. Furthermore, meaningful and explicit
simulations should be based on reliable fundamental studies and must be
validated through experiments. However, it is evident that simulations lead to
understanding of performance of complex NEMS and MEMS (nano- and
microscale structures, devices, and sub-systems), reduce the time and cost of
deriving and leveraging the NEMS and MEMS technologies from concept to
device/system, and from device/system to market. Fundamental and applied
research is the core of the simulation, and focused efforts must be concentrated
on comprehensive modeling and advanced efficient computing.

To comprehensively study NEMS and MEMS, advanced modeling and
computational tools are required primarily for 3D+ (three-dimensional
geometry dynamics in time domain) data intensive modeling and simulations to
study the end-to-end dynamic behavior of actuators and sensors. The
mathematical models of NEMS, MEMS, and their components (structures,
devices, and subsystems) must be developed. These models (augmented with
efficient computational algorithms, terascale computers, and advanced
software) will play the major role to simulate the design of NEMS and MEMS
from virtual prototyping standpoints.

There are three broad categories of problems for which new algorithms
and computational methods are critical:
1. Problems for which basic fundamental theories are developed, but the

complexity of solutions is beyond the range of current and near-future
computing technologies. For example, the conceptually straightforward
classical quantum mechanics and molecular dynamics cannot be applied
even for nanoscale actuators. In contrast, it will be illustrated that it is
possible to perform robust predictive simulations of molecular-scale
behavior for nano- and microscale actuators/sensors and smart structures
which might contain millions of molecules.

2. Problems for which fundamental theories are not completely developed to
justify direct simulations, but can be advanced or developed by advanced
basic and numerical methods.

3. Problems for which the developed advanced modeling and simulation
methods will produce major advances and will have a major impact. For
example, 3D+ transient end-to-end behavior of NEMS and MEMS.
For NEMS and MEMS, as well as for their devices and subsystems,



high-fidelity modeling and massive computational simulations (mathematical
models designed with developed intelligent libraries and databases/archives,
intelligent experimental data manipulation and storage, data grouping and
correlation, visualization, data mining and interpretation) offer the promise of
developing and understanding the mechanisms, phenomena and processes in
order to improve efficiency and design novel high-performance NEMS and
MEMS. Predictive model-based simulations require terascale computing and an
unprecedented level of integration between engineering and science. These
modeling and simulations will lead to new fundamental results. To model and
simulate NEMS and MEMS, we augment modern quantum mechanics,
electromagnetics, and electromechanics at the nano- and microscale. In
particular, our goal is to develop the nanoelectromechanical theory.

One can perform the steady-state and dynamic analysis. While steady-state
analysis is important, and the structural optimization to comprehend the
actuators/sensors, smart structures, and antennas design can be performed,
NEMS and MEMS must be analyzed in the time domain. The long-standing
goal of nanoelectromechanics is to develop the basic fundamental conceptual
theory in order to determine and study the interactions between actuation and
sensing, computing and communication, signal processing and hierarchical data
storage (memories), and other processes and phenomena in NEMS and MEMS.
Using the concept of strong electromagnetic-electromechanical interactions, the
fundamental nanoelectromechanical theory will be developed and applied to
nanostructures and nanodevices, NEMS and MEMS to predict the performance
through analytical solutions and numerical simulations. Dynamic macromodels
of nodes can be developed, and single and groups of molecules can be studied.
It is critical to perform this research in order to determine a number of the
parameters to make accurate performance evaluation and to analyze the
phenomena performing simulations and comparing experimental, modeling and
simulation results.

Current advances and developments in modeling and simulation of
complex phenomena in NEMS and MEMS are increasingly dependent upon
new approaches to robustly map, compute, visualize, and validate the results
clarifying, correlating, defining, and describing the limits between the
numerical results and the qualitative-quantitative analytic analysis in order to
comprehend, understand, and grasp the basic features. Simulations of NEMS
and MEMS require terascale computing that will be available within a couple
of years. The computational limitations and inability to develop explicit
mathematical models (some nonlinear phenomena cannot be comprehended,
fitted, and precisely mapped) focus advanced studies on the basic research in
robust modeling and simulation under uncertainties. Robust modeling,
simulation, and design are critical to advance and foster the theoretical and
engineering enterprises. We focus our research on the development of the
nanoelectromechanical theory in order to model and simulate large-scale
NEMS and MEMS. At the subsystem level, for example, nano- and microscale
actuators and sensors will be modeled and analyzed in 3D+ (three-dimensional



geometry dynamics in time domain) applying advanced numerical robust
methods and algorithms. Rigorous methods for quantifying uncertainties for
robust analysis should be developed. Uncertainties result due to the fact that it
is impossible to explicitly comprehend the complex interacted subsystems and
processes in NEMS and MEMS (actuators/sensors and smart structures,
antennas, digital and analog ICs, data movement, storage and management
across multilevel memory hierarchies, archives, networks and periphery),
structural and environmental changes, unmeasured and unmodeled phenomena,
et cetera.

To design NEMS and MEMS, we will develop analytical mathematical
models. There are a number of areas where the advances must be made in order
to realize the promises and benefits of modern theoretical developments
recently made. For example, to perform 3D+ modeling and data intensive
simulations of actuators/sensors and smart structures, we will use advanced
analytical and numerical methods and algorithms (novel methods and
algorithms in geometry and mesh generation, data assimilation, and dynamic
adaptive mesh refinement) as well as the computationally efficient and robust
MATLAB environment. There are fundamental and computational problems that
have not been addressed, formulated and solved due to the complexity of large-
scale NEMS and MEMS (e.g., large-scale hybrid models, limited ability to
generate and visualize the massive amount of data, et cetera). Other problems
include nonlinearities and uncertainties which imply fundamental limits to
formulate, set up, and solve analysis and design problems. Therefore, one
should develop rigorous methods and algorithms for quantifying and modeling
uncertainties, 3D+ geometry and mesh generation techniques, as well as
methods for adaptive robust modeling and simulations under uncertainties. A
broad class of fundamental and applied problems ranging from fundamental
theories (quantum mechanics and electromagnetics, electromechanics and
thermodynamics, structural synthesis and optimization, optimized architecture
design and control, modeling and analysis, et cetera) and numerical computing
(to enable the major progress in design and virtual prototyping through the
large scale simulations, data intensive computing, and visualization) will be
addressed and thoroughly studied in this book. Due to the obvious limitations
and the scope of this book, a great number of problems and phenomena will not
be addressed and discussed (among them, fabrication and manufacturing,
chemistry and material science).

1.4. APPLICATIONS  OF  NANO- AND 
MICROELECTROMECHANICAL  SYSTEMS

Depending upon the specifications and requirements, objectives and
applications, NEMS and MEMS must be designed. Usually, NEMS are faster
and simpler, more efficient and reliable, survivable and robust compared
with MEMS. However, due to the limited size and functional capabilities,
one might not attain the desired characteristics. For example, consider nano-



and microscale actuators. The actuator size is determined by the force or
torque densities. That is, the size is determined by the force or torque
requirements and materials used. As one uses NEMS or MEMS as the logic
devices, the output electric signal (voltage or current) or electromagnetic
field (intensity or density) must have the specified value.

Although NEMS and MEMS have the common features, the differences
must be emphasized as well. Currently, the research and developments in
NEMS and molecular nanotechnology are primarily concentrated on design,
modeling, simulation, and fabrication of molecular-scale devices. In contrast,
MEMS are usually fabricated using other technologies, for example,
complementary metal oxide semiconductor (CMOS) and lithography. The
direct chip attaching technology was developed and widely deployed. Flip-chip
assembly replaces wire banding to connect ICs with micro- and nanoscale
actuators and sensors. The use of flip-chip technology allows one to eliminate
parasitic resistance, capacitance, and inductance. This results in improvements
of performance characteristics. In addition, flip-chip assembly offers
advantages in the implementation of advanced flexible packaging, improving
reliability and survivability, reduces weight and size, et cetera. The flip-chip
assembly involves attaching actuators and sensors directly to ICs. The actuators
and sensors are mounted face down with bumps on the pads that form electrical
and mechanical joints to the ICs substrate. The under-fill encapsulate is then
added between the chip surface and the flex circuit to achieve the high
reliability demanded. Figure 1.4.1 illustrates flip-chip MEMS.

IC

SensorActuator −
ActuatorSensor

Figure 1.4.1. Flip-chip monolithic MEMS with actuators and sensors

The large-scale integrated MEMS (a single chip that can be mass-produced
using the complementary metal oxide semiconductor (CMOS),
photolithography, and other technologies at low cost) integrates:
• N nodes of actuators/sensors, smart structures,
• ICs and antennas,
• processor and memories,
• interconnection networks (communication busses),
• input-output (IO) systems.

Different architectures can be synthesized, and this problem is discussed



and covered in Chapter 2. One uses NEMS and MEMS to control complex
systems, processes, and phenomena. A high-level functional block diagram
of large-scale MEMS is illustrated in Figure 1.4.2.

Figure 1.4.2. High-level functional block diagram of large-scale MEMS
with rotational and translational actuators and sensors

Actuators are needed to actuate dynamic systems. Actuators respond to
command stimulus (control signals) and develop torque and force. There is a
great number of biological (e.g., human eye and locomotion system) and man-
made actuators. Biological actuators are based upon electromagnetic-
mechanical-chemical phenomena and processes. Man-made actuators
(electromagnetic, electric, hydraulic, thermo, and acoustic motors) are devices
that receive signals or stimulus (stress or pressure, thermo or acoustic, et cetera)
and respond with torque or force.

Consider the flight vehicles. The aircraft, spacecraft, missiles, and
interceptors are controlled by displacing the control surfaces as well as by
changing the control surface and wing geometry. For example, ailerons,
elevators, canards, flaps, rudders, stabilizers and tips of advanced aircraft can
be controlled by nano-, micro-, and miniscale actuators using the NEMS- and
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MEMS-based smart actuator technology. This NEMS- and MEMS-based
smart actuator technology is uniquely suitable in the flight actuator
applications. Figure 1.4.3 illustrates the aircraft where translational and
rotational actuators are used to actuate the control surfaces, as well as to
change the wing and control surface geometry.

Figure 1.4.3. Aircraft with NEMS- and MEMS-based translational and
rotational flight actuators

Sensors are devices that receive and respond to signals or stimulus. For
example, the loads (which the aircraft experience during the flight),
vibrations, temperature, pressure, velocity, acceleration, noise, and radiation
can be measured by micro- and nanoscale sensors, see Figure 1.4.4. It should
be emphasized that there are many other sensors to measure the
electromagnetic interference and displacement, orientation and position,
voltages and currents in power electronic devices, et cetera.
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Figure 1.4.4. Application of nano- and microscale sensors in aircraft

Usually, several conversion processes are involved to produce electric,
electromagnetic, or mechanical output sensor signals. The conversion of
energy is our particular interest. Using the energy-based analysis, the general
theoretical fundamentals will be thoroughly studied.

The major developments in NEMS and MEMS have been fabrication
technology driven, and the applied research has been performed mainly to
manufacture structures and devices, as well as to analyze some performance
characteristics. For example, mini- and microscale smart structures as well as
ICs have been studied in details, and feasible manufacturing technologies,
materials, and processes have been developed. Recently, carbon nanotubes
were discovered, and molecular wires and molecular transistors were built.
However, to our best knowledge, nanostructures and nanodevices, NEMS
and MEMS, have not been comprehensively studied at the nanoscale, and the
efforts to develop the fundamental theory have not been reported. In this
book, we will apply the quantum theory and charge density concept,
advanced electromechanics and Maxwell's equations, as well as other
cornerstone methods, to model nanostructures and nanodevices (ICs and
antennas, actuators and sensors, et cetera). In particular, the
nanoelectromechanical theory will be developed. A large variety of actuators
and sensors, antennas and ICs with different operating features are modeled
and simulated. To perform high-fidelity integrated 3D+ data intensive
modeling with post-processing and animation, the partial and ordinary
nonlinear differential equations are solved.
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1.5.  NANO-  AND  MICROELECTROMECHANICAL SYSTEMS

In general, monolithic MEMS are integrated microassembled structures
(electromechanical microsystems on a single chip) that have both electrical-
electronic (ICs) and mechanical components. To manufacture MEMS,
advanced modified microelectronics fabrication techniques, technologies,
and materials are used. Actuation and sensing cannot be viewed as the
peripheral function in many applications. Integrated sensors-actuators
(usually motion microstructures) with ICs compose the major class of
MEMS. Due to the use of CMOS lithography-based technologies in
fabrication actuators and sensors, MEMS leverage microelectronics in
important additional areas that revolutionize the application capabilities. In
fact, MEMS have considerably leveraged the microelectronics industry
beyond ICs. The needs for augmented motion microstructures (actuators and
sensors) and ICs have been widely recognized. Simply scaling conventional
electromechanical motion devices and augmenting them with ICs have not
met the needs, and theory and fabrication processes have been developed
beyond component replacement. Dual power operational amplifiers (e.g.,
Motorola TCA0372, DW Suffix plastic package case 751G, DP2 Suffix
plastic package case 648 or DP1 Suffix plastic package case 626) as
monolithic ICs can be used to control DC micro electric machines (motion
microstructures), as shown in Figure 1.5.1.

Figure 1.5.1. Application of monolithic IC to control DC
micromachines (motion microstructures)

Only recently has it become possible to manufacture MEMS at low cost.
However, there is a critical demand for continuous fundamental, applied, and
technological improvements, and multidisciplinary activities are required.
The general lack of synergy theory to augment actuation, sensing, signal
processing, and control is known, and these issues must be addressed through
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focussed efforts. The set of long-range goals that challenge the analysis,
design, development, fabrication, and deployment of high-performance
MEMS are:
• advanced materials and process technology,
• microsensors and microactuators (motion microstructures), sensing and

actuation mechanisms, sensors-actuators-ICs integration and MEMS
configurations,

• fabrication, packaging, microassembly, and testing,
• MEMS analysis, design, optimization, and modeling,
• MEMS applications and their deployment.

Significant progress in the application of CMOS technology enables the
industry to fabricate microscale actuators and sensors with the corresponding
ICs, and this guarantees the significant breakthrough. The field of MEMS has
been driven by the rapid global progress in ICs, VLSI, solid-state devices,
materials, microprocessors, memories, and DSPs that have revolutionized
instrumentation, control, and systems design philosophy. In addition, this
progress has facilitated explosive growth in data processing and
communications in high-performance systems. In microelectronics, many
emerging problems deal with nonelectric effects, phenomena and processes
(thermal and structural analysis and optimization, stress and ruggedness,
packaging, et cetera). It has been emphasized that ICs are the necessary
components to perform control, data acquisition, and decision making. For
example, control signals (voltage or currents) are computed, converted,
modulated, and fed to actuators. It is evident that MEMS have found
applications in a wide array of microscale devices (accelerometers, pressure
sensors, gyroscopes, et cetera) due to extremely-high level of integration of
electromechanical components with low cost and maintenance, accuracy,
efficiency, reliability, ruggedness, and survivability. Microelectronics with
integrated sensors and actuators are batch-fabricated as integrated
assemblies.

Therefore, MEMS can be defined as batch-fabricated microscale
devices (ICs and motion microstructures) that convert physical parameters
to electrical signals and vice versa, and in addition, microscale features of
mechanical and electrical components, architectures, structures, and
parameters are important elements of their operation and design.

The manufacturability issues in NEMS and MEMS must be addressed.
One can design and manufacture individually-fabricated devices and
subsystems (ICs and motion microstructures). However, these individually-
fabricated devices and subsystems are unlikely can be used due to very high
cost.

Integrated MEMS combine mechanical structures (microfabricated smart
multifunctional materials are used to manufacture microscale actuators and
sensors, pumps and valves, optical devices) and microelectronics (ICs). The
number of transistors on a chip is frequently used by the microelectronic
industry, and enormous progress in achieving nanoscale transistor dimensions



(less than 100 nm) was achieved. However, large-scale MEMS operational
capabilities are measured by the intelligence, system-on-a-chip integration,
integrity, cost, performance, efficiency, size, reliability, and other criteria.
There are a number of challenges in MEMS fabrication because conventional
CMOS technology must be modified and integration strategies (to integrate
mechanical structures and ICs) are needed to be developed. What (ICs or
mechanical micromachined structure) should be fabricated first? Fabrication of
ICs first faces challenges because to reduce stress in the thin films of
polysilicon (multifunctional material to build motion microstructures), a high-
temperature anneal at 10000C is needed for several hours. The aluminum ICs
interconnect will be destroyed (melted), and tungsten can be used for
interconnected metallization. This process leads to difficulties for commercially
manufactured MEMS due to high cost and low reproducibility. Analog Devices
fabricates ICs first up to metallization step, and then, mechanical structures
(polysilicon) are built using high-temperature anneal (micromachines are
fabricated before metallization), and finally, ICs are interconnected. This allows
the manufacturer to use low-cost conventional aluminum interconnects. The
third option is to fabricate mechanical structures, and then ICs. However, to
overcome step coverage, stringer, and topography problems, motion
mechanical microstructures can be fabricated in the bottoms of the etched
shallow trenches (packaged directly) of the wafer. These trenches are filled with
a sacrificial silicon dioxide, and the silicon wafer is planarized through
chemical-mechanical polishing.

The motion mechanical microstructures can be protected (sensor
applications, e.g., accelerometers and gyroscopes) and unprotected (actuator
and interactive environment sensor applications). Therefore, MEMS
(mechanical structure – ICs) can be encased in a clean, hermetically sealed
package or some elements can be unprotected to interact with environment.
This creates challenges in packaging. It is extremely important to develop novel
electromechanical motion microstructures and microdevices (sticky multilayers,
thin films, magnetoelectronic, electrostatic, and quantum-effect-based devices)
and sense their properties. Microfabrication of very large scale integrated
circuits (VLSI), MEMS, and optoelectronics must be addressed. Fabrication
processes include lithography, film growth, diffusion, ion implantation, thin
film deposition, etching, metallization, et cetera. Furthermore, ICs and motion
microstructures (microelectromechanical motion devices) must be connected.
Complete microfabrication processes with integrated process steps must be
developed.

Microelectromechanical systems integrate microscale subsystems (at least
ICs and motion structure). It was emphasized that microsensors sense the
physical variables, and microactuators control (actuate) real-world systems.
These microactuators are regulated by ICs. It must be emphasized that ICs also
performed computations, signal conditioning, decision making, and other



functions. For example, in microaccelerometers, the motion microstructure
displaces. Using this displacement, the acceleration can be calculated. In
microaccelerometers, computations, signal conditioning, data acquisition, and
decision making are performed by ICs. Microactuators inflate air-bags if car
crashes (high g acceleration measured).

Microelectromechanical systems contain microscale subsystems designed
and manufactured using different technologies. Single silicon substrate can be
used to fabricate microscale actuators, sensors, and ICs (monolithic MEMS)
using CMOS microfabrication technology. Alternatively, subsystem can be
assembled, connected and packaged, and different microfabrication techniques
for MEMS components and subsystems exist. Usually, monolithic MEMS are
compact, efficient, reliable, and guarantee superior performance.

Typically, MEMS integrate the following subsystems: microscale actuators
(actuate real-world systems), microscale sensors (detect and measure changes
of the physical variables), and microelectronics/ICs (signal processing, data
acquisition, decision making, et cetera).

Microactuators are needed to develop force or torque (mechanical
variable). Typical examples are microscale drives, moving mirrors, pumps,
servos, valves, et cetera. A great variety of methods for achieving actuation are
well-known, e.g., electromagnetic (electrostatic, magnetic, piezoelectric),
hydraulic, and thermal effects. This book covers electromagnetic
microactuators, and the so-called comb drives (surface micromachined motion
microstructures) have been widely used. These drives have movable and
stationary plates (fingers). When the voltage is applied, an attractive force is
developed between two plates, and the motion results. A wide variety of
microscale actuators have been fabricated and tested. The common problem is
the difficulties associated with coil fabrication. The choice of magnetic
materials (permanent magnets) is limited to those that can be micromachined.
Magnetic actuators typically fabricated through the photolithography
technology using nickel (ferromagnetic material). Piezoelectric microactuators
have found wide applications due to simplicity and ruggedness (force is
generated if one applies the voltage across a film of piezoelectric material). The
piezoelectric-based concept can be applied to thin silicon membranes, and if the
voltage is applied, the membrane deforms. Thus, silicon membranes can be
used as pumps.

Microsensors are devices that convert one physical variable (quantity) to
another. For example, electromagnetic phenomenon can be converted to
mechanical or optic effects. There are a number of different types of microscale
sensors used in MEMS. For example, microscale thermosensors are designed
and built using the thermoelectric effect (the resistivity varies with
temperature). Extremely low cost thermoresistors (thermistors) are fabricated
on the silicon wafer, and ICs are built on the same substrate. The thermistor
resistivity is a highly nonlinear function of the temperature, and the
compensating circuitry is used to take into account the nonlinear effect.
Microelectromagnetic sensors measure electromagnetic fields, e.g., the Hall



effect sensors. Optical sensors can be fabricated on crystals that exhibit a
magneto-optic effect, e.g., optical fibers. In contrast, the quantum effect sensors
can sense extremely weak electromagnetic fields. Silicon-fabricated
piezoresistors (silicon doped with impurities to make it n- or p-type) belong to
the class of mechanical sensors. When the force is applied to the piezoelectric,
the charge induced (measured voltage) is proportional to the applied force. Zinc
oxide and lead zirconate titanate (PZT, PbZrTiO3), which can be deposited on
microstructures, are used as piezoelectric crystals. In this book, the microscale
accelerometers and gyroscopes, as well as microelectric machines will be
studied. Accelerometers and gyroscopes are based upon capacitive sensors. In
two parallel conducting plates, separated by an insulating material, the
capacitance between the plates is a function of distance between plates
(capacitance is inversely proportional to the distance). Thus, measuring the
capacitance, the distance can be easily calculated. In accelerometers and
gyroscopes, the proof mass and rotor are suspended. It will be shown that using
the second Newton’s law, the acceleration is proportional to the displacement.
Hence, the acceleration can be calculated. Thin membranes are the basic
components of pressure sensors. The deformation of the membrane is usually
sensed by piezoresistors or capacitive microsensors.

We have illustrated the critical need for physical- and system-level
concepts in NEMS and MEMS analysis and design. Advances in physical-level
research have tremendously expanded the horizon of NEMS and MEMS
technologies. For example, magnetic-based (magnetoelectronic) memories have
been thoroughly studied (magnetoelectronic devices are grouped in three
categories based upon the physics of their operation: all-metal spin transistors
and valves, hybrid ferromagnetic semiconductor structures, and magnetic
tunnel junctions). Writing and reading the cell data are based on different
physical mechanisms, and high or low cost, densities, power, reliability and
speed (write/read cycle) memories result. As the physical-level analysis and
design are performed, the system-level analysis and design must be
accomplished because the design of integrated large-scale NEMS and MEMS
is the final goal.

1.6.  INTRODUCTION  TO  MEMS  FABRICATION, ASSEMBLING, 
AND  PACKAGING

Two basic components of MEMS and microengineering are
microelectronics (to fabricate ICs) and micromachining (to fabricate motion
microstructures). Using CMOS or VLSI technology, microelectronics (ICs)
fabrication can be performed. Micromachining technology is needed to
fabricate motion microstructures to be used as the MEMS mechanical
subsystems. It was emphasized that one of the main goals of
microengineering is to integrate microelectronics with micromachined



mechanical structures in order to produce completely integrated monolithic
high-performance MEMS. To guarantee low cost, reliability, and
manufacturability, the following must by guaranteed: the fabrication process
has a high yield and batch processing techniques are used for as much of the
process as possible (large numbers of microscale structures/devices per silicon
wafer and large number of wafers are processed at the same time at each
fabrication step). Assembling and packaging must be automated, and the most
promising avenues are auto- or self-alignment and self assembly. Some MEMS
subsystems (actuator and interactive environment sensors) must be protected
from mechanical damage, and in addition, protected from contamination. Wear
tolerance, electromagnetic and thermo isolation, among other problems have
always challenged MEMS. Different manufacturing technologies must be
applied to attain the desired performance level and cost. Microsubsystems can
be coated directly by thin films of silicon dioxide or silicon nitride which are
deposited using plasma enhanced chemical vapor deposition. It is possible to
deposit (at 7000C to 9000C) films of diamond which have superior wear
capabilities, excellent electric insulation and thermal characteristics. It must be
emphasized that diamond like carbon films can be also deposited.

Microelectromechanical systems are connected (interfaced) with real-
world systems (control surfaces of aircraft, flight computer, communication
ports, et cetera). Furthermore, MEMS are packaged to protect systems from
harsh environments, prevent mechanical damage, minimize stresses and
vibrations, contamination, electromagnetic interference, et cetera. Therefore,
MEMS are usually sealed. It is impossible to specify a generic MEMS package.
Through input-output connections (power and communication bus) one delivers
the power required, feeds control (command) and test (probe) signals, receives
the output signals and data. Packages must be designed to minimize
electromagnetic interference and noise. Heat, generated by MEMS, must be
dissipated, and the thermal expansion problem must be solved. Conventional
MEMS packages are usually ceramic and plastic. In ceramic packages, the die
is bonded to a ceramic base, which includes a metal frame and pins for making
electric outside connections. Plastic packages are connected in the similar way.
However, the package can be molded around the microdevice.

Silicon and silicon carbide micromachining are the most developed
micromachining technologies. Silicon is the primary substrate material which is
used by the microelectronics industry. A single crystal ingot (solid cylinder 300
mm diameter and 1000 mm length) of very high purity silicon is grown, then
sawed with the desired thickness and polished using chemical and mechanical
polishing techniques. Electromagnetic and mechanical wafer properties depend
upon the orientation of the crystal growth, concentration and type of doped
impurities. Depending on the silicon substrate, CMOS processes are used to
manufacture ICs, and the process is classified as n-well, p-well, or twin-well.
The major steps are diffusion, oxidation, polysilicon gate formations,
photolithography, masking, etching, metallization, wire bonding, et cetera. To
fabricate motion microstructures (microelectromechanical motion devices),



CMOS technology must be modified. High-resolution photolithography is a
technology that is applied to produce moulds for the fabrication of
micromachined mechanical components and to define their three-dimensional
shape (geometry). That is, the micromachine geometry is defined
photographically. First, a mask is produced on a glass plate. The silicon wafer
is then coated with a polymer which is sensitive to ultraviolet light
(photoresistive layer is called photoresist). Ultraviolet light is shone through the
mask onto the photoresist to build the mask to the photoresist layer. The
positive photoresist becomes softened, and the exposed layer can be removed.
In general, there are two types of photoresist, e.g., positive and negative. Where
the ultraviolet light strikes the positive photoresist, it weakens the polymer.
Hence, when the image is developed, the photoresist is washed where the light
struck it. A high-resolution positive image results. In contrast, if the ultraviolet
light strikes negative photoresist, it strengthens the polymer. Therefore, a
negative image of the mask results. Chemical process is used to remove the
oxide where it is exposed through the openings in the photoresist. When the
photoresist is removed, the patterned oxide appears. Alternatively, electron
beam lithography can be used. Photolithography requires design of masks. The
design of photolithography masks for micromachining is straightforward, and
computer-aided-design (CAD) software is available and widely applied.

There are a number of basic surface silicon micromachining technologies
that can be used in order to pattern thin films that have been deposited on a
silicon wafer, and to shape the silicon wafer itself forming a set of basic
microstructures. Three basic steps associated with silicon micromachining are:
• deposition of thin films of materials;
• removal of material (patterning) by wet or dry techniques;
• doping.

Different microelectromechanical motion devices (motion microstructures)
can be designed, and silicon wafers with different crystal orientations are used.
Reactive ion etching (dry etching) is usually applied. Ions are accelerated
towards the material to be etched, and the etching reaction is enhanced in the
direction of ion traveling. Deep trenches and pits of desired shapes can be
etched in a variety of materials including silicon, oxide, and nitride. A
combination of dry and wet etching can be embedded in the process.

Metal films are patterned using the lift off stenciling technique. A thin film
of the assisting material (oxide) is deposited, and a layer of photoresist is put
over and patterned. The oxide is then etched to undercut the photoresist. The
metal film is then deposited on the silicon wafer through evaporation process.
The metal pattern is stenciled through the gaps in the photoresist, which is then
removed, lifting off the unwanted metal. The assisting layer is then stripped off,
leaving the metal film pattern.

The anisotropic wet etching and concentration dependent etching are



called bulk silicon micromachining because the microstructures are formed by
etching away the bulk of the silicon wafer. Surface micromachining forms the
structure in layers of thin films on the surface of the silicon wafer or other
substrate. Hence, the surface micromachining process uses thin films of two
different materials, e.g., structural (usually polysilicon) and sacrificial (oxide)
materials. Sacrificial layers of oxide are deposited on the wafer surface, and dry
etched. Then, the sacrificial material is wet etched away to release the structure.
A variety of different complex motion microstructures with different geometry
have been fabricated using the surface micromachining technology.

Micromachined silicon wafers must be bonded together. Anodic
(electrostatic) bonding technique is used to bond silicon wafer and glass
substrate. In particular, the silicon wafer and glass substrate are attached,
heated, and electric field is applied across the join. These result in extremely
strong bonds between the silicon wafer and glass substrate. In contrast, the
direct silicon bonding is based upon applying pressure to bond silicon wafer
and glass substrate. It must be emphasized that to guarantee strong bonds, the
silicon wafer and glass substrate surfaces must be flat and clean.

The MEMCAD™ software (current version is 4.6), developed by
Microcosm, is widely used to design, model, simulate, characterize, and
package MEMS. Using the built-in Microcosm Catapult™ layout editor,
augmented with materials database and components library, three-
dimensional solid models of motion microstructures can be developed. 
Furthermore, customizable packaging is fully supported.



CHAPTER 2

MATHEMATICAL MODELS  AND  DESIGN  OF 
NANO- AND  MICROELECTROMECHANICAL SYSTEMS

2.1. NANO-  AND  MICROELECTROMECHANICAL SYSTEMS 
ARCHITECTURE

A large variety of nano- and microscale structures and devices, as well
as NEMS and MEMS (systems integrate structures, devices, and
subsystems), have been widely used, and a worldwide market for NEMS and
MEMS and their applications will be drastically increased in the near future.
The differences in NEMS and MEMS are emphasized, and NEMS are
smaller than MEMS. For example, carbon nanotubes (nanostructure) can be
used as the molecular wires and sensors in MEMS. Different specifications
are imposed on NEMS and MEMS depending upon their applications. For
example, using carbon nanotubes as the molecular wires, the current density
is defined by the media properties (e.g., resistivity and thermal conductivity).
It is evident that the maximum current is defined by the diameter and the
number of layers of the carbon nanotube. Different molecular-scale
nanotechnologies are applied to manufacture NEMS (controlling and
changing the properties of nanostructures), while analog, discrete, and hybrid
MEMS have been mainly manufactured using surface micro-machining,
silicon-based technology (lithographic processes are used to fabricate CMOS
ICs). To deploy and commercialize NEMS and MEMS, a spectrum of
problems must be solved, and a portfolio of software design tools needs to be
developed using a multidisciplinary concept. In recent years much attention
has been given to MEMS fabrication and manufacturing, structural design and
optimization of actuators and sensors, modeling, analysis, and optimization. It
is evident that NEMS and MEMS can be studied with different level of detail
and comprehensiveness, and different application-specific architectures
should be synthesized and optimized. The majority of research papers study
either nano- and microscale actuators-sensors or ICs that can be the
subsystems of NEMS and MEMS. A great number of publications have been
devoted to the carbon nanotubes (nanostructures used in NEMS and MEMS).
The results for different NEMS and MEMS components are extremely
important and manageable. However, the comprehensive systems-level
research must be performed because the specifications are imposed on the
systems, not on the individual elements, structures, and subsystems of NEMS
and MEMS. Thus, NEMS and MEMS must be developed and studied to
attain the comprehensiveness of the analysis and design.

For example, the actuators are controlled changing the voltage or current
(by ICs) or the electromagnetic field (by nano- or microscale antennas). The



ICs and antennas (which should be studied as the subsystems) can be
controlled using nano or micro decision-making systems, which can include
central processor and memories (as core), IO devices, etc. Nano- and
microscale sensors are also integrated as elements of NEMS and MEMS, and
through molecular wires (for example, carbon nanotubes) one feeds the
information to the IO devices of the nano-processor. That is, NEMS and
MEMS integrate a large number of structures and subsystems which must be
studied. As a result, the designer usually cannot consider NEMS and MEMS
as six-degrees-of-freedom actuators using conventional mechanics (the linear
or angular displacement is a function of the applied force or torque),
completely ignoring the problem of how these forces or torques are generated
and regulated. In this book, we will illustrate how to integrate and study the
basic components of NEMS and MEMS.

The design and development, modeling and simulation, analysis and
prototyping of NEMS and MEMS must be attacked using advanced theories.
The systems analysis of NEMS and MEMS as systems integrates analysis
and design of structures, devices and subsystems used, structural
optimization and modeling, synthesis and optimization of architectures,
simulation and virtual prototyping, etc. Even though a wide range of
nanoscale structures and devices (e.g., molecular diodes and transistors,
machines and transducers) can be fabricated with atomic precision,
comprehensive systems analysis of NEMS and MEMS must be performed
before the designer embarks in costly fabrication because through
optimization of architecture, structural optimization of subsystems (actuators
and sensors, ICs and antennas), modeling and simulation, analysis and
visualization, the rapid evaluation and prototyping can be performed
facilitating cost-effective solution reducing the design cycle and cost,
guaranteeing design of high-performance NEMS and MEMS which satisfy
the requirements and specifications.

The large-scale integrated MEMS (a single chip that can be mass-produced
using the CMOS, lithography, and other technologies at low cost) integrates:
• N nodes of actuators/sensors, smart structures, and antennas;
• processor and memories,
• interconnected networks (communication busses),
• input-output (IO) devices,
• etc.

Different architectures can be implemented, for example, linear, star, ring,
and hypercube are illustrated in Figure 2.1.1.



Figure 2.1.1. Linear, star, ring, and hypercube architectures

More complex architectures can be designed, and the hypercube-
connected-cycle node configuration is illustrated in Figure 2.1.2.

Figure 2.1.2. Hypercube-connected-cycle node architecture
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The nodes can be synthesized, and the elementary node can be simply pure
smart structure, actuator, or sensor. This elementary node can be controlled by
the external electromagnetic field (that is, ICs or antenna are not a part of the
elementary structure). In contrast, the large-scale node can integrate processor
(with decision making, control, signal processing, and data acquisition
capabilities), memories, IO devices, communication bus, ICs and antennas,
actuators and sensors, smart structures, etc. That is, in addition to
actuators/sensors and smart structures, ICs and antennas (to regulate
actuators/sensors and smart structures), processor (to control ICs and antennas),
memories and interconnected networks, IO devices, as well as other subsystems
can be integrated.  Figure 2.1.3 illustrates large-scale and elementary nodes.

Figure 2.1.3. Large-scale and elementary nodes

As NEMS and MEMS are used to control physical dynamic systems
(immune system or drug delivery, propeller or wing, relay or lock), to
illustrate the basic components, a high-level functional block diagram is
shown in Figure 2.1.4.
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Figure 2.1.4. High-level functional block diagram of large-scale NEMS
and MEMS

For example, the desired flight path of aircraft (maneuvering and
landing) is maintained by displacing the control surfaces (ailerons and
elevators, canards and flaps, rudders and stabilizers) and/or changing the
control surface and wing geometry. Figure 2.1.5 documents the application
of the NEMS- and MEMS-based technology to actuate the control surfaces.
It should be emphasized that the NEMS and MEMS receive the digital
signal-level signals from the flight computer, and these digital signals are
converted into the desired voltages or currents fed to the microactuators or
electromagnetic flux intensity to displace the actuators. It is also important
that NEMS- and MEMS-based transducers can be used as sensors, and, as an
example, the loads on the aircraft structures during the flight can be
measured.
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Figure 2.1.5. Aircraft with MEMS-based flight actuators

Microelectromechanical and Nanoelectromechanical Systems

Microelectromechanical systems are integrated microassembled
structures (electromechanical microsystems on a single chip) that have both
electrical-electronic (ICs) and mechanical components. To manufacture
MEMS, modified advanced microelectronics fabrication techniques and
materials are used. It was emphasized that sensing and actuation cannot be
viewed as the peripheral function in many applications. Integrated
actuators/sensors with ICs compose the major class of MEMS. Due to the use
of CMOS lithography-based technologies in fabrication actuators and
sensors, MEMS leverage microelectronics (signal processing, computing,
and control) in important additional areas that revolutionize the application
capabilities. In fact, MEMS have been considerably leveraged the
microelectronics industry beyond ICs. The needs to augmented actuators,
sensors, and ICs have been widely recognized. For example, mechatronics
concept, used for years in conventional electromechanical systems, integrates
all components and subsystems (electromechanical motion devices, power
converters, microcontrollers, et cetera). Simply scaling conventional
electromechanical motion devices and augmenting them with ICs have not
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met the needs, and theory and fabrication processes have been developed
beyond component replacement. Only recently it becomes possible to
manufacture MEMS at very low cost. However, there is a critical demand for
continuous fundamental, applied, and technological improvements, and
multidisciplinary activities are required. The general lack of synergy theory
to augment actuation, sensing, signal processing, and control is known, and
these issues must be addressed through focussed efforts. The set of long-
range goals has been emphasized in Chapter 1. The challenges facing the
development of MEMS are

• advanced materials and process technology,
• microsensors and microactuators, sensing and actuation mechanisms,

sensors-actuators-ICs integration and MEMS configurations,
• packaging, microassembly, and testing,
• MEMS modeling, analysis, optimization, and design,
• MEMS applications and their deployment.

Significant progress in the application of CMOS technology enable the
industry to fabricate microscale actuators and sensors with the corresponding
ICs, and this guarantees the significant breakthrough. The field of MEMS has
been driven by the rapid global progress in ICs, VLSI, solid-state devices,
microprocessors, memories, and DSPs that have revolutionized
instrumentation and control. In addition, this progress has facilitated
explosive growth in data processing and communications in high-
performance systems. In microelectronics, many emerging problems deal
with nonelectric phenomena and processes (thermal and structural analysis
and optimization, packaging, et cetera). It has been emphasized that ICs is
the necessary component to perform control, data acquisition, and decision
making. For example, control signals (voltage or currents) are computer,
converted, modulated, and fed to actuators. It is evident that MEMS have
found application in a wide array of microscale devices (accelerometers,
pressure sensors, gyroscopes, et cetera) due to extremely-high level of
integration of electromechanical components with low cost and maintenance,
accuracy, reliability, and ruggedness. Microelectronics with integrated
sensors and actuators are batch-fabricated as integrated assemblies.

Therefore, MEMS can be defined as
batch-fabricated microscale devices (ICs and motion microstructures) that
convert physical parameters to electrical signals and vise versa, and in
addition, microscale features of mechanical and electrical components,
architectures, structures, and parameters are important elements of their
operation and design.

The manufacturability issues in NEMS and MEMS must be addressed. It
was shown that one can design and manufacture individually-fabricated
devices and subsystems. However, these devices and subsystems are unlikely
will be used due to very high cost.



Piezoactuators and permanent-magnet technology has been used widely,
and rotating and linear electric transducers (actuators and sensors) are
designed. For example, piezoactive materials are used in ultrasonic motors.
Frequently, conventional concepts of the electric machinery theory
(rotational and linear direct-current, induction, and synchronous machine) are
used to design and analyze MEMS-based machines. The use of
piezoactuators is possible as a consequence of the discovery of advanced
materials in sheet and thin-film forms, especially PZT (lead zirconate
titanate) and polyvinylidene fluoride. The deposition of thin films allows
piezo-based electric machines to become a promising candidate for
microactuation in lithography-based fabrication. In particular, microelectric
machines can be fabricated using a deep x-ray lithography and
electrodeposition process. Two-pole synchronous and induction micro-
motors have been fabricated and tested.

To fabricate nanoscale structures, devices, and NEMS, molecular
manufacturing methods and technologies must be developed. Self- and
positional-assembly concepts are the preferable technologies compared
with individually-fabricated in the synthesis and manufacturing of
molecular structures. To perform self- and positional-assembly,
complementary pairs (CP) and molecular building blocks (MBB) should be
designed. These CP or MBB, which can be built from a couple to
thousands atoms, can be studied and designed using the DNA analogy. The
nucleic acids consist of two major classes of molecules (DNA and RNA).
Deoxyribonucleic acid (DNA) and ribonucleic acid (RNA) are the largest
and most complex organic molecules which are composed of carbon,
oxygen, hydrogen, nitrogen, and phosphorus. The structural units of DNA
and RNA are nucleotides, and each nucleotide consists of three
components (nitrogen-base, pentose and phosphate) joined by dehydration
synthesis. The double-helix molecular model of DNA was discovered by
Watson and Crick in 1953. The DNA (long double-stranded polymer with
double chain of nucleotides held together by hydrogen bonds between the
bases), as the genetic material (genes), performs two fundamental roles. It
replicates (identically reproduces) itself before a cell divides, and provides
pattern for protein synthesis directing the growth and development of all
living organisms according to the information DNA supports. The DNA
architecture provides the mechanism for the replication of genes. Specific
pairing of nitrogenous bases obey base-pairing rules and determine the
combinations of nitrogenous bases that form the rungs of the double helix.
In contrast, RNA carries (performs) the protein synthesis using the DNA
information. Four DNA bases are: A (adenine), G (guanine), C (cytosine),
and T (thymine). The ladder-like DNA molecule is formed due to
hydrogen bonds between the bases which paired in the interior of the
double helix (the base pairs are 0.34 nm apart and there are ten pairs per
turn of the helix). Two backbones (sugar and phosphate molecules) form
the uprights of the DNA molecule, while the joined bases form the rungs.



Figure 2.1.6 illustrates that the hydrogen bonding of the bases are: A bonds
to T, G bonds to C. The complementary base sequence results.

Figure 2.1.6. DNA pairing due to hydrogen bonds

In RNA molecules (single strands of nucleotides), the complementary
bases are A bonds to U (uracil), and G bonds to C. The complementary base
bonding of DNA and RNA molecules gives one the idea of possible sticky-
ended assembling (through complementary pairing) of NEMS structures and
devices with the desired level of specificity, architecture, topology, and
organization. In structural assembling and design, the key element is the
ability of CP or MBB (atoms or molecules) to associate with each other
(recognize and identify other atoms or molecules by means of specific base
pairing relationships). It was emphasized that in DNA, A (adenine) bonds to
T (thymine) and G (guanine) bonds to C (cytosine). Using this idea, one can
design the CP such as A1-A2, B1-B2, C1-C2, etc. That is, A1 pairs with A2,
while B1 pairs with B2. This complementary pairing can be studied using
electromagnetics (Coulomb law) and chemistry (chemical bonding, for
example, hydrogen bonds in DNA between nitrogenous bases A and T, G
and C). Figure 2.1.7 shows how two nanoscale elements with sticky ends
form the complementary pair. In particular, "+" is the sticky end and "-" is its
complement. That is, the complementary pair A1-A2 results.

Figure 2.1.7. Sticky ended electrostatically complementary pair A1-A2

An example of assembling a ring is illustrated in Figure 2.1.8. Using the
sticky ended segmented (asymmetric) electrostatically CP, self-assembling of
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nanostructure is performed in the XY plane. It is evident that three-
dimensional structures can be formed through the self-assembling.

Figure 2.1.8. Ring self-assembling

It is evident that there are several advantages to use sticky ended
electrostatic CP. In the first place, the ability to recognize (identify) the
complementary pair is clear and reliably predicted. The second advantage is
the possibility to form stiff, strong, and robust structures.

Self-assembled complex nanostructures can be fabricated using
subsegment concept to form the branched junctions. This concept is well-
defined electrostatically and geometrically through Coulomb law and
branching connectivity. Using the subsegment concept, ideal objects (e.g.,
cubes, octahedron, spheres, cones, et cetera) can be manufactured.
Furthermore, the geometry of nanostructures can be easily controlled by the
number of CP and pairing MBB. It must be emphasized that it is possible to
generate a quadrilateral self-assembled nanostructure by using four and more
different CP. That is, in addition to electrostatic CP, chemical CP can be
used. Single- and double-stranded structures can be generated and linked in
the desired topological and architectural manners. The self-assembling must
be controlled during the manufacturing cycle, and CP and MBB, which can
be paired and topologically/architecturally bonded, must be added in the
desired sequence. For example, polyhedral and octahedral synthesis can be
performed when building elements (CP or MBB) are topologically or
geometrically specified. The connectivity of nanostructures determines the
minimum number of linkages that flank the branched junctions. The synthesis
of complex three-dimensional nanostructures is the design of topology, and
the structures are characterized by their branching and linking.

Linkage Groups in Molecular Building Blocks

The hydrogen bonds, which are weak, hold DNA and RNA strands.
Strong bonds are desirable to form stiff, strong, and robust nano- and
microstructures. Using polymer chemistry, functional groups which couple
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monomers can be designed. However, polymers made from monomers with
only two linkage groups do not exhibit the desired stiffness and strength.
Tetrahedral MBB structures with four linkage groups result in stiff and
robust structures. Polymers are made from monomers, and each monomer
reacts with two other monomers to form linear chains. Synthetic and organic
polymers (large molecules) are nylon and dacron (synthetic), and proteins
and RNA, respectively.

There are two major ways to assemble parts. In particular, self assembly
and positional assembly. Self-assembling is widely used at the molecular
scale, and the DNA and RNA examples were already emphasized. Positional
assembling is widely used in manufacturing and microelectronic
manufacturing. The current inability to implement positional assembly at the
molecular scale with the same flexibility and integrity that it applied in
microelectronic fabrication limits the range of nanostructures which can be
manufactured. Therefore, the efforts are focused on developments of MBB,
as applied to manufacture nanostructures, which guarantee:
• mass-production at low cost and high yield;
• simplicity and predictability of synthesis and manufacturing;
• high-performance, repeatability, and similarity of characteristics;
• stiffness, strength, and robustness;
• tolerance to contaminants.

It is possible to select and synthesize MBB that satisfy the requirements
and specifications (non-flammability, non-toxicity, pressure, temperatures,
stiffness, strength, robustness, resistivity, permiability, permittivity, et
cetera). Molecular building blocks are characterized by the number of
linkage groups and bonds. The linkage groups and bonds that can be used to
connect MBB are:
• dipolar bonds (weak),
• hydrogen bonds (weak),
• transition metal complexes bonds (weak),
• amide and ester linkages (weak and strong).

It must be emphasized that large molecular building blocks (LMMB) can
be made from MBB. There is a need to synthesize robust three-dimensional
structures.   Molecular building blocks can form planar structures with are
strong, stiff, and robust in-plane, but weak and compliant in the third
dimension. This problem can be resolved by forming tubular structures. It
was emphasized that it is difficult to form three-dimensional structures using
MBB with two linkage groups. Molecular building blocks with three linkage
groups form planar structures, which are strong, stiff, and robust in plane but
bend easily. This plane can be rolled into tubular structures to guarantee
stiffness. Molecular building blocks with four, five, six, and twelve linkage
groups form strong, stiff, and robust three-dimensional structures needed to
synthesize robust nano- and microstructures.

Molecular building blocks with L linkage groups are paired forming L-
pair structures, and planar and non-planar (three-dimensional) nano- and



microstructures result. These MBB can have in-plane linkage groups and out-
of-plane linkage groups which are normal to the plane. For example,
hexagonal sheets are formed using three in-plane linkage groups (MBB is a
single carbon atom in a sheet of graphite) with adjacent sheets formed using
two out-of-plane linkage groups. It is evident that this structure has
hexagonal symmetry.

Molecular building blocks with six linkage groups can be connected
together in the cubic structure. These six linkage groups corresponding to six
sides of the cube or rhomb. Thus, MBB with six linkage groups form solid
three-dimensional structures as cubes or rhomboids. It should be emphasized
that buckyballs (C60), which can be used as MMB, are formed with six
functional groups. Molecular building blocks with six in-plane linkage
groups form strong planar structures. Robust, strong, and stiff cubic or
hexagonal closed-packed crystal structures are formed using twelve linkage
groups. Molecular building blocks synthesized and applied should guarantee
the desirable performance characteristics (stiffness, strength, robustness,
resistivity, permiability, permittivity, et cetera) as well as manufacturability.
It is evident that stiffness, strength, and robustness are predetermined by
bonds (weak and strong), while resistivity, permiability and permittivity are
the functions of MBB compounds and media.



2.2. ELECTROMAGNETICS  AND  ITS  APPLICATION  FOR  NANO-
AND  MICROSCALE  ELECTROMECHANICAL  MOTION DEVICES

To study NEMS and MEMS actuators and sensors, smart structures, ICs
and antennas, one applies the electromagnetic field theory. Electric force holds
atoms and molecules together. Electromagnetics plays a central role in
molecular biology. For example, two DNA (deoxyribonucleic acid) chains
wrap about one another in the shape of a double helix. These two strands are
held together by electrostatic forces. Electric force is responsible for energy-
transforming processes in all living organisms (metabolism). Electromagnetism
is used to study protein synthesis and structure, nervous system, etc.

Electrostatic interaction was investigated by Charles Coulomb.
For charges q1 and  q2, separated by a distance x in free space, the

magnitude of the electric force is

F
q q

x
= 1 2

0
24πε

,

where ε0  is the permittivity of free space, ε0  = 8.85×10−12 F/m or C2/N-m2,
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πε
= ×  N-m2/C.

The unit for the force is the newton N, while the charges are given in
coulombs, C.

The force is the vector, and we have
r r
F

q q

x
ax= 1 2

0
24πε

,

where 
r
ax  is the unit vector which is directed along the line joining these two

charges.
The capacity, elegance and uniformity of electromagnetics arise from a

sequence of fundamental laws linked one to other and needed to study the field
quantities.

Using the Gauss law and denoting the vector of electric flux density as 
r
D

[F/m] and the vector of electric field intensity as 
r
E  [V/m or N/C], the total

electric flux Φ  [C] through a closed surface is found to be equal to the total
force charge enclosed by the surface. That is, one finds

Φ = ⋅ =∫
r r
D ds Qs

s

, 
r r
D E= ε ,

where ds
r

 is the vector surface area, ds dsan
r r

= , 
r
an  is the unit vector which is

normal to the surface; ε  is the permittivity of the medium; Qs  is the total

charge enclosed by the surface.

Ohm’s law relates the volume charge density 
r
J  and electric field

intensity 
r
E ; in particular,



r r
J E= σ ,

where σ  is the conductivity [A/V-m], for copper σ = ×58 107. , and for

aluminum σ = ×35 107. .
 The current i is proportional to the potential difference, and the resistivity

ρ  of the conductor is the ratio between the electric field 
r
E  and the current

density 
r
J . Thus,

ρ =
r

r
E

J
.

The resistance r of the conductor is related to the resistivity and
conductivity by the following formulas

r
l

A
=

ρ
 and r

l
A

=
σ

,

where l is the length; A is the cross-sectional area.
It is important to emphasize that the parameters of NEMS and MEMS

vary. Let us illustrate this using the simplest nano-structure used in NEMS and
MEMS. In particular, the molecular wire. The resistances of the ware vary due
to heating. The resistivity depends on temperature T [oC], and

( ) ( )[ ]ρ ρ α αρ ρ( ) ...T T T T T= + − + − +0 1 0 2 0
2

1 ,

where αρ1  and αρ2  are the coefficients.

As an example, over the small temperature range (up to 160oC) for copper
(the wire is filled with copper)  at T0 = 20oC, we have

( )[ ]ρ( ) . .T T= × + −−17 10 1 0 0039 208 .

To study NEMS and MEMS, the basic principles of electromagnetic
theory should be briefly reviewed.

The total magnetic flux through the surface is given by

Φ = ⋅∫
r r
B ds ,

where 
r
B  is the magnetic flux density.

The Ampere circuital law is
r r r r
B dl J ds

l s

⋅ = ⋅∫ ∫µ0 ,

where µo is the permeability of free space, µo = 4π×10−7 H/m or T-m/A.

For the filamentary current, Ampere’s law connects the magnetic flux with
the algebraic sum of the enclosed (linked) currents (net current) in, and

r r
B dl i

l

o n⋅ =∫ µ .

The time-varying magnetic field produces the electromotive force (emf),
denoted as  , which induces the current in the closed circuit. Faraday’s law



relates the emf, which is merely the induced voltage due to conductor motion in
the magnetic field, to the rate of change of the magnetic flux Φ  penetrating in
the loop. In approaching the analysis of electromechanical energy
transformation in NEMS and MEMS, Lenz’s law should be used to find the
direction of emf and the current induced. In particular, the emf is in such a
direction as to produce a current whose flux, if added to the original flux, would
reduce the magnitude of the emf. According to Faraday’s law, the induced emf
in a closed-loop circuit is defined in terms of the rate of change of the magnetic
flux Φ  as

       = ⋅ = − ⋅ = − = −∫ ∫
r r r r
E t dl

d
dt

B t ds N
d
dt

d
dt

l s

( ) ( )
Φ ψ

,

where N is the number of turns; ψ  denotes the flux linkages.

This formula represents the Faraday law of induction, and the induced emf
(induced voltage), as given by

        = − = −
d
dt

N
d
dt

ψ Φ
,

is a particular interest
The current flows in an opposite direction to the flux linkages. The

electromotive force (energy-per-unit-charge quantity) represents a magnitude
of the potential difference V in a circuit carrying a current. One obtains,

V = − ir +      = − −ir
d
dt
ψ

.

The unit for the emf is volts.
The Kirchhoff voltage law states that around a closed path in an electric

circuit, the algebraic sum of the emf is equal to the algebraic sum of the voltage
drop across the resistance.

Another formulation is: the algebraic sum of the voltages around any
closed path in a circuit is zero.

The Kirchhoff current law states that the algebraic sum of the currents at
any node in a circuit is zero.

The magnetomotive force (mmf) is the line integral of the time-varying

magnetic field intensity 
r
H t( ) ; that is,

mmf H t dl
l

= ⋅∫
r r

( ) .

One concludes that the induced mmf is the sum of the induced current and
the rate of change of the flux penetrating the surface bounded by the contour.
To show that, we apply Stoke’s theorem to find the integral form of Ampere’s
law (second Maxwell’s equation), as given by

∫∫∫ +⋅=⋅
ssl

sd
dt

tDd
sdtJldtH

r
r

rrrr )(
)()( ,

where 
r
J t( )  is the time-varying current density vector.



The unit for the magnetomotive force is amperes or ampere-turns
The duality of the emf and mmf can be observed using

       . = ⋅∫
r r
E t dl

l

( )  and mmf H t dl
l

= ⋅∫
r r

( ) .

The inductance (the ratio of the total flux linkages to the current which

they link, L
N
i

=
Φ

) and reluctance (the ratio of the mmf to the total flux,

ℜ =
mmf

Φ
) are used to find emf and mmf.

Using the following equation for the self-inductance L
i

=
ψ

, we have

       = − = − = − −
d
dt

d Li
dt

L
di
dt

i
dL
dt

ψ ( )
.

If L = const, one obtains

       = −L
di
dt

.

That is, the self-inductance is the magnitude of the self-induced emf per
unit rate of change of current.

Example 2.2.1.
Find the self-inductances of a nano-solenoid with air-core and filled-core

( oµµ 100= ). The solenoid has 100 turns (N = 100), the length is 20 nm (l=20

nm), and the uniform circular cross-sectional area is 18105 −×  m2

( 18105 −×=A  m2).

Solution. The magnetic field inside a solenoid is given by B
Ni

l
=

µ0 .

By using       = − = −N
d
dt

L
di
dt

Φ
 and applying Φ = =BA

NiA

l

µ0 ,

one obtains

L
N A

l
=

µ0
2

.

Then, L = 3.14×10−12 H.
If solenoid is filled with a magnetic material, we have

L
N A

l
=

µ 2

, and L = 3.14×10−9 H.

Example 2.2.2.
Derive a formula for the self-inductance of a torroidal solenoid which has a

rectangular cross section (2a × b) and mean radius r.



Solution. The magnetic flux through a cross section is found as

Φ = = = =
+
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By studying the electromagnetic torque 
r
T  [N-m] in a current loop, one

obtains the following equation
r r r
T M B= × ,

where 
r

M  denotes the magnetic moment.
Let us examine the torque-energy relations in nano- and microscale

actuators. Our goal is to study the magnetic field energy. It is known that the

energy stored in the capacitor is 1
2

2CV , while energy stored in the inductor is

1
2

2Li .  Observe that the energy in the capacitor is stored in the electric field

between plates, while the energy in the inductor is stored in the magnetic field
within the coils.

Let us find the expressions for energies stored in electrostatic and magnetic
fields in terms of field quantities. The total potential energy stored in the
electrostatic field is found using the potential difference V, and we have

W Vdve v

v

= ∫1
2

ρ  [J],

where ρv  is the volume charge density [C/m3], ρv D= ∇ ⋅
r r

, 
r
∇  is the curl

operator.
This expression for We  is interpreted in the following way. The potential

energy should be found using the amount of work which is required to
position the charge in the electrostatic field. In particular, the work is found
as the product of the charge and the potential. Considering the region with a
continuous charge distribution ( ρv const= ), each charge is replaced by

ρvdv , and hence the equation W Vdve v

v

= ∫1
2

ρ  results.

In the Gauss form, using ρv D= ∇ ⋅
r r

 and making use 
r r
E V= −∇ , one

obtains the following expression for the energy stored in the electrostatic
field

W D Edve

v

= ⋅∫1
2

r r
,

and the electrostatic volume energy density is 1
2

r r
D E⋅  [J/m3].



For a linear isotropic medium W E dv D dve

v v

= =∫ ∫1
2

2 1
2

21ε
ε

r r
.

The electric field 
r
E x y z( , , )  is found using the scalar electrostatic

potential function V x y z( , , )  as
r r
E x y z V x y z( , , ) ( , , )= −∇ .

In the cylindrical and spherical coordinate systems, we have
r r
E r z V r z( , , ) ( , , )φ φ= −∇  and 

r r
E r V r( , , ) ( , , )θ φ θ φ= −∇ .

Using W Vdve v

v

= ∫1
2

ρ , the potential energy which is stored in the

electric field between two surfaces (for example, in capacitor) is found to be

W QV CVe = =1
2

1
2

2 .

Using the principle of virtual work, for the lossless conservative system,
the differential change of the electrostatic energy dWe  is equal to the

differential change of mechanical energy dWmec ; that is

dW dWe mec= .

For translational motion

dW F dlmec e= ⋅
r r

,

where dl
r

 is the differential displacement.

One obtains dW W dle e= ∇ ⋅
r r

.

Hence, the force is the gradient of the stored electrostatic energy,
r r
F We e= ∇ .

In the Cartesian coordinates, we have

F
W

x
F

W

yex
e

ey
e= =

∂
∂

∂
∂

,  and F
W
zez

e=
∂
∂

.

Example 2.2.3.
Consider the capacitor (the plates have area A and they are separated by x),

which is charged to a voltage V. The permittivity of the dielectric is ε . Find the
stored electrostatic energy and the force Fex  in the x direction.

Solution. Neglecting the fringing effect at the edges, one concludes that

the electric field is uniform, and E
V
x

= . Therefore, we have

  W E dv
V
x

dv
V

x
Ax

A
x

V C x Ve

v v

= = 





= = =∫ ∫1
2

2
1
2

2
1
2

2

2
1
2

2 1
2

2ε ε ε ε
r

( ) .

Thus, the force is



( )
F

W
x

C x V

x
V

C x
xex

e= = =
∂
∂

∂

∂
∂

∂

1
2

2

1
2

2
( ) ( )

To find the stored energy in the magnetostatic field in terms of field
quantities, the following formula is used

W B Hdvm

v

= ⋅∫1
2

r r
.

The magnetic volume energy density is 1
2

r r
B H⋅  [J/m3].

Using 
r r
B H= µ , one obtains two alternative formulas

W H dv
B

dvm

v v

= =∫ ∫1
2

2 1
2

2

µ
µ

r
r

.

To show how the energy concept studied is applied to electromechanical
devices, we find the energy stored in inductors. To approach this problem,

we substitute 
r r r
B A= ∇ × , and using the following vector identity

( )r r r r r r r r r
H A A H A H⋅∇ × = ∇ ⋅ × + ⋅∇ × , one obtains

 

( )

( ) .
2
1

2
1

2
1

2
1

2
1

2
1

∫∫∫

∫∫∫
⋅=⋅+⋅×=

×∇⋅+×⋅∇=⋅=

vvs

vvv

m

dvJAdvJAsdHA

dvHAdvHAdvHBW

rrrrrrr

rrrrrrrr

Using the general expression for the vector magnetic potential ( )
r r
A r

[Wb/m], as given by

( ) ( )r r
r r

A r
J r

x
dvA

J

vA

= ∫
µ
π
0

4
, 

r r
∇ ⋅ =A 0 ,

we have

( ) ( )
W

J r J r

x
dv dvm

A
J

vv J

=
⋅

∫∫
µ
π8

r r r r

.

Here, vJ  is the volume of the medium where 
r
J  exists.

The general formula for the self-inductance i j=  and the mutual

inductance i j≠  of loops i and j is

L
N

i iij
i ij

j

ij

j

= =
Φ ψ

,

where ψ ij  is the flux linkage through ith coil due to the current in jth coil; i j  is

the current in jth coil.



The Neumann formula is applied to find the mutual inductance. We have,

L L
dl dl

x
i jij ji

j i

ijll ji

= =
⋅

≠∫∫
µ
π4

r r

, .

Then, using 
( ) ( )

W
J r J r

x
dv dvm

A
J

vv J

=
⋅

∫∫
µ
π8

r r r r

, one obtains

W
i dl i dl

xm
j j i i

ijll ji

=
⋅

∫∫
µ
π8

r r

.

Hence, the energy stored in the magnetic field is found to be

W i L im i ij j= 1
2

.

As an example, the energy, stored in the inductor is W Lim = 1
2

2 .

The differential change in the stored magnetic energy should be found.
Using

dW

dt
L i

di

dt
L i

di

dt
i i

dL

dt
m

ij j
i

ij i
j

i j
ij= + +

















1
2

,

we have dW L i di L i di i i dLm ij j i ij i j i j ij= + +





1
2

.

For translational motion, the differential change in the mechanical energy
is expressed by

dW F dlmec m= ⋅
r r

.

Assuming that the system is conservative (for lossless systems
dW dWmec m= ), in the rectangular coordinate system we obtain the following

equation

dW
W

x
dx

W

y
dy

W

z
dz W dlm

m m m
m= + + = ∇ ⋅

∂
∂

∂
∂

∂
∂

r r
.

Hence, the force is the gradient of the stored magnetic energy, and
r r
F Wm m= ∇ .

In the XYZ coordinate system for the translational motion, we have

F
W

x
F

W

ymx
m

my
m= =

∂
∂

∂
∂

,  and F
W
zmz
m=

∂
∂

.

For the rotational motion, the torque should be used. Using the differential
change in the mechanical energy as a function of the angular displacement θ ,
the following formula results if the rigid body (nano- or microactuator) is
constrained to rotate about the z-axis

dW T dmec e= θ ,

where Te  is the z-component of the electromagnetic torque.



Assuming that the system is lossless, one obtains the following expression
for the electromagnetic torque

T
W

e
m=

∂
∂θ

.

Example 2.2.4.
Calculate the magnetic energy of the torroidal microsolenoid if the

self-inductance is 1×10−10 H (L=2×10−10 H) when the current is 0.001 A
(i=0.001 A).

Solution. The stored field energy is W Lim = 1
2

2 ,

therefore 1310
2
1 101001.0102 −− ×=××=mW J.     

Example 2.2.5.
Calculate the force developed by the microelectromagnet with the cross-

sectional area A if the current ia(t) in and N coils produces the constant flux

mΦ , see Figure 2.2.1.

)(tx

)(ti

Magnetic force Fmx,Φm

N

Spring ks,

Figure 2.2.1.  Microelectromagnet
Solution.

From W H dv
B

dvm

v v

= =∫ ∫1
2

2 1
2

2

µ
µ

r
r

, for the virtual displacement dy,

assuming that the flux is constant and taking into the account the fact that the
displacement changes only the magnetic energy stored in the air gaps, we
have



dy
A

Ady
B

dWdW m
gapairmm

0

2

0

2

2
2

µµ
Φ

=== .

Thus, if mΦ =const, one concludes that the increase of the air gap (dy)

leads to increase of the stored magnetic energy, and from 
x

W
F m

mx ∂
∂

=  one

finds the expression for the force

A
aF m

ymx
0

2

µ
Φ

−=
rr

.

The result indicates that the force tends to reduce the air-gap length, and
the movable member is attached to the spring which develops the force which
opposite to the electromagnetic force.

In nano- and microscale electromechanical motion devices, the coupling
(magnetic interaction) between windings that are carrying currents is
represented by their mutual inductances. In fact, the current in each winding
causes the magnetic field in other windings. The mutually induced emf is
characterized by the mutual inductance which is a function of the position x or
the angular displacement θ . By applying the expression for the coenergy

[ ]W i L xc , ( )  or ( )[ ]W i Lc , θ , the developed electromagnetic torque can be

easily found. In particular,

T i x
W i L x

xe
c( , )
[ , ( )]

=
∂

∂
 and T i x

W i L
e

c( , )
[ , ( )]

=
∂ θ

∂θ
.

Example 2.2.6.
Consider the microelectromagnet which has N turns, see Figure 2.2.2.

The distance between the stationary and movable members is denoted as
x t( ) . The mean lengths of the stationary and movable members are l1  and

l2 , and the cross-sectional area is A. Neglecting the leakage flux, find the

force exerted on the movable member if the time-varying current i ta ( )  is

supplied. The permeabilities of stationary and movable members are µ1  and

µ2 .



x t( )

i ta ( )

Spring ks,
Magnetic force Fmx,

Φm

l2l1

N

µ1 µ2

Figure 2.2.2. Schematic of an electromagnet

Solution.
The magnetostatic force is

F
W
xmx

m=
∂
∂

,

where W Li tm a= 1
2

2 ( ) .

The magnetizing inductance should be calculated, and we have

L
N

i t i ta a

= =
Φ
( ) ( )

ψ
,

where the magnetic flux is Φ =
ℜ + ℜ + ℜ + ℜ

Ni ta

x x

( )

1 2

.

The reluctances of the ferromagnetic materials of stationary and movable
members ℜ1  and ℜ2 , as well as the reluctance of the air gap ℜ x , are

found as

ℜ =1
1

0 1

l

Aµ µ
, ℜ =2

2

0 2

l

Aµ µ
 and ℜ =x

x t

A

( )

µ0

and the circuit analog with the reluctances of the various paths is illustrated
in Figure 2.2.3.



Ni ta ( )

ℜ1 ℜ x

ℜ2ℜx

Figure 2.2.3. Circuit analog

By making use the reluctances in the movable and stationary members
and air gap, one obtains the following formula for the flux linkages

ψ

µ µ µ µ µ

= =
+ +

N
N i t

l
A

x t
A

l
A

aΦ
2

1

0 1 0

2

0 2

2
( )

( )
,

and the magnetizing inductance is a nonlinear function of the displacement. We
have

L x
N

l
A

x t
A

l
A

N A

l x t l
( )

( ) ( )
=

+ +
=

+ +

2

1

0 1 0

2

0 2

2
0 1 2

2 1 1 2 1 2
2 2

µ µ µ µ µ

µ µ µ
µ µ µ µ

.

Using 
( )( )

F
W
x

L x t i t

xmx
m a

= =∂
∂

∂

∂
1
2

2( ) ( )
, the force in the x direction is

found to be

F
N Ai

l x t lmx
a= −

+ +

2
0 1

2
2
2 2

2 1 1 2 1 22
µ µ µ

µ µ µ µ( )
.

It should be emphasized that as differential equations must be developed
to model the microelectromagnet studied. Using Newton’s second law of
motion, one obtains

dx
dt

v= ,

dv
dt m

N Ai
l x t l

k xa
s= −

+ +
−











1
2

2
0 1

2
2
2 2

2 1 1 2 1 2

2µ µ µ
µ µ µ µ( )

.

Example 2.2.7.
Two micro-coils have mutual inductance 0.00005 H (L12=0.00005 H). The

current in the first coil is i t1 4= sin . Find the induced emf in the second

coil.



Solution.

The induced emf is given as     2  = L
di

dt12
1 .

By using the power rule for the time-varying current in the first coil

i t1 4= sin , we have

di
dt

t

t
1 2 4

4
=

cos

sin
.

Hence,     2    
t

t

4sin

4cos0001.0
= .

Basic  Foundations  in  Model  Developments  of  Nano-  and 
Microactuators  in  Electromagnetic  Fields

Electromagnetic theory and mechanics form the basis for the
development of NEMS and MEMS models.

The electrostatic and magnetostatic equations in linear isotropic media

are found using the vectors of the electric field intensity E
r

, electric flux

density D
r

, magnetic field intensity H
r

, and magnetic flux density B
r

. In
addition, one uses the constitutive equations

ED
rr

ε=  and HB
rr

µ=
where ε  is the permittivity; µ  is the permiability.

The basic equations are given in the Table 1.

Table 2.2.1.
Fundamental Equations of Electrostatic and Magnetostatic Fields

Electrostatic Model Magnetostatic Model
Governing
equations

0),,,( =×∇ tzyxE
r

ε
ρ ),,,(

),,,(
tzyx

tzyxE v=⋅∇
r

0),,,( =×∇ tzyxH
r

0),,,( =⋅∇ tzyxH
r

Constitutive
equations

ED
rr

ε= HB
rr

µ=

In the static (time-invariant) fields, electric and magnetic field vectors

form separate and independent pairs. That is, E
r

 and D
r

 are not related to H
r

and B
r

, and vice versa. However, in reality, the electric and magnetic fields are
time-varying, and the changes of magnetic field influence the electric field, and
vice versa.



The partial differential equations are found by using Maxwell’s
equations. In particular, four Maxwell's equations in the differential form for
time-varying fields are

t
tzyxH

tzyxE
∂

∂
µ

),,,(
),,,(

r
r

−=×∇ ,

),,,(
),,,(

),,,(),,,( tzyxJ
t

tzyxE
tzyxEtzyxH

r
r

rr
++=×∇

∂
∂

εσ ,

ε
ρ ),,,(

),,,(
tzyx

tzyxE v=⋅∇
r

,

0),,,( =⋅∇ tzyxH
r

,

where E
r

 is the electric field intensity, and using the permittivity ε , the

electric flux density is ED
rr

ε= ; H
r

 is the magnetic field intensity, and using

the permeability µ , the magnetic flux density is HB
rr

µ= ; J
r

 is the current

density, and using the conductivity σ , we have EJ
rr

σ= ; vρ  is the volume

charge density, and the total electric flux through a closed surface is

QdvsdD
v

v

s

==⋅=Φ ∫∫ ρ
rr

 (Gauss’s law), while the magnetic flux crossing

surface is ∫ ⋅=Φ
s

sdB
rr

.

The electromotive and magnetomotive forces are found as

( )
inductionr transformen)(generatioinduction  motional

∫∫∫ ∂
∂

−⋅×=⋅=
sll

sd
t
B

ldBvldEemf
r

r
rrrrr

and

∫ ∫∫ ∂
∂

+⋅=⋅=
s sl

sd
t
D

sdJldHmmf
r

r
rrrr

.

The motional emf is a function of the velocity and the magnetic flux
density, while the electromotive force induced in a stationary closed circuit is
equal to the negative rate of increase of the magnetic flux (transformer
induction).

We introduce the vector magnetic potential which is denoted as A
r

 .

Using the equation AB
rr

×∇= , one finds the following nonhomogeneous
vector wave equation

J
t

A
A

r
r

r
µµε −=

∂
∂

−×∇
2

2
2

and the solution gives the waves traveling with the velocity 
µε
1

.



To develop mathematical models, consider the rotational motion of the
bar magnet, current loop, and solenoid in a uniform magnetic field as
illustrated in Figure 2.2.4.

Figure 2.2.4.  Clockwise rotation of a magnetic bar, current loop, and
solenoid

The torque tends to align the magnetic moment m
r

 with B
r

, and

BmT
rrr

×= .
For a magnetic bar with the length l, the pole strength is Q.
The magnetic moment is Qlm = , and the force is found as QBF = .

The electromagnetic torque is found to be

ααα sinsinsin2 2
1 mBQlBlFT === .

Using the vectors, one obtains

BaQlBmaBmT mm

rrrrrrr
 ×=×=×= ,             (2.2.1)

where ma
r

 is the unit vector in the magnetic moment direction.

For a current loop with the area A, the torque is found as

BaiABmaBmT mm

rrrrrrr
 ×=×=×= .             (2.2.2)

For a solenoid with N turns, one obtains

BaiANBmaBmT mm

rrrrrrr
 ×=×=×= .             (2.2.3)

The straightforward application of Newton’s second law for the
rotational motion gives

dt
d

JT rω
=

Σ∑
r

,             (2.2.4)

where 
Σ∑T

r
 is the net torque; rω  is the angular velocity; J is the

equivalent moment of inertia\.
The transient evolution of the angular displacement rθ  is modeled as

r
r

dt
d

ω
θ

= .             (2.2.5)
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rr
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rr
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rrr

×=

ma
r

α

mam m

rr
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BmT
rrr
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α
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vrr
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A



Augmenting equations (2.2.1), (2.2.2) or (2.2.3) with (2.2.4) and (2.2.5),
the mathematical model of nano and micro rotational actuators results.

The energy is stored in the magnetic field, and media are classified as
diamagnetic, paramagnetic, ferromagnetic, antiferromagnetic, and
superparamagnetic. Using the magnetic susceptibility mχ , the magnetization

is expressed as

HM m

rr
χ= .

Magnetization curves should be studied, and the permeability is 
H
B

=µ .

The magnetic field density B lags behind the magnetic flux intensity H, and
this phenomenon is called hysterisis. Thus, the B-H magnetization curves must
be studied.

The per-unit volume magnetic energy stored is ∫
B

HdB. The density of the

energy stored in the magnetic field is HB
rr

⋅2
1 . If B is linearly related to H, we

have the expression for the total energy stored in the magnetic field as

∫ ⋅
v

dvHB
rr

2
1 .

For translational motion, Newton’s second law states that the net force

acting on the object is related to its acceleration as 
r r
F ma=∑ . In the XYZ

coordinate system, one obtains

F max x=∑ , F may y=∑  and F maz z=∑ .

The force is the gradient of the stored magnetic energy; that is,
r r
F Wm m= ∇ .

Hence, in the xyz directions, we have

F
W

x
F

W

ymx
m

my
m= =

∂
∂

∂
∂

,  and F
W
zmz
m=

∂
∂

,

where the stored magnetic energy is found using the volume current density
r
J

( ) ( )
W

J r J r

R
dv dvm

A
A

vv A

=
⋅

∫∫
µ
π8

r r r r

.

Applying the field quantities, we have

∫∫ ⋅=⋅=
vv

m dvHBdvJAW
rrrr

2
1

2
1



The magnetic energy density is

HBJAwm

rrrr
⋅=⋅= 2

1
2
1 .

Using Newton’s second law and the stored magnetic energy, we have
nine highly coupled nonlinear differential equations for the xyz translational
motion of microactuator. In particular,

( )HxvFf
dt

dF
xyzxyzxyzF

xyz ,,,= ,

( )Lxyzxyzxyzxyzv
xyz FxvFf

dt

dv
,,,= ,

( )xyzxyzx
xyz xvf

dt

dx
,= ,             (2.2.6)

where Fxyz  are the forces developed; vxyz  and xxyz  are the linear velocities

and positions; FLxyz  are the load forces.

The expressions for energies stored in electrostatic and magnetic fields in
terms of field quantities should be derived. The total potential energy stored in
the electrostatic field is obtained using the potential difference V as

W Vdve v

v

= ∫1
2

ρ , where the volume charge density is found as ρv D= ∇ ⋅
r r

,

r
∇  is the curl operator.

In the Gauss form, using ρv D= ∇ ⋅
r r

 and making use of
r r
E V= −∇ , one

obtains the following expression for the energy stored in the electrostatic

field W D Edve

v

= ⋅∫1
2

r r
, and the electrostatic volume energy density

is 1
2

r r
D E⋅ . For a linear isotropic medium, one finds

W E dv D dve

v v

= =∫ ∫1
2

2 1
2

21ε
ε

r r
.

The electric field 
r
E x y z( , , )  is found using the scalar electrostatic

potential function V x y z( , , )  as
r r
E x y z V x y z( , , ) ( , , )= −∇ .

In the cylindrical and spherical coordinate systems, we have
r r
E r z V r z( , , ) ( , , )φ φ= −∇  and 

r r
E r V r( , , ) ( , , )θ φ θ φ= −∇ .

Using the principle of virtual work, for the lossless conservative nano-
and microelectromechanical systems, the differential change of the
electrostatic energy dWe  is equal to the differential change of mechanical



energy dWmec , dW dWe mec= . For translational motion dW F dlmec e= ⋅
r r

,

where dl
r

 is the differential displacement.

One obtains dW W dle e= ∇ ⋅
r r

.

Hence, the force is the gradient of the stored electrostatic energy,
r r
F We e= ∇ .

In the Cartesian coordinates, we have

F
W

x
F

W

yex
e

ey
e= =

∂
∂

∂
∂

,  and F
W
zez

e=
∂
∂

. 

Energy conversion takes place in nano- and microscale
electromechanical motion devices (actuators and sensors, smart structures),
antennas and ICs. We study electromechanical motion devices that convert
electrical energy (more precisely electromagnetic energy) to mechanical
energy and vise versa (conversion of mechanical energy to electromagnetic
energy). Fundamental principles of energy conversion, applicable to nano
and micro electromechanical motion devices were studied to provide basic
foundations. Using the principle of conservation of energy we can formulate:
for a lossless nano- and microelectromechanical motion devices (in the
conservative system no energy is lost through friction, heat, or other
irreversible energy conversion) the sum of the instantaneous kinetic and
potential energies of the system remains constant.

The energy conversion is represented in Figure 2.2.5.

Input

Electrical Energy

: Output

Mechanical Energy

: Coupling Electromagnetic Field

Transfered Energy

: Irreversible Energy Conversion

Energy Losses

:= + +

Figure 2.2.5. Energy transfer in nano and micro electromechanical systems

The total energy stored in the magnetic field is found as

W B Hdvm

v

= ⋅∫1
2

r r
,

where 
r
B  and 

r
H  are related using the permeability µ , 

r r
B H= µ .

The material becomes magnetized in response to the external field 
r
H ,

and the dimensionless magnetic susceptibility χm  or relative permeability

µr  are used.  We have,

( )
r r r r r
B H H H Hm r= = + = =µ µ χ µ µ µ0 01 .

Based upon the value of the magnetic susceptibility χm , the materials

are classified as



• diamagnetic, χm ≈ − × −1 10 5  ( χm = − × −9 5 10 6.  for copper,

χm = − × −3 2 10 5.  for gold, and χm = − × −2 6 10 5.  for silver);

• paramagnetic, χm ≈ × −1 10 4  ( χm = × −14 10 3.  for Fe2O3, and

χm = × −17 10 3.  for Cr2O3);

• ferromagnetic, χm >> 1 (iron, nickel and cobalt, Neodymium Iron

Boron and Samarium Cobalt permanent magnets) .
The magnetization behavior of the ferromagnetic materials is mapped by

the magnetization curve, where H is the externally applied magnetic field,
and B is total magnetic flux density in the medium. Typical B-H curves for
hard and soft ferromagnetic materials are given in Figure 2.2.6, respectively.
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Hmin Hmax

Bmin

Br

− Br

B

H

Bmax

Hmin Hmax

Bmin

Br

− Br

0 0

Figure 2.2.6. B-H curves for hard and soft ferromagnetic materials

The B versus H curve allows one to establish the energy analysis.
Assume that initially B0 0=  and H0 0= . Let H increases form H0 0=  to

Hmax . Then, B increases from B0 0=  until the maximum value of B,

denoted as Bmax , is reached. If then H decreases to Hmin , B decreases to

Bmin  through the remanent value Br  (the so-called the residual magnetic

flux density) along the different curve, see Figure 2.18. For variations of H,

[ ]H H H∈ min max , B changes within the hysteresis loop, and

[ ]B B B∈ min max .



In the per-unit volume, the applied field energy is W HdBF

B

= ∫ , while

the stored energy is expressed as W BdHc

H

= ∫ .

In the volume v, we have the following expressions for the field and
stored energy

W v HdBF

B

= ∫  and W v BdHc

H

= ∫ .

A complete B versus H loop should be considered, and the equations for
field and stored energy represent the areas enclosed by the corresponding
curve. It should be emphasized that each point of the B versus H curve
represent the total energy.

In ferromagnetic materials, time-varying magnetic flux produces core
losses which consist of hysteresis losses (due to the hysteresis loop of the B-
H curve) and the eddy-current losses, which are proportional to the current
frequency and lamination thickness. The area of the hysteresis loop is related
to the hysteresis losses. Soft ferromagnetic materials have narrow hysteresis
loop and they are easily magnetized and demagnetized. Therefore, the lower
hysteresis losses, compared with hard ferromagnetic materials, result.
For electromechanical motion devices, the flux linkages are plotted versus
the current because the current and flux linkages are used rather than the flux
intensity and flux density. In nano- and microectromechanical motion devices
almost all energy is stored in the air gap. Using the fact that the air is a
conservative medium, one concludes that the coupling filed is lossless.

Figure 2.2.7 illustrates the nonlinear magnetizing characteristic (normal
magnetization curve), and the energy stored in the magnetic field is

W idF = ∫ ψ
ψ

, while the coenergy is found as W dic

i

= ∫ψ .The total energy is

W W id di iF c

i

+ = + =∫ ∫ψ ψ ψ
ψ

.

0 i

ψ

W dic

i

= ∫ψ

W idF = ∫ ψ
ψ

dψ

di imax

ψ max

Figure 2.2.7. Magnetization curve and energies



The flux linkages is the function of the current i and position x (for
translational motion) or angular displacement θ  (for rotational motion). That
is, ψ = f i x( , )  or ψ θ= f i( , ) . The current can be found as the nonlinear

function of the flux linkages and position or angular displacement. Hence, 

d
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Assuming that the coupling field is lossless, the differential change in the

mechanical energy (which is found using the differential displacement dl
r

 as

dW F dlmec m= ⋅
r r

) is related to the differential change of the coenergy. For

displacement dx  at constant current, one obtains dW dWmec c= , and hence,

the electromagnetic force is F i x
W i x

xe
c( , )
( , )

=
∂

∂
.

For rotational motion, the electromagnetic torque is

T i
W i

e
c( , )
( , )

θ
∂ θ

∂θ
= .

Micro- and meso-scale structures, as well as thin magnetic films, exhibit
anisotropy. Consider the anisotropic ferromagnetic element in the Cartesian
(rectangular) coordinate systems as shown in Figure 2.2.8.



Figure 2.2.8. Material in the xyz coordinate system
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The analysis of anisotropic nano- and microscale actuators and sensors
can be performed. Some actuators and sensors can be studied assuming that
the media is linear, homogeneous, and isotropic. Unfortunately, this
assumption is not valid in general.

Control of microactuators position and linear velocity, angular
displacement and angular velocity, is established by changing H. In (2.2.6),
the magnetic field intensity can be considered as a control. However, the
electromagnetic field is developed by ICs or antennas. Hence, the microICs
or microantenna dynamics have to be integrated in (2.2.6). Thus, microscale
antennas and ICs must be thoroughly considered.

Consider the microactuator controlled by the microantenna. Assume that
the linear isotropic media has permittivity mεε0  and permeability mµµ0 .

The force is calculated using the stress energy tensor αβT
t

 which is given

in terms of the electromagnetic field as

( )γγγγαββαβααβ µµεεδµµεε HHEEHHEET mmmm 002
1

00 +−+=
t

,

where αβδ  is the Kronecker delta-function, defined as 
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The electromagnetic field tensor is expressed as
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and Maxwell’s equation can be expressed in the tensor form.
Then, the electromagnetic force is found as

∫=
s

sdTF
rtr

αβ .

The results derived can be viewed using the energy analysis, and one has
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2.3. CLASSICAL  MECHANICS  AND  ITS  APPLICATION

With advanced molecular computer-aided-design tools, one can design,
analyze, and evaluate three-dimensional (3-D) nanostructures in the steady-
state. However, the comprehensive analysis in the time domain needs to be
performed. That is, the designer must study the dynamic evolution of NEMS
and MEMS. Conventional methods of molecular mechanics do not allow one
to perform numerical analysis of complex NEMS and MEMS in time-
domain, and even 3-D modeling is restricted to simple structures. Our goal is
to develop a fundamental understanding of electromechanical and
electromagnetic processes in nano- and microscale structures. An addition,
the basic theoretical foundations will be developed and used in analysis of
NEMS and MEMS from systems standpoints. That is, we depart from the
subsystem analysis and study NEMS and MEMS as dynamics systems.

From modeling, simulation, analysis, and visualization standpoints,
NEMS and MEMS are very complex. In fact, NEMS and MEMS are
modeled using advanced concepts of quantum mechanics, electromagnetic
theory, structural dynamics, thermodynamics, thermochemistry, etc. It was
illustrated that NEMS and MEMS integrate a great number of components
(subsystems), and mathematical model development is an extremely
challenging problem because the commonly used conventional methods,
assumptions, and simplifications may not be applied to NEMS and MEMS
(for example, the Newtonian mechanics are not applicable to the molecular-
scale analysis, and Maxwell’s equations must be used to study the
electromagnetic phenomena). As the result, partial differential equations
describe large-scale multivariable mathematical models of MEMS and
NEMS. The visualization issues must be addressed to study the complex
tensor data (tensor field). Techniques and software for visualizing scalar and
vector field data are available to visualize the data in three dimensions. In
contrast, techniques to visualize tensor fields are not available due to the
complex, multivariate nature of the data, and the fact that no commonly used
experimental analogy exists for visualizing tensor data. The second-order
tensor fields consist of 33×  matrices defined at each node in a
computational grid. Tensor field variables can include stress, viscous stress,
rate of strain, and momentum (tensor variables in conventional structural
dynamics include stress and strain). The tensor field can be simplified and
visualized as a scalar field. Alternatively, the individual vectors that comprise
the tensor field can be analyzed. However, these simplifications result in the
loss of valuable information needed to analyze complex tensor fields. Vector
fields can be visualized using streamlines that depict a subset of the data.
Hyperstreamlines, as an extension of the streamlines to the second-order
tensor fields, provide one with a continuous representation of the tensor field
along a three-dimensional path. Due to obvious limitations and scope, this
book does not cover the tensor field topologies, and through this brief



discussion of the resultant visualization, the author emphasizes the
multidisciplinary nature and complexity of the phenomena in NEMS and
MEMS.

While some results have been thoroughly studied, many important
aspects have not been approached and researched, primarily due to the
multidisciplinary nature and complexity of NEMS and MEMS. The major
objectives of this book are to study the fundamental theoretical foundations,
develop innovative concepts in structural design and optimization, perform
modeling and simulation, as well as solve the motion control problem and
validate the results. To develop mathematical models, we augment nano- or
microactuator/sensor and circuitry dynamics (the dynamics can be studied at
the nano and micro scales). Newtonian and quantum mechanics, Lagrange’s
and Hamilton’s concepts, and other cornerstone theories are used to model
NEMS and MEMS dynamics in the time domain. Taking note of these basic
principles and laws, nonlinear mathematical models are found to perform
comprehensive analysis and design. The control mechanisms and decision
making are discussed, and control algorithms must be synthesized to attain
the desired specifications and requirements imposed on the performance. It is
evident that nano- and microsystem features must be thoroughly considered
when approaching modeling, simulation, analysis, and design. The ability to
find mathematical models is a key problem in NEMS and MEMS analysis
and optimization, synthesis and control, manufacturing, and
commercialization. For MEMS, using electromagnetic theory and
electromechanics, we develop adequate mathematical models to attain the
design objectives. The proposed approach, which augments electromagnetics
and electromechanics, allows the designer to solve a much broader spectrum
of problems compared with finite-element analysis because an interactive
electromagnetic-mechanical-ICs analysis is performed. The developed
theoretical results are verified to demonstrate.

In this book the author studies large-scale NEMS and MEMS (actuators
and sensors have been primarily studied and analyzed from the fabrication
standpoints) and thorough fundamental theory is developed. Applying the
theoretical foundations to analyze and regulate in the desired manner the
energy or information flows in NEMS and MEMS, the designer is confronted
with the need to find adequate mathematical models of the phenomena, and
design NEMS and MEMS configurations. Mathematical models can be
found using basic physical concepts. In particular, in electrical, mechanical,
fluid, or thermal systems, the mechanism of storing, dissipating,
transforming, and transferring energies is analyzed. We will use the Lagrange
equations of motion, Kirchhoff’s and Newton’s laws, Maxwell’s equations,
and quantum theory to illustrate the model developments. It was emphasized
that NEMS and MEMS integrate many components and subsystems. One can
reduce interconnected systems to simple, idealized subsystems (components).
However, this idealization is impractical. For example, one cannot study



nano- and microscale actuators and sensors without studying subsystems
(devices) to actuate and control these transducers. That is, NEMS and
MEMS integrate mechanical and electromechanical motion devices
(actuators and sensors), power converters and antennas, processors and IO
devices, etc. One of the primary objectives of this book is to illustrate how
one can develop comprehensive mathematical models of NEMS and MEMS
using basic principles and laws. Through illustrative examples, differential
equations will be found to model dynamic systems.

Based upon the synthesized NEMS and MEMS architectures, to analyze
and regulate in the desired manner the energy or information flows, the
designer needs to find adequate mathematical models and optimize the
performance characteristics through the design of control algorithms. Some
mathematical models can be found using basic foundations and mathematical
theory to map the dynamics of some processes, and system evolution is not
developed yet. In this section we study electrical, mechanical, fluid, and
thermal systems, the mechanism of storing, dissipating, transforming, and
transferring energies in actuators and sensors which can be manufactured
using a large variety of different nano-, micro-, and miniscale technologies.
In this section we will use the Lagrange equations of motion, as well as
Kirchhoff’s and Newton’s laws to illustrate the model developments
applicable to a large class of nano-, micro-, and miniscale transducers. It has
been illustrated that one cannot reduce interconnected systems (NEMS and
MEMS) to simple, idealized sub-systems (components). For example, one
cannot study actuators and smart structures without studying the mechanism
to regulate these actuators, and ICs and antennas must be integrated as well.
These ICs and antennas are controlled by the processor, which receives the
information from sensors. The primary objective of this chapter is to
illustrate how one can develop mathematical models of dynamic systems
using basic principles and laws. Through illustrative examples, differential
equations will be found and simulated.

Nano- and microelectromechanical systems must be studied using the
fundamental laws and basic principles of mechanics and electromagnetics. Let
us identify and study these key concepts to illustrate the use of cornerstone
principles. The study of the motion of systems with the corresponding analysis
of forces that cause motion is our interest.

2.3.1. Newtonian Mechanics

Newtonian  Mechanics:  Translational  Motion

The equations of motion for mechanical systems can be found using
Newton’s second law of motion. Using the position (displacement) vector r

r
,

the Newton equation in the vector form is given as



amtF
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=∑ ),( r ,             (2.3.1)
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rr

tF∑  is the vector sum of all forces applied to the body (
r
F  is

called the net force); 
r
a  is the vector of acceleration of the body with respect

to an inertial reference frame; m  is the mass of the body.
From (2.3.1), in the Cartesian system (xyz coordinates) we have
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In the Cartesian coordinate system, Newton’s second law is expressed as

F max x=∑ , F may y=∑ , and F maz z=∑ .

It is worth noting that ma
r

 represents the magnitude and direction of the
applied net force acting on the object. Hence, ma

r
 is not a force.

A body is at equilibrium (the object is at rest or is moving with constant

speed) if 
r
F =∑ 0 .

Newton’s second law in terms of the linear momentum, which is found
as

r r
p = mv , is given by

r r r
F

dp
dt

d mv
dt

= =∑ ( )
,

where 
r
v  is the vector of the object velocity.

Thus, the force is equal to the rate of change of the momentum. The object

or particle moves uniformly if 0=
dt
pd
r

 (thus, constp =
r

).

Newton’s laws are extended to multi-body systems, and the momentum of
a system of N particles is the vector sum of the individual momenta. That is,

∑
=

=
N

i
ipP

1

rr
.

Consider the multi-body system of N particles. The position
(displacement) is represented by the vector r which in the Cartesian coordinate
system has the components x, y and z. Taking note of the expression for the
potential energy )(r

r
Π , one has for the conservative mechanical system

)()( rr
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Therefore, the work done per unit time is
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From Newton’s second law one obtains
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hence, for a conservative system we have
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The total kinetic energy of the particle is 2
2
1 mv=Γ , and for N particles,

one has
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Furthermore, we have 
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Using the generilized coordinates ( )nqq ,...,1  and generalized velocities
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potential ( )nqq ,...,1Π  energies. Hence, using the expressions for the total

kinetic and potential energies, Newton’s second law of motion can be given as
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That is, the generalized coordinates qi  are used to model multibody

systems, and ( ) ( )NNNn zyxzyxqq
rrrrrr

,,...,,,,,..., 1111 = .

The obtained results are connected to the Lagrange equations of motion,
which will be studied later.

Newtonian Mechanics: Rotational Motion



For rotational motion, the net torque and angular acceleration must are
used. The rotational analog of Newton’s second law for a rigid bogy is

r r
T J∑ = α ,

where 
r
T∑  is the net torque; J is the moment of inertia (rotational inertia);

r
α  is the angular acceleration vector, 

r
r r r

α
θ θ ω

= = =
d

dt

d

dt

d

dt

d

dt

2

2
; 

r
θ  is the

angular displacement; ω  denotes the angular velocity.

The angular momentum of the system 
r
LM  is expressed as

r r r r r
L r p r mvM = × = × ,

and
r

r
r r

T
dL

dt
r FM∑ = = × ,

where 
r
r  is the position vector with respect to the origin.

For the rigid body, rotating around the axis of symmetry, we have
r r
L JM = ω .

Example 2.3.1.

A micro-motor has the equivalent moment of inertia 20105 −×=J kg-m2.

Let the angular velocity of the rotor is 5/110tr =ω . Find the angular

momentum and the developed electromagnetic torque as functions of time. The
load and friction torques are zero.

Solution.

The angular momentum is found as 5/119105 tJL rM
−×== ω .

The developed electromagnetic torque is 5/419101 −−×== t
dt

dL
T M

e . 

From Newtonian mechanics one concludes that the applied net force plays
a central role in quantitatively describing the motion. An alternative analysis of
motion can be performed in terms of the energy or momentum quantities, which
are conserved. The principle of conservation of energy states that energy can
only be converted from one form to another. Kinetic energy is associated with
motion, while potential energy is associated with position. The sum of the
kinetic (Γ), potential (Π), and dissipated (D) energies is called the total energy
of the system ( ΣT ), which is conserved, and the total amount of energy

remains constant; that is,
Σ Γ ΠT D const= + + = .



For example, consider the translational motion of a body which is attached
to an ideal spring that obeys Hooke’s law. Neglecting friction, one obtains the
following expression for the total energy

Σ Γ ΠT smv k x const= + = + =1
2

2 2( ) .

Here, the translational kinetic energy is Γ = 1
2

2mv ; the elastic potential

energy is Π = 1
2

2k xs ; ks  is the force constant of the spring; x is the

displacement.
For rotating spring, we have

Σ Γ ΠT sJ k const= + = + =1
2

2 2( )ω θ ,

where the rotational kinetic energy is Γ = 1
2

2Jω  and the elastic potential

energy is obtained as Π = 1
2

2ksθ .

The kinetic energy of a rigid body having translational and rotational
components of motion is found to be

Γ = +1
2

2 2( )mv Jω .

That is, motion of the rigid body is represented as a combination of
translational motion of the center of mass and rotational motion about the axis
through the center of mass. The moment of inertia depends upon how the mass
is distributed with respect to the axis, and J is different for different axes of
rotation. If the body is uniform in density, J can be easily calculated for
regularly shaped bodies in terms of their dimensions. For example, a rigid
cylinder with mass m (which is uniformly distributed), radius R, and length l,
has the following horizontal and vertical moments of inertia

J mRhorizontal = 1
2

2  and J mR mlvertical = +1
4

2 1
12

2 . The radius of gyration

can be found for irregularly shaped objects, and the moment of inertia can be
easily obtained.

In electromechanical motion devices, the force and torque are thoroughly
studied. Assuming that the body is rigid and the moment of inertia is constant,
one has

r r r r r r
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represents the change of the kinetic energy.
Furthermore,
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and the power is defined by

P T= ×
r r

ω .

This equation is an analog of P F v= ×
r r

, which is applied for
translational motion.
Example 2.3.2.

Consider a micro-positioning table actuated by a micromotor. How much
work is required to accelerate a 2 mg payload (m = 2 mg) from v0 = 0 m/sec to
vf = 1 m/sec?

Solution.
The work needed is calculated as

626
2
12

0
2

2
1 1011102)( −− ×=××=−= mvmvW f J.   ~  

Example 2.3.3.
The rated power and angular velocity of a micromotor are 0.001 W and

100 rad/sec. Calculate the rated electromagnetic torque.
Solution.
The electromagnetic torque is

5101
100

001.0 −×===
r

e
P

T
ω 

N-m.  ~   

Example 2.3.4.

Consider a body of mass m in the XY coordinate system. The force 
r
Fa  is

applied in the x direction. Neglecting Coulomb and static friction, and

assuming that the viscous friction force is F B
dx
dtfr v= , find the equations of

motion. Here Bv  is the viscous friction coefficient.

Solution.
The free-body diagram developed is illustrated in Figure 2.3.1.
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Figure 2.3.1. Free-body diagram

The sum of  the forces, acting in the y direction, is expressed as
r r r
F F FY N g= −∑ ,

where 
r
F mgg =  is the gravitational force acting on the mass m ; 

r
FN  is the

normal force which is equal and opposite to the gravitational force.
From (2.3.1), the equation of motion in the y direction is expressed as
r r
F F ma m

d y

dt
N g y− = =

2

2
,

where ay  is the acceleration in the y direction, a
d y

dt
y =

2

2
.

Making use 
r r
F FN g= , we have

d y

dt

2

2
0= .

The sum of the forces acting in the x direction is found using the applied

force 
r
Fa  and the friction force 

r
Ffr ; in particular, we have

r r r
F F FX a fr= −∑ .

The applied force can be time-invariant 
r
F consta =  or time-varying
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Using (2.1), the equation motion in the x direction is found to be
r r
F F ma m

d x

dt
a fr x− = =

2

2
,



where ax  is the acceleration in the X  direction, a
d x

dt
x =

2

2
, and  the

velocity in the X direction is v
dx
dt

= .

Assuming that the Coulomb and static friction can be neglected, the
friction force, as a function of the viscous friction coefficient Bv  and

velocity v
dx
dt

= , is given by F B
dx
dtfr v= .

Hence, one obtains the second-order nonlinear differential equation to
map the body dynamics in the x direction

d x

dt m
F B

dx
dta v

2

2

1
= −





,

A set of two first-order linear differential equations results, and
dx
dt

v= ,

( )dv
dt m

F B va v= −
1

.         

The application of Newton’s law leads to the partial differential
equations. To illustrate this, we consider two examples.

Example 2.3.5.
The elastic membrane is illustrated in Figure 2.3.2. Derive the

mathematical model to model the rectangular membrane vibration. That is, the
goal is to study the time varying membrane deflection d(t,x,y) in the xy plane.
The mass of the undeflected membrane per unit area ρ  is constant

(homogeneous membrane).

Figure 2.3.2. Vibrating rectangular membrane
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Solution.
Assume that the membrane is perfectly flexible. For small deflections, the

tension T (the force per unit length) is the same at all points in all directions,
and suppose that T is constant during the motion. It should be emphasized that
because the deflection of the membrane is small compared with the membrane
size ab, the inclination angles are small.

Taking note of these assumptions, the forces acting on the sides are
approximated as xTFx ∆=  and yTFy ∆= . The membrane is assumed to be

perfectly flexible, therefore, forces Fx and Fy are tangential to the membrane.
The horizontal components of the forces are found as the cosine

functions of the inclination angles. The horizontal components at the
opposite sides (right and left) are equal because angles α  and β are small.

Thus, the membrane motion in the horizontal direction can be neglected.
The vertical components of the forces are βsinyT∆  and αsinyT∆− .

Using Newton’s second law of motion, the net force must be found. We
have the following expression

( ) ( )),(),(),(),( 2121 yxdyyxdxTyxdyxxdyTF yyxx −∆+∆+−∆+∆=∑
Thus, two-dimensional partial (wave) differential equation is
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Using initial and boundary conditions, the solution can be found.
Let the initial conditions are ),(),,( 00 yxdyxtd =  and

),(
),,(

1
0 yxd
t

yxtd
=

∂
∂

. Thus, the initial displacement ),(0 yxd  and initial

velocity ),(1 yxd  are given.

Assume that the boundary conditions are
0),,( 00 =yxtd  and 0),,( =ff yxtd .

Then, the solution is found to be
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where the eigenvalues (characteristic values) are found as
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Using initial conditions, the Fourier coefficients are obtained in the form
of the double Fourier series. In particular, we have

∫ ∫=
b a
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a
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4 ππ
λ 

.      

Example 2.3.6.
Derive the mathematical model of the infinitely long beam on the elastic

foundation as shown in Figure 2.3.3. The load force is the square function. The
modulus (the spring stiffness per unit length) of the elastic foundation is ks.
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Figure 2.3.3. Beam on elastic foundation under the load force f(x)

Solution.
Using the Euler beam theory, the deflection y(x) due to the net load force

F(x) is modeled by the fourth-order differential equation
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4

xF
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yd
kr = ,

where kr is the flexural rigidity constant.
Therefore, we have the following differential equation to model the

infinite beam under the consideration
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The general homogeneous solution is given by
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where the unknown coefficients kI can be determined using the initial and
boundary conditions. The boundary-value problem can be relaxed, and the
solution can be found in the series form.

The load force is the periodic function, and using the Fourier series we
have
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The solution of the differential equation )(
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found in the following form
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Differentiating this equation four times gives
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Thus, the Fourier series coefficients are found as
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Therefore, the solution is given by
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The first-order approximation is
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Friction Models in Electromechanical Systems

A thorough consideration of friction is essential for understanding the
operation of electromechanical systems. Friction is a very complex nonlinear



phenomenon that is difficult to model. The classical Coulomb friction is a
retarding frictional force (for translational motion) or torque (for rotational
motion) that changes its sign with the reversal of the direction of motion, and
the amplitude of the frictional force or torque are constant. For translational
and rotational motions, the Coulomb friction force and torque are

F k v k
dx

dtCoulomb Fc Fc= = 





sgn( ) sgn ,

T k k
d

dtCoulomb Tc Tc= = 





sgn( ) sgnω
θ

,

where kFc  and kTc  are the Coulomb friction coefficients.

Figure 2.3.4.a illustrates the Coulomb friction.
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v
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θ

     a            b   c
Figure 2.3.4. Functional representations of:

             a) Coulomb friction;  b) viscous friction;  c) static friction

Viscous friction is a retarding force or torque that is a linear function of
linear or angular velocity. The viscous friction force and torque versus linear
and angular velocities are shown in Figure 2.3.4.b. The following
expressions are commonly used to model the viscous friction

F B v B
dx
dtviscous v v= =  for translational motion,

and T B B
d
dtviscous m m= =ω
θ

 for rotational motion,

where Bv  and Bm  are the viscous friction coefficients.

The static friction exists only when the body is stationary, and vanishes
as motion begins. The static friction is a force Fstatic  or torque Tstatic , and

we have the following expressions

F Fstatic st v
dx
dt

= ±
= =0

,

and T Tstatic st d
dt

= ±
= =ω θ

0
.



One concludes that the static friction is a retarding force or torque that
tends to prevent the initial translational or rotational motion at the beginning
(see Figure 2.3.4.c).

In general, the friction force and torque are nonlinear functions that must
be modeled using frictional memory, presliding conditions, etc. The
empirical formulas, commonly used to express Fstatic  and Tstatic , are

( )F k k e k v v k k e k
dx
dt

dx
dtfr fr fr
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These Fstatic  and Tstatic  are shown in Figure 2.3.5.
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v
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d
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= =, ω
θ0

Figure 2.3.5. Friction force and torque are functions of linear and
angular velocities

Example 2.3.7. Transducer model
Figure 2.3.6 shows a simple electromechanical device (actuator) with a

stationary member and movable plunger. Using Newton’s second law, find
the differential equations.
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Figure 2.3.6. Schematic of a transducer

Solution.
Let us apply Newton’s second law of motion to find the equations of

motion and study the dynamics. Newton’s law states that the acceleration of
an object is proportional to the net force. The vector sum of all forces acting
on the object can be found by using a free-body diagram. In particular, for
the studied translational mechanical system, one obtains

F t m
d x

dt
B

dx
dt

k x k x F tv s s e( ) ( ) ( )= + + + +
2

2 1 2
2 ,

where x denotes the displacement of a plunger; m is the mass of a movable
member; Bv is the viscous friction coefficient; ks1 and ks2 are the spring
constants; Fe(t) is the magnetic force,

F i x
W i x

xe
c( , )
( , )

=
∂

∂
.

It should be emphasized that Hooke’s law is valid only for sufficiently
small displacements. The stretch and restoring forces are not directly
proportional to the displacement, and these forces are different on either side
of the equilibrium position. The restoring/stretching force exerted by the

spring is expressed by ( )k x k xs s1 2
2+ .

Assuming that the magnetic system is linear, the coenergy is expressed
as

W i x L x ic ( , ) ( )= 1
2

2 ,



then  F i x i
dL x

dxe ( , )
( )

= 1
2

2 .

The inductance is found by using the following formula
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µ
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where ℜf and ℜg are the reluctances of the ferromagnetic material and air
gap; Af and Ag are  the associated cross section areas; lf and (x + 2d) are the
lengths of the magnetic material and the air gap.

Hence, 
dL
dx

N A A

A l A x d
f f g

g f f f

= −
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Using Kirchhoff’s law, the voltage equation for the electric circuit is
given as

u ri
d
dta = +
ψ

,

where the flux linkage ψ  is expressed as ψ = L x i( ) .

One obtains
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Augmenting this equation with differential equation for the mechanical
systems

F t m
d x
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dt

k x k x F tv s s e( ) ( ) ( )= + + + +
2

2 1 2
2 ,

three nonlinear differential equations for the considered transducer are found
as
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Newtonian Mechanics: Rotational Motion



For one-dimensional rotational systems, Newton’s second law of motion
is expressed as

M = Jα ,             (2.3.2)
where M is the sum of all moments about the center of mass of a body, (N-
m); J is the moment of inertia about its center of mass, (kg-m2); α  is the
angular acceleration of the body, (rad/sec2).

Example 2.3.8.
Given a point mass m suspended by a massless, unstretchable string of

length l, (see Figure 2.3.7). Derive the equations of motion for a simple
pendulum with negligible friction.
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Y

X

Y

X

O
Ta , ω

mg cosθmg sinθ

Figure 2.3.7. A simple pendulum

Solution.
The restoring force, which is proportional to sinθ  and given by

− mg sinθ , is the tangential component of the net force. Therefore, the sum

of the moments about the pivot point O  is found as

M∑ = − +mgl Tasinθ ,

where Ta  is the applied torque; l  is the length of the pendulum measured

from the point of rotation.
Using (2.3.2), one obtains the equation of motion

J J
d

dt
mgl Taα

θ
θ= = − +

2

2
sin ,

where J is the moment of inertial of the mass about the point O.
Hence, the second-order differential equation is found to be

( )d

dt J
mgl Ta

2

2

1θ
θ= − +sin .

Using the following differential equation for the angular displacement



d
dt
θ

ω= ,

one obtains the following set of two first-order differential equations

( )d
dt J

mgl Ta
ω

θ= − +
1

sin ,

d
dt
θ

ω= .

The moment of inertia is expressed by J ml= 2 . Hence, we have the
following differential equations to be used in modeling of a simple pendulum

d
dt

g
l ml

Ta
ω

θ= − +sin
1

2
,

d
dt
θ

ω= .         

2.3.2. Lagrange Equations of Motion

Electromechanical systems augment mechanical and electronic
components. Therefore, one studies mechanical, electromagnetic, and
circuitry transients. It was illustrated that the designer can integrate the
torsional-mechanical dynamics and circuitry equations of motion. However,
there exist general concepts to model systems. The Lagrange and Hamilton
concepts are based on the energy analysis. Using the system variables, one finds
the total kinetic, dissipation, and potential energies (which are denoted as Γ ,

D  and Π ). Taking note of the total kinetic 
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energies, the Lagrange equations of motion are
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Here, qi  and Qi  are the generalized coordinates and the generalized

forces (applied forces and disturbances). The generalized coordinates qi  are

used to derive expressions for energies 





Γ

dt

dq

dt

dq
qqt n

n ,...,,,...,, 1
1 ,









dt

dq

dt

dq
qqtD n

n ,...,,,...,, 1
1  and ( )nqqt ,...,, 1Π .



Taking into account that for conservative (losseless) systems D = 0, we
have the following Lagrange’s equations of motion

d
dt q q q

Q
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 − + = .

Example 2.3.9. Mathematical model of a simple pendulum
Derive the mathematical model for a simple pendulum using the

Lagrange equations of motion.
Solution.
Derivation of the mathematical model for the simple pendulum, shown

in Figure 2.3.7, was performed in Example 2.3.8 using the Newtonian
mechanics. For the studied conservative (losseless) system we have D = 0.
Thus, the Lagrange equations of motion are

d
dt q q q
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The kinetic energy of the pendulum bob is ( )Γ = 1
2

2
m l &θ .

The potential energy is found as ( )Π = −mgl 1 cosθ .

As the generalized coordinate, the angular displacement is used, qi = θ .

The generalized force is the torque applied, Q Ti a= .

One obtains
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Thus, the first term of the Lagrange equation is found to be
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Assuming that the string is unstretchable, we have 
dl
dt

= 0 .

Hence,

ml
d

dt
mgl Ta

2
2

2

θ
θ+ =sin .

Thus, one obtains

( )d

dt ml
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2

2 2

1θ
θ= − +sin .

Recall that the equation of motion, derived by using Newtonian
mechanics, is



( )d

dt J
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2

2

1θ
θ= − +sin , where J ml= 2 .

One concludes that the results are the same, and the equations are
d
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g
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2
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Example 2.3.10. Mathematical Model of a Pendulum
Consider a double pendulum of two degrees of freedom with no external

forces applied to the system (see Figure 2.3.8). Using the Lagrange equations
of motion, derive the differential equations.
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Y1
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Figure 2.3.8. Double pendulum

Solution.
The angular displacement θ1  and θ2  are chosen as the independent

generalized coordinates. In the XY plane studied, let ( , )x y1 1  and ( , )x y2 2

be the rectangular coordinates of m1  and m2 . Then, we obtain

x l1 1 1= cosθ , x l l2 1 1 2 2= +cos cosθ θ ,

y l1 1 1= sinθ , y l l2 1 1 2 2= +sin sinθ θ .

The total kinetic energy Γ  is found to be
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Then, one obtains
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The total potential energy is given by
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The Lagrange equations of motion are
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Hence, the dynamic equations of the system are
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It should be emphasized that if the torques T1  and T2  are applied to the

first and second joints, the following equations of motions results
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Example 2.3.11. Mathematical Model of a Circuit Network
Consider a two-mesh electric circuit, as shown in Figure 2.3.9. Find the

circuitry dynamics.
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Figure 2.3.9. Two-mesh circuit network

Solution.
We use q1  and q2  as the independent generalized coordinates, where

q1  is the electric charge in the first loop, q2  represents the electric charge in

the second loop. The generalized force, which is applied to the system, is
denoted as Q1 .  These generalized coordinates are related to the circuitry

variables. In particular, the currents i1  and i2  are found in terms of charges,

i q1 1= &  and i q2 2= & . That is, q
i
s1
1=  and q

i
s2
2= . The generalized force is

the applied voltage, u t Qa ( ) = 1 .

The total magnetic energy (kinetic energy) is expressed by
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By using this equation for Γ , we have
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Using the equation for the total electric energy (potential energy)
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The total heat energy dissipated is
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The Lagrange equations of motion are expressed using the independent
coordinates used. We obtain
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 Hence, the differential equations for the circuit studied are found to be
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The SIMULINK model can be built using these derived nonlinear
differential equations. In particular, we have
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The corresponding SIMULINK diagram is shown in Figure 2.3.10.
It should be emphasized that the currents i1  and i2  are expressed in

terms of charges as
i q1 1= &  and i q2 2= & .

That is, we have

q
i
s1
1=  and q

i
s2
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Figure 2.3.10. SIMULINK diagram

To perform simulations (numerical analysis), one must use the parameter
values. The circuitry parameters are assigned to be: L1 =0.01 H, L2 =0.005

H, L12 = 0.0025 H, C1 =0.02 F, C2 =0.1 F, R1 =10 ohm, R2 = 5 ohm and

u ta = 100 200sin( )  V.

Simulation results, which give the time history of q t q t i t1 2 1( ), ( ), ( )  and

i t2 ( ) , are documented in Figure 2.3.11.
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Figure 2.3.11. Circuit dynamics: evolution of the generalized
  coordinates and currents

     

Example 2.3.12. Mathematical Model of an Electric Circuit
Using the Lagrange equations of motion, develop the mathematical

models for the circuit shown in Figure 2.3.12. Prove that the model derived
using the Lagrange equations of motion are equivalent to the model
developed using Kirchhoff’s law.
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Figure 2.3.12. Electric circuit

Solution.
Using q1  and q2  as the independent generalized coordinates, the

Lagrange equations of motion can be found. Here, q1  is the electric charge

in the first loop and i qa = &1 , and q2  is the electric charge in the second

loop, i qL = &2 . The generalized force, applied to the system, is denoted as

Q1 , and u t Qa ( ) = 1 .

The total kinetic energy is Γ = 1
2 2

2Lq& .

Therefore, we have,
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The total potential energy is expressed as
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The total dissipated energy is

D = 1
2 1

2 1
2 2

2Rq R qL& &+ .

Therefore



∂
∂

D
=

&
&

q
Rq

1
1  and 

∂
∂

D

q
R qL&

&
2

2= .

The Lagrange equations of motion
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lead one to the following two differential equations
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By using Kirchhoff’s law, two differential equations result
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u

R
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R
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1
.

Taking note of  i qa = &1  and i qL = &2 , and making use C
du
dt

i iC
a L= − ,

we obtain

u
q q

CC =
−1 2 .

The equivalence of the differential equations derived using the Lagrange
equations of motion and Kirchhoff’s law is proven.     

Example 2.3.13. Mathematical model of a boost converter
A high-frequency, one-quadrant boost (step-up) dc-dc switching

converter is documented in Figure 2.3.13. Find the mathematical model in
the form of differential equations.
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Figure 2.3.13. Boost converter

Solution.
To solve the model development problem, we will derive the differential

equations if the duty ratio Dd  is 1 and 0. Then, we will augment two

mathematical models found to model the boost converter.
When the switch is closed, the diode D is reverse biased. For 1=Dd

( toff = 0), one obtains the following set of linear differential equations
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1
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If the switch is open ( 0=Dd ), the diode D is forward biased because

the direction of the inductor current iL  does not change instantly. Therefore,

one has three linear differential equations
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Assuming the switching frequency id high, the averaging concept is
applied, and we have
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Considering the duty ratio as the control input, one concludes that a set
of nonlinear differential equations result. In fact, the state variables are
multiplied by the control.

Let us illustrate that Lagrange’s concept gives the same differential
equations. We denote the electric charges in the first and the second loops as
q1  and q2 , and the generalized forces are Q1  and Q2 . Then,
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For the closed switch, the total kinetic, potential, and dissipated energies
are
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Assuming that the resistances, inductances, and capacitance are time-
invariant (constant), one obtains
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The total kinetic, potential, and dissipated energies if the switch is open
are found to be
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It must be emphasized that i qL = &1 , i qa = &2 , and Q Vd1 = , Q Ea2 = − .

Taking note of the differential equations when the switch is closed and open,

the differential equations in Cauchy’s form are found using 
dq
dt

iL
1 =  and

dq
dt

ia
2 = . The voltage across the capacitor uC  is expressed using the

charges q1  and q2 . When the switch is closed u
q
CC = − 2 . If the switch is



open u
q q

CC =
−1 2 . The analysis of the differential equations derived using

Kirchhoff’s voltage law and the Lagrange equations of motion illustrates that
the mathematical models are found using different state variables. In
particular, u i iC L a, ,  and q i q iL a1 2, , ,  are used. However, the resulting

differential equations are the same as one applies the corresponding variable
transformations as given by

dq
dt

iL
1 = , 

dq
dt

ia
2 = , Q Vd1 =  and Q Ea2 = − .         

Example 2.3.14. Mathematical model of an electric motor
Consider a motor with two independently excited stator and rotor

windings, see Figure 2.3.14. Derive the differential equations.
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Figure 2.3.14. Motor with stator and rotor windings
Solution.
The following notations are used: is and ir are the currents in the stator

and rotor windings; us and ur are the applied voltages to the stator and rotor

windings; ω r  and θ r  are the rotor angular velocity and displacement; eT

and LT  are the electromagnetic and load torques; sr  and rr  are the

resistances of the stator and rotor windings; Ls  and Lr  are the self-

inductances of the stator and rotor windings; Lsr  is the mutual inductance of



the stator and rotor windings; ℜm  is the reluctance of the magnetizing path;

Ns and Nr are the number of turns in the stator and rotor windings; J  is the
moment of inertia of the rotor and attached load; Bm  is the viscous friction

coefficient; ks  is the spring constant.

The magnetic fluxes that cross an air gap produce a force of attraction,
and the developed electromagnetic torque Te  is countered by the tortional

spring which causes a counterclockwise rotation. The load torque TL  should

be considered.
Our goal is to find a nonlinear mathematical model. In fact, the ability to

formulate the modeling problem and find the resulting equations that
describe a motion device constitute the most important issues. By using the
Lagrange concept, the independent generalized coordinates must be chosen.
Let us use q1 , q2  and q3 , where q1  and q2  denote the electric charges in

the stator and rotor windings; q3  represents the rotor angular displacement.

We denote the generalized forces, applied to an electromechanical
system, as Q1 , Q2  and Q3 , where Q1  and Q2  are the applied voltages to

the stator and rotor windings; Q3  is the load torque.

The first derivative of the generalized coordinates &q1  and &q2  represent

the stator and rotor currents is  and ir , while &q3  is the angular velocity of

the rotor ω r . We have,
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The Lagrange equations are expressed in terms of each independent
coordinates, and we have
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The total kinetic energy of electrical and mechanical systems is found as
a sum of the total magnetic (electrical) ΓE  and mechanical ΓM  energies.

The total kinetic energy of the stator and rotor circuitry is given as

ΓE s sr rL q L q q L q= + +1
2 1

2
1 2
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2 2

2& & & & .



The total kinetic energy of the mechanical system, which is a function of
the equivalent moment of inertia of the rotor and the payload attached, is
expressed by

ΓM Jq= 1
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Then, we have
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The mutual inductance is a periodic function of the angular rotor

displacement, and L
N N

sr r
s r

m r

( )
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θ
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=
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The magnetizing reluctance is maximum if the stator and rotor windings
are not displaced, and ℜm r( )θ  is minimum if the coils are displaced by 90

degrees. Then, L L Lsr sr r srmin max( )≤ ≤θ , where L
N N

sr
s r

m
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ℜ 90o
  and
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The mutual inductance can be approximated as a cosine function of the
rotor angular displacement. The amplitude of the mutual inductance between

the stator and rotor windings is found as L L
N N

M sr
s r

m

= =
ℜmax

( )90o
.

Then,
L L L qsr r M r M( ) cos cosθ θ= = 3 .

One obtains an explicit expression for the total kinetic energy as
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The following partial derivatives result
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The potential energy of the spring with constant ks is
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The total heat energy dissipated is expressed as 
D D DE M= + ,

where DE  is the heat energy dissipated in the stator and rotor windings,

D r q r qE s r= +1

2 1
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2& & ; DM  is the heat energy dissipated by mechanical

system, D B qM m= 1
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Hence,
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Using
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1 = , q
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2 = , q r3 = θ , &q is1 = , &q ir2 = , &q r3 = ω ,

Q us1 = , Q ur2 =  and Q TL3 = − ,

we have three differential equations for a servo-system. In particular,
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The last equation should be rewritten by making use the rotor angular
velocity; that is,

d
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Finally, using the stator and rotor currents, angular velocity and position
as the state variables, the nonlinear differential equations in Cauchy’s form
are found as
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The developed nonlinear mathematical model in the form of highly
coupled nonlinear differential equations cannot be linearized, and one must
model the doubly exited transducer studied using the nonlinear differential
equations derived.     

2.3.3. Hamilton Equations of Motion

The Hamilton concept allows one to model the system dynamics, and the

differential equations are found using the generalized momenta pi, 
i

i q

L
p
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(the generalized coordinates were used in the Lagrange equations of motion).
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conservative systems is the difference between the total kinetic and potential
energies. In particular,
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We define the Hamiltonian function as
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Thus, we have
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One concludes that the Hamiltonian, which is equal to the total energy, is
expressed as a function of the generalized coordinates and generalized
momenta. The equations of motion are governed by the following equations
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which are called the Hamiltonian equations of motion.
It is evident that using the Hamiltonian mechanics, one obtains the

system of 2n first-order partial differential equations to model the system
dynamics. In contrast, using the Lagrange equations of motion, the system of
n second-order differential equations results. However, the derived
differential equations are equivalent.

Example 2.3.15.
Consider the harmonic oscillator. The total energy is given as the sum of

the kinetic and potential energies, )( 22
2
1 xkmv sT +=Π+Γ=Σ . Find the

equations of motion using the Lagrange and Hamilton concepts.
Solution.
The Lagrangian function is
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Making use of the Lagrange equations of motion
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The equivalence the results and equations of motion are obvious.     



2.4. ATOMIC  STRUCTURES  AND  QUANTUM  MECHANICS

The fundamental and applied research as well as engineering
developments in NEMS and MEMS have undergone major developments in
last years. High-performance nanostructures and nanodevices, as well as
MEMS have been manufactured and implemented (accelerometers and
microphones, actuators and sensors, molecular wires and transistors, et
cetera). Smart structures and MEMS have been mainly designed and built
using conventional electromechanical and CMOS technologies. The next
critical step to be made is to research nanoelectromechanical structures and
systems, and these developments will have a tremendous positive impact on
economy and society. Nanoengineering studies NEMS and MEMS, as well
as their structures and subsystems, which are made from atoms and
molecules, and the electron is considered as a fundamental particle. The
students and engineers have obtained the necessary background in physics
classes. The properties and performance of materials (media) is understood
through the analysis of the atomic structure.

The atomic structures were studied by Rutherford and Einstein (in the
1900’s), Heisenberg and Dirac (in the 1920’s), Schrödinger, Bohr, Feynman,
and many other scientists. For example, the theory of quantum
electrodynamics studies the interaction of electrons and photons. In the
1940’s, the major breakthrough appears in augmentation of the electron
dynamics with electromagnetic field. One can control molecules and group
of molecules (nanostructures) applying the electromagnetic field, and micro-
and nanoscale devices (e.g., actuators and sensors) have been fabricated, and
some problems in structural design and optimization have been approached
and solved. However, these nano- and micro-scale devices (which have
dimensions nano- and micrometers) must be controlled, and one faces an
extremely challenging problem to design NEMS and MEMS integrating
control and optimization, self-organization and decision making, diagnostics
and self-repairing, signal processing and communication, as well as other
features. In 1959, Richard Feynman gave a talk to the American Physical
Society in which he emphasized the important role of nanotechnology and
nanoscale organic and inorganic systems on the society and progress.

All media are made from atoms, and the medium properties depend on
the atomic structure. Recalling the Rutherford’s structure of the atomic
nuclei, we can view here very simple atomic model and omit detailed
composition, because only three subatomic particles (proton, neutron and
electron) have bearing on chemical behavior.

The nucleus of the atom bears the major mass. It is an extremely dense
region, which contains positively charged protons and neutral neutrons. It
occupies small amount of the atomic volume compared with the virtually
indistinct cloud of negatively charged electrons attracted to the positively
charged nucleus by the force that exists between the particles of opposite
electric charge.



For the atom of the element the number of protons is always the same
but the number of neutrons may vary. Atoms of a given element, which
differ in number of neutrons (and consequently in mass), are called isotopes.
For example, carbon always has 6 protons, but it may have 6 neutrons as
well. In this case it is called “carbon-12” (12C ). The representation of the
carbon atom is given in Figure 2.4.1.

4e-

2e-

 6 p+

6 n

  Figure 2.4.1.Simplified two-dimensional representation of carbon atom (C).
Six protons  (p+, dashed color) and six neutrons (n, white) are
in centrally located nucleus. Six electrons (e-, black), orbiting
the nucleus, occupy two shells

Atom has no net charge due to the equal number of positively charged
protons in the nucleus and negatively charged electrons around it. For
example, all atoms of carbon have 6 protons and 6 electrons. If electrons are
lost or gained by the neutral atom due to the chemical reaction, a charged
particle called ion is formed.

When one deals with such subatomic particles as electron, the dual
nature of matter places a fundamental limitation on how accurate we can
describe both location and momentum of the object. Austrian physicist
Erwin Schrödinger in 1926 derived an equation that describes wave and
particle natures of the electron. This fundamental equation led to the new
area in physics, called quantum mechanics, which enables us to deal with
subatomic particles. The complete solution to Schrödinger’s equation gives a
set of wave functions and set of corresponding energies. These wave
functions are called orbitals. A collection of orbitals with the same principal
quantum number, which describes the orbit, called electron shell. Each shell
is divided into the number of subshells with the equal principal quantum



number. Each subshell consists of number of orbitals. Each shell may
contain only two electrons of the opposite spin (Pouli exclusion principle).
When the electron in the lowest energy orbital, the atom is in its ground
state. When the electron enters the orbital, the atom is in an excited state. To
promote the electron to the excited-state orbital, the photon of the
appropriate energy should be absorbed as the energy supplement.
 When the size of the orbital increases, and the electron spends more
time farther from the nucleus. It possesses more energy and less tightly
bound to the nucleus. The most outer shell is called the valence shell.  The
electrons, which occupy it, are referred as valence electrons. Inner shells
electrons are called the core electrons.  There are valence electrons, which
participate in the bond formation between atoms when molecules are
formed, and in ion formation when the electrons are removed from the
electrically neutral atom and the positively charged cation is formed. They
possess the highest ionization energies (the energy which measure the easy
of the removing the electron from the atom), and occupy energetically
weakest orbital since it is the most remote orbital from the nucleus. The
valence electrons removed from the valence shell become free electrons
transferring the energy from one atom to another. We will describe the
influence of the electromagnetic field on the atom later in the text, and it is
relevant to include more detailed description of the Pauli exclusion principal.

The electric conductivity of a media is predetermined by the density of
free electrons, and good conductors have the free electron density in the
range of 1023 free electrons per cm3. In contrast, the free electron density of
good insulators is in the range of 10 free electrons per cm3. The free electron
density of semiconductors in the range from 107/cm3 to 1015/cm3 (for
example, the free electron concentration in silicon at 250C and 1000C are
2×1010/cm3 and 2×1012/cm3, respectively). The free electron density is
determined by the energy gap between valence and conduction (free)
electrons. That is, the properties of the media (conductors, semiconductors,
and insulators) are determined by the atomic structure.

Using the atoms as building blocks, one can manufacture different
structures using the molecular nanotechnology. There are many challenging
problems needed to be solve such as mathematical modeling and analysis,
simulation and design, optimization and testing, implementation and
deployment, technology transfer and mass production. In addition, to build
NEMS, advanced manufacturing technologies must be developed and
applied. To fabricate nanoscale systems at the molecular level, the problems
in atomic-scale positional assembly (“maneuvering things atom by atom" as
Richard Feynman predicted) and artificial self-replication (systems are able
to build copies of themselves, e.g., like the crystals growth process, complex
DNA strands which copy tens of millions atoms with perfect accuracy, or
self replicating tomato which has millions of genes, proteins, and other
molecular components) must be solved. The author does not encourage the
blind copying, and the submarine and whale are very different even though
both sail. Using the Scanning or Atomic Probe Microscopes, it is possible to



achieve positional accuracy in the angstrom-range. However, the atomic-
scale “manipulator” (which will have a wide range of motion guaranteeing
the flexible assembly of molecular components), controlled by the external
source (electromagnetic field, pressure, or temperature) must be designed
and used. The position control will be achieved by the molecular computer
and which will be based on molecular computational devices.

The quantitative explanation, analysis and simulation of natural
phenomena can be approached using comprehensive mathematical models
which map essential features. The Newton laws and Lagrange equations of
motion, Hamilton concept and d’Alambert concept allow one to model
conventional mechanical systems, and the Maxwell equations applied to
model electromagnetic phenomena. In the 1920’s, new theoretical
developments, concepts and formulations (quantum mechanics) have been
made to develop the atomic scale theory because atomic-scale systems do
not obey the classical laws of physics and mechanics. In 1900 Max Plank
discovered the effect of quantization of energy, and he found that the
radiated (emitted) energy  is given as

E = nhv,
where n is the nonnegative integer, n = 0, 1, 2, …; h is the Plank constant,

sec-J 10626.6 34−×=h ; v is the frequency of radiation, 
λ
c

v = , c is the

speed of light, sec
m8 103×=c ; λ  is the wavelength which is measured in

angstroms ( m 101 10−×=
o

A ),
v
c

=λ .

The following discrete energy values result:
E0 = 0, E1 = hv, E2 = 2hv, E3 = 3hv, etc.
The observation of discrete energy spectra suggests that each particle

has the energy hv (the radiation results due to N particles), and the particle
with the energy hv is called photon.

The photon has the momentum as expressed as

λ
h

c
hv

p == .

Soon, Einstein demonstrated the discrete nature of light, and Niels Bohr
develop the model of the hydrogen atom using the planetary system analog,
see Figure 2.4.2. It is clear that if the electron has planetary-type orbits, it
can be excited to an outer orbit and can “fall” to the inner orbits. Therefore,
to develop the model, Bohr postulated that the electron has the certain stable
circular orbit (that is, the orbiting electron does not produces the radiation
because otherwise the electron would lost the energy and change the path);
the electron changes the orbit of higher or lower energy by receiving or
radiating discrete amount of energy; the angular momentum of the electron
is p = nh.



Figure 2.4.2. Hydrogen atom: uniform circular motion

To attain the uniform circular motion, using Newton’s law, the
electrostatic (Coulomb) force must be equal to the radial force, and for radii
R1 and R2 we have
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Applying the expression for the angular momentum
p = nh = mvRn,
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The total energy of the electron in the nth orbit is found to be
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Bohr’s model was expanded and generalized by Heisenberg and
Schrödinger using the matrix and wave mechanics. The characteristics of
particles and waves are augmented replacing the trajectory consideration by
the waves using continuous, finite, and single-valued wave function
• ),,,( tzyxΨ  in the Cartesian coordinate system,

• ),,,( tzr φΨ  in the cylindrical coordinate system,

• ),,,( tr φθΨ  in the spherical coordinate system.
The wavefunction gives the dependence of the wave amplitude on space

coordinates and time.
Using the classical mechanics, for a particle of mass m with energy E

moving in the Cartesian coordinate system one has
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Using the formula for the wavelength (Broglie’s equation)
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This expression is substituted in the Helmholtz equation
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which gives the evolution of the wavefunction.
We obtain the Schrödinger equation as
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In 1926, Erwine Schrödinger derive the following equation
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which can be related to the Hamiltonian
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and thus
Ψ=Ψ EH .

For different coordinate systems we have
• Cartesian system
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The Schrödinger partial differential equation must be solved, and the
wavefunction is normalized using the probability density

1
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=Ψ∫ ςd .

Let us illustrate the application of the Schrödinger equation.

Example 2.4.1.
Assume that the particle moves in the x direction (translational motion).

We have,
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The Hamiltonian function is given as
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Let the particle moves from x = 0 to x = xf, and the potential energy is
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Thus, the motion of the particle is bounded in the “potential wall”, and
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If fxx ≤≤0 , the potential energy is zero, and we have
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The solution of the resulting second-order differential equation
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The solution can be easily verified by plugging the solution in the left-
side of the differential equation
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and we have
)()( xExE Ψ=Ψ .

It should be emphasized that the kinetic energy of the particle is given as
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, where p = kh.

It is obvious that one must use the boundary conditions.
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 using 0sin =fkxc  one must find the

constant c and the expression for fkx .

Assuming that 0≠c  from 0sin =fkxc , we have

πnkx f = ,

where n is the positive or negative integer (if n = 0, the wavefunction
vanishes everywhere, and thus, 0≠n ).
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expression for the energy (discrete values of the energy which allow of
solution of the Schrödinger equation) as
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where the integer n designates the allowed energy level (n is called the
quantum number).

For example, if n = 1 and n = 2, we have 
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Thus, we have illustrated that the energy of the particle is quantized.
The expression for the wavefunction is found to be
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Using the probability density, we normalize the wavefunction, and the
following results
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 Using the formula for the probability density, as given by ΨΨ= Tρ ,
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It was shown that
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Using the CGS (centimeter/gram/second) units, when the
electromagnetic field is quantized, the potential can be used instead of
wavefunction. In particular, using the momentum operator due to electron
orbital angular momentum L, the classical Hamiltonian for electrons in
electromagnetic field is
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one finds the Lorentz force equation
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This equation gives the force due to motion in a magnetic field and the
force due to electric field.

It is important to emphasize that the following equation results
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to study the quantized Hamilton equation, where the dominant term due to
magnetic field is
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where ì  the magnetic momentum due to the electron orbital angular

momentum (the so-called Zeeman effect) is Lì
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2.5. MOLECULAR AND NANOSTRUCTURE DYNAMICS

Conventional, mini- and microscale electromechanical systems can be
modeled using electromagnetic and circuitry theories, classical mechanics
and thermodynamic, as well as other fundamental concepts. The complexity
of mathematical models of mini- and microelectromechanical systems
(nonlinear ordinary and partial differential equations explicitly describe the
spectrum of electromagnetics and electromechanics phenomena and
processes) is not ambiguous, and numerical algorithms to solve the equations
derived are available. Illustrated examples have been studied in sections 2.2
and 2.3. Nano-scale structures, in general, cannot be studied using the
conventional concepts, and the basis of quantum mechanics was covered in
chapter 2.4.

The fundamental and applied research in molecular nanotechnology and
nanostructures, nanodevices and nanosystems, NEMS and MEMS, is
concentrated on design, modeling, simulation, and fabrication of molecular
scale structures and devices. The design, modeling, and simulation of
NEMS, MEMS, and their components can be attacked using advanced
theoretical developments and simulation concepts. Comprehensive analysis
must be performed before the designer embarks in costly fabrication (a wide
range of nano-scale structures and devices, molecular machines and
subsystems, can be fabricated with atomic precision) because through
modeling and simulation the rapid evaluation and prototyping can be
performed facilitating significant advantages and manageable perspectives to
attain the desired objectives. With advanced computer-aided-design tools,
complex large-scale nanostructures, nanodevices, and nanosystems can be
designed, analyzed, and evaluated.

Classical quantum mechanics does not allow the designer to perform
analytical and numerical analysis even for simple nanostructures which
consist of a couple of molecules. Steady-state three-dimensional modeling
and simulation are also restricted to simple nanostructures. Our goal is to
develop a fundamental understanding of phenomena and processes in
nanostructures with emphasis on their further applications in nanodevices,
nanosubsystems, NEMS, and MEMS. The objective is the development of
theoretical fundamentals (theory of nanoelectromechanics) to perform 3D+
(three-dimensional geometry dynamics in time domain) modeling and
simulation.

The atomic level electomechanics can be studied using the wave
function solving the Schrödinger equation for N-electron systems (multi-
body problem). However, this problem cannot be solved even for simple
nanostrustures. In papers [2 - 4], the density functional theory was
developed, and the charge density is used rather than the electron
wavefunctions. In particular, the N-electron problem is formulated as N one-
electron equations where each electron interacts with all other electrons via
an effective exchange-correlation potential. These interactions are



augmented using the charge density. Plane wave sets and total energy
pseudo-potential methods can be used to solve the Kohn-Sham one electron
equations [2 - 4]. The Hellmann-Feynman theory can be applied to calculate
the forces solving the molecular dynamics problem [1 - 5].

2.5.1. Schrödinger Equation and Wavefunction Theory

For two point charges, Coulomb’s law is given as
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In the case of charge distribution, using the volume charge density vρ ,

the net force exerted on q1 by the entire volume charge distribution is the
vector sum of the contribution from all differential elements of charge within
this distribution. In particular,

∫ −
−=

v

v dv
q

3
1

'

)'(

4 rr

rr
F ρ

πε
,

see Figure 2.5.1.

Figure 2.5.1. Coulomb’s law

In the electrostatic field, the potential energy stored in a region of
continuous charge distribution is found as
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where )(rV  is the potential; v is the volume containing vρ .

The charge distribution can be given in terms of volume, surface, and
line charges. In particular, we have
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It should be emphasized that that the electric field intensity is found as
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Thus, the energy of an electric field or a charge distribution is stored in
the field.

The energy, stored in the steady magnetic field is
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The Hamiltonian function, which in section 2.4 was given as
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was used to derive the one-electron Schrödinger equation.
To describe the behavior of electrons in a media, one must use N-

dimensional Schrödinger equation to obtain the N-electron wavefunction
( )NNt rrrr ,,...,,, 121 −Ψ .

The Hamiltonian for an isolated N-electron atomic system is
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where q is the potential due to nucleus; 19106.1 −×=e  C.
For an isolated N-electron, Z-nucleus molecular system, the Hamiltonian

function (Hamiltonian operator) is found to be
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where qk are the potentials due to nuclei.
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the nuclei at R (the electron-nucleus attraction energy operator).

In the Hamiltonian, the fourth term ∑
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interactions of electrons with each other (the electron-electron repulsion
energy operator).

Term ∑
≠ −

Z

mk mk

mk qq
'4

1

rrπε
 describes the interaction of the Z nuclei at R

(the nucleus-nucleus repulsion energy operator).
For an isolated N-electron Z-nucleus atomic or molecular systems in the

Born-Oppenheimer nonrelativistic approximation, we have
Ψ=Ψ EH .

Thus, the Schrödinger equation is
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 (2.5.1)
 The total energy ( )NNtE rrrr ,,...,,, 121 −  must be found using the

nucleus-nucleus Coulomb repulsion energy as well as the electron energy.
It is very difficult, or impossible, to solve analytically or numerically the

nonlinear partial differential equation (2.5.1). Taking into account only the
Coulomb force (electrons and nuclei are assumed to interact due to the
Coulomb force only), the Hartree approximation is applied. In particular, the



N-electron wavefunction ( )NNt rrrr ,,...,,, 121 −Ψ  is expressed as a product of

N one-electron wavefunctions as
( ) ( ) ( ) ( ) ( )NNNNNN ttttt rrrrrrrr ,,...,,,,...,,, 112211121 ψψψψ −−− =Ψ .

The one-electron Schrödinger equation for jth electron is
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In equation (2.5.2), the first term 2
2

2 jm
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 is the one-electron kinetic

energy, and ( )jt r,Π  is the total potential energy. The potential energy

includes the potential that jth electron feels from the nucleus (considering the
ion, the repulsive potential in the case of anion, or attractive in the case of
cation). It is obvious that jth electron feels the repulsion (repulsive forces)
from other electrons. Assumed that the negative electrons charge density

)(rρ  is smoothly distributed in R. Hence, the potential energy due

interaction (repulsion) of an electron in R is
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We made some assumptions, and the results derived contradict with
some fundamental principles. The Pauli exclusion principle requires that the
multi-system wavefunction is an antisymmetric under the interchange of
electrons. For two electrons, we have,

( ) ( )NNjijNNijj tt rrrrrrrrrrrr ,,...,,...,,...,,,,,...,,...,,...,,, 121121 −+−+ Ψ−=Ψ .

This principle is not satisfied, and the generalizations is needed to
integrate  the asymmetry phenomenon using the asymmetric coefficient 1± .
The Hartree-Fock equation is
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The so-called Hartree-Fock nonlinear partial differential equation
(2.5.3), which is difficult to solve, is the approximation because the multi-
body electron interactions should be considered in general. Thus, the explicit
equation for the total energy must be used. This phenomenon can be
integrated using the charge density function.



2.5.2. Density Functional Theory

There is a critical need to develop computationally efficient and accurate
procedures to perform quantum modeling of nano-scale structures. This
section reports the related results and gives the formulation of the modeling
problem to avoid the complexity associated with many-electron
wavefunctions which result if the classical quantum mechanics formulation
is used. The complexity of the Schrödinger equation is enormous even for
very simple molecules. For example, the carbon atom has 6 electrons. Can
one visualize six-dimensional space? Furthermore, the simplest carbon
nanotube molecule has 6 carbon atoms. That is, one has 36 electrons, and 36-
dimensional problem results. The difficulties associated with the solution of
the Schrödinger equation drastically limit the applicability of the
conventional quantum mechanics. The analysis of properties, processes,
phenomena, and effects in even simplest nanostructures cannot be studied
and comprehended. The problems can be solved applying the Hohenberg-
Kohn density functional theory.

The statistical consideration, proposed by Thomas and Fermi in 1927,
gives the distribution of electrons in atoms. The following assumptions were
used: electrons are distributed uniformly, and there is an effective potential
field that is determined by the nuclei charge and the distribution of electrons.
Considering electrons distributed in a three-dimensional box, the energy
analysis can be performed. Summing all energy levels, one finds the energy.
Thus, one can relate the total kinetic energy and the electron charge density.
The statistical consideration can be used in order to approximate the
distribution of electrons in an atom. The relation between the total kinetic
energy of N electrons E, and the electron density was derived using the local
density approximation concept. The Thomas-Fermi kinetic energy functional
is

( ) ∫=Γ
R

rrr deeF )(87.2)( 3/5ρρ ,

and the exchange energy is found to be
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rrr dE eeF )(739.0)( 3/4ρρ .

For homogeneous atomic systems, the application of the electron charge
density )(reρ , considering electrostatic electron-nucleus attraction and

electron-electron repulsion, Thomas and Fermi derived the following energy
functional
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Following this idea, instead of the many-electron wavefunctions, Kohn
proposed to use the charge density for N-electron systems [2, 4]. Only the
knowledge of the charge density is needed to perform analysis of molecular
dynamics. The charge density is the function that describes the number of



electrons per unit volume (function of three spatial variables x, y and z in the
Cartesian coordinate system). The quantum mechanics and quantum
modeling must be applied to understand and analyze nanostructures and
nanodevices because they operate under the quantum effects.

The total energy of N-electron system under the external field is defined
in the term of the three-dimensional charge density )(rρ  [1 - 5]. The
complexity is significantly decreased because the problem of modeling of N-
electron Z-nucleus systems become equivalent to the solution of equation for
one electron. The total energy is given as
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where ( ))(,1 rρtΓ  and ( ))(,2 rρtΓ  are the interacting (exchange) and non-

interacting kinetic energies of a single electron in N-electron Z-nucleus
system,
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( ))(, rργ t  is the parameterization function.

It should be emphasized that the Kohn-Sham electronic orbitals are
subject to the following orthogonal condition

ijji dtt δψψ =∫ rrr
R
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The state of substance (media) depends largely on the balance between
the kinetic energies of the particles and the interparticle energies of
attraction.

The expression for the total potential energy is easily justified.
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 represents the Coulomb interaction in R, and the

total potential energy is a functions of the charge density )(rρ .

The total kinetic energy (interactions of electrons and nuclei, and
electrons) is integrated into the equation for the total energy. The total
energy, as given by (2.5.4), is stationary with respect to variations in the
charge density. The charge density is found taking note of the Schrödinger
equation. The first-order Fock-Dirac electron charge density matrix is
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The three-dimensional electron charge density is a function in three
variables (x, y and z in the Cartesian coordinate system). Integrating the
electron charge density )(reρ , one obtains the charge of the total number of

electrons N. Thus,
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Hence, )(reρ  satisfies the following properties
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For the nuclei charge density, we have
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There exist an infinite number of antisymmetric wavefunctions that give
the same )(rρ . The minimum-energy concept (energy-functional minimum

principle) is applied. The total energy is a function of )(rρ , and the so-

called ground state Ψ  must minimize the expectation value )(ρE .

The searching density functional )(ρF , which searches all Ψ  in the

N-electron Hilbert space H to find )(rρ  and guarantee the minimum to the

energy expectation value, is expressed as
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where ΨH  is any subset of the N-electron Hilbert space.

Using the variational principle, we have
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The solutions to the system of equations (2.5.2) is found using the
charge density (2.5.5).

To perform the analysis of nanostructure dynamics, one studies the
molecular dynamics. The force and displacement must be found.
Substituting the expression for the total kinetic and potential energies in
(2.5.4), where the charge density is given by (2.5.5), the total energy
( ))(, rρtE  results.

 The external energy is supplied to control nanoscale actuators, and one
has
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the expression for the force is found from (2.5.6). In particular, one finds
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As the wavefunctions converge (the conditions of the Hellmann-
Feynman theorem are satisfied), we have
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One can deduce the expression for the wavefunctions, find the charge
density, calculate the forces, and study processes and phenomena in
nanoscale. The displacement is found using the following equation of motion
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2.5.3. Nanostructures and Molecular Dynamics

Atomistic modeling can be performed using the force field method. The
effective interatomic potential for a system of N particles is found as the sum
of the second-, third-, fourth-, and higher-order terms as
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depends on the interatomic distance rij between the nuclei i and j, dominates.
For example, the three-body interconnection terms cannot be omitted only if
the angle-dependent potentials are considered. Using the effective ionic
charges Qi and Qj, we have
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where )( ijrφ  is the short-range interaction energy due to the repulsion

between electron charge clouds, Van der Waals attraction, bond bending and
stretching phenomena.

For ionic and partially ionic media we have
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where jiijjiijjiij kkkkkkkkk 333222111 ,, ===  and jiij kkk 444 = ; ki

are the bond energy constants (for example, for Si we have Q = 2.4, k3 =
0.00069 and k4 = 104, for Al one has Q = 1.4, k3 = 1690 and k4 = 278, and for
Na+ we have Q = 1, k3 = 0.00046 and k4 = 67423).

Another, commonly used approximation is ( )Eijijijij rrkr −= 5)(φ , where

ijr  is the bond length, ijijr rr −= ; Eijr  is the equilibrium bond distance

Performing the summations in the studied R, one finds the potential
energy, and the force results. The position (displacement) is represented by the
vector r which in the Cartesian coordinate system has the components x, y and
z. Taking note of the expression for the potential energy ( )Nrrr ,...,)( 1Π=Π
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one has
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From Newton’s second law for the system of N particles, we have the
following equation of motion
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To perform molecular modeling one applies the energy-based methods.
It was shown that electrons can be considered explicitly. However, it can be
assumed that electrons will obey the optimum distribution once the positions
of the nuclei in R are known. This assumption is based on the Born-
Oppenheimer approximation of the Schrödinger equation. This
approximation is satisfied because nuclei mass is much greater then electron
mass, and thus, nuclei motions (vibrations and rotations) are slow compared
with the electrons’ motions. Therefore, nuclei motions can be studied
separately from electrons dynamics. Molecules can be studied as Z-body
systems of elementary masses (nuclei) with springs (bonds between nuclei).
The molecule potential energy (potential energy equation) is found using the
number of nuclei and bond types (bending, stretching, lengths, geometry,
angles, and other parameters), van der Waals radius, parameters of media,
etc. The molecule potential energy surface is

ddWtssbbbsT EEEEEEE +++++= .

Here, the energy due to bond stretching is found using the equation
similar to Hook’s law. In particular,

3
0301 )()( llkllkE bsbsbs −+−= ,

where kbs1 and kbs3 are the constants; l and l0 are the actual and natural bond
length (displacement).

The equations for energies due to bond angle bending Eb, stretch-bend
interactions Esb, torsion strain Ets, van der Waals interactions EW, and dipole-
dipole interactions Edd are well known and can be readily applied.

2.6. MOLECULAR WIRES AND MOLECULAR CIRCUITS

The molecular wire consists of the single molecule chain with its end
adsorbed to the surface of the gold lead that can cover monolayers of other
molecules. Molecular wires connect the nanoscale structures and devices. The
current density of carbon nanotubes, 1,4-dithiol benzene (molecular wire)
and copper are 1011, 1012 and 106 electroncs/sec-nm2, respectively. The
current technology allows one to fill carbon nanotubes with other media
(metals, organic and inorganic materials). That is, to connect nanostructures,
as shown in Figure 2.6.1, it is feasible to use molecular wires which can be
synthesized through the organic synthesis.



Figure 2.6.1. Nanoswitch with carbon nanotube, molecular wire
(1,4-dithiol benzene) and nanoantenna

Consider covalent bonds. These bonds occur from sharing the electrons
between two atoms. Covalent bonds represent the interactions of two
nonmetallic elements, or metallic and nonmetallic elements. Let us study the
electron density around the nuclei of two atoms. If electron clouds overlap
region passes through on the line joining two nuclei, the bond is called σ
bond, see Figure 2.6.2. The overlap may occur between orbitals
perpendicularly oriented to the internuclear axis. The resulting covalent bond
produces overlap above and below the internuclear axis. Such bond is called
π bond. There is no probability of finding the electron on the internuclear
axis in a π bond, and the overlap in it is lesser than in the σ bond. Therefore,
π bonds are generally weaker than σ bonds.

Figure 2.6.2. σ and π covalent bonds

Single bonds are usually σ bonds. Double bonds, which are much
stronger, consist of one σ bond and one π bond, and the triple bond (the
strongest one) consists of one σ bond and two π bonds. In the case of carbon
nanotubes, the strong interaction among the carbon atoms is guaranteed by
the strength of the C-C single bond which holds carbon atoms together in the
honeycomb-like hexagon unit (open-ended nanotube).
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In molecular wires, the current im is a function of the applied voltage um,
and Landauer’s formula is
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where 1pµ  and 2pµ  are the electrochemical potentials, mFp euE 2
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2 −=µ ; FE  is the equilibrium Fermi energy of the source;

( )mm uET ,  is the transmission function obtained using the molecular energy

levels and coupling.
We have [7]
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Thus, the molecular wire conductance is found as
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Using molecular wires and molecular circuits (which form molecular
electronic switches and devices), the designer can synthesize polyphenylene-
based rectifying diodes, switching logics, as well as other devices. It must be
emphasized that the results given above are based upon the thorough and
comprehensive overview of molecular circuits reported in [2]. Figure 2.6.3
illustrates the molecular circuitry for a polyphenylene-based molecular
rectifying diode. This diode can be fabricated using the chemically doped
polyphenylene-based molecular wire as the constructive medium. The
electron donating substituent group X (n-dopant) and the electron
withdrawing substituent group Y (p-dopant) form two intermolecular dopant
groups. These groups are separated by the semi-insulating group R (potential
energy barrier) from an electron acceptor subcomplex. Thus, the R group
serves as an insulation (barrier) between the donor X and acceptor Y. The
semi-insulating group R can be synthesized using the aliphatic (sigma-
bounded methylene) or dimethylene groups.  To guarantee electrical
isolation between the molecular circuitry and gold substrate, additional
barrier is used as shown in Figure 2.6.3.



Figure 2.6.3. Molecular circuit and schematics of electron orbital energy

           levels for a polyphenylene-based molecular rectifying diode [2]

Figure 2.6.3. Molecular circuit and schematics of electron orbital energylevels levels  
for a polyphenylene-based molecular rectifying diode [2]



In computers, DSPs, microcontrollers, and microprocessors, simple
arithmetic functions, e.g. addition and subtraction, are implemented using
combinational register-level components. Adders and subtracters (which
have carry-in and carry-out lines) of fixed-point binary numbers are basic
register-level components from which other arithmetic circuits are formed.
Other arithmetic components are widely used, and comparators compare the
magnitude of two binary numbers. These arithmetic elements can be
fabricated using molecular circuit technology. In fact, to perform logic
operations (AND, OR, XOR, and NOT gates) and arithmetic, diode-based
molecular electronic digital circuits and nanologic gates can be synthesized
using single nanoscale molecule structures. It should be emphasized that the
size of these molecular logic gates is within 5 nm (thousand times less then
the logic gates used in current computers which are fabricated using most
advanced CMOS technologies). Using diode-diode logic, AND and OR logic
gates are designed using molecular circuits, and the schematics are
illustrated in Figures 2.6.4 and 2.6.5. The molecular AND logic gate is
designed by connecting in parallel two diodes. The doped polyphenylene-
based diodes are connected through polyphenylene-based wire. The semi-
insulating group R (potential energy barrier) reduces power dissipation and
maintains a distinct output voltage signal at the terminal C when the A and B
inputs (carry-in lines) cause the molecular diodes to be forward biased
(current flows through diodes). The difference between the AND and OR
gates is that the diode orientations, see Figures 2.6.4 and 2.6.5. The diode-
based molecular electronic digital circuit (XOR gate) is illustrated in Figure
2.6.6, and the truth table is also documented. The total voltage applied across
the XOR gate is the sum of the voltage drop across the input resistances plus
the voltage drop across the resonant tunneling diode (RTD). The effective
resistance of the logic gate, containing two rectifying diodes, differs whether
one or both parallel signals (A and B can be 1 or 0) are on. If A and B are on
(1), the effective resistance is half. Thus, according to Ohm’s law, there are
two possible cases: full voltage drop and half voltage drop which distinct the
XOR gate operating points.  Figure 2.6.7 documents the molecular half adder
which is synthesized using the AND and XOR molecular gates. Here, A and
B denote the one-bit binary signals (inputs) to the adder, while S (sum bit)
and C (carry bit) are one-bit binary signals (outputs). The XOR gate gives
the sum of two bits, and the resulting output is at lead S. The AND gate
forms the sum of two bits, and the resulting output is at lead C. The
molecular full adder is given in Figure 2.6.8.



Figure 2.6.4. Molecular circuit and schematics of AND molecular gate [2]



Figure 2.6.5. Molecular circuit and schematics of OR molecular gate [2]



Figure 2.6.6. Molecular circuit and schematics of XOR molecular gate [2]



Figure 2.6.7. Molecular circuit and schematics of molecular half adder [2]



Figure 2.6.8. Molecular circuit and schematics of molecular full adder [2]
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2.7. THERMOANALYSIS AND HEAT EQUATION

It is known that the heat propagates (flows) in the direction of
decreasing temperature, and the rate of propagation is proportional to the
gradient of the temperature. Using the thermal conductivity of the media kt

and the temperature ( )zyxtT ,,, , one has the following equation to calculate

the velocity of the heat flow
( )zyxtTkth ,,,∇−=v

!
.             (2.7.1)

Consider the region R and let s is the boundary surface. Using the
divergence theorem, from (2.7.1) one obtains the partial differential equation
(heat equation) which is expressed as
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where k is the thermal diffusivity of the media.
We have
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where kh and kd are the specific heat and density constants.
Solving partial differential equation (2.7.2), which is subject to the

initial and boundary conditions, one finds the temperature of the
homogeneous media. In the Cartesian coordinate system, one has
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Using the Laplacian of T in the cylindrical and spherical coordinate
systems, one can reformulate the thermoanalysis problem using different
coordinates in order to straightforwardly solve the problem.

It the heat flow is steady (time-invariant), then
( )

0
,,, =

∂
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t

zyxtT
.

Hence, three-dimensional heat equation (2.7.2) becomes Laplace’s
equation as given by
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The two-dimensional heat equation is
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Using initial and boundary conditions, this partial differential equation
can be solved using Fourier series, Fourier integrals, Fourier transforms.

The so-called one-dimensional heat equation is
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with initial and boundary conditions
( ) ( )xTxtT t=,0 , ( ) 00, TxtT =  and ( ) ff TxtT =, .

A large number of analytical and numerical methods are available to
solve the heat equation.

The analytic solution if
( ) 0, 0 =xtT  and ( ) 0, =fxtT

is given as
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Assuming that ( )xTt  is piecewise continuous in ][ 0 fxxx ∈  and has

one-sided derivatives at all interior points, one finds the coefficients of the
Fourier sine series Bi.

Example 2.7.1.
Consider the copper bar with length 0.1 mm. The thermal conductivity,

specific heat and density constants are kt = 1, kh = 0.09 and kd = 9. The initial
and boundary conditions are
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Find the temperature in the bar as a function of the position and time.

Solution.
From the general solution
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using the initial condition, we have
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Thus, B1 = 0.2 and all other Bi coefficients are zero.n
Hence, the solution (temperature as the function of the position and

time) is found to be
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CHAPTER  3

STRUCTURAL DESIGN, MODELING, AND SIMULATION

3.1. NANO- AND MICROELECTROMECHANICAL SYSTEMS

3.1.1. Carbon Nanotubes and Nanodevices

Carbon nanotubes, discovered in 1991, are molecular structures which
consist of graphene cylinders closed at either end with caps containing
pentagonal rings. Carbon nanotubes are produced by vaporizing carbon
graphite with an electric arc under an inert atmosphere. The carbon
molecules organize a perfect network of hexagonal graphite rolled up onto
itself to form a hollow tube. Buckytubes are extremely strong and flexible
and can be single- or multi-walled. The standard arc-evaporation method
produces only multilayered tubes, and the single-layer uniform nanotubes
(constant diameter) were synthesis only a couple years ago. One can fill
nanotubes with any media, including biological molecules. The carbon
nanotubes can be conducting or insulating medium depending upon their
structure.

A single-walled carbon nanotube (one atom thick), which consists of
carbon molecules, is illustrated in Figure 3.1.1. The application of these
nanotubes, formed with a few carbon atoms in diameter, provides the
possibility to fabricate devices on an atomic and molecular scale. The
diameter of nanotube is 100000 times less that the diameter of the sawing
needle. The carbon nanotubes, which are much stronger than steel wire, are
the perfect conductor (better than silver), and have thermal conductivity
better than diamond. The carbon nanotubes, manufactured using the carbon
vapor technology, and carbon atoms bond together forming the pattern.
Single-wall carbon nanotubes are manufactured using laser vaporization, arc
technology, vapor growth, as well as other methods. Figure 3.1.2. illustrates
the carbon ring with six atoms. When such a sheet rolls itself into a tube so
that its edges join seamlessly together, a nanotube is formed.

Figure 3.1.1. Single-walled carbon nanotube



Figure 3.1.2. Single carbon nanotube ring with six atoms

Carbon nanotubes, which allow one to implement the molecular wire
technology in nanoscale ICs, are used in NEMS and MEMS. Two slightly
displaced (twisted) nanotube molecules, joined end to end, act as the diode.
Molecular-scale transistors can be manufactured using different alignments.
There are strong relationships between the nanotube electromagnetic
properties and its diameter and degree of the molecule twist. In fact, the
electromagnetic properties of the carbon nanotubes depend on the molecule's
twist, and Figures 3.1.3 illustrate possible configurations. If the graphite
sheet forming the single-wall carbon nanotube is rolled up perfectly (all its
hexagons line up along the molecules axis), the nanotube is a perfect
conductor. If the graphite sheet rolls up at a twisted angle, the nanotube
exhibits the semiconductor properties. The carbon nanotubes, which are
much stronger than steel wire, can be added to the plastic to make the
conductive composite materials.

Figure 3.1.3. Carbon nanotubes

The vapor grown carbon nanotubes with N layers are illustrated in
Figure 3.1.4, and the industrially manufactured nanotubes have ∆ngstroms
diameter and length.

Figure 3.1.4. N-layer carbon nanotube

The carbon nanotubes can be organized as large-scale complex neural
networks to perform computing and data storage, sensing and actuation, etc.
The density of ICs designed and manufactured using the carbon nanotube
technology thousands time exceed the density of ICs developed using
convention silicon and silicon-carbide technologies.



Metallic solids (conductor, for example copper, silver, and iron) consist
of metal atoms. These metallic solids usually have hexagonal, cubic, or body-
centered cubic close-packed structures (see Figure 3.1.5). Each atom has 8 or
12 adjacent atoms. The bonding is due to valence electrons that are
delocalized thought the entire solid. The mobility of electrons is examined to
study the conductivity properties.

(a) (b)        (c)
Figure 3.1.5. Close packing of metal atoms: a) cubic packing;

b) hexagonal packing; c) body-centered cubic

More than two electrons can fit in an orbital. Furthermore, these two
electrons must have two opposite spin states (spin-up and spin-down).
Therefore, the spins are said to be paired. Two opposite directions in which

the electron spins (up + 2
1  and down – 2

1 ) produce oppositely directed

magnetic fields. For an atom with two electrons, the spin may be either
parallel (S = 1) or opposed and thus cancel (S = 0). Because of spin pairing,
most molecules have no net magnetic field, and these molecules are called
diamagnetic (in the absence of the external magnetic field, the net magnetic
field produced by the magnetic fields of the orbiting electrons and the
magnetic fields produced by the electron spins is zero). The external
magnetic field will produce no torque on the diamagnetic atom as well as no
realignment of the dipole fields. Accurate quantitative analysis can be
performed using the quantum theory. Using the simplest atomic model, we
assume that a positive nucleus is surrounded by electrons which orbit in
various circular orbits (an electron on the orbit can be studied as a current
loop, and the direction of current is opposite to the direction of the electron
rotation). The torque tends to align the magnetic field, produced by the
orbiting electron, with the external magnetic field. The electron can have a
spin magnetic moment of 24109 −×±  A-m2. The plus and minus signs that
there are two possible electron alignments; in particular, aiding or opposing
to the external magnetic field. The atom has many electrons, and only the
spins of those electrons in shells which are not completely filed contribute to
the atom magnetic moment. The nuclear spin negligible contributes to the
atom moment. The magnetic properties of the media (diamagnetic,
paramagnetic, superparamagnetic, ferromagnetic, antiferromagnetic,
ferrimagnetic) result due to the combination of the listed atom moments



Let us discuss the paramagnetic materials. The atom can have small
magnetic moment, however, the random orientation of the atoms results that
the net torque is zero. Thus, the media do not show the magnetic effect in the
absence the external magnetic field. As the external magnetic field is applied,
due to the atom moments, the atoms will align with the external field. If the
atom has large dipole moment (due to electron spin moments), the material is
called ferromagnetic. In antiferromagnetic materials, the net magnetic
moment is zero, and thus the ferromagnetic media are only slightly affected
by the external magnetic field.

Using carbon nanotubes, one can design electromechanical and
electromagnetic nanoswitches, which are illustrated in Figure 3.1.6.

Figure 3.1.6. Application of carbon nanotubes in nanoswitches

3.1.2. Microelectromechanical Systems and Microdevices

Different MEMS have been discussed, and it was emphasized that
MEMS can be used as actuators, sensors, and actuators-sensors. Due to the
limited torque and force densities, MEMS usually cannot develop high
torque and force, and large-scale cooperative MEMS are used, e.g.
multilayer configurations.  In contrast, these characteristics (power, torque,
and force densities) are not critical in sensor applications. Therefore, MEMS
are widely used as sensors. Signal-level signals, measured by sensors, are fed
to analog or digital controllers, and sensor design, signal processing, and
interfacing are extremely important in engineering practice. Smart integrated
sensors are the sensors in which in addition to sensing the physical variable,
data acquisition, filtering, data storage, communication, interfacing, and
networking are embedded. Thus, while the primary component is the sensing
element (microstructure), multifunctional integration of sensors and ICs is
the current demand. High-performance accelerometers, manufactured by
Analog Devices using integrated microelectromechanical system technology
(iMEMS), are studied in this section. In addition, the application of smart
integrated sensors is discussed.
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We study the dual-axis, surface-micromachined ADXL202 accelerometer
(manufactured on a single monolithic silicon chip) which combines highly
accurate acceleration sensing motion microstructure (proof mass) and signal
processing electronics (signal conditioning ICs). As documented in the Analog
Device Catalog data (which is attached), this accelerometer, which is
manufactured using the iMEMS technology, can measure dynamic positive and
negative acceleration (vibration) as well as static acceleration (force of gravity).
The functional block diagram of the ADXL202 accelerometer with two digital
outputs (ratio of pulse width to period is proportional to the acceleration) is
illustrated in Figure 3.1.7.

Figure 3.1.7. Functional block diagram of the ADXL202 accelerometer

Polysilicon surface-micromachined sensor motion microstructure is
fabricated on the silicon wafer by depositing polysilicon on the sacrificial oxide
layer which is then etched away leaving the suspended proof mass (beam).
Polysilicon springs suspend this proof mass over the surface of the wafer. The
deflection of the proof mass is measured using the capacitance difference, see
Figure 3.1.8.
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Figure 3.1.8. Accelerometer structure: proof mass, polysilicon springs, and
sensing elements (fixed outer plates and central movable
plates attached to the proof mass)

The proof mass ( m3.1 µ , m2 µ  thick) has movable plates which are

shown in Figure 3.1.8. The air capacitances 1C  and 2C  (capacitances between

the movable plate and two stationary outer plates) are functions of the
corresponding displacements 1x  and 2x .

The parallel-plate capacitance is proportional to the overlapping area
between the plates ( m2m125 µµ × ) and the displacement (up to m3.1 µ ). In

particular, neglecting the fringing effects (nonuniform distribution near the
edges), the parallel-plate capacitance is

dd
A

C A
1

εε == ,

where ε  is the permittivity; A is the overlapping area; d is the displacement
between plates; AA εε =

If the acceleration is zero, the capacitances 1C  and 2C  are equal

because 21 xx =  (in ADXL202 accelerometer, m3.121 µ== xx  ).

Thus, one has
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21 CC = ,

where 
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1
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The proof mass (movable microstructure) displacement x results due to
acceleration. If 0≠x , we have the following expressions for capacitances
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The capacitance difference is found to be
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Measuring C∆ , one finds the displacement x by solving the following
nonlinear algebraic equation

02 2
1

2 =∆−−∆ CxxCx Aε .

For small displacements, neglecting the term 2Cx∆ , one has
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ε2

2
1 .

Hence, the displacement is proportional to the capacitance difference C∆ .
For an ideal spring, Hook’s law states that the spring exhibits a restoring

force Fs which is proportional to the displacement x. Hence, we have the
following formula

Fs = ksx,
where ks is the spring constant.

From Newton’s second law of motion, neglecting friction, one writes

xk
dt
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.

Thus, the displacement due to the acceleration is

a
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m
x
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= ,

while the acceleration, as a function of the displacement, is given as

x
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k
a s= .

Then, making use of the measured (calculated) C∆ , the acceleration is
found to be
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Making use of Newton’s second law of motion, we have
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where )(xfs  is the spring restoring force which is a nonlinear function of the

displacement, and 3
3

2
21)( xkxkxkxf ssss ++= ; ks1, ks2 and ks3 are the

spring constants.
Therefore, the following nonlinear equation results
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This equation can be used to calculate the acceleration a using the
capacitance difference C∆ .

Two beams (proof masses which are motion microstructures) can be
placed orthogonally to measure the accelerations in the X and Y axis
(ADXL250), as well as the movable plates can be mounted along the sides of
the square beam (ADXL202). Figures 3.1.9 and 3.1.10 document the
ADXL202 and ADXL250 accelerometers.



Figure 3.1.9. ADXL202 accelerometer: proof mass with fingers and ICs
(courtesy of Analog Devices)



Figure 3.1.10.ADXL250 accelerometer: proof masses with fingers and ICs
(courtesy of Analog Devices)

Responding to acceleration, the proof mass moves due to the mass of the
movable microstructure (m) along X and Y axes relative to the stationary
member (accelerometer). The motion of the proof mass is constrained, and the
polysilicon springs hold the movable microstructure (beam). Assuming that the
polysilicon springs and the proof mass obey Hook’s and Newton’s laws, it was
shown that  the acceleration is found using the following formula



x
m

k
a s= .

The fixed outer plates are excited by two square wave 1 MHz signals of
equal magnitude that are 180 degrees out of phase from each other. When the
movable plates are centered between the fixed outer plates we have 21 xx = .

Thus, the capacitance difference C∆  and the output signal is zero. If the proof
mass (movable microstructure) is displaced due to the acceleration, we have

0≠∆C . Thus, the capacitance imbalance, and the amplitude of the output
voltage is a function (proportional) to the displacement of the proof mass x.
Phase demodulation is used to determine the sign (positive or negative) of
acceleration. The ac signal is amplified by buffer amplifier and demodulated by
a synchronous synchronized demodulator. The output of the demodulator
drives the high-resolution duty cycle modulator. In particular, the filtered signal
is converted to a PWM signal by the 14-bit duty cycle modulator. The zero
acceleration produces 50% duty cycle. The PWM output fundamental period
can be set from 0.5 to 10ms.

There is a wide range of industrial systems where smart integrated sensors
are used. For example, accelerometers can be used for
1. active vibration control and diagnostics,
2. health and structural integrity monitoring,
3. internal navigation systems,
4. earthquake-actuated safety systems,
5. seismic instrumentation: monitoring and detection,
6. etc.

Current research activities in analysis, design, and optimization of
flexible structures (aircraft, missiles, manipulators and robots, spacecraft,
surface and underwater vehicles) are driven by requirements and standards
which must be guaranteed. The vibration, structural integrity, and structural
behavior are addressed and studied. For example, fundamental, applied, and
experimental research in aeroelasticity and structural dynamics are conducted
to obtain fundamental understanding of the basic phenomena involved in
flutter, force and control responses, vibration, and control. Through
optimization of aeroelastic characteristics as well as applying passive and
active vibration control, the designer minimizes vibration and noise, and
current research integrates development of aeroelastic models and
diagnostics to predict stalled/whirl flutter, force and control responses,
unsteady flight, aerodynamic flow, etc. Vibration control is a very
challenging problem because the designer must account complex interactive
physical phenomena (elastic theory, structural and continuum mechanics,
radiation and transduction, wave propagation, chaos, et cetera). Thus, it is
necessary to accurately measure the vibration, and the accelerometers, which
allow one to measure the acceleration in the micro-g range, are used. The
application of the MEMS-based accelerometers ensures small size, low cost,



ruggedness, hermeticity, reliability, and flexible interfacing with
microcontrollers, microprocessors, and DSPs.

High-accuracy low-noise accelerometers can be used to measure the
velocity and position. This provides the back-up in the case of the GPS system
failures or in the dead reckoning applications (the initial coordinates and speed
are assumed to be known). Measuring the acceleration, the velocity and
position in the xy plane are found using integration. In particular,
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The Analog Devices data for iMEMS accelerometers
ADXL202/ADXL210 and ADXL150/ADXL250 are given below (courtesy of
Analog Devices).

It is important to emphasize that microgyroscope have been designed,
fabricated, and deployed using the similar technology as iMEMS
accelerometers. In particular, using the difference capacitance (between the
movable rotor and stationary stator plates), the angular acceleration is
measured. The butterfly-shaped polysilicon rotor suspended above the
substrate, and Figure 3.1.11 illustrates the microgyroscope.

Figure 3.1.11. Angular microgyroscope structure
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Microaccelerometer Mathematical Model

Using the experimental data (input-output dynamic behavior and Bode
plots), the mathematical model of microaccelerometers is obtained in the form
of ordinary differential equations, and the coefficients (accelerometer
parameters) are identified. The dominant microaccelerometer dynamics is
described by a system of six linear differential equations
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The accelerometer output, which is the measured acceleration a, was
denoted as y, y = a. It is evident that the acceleration is a function of the state
variable x6. All other five states model the proof mass (motion microstructure)
and microICs (oscillator, demodulator, modulator, filter, et cetera) dynamics.

The eigenvalues are found to be
4353 108.8102.4,104.1109.5 ×±×−×±×− ii , .104103 33 ×±×− i

This mathematical model of the microaccelerometer can be used in
systems analysis, diagnostics, and design of a wide variety of systems where
iMEMS are used.
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FEATURES
2-Axis Acceleration Sensor on a Single IC Chip
Measures Static Acceleration as Well as Dynamic

Acceleration
Duty Cycle Output with User Adjustable Period
Low Power <0.6 mA
Faster Response than Electrolytic, Mercury or Thermal

Tilt Sensors
Bandwidth Adjustment with a Single Capacitor Per Axis
5 m

 

g

 

 Resolution at 60 Hz Bandwidth
+3 V to +5.25 V Single Supply Operation
1000 

 

g

 

 Shock Survival

APPLICATIONS
2-Axis Tilt Sensing
Computer Peripherals
Inertial Navigation
Seismic Monitoring
Vehicle Security Systems
Battery Powered Motion Sensing

 

GENERAL DESCRIPTION

 

The ADXL202/ADXL210 are low cost
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 low power

 

,

 

 complete 
2-axis accelerometers with a measurement range of either 
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/
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10 
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. The ADXL202/ADXL210 can measure both dy-
namic acceleration (e.g.

 

,

 

 vibration) and static acceleration (e.g.

 

,

 

 
gravity).

The outputs are digital signals whose duty cycles (ratio of pulse-
width to period) are proportional to the acceleration in each of 
the 2 sensitive axes. These outputs may be measured directly 
with a microprocessor counter

 

,

 

 requiring no A/D converter or 
glue logic. The output period is adjustable from 0.5 ms to 10 ms 
via a single resistor (R

 

SET

 

). If a voltage output is desired

 

,

 

 a 
voltage output proportional to acceleration is available from the 
X

 

FILT

 

 and Y
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 pins
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 or may be reconstructed by filtering the 
duty cycle outputs.

The bandwidth of the ADXL202/ADXL210 may be set from 
0.01 Hz to 5 kHz via capacitors C
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. The typical noise 
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 to be resolved 
for bandwidths below 60 Hz.

The ADXL202/ADXL210 is available in a hermetic 14-lead 
Surface Mount CERPAK
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 specified over the 0°C to 

 

+

 

70°C com-
mercial or 
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85°C industrial temperature range.
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ADXL202/ADXL210–SPECIFICATIONS
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, unless otherwise noted)

 

ADXL202/JQC/AQC ADXL210/JQC/AQC

Parameter Conditions Min Typ Max Min Typ Max Units

 

SENSOR INPUT
Measurement Range
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Nonlinearity
Alignment Error
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Transverse Sensitivity
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∆
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% Rdg
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 BIAS LEVEL
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 Duty Cycle
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 Offset vs. Temperature
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∆
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NOISE PERFORMANCE
Noise Density
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25°C 500 1000 500 1000

FREQUENCY RESPONSE
3 dB Bandwidth
3 dB Bandwidth
Sensor Resonant Frequency

Duty Cycle Output
At Pins X
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5
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5
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Minimum Capacitance
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Ω

 

 Nominal
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FILT
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±
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SELF TEST
Duty Cycle Change Self-Test 
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”

 

10 10 %

DUTY CYCLE OUTPUT STAGE
F

 

SET

 

F

 

SET

 

 Tolerance
Output High Voltage
Output Low Voltage
T2 Drift vs. Temperature
Rise/Fall Time
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A
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ppm/°C
ns

POWER SUPPLY
Operating Voltage Range
Specified Performance
Quiescent Supply Current
Turn-On Time

 

6

 

To 99%

3.0
4.75

0.6

5.25
5.25
1.0

2.7
4.75

0.6

5.25
5.25
1.0

V
V
mA
ms

TEMPERATURE RANGE
Operating Range
Specified Performance

JQC
AQC

0

 

−

 

40

 

+

 

70

 

+

 

85
0

 

−

 

40

 

+

 

70

 

+

 

85
°C
°C

 

NOTES

 

1

 

For all combination of offset no sensitivity variation.

 

2

 

Alignment error is specified as the angle between the true and indicated axis of sensitivity.

 

3

 

Transverse sensitivity is the algebraic non of the alignment and the inherent sensitivity errors.

 

4

 

Specification refers to the maximum change in parameter from its initial at 

 

+

 

25°C to its worst case value at T

 

MIN

 

 T

 

MAX

 

.

 

5

 

Noose density  is the average noise at any frequency in the bandwith of the part.

 

6

 

C

 

FILT

 

 in 

 

µ

 

F. Addition of filter capacitor will increase turn on time. Please see the Application section on power cycling.
All min and max specifications are guaranteed. Typical specifications are not tested or guaranteed.
Specifications subject to change without notice.

µg/ Hz

µg/ Hz( )

 

125 M

 

Ω

 

/R

 

SET

 

125 M

 

Ω

 

/R

 

SET

 

V

 

S

 

 

 

−

 

 200 mV V

 

S

 

 

 

−

 

 200 mV

160 C

 

FILT

 

 

 

+

 

 0.3 160 C

 

FILT

 

 

 

+

 

 0.3
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ABSOLUTE MAXIMUM RATINGS*

 

Acceleration (Any Axis

 

,

 

 Unpowered for 0.5 ms) . . . . . 1000 

 

g

 

Acceleration (Any Axis

 

,

 

 Powered for 0.5 ms)  . . . . . . . . 500 

 

g

 

+

 

V

 

S

 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

−

 

0.3 V to 

 

+

 

7.0 V
Output Short Circuit Duration
  (Any Pin to Common)  . . . . . . . . . . . . . . . . . . . . . . . Indefinite
Operating Temperature . . . . . . . . . . . . . . . . . 

 

−

 

55°C to 

 

+

 

125°C
Storage Temperature . . . . . . . . . . . . . . . . . . .

 

−

 

65°C to 

 

+

 

I 50°C

 

*Stresses above those listed under Absolute Maximum Ratings may cause perma-
nent damage to the device. This is a stress rating only

 

;

 

 the functional operation of 
the device at these or any other conditions above those indicated in the operational 
sections of this specification is not implied. Exposure to absolute maximum rating 
conditions for extended periods may affect device reliability.

 

Drops onto hard surfaces can cause shocks of greater than 1000 

 

g

 

 
and exceed the absolute maximum rating of the device. Care 
should be exercised in handling to avoid damage.

 

PIN FUNCTION DESCRIPTIONS

 

Pin Name  Description

 

1 NC Not Connect
2 V

 

TP

 

Test Point

 

,

 

 Do Not Connect
3 ST Self Test
4 COM Common
5 T2 Connect R

 

SET

 

 to Set T2 Period
6 NC No Connect
7 COM Common
8 NC No Connect
9 Y

 

OUT

 

Y Axis Duty Cycle Output
10 X

 

OUT

 

X Axis Duty Cycle Output
11 Y

 

FILT

 

Connect Capacitor for Y Filter
12 X

 

FILT

 

Connect Capacitor for X Filter
13 V

 

DD

 

+

 

3 V to 

 

+

 

5.25 V

 

,

 

 Connect to 14
14 V

 

DD

 

+

 

3 V to 

 

+

 

5.25 V

 

,

 

 Connect to 13

 

PACKAGE CHARACTERISTICS

Package

 

θ

 

JA

 

θ

 

JC

 

Device Weight

 

14-Lead CERPAK 110°C/W 30°C/W 5 Grams

 

PIN CONFIGURATION

 

Figure 1 shows the response of the ADXL202 to the Earth

 

’

 

s 
gravitational field. The output values shown are nominal. They 
are presented to show the user what type of response to expect 
from each of the output pins due to changes in orientation with 
respect to the Earth. The ADXL210 reacts similarly with output 
changes appropriate to its scale.

 

Figure 1. ADXL202/ADXL210 Nominal Response Due to 
Gravity

 

ORDERING GUIDE

 

Model

 

g

 

Range

 

Temperature
Range

 

Package
Description

Package
Option

 

ADXL202JQC

 

±

 

2 0°C to 

 

+

 

70°C 14-Lead CERPAK QC-14
ADXL202AQC

 

±

 

2

 

−

 

40°C to +85°C 14-Lead CERPAK QC-14
ADXL210JQC

 

±

 

10 0°C to +70°C 14-Lead CERPAK QC-14
ADXL210AQC

 

±

 

10

 

−

 

40°C to +85°C 14-Lead CERPAK QC-14

 

CAUTION

 

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily
accumulate on the human body and test equipment and can discharge without detection. Although
the ADXL202/ADXL210 features proprietary ESD protection circuitry

 

,

 

 permanent damage may
occur on devices subjected to high energy electrostatic discharges. Therefore

 

,

 

 proper ESD pre-
cautions are recommended to avoid performance degradation or loss of functionality.
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TYPICAL CHARACTERISTICS (@ +25°C RSET = 125 kΩ, VDD = +5 V, unless otherwise noted)

Figure 2. Normalized DCM Period (T2) vs. Temperature Figure 5. Typical X Axis Sensitivity Drift Due to Temperature

Figure 3. Typical Zero g Offset vs. Temperature Figure 6. Typical Turn-On Time

Figure 4. Typical Supply Current vs. Temperature Figure 7. Typical Zero g Distribution at +25°C
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Figure 8. Typical Sensitivity per g at +25°C Figure 10. Typical Noise at Digital Outputs

Figure 9. Typical Noise at XFILT Output Figure 11. Rotational Die Alignment
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DEFINITIONS
T1 Length of the “on” portion of the cycle.

T2 Length of the total cycle.

Duty Cycle Ratio of the “on” time (T1) of the cycle to the 
total cycle (T2). Defined as TIM for the 
ADXL202/ADXL210.

Pulsewidth Time period of the “on” pulse. Defined as T1 for 
the ADXL202/ADXL210.

THEORY OF OPERATION
The ADXL202/ADXL210 are complete dual axis acceleration 
measurement systems on a single monolithic IC. They contain a 
polysilicon surface-micromachined sensor and signal condition-
ing circuitry to implement an open loop acceleration measure-
ment architecture. For each axis, an output circuit converts the 
analog signal to a duty cycle modulated (DCM) digital signal that 
can be decoded with a counter/timer port on a microprocessor 
cessor. The ADXL202/ADXL210 are capable of measuring both 
positive and negative accelerations to a maximum level of ± 2 g 
or ± 10 g. The accelerometer measures static acceleration forces 
such as gravity, allowing it to be used as a tilt sensor.

The sensor is a surface micromachined polysilicon structure 
built on top of the silicon wafer. Polysilicon springs suspend 
the structure over the surface of the wafer and provide a resis-
tance against acceleration forces. Deflection of the structure is 
measured using a differential capacitor that consists of indepen-
dent fixed plates and central plates attached to the moving mass. 
The fixed plates are driven by 180° out of phase square waves. 
An acceleration will deflect the beam and unbalance the differ-
ential capacitor, resulting in an output square wave whose 
amplitude is proportional to acceleration. Phase sensitive 
demodulation techniques are then used to rectify the signal and 
determine the direction of the acceleration.

The output of the demodulator drives a duty cycle modulator 
(DCM) stage through a 32 kΩ resistor. At this point a pin is 
available on each channel to allow the user to set the signal 
bandwidth of the device by adding a capacitor. This filtering 
improves measurement resolution and helps prevent aliasing.

After being low-pass filtered, the analog signal is converted to 
a duty cycle modulated signal by the DCM stage. A single 
resistor sets the period for a complete cycle (T2), which can be 
set between 0.5 ms and 10 ms (see Figure 12). A 0 g acceleration 
produces a nominally 50% duty cycle. The acceleration signal 
can be determined by measuring the length of the T1 and T2 
pulses with a counter/timer or with a polling loop using a low 
cost microcontroller

An analog output voltage can be obtained either by buffering 
the signal from the XFILT and YFILT pin, or by passing the duty 
cycle signal through an RC filter to reconstruct the dc value.

The ADXL202/ADXL210 will operate with supply voltages as 
low as 3.0 V or as high as 5.25 V.

APPLICATIONS 

POWER SUPPLY DECOUPLING 
For most applications a single 0. 1 µF capacitor, CDC, will ade-
quately decouple the accelerometer from signal and noise on the 
power supply. However, in some cases, especially where digital 
devices such as microcontrollers share the same power supply, 
digital noise on the supply may cause interference on the 
ADXL202/ ADXL210 output. This is often observed as a slowly 
undulating fluctuation of voltage at XFILT and YFILT. If additional 
decoupling is needed, a 100 Ω (or smaller) resistor or ferrite beads, 
may be inserted in the ADXL202/ADXL210’s supply line.

DESIGN PROCEDURE FOR THE ADXL202/ADXL210
The design procedure for using the ADXL202/ADXL210 with 
a duty cycle output involves selecting a duty cycle period and 
a filter capacitor. A proper design will take into account the 
Application requirements for bandwidth, signal resolution and 
acquisition time, as discussed in the following sections.

VDD

The ADXL202/ADXL210 have two power supply (VDD) Pins: 
13 and 14. These two pins should be connected directly together.

COM
The ADXL202/ADXL210 have two commons, Pins 4 and 7. 
These two pins should be connected directly together and Pin 
7 grounded.

VTP

This pin is to be left open; make no connections of any kind to 
this pin.

Decoupling Capacitor CDC

A 0.1 µF Capacitor is recommended from Von to COM for 
power supply decoupling.

ST 
The ST pin controls the self-test feature. When this pin is set 
to VDD, an electrostatic force is exerted on the beam of the 
accelerometer. The resulting movement of the beam allows the 
user to test if the accelerometer is functional. The typical change 
in output will be 10% at the duty cycle outputs (corresponding 
to 800 mg). This pin may be left open circuit or connected to 
common in normal use.

Duty Cycle Decoding
The ADXL202/ADXL210’s digital output is a duty cycle mod-
ulator. Acceleration is proportional to the ratio T1/T2. The nom-
inal output of the ADXL202 is:

0 g = 50% Duty Cycle

Scale factor is 12.5% Duty Cycle Change per g

The nominal output of the ADXL210 is:

0 g = 50% Duty Cycle

Scale factor is 4% Duty Cycle Change per g

These nominal values are affectcd by the initial tolerance of the 
device including zero g offset error and sensitivity error.

T2 does not have to be measured for every measurement cycle. 
It need only be updated to account for changes due to temper-
ature, (a relatively slow process). Since the T2 time period is 
shared by both X and Y channels, it is necessary only to measure 
it on one channel of the ADXL202/ADXL210. Decoding algo-
rithms for various microcontrollers have been developed. Con-
sult the appropriate Application Note.Figure 12. Typical Output Duty Cycle
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Setting the Bandwidth Using CX and CY

The ADXL202/ADXL210 have provisions for bandlimiting the 
XFILT and YFILT pins. Capacitors must be added at these pins to 
implement low-pass filtering for antialiasing and noise reduc-
tion. The equation for the 3 dB bandwidth is:

or, more simply, 

The tolerance of the internal resistor (RFILT) can vary as much 
as ±25% of its nominal value of 32 kΩ; so the bandwidth will 
vary accordingly. A minimum capacitance of 1000 pF for C(X,Y) 
is required in all cases.

Setting the DCM Period with RSET 
The period of the DCM output is set for both channels by a 
single resistor from RSET to ground. The equation for the period 
is:

A 125 kΩ resistor will set the duty cycle repetition rate to 
approximately 1 kHz, or 1 ms. The device is designed to operate 
at duty cycle periods between 0.5 ins and 10 ms.

Note that the RSET should always be included, even if only an 
analog output is desired. Use an RSET value between 500 kΩ 
and 2 MΩ when taking the output from XFILT or YFILT. The RSET 
resistor should be place close to the T2 Pin to minimize parasitic 
capacitance at this node.

Selecting the Right accelerometer
For most tilt sensing applications the ADXL202 is the most 
appropriate accelerometer. Its higher sensitivity (12.5%/g 
allows the user to use a lower speed counter for PWM decoding 
while maintaining high resolution. The ADXL210 should be 
used in applications where accelerations of greater than ±2 g 
are expected.

MICROCOMPUTER INTERFACES
The ADXL202/ADXL210 were specifically designed to work 
with low cost microcontrollers. Specific code sets, reference 
designs, and application notes are available from the factory. 
This section will outline a general design procedure and discuss 
the various trade-offs that need to be considered.

The designer should have some idea of the required performance 
of the system in terms of:

Resolution: the smallest signal change that needs to be detected.

Bandwidth: the highest frequency that needs to be detected.

Acquisition Time: the time that will be available to acquire the 
signal on each axis.

These requirements will help to determine the accelerometer 
bandwidth, the speed of the microcontroller clock and the length 
of the T2 period.

When selecting a microcontroller it is helpful to have a counter 
timer port available. The microcontroller should have provisions 
for software calibration. While the ADXL202/ADXL210 are 
highly accurate accelerometers, they have a wide tolerance for

Figure 13. Block Diagram

Table I. Filter Capacitor Selection, CX and CY

Bandwidth
Capacitor
Value

10 Hz 0.47 µF
50 Hz 0.10 µF
100 Hz 0.05 µF
200 Hz 0.027 µF
500 Hz 0.01 µF
5 kHz 0.001 µF

F 3 dB–
1

2π 32 kΩ( ) C x y,( )× 
 
---------------------------------------------------------=

F 3 dB–
5µF
C X Y,( )
--------------=

T 2
RSET Ω( )
125 MΩ
---------------------=

Table II. Resistor Values to Set T2

T2 RSET

1 ms 125 kΩ
2 ins 250 kΩ
5 ms 625 kΩ
10 ms 1.25 MΩ
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initial offset. The easiest way to null this offset is with a cali-
bration factor saved on the mictrocontroller or by a user cali-
bration for zero g. In the case where the offset is calibrated 
during manufacture, there are several options, including external 
EEPROM and microcontrollers with “one-time programmable” 
features.

DESIGN TRADE-OFFS FOR SELECTING FILTER 
CHARACTERISTICS: THE NOISE/BW TRADE-OFF

The accelerometer bandwidth selected will determine the mea-
surement resolution (smallest detectable acceleration). Filtering 
can be used to lower the noise floor and improve the resolution 
of the accelerometer. Resolution is dependent on both the analog 
filter bandwidth at XFILT and YFILT and on the speed of the 
microcontroller counter.

The analog output of the ADXL202/ADXL210 has a typical 
bandwidth of 5 kHz, much higher than the duty cycle stage is 
capable of converting. The user must filter the signal at this 
point to limit aliasing errors. To minimize DCM errors the 
analog bandwidth should be less than 1/10 the DCM frequency. 
Analog bandwidth may be increased to up to 1/2 the DCM 
frequency in many applications. This will result in greater 
dynamic error generated at the DCM. 

The analog bandwidth may be further decreased to reduce noise 
and improve resolution. The ADXL202/ADXL210 noise has 
the characteristics of white Gaussian noise that contributes 
equally at all frequencies and is described in terms of µg per 
root Hz; i.e., the noise is proportional to the square root of the 
handwidth of the accelerometer. It is recommended that the user 
limit bandwidth to the lowest frequency needed by the applica-
tion, to maximize the resolution and dynamic range of the 
accelerometer.

With the single pole roll-off characteristic, the typical noise of the 
ADXL202/ADXL210 is determined by the following equation:

At 100 Hz the noise will be:

Often the peak value of the noise is desired. Peak-to-peak noise 
can only be estimated by statistical methods. Table III is useful 
for estimating the probabilities of exceeding various peak val-
ues, given the rms value.

The peak-to-peak noise value will give the best estimate of the 
uncertainty in a single measurement.

Table IV gives typical noise output of the ADXL202/ADXL210 
for various CX and CY values.

CHOOSING T2 AND COUNTER FREQUENCY: DESIGN 
TRADE-OFFS 

The noise level is one determinant of accelerometer resolution. 
The second relates to the measurement resolution of the counter 
when decoding the duty cycle output.

The ADXL202/ADXL210’s duty cycle converter has a resolu-
tion of approximately 14 bits; better resolution than the accel-
erometer itself. The actual resolution of the acceleration signal 
is, however, limited by the time resolution of the counting 
devices used to decode the duty cycle. The faster the counter 
clock, the higher the resolution of the duty cycle and the shorter 
the T2 period can be for a given resolution. The following table 
shows some of the trade-offs. It is important to note that this is 
the resolution due to the microprocessors’s counter. It is prob-
able that the accelerometer’s noise floor may set the lower limit 
on the resolution as discussed in the previous section.

Table III. Estimation of Peak-to-Peak Noise

Nominal Peak-to-Peak
Value

% of Time that Noise 
Will Exceed Nominal
Peak-to-Peak Value

2.0 × rms 32%
4.0 × rms 4.6%
6.0 × rms 0.27%
8.0 × rms 0.006%

Noise rms( ) 500 µg/ Hz 
  BW 1.5× 

 ×=

Noise rms( ) 500µg/ Hz 
  100 1.5( )× 

 × 6.12 mg= =

Table IV. Filter Capacitor Selection, CX and CY

Bandwidth CX, CY rms Noise

Peak-to-Peak Noise 
Estimate 95% 
Probability (rms ×××× 4)

10 Hz 0.47 µF 1.9 mg 7.6 mg
50 Hz 0.10 µF 4.3 mg 17.2 mg
100 Hz 0.05 µF 6.1 mg 24.4 mg
200 Hz 0.027 µF 8.7 mg 35.8 mg
500 Hz 0.01 µF 13.7 mg 54.8 mg

Table V. Trade-offs Between Microcontroller Counter Rate, 
T2 Period and Resolution of Duty Cycle Modulator

T2(ms)
RSET

(kΩΩΩΩ)

ADXL202/
ADXL210
Sample 
Rate

Counter-
Clock
Rate
(MHz)

Counts
per T2
Cycle

Counts
per g

Resolution
(mg)

1.0 124 1000 2.0 2000 250 4.0
1.0 124 1000 1.0 1000 125 8.0
1.0 124 1000 0.5 500 62.5 16.0
5.0 625 200 2.0 10000 1250 0.8
5.0 625 200 1.0 5000 625 1.6
5.0 625 200 0.5 2500 312.5 3.2
10.0 1250 100 2.0 20000 2500 0.4
10.0 1250 100 1.0 10000 1250 0.8
10.0 1250 100 0.5 5000 625 1.6
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STRATEGIES FOR USING THE DUTY CYCLE OUTPUT 
WITH MICROCONTROLLERS
Application notes outlining various strategies for using the duty 
cycle output with low cost microcontrollers are available from 
the factory.

USING THE ADXL202/ADXL210 AS A DUAL AXIS TILT 
SENSOR
One of the most popular applications of the ADXL202/ADXL210 
is tilt measurement. An accelerometer uses the force of gravity 
as an input vector to determine orientation of an object in space.

An accelerometer is most sensitive to tilt when its sensitive axis 
is perpendicular to the force of gravity, i.e., parallel to the earth’s 
surface. At this orientation its sensitivity to changes in tilt is 
highest. When the accelerometer is oriented on axis to gravity, 
i. e., near its +1 g or −1 g reading, the change in output accel-
eration per degree of tilt is negligible. When the accelerometer 
is perpendicular to gravity, its output will change nearly 17.5 mg 
per degree of tilt, but at 45° degrees it is changing only at 12.2 mg 
per degree and resolution declines. The following table illus-
trates the changes in the X and Y axes as the device is tilted 
±90° through gravity.

A DUAL AXIS TILT SENSOR: CONVERTING 
ACCELERATION TO TILT
When the accelerometer is oriented so both its X and Y axes 
are parallel to the earth’s surface it can be used as a two axis 
tilt sensor with a roll and a pitch axis. Once the output signal 
from the accelerometer has been converted to an acceleration 
that varies between −1 g and +1 g, the output tilt in degrees is 
calculated as follows:

Pitch = ASIN (Ax/1 g)

Roll = ASIN (Ay/1 g)

Be sure to account for overranges. It is possible for the accel-
erometers to output a signal greater than ± 1 g due to vibration, 
shock or other accelerations.

MEASURING 360° OF TILT
It is possible to measure a full 360° of orientation through gravity 
by using two accelerometers oriented perpendicular to one 
another (see Figure 15). When one sensor is reading a maximum 
change in output per degree, the other is at its minimum.

X OUTPUT Y OUTPUT (g)

X AXIS 
ORIENTATION
TO HORIZON (°) X OUTPUT (g)

D PER 
DEGREE OF 
TILT (mg) Y OUTPUT (g)

∆ PER 
DEGREE OF 
TILT (mg)

−90 −1.000 −0.2 0.000 17.5

−75 −0.966 4.4 0.259 16.9

−60 −0.866 8.6 0.500 15.2

−45 −0.707 12.2 0.707 12.4

−30 −0.500 15.0 0.866 8.9

−15 −0.259 16.8 0.966 4.7

0 0.000 17.5 1.000 0.2

15 0.259 16.9 0.966 −4.4

30 0.500 15.2 0.866 −8.6

45 0.707 12.4 0.707 −12.2

60 0.866 8.9 0.500 −15.0

75 0.966 4.7 0.259 −16.8

90 1.000 0.2 0.000 −17.5

Figure 14. How the X and Y Axes Respond to Changes in Tilt

Figure 15. Using a Two-Axis Accelerometer to Measure 360° 
of Tilt
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USING THE ANALOG OUTPUT
The ADXL202/ADXL210 was specifically designed for use 
with its digital outputs, but has provisions to provide analog 
outputs as well.

Duty Cycle Filtering
An analog output can be reconstructed by filtering the duty cycle 
output. This technique requires only passive components. The 
duty cycle period (T2) should be set to 1 ms. An RC filter with 
a 3 dB point at least a factor of 10 less than the duty cycle 
frequency is connected to the duty cycle output. The filter resis-
tor should be no less than 100 kΩ to prevent loading of the 
output stage. The analog output signal will be ratiometric to the 
supply voltage. The advantage of this method is an output scale 
factor of approximately double the analog output. Its disadvan-
tage is that the frequency response will be lower than when 
using the XFILT, YFILT output.

XFILT, YFILT Output
The second method is to use the analog output present at the 
XFILT and YFILT pin. Unfortunately, these pins have a 32 kΩ 
output impedance and are not designed to drive a load directly. 
An op amp follower may be required to buffer this pin. The 
advantage of this method is that the full 5 kHz bandwidth of 
the accelerometer is available to the user. A capacitor still must 
be added at this point for filtering. The duty cycle converter 
should be kept running by using RSET <10 MΩ . Note that the 
accelerometer offset and sensitivity are ratiometric to the supply 
voltage. The offset and sensitivity are nominally:

0 g Offset = VDD/2 2.5 V at +5 V
ADXL202 Sensitivity = (60 mV × VS)/g 300 mV/g at +5 V, VDD

ADXL2l0 Sensitivity = (20 mV × VS)/g 100 mV/g at +5 V, VDD

USING THE ADXL202/ADXL210 IN VERY LOW POWER 
APPLICATIONS
An application note outlining low power strategies for the 
ADXL202/ADXL210 is available. Some key points are pre-
sented here. It is possible to reduce the ADXL202/ADXL210’s 
average current from 0.6 mA to less than 20 µA by using the 
following techniques:

1. Power Cycle the accelerometer.

2. Run the accelerometer at a Lower Voltage, (Down to 3 V).

Power Cycling with an External A/D
Depending on the value of the XFILT capacitor, the ADXL202/ 
ADXL210 is capable of turning on and giving a good reading 
in 1.6 ms. Most microcontroller based A/Ds can acquire a read-
ing in another 25 µs. Thus it is possible to turn on the ADXL202/ 
ADXL210 and take a reading in <2 ms. If we assume that a 
20 Hz sample rate is sufficient, the total current required to 
take 20 samples is 2 ms × 20 samples/s × 0.6 mA = 24 µA 
average current. Running the part at 3 V will reduce the supply 
current from 0.6 mA to 0.4 mA, bringing the average current 
down to 16 µA.

The A/D should read the analog output of the ADXL202/ 
ADXL210 at the XFILT and YFILT pins. A buffer amplifier is 
recommended, and may be required in any case to amplify the 
analog Output to give enough resolution with an 8-bit to 10-bit 
converter.

Power Cycling When Using the Digital Output
An alternative is to run the microcontroller at a higher clock 
rate and put it into shutdown between readings, allowing the 
use of the digital output. In this approach the 
ADXL202/ADXL210 should be set at its fastest sample rate 
(T2 = 0.5 ms), with a 500 Hz filter at XFILT and YFILT. The concept 
is to acquire a reading as quickly as possible and then shut down 
the ADXL202/ADXL210 and the microcontroller until the next 
sample is needed.

In either of the above approaches, the ADXL202/ADXL210 can 
be turned on and off directly using a digital port pin on the 
microcontroller to power the accelerometer without additional 
components. The port should be used to switch the common 
pin of the accelerometer so the port pin is “pulling down.”

CALIBRATING THE ADXL202/ADXL210
The initial value of the offset and scale factor for the ADXL202/ 
ADXL210 will require calibration for applications such as tilt 
measurement. The ADXL202/ADXL210 architecture has been 
designed so that these calibrations take place in the software of 
the microcontroller used to decode the duty cycle signal. Cali-
bration factors can be stored in EEPROM or determined at turn-
on and saved in dynamic memory.

For low g applications, the force of gravity is the most stable, 
accurate and convenient acceleration reference available. A 
reading of the 0 g point can be determined by orientating the 
device parallel to the earth’s surface and then reading the output.

A more accurate calibration method is to make a measurements 
at +1 g and −1 g. The sensitivity can be determined by the two 
measurements.

To calibrate, the accelerometer’s measurement axis is pointed 
directly at the earth. The 1 g reading is saved and the sensor is 
turned 180° to measure −1 g. Using the two readings, the 
sensitivity is:

Let A = Accelerometer output with axis oriented to +1 g

Let B = Accelerometer output with axis oriented to −1 g then:

Sensitivity = [A − B]/2 g

For example, if the +1 g reading (A) is 55% duty cycle and the 
−1 g reading (B) is 32% duty cycle, then:

Sensitivity = [55% − 32%]/2 g = 11.5%/g

These equations apply whether the output is analog, or duty 
cycle.

Application notes outlining algorithms for calculating acceler-
ation from duty cycle and automated calibration routines are 
available from the factory.

OUTLINE DIMENSIONS
Dimensions shown in inches and (mm).

14-Lead CERPAK
(QC-14)
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 FEATURES
 Complete Acceleration Measurement System
 on a Single Monolithic IC
 80 dB Dynamic Range
 Pin Programmable ±50 g or ±25 

 

g

 

 Full Scale
 Low Noise: 1 m

 

g

 

 Typical
 Low Power: <2 mA per Axis
 Supply Voltages as Low as 4 V
 2-Pole Filter On-Chip
 Ratiometric Operation
 Complete Mechanical & Electrical Self-Test
 Dual & Single Axis Versions Available
 Surface Mount Package

 

GENERAL DESCRIPTION

 

The ADXL150 and ADXL250 are third generation 

 

±

 

50 

 

g

 

 sur-
face micromachined accelerometers. These improved replace-
ments for the ADXL50 offer lower noise

 

,

 

 wider dynamic range

 

,

 

 
reduced power consumption and improved zero 

 

g

 

 bias drift.

The ADXL150 is a single axis product

 

;

 

 the ADXL250 is a fully 
integrated dual axis accelerometer with signal conditioning on 
a single monolithic IC

 

,

 

 the first of its kind available on the 
commercial market. The two sensitive axes of the ADXL250 
are orthogonal (90°) to each other. Both devices have their 
sensitive axes in the same plane as the silicon chip.

The ADXL150/ADXL250 offer lower noise and improved 
signal-to-noise ratio over the ADXL50. Typical S/N is 80 dB

 

,

 

 
allowing resolution of signals as low as 10 m

 

g

 

,

 

 yet still provid-
ing a 

 

±

 

50 

 

g

 

 full-scale range. Device scale factor can be increased 
from 38 mV/

 

g

 

 to 76 mV/

 

g

 

 by connecting a jumper between 
V

 

OUT

 

 and the offset null pin. Zero 

 

g

 

 drift has been reduced to 
0.4 

 

g

 

 over the industrial temperature range

 

,

 

 a 10

 

×

 

 improvement 
over the ADXL50. Power consumption is a modest 1.8 mA per 
axis. The scale factor and zero 

 

g

 

 output level are both ratiometric 
to the power supply

 

,

 

 eliminating the need for a voltage reference 

when driving ratiometric A/D converters such as those found in 
most microprocessors. A power supply bypass capacitor is the 
only external component needed for normal operation.

The ADXL150/ADXL250 are available in a hermetic 14-lead 
surface mount cerpac package specified over the 0°C to 

 

+

 

70°C 
commercial and 

 

−

 

40°C to 

 

+

 

85°C industrial temperature ranges. 
Contact factory for availability of devices specified over auto-
motive and military temperature ranges.

Hz

 

FUNCTIONAL BLOCK DIAGRAMS

 

ADXL150/ADXL250

±5 

 

g

 

 to±50 

 

g

 

, Low Noise, Low Power,
Single/Dual Axis
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ADXL150/ADXL250–SPECIFICATIONS

 

ADXL150JQC/AQC ADXL250JQC/AQC

Parameter Condition Min Typ Max Min Typ Max Units

 

SENSOR
Guaranteed Full-Scale Range
Nonlinearity
Package Alignment Error

 

1

 

Sensor-to-Sensor Alignment Error
Transverse Sensitivity

 

2

 

±

 

40

 

±

 

50
0.2

 

±

 

1

 

±

 

2

 

±

 

40

 

±

 

50
0.2

 

±

 

1

 

±

 

0.1

 

±

 

2

 

g

 

% of FS
Degrees
Degrees
%

SENSITIVITY
Sensitivity (Ratiometric)

 

3

 

Sensitivity Drift Due to Temperature

Y Channel
X Channel
Delta from 25°C to T

 

MIN

 

 or T

 

MAX

 

33.0 38.0

 

±

 

0.5
43.0

33.0
33.0

38.0
38.0

 

±

 

0.5

43.0
43.0

mV/

 

g

 

mV/

 

g

 

%

ZERO 

 

g

 

 BIAS LEVEL
Output Bias voltage

 

4

 

Zero 

 

g

 

 Drift Due to Temperature Delta from 25°C to T

 

MIN

 

 or T

 

MAX

 

V

 

S

 

/2

 

−

 

0.35 V

 

S

 

/2
0.2

V

 

S

 

/2

 

+

 

0.35 V

 

S

 

/2

 

−

 

0.35 V

 

S

 

/2
0.3

V

 

S

 

/2

 

+

 

0.35 V

 

g

 

ZERO-

 

g

 

 OFFSET ADJUSTMENT
Voltage Gain
Input Impedence

Delta V

 

OUT

 

/Delta V

 

OS PIN

 

0.45
20

0.50
30

0.55 0.45
20

0.50
30

0.55 V/V
k

 

Ω

 

NOISE PERFORMANCE
Noise Density

 

5

 

Clock Noise
1
5

2.5 1
5

2.5
mV p-p

FREQUENCY RESPONSE

 

−

 

3 dB Bandwidth
Bandwidth Temperature Drift
Sensor Resonant Frequency

T

 

MIN

 

 to T

 

MAX

 

Q = 5

900 1000
50
24

900 1000
50
24

Hz
kHz
kHz

SELF-TEST
Output Change

Logic 

 

“

 

1

 

”

 

 Voltage
Logic 

 

“

 

0

 

”

 

 Voltage
Input Resistance

ST Pin from Logic 

 

“

 

0

 

”

 

 to ‘1

 

”

 

To Common

0.25

V

 

S

 

−

 

1

30

0.40

50

0.60

1.0

0.25

V

 

S

 

−

 

1

30

0.40

50

0.60

1.0

V

V
V
k

 

Ω

 

OUTPUT AMPLIFIER
Output Voltage Swing
Capacitive Load Drive

I

 

OUT

 

 = ±100 

 

µ

 

A 0.25
1000

V

 

S

 

−

 

0.25 0.25
1000

V

 

S

 

−

 

0.25 V
pF

POWER SUPPLY (V

 

S

 

)

 

7

 

Functional Voltage Range
Quiescent Supply Current ADXL150

ADXL250 (Total 2 Channels)

4.0
1.8

6.0
3.0

4.0

3.5

6.0

5.0

V
mA
mA

TEMPERATURE RANGE
Operating Range J
Specified Performance A

0

 

−

 

40

 

+

 

70

 

+

 

85
0

 

−

 

40

 

+

 

70

 

+

 

85
°C
°C

 

NOTES

 

1

 

Alignment error is specified as the scale between the ture axis of sensitivity and the edge of the package.

 

2

 

Transverse sensitivity is measured with an applied acceleration that is 90 degrees from the indicated axis of sensitivity.

 

3

 

Ratiometric: V

 

OUT

 

 

 

=

 

 V

 

S

 

/2

 

 +

 

 (Sensitivity 

 

×

 

 V

 

S

 

/5 V 

 

×

 

 a) where a 

 

=

 

 applied acceleration in 

 

g

 

s

 

,

 

 and V

 

S

 

 

 

=

 

 supply voltage. See Figure 21. Output scale factor can be 
doubled by connecting V

 

OUT

 

 to the offset null pin.

 

4

 

Ratiometric

 

,

 

 proportional to V

 

S

 

/2. See Figure 21.

 

5

 

See Figure 11 and Device Bandwidth vs. Resolution section.

 

6

 

Sclf-test output varies with supply voltage.

 

7

 

When wing ADXL250

 

,

 

 both Pins 13 and 14 must be connected to the supply for the device to function.

Specifications subject to change without notice.

mg/ Hz

 

(T

 

A

 

 = +25°C for J Grade, T

 

A

 

 = 40°C to +85°C for A Grade,
V

 

S

 

 = +5.00 V, Acceleration = Zero 

 

g

 

, unless otherwise noted)
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ABSOLUTE MAXIMUM RATINGS*

 

Acceleration (Any Axis

 

,

 

 Unpowered for 0.5 ms) . . . . . 2000 

 

g

 

Acceleration (Any Axis

 

,

 

 Powered for 0.5 ms)  . . . . . . . . 500 

 

g

 

+

 

V

 

S

 

 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

−

 

0.3 V to 

 

−

 

7.0 V
Output Short Circuit Duration
  (V

 

OUT

 

,

 

 V

 

REF

 

 Terminals to Common)  . . . . . . . . . . . . Indefinite
Operating Temperature . . . . . . . . . . . . . . . . . 

 

−

 

55°C to 

 

+

 

125ºC
Storage Temperature . . . . . . . . . . . . . . . . . . . 

 

−

 

65°C to 

 

+

 

150°C

 

*Stresses above those listed under Absolute Maximum Ratings may cause perma-
nent damage to the device. This is a stress rating only

 

;

 

 the functional operation of 
the device at these or any other conditions above those indicated in the operational 
sections of this specification is not implied. Exposure to absolute maximum rating 
conditions for extended periods may affect device reliability.

 

Drops onto hard surfaces can cause shocks of greater than 2000 

 

g

 

 
and exceed the absolute maximum rating of the device. Care 
should be exercised in handling to avoid damage.

 

Figure 1. ADXL150 and ADXL250 Sensitive Axis Orientation

 

Package Characteristics

Package

 

θ

 

JA

 

θ

 

JC

 

Device Weight

 

14-Lead CERPAK 110°C/W 30°C/W 5 Grams

 

ORDERING GUIDE

 

Model Temperature Range

 

ADXL150JQC
ADXL150AQC
ADXL250JQC
ADXL250AQC

0°C to 

 

+

 

70°C

 

−

 

40°C to 

 

+

 

85°C
0°C to 

 

+

 

70°C

 

−

 

40°C to 

 

+

 

85°C

 

PIN CONNECTIONS

 

NOTE: WHEN USING ADXL250, BOTH PINS 13 AND 14 NEED 
TO BE CONNECTED TO SUPPLY FOR  DEVICE TO FUNCTION

 

CAUTION

 

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily 
accumulate on the human body and test equipment and can discharge without detection. Although 
the ADXL150/ADXL250 features proprietary ESD protection circuitry

 

,

 

 permanent damage may 
occur on devices subjected to high energy electrostatic discharges. Therefore

 

,

 

 proper ESD pre-
cautions are recommended to avoid performance degradation or loss of functionality.
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ADXL150/ADXL250

 

GLOSSARY OF TERMS 
Acceleration:

 

 Change in velocity per unit time.

 

Acceleration Vector:

 

 Vector describing the net acceleration 
acting upon the ADXL150/ADXL250.

 

g

 

:

 

 A unit of acceleration equal to the average force of gravity 
occurring at the earth

 

’

 

s surface. A g is approximately equal to 
32.17 feet/s

 

2

 

 or 9.807 meters/s

 

2

 

.

 

Nonlinearity:

 

 The maximum deviation of the ADXL150/ 
ADXL250 output voltage from a best fit straight line fitted to 
a plot of acceleration vs. output voltage

 

,

 

 calculated as a % of 
the full-scale output voltage (at 50 

 

g

 

).

 

Resonant Frequency:

 

 The natural frequency of vibration of 
the ADXL150/ADXL250 sensor

 

’

 

s central plate (or 

 

“

 

beam

 

”

 

). At 
its resonant frequency of 24 kHz

 

,

 

 the ADXL150/ADXL250

 

’

 

s 
moving center plate has a slight peak in its  frequency response.

 

Sensitivity:

 

 The output voltage change per g unit of acceleration 
applied

 

,

 

 specified at the V

 

OUT

 

 pin in mV/

 

g

 

.

 

Total Alignment Error:

 

 Net misalignment of the ADXL150/ 
ADXL250

 

’

 

s on-chip sensor and the measurement axis of the 
application. This error includes error due to sensor die alignment 
to the package, and any misalignment due to installation of the 
sensor package in a circuit board or module.

Transverse Acceleration: Any acceleration applied 90° to the 
axis of sensitivity.

Transverse Sensitivity Error: Ile percent of a transverse accel-
eration that appears at VOUT.

Transverse Axis: The axis perpendicular (90°) to the axis of 
sensitivity.

Zero g Bias Level: The output voltage of the ADXL150/ 
ADXL250 when there is no acceleration (or gravity) acting 
upon the axis of sensitivity. The output offset is the difference 
between the actual zero g bias level and (VS/2).

Polarity of the Acceleration Output
The polarity of the ADXL150/ADXL250 output is shown in 
Figure 1. When its sensitive axis is oriented to the earth’s gravity 
(and held in place), it will experience in acceleration of +1 g. 
This corresponds to a change of approximately +38 mV at the 
output pin. Note that the polarity will be reversed if the package 
is rotated 180º. The figure shows the ADXL250 oriented so that 
its “X” axis measures +1 g. If the package is rotated 90º clock-
wise (Pin 14 up, Pin 1 down), the ADXL250’s “Y” axis will now 
measure +1 g.

Acceleration Vectors

The ADXL150/ADXL250 is a sensor designed to measure 
accelerations that result from an applied force. It responds to 
the component of acceleration on its sensitive X axis 
(ADXL150) or on both the “X” and “Y” axis (ADXL250).

Figure 2. Output Polarity
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Typical Characteristics (@+5 V dc, +25°C with a 38 mV/g Scale Factor unless otherwise noted)
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ADXL150/ADXL250
THEORY OF OPERATION
The ADXL150 and ADXL250 are fabricated using a proprietary 
surface micromachining process that has been in high volume 
production since 1993. The fabrication technique uses standard 
integrated circuit manufacturing methods enabling all the signal 
processing circuitry to be combined on the same chip with the 
sensor.

The surface micromachined sensor element is made by depos-
iting polysilicon on a sacrificial oxide layer that is then etched 
away leaving the suspended sensor element. Figure 14 is a 
simplified view of the sensor structure. The actual sensor has 
42 unit cells for sensing acceleration. The differential capacitor 
sensor is composed of fixed plates and moving plates attached 
to the beam that moves in response to acceleration. Movement 
of the beam changes the differential capacitance, which is mea-
sured by the on chip circuitry.

The sensor has 12-unit capacitance cells for electrostatically 
forcing the beam during a self-test. Self-test is activated by the 
user with a logic high on the self-test input pin. During a logic 
high, an electrostatic force acts on the beam equivalent to 
approximately 20% of full-scale acceleration input, and thus a 
proportional voltage change appears on the output pin. When 
activated, the self-test feature exercises both the entire mechan-
ical structure and the electrical circuitry.

All the circuitry needed to drive the sensor and convert the 
capacitance change to voltage is incorporated on the chip requir-
ing no external components except for standard power supply 
decoupling. Both sensitivity and the zero-g value are ratiometric 
to the supply voltage, so that ratiometeric devices following the 
accelerometer (such as an ADC, etc.) will track the accelerom-
eter if the supply voltage changes. The output voltage (VOUT) is 
a function of both the acceleration input (a) and the power 
supply voltage (VS) as follows:

Both the ADXL150 and ADYCL250 have a 2-pole Bessel 
switched-capacitor filter. Bessel filters, sometimes called linear 
phase filters, have a step response with minimal overshoot and 
a maximally flat group delay. The −3 dB frequency of the poles 
is preset at the factory to 1 kHz. These filters are also completely 
self-contained and buffered, requiring no external components.

MEASURING ACCELERATIONS LESS THAN 50 g
The ADXL150/ADXL250 require only a power supply bypass 
capacitor to measure ±50 g accelerations. For measuring ±50 g 
accelerations, the accelerometer may be directly connected to 
an ADC (see Figure 25). The device may also be easily modified 
to measure lower g signals by increasing its output wale factor.

The scale factor of an accelerometer specifies the voltage change 
of the output per g of applied acceleration. This should not be 
confused with its resolution. The resolution of the device is the 
lowest g level the accelerometer is capable of measuring. Res-
olution is principally determined by the device noise and the 
measurement bandwidth.

The zero g bias level is simply the dc output Level of the 
accelerometer when it is not in motion or being acted upon by 
the earth’s gravity.

Pin Programmable Scale Factor Option
In its normal state, the ADXL150/ADXL250’s buffer amplifier 
provides in output scale factor of 38 mV/g, which is set by an 
internal voltage divider. This gives a full-scale range of +50 g 
and a nominal bandwidth of 1 kHz.

A factor-of-two increase in sensitivity can be obtained by con-
necting the VOUT pin to the offset null pin, assuming that it is 
not needed for offset adjustment. This connection has the effect 
of reducing the internal feedback by a factor of two, doubling 
the buffer’s gain. This increases the output scale factor to 76 mV/g 
and provides a ±25 g full-scale range.

Simultaneously, connecting these two pins also increases the 
amount of internal post filtering, reducing the noise floor and 
changing the nominal 3 dB bandwidth of the ADXL150/ 
ADXL250 to 500 Hz. Note that the post filter’s “Q” will also 
be reduced by a factor of from 0.58 (Bessel response) to a 
much gentler “Q” value of 0.41. The primary effect of this 
change in “Q” is only at frequencies within two octaves of the 
corner frequency; above this the two filter slopes am essentially 
the same. In applications where a flat response up to 500 Hz is 
needed, it is better to operate the device at 38 mV/g and use an 
external post filter. Note also that connecting VOUT to the offset 
pin adds a 30 kΩ load from VOUT to VS/2. When swinging ±2 V 
at VOUT, this added load will consume ±60 µA of the ADXL150/ 
ADXL250’s 100 µA (typical) output current drive.Figure 14. Simplified View of Sensor Under Acceleration

V OUT V S/2 (Sensitivity
V S

5V
------- a×× )–=

2
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ADXL150/ADXL250
Increasing the iMEMS Accelerometer’s Output
Scale Factor
Figure 15 shows the basic connections for using an external 
buffer amplifier to increase die output scale factor.

The output multiplied by the gain of the buffer, which is simply 
the value of resistor R3 divided by RI. Choose a convenient 
scale factor, keeping in mind that the buffer pin not only ampli-
fies the signal, but my noise or drift as well. Too much pin can 
also cause the buffer to saturate and clip the output waveform.

Note that the “+” input of the external op amp uses the offset 
null pin of the ADXL150/ADXL250 as a reference, biasing the 
op amp at midsupply, saving two resistors and reducing power 
consumption. The offset null pin connects to the VS/2 reference 
point inside the accelerometer via 30 kΩ, so it is important not 
to load this pin with more dim a few microamps.

It is important to use a single-supply or “rail-to-rail” op amp 
for the external buffer as it needs to be able to swing close to 
the supply and ground.

The circuit of Figure 15  is entirely adequate for many applica-
tions, but its accuracy is dependent on the pretrimmed accuracy 
of the accelerometer and this will vary by product type and grade.

For the highest possible accuracy, an external trim is mended. 
As shown by Figure 20, this consists of a potentiometer Rla, 
in series with a fixed resistor, Rlb. Another to select resistor 
values after measuring the device’s scale (see Figure 17).

AC Coupling

If a dc (gravity) response is not required—for example ** tion 
measurement applications—ac coupling can be ** between the 
accelerometer’s output and the external op** input as shown in 
Figure 16. The use of ac coupling ** eliminates my zero g drift 
and allows the maximum ** amp gain without clipping.

Resistor R2 and capacitor C3 together form a high ** whose 
corner frequency is 1/(2 x R2 C3). This filter ** the signal from 
the accelerometer by 3 dB at the **, and it will continue to 
reduce it at a rate of 6 ** (20 dB per decade) for signals below 
the corner frequ ** Capacitor CBS should be a nonpolarized, 
low leakage type **

If ac coupling is used, the self-test feature must be ** the 
accelerometer’s output rather than at the external ** output 
(since the self-test output is a dc voltage).
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Adjusting the Zero g Bias Level
When a true dc (gravity) response is needed, the output from 
the accelerometer must be dc coupled to the external amplifier’s 
input. For high gain applications, a zero g offset trim will also 
be needed. The external offset trim permits the user to set the 
zew g offset voltage to exactly +2.5 volts (allowing the maxi-
mum output swing from the external amplifier without clipping 
with a +5 supply).

With a dc coupled connection, any difference between the zero 
g output and +2.5 V will be amplified along with the signal. To 
obtain the exact zero g output desired or to allow the maximum 
output voltage swing from the external amplifier, the zero g 
offset will need to be externally trimmed using the circuit of 
Figure 20.

The external amplifier’s maximum output swing should be 
limited to ±2 volts, which provides a safety margin of ±0.25 
volts before clipping. With a +2.5 volt zero g level, the maximum 
gain will equal:

The device scale factor and zero g offset levels can be calibrated 
using the earth’s gravity, as explained in the section “calibrating 
the ADXL150/ADXL250.”

Using the Zero g “Quick-Cal” Method
In Figure 18 (accelerometer alone, no external op amp), a trim 
potentiometer connects directly to the accelerometer’s zero g 
null pin. The “quick offset calibration” scheme shown in Figure 
17 is preferred over using a potentiometer, which could change 
its setting over time due to vibration. The “quick offset calibra-
tion” method requires measuring only the output voltage of the 
ADXL150/ADXL250 while it is oriented normal to the earth’s 
gravity. Then, by using the simple equations shown in the fig-
ures, the correct resistance value for R2 can be calculated. In 
Figure 17, an external op amp is used to amplify the signal. A 
resistor, R2, is connected to the op amp’s summing junction. 
The other side of R2 connects to either ground or +VS depending 
on which direction the offset needs to be shifted.

DESIRED
OUTPUT

SCALE FACTOR

76mV/g

100mV/g

200mV/g

400mV/g

(a)

(b)

(c)

NOTES:
0g “QUICK” CALIBRATION METHOD USING RESISTOR R2 AND A +5V SUPPLY.

WITH ACCELEROMETER ORIENTED AWAY FROM EARTH’S
GRAVITY (i.e., SIDEWAYS), MEASURE PIN 10 OF THE ADXL150.
CALCULATE THE OFFSET VOLTAGE THAT NEEDS TO BE NULLED:

Figure 17.  “Quick Zero g Calibration” Connection

VOS = (+2.5V − VPIN(10)(R3/R1).

R2 = 

(d) FOR VPIN 10 > +2.5V, R2 CONNECTS TO GND. 
(e) FOR VPIN 10 < +2.5V, R2 CONNECTS TO +VS. 

2.5 V (R3)

VOS

±25g

±20g

±10g

±5g

2.0

2.6

5.3

10.5

49.9kΩ

38.3kΩ

18.7kΩ

9.53kΩ

FS
RANGE

EXT
AMP
GAIN

R1
VALUE

2 Volts
38 mV /g  Times the Max Applied Acceleration in g
---------------------------------------------------------------------------------------------------------------------------

Figure 18. Offset Nulling the ADXL150/ADXL250 Using a Trim Potentiometer
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ADXL150/ADXL250
DEVICE BANDWIDTH VS. MEASUREMENT 
RESOLUTION

Although an accelerometer is usually specified according to its 
full-scale g level, the limiting resolution of the device, i.e., its 
minimum discernible input level, is extremely important when 
measuring low g accelerations.

The limiting resolution is predominantly set by the measure-
ment noise “floor,” which includes the ambient background 
noise and the noise of the ADXL150/ADXL250 itself. The level 
of the noise floor varies directly with the bandwidth of the 
measurement. As the measurement bandwidth is reduced, the 
noise floor drops, improving the signal-to-noise ratio of the 
measurement and increasing its resolution.

The bandwidth of the accelerometer can be easily reduced by 
adding low-pass or bandpass filtering. Figure 19  shows the 
typical noise vs. bandwidth characteristic of the ADXL150/ 
ADXL250.

The output noise of the ADXL150/ADXL250 scales with the 
square root of the measurement bandwidth. With a single pole 
roll-off, the equivalent rms noise bandwidth is π divided by 2 
or approximately 1.6 times the 3 dB bandwidth. For example, 

the typical rms noise of the ADXL150 using a 100 Hz one pole 
post filter is:

Because the ADXL150/ADXL250’s noise is, for all practical 
purposes, Gaussian in amplitude distribution, the highest noise 
amplitudes have die smallest (yet nonzero) probability. Peak-
to-peak noise is therefore difficult to measure and can only be 
estimated due to its statistical nature. Table I is useful for esti-
mating the probabilities of exceeding various peak values, given 
the rms value.

RMS and peak-to-peak noise (for 0. 1% uncertainty) for various 
bandwidths are estimated in Figure 19. As shown by the figure, 
device noise drops dramatically as the operating bandwidth is 
reduced. For example, when operated in a 1 kHz bandwidth, 
the ADXL150/ADXL250 typically have an rms noise level of 
32 mg. When the device bandwidth is rolled off to 100 Hz, the 
noise level is reduced to approximately 10 mg.

Alternatively, the signal-to-noise ratio may be improved con-
siderably by using a microprocessor to perform multiple mea-
surements and then to compute the average signal level.

Low-Pass Filtering
The bandwidth of the accelerometer can easily be reduced by using 
post filtering. Figure 20  shows how the buffer amplifier can be 
connected to provide 1-pole post filtering, zero g offset trimming, 
and output scaling. The table provides practical component values

Figure 19. ADXL150/ADXL250 Noise Level vs. 3 dB Band-
width (Using a “Brickwall” Filter)

TABLE I.

Nominal Peak-to-
Peak Value

% of Time that Noise Will Exceed
Nominal Peak-to-Peak Value

2.0 × rms
4.0 × rms
6.0 × rms
6.6 × rms
8.0 × rms

32%
4.6%
0.27%
0.1%
0.006%

Noise rms( ) 1  mg/ Hz 100 1.6( )× 12.25  mg= =

Figure 20. One-Pole Post Filter Circuit with SF and Zero g Offset Trims

DESIRED
OUTPUT

SCALE FACTOR

76m/g

100m/g

200m/g

400m/g

±25g

±20g

±10g

±5g

2.0

2.6

5.3

10.5

200kΩ

261kΩ

536kΩ

1MΩ

0.0082

0.0056

0.0033

0.0015

0.027

0.022

0.010

0.0056

0.082

0.056

0.033

0.015

F.S.
RANGE

EXT
AMP
GAIN

R3
VALUE

Cf (µF)
100Hz

Cf (µF)
30Hz

Cf (µF)
10Hz
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for various full-scale g levels and approximate circuit band-
widths. For bandwidths other than those listed, use the 
formula:

or simply scale the value of capacitor Cf accordingly; i.e., for 
an application with a 50 Hz bandwidth, the value of Cf will 
need to be twice as large as its 100 Hz value. If further noise 
reduction is needed while maintaining the maximum possible 
bandwidth, a 2- or 3-pole post filter is recommended. These 
provide a much steeper roll-off of noise above the pole fre-
quency. Figure 21 shows a circuit that provides 2-pole post 
filtering. Component values for the 2-pole filter were selected 
to operate the first op amp at unity gain. Capacitors C3 and C4 
were chosen to provide 3 dB bandwidths of 10 Hz, 30 Hz, 100 Hz 
and 300 Hz.

The second op amp offsets and scales the output to provide a 
+2.5 V ± 2 V output over a wide range of full-scale g levels.

APPLICATION HINTS
ADXL250 Power Supply Pins
When wiring the ADXL250, be sure to connect BOTH power 
supply terminals, Pins 14 and 13.

Ratiometric Operation
Ratiometric operation means that the circuit uses the power 
supply as its voltage reference. If the supply voltage varies, the 
accelerometer and the other circuit components (such as an 
ADC, etc.) track each other and compensate for the change.

Figure 22 shows how both the zero g offset and output sensi-
tivity of the ADXL150/ADXL250 vary with changes in supply 
voltage. If they are to be used with nonratiometric devices, such 
as an ADC with a built-in 5 V reference, then both components 
should be referenced to the same source, in this case the ADC 
reference. Alternatively, the circuit can be powered from an 
external +5 volt reference.

Since any voltage variation is transferred to the accelerometer’s 
output, it is important to reduce any power supply noise. Simply 
following good engineering practice of bypassing the power 
supply right at Pin 14 of the ADXL150/ADXL250 with a 0.1 µF 
capacitor should be sufficient.

Cf
1

2πR3( )  Desired 3dB Bandwidth in Hz
---------------------------------------------------------------------------------------------=

Figure 22. Typical Ratiornetric Operation

Figure 21. Two-Pole Post Filter Circuit
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Additional Noise Reduction Techniques
Shielded wire should be used for connecting the accelerometer 
to any circuitry that is more than a few inches away—to avoid 
60 Hz pickup from ac line voltage. Ground the cable’s shield at 
only one end and connect a separate common lead between the 
circuits; this will help to prevent ground loops. Also, if the 
accelerometer is inside a metal enclosure, this should be 
grounded as well.

Mounting Fixture Resonances
A common source of error in acceleration sensing is resonance 
of the mounting fixture. For example, the circuit board that the 
ADXL150/ADXL250 mounts to may have resonant frequencies 
in the same range as the signals of interest. This could cause 
the signals measured to be larger than they really are. A common 
solution to this problem is to damp these resonances by mount-
ing the ADXL150/ADXL250 near a mounting post or by adding 
extra screws to hold the board more securely in place.

When testing the accelerometer in your end application, it is 
recommended that you test the application at a variety of fre-
quencies to ensure that no major resonance problems exist.

REDUCING POWER CONSUMPTION
The use of a simple power cycling circuit provides a dramatic 
reduction in the accelerometer’s average current consumption. 
In low bandwidth applications such as shipping recorders, a 
simple, low cost circuit can provide substantial power reduction.

If a microprocessor is available, it can supply a TTL clock pulse 
to toggle the accelerometer’s power on and off.

A 10% duty cycle, 1 ms on, 9 ms off, reduces the average 
current consumption of the accelerometer from 1.8 mA to 180 
µA, providing a power reduction of 90%.

Figure 23 shows the typical power-on settling time of the 
ADXL150/ADXL250.

CALIBRATING THE ADXL150/ADXL250
If a calibrated shaker is not available, both the zero g level and 
scale factor of the ADXL150/ADXL250 may be easily set to fair 
accuracy by using a self-calibration technique based on the 1 g 
acceleration of the earth’s gravity. Figure 24 shows how gravity 
and package orientation affect the ADXL150/ADXL250’s output. 
With its axis of sensitivity in the vertical plane, the ADXL150/ 
ADXL250 should register a 1 g acceleration, either positive or 
negative, depending on orientation. With the axis of sensitivity 
in the horizontal plane, no acceleration (the zero g bias level) 
should be indicated. The use of an external buffer amplifier may 
invert the polarity of the signal.

Figure 24  shows how to self-calibrate the ADXL150/ADXL250. 
Place the accelerometer on its side with its axis of sensitivity 
oriented as shown in “a.” (For the ADXL250 this would be the 
“X” axis—its “Y” axis is calibrated in the same manner, but the 
part is rotated 90° clockwise.) The zero g offset potentiometer 
RT is then roughly adjusted for midscale: +2.5 V at the external 
amp output (see Figure 20).

Next, the package axis should be oriented as in “c” (pointing 
down) and the output reading noted. The package axis should 
then be rotated 180° to position “d” and the scale factor poten-
tiometer, Rlb, adjusted so that the output voltage indicates a 
change of 2 gs in acceleration. For example, if the circuit scale 
factor at the external buffer’s output is 100 mV per g, the scale 
factor trim should be adjusted so that an output change of 200 
mV is indicated.

Self-Test Function
A Logic “1” applied to the self-test (ST) input will cause an 
electrostatic force to be applied to the sensor that will cause it 
to deflect. If the accelerometer is experiencing an acceleration 
when the self-test is initiated, the output will equal the algebraic 
sum of the two inputs. The output will stay at the self-test level 
as long as the ST input remains high, and will return to the 
actual acceleration level when the ST voltage is removed.

Using an external amplifier to increase output scale factor may 
cause the self-test output to overdrive the buffer into saturation. 
The self-test may still be used in this case, but the change in 
the output must then be monitored at the accelerometer’s output 
instead of the external amplifier’s output.

Note that the value of the self-test delta is not an exact indication 
of the sensitivity (mV/g) and therefore may not be used to 
calibrate the device for sensitivity error.

Figure 23. Typical Power-On Settling with Full-Scale Input. 
Time Constant of Post Filter Dominates the Response When 
a Signal Is Present.

Figure 24. Using the Earth’s Gravity to Self-Calibrate the 
ADXL150/ADXL250
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MINIMIZING EMI/RFI
The architecture of the ADXL150/ADXL250, and its use of syn-
chronous demodulation, makes the device immune to most elec-
tromagnetic (EMI) and radio frequency (RFI) interference. The 
use of synchronous demodulation allows the circuit to reject all 
signals except those at the frequency of the oscillator driving the 
sensor element. However, the ADXL150/ADXL250 have a sen-
sitivity to noise on the supply lines that is near its internal clock 
frequency (approximately 100 kHz) or its odd harmonics and can 
exhibit baseband errors at the output. These error signals are the 
beat frequency signals between the clock and the supply noise.

Such noise can be generated by digital switching elsewhere in 
the system and must be attenuated by proper bypassing. By insert-
ing a small value resistor between the accelerometer and its power 
supply, an RC filter is created. This consists of the resistor and 
the accelerometer’s normal 0.1 µF bypass capacitor. For example 
if R = 20 Ω and C = 0.1 µF, a filter with a pole at 80 kHz is 
created, which is adequate to attenuate noise on the supply from 
most digital circuits, with proper ground and supply layout.

Power supply decoupling, short component leads, physically 
small (surface mount, etc.) components and attention to good 
grounding practices all help to prevent RFI and EMI problems. 
Good grounding practices include having separate analog and 
digital grounds (as well as separate power supplies or very good 
decoupling) on the printed circuit boards.

INTERFACING THE ADXL150/ADXL250 SERIES iMEMS 
ACCELEROMETERS WITH POPULAR ANALOG-TO-
DIGITAL CONVERTERS.
Basic Issues
The ADXL150/ADXL250 Series accelerometers were designed 
to drive popular analog-to-digital converters (ADCs) directly. 
In applications where both a ±50 g full-scale measurement range 
and a 1 kHz bandwidth are needed, the VOUT terminal of the 
accelerometer is simply connected to the VIN terminal of the 
ADC as shown in Figure 25a. The accelerometer provides its 
(nominal) factory preset scale factor of +2.5 V ±38 mV/g which 
drives the ADC input with +2.5 V ±1.9 V when measuring a 50 g 
full-scale signal (38 mV/g × 50 g = 1.9 V).

As stated earlier, the use of post filtering will dramatically 
improve the accelerometer’s low g resolution. Figure 25b  shows 
a simple post filter connected between the accelerometer and 
the ADC. This connection, although easy to implement, will 
require fairly large values of Cf, and the accelerometer’s signal 
will be loaded down (causing a scale factor error) unless the 
ADC’s input impedance is much greater than the value of Rf. 
ADC input impedance’s range from less than 1.5 kΩ up to 
greater than 15 kΩ with 5 kΩ values being typical. Figure 25c 
is the preferred connection for implementing low-pass filtering 
with the added advantage of providing an increase in scale 
factor, if desired.

Calculating ADC Requirements
The resolution of commercial ADCs is specified in bits. In an 
ADC, the available resolution equals 2n, where n is the number 
of bits. For example, an 8-bit converter provides a resolution of 
28 which equals 256. So the full-scale input range of the converter 
divided by 256 will equal the smallest signal it can resolve.

In selecting an appropriate ADC to use with our accelerometer 
we need to find a device that has a resolution better than the 
measurement resolution but, for economy’s sake, not a great 
deal better.

For most applications, an 8- or 10-bit converter is appropriate. 
The decision to use a 10-bit converter alone, or to use a gain 
stage together with an 8-bit converter, depends on which is more 
important: component cost or parts count and ease of assembly,

Table II shows some of the tradeoffs involved.

Adding amplification between the accelerometer and the ADC 
will reduce the circuit’s full-scale input range but will greatly 
reduce the resolution requirements (and therefore the cost) of 
the ADC. For example, using an op amp with a gain of 5.3 
following the accelerometer will increase the input drive to the 
ADC from 38 mV/g to 200 mV/g. Since the signal has been 
gained up, but the maximum full-scale (clipping) level is still 
the same, the dynamic range of the measurement has also been 
reduced by 5.3.

Table III is a chart showing the required ADC resolution vs. the 
scale factor of the accelerometer with or without a gain ampli-
fier. Note that the system resolution specified in the table refers

Table II.

8-Bit Converter and 
Op Amp Preamp

10-bit (or 12-Bit) 
Converter

Advantages:
Low Cost Converter No Zero g Trim Required

Disadvantages:
Needs Op Amp
Needs Zero g Trim

Higher Cost Converter

Table III. Typical System Resolution Using Some Popular 
ADCs Being Driven with and without an Op Amp Preamp

Converter
Type 2n

Converter
mV/Bit
(5 V/2n)

Preamp
Gain

SF
in
mV/g

FS
Range
in g’s

System
Resolution
in g’s (p-p)

8 Bit 256 19.5 mV None 38 ±50 0.51

256 19.5 mV 2 76 ±25 0.26

256 19.5 mV 2.63 100 ±20 0.20

256 19.5 mV 5.26 200 ±10 0.10

10 Bit 1,024 4.9 mV None 38 ±50 0.13

1,024 4.9 mV 2 76 ±25 0.06

1,024 4.9 mV 2.63 100 ±20 0.05

1,024 4.9 mV 5.26 200 ±10 0.02

12 Bit 4,096 1.2 mV None 38 ±50 0.03

4,096 1.2 mV 2 76 ±25 0.02

4,096 1.2 mV 2.63 100 ±20 0.01

4,096 1.2 mV 5.26 200 ±10 0.006
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to that provided by the converter and preamp (if used). It is 
necessary to use sufficient post filtering with the accelerometer 
to reduce its noise floor to allow full use of the converter’s 
resolution (see post filtering section).

The use of a pin stage following the accelerometer will normally 
require the user to adjust the zero g offset level (either by 
trimming or by resistor selection—see previous sections).

For many applications, a modern “economy priced” 10-bit 
converter, such as the AD7810 allows you to have high resolu-
tion without using a preamp or adding much to the overall circuit 
cost. In addition to simplicity and cost, it also meets two other 
necessary requirements: it operates from a single +5 V supply 
and is very low power.

OUTLINE DIMENSIONS
Dimensions shows in inches and (mm).

14-Lead Cerpac
(QC-14)

Figure 25. Interfacing the ADXL150/ADXL250 Series Accel-
erometers to an ADC



3.2. STRUCTURAL  SYNTHESIS  OF  NANO- AND
MICROELECTROMECHANICAL  ACTUATORS  AND  SENSORS

New advances in micromachining and microstructures, nano- and
microscale electromechanical devices, analog and digital ICs, provide
enabling benefits and capabilities to design and manufacture NEMS and
MEMS. Critical issues are to improve power and thermal management,
circuitry and actuator/sensor integration, as well as embedded electronically
controlled actuator/sensor assemblies. Very large scale integrated circuit and
micromachining silicon, germanium, and gallium arsenic technologies have
been developed and used to manufacture ICs and motion microstructures
(microscale actuators and sensors). While enabling technologies have been
developed to manufacture NEMS and MEMS, a spectrum of challenging
problems remains. Electromagnetics and fluid dynamic, quantum
phenomena, electro-thermo-mechanics and optics, biophysics and
biochemistry, mechanical and structural synthesis, analysis and optimization,
simulation and virtual prototyping, among other important problems, must be
thoroughly studied in nano- and microscale. There are several key focus
areas to be studied. In particular, structural synthesis and optimization,
fabrication, nonlinear model development and analysis, system design and
simulations.

An important problem addressed and studied in this section is the
structural synthesis of motion nano- and microstructures (shape/geometry
synthesis, optimization, and database developments). The proposed concept
allows the designer to generate optimal structures of actuators and sensors.
Using the proposed concept one can generate and optimize different nano-
and microdevices, perform modeling and simulations, etc. These directly
leverage high-fidelity model development and structural synthesis, allowing
the designer to attain physical and behavioral (steady-state and transient)
analysis, optimization, performance assessment, outcome prediction, etc.

3.2.1. Configurations and Structural Synthesis of Motion Nano- and
Microstructures (Actuators  and Sensors)

Using the structural synthesis concept, nano-, micro-, and miniscale
actuators and sensors can be synthesized, analyzed, and optimized. In
particular, electromechanical/electromagnetic-based motion nano- and
microstructures (actuators and sensors) are classified using the specific
classifiers, and the structural synthesis can be performed based upon different
possible configurations, operating principles, phenomena, and physical laws.

We use the following electromagnetic systems
• endless (E),
• open-ended (O),
• integrated (I),



and actuator/sensor geometry
• plate (P),
• spherical (S),
• torroidal (T),
• conical (N),
• cylindrical (C) and
• asymmetrical (A).

Using the possible electromagnetic systems and geometry, actuators and
sensors (motion nano- and microstructures as well as nano- and
microdevices) can be classified. From optimal structural and performance
optimization viewpoints, a great number of factors influence the synthesis.
For example, the designer must decide either rotational or translational
devices (actuators and sensors) should be used. From electromagnetic
standpoints, it is obvious that rotational-type actuators have higher power,
torque and force densities, superior efficiency and performance compared
with translational actuators. However, in many applications the translational
actuators and sensors should be used due to specific kinematics,
requirements, volume available, or size (for example, to measure the loads in
the aircraft structures, the application of the translational-type sensor
obviously is the preferable solution). Different rotational and translational
actuators, as applied to displace the control surfaces and to change the
geometry of flight surfaces, were illustrated in Figure 1.4.3 and 2.1.5.

The structural synthesis (geometrical design) and performance
optimization of actuators and sensors is based on the consideration of the
electromotive and magnetomotive forces, electromagnetic fields and
magnetic structure, excitation, air gap and winding configurations, cooling
and other important quantities. All possible actuator and sensor
configurations can be classified using endless (closed) and open-ended
(open) electromagnetic systems. This idea is extremely useful in studying
existing and synthesizing novel motion structures and devices because an
infinite number of innovative actuators and sensors can be synthesized. The
application of a classifier is a starting point in structural synthesis and
performance optimization. Advanced configurations can be synthesized and
straightforwardly interpreted even without comprehensive analytical and
numerical analysis (thorough analysis is needed as different actuator and
sensor configurations are synthesized, and nonlinear electromagnetic-
mechanical-thermal analysis must be performed and validated). It is evident
that actuator/sensor geometry and electromagnetic systems play a central role
in efficiency and performance. In fact, a motion structure (actuator/sensor)
classifier, which is documented in Table 2.5.1, in addition to being
qualitative, leads to quantitative analysis. Applying the cornerstone laws, the
differential equations to model the actuator/sensor dynamics are
straightforwardly derived, and analysis and simulations can be performed.

The actuators/sensors geometry and electromagnetic systems, as
documented in Table 3.2.1, are partitioned into 3 horizontal and 6 vertical



strips, and contains 18 sections, each identified by ordered pairs of
characters, such as (E, P) or (O, C). In each ordered pair, the first entry is a
letter chosen from the bounded electromagnetic system set

M = {E, O, I}.
The second entry is a letter chosen from the geometric set
G = {P, S, T, N, C, A}.
That is, the actuator/sensor set is give as

( ) ( ) ( ) ( ) ( ) ( ){ }AICINITESEPEGM ,,,,,,,,,,,, L=× .

In general, we have
( ){ }GgMmgmGM ∈∈=×  and:, .

However, the geometry-electromagnetic system classifier must be
extended to guarantee completeness in the synthesis of motion structures and
devices. It is well-known that using the basic electromagnetic features, the
following basic types of nano-, micro-, and miniscale actuators and sensors
can be synthesized:

1. direct current;
2. alternating current:

• induction;
• synchronous.

That is, the actuators and sensors are classified using a type classifier
{ }TttT ∈= : .

It was emphasized that translational, rotational, and hybrid actuators and
sensors can be synthesized, and a motion classifier is

{ }ℵ∈=ℵ nn : .

Therefore, we have
( ){ }ℵ∈∈∈∈=ℵ××× nTtGgMmntgmTGM  and,,:,,, .

Winding and cooling, power and size, torque-speed characteristics,
excitation and bearing, as well as other actuators/sensors distinct features can
be easily distinct and classified using classifiers in order to be integrated into
the synthesis, structural and performance optimization. One concludes that
electromechanical actuators/sensors can be mapped by a Z-tuple as
{electromagnetic system, geometry, type, winding, excitation, cooling, etc}.

Structural Classification Problem Solver

The algorithmic concept in the structural synthesis and performance
optimization starts by selecting an initial set of competing configurations and
solutions (electromagnetic system, geometry, type, et cetera) for a particular
problem using specifications and requirements imposed. The solutions can be
generated randomly from the entire domain, however, as was emphasized
earlier, available information and accessible knowledge can be readily used in
order to formulate the partial domain (classifier subset). The solutions are



evaluated for their efficiency and fitness. Performance (regret) functionals can
be designed to integrate weighted cost integrands (terms), and linear and
nonlinear optimization (linear and nonlinear programming) allows one to find
optimal solutions. The maxima or minima can be found using the gradient-
based search. Alternatively, the evolutionary algorithms can be used, and the
performance functional is used to compare and rank the competing solutions.
The analysis and evaluation of candidate solutions are very complex problems
due to infinite number of possible solutions (it is very difficult or impossible to
find solutions randomly from the entire classifier domain of all possible
solutions). Thus, the solutions must be examined in the partial domain (subset)
of most efficient and suitable solutions. This will allow one to define the partial
classifier domain of solutions generation. Hence, the following should be
performed to simplify the search and optimize the algorithm to solve a wide
variety of structural synthesis and optimization problems:
• formulate and apply rules and criteria for solution sustaining based upon

performance analysis, assessments, and outcomes;
• develop and generate the partial classifier domain (subset), select solution

representations;
• initialize solutions;
• analyze and compare solutions, find the optimal solution.

Using the classifier developed, the designer can synthesize nano-, micro-
and miniscale actuators and sensors (motion structures and devices which in
conventional electromechanical systems terminology are called
electromechanical motion devices or transducers). As an example, the
structural synthesis of a two-phase permanent-magnet synchronous
microscale actuator (motor) – sensor (generator) with endless
electromagnetic system is performed using the endless magnetic system. The
spherical, spherical-conical, conical, cylindrical, and asymmetrical
geometries of the synthesized actuator/sensor are documented in Figure
3.2.1.



Table 3.2.1. Classification of nano-, micro-, and mini-scale actuators and
      sensors (motion structures)

Figure 3.2.1. Synthesized microscale actuator/sensor geometry
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To solve analysis, prediction, classification, modeling, and optimization
problems, neural networks or genetic algorithms can be efficiently used.
Neural networks and generic algorithms have evolved to the mature concepts
which allow the designer to perform reliable analysis, design, and
optimization. Qualitative reasoning in the structural synthesis and
optimization of NEMS and MEMS is based upon artificial intelligence, and
the ultimate goal is to analyze, model, and optimize qualitative models of
NEMS and MEMS when knowledge, processes, and phenomena are not
precisely known due to uncertainties (for example, micromachined motion
microstructures properties and characteristics, e.g., charge density, thermal
noise and geometry, are not precisely known and varying). It is well known
that qualitative models are more reliable compared with traditional models if
there is a need to perform qualitative analysis, modeling, design,
optimization, and prediction. Quantitative analysis and design use a wide
range of physical laws and mathematical methods to guarantee validity and
robustness using partially available quantitative information.

Structural synthesis and performance optimization can be based on the
knowledge domain. Qualitative representations and compositional
(geometric) modeling are used to create control knowledge (existing
knowledge, modeling and analysis assumptions, specific plans and
requirements domains, task domain, and preferences) for solving a wide
range of problems. The solving architectures are based upon qualitative
reusable fundamental domains (physical laws). Qualitative reasoning must be
applied to solve complex physics problems in NEMS and MEMS, as well as
to perform engineering analysis and design. Emphasizing the heuristic
concept for choosing the initial domain of solutions, the knowledge domain
is available to efficiently and flexibly map all essential phenomena, effects,
and performances. In fact, Structural Classification Table 3.2.1 ensures
modeling, synthesis, and optimization in qualitative and quantitative
knowledge domains carrying out numerical and analytical analysis of NEMS
and MEMS. To avoid excessive computations, optimal structures can be
found using qualitative analysis and design. That is, qualitative
representations and compositional structural modeling can be used to create
control knowledge in order to solve fundamental and engineering problems
efficiently. The Structural Classification Problem Solver, which gives
knowledge domain using compositional structural modeling, analysis, and
synthesis can be developed applying qualitative representations. This
Structural Classification Problem Solver must integrate modeling and
analysis assumptions, expertise, structures, and preferences that are used in
constraining search (initial structural domain). Structural optimization is
given in terms of qualitative representations and compositional modeling,
making fundamental concepts of the domain explicit. The Structural
Classification Problem Solver can be verified solving problems analytically
and numerically. Heuristic synthesis strategies and knowledge regarding
physical principles must be augmented for designing nano- and



microstructures as well as nano- and microdevices. Through qualitative
analysis and design, one constrains the search domain, the solutions are
automatically generated, and the major performance characteristics and end-
to-end behavior are predicted. Existing knowledge, specific plans and
requirements domains, task domain, preferences and logical relations, make
it possible to reason about the modeling and analysis assumptions explicitly,
which is necessary to successfully solve fundamental and engineering
problem.

The Venn diagram provides a way to represent information about NEMS
and MEMS structures and configurations. Once can use regions labeled with
capital letters to represent sets and use lowercase letters to represent
elements. By constructing a diagram that represents some initial sets, the
designer can deduce other important relations. The basic conventional form
of the Venn diagram is three intersecting circles as shown in Figure 3.2.2. In
this diagram, each of the circles represents a set of elements that have some
common property or characteristic. Let A stands for actuators, B stands for
sensors, and C stands for translational motion microstructure. Then, the
region ABC represents actuators and sensors which are synthesized using
translational motion microstructure, while BC is the sensor with translational
motion microstructure (e.g., iMEMS accelerometer studied early).

Figure 3.2.2. Venn diagram, p = 3: The closed curves are circles, and
eight regions are labeled with the interiors that are included
in each intersection. The eighth region is the outside,
corresponding to the empty set

Let A = {a1, a2, ..., ap-1, ap} is the collection of simple closed curves in
the XY plane.

The collection A is said to be an independent family if the intersection of
b1, b2, ..., bp-1, bp is nonempty, where each bi is either int(ai) (the interior of

A

CB

AB AC

ABC

BC



ai) or is ext(ai) (the exterior of ai). If, in addition, each such intersection is
connected, then A is a p-Venn diagram, where p is the number of curves in
the diagram.

3.2.2. Algebra of Sets

A set is a collection of objects (order is not significant and multiplicity is
usually ignored) called the elements of the set. Symbols are used widely in
the algebra of sets.

If a is an element of set A, we have Aa ∈ , and if a is not an element of
set A, we write Aa ∉ .

If a set A contains only the single element a, it is denoted as {a}.
The null set (set does not contain any elements) is denoted as ∅ .
Two sets, A and B are equal (A = B) if Aa ∈  iff Ba ∈ .
If Aa ∈  implies that Ba ∈ , then A is a subset of B, and BA ⊂ .
The symbols ⊂  and ⊆  are used to describe a proper and an improper

subsets. For example, if BA ⊂  and AB ⊂ , then A is called an improper
subset of B, A = B (if there exists element b in B which is not in A, then A is a
proper subset of B).

If the set of all elements under consideration make up the universal set
U, then UA ⊂ .

The set A' is the complement of set A, if it is made up of all the elements
of U which are not elements of A. For each set A there exists a unique set A'
such that UAA ='U  and ∅='AAI . Furthermore, AA =)''( .

Two operations on sets are union U  and intersection I . For example,

an element BAa U∈  iff Aa ∈  or Ba ∈ . In contrast, an element

BAa I∈  iff Aa ∈  and Ba ∈ .

Using U  and I  operators we have the following algebra of sets laws:

• closure:  there is a unique set BAU  which is a subset of U, and there is

a unique set BAI  which is a subset of U;

• commutative: ABBA UU =  and ABBA II = ;
• associative:

( ) ( )CBACBA UUUU =  and ( ) ( )CBACBA IIII = ;

• distributive:
  ( ) ( ) ( )CABACBA UIUIU = and ( ) ( ) ( )CABACBA IUIUI = ,

and using the index set Λ∈Λ λ, , one has

( )λ
λ

λ
λ

BABA UIIU
Λ∈Λ∈

=




  and ( )λ

λ
λ

λ
BABA IUUI

Λ∈Λ∈
=





 ;

• idempotent: AAA =U  and AAA =I ;



• identity: AA =∅U  and AUA =I ;

• DeMorgan's: ( ) ''' BABA IU =  and ( ) ''' BABA UI = ;

• U and ∅  laws: UAU =U , AAU =I ,

AA =∅ U  and ∅=∅ AI .
Additional rules and properties of the complement are: 

( )BAA U⊂ , ( ) ABA ⊂I , UA ⊂ , A⊂∅
If BA ⊂  then BBA =U , and if AB ⊂  then BBA =I .

Sets and Lattices

A set is simply a collection of elements. For example, a, b and c can be
grouped together as a set which is expressed as {a, b, c} where the curly
braces are used to enclose the elements that constitute a set. In addition to the
set {a, b, c} we define the sets {a, b} and {d, e, g}. Using the union
operation, we have

},,{},{},,{ cbabacba =U  and },,,,,{},,{},,{ gedcbagedcba =U ,

while the intersection operation leads us to
},{},{},,{ babacba =I  and {}},,{},,{ =∅=gedcba I ,

where {} is the empty (or null) set.
The subset relation can be used to partially order a set of sets. If some

set A is a subset of a set B, then these sets are partially ordered with respect
to each other. If a set A is not a subset of set B, and B is not a subset of A,
then these sets are not ordered with respect to each other. This relation can be
used to partially order a set of sets in order to classify NEMS and MEMS.
Sets possess some additional structural, geometrical, as well as other
properties. Additional definitions and properties can be formulated and used
applying lattices.

Using a lattice, we have
• AA ⊆  (reflexive law);
• if BA ⊆  and AB ⊆ , then A=B (antisymmetric law);
• if BA ⊆  and CB ⊆ , then CA ⊆  (transitive law);

• A and B have a unique greatest bound, BAI . Furthermore,

BAG I= , or G is the greatest lower bound of A and B if: GA ⊆ ,
GB ⊆ , and if W is any lower bound of A and B, then WG ⊆ ;

• A and B have a unique least upper bound, BAU . Furthermore,

BAL U= , or L is the least upper bound of A and B if: AL ⊆ ,
BL ⊆ , and if P is any upper bound of A and B, then LP ⊆ .

A lattice is a partially ordered set where for any pair of sets (hypotheses)
there is a least upper bound and greatest lower bound. Let our current
hypothesis is H1 and the current training example is H2. If H2 is a subset of



H1, then no change of H1 is required. If H2 is not a subset of H1, then H1
must be changed. The minimal generalization of H1 is the least upper bound
of H2 and H1, and the minimal specialization of H1 is the greatest lower
bound of H2 and H1. Thus, the lattice serves as a map that allows us to locate
out current hypothesis H1 with reference to the new information H2. There
exists the correspondence between the algebra of propositional logic and the
algebra of sets. We refer to a hypotheses as logical expressions, as rules that
define a concept, or as subsets of the possible instances constructible from
some set of dimensions. Furthermore, union and intersection were the
important operators used to define a lattice. In addition, the propositional
logic expressions can also be organized into a corresponding lattice to
implement the artificial learning.

A general structure S is an ordered pair formed by a set object O and a
set of binary relations R such that

U
n

i
iSROS

1

),(
=

== ,

where O = {o1, o2,…, oz-1, oz}, Ooi ∈∀ ; R={r1, r2, …, rp-1, rp}, Rri ∈∀ ; Si

is the simple structure.
In the set object O we define the input n, output u, and internal a

variables. We have 3
121 ),,,(},,,...,,{ Oqaunqqqqqo i

j
i
j

i
j

i
j

i
j

i
g

i
g

ii
i ∈== − .

Hence, the range of q, as a subset of O, is R(q). Using the input-output
structural function, different NEMS and MEMS can be synthesized. The
documented general theory of structural optimization, which is built using the
algebra of sets, allows the designer to derive relationships, flexibly adapt, fit,
and optimize the nano- and microscale structures within the sets of given
possible solutions.



3.3. DIRECT-CURRENT  MICROMACHINES

It has been shown that the basic electromagnetic principles and
fundamental physical laws are used to design motion nano- and micro-
structures. Nano- and microengineering leverages from conventional theory
of electromechanical motion devices, electromagnetics, integrated circuits,
and quantum mechanics. The fabrication of motion microstructures is based
upon CMOS (VLSI) technology, and rotational and translational transducers
(actuators and sensors) were manufactured and tested. The major challenge is
the difficulties to fabricate windings for microdevices (micro electric
machines), reliability and ruggedness (due to bearing problems), etc. It
appears that novel fabrication technologies allow one to overcome many
challenges. The most efficient class of micromachines to be used as MEMS
motion microdevices are induction and synchronous. These micromachines
do not have collector, and the stator windings (for induction micromachines)
and permanent-magnet stator (for synchronous micromachines, e.g.,
permanent-magnet synchronous machine and stepper motors) have been
manufactured and tested. Direct-current machines are not the preferable
choice. However, these micromachines will be covered first because students
and engineers are familiar with these electric machines. Furthermore, even
using the conventional manufacturing technology, miniscale DC motors (less
than 2 mm diameter) have been massively manufactured for pagers, phones,
cameras, etc.

The list of basic variables and symbols used in this chapter is given
below:
ia  is the currents in the armature winding;

ua  is the applied voltages to the armature windings;

ω r  and θ r  are the angular velocity and angular displacement of the rotor;

Ea  is the electromotive force;

Te  and T L  are the electromagnetic and load torques;

ra  is the resistances of the armature windings;

La  is the self-inductances of the armature windings;

Bm  is the viscous friction coefficient;

J is the equivalent moment of inertial of the rotor and attached load.

Micro- and miniscale permanent-magnet electric motors and generators
are rotating energy-transfer electromechanical motion devices which convert
energy by means of rotational motions. Electric machines (motion structures
and motion devices) are the major part of MEMS, and therefore they must be
thoroughly studied with the driving ICs. Electric motors convert electrical



energy to mechanical energy, while generators convert mechanical energy to
electrical energy. It is worth mentioning that permanent-magnet electric
machines can be used as motors and generators. Hence, the energy
conversion is reversible, and conventional generators can be operated as
motors and vice versa. That is, micro permanent-magnet electric machines
can be used as the actuators and sensors. Electric machines have stationary
and rotating members, separated by an air gap. The armature winding is
placed in the rotor slots and connected to a rotating commutator, which
rectifies the induced voltage, see Figure 3.3.1. One supplies the armature and
excitation voltages or feds the armature and excitation currents to the
armature (rotor) and field (stator) windings. These stator and rotor windings
are coupled magnetically.

Stator

Rotor
.

rotor magnetic axis of armature winding
quadrature axis

Pole
Core

Slip ring

Brush

Air gap

u f

ua

. .

Pole
Core

stator magnetic axis of field winding
direct axis

direct
axis

quadrature axis

Armature
Field

Figure 3.3.1. Two-pole DC machine with commutator

The brushes, which are connected to the armature windings, ride on the
commutator. The armature winding consists of identical coils carried in slots
uniformly distributed around the periphery of the rotor. The stator has salient
poles, and conventional DC machines are excited by direct current; in
particular, if a voltage-fed converter is used, a dc voltage u f  is supplied to

the stationary field windings. Hence, the excitation magnetic field is
produced by the field coils. It should be emphasized that in the permanent-
magnet machines, the magnetic field is established by permanent magnets.
Due to the commutator (circular conducting segments), armature and field
windings produce stationary magnetomotive forces which are displaced by
90 electrical degrees. The armature magnetic force is along the quadrature
(rotor) magnetic axis, while the direct axis stands for a field magnetic axis.
The electromagnetic torque is produced as a result of the interaction of these
stationary magnetomotive forces.



From Kirchhoff’s law, one obtains the following steady-state equation
for the armature voltage for electric motors (the armature current opposes the
induced electromotive force)

u E i ra a a a− = .

For generators, the armature current is in the same direction as the
generated electromotive force, and we have

u E i ra a a a− = − .

The difference between the applied voltage and the induced
electromotive force is the voltage drop across the internal armature resistance
ra . One concludes that electric machines rotate at an angular velocity at

which the electromotive force generated in the armature winding balances the
armature voltage. If an electric machine operates as a motor, the induced
electromotive force is less than the voltage applied to the windings. If an
electric machine operates as a generator, the generated (induced)
electromotive force is greater than the terminal voltage.

The constant magnetic flux in AC and DC machines can be produced by
permanent-magnet poles. Electric machines with permanent-magnet poles are
called permanent-magnet machines. Permanent-magnet DC motor/generator
is illustrated in Figure 3.3.2, and a schematic diagram of permanent-magnet
DC machines is illustrated in Figure 3.3.3.
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Figure 3.3.2. Permanent-magnet DC machines
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     Figure 3.3.3. Schematic diagram of permanent-magnet electric machines
(current direction corresponds to the motor operation)

By using Kirchhoff’s voltage law and Newton’s second law of motion,
the differential equations for permanent-magnet DC machines can be easily
derived. Assuming that the susceptibility is constant (in reality, Curie’s
constant varies as a function of temperature), one supposes that the flux,
established by the permanent magnet poles, is constant. Then, denoting the
back emf and torque constants as ka , we have the following differential

equations describing the transient behavior of the armature winding and
torsional-mechanical dynamics

di

dt
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d
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From (3.3.1) it is easy to find the model in matrix form. We have
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An s-domain block diagram of permanent-magnet DC motors is
illustrated in Figure 3.3.4.
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Figure 3.3.4. Block diagram of permanent-magnet DC motors:
s-domain block diagram

The angular velocity can be reversed if the polarity of the applied
voltage is changed (the direction of the field flux cannot be changed). The
steady-state torque-speed characteristic curves obey the following equation

ωr
a a a

a

a

a

a

a
e

u r i

k

u

k

r

k
T=

−
= −

2
,            (3.3.2)

and a spectrum of the torque-speed characteristic curves is illustrated in
Figure 3.3.5.
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Figure 3.3.5.Torque-speed characteristics for permanent-magnet motors

If micro permanent-magnet DC machine is used as the generator
(tachogenerator measure the angular velocity), the circuitry dynamics for the
resistive load RL is given as

r
a

a
a

a

Laa

L

k
i

L

Rr

dt

di
ω+

+
−= .

That is, in the steady-state, the armature current is proportional to the
angular velocity, and we have



r
La

a
a Rr

k
i ω

+
= .

As was emphasized in section 1.5, flip-chip MEMS are found wide
application due to low cost and application of well-developed fabrication
processes. For example, monolithic dual power operational amplifiers
(Motorola TCA0372 available in plastic packages 751G, 648, and 626) feeds
DC minimotor to regulate the angular velocity, see Figure 3.3.6.

Figure 3.3.6. Application of a monolithic IC to control DC motor

Motion micro- and ministructures as well as micro- and minidevices
(actuators and sensors) are mounted face down with bumps on the pads that
form electrical and mechanical joints to the ICs substrate. Figure 3.3.7
illustrates a flip-chip MEMS with permanent-magnet micromotor driven by the
MC33030 monolithic servo motor driver. Control algorithms are
implemented to control the angular velocity of electric motors. The
MC33030 integrates on-chip operational amplifier and comparator, driving
and braking logic, PWM four-quadrant converter, etc. The MC33030 data
and complete description are given. As in the conventional configurations,
the difference between the reference (command) and actual angular velocity
or displacement, linear velocity or position, is compared by the error
amplifier, and two comparators are used. A pnp differential output power
stage provides driving and braking capabilities, and the four-quadrant H-
configured power stage guarantees high performance and efficiency. Using
the error between the desired (command) and actual angular velocity or
displacement, the bipolar voltage ua is applied to the armature winding, the
electromagnetic torque is developed due to the current ia, and micro- or
minimotor rotates. A complete description of the MC33030 monolithic
servomotors driver is given below.
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Figure 3.3.7. Flip-chip monolithic MEMS: MC33030 ICs and micromotor
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DC Servo Motor
Controller/Driver

 

The MC33030 is a monolithic DC servo motor controller providing all
active functions necessary for a complete closed loop system. This device
consists of an on–chip op amp and window comparator with wide input
common–mode range, drive apd brake logic with direction memory, Power
H–Switch driver capable of 1.0 A, independently programmable over–current
monitor and shutdown delay, and over–voltage monitor. This part is ideally
suited for almost any servo positioning application that requires sensing
of temperature, pressure, light, magnetic flux, or any other means that can
be converted to a voltage.

Although this device is primarily intended for servo applications, it can
be used as a switchmode motor controller.

 

•

 

On–Chip Error Amp for Feedback Monitoring

 

•

 

Window Detector with Deadband and Self Centering Reference Input

 

•

 

Drive/Brake Logic with Direction Memory

 

•

 

1.0 A Power H–Switch

 

•

 

Programmable Over–Current Detector

 

•

 

Programmable Over–Current Shutdown Delay

 

•

 

Over–Voltage Shutdown

 

Monolithic ICs: Direct-Current Servo Motors Driver MC33030

 

(Copyright of Motorola, used with permission)
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MAXIMUM RATINGS

Rating Symbol Value Unit

 

Power Supply Voltage VCC 36 V

Input Voltage Range
Op Amp, Comparator, Current Limit
(Pins 1, 2, 3, 6, 7, 8, 9, 15)

VIR

 

−

 

0.3 to VCC V

Input Differential Voltage Range
Op Amp, Comparator (Pins 1, 2, 3, 6, 7, 8, 9)

VIDR

 

−

 

0.3 to VCC V

Delay Pin Sink Current (Pin 16) IDLY (sink) 20 mA

Output Source Current (Op Amp) Isource 10 mA

Drive Output Voltage Range (Note 1) VDRV

 

−

 

0.3 to (VCC 

 

+ 

 

VF) V

Drive Output Source Current (Note 2) IDRV(source) 1.0 A

Drive Output Sink Current (Note 2) IDRV(sink) 1.0 A

Brake Diode Forward Current (Note 2) IF 1.0 A

Power Dissipation and Thermal
characteristics

P Suffix, Dual In Line Case 648C
Thermal Ressistance, Junction–to–Air
Thermal Ressistance, Junction–to–Case
(Pins 4, 5, 12, 13)

DW Suffix, Dual In Line Case 751G
Thermal Ressistance, Junction–to–Air
Thermal Ressistance, Junction–to–Case
(Pins 4, 5, 12, 13)

R

 

θ

 

JA
R

 

θ

 

JC

R

 

θ

 

JA
R

 

θ

 

JC

80
15

94
18

 

°

 

C/W

Operating Junction Temperature TJ

 

+

 

150

 

°

 

C

Operating Ambient Temperature Range TA

 

−

 

40 to 

 

+

 

85

 

°

 

C

Storage Temperature Range Tstg

 

−

 

65 to 

 

+

 

150

 

°

 

C

 

NOTES:

 

 1. The upper voltage level is clamped by the forward drop, VF,of the brake diode.
2. These values are for continuous DC current. Maximum package power dissipation limits must be observed.

 

ELECTRICAL CHARACTERISTICS 

 

(VCC 

 

=

 

 14 V, TA = 25

 

°

 

C, unless otherwise noted.)

 

Characteristic Symbol Min Typ Max Unit

ERROR AMP

 

Input Offset Voltage (

 

−

 

40

 

°

 

C 

 

≤

 

 

 

TA 

 

≤

 

 85

 

°

 

C)
VPin 6 = 7.0 V, RL = 100 k

VIO – 1.5 10 mV

Input Offset Current (VPin 6 

 

=

 

 1.0 V, RL 

 

=

 

 100 k) IIO – 0.7 – nA

Input Bias current (VPin 6 

 

=

 

 1.0 V, RL 

 

=

 

 100 k) IIB – 7.0 – nA

Input Common–Mode Voltage Range

 

∆

 

VIO 

 

=

 

 20 mV, RL 

 

=

 

 100 k
VICR – 0 to (VCC 

 

−

 

 1.2) – V

Slew Rate, Open Loop (VID 

 

=

 

 0.5 V, CL 

 

=

 

 15 pF) SR – 0.40 – V/

 

µ

 

s

Unity–Gain Crossover Frequency fC – 550 – kHz

Unity–Gain Phase Margin

 

φ

 

m – 63 – deg.

Common–mode Rejection Ratio (VPin 6 

 

=

 

 7.0 V, RL 

 

=

 

 100 k) CMRR 50 82 – dB

Power Supply Rejection Ratio
VCC 

 

=

 

 9.0 to 16 V, VPin 6 

 

=

 

 7.0 V, RL 

 

=

 

 100 k
PSRR – 89 – dB

Output Source Current (VPin 6 

 

=

 

 12 V) IO

 

 +

 

– 1.8 – mA

Output Sink Current (VPin 6 

 

=

 

 1.0 V) IO 

 

−

 

250 –

 

µ

 

A

Output Voltage Swing (RL 

 

=

 

 17 k to Ground) VOH
VOL

12.5
–

13.1
0.02

–
–

V
V

 

NOTES:

 

 3. The upper or lower hysteresis will be lost when operating the Input, Pin 3, close to the respective rail. Refer to Figure 4.
4. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient temperature as possible.
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ELECTRICAL CHARACTERISTICS (continued)

 

 (VCC 

 

=

 

 14 V, TA = 25

 

°

 

C, unless otherwise noted.)

 

Characterstic Symbol Min Typ Max Unit

WINDOW DETECTOR

 

Input Hysteresis Voltage (V1 

 

−

 

 V4, V2 

 

−

 

 V, Figure 18) VH 25 35 45 mV

Input Dead Zone Range (V2 

 

−

 

 V4, Figure 18) VIDZ 166 210 254 mV

Input Offset Voltage (|[V2 

 

−

 

 VPin 2] 

 

−

 

 [VPin 2 

 

−

 

 V4]| Figure 18) VIO – 25 – mV

Input Functional Common–Mode Range (Note 3)
Upper Threshold
Lower Threshold

VIH
VIL

–
–

(VCC–1.05)
0.24

–
–

V

Reference Input Self Centering Voltage
Pins 1 and 2 Open

VRSC – (1/2 VCC) – V

Window Detactor Propagation Delay
Comparator Input, Pin 3, to Drive Outputs
VID 

 

= 

 

0.5 V, RL(DRV) 

 

=

 

 390 

 

Ω

 

tp(IN/DRV) – 2.0 –

 

µ

 

s

 

OVER–CURRENT MONITOR

 

Over–Current References Resistor Voltage (pin 15) ROC 3.9 4.3 4.7 V

Delay Pin Source Current IDLY(SOURCE) – 5.5 6.9

 

µ

 

A

Delay Pin Sink Current (ROC 

 

=

 

 27 k, IDRV 

 

=

 

 0 mA)
VDLY 

 

=

 

 5.0 V
VDLY 

 

=

 

 8.3 V
VDLY 

 

=

 

 14 V

IDLY (sink)
–
–
–

0.1
0.7
16.5

–
–
–

mA

Delay Pin voltage, Low State (IDLY 

 

=

 

 0 mA) VOL(DLY) – 0.3 0.4 V

Over–Current Shutdown Threshold
VCC 

 

=

 

 14 V
VCC 

 

=

 

 8.0 V

Vth(OC)
6.8
5.5

7.5
6.0

8.2
6.5

V

Over–Current Shutdown Propagation Delay
Delay capacitor Input, Pin 16, to Outputs, VID 

 

=

 

 0.5 V
tp(DLY/DRV) – 1.8 –

 

µ

 

s

 

POWER H–SWITCH

 

Drive–Output Saturation (–40

 

°

 

C 

 

≤

 

 

 

TA 

 

≤

 

 

 

+85

 

°

 

C, Note 4)
High–State (Isource = 100 mA)
Low–State (Isink = 100 mA)

VOH(DRV)
VOL(DRV)

(VCC – 2)
–

(VCC – 0.85)
0.12

–
1.0

V

Drive–Output Voltage Switiching Time (CL 

 

=

 

 15 pF)
Rise Time
Fall Time

tr
tf

–
–

200
200

–
–

ns

Brake Diode Forward Voltage Drop (IF 

 

=

 

 200 mA, Note 4) VF – 1.04 2.5 V

 

TOTAL DEVICE

 

Standby Supply Current ICC – 14 25 mA

Over–Voltage Shutdown Threshold
(–40

 

°

 

C 

 

≤

 

 

 

TA 

 

≤

 

 

 

+85

 

°

 

C)
Vth(OV) 16.5 18 20.5 V

Over–Voltage Shutdown Hysteresis (Device “off” to “on”) VH(OV) 0.3 0.6 1.0 V

Operating Voltage Lower Threshold
(–40

 

°

 

C 

 

≤

 

 

 

TA 

 

≤

 

 

 

+85

 

°

 

C)
VCC – 7.5 8.0 V

 

NOTES:

 

 3. The upper or lower hysteresis will be lost when operating the Input, Pin 3, close to the respective rail. Refer to Figure 4.
 4. Low duty cycle pulse techniques are used during test to maintain junction temperature as close to ambient temperature as possible.
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OPERATING DESCRIPTION

 

The MC33030 was designed to drive tractional horse-
power DC motors and sense actuator position by voltage
feedback. A typical servo application and representative
internal block diagram are shown in Figure 17. The system
operates by setting a voltage on the reference input of the
Window Detector (Pin 1) which appears on (Pin 2). A DC
motor then drives a position sensor, usually a potentiometer
driven by a gear box, in a corrective fashion so that a voltage
proportional to position is present at Pin 3. The servo motor
will continue to run until the voltage at Pin 3 falls within the
dead zone, which is centered about the reference voltage.

The Window Detector is composed of two comparators,
A and B, each containing hysteresis. The reference input,
common to both comparators, is pre–biased at 1/2 VCC for
simple two position servo systems and can easily be over-
riden by an external voltage divider. The feedback voltage
present at Pin 3 is connected to the center of two resistors
that are driven by an equal magnitude current source and
sink. This generates an offset voltage at the input of each
comparator which is centered about Pin 3 that can float
virtually from VCC to ground. The sum of the upper and
lower offset voltages is defined as the window detector input
dead zone range.

To increase system flexibility, an on–chip Error Amp is
provided. It can be used to buffer and/or gain–up the actu-
ator position voltage which has the effect of narrowing the
dead zone range. A PNP differential input stage is provided
so that the input common–mode voltage range will include
ground. The main design goal of the error amp output stage
was to be able to drive the window detector input. It typically
can source 1.8 mA and sink 250 

 

µ

 

A. Special design con-
siderations must be made if it is to be used for other appli-
cations.

The Power H–Switch provides a direct means for motor
drive and braking with a maximum source, sink, and brake
current of 1.0 A continuous. Maximum package power dis-
sipation limits must be observed. Refer to Figure 15 for
thermal information. For greater drive current requirements,
a method for buffering that maintains all the system features
is shown in Figure 30.

The Over–Current Monitor is designed to distinguish
between motor start–up or locked rotor conditions that can
occur when the actuator has reached its travel limit. A
fraction of the Power H–Switch source current is internally
fed into one of the two inverting inputs of the current com-
parator, while the non–inverfing input is driven by a pro-
grammable current reference. This reference level is con-
trolled by the resistance value selected for ROC, and must
be greater than the required motor run–current with its
mechanical load over temperature; refer to Figure 8. During
an over–current condition, the comparator will turn off and
allow the current source to charge the delay capacitor,
CDLY. When CDLY charges to a level of 7.5 V, the set input
of the over–current latch will go high, disabling the drive
and brake functions of the Power H–Switch. The program-
mable time delay is determined by the capacitance value–
selected for CDLY.

This system allows the Power H–Switch to supply motor
start–up current for a predetermined amount of time. If the

rotor is locked, the system will time–out and shut–down. This
feature eliminates the need for servo end–of–travel or limit
switches. Care must be taken so as not to select too large of
a capacitance value for CDLY. An over–current condition for
an excessively long time–out period can cause the integrated
circuit to overheat and eventually fail. Again, the maximum
package power dissipation limits must be observed. The
over–current latch is reset upon power–up or by readjusting
VPin 2 as to cause VPin 3 to enter or pass through the dead
zone. This can be achieved by requesting the motor to
reverse direction.

An Over–Voltage Monitor circuit provides protection for
the integrated circuit and motor by disabling the Power
H–Switch functions if VCC should exceed 18 V. Resumption
of normal operation will commence when VCC falls below
17.4 V.

A timing diagram that depicts the operation of the
Drive/Brake Logic section is shown in Figure 18. The wave-
forms grouped in [1] show a reference voltage that was
preset, appearing on Pin 2, which corresponds to the
desired actuator position. The true actuator position is rep-
resented by the voltage on Pin 3. The points V1 through V4
represent the input voltage thresholds of comparators A and
B that cause a change in their respective output state. They
are defined as follows:

V1 

 

=

 

 Comparator B turn–off threshold
V2 

 

=

 

 Comparator A turn–on threshold
V3 

 

=

 

 Comparator A turn–off threshold
V4 

 

=

 

 Comparator B turn–on threshold
V1

 

−

 

V4 

 

=

 

 Comparator B input hysteresis voltage
V2

 

−

 

V3 

 

=

 

 Comparator A input hysteresis voltage
V2

 

−

 

V4 

 

=

 

 Window detector input dead zone range
|(V2

 

−

 

VPin2) 

 

−

 

 (VPin2 

 

−

 

 V4)| 

 

=

 

 Window detector input 
voltage

It must be remembered that points V1 through V4 always
try to follow and center about the reference voltage setting
if it is within the input common–mode voltage range of Pin 3;
Figures 4 and 5. Initially consider that the feedback input
voltage level is somewhere on the dashed line between V2
and V4 in [1]. This is within the dead zone range as defined
above and the motor will be off. Now if the reference voltage
is raised so that VPin 3 is less than V4, comparator B will
turn–on [3] enabling Drive, causing Drive Output A to
sink and B to source motor current [8]. The actuator will
move in Direction B until VPin 3 becomes greater than V1.
Comparator B will turn–off, activating the brake enable [4]
and Brake [6] causing Drive Output A to go high and B
to go into a high impedance state. The inertia of the
mechanical system will drive the motor as a generator cre-
ating a positive voltage on Pin 10 with respect to Pin 14.
The servo system can be stopped quickly, so as not to
over–shoot through the dead zone range, by braking. This
is accomplished by shorting the motor/generator terminals
together. Brake current will flow into the diode at Drive
Output B, through the internal VCC rail, and out the emitter
of the sourcing transistor at Drive Output A. The end of the
solid line and beginning of the dashed for VPin 3 [1] indi-
cates the possible resting position of the actuator after
braking.tDLY

vrefCDLY
IDLY(source)
------------------------------------

7.5 CDLY
5.5 µA

-------------------------- 1.36 CDLY in µF= = =

Q

Q
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Figure 17. Representative Block Diagram and Typical Servo Application

 

If VPin 3 should continue to rise and become greater
than V2, the actuator will have over shot the dead zone
range and cause the motor to run in Direction A until VPin 3
is equal to V3. The Drive/Brake behavior for Direction A is
Identical to that of B. Overshooting the dead zone range in
both directions can cause the servo system to continuously
hunt or oscillate. Notice that the last motor run–direction is
stored in the direction latch. This information is needed to
determine whether Q or Brake is to be enabled when
VPin 3 enters the dead zone range. The dashed lines in
[8,9] indicate the resulting waveforms of an over–current
condition that has exceeded the programmed time delay.
Notice that both Drive Outputs go into a high impedance
state until VPin 2 is readjusted so that VPin 3 enters or
crosses through the dead [7,4].

The inputs of the Error Amp and Window Detector can
be susceptible to the noise created by the brushes of the
DC motor and cause the servo to hunt. Therefore, each of
these inputs are provided with an internal series resistor
and are pinned out for an external bypass capacitor. It has
been found that placing a capacitor with 

 

short leads

 

 directly
across the brushes will significantly reduce noise problems.
Good quality RF bypass capacitors in the range of 0.001
to 0.1 

 

µ

 

F may be required. Many of the more economical
motors will generate significant levels of RF energy over a
spectrum that extends from DC to beyond 200 MHz. The
capacitance value and method of noise filtering must be
determined on a system by system basis.

Thus far, the operating description has been limited to
servo systems in which the motor mechanically drives a
potentiometer for position sensing. Figures 19, 20, 27, and
31 show examples that use light, magnetic flux, tempera-
ture, and pressure as a means to drive the feedback ele-
ment. Figures 21, 22 and 23 are examples of two position,
open loop servo systems. In these systems, the motor runs
the actuator to each end of its travel limit where the
Over–Current Monitor detects a locked rotor condition and
shuts down the drive. Figures 32 and 33 show two possible
methods of using the MC33030 as a switching motor con-
troller. In each example a fixed reference voltage is applied
to Pin 2. This causes VPin 3 to be less than V4 and Drive
Output A, Pin 14, to be in a low state saturating the TIP42
transistor. In Figure 32, the motor drives a tachometer that
generates an ac voltage proportional to RPM. This voltage
is rectified, filtered, divided down by the speed set potenti-
ometer, and applied to Pin 8. The motor will accelerate until
VPin 3 is equal to V1 at which time Pin 14 will go to a high
state and terminate the motor drive. The motor will now
coast until VPin 3 is less than V4 where upon drive is then
reapplied. The system operation of Figure 31 is identical to
that of 32 except the signal at Pin 3 is an amplified average
of the motors drive and back EMF voltages. Both systems
exhibit excellent control of RPM with variations of VCC;
however, Figure 32 has somewhat better torque character-
istics at low RPM.
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Figure 18. Timing Diagram
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3.4. INDUCTION MOTORS

In this section, the following variables and symbols are used:
u uas bs,  and ucs  are the phase voltages in the stator windings as, bs and cs;

u uqs ds,  and uos  are the quadrature-, direct-, and zero-axis components of

stator voltages;
i ias bs,  and ics  are the phase currents in the stator windings as, bs and cs;

i iqs ds,  and ios  are the quadrature-, direct-, and zero-axis components of

stator currents;
ψ ψas bs,  and ψ cs  are the stator flux linkages;

ψ ψqs ds,  and ψ os  are the quadrature-, direct-, and zero-axis components of

stator flux linkages;
u uar br,  and ucr  are the voltages in the rotor windings ar, br and cr;

u uqr dr,  and uor  are the quadrature-, direct-, and zero-axis components of

rotor voltages;
i iar br,  and icr  are the currents in the rotor windings ar, br and cr;

i iqr dr,  and ior  are the quadrature-, direct-, and zero-axis components of

rotor currents;
ψ ψar br,  and ψ cr  are the rotor flux linkages;

ψ ψqr dr,  and ψ or  are the quadrature-, direct-, and zero-axis components of

rotor flux linkages;

rω  and rmω  are the electrical and mechanical angular velocities;

rθ  and rmθ  are the electrical and mechanical angular displacements;

Te  is the electromagnetic torque developed by the motor;

T L  is the load torque applied;

sr  and rr  are the resistances of the stator and rotor windings;

Lss  and rrL  are the self-inductances of the stator and rotor windings;

msL  is the stator magnetizing inductance;

lsL  and lrL  are the stator and rotor leakage inductances;

N s   and N r  are the number of turns of the stator and rotor windings;

P is the number of poles;

mB  is the viscous friction coefficient;

J  is the equivalent moment of inertia;
ω  and θ  are the angular velocity and displacement of the reference frame.



3.4.1. Two-Phase Induction Motors

Two-phase induction motors, shown in Figure 3.4.1, have two stator and
rotor windings.
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Figure 3.4.1. Two-phase symmetrical induction motor

To develop a mathematical model of two-phase induction motors, we
model the stator and rotor circuitry dynamics. As the control and state
variables we use the voltages applied to the stator (as and bs) and rotor (ar
and br) windings, as well as the stator and rotor currents and flux linkages.

Using Kirchhoff’s voltage law, four differential equations are

u r i
d

dt
as s as

as= + ψ , u r i
d

dtbs s bs
bs= +

ψ
,

u r i
d

dtar r ar
ar= +

ψ
, u r i

d
dtbr r br

br= +
ψ

.

Hence, in matrix form we have

u r iabs s abs
absd

dt
= +

ψψ
,

u r iabr r abr
abrd

dt
= +

ψψ
,         (3.4.1)
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 are the matrices of the

stator and rotor resistances.
Studying the magnetically coupled motor circuits, the following matrix

equation for the flux linkages is found

ψψ
ψψ

abs

abr

s sr

sr
T

r

abs

abr









 =





















L L

L L

i

i
,

where L s  is the matrix of the stator inductances, L s
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; L r  is the matrix of the rotor inductances,

Lr
rr

rr

L
L

=










0
0

, L L Lrr lr mr= + , L
N

mr
r

m

=
ℜ

2
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Using the number of turns in the stator and rotor windings, we have

i iabr
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Then, taking note of the turn ratio, the flux linkages are written in matrix
form as
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Substituting the matrices for self- and mutual inductances L s , L r
'  and

L sr
'  in (3.4.2), one obtains
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Therefore, the circuitry differential equations (3.4.1) are rewritten as
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dt
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Assuming that the self- and mutual inductances L L Lss rr ms, ,'  are time-

invariant and using the expressions for the flux linkages, one obtains a set of
nonlinear differential equations to model the circuitry dynamics
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Cauchy’s form of these differential equations is found. In particular, we
have the following nonlinear differential equations to model the stator-rotor
circuitry dynamics for two-phase induction motors
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    (3.4.3)
The electrical angular velocity ωr  and displacement θr  are used in

(3.4.3) as the state variables. Therefore, the torsional-mechanical equation of
motion must be incorporated to describe the evolution of ωr  and θr . From

Newton’s second law, we have

T T B T J
d

dte m rm L
rm∑ = − − =ω

ω
,

d
dt

rm
rm

θ
ω= .

The mechanical angular velocity ωrm  is expressed by using the

electrical angular velocity ωr  and the number of poles P. In particular,

ω ωrm rP
=

2
.

The mechanical and electrical angular displacements θrm  and θr  are

related as

θ θrm rP
=

2
.

Taking note of Newton’s second law of motion, one obtains
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To find the expression for the electromagnetic torque developed by two-

phase induction motors, the coenergy ( )rabrabscW θ,, 'ii  is used, and

( )
r

rabrabsc
e

WP
T

∂θ
θ∂ ,,

2

'ii
= .

Assuming that the magnetic system is linear, one has
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The self-inductances Lss  and Lrr
' , as well as the leakage inductances

Lls  and Llr
' , are not functions of the angular displacement θr , while the

following expression for the matrix of stator-rotor mutual inductances L sr
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was derived
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Then, for P-pole two-phase induction motors, the electromagnetic torque
is given by
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    (3.4.4)
Using (3.4.4) for the electromagnetic torque Te  in the torsional-

mechanical equations of motion, one obtains
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Augmenting differential equations (3.4.3) and (3.4.5), the following set
of highly nonlinear differential equations results
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where L L L Lss rr msΣ = −' 2 .

In matrix form, a set of six highly coupled nonlinear differential
equations (3.4.6) is
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Modeling Two-Phase Induction Motors Using the Lagrange Equations

The mathematical model can be derived using Lagrange’s equations.
The generalized independent coordinates and the generalized forces are
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Five Lagrange equations are written as

d
dt q q

D
q q

Q
∂
∂

∂
∂

∂
∂

∂
∂

Γ Γ Π
& &1 1 1 1

1







 − + + = ,

d
dt q q

D
q q

Q
∂
∂

∂
∂

∂
∂

∂
∂

Γ Γ Π
& &2 2 2 2

2









 − + + = ,

d
dt q q

D
q q

Q
∂
∂

∂
∂

∂
∂

∂
∂

Γ Γ Π
& &3 3 3 3

3









 − + + = ,

d
dt q q

D
q q

Q
∂
∂

∂
∂

∂
∂

∂
∂

Γ Γ Π
& &4 4 4 4

4









 − + + = ,

d
dt q q

D
q q

Q
∂
∂

∂
∂

∂
∂

∂
∂

Γ Γ Π
& &5 5 5 5

5









 − + + = .

The total kinetic, potential, and dissipated energies are
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Taking note of &q ias1 = , &q ibs2 = , & 'q iar3 = , & 'q ibr4 =  and &q r5 = ω , one

obtains
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For P-pole induction motors, by making use of 
r

r

dt

d
ω

θ
= , six

differential equations, as found in (3.4.6), result.

Control of Induction Motors

The angular velocity of induction motors must be controlled, and the
torque-speed characteristic curves should be thoroughly examined. The
electromagnetic torque developed by two-phase induction motors is given by
equation (3.4.4). To guarantee the balanced operating condition for two-
phase induction motors, one supplies the following phase voltages to the
stator windings

( )u t u tas M f( ) cos= 2 ω , ( )u t u tbs M f( ) sin= 2 ω ,



and the sinusoidal steady-state phase currents are

( )i t i tas M f i( ) cos= −2 ω ϕ  and ( )i t i tbs M f i( ) sin= −2 ω ϕ .

Here the following notations are used: uM  is the magnitude of the

voltages applied to the as and bs stator windings; iM  is the magnitude of the

as and bs stator currents; ω f  is the angular frequency of the applied phase

voltages, ω πf f= 2 ; f  is the frequency of the supplied voltage; ϕi  is the

phase difference.
The applied voltage to the motor windings cannot exceed the admissible

voltage uM max . That is,

u u uM M Mmin max≤ ≤ .

The motor synchronous angular velocity ωe  is found using the number

of poles as ω
π

e
f

P
=

4
. It is evident that the synchronous velocityωe  can be

regulated by changing the frequency f. To regulate the angular velocity, one
varies the magnitude of the applied voltages as well as the frequency. The
torque-speed characteristic curves of induction motors must be thoroughly
studied. Performing the transient analysis by solving the derived differential

equations (3.4.6), one can find the steady-state curves ( )ωr T eT= Ω  by

plotting the angular velocity versus the electromagnetic torque developed.
The following principles are used to control the angular velocity of

induction motors.
Voltage control. By changing the magnitude uM  of the applied phase

voltages to the stator windings, the angular velocity is regulated in the stable
operating region, see Figure 3.4.2.a. It was emphasized that
u u uM M Mmin max< < , where uM max  is the maximum allowed (rated)

voltage.
Frequency control. The magnitude of the applied phase voltages is

constant uM
constant , and the angular velocity is regulated above and below the

synchronous angular velocity by changing the frequency of the supplied
voltages f. This concept can be clearly demonstrated using the formula

P
f

e
π

ω
4

= . The torque-speed characteristics for different values of the

frequency are shown in Figure 3.4.2.b.
Voltage-frequency control. The angular frequency ω f  is proportional to

the frequency of the supplied voltages, ω πf f= 2 . To minimize losses, the

applied voltages applied to the stator windings should be regulated if the
frequency is changed. In particular, the magnitude of phase voltages can be
decreased linearly with decreasing the frequency. That is, to guarantee the



constant volts per hertz control one maintains the following relationship

const
f

u

i

Mi =  or const
u

fi

Mi =
ω

. The corresponding torque-speed

characteristics are documented in Figure 3.4.2.c. Regulating the voltage-
frequency patterns, one shapes the torque-speed curves. For example, the

following relation const
f

u

i

Mi =  can be applied to adjust the magnitude uM

and frequency f of the supplied voltages. To attain the acceleration and settling
time specified, overshoot and rise time needed, the general purpose (standard),
soft- and high-starting torque patterns are implemented based upon the
requirements and criteria imposed (see the standard, soft- and high-torque

patterns as illustrated in Figure 3.4.2.d). That is, assigning ( )ω ϕf Mu=  with

domain u u uM M Mmin max< <  and range ω ω ωf f fmin max< < , one

maintains  
u

f
Mi

i

= var  or 
uMi

fiω
= var . For example, the desired torque-speed

characteristics, as documented in Figure 3.4.2.e, can be guaranteed.
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Figure 3.4.2. Torque-speed characteristic curves ( )ωr T eT= Ω :

         a) voltage control;   b)  frequency control;
         c) voltage-frequency control: constant volts per hertz control;

                       d) voltage-frequency patterns;
                  e) variable voltage-frequency control



S-Domain Block Diagram of Two-Phase Induction Motors

To perform the analysis of dynamics, to control induction machines, as
well as to visualize the results, it is important to develop the s-domain block
diagrams. For squirrel-cage induction motors, the rotor windings are short-

circuited, and hence 0'' == brar uu . The block diagram is built using

differential equations (3.4.6). The resulting s-domain block diagram is shown
in Figure 3.4.3.
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3.4.2. Three-Phase Induction Motors

Dynamics of Induction Motors in the Machine Variables

Our goal is to develop the mathematical model of three-phase induction
motors, as shown in Figure 3.4.4, using Kirchhoff’s and Newton’s second
laws.
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Figure 3.4.4. Three-phase symmetrical induction motor

Studying the magnetically coupled stator and rotor circuitry, Kirchhoff’s
voltage law relates the abc stator and rotor phase voltages, currents, and flux
linkages through the set of differential equations.

For magnetically coupled stator and rotor windings, we have
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ψ
.    (3.4.8)

It is clear that the abc stator and rotor voltages, currents, and flux
linkages are used as the variables, and in matrix form equations (3.4.8) are
rewritten as
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where the abc stator and rotor voltages, currents, and flux linkages are
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The flux linkages equations must be thoroughly examined, and one has
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where the matrices of self- and mutual inductances L s , L r  and srL  are
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Using the number of turns Ns  and Nr , one finds
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Substituting the matrices Ls , Lsr
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Matrix equations (3.4.12) in expanded form using (3.4.11) are rewritten
as
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Cauchy’s form differential equations, given in matrix form, are found to
be
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 (3.4.13)
Here, the following notations are used

( )L L L LL ms lr lrΣ = +3 ' ' , L L Lm ms lrΣ = +2 ' , L L L Lms ms ms lrΣ = +3
2

2 ' .

Newton’s second law is applied to derive the torsional-mechanical
equations, and the expression for the electromagnetic torque must be
obtained.

For P-pole three-phase induction machines, as one finds the expression

for coenergy ( )Wc abcs abcr ri i, ,' θ , the electromagnetic torque can be

straightforwardly derived as 
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T
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e
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For three-phase induction motors we have
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 (3.4.14)
Using Newton’s second law and (3.4.14), the torsional-mechanical

equations are found to be
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ω= .  (3.4.15)

Augmenting differential equations (3.4.13) and (3.4.15), the resulting
model for three-phase induction motors in the machine variables, is found.

Mathematical Model of Three-Phase Induction Motors in the
Arbitrary Reference Frame

The abc stator and rotor variables must be transformed to the
quadrature, direct, and zero quantities. To transform the machine (abc)
stator voltages, currents, and flux linkages to the quadrature-, direct-, and
zero-axis components of stator voltages, currents and flux linkages, the direct
Park transformation is used. In particular,

u K uqdos s abcs= , i K iqdos s abcs= , ψψ ψψqdos s abcs= K ,          (3.4.16)

where the stator transformation matrix K s  is given by
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Here, the angular displacement of the reference frame is

( )θ ω τ τ θ= +∫
t

t

d
0

0 .

Using the rotor transformations matrix K r , the quadrature-, direct-,

and zero-axis components of rotor voltages, currents, and flux linkages are
found by using the abc rotor voltages, currents, and flux linkages.

In particular,

u K uqdor r abcr
' '= , i K iqdor r abcr

' '= , ψψ ψψqdor r abcr
' '= K ,          (3.4.18)

where the rotor transformation matrix is
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From differential equations (3.4.12)
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,

by taking note of the inverse Park transformation matrices K s
−1  and K r

−1 ,

we have
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Making use of (3.4.17) and (3.4.19) one finds inverse matrices K s
−1  and

K r
−1 . In particular,
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Multiplying left and right sides of equations (3.4.20) by K s  and K r ,

one has

u K r K i K
K

K Kqdos s s s qdos s
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.    (3.4.21)

The matrices of the stator and rotor resistances rs  and rr
'  are diagonal,

and hence,

K r K rs s s s
− =1  and K r K rr r r r

' '− =1 .

Performing differentiation, one finds
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One obtains the voltage equations for stator and rotor circuits in the
arbitrary reference frame when the angular velocity of the reference frame
ω  is not specified. From (3.4.21) the following matrix differential equations
result
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From (3.4.22), six differential equations in expanded form are found to
model the stator and rotor circuitry dynamics. In particular,
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Using the matrix equation for flux linkages
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These equations can be represented using the quadrature, direct, and
zero quantities. Employing the Park transformation matrices one has
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Taking note of the Park transformation matrices and applying the

derived expressions for sL , '
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rL , by multiplying the matrices we
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In expanded form, the flux linkage equations (3.4.24) are

ψ qs ls qs qs qrL i Mi Mi= + + ' ,
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ψ qr lr qr qs qrL i Mi Mi' ' ' '= + + ,

ψ dr lr dr ds drL i Mi Mi' ' ' '= + + ,

ψ or lr orL i' ' '= .  (3.4.25)

Using the expressions (3.4.25) in (3.4.23), the differential equations
result
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Cauchy’s form of differential equations is
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where L L M L LSM ls ls ms= + = + 3
2  and L L M L LRM lr lr ms= + = +' ' 3

2 .

One concludes that the nonlinear differential equations are found to
describe the stator-rotor circuitry transient behavior. To complete the model
developments, the torsional-mechanical equations
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ω
,
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ω= ,          (3.4.27)

must be used.
The equation for the electromagnetic torque must be obtained in terms of

the quadrature- and direct-axis components of stator and rotor currents.
Using the formula for coenergy
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By performing multiplication of matrices, the following formula results
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Thus, from (3.4.27) and (3.4.28), one has
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Augmenting the circuitry and torsional-mechanical dynamics, as given
by differential equations (3.4.26) and (3.4.29), the model for three-phase
induction motors in the arbitrary reference frame results.

We have a set of eight highly coupled nonlinear differential equations
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The last differential equation in (3.4.30) can be omitted in the analysis
and simulations if induction motors are used in electric drive applications.
That is, for electric drives one finds
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In matrix form, nonlinear differential equations (3.4.31) are given as
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The block diagram for three-phase induction motors, modeled in the
arbitrary reference frame is developed using (3.4.31). Applying the Laplace
operator, one finds the block diagram as shown in Figure 3.4.5.
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Figure 3.4.5. Block diagram of three-phase squirrel-cage induction
              motors in the arbitrary reference frame

Micro- and miniscale induction motors are squirrel-cage motors, and the
rotor windings are short-circuited. To guarantee the balanced operating
conditions, one supplies the following balanced three-phase voltages

( )u t u tas M f( ) cos= 2 ω , ( )u t u tbs M f( ) cos= −2 2
3

ω π ,

( )u t u tcs M f( ) cos= +2 2
3

ω π ,

where the frequency of the applied voltage is ω πf f= 2 .



The quadrature-, direct-, and zero-axis components of stator voltages
are obtained by using the stator Park transformation matrix as

u K uqdos s abcs= , 

( ) ( )
( ) ( )K s =

− +
− +
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The stationary, rotor, and synchronous reference frames are commonly
used. For stationary, rotor, and synchronous reference frames, the reference
frame angular velocities are ω = 0 , ω ω= r  and ω ω= e , and the

corresponding angular displacement θ  results. In particular, for zero initial
conditions for stationary, rotor, and synchronous reference frames one finds
θ = 0 , θ θ= r  and θ θ= e . Hence, the quadrature-, direct-, and zero-axis

components of voltages can be obtained to guarantee the balance operation
of induction motors.

Mathematical Model of Three-Phase Induction Motors in the
Synchronous  Reference Frame

The most commonly used is the synchronous reference frame. The
mathematical model of three-phase induction motors in the synchronous
reference frame is found by substituting the frame angular velocity in the
differential equations obtained for the arbitrary reference frame (3.4.31).
Using ω ω= e  in (3.4.31), we have
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The superscript e denotes the synchronous frame of reference. In matrix
form, using (3.4.32), we have the following differential equation for electric
drives
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The quadrature, direct and zero voltages uqs
e , uds

e  and uos
e  to guarantee

the balanced operation of induction motors are found from

u K uqdos
e

s
e

abcs= .
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Taking note of a balanced three-phase voltage set

( )u t u tas M f( ) cos= 2 ω , ( )u t u tbs M f( ) cos= −2 2
3

ω π ,

( )u t u tcs M f( ) cos= +2 2
3

ω π ,

and assuming that the initial displacement of the quadrature magnetic axis is
zero, from θ ωe f t= , we have that the following quadrature, direct, and

zero stator voltages must be supplied to guarantee the balance operation

.0)(,0)(,2)( === tutuutu e
os

e
dsM

e
qs  (3.4.33)

It should be emphasized that the quadrature-, direct-, and zero-axis
components of stator and rotor voltages, currents, and flux linkages have dc
form. Furthermore, to control induction motors, only the dc quadrature

voltage u tqs
e ( )  is regulated because u tds

e ( ) = 0  and u tos
e ( ) = 0 .

Using (3.4.32), the block diagram is developed, see Figure 3.4.6.
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Figure 3.4.6. Block diagram for three-phase squirrel-cage induction
              motors modeled in the synchronous reference frame



3.5. MICROSCALE  SYNCHRONOUS  MACHINES

In this section, the following variables and symbols are used:
u uas bs,  and ucs  are the phase voltages in the stator windings as, bs and cs;

u uqs ds,  and uos  are the quadrature-, direct-, and zero-axis stator voltage

components;
i ias bs,  and ics  are the phase currents in the stator windings as, bs and cs;

i iqs ds,  and ios  are the quadrature-, direct-, and zero-axis stator current

components;
ψ ψas bs,  and ψ cs  are the stator flux linkages;

ψ ψqs ds,  and ψ 0s  are the quadrature-, direct-, and zero-axis stator flux

linkages components;
ψ m  is the magnitude of the flux linkages established by the permanent-
magnets;
ω r  and ω rm  are the electrical and rotor angular velocities;

θr  and θrm  are the electrical and rotor angular displacements;

Te  is the electromagnetic torque developed;

TL  is the load torque applied;

Bm  is the viscous friction coefficient;

J  is the equivalent moment of inertia;
rs  is the resistances of the stator windings;

Lss  is the self-inductances of the stator windings;

Lms  and Lls  are the stator magnetizing and leakage inductances;

Lmq  and Lmd  are the magnetizing inductances in the quadrature and direct

axes;

mdℜ  and mqℜ  are the magnetizing reluctances in the direct and quadrature

axes;
N s   is the number of turns of the stator windings;

P is the number of poles;
ω  and θ  are the angular velocity and displacement of the reference frame.

Micro- and miniscale synchronous machines can be used as motors and
generators. Generators convert mechanical energy into electrical energy, while
motors convert electrical energy into mechanical energy. A broad spectrum of
synchronous electric machines can be used in electric drives, servos, and power
systems applications. We will develop nonlinear mathematical models, and
perform nonlinear modeling and analysis of synchronous machines.



3.5.1. Single-Phase Reluctance Motors

We consider single-phase reluctance motors to study the operation of
synchronous machines, analyze important features, as well as to visualize
mathematical model developments. It should be emphasized that micro- and
miniscale synchronous reluctance motors can be easily manufactured. A single-
phase reluctance motor is documented in Figure 3.5.1.

Figure 3.5.1. Microscale single-phase reluctance motor

The quadrature and direct magnetic axes are fixed with the rotor, which
rotates with angular velocity rω . These magnetic axes rotate with the

angular velocity ω . It should be emphasized that under normal operation
the angular velocity of synchronous machines is equal to the synchronous
angular velocity eω . Hence, er ωω =  and er ωωω == . Assuming that
the initial conditions are zero. Hence, the angular displacements of the rotor

rθ  and the angular displacement of the quadrature magnetic axis θ  are
equal, and
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Assume that this variation is a sinusoidal function of the rotor angular
displacement. Then,

( ) rmmrm LLL θθ 2cos∆−= ,

where mL  is the average value of the magnetizing inductance; mL∆  is the
half of amplitude of the sinusoidal variation of the magnetizing inductance.

The plot for ( )rmL θ  is documented in Figure 3.5.2.

Figure 3.5.2. Magnetizing inductance ( )rmL θ

The electromagnetic torque, developed by single-phase reluctance
motors is found using the expression for the coenergy ( )rasc iW θ, . From
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It is clear that the electromagnetic torque is not developed by
synchronous reluctance motors if one feeds the dc current or voltage to the
motor winding. Hence, conventional control algorithms cannot be applied,
and new methods, which are based upon electromagnetic features must be
researched. The average value of eT  is not equal to zero if the current is a

function of rθ . As an illustration, we fed the following current to the motor
winding

( )rMas ii θ2sinRe= .

Then, the electromagnetic torque is
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The mathematical model of the single-phase reluctance motor is found
by using Kirchhoff’s and Newton’s  second laws

dt

d
iru as
assas

ψ
+= , (circuitry equation)

2

2

dt

d
JTBT r

Lrme

θ
ω =−− . (torsional-mechanical equation)

From ( ) asrmmlsas iLLL θψ 2cos∆−+= , one obtains a set of three
first-order nonlinear differential equations which models single-phase
reluctance motors. In particular, we have
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3.5.2. Permanent-Magnet Synchronous Machines

Permanent-magnet synchronous machines are brushless machines
because the excitation flux is produced by permanent magnets.

Permanent-Magnet Synchronous Machines in the Machine Variables

Three-phase two-pole permanent-magnet synchronous motors and
generators are illustrated in Figures 3.5.3 and 3.5.4.
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Figure 3.5.3. Two-pole permanent-magnet synchronous motor
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Figure 3.5.4. Three-phase wye-connected synchronous generator

From Kirchhoff’s second law, one obtains three differential equations
for the as, bs and cs stator windings. In particular,

u r i
d

dt
as s as

as= + ψ ,

u r i
d

dtbs s bs
bs= +

ψ
,

u r i
d

dtcs s cs
cs= +

ψ
,    (3.5.1)

where the flux linkages ψ ψas bs,  and ψ cs  are
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From (3.5.1), one finds
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The flux linkages ψ ψasm bsm, , and ψ csm , established by the permanent

magnet, are periodic functions of θr . We assume that ψ ψasm bsm, , and

ψ csm  vary obeying the sine law. The stator windings are displaced by 120

electrical degrees, and using the magnitude of the flux linkages ψ m ,
established by the permanent magnet, one has

ψ ψ θasm m r= sin , ( )ψ ψ θ πbsm m r= −sin 2
3

, ( )ψ ψ θ πcsm m r= +sin 2
3

.

Self- and mutual inductances for three-phase permanent-magnet
synchronous machines can be derived. Equations for the magnetizing
quadrature and direct inductances are

mq
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N
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2

  and  
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s
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N
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2

.

In general, the quadrature and direct magnetizing reluctances can be
different, and mdmq ℜ>ℜ . Hence, we have mdmq LL < . The minimum

value of Lasas  occurs periodically at ,...2,,0 ππθ =r , while the

maximum value of asasL  occurs at ...,,,
2

5

2

3

2

1 πππθ =r  .

One concludes that the self-inductance ( )rasasL θ , which is bounded as

mdlsasasmqls LLLLL +≤≤+ , is a periodic function of θr . Assuming that

( )rasasL θ  varies as a sine function with a dc component, we have

rmmlsasas LLLL θ2cos∆−+= .

Here, mL  is the average value of the magnetizing inductance; mL∆  is
the half of amplitude of the sinusoidal variation of the magnetizing
inductance.

The relationships between mqL , mdL , and mL , mL∆  must be found,

and for three-phase synchronous motors, one obtains

( )mmmq LLL ∆−= 2
3   and  ( )mmmd LLL ∆+= 2

3 .
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1 .

Using the expressions for mqL  and mdL , we have
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Therefore, the following equations for ψ ψas bs,  and ψ cs  result
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From (3.5.2), one has
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The inductance matrix L s  is given by
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It was shown that Lm  and L m∆  are expressed as
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Permanent-magnet synchronous machines are round-rotor electrical
machines (the magnetic paths in the quadrature and direct magnetic axes are
identical, and ℜ = ℜmq md ). Thus,
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Therefore, the inductance matrix is
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From (3.5.2) the expressions for the flux linkages are
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Using (3.5.1) and (3.5.3), we have
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Cauchy’s form can be found by making use of L s
−1 . In particular,
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The stator circuitry dynamics in Cauchy’s form is given as
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Here, L L Lss ls m= + .
In expanded form, we have the following nonlinear differential

equations which allow the designer to model the circuitry transient behavior
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            (3.5.4)
Having derived the differential equations to model the circuitry

dynamics, the transient behavior of the rotor (mechanical system) must be
incorporated. One cannot solve (3.5.4) where the electrical angular velocity
ωr  and angular displacement θr  are used as the state variables.

Making use of Newton’s second law
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we have a set of two differential equations. In particular,
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Here, WPM  is the energy stored in the permanent magnet.
For round-rotor synchronous machines
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The inductance matrix L s  and WPM  are not functions of θr . One
obtains the following formula to calculate the electromagnetic torque for
three-phase P-pole permanent-magnet synchronous motors
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Using the electrical angular velocity ω r  and displacement θr , related

to the mechanical angular velocity and displacement as ω ωrm rP
=

2
 and

θ θrm rP
=

2
, the following differential equations to model the torsional-

mechanical transient dynamics finally result

( ) ( )( )d

dt

P

J
i i i

B

J

P

J
Tr m

as r bs r cs r
m

r L
ω ψ θ θ π θ π ω= + − + + − −

2
2
3

2
34 2

cos cos cos ,

d
dt

r
r

θ
ω= .             (3.5.5)

From (3.5.4) and (3.5.5), one obtains a nonlinear mathematical model of
permanent-magnet synchronous motors in Cauchy’s form as given by a system
of five highly nonlinear differential equations
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In matrix for, from (3.5.6), we have
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To control the angular velocity, one regulates the currents fed or
voltages applied to the stator abc windings. Neglecting the viscous friction
coefficient, the analysis of Newton’s second law

T T J
d

dte L
rm− =

ω

indicates that
• the angular velocity ωrm  increases if T Te L> ,

• the angular velocity ωrm  decreases if T Te L< ,

• the angular velocity ωrm  is constant (ωrm const= ) if T Te L= .
That is, to regulate the electromagnetic torque, which was found as
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must be changed.



If the abc motor windings are fed by a balanced three-phase current set
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One concludes that to regulate the angular velocity, iM  must be

changed. Furthermore, the phase currents i tas ( ) , i tbs ( )  and i tcs ( ) , which

are shifted by 2
3
π , are the functions of the electrical angular displacement

θr  (measured using the Hall sensors).
If the voltage-fed power converters are used, one changes the magnitude

of voltages u tas ( ) , u tbs ( )  and u tcs ( ) . The angular displacement θr  is
needed to be measured (or estimated) in order to generate phase voltages.

In particular, the abc voltages needed to be supplied are

( )u t uas M r u( ) cos= +2 θ ϕ ,

( )u t ubs M r u( ) cos= − +2 2
3

θ π ϕ ,

( )u t ucs M r u( ) cos= + +2 2
3

θ π ϕ .

Neglecting the circuitry transients (assuming that inductances are
negligible small), we have

u t uas M r( ) cos= 2 θ ,

( )u t ubs M r( ) cos= −2 2
3

θ π ,

( )u t ucs M r( ) cos= +2 2
3

θ π .

Using a set of nonlinear differential equations (3.5.6), the block diagram is
developed and documented in Figure 3.5.5.
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Figure 3.5.5. Block diagram of three-phase permanent-magnet synchronous

       motors controlled by supplying u t uas M r( ) cos= 2 θ ,

       ( )u t ubs M r( ) cos= −2 2
3

θ π , ( )u t ucs M r( ) cos= +2 2
3

θ π .
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The Lagrange Equations of Motion and Dynamics of
Permanent-Magnet Synchronous Motors

Having derived the mathematical model for three-phase permanent-
magnet synchronous motors using Kirchhoff’s voltage law (to model the
circuitry dynamics), Newtonian’s mechanics (to model the torsional-
mechanical dynamics), and the coenergy concept (to find the electromagnetic
torque), let us attack the problem of model development using Lagrange’s
concept.

The generalized coordinates are the electric charges in the abc stator

windings q
i

s
q ias

as1 1= =, & , q
i

s
q ibs

bs2 2= =, & , q
i

s
q ics

cs3 3= =, & ,

and the angular displacement q qr r4 4= =θ ω, & . The generalized forces are

the applied voltages to the abc windings Q uas1 = , Q ubs2 = , Q ucs3 =  and

the load torque Q TL4 = − .
The resulting Lagrange equations are
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The total kinetic energy includes kinetic energies of electrical and
mechanical systems. In particular,
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The total potential energy is Π = 0 .
The total dissipated energy is found as a sum of the heat energy

dissipated by the electrical system and the heat energy dissipated by the
mechanical system. That is,

( )D r q r q r q B qs s s m= + + +1
2 1

2
2
2

3
2

4
2& & & & .

One obtains
∂
∂

D

q
r qs&

&
1

1= , 
∂
∂

D

q
r qs&

&
2

2= , 
∂
∂

D

q
r qs&

&
3

3=  and 
∂
∂

D

q
B qm&

&
4

4= .

Taking note of &q ias1 = , &q ibs2 = , &q ics3 =  and &q r4 = ω , the Lagrange
equations lead us to four differential equations
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For round-rotor permanent-magnet synchronous motors, one obtains
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From the fourth differential equation one finds that the electromagnetic
torque as
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.

Differential equations in Cauchy’s form, as given by (3.5.6) for P-pole
permanent-magnet synchronous motors, result. It was demonstrated that
applying Lagrange’s concept, a complete mathematical model for permanent-
magnet synchronous motors was straightforwardly developed.

Three-Phase Permanent-Magnet Synchronous Generators

For permanent-magnet synchronous generators, as shown in Figure
3.5.4, the mathematical model can be developed using Kirchhoff’s second
law
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and Newton’s second law of motion − − + =T B T J
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The striking application of the results presented for the permanent-
magnet synchronous motors results in the following set of differential
equations
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In matrix form, from (3.5.7), we have the following mathematical model
of three-phase permanent-magnet synchronous generators
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One concludes that nonlinear mathematical model of permanent-magnet
synchronous generators is derived to be used in analysis, modeling, and
control.

Mathematical  Models  of  Permanent-Magnet  Synchronous  Machines  in
the  Arbitrary,  Rotor,  and  Synchronous  Reference  Frames

Arbitrary  Reference  Frame

By fixing the reference frame with the rotor and making use of the direct
Park transformations

u K uqd s s abcs0 = , i K iqd s s abcs0 = , ψψ ψψqd s s abcs0 = K ,
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Multiplying left and right sides by K s , one obtains
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Using the Park transformation, the quadrature-, direct-, and zero-axis
components of stator flux linkages are found as
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Using (3.5.8) one finds
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Three differential equations which model the permanent-magnet
circuitry dynamics in the arbitrary reference frame are found as
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Rotor Reference Frame

The electrical angular velocity is equal to the synchronous angular
velocity. We assign the angular velocity of the reference frame to be
ω ω ω= =r e . Then, taking note of θ θ= r , we have the Park transformation
matrix
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In expanded form, the quadrature, direct, and zero flux linkages are
found to be
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The electromagnetic torque
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For P-pole permanent-magnet synchronous motors, the torsional-
mechanical dynamics is
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Augmenting differential equations (3.5.10) and (3.5.11), we have
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In matrix form, the mathematical model of permanent-magnet synchronous
motors in the rotor reference frame is
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   A balanced three-phase current set, to be fed to the stator windings, is
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one obtains the quadrature, direct and zero currents to regulate the angular
velocity of permanent-magnet synchronous motors and guarantee the
balanced operating conditions. We have
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Hence, one obtains
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Due to the self-inductances, the abc voltages should be supplied with
advanced phase shifting. One supplies the following phase voltages
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Using the trigonometric identities, we have
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Due to small inductances, ϕu ≈ 0 , and the following phase voltages can
be supplied

u t uqs
r

M( ) = 2 , u tds
r ( ) = 0 , u ts

r
0 0( ) = .

To visualize the results, an s-domain block diagram in the qd0 variables
is developed using (3.5.12), see Figure 3.5.6.

Figure 3.5.6. S-domain block diagram of permanent-magnet
synchronous motors modeled in the rotor reference frame
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Synchronous Reference Frame

Analyzing permanent-magnet synchronous machines in the synchronous
reference frame, one specifies the angular velocity of the reference frame to
be ω ω= e . Hence, θ θ= e , and the Park transformation matrix is given as
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Substituting ω ωr e=  in (3.5.12) we have the following system of
differential equations which model the permanent-magnet motor dynamics in
the synchronous reference frame
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The quadrature, direct, and zero currents, needed to be fed to guarantee the
balanced operation, are

i t iqs
e

M( ) = 2 ,

i tds
e ( ) = 0 ,

i ts
e
0 0( ) = .

To control the angular velocity (in the drive application) of permanent-
magnet synchronous motors or the displacement (in servo-system
application), one supplies the phase voltages to the abc stator windings as a
function of the angular displacement (measured by the Hall-effect sensors).
Correspondingly, ICs must is used, and the permanent-magnet synchronous
motors driver MC33035 is manufactured by Motorola, see the data,
description, and operation given below.
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Brushless DC
Motor Controller

 

The MC33035 is a high performance second generation monolithic
brushless DC motor controller containing all of the active functions required
to implement a full featured open loop, three or four phase motor control
system. This device consists of a rotor position decoder for proper com-
mutation sequencing, temperature compensated reference capable of sup-
plying sensor power, frequency programmable sawtooth oscillator, three
open collector top drivers, and three high current totem pole bottom drivers
ideally suited for driving power MOSFETs.

Also included are protective features consisting of undervoltage lockout,
cycle–by–cycle current limiting with a selectable time delayed latched
shutdown mode, internal thermal shutdown, and a unique fault output that
can be interfaced into microprocessor controlled systems.

Typical motor control functions include open loop speed, forward or
reverse direction, run enable, and dynamic braking. The MG33035 is
designed to operate with electrical sensor phasings of 60°/300° or
120°/240°, and can also efficiently control brush DC motors.

 

•

 

10 to 30 V Operation

 

•

 

Undervoltage Lockout

 

•

 

6.25 V Reference Capable of Supplying Sensor Power

 

•

 

Fully Accessible Error Amplifier for Closed Loop Servo Applications

 

•

 

High Current Drivers Can Control External 3–Phase MOSFET Bridge

 

•

 

Cycle–By–Cycle Current Limiting

 

•

 

Pinned–Out Current Sense Reference

 

•

 

Internal Thermal Shutdown

 

•

 

Selectable 60°/300° or 120°/240° Sensor Phasings

 

•

 

Can Efficiently Control Brush DC Motors with External MOSFET
H–Bridge

 

ORDERING INFORMATION

 

Device
Operating 

Temperature Range Package

 

MC33035DW

 

TA = –40° to 

 

+

 

85°C
SO–24L

 

MC33035P

 

Plastic DIP

 

Monolithic ICs:
Permanent-Magnet Synchronous Motors Driver MC33035

 

(Copyright of Motorola, used with permission)
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MAXIMUM RATINGS

 

Rating Symbol Value Unit

 

Power Supply Voltage

 

VCC 40 V

 

Digital Inputs (Pins 3, 4, 5, 6, 22, 23)

 

— Vref V

 

Oscillator Input Current (Source or Sink)

 

IOSC 30 mA

 

Error Amp Input Voltage Range

(Pins 11, 12, Note 1)

 

VIR

 

−

 

0.3 to Vref V

 

Error Amp Output Current

 

(Source or Sink, Note 2)
Iout 10 mA

 

Current Sense Input Voltage Range (Pins 9, 15)

 

VSense

 

−

 

0.3 to 5.0 V

 

 Output Voltage

 

VCE( ) 20 V

 

 Output Sink Current

 

ISink( ) 20 mA

 

Top Drive Voltage (Pins 1, 2, 24)

 

VCE(top) 40 V

 

Top Drive Sink Current (Pins 1, 2, 24)

 

ISink(top) 50 mA

 

Bottom Drive Supply Voltage (Pin 18)

 

VC 30 V

 

Bottom Drive Output Current

 

(Source or Sink, Pins 19, 20, 21)
IDRV 100 mA

 

Power Dissipation and Thermal Characteristics

 

P Suffix, Dual In Line, Case 724

Maximum Power Dissipation @ TA = 85°C

Thermal Resistance, Junction–to–Air

DW Suffix, Surface Mount, Case 751 E

Maximum Power Dissipation @ TA = 85°C

Thermal Resistance, Junction–to–Air

PD
R

 

θ

 

JA

PD
R

 

θ

 

JA

867
75

650
100

mW
°C/W

mW
°C/W

 

Operating Junction Temperature

 

TJ 150 °C

 

Operating Ambient Temperature Range

 

TA

 

−

 

40 to 

 

+

 

85 °C

 

Storage Temperature Range

 

Tstg

 

−

 

65 to 

 

+

 

150 °C

 

ELECTRICAL CHARACTERISTICS 

 

(VCC = VC = 20 V, RT = 4.7 k, CT = 10 nF, TA = 25°C, unless otherwise noted.)

 

Characteristic Symbol Min Typ Max Unit

 

REFERENCE SECTION

 

Reference Output Voltage (Iref = 1.0 mA)

TA 

 

=

 

 25°C

TA 

 

=

 

 

 

−

 

40°C to 

 

+

 

85°C

 

Vref
5.9

5.82

6.24

—

6.5

6.57

V

 

Line Regulation (VCC 

 

=

 

 10 to 30 V, Iref 

 

=

 

 1.0 mA)

 

Regline — 1.5 30 mV

 

Load Regulation (Iref = 1.0 to 20 mA)

 

Regload — 16 30 mV

 

Output Short Circuit Current (Note 3)

 

ISC 40 75 — mA

 

Reference Under Voltage Lockout Threshold

 

Vth 4.0 4.5 5.0 V

 

ERROR AMPLIFIER

 

Input Offset Voltage (TA = 

 

−

 

40° to 

 

+

 

85°C)

 

VIO — 0.4 10 mV

 

Input Offset Current (TA = 

 

−

 

40° to 

 

+

 

85°C)

 

IIO — 8.0 500 nA

 

Input Bias Current (TA = 

 

−

 

40° to 

 

+

 

85°C)

 

IIB —

 

−

 

46

 

−

 

1000 nA

 

Input Common Mode Voltage Range

 

VICR (0 V to Vref) V

 

Open Loop Voltage Gain (VO = 3.0 V, RL 

 

=

 

 15 k)

 

AVOL 70 80 — dB

 

Input Common Mode Rejection Ratio

 

CMRR 55 86 — dB

 

Power Supply Rejection Ratio (VCC 

 

=

 

 VC 

 

=

 

 10 to 30 V)

 

PSRR 65 105 — dB

 

NOTES: 1. The input common mode voltage or input signal voltage should not be allowed to go negative by more than 0.3 V.
2. The compliance voltage must not exceed the range of 

 

−

 

0.3 to Vref.
3. Maximum package power dissipation limits must be observed.

Fault Fault

Fault Fault
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ELECTRICAL CHARACTERISTICS (continued) 

 

(VCC = VC = 20 V, RT = 4.7 k, CT = 10 nF, TA = 25°C, unless otherwise noted.)

 

Characteristic Symbol Min Typ Max Unit

 

ERROR AMPLIFIER

 

Output Voltage Swing
High State (RL 

 

=

 

 15 k to Gnd)
Low State (RL 

 

=

 

 15 k to Vref)

 

VOH
VOL

4.6
—

5.3
0.5

—
1.0

V

 

OSCILLATOR SECTION

 

Oscillator Frequency

 

fOSC 22 25 28 kHz

 

Frequency Change with Voltage (VCC 

 

=

 

 10 to 30 V)

 

∆

 

fOSC/

 

∆

 

V — 0.01 5.0 %

 

Sawtooth Peak Voltage

 

VOSC(P) — 4.1 4.5 V

 

Sawtooth Valley Voltage

 

VOSC(V) 1.2 1.5 — V

 

LOGIC INPUTS

 

Input Threshold Voltage (Pins 3, 4, 5, 6, 7, 22, 23)
High State
Low State

 

VIH
VIL

3.0
—

2.2
1.7

—
0.8

V

 

Sensor Inputs (Pins 4, 5, 6)
High State Input Current (VIH 

 

=

 

 5.0 V)
Low State Input Current (VIL 

 

=

 

 0 V)

 

IIH
IIL

 

−

 

150

 

−

 

600

 

−

 

70

 

−

 

337

 

−

 

20

 

−

 

150

 

µ

 

A

 

Forward/Reverse, Select (Pins 3, 22, 23)
High State Input Current (VIH 

 

=

 

 5.0 V)
Low State Input Current (VIL 

 

=

 

 0 V)

 

IIH
IIL

 

−

 

75

 

−

 

300

 

−

 

36

 

−

 

175

 

−

 

10

 

−

 

75

 

µ

 

A

 

Output Enable
High State Input Current (VIH 

 

=

 

 5.0 V)
Low State Input Current (VIL 

 

=

 

 0 V)

 

IIH
IIL

 

−

 

60

 

−

 

60

 

−

 

29

 

−

 

29

 

−

 

10

 

−

 

10

 

µ

 

A

 

CURRENT–LIMIT COMPARATOR

 

Threshold Voltage

 

Vth 85 101 115 mV

 

Input Common Mode Voltage Range

 

VICR — 3.0 — V

 

Input Bias Current

 

IIB —

 

−

 

0.9

 

−

 

5.0

 

µ

 

A

 

OUTPUTS AND POWER SECTIONS

 

Top Drive Output Sink Saturation (Isink = 25 mA)

 

VCE(sat) — 0.5 1.5 V

 

Top Drive Output Off–State Leakage (VCE = 30 V)

 

IDRV(leak) — 0.06 100

 

µ

 

A

 

Top Drive Output Switching Time (CL = 47 pF, RL = 1.0 k)
Rise Time
Fall Time

 

tr
tf

—
—

107
26

300
200

ns

 

Bottom Drive Output Voltage
High State (VCC = 20 V, VC = 30 V, Isource = 50 mA)
Low State (VCC = 20 V, VC = 30 V, Isink = 50 mA)

 

VOH
VOL

(VCC 

 

−

 

2.0)
—

(VCC 

 

−

 

1.1)
1.5

—
2.0

V

 

Bottom Drive Output Switching Time (CL = 1000 pF)
Rise Time
Fall Time

 

tr
tf

—
—

38
30

200
200

ns

 

Output Sink Saturation (Isink = 16 mA)

 

VCE(sat) — 225 500 mV

 

Output off–State leakage (ICE = 20 V)

 

IFLT(leak) — 1.0 100

 

µ

 

A

 

Under Voltage Lockout
Drive Output Enabled (VCC or VC Increasing)
Hysteresis

 

Vth(on)
VH

8.2
0.1

8.9
0.2

10
0.3

V

 

Power Supply Current
Pin 17 (VCC = VC = 20 V)
Pin 17 (VCC = 20 V, VC = 30 V)
Pin 18 (VCC = VC = 20 V)
Pin 18 (VCC = 20 V, VC = 30 V)

 

ICC

IC

—
—
—
—

12
14
3.5
5.0

16
20
6.0
10

mA

60°/120°

Fault

Fault
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INTRODUCTION

 

The MC33035 is one of a series of high performance
monolithic DC brushless motor controllers produced by
Motorola. It contains all of the functions required to imple-
ment a full–featured, open loop, three or four phase motor
control system. In addition, the controller can be made to
operate DC brush motors. Constructed with Bipolar Analog
technology, it offers a high degree of performance and rug-
gedness in hostile industrial environments. The MC33035
contains a rotor position decoder for proper commutation
sequencing, a temperature compensated reference capable
of supplying a sensor power, a frequency programmable
sawtooth oscillator, a fully accessible error amplifier, a pulse
width modulator comparator, three open collector top drive
outputs, and three high current totem pole bottom driver
outputs ideally suited for driving power MOSFETs.

Included in the MC33035 are protective features consist-
ing of undervoltage lockout, cycle–by–cycle current limiting
with a selectable time delayed latched shutdown mode,
internal thermal shutdown, and a unique fault output that
can easily be interfaced to a microprocessor controller.

Typical motor control functions Include open loop speed
control, forward or reverse rotation, run enable, and dynamic
braking. In addition, the MC33035 has a select pin
which configures the rotor position decoder for either 60° or
120° sensor electrical phasing inputs.

 

FUNCTIONAL DESCRIPTION

 

A representative internal block diagram Is shown in
Figure 19 with various applications shown in Figures 36,
38, 39, 43, 45, and 46. A discussion of the features and
function of each of the internal blocks given below is refer-
enced to Figures 19 and 36.

 

Rotor Position Decoder

 

An internal rotor position decoder monitors the three
sensor inputs (Pins 4, 5, 6) to provide the proper sequencing
of the top and bottom drive outputs. The sensor inputs are
designed to interface directly with open collector type Hall
Effect switches or opto slotted couplers. Internal pull–up
resistors are included to minimize the required number of
external components. The inputs are TTL compatible, with
their thresholds typically at 2.2 V. The MC33035 series is
designed to control three phase motors and operate with
four of the most common conventions of sensor phasing.
A Select (Pin 22) is conveniently provided and
affords the MC33035 to configure itself to control motors
having either 61°, 120°, 240° or 300° electrical sensor phas-
ing. With three sensor inputs there are eight possible input
code combinations, six of which are valid rotor positions. The
remaining two codes are invalid and are usually caused by
an open or shorted sensor line. With six valid input codes, the

 

PIN FUNCTION DESCRIPTION

 

Pin Symbol Description

 

1, 2, 24

 

BT, AT, CT These three open collector Top Drive outputs, are designed to drive the external 
upper power switch transistors.

 

3

 

Fwd/Rev The Forward/Reverse Input is used to change the direction of motor rotation. 

 

4, 5, 6

 

SA, SB, SC These three Sensor Inputs control the commutation sequence.

 

7

 

Output Enable A logic high at this input causes the motor to run, while a low causes it to coast.

 

8

 

Reference Output This output provides charging current for the oscillator timing capacitor CT and 
a reference for the error amplifier. It may also serve to furnish sensor power.

 

9

 

Current Sense Noninverting Input A 100mV signal, with respect to Pin 15, at this input terminates output switch 
conduction during a given oscillator cycle. This pin normally connects to the 
top side of the current sense resistor.

 

10

 

Oscilator The Oscillator frequency is programmed by the values selected for the timing 
components, RT and CT.

 

11

 

Error Amp Noninverting Input This Input is normally connected to the speed set potentiometer.

 

12

 

Error Amp Inverting Input This input is normally connected to the Error Amp Output in open loop appli-
cations.

 

13

 

Error Amp Out/PWM Input This pin is available for compensation in closed loop applications.

 

14

 

This open collector output is active low during one or more of the following 
conditions: Invalid Sensor Input code, Enable Input at logic 0, Current Sense 
Input greater than 100 mV (Pin 9 with respect to Pin 15), Undervoltage Lockout 
activation, and Thermal Shutdown.

 

15

 

Current Sense Inverting Input Reference pin for internal 100 mV threshold. This pin is normally connected to 
the bottom side of the current sense resistor.

 

16

 

Gnd This pin supplies a ground for the control circuit and should be referenced back 
to the power source ground.

 

17

 

VCC This pin is the positive supply of the control IC. The controller is functional over 
a minimum VCC range of 10 to 30 V.

 

18

 

VC The high state (VOH) of the Bottom Drive Outputs is set by the voltage applied 
to this pin. The controller is operational over a minimum VC range of 10 to 30 V.

 

19, 20, 21

 

CB, BB, AB These three totem pole Bottom Drive Outputs are designed for direct drive of 
the external bottom power switch transistors.

 

22

 

The electrical state of this pin configures the control circuit operation for either 
60° (high state) or 120° (low state) sensor electrical phasing inputs.

 

23

 

Brake A logic low state at this input allows the motor to run, while a high state does 
not allow motor operation and if operating causes rapid deceleration.

Fault Output

60°/120° Select

60°/120°

60°/120°
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decoder can resolve the motor rotor position to within a
window of 60 electrical degrees.

The Forward/Reverse input (Pin 3) is used to change the
direction of motor rotation by reversing the voltage across
the stator winding. When the input changes state, from high
to low with a given sensor input code (for example 100),
the enabled top and bottom drive outputs with the same
alpha designation are exchanged (AT to AB, BT to BB, CT
to CB). In effect, the commutation sequence is reversed
and the motor changes directional rotation.

Motor on/off control Is accomplished by the Output
Enable (Pin 7). When left disconnected, an internal 25 

 

µ

 

A
current source enables sequencing of the top and bottom
drive outputs. When grounded, the top drive outputs turn
off and the bottom drives are forced low, causing the motor
to coast and the output to activate.

Dynamic motor braking allows an additional margin of
safety to be designed into the final product. Braking is
accomplished by placing the Brake Input (Pin 23) in a high
state. This causes the top drive outputs to turn off and the
bottom drives to turn on, shorting the motor–generated back
EMF. The brake input has unconditional priority over all
other inputs. The internal 40 k

 

Ω

 

 pull–up resistor simplifies
interfacing with the system safety–switch by insuring brake
activation if opened or disconnected. The commutation logic
truth table is shown in Figure 20. A four input NOR gate is
used to monitor the brake input and the inputs to the three
top drive output transistors. Its purpose is to disable braking
until the top drive outputs attain a high state. This helps to

prevent simultaneous conduction of the top and bottom
power switches. In half wave motor drive applications, the
top drive outputs are not required and are normally left
disconnected. Under these conditions braking will still be
accomplished since the NOR gate senses the base voltage
to the top drive output transistors.

 

Error Amplifier

 

A high performance, fully compensated error amplifier with
access to both inputs and output (Pins 11, 12. 13) is provided
to facilitate the implementation of closed loop motor speed
control. The amplifier features a typical DC voltage gain of
80 dB, 0.6 MHz gain bandwidth, and a wide input common
mode voltage range that extends from ground to Vref. In most
open loop speed control applications, the amplifier is config-
ured as a unity gain voltage follower with the noninverting
input connected to the speed set voltage source. Additional
configurations are shown in Figures 31 through 35.

 

Oscillator

 

The frequency of the internal ramp oscillator is pro-
grammed by the values selected for timing components RT
and CT. Capacitor CT is charged from the Reference Output
(Pin 8) through resistor RT and discharged by an internal
discharge transistor. The ramp peak and valley voltages are
typically 4.1 V and 1.5 V respectively. To provide a good
compromise between audible noise and output switching
efficiency, an oscillator frequency in the range of 20 to
30 kHz is recommended. Refer to Figure 1 for component
selection.

Fault
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Pulse Width Modulator

 

The use of pulse width modulation provides an energy
efficient method of controlling the motor speed by varying
the average voltage applied to each stator winding during
the commutation sequence. As CT discharges, the oscillator
sets both latches, allowing conduction of the top and bottom
drive outputs. The PWM comparator resets the upper latch,
terminating the bottom drive output conduction when the
positive–going ramp of CT becomes greater than the error
amplifier output. The pulse width modulator timing diagram
is shown in Figure 21. Pulse width modulation for speed
control appears only at the bottom drive outputs.

 

Current Limit

 

Continuous operation of a motor that is severely
over–loaded results in overheating and eventual failure. This
destructive condition can best be prevented with the use of
cycle–by–cycle current limiting. That is, each on–cycle is
treated as a separate event. Cycle–by–cycle current limiting
is accomplished by monitoring the stator current build–up
each time an output switch conducts, and upon sensing an
over current condition, immediately turning off the switch
and holding it off for the remaining duration of oscillator
ramp–up period. The stator current is converted to a voltage
by inserting a ground–referenced sense resistor RS (Figure
36) in series with the three bottom switch transistors (Q4,
Q5, Q6). The voltage developed across the sense resistor
is monitored by the Current Sense Input (Pins 9 and 15),
and compared to the internal 100 mV reference. The current
sense comparator inputs have an input common mode
range of approximately 3.0 V. If the 100 mV current sense
threshold is exceeded, the comparator resets the lower

sense latch and terminates output switch conduction. The
value for the current sense resistor is:

The output activates during an over current condition.
The dual–latch PWM configuration ensures that only one
single output conduction pulse occurs during any given
oscillator cycle, whether terminated by the output of the
error amp or the current limit comparator.

 

Figure 20. Three Phase, Six Step Commutation Truth Table (Note 1)

Inputs (Note 2) Outputs (Note 3)

Sensor Electrical Phasing (Note 4)

F/R Enable Brake
Current
Sense

Top Drives Bottom Drives

SA
60°
SB SC SA

120°
SB SC AT BT CT AB BB CB

 

1
1
1
0
0
0

0
1
1
1
0
0

0
0
1
1
1
0

1
1
0
0
0
1

0
1
1
1
0
0

0
0
0
1
1
1

1
1
1
1
1
1

1
1
1
1
1
1

0
0
0
0
0
0

0
0
0
0
0
0

0
1
1
1
1
0

1
0
0
1
1
1

1
1
1
0
0
1

0
0
1
1
0
0

0
0
0
0
1
1

1
1
0
0
0
0

1
1
1
1
1
1

 

(Note 5)

 

F/R = 1

1
1
1
0
0
0

0
1
1
1
0
0

0
0
1
1
1
0

1
1
0
0
0
1

0
1
1
1
0
0

0
0
0
1
1
1

0
0
0
0
0
0

1
1
1
1
1
1

0
0
0
0
0
0

0
0
0
0
0
0

1
1
0
0
1
1

1
1
1
1
0
0

0
0
1
1
1
1

1
0
0
0
0
1

0
1
1
0
0
0

0
0
0
1
1
0

1
1
1
1
1
1

 

(Note 5)

 

F/R = 0

1
0

0
1

1
0

1
0

1
0

1
0

X
X

X
X

0
0

X
X

1
1

1
1

1
1

0
0

0
0

0
0

0
0

 

(Note 6)

 

Brake = 0

1
0

0
1

1
0

1
0

1
0

1
0

X
X

X
X

1
1

X
X

1
1

1
1

1
1

0
0

0
0

0
0

0
0

 

(Note 7)

 

Brake = 1

V V V V V V X 1 1 X 1 1 1 1 1 1 1

 

(Note 8)

 

V V V V V V X 0 1 X 1 1 1 1 1 1 0

 

(Note 9)

V V V V V V X 0 0 X 1 1 1 0 0 0 0 (Note 10)

V V V V V V X 1 0 1 1 1 1 0 0 0 0 (Note 11)

NOTES: 1. V = Any one of six valid Sensor or drive combinations X = Don’t care.
2. The digital inputs (Pins 3, 4, 5, 6, 7, 22, 23) are all TTL compatible. The current sense input (Pin 9) has a 100 mV threshold with respect 

to Pin 15. A logic 0 for this input is defined as <85 mV, and a logic 1 is >115 mV.
3. The fault and top drive outputs are open collector design and active in the low (0) state.
4. With 60°/120° select (Pin 22) in the high (1) state, configuration Is for 60° sensor electrical phasing inputs. With Pin 22 in low (0) state, 

configuration is for 120° sensor electrical phasing inputs.
5. Valid 60° or 120° sensor combinations for corresponding valid top and bottom drive outputs.
6. Invalid sensor inputs with brake = 0; All top and bottom drives off, low.
7. Invalid sensor inputs with brake = 1; All top drives off; all bottom drives on, low.
8. Valid 60° or 120° sensor inputs with brake = 1: All top drives off, all bottom drives on, high.
9. Valid sensor inputs with brake = 1 and enable = 0; All top drives off, all bottom drives on, low.

10. Valid sensor inputs with brake = 0 and enable = 0; All top and bottom drives off, Fault low.
11. All bottom drives off, low.

Fault

Fault
Fault

Fault
Fault

Fault

RS
0.1

Istator(max)
--------------------------------=

Fault
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Reference
The on–chip 6.25 V regulator (Pin 8) provides charging

current for the oscillator timing capacitor, a reference for the
error amplifier, and can supply 20 mA of current suitable
for directly powering sensors In low voltage applications. In
higher voltage applications, It may become necessary to
transfer the power dissipated by the regulator off the IC.
This Is easily accomplished with the addition of an external
pass transistor as shown in Figure 22. A 6.25 V reference
level was chosen to allow implementation of the simpler
NPN circuit, where Vref – VBE exceeds the minimum voltage
required by Hall Effect sensors over temperature. With
proper transistor selection and adequate heatsinking, up to
one amp of load current can be obtained.

The NPN circuit is recommended for powering Hall or opto sensors, where
the output voltage temperature coefficient is not critical. The PNP circuit
is slightly more complex. but is also more, accurate over temperature.
Neither circuit has current limiting.

Undervoltage Lockout
A triple Undervoltage Lockout has been incorporated to

prevent damage to the IC and the external power switch
transistors. Under low power supply conditions, it guaran-
tees that the IC and sensors are fully functional, and that
there is sufficient bottom drive output voltage. The positive
power supplies to the IC (VCC) and the bottom drives (VC)
are each monitored by separate comparators that have their
thresholds at 9.1 V. This level ensures sufficient gate drive
necessary to attain low RDS(on) when driving standard
power MOSFET devices. When directly powering the Hall
sensors from the reference, improper sensor operation can
result if the reference output voltage falls below 4.5 V. A
third comparator is used to detect this condition. If one or
more of the comparators detects an undervoltage condition,
the Output is activated, the top drives are turned off
and the bottom drive outputs are held in a low state. Each

of the comparators contain hysteresis to prevent oscillations
when crossing their respective thresholds.

Output
The open collector Output (Pin 14) was designed

to provide diagnostic information in the event of a system
malfunction. It has a sink current capability of 16 mA and
can directly drive a light emitting diode for visual indication.
Additionally, it is easily interfaced with TTL/CMOS logic for
use in a microprocessor controlled system. The Out-
put is active low when one or more of the following condi-
tions occur:

1) Invalid Sensor Input code
2) Output Enable at logic (0)
3) Current Sense Input greater than 100 mV
4) Undervoltage Lockout, activation of one or more of

the comparators
5) Thermal Shutdown, maximum junction temperature

being exceeded
This unique output can also be used to distinguish

between motor start–up or sustained operation in an over-
loaded condition. With the addition of an RC network
between the Output and the enable input, it is possi-
ble to create a time–delayed latched shutdown for overcur-
rent. The added circuitry shown in Figure 23 makes easy
starting of motor systems which have high inertial loads by
providing additional starting torque, while still preserving
overcurrent protection. This task is accomplished by setting
the current limit to a higher than nominal value for a pre-
determined time. During an excessively long overcurrent
condition, capacitor CDLY will charge. causing the enable
input to cross its threshold to a low state. A latch is then
formed by the positive feedback loop from the Output
to the Output Enable. Once set, by the Current Sense Input,
It can only be reset by shorting CDLY or cycling the power
supplies.

Drive Outputs
The three top drive outputs (Pins 1, 2, 24) are open

collector NPN transistors capable of sinking 50 mA with a
minimum breakdown of 30 V. Interfacing into higher voltage
applications is easily accomplished with the circuits shown
in Figures 24 and 25.

The three totem pole bottom drive outputs (Pins 19, 20,
21) are particularly suited for direct drive of N–Channel
MOSFETs or NPN bipolar transistors (Figures 26, 27, 28
and 29). Each output is capable of sourcing and sinking up
to 100 mA. Power for the bottom drives is supplied from VC
(Pin 18). This separate supply input allows the designer
added flexibility in tailoring the drive voltage, independent
of VCC. A zener clamp should be connected to this input
when driving power MOSFETs in systems where VCC is
greater than 20 V so as to prevent rupture of the MOSFET
gates.

The control circuitry ground (Pin 16) and current sense
inverting input (Pin 15) must return on separate paths to
the central input source ground.

Thermal Shutdown
Internal thermal shutdown circuitry is provided to protect

the IC in the event the maximum junction temperature is
exceeded. When activated, typically at 170°C, the IC acts
as though the Output Enable was grounded.

Figure 22. Reference Output Buffers

 

Fault

Fault
Fault

Fault

Fault

Fault
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SYSTEM APPLICATIONS

Three Phase Motor Commutation
The three phase application shown in Figure 36 is a full–

featured open loop motor controller with full wave, six step
drive. The upper power switch transistors are Darlingtons
while the lower devices are power MOSFETs. Each of these
devices contains an internal parasitic catch diode that is
used to return the stator inductive energy back to the power
supply. The outputs are capable of driving a delta or wye
connected stator, and a grounded neutral wye if split sup-
plies are used. At any given rotor position, only one top and
one bottom power switch (of different totem poles) is
enabled. This configuration switches both ends of the stator
winding from supply to ground which causes the current
flow to be bidirectional or full wave. A leading edge spike
is usually present on the current waveform and can cause
a current–limit instability. The spike can be eliminated by
adding an RC filter in series with the Current Sense Input.
Using a low inductance type resistor for RS will also aid in
spike reduction. Care must be taken in the selection of the

bottom power switch transistors so that the current during
braking does not exceed the device rating. During braking,
the peak current generated is limited only by the series
resistance of the conducting bottom switch and winding.

If the motor is running at maximum speed with no load, the
generated back EMF can be as high as the supply voltage,
and at the onset of braking, the peak current may approach
twice the motor stall current. Figure 37 shows the commu-
tation waveforms over two electrical cycles. The first cycle
(0° to 360°) depicts motor operation at full speed while the
second cycle (360° to 720°) shows a reduced speed with
about 50% pulse width modulation. The current waveforms
reflect a constant torque load and are shown synchronous
to the commutation frequency for clarity.

Ipeak

VM EMF+

Rswitch Rwinding+
----------------------------------------------------=
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Figure 38 shows a three phase, three step, hall wave
motor controller. This configuration is ideally suited for auto-
motive and other low voltage applications since there is only
one power switch voltage drop In series with a given stator
winding. Current flow is unidirectional or half wave because
only one end of each winding is switched. Continuous brak-
ing with the typical half wave arrangement presents a motor
overheating problem since stator current is limited only by
the winding resistance. This is due to the lack of upper
power switch transistors, as in the full wave circuit, used to
disconnect the windings from the supply voltage VM. A

unique solution is to provide braking until the motor stops
and then turn off the bottom drives. This can be accom-
plished by using the Output in conjunction with the
Output Enable as an over current timer. Components RDLY
and CDLY are selected to give the motor sufficient time to
stop before latching the Output Enable and the top drive
AND gates low. When enabling the motor, the brake switch
is closed and the PNP transistor (along with resistors R1
and RDLY) are used to reset the latch by discharging CDLY.
The stator flyback voltage is clamped by a single zener and
three diodes.

Fault

 

 



Chapter three: Structural design, modeling, and simulation 273

Three Phase Closed Loop Controller
The MC33035, by itself, is only capable of open loop

motor speed control. For closed loop motor speed control,
the MC33035 requires an input voltage proportional to the
motor speed. Traditionally, this has been accomplished by
means of a tachometer to generate the motor speed feed-
back voltage. Figure 39 shows an application whereby an
MC33039, powered from the 6.25 V reference (Pin 8) of the
MC33035, is used to generate the required feedback volt-
age without the need of a costly tachometer. The same Hall
sensor signals used by the MC33035 for rotor position decod-
ing are utilized by the MC33039. Every positive or negative
going transition of the Hall sensor signals on any of the
sensor lines causes the MC33039 to produce an output
pulse of defined amplitude and time duration, as determined

by the external resistor R1 and capacitor C1. The output
train of pulses at Pin 5 of the MC33039 are integrated by
the error amplifier of the MC33035 configured as an inte-
grator to produce a DC voltage level which is proportional
to the motor speed. This speed proportional voltage estab-
lishes the PWM reference level at Pin 13 of the MC33035
motor controller and closes the feedback loop. The
MC33035 outputs drive a TMOS power MOSFET 3–phase
bridge. High currents can be expected during conditions of
start–up, breaking, and change of direction of the motor.

The system shown in Figure 39 is designed for a motor
having 120/240 degrees Hall sensor electrical phasing. The
system can easily be modified to accommodate 60/300
degree Hall sensor electrical phasing by removing the
jumper (J2) at Pin 22 of the MC33035.
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Sensor Phasing Comparison
There are four conventions used to establish the relative

phasing of the sensor signals In three phase motors. With
six step drive, an input signal change must occur every 60
electrical degrees; however, the relative signal phasing is
dependent upon the mechanical sensor placement. A com-
parison of the conventions in electrical degrees is shown in
Figure 40. From the sensor phasing table in Figure 41, note
that the order of input codes for 60° phasing Is the reverse
of 300°. This means the MC33035. when configured for 60°
sensor electrical phasing, will operate a motor with either
60° or 300° sensor electrical phasing, but resulting in oppo-
site directions of rotation. The same is true for the part when
it is configured for 120° sensor electrical phasing; the motor
will operate equally, but will result in opposite directions of
rotation for 120° for 240° conventions.

In this data sheet, the rotor position is always given in
electrical degrees since the mechanical position is a func-
tion of the number of rotating magnetic poles. The relation-
ship between the electrical and mechanical position is:

An increase in the number of magnetic poles causes
more electrical revolutions for a given mechanical revolu-
tion. General purpose three phase motors typically contain
a four pole rotor which yields two electrical revolutions for
one mechanical.

Two and Four Phase Motor Commutation
The MC33035 is also capable of providing a four stop

output that can be used to drive two or four phase motors.
The truth table in Figure 42  shows that by connecting sensor
inputs SB and SC together, it is possible to truncate the
number of drive output states from six to four. The output
power switches are connected to BT, CT, BB, and CB.
Figure 43 shows a four phase, four step, full wave motor
control application. Power switch transistors Q1 through Q8
are Darlington type, each with an internal parasitic catch
diode. With four step drive, only two rotor position sensors
spaced at 90 electrical degrees are required. The commu-
tation waveforms are shown in Figure 44.

Figure 45 shows a four phase, four step, half wave motor
controller. It has the same features as the circuit in Figure
38, except for the deletion of speed control and braking.

 

 

Figure 42. Two and Four Phase, Four Step,
Commutation Truth Table

MC33035 Select Pin Open)

Inputs Outputs

Sensor Electrical
Spacing* = 90°

F/R

Top Drives Bottom Drives

SA SB BT CT BB CB
1
1
0
0

0
1
1
0

1
1
1
1

1
0
1
1

1
1
0
1

0
0
0
1

1
0
0
0

1
1
0
0

0
1
1
0

0
0
0
0

1
1
1
0

0
1
1
1

0
1
0
0

0
0
1
0

*With MC33035 sensor input SB connected to SC.

Electrical Degrees Mechanical Degrees
#Rotor Poles

2
---------------------------------- 

 =

(60°/120°
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Brush Motor Control
Though the MC33035 was designed to control brushless

DC motors, it may also be used to control DC brush type
motors. Figure 46 shows an application of the MC33035
driving a MOSFET H–bridge affording minimal parts count
to operate a brush–type motor. Key to the operation is the
input sensor code [100] which produces a top–left (Q1) and a
bottom–right (Q3) drive when the controller’s forward/reverse
pin is at logic [1]; top–right (Q4), bottom–left (Q2) drive is
realized when the Forward/Reverse pin is at logic [0]. This
code supports the requirements necessary for H–bridge drive
accomplishing both direction and speed control.

The controller functions in a normal manner with a pulse
width modulated frequency of approximately 25 kHz. Motor
speed is controlled by adjusting the voltage presented to
the noninverting input of the error amplifier establishing the
PWM’s slice or reference level. Cycle–by–cycle current lim-
iting of the motor current is accomplished by sensing the
voltage (100 mV) across the RS resistor to ground of the
H–bridge motor current. The over current sense circuit
makes it possible to reverse the direction of the motor, using

the normal forward/reverse switch, on the fly and not have
to completely stop before reversing.

LAYOUT CONSIDERATIONS
Do not attempt to construct any of the brushless

motor control circuits on wire–wrap or plug–in proto-
type boards. High frequency printed circuit layout tech-
niques are imperative to prevent pulse jitter. This is usually
caused by excessive noise pick–up imposed on the current
sense or error amp inputs. The printed circuit layout should
contain a ground plane with low current signal and high
drive and output buffer grounds returning on separate paths
back to the power supply input filter capacitor VM. Ceramic
bypass capacitors (0.1 µF) connected close to the inte-
grated circuit at VCC, VC, Vref and the error amp nonin-
verting input may be required depending upon circuit layout.
This provides a low impedance path for filtering any high
frequency noise. All high current loops should be kept as
short as possible using heavy copper runs to minimize
radiated EMI.

 



3.6.  MICROSCALE PERMANENT-MAGNET STEPPER MOTORS

In MEMS and microscale devices, permanent-magnet stepper motors
can be used. Translational and rotational microscale stepper motors (which
are synchronous electric machines) have been designed, fabricated, and
tested. These motors develop high electromagnetic torque, while the
mechanical angular velocity is relatively low. Therefore, permanent-magnet
stepper motors can be easily integrated into servos as direct-drive servo-motors.
This direct connection of micromotors without matching mechanical coupling
allows one to achieve a remarkable level of efficiency, reliability, and
performance. Stepper motors must be controlled to ensure stability, precision
tracking, desired steady-state and dynamic performance, disturbance rejection,
and zero steady-state error. To approach the analysis and control, complete
nonlinear mathematical models of stepper motors must be found. By energizing
the stator windings in the proper sequence, the rotor rotates in the
counterclockwise or clockwise direction due to the electromagnetic torque
developed. In particular, the rotor displaces by a full or half step. Hence,
energizing windings, one achieves the angular increment equal to a full or
half step. The angular velocity is regulated by changing the frequency of the
phase currents fed or voltages supplied to the phase windings as was shown
for permanent-magnet synchronous motors.

3.6.1. Mathematical Model in the Machine Variables

For two-phase permanent-magnet stepper motors, we have
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d

dt
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The electrical angular velocity and displacement are found using the
number of rotor teeth, ω ωr rmRT=  and θ θr rmRT= . Therefore, the flux

linkages are function of the number of the rotor teeth RT, and

( )ψ ψ θasm m rmRT= cos ,

( )ψ ψ θbsm m rmRT= sin .            (3.6.3)

The self-inductance of the stator windings is

L L L L Lss asas bsbs ls m= = = + .            (3.6.4)

.



The stator windings are displaced by 90 electrical degrees. Hence, the
mutual inductances between the stator windings are zero,

L Lasbs bsas= = 0.
From (3.6.2), (3.6.3) and (3.6.4), we have

( )ψ ψ θas ss as m rmL i RT= + cos ,

( )ψ ψ θbs ss bs m rmL i RT= + sin .            (3.6.5)

Taking note of (3.6.1) and (3.6.5), one has
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Using Newton’s second law we have

( )d
dt J

T B Trm
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θ
ω= .

The expression for the electromagnetic torque developed by permanent-
magnet stepper motors must be found. Taking note of

( ) ( ) ( )W L i L i i RT i RT Wc ss as ss bs m as rm m bs rm PM= + + + +1
2

2 2 ψ θ ψ θcos sin ,

one finds the electromagnetic torque

T
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∂
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( ) ( )[ ]= − −RT i RT i RTm as rm bs rmψ θ θsin cos .

Hence, the transient evolution of the rotor angular velocity ω rm  and

displacement θrm  is modeled by the following differential equations
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Augmenting (3.6.6) and (3.6.7), one has
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These four nonlinear differential equations are rewritten in the state-
space form as
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From (3.6.8), an s-domain block diagram is developed and illustrated in
Figure 3.6.1.
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Figure 3.6.1. Block diagram of permanent-magnet stepper motors

The analysis of the torque equation

( ) ( )[ ]T RT i RT i RTe m as rm bs rm= − −ψ θ θsin cos

guides one to the conclusion that the expressions for a balanced two-phase
current sinusoidal set is

( )i i RTas M rm= − 2 sin θ ,

( )i i RTbs M rm= 2 cos θ ,            (3.6.9)

because the electromagnetic torque is a function of the current magnitude
iM , and

T RT ie m M= 2 ψ .

The phase currents (3.6.9) needed to be fed are the functions of the rotor
angular displacement. Assuming that the inductances are negligibly small, we
have the following phase voltages needed to be supplied

( )u u RTas M rm= − 2 sin θ ,

( )u u RTbs M rm= 2 cos θ .          (3.6.10)

An s-domain block diagram of permanent-magnet stepper motors which
is controlled by changing the phase voltages, as given by (3.6.10), is shown
in Figure 3.6.2.
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Figure 3.6.2. S-domain block diagram of permanent-magnet stepper motors,

       ( )u u RTas M rm= − 2 sin θ  and ( )u u RTbs M rm= 2 cos θ

3.6.2. Mathematical Models of Permanent-Magnet Stepper Motors in
the Rotor and Synchronous Reference Frames

It was shown that using the machine variables, Kirchhoff’s voltage law
results in two nonlinear differential equations

( )u r i L
di
dt

RT RTas s as ss
as

m rm rm= + − ψ ω θsin ,

( )u r i L
di
dt

RT RTbs s bs ss
bs

m rm rm= + + ψ ω θcos .

Applying the direct Park formation, which in the rotor reference frame is
given as
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the following differential equations in the qd quantities are found
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Hence, the resulting nonlinear circuitry dynamics is
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From

( ) ( )[ ]T RT i RT i RTe m as rm bs rm= − −ψ θ θsin cos ,

using the inverse Park transformation
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we have

T RT ie m qs
r= ψ .

From Newton’s second law of motions, one has
d

dt
RT

J
i

B
J J

Trm m
qs
r m

rm L
ω ψ

ω= − −
1

,

d

dt
rm

rm

θ
ω= .          (3.6.12)

Augmenting differential equations (3.6.11) and (3.6.12), the following
mathematical model of permanent-magnet synchronous motors in the rotor
reference frame results
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In matrix form, we have
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The phase currents and voltages to the ab motor windings must be fed
using the rotor angular displacement, and

( )i i RTas M rm= − 2 sin θ , ( )i i RTbs M rm= 2 cos θ ,

( )u u RTas M rm= − 2 sin θ , ( )u u RTbs M rm= 2 cos θ .

From
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we have

i i RT i RTqs
r

as rm bs rm= − +sin( ) cos( )θ θ ,

i i RT i RTds
r

as rm bs rm= +cos( ) sin( )θ θ .

Therefore,

( ) ( )i i RT i RT iqs
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M rm M rm M= + =2 2 22 2sin cosθ θ ,
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Similarly, for the quadrature and direct voltages, from

u

u

RT RT

RT RT

u

u
qs
r

ds
r

rm rm

rm rm

as

bs









 =

−



















sin( ) cos( )

cos( ) sin( )

θ θ
θ θ

,



one has the following expressions for the quadrature and direct voltages

u uqs
r

M= 2  and uds
r = 0 .

If advanced shifting is used, we obtain

u uqs
r

M u= 2 cosϕ  and u uds
r

M u= − 2 sinϕ .          (3.6.14)

Using the nonlinear differential equations (3.6.13), the block diagram of
permanent-magnet stepper motors, modeled in the rotor reference frame, is
developed and illustrated in Figure 3.6.3.
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Figure 3.6.3. Block diagram of permanent-magnet stepper motors
modeled in the rotor reference frame

Synchronous motors rotate with the synchronous angular velocity.
Therefore, we have ω ωr e= . From (3.6.13), the resulting model of

permanent-magnet stepper motors in the synchronous reference frame can be
found. In particular, four nonlinear differential equations which describe the
circuitry and torsional-mechanical dynamics are
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It is evident that these nonlinear differential equations cannot be
linearized. Straightforward analytical and numerical analysis can be
performed using the developed mathematical models.

To control the angular velocity and rotor displacement of stepper
motors, one properly energizes the as and bs windings (the so-called step-by-
step open-loop operation). Correspondingly, ICs must be used, and the
stepper motor driver MC3479 is manufactured by Motorola, see the data,
description, and operation given below.
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Stepper Motor Driver

 

The MC3479 is designed to drive a two–phase stepper motor in the
bipolar mode. The circuit consists of four input sections, a logic decoding/
sequencing section, two driver–stages for the motor coils, and an output
to indicate the drive state.

 

•

 

Single Supply Operation: 7.2 to 16.5 V

 

•

 

350 mA/Coil Drive Capability

 

•

 

Clamp Diodes Provided for Back–EMF Suppression

 

•

 

Selectable and Step Operation

 

•

 

Selectable High/Low Output Impedance (Half Step Mode)

 

•

 

TTL/CMOS Compatible Inputs

 

•

 

Input Hysteresis: 400 mV Minimum

 

•

 

Phase Logic Can Be Initialized to 

 

•

 

Output Drive State Indication (Open–Collector)

 

•

 

Available in Standard DIP and Surface Mount

 

ORDERING INFORMATION

 

Device
Operating 

Temperature Range Package

 

MC3479P

 

TA = 0° to 

 

+

 

70°C Plastic

Phase A

CW/CCW Full/Half

Phase A

Phase A

 

Monolithic ICs: Stepper Motors Driver MC3479

 

(Copyright of Motorola, used with permission)
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MAXIMUM RATINGS

 

Rating Symbol Value Unit

 

Supply Voltage

 

VM

 

+

 

18 Vdc

 

Clamp Diode Cathode Voltage (Pin 1)

 

VD VM 

 

+

 

 5.0 Vdc

 

Driver Output Voltage

 

VOD VM 

 

+

 

 6.0 Vdc

 

Drive Output Current/Coil

 

IOD

 

±

 

500 mA

 

Input Voltage (Logic Controls)

 

Vin

 

−

 

0.5 to 

 

+

 

7.0 Vdc

IBS

 

−

 

10 mA

VOA

 

+

 

18 Vdc

IOA 20 mA

 

Junction Temperature

 

TJ

 

+

 

150 °C

 

Storage Temperature Range

 

Tstg

 

−

 

65 to 

 

+

 

150 °C

 

RECOMMENDED OPERATING CONDITIONS

 

Characteristic Symbol Min Max Unit

 

Supply Voltage

 

VM

 

+

 

7.2 16.5 Vdc

 

Clamp Diode Cathode Voltage

 

VD VM VM 

 

+

 

 4.5 Vdc

 

Driver Output Current (Per Coil) (Note 1)

 

IOD — 350 mA

 

Input Voltage (Logic Controls)

 

Vin 0

 

+

 

5.5 Vdc

IBS

 

−

 

300

 

−

 

75

 

µ

 

A

VOA — VM Vdc

IOA 0 8.0 mA

 

Operating Ambient Temperature

 

TA 0

 

+

 

70 °C

 

NOTE:

 

 1. See section on Power Dissipation in Application Information.

 

DC ELECTRICAL CHARACTERISTICS 

 

(Specifications apply over the recommended supply voltage and temperature range, [Notes
2, 3] unless otherwise noted.)

 

Characteristic Pins Symbol Min Typ Max Unit

 

INPUT LOGIC LEVELS

 

Threshold Voltage (Low–to–High)

 

7, 8,

9,10

VTLH — — 2.0 Vdc

 

Threshold Voltage (High–to–Low)

 

VTHL 0.8 — — Vdc

 

Hysteresis

 

VHYS 0.4 — — Vdc

 

Current: (VI = 0.4 V)

 

IIL

 

−

 

100

—

—

—

—

—

—

+100

+20

 

µ

 

A

 

              (VI = 5.5 V)

              (VI = 2.7 V)

 

DRIVER OUTPUT LEVELS

 

Output High Voltage
(IBS 

 

= −

 

300 

 

µ

 

A): (IOD 

 

= −

 

350 mA)
(IOD 

 

= −

 

0.1 mA)

 

2, 3,
14, 15

VOHD
VM – 2.0
VM – 1,2

—
—

—
—

Vdc

 

Output Low Voltage
(IBS 

 

= −

 

300 

 

µ

 

A, IOD 

 

= 

 

350 mA)

 

VOLD — — 0.8 Vdc

 

Differential Mode Output Voltage Difference (Note 4)
(IBS 

 

= −

 

300 

 

µ

 

A, IOD 

 

= 

 

350 mA)

 

DVOD — — 0.15 Vdc

 

Common Mode Output Voltage Difference (Note 5)
(IBS 

 

= −

 

300 

 

µ

 

A, IOD 

 

= −

 

0.1 mA)

 

CVOD — — 0.15 Vdc

 

Output Leakage, Hi Z State
(0 

 

≤

 

 VOD 

 

≤

 

 VM, IBS 

 

= −

 

5.0 

 

µ

 

A)
(0 

 

≤

 

 VOD 

 

≤

 

 VM, IBS 

 

= −

 

300 

 

µ

 

A, F/H = 2.0 V, OIC = 0.8 V)

 

IOZ1
IOZ2

 

−

 

100

 

−

 

100
—
—

 

+

 

100

 

+

 

100

 

µ

 

A

 

NOTES:

 

 2. Algebraic convention rather than absolute values is used to designate limit values.
3. Current into a pin is designated as positive. Current out of a pin is designated as negative.
4. DVOD 

 

=

 

 

 

|

 

VOD1,2 

 

−

 

 VOD3,4 

 

|

 

 where: VOD1,2 

 

=

 

 (VOHD1 

 

−

 

 VOLD2) or (VOHD2 

 

−

 

 VOLD1), and
VOD3,4 

 

=

 

 (VOHD3 

 

−

 

 VOLD4) or (VOHD4 

 

−

 

 VOLD3).
5. CVOD 

 

=

 

 

 

|

 

VOHD1 

 

−

 

 VOHD2 

 

|

 

 or 

 

|

 

VOHD3 

 

−

 

 VOHD4

 

|

 

.

Bias/Set Current

Phase A output Voltage

Phase A Sink Current

Bias/Set Current (Outputs Active)

Phase A Output Voltage

Phase A Sink Current
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DC ELECTRICAL CHARACTERISTICS 

 

(Specifications apply over the recommended supply voltage and temperature range. [Notes
2, 3] unless otherwise noted.)

 

Characteristic Pins Symbol Min Typ Max Unit

 

CLAMP DIODES

 

Forward Voltage
(ID 

 

=

 

 350 mA)

 

1, 2, 3,
14,15

VDF — 2.5 3.0 Vdc

 

Leakage Current (Per Diode)
(Pin 1 

 

=

 

 21 V; Outputs 

 

=

 

 0 V; IBS = 0 

 

µ

 

A)

 

IDR — — 100

 

µ

 

A

 

Output Low Voltage
(IOA = 8.0 mA)

 

11 VOLA — — 0.4 Vdc

 

Off State Leakage Current
(VOHA = 16.5 V)

 

IOHA — — 100

 

µ

 

A

 

POWER SUPPLY

 

Power Supply Current
(IOD 

 

=

 

 0 

 

µ

 

A, IBS 

 

=

 

 

 

−

 

300 

 

µ

 

A)
(L1 

 

=

 

 VOHD, L2 

 

=

 

 VOLD, L3 

 

=

 

 VOHD, L4 

 

=

 

 VOLD)
(L1 

 

=

 

 VOHD, L2 

 

=

 

 VOLD, L3 

 

=

 

 Hi Z, L4 

 

=

 

 Hi Z)
(L1 

 

=

 

 VOHD, L2 

 

=

 

 VOLD, L3 

 

=

 

 VOHD, L4 

 

=

 

 VOHD)

 

16

IMW
IMZ
IMN

—
—
—

—
—
—

70
40
75

mA

6 IBS

 

−

 

5.0 — —

 

µ

 

A

 

PACKAGE THERMAL CHARACTERISTICS

 

Characteristic Symbol Min Typ Max Unit

 

Thermal Resistance, Junction–to–Ambient (No Heatsink)

 

R

 

θ

 

JA — 45 — °C/W

 

AC SWITCHING CHARACTERISTICS. 

 

(TA = +25°C, VM = 12 V) (See Figures 2, 3, 4)

 

Characteristic Pins Symbol Min Typ Max Unit

 

Clock Frequency

 

7 tCK 0 — 50 kHz

 

Clock Pulse Width (High)

 

7 PWCKH 10 — —

 

µ

 

s

 

Clock Pulse Width (Low)

 

7 PWCKL 10 — —

 

µ

 

s

6 PWBS 10 — —

 

µ

 

s

10–7
9–7

tsu 5.0 — —

 

µ

 

s

10–7
9–7

tn 10 — —

 

µ

 

s

 

Propagation Delay (Clk–to–Driver Output)

 

tPCD — 8.0 —

 

µ

 

s

tPBSD — 1.0 —

 

µ

 

s

7–11 tPHLA — 12 —

 

µ

 

s

7–11 tPLHA — 5.0 —

 

µ

 

s

 

NOTES:

 

 1. Algebraic convention rather than absolute values is used to designate limit values.
2. Current into a pin is designated as positive. Current out of a pin is designated as negative.

PHASE A OUTPUT

BIAS/SET CURRENT

To Set Phase A

Bias/Set Pulse Width

Setup Time (CW/CCW and  F/HS)

Hold Time (CW/CCW and F/HS)

Propagation Delay (Bias/Set–to–Driver Output)

Propagation Delay (Clk–to–Phase A Low)

Propagation Delay (Clk–to–Phase A High
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APPLICATION INFORMATION

 

General

 

The MC3479 integrated circuit is designed to drive a
stepper positioning motor in applications such as disk drives
and robotics. The outputs can provide up to 350 mA to each
of two coils of a two–phase motor. The outputs change state
with each low–to–high transition of the clock input, with the
new output state depending on the previous state, as well
as the input conditions at the logic controls.

 

Outputs

 

The outputs (L1–L4) are high current outputs (see
Figure 5), which when connected to a two–phase motor,
provide two full–bridge configurations (L3 and L4 are not
shown in Figure 5). The polarities applied to the motor
coils depend on which transistor (QH or QL) of each output
is on, which in turn depends on the inputs and the decod-
ing circuitry.

 

PIN FUNCTION DESCRIPTION

 

Pin No.

Function Symbol Description20–Pin 16–Pin

 

20 16

 

Power Supply

 

VM

 

Power supply pin for both the logic circuit and the motor coil current. 
Voltage range is 

 

+

 

7.2 to 

 

+

 

16.5 volts.

 

4, 5, 6, 7,
14, 15, 16, 17

4, 5,
12, 13

 

Ground

 

Gnd

 

Ground pins for the logic circuit and the motor coil current. The physical 
configuration of the pins aids In dissipating heat from within the IC 
package.

 

1 1

 

Clamp Diode
Voltage

 

VD

 

This pin is used to protect the outputs where large voltage spikes may 
occur as the motor coils are switched. Typically a diode is  connected 
between this pin and Pin 16. See Figure 11.

 

2, 3,
18, 19

2, 3,
14, 15

 

Driver Outputs

 

L1, L2
L3, L4

 

High current outputs for the motor coils. L1 and L2 are connected  to 
one coil, and L3 and L4 to the other coil.

 

8 6

 

This pin is typically 0.7 volts below VM. The current out of this  pin 
(through a resistor to ground) determines the maximum output  sink 
current. it the pin is opened (IBS 

 

<

 

 5.0 

 

µ

 

A) the outputs assume a  high  
impedance condition, while the internal logic presets to a 

condition.

 

9 7

 

Clock

 

Clk

 

The positive edge of the clock input switches the outputs to the next 
position. This input has no effect if Pin 6 is open.

 

11 9

 

When low (Logic “0”), each clock input pulse will causes the  motor 
to rotate one full step. When high, each clock pulse will cause the  
motor to rotate one–half step. See Figure 7 for sequence.

 

12 10

 

Counterclockwise

This input allows reversing the rotation of the motor. Sea  Figure 7 for 
sequence.

 

10 8

 

Output Impedance
Control

 

OIC

 

This input is relevant only in the hall step mode (Pin 9 

 

>

 

 2.0 V).  When 
low (Logic “0”), the two driver outputs of the non–energized coil will 
be in a high Impedance condition. Mum high the same driver outputs 
will be at a low impedance referenced to VM. See Figure 7.

 

13 11

 

Phase A

 

Ph A This open–collector output indicates (when low) that the driver outputs 
are in the condition (L1 = L3 = VOHD, L2 = L4 = VOLD).

Bias/Set B/S

Phase A

Full/Half Step F/HS

Clockwise/ CW/CCW

Phase A
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The maximum sink current available at the outputs is a
function of the resistor connected between Pin 6 and ground
(see section on operation). Whenever the outputs
are to be in a high impedance state, both transistors (QH
and QL of Figure 5) of each output are off.

VD
This pin allows for provision of a current path for the

motor coil current during switching, in order to suppress
back–EMF voltage spikes. VD is normally connected to VM
(Pin 16) through a diode (zener or regular), a resistor, or
directly. The peaks instantaneous voltage at the outputs
must not exceed VM by more than 6.0 V. The voltage drop
across the internal clamping diodes must be included in this
portion of the design (see Figure 6). Note the parasitic
diodes (Figure 5) across each QL of each output provide
for a complete circuit path for the switched current.

Figure 4. Clock Timing
(Refer to Figure 2)

Figure 5. Output Stages

Bias/Set

Figure 6. Clamp Diode Characteristics



Chapter three: Structural design, modeling, and simulation 293

When this input is at a Logic “0” (<0.8 V), the outputs
change a full step with each clock cycle, with the sequence
direction depending on the input. There are four
steps for each complete cycle of the
sequencing logic. Current flows through both motor coils
during each step, as shown in Figure 7.

When taken to a Logic “1” (>2.0 V), the outputs change
a half step with each clock cycle, with the sequence direc-
tion depending on the input, Eight steps
(  to ) result for each complete cycle of the
sequencing logic. correspond (in
polarity) to  and respectively, of the full
step sequence. provide current to
one motor coil, while de–energizing the other coil. The
condition of the outputs of the de–energized coil depends
on the OIC input, see Figure 7 timing diagram.

OIC
The output impedance control input determines the out-

put impedance to the de–energized coil when operating in
the half–step mode. When the outputs are in 

(Figure 7) and this input is at a Logic “0” (<0.8 V),
the two outputs to the de–energized coil are in a high
impedance condition—QL and QH of both outputs (Figure
5) are off. When this input is at a Logic “1” (>2.0 V), a low
impedance output is provided to the de–energized coil as
both outputs have QH on (QL off). To complete the low
impedance path requires connecting VD to VM as described
elsewhere in this data sheet.

This pin can be used for three functions: a) determining
the maximum output sink current; b) setting the internal
logic to a known state; and c) reducing power consumption.

a) The maximum output sink current is determined by
the base drive current supplied to the lower transistors (QLs
of Figure 5) of each output, which in turn, is a function of
IBS. The appropriate value of IBS is determined by:

IBS = IOD × 0.86

where IBS is in microamps, and IOD is the  motor current/coil
in milliamps.

Full/Half Step

CW/CCW
(Phase A, B, C, D)

CW/CCW
Phase A H

Phase A, C, E and G
Phase A, B, C, D,

Phase B, D, F and H

Phase B, D,

F or H

Bias/Set
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The value of RB (between this pin and ground) is then
determined by:

b) When this pin is opened (raised to VM) such that IBS
is <5.0 µA, the internal logic is set to the condition,
and the four driver outputs are put into a high impedance
state. The output (Pin 11) goes active (low), and
input signals at the controls are ignored during this time.
Upon re–establishing IBS, the driver outputs become active,
and will be in the position (L1 = L3 = VOHD, L2
= L4 = VOLD). The circuit will then respond to the inputs at
the controls.

The Set function (opening this pin) can be used as a
power–up reset while supply voltages are settling. A CMOS
logic gate (powered by VM) can be used to control this pin
as shown in Figure 11.

c) Whenever the motor is not being stepped, power dis-
sipation in the IC and in the motor may be lowered by
reducing IBS, so as to reduce the output (motor) current.
Setting IBS to 75 µA will reduce the motor current, but will
not reset the internal logic as described above. See Figure
12 for a suggested circuit.

Power Dissipation
The power dissipated by the MC3479 must be such that

the junction temperature (TJ) does not exceed 150°C. The
power dissipated can be expressed as:

P = (VM × IM) + (2 × IOD) [(VM − VOHD) + VOLD]

where VM = Supply voltage;
IM = Supply current other than IOD;
IOD = Output current to each motor coil;
VOHD = Driver output high voltage;
VOLD = Driver output low voltage.

The power supply current (IM) is obtained from Figure 8.
After the power dissipation is calculated, the junction tem-
perature can be calculated using:

TJ = (P × RθJA) + TA
where RθJA = Junction–to–ambient thermal resistance
(52°C/W for the DIP, 72°C/W for the FN Package);

TA = Ambient Temperature.

For example, assume an application where VM = 12 V,
the motor requires 200 mA/coil, operating at room temper-
ature with no heatsink on the IC. IBS is calculated:

IBS = 200 × 0.86
IBS = 172 µA

RB is calculated: 

RB = (12 − 0.7) V/172 µA
RB = 65.7 kΩ

From Figure 8, IM (max) is determined to be 40 mA. From
Figure 9, VOLD is 0.46 volts, and from Figure 10, (VM – VOHD)
is 1.4 volts.

P = (12 × 0.040) + (2 × 0.2) (1.4 + 0.46)
P = 1.22 W
TJ = (1.22 W × 52°C/W) + 25°C
TJ = 88°C

This temperature is well below the maximum limit. If the
calculated TJ had been higher than 150°C, a heatsink such
as the Staver Co. V–7 Series, Aavid #5802, or Thermalloy
#6012 could be used to reduce RθJA. In extreme cases,
forced air cooling should be considered.

The above calculation, and RθJA, assumes that a ground
plane is provided under the MC3479 (either or both sides
of the PC board) to aid in the heat dissipation. Single
nominal width traces leading from the four ground pins
should be avoided as this will increase TJ, as well as provide
potentially disruptive ground noise and IR drops when
switching the motor current.

RB

VM 0.7 V–

IBS
-----------------------------=

Phase A

Phase A

Phase A
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3. 7.  NANOMACHINES:
NANOMOTORS  AND  NANOGENERATORS

Molecular nanomotors and nanogenerators with moving components will
be briefly studied in this section. Nanomachines must satisfy the general
performance specifications such as efficiency, reliability, quality,
environmental requirements (electromagnetic interference, temperature,
pressure, contamination, radiation, vibration), etc. High levels of
performance, efficiency, reliability, and robustness are desired. Based upon
the results covered in the previous sections, rotational and translational
nanoscale machines are illustrated in Figure 3.7.1.

Figure 3.7.1. Rotational and translational (linear) nanomachines:
(a) rotating nanomotor and nanogenerator with

molecular poles (formed by +eq and –eq) and
molecular bearing (formed by +eb and –eb);

Rotating nanomachine
(nanomotor and nanogenerator)

Nanoantenna
Nanowinding

Substrate

Linear nanomachine
(nanomotor and nanogenerator)

Stator
(nanotube)

Nanoantenna
Nanowinding

Substrate

Spring

B

B

qe+
be+be+

be+

be−

be+

be+

be−

be+

Molecular
bearing

Rotor
(nanocylinder)

v

rω

NanoICs

NanoICs

Molecular
bearing

Rotor
(ferromagnetic nanocylinder)

qe−

Stator
(nanotube)



It is evident that these low cost nanomachines are high-performance,
manufacturable, easy-to-assemble (using nanoscale building blocks through
the “bottom-up” and “top-down” approaches), robust, and reliable
nanodevices.

Two rotating molecules (positive and negative doped molecules with
charges +eq and –eq) and molecular nanocylinder form the rotor (motion
nanostructure). The electromagnetic field is developed by nanoantenna or
nanocircuitry (nanoICs). The electromagnetic torque is produced, and
nanomotor rotates.

The rotational and translational nanomotors can be used as
nanoswitches, nanologics, and nanomemories which are the basic
components of nanocomputers.

The nanomachines, given in Figure 3.7.1, can be used as nanogenerators
because the voltage is induced if the force or torque are applied to the rotors.
The rotational and translational nanogenerators can be used as
nanoaccelerometers and nanogyroscopes (to measure linear and angular
accelerations), nanoscale shear stress sensors, nanoscale flow sensors, etc.

These rotational and translational nanomachines can be comprehensively
studied using the results reported in this and previous chapters. The
documented nanomachines, which are efficient, robust, highly reliable, and
can be operated in severe environments, are the departure from the
biomolecular (DNA) based nanomachines which usually cannot meet the
imposed requirements and standards. Thus, the proposed nanomachines
allow one to overcome the well-known difficulties. The researched solution,
augmented with the fundamental results covered, provides an unified
benchmarking avenue to analyze actuation/sensing – energy transfer –
controlling – feedback mechanism – fabrication at the nano- and microscale
level.
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CHAPTER 4

CONTROL OF NANO- AND MICROELECTROMECHANICAL
SYSTEMS

4.1. FUNDAMENTALS OF ELECTROMAGNETIC RADIATION AND
ANTENNAS  IN NANO- AND MICROSCALE

ELECTROMECHANICAL  SYSTEMS

The electromagnetic power is generated and radiated by antennas. Time-
varying current radiates electromagnetic waves (radiated electromagnetic
fields). Radiation pattern, beam width, directivity, and other major
characteristics can be studied using Maxwell’s equations, see Section 2.2. We
use the vectors of the electric field intensity E, electric flux density D,
magnetic field intensity H, and magnetic flux density B. The constitutive
equations are

ED ε=  and HB µ=
where ε  is the permittivity; µ  is the permiability.

It was shown in Section 2.2 that in the static (time-invariant) fields,
electric and magnetic field vectors form separate and independent pairs. That
is, E and D are not related to H and B, and vice versa. However, for time-
varying electric and magnetic fields, we have the following fundamental
electromagnetic equations

t
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tzyx
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∂
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),,,(
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),,,(),,,( tzyx
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∂
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ε
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tzyx v=⋅∇ E ,

0),,,( =⋅∇ tzyxH ,

where J is the current density, and using the conductivity σ , we have
EJ σ= ; vρ  is the volume charge density.

The total current density is the sum of the source current JS and the
conduction current density Eσ  (due to the field created by the source JS).
Thus,

EJJ σ+=Σ S .

The equation of conservation of charge (continuity equation) is

∫∫ −=⋅
v

v

s

dv
dt
d

d ρsJ ,

and in the point form one obtains

t

tzyx
tzyx v

∂
∂

−=⋅∇
),,,(

),,,(
ρ

J .



Therefore, the net outflow of current from a closed surface results in
decrease of the charge enclosed by the surface.

The electromagnetic waves transfer the electromagnetic power. That is,
the energy is delivered by means of electromagnetic waves. Using equations

t∂
∂

µ
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we have
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In a media, where the constitute parameters are constant (time-invariant),
we have the so-called point-function relationship
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In integral form one obtains
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The right side of the equation derived gives the rate of decrease of the
electric and magnetic energies stored minus the ohmic power dissipated as heat
in the volume v. The pointing vector, which is a power density vector,
represents the power flows per unit area, and

HEP ×= .
Furthermore,
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where 2
2
1 EwE ε=  and 2

2
1 HwH µ=  are the electric and magnetic energy

densities; 22 1
JE

σ
σρσ ==  is the ohmic power density.

The important conclusion is that the total power transferred into a closed
surface s at any instant equals the sum of the rate of increase of the stored
electric and magnetic energies and the ohmic power dissipated within the
enclosed volume v.

If the source charge density ),,,( tzyxvρ  and the source current density

),,,( tzyxJ  vary sinusoidally, the electromagnetic field also vary

sinusoidally. Hence, we have deal with the so-called time-harmonic
electromagnetic fields. The sinusoidal time-varying electromagnetic fields will
be studied. Hence, the phasor analysis is applied. For example,

zzyyxx EEE arararrE )()()()( ++= .



The electric field intensity components are the complex functions. In
particular,

ImRe)( xxx jEEE +=r , ImRe)( yyy jEEE +=r , ImRe)( zzz jEEE +=r .

For the real electromagnetic field, we have
tEtEtE xxx ωω sin)(cos)(),( ImRe rrr −= .

One obtains the time-harmonic electromagnetic field equations. In
particular,
• Faraday’s law       HE ωµj−=×∇ ,

• generalized Amphere’s law JEJEEH +
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• Gauss’s law       
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• Continuity of magnetic flux  0=⋅∇ H ,

• Continuity law        vjωρ−=⋅∇ J ,             (4.1.1)

where 
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 is the complex permittivity. However, for simplicity we will

use ε  keeping in mind that the expression for the complex permittivity

ε
ω
σ
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j

 must be applied.

The electric field intensity E, electric flux density D, magnetic field
intensity H, magnetic flux density B, and current density J are complex-valued
functions of spatial coordinates.

From the equation (4.1.1) taking the curl of HE ωµj−=×∇ , which is

rewritten as BE ωj−=×∇ , and using JDH +=×∇ ωj , one obtains
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where kv is the wave constant µεω=vk , and in free space
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Using the magnetic vector potential A, we have AB ×∇= .
Hence,

0)( =+×∇ AE ωj ,

and thus
ËAE −∇=+ ωj ,

where Ë  is the scalar potential.
To guarantee that JDH +=×∇ ωj  holds, it is required that

JEAAAH µωµεµ +=∇−⋅∇∇=×∇×∇=×∇ j2 .

Therefore, one finally finds the equation needed to be solved
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Taking note of the Lorentz condition ËA ωµεj−=⋅∇ , one obtains.
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Thus, the equation for Ë  is found. In particular,

ε
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The equation for the magnetic vector potential is found solving the
following inhomogeneous Helmholtz equation

JAA µ−=+∇ 22
vk .

The expression for the electromagnetic field intensity, in terms of the
vector potential, is
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To derive E, one must have A. The Laplacian for A in different coordinate
systems can be found. For example, we have

xxvx JAkA µ−=+∇ 22 ,

yyvy JAkA µ−=+∇ 22 ,

zzvz JAkA µ−=+∇ 22 .

It was shown that the magnetic vector potential and the scalar potential
obey the time-dependent inhomogeneous wave equation
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The solution of this equation is found using Green’s function as
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The so-called retarded solution is
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For sinusoidal electromagnetic fields, we apply the Fourier analysis to
obtain
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Thus, we have the expressions for the phasor retarded potentials
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Example 4.1.1.
Consider a short (dl) thin filament of current located in the origin, see

Figure 4.1.1. Derive the expressions for magnetic vector potential and
electromagnetic field intensities.

Figure 4.1.1. Current filament in the spherical coordinate system

Solution.
The magnetic vector potential has only a z component, and thus, from

JAA µ−=+∇ 22
vk ,

we have

ds
i

JAkA zzvz µµ −=−=+∇ 22 ,

where ds is the cross-sectional area of the filament.
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Taking note of the spherical symmetry, we conclude that the magnetic
vector potential Az is not a function of the polar and azimuth angles φθ  and . In

particular, the following equation results
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components. In particular, rjkve  (outward propagation) and rjkve−  (inward
propagation). The inward propagation is not a part of solution for the filament
located in the origin. Thus, we have

rjktj vaert −= ωψ ),(  (outward propagating spherical wave).

In free space, we have
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To find the constant a, we use the volume integral
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where the differential spherical volume is drddrdv d φθθsin2= ; rd  is the

differential radius.
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Therefore, the final equation for the magnetic vector potential (outward
propagating spherical wave) is
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From θθ θ sincos aaa −= rz , we have
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The magnetic and electric field intensities are found using
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The intrinsic impedance is given as
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Near-field and far-field electromagnetic radiation fields can be found,
simplifying the expressions for H(r) and E(r).

For near-field, we have
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The complex Pointing vector can be found as
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The following expression for the complex power flowing out of a sphere
of radius r results
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The real quality is found, and the power dissipated in the sense that it
travels away from source and cannot be recovered.     



Example 4.1.2.
Derive the expressions for the magnetic vector potential and

electromagnetic field intensities for a magnetic dipole (small current loop)
which is shown in Figure 4.1.2.

Figure 4.1.2. Current loop in the xy plane

Solution.
The magnetic dipole moment is equal to the current loop are times current.

That is,
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For the short current filament, it was derived in Example 4.1.1 that
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denoted as r’. It should be emphasized that the current filament is lies in the xy
plane, and
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Having obtained the explicit expression for the vector potential, the
magnetic flux density is found. In particular,
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Taking note of the expression for the magnetic dipole moment

zir aM 2
0π= , one has

r
rr

ir
aMaA ×==

2
0

2

2
00

4
sin

4 π
µ

θ
µ

φ .

It was shown that using ∫=
l

dl
r

i
'

1
4

0

π
µ

A , the desired results are obtained.

Let us apply ∫
−

=
l

r
c

j

dl
r

ei

'4

'

0

ω

π
µ

A .

From 
r

c
jr

c
j

err
c

je
ωω ω −−





 −−≈ )'(1

'
, we have

( ) θ
π

µ
π

µ ω
ω

φ

ω
ω

sin1
4'

)]'(1[

4 2
00

r
c

j

c
l

r
c

j

c erj
r

M
dl

r

errji −
−

+=
−−

= ∫ aA .

Therefore, one finds

θ
π

ωµ ω

ωωφ sin
11

4 22

3
0

2

2

r
c

j

cc

e
rrjc

M
jE

−














−= ,

θ
π

ε
µ

ωµ ω

ωω
cos

11

4

2
32

0

02

3
0

3

3

2

2

r
c

j

cc

r e
rjrc

M
jH

−














+= ,

θ
π

ε
µ

ωµ ω

ωωωθ sin
111

4
32

0

02

3
0

3

3

2

2

r
c

j

ccc

e
rjrrj

c

M
jH

−














−−−= .



The electromagnetic fields in near- and far-fields can be straightforwardly
derived, and thus, the corresponding approximations for  the φE , rH  and θH

can be obtained.    

Let the current density distribution in the volume is given as )( 0rJ , and

for far-field from Figure 4.1.3 one has 0' rrr −≈ .

Figure 4.1.3. Radiation from volume current distribution

The formula to calculate far-field magnetic vector potential is
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Example 4.1.3.
Consider the half-wave dipole antenna fed from a two-wire transmission

line, as shown in Figure 4.1.4 The antenna is one-quarter wavelength; that is,
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equations for electromagnetic field intensities and radiated power.
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Figure 4.1.4. Half-wave dipole antenna

Solution.

The wavelength is given as 
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Having found the magnetic field intensity as
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and integrating the derived expression over the surface
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0 ∫ ∫ , the total radiated power is found to

be 2
06.36 i .    

If the current density distribution is known, the radiation field can be
found. Using Maxwell’s equations, using the electric and magnetic vector
potentials AE and AH, we have the following equations

( ) EEvk JA µ−=+∇ 22 ,

( ) HHvk JA ε−=+∇ 22 ,
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Example 4.1.4.
Consider the slot (one-half wavelength long slot is dual to the half-wave

dipole antenna studied in Example 4.1.3), which is exited from the coaxial
line, see Figure 4.1.5. The electric field intensity in the z-direction is

( )zlkEE v −= sin0 . Derive the expressions for the magnetic vector potential

and electromagnetic field intensities.

Figure 4.1.5. Slot antenna
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Solution.
Using the magnetic current density JH, from

∫∫∫∫ ⋅−⋅−=⋅=⋅×∇
s

H

sls

ddjdld sJsBEsE ω ,

the boundary conditions for the magnetic current sheet are found as

Hnn JEaEa −=×−× 21 .

The slot antenna is exited by the magnetic current with strength

( )zlkE v −sin2 0  in the z axis. For half-wave slot we have

( )zlkii vH −= sin0 , and

( ) HHvk JA ε−=+∇ 22 ,
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The boundary condition ( )zlkE vxnHn −×=−=× sin02
1 aaJEa  is

satisfied by the radiated electromagnetic field.
The radiation pattern of the slot antenna is the same as for the dipole

antenna.    
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4.2. DESIGN  OF  CLOSED-LOOP  NANO-  AND
MICROELECTROMECHANICAL  SYSTEMS  USING  THE

LYAPUNOV  STABILITY  THEORY

The solution of a spectrum of problems in nonlinear analysis, structural
synthesis, modeling, and optimization of NEMS and MEMS lead to the
development of superior high-performance NEMS and MEMS. In this section,
we address introductory control issues. Mathematical models of NEMS and
MEMS were derived, and the application of the Lyapunov theory is studied as
applied to solve the motion control problem.

It was illustrated that NEMS and MEMS must be controlled. Nano- and
microelectromechanical systems augment a great number of subsystems, and to
control microscale electric motors, as discussed in previous chapters, power
amplifiers (ICs) regulate the voltage or current fed to the motor windings.
These power amplifiers are controlled based upon the reference (command),
output, decision making, and other variables. Studying the end-to-end NEMS
and MEMS behavior, usually the output is the nano- or microactuator linear
and angular displacements. There exist infinite number of possible NEMS and
MEMS configurations, and it is impossible to cover all possible scenarios.
Therefore, our efforts will be concentrated on the generic results which can be
obtained describing NEMS and MEMS by differential equations. That is, using
the mathematical model, as given by differential equations, our goal is develop
control algorithms to guarantee the desired performance characteristics
addressing the motion control problem (settling time, accuracy, overshoot,
controllability, stability, disturbance attenuation, et cetera).

Several methods have been developed to address and solve nonlinear
design and motion control problems for multi-input/multi-output dynamic
systems. In particular, the Hamilton-Jacobi and Lyapunov theories are found to
be the most straightforward in the design of control laws.

The NEMS and MEMS dynamics is described as
uxBdrxFtx )(),,()( +=& , )(xHy = , u u u x t xmin max , ( )≤ ≤ =0 0 ,

           (4.2.1)
where x∈X⊂c is the state vector; u∈U⊂m is the bounded control vector;
r∈R⊂b and y∈Y⊂b are the measured reference and output vectors; d∈D⊂s

is the disturbance vector; F(⋅):c×b×s→c and B(⋅):c→ c×m are jointly
continuous and Lipschitz; H(⋅):c→b is the smooth map defined in the
neighborhood of the origin, H(0) = 0.

Before engaged in the design of closed-loop systems, which will be based
upon the Lyapunov stability theory, let us study stability of time-varying
nonlinear dynamic systems described by

),()( xtFtx =& , 00 )( xtx = , 0≥t .

The following Theorem is formulated.



Theorem.
Consider the system described by nonlinear differential equations

),()( xtFtx =& , 00 )( xtx = , 0≥t .

 If there exists a positive-definite scalar function ),( xtV (called

Lyapunov function) with continuous first-order partial derivatives with respect
to t and x
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then
• the equilibrium state is stable if the total derivative of the positive-definite

function 0),( >xtV  is 0≤
dt
dV

;

• the equilibrium state is uniformly stable if the total derivative of the

positive-definite decreasing function 0),( >xtV  is 0≤
dt
dV

;

• the equilibrium state is uniformly asymptotically stable in the large if the

total derivative of 0),( >xtV  is negative definite; that is, 0<
dt
dV

;

• the equilibrium state is exponentially stable in the large if the exist the

∞K -functions )(1 ⋅ρ  and )(2 ⋅ρ , and K-function )(3 ⋅ρ  such that
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ρ−≤ .             n

Examples are studied to illustrate how this Theorem can be
straightforwardly applied.

Example 4.2.1.
Study stability of the following nonlinear system
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Solution.
A scalar positive-definite function is expressed in the quadratic form as
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Thus, we have 
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0
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The total derivative of ( ) 0, 21 >xxV  is negative definite.

Therefore, the equilibrium state is uniformly asymptotically stable.     

Example 4.2.2.
Study stability of the time-varying nonlinear system modeled by the

following differential equations
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Solution.
A scalar positive-definite function is
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is negative definite. In particular, 
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Hence, the equilibrium state is uniformly asymptotically stable.          

Example 4.2.3.
Study stability of the systems
& ( )x t x x1 1 2= − + ,

& ( )x t x x x x2 1 2 2 2= − − − , 0≥t .

Solution.
The positive-definite scalar Lyapunov candidate is chosen as
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Thus, 0),( 21 >xxV .
The total derivative is
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. Hence, the equilibrium state is uniformly

asymptotically stable, and the quadratic function ( )2
2

2
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1
21 ),( xxxxV +=  is

the Lyapunov function which can be used to study stability.                  

Example 4.2.4.
Consider a microdrive actuated by permanent-magnet synchronous motor

if TL=0. In drive applications, using equations (3.5.12), three nonlinear
differential equations in the rotor reference frame are
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Study the stability letting
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In matrix form, one obtains
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Using the quadratic positive-definite Lyapunov function
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One concludes that the equilibrium state of a microdrive is uniformly
asymptotically stable.
 Consider the closed-loop system.

To guarantee the balanced operation we let
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Therefore, the following differential equations result
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Taking note of the quadratic positive-definite Lyapunov function
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Therefore, the conditions for asymptotic stability are guaranteed.       

In Example 4.2.4 it was shown that dynamic systems can be controlled to
attain the desired transient dynamics, stability margins, etc. Let us study how
to solve the motion control problem with the ultimate goal to synthesize
tracking controllers applying Lyapunov’s stability theory.

Using the reference (command) vector r(t) and the system output y(t), the
tracking error (which ideally must be zero) is

)()()( tytNrte −= .            (4.2.2)

The Lyapunov theory is applied to derive the admissible control laws
(voltages and currents are bounded, and therefore the saturation effect is always
the reality). That is, the admissible bounded controller should be designed as
continuous function within the constrained rectangular control set

U={u∈m : u min ≤ u ≤ umax, umin < 0, umax > 0}⊂m.
Making use of the Lyapunov candidate ),,( extV , the bounded

proportional-integral controller with the state feedback extension is expressed
as
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           (4.2.3)
where Gx(⋅): ≥0→m×m, Ge(⋅):≥0→m×m and Gi(⋅):≥0→m×m are the bounded

symmetric matrix-functions defined on [t0,∞), Gx>0, Ge>0, Gi>0;

V(⋅): ≥0×c×b→≥0 is the continuously differentiable real-analytic Cκ (κ≥1)
function with respect to x∈X and e∈E on [t0,∞).

It was emphasized that the control signal is saturated as documented in
Figure 4.2.1.
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Figure 4.2.1. Bounded control, u u umin max≤ ≤

For closed-loop NEMS and MEMS (4.2.1)–(4.2.3) with
X 0={x0∈c}φX⊂c,u∈U⊂m, r∈R⊂b and d∈D⊂s, it is straightforward to
find the evolution set X(X0, U, R, D)⊂c. Furthermore, using the output

equation, one has YX H→ . Thus, the system (4.2.1)-(4.2.3) evolves in
       XY(X0,U, R, D)={(x,y)∈X × Y: x0∈X0, u∈U, r∈R, d∈D, t∈[t0,∞)}⊂c × b.

The tracking error
)()()( tytNrte −= , e(⋅):[t0,∞)→b

gives the difference between the reference input r(⋅):[t0,∞)→b and system

output y(⋅):[t0,∞) →b. Our goal is to find the feedback coefficients of
controller (4.2.3) to guarantee that the closed-loop NEMS and MEMS will
evolve in the desired manner. The following Lyapunov-based Lemma is
formulated to study the stability of closed-loop dynamic systems as well as to
find the feedback coefficients to guarantee the criteria imposed on the
Lyapunov pair.

Lemma.
Consider the closed-loop systems (4.2.1) – (4.2.3).

1. Solutions of system are uniformly ultimately bounded;
2. equilibrium point is exponentially stable in the convex and compact state

evolution set X(X0, U, R, D)⊂c;
3. tracking is ensured and disturbance attenuation is guaranteed in the state-

error evolution set XE(X0, E0, U, R, D)⊂c × b,
if there exists a Cκ function V(t,x,e) in XE such that for all x∈X, e∈E, u∈U,
r∈R and d∈D on [t0,∞)

(i) ρ ρ ρ ρ1 2 3 4x e V t x e x e+ ≤ ≤ +( , , ) ,            (4.2.4)

(ii) along (4.2.1) with (4.2.3), the following  inequality holds
dV t x e

dt
x e

( , , ) ≤ − −ρ ρ5 6 .              (4.2.5)

Here, ρ1(⋅):≥0→≥0, ρ2(⋅):≥0→≥0, ρ3(⋅):≥0→≥0 and ρ4(⋅):≥0→≥0 are the

K∞-functions; ρ5(⋅):≥0→≥0 and ρ6(⋅):≥0→≥0 are the K-functions.    



The major problem is to design the Lyapunov candidate functions.
Let us apply a family of nonquadratic Lyapunov candidates
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To design the Lyapunov functions, the nonnegative integers were used.
In particular, ,...,2,1,0,...,2,1,0 == γη  ...2,1,0,...,2,1,0 == βς ,

,...2,1,0=σ , and ,...2,1,0=µ .

From (4.2.3) and (4.2.6), one obtains a bounded admissible controller as
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Here, Kxi(⋅): ≥0→c×c, Kei(⋅):≥0→b×b and Ksi(⋅):≥0→b×b are the matrix-

functions.
It is evident that assigning the integers to be zero, the well-known

quadratic Lyapunov candidate results, and
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The bounded controller is found to be
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Substituting (4.2.7) into (4.2.1), the total derivative of the Lyapunov
candidate ),,( extV  is obtained. Solving (4.2.5), the feedback coefficients are

obtained.

Example 4.2.5.
Consider a micro-electric drive actuated by a permanent-magnet DC motor

with step-down converter, see Figure 4.2.2. Find the control algorithm.
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Figure 4.2.2. Permanent-magnet DC motor with step-down converter

Solution.
Using the Kirchhoff laws and the averaging concept, we have the

following nonlinear state-space model with bounded control
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A bounded control law should be synthesized.
From (4.2.6), letting ς σ= = 1  and β µ η γ= = = = 0 , one finds the

nonquadratic function ),( xeV . In particular, we apply the following
Lyapunov candidate
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where Kx0 ∈4×4.
Therefore, from (4.2.7), one obtains

.

,0for    0

,100for    

,10for    10

8765
3

43
3

21 raLa

c

kikikukdtekedtkekeku

u

uu

u

u

ω−−−−+++=









≤
<<

≥
=

∫∫



If the criteria, imposed on the Lyapunov pair are guaranteed, one
concludes that the stability conditions are satisfied. The positive-definite
nonquadratic function ),( xeV  was used.  The feedback gains must be found

by solving inequality 0
),(

<
dt

xedV
. For example, the following inequality

can be solved
2

2
14

4
12

2
1),(

xee
dt

xedV
−−−≤ .

Thus, from 0),( >xeV  and 0
),(

<
dt

xedV
, one concludes that stability

is guaranteed.     

It must be emphasized that a great number of examples in design of
tracking controllers for electromechanical systems are reported in the
references cited below.

Example 4.2.6.
Study the flip-chip MEMS: eight-layered lead magnesium niobate actuator

(3 mm diameter, 0.25 mm thickness), actuated by a monolithic high-voltage
switching regulator, 11 ≤≤− u  A. A set of differential equations to model the
microactuator dynamics is

uuFF
dt

dF
yy

y 48593137409472 ++−= ,

yyyy
y xvvF

dt

dv
2750260994100947 3/1 −−−= ,

dx

dt
vy

y= .

Solution.
The control authority is bounded, and hence, the control is constrained.
In particular, 11 ≤≤− u .
The error is the difference between the reference and microactuator

position. That is,
e t r t y t( ) ( ) ( )= − ,

where y t xy( ) =  and r t r ty( ) ( )= .

Using (4.2.6) setting the nonnegative integers to be ς σ= = 1  and

β µ η γ= = = = 0 , we have
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Applying the design procedure, a bounded control law is synthesized, and
making use of (4.2.7), one has.

( )∫∫ +++= +
− dteedteeu 331
1 8174458261494827sat .

The feedback gains were found by solving inequality
242),(

xee
dt

xedV
−−−≤ .

The criteria imposed on the Lyapunov pair are satisfied. In fact,

0),( >xeV  and 0
),(

≤
dt

xedV
.

Hence, the bounded control law guarantees stability and ensures tracking.
The experimental validation of stability and tracking is important. The
controller is tested, and Figure 4.2.3 illustrates the transient dynamics for the

position for a reference signal (desired position) ttry 1000sin104)( 6−×= .

Figure 4.2.4 illustrates the actuator position if 6104)( −×== consttry .

From these end-to-end transient dynamics it is evident that the desired
performance has been achieved, and the output precisely follows the
reference position r ty ( ) .

Figure 4.2.3. Transient output dynamics if ttry 1000sin104)( 6−×=
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Figure 4.2.4. Actuator position, 6104)( −×== consttry

   

Example 2.4.7.
Consider a flip-chip MEMS with permanent-magnet stepper motor

controlled by ICs. The mathematical model in the ab variables, in the form of
nonlinear differential equations (see section 3.6), is given as

di

dt

r

L
i

RT

L
RT

L
uas s

ss
as

m

ss
rm rm

ss
as= − + +

ψ
ω θsin( )

1
,

di

dt

r

L
i

RT

L
RT

L
ubs s

ss
bs

m

ss
rm rm

ss
bs= − − +

ψ
ω θcos( )

1
,

( ) ( )[ ] ,
1

cossin Lrm
m

rmbsrmas
mrm T

JJ

B
RTiRTi

J

RT

dt

d
−−+−= ωθθ

ψω

d

dt
rm

rm

θ
ω= .

The two-phase micro-stepper motor parameters are:

RT = 6, 60=sr  ohm, 0064.0=mψ  N-m/A, ssL = 0.05 H, 7103.1 −×=mB

N-m-sec/rad, and the equivalent moment of inertia is 8108.1 −×=J  kg-m2.
The phase voltages are bounded. In particular,

maxmin uuu as ≤≤  and maxmin uuu bs ≤≤ ,

where minu = - 12 V and maxu  = 12 V.

Design the tracking control algorithm.
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Solution.
The nonlinear controller is given as
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The rotor displacement is denoted as θ rm t( ) , and the output is

)()( tty rmθ= .  The tracking error is

)()()( tytrte −=
The Lyapunov candidate is found using (4.2.6).
Choosing a candidate Lyapunov function to be (letting 0== γη  and
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and solving
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a bounded controller is found as
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The sufficient conditions for robust stability are satisfied because

V e x( , ) > 0  and 0
),(

<
dt

xedV
.

Figures 4.2.5 and 4.2.6 document the dynamic if the reference (cammand)
displacement was assigned 0.5 and 1 radians, respectively. From analytical and
experimental results one concludes that the robust stability and tracking are
guaranteed.



Figure 4.2.5. Transient output dynamics of microservo
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Figure 4.2.6. Transient output dynamics of microservo
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4.3. INTRODUCTION  TO  INTELLIGENT  CONTROL  OF  NANO-
AND  MICROELECTROMECHANICAL  SYSTEMS

Hierarchical distributed closed-loop systems must be designed for large-
scale multi-node NEMS and MEMS in order to perform a number of complex
functions and tasks in dynamic and uncertain environments. In particular, the
goal is the synthesis of control algorithms and architectures which maximize
performance and efficiency minimizing system complexity through
• intelligence, learning, evolution, and organization;
• adaptive decision making,
• coordination and autonomy of multi-node NEMS and MEMS through

tasks and functions generation, organization and decomposition,
• performance analysis with outcomes prediction and assessment,
• real-time diagnostics, health monitoring, and estimation,
• real-time adaptation and reconfiguration,
• fault tolerance and robustness,
• etc.

Control theory and engineering practice in the design and implementation
of hierarchical hybrid (digital- and continuous-time subsystems are integrated,
discrete and continuous events are augmented) real-time large-scale closed-loop
systems have not matured. Synthesis of optimal controllers for elementary
(single-input/single-output) single node NEMS and MEMS can be performed
using conventional methods such as the Hamilton-Jacobi theory, Lyapunov’s
concept, maximum principle, dynamic programming, etc. However, these
methods do not allow the designer to attain the desired features for complex
multi-node NEMS and MEMS even though some methods (e.g., adaptive
control, fuzzy logic, and neural networks) ensure performance assessment,
diagnostics, adaptation, and reconfiguration. In fact, hierarchical architectures
are needed to be designed and optimized to achieve intelligence, evolution,
adaptive decision making, and performance analysis with outcome prediction.
The design of intelligent systems can be mathematically formulated as a search
problem in high-dimensional space, and the performance criteria form
hypersurfaces. Efficient and robust search algorithms are used to perform
optimization. Due to the complexity of large-scale systems and uncertainties, it
is difficult to develop accurate analytic models, explicitly formulate
performance specifications, derive regret functionals and performance indexes,
design optimal architectures, synthesize hierarchical structures, as well as
design control algorithms. The situation much more complex in the synthesis of
robust closed-loop systems under uncertainties in dynamic environments.

Intelligence can be defined as the ability of closed-loop NEMS and MEMS
achieve the desired goals (for example, maximize safety, stability, robustness,
controllability, efficiency, reliability, and survivability, while minimizing
failures, electromagnetic interference, and losses) in dynamic and uncertain
environments through the NEMS and MEMS abilities to sense the



environment, learn and evolve, perform adaptive decision making with
performance analysis and outcome prediction, and control.

Let us discuss the design of a control algorithms for jth level of k-level
hierarchical NEMS and MEMS. The control law at jth level can be expressed
as
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where
• )(tu j  is the control vector (output);

• f is the nonlinear map;
• P is the system performance (stability, robustness, controllability,

efficiency, reliability, losses, et cetera);

• ∑
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)(  is the error vector which represents the difference between the

assigned command and events ri(t) and system outputs yi(t), and the end-to-
end error vector is e t r t y t( ) ( ) ( )= − ;
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)(  is the state, event, and decision variable vector;
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)(  is the sensed information (inputs, outputs, state and decision

variables, events, disturbances, noise, parameters, et cetera) measured by

jth and lower level sensors, and, in general, one can use ∑
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• )(tp j  is the parameter vector (for example, time-varying parameters as

well as adjustable feedback coefficients which can be changed through the
decision making, learning, evolution, intelligence, control, adaptation, and
reconfiguration processes).
The simplest control algorithms are the proportional-integral-derivative

(PID) controllers with state/event/decision feedback extension. For example,
the linear analog PID control law is given by
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where k p , ki  and kd  are the proportional, integral and derivative feedback

gains.
Nonlinear PID controllers can be designed as
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where ip NN ,  and Nd  are the positive assigned integers; k kp j i j( ) ( ),2 1 2 1− −

and kd j( )2 1−  are the proportional, integral, and derivative feedback

coefficients.
For N p = 1, Ni = 1 and Nd = 1, one has
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Assigning 2=pN , Ni = 2  and 1=dN , the PID-type controller is

expressed as
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The feedback gains k p , ki  and kd  can be time-varying.

In addition, k p , ki  and kd  can be nonlinear functions of the state, event,

and decision variables, error, disturbances, etc. For example,
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Assume that in large-scale multi-node NEMS/MEMS, which have
thousands of nodes (NEMS/MEMS with subsystems – sensors, actuators, and
ICs), one sensor and actuator were failed. These types of failures must be
identified in real-time (through diagnostics and health monitoring), and closed-
loop NEMS/MEMS must be reconfigurated through intelligence and adaptive
decision making with performance analysis with outcome prediction and
assessment. Hierarchically distributed closed-loop systems must be designed
for large-scale multi-node NEMS and MEMS using hierarchical layers. For
example, for three-layer configuration, the possible architecture consists of
• high-level layer (intelligent augmented/coordinated control with

intelligence and adaptive decision making with performance analysis and
outcome prediction and assessment),

• medium-level layer (intelligent coordinated or autonomous control),
• low-level layer (sensor processing, data acquisition, simple feedback, e.g.,

single-input/single-output system for single node with many the state,
event, and decision variables).
Thus, the problem can be decomposed into sub-problems performed at

different layers (which can operate at different sampling rates) with synthesized
layouts and decomposed tasks and functions. The system architecture must be



synthesized, and the tasks are decomposed by the high-level layer into narrow
tasks/functions and fed (with or without defined adaptation, decision making,
diagnostics, estimation, implementation, performance analysis, realization, as
well as other details) to the medium-level layer, which further decomposes the
tasks and supervises the low-level layer. This hierarchically distributed
standardized control architecture is shown in Figure 4.3.1.

High-Level
Layer

Medium-Level
Layer

Low-Level
Layer

NEMS
MEMS

Figure 4.3.1 Three-layer hierarchically distributed architecture for
             large-scale multi-node NEMS and MEMS

Different operating systems, interfaces, and platforms should be supported
by advanced software, and there is a critical need for novel high-performance
robust software. The designer can
• lay out and support hierarchical controllers in if-then-else execution

format,
• generate codes for different platforms,
• add and remove layers,
• set up communication and networks based upon timing requirements (write

data to the shared memory buffers and read data from the buffers,
protocols development, code and encode data from the buffers using
different file formats),

• perform diagnostics,
• etc.

To perform these tasks, novel design tools are needed. At high-level,
intelligence, evolution, coordination and autonomy through tasks
generation/organization and decomposition, adaptive decision making with
performance analysis and outcome prediction, diagnostics and estimation,



adaptation and reconfiguration, fault tolerance and robustness, as well as other
functions must be performed through sensing-actuation, learning, evolution,
analysis, evaluation, behavioral (dynamic and steady-state performance)
optimization and adaptation, etc.

Architectures for hierarchically distributed complex closed-loop systems
can be synthesized based upon the decomposition of tasks and functions. The
analysis of complexity, hierarchy, data flow (sensing and actuation), and
controllers design, allows the designer to synthesize architectures starting from
lowest structural level and then governing and augmenting lower levels to
upper levels based on physical relationships, functional correlation, order,
sequence, and arrays to attain the desired performance, capability, and
efficiency.

Consider the closed-loop system to displace (move) the flight control
surfaces as shown in Figure 4.3.2. Ailerons, elevators, canards, flaps, rudders,
stabilizers and tips are controlled by MEMS-based microactuators.

Figure 4.3.2. Aircraft with MEMS-based translational and rotational
              flight microactuators

Three-layer architecture of the hierarchically distributed flight management
system can integrate three layers: high, medium, and low. At the low level, the
single MEMS-based node (actuator/sensor) is controlled using sensing data.
The control can be generated using the PID or fuzzy logic control laws (single-
input/single-output system) which are based on mathematical and logical
(linguistic rules to describe the system operation) reasoning. The simple tasks
that can be performed by a low-level layer are:
• "displace" in the clockwise or counterclockwise directions (microactuator

is actuated by supplying the voltage which is controlled by microICs, and

ψφθ ,,
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the duty ratio of high-frequency transistors is controlled using the tracking
error, decision variables, and events);

• "measure the displacement",
• "compare the command and actual displacements" (obtain the tracking

error),
• "diagnose and detect failures" (For example, positive or negative values of

the duty ratio, which is bounded by 1± , correspond to the clockwise or
counterclockwise angular deflections, respectively; an increase of the duty
ratio must lead to an increase of the current and electromagnetic field
intensity).
Thus, we have a set of commands to attain the desired tasks and

functions. The low-level layer is primarily responsible for actuation, sensing,
simple analysis, diagnostics, and decision making. It is evident that the
internal decision making mechanism and local diagnostics can be performed
at a low level. The medium-level layer (which controls all control surfaces,
e.g., left and right horizontal stabilizers, right and left leading and trailing
flaps, et cetera) coordinate the actions of hundreds of MEMS-based nodes
(actuators/sensors). Aircraft control is performed by a supervisory flight
management system (high-level layer), which, in addition to microactuators
management, integrates many other functions (e.g., mission, path, position,
propulsion control, et cetera), and the task analysis is accomplished by the
high-level layer. In particular, based upon the information obtained from
medium- and low-level layers, the high-level layer defines tasks (through
intelligence, learning, evolution, analysis, adaptation, coordination,
organization, decomposition, adaptive decision making with performance
analysis and outcome prediction, diagnostics, et cetera) to guarantee safety,
flying and handling requirements, mission effectiveness, etc. The commands
to displace the control surfaces are generated by the high-level layer based
upon the overall analysis and high-level decision making. It must be
emphasized that high-, medium-, and low-level layers communicate with
each other, and the high-level layer possesses a key role.

Decision-making theory must be applied to develop and integrate key
enabling methods, algorithms, and tools for the use in intelligent large-scale
multi-node NEMS and MEMS. These intelligent systems must make optimal
(robust) decision based upon the evolution strategies using specified
requirements and priorities, monitoring (sensing) the external environment for
entities of interest, recognizing those entities and then infer high-level attributes
about those entities, etc. The closed-loop systems use the data from different
sensors, feedback commands (controls) are generated and executed, and
intelligent updates and evolution are performed. The feedback for sensor and
control mechanisms are integrated, and particular emphasis is concentrated to
gather the critical and essential data from the agents (nodes) of a greatest
interest. Extensive information data must be constantly updated to guarantee a
complete situation awareness, graduate evolution, and intelligence using
performance analysis, outcome evaluation, prediction, and assessment. Thus,



qualitative and quantitative analysis is performed to study the overall system
evolution. To perform the inferences required, to develop an assessment of the
current situation, and to predict performance and outcomes, extensive
knowledge and information about NEMS, MEMS, and environment are
needed.

A multiple learning concept can be implemented to design high-, medium-,
and low-level closed-loop systems. Agents (nodes) exhibit complex behavior
which can be optimized using low-level evolutionary decision-making
subsystems which use learning algorithms. Reinforcement learning can be
performed based upon the prioritized objectives through upper level decision-
making. The agents behavior and performance are analyzed by the high-level
layer to collect and assess the evidence data. Decision trees are commonly used
to provide a comprehensive set of strategies, simplify and improve (optimize)
them, attain robustness and comprehensibility, and make the final decision. The
low-level subsystems can perform the following functions: sensing, actuation,
recognition, local diagnostics, local assessment, and local prediction with
decision making.

Hierarchical distributed closed-loop systems can have different
organization (architecture), and the number of layers is based upon the
complexity of multi-node NEMS and MEMS to be controlled, e.g., the
number of nodes their complexity. The level of control hierarchy is defined
by hardware and software complexity (rate of tasks completion, rate of
continuous/discrete events, bandwidth, sampling time, update rate, et cetera),
as well as by the overall specifications and requirements imposed. Complex
problems and tasks can be logically decomposed into simpler subproblems
and subtasks which are easy to understand, support, and implement using the
state table of rules (for each rule, the actuator or sensor action and operation
are determined using the system state, decision, event, and performance
variables). These subtasks must be performed in the defined sequence
scenarios that lead to the desired operation, and the architecture is
synthesized. Usually, low-level subsystem is designed for each NEMS and
MEMS node (actuator/sensor) at the lower level of the hierarchy, and the
layer level is defined based upon the overall objectives, analytical and
numerical complexity of problems, information flow, etc. Thus, the
complexity gradually arises form subsystems design (to control single node),
to the synthesis of closed-loop architecture (layers).

Different intelligent concepts can be applied. For example, neural
networks allow the designer to
• approximate unknown functions (function approximator neural networks);
• generalize control vector (control neural networks).

The backpropagation method is applied for training multilayer perceptron
neural networks.

The multi-input/single-output neuron output is given by
( )1BWvfu += ,



where u is the neuron output, u∈1; f is the nonlinear function (transfer
function); W is the weighting matrix, [ ]kk wwwwW 1111211 ,,,, −= K , W∈1×k;

v is the input vector (performance variables), v∈k; B 1 is the bias variable.
It should be emphasized that W and B1 are adjusted through the training

(learning) mechanism.
For a single-layer neural network of z neurons, one has

( )BWvfu += ,

where the weighting matrix and bias vector are W∈z × k and B∈z.
For multi-layer neural network of z neurons, one can find the following

expression for the (i + 1) network outputs
( ) 1,2,,1,0,1111 −−=+= ++++ MMiBuWfu iiiii K ,

where M is the number of layers in the neural network.
For example, for three-layer network, we have

( ) 2,32333 =+= iBuWfu , ( ) 1,21222 =+= iBuWfu ,

and ( ) 0,1111 =+= iBvWfu .

Hence, one obtains
( ) ( )( )[ ]32111223332333 BBBvWfWfWfBuWfu +++=+= ,

where the corresponding subscripts 1, 2 and 3 are used to denote the layer
variables.

To approximate the unknown functions, weighting matrix W and the bias
vector B must be determined, and the procedure for selecting W and B is called
the network training. Many concepts are available to attain training, and the
backpropagation, which is based upon the gradient descent optimization
methods, are commonly used. Applying the gradient descent optimization
procedure, one minimizes a mean square error performance index using the
end-to-end neural network behavior. That is, using the inputs vector v and the
output vector c, c∈k, the quadratic performance functional is given as
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,

where jjj uce −=  is the error vector; Q∈p × p is the diagonal weighting

matrix.
The steepest descent algorithm is applied to approximate the mean squire

errors, and the learning rate and sensitivity have been widely studied for the
quadratic performance indexes.
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